sha
null | last_modified
null | library_name
stringclasses 154
values | text
stringlengths 1
900k
| metadata
stringlengths 2
348k
| pipeline_tag
stringclasses 45
values | id
stringlengths 5
122
| tags
sequencelengths 1
1.84k
| created_at
stringlengths 25
25
| arxiv
sequencelengths 0
201
| languages
sequencelengths 0
1.83k
| tags_str
stringlengths 17
9.34k
| text_str
stringlengths 0
389k
| text_lists
sequencelengths 0
722
| processed_texts
sequencelengths 1
723
| tokens_length
sequencelengths 1
723
| input_texts
sequencelengths 1
61
| embeddings
sequencelengths 768
768
|
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
null | null | transformers | ----
tags:
- conversational
---
#Peter Parker DialoGPT Model | {} | text-generation | MaiaMaiaMaia/DialoGPT-medium-PeterParkerBot | [
"transformers",
"pytorch",
"gpt2",
"text-generation",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [] | TAGS
#transformers #pytorch #gpt2 #text-generation #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
| ----
tags:
- conversational
---
#Peter Parker DialoGPT Model | [] | [
"TAGS\n#transformers #pytorch #gpt2 #text-generation #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n"
] | [
47
] | [
"passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n"
] | [
-0.027653997763991356,
0.02414041943848133,
-0.0068230400793254375,
0.010564634576439857,
0.18164798617362976,
0.033704131841659546,
0.08821956068277359,
0.13570955395698547,
-0.0068973456509411335,
-0.013526750728487968,
0.1547490805387497,
0.20799952745437622,
-0.0026462990790605545,
0.0791444480419159,
-0.0664469450712204,
-0.2753458023071289,
0.05913490429520607,
0.0680282786488533,
-0.007687992881983519,
0.12075648456811905,
0.07187031954526901,
-0.0549883171916008,
0.0886516347527504,
-0.02030559629201889,
-0.17324471473693848,
0.01953965798020363,
0.04816993698477745,
-0.12518654763698578,
0.1176358312368393,
0.05111858248710632,
0.09795232862234116,
0.008365745656192303,
-0.06405694782733917,
-0.13635118305683136,
0.022147029638290405,
0.03033585101366043,
-0.058860234916210175,
0.0636059120297432,
0.1087222546339035,
-0.09939044713973999,
0.09311723709106445,
0.08541663736104965,
-0.0255570225417614,
0.05364618077874184,
-0.15825888514518738,
-0.06378549337387085,
-0.02499648556113243,
0.007804732769727707,
0.06256697326898575,
0.10073644667863846,
-0.017566369846463203,
0.10258800536394119,
-0.0975269079208374,
0.10333853214979172,
0.1500675231218338,
-0.3112771809101105,
0.009987793862819672,
0.09499151259660721,
0.04119991883635521,
0.03931105509400368,
-0.02533094584941864,
0.05045793950557709,
0.025268254801630974,
0.027277586981654167,
0.007437177933752537,
-0.0750175341963768,
-0.1137726753950119,
0.049895867705345154,
-0.09199702739715576,
-0.07458660751581192,
0.22324641048908234,
-0.07399588078260422,
0.060080595314502716,
-0.025852523744106293,
-0.11121725291013718,
-0.05274823680520058,
-0.013890148140490055,
0.018784796819090843,
-0.06587869673967361,
0.08765926212072372,
0.024050135165452957,
-0.06755640357732773,
-0.1323474794626236,
-0.04128742218017578,
-0.18628640472888947,
0.17943057417869568,
0.015332846902310848,
0.05883103236556053,
-0.1924149990081787,
0.11635245382785797,
-0.004000017885118723,
-0.08559784293174744,
0.024640021845698357,
-0.09488005936145782,
0.03717249631881714,
-0.005796557758003473,
-0.06343648582696915,
-0.07624655961990356,
0.078512042760849,
0.13449318706989288,
-0.0038929670117795467,
0.031459223479032516,
-0.03913462534546852,
0.08946967869997025,
0.023094916716217995,
0.11019261926412582,
-0.01329297386109829,
-0.00601809611544013,
0.043852973729372025,
-0.14449132978916168,
-0.008341594599187374,
-0.06913956254720688,
-0.1527271568775177,
-0.05108632892370224,
0.05306483805179596,
0.08953460305929184,
0.008545879274606705,
0.09067165106534958,
-0.04840036481618881,
-0.026439275592565536,
0.06191498041152954,
-0.07166212797164917,
-0.0057375445030629635,
0.0005479406099766493,
0.020326290279626846,
0.12346802651882172,
-0.006863993126899004,
0.01816580630838871,
-0.1344953328371048,
0.07597071677446365,
-0.0810447409749031,
0.0016609809827059507,
-0.037295255810022354,
-0.051307324320077896,
0.016753138974308968,
-0.09774310886859894,
0.014272624626755714,
-0.15190516412258148,
-0.18175770342350006,
0.015764877200126648,
0.0044948384165763855,
-0.03198384866118431,
-0.035312067717313766,
-0.03263629972934723,
-0.023609675467014313,
0.04306609928607941,
-0.06790579855442047,
0.009302832186222076,
-0.05678845942020416,
0.10395034402608871,
-0.032171644270420074,
0.06649759411811829,
-0.10738259553909302,
0.0829162523150444,
-0.12368609756231308,
-0.004673504736274481,
-0.09571383893489838,
0.07571588456630707,
-0.0049130916595458984,
0.11728651076555252,
-0.028541911393404007,
-0.03454771637916565,
-0.07556727528572083,
0.04999465495347977,
-0.02550712786614895,
0.18951213359832764,
-0.060080599039793015,
-0.12557648122310638,
0.2583121061325073,
-0.07503679394721985,
-0.1294521689414978,
0.09354755282402039,
0.013357079587876797,
0.03000263124704361,
0.08708256483078003,
0.17770351469516754,
0.03385210409760475,
0.011724604293704033,
0.08526027947664261,
0.1101398766040802,
-0.11245359480381012,
-0.0934135690331459,
0.01582467369735241,
-0.04410967230796814,
-0.14348545670509338,
0.0551721565425396,
0.06396481394767761,
0.08126390725374222,
-0.04889657348394394,
-0.02648499235510826,
-0.04211905598640442,
0.005280596204102039,
0.08378548920154572,
0.011136471293866634,
0.12981148064136505,
-0.04937934875488281,
-0.03142275661230087,
-0.018193937838077545,
-0.012411710806190968,
-0.03191297501325607,
0.03591127321124077,
-0.019667068496346474,
0.13700194656848907,
-0.048340748995542526,
0.053371917456388474,
-0.18971459567546844,
-0.07922437787055969,
0.0010099048959091306,
0.123023621737957,
-0.014106693677604198,
0.08013445883989334,
0.05753817409276962,
-0.018720267340540886,
-0.004700321704149246,
-0.01032867468893528,
0.1544346958398819,
-0.021616755053400993,
-0.06661882251501083,
-0.04162381589412689,
0.0662311464548111,
-0.05831345543265343,
-0.0033040468115359545,
-0.05776660889387131,
0.013589667156338692,
0.05048443749547005,
0.10443682968616486,
-0.0023575187660753727,
0.03253777325153351,
-0.02123248018324375,
0.018250472843647003,
-0.07885172218084335,
-0.0028943256475031376,
0.09839999675750732,
-0.003195167751982808,
-0.06114937365055084,
0.191707044839859,
-0.16508106887340546,
0.2123199850320816,
0.18989497423171997,
-0.2840019166469574,
0.008855658583343029,
-0.07930868119001389,
-0.03107025846838951,
0.019292673096060753,
0.04051336646080017,
-0.035391807556152344,
0.12321244925260544,
0.0030509934294968843,
0.1893225461244583,
-0.05120055004954338,
-0.054668959230184555,
-0.0003608512051869184,
-0.05736381933093071,
0.0013126746052876115,
0.06707432866096497,
0.11558198183774948,
-0.12564630806446075,
0.1973772495985031,
0.17830142378807068,
0.02446782775223255,
0.16028088331222534,
0.003589105326682329,
-0.02908729389309883,
0.07800903916358948,
0.001039333757944405,
-0.03403163328766823,
-0.08341804146766663,
-0.19453173875808716,
-0.01920945756137371,
0.08615871518850327,
0.05208343267440796,
0.11178864538669586,
-0.1340440809726715,
-0.039688125252723694,
-0.016580121591687202,
-0.013963420875370502,
0.004052120726555586,
0.08927994221448898,
0.05621529743075371,
0.11766386777162552,
-0.008479462936520576,
0.004914911463856697,
0.11690844595432281,
0.024292193353176117,
-0.0974007099866867,
0.20369629561901093,
-0.12859489023685455,
-0.35919657349586487,
-0.17192909121513367,
-0.16941924393177032,
-0.046767693012952805,
0.06603047996759415,
0.10566895455121994,
-0.11921820044517517,
-0.03283723443746567,
0.01984371617436409,
0.10511579364538193,
-0.0874844342470169,
0.025252653285861015,
-0.07854585349559784,
0.039858005940914154,
-0.08228866755962372,
-0.07852846384048462,
-0.058627899736166,
-0.02397638000547886,
-0.06844961643218994,
0.15293799340724945,
-0.10580270737409592,
0.04606963321566582,
0.19703397154808044,
0.035209350287914276,
0.05708123743534088,
-0.03352535888552666,
0.19375872611999512,
-0.09711813181638718,
-0.014181635342538357,
0.20692157745361328,
-0.04432303458452225,
0.08276087045669556,
0.10658510029315948,
-0.0009211950236931443,
-0.0905555859208107,
0.023672347888350487,
-0.03327333554625511,
-0.09995128959417343,
-0.2413795441389084,
-0.12423769384622574,
-0.12672755122184753,
0.07157120853662491,
0.06113129481673241,
0.06719478219747543,
0.1604551076889038,
0.09354656934738159,
-0.019843624904751778,
0.04505275562405586,
-0.0036725422833114862,
0.07906411588191986,
0.20365294814109802,
-0.0204415675252676,
0.13615357875823975,
-0.050657231360673904,
-0.13334059715270996,
0.09257177263498306,
0.06900633871555328,
0.15225820243358612,
0.054498545825481415,
0.05270633473992348,
0.006767008453607559,
0.06716175377368927,
0.1454283893108368,
0.13071000576019287,
0.014545821584761143,
-0.016409022733569145,
-0.021825823932886124,
-0.011036834679543972,
-0.05876464396715164,
0.04085689038038254,
0.02777833305299282,
-0.1610528975725174,
-0.05520197004079819,
-0.12001585215330124,
0.08774644136428833,
0.09219257533550262,
0.06569026410579681,
-0.2342914491891861,
0.007060535252094269,
0.08197256177663803,
-0.028898365795612335,
-0.1258426308631897,
0.08190665394067764,
-0.021697908639907837,
-0.14926569163799286,
0.0494246669113636,
-0.061497997492551804,
0.12161173671483994,
-0.07084709405899048,
0.08109014481306076,
-0.03937468305230141,
-0.062106676399707794,
0.020281726494431496,
0.1271398812532425,
-0.29730626940727234,
0.20356124639511108,
-0.001819691271521151,
-0.05869410187005997,
-0.11437822878360748,
0.01959572173655033,
0.01367559190839529,
0.11016108095645905,
0.10386832803487778,
0.005328167695552111,
-0.0475030355155468,
-0.12364684045314789,
-0.022924374788999557,
0.024910306558012962,
0.12441114336252213,
-0.05739542469382286,
-0.008891535922884941,
-0.044362228363752365,
-0.0058176638558506966,
-0.028876133263111115,
-0.053936153650283813,
0.025268638506531715,
-0.16888569295406342,
0.08389513194561005,
0.017658868804574013,
0.09978678822517395,
0.01261826977133751,
-0.013697084039449692,
-0.09944134950637817,
0.23519866168498993,
-0.07718266546726227,
-0.11035529524087906,
-0.1205357164144516,
-0.04611735790967941,
0.0686027929186821,
-0.0741099938750267,
0.0634869635105133,
-0.08208895474672318,
0.024847982451319695,
-0.047674816101789474,
-0.21411024034023285,
0.1248590424656868,
-0.09078147262334824,
-0.047217957675457,
-0.038028888404369354,
0.1873915195465088,
-0.07860055565834045,
0.003835690440610051,
0.01727161929011345,
0.03052649088203907,
-0.11501652747392654,
-0.10535892844200134,
0.02131424844264984,
-0.005508285015821457,
0.06073078140616417,
0.04357268661260605,
-0.06716573983430862,
0.01641303487122059,
-0.022389056161046028,
-0.006917606573551893,
0.32454678416252136,
0.14079391956329346,
-0.04770330339670181,
0.17363035678863525,
0.11376409232616425,
-0.08209476619958878,
-0.31482723355293274,
-0.08535979688167572,
-0.09984239190816879,
-0.03735451400279999,
-0.06232178583741188,
-0.21656104922294617,
0.09480288624763489,
0.04200942441821098,
-0.015409117564558983,
0.1568077802658081,
-0.24411429464817047,
-0.0795927420258522,
0.15950311720371246,
-0.007333407178521156,
0.3560895025730133,
-0.12491796165704727,
-0.11301901936531067,
-0.05532994866371155,
-0.1397564709186554,
0.15002089738845825,
-0.009417316876351833,
0.11106741428375244,
-0.03287123143672943,
0.10856477171182632,
0.048215944319963455,
-0.05544896051287651,
0.09160676598548889,
0.026295991614460945,
-0.003711326979100704,
-0.10597866773605347,
-0.01747799478471279,
0.043585844337940216,
0.006319248117506504,
0.031217962503433228,
-0.03127649053931236,
0.033463045954704285,
-0.12691029906272888,
-0.04727448150515556,
-0.08006873726844788,
0.05846472829580307,
0.052333541214466095,
-0.0737200528383255,
-0.0010956452460959554,
-0.06611854583024979,
-0.016030769795179367,
0.003143493551760912,
0.19045160710811615,
-0.03460016846656799,
0.14779594540596008,
0.0818052664399147,
0.09073434770107269,
-0.1361592561006546,
-0.0061243316158652306,
-0.06888517737388611,
-0.057741593569517136,
0.08706554025411606,
-0.10988334566354752,
0.06429524719715118,
0.11854783445596695,
-0.04650293290615082,
0.07134203612804413,
0.11840200424194336,
0.015247469767928123,
-0.0033181030303239822,
0.13015136122703552,
-0.2568117082118988,
0.019211336970329285,
-0.0754370167851448,
-0.03775216266512871,
0.08088402450084686,
0.07995659112930298,
0.16486960649490356,
0.036187540739774704,
-0.042049095034599304,
-0.003924929536879063,
0.009187355637550354,
-0.039663419127464294,
0.08243577927350998,
0.012240500189363956,
0.023174172267317772,
-0.15248477458953857,
0.071900375187397,
0.015580810606479645,
-0.12336304783821106,
0.011253113858401775,
0.1477922946214676,
-0.13801799714565277,
-0.11707340180873871,
-0.03374985232949257,
0.08742405474185944,
-0.14541642367839813,
-0.0241269338876009,
-0.04783749580383301,
-0.12825986742973328,
0.09339214116334915,
0.11613135039806366,
0.07497538626194,
0.10595441609621048,
-0.0529337078332901,
-0.02668607421219349,
-0.03682107478380203,
-0.022537073120474815,
-0.0017330512637272477,
0.032638516277074814,
-0.08304216712713242,
0.0579586885869503,
-0.020800847560167313,
0.14298540353775024,
-0.08964299410581589,
-0.07169508188962936,
-0.1581236720085144,
0.03564200550317764,
-0.12593989074230194,
-0.07035141438245773,
-0.08840593695640564,
-0.05227470397949219,
-0.007837125100195408,
-0.01494099572300911,
-0.0388214997947216,
-0.04472146928310394,
-0.12364204227924347,
0.01879296824336052,
-0.05806630104780197,
0.02100815810263157,
-0.07383234053850174,
0.00039667764212936163,
0.08932872861623764,
-0.0410015694797039,
0.13851116597652435,
0.13557660579681396,
-0.08107975125312805,
0.11907198280096054,
-0.13537484407424927,
-0.0908876284956932,
0.1157127171754837,
0.013428857550024986,
0.03907458856701851,
0.06849293410778046,
0.037317484617233276,
0.06514574587345123,
0.016511039808392525,
0.05237346887588501,
0.006972990930080414,
-0.1299850195646286,
0.03433857858181,
-0.042786743491888046,
-0.1481933295726776,
-0.05744143947958946,
-0.05092177540063858,
0.039562974125146866,
0.02438235841691494,
0.10801149904727936,
-0.03665049374103546,
0.11085481196641922,
-0.058541763573884964,
0.01499281544238329,
0.004919432103633881,
-0.18287403881549835,
-0.044654008001089096,
-0.07792776077985764,
0.02775009535253048,
0.022204352542757988,
0.2720205783843994,
0.0410233810544014,
0.020275471732020378,
0.017097288742661476,
0.11327627301216125,
0.057128578424453735,
0.015525308437645435,
0.214890718460083,
0.11996994912624359,
-0.06049320101737976,
-0.10806480050086975,
0.0858595222234726,
0.02164783701300621,
0.007426374591886997,
0.14070266485214233,
0.008503482677042484,
-0.015597577206790447,
0.0887407436966896,
-0.03357330709695816,
0.0031263602431863546,
-0.11658911406993866,
-0.13779941201210022,
-0.028487415984272957,
0.0629650130867958,
-0.0040870243683457375,
0.0956285297870636,
0.13609373569488525,
-0.026881180703639984,
0.03953414782881737,
-0.007877747528254986,
-0.054916199296712875,
-0.1785028725862503,
-0.15742821991443634,
-0.0790708139538765,
-0.13561099767684937,
0.014744875021278858,
-0.10368648171424866,
0.04369770362973213,
0.09560346603393555,
0.055915698409080505,
-0.05440305173397064,
0.10839936882257462,
0.060064028948545456,
-0.1045473963022232,
0.056569941341876984,
-0.032912541180849075,
0.06427399069070816,
-0.001812951872125268,
-0.02503552846610546,
-0.09098561853170395,
0.0020124134607613087,
0.0017788249533623457,
0.0514003150165081,
-0.05152478814125061,
0.024474015459418297,
-0.15132632851600647,
-0.09570280462503433,
-0.04949872940778732,
0.07316448539495468,
-0.06007300689816475,
0.1162300780415535,
-0.001420395914465189,
-0.017011309042572975,
0.03990921378135681,
0.2064858227968216,
-0.07188161462545395,
-0.04990030825138092,
-0.047407180070877075,
0.22449158132076263,
0.04847963526844978,
0.10619479417800903,
-0.013415440917015076,
-0.00436578830704093,
-0.07670432329177856,
0.36612021923065186,
0.2802904546260834,
-0.06149837002158165,
0.012722660787403584,
0.03524370491504669,
0.030115660279989243,
0.13885097205638885,
0.1454230099916458,
0.09396251291036606,
0.27579233050346375,
-0.08266803622245789,
-0.052018675953149796,
-0.015770163387060165,
-0.020211221650242805,
-0.09714096784591675,
0.11003416776657104,
0.04697350785136223,
-0.06982195377349854,
-0.044631510972976685,
0.09750646352767944,
-0.24107815325260162,
0.1615772694349289,
-0.07760030031204224,
-0.15214353799819946,
-0.06177033111453056,
0.012448563240468502,
0.10150322318077087,
0.00011545186134753749,
0.08784360438585281,
-0.009687529876828194,
-0.10291683673858643,
0.05749227851629257,
0.02730483002960682,
-0.23568211495876312,
-0.007146455347537994,
0.053680915385484695,
-0.04540037736296654,
0.013332240283489227,
-0.01917567476630211,
0.04910791665315628,
0.06717875599861145,
0.055140718817710876,
-0.0426395982503891,
0.03817736729979515,
-0.010196289978921413,
-0.05020907521247864,
0.029649224132299423,
0.044778332114219666,
0.017814766615629196,
-0.13065220415592194,
0.05277646332979202,
-0.13968263566493988,
0.041911475360393524,
-0.029653942212462425,
-0.027413733303546906,
-0.004670299123972654,
-0.019546283408999443,
-0.06313455104827881,
0.057941507548093796,
0.08424945920705795,
0.001472705160267651,
-0.007915833964943886,
-0.08050897717475891,
-0.011023934930562973,
-0.012819311581552029,
-0.08308050036430359,
-0.10086389631032944,
-0.1384236365556717,
-0.10634621232748032,
0.12701933085918427,
-0.017066750675439835,
-0.19125573337078094,
0.01284839678555727,
-0.09708964824676514,
0.060041818767786026,
-0.1797112077474594,
0.0843181237578392,
0.06071038171648979,
0.01623542606830597,
-0.004114143084734678,
-0.029135411605238914,
0.039420004934072495,
0.08210206776857376,
-0.10779064148664474,
-0.09044761955738068
] |
null | null | transformers | This model trained on nyanja dataset in Longformer | {} | fill-mask | MalawiUniST/ISO6392.nya.ny | [
"transformers",
"pytorch",
"longformer",
"fill-mask",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [] | TAGS
#transformers #pytorch #longformer #fill-mask #autotrain_compatible #endpoints_compatible #region-us
| This model trained on nyanja dataset in Longformer | [] | [
"TAGS\n#transformers #pytorch #longformer #fill-mask #autotrain_compatible #endpoints_compatible #region-us \n"
] | [
37
] | [
"passage: TAGS\n#transformers #pytorch #longformer #fill-mask #autotrain_compatible #endpoints_compatible #region-us \n"
] | [
-0.06047710403800011,
-0.011150161735713482,
-0.007751762866973877,
0.02891532890498638,
0.13516026735305786,
0.02576381340622902,
0.10693541914224625,
0.083266481757164,
0.046926215291023254,
0.00928936991840601,
0.1578814536333084,
0.17655231058597565,
-0.02695690095424652,
0.15576724708080292,
-0.06706930696964264,
-0.30015864968299866,
0.06015637889504433,
0.058775436133146286,
-0.045717693865299225,
0.11760500818490982,
0.0707104504108429,
-0.09432828426361084,
0.06928328424692154,
-0.010497113689780235,
-0.13829472661018372,
0.015063049271702766,
0.03834279626607895,
-0.1165025532245636,
0.1141524463891983,
0.010159449651837349,
0.19447742402553558,
0.004710424225777388,
-0.0730491578578949,
-0.06334340572357178,
0.043387215584516525,
-0.00472962437197566,
-0.05748889595270157,
0.040182340890169144,
0.018374809995293617,
-0.06062235310673714,
-0.036792512983083725,
0.023140886798501015,
0.027959730476140976,
0.0391402468085289,
-0.1375121772289276,
-0.11264733225107193,
-0.02373242750763893,
0.01848071999847889,
0.0373794324696064,
0.08193851262331009,
0.02950129844248295,
0.19818389415740967,
-0.14739786088466644,
0.08498945832252502,
0.1636185348033905,
-0.31457164883613586,
-0.0034689982421696186,
0.07300329208374023,
0.07882111519575119,
-0.051645975559949875,
-0.0394112803041935,
0.045149464160203934,
0.0026664165779948235,
0.03350790962576866,
0.05600700154900551,
-0.0682767853140831,
-0.05044512078166008,
0.015138929709792137,
-0.07714521884918213,
-0.039534494280815125,
0.13577283918857574,
-0.04713895544409752,
0.05779886245727539,
-0.021902743726968765,
-0.13090047240257263,
-0.06849868595600128,
-0.02182142250239849,
0.008580225519835949,
-0.025424189865589142,
0.03316441550850868,
-0.006801316514611244,
-0.029209168627858162,
-0.12268313020467758,
0.021765289828181267,
-0.27074235677719116,
0.25653076171875,
0.024427663534879684,
0.06801513582468033,
-0.20120923221111298,
0.03623029962182045,
-0.03563860058784485,
-0.13826759159564972,
0.03459525108337402,
-0.08637212961912155,
0.029697589576244354,
-0.004524019546806812,
-0.07467833906412125,
-0.030947482213377953,
0.07267511636018753,
0.16759543120861053,
0.061375901103019714,
0.015688715502619743,
0.03285081684589386,
0.10296657681465149,
-0.011774316430091858,
0.10075502842664719,
0.01633746176958084,
-0.05672061815857887,
0.07031824439764023,
-0.1185159832239151,
0.03955138847231865,
-0.052181024104356766,
-0.1254657357931137,
-0.06660392135381699,
0.008810245431959629,
0.08021201193332672,
0.04680245742201805,
0.042664092034101486,
-0.08508659154176712,
-0.011005882173776627,
0.09230960160493851,
-0.08580701053142548,
0.014154237695038319,
-0.009834655560553074,
0.013379978016018867,
0.11958824843168259,
0.011025617830455303,
-0.025327978655695915,
-0.04245360195636749,
0.12128336727619171,
-0.07155072689056396,
-0.010608545504510403,
-0.06402555108070374,
-0.07732179760932922,
0.03432479873299599,
-0.13542552292346954,
0.03724496811628342,
-0.1647227257490158,
-0.14727675914764404,
0.0512576550245285,
0.032810237258672714,
-0.0030434252694249153,
-0.030241629108786583,
0.031603410840034485,
-0.01501774787902832,
0.009703762829303741,
-0.049219969660043716,
-0.0535120852291584,
-0.045118194073438644,
0.08669105172157288,
0.0209956131875515,
0.1272093653678894,
-0.11680000275373459,
0.0533008798956871,
-0.09338147193193436,
0.006564096547663212,
-0.14634311199188232,
-0.04362409561872482,
0.00677740341052413,
0.1602833867073059,
-0.0002564795140642673,
-0.0775628313422203,
-0.0985073447227478,
0.024814547970891,
-0.013272702693939209,
0.15216682851314545,
-0.0641477033495903,
-0.1168714389204979,
0.2332696169614792,
-0.09766611456871033,
-0.1599230319261551,
0.09089669585227966,
0.020687365904450417,
0.005156905390322208,
0.043850935995578766,
0.07227838784456253,
0.0884472131729126,
-0.1261701136827469,
0.09868907928466797,
0.10563665628433228,
-0.15625737607479095,
-0.14759010076522827,
0.02394798770546913,
-0.004185546655207872,
-0.05090668052434921,
0.046678576618433,
0.08695121854543686,
0.10841527581214905,
-0.06813079118728638,
-0.05160035192966461,
-0.024486584588885307,
-0.03588862717151642,
0.1423971801996231,
0.03408649191260338,
0.11396860331296921,
-0.07157224416732788,
-0.004668996203690767,
-0.018941253423690796,
-0.0013612612383440137,
0.07069729268550873,
0.03914744034409523,
-0.08329271525144577,
0.13211850821971893,
-0.034832701086997986,
-0.0032098654191941023,
-0.18165971338748932,
-0.13999585807323456,
-0.008740334771573544,
0.04985004663467407,
-0.02820526622235775,
0.12396575510501862,
0.11334753036499023,
-0.019070617854595184,
0.013864630833268166,
-0.030339360237121582,
0.09733394533395767,
0.008747588843107224,
-0.043200138956308365,
-0.07398154586553574,
0.020208898931741714,
-0.06779101490974426,
-0.007564472034573555,
0.015351065434515476,
0.013617569580674171,
-0.028390226885676384,
0.11985840648412704,
-0.00032747810473665595,
0.05535516515374184,
-0.043721117079257965,
0.03385116532444954,
-0.034553006291389465,
0.013939517550170422,
0.07604271173477173,
0.009419361129403114,
-0.06341195106506348,
0.15462028980255127,
-0.17628388106822968,
0.35055410861968994,
0.18992631137371063,
-0.28182098269462585,
-0.008641380816698074,
0.018518585711717606,
-0.016744503751397133,
-0.01834077574312687,
0.03882709890604019,
0.01106053963303566,
0.04849771037697792,
0.021561454981565475,
0.1665453016757965,
-0.012608958408236504,
-0.007038923446089029,
0.017748434096574783,
-0.08586497604846954,
-0.02760816179215908,
0.02629404328763485,
0.06791050732135773,
-0.12392903864383698,
0.17956140637397766,
0.2356831580400467,
-0.0246701929718256,
0.150726780295372,
0.01292998157441616,
-0.023317504674196243,
0.012326736003160477,
-0.029108144342899323,
-0.027220310643315315,
0.03384552150964737,
-0.19175702333450317,
-0.03522166237235069,
0.08605002611875534,
-0.01571924425661564,
0.05159325897693634,
-0.1223720908164978,
-0.03460484370589256,
0.030266959220170975,
0.04346085712313652,
-0.06295677274465561,
0.126984104514122,
0.06738722324371338,
0.06706155091524124,
0.008634082973003387,
-0.07682029157876968,
0.11090655624866486,
0.005191886331886053,
-0.030557794496417046,
0.15733398497104645,
-0.13599468767642975,
-0.37093859910964966,
-0.15177199244499207,
-0.16879969835281372,
-0.016682093963027,
0.03261375427246094,
0.0715709775686264,
-0.0883745551109314,
-0.05906270071864128,
0.09021168202161789,
0.03282685577869415,
-0.015934867784380913,
0.07966402173042297,
-0.07916388660669327,
0.028498250991106033,
-0.03371306136250496,
-0.06019589304924011,
-0.06947574764490128,
-0.03835218772292137,
-0.02019675448536873,
0.14044824242591858,
-0.05328024923801422,
0.06739192456007004,
0.12569957971572876,
0.006026388145983219,
0.05889320373535156,
0.012051481753587723,
0.1568438559770584,
-0.0766623318195343,
-0.00989019125699997,
0.25308096408843994,
-0.027106663212180138,
0.09974801540374756,
0.1500537246465683,
0.02256590500473976,
-0.04359947144985199,
0.013929905369877815,
-0.06270583719015121,
-0.10951963067054749,
-0.13280197978019714,
-0.12190995365381241,
-0.1502438485622406,
0.003919822629541159,
0.05501637980341911,
0.043758608400821686,
0.12165683507919312,
0.09181634336709976,
0.03460398688912392,
-0.0218461025506258,
-0.08080857992172241,
0.050492916256189346,
0.17669346928596497,
-0.02373122237622738,
0.13263925909996033,
-0.03846573084592819,
-0.1329704225063324,
0.0674642026424408,
0.006836415734142065,
0.14111486077308655,
0.0713629499077797,
0.039340343326330185,
0.037002623081207275,
0.18569734692573547,
0.167226180434227,
0.15202845633029938,
0.04155639186501503,
-0.0770898312330246,
0.02039586380124092,
-0.0066499849781394005,
-0.045485470443964005,
0.023864129558205605,
0.14519189298152924,
-0.06265433132648468,
-0.05453889071941376,
-0.07792126387357712,
0.046339645981788635,
0.12492948770523071,
0.07083883881568909,
-0.2506406903266907,
-0.014317070133984089,
0.04829077422618866,
0.0006726111751049757,
-0.07631637156009674,
0.02472519874572754,
-0.018236592411994934,
-0.14500272274017334,
0.05979960784316063,
-0.057360127568244934,
0.0868178978562355,
0.050109509378671646,
0.08240465074777603,
-0.0384967066347599,
-0.023523475974798203,
0.048398394137620926,
0.07085054367780685,
-0.2571581304073334,
0.2732432186603546,
-0.00895555317401886,
-0.03720441088080406,
-0.10298094898462296,
-0.0030530134681612253,
0.053222306072711945,
0.11060094833374023,
0.09012161940336227,
0.015791036188602448,
-0.0008321281056851149,
-0.09992951899766922,
-0.04513276368379593,
0.005803109146654606,
0.11017347127199173,
-0.015219872817397118,
-0.007040614262223244,
-0.030931338667869568,
-0.04428337141871452,
-0.008200857788324356,
0.03390941768884659,
0.046164512634277344,
-0.12277814745903015,
0.07673365622758865,
0.06100720167160034,
-0.00869173463433981,
-0.0017052169423550367,
-0.04804715886712074,
-0.09234302490949631,
0.23648227751255035,
0.001300505711697042,
-0.061385102570056915,
-0.11025205254554749,
-0.09156204015016556,
0.1105746179819107,
-0.11912990361452103,
0.12255892157554626,
-0.0921558290719986,
0.013554300181567669,
-0.06075144559144974,
-0.17538413405418396,
0.15326493978500366,
-0.13239873945713043,
-0.0008576701511628926,
-0.05951031669974327,
0.1487831026315689,
-0.08449778705835342,
0.031195849180221558,
-0.0032701219897717237,
0.027783509343862534,
-0.1404477059841156,
-0.0607643723487854,
-0.0055432445369660854,
-0.0495414212346077,
0.05081475153565407,
0.06588156521320343,
-0.0611673966050148,
-0.012110073119401932,
0.04127340018749237,
0.03462079167366028,
0.2677534222602844,
0.21308819949626923,
-0.06453640758991241,
0.15587438642978668,
0.1295294165611267,
0.0015624506631866097,
-0.34036216139793396,
-0.09099853038787842,
-0.13440340757369995,
0.012628044933080673,
0.0011629360960796475,
-0.11661088466644287,
0.12770496308803558,
-0.012505795806646347,
-0.03471119701862335,
0.11040418595075607,
-0.19882960617542267,
-0.09019824117422104,
0.22552619874477386,
-0.0020920364186167717,
0.46429890394210815,
-0.08222827315330505,
-0.05424429103732109,
-0.02522457204759121,
-0.12976717948913574,
0.03239792585372925,
0.006371511146426201,
0.09488588571548462,
-0.04386291280388832,
0.10545294731855392,
0.042882900685071945,
-0.09948975592851639,
0.10334910452365875,
-0.04726186767220497,
0.017249008640646935,
-0.12361686676740646,
-0.04132913053035736,
0.09503380954265594,
-0.027326449751853943,
0.030711308121681213,
0.01073573436588049,
0.007766444701701403,
-0.03806402534246445,
-0.0167806688696146,
-0.1116207018494606,
0.09541254490613937,
0.036457743495702744,
-0.05596509948372841,
0.03472233563661575,
-0.018045010045170784,
-0.0026234525721520185,
0.0007460580673068762,
0.18843083083629608,
0.018725860863924026,
0.1419803500175476,
0.05541021749377251,
0.04991317540407181,
-0.1686394363641739,
-0.11578671634197235,
-0.05276607722043991,
-0.05581795796751976,
0.08139614015817642,
0.014861701056361198,
0.04810406640172005,
0.11344458162784576,
-0.00971200130879879,
0.025166362524032593,
0.12232724577188492,
0.043148983269929886,
-0.030384261161088943,
0.15434958040714264,
-0.21017637848854065,
0.010166623629629612,
-0.01795497164130211,
-0.02783782221376896,
0.0452975295484066,
0.0463729202747345,
0.08567535877227783,
0.03887768089771271,
-0.027747729793190956,
-0.010546383447945118,
0.003010093467310071,
-0.06426724791526794,
0.05704566836357117,
0.038633234798908234,
0.05614570900797844,
-0.1403629034757614,
0.001916771288961172,
-0.015193594619631767,
-0.18805506825447083,
-0.03139788284897804,
0.13313952088356018,
-0.11839292198419571,
-0.11607649177312851,
0.017767896875739098,
0.04320636764168739,
-0.1152888610959053,
-0.029413238167762756,
-0.07957851141691208,
-0.11909478157758713,
0.05205870792269707,
0.20465180277824402,
0.11902444064617157,
0.0699656531214714,
-0.020759370177984238,
-0.013093661516904831,
-0.026506831869482994,
-0.0190884992480278,
0.025143824517726898,
0.04129580780863762,
-0.0885777696967125,
0.06569129973649979,
-0.011436216533184052,
0.1765628606081009,
-0.10499792546033859,
-0.052758194506168365,
-0.14410167932510376,
0.04281150549650192,
-0.07977171987295151,
-0.10013076663017273,
-0.1010281890630722,
-0.07308448851108551,
0.013314202427864075,
-0.04719829931855202,
-0.04145520552992821,
-0.03211908042430878,
-0.11890608072280884,
0.01691446825861931,
0.018755141645669937,
-0.01820027083158493,
-0.06615865975618362,
-0.039666756987571716,
0.1261463165283203,
-0.049903225153684616,
0.08085174113512039,
0.1503903716802597,
-0.06912226974964142,
0.05977591499686241,
-0.09393063187599182,
-0.14633256196975708,
0.11049407720565796,
0.030154066160321236,
0.10596831142902374,
0.06471973657608032,
0.02870829589664936,
0.06329474598169327,
0.02937721088528633,
0.04799990355968475,
0.053421713411808014,
-0.11902152001857758,
0.06338749080896378,
-0.023434249684214592,
-0.14126048982143402,
-0.03827537223696709,
-0.09975016862154007,
0.048279158771038055,
-0.0005803958629257977,
0.13035443425178528,
-0.03361410275101662,
0.11306563019752502,
-0.03779638558626175,
0.00797046348452568,
-0.0464194156229496,
-0.15295569598674774,
0.017160991206765175,
-0.03964532911777496,
0.02746712602674961,
-0.0040857139974832535,
0.21689750254154205,
-0.010121148079633713,
0.010670908726751804,
0.042276233434677124,
0.11634185910224915,
-0.0045609124936163425,
-0.0015833624638617039,
0.13857164978981018,
0.0958813726902008,
-0.04964012652635574,
-0.032537903636693954,
0.10989415645599365,
0.024732714518904686,
-0.04086155444383621,
0.1633850783109665,
0.0738181471824646,
0.04776482284069061,
0.10496527701616287,
-0.0044019040651619434,
0.038812749087810516,
-0.16818231344223022,
-0.20446528494358063,
-0.06006486341357231,
0.06516160070896149,
0.022175021469593048,
-0.01157640665769577,
0.1345011591911316,
-0.010591601021587849,
0.05515620857477188,
-0.011107631027698517,
-0.02241809479892254,
-0.18512870371341705,
-0.10224485397338867,
-0.08186119049787521,
-0.060996998101472855,
0.019985772669315338,
-0.031010769307613373,
-0.010537956841289997,
0.10313230752944946,
0.039893150329589844,
-0.028859004378318787,
0.15377242863178253,
0.003823693608865142,
-0.02779725193977356,
0.015675248578190804,
-0.010657412000000477,
0.04330180212855339,
0.04190259426832199,
-0.01734006404876709,
-0.17585386335849762,
-0.01819726824760437,
-0.03391294926404953,
-0.0017195256659761071,
-0.07339247316122055,
0.02272338978946209,
-0.11203707754611969,
-0.13239149749279022,
-0.062093596905469894,
0.024991635233163834,
-0.03501127287745476,
0.1025606095790863,
0.007221926935017109,
0.04554539546370506,
-0.0133190443739295,
0.1577470898628235,
-0.08525029569864273,
-0.12478522211313248,
-0.059130676090717316,
0.17458464205265045,
0.053042057901620865,
0.05989263579249382,
-0.027192827314138412,
0.024011975154280663,
-0.1252003014087677,
0.3299572765827179,
0.3116563558578491,
-0.07164469361305237,
0.0845099538564682,
0.04182190075516701,
0.019601933658123016,
0.06255241483449936,
0.11411125212907791,
0.10105396062135696,
0.313946396112442,
-0.08950535953044891,
-0.06450916081666946,
-0.05212389677762985,
-0.03612421080470085,
-0.17569959163665771,
0.011635605245828629,
0.021514492109417915,
-0.023056065663695335,
-0.04762779921293259,
0.05568334087729454,
-0.18135598301887512,
0.1661001592874527,
0.0659223198890686,
-0.22294674813747406,
-0.06820415705442429,
-0.027527540922164917,
0.18724602460861206,
0.02933078072965145,
0.1162257045507431,
-0.031318165361881256,
-0.09183879941701889,
0.048084527254104614,
0.012927783653140068,
-0.20229898393154144,
-0.058556802570819855,
0.118426613509655,
-0.0019040253246203065,
0.055582184344530106,
-0.020060671493411064,
0.01571750082075596,
0.08624681830406189,
0.0721609890460968,
-0.03249669820070267,
0.028127044439315796,
0.013629384338855743,
-0.1280975192785263,
-0.03423265740275383,
0.04227425158023834,
-0.0033760827500373125,
-0.13834832608699799,
0.03522408381104469,
-0.18038898706436157,
0.01836211420595646,
-0.09589966386556625,
-0.01283024251461029,
0.0023010082077234983,
0.03077053092420101,
-0.022826872766017914,
0.057540591806173325,
0.08040506392717361,
0.007075437810271978,
-0.042876776307821274,
-0.04278126731514931,
-0.010494278743863106,
0.05120205134153366,
-0.10808530449867249,
-0.1760338395833969,
-0.08769282698631287,
-0.07119932025671005,
0.040255382657051086,
-0.007920505478978157,
-0.14422722160816193,
-0.06830867379903793,
-0.08943605422973633,
0.020330805331468582,
-0.1583983302116394,
0.033309243619441986,
0.06676129996776581,
0.03378627821803093,
0.013480751775205135,
-0.022971339523792267,
0.03557096794247627,
0.04015584662556648,
-0.16706612706184387,
-0.11451464146375656
] |
null | null | null | Ver-Online Malignant PELICULA completa En Espanol Latino HD | {} | null | Malignant/Malignant | [
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [] | TAGS
#region-us
| Ver-Online Malignant PELICULA completa En Espanol Latino HD | [] | [
"TAGS\n#region-us \n"
] | [
6
] | [
"passage: TAGS\n#region-us \n"
] | [
0.024608636274933815,
-0.026205500587821007,
-0.009666500613093376,
-0.10395516455173492,
0.08638657629489899,
0.059816278517246246,
0.01882290467619896,
0.020661840215325356,
0.23975107073783875,
-0.005599027033895254,
0.1219947561621666,
0.0015615287702530622,
-0.037353623658418655,
0.03733762726187706,
-0.0035912662278860807,
-0.17583473026752472,
0.03876631706953049,
-0.018274923786520958,
0.01843859627842903,
0.026470553129911423,
-0.07776834815740585,
-0.07564429938793182,
0.015296397730708122,
-0.10247814655303955,
-0.083692267537117,
0.11002834886312485,
0.031466204673051834,
-0.019670886918902397,
0.10779199749231339,
-0.04243955761194229,
0.18699054419994354,
-0.011512263678014278,
-0.11213519424200058,
-0.2536850869655609,
0.021806683391332626,
-0.01765260472893715,
-0.08747660368680954,
0.01506110467016697,
0.0665089413523674,
-0.09014441072940826,
-0.0588928684592247,
0.0795099288225174,
-0.01132340170443058,
0.04246443510055542,
-0.27593839168548584,
-0.12684126198291779,
-0.05297930911183357,
-0.1421966552734375,
0.08651168644428253,
0.04035491496324539,
0.008764253929257393,
0.15506891906261444,
-0.20897391438484192,
0.004104613792151213,
0.08255259692668915,
-0.2538507878780365,
0.05591634660959244,
0.17671173810958862,
0.03623908758163452,
0.18037272989749908,
0.0060391901060938835,
0.11029672622680664,
0.0716743916273117,
-0.024263937026262283,
-0.17590197920799255,
-0.08127854019403458,
-0.04696211963891983,
0.16642488539218903,
-0.06727185100317001,
-0.14248386025428772,
0.34701237082481384,
0.00015008423360995948,
0.009657775051891804,
0.16921205818653107,
-0.059524230659008026,
-0.09972117841243744,
0.07259953022003174,
0.016484731808304787,
0.018492350354790688,
0.1471305936574936,
0.16307872533798218,
-0.0458691343665123,
-0.13837823271751404,
-0.018630273640155792,
-0.22798998653888702,
0.17510560154914856,
-0.03248048573732376,
0.13137903809547424,
-0.27447956800460815,
0.01684025302529335,
-0.2570667266845703,
0.0032130838371813297,
0.04178816080093384,
-0.06004921346902847,
-0.0226522795855999,
-0.013265985064208508,
-0.08018817007541656,
0.004899587947875261,
0.06192673370242119,
0.1266920566558838,
-0.06128726154565811,
0.06128238886594772,
-0.09319206327199936,
0.141696035861969,
0.07166698575019836,
0.07868369668722153,
0.13037432730197906,
0.041205424815416336,
-0.07187089323997498,
-0.21872246265411377,
-0.0026476888451725245,
-0.06275863200426102,
-0.09502086788415909,
-0.0020165652967989445,
-0.11606067419052124,
0.17244569957256317,
-0.030802514404058456,
-0.09825427830219269,
-0.11208184063434601,
0.09148659557104111,
-0.032992321997880936,
-0.03437839448451996,
-0.03552987426519394,
-0.020977836102247238,
0.019381176680326462,
0.04704452306032181,
-0.1548958420753479,
-0.005131472367793322,
0.07039852440357208,
0.11502562463283539,
-0.1346137970685959,
-0.003783059772104025,
-0.07908964157104492,
0.03039063885807991,
0.07654735445976257,
-0.16510222852230072,
0.03158547356724739,
-0.1124754324555397,
-0.07531405985355377,
0.002912673633545637,
-0.015710093080997467,
-0.016202643513679504,
0.166526660323143,
-0.0020451415330171585,
0.0714716836810112,
-0.026345307007431984,
-0.05890209600329399,
-0.11243434250354767,
-0.08489254862070084,
0.05390460044145584,
0.03670717030763626,
0.03266148269176483,
-0.2193479984998703,
0.014805203303694725,
-0.12762966752052307,
0.1360815018415451,
-0.10566820204257965,
-0.04705966264009476,
-0.022842247039079666,
0.20562705397605896,
0.037286072969436646,
0.08762791007757187,
-0.22171171009540558,
0.039756543934345245,
-0.05404696613550186,
0.18480908870697021,
-0.1502426266670227,
-0.0799463614821434,
0.20813211798667908,
-0.07964949309825897,
-0.10115210711956024,
0.021235812455415726,
0.020391687750816345,
0.026287272572517395,
0.0766737088561058,
0.4564172327518463,
-0.09766800701618195,
-0.09146861732006073,
0.10178250074386597,
0.17055274546146393,
-0.12427149713039398,
-0.1827561855316162,
0.06446871906518936,
-0.16666454076766968,
-0.1973118633031845,
0.0018917324487119913,
0.09222044050693512,
0.038269978016614914,
-0.07875611633062363,
-0.020746968686580658,
0.06325206160545349,
-0.0007678253459744155,
0.09095914661884308,
0.03755716234445572,
0.09034032374620438,
-0.08716782182455063,
0.11115926504135132,
-0.05017651244997978,
0.004037132486701012,
0.1343354731798172,
0.027325427159667015,
-0.03223329409956932,
0.08694463223218918,
-0.0485352948307991,
0.05295134335756302,
-0.1662379503250122,
-0.15068690478801727,
0.03398871049284935,
0.06283251196146011,
0.03186952322721481,
0.1280253529548645,
0.08141885697841644,
-0.10732853412628174,
0.022690722718834877,
-0.004228927195072174,
0.058398615568876266,
0.03891623765230179,
0.006107209715992212,
0.008764320984482765,
0.0961301177740097,
-0.10607069730758667,
-0.13589619100093842,
-0.07336436957120895,
-0.014715781435370445,
0.14371353387832642,
-0.0302802175283432,
0.07690227776765823,
-0.004240254405885935,
0.00013200697139836848,
0.06930823624134064,
0.08137880265712738,
0.016412746161222458,
0.08971183747053146,
-0.05237193778157234,
-0.05160155147314072,
0.10863113403320312,
-0.13533565402030945,
0.17837053537368774,
0.14053137600421906,
-0.20532016456127167,
0.029453208670020103,
-0.06838275492191315,
0.03670361638069153,
-0.008162540383636951,
0.0975119024515152,
-0.08272241055965424,
-0.02106042578816414,
0.013134466484189034,
0.0052274600602686405,
-0.013007243163883686,
0.017682146281003952,
-0.07295988500118256,
-0.07787393033504486,
-0.10233919322490692,
0.08436838537454605,
0.11562882363796234,
-0.10282530635595322,
0.14214380085468292,
0.4384984076023102,
0.11495281755924225,
0.21582984924316406,
-0.09581480920314789,
-0.0412987545132637,
0.007486371789127588,
0.0001535322517156601,
-0.04476691037416458,
0.08031861484050751,
-0.15973517298698425,
-0.038901735097169876,
0.027348900213837624,
0.07128690183162689,
0.11475157737731934,
-0.14959022402763367,
-0.09639324247837067,
-0.00793045200407505,
0.0022841424215584993,
-0.1249532699584961,
0.023905446752905846,
-0.03974650055170059,
0.04015624523162842,
0.07232289016246796,
-0.021535737439990044,
0.13939237594604492,
-0.04166141897439957,
-0.0639561116695404,
0.07585346698760986,
-0.2017085999250412,
-0.23179671168327332,
-0.12309670448303223,
-0.14680525660514832,
0.04366797208786011,
0.05154111236333847,
0.01726446859538555,
-0.17635835707187653,
-0.015074856579303741,
0.07706750929355621,
0.07820965349674225,
-0.20886357128620148,
-0.022814949974417686,
-0.004290030337870121,
0.0895976573228836,
-0.10227091610431671,
-0.0017130117630586028,
-0.04419664293527603,
-0.10150232166051865,
0.0017003051470965147,
0.07279510796070099,
-0.137485533952713,
0.13807645440101624,
0.21589438617229462,
0.07225540280342102,
0.07359948754310608,
-0.019093448296189308,
0.09936179965734482,
-0.10856141895055771,
-0.16549113392829895,
0.08348225057125092,
-0.06234746053814888,
0.047262318432331085,
0.17534415423870087,
0.03307317942380905,
-0.13904969394207,
-0.015682822093367577,
-0.0402069091796875,
-0.15603256225585938,
-0.238995760679245,
-0.09178274869918823,
-0.1182505264878273,
0.16442428529262543,
0.0009358620154671371,
0.06651917099952698,
0.08258313685655594,
-0.022042419761419296,
0.16447891294956207,
-0.07379321753978729,
-0.07578866183757782,
-0.006978808436542749,
0.12375060468912125,
-0.056660156697034836,
-0.03080669604241848,
-0.10566964000463486,
-0.008295975625514984,
0.1151021271944046,
0.15304014086723328,
0.12214863300323486,
0.2957419455051422,
0.08268889784812927,
0.026645636186003685,
0.08958091586828232,
0.17622539401054382,
0.09495089203119278,
0.07838419824838638,
-0.045413073152303696,
-0.014814783819019794,
0.014317171648144722,
-0.04022889584302902,
0.010141594335436821,
0.14683100581169128,
-0.2679629921913147,
-0.006678564939647913,
-0.2710230350494385,
0.0965198427438736,
-0.10913380235433578,
0.11837165057659149,
-0.01015760749578476,
0.10194015502929688,
0.11082887649536133,
0.03233652561903,
-0.03858073800802231,
0.16613617539405823,
0.08450309932231903,
-0.11277695000171661,
0.001758623169735074,
0.03737903758883476,
0.09715615212917328,
-0.02818971499800682,
0.12721189856529236,
-0.11048974841833115,
-0.1464834064245224,
0.013753619976341724,
0.07152791321277618,
-0.15373679995536804,
0.3138748109340668,
0.012069208547472954,
-0.13481520116329193,
-0.01481647603213787,
-0.09957809001207352,
-0.006440147757530212,
0.1254177987575531,
0.09333524852991104,
0.07935678958892822,
-0.2185502052307129,
-0.13339371979236603,
0.05872276425361633,
-0.00575496768578887,
0.22408108413219452,
-0.034034017473459244,
-0.11356475204229355,
-0.027013886719942093,
0.04241163283586502,
-0.06043251231312752,
0.08524788916110992,
0.023536119610071182,
-0.08113526552915573,
-0.032957352697849274,
0.05323701351881027,
0.012368366122245789,
0.00524376705288887,
0.09360801428556442,
0.020107939839363098,
-0.0009265501867048442,
0.01785753294825554,
0.047885000705718994,
-0.0675911232829094,
-0.1984109878540039,
0.09357594698667526,
-0.05215044692158699,
0.0015536568826064467,
-0.08013670891523361,
-0.15122665464878082,
-0.08837161958217621,
-0.16009655594825745,
0.12540200352668762,
-0.034406669437885284,
0.12700119614601135,
-0.06619787961244583,
0.17341409623622894,
-0.07871770113706589,
0.04481020197272301,
-0.047349292784929276,
0.050332702696323395,
-0.007268077693879604,
-0.07756082713603973,
0.16585899889469147,
-0.15564003586769104,
0.01809087023139,
0.19572502374649048,
-0.018915493041276932,
0.07177707552909851,
0.021322092041373253,
-0.0636206790804863,
0.23147478699684143,
0.3014698624610901,
0.008138049393892288,
0.1665448248386383,
0.3018903136253357,
-0.07466315478086472,
-0.2642788887023926,
-0.05505012720823288,
-0.2841376066207886,
-0.05371501296758652,
0.10716094076633453,
-0.22523896396160126,
0.06986407935619354,
0.14383509755134583,
-0.06471995264291763,
0.30228954553604126,
-0.21825523674488068,
0.012589273042976856,
0.15434536337852478,
-0.08868814259767532,
0.5515313148498535,
-0.1133413165807724,
-0.17677772045135498,
-0.008122089318931103,
-0.08741296827793121,
0.10602109134197235,
-0.0340677872300148,
0.06877441704273224,
0.013465235009789467,
0.04797380417585373,
0.048932258039712906,
-0.03111894056200981,
0.22701001167297363,
0.008710170164704323,
0.09015397727489471,
-0.07378865778446198,
-0.18624304234981537,
0.11639340221881866,
-0.04359482601284981,
-0.08891059458255768,
0.0849778801202774,
-0.05942516401410103,
-0.11078983545303345,
0.04663389176130295,
-0.07950539886951447,
-0.024862350896000862,
0.08423490077257156,
-0.04678233340382576,
-0.042606171220541,
-0.008054176345467567,
-0.1618063747882843,
-0.0002289071271661669,
0.31360217928886414,
-0.07096036523580551,
0.16695955395698547,
0.03677211329340935,
0.00038613268407061696,
-0.11027684062719345,
0.030288029462099075,
-0.05203165486454964,
-0.021576624363660812,
0.09578979015350342,
-0.11096979677677155,
0.03204701095819473,
0.14160704612731934,
-0.04864364117383957,
0.05846960097551346,
0.09256096184253693,
-0.0849417969584465,
0.007583672646433115,
0.17753590643405914,
-0.17537221312522888,
-0.1273445188999176,
-0.006135711446404457,
-0.09862716495990753,
0.14055661857128143,
0.04394126310944557,
0.05191568285226822,
0.16669964790344238,
0.03967129811644554,
-0.029474308714270592,
-0.02817419543862343,
-0.1153380498290062,
-0.0201893113553524,
0.040153320878744125,
0.00045633706031367183,
-0.08791285753250122,
0.2262638509273529,
0.06409153342247009,
-0.1328488290309906,
-0.051157206296920776,
0.2161225974559784,
-0.06805316358804703,
-0.04911920800805092,
-0.223562553524971,
0.10752306133508682,
-0.07112517952919006,
-0.0965060144662857,
0.05453834682703018,
-0.02270081453025341,
0.005106312222778797,
0.181985542178154,
0.03941008821129799,
0.11070270836353302,
0.03738937899470329,
-0.02448922023177147,
0.15798696875572205,
-0.142850860953331,
-0.14191335439682007,
-0.025354057550430298,
-0.08757315576076508,
-0.13844476640224457,
-0.026804137974977493,
0.1617041826248169,
-0.09177309274673462,
-0.14772607386112213,
-0.2621181011199951,
0.10968475043773651,
-0.16432365775108337,
-0.10192688554525375,
-0.03469514101743698,
-0.08968492597341537,
0.0696166530251503,
0.030301768332719803,
-0.03093348816037178,
-0.06706760823726654,
-0.18593791127204895,
0.0816768929362297,
0.06349513679742813,
0.045533183962106705,
-0.017847947776317596,
0.0067379772663116455,
0.1720137596130371,
0.025955144315958023,
0.10040043294429779,
0.16762186586856842,
0.011397695168852806,
0.2246655523777008,
-0.1671202927827835,
-0.11496317386627197,
0.1336962729692459,
-0.026543032377958298,
0.06762003898620605,
0.16792191565036774,
-0.0772583931684494,
0.015526676550507545,
-0.028136352077126503,
0.07066910713911057,
-0.11003983020782471,
-0.105624258518219,
0.007937257178127766,
0.02567129209637642,
-0.2755882740020752,
-0.005599735304713249,
-0.19717298448085785,
0.14788752794265747,
0.02579621411859989,
0.03297143429517746,
0.10257530212402344,
0.10404334217309952,
0.08312062919139862,
-0.0017710148822516203,
0.03226327523589134,
-0.1176818460226059,
0.02753005363047123,
-0.059239376336336136,
-0.020663779228925705,
0.017624232918024063,
0.36952024698257446,
-0.03603357449173927,
-0.046802736818790436,
0.003710439894348383,
0.1307835876941681,
-0.02139742486178875,
0.017395347356796265,
0.13209912180900574,
0.12607666850090027,
-0.08595693111419678,
-0.1504845917224884,
0.04888554662466049,
-0.04565655067563057,
-0.02836887165904045,
0.1464131623506546,
0.05905961990356445,
0.1050296202301979,
0.0908031314611435,
-0.014463032595813274,
-0.00318976235575974,
0.012856799177825451,
-0.15486004948616028,
0.06223496049642563,
-0.010558074340224266,
0.012565906159579754,
0.017934376373887062,
0.15238402783870697,
-0.005540105979889631,
0.07739730179309845,
-0.09889880567789078,
0.004208535887300968,
-0.13498884439468384,
-0.07913459837436676,
0.03617347031831741,
-0.13393273949623108,
0.04141177982091904,
-0.01871878281235695,
0.029611799865961075,
0.30386561155319214,
0.02558239921927452,
-0.020639164373278618,
0.12512871623039246,
-0.1214587539434433,
-0.12050267308950424,
-0.001594188273884356,
-0.029960084706544876,
0.0791488066315651,
-0.02633434161543846,
-0.0997740775346756,
-0.1001306027173996,
-0.15166029334068298,
-0.09759195148944855,
0.05182836204767227,
-0.04993441700935364,
-0.059362251311540604,
-0.17634081840515137,
-0.05707859992980957,
-0.05147340148687363,
0.14025864005088806,
-0.12263951450586319,
0.15159130096435547,
-0.014490418136119843,
0.004084470681846142,
0.04405883327126503,
0.1950942426919937,
-0.03644494712352753,
0.08714226633310318,
0.0154351145029068,
0.1522706001996994,
-0.05119588226079941,
0.14720745384693146,
-0.10931728035211563,
-0.04014137014746666,
-0.06710435450077057,
0.21513493359088898,
0.25630924105644226,
-0.06136954948306084,
-0.008937356993556023,
-0.012760217301547527,
0.058654606342315674,
0.1073930487036705,
0.16049085557460785,
0.002326392102986574,
0.2802925705909729,
-0.03133585304021835,
0.04815128445625305,
0.02901598811149597,
0.013607407920062542,
-0.06336209923028946,
0.03397751972079277,
0.07539387792348862,
-0.035039983689785004,
-0.1412304788827896,
0.15837742388248444,
-0.21980468928813934,
0.18157227337360382,
0.11640069633722305,
-0.19996967911720276,
-0.013728445395827293,
-0.04882071167230606,
0.1689416468143463,
-0.0856364443898201,
0.1637246012687683,
-0.0903693437576294,
-0.2108195722103119,
-0.2056000679731369,
0.03867346793413162,
-0.34623071551322937,
-0.254462867975235,
0.10422009229660034,
0.1488201916217804,
0.04015883058309555,
-0.018507536500692368,
-0.019967829808592796,
-0.018367022275924683,
0.04877542704343796,
-0.0067357709631323814,
0.06014643982052803,
0.031397558748722076,
-0.02988368645310402,
-0.24127542972564697,
-0.029804671183228493,
0.023964406922459602,
-0.07093082368373871,
0.07464958727359772,
-0.06874357163906097,
-0.022495782002806664,
0.08059766888618469,
-0.03066304884850979,
0.03298592567443848,
-0.035373736172914505,
-0.16326889395713806,
0.027529051527380943,
0.03900543600320816,
0.036012712866067886,
0.00634160777553916,
0.0008072225609794259,
-0.03455270454287529,
0.0644603744149208,
-0.16716794669628143,
-0.16015739738941193,
0.14140215516090393,
-0.06745140254497528,
0.2779497504234314,
-0.05812826007604599,
-0.0809100940823555,
0.04766704887151718,
-0.03426874056458473,
0.1807648241519928,
-0.07756473124027252,
0.047254521399736404,
0.12766779959201813,
0.011127962730824947,
0.03121316432952881,
-0.3092964291572571,
0.11082969605922699,
-0.000795336440205574,
-0.006093299947679043,
-0.07581598311662674
] |
null | null | transformers |
# Ælæctra - Finetuned for Named Entity Recognition on the [DaNE dataset](https://danlp.alexandra.dk/304bd159d5de/datasets/ddt.zip) (Hvingelby et al., 2020) by Malte Højmark-Bertelsen.
**Ælæctra** is a Danish Transformer-based language model created to enhance the variety of Danish NLP resources with a more efficient model compared to previous state-of-the-art (SOTA) models.
Ælæctra was pretrained with the ELECTRA-Small (Clark et al., 2020) pretraining approach by using the Danish Gigaword Corpus (Strømberg-Derczynski et al., 2020) and evaluated on Named Entity Recognition (NER) tasks. Since NER only presents a limited picture of Ælæctra's capabilities I am very interested in further evaluations. Therefore, if you employ it for any task, feel free to hit me up your findings!
Ælæctra was, as mentioned, created to enhance the Danish NLP capabilties and please do note how this GitHub still does not support the Danish characters "*Æ, Ø and Å*" as the title of this repository becomes "*-l-ctra*". How ironic.🙂
Here is an example on how to load the finetuned Ælæctra-cased model for Named Entity Recognition in [PyTorch](https://pytorch.org/) using the [🤗Transformers](https://github.com/huggingface/transformers) library:
```python
from transformers import AutoTokenizer, AutoModelForTokenClassification
tokenizer = AutoTokenizer.from_pretrained("Maltehb/-l-ctra-danish-electra-small-cased-ner-dane")
model = AutoModelForTokenClassification.from_pretrained("Maltehb/-l-ctra-danish-electra-small-cased-ner-dane")
```
### Evaluation of current Danish Language Models
Ælæctra, Danish BERT (DaBERT) and multilingual BERT (mBERT) were evaluated:
| Model | Layers | Hidden Size | Params | AVG NER micro-f1 (DaNE-testset) | Average Inference Time (Sec/Epoch) | Download |
| --- | --- | --- | --- | --- | --- | --- |
| Ælæctra Uncased | 12 | 256 | 13.7M | 78.03 (SD = 1.28) | 10.91 | [Link for model](https://www.dropbox.com/s/cag7prs1nvdchqs/%C3%86l%C3%A6ctra.zip?dl=0) |
| Ælæctra Cased | 12 | 256 | 14.7M | 80.08 (SD = 0.26) | 10.92 | [Link for model](https://www.dropbox.com/s/cag7prs1nvdchqs/%C3%86l%C3%A6ctra.zip?dl=0) |
| DaBERT | 12 | 768 | 110M | 84.89 (SD = 0.64) | 43.03 | [Link for model](https://www.dropbox.com/s/19cjaoqvv2jicq9/danish_bert_uncased_v2.zip?dl=1) |
| mBERT Uncased | 12 | 768 | 167M | 80.44 (SD = 0.82) | 72.10 | [Link for model](https://storage.googleapis.com/bert_models/2018_11_03/multilingual_L-12_H-768_A-12.zip) |
| mBERT Cased | 12 | 768 | 177M | 83.79 (SD = 0.91) | 70.56 | [Link for model](https://storage.googleapis.com/bert_models/2018_11_23/multi_cased_L-12_H-768_A-12.zip) |
On [DaNE](https://danlp.alexandra.dk/304bd159d5de/datasets/ddt.zip) (Hvingelby et al., 2020) without the *MISC-tag*, Ælæctra scores slightly worse than both cased and uncased Multilingual BERT (Devlin et al., 2019) and Danish BERT (Danish BERT, 2019/2020), however, Ælæctra is less than one third the size, and uses significantly fewer computational resources to pretrain and instantiate.
### Pretraining
To pretrain Ælæctra it is recommended to build a Docker Container from the [Dockerfile](https://github.com/MalteHB/Ælæctra/tree/master/notebooks/fine-tuning/). Next, simply follow the [pretraining notebooks](https://github.com/MalteHB/Ælæctra/tree/master/infrastructure/Dockerfile/)
The pretraining was done by utilizing a single NVIDIA Tesla V100 GPU with 16 GiB, endowed by the Danish data company [KMD](https://www.kmd.dk/). The pretraining took approximately 4 days and 9.5 hours for both the cased and uncased model
### Fine-tuning
To fine-tune any Ælæctra model follow the [fine-tuning notebooks](https://github.com/MalteHB/Ælæctra/tree/master/notebooks/fine-tuning/)
### References
Clark, K., Luong, M.-T., Le, Q. V., & Manning, C. D. (2020). ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Generators. ArXiv:2003.10555 [Cs]. http://arxiv.org/abs/2003.10555
Danish BERT. (2020). BotXO. https://github.com/botxo/nordic_bert (Original work published 2019)
Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. ArXiv:1810.04805 [Cs]. http://arxiv.org/abs/1810.04805
Hvingelby, R., Pauli, A. B., Barrett, M., Rosted, C., Lidegaard, L. M., & Søgaard, A. (2020). DaNE: A Named Entity Resource for Danish. Proceedings of the 12th Language Resources and Evaluation Conference, 4597–4604. https://www.aclweb.org/anthology/2020.lrec-1.565
Strømberg-Derczynski, L., Baglini, R., Christiansen, M. H., Ciosici, M. R., Dalsgaard, J. A., Fusaroli, R., Henrichsen, P. J., Hvingelby, R., Kirkedal, A., Kjeldsen, A. S., Ladefoged, C., Nielsen, F. Å., Petersen, M. L., Rystrøm, J. H., & Varab, D. (2020). The Danish Gigaword Project. ArXiv:2005.03521 [Cs]. http://arxiv.org/abs/2005.03521
#### Acknowledgements
As the majority of this repository is build upon [the works](https://github.com/google-research/electra) by the team at Google who created ELECTRA, a HUGE thanks to them is in order.
A Giga thanks also goes out to the incredible people who collected The Danish Gigaword Corpus (Strømberg-Derczynski et al., 2020).
Furthermore, I would like to thank my supervisor [Riccardo Fusaroli](https://github.com/fusaroli) for the support with the thesis, and a special thanks goes out to [Kenneth Enevoldsen](https://github.com/KennethEnevoldsen) for his continuous feedback.
Lastly, i would like to thank KMD, my colleagues from KMD, and my peers and co-students from Cognitive Science for encouriging me to keep on working hard and holding my head up high!
#### Contact
For help or further information feel free to connect with the author Malte Højmark-Bertelsen on [[email protected]](mailto:[email protected]?subject=[GitHub]%20ÆlæctraCasedNER) or any of the following platforms:
[<img align="left" alt="MalteHB | Twitter" width="22px" src="https://cdn.jsdelivr.net/npm/simple-icons@v3/icons/twitter.svg" />][twitter]
[<img align="left" alt="MalteHB | LinkedIn" width="22px" src="https://cdn.jsdelivr.net/npm/simple-icons@v3/icons/linkedin.svg" />][linkedin]
[<img align="left" alt="MalteHB | Instagram" width="22px" src="https://cdn.jsdelivr.net/npm/simple-icons@v3/icons/instagram.svg" />][instagram]
<br />
</details>
[twitter]: https://twitter.com/malteH_B
[instagram]: https://www.instagram.com/maltemusen/
[linkedin]: https://www.linkedin.com/in/malte-h%C3%B8jmark-bertelsen-9a618017b/ | {"language": "da", "license": "mit", "tags": ["\u00e6l\u00e6ctra", "pytorch", "danish", "ELECTRA-Small", "replaced token detection"], "datasets": ["DAGW"], "metrics": ["f1"], "widget": [{"text": "Chili Jensen, som bor p\u00e5 Danmarksgade 12, k\u00f8ber chilifrugter fra Netto."}]} | token-classification | Maltehb/aelaectra-danish-electra-small-cased-ner-dane | [
"transformers",
"pytorch",
"tf",
"electra",
"token-classification",
"ælæctra",
"danish",
"ELECTRA-Small",
"replaced token detection",
"da",
"dataset:DAGW",
"arxiv:2003.10555",
"arxiv:1810.04805",
"arxiv:2005.03521",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [
"2003.10555",
"1810.04805",
"2005.03521"
] | [
"da"
] | TAGS
#transformers #pytorch #tf #electra #token-classification #ælæctra #danish #ELECTRA-Small #replaced token detection #da #dataset-DAGW #arxiv-2003.10555 #arxiv-1810.04805 #arxiv-2005.03521 #license-mit #autotrain_compatible #endpoints_compatible #region-us
| Ælæctra - Finetuned for Named Entity Recognition on the DaNE dataset (Hvingelby et al., 2020) by Malte Højmark-Bertelsen.
=========================================================================================================================
Ælæctra is a Danish Transformer-based language model created to enhance the variety of Danish NLP resources with a more efficient model compared to previous state-of-the-art (SOTA) models.
Ælæctra was pretrained with the ELECTRA-Small (Clark et al., 2020) pretraining approach by using the Danish Gigaword Corpus (Strømberg-Derczynski et al., 2020) and evaluated on Named Entity Recognition (NER) tasks. Since NER only presents a limited picture of Ælæctra's capabilities I am very interested in further evaluations. Therefore, if you employ it for any task, feel free to hit me up your findings!
Ælæctra was, as mentioned, created to enhance the Danish NLP capabilties and please do note how this GitHub still does not support the Danish characters "*Æ, Ø and Å*" as the title of this repository becomes "*-l-ctra*". How ironic.
Here is an example on how to load the finetuned Ælæctra-cased model for Named Entity Recognition in PyTorch using the Transformers library:
### Evaluation of current Danish Language Models
Ælæctra, Danish BERT (DaBERT) and multilingual BERT (mBERT) were evaluated:
On DaNE (Hvingelby et al., 2020) without the *MISC-tag*, Ælæctra scores slightly worse than both cased and uncased Multilingual BERT (Devlin et al., 2019) and Danish BERT (Danish BERT, 2019/2020), however, Ælæctra is less than one third the size, and uses significantly fewer computational resources to pretrain and instantiate.
### Pretraining
To pretrain Ælæctra it is recommended to build a Docker Container from the Dockerfile. Next, simply follow the pretraining notebooks
The pretraining was done by utilizing a single NVIDIA Tesla V100 GPU with 16 GiB, endowed by the Danish data company KMD. The pretraining took approximately 4 days and 9.5 hours for both the cased and uncased model
### Fine-tuning
To fine-tune any Ælæctra model follow the fine-tuning notebooks
### References
Clark, K., Luong, M.-T., Le, Q. V., & Manning, C. D. (2020). ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Generators. ArXiv:2003.10555 [Cs]. URL
Danish BERT. (2020). BotXO. URL (Original work published 2019)
Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. ArXiv:1810.04805 [Cs]. URL
Hvingelby, R., Pauli, A. B., Barrett, M., Rosted, C., Lidegaard, L. M., & Søgaard, A. (2020). DaNE: A Named Entity Resource for Danish. Proceedings of the 12th Language Resources and Evaluation Conference, 4597–4604. URL
Strømberg-Derczynski, L., Baglini, R., Christiansen, M. H., Ciosici, M. R., Dalsgaard, J. A., Fusaroli, R., Henrichsen, P. J., Hvingelby, R., Kirkedal, A., Kjeldsen, A. S., Ladefoged, C., Nielsen, F. Å., Petersen, M. L., Rystrøm, J. H., & Varab, D. (2020). The Danish Gigaword Project. ArXiv:2005.03521 [Cs]. URL
#### Acknowledgements
As the majority of this repository is build upon the works by the team at Google who created ELECTRA, a HUGE thanks to them is in order.
A Giga thanks also goes out to the incredible people who collected The Danish Gigaword Corpus (Strømberg-Derczynski et al., 2020).
Furthermore, I would like to thank my supervisor Riccardo Fusaroli for the support with the thesis, and a special thanks goes out to Kenneth Enevoldsen for his continuous feedback.
Lastly, i would like to thank KMD, my colleagues from KMD, and my peers and co-students from Cognitive Science for encouriging me to keep on working hard and holding my head up high!
#### Contact
For help or further information feel free to connect with the author Malte Højmark-Bertelsen on hjb@URL or any of the following platforms:
[<img align="left" alt="MalteHB | Twitter" width="22px" src="URL />](URL)
[<img align="left" alt="MalteHB | LinkedIn" width="22px" src="URL />](URL)
[<img align="left" alt="MalteHB | Instagram" width="22px" src="URL />](URL)
| [
"### Evaluation of current Danish Language Models\n\n\nÆlæctra, Danish BERT (DaBERT) and multilingual BERT (mBERT) were evaluated:\n\n\n\nOn DaNE (Hvingelby et al., 2020) without the *MISC-tag*, Ælæctra scores slightly worse than both cased and uncased Multilingual BERT (Devlin et al., 2019) and Danish BERT (Danish BERT, 2019/2020), however, Ælæctra is less than one third the size, and uses significantly fewer computational resources to pretrain and instantiate.",
"### Pretraining\n\n\nTo pretrain Ælæctra it is recommended to build a Docker Container from the Dockerfile. Next, simply follow the pretraining notebooks\n\n\nThe pretraining was done by utilizing a single NVIDIA Tesla V100 GPU with 16 GiB, endowed by the Danish data company KMD. The pretraining took approximately 4 days and 9.5 hours for both the cased and uncased model",
"### Fine-tuning\n\n\nTo fine-tune any Ælæctra model follow the fine-tuning notebooks",
"### References\n\n\nClark, K., Luong, M.-T., Le, Q. V., & Manning, C. D. (2020). ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Generators. ArXiv:2003.10555 [Cs]. URL\n\n\nDanish BERT. (2020). BotXO. URL (Original work published 2019)\n\n\nDevlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. ArXiv:1810.04805 [Cs]. URL\n\n\nHvingelby, R., Pauli, A. B., Barrett, M., Rosted, C., Lidegaard, L. M., & Søgaard, A. (2020). DaNE: A Named Entity Resource for Danish. Proceedings of the 12th Language Resources and Evaluation Conference, 4597–4604. URL\n\n\nStrømberg-Derczynski, L., Baglini, R., Christiansen, M. H., Ciosici, M. R., Dalsgaard, J. A., Fusaroli, R., Henrichsen, P. J., Hvingelby, R., Kirkedal, A., Kjeldsen, A. S., Ladefoged, C., Nielsen, F. Å., Petersen, M. L., Rystrøm, J. H., & Varab, D. (2020). The Danish Gigaword Project. ArXiv:2005.03521 [Cs]. URL",
"#### Acknowledgements\n\n\nAs the majority of this repository is build upon the works by the team at Google who created ELECTRA, a HUGE thanks to them is in order.\n\n\nA Giga thanks also goes out to the incredible people who collected The Danish Gigaword Corpus (Strømberg-Derczynski et al., 2020).\n\n\nFurthermore, I would like to thank my supervisor Riccardo Fusaroli for the support with the thesis, and a special thanks goes out to Kenneth Enevoldsen for his continuous feedback.\n\n\nLastly, i would like to thank KMD, my colleagues from KMD, and my peers and co-students from Cognitive Science for encouriging me to keep on working hard and holding my head up high!",
"#### Contact\n\n\nFor help or further information feel free to connect with the author Malte Højmark-Bertelsen on hjb@URL or any of the following platforms:\n\n\n[<img align=\"left\" alt=\"MalteHB | Twitter\" width=\"22px\" src=\"URL />](URL)\n[<img align=\"left\" alt=\"MalteHB | LinkedIn\" width=\"22px\" src=\"URL />](URL)\n[<img align=\"left\" alt=\"MalteHB | Instagram\" width=\"22px\" src=\"URL />](URL)"
] | [
"TAGS\n#transformers #pytorch #tf #electra #token-classification #ælæctra #danish #ELECTRA-Small #replaced token detection #da #dataset-DAGW #arxiv-2003.10555 #arxiv-1810.04805 #arxiv-2005.03521 #license-mit #autotrain_compatible #endpoints_compatible #region-us \n",
"### Evaluation of current Danish Language Models\n\n\nÆlæctra, Danish BERT (DaBERT) and multilingual BERT (mBERT) were evaluated:\n\n\n\nOn DaNE (Hvingelby et al., 2020) without the *MISC-tag*, Ælæctra scores slightly worse than both cased and uncased Multilingual BERT (Devlin et al., 2019) and Danish BERT (Danish BERT, 2019/2020), however, Ælæctra is less than one third the size, and uses significantly fewer computational resources to pretrain and instantiate.",
"### Pretraining\n\n\nTo pretrain Ælæctra it is recommended to build a Docker Container from the Dockerfile. Next, simply follow the pretraining notebooks\n\n\nThe pretraining was done by utilizing a single NVIDIA Tesla V100 GPU with 16 GiB, endowed by the Danish data company KMD. The pretraining took approximately 4 days and 9.5 hours for both the cased and uncased model",
"### Fine-tuning\n\n\nTo fine-tune any Ælæctra model follow the fine-tuning notebooks",
"### References\n\n\nClark, K., Luong, M.-T., Le, Q. V., & Manning, C. D. (2020). ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Generators. ArXiv:2003.10555 [Cs]. URL\n\n\nDanish BERT. (2020). BotXO. URL (Original work published 2019)\n\n\nDevlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. ArXiv:1810.04805 [Cs]. URL\n\n\nHvingelby, R., Pauli, A. B., Barrett, M., Rosted, C., Lidegaard, L. M., & Søgaard, A. (2020). DaNE: A Named Entity Resource for Danish. Proceedings of the 12th Language Resources and Evaluation Conference, 4597–4604. URL\n\n\nStrømberg-Derczynski, L., Baglini, R., Christiansen, M. H., Ciosici, M. R., Dalsgaard, J. A., Fusaroli, R., Henrichsen, P. J., Hvingelby, R., Kirkedal, A., Kjeldsen, A. S., Ladefoged, C., Nielsen, F. Å., Petersen, M. L., Rystrøm, J. H., & Varab, D. (2020). The Danish Gigaword Project. ArXiv:2005.03521 [Cs]. URL",
"#### Acknowledgements\n\n\nAs the majority of this repository is build upon the works by the team at Google who created ELECTRA, a HUGE thanks to them is in order.\n\n\nA Giga thanks also goes out to the incredible people who collected The Danish Gigaword Corpus (Strømberg-Derczynski et al., 2020).\n\n\nFurthermore, I would like to thank my supervisor Riccardo Fusaroli for the support with the thesis, and a special thanks goes out to Kenneth Enevoldsen for his continuous feedback.\n\n\nLastly, i would like to thank KMD, my colleagues from KMD, and my peers and co-students from Cognitive Science for encouriging me to keep on working hard and holding my head up high!",
"#### Contact\n\n\nFor help or further information feel free to connect with the author Malte Højmark-Bertelsen on hjb@URL or any of the following platforms:\n\n\n[<img align=\"left\" alt=\"MalteHB | Twitter\" width=\"22px\" src=\"URL />](URL)\n[<img align=\"left\" alt=\"MalteHB | LinkedIn\" width=\"22px\" src=\"URL />](URL)\n[<img align=\"left\" alt=\"MalteHB | Instagram\" width=\"22px\" src=\"URL />](URL)"
] | [
104,
135,
88,
24,
370,
166,
141
] | [
"passage: TAGS\n#transformers #pytorch #tf #electra #token-classification #ælæctra #danish #ELECTRA-Small #replaced token detection #da #dataset-DAGW #arxiv-2003.10555 #arxiv-1810.04805 #arxiv-2005.03521 #license-mit #autotrain_compatible #endpoints_compatible #region-us \n### Evaluation of current Danish Language Models\n\n\nÆlæctra, Danish BERT (DaBERT) and multilingual BERT (mBERT) were evaluated:\n\n\n\nOn DaNE (Hvingelby et al., 2020) without the *MISC-tag*, Ælæctra scores slightly worse than both cased and uncased Multilingual BERT (Devlin et al., 2019) and Danish BERT (Danish BERT, 2019/2020), however, Ælæctra is less than one third the size, and uses significantly fewer computational resources to pretrain and instantiate.### Pretraining\n\n\nTo pretrain Ælæctra it is recommended to build a Docker Container from the Dockerfile. Next, simply follow the pretraining notebooks\n\n\nThe pretraining was done by utilizing a single NVIDIA Tesla V100 GPU with 16 GiB, endowed by the Danish data company KMD. The pretraining took approximately 4 days and 9.5 hours for both the cased and uncased model### Fine-tuning\n\n\nTo fine-tune any Ælæctra model follow the fine-tuning notebooks"
] | [
-0.0612727552652359,
-0.040690552443265915,
-0.0023051772732287645,
0.1008559837937355,
0.019258320331573486,
0.013035831041634083,
0.08609534800052643,
0.09918031096458435,
-0.0035701473243534565,
0.1222895085811615,
0.06618358939886093,
-0.024715058505535126,
0.09746762365102768,
0.10706969350576401,
0.04830749332904816,
-0.2683316767215729,
0.10655777901411057,
0.00528870290145278,
0.04150305315852165,
0.04483414068818092,
0.13090823590755463,
-0.12200869619846344,
0.06224216893315315,
0.01588965766131878,
-0.06240323930978775,
0.00015905355394352227,
-0.050758231431245804,
-0.0563824363052845,
0.11137837171554565,
0.08747479319572449,
0.07835189998149872,
0.05380362644791603,
0.10115832835435867,
-0.09041143208742142,
-0.003203888889402151,
0.02561364881694317,
0.005855947267264128,
0.049732666462659836,
0.04283187538385391,
0.13338352739810944,
0.1399642825126648,
-0.04047996550798416,
0.06837379187345505,
-0.018894968554377556,
-0.07724618911743164,
-0.1365932673215866,
-0.09044449776411057,
0.017835788428783417,
0.04656851291656494,
0.01703057624399662,
-0.050053030252456665,
0.09903697669506073,
-0.05878717079758644,
0.024008315056562424,
0.10350067913532257,
-0.29790177941322327,
-0.08186126500368118,
0.1729268580675125,
0.050251927226781845,
-0.02415664680302143,
-0.08960004895925522,
0.033063363283872604,
0.024324173107743263,
0.05963709205389023,
0.04232294112443924,
0.005254797637462616,
0.0006637985934503376,
-0.017068393528461456,
-0.10354720056056976,
0.008909051306545734,
0.16961301863193512,
0.0051999944262206554,
-0.042296767234802246,
-0.14639510214328766,
-0.0827464908361435,
-0.0945405513048172,
-0.007033524569123983,
-0.02031618356704712,
0.0019631327595561743,
-0.028753627091646194,
0.06536321341991425,
-0.012054854072630405,
-0.11097124963998795,
-0.003440306754782796,
-0.12719009816646576,
0.14052259922027588,
0.07609818875789642,
0.029863255098462105,
0.08395326137542725,
0.10594259202480316,
-0.1374722719192505,
-0.10351219028234482,
-0.07280971854925156,
-0.07508198171854019,
-0.15244649350643158,
-0.014811635948717594,
-0.0189571101218462,
-0.07678951323032379,
-0.04733630642294884,
0.2276826798915863,
0.016750739887356758,
0.03867337480187416,
0.06013473495841026,
-0.019110921770334244,
0.04203850030899048,
0.15723395347595215,
-0.09608384966850281,
-0.07545721530914307,
-0.019099999219179153,
0.060334499925374985,
0.06461205333471298,
-0.027191167697310448,
-0.040478650480508804,
-0.09650540351867676,
-0.009376995265483856,
-0.035841312259435654,
-0.06361442059278488,
0.06061377376317978,
-0.05849936977028847,
-0.05462336167693138,
0.16787615418434143,
-0.10374537855386734,
0.0037787535693496466,
-0.042533989995718,
-0.05289480462670326,
0.031944047659635544,
0.0006485282792709768,
-0.015207743272185326,
-0.054469477385282516,
0.1254657804965973,
-0.04592110961675644,
-0.07800713181495667,
-0.06526461243629456,
-0.10580557584762573,
0.03094969503581524,
-0.0034037544392049313,
-0.02150484174489975,
-0.10759218782186508,
-0.1303476244211197,
0.01936723105609417,
0.08574136346578598,
-0.0784807950258255,
-0.04808346554636955,
-0.00006305934948613867,
0.03364596888422966,
0.027970261871814728,
-0.05320011451840401,
0.07051966339349747,
-0.0046864962205290794,
0.030982598662376404,
0.04245876520872116,
0.09726539254188538,
-0.06395001709461212,
0.010612630285322666,
-0.08624789863824844,
0.011174939572811127,
-0.23046697676181793,
0.02544691599905491,
-0.09341897815465927,
-0.08730706572532654,
-0.08119060844182968,
-0.05001194402575493,
-0.09624847769737244,
0.02782561257481575,
0.0792398452758789,
0.04252582788467407,
-0.14789807796478271,
-0.011331203393638134,
0.057827915996313095,
-0.09729321300983429,
0.012624881230294704,
0.1717255711555481,
-0.014059162698686123,
-0.011397196911275387,
0.06842631846666336,
0.11008688062429428,
0.006336639169603586,
-0.2110767811536789,
-0.11238887906074524,
0.006530409213155508,
0.011543327942490578,
0.07177522778511047,
0.082908995449543,
0.030062731355428696,
0.06838348507881165,
0.04693857580423355,
-0.007658002898097038,
-0.03506751358509064,
-0.017197541892528534,
-0.045098744332790375,
-0.015457719564437866,
-0.019057363271713257,
0.018645983189344406,
0.057746659964323044,
0.015114511363208294,
-0.06966347992420197,
-0.12897107005119324,
-0.027832314372062683,
0.133751779794693,
-0.11063926666975021,
0.0038510344456881285,
-0.08032471686601639,
0.05151225998997688,
-0.09141108393669128,
-0.0029050682205706835,
-0.059203606098890305,
-0.13717037439346313,
0.07470516115427017,
-0.08612252026796341,
-0.025046277791261673,
0.1303175836801529,
0.04533595219254494,
0.08359303325414658,
-0.092287078499794,
0.05837384983897209,
-0.05919022485613823,
-0.05762764811515808,
-0.08260335773229599,
-0.046719782054424286,
-0.02854369394481182,
-0.03832980617880821,
-0.007687232457101345,
-0.05570993199944496,
0.04150649532675743,
0.10272186249494553,
0.07735683023929596,
-0.03333486616611481,
-0.038270119577646255,
-0.04551362246274948,
-0.04424716904759407,
-0.03608143702149391,
-0.05216765031218529,
0.019170772284269333,
-0.00850018858909607,
0.04154038801789284,
0.09303935617208481,
-0.1102149486541748,
-0.09081023186445236,
0.13382594287395477,
0.16466066241264343,
-0.024948865175247192,
-0.023605262860655785,
-0.04656235873699188,
-0.034963835030794144,
-0.10904403775930405,
-0.07436202466487885,
0.17021676898002625,
0.052636221051216125,
0.09523162990808487,
-0.10243165493011475,
-0.08514471352100372,
0.036212533712387085,
0.053191229701042175,
-0.08488279581069946,
0.0961575135588646,
0.12040060013532639,
-0.03418654575943947,
0.052709683775901794,
-0.002129598753526807,
0.05422952026128769,
0.129078209400177,
0.008383342996239662,
-0.09455294162034988,
0.008553127758204937,
-0.027240244671702385,
-0.01979965902864933,
0.1806102842092514,
0.0082778949290514,
0.03652133047580719,
0.04871658980846405,
0.0312555693089962,
0.04513004794716835,
-0.09736964106559753,
0.015288559719920158,
0.014722872525453568,
-0.04368043318390846,
0.03435671702027321,
0.042005110532045364,
-0.04076151177287102,
0.07045812904834747,
0.02824663557112217,
0.002717000897973776,
-0.03126724809408188,
0.014144429005682468,
-0.02074730582535267,
0.149944007396698,
-0.053717609494924545,
-0.2501147985458374,
-0.13722151517868042,
-0.018596680834889412,
-0.06187533587217331,
0.034986965358257294,
0.015630926936864853,
-0.05869585648179054,
-0.16531860828399658,
-0.06506071239709854,
0.23250629007816315,
-0.012398479506373405,
0.010295301675796509,
0.09559480100870132,
-0.04177941754460335,
-0.0262431800365448,
-0.1494521200656891,
0.009972919709980488,
-0.007870400324463844,
-0.047123122960329056,
0.044620342552661896,
-0.04947373643517494,
0.04746929928660393,
0.04916941002011299,
-0.04002594202756882,
-0.048855870962142944,
0.0014938237145543098,
0.21331819891929626,
-0.06749825924634933,
0.11592382937669754,
0.12328638881444931,
0.010289521887898445,
0.013986315578222275,
0.16544988751411438,
0.037763748317956924,
-0.1137174665927887,
-0.0005053523927927017,
0.06402327120304108,
-0.056963443756103516,
-0.18005944788455963,
-0.053461719304323196,
-0.05322527140378952,
0.03164105862379074,
0.16738475859165192,
0.04621075466275215,
-0.127876415848732,
0.07794882357120514,
-0.07961533218622208,
0.1217239648103714,
0.0741770789027214,
0.06574446707963943,
0.15623652935028076,
0.009737873449921608,
0.13169068098068237,
-0.042186714708805084,
-0.01539059728384018,
0.132053405046463,
0.0883721336722374,
0.150754913687706,
-0.08098459988832474,
0.08904235810041428,
0.008675114251673222,
0.020997852087020874,
0.04626205563545227,
0.1095205768942833,
-0.06408330798149109,
-0.02048424817621708,
-0.03942994773387909,
-0.017271384596824646,
-0.04955800250172615,
-0.016608411446213722,
-0.022371551021933556,
-0.046871308237314224,
-0.03986513614654541,
0.021663598716259003,
0.07675764709711075,
0.1774328052997589,
0.06061489135026932,
-0.16945812106132507,
-0.1312478929758072,
0.003798576071858406,
-0.1024012565612793,
-0.10698651522397995,
0.026842404156923294,
0.14862218499183655,
-0.05637463182210922,
0.08680032938718796,
-0.0708974227309227,
0.0298297218978405,
-0.11439240723848343,
0.011170152574777603,
0.06957213580608368,
0.09012120217084885,
-0.013271002098917961,
0.07261792570352554,
-0.18760406970977783,
0.1041264533996582,
0.04424796998500824,
0.10608066618442535,
-0.05502033606171608,
0.04320741072297096,
-0.026861965656280518,
0.04842919856309891,
0.11794417351484299,
-0.016584929078817368,
-0.05070491135120392,
-0.049872126430273056,
-0.17046791315078735,
0.027300793677568436,
0.011999298818409443,
-0.07040175795555115,
0.06748031824827194,
-0.020454147830605507,
0.029119055718183517,
-0.028774477541446686,
-0.029576363041996956,
-0.05748402327299118,
-0.19108255207538605,
0.07155663520097733,
-0.0445222333073616,
-0.0535641573369503,
-0.07504507154226303,
-0.08599676191806793,
-0.2217460423707962,
0.17601998150348663,
-0.08930791914463043,
-0.07402516156435013,
-0.12749923765659332,
0.11575528234243393,
0.15148386359214783,
-0.05142166092991829,
0.03916095942258835,
-0.02680535614490509,
0.1286340057849884,
-0.11689235270023346,
-0.08963356167078018,
0.015033341944217682,
-0.049939725548028946,
-0.1388741135597229,
-0.01130104623734951,
0.08834490925073624,
0.06285903602838516,
0.04142032563686371,
0.008389754220843315,
0.059044163674116135,
-0.038972582668066025,
-0.09131135046482086,
0.0034822276793420315,
0.03969383239746094,
0.06195097416639328,
-0.08888398110866547,
-0.04004319757223129,
-0.045684926211833954,
0.010916602797806263,
-0.030400678515434265,
0.014885645359754562,
0.26068007946014404,
-0.06385035067796707,
0.08988950401544571,
0.16870221495628357,
-0.015434917993843555,
-0.2586914896965027,
0.0020562775898724794,
0.06668123602867126,
0.08069457113742828,
-0.06776843219995499,
-0.15745599567890167,
0.0703001618385315,
0.1671803742647171,
-0.011606129817664623,
-0.028621980920433998,
-0.18003594875335693,
-0.11458110064268112,
0.02011406607925892,
0.04693964868783951,
0.09614274650812149,
-0.018733616918325424,
0.002266204683110118,
0.026727011427283287,
-0.1661057323217392,
0.11941977590322495,
0.04889564588665962,
0.12322655320167542,
-0.02176407352089882,
0.01742144487798214,
0.045503437519073486,
-0.052248816937208176,
0.18649329245090485,
-0.008079673163592815,
0.038520995527505875,
-0.0391526073217392,
0.042034972459077835,
0.0901225134730339,
-0.03448415920138359,
0.14655832946300507,
0.044326286762952805,
-0.013519583269953728,
-0.024296896532177925,
-0.12122311443090439,
-0.060434769839048386,
0.05278554558753967,
-0.05554482340812683,
-0.08048678934574127,
-0.09716785699129105,
0.07406319677829742,
0.0008529588230885565,
-0.01718100905418396,
0.07732968777418137,
-0.014846736565232277,
-0.14898699522018433,
-0.03398336097598076,
0.12572894990444183,
0.047753822058439255,
-0.01344062015414238,
-0.0017362161306664348,
0.002389252418652177,
0.05980351194739342,
-0.10864744335412979,
0.04742462933063507,
0.13179749250411987,
-0.07874477654695511,
0.02892146445810795,
0.011889837682247162,
-0.11922852694988251,
-0.043917182832956314,
0.07840582728385925,
-0.13343524932861328,
-0.06902004033327103,
0.034570399671792984,
-0.05976879969239235,
-0.044555217027664185,
-0.03423622250556946,
0.11033649742603302,
-0.0329638235270977,
-0.0292667243629694,
0.04487365484237671,
0.0440903902053833,
0.04621356725692749,
0.16406908631324768,
-0.014350993558764458,
0.03499019891023636,
-0.09732381999492645,
0.13276612758636475,
0.07116234302520752,
-0.14600300788879395,
0.017823778092861176,
0.07560236752033234,
-0.10571565479040146,
-0.061895061284303665,
-0.09644418954849243,
-0.036764420568943024,
-0.03154251351952553,
-0.007162837777286768,
-0.025009240955114365,
-0.08675166964530945,
0.03661714866757393,
-0.03725419566035271,
0.042002011090517044,
0.03585991635918617,
0.007263267412781715,
0.04997949302196503,
-0.09140393137931824,
0.12064700573682785,
-0.03706328943371773,
0.0787801742553711,
-0.03886062279343605,
0.05763465166091919,
-0.031699273735284805,
0.005724908318370581,
-0.025555329397320747,
0.060871172696352005,
-0.05045466125011444,
-0.05058896914124489,
-0.01726675219833851,
-0.017353251576423645,
-0.01856544055044651,
0.0002236158325104043,
-0.002889789640903473,
-0.021812863647937775,
-0.035388290882110596,
0.0046766153536736965,
-0.06804779171943665,
-0.01067404169589281,
-0.0671410784125328,
-0.014902682043612003,
-0.03059702180325985,
-0.011118447408080101,
0.047612715512514114,
-0.0814073458313942,
0.11612442135810852,
-0.058399125933647156,
0.051179349422454834,
0.03444363549351692,
-0.027925588190555573,
0.01950947567820549,
-0.021738778799772263,
0.09398305416107178,
0.025096910074353218,
-0.03976459056138992,
0.026820020750164986,
0.008126229047775269,
0.0017926744185388088,
0.0034580733627080917,
0.09979573637247086,
-0.10930933803319931,
-0.004001856315881014,
-0.007387417834252119,
-0.06371041387319565,
-0.04046186804771423,
0.052578773349523544,
0.009504584595561028,
0.049537092447280884,
0.11036723107099533,
-0.03547767177224159,
-0.024267906323075294,
-0.14077724516391754,
0.009740856476128101,
0.02708614431321621,
-0.10219300538301468,
0.027270639315247536,
-0.04938795790076256,
0.0612589493393898,
-0.025681285187602043,
0.16439585387706757,
0.05809618532657623,
-0.03926048055291176,
0.03951241075992584,
-0.05455983802676201,
-0.11111368238925934,
0.0298145841807127,
0.1471172422170639,
0.006342029664665461,
0.03802953660488129,
-0.0454055592417717,
0.019763516262173653,
0.04494161903858185,
0.053177572786808014,
0.12866634130477905,
0.04979822412133217,
0.04866842180490494,
0.07206748425960541,
-0.022826451808214188,
-0.13220928609371185,
-0.15831293165683746,
0.12674018740653992,
-0.14515092968940735,
0.03603842854499817,
0.004319685511291027,
0.03393760323524475,
0.0708961933851242,
-0.17376062273979187,
0.07039349526166916,
-0.0441436730325222,
-0.07824214547872543,
-0.10916276276111603,
-0.15025700628757477,
-0.04903028905391693,
-0.016976231709122658,
0.05536707863211632,
-0.13748721778392792,
0.008646353147923946,
0.04937732219696045,
0.07984314113855362,
-0.0070716701447963715,
0.12951193749904633,
-0.13242927193641663,
-0.003994912374764681,
0.04762223735451698,
0.06207990646362305,
-0.0031840442679822445,
0.05943508446216583,
-0.04396277666091919,
-0.0500110499560833,
0.08034637570381165,
0.07622957974672318,
-0.018251493573188782,
0.05547850579023361,
-0.017120646312832832,
0.0440860278904438,
-0.004957506433129311,
-0.03837659955024719,
-0.03712845221161842,
0.05315710976719856,
0.08032416552305222,
0.010947922244668007,
0.0140635771676898,
-0.0181366465985775,
0.15407595038414001,
0.01912863552570343,
-0.10368482023477554,
-0.1698966920375824,
0.045425329357385635,
-0.00023515484645031393,
0.07104136794805527,
0.016709133982658386,
-0.08658740669488907,
-0.05375976487994194,
0.24526698887348175,
0.06896102428436279,
0.01419244334101677,
-0.04610324278473854,
0.04646957665681839,
-0.014127698726952076,
0.01596473716199398,
0.08971069008111954,
0.012254268862307072,
0.18719089031219482,
-0.06467991322278976,
-0.018780913203954697,
-0.0073712849989533424,
-0.005794702563434839,
-0.02003645896911621,
0.1435638666152954,
-0.021897608414292336,
0.022469602525234222,
-0.1268257200717926,
-0.04777998477220535,
0.1458810418844223,
-0.19461189210414886,
0.06230345740914345,
-0.0730065405368805,
-0.11697512865066528,
0.025669114664196968,
0.009492325596511364,
-0.08040861785411835,
0.045584626495838165,
-0.02673286572098732,
0.02296147122979164,
0.1031116247177124,
-0.0009028701460920274,
-0.10080011188983917,
0.00964649673551321,
0.09663866460323334,
0.028617912903428078,
0.19786134362220764,
-0.0016777996206656098,
0.03938710689544678,
0.08703333139419556,
-0.03986474871635437,
-0.10931061208248138,
0.0552830696105957,
0.008902241475880146,
-0.020068494603037834,
0.05155285447835922,
0.14419271051883698,
-0.007074381690472364,
0.07000794261693954,
0.04031631350517273,
-0.049514953047037125,
0.0268021821975708,
0.059960395097732544,
-0.038642190396785736,
-0.04349561035633087,
0.14851756393909454,
-0.08114751428365707,
0.14002615213394165,
0.16718345880508423,
0.020675811916589737,
-0.061570148915052414,
-0.09928162395954132,
0.07278432697057724,
-0.015471859835088253,
0.17396239936351776,
0.03338897228240967,
-0.15472835302352905,
0.008777288720011711,
-0.013878649100661278,
0.01666495017707348,
-0.16564080119132996,
-0.06136070191860199,
-0.02887580543756485,
-0.039100535213947296,
-0.0703601986169815,
0.13205325603485107,
0.05773886293172836,
0.018457207828760147,
-0.05091584473848343,
0.004463918972760439,
-0.03149132803082466,
0.005922709126025438,
-0.09229761362075806,
-0.09133788198232651
] |
null | null | transformers |
# Ælæctra - A Step Towards More Efficient Danish Natural Language Processing
**Ælæctra** is a Danish Transformer-based language model created to enhance the variety of Danish NLP resources with a more efficient model compared to previous state-of-the-art (SOTA) models. Initially a cased and an uncased model are released. It was created as part of a Cognitive Science bachelor's thesis.
Ælæctra was pretrained with the ELECTRA-Small (Clark et al., 2020) pretraining approach by using the Danish Gigaword Corpus (Strømberg-Derczynski et al., 2020) and evaluated on Named Entity Recognition (NER) tasks. Since NER only presents a limited picture of Ælæctra's capabilities I am very interested in further evaluations. Therefore, if you employ it for any task, feel free to hit me up your findings!
Ælæctra was, as mentioned, created to enhance the Danish NLP capabilties and please do note how this GitHub still does not support the Danish characters "*Æ, Ø and Å*" as the title of this repository becomes "*-l-ctra*". How ironic.🙂
Here is an example on how to load both the cased and the uncased Ælæctra model in [PyTorch](https://pytorch.org/) using the [🤗Transformers](https://github.com/huggingface/transformers) library:
```python
from transformers import AutoTokenizer, AutoModelForPreTraining
tokenizer = AutoTokenizer.from_pretrained("Maltehb/-l-ctra-danish-electra-small-cased")
model = AutoModelForPreTraining.from_pretrained("Maltehb/-l-ctra-danish-electra-small-cased")
```
```python
from transformers import AutoTokenizer, AutoModelForPreTraining
tokenizer = AutoTokenizer.from_pretrained("Maltehb/-l-ctra-danish-electra-small-uncased")
model = AutoModelForPreTraining.from_pretrained("Maltehb/-l-ctra-danish-electra-small-uncased")
```
### Evaluation of current Danish Language Models
Ælæctra, Danish BERT (DaBERT) and multilingual BERT (mBERT) were evaluated:
| Model | Layers | Hidden Size | Params | AVG NER micro-f1 (DaNE-testset) | Average Inference Time (Sec/Epoch) | Download |
| --- | --- | --- | --- | --- | --- | --- |
| Ælæctra Uncased | 12 | 256 | 13.7M | 78.03 (SD = 1.28) | 10.91 | [Link for model](https://www.dropbox.com/s/cag7prs1nvdchqs/%C3%86l%C3%A6ctra.zip?dl=0) |
| Ælæctra Cased | 12 | 256 | 14.7M | 80.08 (SD = 0.26) | 10.92 | [Link for model](https://www.dropbox.com/s/cag7prs1nvdchqs/%C3%86l%C3%A6ctra.zip?dl=0) |
| DaBERT | 12 | 768 | 110M | 84.89 (SD = 0.64) | 43.03 | [Link for model](https://www.dropbox.com/s/19cjaoqvv2jicq9/danish_bert_uncased_v2.zip?dl=1) |
| mBERT Uncased | 12 | 768 | 167M | 80.44 (SD = 0.82) | 72.10 | [Link for model](https://storage.googleapis.com/bert_models/2018_11_03/multilingual_L-12_H-768_A-12.zip) |
| mBERT Cased | 12 | 768 | 177M | 83.79 (SD = 0.91) | 70.56 | [Link for model](https://storage.googleapis.com/bert_models/2018_11_23/multi_cased_L-12_H-768_A-12.zip) |
On [DaNE](https://danlp.alexandra.dk/304bd159d5de/datasets/ddt.zip) (Hvingelby et al., 2020), Ælæctra scores slightly worse than both cased and uncased Multilingual BERT (Devlin et al., 2019) and Danish BERT (Danish BERT, 2019/2020), however, Ælæctra is less than one third the size, and uses significantly fewer computational resources to pretrain and instantiate. For a full description of the evaluation and specification of the model read the thesis: 'Ælæctra - A Step Towards More Efficient Danish Natural Language Processing'.
### Pretraining
To pretrain Ælæctra it is recommended to build a Docker Container from the [Dockerfile](https://github.com/MalteHB/-l-ctra/blob/master/infrastructure/Dockerfile). Next, simply follow the [pretraining notebooks](https://github.com/MalteHB/-l-ctra/blob/master/notebooks/pretraining/)
The pretraining was done by utilizing a single NVIDIA Tesla V100 GPU with 16 GiB, endowed by the Danish data company [KMD](https://www.kmd.dk/). The pretraining took approximately 4 days and 9.5 hours for both the cased and uncased model
### Fine-tuning
To fine-tune any Ælæctra model follow the [fine-tuning notebooks](https://github.com/MalteHB/-l-ctra/blob/master/notebooks/fine-tuning/)
### References
Clark, K., Luong, M.-T., Le, Q. V., & Manning, C. D. (2020). ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Generators. ArXiv:2003.10555 [Cs]. http://arxiv.org/abs/2003.10555
Danish BERT. (2020). BotXO. https://github.com/botxo/nordic_bert (Original work published 2019)
Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. ArXiv:1810.04805 [Cs]. http://arxiv.org/abs/1810.04805
Hvingelby, R., Pauli, A. B., Barrett, M., Rosted, C., Lidegaard, L. M., & Søgaard, A. (2020). DaNE: A Named Entity Resource for Danish. Proceedings of the 12th Language Resources and Evaluation Conference, 4597–4604. https://www.aclweb.org/anthology/2020.lrec-1.565
Strømberg-Derczynski, L., Baglini, R., Christiansen, M. H., Ciosici, M. R., Dalsgaard, J. A., Fusaroli, R., Henrichsen, P. J., Hvingelby, R., Kirkedal, A., Kjeldsen, A. S., Ladefoged, C., Nielsen, F. Å., Petersen, M. L., Rystrøm, J. H., & Varab, D. (2020). The Danish Gigaword Project. ArXiv:2005.03521 [Cs]. http://arxiv.org/abs/2005.03521
#### Acknowledgements
As the majority of this repository is build upon [the works](https://github.com/google-research/electra) by the team at Google who created ELECTRA, a HUGE thanks to them is in order.
A Giga thanks also goes out to the incredible people who collected The Danish Gigaword Corpus (Strømberg-Derczynski et al., 2020).
Furthermore, I would like to thank my supervisor [Riccardo Fusaroli](https://github.com/fusaroli) for the support with the thesis, and a special thanks goes out to [Kenneth Enevoldsen](https://github.com/KennethEnevoldsen) for his continuous feedback.
Lastly, i would like to thank KMD, my colleagues from KMD, and my peers and co-students from Cognitive Science for encouriging me to keep on working hard and holding my head up high!
#### Contact
For help or further information feel free to connect with the author Malte Højmark-Bertelsen on [[email protected]](mailto:[email protected]?subject=[GitHub]%20Ælæctra) or any of the following platforms:
[<img align="left" alt="MalteHB | Twitter" width="22px" src="https://cdn.jsdelivr.net/npm/simple-icons@v3/icons/twitter.svg" />][twitter]
[<img align="left" alt="MalteHB | LinkedIn" width="22px" src="https://cdn.jsdelivr.net/npm/simple-icons@v3/icons/linkedin.svg" />][linkedin]
[<img align="left" alt="MalteHB | Instagram" width="22px" src="https://cdn.jsdelivr.net/npm/simple-icons@v3/icons/instagram.svg" />][instagram]
<br />
</details>
[twitter]: https://twitter.com/malteH_B
[instagram]: https://www.instagram.com/maltemusen/
[linkedin]: https://www.linkedin.com/in/malte-h%C3%B8jmark-bertelsen-9a618017b/ | {"language": "da", "license": "mit", "tags": ["\u00e6l\u00e6ctra", "pytorch", "danish", "ELECTRA-Small", "replaced token detection"], "datasets": ["DAGW"], "metrics": ["f1"], "co2_eq_emissions": 4009.5} | null | Maltehb/aelaectra-danish-electra-small-cased | [
"transformers",
"pytorch",
"tf",
"electra",
"pretraining",
"ælæctra",
"danish",
"ELECTRA-Small",
"replaced token detection",
"da",
"dataset:DAGW",
"arxiv:2003.10555",
"arxiv:1810.04805",
"arxiv:2005.03521",
"license:mit",
"co2_eq_emissions",
"endpoints_compatible",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [
"2003.10555",
"1810.04805",
"2005.03521"
] | [
"da"
] | TAGS
#transformers #pytorch #tf #electra #pretraining #ælæctra #danish #ELECTRA-Small #replaced token detection #da #dataset-DAGW #arxiv-2003.10555 #arxiv-1810.04805 #arxiv-2005.03521 #license-mit #co2_eq_emissions #endpoints_compatible #region-us
| Ælæctra - A Step Towards More Efficient Danish Natural Language Processing
==========================================================================
Ælæctra is a Danish Transformer-based language model created to enhance the variety of Danish NLP resources with a more efficient model compared to previous state-of-the-art (SOTA) models. Initially a cased and an uncased model are released. It was created as part of a Cognitive Science bachelor's thesis.
Ælæctra was pretrained with the ELECTRA-Small (Clark et al., 2020) pretraining approach by using the Danish Gigaword Corpus (Strømberg-Derczynski et al., 2020) and evaluated on Named Entity Recognition (NER) tasks. Since NER only presents a limited picture of Ælæctra's capabilities I am very interested in further evaluations. Therefore, if you employ it for any task, feel free to hit me up your findings!
Ælæctra was, as mentioned, created to enhance the Danish NLP capabilties and please do note how this GitHub still does not support the Danish characters "*Æ, Ø and Å*" as the title of this repository becomes "*-l-ctra*". How ironic.
Here is an example on how to load both the cased and the uncased Ælæctra model in PyTorch using the Transformers library:
### Evaluation of current Danish Language Models
Ælæctra, Danish BERT (DaBERT) and multilingual BERT (mBERT) were evaluated:
On DaNE (Hvingelby et al., 2020), Ælæctra scores slightly worse than both cased and uncased Multilingual BERT (Devlin et al., 2019) and Danish BERT (Danish BERT, 2019/2020), however, Ælæctra is less than one third the size, and uses significantly fewer computational resources to pretrain and instantiate. For a full description of the evaluation and specification of the model read the thesis: 'Ælæctra - A Step Towards More Efficient Danish Natural Language Processing'.
### Pretraining
To pretrain Ælæctra it is recommended to build a Docker Container from the Dockerfile. Next, simply follow the pretraining notebooks
The pretraining was done by utilizing a single NVIDIA Tesla V100 GPU with 16 GiB, endowed by the Danish data company KMD. The pretraining took approximately 4 days and 9.5 hours for both the cased and uncased model
### Fine-tuning
To fine-tune any Ælæctra model follow the fine-tuning notebooks
### References
Clark, K., Luong, M.-T., Le, Q. V., & Manning, C. D. (2020). ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Generators. ArXiv:2003.10555 [Cs]. URL
Danish BERT. (2020). BotXO. URL (Original work published 2019)
Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. ArXiv:1810.04805 [Cs]. URL
Hvingelby, R., Pauli, A. B., Barrett, M., Rosted, C., Lidegaard, L. M., & Søgaard, A. (2020). DaNE: A Named Entity Resource for Danish. Proceedings of the 12th Language Resources and Evaluation Conference, 4597–4604. URL
Strømberg-Derczynski, L., Baglini, R., Christiansen, M. H., Ciosici, M. R., Dalsgaard, J. A., Fusaroli, R., Henrichsen, P. J., Hvingelby, R., Kirkedal, A., Kjeldsen, A. S., Ladefoged, C., Nielsen, F. Å., Petersen, M. L., Rystrøm, J. H., & Varab, D. (2020). The Danish Gigaword Project. ArXiv:2005.03521 [Cs]. URL
#### Acknowledgements
As the majority of this repository is build upon the works by the team at Google who created ELECTRA, a HUGE thanks to them is in order.
A Giga thanks also goes out to the incredible people who collected The Danish Gigaword Corpus (Strømberg-Derczynski et al., 2020).
Furthermore, I would like to thank my supervisor Riccardo Fusaroli for the support with the thesis, and a special thanks goes out to Kenneth Enevoldsen for his continuous feedback.
Lastly, i would like to thank KMD, my colleagues from KMD, and my peers and co-students from Cognitive Science for encouriging me to keep on working hard and holding my head up high!
#### Contact
For help or further information feel free to connect with the author Malte Højmark-Bertelsen on hjb@URL or any of the following platforms:
[<img align="left" alt="MalteHB | Twitter" width="22px" src="URL />](URL)
[<img align="left" alt="MalteHB | LinkedIn" width="22px" src="URL />](URL)
[<img align="left" alt="MalteHB | Instagram" width="22px" src="URL />](URL)
| [
"### Evaluation of current Danish Language Models\n\n\nÆlæctra, Danish BERT (DaBERT) and multilingual BERT (mBERT) were evaluated:\n\n\n\nOn DaNE (Hvingelby et al., 2020), Ælæctra scores slightly worse than both cased and uncased Multilingual BERT (Devlin et al., 2019) and Danish BERT (Danish BERT, 2019/2020), however, Ælæctra is less than one third the size, and uses significantly fewer computational resources to pretrain and instantiate. For a full description of the evaluation and specification of the model read the thesis: 'Ælæctra - A Step Towards More Efficient Danish Natural Language Processing'.",
"### Pretraining\n\n\nTo pretrain Ælæctra it is recommended to build a Docker Container from the Dockerfile. Next, simply follow the pretraining notebooks\n\n\nThe pretraining was done by utilizing a single NVIDIA Tesla V100 GPU with 16 GiB, endowed by the Danish data company KMD. The pretraining took approximately 4 days and 9.5 hours for both the cased and uncased model",
"### Fine-tuning\n\n\nTo fine-tune any Ælæctra model follow the fine-tuning notebooks",
"### References\n\n\nClark, K., Luong, M.-T., Le, Q. V., & Manning, C. D. (2020). ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Generators. ArXiv:2003.10555 [Cs]. URL\n\n\nDanish BERT. (2020). BotXO. URL (Original work published 2019)\n\n\nDevlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. ArXiv:1810.04805 [Cs]. URL\n\n\nHvingelby, R., Pauli, A. B., Barrett, M., Rosted, C., Lidegaard, L. M., & Søgaard, A. (2020). DaNE: A Named Entity Resource for Danish. Proceedings of the 12th Language Resources and Evaluation Conference, 4597–4604. URL\n\n\nStrømberg-Derczynski, L., Baglini, R., Christiansen, M. H., Ciosici, M. R., Dalsgaard, J. A., Fusaroli, R., Henrichsen, P. J., Hvingelby, R., Kirkedal, A., Kjeldsen, A. S., Ladefoged, C., Nielsen, F. Å., Petersen, M. L., Rystrøm, J. H., & Varab, D. (2020). The Danish Gigaword Project. ArXiv:2005.03521 [Cs]. URL",
"#### Acknowledgements\n\n\nAs the majority of this repository is build upon the works by the team at Google who created ELECTRA, a HUGE thanks to them is in order.\n\n\nA Giga thanks also goes out to the incredible people who collected The Danish Gigaword Corpus (Strømberg-Derczynski et al., 2020).\n\n\nFurthermore, I would like to thank my supervisor Riccardo Fusaroli for the support with the thesis, and a special thanks goes out to Kenneth Enevoldsen for his continuous feedback.\n\n\nLastly, i would like to thank KMD, my colleagues from KMD, and my peers and co-students from Cognitive Science for encouriging me to keep on working hard and holding my head up high!",
"#### Contact\n\n\nFor help or further information feel free to connect with the author Malte Højmark-Bertelsen on hjb@URL or any of the following platforms:\n\n\n[<img align=\"left\" alt=\"MalteHB | Twitter\" width=\"22px\" src=\"URL />](URL)\n[<img align=\"left\" alt=\"MalteHB | LinkedIn\" width=\"22px\" src=\"URL />](URL)\n[<img align=\"left\" alt=\"MalteHB | Instagram\" width=\"22px\" src=\"URL />](URL)"
] | [
"TAGS\n#transformers #pytorch #tf #electra #pretraining #ælæctra #danish #ELECTRA-Small #replaced token detection #da #dataset-DAGW #arxiv-2003.10555 #arxiv-1810.04805 #arxiv-2005.03521 #license-mit #co2_eq_emissions #endpoints_compatible #region-us \n",
"### Evaluation of current Danish Language Models\n\n\nÆlæctra, Danish BERT (DaBERT) and multilingual BERT (mBERT) were evaluated:\n\n\n\nOn DaNE (Hvingelby et al., 2020), Ælæctra scores slightly worse than both cased and uncased Multilingual BERT (Devlin et al., 2019) and Danish BERT (Danish BERT, 2019/2020), however, Ælæctra is less than one third the size, and uses significantly fewer computational resources to pretrain and instantiate. For a full description of the evaluation and specification of the model read the thesis: 'Ælæctra - A Step Towards More Efficient Danish Natural Language Processing'.",
"### Pretraining\n\n\nTo pretrain Ælæctra it is recommended to build a Docker Container from the Dockerfile. Next, simply follow the pretraining notebooks\n\n\nThe pretraining was done by utilizing a single NVIDIA Tesla V100 GPU with 16 GiB, endowed by the Danish data company KMD. The pretraining took approximately 4 days and 9.5 hours for both the cased and uncased model",
"### Fine-tuning\n\n\nTo fine-tune any Ælæctra model follow the fine-tuning notebooks",
"### References\n\n\nClark, K., Luong, M.-T., Le, Q. V., & Manning, C. D. (2020). ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Generators. ArXiv:2003.10555 [Cs]. URL\n\n\nDanish BERT. (2020). BotXO. URL (Original work published 2019)\n\n\nDevlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. ArXiv:1810.04805 [Cs]. URL\n\n\nHvingelby, R., Pauli, A. B., Barrett, M., Rosted, C., Lidegaard, L. M., & Søgaard, A. (2020). DaNE: A Named Entity Resource for Danish. Proceedings of the 12th Language Resources and Evaluation Conference, 4597–4604. URL\n\n\nStrømberg-Derczynski, L., Baglini, R., Christiansen, M. H., Ciosici, M. R., Dalsgaard, J. A., Fusaroli, R., Henrichsen, P. J., Hvingelby, R., Kirkedal, A., Kjeldsen, A. S., Ladefoged, C., Nielsen, F. Å., Petersen, M. L., Rystrøm, J. H., & Varab, D. (2020). The Danish Gigaword Project. ArXiv:2005.03521 [Cs]. URL",
"#### Acknowledgements\n\n\nAs the majority of this repository is build upon the works by the team at Google who created ELECTRA, a HUGE thanks to them is in order.\n\n\nA Giga thanks also goes out to the incredible people who collected The Danish Gigaword Corpus (Strømberg-Derczynski et al., 2020).\n\n\nFurthermore, I would like to thank my supervisor Riccardo Fusaroli for the support with the thesis, and a special thanks goes out to Kenneth Enevoldsen for his continuous feedback.\n\n\nLastly, i would like to thank KMD, my colleagues from KMD, and my peers and co-students from Cognitive Science for encouriging me to keep on working hard and holding my head up high!",
"#### Contact\n\n\nFor help or further information feel free to connect with the author Malte Højmark-Bertelsen on hjb@URL or any of the following platforms:\n\n\n[<img align=\"left\" alt=\"MalteHB | Twitter\" width=\"22px\" src=\"URL />](URL)\n[<img align=\"left\" alt=\"MalteHB | LinkedIn\" width=\"22px\" src=\"URL />](URL)\n[<img align=\"left\" alt=\"MalteHB | Instagram\" width=\"22px\" src=\"URL />](URL)"
] | [
102,
165,
88,
24,
370,
166,
141
] | [
"passage: TAGS\n#transformers #pytorch #tf #electra #pretraining #ælæctra #danish #ELECTRA-Small #replaced token detection #da #dataset-DAGW #arxiv-2003.10555 #arxiv-1810.04805 #arxiv-2005.03521 #license-mit #co2_eq_emissions #endpoints_compatible #region-us \n### Evaluation of current Danish Language Models\n\n\nÆlæctra, Danish BERT (DaBERT) and multilingual BERT (mBERT) were evaluated:\n\n\n\nOn DaNE (Hvingelby et al., 2020), Ælæctra scores slightly worse than both cased and uncased Multilingual BERT (Devlin et al., 2019) and Danish BERT (Danish BERT, 2019/2020), however, Ælæctra is less than one third the size, and uses significantly fewer computational resources to pretrain and instantiate. For a full description of the evaluation and specification of the model read the thesis: 'Ælæctra - A Step Towards More Efficient Danish Natural Language Processing'.### Pretraining\n\n\nTo pretrain Ælæctra it is recommended to build a Docker Container from the Dockerfile. Next, simply follow the pretraining notebooks\n\n\nThe pretraining was done by utilizing a single NVIDIA Tesla V100 GPU with 16 GiB, endowed by the Danish data company KMD. The pretraining took approximately 4 days and 9.5 hours for both the cased and uncased model### Fine-tuning\n\n\nTo fine-tune any Ælæctra model follow the fine-tuning notebooks"
] | [
-0.07285591959953308,
-0.03590315580368042,
-0.0041842409409582615,
0.057696208357810974,
0.006664058193564415,
-0.015139183960855007,
0.04638386517763138,
0.04812269285321236,
-0.05444138124585152,
0.12119071185588837,
0.039025891572237015,
-0.0074974121525883675,
0.0762123316526413,
0.10356322675943375,
0.03660363703966141,
-0.27654343843460083,
0.09944335371255875,
-0.0128602534532547,
0.03350389748811722,
0.04745142161846161,
0.15119516849517822,
-0.13561247289180756,
0.04113752394914627,
0.014498535543680191,
-0.04165660962462425,
0.008519233204424381,
-0.08688558638095856,
-0.045276347547769547,
0.12089993059635162,
0.04250701144337654,
0.098998062312603,
0.08732954412698746,
0.09174152463674545,
-0.14800260961055756,
0.0014739905018359423,
0.016868913546204567,
0.02717968262732029,
0.0552121177315712,
0.018106918781995773,
0.12981535494327545,
0.1351073533296585,
-0.06881437450647354,
0.1000422015786171,
-0.028243402019143105,
-0.05302131921052933,
-0.05771812051534653,
-0.04411916062235832,
0.00048166068154387176,
0.05446730554103851,
0.027191393077373505,
-0.03544295206665993,
0.14905722439289093,
-0.050264135003089905,
0.03630755841732025,
0.07017714530229568,
-0.3076241910457611,
-0.07200922071933746,
0.10070611536502838,
0.07968659698963165,
0.019682567566633224,
-0.09865659475326538,
-0.015451204963028431,
0.011822615750133991,
0.030882712453603745,
0.05317044258117676,
0.013732178136706352,
-0.04414147511124611,
-0.06999614834785461,
-0.12548649311065674,
0.04599304869771004,
0.24969463050365448,
0.00199040025472641,
-0.07559052854776382,
-0.11299712210893631,
-0.07938772439956665,
-0.06845815479755402,
0.0057949041947722435,
-0.0756198838353157,
0.03709600865840912,
-0.03991994634270668,
0.12251538038253784,
-0.018344640731811523,
-0.1450922191143036,
0.049235690385103226,
-0.10766913741827011,
0.16521519422531128,
0.05244826897978783,
0.004856342449784279,
0.10491568595170975,
0.09496147185564041,
-0.04011833295226097,
-0.09935500472784042,
-0.058378398418426514,
-0.06711983680725098,
-0.13104474544525146,
-0.07316124439239502,
-0.015718411654233932,
-0.1299777328968048,
-0.07371259480714798,
0.21669456362724304,
0.022120684385299683,
0.048997923731803894,
0.005858846008777618,
0.007285141386091709,
0.09473175555467606,
0.12218408286571503,
-0.03248724341392517,
-0.06584685295820236,
-0.016972478479146957,
0.06392406672239304,
0.05832501873373985,
-0.015702247619628906,
-0.021738627925515175,
-0.08623693883419037,
0.04767920449376106,
-0.024116473272442818,
-0.08727937936782837,
0.033784739673137665,
-0.05446089059114456,
-0.07907860726118088,
0.14871709048748016,
-0.12082573771476746,
-0.023260321468114853,
-0.036299895495176315,
-0.06248446926474571,
0.050050243735313416,
0.0197548046708107,
0.027573702856898308,
-0.07271011918783188,
0.15130141377449036,
-0.03821040317416191,
-0.05403133109211922,
-0.046708934009075165,
-0.09322945773601532,
0.01627412624657154,
-0.05432724207639694,
-0.01282269973307848,
-0.10729534178972244,
-0.07349645346403122,
-0.01338171772658825,
0.07779355347156525,
-0.04474775120615959,
-0.09250899404287338,
-0.03575589507818222,
0.0056219203397631645,
-0.0025273540522903204,
-0.06598395109176636,
0.0904773473739624,
-0.009546025656163692,
0.015417921356856823,
-0.025478029623627663,
0.047985728830099106,
-0.05249913036823273,
0.017877893522381783,
-0.09897491335868835,
-0.01950126700103283,
-0.21651920676231384,
0.008840464055538177,
-0.11108837276697159,
-0.06707827746868134,
-0.11260276287794113,
-0.053308840841054916,
-0.11200515925884247,
0.028706498444080353,
0.04509801045060158,
0.057820986956357956,
-0.1801590770483017,
0.024857303127646446,
0.057571880519390106,
-0.1208510547876358,
0.0014248854713514447,
0.14215849339962006,
-0.047373197972774506,
0.06844624876976013,
0.06315529346466064,
0.1132303848862648,
0.01053939014673233,
-0.2343331277370453,
-0.05850052088499069,
-0.006009985227137804,
0.024784844368696213,
0.07773439586162567,
0.041472673416137695,
0.021334780380129814,
0.066809743642807,
0.019570134580135345,
-0.05084797367453575,
-0.08430586010217667,
-0.010227938182651997,
-0.03397753834724426,
0.01450591441243887,
-0.03679206967353821,
-0.017930403351783752,
0.018177617341279984,
0.009130516089498997,
-0.05657759681344032,
-0.10421472787857056,
0.04992473125457764,
0.11522310972213745,
-0.07210173457860947,
0.009149977006018162,
-0.06130068376660347,
-0.001924946904182434,
-0.0434894859790802,
-0.05913533642888069,
-0.09999045729637146,
-0.12222793698310852,
0.1137845516204834,
-0.048046987503767014,
0.03321904316544533,
0.16608799993991852,
0.03655215725302696,
0.08984813839197159,
-0.042480990290641785,
0.0181821770966053,
-0.052461739629507065,
-0.033259496092796326,
-0.09899373352527618,
-0.07010140269994736,
-0.0013335270341485739,
-0.048859044909477234,
0.014142204076051712,
-0.08032602816820145,
0.03139857202768326,
0.06483124196529388,
0.07477489113807678,
-0.00853070616722107,
-0.03438103571534157,
-0.052148424088954926,
-0.03143244609236717,
-0.04310862720012665,
-0.00990181602537632,
0.01572331041097641,
0.002096959389746189,
0.0026865159161388874,
0.06165102869272232,
-0.12506987154483795,
-0.07225476950407028,
0.09431681782007217,
0.07811713218688965,
-0.03813014551997185,
-0.09163874387741089,
-0.07186729460954666,
-0.03716544806957245,
-0.08992418646812439,
-0.07847145944833755,
0.24484708905220032,
0.0628090500831604,
0.09908599406480789,
-0.10550875216722488,
-0.08277780562639236,
0.008551573380827904,
0.053259510546922684,
-0.09590025991201401,
0.06441594660282135,
0.08795781433582306,
-0.023411985486745834,
0.005540481768548489,
0.015037300065159798,
0.06919441372156143,
0.08796141296625137,
-0.004221673589199781,
-0.07772186398506165,
0.02497783489525318,
-0.0023902100510895252,
-0.05143481492996216,
0.13688713312149048,
-0.037196286022663116,
0.020795198157429695,
0.03376375138759613,
0.027335312217473984,
0.047752026468515396,
-0.07191888988018036,
0.03171466290950775,
0.013970022089779377,
-0.0106126694008708,
0.07534180581569672,
-0.002663335995748639,
-0.023989830166101456,
0.07976929843425751,
0.021198641508817673,
-0.0067383586429059505,
-0.06141792610287666,
-0.0032479469664394855,
-0.030731210485100746,
0.14830374717712402,
-0.07470470666885376,
-0.210788294672966,
-0.09987299889326096,
0.05627791956067085,
-0.027767153456807137,
-0.006163684651255608,
0.007627064827829599,
-0.017352165654301643,
-0.15856195986270905,
-0.12542001903057098,
0.1644831746816635,
-0.03171176463365555,
-0.020171457901597023,
0.05420612171292305,
-0.035490117967128754,
-0.008659602142870426,
-0.1590094417333603,
0.0003779926337301731,
-0.0340130589902401,
-0.03960726037621498,
0.03260877728462219,
-0.022500066086649895,
0.06656460464000702,
0.03941870108246803,
-0.058793988078832626,
-0.05501118674874306,
0.01654556207358837,
0.20947377383708954,
-0.04175815358757973,
0.13636408746242523,
0.11009732633829117,
-0.03942158818244934,
0.024867050349712372,
0.16690368950366974,
0.031280141323804855,
-0.10562501102685928,
0.02977118454873562,
0.057732369750738144,
0.006085559725761414,
-0.20856139063835144,
-0.07112694531679153,
-0.03146698698401451,
-0.06176336109638214,
0.1564176231622696,
0.05521848425269127,
-0.14108368754386902,
0.0672333613038063,
-0.06596431881189346,
0.06327475607395172,
0.09077407419681549,
0.06753667443990707,
0.11550034582614899,
0.007043860387057066,
0.1290048509836197,
-0.01117282547056675,
-0.06866883486509323,
0.10382837802171707,
0.06045015528798103,
0.1524694561958313,
-0.06209613382816315,
0.056537847965955734,
0.03567441925406456,
0.011704900301992893,
0.017001217231154442,
0.10554734617471695,
-0.04680256173014641,
0.01814299076795578,
-0.056827396154403687,
-0.03697376698255539,
-0.07309970259666443,
0.0046949987299740314,
-0.011592566967010498,
-0.020324435085058212,
-0.03910801559686661,
0.039197102189064026,
0.05329978093504906,
0.20611101388931274,
-0.007151399739086628,
-0.13922683894634247,
-0.111962229013443,
0.013462357223033905,
-0.09949575364589691,
-0.11180803924798965,
0.030870482325553894,
0.09344411641359329,
-0.05088821053504944,
0.08478784561157227,
-0.040482066571712494,
0.04321771115064621,
-0.11062820255756378,
0.020145859569311142,
0.019855981692671776,
0.057347994297742844,
-0.016298066824674606,
0.045995622873306274,
-0.18246395885944366,
0.08807507902383804,
0.029520811513066292,
0.12731504440307617,
-0.05887993425130844,
0.026568960398435593,
-0.05234111100435257,
0.07224859297275543,
0.11501973122358322,
-0.0026039930526167154,
-0.028086718171834946,
-0.0067409793846309185,
-0.16461028158664703,
0.036115169525146484,
0.04637649282813072,
-0.06066769361495972,
0.06368055194616318,
-0.002563132205978036,
0.041112806648015976,
-0.017351696267724037,
-0.07789592444896698,
-0.12798820436000824,
-0.1643359214067459,
0.06984727829694748,
-0.07674319297075272,
-0.03094831295311451,
-0.05295153707265854,
-0.08403441309928894,
-0.15702953934669495,
0.21014095842838287,
-0.1414257287979126,
-0.0662451684474945,
-0.12324652075767517,
0.06551938503980637,
0.15430869162082672,
-0.030932091176509857,
0.01434109266847372,
-0.01812770962715149,
0.1434188187122345,
-0.116947241127491,
-0.058731574565172195,
0.018076643347740173,
-0.043188150972127914,
-0.12559321522712708,
-0.04908663406968117,
0.12168479710817337,
0.11655968427658081,
0.04171230271458626,
0.006342501845210791,
0.048737913370132446,
-0.04629458487033844,
-0.08386316895484924,
-0.019770922139286995,
0.03828607499599457,
0.04014258831739426,
-0.06694404035806656,
-0.13317479193210602,
-0.06632480770349503,
-0.027604414150118828,
-0.03232141211628914,
0.012775109149515629,
0.2705841064453125,
-0.053657375276088715,
0.09886950254440308,
0.19322402775287628,
-0.03961262106895447,
-0.2296011745929718,
0.04502430558204651,
0.11994241178035736,
0.05721808224916458,
-0.04633773863315582,
-0.16894929111003876,
0.13442866504192352,
0.15420231223106384,
-0.00043859067955054343,
-0.021454323083162308,
-0.13380290567874908,
-0.12143492698669434,
0.07344072312116623,
0.04664633795619011,
0.07173122465610504,
-0.017610395327210426,
0.001624360796995461,
0.03399581462144852,
-0.08394036442041397,
0.16897304356098175,
0.028697654604911804,
0.06366923451423645,
0.016134457662701607,
0.03129296377301216,
0.07286407053470612,
-0.056954991072416306,
0.12875160574913025,
0.050946999341249466,
0.05497686192393303,
-0.019400231540203094,
0.00148623320274055,
0.047693077474832535,
-0.02415427938103676,
0.16453513503074646,
0.11189927160739899,
-0.012236314825713634,
-0.034684792160987854,
-0.09192638099193573,
-0.05331752821803093,
0.10600636899471283,
-0.07680005580186844,
-0.07619468122720718,
-0.08099493384361267,
0.08542412519454956,
0.03750000521540642,
0.008475995622575283,
0.09922000765800476,
-0.02961404249072075,
-0.13198591768741608,
0.027415884658694267,
0.1934717893600464,
0.04492196440696716,
0.0313362218439579,
0.038310933858156204,
0.004744528792798519,
0.04564531520009041,
-0.03215980902314186,
0.04664747416973114,
0.15532152354717255,
-0.07804850488901138,
0.041599493473768234,
-0.00832957774400711,
-0.13019320368766785,
-0.07312076538801193,
0.03410783037543297,
-0.13497528433799744,
-0.03789391741156578,
0.03170456737279892,
0.0065144868567585945,
-0.05419208109378815,
-0.044831063598394394,
0.14085665345191956,
-0.060950011014938354,
-0.015584797598421574,
0.027272632345557213,
0.042150482535362244,
0.08065671473741531,
0.11788207292556763,
0.009972352534532547,
0.023295538499951363,
-0.0445631667971611,
0.1404649168252945,
0.09274589270353317,
-0.1629069745540619,
0.013735822401940823,
0.05791601538658142,
-0.11335635930299759,
-0.06217275187373161,
-0.08951879292726517,
-0.031322214752435684,
-0.04509550333023071,
0.00041480979416519403,
0.009228076785802841,
-0.10580558329820633,
0.012489202432334423,
-0.019790953025221825,
0.014553147368133068,
-0.001997764455154538,
-0.005017248447984457,
0.06572464108467102,
-0.07082042098045349,
0.10739980638027191,
-0.03594294935464859,
0.08306127041578293,
0.021699300035834312,
0.10095605254173279,
-0.027051854878664017,
-0.018216334283351898,
-0.02020011655986309,
0.04243683069944382,
-0.004952277056872845,
-0.06235412135720253,
0.05056602507829666,
0.00877853762358427,
0.006384063977748156,
-0.0025402468163520098,
0.009928446263074875,
-0.03435533866286278,
-0.020554520189762115,
0.008663821965456009,
-0.05426705256104469,
0.013722189702093601,
-0.04698227718472481,
-0.01093924418091774,
-0.0404006764292717,
-0.036528173834085464,
0.03908957168459892,
-0.09928885847330093,
0.1063573956489563,
-0.05527816712856293,
0.02803751453757286,
0.03156810253858566,
-0.048433270305395126,
0.04658529907464981,
-0.006725005339831114,
0.1283034384250641,
0.00774621544405818,
-0.01376672275364399,
0.002325204433873296,
0.012642066925764084,
0.008553286083042622,
-0.03270246461033821,
0.12021210789680481,
-0.09410867840051651,
-0.005322400480508804,
0.014327362179756165,
-0.09238848090171814,
-0.06338157504796982,
0.03800533711910248,
0.00461878115311265,
0.010309562087059021,
0.11406102031469345,
-0.02682262659072876,
-0.03369245305657387,
-0.1057191789150238,
0.008902941830456257,
0.0500834695994854,
-0.07469798624515533,
-0.01188063807785511,
-0.0658382698893547,
0.06182572618126869,
-0.06979097425937653,
0.16415193676948547,
0.009766088798642159,
0.010669510811567307,
0.056224312633275986,
-0.10482962429523468,
-0.1767573058605194,
0.040015850216150284,
0.11728134751319885,
0.02348344400525093,
0.04641081020236015,
-0.05260792747139931,
-0.03602065145969391,
0.01390128768980503,
-0.0008365729590877891,
0.15036632120609283,
0.08370421081781387,
0.02912227064371109,
0.05772558972239494,
-0.017908161506056786,
-0.134214848279953,
-0.11596719920635223,
0.13823695480823517,
-0.05544135719537735,
0.018832264468073845,
0.015800172463059425,
0.10053551197052002,
0.06761088967323303,
-0.14410069584846497,
0.06079334020614624,
-0.030529074370861053,
-0.08994733542203903,
-0.11554019153118134,
-0.08664018660783768,
-0.04275311902165413,
0.07318401336669922,
0.020827913656830788,
-0.1592341959476471,
-0.006280933041125536,
-0.05392180755734444,
0.0662752315402031,
-0.01434267871081829,
0.12963999807834625,
-0.12921787798404694,
-0.04079534485936165,
0.07102815061807632,
0.07187692821025848,
0.030106080695986748,
0.006015196908265352,
-0.03321677818894386,
-0.04328765720129013,
0.10667050629854202,
0.06023626774549484,
-0.003830954432487488,
0.05826409533619881,
-0.040190838277339935,
0.06291978061199188,
-0.03348099812865257,
-0.02949201688170433,
-0.06897179037332535,
0.023552371188998222,
0.04676437750458717,
0.03120480850338936,
0.008242134936153889,
-0.027709532529115677,
0.14384976029396057,
0.023081516847014427,
-0.08381649851799011,
-0.10715222358703613,
0.030476931482553482,
0.06523450464010239,
0.08147480338811874,
0.03679205849766731,
-0.08013344556093216,
-0.044256795197725296,
0.22717750072479248,
0.07243553549051285,
-0.026169084012508392,
-0.026019321754574776,
0.0635373443365097,
0.00012070676166331396,
0.030152322724461555,
0.08715797960758209,
0.025856828317046165,
0.15150651335716248,
-0.060913391411304474,
0.022319398820400238,
-0.04014698415994644,
0.020403878763318062,
-0.050327494740486145,
0.140864759683609,
-0.0038289169315248728,
0.022080762311816216,
-0.11757650226354599,
-0.03185335919260979,
0.10373091697692871,
-0.2852540612220764,
0.008587008342146873,
-0.08973267674446106,
-0.133645161986351,
-0.0034190225414931774,
-0.017126351594924927,
-0.05951335281133652,
0.02149227447807789,
-0.02467162162065506,
-0.016014231368899345,
0.16038674116134644,
0.0059140753000974655,
-0.059214092791080475,
0.053903695195913315,
0.09381181746721268,
0.0012330699246376753,
0.17372359335422516,
0.019786523655056953,
0.07079238444566727,
0.04766811802983284,
-0.01988382078707218,
-0.06737552583217621,
0.056735482066869736,
0.028834287077188492,
-0.012759615667164326,
0.06520651280879974,
0.1197160929441452,
0.009949713945388794,
0.1096477285027504,
0.06917854398488998,
-0.09078752994537354,
0.023445570841431618,
0.10318397730588913,
-0.09453804790973663,
-0.03082185797393322,
0.1666685938835144,
-0.07181563228368759,
0.1377585530281067,
0.1335071623325348,
0.034756772220134735,
-0.06426402181386948,
-0.12224578857421875,
0.04493571072816849,
-0.009378206916153431,
0.21619735658168793,
0.03575406223535538,
-0.15592992305755615,
0.013851038180291653,
-0.010192623361945152,
0.04999274015426636,
-0.17719051241874695,
-0.03623776137828827,
-0.030895326286554337,
-0.018428444862365723,
-0.05318402498960495,
0.10200797021389008,
-0.015609519556164742,
0.025866182520985603,
-0.046317312866449356,
0.04716334491968155,
-0.006308546289801598,
0.0424048975110054,
-0.1009441465139389,
-0.045651983469724655
] |
null | null | transformers |
# Ælæctra - Finetuned for Named Entity Recognition on the [DaNE dataset](https://danlp.alexandra.dk/304bd159d5de/datasets/ddt.zip) (Hvingelby et al., 2020) by Malte Højmark-Bertelsen.
**Ælæctra** is a Danish Transformer-based language model created to enhance the variety of Danish NLP resources with a more efficient model compared to previous state-of-the-art (SOTA) models.
Ælæctra was pretrained with the ELECTRA-Small (Clark et al., 2020) pretraining approach by using the Danish Gigaword Corpus (Strømberg-Derczynski et al., 2020) and evaluated on Named Entity Recognition (NER) tasks. Since NER only presents a limited picture of Ælæctra's capabilities I am very interested in further evaluations. Therefore, if you employ it for any task, feel free to hit me up your findings!
Ælæctra was, as mentioned, created to enhance the Danish NLP capabilties and please do note how this GitHub still does not support the Danish characters "*Æ, Ø and Å*" as the title of this repository becomes "*-l-ctra*". How ironic.🙂
Here is an example on how to load the finetuned Ælæctra-uncased model for Named Entity Recognition in [PyTorch](https://pytorch.org/) using the [🤗Transformers](https://github.com/huggingface/transformers) library:
```python
from transformers import AutoTokenizer, AutoModelForTokenClassification
tokenizer = AutoTokenizer.from_pretrained("Maltehb/-l-ctra-danish-electra-small-uncased-ner-dane")
model = AutoModelForTokenClassification.from_pretrained("Maltehb/-l-ctra-danish-electra-small-uncased-ner-dane")
```
### Evaluation of current Danish Language Models
Ælæctra, Danish BERT (DaBERT) and multilingual BERT (mBERT) were evaluated:
| Model | Layers | Hidden Size | Params | AVG NER micro-f1 (DaNE-testset) | Average Inference Time (Sec/Epoch) | Download |
| --- | --- | --- | --- | --- | --- | --- |
| Ælæctra Uncased | 12 | 256 | 13.7M | 78.03 (SD = 1.28) | 10.91 | [Link for model](https://www.dropbox.com/s/cag7prs1nvdchqs/%C3%86l%C3%A6ctra.zip?dl=0) |
| Ælæctra Cased | 12 | 256 | 14.7M | 80.08 (SD = 0.26) | 10.92 | [Link for model](https://www.dropbox.com/s/cag7prs1nvdchqs/%C3%86l%C3%A6ctra.zip?dl=0) |
| DaBERT | 12 | 768 | 110M | 84.89 (SD = 0.64) | 43.03 | [Link for model](https://www.dropbox.com/s/19cjaoqvv2jicq9/danish_bert_uncased_v2.zip?dl=1) |
| mBERT Uncased | 12 | 768 | 167M | 80.44 (SD = 0.82) | 72.10 | [Link for model](https://storage.googleapis.com/bert_models/2018_11_03/multilingual_L-12_H-768_A-12.zip) |
| mBERT Cased | 12 | 768 | 177M | 83.79 (SD = 0.91) | 70.56 | [Link for model](https://storage.googleapis.com/bert_models/2018_11_23/multi_cased_L-12_H-768_A-12.zip) |
On [DaNE](https://danlp.alexandra.dk/304bd159d5de/datasets/ddt.zip) (Hvingelby et al., 2020) without the *MISC-tag*, Ælæctra scores slightly worse than both cased and uncased Multilingual BERT (Devlin et al., 2019) and Danish BERT (Danish BERT, 2019/2020), however, Ælæctra is less than one third the size, and uses significantly fewer computational resources to pretrain and instantiate.
### Pretraining
To pretrain Ælæctra it is recommended to build a Docker Container from the [Dockerfile](https://github.com/MalteHB/Ælæctra/tree/master/notebooks/fine-tuning/). Next, simply follow the [pretraining notebooks](https://github.com/MalteHB/Ælæctra/tree/master/infrastructure/Dockerfile/)
The pretraining was done by utilizing a single NVIDIA Tesla V100 GPU with 16 GiB, endowed by the Danish data company [KMD](https://www.kmd.dk/). The pretraining took approximately 4 days and 9.5 hours for both the cased and uncased model
### Fine-tuning
To fine-tune any Ælæctra model follow the [fine-tuning notebooks](https://github.com/MalteHB/Ælæctra/tree/master/notebooks/fine-tuning/)
### References
Clark, K., Luong, M.-T., Le, Q. V., & Manning, C. D. (2020). ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Generators. ArXiv:2003.10555 [Cs]. http://arxiv.org/abs/2003.10555
Danish BERT. (2020). BotXO. https://github.com/botxo/nordic_bert (Original work published 2019)
Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. ArXiv:1810.04805 [Cs]. http://arxiv.org/abs/1810.04805
Hvingelby, R., Pauli, A. B., Barrett, M., Rosted, C., Lidegaard, L. M., & Søgaard, A. (2020). DaNE: A Named Entity Resource for Danish. Proceedings of the 12th Language Resources and Evaluation Conference, 4597–4604. https://www.aclweb.org/anthology/2020.lrec-1.565
Strømberg-Derczynski, L., Baglini, R., Christiansen, M. H., Ciosici, M. R., Dalsgaard, J. A., Fusaroli, R., Henrichsen, P. J., Hvingelby, R., Kirkedal, A., Kjeldsen, A. S., Ladefoged, C., Nielsen, F. Å., Petersen, M. L., Rystrøm, J. H., & Varab, D. (2020). The Danish Gigaword Project. ArXiv:2005.03521 [Cs]. http://arxiv.org/abs/2005.03521
#### Acknowledgements
As the majority of this repository is build upon [the works](https://github.com/google-research/electra) by the team at Google who created ELECTRA, a HUGE thanks to them is in order.
A Giga thanks also goes out to the incredible people who collected The Danish Gigaword Corpus (Strømberg-Derczynski et al., 2020).
Furthermore, I would like to thank my supervisor [Riccardo Fusaroli](https://github.com/fusaroli) for the support with the thesis, and a special thanks goes out to [Kenneth Enevoldsen](https://github.com/KennethEnevoldsen) for his continuous feedback.
Lastly, i would like to thank KMD, my colleagues from KMD, and my peers and co-students from Cognitive Science for encouriging me to keep on working hard and holding my head up high!
#### Contact
For help or further information feel free to connect with the author Malte Højmark-Bertelsen on [[email protected]](mailto:[email protected]?subject=[GitHub]%20ÆlæctraUncasedNER) or any of the following platforms:
[<img align="left" alt="MalteHB | Twitter" width="22px" src="https://cdn.jsdelivr.net/npm/simple-icons@v3/icons/twitter.svg" />][twitter]
[<img align="left" alt="MalteHB | LinkedIn" width="22px" src="https://cdn.jsdelivr.net/npm/simple-icons@v3/icons/linkedin.svg" />][linkedin]
[<img align="left" alt="MalteHB | Instagram" width="22px" src="https://cdn.jsdelivr.net/npm/simple-icons@v3/icons/instagram.svg" />][instagram]
<br />
</details>
[twitter]: https://twitter.com/malteH_B
[instagram]: https://www.instagram.com/maltemusen/
[linkedin]: https://www.linkedin.com/in/malte-h%C3%B8jmark-bertelsen-9a618017b/ | {"language": "da", "license": "mit", "tags": ["\u00e6l\u00e6ctra", "pytorch", "danish", "ELECTRA-Small", "replaced token detection"], "datasets": ["DAGW"], "metrics": ["f1"], "widget": [{"text": "Chili Jensen, som bor p\u00e5 Danmarksgade 12, k\u00f8ber chilifrugter fra Netto."}]} | token-classification | Maltehb/aelaectra-danish-electra-small-uncased-ner-dane | [
"transformers",
"pytorch",
"tf",
"electra",
"token-classification",
"ælæctra",
"danish",
"ELECTRA-Small",
"replaced token detection",
"da",
"dataset:DAGW",
"arxiv:2003.10555",
"arxiv:1810.04805",
"arxiv:2005.03521",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [
"2003.10555",
"1810.04805",
"2005.03521"
] | [
"da"
] | TAGS
#transformers #pytorch #tf #electra #token-classification #ælæctra #danish #ELECTRA-Small #replaced token detection #da #dataset-DAGW #arxiv-2003.10555 #arxiv-1810.04805 #arxiv-2005.03521 #license-mit #autotrain_compatible #endpoints_compatible #region-us
| Ælæctra - Finetuned for Named Entity Recognition on the DaNE dataset (Hvingelby et al., 2020) by Malte Højmark-Bertelsen.
=========================================================================================================================
Ælæctra is a Danish Transformer-based language model created to enhance the variety of Danish NLP resources with a more efficient model compared to previous state-of-the-art (SOTA) models.
Ælæctra was pretrained with the ELECTRA-Small (Clark et al., 2020) pretraining approach by using the Danish Gigaword Corpus (Strømberg-Derczynski et al., 2020) and evaluated on Named Entity Recognition (NER) tasks. Since NER only presents a limited picture of Ælæctra's capabilities I am very interested in further evaluations. Therefore, if you employ it for any task, feel free to hit me up your findings!
Ælæctra was, as mentioned, created to enhance the Danish NLP capabilties and please do note how this GitHub still does not support the Danish characters "*Æ, Ø and Å*" as the title of this repository becomes "*-l-ctra*". How ironic.
Here is an example on how to load the finetuned Ælæctra-uncased model for Named Entity Recognition in PyTorch using the Transformers library:
### Evaluation of current Danish Language Models
Ælæctra, Danish BERT (DaBERT) and multilingual BERT (mBERT) were evaluated:
On DaNE (Hvingelby et al., 2020) without the *MISC-tag*, Ælæctra scores slightly worse than both cased and uncased Multilingual BERT (Devlin et al., 2019) and Danish BERT (Danish BERT, 2019/2020), however, Ælæctra is less than one third the size, and uses significantly fewer computational resources to pretrain and instantiate.
### Pretraining
To pretrain Ælæctra it is recommended to build a Docker Container from the Dockerfile. Next, simply follow the pretraining notebooks
The pretraining was done by utilizing a single NVIDIA Tesla V100 GPU with 16 GiB, endowed by the Danish data company KMD. The pretraining took approximately 4 days and 9.5 hours for both the cased and uncased model
### Fine-tuning
To fine-tune any Ælæctra model follow the fine-tuning notebooks
### References
Clark, K., Luong, M.-T., Le, Q. V., & Manning, C. D. (2020). ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Generators. ArXiv:2003.10555 [Cs]. URL
Danish BERT. (2020). BotXO. URL (Original work published 2019)
Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. ArXiv:1810.04805 [Cs]. URL
Hvingelby, R., Pauli, A. B., Barrett, M., Rosted, C., Lidegaard, L. M., & Søgaard, A. (2020). DaNE: A Named Entity Resource for Danish. Proceedings of the 12th Language Resources and Evaluation Conference, 4597–4604. URL
Strømberg-Derczynski, L., Baglini, R., Christiansen, M. H., Ciosici, M. R., Dalsgaard, J. A., Fusaroli, R., Henrichsen, P. J., Hvingelby, R., Kirkedal, A., Kjeldsen, A. S., Ladefoged, C., Nielsen, F. Å., Petersen, M. L., Rystrøm, J. H., & Varab, D. (2020). The Danish Gigaword Project. ArXiv:2005.03521 [Cs]. URL
#### Acknowledgements
As the majority of this repository is build upon the works by the team at Google who created ELECTRA, a HUGE thanks to them is in order.
A Giga thanks also goes out to the incredible people who collected The Danish Gigaword Corpus (Strømberg-Derczynski et al., 2020).
Furthermore, I would like to thank my supervisor Riccardo Fusaroli for the support with the thesis, and a special thanks goes out to Kenneth Enevoldsen for his continuous feedback.
Lastly, i would like to thank KMD, my colleagues from KMD, and my peers and co-students from Cognitive Science for encouriging me to keep on working hard and holding my head up high!
#### Contact
For help or further information feel free to connect with the author Malte Højmark-Bertelsen on hjb@URL or any of the following platforms:
[<img align="left" alt="MalteHB | Twitter" width="22px" src="URL />](URL)
[<img align="left" alt="MalteHB | LinkedIn" width="22px" src="URL />](URL)
[<img align="left" alt="MalteHB | Instagram" width="22px" src="URL />](URL)
| [
"### Evaluation of current Danish Language Models\n\n\nÆlæctra, Danish BERT (DaBERT) and multilingual BERT (mBERT) were evaluated:\n\n\n\nOn DaNE (Hvingelby et al., 2020) without the *MISC-tag*, Ælæctra scores slightly worse than both cased and uncased Multilingual BERT (Devlin et al., 2019) and Danish BERT (Danish BERT, 2019/2020), however, Ælæctra is less than one third the size, and uses significantly fewer computational resources to pretrain and instantiate.",
"### Pretraining\n\n\nTo pretrain Ælæctra it is recommended to build a Docker Container from the Dockerfile. Next, simply follow the pretraining notebooks\n\n\nThe pretraining was done by utilizing a single NVIDIA Tesla V100 GPU with 16 GiB, endowed by the Danish data company KMD. The pretraining took approximately 4 days and 9.5 hours for both the cased and uncased model",
"### Fine-tuning\n\n\nTo fine-tune any Ælæctra model follow the fine-tuning notebooks",
"### References\n\n\nClark, K., Luong, M.-T., Le, Q. V., & Manning, C. D. (2020). ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Generators. ArXiv:2003.10555 [Cs]. URL\n\n\nDanish BERT. (2020). BotXO. URL (Original work published 2019)\n\n\nDevlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. ArXiv:1810.04805 [Cs]. URL\n\n\nHvingelby, R., Pauli, A. B., Barrett, M., Rosted, C., Lidegaard, L. M., & Søgaard, A. (2020). DaNE: A Named Entity Resource for Danish. Proceedings of the 12th Language Resources and Evaluation Conference, 4597–4604. URL\n\n\nStrømberg-Derczynski, L., Baglini, R., Christiansen, M. H., Ciosici, M. R., Dalsgaard, J. A., Fusaroli, R., Henrichsen, P. J., Hvingelby, R., Kirkedal, A., Kjeldsen, A. S., Ladefoged, C., Nielsen, F. Å., Petersen, M. L., Rystrøm, J. H., & Varab, D. (2020). The Danish Gigaword Project. ArXiv:2005.03521 [Cs]. URL",
"#### Acknowledgements\n\n\nAs the majority of this repository is build upon the works by the team at Google who created ELECTRA, a HUGE thanks to them is in order.\n\n\nA Giga thanks also goes out to the incredible people who collected The Danish Gigaword Corpus (Strømberg-Derczynski et al., 2020).\n\n\nFurthermore, I would like to thank my supervisor Riccardo Fusaroli for the support with the thesis, and a special thanks goes out to Kenneth Enevoldsen for his continuous feedback.\n\n\nLastly, i would like to thank KMD, my colleagues from KMD, and my peers and co-students from Cognitive Science for encouriging me to keep on working hard and holding my head up high!",
"#### Contact\n\n\nFor help or further information feel free to connect with the author Malte Højmark-Bertelsen on hjb@URL or any of the following platforms:\n\n\n[<img align=\"left\" alt=\"MalteHB | Twitter\" width=\"22px\" src=\"URL />](URL)\n[<img align=\"left\" alt=\"MalteHB | LinkedIn\" width=\"22px\" src=\"URL />](URL)\n[<img align=\"left\" alt=\"MalteHB | Instagram\" width=\"22px\" src=\"URL />](URL)"
] | [
"TAGS\n#transformers #pytorch #tf #electra #token-classification #ælæctra #danish #ELECTRA-Small #replaced token detection #da #dataset-DAGW #arxiv-2003.10555 #arxiv-1810.04805 #arxiv-2005.03521 #license-mit #autotrain_compatible #endpoints_compatible #region-us \n",
"### Evaluation of current Danish Language Models\n\n\nÆlæctra, Danish BERT (DaBERT) and multilingual BERT (mBERT) were evaluated:\n\n\n\nOn DaNE (Hvingelby et al., 2020) without the *MISC-tag*, Ælæctra scores slightly worse than both cased and uncased Multilingual BERT (Devlin et al., 2019) and Danish BERT (Danish BERT, 2019/2020), however, Ælæctra is less than one third the size, and uses significantly fewer computational resources to pretrain and instantiate.",
"### Pretraining\n\n\nTo pretrain Ælæctra it is recommended to build a Docker Container from the Dockerfile. Next, simply follow the pretraining notebooks\n\n\nThe pretraining was done by utilizing a single NVIDIA Tesla V100 GPU with 16 GiB, endowed by the Danish data company KMD. The pretraining took approximately 4 days and 9.5 hours for both the cased and uncased model",
"### Fine-tuning\n\n\nTo fine-tune any Ælæctra model follow the fine-tuning notebooks",
"### References\n\n\nClark, K., Luong, M.-T., Le, Q. V., & Manning, C. D. (2020). ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Generators. ArXiv:2003.10555 [Cs]. URL\n\n\nDanish BERT. (2020). BotXO. URL (Original work published 2019)\n\n\nDevlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. ArXiv:1810.04805 [Cs]. URL\n\n\nHvingelby, R., Pauli, A. B., Barrett, M., Rosted, C., Lidegaard, L. M., & Søgaard, A. (2020). DaNE: A Named Entity Resource for Danish. Proceedings of the 12th Language Resources and Evaluation Conference, 4597–4604. URL\n\n\nStrømberg-Derczynski, L., Baglini, R., Christiansen, M. H., Ciosici, M. R., Dalsgaard, J. A., Fusaroli, R., Henrichsen, P. J., Hvingelby, R., Kirkedal, A., Kjeldsen, A. S., Ladefoged, C., Nielsen, F. Å., Petersen, M. L., Rystrøm, J. H., & Varab, D. (2020). The Danish Gigaword Project. ArXiv:2005.03521 [Cs]. URL",
"#### Acknowledgements\n\n\nAs the majority of this repository is build upon the works by the team at Google who created ELECTRA, a HUGE thanks to them is in order.\n\n\nA Giga thanks also goes out to the incredible people who collected The Danish Gigaword Corpus (Strømberg-Derczynski et al., 2020).\n\n\nFurthermore, I would like to thank my supervisor Riccardo Fusaroli for the support with the thesis, and a special thanks goes out to Kenneth Enevoldsen for his continuous feedback.\n\n\nLastly, i would like to thank KMD, my colleagues from KMD, and my peers and co-students from Cognitive Science for encouriging me to keep on working hard and holding my head up high!",
"#### Contact\n\n\nFor help or further information feel free to connect with the author Malte Højmark-Bertelsen on hjb@URL or any of the following platforms:\n\n\n[<img align=\"left\" alt=\"MalteHB | Twitter\" width=\"22px\" src=\"URL />](URL)\n[<img align=\"left\" alt=\"MalteHB | LinkedIn\" width=\"22px\" src=\"URL />](URL)\n[<img align=\"left\" alt=\"MalteHB | Instagram\" width=\"22px\" src=\"URL />](URL)"
] | [
104,
135,
88,
24,
370,
166,
141
] | [
"passage: TAGS\n#transformers #pytorch #tf #electra #token-classification #ælæctra #danish #ELECTRA-Small #replaced token detection #da #dataset-DAGW #arxiv-2003.10555 #arxiv-1810.04805 #arxiv-2005.03521 #license-mit #autotrain_compatible #endpoints_compatible #region-us \n### Evaluation of current Danish Language Models\n\n\nÆlæctra, Danish BERT (DaBERT) and multilingual BERT (mBERT) were evaluated:\n\n\n\nOn DaNE (Hvingelby et al., 2020) without the *MISC-tag*, Ælæctra scores slightly worse than both cased and uncased Multilingual BERT (Devlin et al., 2019) and Danish BERT (Danish BERT, 2019/2020), however, Ælæctra is less than one third the size, and uses significantly fewer computational resources to pretrain and instantiate.### Pretraining\n\n\nTo pretrain Ælæctra it is recommended to build a Docker Container from the Dockerfile. Next, simply follow the pretraining notebooks\n\n\nThe pretraining was done by utilizing a single NVIDIA Tesla V100 GPU with 16 GiB, endowed by the Danish data company KMD. The pretraining took approximately 4 days and 9.5 hours for both the cased and uncased model### Fine-tuning\n\n\nTo fine-tune any Ælæctra model follow the fine-tuning notebooks"
] | [
-0.0612727552652359,
-0.040690552443265915,
-0.0023051772732287645,
0.1008559837937355,
0.019258320331573486,
0.013035831041634083,
0.08609534800052643,
0.09918031096458435,
-0.0035701473243534565,
0.1222895085811615,
0.06618358939886093,
-0.024715058505535126,
0.09746762365102768,
0.10706969350576401,
0.04830749332904816,
-0.2683316767215729,
0.10655777901411057,
0.00528870290145278,
0.04150305315852165,
0.04483414068818092,
0.13090823590755463,
-0.12200869619846344,
0.06224216893315315,
0.01588965766131878,
-0.06240323930978775,
0.00015905355394352227,
-0.050758231431245804,
-0.0563824363052845,
0.11137837171554565,
0.08747479319572449,
0.07835189998149872,
0.05380362644791603,
0.10115832835435867,
-0.09041143208742142,
-0.003203888889402151,
0.02561364881694317,
0.005855947267264128,
0.049732666462659836,
0.04283187538385391,
0.13338352739810944,
0.1399642825126648,
-0.04047996550798416,
0.06837379187345505,
-0.018894968554377556,
-0.07724618911743164,
-0.1365932673215866,
-0.09044449776411057,
0.017835788428783417,
0.04656851291656494,
0.01703057624399662,
-0.050053030252456665,
0.09903697669506073,
-0.05878717079758644,
0.024008315056562424,
0.10350067913532257,
-0.29790177941322327,
-0.08186126500368118,
0.1729268580675125,
0.050251927226781845,
-0.02415664680302143,
-0.08960004895925522,
0.033063363283872604,
0.024324173107743263,
0.05963709205389023,
0.04232294112443924,
0.005254797637462616,
0.0006637985934503376,
-0.017068393528461456,
-0.10354720056056976,
0.008909051306545734,
0.16961301863193512,
0.0051999944262206554,
-0.042296767234802246,
-0.14639510214328766,
-0.0827464908361435,
-0.0945405513048172,
-0.007033524569123983,
-0.02031618356704712,
0.0019631327595561743,
-0.028753627091646194,
0.06536321341991425,
-0.012054854072630405,
-0.11097124963998795,
-0.003440306754782796,
-0.12719009816646576,
0.14052259922027588,
0.07609818875789642,
0.029863255098462105,
0.08395326137542725,
0.10594259202480316,
-0.1374722719192505,
-0.10351219028234482,
-0.07280971854925156,
-0.07508198171854019,
-0.15244649350643158,
-0.014811635948717594,
-0.0189571101218462,
-0.07678951323032379,
-0.04733630642294884,
0.2276826798915863,
0.016750739887356758,
0.03867337480187416,
0.06013473495841026,
-0.019110921770334244,
0.04203850030899048,
0.15723395347595215,
-0.09608384966850281,
-0.07545721530914307,
-0.019099999219179153,
0.060334499925374985,
0.06461205333471298,
-0.027191167697310448,
-0.040478650480508804,
-0.09650540351867676,
-0.009376995265483856,
-0.035841312259435654,
-0.06361442059278488,
0.06061377376317978,
-0.05849936977028847,
-0.05462336167693138,
0.16787615418434143,
-0.10374537855386734,
0.0037787535693496466,
-0.042533989995718,
-0.05289480462670326,
0.031944047659635544,
0.0006485282792709768,
-0.015207743272185326,
-0.054469477385282516,
0.1254657804965973,
-0.04592110961675644,
-0.07800713181495667,
-0.06526461243629456,
-0.10580557584762573,
0.03094969503581524,
-0.0034037544392049313,
-0.02150484174489975,
-0.10759218782186508,
-0.1303476244211197,
0.01936723105609417,
0.08574136346578598,
-0.0784807950258255,
-0.04808346554636955,
-0.00006305934948613867,
0.03364596888422966,
0.027970261871814728,
-0.05320011451840401,
0.07051966339349747,
-0.0046864962205290794,
0.030982598662376404,
0.04245876520872116,
0.09726539254188538,
-0.06395001709461212,
0.010612630285322666,
-0.08624789863824844,
0.011174939572811127,
-0.23046697676181793,
0.02544691599905491,
-0.09341897815465927,
-0.08730706572532654,
-0.08119060844182968,
-0.05001194402575493,
-0.09624847769737244,
0.02782561257481575,
0.0792398452758789,
0.04252582788467407,
-0.14789807796478271,
-0.011331203393638134,
0.057827915996313095,
-0.09729321300983429,
0.012624881230294704,
0.1717255711555481,
-0.014059162698686123,
-0.011397196911275387,
0.06842631846666336,
0.11008688062429428,
0.006336639169603586,
-0.2110767811536789,
-0.11238887906074524,
0.006530409213155508,
0.011543327942490578,
0.07177522778511047,
0.082908995449543,
0.030062731355428696,
0.06838348507881165,
0.04693857580423355,
-0.007658002898097038,
-0.03506751358509064,
-0.017197541892528534,
-0.045098744332790375,
-0.015457719564437866,
-0.019057363271713257,
0.018645983189344406,
0.057746659964323044,
0.015114511363208294,
-0.06966347992420197,
-0.12897107005119324,
-0.027832314372062683,
0.133751779794693,
-0.11063926666975021,
0.0038510344456881285,
-0.08032471686601639,
0.05151225998997688,
-0.09141108393669128,
-0.0029050682205706835,
-0.059203606098890305,
-0.13717037439346313,
0.07470516115427017,
-0.08612252026796341,
-0.025046277791261673,
0.1303175836801529,
0.04533595219254494,
0.08359303325414658,
-0.092287078499794,
0.05837384983897209,
-0.05919022485613823,
-0.05762764811515808,
-0.08260335773229599,
-0.046719782054424286,
-0.02854369394481182,
-0.03832980617880821,
-0.007687232457101345,
-0.05570993199944496,
0.04150649532675743,
0.10272186249494553,
0.07735683023929596,
-0.03333486616611481,
-0.038270119577646255,
-0.04551362246274948,
-0.04424716904759407,
-0.03608143702149391,
-0.05216765031218529,
0.019170772284269333,
-0.00850018858909607,
0.04154038801789284,
0.09303935617208481,
-0.1102149486541748,
-0.09081023186445236,
0.13382594287395477,
0.16466066241264343,
-0.024948865175247192,
-0.023605262860655785,
-0.04656235873699188,
-0.034963835030794144,
-0.10904403775930405,
-0.07436202466487885,
0.17021676898002625,
0.052636221051216125,
0.09523162990808487,
-0.10243165493011475,
-0.08514471352100372,
0.036212533712387085,
0.053191229701042175,
-0.08488279581069946,
0.0961575135588646,
0.12040060013532639,
-0.03418654575943947,
0.052709683775901794,
-0.002129598753526807,
0.05422952026128769,
0.129078209400177,
0.008383342996239662,
-0.09455294162034988,
0.008553127758204937,
-0.027240244671702385,
-0.01979965902864933,
0.1806102842092514,
0.0082778949290514,
0.03652133047580719,
0.04871658980846405,
0.0312555693089962,
0.04513004794716835,
-0.09736964106559753,
0.015288559719920158,
0.014722872525453568,
-0.04368043318390846,
0.03435671702027321,
0.042005110532045364,
-0.04076151177287102,
0.07045812904834747,
0.02824663557112217,
0.002717000897973776,
-0.03126724809408188,
0.014144429005682468,
-0.02074730582535267,
0.149944007396698,
-0.053717609494924545,
-0.2501147985458374,
-0.13722151517868042,
-0.018596680834889412,
-0.06187533587217331,
0.034986965358257294,
0.015630926936864853,
-0.05869585648179054,
-0.16531860828399658,
-0.06506071239709854,
0.23250629007816315,
-0.012398479506373405,
0.010295301675796509,
0.09559480100870132,
-0.04177941754460335,
-0.0262431800365448,
-0.1494521200656891,
0.009972919709980488,
-0.007870400324463844,
-0.047123122960329056,
0.044620342552661896,
-0.04947373643517494,
0.04746929928660393,
0.04916941002011299,
-0.04002594202756882,
-0.048855870962142944,
0.0014938237145543098,
0.21331819891929626,
-0.06749825924634933,
0.11592382937669754,
0.12328638881444931,
0.010289521887898445,
0.013986315578222275,
0.16544988751411438,
0.037763748317956924,
-0.1137174665927887,
-0.0005053523927927017,
0.06402327120304108,
-0.056963443756103516,
-0.18005944788455963,
-0.053461719304323196,
-0.05322527140378952,
0.03164105862379074,
0.16738475859165192,
0.04621075466275215,
-0.127876415848732,
0.07794882357120514,
-0.07961533218622208,
0.1217239648103714,
0.0741770789027214,
0.06574446707963943,
0.15623652935028076,
0.009737873449921608,
0.13169068098068237,
-0.042186714708805084,
-0.01539059728384018,
0.132053405046463,
0.0883721336722374,
0.150754913687706,
-0.08098459988832474,
0.08904235810041428,
0.008675114251673222,
0.020997852087020874,
0.04626205563545227,
0.1095205768942833,
-0.06408330798149109,
-0.02048424817621708,
-0.03942994773387909,
-0.017271384596824646,
-0.04955800250172615,
-0.016608411446213722,
-0.022371551021933556,
-0.046871308237314224,
-0.03986513614654541,
0.021663598716259003,
0.07675764709711075,
0.1774328052997589,
0.06061489135026932,
-0.16945812106132507,
-0.1312478929758072,
0.003798576071858406,
-0.1024012565612793,
-0.10698651522397995,
0.026842404156923294,
0.14862218499183655,
-0.05637463182210922,
0.08680032938718796,
-0.0708974227309227,
0.0298297218978405,
-0.11439240723848343,
0.011170152574777603,
0.06957213580608368,
0.09012120217084885,
-0.013271002098917961,
0.07261792570352554,
-0.18760406970977783,
0.1041264533996582,
0.04424796998500824,
0.10608066618442535,
-0.05502033606171608,
0.04320741072297096,
-0.026861965656280518,
0.04842919856309891,
0.11794417351484299,
-0.016584929078817368,
-0.05070491135120392,
-0.049872126430273056,
-0.17046791315078735,
0.027300793677568436,
0.011999298818409443,
-0.07040175795555115,
0.06748031824827194,
-0.020454147830605507,
0.029119055718183517,
-0.028774477541446686,
-0.029576363041996956,
-0.05748402327299118,
-0.19108255207538605,
0.07155663520097733,
-0.0445222333073616,
-0.0535641573369503,
-0.07504507154226303,
-0.08599676191806793,
-0.2217460423707962,
0.17601998150348663,
-0.08930791914463043,
-0.07402516156435013,
-0.12749923765659332,
0.11575528234243393,
0.15148386359214783,
-0.05142166092991829,
0.03916095942258835,
-0.02680535614490509,
0.1286340057849884,
-0.11689235270023346,
-0.08963356167078018,
0.015033341944217682,
-0.049939725548028946,
-0.1388741135597229,
-0.01130104623734951,
0.08834490925073624,
0.06285903602838516,
0.04142032563686371,
0.008389754220843315,
0.059044163674116135,
-0.038972582668066025,
-0.09131135046482086,
0.0034822276793420315,
0.03969383239746094,
0.06195097416639328,
-0.08888398110866547,
-0.04004319757223129,
-0.045684926211833954,
0.010916602797806263,
-0.030400678515434265,
0.014885645359754562,
0.26068007946014404,
-0.06385035067796707,
0.08988950401544571,
0.16870221495628357,
-0.015434917993843555,
-0.2586914896965027,
0.0020562775898724794,
0.06668123602867126,
0.08069457113742828,
-0.06776843219995499,
-0.15745599567890167,
0.0703001618385315,
0.1671803742647171,
-0.011606129817664623,
-0.028621980920433998,
-0.18003594875335693,
-0.11458110064268112,
0.02011406607925892,
0.04693964868783951,
0.09614274650812149,
-0.018733616918325424,
0.002266204683110118,
0.026727011427283287,
-0.1661057323217392,
0.11941977590322495,
0.04889564588665962,
0.12322655320167542,
-0.02176407352089882,
0.01742144487798214,
0.045503437519073486,
-0.052248816937208176,
0.18649329245090485,
-0.008079673163592815,
0.038520995527505875,
-0.0391526073217392,
0.042034972459077835,
0.0901225134730339,
-0.03448415920138359,
0.14655832946300507,
0.044326286762952805,
-0.013519583269953728,
-0.024296896532177925,
-0.12122311443090439,
-0.060434769839048386,
0.05278554558753967,
-0.05554482340812683,
-0.08048678934574127,
-0.09716785699129105,
0.07406319677829742,
0.0008529588230885565,
-0.01718100905418396,
0.07732968777418137,
-0.014846736565232277,
-0.14898699522018433,
-0.03398336097598076,
0.12572894990444183,
0.047753822058439255,
-0.01344062015414238,
-0.0017362161306664348,
0.002389252418652177,
0.05980351194739342,
-0.10864744335412979,
0.04742462933063507,
0.13179749250411987,
-0.07874477654695511,
0.02892146445810795,
0.011889837682247162,
-0.11922852694988251,
-0.043917182832956314,
0.07840582728385925,
-0.13343524932861328,
-0.06902004033327103,
0.034570399671792984,
-0.05976879969239235,
-0.044555217027664185,
-0.03423622250556946,
0.11033649742603302,
-0.0329638235270977,
-0.0292667243629694,
0.04487365484237671,
0.0440903902053833,
0.04621356725692749,
0.16406908631324768,
-0.014350993558764458,
0.03499019891023636,
-0.09732381999492645,
0.13276612758636475,
0.07116234302520752,
-0.14600300788879395,
0.017823778092861176,
0.07560236752033234,
-0.10571565479040146,
-0.061895061284303665,
-0.09644418954849243,
-0.036764420568943024,
-0.03154251351952553,
-0.007162837777286768,
-0.025009240955114365,
-0.08675166964530945,
0.03661714866757393,
-0.03725419566035271,
0.042002011090517044,
0.03585991635918617,
0.007263267412781715,
0.04997949302196503,
-0.09140393137931824,
0.12064700573682785,
-0.03706328943371773,
0.0787801742553711,
-0.03886062279343605,
0.05763465166091919,
-0.031699273735284805,
0.005724908318370581,
-0.025555329397320747,
0.060871172696352005,
-0.05045466125011444,
-0.05058896914124489,
-0.01726675219833851,
-0.017353251576423645,
-0.01856544055044651,
0.0002236158325104043,
-0.002889789640903473,
-0.021812863647937775,
-0.035388290882110596,
0.0046766153536736965,
-0.06804779171943665,
-0.01067404169589281,
-0.0671410784125328,
-0.014902682043612003,
-0.03059702180325985,
-0.011118447408080101,
0.047612715512514114,
-0.0814073458313942,
0.11612442135810852,
-0.058399125933647156,
0.051179349422454834,
0.03444363549351692,
-0.027925588190555573,
0.01950947567820549,
-0.021738778799772263,
0.09398305416107178,
0.025096910074353218,
-0.03976459056138992,
0.026820020750164986,
0.008126229047775269,
0.0017926744185388088,
0.0034580733627080917,
0.09979573637247086,
-0.10930933803319931,
-0.004001856315881014,
-0.007387417834252119,
-0.06371041387319565,
-0.04046186804771423,
0.052578773349523544,
0.009504584595561028,
0.049537092447280884,
0.11036723107099533,
-0.03547767177224159,
-0.024267906323075294,
-0.14077724516391754,
0.009740856476128101,
0.02708614431321621,
-0.10219300538301468,
0.027270639315247536,
-0.04938795790076256,
0.0612589493393898,
-0.025681285187602043,
0.16439585387706757,
0.05809618532657623,
-0.03926048055291176,
0.03951241075992584,
-0.05455983802676201,
-0.11111368238925934,
0.0298145841807127,
0.1471172422170639,
0.006342029664665461,
0.03802953660488129,
-0.0454055592417717,
0.019763516262173653,
0.04494161903858185,
0.053177572786808014,
0.12866634130477905,
0.04979822412133217,
0.04866842180490494,
0.07206748425960541,
-0.022826451808214188,
-0.13220928609371185,
-0.15831293165683746,
0.12674018740653992,
-0.14515092968940735,
0.03603842854499817,
0.004319685511291027,
0.03393760323524475,
0.0708961933851242,
-0.17376062273979187,
0.07039349526166916,
-0.0441436730325222,
-0.07824214547872543,
-0.10916276276111603,
-0.15025700628757477,
-0.04903028905391693,
-0.016976231709122658,
0.05536707863211632,
-0.13748721778392792,
0.008646353147923946,
0.04937732219696045,
0.07984314113855362,
-0.0070716701447963715,
0.12951193749904633,
-0.13242927193641663,
-0.003994912374764681,
0.04762223735451698,
0.06207990646362305,
-0.0031840442679822445,
0.05943508446216583,
-0.04396277666091919,
-0.0500110499560833,
0.08034637570381165,
0.07622957974672318,
-0.018251493573188782,
0.05547850579023361,
-0.017120646312832832,
0.0440860278904438,
-0.004957506433129311,
-0.03837659955024719,
-0.03712845221161842,
0.05315710976719856,
0.08032416552305222,
0.010947922244668007,
0.0140635771676898,
-0.0181366465985775,
0.15407595038414001,
0.01912863552570343,
-0.10368482023477554,
-0.1698966920375824,
0.045425329357385635,
-0.00023515484645031393,
0.07104136794805527,
0.016709133982658386,
-0.08658740669488907,
-0.05375976487994194,
0.24526698887348175,
0.06896102428436279,
0.01419244334101677,
-0.04610324278473854,
0.04646957665681839,
-0.014127698726952076,
0.01596473716199398,
0.08971069008111954,
0.012254268862307072,
0.18719089031219482,
-0.06467991322278976,
-0.018780913203954697,
-0.0073712849989533424,
-0.005794702563434839,
-0.02003645896911621,
0.1435638666152954,
-0.021897608414292336,
0.022469602525234222,
-0.1268257200717926,
-0.04777998477220535,
0.1458810418844223,
-0.19461189210414886,
0.06230345740914345,
-0.0730065405368805,
-0.11697512865066528,
0.025669114664196968,
0.009492325596511364,
-0.08040861785411835,
0.045584626495838165,
-0.02673286572098732,
0.02296147122979164,
0.1031116247177124,
-0.0009028701460920274,
-0.10080011188983917,
0.00964649673551321,
0.09663866460323334,
0.028617912903428078,
0.19786134362220764,
-0.0016777996206656098,
0.03938710689544678,
0.08703333139419556,
-0.03986474871635437,
-0.10931061208248138,
0.0552830696105957,
0.008902241475880146,
-0.020068494603037834,
0.05155285447835922,
0.14419271051883698,
-0.007074381690472364,
0.07000794261693954,
0.04031631350517273,
-0.049514953047037125,
0.0268021821975708,
0.059960395097732544,
-0.038642190396785736,
-0.04349561035633087,
0.14851756393909454,
-0.08114751428365707,
0.14002615213394165,
0.16718345880508423,
0.020675811916589737,
-0.061570148915052414,
-0.09928162395954132,
0.07278432697057724,
-0.015471859835088253,
0.17396239936351776,
0.03338897228240967,
-0.15472835302352905,
0.008777288720011711,
-0.013878649100661278,
0.01666495017707348,
-0.16564080119132996,
-0.06136070191860199,
-0.02887580543756485,
-0.039100535213947296,
-0.0703601986169815,
0.13205325603485107,
0.05773886293172836,
0.018457207828760147,
-0.05091584473848343,
0.004463918972760439,
-0.03149132803082466,
0.005922709126025438,
-0.09229761362075806,
-0.09133788198232651
] |
null | null | transformers |
# Ælæctra - A Step Towards More Efficient Danish Natural Language Processing
**Ælæctra** is a Danish Transformer-based language model created to enhance the variety of Danish NLP resources with a more efficient model compared to previous state-of-the-art (SOTA) models. Initially a cased and an uncased model are released. It was created as part of a Cognitive Science bachelor's thesis.
Ælæctra was pretrained with the ELECTRA-Small (Clark et al., 2020) pretraining approach by using the Danish Gigaword Corpus (Strømberg-Derczynski et al., 2020) and evaluated on Named Entity Recognition (NER) tasks. Since NER only presents a limited picture of Ælæctra's capabilities I am very interested in further evaluations. Therefore, if you employ it for any task, feel free to hit me up your findings!
Ælæctra was, as mentioned, created to enhance the Danish NLP capabilties and please do note how this GitHub still does not support the Danish characters "*Æ, Ø and Å*" as the title of this repository becomes "*-l-ctra*". How ironic.🙂
Here is an example on how to load both the cased and the uncased Ælæctra model in [PyTorch](https://pytorch.org/) using the [🤗Transformers](https://github.com/huggingface/transformers) library:
```python
from transformers import AutoTokenizer, AutoModelForPreTraining
tokenizer = AutoTokenizer.from_pretrained("Maltehb/-l-ctra-cased")
model = AutoModelForPreTraining.from_pretrained("Maltehb/-l-ctra-cased")
```
```python
from transformers import AutoTokenizer, AutoModelForPreTraining
tokenizer = AutoTokenizer.from_pretrained("Maltehb/-l-ctra-uncased")
model = AutoModelForPreTraining.from_pretrained("Maltehb/-l-ctra-uncased")
```
### Evaluation of current Danish Language Models
Ælæctra, Danish BERT (DaBERT) and multilingual BERT (mBERT) were evaluated:
| Model | Layers | Hidden Size | Params | AVG NER micro-f1 (DaNE-testset) | Average Inference Time (Sec/Epoch) | Download |
| --- | --- | --- | --- | --- | --- | --- |
| Ælæctra Uncased | 12 | 256 | 13.7M | 78.03 (SD = 1.28) | 10.91 | [Link for model](https://www.dropbox.com/s/cag7prs1nvdchqs/%C3%86l%C3%A6ctra.zip?dl=0) |
| Ælæctra Cased | 12 | 256 | 14.7M | 80.08 (SD = 0.26) | 10.92 | [Link for model](https://www.dropbox.com/s/cag7prs1nvdchqs/%C3%86l%C3%A6ctra.zip?dl=0) |
| DaBERT | 12 | 768 | 110M | 84.89 (SD = 0.64) | 43.03 | [Link for model](https://www.dropbox.com/s/19cjaoqvv2jicq9/danish_bert_uncased_v2.zip?dl=1) |
| mBERT Uncased | 12 | 768 | 167M | 80.44 (SD = 0.82) | 72.10 | [Link for model](https://storage.googleapis.com/bert_models/2018_11_03/multilingual_L-12_H-768_A-12.zip) |
| mBERT Cased | 12 | 768 | 177M | 83.79 (SD = 0.91) | 70.56 | [Link for model](https://storage.googleapis.com/bert_models/2018_11_23/multi_cased_L-12_H-768_A-12.zip) |
On [DaNE](https://danlp.alexandra.dk/304bd159d5de/datasets/ddt.zip) (Hvingelby et al., 2020), Ælæctra scores slightly worse than both cased and uncased Multilingual BERT (Devlin et al., 2019) and Danish BERT (Danish BERT, 2019/2020), however, Ælæctra is less than one third the size, and uses significantly fewer computational resources to pretrain and instantiate. For a full description of the evaluation and specification of the model read the thesis: 'Ælæctra - A Step Towards More Efficient Danish Natural Language Processing'.
### Pretraining
To pretrain Ælæctra it is recommended to build a Docker Container from the [Dockerfile](https://github.com/MalteHB/Ælæctra/tree/master/notebooks/fine-tuning/). Next, simply follow the [pretraining notebooks](https://github.com/MalteHB/Ælæctra/tree/master/infrastructure/Dockerfile/)
The pretraining was done by utilizing a single NVIDIA Tesla V100 GPU with 16 GiB, endowed by the Danish data company [KMD](https://www.kmd.dk/). The pretraining took approximately 4 days and 9.5 hours for both the cased and uncased model
### Fine-tuning
To fine-tune any Ælæctra model follow the [fine-tuning notebooks](https://github.com/MalteHB/Ælæctra/tree/master/notebooks/fine-tuning/)
### References
Clark, K., Luong, M.-T., Le, Q. V., & Manning, C. D. (2020). ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Generators. ArXiv:2003.10555 [Cs]. http://arxiv.org/abs/2003.10555
Danish BERT. (2020). BotXO. https://github.com/botxo/nordic_bert (Original work published 2019)
Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. ArXiv:1810.04805 [Cs]. http://arxiv.org/abs/1810.04805
Hvingelby, R., Pauli, A. B., Barrett, M., Rosted, C., Lidegaard, L. M., & Søgaard, A. (2020). DaNE: A Named Entity Resource for Danish. Proceedings of the 12th Language Resources and Evaluation Conference, 4597–4604. https://www.aclweb.org/anthology/2020.lrec-1.565
Strømberg-Derczynski, L., Baglini, R., Christiansen, M. H., Ciosici, M. R., Dalsgaard, J. A., Fusaroli, R., Henrichsen, P. J., Hvingelby, R., Kirkedal, A., Kjeldsen, A. S., Ladefoged, C., Nielsen, F. Å., Petersen, M. L., Rystrøm, J. H., & Varab, D. (2020). The Danish Gigaword Project. ArXiv:2005.03521 [Cs]. http://arxiv.org/abs/2005.03521
#### Acknowledgements
As the majority of this repository is build upon [the works](https://github.com/google-research/electra) by the team at Google who created ELECTRA, a HUGE thanks to them is in order.
A Giga thanks also goes out to the incredible people who collected The Danish Gigaword Corpus (Strømberg-Derczynski et al., 2020).
Furthermore, I would like to thank my supervisor [Riccardo Fusaroli](https://github.com/fusaroli) for the support with the thesis, and a special thanks goes out to [Kenneth Enevoldsen](https://github.com/KennethEnevoldsen) for his continuous feedback.
Lastly, i would like to thank KMD, my colleagues from KMD, and my peers and co-students from Cognitive Science for encouriging me to keep on working hard and holding my head up high!
#### Contact
For help or further information feel free to connect with the author Malte Højmark-Bertelsen on [[email protected]](mailto:[email protected]?subject=[GitHub]%20Ælæctra) or any of the following platforms:
[<img align="left" alt="MalteHB | Twitter" width="22px" src="https://cdn.jsdelivr.net/npm/simple-icons@v3/icons/twitter.svg" />][twitter]
[<img align="left" alt="MalteHB | LinkedIn" width="22px" src="https://cdn.jsdelivr.net/npm/simple-icons@v3/icons/linkedin.svg" />][linkedin]
[<img align="left" alt="MalteHB | Instagram" width="22px" src="https://cdn.jsdelivr.net/npm/simple-icons@v3/icons/instagram.svg" />][instagram]
<br />
</details>
[twitter]: https://twitter.com/malteH_B
[instagram]: https://www.instagram.com/maltemusen/
[linkedin]: https://www.linkedin.com/in/malte-h%C3%B8jmark-bertelsen-9a618017b/ | {"language": "da", "license": "mit", "tags": ["\u00e6l\u00e6ctra", "pytorch", "danish", "ELECTRA-Small", "replaced token detection"], "datasets": ["DAGW"], "metrics": ["f1"], "co2_eq_emissions": 4009.5} | null | Maltehb/aelaectra-danish-electra-small-uncased | [
"transformers",
"pytorch",
"electra",
"pretraining",
"ælæctra",
"danish",
"ELECTRA-Small",
"replaced token detection",
"da",
"dataset:DAGW",
"arxiv:2003.10555",
"arxiv:1810.04805",
"arxiv:2005.03521",
"license:mit",
"co2_eq_emissions",
"endpoints_compatible",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [
"2003.10555",
"1810.04805",
"2005.03521"
] | [
"da"
] | TAGS
#transformers #pytorch #electra #pretraining #ælæctra #danish #ELECTRA-Small #replaced token detection #da #dataset-DAGW #arxiv-2003.10555 #arxiv-1810.04805 #arxiv-2005.03521 #license-mit #co2_eq_emissions #endpoints_compatible #region-us
| Ælæctra - A Step Towards More Efficient Danish Natural Language Processing
==========================================================================
Ælæctra is a Danish Transformer-based language model created to enhance the variety of Danish NLP resources with a more efficient model compared to previous state-of-the-art (SOTA) models. Initially a cased and an uncased model are released. It was created as part of a Cognitive Science bachelor's thesis.
Ælæctra was pretrained with the ELECTRA-Small (Clark et al., 2020) pretraining approach by using the Danish Gigaword Corpus (Strømberg-Derczynski et al., 2020) and evaluated on Named Entity Recognition (NER) tasks. Since NER only presents a limited picture of Ælæctra's capabilities I am very interested in further evaluations. Therefore, if you employ it for any task, feel free to hit me up your findings!
Ælæctra was, as mentioned, created to enhance the Danish NLP capabilties and please do note how this GitHub still does not support the Danish characters "*Æ, Ø and Å*" as the title of this repository becomes "*-l-ctra*". How ironic.
Here is an example on how to load both the cased and the uncased Ælæctra model in PyTorch using the Transformers library:
### Evaluation of current Danish Language Models
Ælæctra, Danish BERT (DaBERT) and multilingual BERT (mBERT) were evaluated:
On DaNE (Hvingelby et al., 2020), Ælæctra scores slightly worse than both cased and uncased Multilingual BERT (Devlin et al., 2019) and Danish BERT (Danish BERT, 2019/2020), however, Ælæctra is less than one third the size, and uses significantly fewer computational resources to pretrain and instantiate. For a full description of the evaluation and specification of the model read the thesis: 'Ælæctra - A Step Towards More Efficient Danish Natural Language Processing'.
### Pretraining
To pretrain Ælæctra it is recommended to build a Docker Container from the Dockerfile. Next, simply follow the pretraining notebooks
The pretraining was done by utilizing a single NVIDIA Tesla V100 GPU with 16 GiB, endowed by the Danish data company KMD. The pretraining took approximately 4 days and 9.5 hours for both the cased and uncased model
### Fine-tuning
To fine-tune any Ælæctra model follow the fine-tuning notebooks
### References
Clark, K., Luong, M.-T., Le, Q. V., & Manning, C. D. (2020). ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Generators. ArXiv:2003.10555 [Cs]. URL
Danish BERT. (2020). BotXO. URL (Original work published 2019)
Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. ArXiv:1810.04805 [Cs]. URL
Hvingelby, R., Pauli, A. B., Barrett, M., Rosted, C., Lidegaard, L. M., & Søgaard, A. (2020). DaNE: A Named Entity Resource for Danish. Proceedings of the 12th Language Resources and Evaluation Conference, 4597–4604. URL
Strømberg-Derczynski, L., Baglini, R., Christiansen, M. H., Ciosici, M. R., Dalsgaard, J. A., Fusaroli, R., Henrichsen, P. J., Hvingelby, R., Kirkedal, A., Kjeldsen, A. S., Ladefoged, C., Nielsen, F. Å., Petersen, M. L., Rystrøm, J. H., & Varab, D. (2020). The Danish Gigaword Project. ArXiv:2005.03521 [Cs]. URL
#### Acknowledgements
As the majority of this repository is build upon the works by the team at Google who created ELECTRA, a HUGE thanks to them is in order.
A Giga thanks also goes out to the incredible people who collected The Danish Gigaword Corpus (Strømberg-Derczynski et al., 2020).
Furthermore, I would like to thank my supervisor Riccardo Fusaroli for the support with the thesis, and a special thanks goes out to Kenneth Enevoldsen for his continuous feedback.
Lastly, i would like to thank KMD, my colleagues from KMD, and my peers and co-students from Cognitive Science for encouriging me to keep on working hard and holding my head up high!
#### Contact
For help or further information feel free to connect with the author Malte Højmark-Bertelsen on hjb@URL or any of the following platforms:
[<img align="left" alt="MalteHB | Twitter" width="22px" src="URL />](URL)
[<img align="left" alt="MalteHB | LinkedIn" width="22px" src="URL />](URL)
[<img align="left" alt="MalteHB | Instagram" width="22px" src="URL />](URL)
| [
"### Evaluation of current Danish Language Models\n\n\nÆlæctra, Danish BERT (DaBERT) and multilingual BERT (mBERT) were evaluated:\n\n\n\nOn DaNE (Hvingelby et al., 2020), Ælæctra scores slightly worse than both cased and uncased Multilingual BERT (Devlin et al., 2019) and Danish BERT (Danish BERT, 2019/2020), however, Ælæctra is less than one third the size, and uses significantly fewer computational resources to pretrain and instantiate. For a full description of the evaluation and specification of the model read the thesis: 'Ælæctra - A Step Towards More Efficient Danish Natural Language Processing'.",
"### Pretraining\n\n\nTo pretrain Ælæctra it is recommended to build a Docker Container from the Dockerfile. Next, simply follow the pretraining notebooks\n\n\nThe pretraining was done by utilizing a single NVIDIA Tesla V100 GPU with 16 GiB, endowed by the Danish data company KMD. The pretraining took approximately 4 days and 9.5 hours for both the cased and uncased model",
"### Fine-tuning\n\n\nTo fine-tune any Ælæctra model follow the fine-tuning notebooks",
"### References\n\n\nClark, K., Luong, M.-T., Le, Q. V., & Manning, C. D. (2020). ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Generators. ArXiv:2003.10555 [Cs]. URL\n\n\nDanish BERT. (2020). BotXO. URL (Original work published 2019)\n\n\nDevlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. ArXiv:1810.04805 [Cs]. URL\n\n\nHvingelby, R., Pauli, A. B., Barrett, M., Rosted, C., Lidegaard, L. M., & Søgaard, A. (2020). DaNE: A Named Entity Resource for Danish. Proceedings of the 12th Language Resources and Evaluation Conference, 4597–4604. URL\n\n\nStrømberg-Derczynski, L., Baglini, R., Christiansen, M. H., Ciosici, M. R., Dalsgaard, J. A., Fusaroli, R., Henrichsen, P. J., Hvingelby, R., Kirkedal, A., Kjeldsen, A. S., Ladefoged, C., Nielsen, F. Å., Petersen, M. L., Rystrøm, J. H., & Varab, D. (2020). The Danish Gigaword Project. ArXiv:2005.03521 [Cs]. URL",
"#### Acknowledgements\n\n\nAs the majority of this repository is build upon the works by the team at Google who created ELECTRA, a HUGE thanks to them is in order.\n\n\nA Giga thanks also goes out to the incredible people who collected The Danish Gigaword Corpus (Strømberg-Derczynski et al., 2020).\n\n\nFurthermore, I would like to thank my supervisor Riccardo Fusaroli for the support with the thesis, and a special thanks goes out to Kenneth Enevoldsen for his continuous feedback.\n\n\nLastly, i would like to thank KMD, my colleagues from KMD, and my peers and co-students from Cognitive Science for encouriging me to keep on working hard and holding my head up high!",
"#### Contact\n\n\nFor help or further information feel free to connect with the author Malte Højmark-Bertelsen on hjb@URL or any of the following platforms:\n\n\n[<img align=\"left\" alt=\"MalteHB | Twitter\" width=\"22px\" src=\"URL />](URL)\n[<img align=\"left\" alt=\"MalteHB | LinkedIn\" width=\"22px\" src=\"URL />](URL)\n[<img align=\"left\" alt=\"MalteHB | Instagram\" width=\"22px\" src=\"URL />](URL)"
] | [
"TAGS\n#transformers #pytorch #electra #pretraining #ælæctra #danish #ELECTRA-Small #replaced token detection #da #dataset-DAGW #arxiv-2003.10555 #arxiv-1810.04805 #arxiv-2005.03521 #license-mit #co2_eq_emissions #endpoints_compatible #region-us \n",
"### Evaluation of current Danish Language Models\n\n\nÆlæctra, Danish BERT (DaBERT) and multilingual BERT (mBERT) were evaluated:\n\n\n\nOn DaNE (Hvingelby et al., 2020), Ælæctra scores slightly worse than both cased and uncased Multilingual BERT (Devlin et al., 2019) and Danish BERT (Danish BERT, 2019/2020), however, Ælæctra is less than one third the size, and uses significantly fewer computational resources to pretrain and instantiate. For a full description of the evaluation and specification of the model read the thesis: 'Ælæctra - A Step Towards More Efficient Danish Natural Language Processing'.",
"### Pretraining\n\n\nTo pretrain Ælæctra it is recommended to build a Docker Container from the Dockerfile. Next, simply follow the pretraining notebooks\n\n\nThe pretraining was done by utilizing a single NVIDIA Tesla V100 GPU with 16 GiB, endowed by the Danish data company KMD. The pretraining took approximately 4 days and 9.5 hours for both the cased and uncased model",
"### Fine-tuning\n\n\nTo fine-tune any Ælæctra model follow the fine-tuning notebooks",
"### References\n\n\nClark, K., Luong, M.-T., Le, Q. V., & Manning, C. D. (2020). ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Generators. ArXiv:2003.10555 [Cs]. URL\n\n\nDanish BERT. (2020). BotXO. URL (Original work published 2019)\n\n\nDevlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. ArXiv:1810.04805 [Cs]. URL\n\n\nHvingelby, R., Pauli, A. B., Barrett, M., Rosted, C., Lidegaard, L. M., & Søgaard, A. (2020). DaNE: A Named Entity Resource for Danish. Proceedings of the 12th Language Resources and Evaluation Conference, 4597–4604. URL\n\n\nStrømberg-Derczynski, L., Baglini, R., Christiansen, M. H., Ciosici, M. R., Dalsgaard, J. A., Fusaroli, R., Henrichsen, P. J., Hvingelby, R., Kirkedal, A., Kjeldsen, A. S., Ladefoged, C., Nielsen, F. Å., Petersen, M. L., Rystrøm, J. H., & Varab, D. (2020). The Danish Gigaword Project. ArXiv:2005.03521 [Cs]. URL",
"#### Acknowledgements\n\n\nAs the majority of this repository is build upon the works by the team at Google who created ELECTRA, a HUGE thanks to them is in order.\n\n\nA Giga thanks also goes out to the incredible people who collected The Danish Gigaword Corpus (Strømberg-Derczynski et al., 2020).\n\n\nFurthermore, I would like to thank my supervisor Riccardo Fusaroli for the support with the thesis, and a special thanks goes out to Kenneth Enevoldsen for his continuous feedback.\n\n\nLastly, i would like to thank KMD, my colleagues from KMD, and my peers and co-students from Cognitive Science for encouriging me to keep on working hard and holding my head up high!",
"#### Contact\n\n\nFor help or further information feel free to connect with the author Malte Højmark-Bertelsen on hjb@URL or any of the following platforms:\n\n\n[<img align=\"left\" alt=\"MalteHB | Twitter\" width=\"22px\" src=\"URL />](URL)\n[<img align=\"left\" alt=\"MalteHB | LinkedIn\" width=\"22px\" src=\"URL />](URL)\n[<img align=\"left\" alt=\"MalteHB | Instagram\" width=\"22px\" src=\"URL />](URL)"
] | [
99,
165,
88,
24,
370,
166,
141
] | [
"passage: TAGS\n#transformers #pytorch #electra #pretraining #ælæctra #danish #ELECTRA-Small #replaced token detection #da #dataset-DAGW #arxiv-2003.10555 #arxiv-1810.04805 #arxiv-2005.03521 #license-mit #co2_eq_emissions #endpoints_compatible #region-us \n### Evaluation of current Danish Language Models\n\n\nÆlæctra, Danish BERT (DaBERT) and multilingual BERT (mBERT) were evaluated:\n\n\n\nOn DaNE (Hvingelby et al., 2020), Ælæctra scores slightly worse than both cased and uncased Multilingual BERT (Devlin et al., 2019) and Danish BERT (Danish BERT, 2019/2020), however, Ælæctra is less than one third the size, and uses significantly fewer computational resources to pretrain and instantiate. For a full description of the evaluation and specification of the model read the thesis: 'Ælæctra - A Step Towards More Efficient Danish Natural Language Processing'.### Pretraining\n\n\nTo pretrain Ælæctra it is recommended to build a Docker Container from the Dockerfile. Next, simply follow the pretraining notebooks\n\n\nThe pretraining was done by utilizing a single NVIDIA Tesla V100 GPU with 16 GiB, endowed by the Danish data company KMD. The pretraining took approximately 4 days and 9.5 hours for both the cased and uncased model### Fine-tuning\n\n\nTo fine-tune any Ælæctra model follow the fine-tuning notebooks"
] | [
-0.07374950498342514,
-0.0695635974407196,
-0.003876977600157261,
0.06389807909727097,
0.024023156613111496,
-0.01769859716296196,
0.03290501981973648,
0.04649871587753296,
-0.03320218622684479,
0.11249804496765137,
0.03056694194674492,
0.0032495581544935703,
0.07541239261627197,
0.11281237751245499,
0.05257757753133774,
-0.2600215971469879,
0.08038251101970673,
-0.025709612295031548,
0.035557761788368225,
0.046656422317028046,
0.14271783828735352,
-0.14195109903812408,
0.0441470630466938,
0.01109673734754324,
-0.02777617797255516,
0.0020321591291576624,
-0.08712723851203918,
-0.045744795352220535,
0.12352695316076279,
0.046066299080848694,
0.09477265924215317,
0.0647185668349266,
0.07697782665491104,
-0.1586032658815384,
0.0013684420846402645,
0.014045501127839088,
0.026330912485718727,
0.044502660632133484,
0.01786918006837368,
0.08243070542812347,
0.13201455771923065,
-0.057853810489177704,
0.08676489442586899,
-0.027794936671853065,
-0.05556444823741913,
-0.07451875507831573,
-0.038281843066215515,
0.012199776247143745,
0.07327087968587875,
0.018270665779709816,
-0.03326864540576935,
0.10567902028560638,
-0.038937728852033615,
0.04391569271683693,
0.08746837079524994,
-0.31377071142196655,
-0.06265099346637726,
0.09766821563243866,
0.08428214490413666,
0.031900644302368164,
-0.08743421733379364,
-0.02312576398253441,
0.007427586242556572,
0.0396437831223011,
0.0618448406457901,
0.010141756385564804,
-0.04458557441830635,
-0.05919885262846947,
-0.13205499947071075,
0.05223560705780983,
0.24566379189491272,
-0.011347195133566856,
-0.07612697780132294,
-0.1018185019493103,
-0.07737252116203308,
-0.07212980091571808,
0.003928728401660919,
-0.07620253413915634,
0.04133705422282219,
-0.036025967448949814,
0.1292237937450409,
-0.022511761635541916,
-0.15176697075366974,
0.05551369488239288,
-0.11113551259040833,
0.18566708266735077,
0.0335567407310009,
0.007116129621863365,
0.08202651888132095,
0.10089026391506195,
-0.03446975350379944,
-0.10110226273536682,
-0.0691780298948288,
-0.06436789780855179,
-0.1300441026687622,
-0.08599750697612762,
-0.01004763226956129,
-0.12693668901920319,
-0.07947519421577454,
0.21954312920570374,
0.032214947044849396,
0.051405083388090134,
-0.010788763873279095,
0.031574591994285583,
0.09003129601478577,
0.12369967997074127,
-0.02329513430595398,
-0.05947541072964668,
-0.02961266227066517,
0.05698903277516365,
0.08999719470739365,
-0.01887516863644123,
-0.03673004359006882,
-0.0639604926109314,
0.04238990321755409,
-0.011715494096279144,
-0.07201211154460907,
0.018764901906251907,
-0.0773584395647049,
-0.06771712005138397,
0.13982558250427246,
-0.12744350731372833,
-0.014544636011123657,
-0.03672933951020241,
-0.06982989609241486,
0.0347471609711647,
0.026001736521720886,
0.03807844966650009,
-0.05817888677120209,
0.1850295513868332,
-0.03372352942824364,
-0.04306508228182793,
-0.05518659949302673,
-0.0775885134935379,
0.024053528904914856,
-0.013090703636407852,
-0.012016178108751774,
-0.11889462918043137,
-0.0779714286327362,
-0.019976746290922165,
0.07848861068487167,
-0.04782005771994591,
-0.07858063280582428,
-0.03965410590171814,
-0.0053490023128688335,
0.0049476283602416515,
-0.06445816904306412,
0.08691169321537018,
-0.020622044801712036,
0.01248566061258316,
-0.015276893973350525,
0.05772550404071808,
-0.04202080890536308,
0.022458190098404884,
-0.12315665185451508,
-0.01543708797544241,
-0.23661719262599945,
0.015944145619869232,
-0.10621050745248795,
-0.052937038242816925,
-0.12002387642860413,
-0.04994462430477142,
-0.12412435561418533,
0.020863737910985947,
0.034002743661403656,
0.05864487588405609,
-0.19456641376018524,
0.011183963157236576,
0.06260097771883011,
-0.12929977476596832,
-0.013965879566967487,
0.12915143370628357,
-0.036668725311756134,
0.06626135110855103,
0.057802144438028336,
0.0994754359126091,
-0.0036080514546483755,
-0.20053893327713013,
-0.06777923554182053,
0.0019215161446481943,
0.014602253213524818,
0.08894714713096619,
0.047761786729097366,
0.02495700865983963,
0.06773902475833893,
0.017606230452656746,
-0.04088285565376282,
-0.0703604519367218,
0.0010923590743914247,
-0.04311205819249153,
0.01852509379386902,
-0.031613923609256744,
-0.0058671641163527966,
0.030099056661128998,
0.006640897132456303,
-0.04838966205716133,
-0.09995873272418976,
0.05576467886567116,
0.1090010553598404,
-0.060129065066576004,
0.014265494421124458,
-0.06324004381895065,
0.0369638167321682,
-0.04332319274544716,
-0.049396902322769165,
-0.10935129225254059,
-0.13126921653747559,
0.11284421384334564,
-0.04560943320393562,
0.02285722643136978,
0.1508268564939499,
0.03400375321507454,
0.09381730109453201,
-0.03403887152671814,
0.009531772695481777,
-0.04205438122153282,
-0.03916099667549133,
-0.09076422452926636,
-0.09581927955150604,
-0.017945686355233192,
-0.05429473891854286,
0.02161274291574955,
-0.09836561232805252,
0.01364881545305252,
0.07985083758831024,
0.09009017795324326,
0.008581404574215412,
-0.03256179764866829,
-0.05521302670240402,
-0.005685235373675823,
-0.049694404006004333,
-0.001467913738451898,
0.029804669320583344,
-0.0003694340121001005,
-0.01941768266260624,
0.0716162696480751,
-0.12579834461212158,
-0.07421817630529404,
0.09264831244945526,
0.05474457889795303,
-0.043623197823762894,
-0.0942714661359787,
-0.07466936111450195,
-0.04371674358844757,
-0.08866605162620544,
-0.06896274536848068,
0.2443893402814865,
0.05755263939499855,
0.08788208663463593,
-0.09638621658086777,
-0.09125638008117676,
0.009346096776425838,
0.05408857762813568,
-0.08818370848894119,
0.087464839220047,
0.10236063599586487,
-0.033931925892829895,
0.004269578028470278,
0.03340756520628929,
0.05988145247101784,
0.09290361404418945,
0.0024710707366466522,
-0.07299666106700897,
0.02771446667611599,
0.007408829405903816,
-0.04516724497079849,
0.14035286009311676,
-0.039539337158203125,
0.00825128797441721,
0.025957990437746048,
0.019605588167905807,
0.03645402565598488,
-0.06871344149112701,
0.037265077233314514,
0.00955225806683302,
-0.008489459753036499,
0.08556735515594482,
-0.0075943078845739365,
-0.027368316426873207,
0.07784392684698105,
0.025334246456623077,
-0.002798923058435321,
-0.05461224541068077,
-0.009135644882917404,
-0.04453793913125992,
0.15361762046813965,
-0.07408860325813293,
-0.2083180546760559,
-0.11067308485507965,
0.04820039123296738,
-0.026745058596134186,
-0.0024525425396859646,
0.015740400180220604,
-0.012801534496247768,
-0.13530442118644714,
-0.12668348848819733,
0.1538146436214447,
-0.029992539435625076,
-0.024183841422200203,
0.02756679058074951,
-0.03803641349077225,
-0.011963448487222195,
-0.15593603253364563,
-0.0066339559853076935,
-0.03949961066246033,
-0.046027641743421555,
0.03337050974369049,
0.007126827258616686,
0.06562506407499313,
0.05539826303720474,
-0.051800329238176346,
-0.060479629784822464,
0.0020026268903166056,
0.2024839222431183,
-0.046544115990400314,
0.13019448518753052,
0.12472666054964066,
-0.046533361077308655,
0.035008303821086884,
0.18218816816806793,
0.038409605622291565,
-0.10084576159715652,
0.030317170545458794,
0.04346202686429024,
-0.004360911436378956,
-0.19729791581630707,
-0.08880923688411713,
-0.03593534231185913,
-0.04259062930941582,
0.1514384001493454,
0.06558205187320709,
-0.15829075872898102,
0.04858526214957237,
-0.05252835154533386,
0.05943966284394264,
0.08572617918252945,
0.08001445233821869,
0.11200855672359467,
0.0099348658695817,
0.14289020001888275,
0.002825790084898472,
-0.06570135802030563,
0.09706898778676987,
0.05404791235923767,
0.1510881632566452,
-0.07293982803821564,
0.03875027596950531,
0.038861148059368134,
0.0035420903004705906,
0.01628749817609787,
0.0802433043718338,
-0.0654212236404419,
0.018660157918930054,
-0.052050117403268814,
-0.04198918491601944,
-0.06942041218280792,
0.030848652124404907,
-0.020453372970223427,
-0.006304516457021236,
-0.04067281261086464,
0.03953663632273674,
0.06474489718675613,
0.21714544296264648,
0.0031435403507202864,
-0.15041197836399078,
-0.11487789452075958,
0.019807536154985428,
-0.09473786503076553,
-0.08743979781866074,
0.028891775757074356,
0.08087676763534546,
-0.060197293758392334,
0.08414261788129807,
-0.04215230420231819,
0.04283294081687927,
-0.12582242488861084,
0.0085175521671772,
0.02780384011566639,
0.04193173348903656,
-0.0035243043676018715,
0.04962640628218651,
-0.1857340782880783,
0.0809982568025589,
0.028143426403403282,
0.12546904385089874,
-0.06282926350831985,
0.02103036642074585,
-0.04699261859059334,
0.0684739500284195,
0.1168881356716156,
0.005477586295455694,
-0.05227675288915634,
-0.03765702247619629,
-0.1490767002105713,
0.03328632190823555,
0.049830179661512375,
-0.06860247254371643,
0.06437116116285324,
-0.0037902346812188625,
0.04116404056549072,
-0.02772706188261509,
-0.08300303667783737,
-0.10966409742832184,
-0.15111906826496124,
0.0673251748085022,
-0.06646665930747986,
-0.023016829043626785,
-0.053851980715990067,
-0.08698084205389023,
-0.12089217454195023,
0.2206786572933197,
-0.14924831688404083,
-0.07009851187467575,
-0.1115577444434166,
0.062483493238687515,
0.12636099755764008,
-0.03963790833950043,
0.009938586503267288,
-0.02363327518105507,
0.15691779553890228,
-0.10409659147262573,
-0.06967973709106445,
0.018708372488617897,
-0.06101929768919945,
-0.13277046382427216,
-0.06207875907421112,
0.1305239051580429,
0.12184339761734009,
0.033592529594898224,
0.005565116181969643,
0.04776093736290932,
-0.032433655112981796,
-0.0848466008901596,
-0.012101062573492527,
0.05885402858257294,
0.03158598765730858,
-0.04339155927300453,
-0.12550443410873413,
-0.06326809525489807,
-0.027489932253956795,
-0.04290645197033882,
0.019253291189670563,
0.25070834159851074,
-0.06796266883611679,
0.12273275852203369,
0.19526802003383636,
-0.05912251025438309,
-0.23187489807605743,
0.029590647667646408,
0.11616000533103943,
0.05233432725071907,
-0.020155811682343483,
-0.1643819808959961,
0.17135711014270782,
0.14351411163806915,
-0.01142878644168377,
0.0047810981050133705,
-0.16491621732711792,
-0.11838027089834213,
0.058079592883586884,
0.03954262286424637,
0.09382101893424988,
-0.029775377362966537,
-0.011244066059589386,
0.01980696991086006,
-0.08792788535356522,
0.1455494463443756,
0.021355224773287773,
0.060471661388874054,
0.008306900039315224,
0.031993187963962555,
0.06391524523496628,
-0.04853742942214012,
0.12474651634693146,
0.060278236865997314,
0.035763416439294815,
-0.01979142054915428,
0.0164110716432333,
0.021910153329372406,
-0.024510936811566353,
0.1428760439157486,
0.09084849059581757,
-0.02277127280831337,
-0.03158549964427948,
-0.08566979318857193,
-0.04518071934580803,
0.12720970809459686,
-0.07263552397489548,
-0.07502111047506332,
-0.07145416736602783,
0.0886157974600792,
0.04141831398010254,
0.015859082341194153,
0.06227833032608032,
-0.03928448632359505,
-0.0983782485127449,
0.031016748398542404,
0.20177467167377472,
0.013441569171845913,
0.02554347552359104,
0.041992589831352234,
-0.0034917094744741917,
0.04407172277569771,
-0.03162644803524017,
0.05815211310982704,
0.16403360664844513,
-0.07001860439777374,
0.04323558136820793,
0.005718151573091745,
-0.1335689127445221,
-0.04763456806540489,
0.05817773938179016,
-0.13137096166610718,
-0.040609244257211685,
0.02571260556578636,
0.021913498640060425,
-0.04822983220219612,
-0.02703346684575081,
0.14759549498558044,
-0.05907665193080902,
-0.01621015928685665,
0.03217916190624237,
0.04317743331193924,
0.07491752505302429,
0.09534904360771179,
-0.004682650789618492,
0.0335853174328804,
-0.03450177609920502,
0.14428234100341797,
0.09754306077957153,
-0.16357272863388062,
0.008272575214505196,
0.06553342193365097,
-0.10774002969264984,
-0.059788718819618225,
-0.11090715229511261,
-0.036730825901031494,
-0.04928665608167648,
-0.01918981224298477,
0.004681725520640612,
-0.09393654018640518,
0.008985663764178753,
-0.002217021770775318,
0.03261658921837807,
-0.0042783115059137344,
-0.002535636769607663,
0.06502892822027206,
-0.057499174028635025,
0.11066137999296188,
-0.026753723621368408,
0.08553459495306015,
0.010776594281196594,
0.09045365452766418,
-0.01747157610952854,
-0.001385504030622542,
-0.019739925861358643,
0.03262908756732941,
-0.020445480942726135,
-0.05180630460381508,
0.05301508679986,
0.0056366403587162495,
0.0006388992769643664,
-0.0051721143536269665,
0.010798276402056217,
-0.02625649981200695,
-0.032030120491981506,
0.01569586619734764,
-0.05499088019132614,
0.01461820024996996,
-0.04941362515091896,
-0.000041161736589856446,
-0.07064168155193329,
-0.04704582318663597,
0.04623879864811897,
-0.08523400872945786,
0.110938660800457,
-0.056395046412944794,
0.03331970423460007,
0.02951626107096672,
-0.05954619497060776,
0.06237397715449333,
-0.002001631772145629,
0.10990361124277115,
0.00440706592053175,
-0.03391815721988678,
0.005125392694026232,
0.010341438464820385,
0.006678469013422728,
-0.027930907905101776,
0.12267366796731949,
-0.10476855933666229,
-0.006744462996721268,
0.009950588457286358,
-0.09190918505191803,
-0.07507966458797455,
0.03562416136264801,
-0.00934304017573595,
0.032862428575754166,
0.11950208991765976,
-0.03774701803922653,
-0.023067111149430275,
-0.09047799557447433,
0.014713088981807232,
0.041389744728803635,
-0.06254848837852478,
-0.019576992839574814,
-0.05866247043013573,
0.04966993257403374,
-0.0796043649315834,
0.16149243712425232,
0.0253645908087492,
0.03947573900222778,
0.05688784271478653,
-0.1342453807592392,
-0.1687600463628769,
0.03491987660527229,
0.0824451670050621,
0.029358331114053726,
0.0345456525683403,
-0.05125494301319122,
-0.02644764631986618,
0.01242769043892622,
0.018806874752044678,
0.14240822196006775,
0.07861125469207764,
0.041507817804813385,
0.056940365582704544,
-0.01061996165663004,
-0.13591887056827545,
-0.1472831815481186,
0.10002270340919495,
-0.050846125930547714,
0.04143886640667915,
0.01935320720076561,
0.15416762232780457,
0.06592176109552383,
-0.1350277066230774,
0.05097799003124237,
-0.0453563816845417,
-0.07784642279148102,
-0.11248234659433365,
-0.10573022812604904,
-0.03569698706269264,
0.05301786959171295,
0.017640171572566032,
-0.14650847017765045,
-0.012381687760353088,
-0.04103551432490349,
0.05468103289604187,
-0.01146342046558857,
0.10940183699131012,
-0.13448208570480347,
-0.03644457831978798,
0.06654149293899536,
0.059120818972587585,
0.040829453617334366,
0.024275215342640877,
-0.029778627678751945,
-0.04975970834493637,
0.09646272659301758,
0.046532414853572845,
0.003818701719865203,
0.03851808235049248,
-0.036242444068193436,
0.06052509322762489,
-0.031939782202243805,
-0.023048462346196175,
-0.06024068966507912,
0.009063315577805042,
0.05026138573884964,
0.03801104798913002,
0.008272385224699974,
-0.024381808936595917,
0.17108768224716187,
0.012155762873589993,
-0.07209606468677521,
-0.1028129830956459,
0.06762532144784927,
0.07076447457075119,
0.07702471315860748,
0.02019321359694004,
-0.09410977363586426,
-0.056680597364902496,
0.21785469353199005,
0.07031900435686111,
-0.023516859859228134,
-0.0176182109862566,
0.06724292039871216,
0.001589242136105895,
0.03703559562563896,
0.06899623572826385,
0.038254477083683014,
0.17985962331295013,
-0.07032600045204163,
0.03124355711042881,
-0.037243567407131195,
0.027352288365364075,
-0.04410577192902565,
0.14796128869056702,
-0.007709679659456015,
0.030317312106490135,
-0.11859142780303955,
-0.031359732151031494,
0.0733347088098526,
-0.274953156709671,
0.01104016788303852,
-0.09122131019830704,
-0.13493865728378296,
-0.002608910435810685,
-0.0011391184525564313,
-0.056236639618873596,
0.031164390966296196,
-0.019804807379841805,
-0.03634260222315788,
0.14729788899421692,
0.014664564281702042,
-0.06767966598272324,
0.048105936497449875,
0.07938523590564728,
-0.007892301306128502,
0.19345037639141083,
0.004048253409564495,
0.07175610959529877,
0.05503919720649719,
0.0032330923713743687,
-0.06754327565431595,
0.032858118414878845,
0.032912228256464005,
-0.02424573339521885,
0.06350012868642807,
0.1263759732246399,
0.011892969720065594,
0.11631858348846436,
0.08363309502601624,
-0.08944298326969147,
0.033433545380830765,
0.10253635793924332,
-0.08113608509302139,
-0.022133801132440567,
0.13771355152130127,
-0.06765209138393402,
0.1340746432542801,
0.13858914375305176,
0.04128763824701309,
-0.0709039717912674,
-0.12453438341617584,
0.037486303597688675,
-0.014366934075951576,
0.20734229683876038,
0.03265266492962837,
-0.15090733766555786,
0.018586430698633194,
0.012305757962167263,
0.04422486200928688,
-0.1831144094467163,
-0.05632426589727402,
-0.014984631910920143,
-0.007168379612267017,
-0.05366199091076851,
0.09566272050142288,
-0.007584733422845602,
0.011265281587839127,
-0.056630175560712814,
0.03677944839000702,
-0.004622085485607386,
0.04380103945732117,
-0.11009327322244644,
-0.058119770139455795
] |
null | null | transformers |
# Danish BERT (version 2, uncased) by [Certainly](https://certainly.io/) (previously known as BotXO) finetuned for Named Entity Recognition on the [DaNE dataset](https://danlp.alexandra.dk/304bd159d5de/datasets/ddt.zip) (Hvingelby et al., 2020) by Malte Højmark-Bertelsen.
Humongous amounts of credit needs to go to [Certainly](https://certainly.io/) (previously known as BotXO), for pretraining the Danish BERT. For data and training details see their [GitHub repository](https://github.com/certainlyio/nordic_bert) or [this article](https://www.certainly.io/blog/danish-bert-model/). You can also visit their [organization page](https://huggingface.co/Certainly) on Hugging Face.
It is both available in TensorFlow and Pytorch format.
The original TensorFlow version can be downloaded using [this link](https://www.dropbox.com/s/19cjaoqvv2jicq9/danish_bert_uncased_v2.zip?dl=1).
Here is an example on how to load Danish BERT for token classification in PyTorch using the [🤗Transformers](https://github.com/huggingface/transformers) library:
```python
from transformers import AutoTokenizer, AutoModelForTokenClassification
tokenizer = AutoTokenizer.from_pretrained("Maltehb/danish-bert-botxo-ner-dane")
model = AutoModelForTokenClassification.from_pretrained("Maltehb/danish-bert-botxo-ner-dane")
```
### References
Danish BERT. (2020). BotXO. https://github.com/botxo/nordic_bert (Original work published 2019)
Hvingelby, R., Pauli, A. B., Barrett, M., Rosted, C., Lidegaard, L. M., & Søgaard, A. (2020). DaNE: A Named Entity Resource for Danish. Proceedings of the 12th Language Resources and Evaluation Conference, 4597–4604. https://www.aclweb.org/anthology/2020.lrec-1.565
#### Contact
For help or further information feel free to connect with the author Malte Højmark-Bertelsen on [[email protected]](mailto:[email protected]?subject=[GitHub]%20DanishBERTUncasedNER) or any of the following platforms:
[<img align="left" alt="MalteHB | Twitter" width="22px" src="https://cdn.jsdelivr.net/npm/simple-icons@v3/icons/twitter.svg" />][twitter]
[<img align="left" alt="MalteHB | LinkedIn" width="22px" src="https://cdn.jsdelivr.net/npm/simple-icons@v3/icons/linkedin.svg" />][linkedin]
[<img align="left" alt="MalteHB | Instagram" width="22px" src="https://cdn.jsdelivr.net/npm/simple-icons@v3/icons/instagram.svg" />][instagram]
<br />
</details>
[twitter]: https://twitter.com/malteH_B
[instagram]: https://www.instagram.com/maltemusen/
[linkedin]: https://www.linkedin.com/in/malte-h%C3%B8jmark-bertelsen-9a618017b/ | {"language": "da", "license": "cc-by-4.0", "tags": ["danish", "bert", "masked-lm", "botxo"], "datasets": ["common_crawl", "wikipedia", "dindebat.dk", "hestenettet.dk", "danish_OpenSubtitles"], "widget": [{"text": "Chili Jensen, som bor p\u00e5 Danmarksgade 12, k\u00f8ber chilifrugter fra Netto."}]} | token-classification | Maltehb/danish-bert-botxo-ner-dane | [
"transformers",
"pytorch",
"tf",
"jax",
"bert",
"token-classification",
"danish",
"masked-lm",
"botxo",
"da",
"dataset:common_crawl",
"dataset:wikipedia",
"dataset:dindebat.dk",
"dataset:hestenettet.dk",
"dataset:danish_OpenSubtitles",
"license:cc-by-4.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [
"da"
] | TAGS
#transformers #pytorch #tf #jax #bert #token-classification #danish #masked-lm #botxo #da #dataset-common_crawl #dataset-wikipedia #dataset-dindebat.dk #dataset-hestenettet.dk #dataset-danish_OpenSubtitles #license-cc-by-4.0 #autotrain_compatible #endpoints_compatible #region-us
|
# Danish BERT (version 2, uncased) by Certainly (previously known as BotXO) finetuned for Named Entity Recognition on the DaNE dataset (Hvingelby et al., 2020) by Malte Højmark-Bertelsen.
Humongous amounts of credit needs to go to Certainly (previously known as BotXO), for pretraining the Danish BERT. For data and training details see their GitHub repository or this article. You can also visit their organization page on Hugging Face.
It is both available in TensorFlow and Pytorch format.
The original TensorFlow version can be downloaded using this link.
Here is an example on how to load Danish BERT for token classification in PyTorch using the Transformers library:
### References
Danish BERT. (2020). BotXO. URL (Original work published 2019)
Hvingelby, R., Pauli, A. B., Barrett, M., Rosted, C., Lidegaard, L. M., & Søgaard, A. (2020). DaNE: A Named Entity Resource for Danish. Proceedings of the 12th Language Resources and Evaluation Conference, 4597–4604. URL
#### Contact
For help or further information feel free to connect with the author Malte Højmark-Bertelsen on hjb@URL or any of the following platforms:
[<img align="left" alt="MalteHB | Twitter" width="22px" src="URL />][twitter]
[<img align="left" alt="MalteHB | LinkedIn" width="22px" src="URL />][linkedin]
[<img align="left" alt="MalteHB | Instagram" width="22px" src="URL />][instagram]
<br />
</details>
[twitter]: URL
[instagram]: URL
[linkedin]: URL | [
"# Danish BERT (version 2, uncased) by Certainly (previously known as BotXO) finetuned for Named Entity Recognition on the DaNE dataset (Hvingelby et al., 2020) by Malte Højmark-Bertelsen.\n\nHumongous amounts of credit needs to go to Certainly (previously known as BotXO), for pretraining the Danish BERT. For data and training details see their GitHub repository or this article. You can also visit their organization page on Hugging Face.\n\nIt is both available in TensorFlow and Pytorch format. \nThe original TensorFlow version can be downloaded using this link.\n\nHere is an example on how to load Danish BERT for token classification in PyTorch using the Transformers library:",
"### References\nDanish BERT. (2020). BotXO. URL (Original work published 2019)\n\nHvingelby, R., Pauli, A. B., Barrett, M., Rosted, C., Lidegaard, L. M., & Søgaard, A. (2020). DaNE: A Named Entity Resource for Danish. Proceedings of the 12th Language Resources and Evaluation Conference, 4597–4604. URL",
"#### Contact\n\nFor help or further information feel free to connect with the author Malte Højmark-Bertelsen on hjb@URL or any of the following platforms:\n\n[<img align=\"left\" alt=\"MalteHB | Twitter\" width=\"22px\" src=\"URL />][twitter]\n[<img align=\"left\" alt=\"MalteHB | LinkedIn\" width=\"22px\" src=\"URL />][linkedin]\n[<img align=\"left\" alt=\"MalteHB | Instagram\" width=\"22px\" src=\"URL />][instagram]\n\n<br />\n\n</details>\n\n[twitter]: URL\n[instagram]: URL\n[linkedin]: URL"
] | [
"TAGS\n#transformers #pytorch #tf #jax #bert #token-classification #danish #masked-lm #botxo #da #dataset-common_crawl #dataset-wikipedia #dataset-dindebat.dk #dataset-hestenettet.dk #dataset-danish_OpenSubtitles #license-cc-by-4.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"# Danish BERT (version 2, uncased) by Certainly (previously known as BotXO) finetuned for Named Entity Recognition on the DaNE dataset (Hvingelby et al., 2020) by Malte Højmark-Bertelsen.\n\nHumongous amounts of credit needs to go to Certainly (previously known as BotXO), for pretraining the Danish BERT. For data and training details see their GitHub repository or this article. You can also visit their organization page on Hugging Face.\n\nIt is both available in TensorFlow and Pytorch format. \nThe original TensorFlow version can be downloaded using this link.\n\nHere is an example on how to load Danish BERT for token classification in PyTorch using the Transformers library:",
"### References\nDanish BERT. (2020). BotXO. URL (Original work published 2019)\n\nHvingelby, R., Pauli, A. B., Barrett, M., Rosted, C., Lidegaard, L. M., & Søgaard, A. (2020). DaNE: A Named Entity Resource for Danish. Proceedings of the 12th Language Resources and Evaluation Conference, 4597–4604. URL",
"#### Contact\n\nFor help or further information feel free to connect with the author Malte Højmark-Bertelsen on hjb@URL or any of the following platforms:\n\n[<img align=\"left\" alt=\"MalteHB | Twitter\" width=\"22px\" src=\"URL />][twitter]\n[<img align=\"left\" alt=\"MalteHB | LinkedIn\" width=\"22px\" src=\"URL />][linkedin]\n[<img align=\"left\" alt=\"MalteHB | Instagram\" width=\"22px\" src=\"URL />][instagram]\n\n<br />\n\n</details>\n\n[twitter]: URL\n[instagram]: URL\n[linkedin]: URL"
] | [
107,
181,
99,
165
] | [
"passage: TAGS\n#transformers #pytorch #tf #jax #bert #token-classification #danish #masked-lm #botxo #da #dataset-common_crawl #dataset-wikipedia #dataset-dindebat.dk #dataset-hestenettet.dk #dataset-danish_OpenSubtitles #license-cc-by-4.0 #autotrain_compatible #endpoints_compatible #region-us \n# Danish BERT (version 2, uncased) by Certainly (previously known as BotXO) finetuned for Named Entity Recognition on the DaNE dataset (Hvingelby et al., 2020) by Malte Højmark-Bertelsen.\n\nHumongous amounts of credit needs to go to Certainly (previously known as BotXO), for pretraining the Danish BERT. For data and training details see their GitHub repository or this article. You can also visit their organization page on Hugging Face.\n\nIt is both available in TensorFlow and Pytorch format. \nThe original TensorFlow version can be downloaded using this link.\n\nHere is an example on how to load Danish BERT for token classification in PyTorch using the Transformers library:### References\nDanish BERT. (2020). BotXO. URL (Original work published 2019)\n\nHvingelby, R., Pauli, A. B., Barrett, M., Rosted, C., Lidegaard, L. M., & Søgaard, A. (2020). DaNE: A Named Entity Resource for Danish. Proceedings of the 12th Language Resources and Evaluation Conference, 4597–4604. URL"
] | [
-0.05858398973941803,
0.18900428712368011,
-0.004530533216893673,
0.055875495076179504,
0.028713766485452652,
-0.02191775105893612,
0.1759028285741806,
0.07526630163192749,
0.14513064920902252,
0.0663609728217125,
-0.07462871074676514,
0.014538559131324291,
0.12317947298288345,
0.11919737607240677,
0.01612538844347,
-0.2504898011684418,
-0.0010015885345637798,
0.03993641212582588,
0.0014487272128462791,
0.019129328429698944,
0.10245445370674133,
-0.08943124115467072,
0.07833798974752426,
0.008797181770205498,
-0.07633507251739502,
0.03975054249167442,
-0.07811133563518524,
-0.08865314722061157,
0.12472786754369736,
0.043053705245256424,
0.13900020718574524,
0.02480951137840748,
0.03437230363488197,
0.0309477299451828,
0.02146795764565468,
0.04057307168841362,
-0.07654275000095367,
0.061083193868398666,
0.06269010156393051,
-0.005846939515322447,
0.25623321533203125,
-0.10933788120746613,
0.0012862143339589238,
-0.03265133872628212,
-0.005578150507062674,
-0.1664772778749466,
-0.03576062619686127,
0.1042608916759491,
0.06092970073223114,
-0.014636363834142685,
0.009706499986350536,
0.1118818074464798,
-0.10282763093709946,
0.07849796861410141,
0.144097700715065,
-0.13140244781970978,
-0.03706680238246918,
0.133217915892601,
-0.036526262760162354,
-0.015304342843592167,
-0.11772896349430084,
0.02082417532801628,
-0.03905801847577095,
0.049221571534872055,
0.10088367015123367,
-0.0872267335653305,
-0.1374649703502655,
-0.04322253540158272,
-0.09116147458553314,
0.034301821142435074,
0.16295404732227325,
0.009743033908307552,
-0.06761273741722107,
-0.09888249635696411,
-0.022597333416342735,
0.12417440116405487,
0.039605285972356796,
0.018882298842072487,
0.05470627546310425,
-0.09826657921075821,
0.034665994346141815,
-0.03488233685493469,
-0.08824832737445831,
0.024344973266124725,
-0.099500373005867,
0.18713587522506714,
0.01931372843682766,
0.036424051970243454,
0.03455738350749016,
0.0374680832028389,
-0.03124285489320755,
-0.10069237649440765,
-0.034726422280073166,
-0.058689240366220474,
-0.0929219201207161,
-0.017378022894263268,
0.005315057467669249,
-0.24252039194107056,
-0.005048327147960663,
0.05626639351248741,
-0.08913438022136688,
-0.018986215814948082,
-0.10153789073228836,
0.03287088871002197,
0.1062871664762497,
0.19428914785385132,
-0.026382289826869965,
-0.008178035728633404,
0.06043233722448349,
-0.07959502935409546,
0.06703410297632217,
-0.00532766617834568,
-0.07022877037525177,
-0.08862126618623734,
0.045009125024080276,
-0.024754999205470085,
0.008061709813773632,
0.09183216840028763,
-0.02735152840614319,
-0.059377461671829224,
0.16462984681129456,
-0.1098768562078476,
0.02718215435743332,
0.024516534060239792,
-0.10319460183382034,
0.008298338390886784,
0.05988376960158348,
-0.003259349148720503,
-0.14686676859855652,
0.17909477651119232,
0.0016000285977497697,
0.030795127153396606,
0.0071207149885594845,
-0.138829305768013,
0.10556735843420029,
-0.12748073041439056,
-0.03743517026305199,
-0.13988853991031647,
-0.009058916009962559,
-0.020605048164725304,
0.05738580971956253,
-0.014989783987402916,
0.0011106586316600442,
-0.003669462399557233,
0.023303838446736336,
-0.04950476810336113,
0.0022340905852615833,
-0.01913115382194519,
0.024011587724089622,
0.01367857027798891,
-0.15830734372138977,
0.1043848842382431,
-0.08807245641946793,
0.022400621324777603,
-0.11452143639326096,
-0.07522580027580261,
-0.2269013673067093,
0.0229830089956522,
-0.11740010231733322,
-0.015955891460180283,
-0.08054796606302261,
-0.026058921590447426,
-0.034510288387537,
0.002703475533053279,
0.0011899174423888326,
0.060413919389247894,
-0.0705820843577385,
-0.10016516596078873,
0.1501660794019699,
-0.0973241925239563,
-0.009821764193475246,
0.11729999631643295,
-0.012381883338093758,
-0.040662363171577454,
0.08488119393587112,
0.16674035787582397,
0.04791722074151039,
-0.18642973899841309,
-0.0719493180513382,
0.006497622933238745,
-0.06291086226701736,
-0.01490713283419609,
0.033548615872859955,
0.025394493713974953,
0.1289917528629303,
0.025832341983914375,
-0.014361083507537842,
-0.04837527498602867,
0.06739015877246857,
-0.0034638617653399706,
0.04790366068482399,
-0.010623877868056297,
0.005950103048235178,
0.06120136007666588,
0.02080962061882019,
0.0021417206153273582,
-0.05913982912898064,
0.04544435068964958,
0.020319398492574692,
-0.08564985543489456,
0.03139611706137657,
0.01961924508213997,
0.08243901282548904,
-0.006740525830537081,
0.0062115974724292755,
-0.09446968883275986,
-0.11214319616556168,
0.08486293256282806,
-0.1302885264158249,
0.06049520894885063,
0.09632110595703125,
0.018007205799221992,
0.10092579573392868,
-0.034018900245428085,
0.015116733498871326,
-0.03392980620265007,
-0.03580939397215843,
0.013477344997227192,
-0.08142668753862381,
-0.010875471867620945,
-0.016866173595190048,
0.022749464958906174,
-0.04300812631845474,
0.006633831188082695,
0.11011097580194473,
0.1829058974981308,
0.044450543820858,
-0.009896722622215748,
0.04929152876138687,
0.046891145408153534,
-0.005603655241429806,
-0.0034705130383372307,
0.03557784855365753,
-0.003220012877136469,
-0.026850245893001556,
0.10605025291442871,
0.03322899341583252,
-0.11519074440002441,
0.08569303900003433,
0.009417638182640076,
-0.010052458383142948,
-0.07198137789964676,
-0.06081186980009079,
-0.008160348050296307,
-0.061846353113651276,
-0.03605499491095543,
0.11640267074108124,
0.04473184421658516,
0.06422358006238937,
-0.09378346800804138,
-0.027670595794916153,
0.004187113139778376,
0.017129121348261833,
-0.046877533197402954,
0.10597191751003265,
0.03775262460112572,
-0.08409343659877777,
0.06410974264144897,
-0.06148558482527733,
-0.03200143203139305,
0.2439088076353073,
0.013085869140923023,
-0.06369893997907639,
0.03274814411997795,
-0.028866175562143326,
-0.007622574456036091,
0.10745176672935486,
0.02366483211517334,
-0.025894775986671448,
0.04514339193701744,
-0.021837759763002396,
-0.018666056916117668,
-0.07224762439727783,
0.022008458152413368,
-0.04761020466685295,
-0.0014920360408723354,
-0.04050396382808685,
0.10322416573762894,
0.04028642922639847,
0.0858834758400917,
0.024738149717450142,
-0.025016112253069878,
-0.02872532792389393,
-0.05542720854282379,
-0.0566435307264328,
0.1440623551607132,
-0.07258206605911255,
-0.3443590998649597,
-0.1251915693283081,
-0.03112855553627014,
-0.1298232078552246,
-0.00538984127342701,
0.03849073126912117,
0.003944686613976955,
-0.08316812664270401,
-0.05463589355349541,
0.1339433342218399,
0.11792857199907303,
-0.058486297726631165,
-0.06968934834003448,
0.02065052092075348,
-0.05731954425573349,
-0.1226368248462677,
-0.029736557975411415,
-0.06076664477586746,
-0.05586589500308037,
0.08795588463544846,
-0.03605407476425171,
0.05649638921022415,
-0.009110460989177227,
-0.05691203102469444,
-0.0008345835958607495,
-0.021204844117164612,
0.06172019615769386,
-0.06500108540058136,
0.14606806635856628,
0.07133080810308456,
-0.02199634164571762,
0.06451866030693054,
0.13429276645183563,
0.07478433102369308,
0.016168616712093353,
-0.02051484026014805,
0.04814014956355095,
-0.06380646675825119,
-0.16604316234588623,
-0.10996533185243607,
-0.036069709807634354,
0.026876190677285194,
0.1164138987660408,
0.04022260010242462,
0.054865527898073196,
-0.00010873660357901827,
-0.005574926733970642,
0.057112425565719604,
0.07660555094480515,
0.07095295190811157,
0.02112654410302639,
0.05827736482024193,
0.03720688819885254,
-0.05291575938463211,
-0.009000240825116634,
0.08789027482271194,
0.058774255216121674,
0.09582313150167465,
-0.12691658735275269,
0.019807854667305946,
0.01686367206275463,
-0.04540415108203888,
0.03732974827289581,
0.11807835102081299,
-0.061571840196847916,
0.018314778804779053,
-0.0034265373833477497,
-0.08400201052427292,
-0.05252561345696449,
0.03079834394156933,
0.045176852494478226,
-0.046088702976703644,
-0.036157164722681046,
-0.16090106964111328,
0.04764863848686218,
0.22744105756282806,
-0.00112915167119354,
-0.10517285019159317,
-0.08817856758832932,
-0.01679990626871586,
-0.03388439118862152,
-0.05980096384882927,
-0.061235085129737854,
0.09305906295776367,
-0.15613122284412384,
0.11362103372812271,
-0.021787971258163452,
0.059930842369794846,
-0.06739241629838943,
-0.03968242183327675,
-0.05783454328775406,
0.06360945850610733,
-0.004346846137195826,
0.040833424776792526,
-0.11079519987106323,
0.1394839882850647,
0.022002367302775383,
0.07489892840385437,
-0.128594771027565,
-0.020342683419585228,
0.00768827460706234,
0.09809704124927521,
0.11021920293569565,
0.05293513461947441,
-0.02167244628071785,
-0.04158725216984749,
-0.07137537002563477,
0.02596636861562729,
-0.03411966562271118,
-0.0755777433514595,
0.02926742658019066,
0.044497616589069366,
-0.023749975487589836,
-0.09533990919589996,
-0.03271084278821945,
0.0016568211140111089,
-0.04535912349820137,
0.01851959340274334,
-0.05169345811009407,
0.00834775809198618,
-0.005708625540137291,
-0.075827457010746,
-0.09864578396081924,
0.12486914545297623,
-0.0979185476899147,
-0.1176052987575531,
-0.11057651042938232,
0.023467233404517174,
0.013176499865949154,
-0.09397118538618088,
-0.03364598751068115,
-0.03941897675395012,
0.17094457149505615,
-0.09630702435970306,
-0.1372874677181244,
-0.044665370136499405,
-0.042683929204940796,
-0.06246079131960869,
-0.00015968237130437046,
0.1550493836402893,
0.11765961349010468,
-0.004788161721080542,
0.038369160145521164,
0.05902481451630592,
-0.0182125736027956,
-0.07596137374639511,
0.01982518658041954,
0.16261236369609833,
0.17233850061893463,
0.07326644659042358,
-0.131556898355484,
-0.1478627324104309,
0.0009323135600425303,
0.05266578495502472,
0.05686822533607483,
0.10805319994688034,
-0.044215861707925797,
0.16268308460712433,
0.19457724690437317,
-0.040272701531648636,
-0.2848290205001831,
0.017564138397574425,
0.08116818964481354,
0.06120622903108597,
-0.03532858565449715,
-0.15913666784763336,
0.0989965945482254,
0.0728147104382515,
0.008001432754099369,
-0.021761611104011536,
-0.046294916421175,
-0.08778683841228485,
0.05148553103208542,
0.07749876379966736,
-0.08192377537488937,
-0.04559215158224106,
-0.0027342764660716057,
-0.03122515045106411,
-0.1620844304561615,
0.22377093136310577,
-0.040559232234954834,
0.04650426656007767,
-0.027149038389325142,
0.11060893535614014,
0.04139363765716553,
-0.03274232894182205,
0.039350371807813644,
0.013466944918036461,
-0.028171416372060776,
-0.06273873150348663,
-0.029310718178749084,
0.09287887066602707,
-0.06407008320093155,
0.1481909602880478,
-0.006249675527215004,
-0.021830251440405846,
-0.08558788895606995,
-0.02226339466869831,
-0.12308784574270248,
0.21940898895263672,
-0.04687781631946564,
-0.06774888932704926,
-0.05418327450752258,
0.13990642130374908,
0.07680130004882812,
-0.0011629785876721144,
0.12220079451799393,
-0.0429486483335495,
0.05309564620256424,
0.13664540648460388,
0.12752500176429749,
0.011271767318248749,
0.022184794768691063,
-0.01602873019874096,
-0.03307604789733887,
0.07858853787183762,
-0.09232068061828613,
0.06313120573759079,
0.12707534432411194,
0.010064399801194668,
0.038821812719106674,
-0.015457188710570335,
-0.1267695277929306,
-0.06731275469064713,
0.07875299453735352,
-0.15539702773094177,
0.08796645700931549,
-0.025361714884638786,
-0.11017490923404694,
0.02870417945086956,
0.09436608105897903,
0.12405136227607727,
-0.04466256499290466,
-0.0474872924387455,
0.049245189875364304,
0.044084254652261734,
0.02290278673171997,
-0.009589068591594696,
0.05110548436641693,
0.027391979470849037,
-0.07095897197723389,
0.09193205088376999,
0.06888295710086823,
-0.017064206302165985,
0.003768878523260355,
0.11304258555173874,
-0.09302356094121933,
-0.0648069903254509,
-0.06641402095556259,
0.04262882098555565,
-0.02817814238369465,
-0.06783058494329453,
-0.0005783248925581574,
-0.02992786094546318,
-0.033424753695726395,
0.128064826130867,
0.020361267030239105,
0.00642411271110177,
-0.008610391989350319,
-0.01946612447500229,
-0.0694572851061821,
0.06794031709432602,
-0.0881458967924118,
0.026631588116288185,
0.029060905799269676,
0.09777956455945969,
-0.019136909395456314,
0.07334023714065552,
-0.04685615003108978,
-0.03536464273929596,
-0.11380169540643692,
-0.058306120336055756,
-0.06029577925801277,
-0.01557924598455429,
-0.04618928208947182,
0.01746651716530323,
-0.06406544148921967,
-0.07753302901983261,
0.007154681719839573,
0.035910118371248245,
-0.05097667872905731,
0.027316870167851448,
-0.04080668091773987,
0.04866508021950722,
-0.14562828838825226,
-0.0772574171423912,
0.022437281906604767,
-0.026151491329073906,
0.08116447925567627,
-0.008042043074965477,
-0.01280505396425724,
0.11151592433452606,
-0.0660843625664711,
0.009982479736208916,
0.014120706357061863,
0.023309795185923576,
0.07173135876655579,
-0.07804238051176071,
-0.010669680312275887,
0.019188888370990753,
-0.06610336154699326,
-0.009062163531780243,
0.09533949941396713,
-0.047118816524744034,
0.05758024379611015,
-0.010381823405623436,
-0.10638435930013657,
-0.08265229314565659,
0.1309395432472229,
0.05736730620265007,
0.09548631310462952,
0.06695140153169632,
-0.03321301192045212,
0.04352365806698799,
-0.0600786954164505,
-0.02708560973405838,
0.03036653622984886,
-0.09623178094625473,
0.009703926742076874,
-0.01623832806944847,
0.03844495490193367,
-0.0165946613997221,
0.13045568764209747,
0.15674802660942078,
0.005014865659177303,
0.020584356039762497,
-0.019204216077923775,
-0.13799560070037842,
0.015699738636612892,
-0.031192773953080177,
-0.09129105508327484,
0.005895028356462717,
0.028975768014788628,
-0.029101533815264702,
-0.07511019706726074,
-0.035105474293231964,
0.16369590163230896,
0.05945863574743271,
0.0869290828704834,
-0.009143893606960773,
0.13086986541748047,
0.0031593351159244776,
-0.1578516662120819,
-0.06848498433828354,
0.021431827917695045,
0.05309697985649109,
-0.039446860551834106,
0.11002471297979355,
0.021040111780166626,
-0.1490165889263153,
0.08887524902820587,
0.05756920948624611,
-0.04668514430522919,
-0.09385624527931213,
-0.20439103245735168,
-0.0350850410759449,
0.05217363312840462,
0.003628238569945097,
-0.08442143350839615,
-0.004390322137624025,
-0.06048545986413956,
0.046978265047073364,
-0.04874269664287567,
0.08078157901763916,
-0.11992758512496948,
-0.062149468809366226,
0.0878116711974144,
0.05822347104549408,
-0.007514164783060551,
0.018397830426692963,
0.041450731456279755,
-0.056496359407901764,
0.15217261016368866,
0.01732964627444744,
-0.02101486176252365,
0.06872046738862991,
-0.04684830829501152,
-0.045717209577560425,
-0.048695553094148636,
-0.0014364246744662523,
-0.012138080783188343,
0.013823727145791054,
0.02339084818959236,
0.0698724091053009,
-0.034686967730522156,
-0.01023613940924406,
0.13044670224189758,
0.0193426962941885,
-0.02119659073650837,
-0.09539540857076645,
0.15323296189308167,
-0.049821656197309494,
-0.011844160966575146,
0.027224179357290268,
-0.0858469158411026,
-0.061324916779994965,
0.11167801916599274,
0.17674382030963898,
0.09361264854669571,
0.04822227731347084,
-0.013513803482055664,
0.0031039658933877945,
0.0277275238186121,
0.07915359735488892,
0.025383181869983673,
0.27197542786598206,
0.012674151919782162,
0.07801571488380432,
-0.021489551290869713,
0.03969702124595642,
-0.09592494368553162,
0.052695441991090775,
-0.03820088133215904,
-0.07002247869968414,
-0.10333599150180817,
0.031415849924087524,
-0.037070803344249725,
-0.34315580129623413,
0.0761636272072792,
-0.12608051300048828,
-0.13190318644046783,
-0.021883191540837288,
-0.09969272464513779,
0.005462747532874346,
0.04447810724377632,
0.013408251106739044,
0.011714717373251915,
0.11068293452262878,
0.02407907135784626,
0.0054201725870370865,
0.009912646375596523,
0.07210279256105423,
-0.13538672029972076,
0.14620694518089294,
-0.02205733209848404,
0.07733391225337982,
0.06608699262142181,
0.030749524012207985,
-0.01276351697742939,
-0.017830388620495796,
0.04166615009307861,
-0.11254072934389114,
-0.0009357015369459987,
0.14400403201580048,
-0.03552621603012085,
0.03228108957409859,
0.07569725811481476,
-0.04246147349476814,
-0.0009128410601988435,
-0.005921375006437302,
-0.014379027299582958,
-0.04196996986865997,
0.17055779695510864,
-0.11916275322437286,
0.0909326821565628,
0.20549121499061584,
0.045549795031547546,
-0.05899016931653023,
-0.09888843446969986,
0.027896670624613762,
0.026184996590018272,
-0.09059274941682816,
0.015513370744884014,
-0.043265972286462784,
0.010664270259439945,
-0.019747119396924973,
0.028703728690743446,
-0.09378466755151749,
0.010077393613755703,
-0.056439679116010666,
-0.03630523756146431,
-0.03753606975078583,
0.034873589873313904,
-0.05846429616212845,
0.003981010057032108,
-0.016506867483258247,
-0.03803597390651703,
0.03695007041096687,
0.024944370612502098,
-0.11050114035606384,
-0.022171959280967712
] |
null | null | transformers |
# Danish BERT (version 2, uncased) by [Certainly](https://certainly.io/) (previously known as BotXO).
All credit goes to [Certainly](https://certainly.io/) (previously known as BotXO), who developed Danish BERT. For data and training details see their [GitHub repository](https://github.com/certainlyio/nordic_bert) or [this article](https://www.certainly.io/blog/danish-bert-model/). You can also visit their [organization page](https://huggingface.co/Certainly) on Hugging Face.
It is both available in TensorFlow and Pytorch format.
The original TensorFlow version can be downloaded using [this link](https://www.dropbox.com/s/19cjaoqvv2jicq9/danish_bert_uncased_v2.zip?dl=1).
Here is an example on how to load Danish BERT in PyTorch using the [🤗Transformers](https://github.com/huggingface/transformers) library:
```python
from transformers import AutoTokenizer, AutoModelForPreTraining
tokenizer = AutoTokenizer.from_pretrained("Maltehb/danish-bert-botxo")
model = AutoModelForPreTraining.from_pretrained("Maltehb/danish-bert-botxo")
```
| {"language": "da", "license": "cc-by-4.0", "tags": ["danish", "bert", "masked-lm", "Certainly"], "datasets": ["common_crawl", "wikipedia", "dindebat.dk", "hestenettet.dk", "danishOpenSubtitles"], "pipeline_tag": "fill-mask", "widget": [{"text": "K\u00f8benhavn er [MASK] i Danmark."}]} | fill-mask | Maltehb/danish-bert-botxo | [
"transformers",
"pytorch",
"tf",
"jax",
"bert",
"token-classification",
"danish",
"masked-lm",
"Certainly",
"fill-mask",
"da",
"dataset:common_crawl",
"dataset:wikipedia",
"dataset:dindebat.dk",
"dataset:hestenettet.dk",
"dataset:danishOpenSubtitles",
"license:cc-by-4.0",
"autotrain_compatible",
"endpoints_compatible",
"has_space",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [
"da"
] | TAGS
#transformers #pytorch #tf #jax #bert #token-classification #danish #masked-lm #Certainly #fill-mask #da #dataset-common_crawl #dataset-wikipedia #dataset-dindebat.dk #dataset-hestenettet.dk #dataset-danishOpenSubtitles #license-cc-by-4.0 #autotrain_compatible #endpoints_compatible #has_space #region-us
|
# Danish BERT (version 2, uncased) by Certainly (previously known as BotXO).
All credit goes to Certainly (previously known as BotXO), who developed Danish BERT. For data and training details see their GitHub repository or this article. You can also visit their organization page on Hugging Face.
It is both available in TensorFlow and Pytorch format.
The original TensorFlow version can be downloaded using this link.
Here is an example on how to load Danish BERT in PyTorch using the Transformers library:
| [
"# Danish BERT (version 2, uncased) by Certainly (previously known as BotXO).\n\nAll credit goes to Certainly (previously known as BotXO), who developed Danish BERT. For data and training details see their GitHub repository or this article. You can also visit their organization page on Hugging Face.\n\nIt is both available in TensorFlow and Pytorch format. \n\nThe original TensorFlow version can be downloaded using this link.\n\n\nHere is an example on how to load Danish BERT in PyTorch using the Transformers library:"
] | [
"TAGS\n#transformers #pytorch #tf #jax #bert #token-classification #danish #masked-lm #Certainly #fill-mask #da #dataset-common_crawl #dataset-wikipedia #dataset-dindebat.dk #dataset-hestenettet.dk #dataset-danishOpenSubtitles #license-cc-by-4.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n",
"# Danish BERT (version 2, uncased) by Certainly (previously known as BotXO).\n\nAll credit goes to Certainly (previously known as BotXO), who developed Danish BERT. For data and training details see their GitHub repository or this article. You can also visit their organization page on Hugging Face.\n\nIt is both available in TensorFlow and Pytorch format. \n\nThe original TensorFlow version can be downloaded using this link.\n\n\nHere is an example on how to load Danish BERT in PyTorch using the Transformers library:"
] | [
117,
129
] | [
"passage: TAGS\n#transformers #pytorch #tf #jax #bert #token-classification #danish #masked-lm #Certainly #fill-mask #da #dataset-common_crawl #dataset-wikipedia #dataset-dindebat.dk #dataset-hestenettet.dk #dataset-danishOpenSubtitles #license-cc-by-4.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n# Danish BERT (version 2, uncased) by Certainly (previously known as BotXO).\n\nAll credit goes to Certainly (previously known as BotXO), who developed Danish BERT. For data and training details see their GitHub repository or this article. You can also visit their organization page on Hugging Face.\n\nIt is both available in TensorFlow and Pytorch format. \n\nThe original TensorFlow version can be downloaded using this link.\n\n\nHere is an example on how to load Danish BERT in PyTorch using the Transformers library:"
] | [
-0.0806269571185112,
0.01925341784954071,
-0.0013176831416785717,
0.04750874266028404,
0.08933691680431366,
-0.0024340106174349785,
0.18154241144657135,
0.10277470201253891,
0.17551155388355255,
0.019673136994242668,
-0.003790371585637331,
0.09310489892959595,
0.08958438038825989,
0.12809336185455322,
0.06005340814590454,
-0.2952388525009155,
-0.007750662509351969,
0.06106173247098923,
-0.10481879115104675,
0.03718317672610283,
0.07989151030778885,
-0.10339047014713287,
0.0939474031329155,
0.0383589006960392,
-0.1400545835494995,
0.030296240001916885,
-0.024804025888442993,
-0.09958389401435852,
0.05931607633829117,
0.0345810241997242,
0.13370169699192047,
0.07160057872533798,
0.03692013397812843,
0.0444546639919281,
0.024286236613988876,
0.029222849756479263,
-0.02582608163356781,
0.08712279051542282,
0.013906724750995636,
-0.0326969251036644,
0.13497111201286316,
-0.02209167182445526,
0.00733065465465188,
0.004249303601682186,
0.014770574867725372,
-0.10774161666631699,
0.022535080090165138,
0.07148245722055435,
0.05934964492917061,
0.08006202429533005,
0.013445192947983742,
0.1338510811328888,
-0.0769910216331482,
0.07762461155653,
0.2252638339996338,
-0.11926024407148361,
-0.10669054090976715,
0.2034827470779419,
0.10889958590269089,
0.05222012847661972,
-0.07893067598342896,
0.04298776760697365,
-0.005416175350546837,
0.038031384348869324,
0.07049918919801712,
-0.1423594057559967,
-0.09340467303991318,
-0.068122498691082,
-0.12969817221164703,
0.12337715178728104,
0.2072211056947708,
-0.018465109169483185,
-0.1249602735042572,
-0.0819934830069542,
0.01657971553504467,
0.10970140993595123,
-0.0021094996482133865,
-0.00943628791719675,
0.049901872873306274,
-0.07300155609846115,
-0.040947578847408295,
-0.1731427013874054,
-0.10274513810873032,
-0.0016927403630688787,
-0.04569360241293907,
0.26824671030044556,
-0.011125904507935047,
0.04436551779508591,
-0.017868725582957268,
0.04489799588918686,
-0.08719442039728165,
-0.057413484901189804,
-0.011476894840598106,
-0.09465553611516953,
0.015064184553921223,
-0.015760090202093124,
-0.05302400887012482,
-0.33683109283447266,
0.010289762169122696,
0.06266912817955017,
0.03696781396865845,
-0.02482607029378414,
-0.08258496224880219,
0.06986356526613235,
0.06698686629533768,
0.19500328600406647,
-0.04734478145837784,
0.07290972769260406,
0.09267514199018478,
-0.082089863717556,
0.01855010911822319,
-0.008704187348484993,
-0.1623373180627823,
-0.018454961478710175,
-0.05812815949320793,
-0.01474673394113779,
0.0659371018409729,
0.06004669517278671,
-0.05116817727684975,
-0.11268500238656998,
0.13907772302627563,
-0.04576580598950386,
0.06072796881198883,
0.027132252231240273,
-0.14881330728530884,
0.02460436336696148,
0.11008142679929733,
0.020966628566384315,
-0.14214834570884705,
0.0866413414478302,
-0.05198586732149124,
0.06746144592761993,
-0.04912356287240982,
-0.2054322212934494,
0.08384000509977341,
-0.15524017810821533,
0.016134319826960564,
-0.1828179657459259,
-0.041772421449422836,
0.028825126588344574,
0.09800880402326584,
0.03373126685619354,
-0.024573564529418945,
-0.0435139536857605,
-0.004223092924803495,
-0.03764157369732857,
0.018982956185936928,
0.024084480479359627,
0.027947651222348213,
0.006390086375176907,
-0.19040635228157043,
0.08581499755382538,
-0.14174078404903412,
0.010464505292475224,
-0.16165198385715485,
-0.09761214256286621,
-0.29959991574287415,
0.023948071524500847,
-0.06979843229055405,
-0.006762702018022537,
-0.09749735891819,
-0.05663100257515907,
-0.060062799602746964,
-0.0019125824328511953,
0.024766642600297928,
0.13751620054244995,
-0.005962667521089315,
-0.09992247074842453,
0.16448721289634705,
-0.06885212659835815,
-0.01612866297364235,
0.12275772541761398,
0.008797231130301952,
0.06493673473596573,
0.07358241826295853,
0.16411784291267395,
0.032089781016111374,
-0.2791256606578827,
-0.04234927520155907,
0.06603539735078812,
-0.016239890828728676,
-0.0694272518157959,
0.054874204099178314,
0.028217637911438942,
0.06931141763925552,
0.015137632377445698,
-0.04203500971198082,
0.0915188118815422,
-0.012955108657479286,
0.027539245784282684,
0.021379685029387474,
-0.04119594022631645,
0.04551902040839195,
0.05507061630487442,
0.04452236741781235,
0.010581305250525475,
-0.08476022630929947,
0.07931336015462875,
0.020380016416311264,
-0.09990447014570236,
0.04278189688920975,
-0.036898430436849594,
0.0638609305024147,
-0.1247841939330101,
0.01982196234166622,
-0.08941469341516495,
-0.14494583010673523,
0.09316941350698471,
-0.011080516502261162,
0.032693348824977875,
-0.010277590714395046,
0.05118225887417793,
0.07118210941553116,
0.006497627589851618,
-0.02206302434206009,
0.00015727752179373056,
-0.030149312689900398,
-0.024377906695008278,
-0.12175709754228592,
-0.023326491937041283,
-0.03957240283489227,
0.0307327788323164,
-0.016968440264463425,
0.05695980042219162,
0.06749854236841202,
0.0926467627286911,
0.05892551317811012,
-0.036509547382593155,
0.08358269184827805,
0.08852088451385498,
-0.04237550497055054,
-0.023574361577630043,
0.013755141757428646,
0.034646593034267426,
-0.13132524490356445,
0.19492937624454498,
0.06679816544055939,
-0.13976910710334778,
0.16689613461494446,
-0.10112389177083969,
-0.025271326303482056,
0.07893664389848709,
-0.07762184739112854,
0.014775080606341362,
-0.06972038000822067,
-0.017354760318994522,
0.11922519654035568,
0.027892496436834335,
0.07881859689950943,
-0.07087455689907074,
0.030033668503165245,
0.0774943083524704,
-0.06933286786079407,
-0.01481025293469429,
0.10238955914974213,
0.13531073927879333,
-0.025653298944234848,
0.08782393485307693,
-0.012639784254133701,
-0.024792080745100975,
0.20449960231781006,
0.021517734974622726,
-0.047902658581733704,
-0.03904781863093376,
-0.014958839863538742,
-0.0007063334924168885,
0.10306956619024277,
-0.035788435488939285,
-0.027806896716356277,
0.0015321401879191399,
-0.043648041784763336,
-0.01111182663589716,
-0.1003284677863121,
-0.001808128785341978,
-0.021886363625526428,
0.007967554032802582,
-0.010258753784000874,
0.045614223927259445,
-0.051586613059043884,
0.033549677580595016,
-0.002556705381721258,
-0.035989563912153244,
0.04150531068444252,
0.018707484006881714,
-0.07756099849939346,
0.1522216945886612,
-0.11171934008598328,
-0.3206234276294708,
-0.1162097156047821,
-0.0461440235376358,
-0.08809681981801987,
0.013204858638346195,
0.04760327935218811,
-0.001977513311430812,
-0.05851304531097412,
-0.005024505313485861,
0.15048043429851532,
0.07778194546699524,
0.044042445719242096,
-0.11914972215890884,
-0.02063220553100109,
-0.033722929656505585,
-0.08723361045122147,
-0.06182960420846939,
-0.0595170333981514,
-0.13573689758777618,
0.09704837948083878,
-0.06057732552289963,
0.08072247356176376,
0.013970324769616127,
-0.0042736162431538105,
-0.04197182506322861,
-0.02420155704021454,
0.049011461436748505,
-0.09933629631996155,
0.12274385243654251,
0.08199764788150787,
-0.02131267637014389,
0.014028788544237614,
0.006231443490833044,
0.07131866365671158,
0.017169643193483353,
-0.013174239546060562,
0.0010990791488438845,
-0.09844145178794861,
-0.1534234583377838,
-0.08582264184951782,
-0.07663308084011078,
0.0961361676454544,
0.0939560979604721,
0.03395659103989601,
0.07503864914178848,
0.06424655020236969,
0.023290302604436874,
0.06285108625888824,
0.06609594821929932,
0.08359499275684357,
-0.05598309636116028,
0.012208900414407253,
0.041463956236839294,
-0.026803867891430855,
0.003527059918269515,
0.10469728708267212,
0.007973556406795979,
0.13617703318595886,
-0.06469954550266266,
0.0875425711274147,
0.0007532773888669908,
0.03912123665213585,
-0.0022159824147820473,
0.14598354697227478,
-0.016204753890633583,
-0.016498971730470657,
0.013156537897884846,
-0.06622575223445892,
-0.003202060703188181,
0.05453323945403099,
0.04717147350311279,
-0.032487399876117706,
-0.06773336231708527,
-0.08946944773197174,
0.05742311850190163,
0.2304830104112625,
-0.016615012660622597,
-0.16347554326057434,
-0.10694430023431778,
-0.06702203303575516,
0.010900047607719898,
-0.00728889973834157,
-0.0310430359095335,
0.15368647873401642,
-0.12510401010513306,
0.1090678721666336,
-0.06773025542497635,
0.04779035970568657,
0.03421872854232788,
-0.05311037227511406,
-0.04271755367517471,
0.07574194669723511,
-0.029404619708657265,
0.020034905523061752,
-0.19135165214538574,
0.05312814190983772,
0.02585388347506523,
0.07152577489614487,
-0.11755440384149551,
-0.0038034217432141304,
0.03176824748516083,
0.11255660653114319,
0.16697989404201508,
0.021612277254462242,
0.11186780780553818,
-0.10357248038053513,
-0.17859604954719543,
0.013720125891268253,
-0.01557204406708479,
-0.10103034973144531,
0.00885266438126564,
0.06225992739200592,
-0.02801477164030075,
-0.01638825051486492,
0.006602140609174967,
-0.0021442847792059183,
-0.000588162278290838,
0.026259558275341988,
0.013488339260220528,
-0.0499526709318161,
-0.008707361295819283,
-0.06438571214675903,
0.04008398577570915,
0.17767131328582764,
-0.0411326140165329,
-0.09929937869310379,
-0.110756516456604,
0.0885099247097969,
0.04322453960776329,
-0.08429764956235886,
-0.0067259036004543304,
-0.004817506764084101,
0.11303392052650452,
-0.1015944853425026,
-0.15698228776454926,
0.06879142671823502,
-0.12046681344509125,
-0.03616182878613472,
0.003828849643468857,
0.04667403921484947,
0.10095047205686569,
0.013779792003333569,
0.011040220968425274,
0.029079467058181763,
-0.007265210617333651,
-0.046081915497779846,
0.026165805757045746,
0.10430668294429779,
0.013715297915041447,
0.08391067385673523,
-0.10912199318408966,
-0.13118937611579895,
-0.024112220853567123,
0.04016488417983055,
0.022187411785125732,
0.04751371219754219,
-0.034411683678627014,
0.10855278372764587,
0.15545378625392914,
-0.08550264686346054,
-0.2898581027984619,
0.05201627314090729,
0.088137686252594,
0.05496775358915329,
-0.045176729559898376,
-0.21149589121341705,
0.1537049114704132,
0.048235081136226654,
0.02158292382955551,
0.06826724112033844,
-0.23041237890720367,
-0.06303168088197708,
0.06490650773048401,
0.07891371846199036,
0.06913832575082779,
-0.09417447447776794,
0.037762124091386795,
0.06490839272737503,
-0.013987739570438862,
0.3033759891986847,
-0.03427932411432266,
0.06312880665063858,
0.015950271859765053,
0.09133875370025635,
0.06967174261808395,
-0.0408569797873497,
-0.007578270975500345,
-0.08316673338413239,
-0.0844961628317833,
-0.08188993483781815,
-0.05279216915369034,
0.13570278882980347,
-0.0036210149992257357,
0.12080365419387817,
-0.013011430390179157,
-0.0758693590760231,
-0.03831062838435173,
-0.058741454035043716,
-0.1184249147772789,
0.2189425528049469,
-0.012599254958331585,
-0.10159946978092194,
-0.0022847175132483244,
0.09727812558412552,
0.061797864735126495,
0.07832563668489456,
0.10644270479679108,
-0.008745615370571613,
-0.004439882468432188,
0.14649860560894012,
0.10361605882644653,
0.030983369797468185,
-0.05286739766597748,
0.028930578380823135,
-0.051177624613046646,
0.12360157072544098,
-0.10199210792779922,
0.004401042126119137,
0.10295140743255615,
0.0067118206061422825,
0.07195594161748886,
-0.006138058379292488,
-0.08739349991083145,
0.0010510776191949844,
0.05860498175024986,
-0.1772426962852478,
0.013229046948254108,
-0.07302199304103851,
-0.11448270827531815,
0.04721005633473396,
0.06794999539852142,
0.173138827085495,
-0.11431984603404999,
-0.0152241550385952,
-0.01166688371449709,
0.06679704040288925,
-0.07097063213586807,
0.02417939342558384,
0.021759580820798874,
-0.013437320478260517,
-0.02508355677127838,
0.054935939610004425,
0.07297936081886292,
-0.10423760116100311,
0.0526357926428318,
0.06709375977516174,
-0.08540923148393631,
-0.06687510013580322,
-0.08291241526603699,
0.03380711376667023,
-0.12881585955619812,
-0.031312499195337296,
-0.0962110087275505,
-0.013117200694978237,
-0.04633462429046631,
0.061569832265377045,
0.023691970854997635,
-0.030285900458693504,
0.0018353762570768595,
0.030671751126646996,
-0.14498271048069,
0.03357668220996857,
-0.061425309628248215,
0.03901522234082222,
0.004116368945688009,
0.11086025089025497,
0.0147824976593256,
0.06252875924110413,
-0.06633710116147995,
-0.008339240215718746,
-0.09719269722700119,
-0.04225738346576691,
0.014434448443353176,
-0.0031176763586699963,
-0.01635279506444931,
-0.023632315918803215,
-0.05669746920466423,
-0.10788650810718536,
-0.01609513908624649,
0.050574492663145065,
-0.07704909145832062,
0.0032418358605355024,
-0.009949220344424248,
0.017339171841740608,
-0.10416252911090851,
-0.12990887463092804,
-0.013966179452836514,
-0.015545284375548363,
0.07290512323379517,
0.09269462525844574,
-0.013715400360524654,
0.012766586616635323,
-0.08986105769872665,
0.04606557637453079,
0.04491487517952919,
0.04284202679991722,
0.062044087797403336,
0.05278434231877327,
0.019282057881355286,
0.033335618674755096,
-0.06955618411302567,
-0.027254067361354828,
0.10699658840894699,
-0.11937233060598373,
0.02926667593419552,
0.038796331733465195,
-0.06558099389076233,
-0.09327957779169083,
0.12546950578689575,
0.039852652698755264,
0.13677197694778442,
0.06742116063833237,
-0.0356731154024601,
0.09385685622692108,
-0.052560485899448395,
-0.013904580846428871,
-0.0004920365172438323,
-0.06576226651668549,
0.02764718607068062,
-0.016313623636960983,
0.03968224674463272,
-0.04386086389422417,
0.04447200149297714,
0.1483107954263687,
0.02357787825167179,
0.0033219740726053715,
-0.012610197067260742,
-0.010863728821277618,
0.04270026460289955,
0.029903681948781013,
-0.05666114389896393,
0.016197940334677696,
-0.018611283972859383,
0.07914122939109802,
0.06415858864784241,
0.010608281940221786,
0.1200176402926445,
-0.010937823913991451,
0.10220998525619507,
0.04161597788333893,
0.08669815212488174,
0.013589269481599331,
-0.14334632456302643,
-0.07504819333553314,
-0.047487419098615646,
0.15225201845169067,
-0.011439196765422821,
0.11372659355401993,
-0.013895914889872074,
-0.09648284316062927,
0.011197160929441452,
0.08695634454488754,
-0.04839174821972847,
-0.11822119355201721,
-0.22485485672950745,
-0.043719612061977386,
-0.0412994809448719,
-0.027933072298765182,
-0.09519917517900467,
-0.02261246182024479,
-0.13336534798145294,
0.05985927954316139,
-0.013349900022149086,
0.17293167114257812,
-0.10912115126848221,
-0.09130696207284927,
0.11487346142530441,
0.020099876448512077,
-0.06483332067728043,
-0.04764396324753761,
-0.03736511617898941,
-0.05762359872460365,
0.12131878733634949,
0.026247387751936913,
-0.012370850890874863,
0.042332664132118225,
0.033725157380104065,
-0.01723305508494377,
-0.047781508415937424,
-0.026025474071502686,
-0.03434871882200241,
0.028288425877690315,
0.019945351406931877,
0.04752025753259659,
-0.03869902715086937,
-0.01869826205074787,
0.1780853271484375,
0.0022502723149955273,
0.011837966740131378,
-0.09497003257274628,
0.09091547876596451,
-0.06986673176288605,
-0.03652974218130112,
-0.013874211348593235,
-0.03778583183884621,
-0.08272494375705719,
0.1940612941980362,
0.2762635350227356,
0.06943169981241226,
0.011808338575065136,
0.0036964183673262596,
-0.02272242307662964,
0.02697979472577572,
0.12482612580060959,
0.016580885276198387,
0.25027137994766235,
-0.036586396396160126,
0.09719743579626083,
-0.047448962926864624,
0.035310953855514526,
-0.10272309929132462,
-0.044957056641578674,
-0.0034877171274274588,
-0.05127065256237984,
-0.07068493962287903,
0.06196578964591026,
-0.09084970504045486,
-0.26691168546676636,
0.11247076094150543,
-0.15397457778453827,
-0.055080998688936234,
-0.09455471485853195,
-0.03960004448890686,
0.04072684049606323,
0.11622758209705353,
-0.02545076794922352,
0.004145829938352108,
0.09230555593967438,
0.02023938298225403,
-0.064327172935009,
-0.03449396416544914,
0.06076531484723091,
-0.22064554691314697,
0.20071443915367126,
-0.03335136920213699,
0.03814926743507385,
0.050928745418787,
0.004149481188505888,
-0.027644990012049675,
-0.04799143597483635,
0.01713663525879383,
-0.09516499936580658,
0.027748338878154755,
0.07806845009326935,
-0.0879320576786995,
0.12798038125038147,
0.012477091513574123,
-0.06124141439795494,
-0.001464462955482304,
-0.07479249686002731,
0.011272283270955086,
-0.012517585419118404,
0.12240871787071228,
-0.1479640007019043,
0.0886610746383667,
0.1856187880039215,
-0.014370796270668507,
-0.07374032586812973,
-0.09704858809709549,
0.013389471918344498,
0.059089526534080505,
-0.1051945835351944,
-0.022847333922982216,
-0.13240018486976624,
-0.025373687967658043,
-0.018302036449313164,
0.038454629480838776,
-0.11495990306138992,
0.029061293229460716,
-0.06923028081655502,
-0.055407047271728516,
-0.06863655894994736,
-0.022391416132450104,
0.006132341921329498,
-0.028007512912154198,
-0.03576775640249252,
0.10729623585939407,
0.020159225910902023,
-0.001837236457504332,
-0.08603535592556,
-0.07063621282577515
] |
null | null | transformers | hello
| {} | text-generation | Mamatha/agri-gpt2 | [
"transformers",
"pytorch",
"jax",
"gpt2",
"text-generation",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [] | TAGS
#transformers #pytorch #jax #gpt2 #text-generation #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
| hello
| [] | [
"TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n"
] | [
50
] | [
"passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n"
] | [
-0.02061169408261776,
0.03669698163866997,
-0.007248206064105034,
0.012762377969920635,
0.1690322607755661,
0.03350625932216644,
0.09912695735692978,
0.1378507763147354,
0.006931114010512829,
-0.02730877511203289,
0.16016589105129242,
0.210490420460701,
-0.0018047182820737362,
0.07203522324562073,
-0.0626848116517067,
-0.27152273058891296,
0.051494795829057693,
0.06287337839603424,
-0.006572056096047163,
0.12476035207509995,
0.07706263661384583,
-0.058810923248529434,
0.09187597781419754,
-0.01914438046514988,
-0.17445695400238037,
0.023767365142703056,
0.05130406841635704,
-0.12089582532644272,
0.11222874373197556,
0.04935329034924507,
0.09586816281080246,
0.014551094733178616,
-0.061403561383485794,
-0.14227746427059174,
0.027511093765497208,
0.02571028470993042,
-0.06026925519108772,
0.06976787000894547,
0.10209541767835617,
-0.09534682333469391,
0.09160638600587845,
0.08213244378566742,
-0.02483462356030941,
0.054132550954818726,
-0.1637229174375534,
-0.08184890449047089,
-0.030146123841404915,
0.009252084419131279,
0.06836725026369095,
0.09418372809886932,
-0.014005177654325962,
0.11512795090675354,
-0.08648983389139175,
0.10137014836072922,
0.15515094995498657,
-0.3112814128398895,
-0.0025897729210555553,
0.08596665412187576,
0.056812409311532974,
0.05083649232983589,
-0.028057346120476723,
0.059737250208854675,
0.02277030050754547,
0.023691991344094276,
0.024889623746275902,
-0.08345351368188858,
-0.12221888452768326,
0.04607483372092247,
-0.08558143675327301,
-0.07045682519674301,
0.24011977016925812,
-0.06557567417621613,
0.05927315354347229,
-0.026034124195575714,
-0.09983419626951218,
-0.04822950065135956,
-0.025522518903017044,
0.0027340995147824287,
-0.05865494906902313,
0.08325810730457306,
0.03113705664873123,
-0.07104028761386871,
-0.12954817712306976,
-0.03331276401877403,
-0.1671232432126999,
0.16637788712978363,
0.017353568226099014,
0.059134289622306824,
-0.19971254467964172,
0.10599949955940247,
0.009768630377948284,
-0.09360894560813904,
0.031420230865478516,
-0.0966353788971901,
0.04421459138393402,
-0.002475510584190488,
-0.05345337465405464,
-0.07802210748195648,
0.07758434861898422,
0.1328297108411789,
0.005376500077545643,
0.0312935933470726,
-0.022861171513795853,
0.09267520904541016,
0.03198305144906044,
0.09125647693872452,
0.003466499038040638,
-0.02334674261510372,
0.05431690812110901,
-0.128060445189476,
-0.007325596176087856,
-0.07051635533571243,
-0.15026308596134186,
-0.0425361804664135,
0.059593502432107925,
0.08932037651538849,
0.019110143184661865,
0.08286140859127045,
-0.052690550684928894,
-0.031684745103120804,
0.05481104552745819,
-0.06541909277439117,
-0.0023946587461978197,
-0.0066881631501019,
0.028208354488015175,
0.13478249311447144,
-0.008862287737429142,
0.024262670427560806,
-0.12114688754081726,
0.05839782580733299,
-0.08044246584177017,
-0.0018729495350271463,
-0.04188903048634529,
-0.04908997192978859,
0.01962810568511486,
-0.08889313787221909,
0.023544808849692345,
-0.14767387509346008,
-0.17289353907108307,
0.014023632742464542,
0.015207161195576191,
-0.02661287784576416,
-0.055295780301094055,
-0.03635844588279724,
-0.02752472460269928,
0.05103516951203346,
-0.06349530816078186,
0.0072977435775101185,
-0.05553026497364044,
0.10184666514396667,
-0.03134933114051819,
0.06921332329511642,
-0.10158300399780273,
0.07680372148752213,
-0.12065500766038895,
-0.010678648948669434,
-0.09030061960220337,
0.0667608305811882,
-0.005207765847444534,
0.12495583295822144,
-0.02772742323577404,
-0.023418201133608818,
-0.06870874017477036,
0.052683956921100616,
-0.03466503322124481,
0.198461651802063,
-0.0751492977142334,
-0.12632763385772705,
0.2507952153682709,
-0.0663582980632782,
-0.14219015836715698,
0.09786481410264969,
0.011805753223598003,
0.04386255890130997,
0.09383031725883484,
0.1752246767282486,
0.02929861843585968,
-0.002063382649794221,
0.08640838414430618,
0.10012904554605484,
-0.10108412057161331,
-0.08980478346347809,
0.023798564448952675,
-0.02894214354455471,
-0.14016631245613098,
0.056434664875268936,
0.06615027785301208,
0.08355093747377396,
-0.04800274223089218,
-0.031239774078130722,
-0.0360761322081089,
0.00971299409866333,
0.055595025420188904,
0.014840207993984222,
0.12724317610263824,
-0.054204441606998444,
-0.03147004917263985,
-0.029795076698064804,
-0.010151172988116741,
-0.01988917589187622,
0.03365359082818031,
-0.021863849833607674,
0.13083113729953766,
-0.05663840472698212,
0.058342233300209045,
-0.18144778907299042,
-0.08069596439599991,
0.0038181261625140905,
0.12040943652391434,
-0.007066712249070406,
0.07556058466434479,
0.05802106857299805,
-0.03010028414428234,
-0.005254245363175869,
-0.011689078994095325,
0.1494489461183548,
-0.025504015386104584,
-0.0695682018995285,
-0.06697690486907959,
0.05832945927977562,
-0.059016112238168716,
-0.011436658911406994,
-0.06229717284440994,
0.014011423103511333,
0.032067783176898956,
0.10360895842313766,
0.004289672710001469,
0.028894901275634766,
-0.020906507968902588,
0.010454483330249786,
-0.08038664609193802,
0.004400757607072592,
0.09865622967481613,
-0.010968429036438465,
-0.052063871175050735,
0.2027982473373413,
-0.15390464663505554,
0.233114555478096,
0.19188177585601807,
-0.28178542852401733,
0.013452456332743168,
-0.057999882847070694,
-0.02458072640001774,
0.014820392243564129,
0.04814935103058815,
-0.02250209078192711,
0.11650584638118744,
-0.0003065110940951854,
0.18351061642169952,
-0.054600246250629425,
-0.05317075923085213,
0.003565638791769743,
-0.05164698138833046,
-0.0039711822755634785,
0.07296860963106155,
0.12584854662418365,
-0.14359883964061737,
0.19494381546974182,
0.20664817094802856,
0.03114785999059677,
0.16297315061092377,
0.006141228135675192,
-0.025006834417581558,
0.0717167779803276,
-0.020189831033349037,
-0.03723941743373871,
-0.06850926578044891,
-0.18136908113956451,
-0.028368933126330376,
0.08009158074855804,
0.04700847342610359,
0.0970572903752327,
-0.12121459096670151,
-0.04919075593352318,
-0.017726639285683632,
-0.0037948081735521555,
-0.001169883762486279,
0.09482266008853912,
0.04720060154795647,
0.11524532735347748,
-0.013394813053309917,
0.00007184622518252581,
0.10807308554649353,
0.017171379178762436,
-0.09143665432929993,
0.1945890337228775,
-0.12493730336427689,
-0.3475200831890106,
-0.15314428508281708,
-0.1694491058588028,
-0.03699450567364693,
0.05181937664747238,
0.1012069508433342,
-0.11282069236040115,
-0.028340332210063934,
0.017789945006370544,
0.09569206833839417,
-0.09760142862796783,
0.021629052236676216,
-0.08391507714986801,
0.04361793026328087,
-0.08041521906852722,
-0.07167459279298782,
-0.056972403079271317,
-0.021237103268504143,
-0.05630851536989212,
0.14537808299064636,
-0.10566911846399307,
0.04946158453822136,
0.1748725324869156,
0.041469868272542953,
0.052667371928691864,
-0.026084311306476593,
0.20342226326465607,
-0.10122719407081604,
-0.008247622288763523,
0.1996638923883438,
-0.03767416626214981,
0.07793038338422775,
0.1047254279255867,
0.008436969481408596,
-0.08692540973424911,
0.014031565748155117,
-0.03050277940928936,
-0.08918496966362,
-0.23751021921634674,
-0.10732308030128479,
-0.1305837780237198,
0.06702837347984314,
0.06369546800851822,
0.06166477128863335,
0.1605178564786911,
0.08636368811130524,
-0.02265070751309395,
0.051190104335546494,
0.005209398455917835,
0.08386892825365067,
0.19134031236171722,
-0.018688667565584183,
0.13220134377479553,
-0.047730229794979095,
-0.1284172236919403,
0.08534674346446991,
0.06895700097084045,
0.13253210484981537,
0.07302940636873245,
0.06437722593545914,
0.006450139917433262,
0.09158173203468323,
0.14580334722995758,
0.11763523519039154,
0.013675099238753319,
-0.02294873259961605,
-0.035648882389068604,
-0.014953047037124634,
-0.053832754492759705,
0.041831664741039276,
0.03041837364435196,
-0.14036796987056732,
-0.0522465854883194,
-0.11898676306009293,
0.07560022920370102,
0.10437406599521637,
0.06208758428692818,
-0.23143552243709564,
0.012645904906094074,
0.0920325219631195,
-0.033739786595106125,
-0.12553022801876068,
0.08267304301261902,
-0.02773478254675865,
-0.148908331990242,
0.04800388216972351,
-0.0624145083129406,
0.13054151833057404,
-0.06850045919418335,
0.08056096732616425,
-0.04174954071640968,
-0.057825472205877304,
0.02301604673266411,
0.11933999508619308,
-0.29898545145988464,
0.19811242818832397,
0.00232495809905231,
-0.055925529450178146,
-0.1032438725233078,
0.013398502953350544,
0.01214119978249073,
0.1131071001291275,
0.11060462892055511,
0.004075071774423122,
-0.054734937846660614,
-0.09965869784355164,
-0.025381751358509064,
0.032791636884212494,
0.11453904956579208,
-0.0661320760846138,
-0.008024964481592178,
-0.04672384262084961,
-0.005813688039779663,
-0.03299189358949661,
-0.04443271830677986,
0.006998900789767504,
-0.17404834926128387,
0.08311133086681366,
0.021644821390509605,
0.09458605200052261,
0.01686358079314232,
-0.020177142694592476,
-0.0930124819278717,
0.22706744074821472,
-0.07374903559684753,
-0.10036850720643997,
-0.11869792640209198,
-0.05789005383849144,
0.06681498885154724,
-0.07128075510263443,
0.04802818223834038,
-0.08300348371267319,
0.024066224694252014,
-0.051810044795274734,
-0.2141922116279602,
0.12876592576503754,
-0.09854454547166824,
-0.0426534079015255,
-0.04808230325579643,
0.18427522480487823,
-0.07560548186302185,
0.007441832683980465,
0.014283985830843449,
0.03377733752131462,
-0.12088590115308762,
-0.09571054577827454,
0.03321368247270584,
-0.0054462980479002,
0.050365518778562546,
0.02398831397294998,
-0.06449484080076218,
0.013354619033634663,
-0.027336502447724342,
-0.007998697459697723,
0.31066620349884033,
0.16510078310966492,
-0.04284334182739258,
0.17947670817375183,
0.11826936155557632,
-0.09111739695072174,
-0.3014727234840393,
-0.09573464840650558,
-0.10117041319608688,
-0.03300357609987259,
-0.04562511295080185,
-0.21774791181087494,
0.0805845707654953,
0.02981768362224102,
-0.016042208299040794,
0.15843164920806885,
-0.24728429317474365,
-0.07573903352022171,
0.14059032499790192,
-0.0033480850979685783,
0.36902642250061035,
-0.1301729530096054,
-0.10661002993583679,
-0.049214623868465424,
-0.14853917062282562,
0.16302582621574402,
-0.006122821941971779,
0.09923173487186432,
-0.03277380019426346,
0.0951908603310585,
0.04296580329537392,
-0.04584183171391487,
0.09171538800001144,
0.006283751223236322,
-0.00015285445260815322,
-0.09827379137277603,
-0.026431895792484283,
0.04596385359764099,
0.006172254215925932,
0.015664206817746162,
-0.05151783674955368,
0.024717671796679497,
-0.13768158853054047,
-0.04218921437859535,
-0.08312345296144485,
0.05613607540726662,
0.0378592424094677,
-0.06245051324367523,
0.012870991602540016,
-0.06329932808876038,
-0.015552804805338383,
0.006438991520553827,
0.22675301134586334,
-0.033524125814437866,
0.16034509241580963,
0.06924859434366226,
0.0977221205830574,
-0.13415151834487915,
-0.0030943630263209343,
-0.07359358668327332,
-0.0585312657058239,
0.0910639688372612,
-0.12273677438497543,
0.05962078645825386,
0.11274706572294235,
-0.04377524182200432,
0.06500444561243057,
0.11012120544910431,
0.004117070697247982,
-0.003137144260108471,
0.12473985552787781,
-0.25908008217811584,
0.015647539868950844,
-0.07494742423295975,
-0.024182267487049103,
0.08232303708791733,
0.07148353010416031,
0.16246774792671204,
0.024140827357769012,
-0.05674751475453377,
-0.0011056308867409825,
0.012844313867390156,
-0.04069126397371292,
0.0659845769405365,
0.010237254202365875,
0.020188752561807632,
-0.14966484904289246,
0.07341181486845016,
0.020635386928915977,
-0.1390792727470398,
0.00947505235671997,
0.16722126305103302,
-0.13189104199409485,
-0.11809033155441284,
-0.024501128122210503,
0.10207509994506836,
-0.12840311229228973,
-0.01538072805851698,
-0.0530657097697258,
-0.12485695630311966,
0.08780299127101898,
0.11384674161672592,
0.07223537564277649,
0.08963492512702942,
-0.046553220599889755,
-0.03367399424314499,
-0.03635541722178459,
-0.012573964893817902,
-0.005112584214657545,
0.023647962138056755,
-0.08710068464279175,
0.020647486671805382,
-0.014909865334630013,
0.1446734219789505,
-0.08746474981307983,
-0.07236666977405548,
-0.15646818280220032,
0.03405974432826042,
-0.10871405899524689,
-0.07473097741603851,
-0.08840084820985794,
-0.051927600055933,
-0.011308991350233555,
-0.0237440038472414,
-0.04571209102869034,
-0.04849827662110329,
-0.12665939331054688,
0.012751449830830097,
-0.04703500121831894,
0.02897617593407631,
-0.06266307830810547,
-0.003384709358215332,
0.09275015443563461,
-0.04187775403261185,
0.13208845257759094,
0.13593345880508423,
-0.07172486186027527,
0.12254272401332855,
-0.1241949051618576,
-0.08505946397781372,
0.10708841681480408,
0.018022065982222557,
0.039706673473119736,
0.06602154672145844,
0.027937114238739014,
0.06251784414052963,
0.023262426257133484,
0.0474555529654026,
-0.0034392299130558968,
-0.1278984397649765,
0.026975933462381363,
-0.026938216760754585,
-0.15527313947677612,
-0.05361103639006615,
-0.045469336211681366,
0.04235553741455078,
0.01838851533830166,
0.1166498214006424,
-0.03758706524968147,
0.11192993074655533,
-0.06871756166219711,
0.02620946429669857,
-0.0016389728989452124,
-0.19030974805355072,
-0.06729240715503693,
-0.08063044399023056,
0.027664629742503166,
0.01087124552577734,
0.2522471249103546,
0.03634938970208168,
0.018269522115588188,
0.022480595856904984,
0.08995942771434784,
0.03782389685511589,
0.01657526195049286,
0.20189790427684784,
0.1176978051662445,
-0.05808348208665848,
-0.09545315057039261,
0.08679695427417755,
0.024981701746582985,
0.011926673352718353,
0.12499669194221497,
0.02542710304260254,
0.015265305526554585,
0.09474188834428787,
-0.027163418009877205,
0.011014972813427448,
-0.09048577398061752,
-0.12104497104883194,
-0.012157267890870571,
0.06607268750667572,
-0.0005205549532547593,
0.09510093182325363,
0.15160807967185974,
-0.01614399254322052,
0.03269355744123459,
-0.01990874856710434,
-0.044518157839775085,
-0.17706270515918732,
-0.15518343448638916,
-0.07865231484174728,
-0.12877032160758972,
0.006389371585100889,
-0.10272641479969025,
0.0437617301940918,
0.06735121458768845,
0.055535778403282166,
-0.061280637979507446,
0.08018633723258972,
0.0908743217587471,
-0.10815306007862091,
0.06396238505840302,
-0.03378984332084656,
0.05308237299323082,
-0.010930529795587063,
-0.012166712433099747,
-0.0929059311747551,
-0.004868659656494856,
-0.008535288274288177,
0.04750073328614235,
-0.05832274630665779,
0.02753910794854164,
-0.15148714184761047,
-0.11618328839540482,
-0.04823146015405655,
0.06859103590250015,
-0.0567200593650341,
0.10416112095117569,
0.0015089651569724083,
-0.014318077825009823,
0.03907795622944832,
0.214002326130867,
-0.0627247542142868,
-0.030963636934757233,
-0.03922291100025177,
0.22120635211467743,
0.040702469646930695,
0.10107730329036713,
-0.013604391366243362,
0.008694403804838657,
-0.07015835493803024,
0.35390228033065796,
0.29603973031044006,
-0.070329949259758,
0.010815161280333996,
0.030772194266319275,
0.030525315552949905,
0.12354307621717453,
0.13173502683639526,
0.08878594636917114,
0.26048561930656433,
-0.08683076500892639,
-0.033120445907115936,
-0.024800274521112442,
-0.015878379344940186,
-0.0880107581615448,
0.10199514776468277,
0.0479244664311409,
-0.06818252801895142,
-0.0319574736058712,
0.09539607912302017,
-0.23561538755893707,
0.1563696265220642,
-0.08077402412891388,
-0.1598164439201355,
-0.06550628691911697,
0.0020895323250442743,
0.11123234033584595,
0.011316700838506222,
0.08370231091976166,
-0.011379145085811615,
-0.09968001395463943,
0.06325476616621017,
0.023829400539398193,
-0.23007269203662872,
-0.023487107828259468,
0.06765052676200867,
-0.0536172091960907,
0.012333041988313198,
-0.020697347819805145,
0.046463679522275925,
0.06474317610263824,
0.044528279453516006,
-0.04973433166742325,
0.014270495623350143,
-0.008215518668293953,
-0.03517768532037735,
0.018696090206503868,
0.04877908155322075,
0.02597798965871334,
-0.10980300605297089,
0.06050827354192734,
-0.11806613951921463,
0.040548477321863174,
-0.06373075395822525,
-0.03647841513156891,
0.00396439665928483,
0.0009551440016366541,
-0.055222492665052414,
0.0567188560962677,
0.08332794904708862,
0.00017091783229261637,
-0.01667456328868866,
-0.07881699502468109,
-0.009257469326257706,
0.0017395061440765858,
-0.06986054033041,
-0.10769271850585938,
-0.13010230660438538,
-0.10757219046354294,
0.11583194881677628,
-0.011943322606384754,
-0.19320523738861084,
0.014474074356257915,
-0.09977549314498901,
0.04724235460162163,
-0.17902211844921112,
0.08024095743894577,
0.0743112713098526,
0.016707729548215866,
-0.003201504237949848,
-0.03637106716632843,
0.050247397273778915,
0.08070636540651321,
-0.1089664176106453,
-0.08408985286951065
] |
null | null | transformers |
#Mikasa Ackermann DialoGPT Model | {"tags": ["conversational"]} | text-generation | Mandy/DialoGPT-small-Mikasa | [
"transformers",
"pytorch",
"gpt2",
"text-generation",
"conversational",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [] | TAGS
#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
#Mikasa Ackermann DialoGPT Model | [] | [
"TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n"
] | [
51
] | [
"passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n"
] | [
-0.009697278961539268,
0.03208012506365776,
-0.007204889785498381,
0.004809224978089333,
0.16726240515708923,
0.014898733235895634,
0.09765533357858658,
0.13672804832458496,
-0.007841327227652073,
-0.031050153076648712,
0.14490588009357452,
0.20411323010921478,
-0.006439372431486845,
0.0661218985915184,
-0.07572533935308456,
-0.2683109939098358,
0.05759621039032936,
0.046649303287267685,
0.016515716910362244,
0.1200079694390297,
0.08573378622531891,
-0.05473608896136284,
0.08714032918214798,
-0.014583407901227474,
-0.150366872549057,
0.017733458429574966,
0.043394338339567184,
-0.12260226160287857,
0.11910516023635864,
0.05462685227394104,
0.07063519209623337,
0.014929565601050854,
-0.07541623711585999,
-0.1631229966878891,
0.03031250834465027,
0.01425902172923088,
-0.0594632662832737,
0.04757995903491974,
0.059961482882499695,
-0.10165371745824814,
0.10819483548402786,
0.09530027210712433,
-0.013078106567263603,
0.06798283755779266,
-0.16849711537361145,
-0.020869607105851173,
-0.01446688175201416,
0.009899779222905636,
0.05550243332982063,
0.09964893013238907,
-0.03413357585668564,
0.10497362166643143,
-0.09214533120393753,
0.11017382889986038,
0.10932035744190216,
-0.32057443261146545,
-0.005767723545432091,
0.09167823940515518,
0.039358653128147125,
0.07352814823389053,
-0.04467793554067612,
0.06258884817361832,
0.018015462905168533,
0.017986174672842026,
-0.014015024527907372,
-0.07283061742782593,
-0.11612214148044586,
0.04717336222529411,
-0.08668071031570435,
-0.059868961572647095,
0.2244078367948532,
-0.05464440956711769,
0.06881742179393768,
-0.05281897634267807,
-0.10522868484258652,
-0.04308144748210907,
-0.029833965003490448,
0.00475557055324316,
-0.07660607248544693,
0.08692064881324768,
0.00869679357856512,
-0.09547875821590424,
-0.1376667022705078,
-0.02496783249080181,
-0.1776352822780609,
0.16140350699424744,
0.02465328387916088,
0.05232657864689827,
-0.2027255892753601,
0.09623090922832489,
0.017906051129102707,
-0.08045592904090881,
0.022091427817940712,
-0.10046248883008957,
0.029131146147847176,
0.013760408386588097,
-0.04754498973488808,
-0.061387211084365845,
0.0843690037727356,
0.11199145019054413,
-0.01731434464454651,
0.025486016646027565,
-0.039331406354904175,
0.08100687712430954,
0.03553595021367073,
0.09077847748994827,
0.007288969587534666,
-0.028338588774204254,
0.025842782109975815,
-0.13719046115875244,
-0.003647835226729512,
-0.07116208970546722,
-0.16572439670562744,
-0.021088803187012672,
0.02994808368384838,
0.08289173990488052,
0.015449047088623047,
0.11682453751564026,
-0.03272046521306038,
-0.025152435526251793,
0.03602350503206253,
-0.047656361013650894,
-0.012649794109165668,
0.016648368909955025,
0.013163427822291851,
0.12399329990148544,
-0.0022096503525972366,
0.03235051408410072,
-0.13653022050857544,
0.031423524022102356,
-0.06793295592069626,
-0.003740974934771657,
-0.03486552834510803,
-0.040637075901031494,
0.009043924510478973,
-0.06862333416938782,
0.003486064961180091,
-0.15030112862586975,
-0.15063877403736115,
0.007587034720927477,
-0.007836631499230862,
-0.04107699543237686,
-0.06370922178030014,
-0.06952770054340363,
-0.013550350442528725,
0.04251532256603241,
-0.07093454152345657,
-0.011352915316820145,
-0.06403283774852753,
0.11004766076803207,
-0.03197755664587021,
0.07921615242958069,
-0.11953279376029968,
0.08390819281339645,
-0.11260783672332764,
-0.02386913076043129,
-0.060801517218351364,
0.09317506104707718,
-0.0006014376995153725,
0.09549830108880997,
-0.006563255097717047,
-0.017931854352355003,
-0.07981178909540176,
0.06445012241601944,
-0.042872510850429535,
0.21701598167419434,
-0.0615808479487896,
-0.11181682348251343,
0.28781595826148987,
-0.052628401666879654,
-0.1370542049407959,
0.11647392809391022,
0.008682746440172195,
0.05777018144726753,
0.10703510791063309,
0.19733482599258423,
-0.015276194550096989,
0.004040541127324104,
0.09471915662288666,
0.11263324320316315,
-0.11276852339506149,
-0.033160366117954254,
0.013019153848290443,
-0.04081077128648758,
-0.10867965966463089,
0.04689536616206169,
0.09810488671064377,
0.07090286910533905,
-0.04786505550146103,
-0.03377414867281914,
-0.01366397924721241,
0.0052589005790650845,
0.08885077387094498,
-0.007157256826758385,
0.10962837189435959,
-0.05819983780384064,
-0.03796621412038803,
-0.029282379895448685,
-0.012126247398555279,
-0.03951939567923546,
0.03137664496898651,
-0.043376367539167404,
0.10821941494941711,
-0.011204327456653118,
0.06364280730485916,
-0.16185984015464783,
-0.07691477984189987,
-0.017002692446112633,
0.1581239402294159,
0.024538565427064896,
0.09859629720449448,
0.0552486926317215,
-0.040398042649030685,
-0.0012767292791977525,
0.012792680412530899,
0.15581141412258148,
-0.022091681137681007,
-0.065607450902462,
-0.052166227251291275,
0.08642971515655518,
-0.05641226842999458,
0.04504093527793884,
-0.05937713757157326,
0.012367865070700645,
0.05064384639263153,
0.10342344641685486,
-0.00018274025933351368,
0.03323284164071083,
-0.008164864964783192,
0.002145637758076191,
-0.058205123990774155,
0.007405933458358049,
0.10799351334571838,
0.00036868182360194623,
-0.07365862280130386,
0.22074243426322937,
-0.17796069383621216,
0.1765957772731781,
0.1893044263124466,
-0.299345999956131,
0.017949223518371582,
-0.10759581625461578,
-0.04561871662735939,
0.014407722279429436,
0.05567655712366104,
-0.0454222597181797,
0.1703362911939621,
-0.009871348738670349,
0.18874616920948029,
-0.04946064203977585,
-0.04464937001466751,
-0.0200483538210392,
-0.05118836089968681,
-0.0024189651012420654,
0.07781197130680084,
0.10685696452856064,
-0.13992026448249817,
0.1964332014322281,
0.1621224284172058,
0.048237916082143784,
0.19945049285888672,
0.015346456319093704,
-0.011589210480451584,
0.0909530371427536,
0.005220826715230942,
-0.058739423751831055,
-0.07409929484128952,
-0.2594851851463318,
-0.030033592134714127,
0.07992640137672424,
0.0422382652759552,
0.1212305948138237,
-0.11349532753229141,
-0.038956157863140106,
-0.01763172075152397,
-0.023146281018853188,
0.021672505885362625,
0.0914369598031044,
0.06075398623943329,
0.13201528787612915,
-0.001710098935291171,
-0.007300339173525572,
0.10524573177099228,
0.01783694699406624,
-0.09354141354560852,
0.18308524787425995,
-0.13652534782886505,
-0.37097251415252686,
-0.13911493122577667,
-0.18057456612586975,
-0.05449081212282181,
0.05712554603815079,
0.11679314076900482,
-0.12011238187551498,
-0.018752124160528183,
0.01578843593597412,
0.10931742936372757,
-0.08449502289295197,
0.0021454424131661654,
-0.06880278885364532,
0.0321490578353405,
-0.10310184955596924,
-0.09194442629814148,
-0.055416494607925415,
-0.031392451375722885,
-0.08001253753900528,
0.1423761546611786,
-0.10777941346168518,
0.04476889222860336,
0.20262959599494934,
0.04653622955083847,
0.05625178664922714,
-0.044105201959609985,
0.19377262890338898,
-0.11264272034168243,
-0.01661740615963936,
0.19215328991413116,
-0.048360925167798996,
0.07476246356964111,
0.1232115849852562,
-0.006348740309476852,
-0.08765771239995956,
0.03011748194694519,
-0.02085109055042267,
-0.07988511025905609,
-0.23219464719295502,
-0.13938382267951965,
-0.12429051846265793,
0.09477275609970093,
0.028005298227071762,
0.056365787982940674,
0.17219258844852448,
0.06577219814062119,
-0.038416244089603424,
0.006410336587578058,
0.02959546446800232,
0.08237514644861221,
0.23417828977108002,
-0.06035616248846054,
0.1364797055721283,
-0.03420931473374367,
-0.14982740581035614,
0.08169995993375778,
0.0713929831981659,
0.10213395953178406,
0.06678459793329239,
0.0804823637008667,
0.0149586396291852,
0.06188136339187622,
0.1311223804950714,
0.08191446959972382,
0.019586285576224327,
-0.02480296604335308,
-0.03388110175728798,
-0.025523077696561813,
-0.05937909707427025,
0.040128443390131,
0.06589099019765854,
-0.16763372719287872,
-0.039227183908224106,
-0.09338314831256866,
0.09657008945941925,
0.0873042419552803,
0.06609832495450974,
-0.1842060089111328,
-0.008006223477423191,
0.08488986641168594,
-0.03854905813932419,
-0.13727426528930664,
0.09535189718008041,
0.01523482333868742,
-0.15144726634025574,
0.03139317408204079,
-0.04061909019947052,
0.12188644707202911,
-0.07804752141237259,
0.09809603542089462,
-0.08108244836330414,
-0.07448557764291763,
0.02123199962079525,
0.1261177361011505,
-0.30527687072753906,
0.20240111649036407,
-0.0024993624538183212,
-0.06486981362104416,
-0.1243603527545929,
-0.0032166161108762026,
0.002410882618278265,
0.07357452809810638,
0.10519039630889893,
-0.007196315098553896,
0.001897757756523788,
-0.06300821900367737,
-0.01829923689365387,
0.032471053302288055,
0.13080233335494995,
-0.0401318334043026,
-0.021158374845981598,
-0.050194524228572845,
-0.001653497340157628,
-0.03173094615340233,
-0.06934895366430283,
0.02002747356891632,
-0.19509181380271912,
0.08751901984214783,
0.04166261479258537,
0.09648149460554123,
0.029994789510965347,
0.004265148192644119,
-0.09651939570903778,
0.24698667228221893,
-0.07148019969463348,
-0.10072879493236542,
-0.10919588059186935,
-0.046813901513814926,
0.03569883480668068,
-0.05628936365246773,
0.04309194162487984,
-0.0788632407784462,
0.028997479006648064,
-0.06352769583463669,
-0.19235502183437347,
0.12410202622413635,
-0.09027006477117538,
-0.04412810131907463,
-0.02371402643620968,
0.2110891044139862,
-0.05598580464720726,
0.010335659608244896,
0.02930437959730625,
0.01208863127976656,
-0.11645778268575668,
-0.09678568691015244,
0.031018631532788277,
-0.007351789623498917,
0.050603240728378296,
0.041841957718133926,
-0.05915454775094986,
-0.017138581722974777,
-0.052199993282556534,
-0.022926922887563705,
0.3496883809566498,
0.14231905341148376,
-0.043836336582899094,
0.19347235560417175,
0.12347975373268127,
-0.07452994585037231,
-0.3159443140029907,
-0.1066238060593605,
-0.10937739163637161,
-0.04680149629712105,
-0.07012093812227249,
-0.2002030611038208,
0.06474938243627548,
0.00662544509395957,
-0.013415241613984108,
0.12749312818050385,
-0.2561831772327423,
-0.07571036368608475,
0.15906259417533875,
-0.017980827018618584,
0.3745945692062378,
-0.1168576180934906,
-0.10926306992769241,
-0.03950892388820648,
-0.14175476133823395,
0.16968177258968353,
-0.01989765651524067,
0.11221715062856674,
-0.009765521623194218,
0.14388824999332428,
0.05548359826207161,
-0.023479344323277473,
0.08544106781482697,
0.004999885335564613,
-0.03290518373250961,
-0.10304180532693863,
-0.05676887184381485,
0.007092386484146118,
0.02477436140179634,
0.018026655539870262,
-0.041834570467472076,
0.02227151393890381,
-0.11731979995965958,
-0.04657655209302902,
-0.08982590585947037,
0.04431166127324104,
0.03899754583835602,
-0.07325074821710587,
-0.002380647463724017,
-0.07165111601352692,
-0.012272949330508709,
0.022334342822432518,
0.20356793701648712,
-0.08029330521821976,
0.16448934376239777,
0.09239562600851059,
0.12419285625219345,
-0.14376309514045715,
-0.00019283240544609725,
-0.0762530043721199,
-0.05611240118741989,
0.07737895101308823,
-0.09433035552501678,
0.058893077075481415,
0.10901971161365509,
-0.04567738622426987,
0.08828683942556381,
0.10377411544322968,
0.008936077356338501,
0.003213887568563223,
0.10916902124881744,
-0.2667325437068939,
-0.0296600554138422,
-0.07532413303852081,
0.000883326749317348,
0.09092561900615692,
0.08562852442264557,
0.18840822577476501,
0.025361526757478714,
-0.04293036088347435,
-0.002770674182102084,
0.028597986325621605,
-0.039021048694849014,
0.051667019724845886,
0.001123449532315135,
0.01947369985282421,
-0.1530752182006836,
0.072522833943367,
0.01490565575659275,
-0.15215420722961426,
0.021316176280379295,
0.16572684049606323,
-0.11656328290700912,
-0.1283872276544571,
-0.06520111113786697,
0.08313824236392975,
-0.11755692958831787,
-0.01578943058848381,
-0.03279297426342964,
-0.13145680725574493,
0.07992171496152878,
0.12629036605358124,
0.05557859688997269,
0.0972496047616005,
-0.06061713397502899,
-0.020469192415475845,
-0.018721895292401314,
-0.014099318534135818,
-0.012384648434817791,
-0.007667020428925753,
-0.055978111922740936,
0.0590752474963665,
-0.026677248999476433,
0.1425808072090149,
-0.09221141785383224,
-0.1037059873342514,
-0.16142144799232483,
0.0374140702188015,
-0.11013076454401016,
-0.08825794607400894,
-0.08821134269237518,
-0.050188567489385605,
0.002360827289521694,
-0.019856395199894905,
-0.04037635400891304,
-0.05829505994915962,
-0.12300454825162888,
0.0338277705013752,
-0.040771447122097015,
0.024727050215005875,
-0.07512269169092178,
0.015856385231018066,
0.08507686108350754,
-0.03285100311040878,
0.15655414760112762,
0.1450488418340683,
-0.1006515845656395,
0.10741901397705078,
-0.14806775748729706,
-0.09138492494821548,
0.11116421222686768,
0.015329592861235142,
0.0449691042304039,
0.09723787009716034,
0.013362943194806576,
0.0635865181684494,
0.032776717096567154,
0.05308786407113075,
0.027619892731308937,
-0.11959987878799438,
0.06483134627342224,
-0.03626115620136261,
-0.14700546860694885,
-0.049338050186634064,
-0.05282869189977646,
0.01647452637553215,
0.013054544106125832,
0.09622690081596375,
-0.05301849544048309,
0.10698331147432327,
-0.04055701196193695,
0.0346808135509491,
0.017554637044668198,
-0.1730053424835205,
-0.03816922754049301,
-0.08538098633289337,
0.03681723028421402,
0.014741539023816586,
0.25266793370246887,
0.030072299763560295,
0.012416383251547813,
0.032671261578798294,
0.08285367488861084,
0.03899408504366875,
0.010228337720036507,
0.17482228577136993,
0.1162426546216011,
-0.06621865928173065,
-0.10445023328065872,
0.0729617029428482,
0.016332454979419708,
0.01286179106682539,
0.13617953658103943,
0.008365051820874214,
0.005795429926365614,
0.08649782836437225,
-0.016865963116288185,
0.009968153201043606,
-0.10052056610584259,
-0.13426925241947174,
-0.022176474332809448,
0.05151832848787308,
-0.04655967652797699,
0.11727844923734665,
0.1406494379043579,
-0.01806013658642769,
0.03222079202532768,
-0.021771740168333054,
-0.05699979141354561,
-0.1683429479598999,
-0.1429590880870819,
-0.06883849948644638,
-0.13416796922683716,
0.00897989235818386,
-0.11180389672517776,
0.05395037308335304,
0.06001098081469536,
0.06750501692295074,
-0.06899319589138031,
0.10220931470394135,
0.04626858979463577,
-0.11440542340278625,
0.06264589726924896,
-0.0296088308095932,
0.09430401772260666,
-0.02759445086121559,
-0.019505485892295837,
-0.09039592742919922,
0.014574515633285046,
0.011419114656746387,
0.06245238706469536,
-0.04707273095846176,
0.007463190704584122,
-0.14696238934993744,
-0.08972041308879852,
-0.0523175448179245,
0.0718572810292244,
-0.050409089773893356,
0.14282815158367157,
0.00775480642914772,
-0.0170906875282526,
0.039554283022880554,
0.22787313163280487,
-0.07476283609867096,
-0.04778539761900902,
-0.05269690603017807,
0.20717895030975342,
0.02975541539490223,
0.1171872541308403,
-0.022938819602131844,
-0.006106364540755749,
-0.0919521227478981,
0.3764844834804535,
0.30030161142349243,
-0.09031439572572708,
0.011794124729931355,
0.02137952297925949,
0.04502861574292183,
0.1316293478012085,
0.1216534823179245,
0.10318691283464432,
0.3006802201271057,
-0.07452366501092911,
-0.04653361067175865,
-0.012629742734134197,
-0.023858042433857918,
-0.09059546142816544,
0.1021224707365036,
0.04839762672781944,
-0.06382183730602264,
-0.03313443064689636,
0.0954432487487793,
-0.25862133502960205,
0.1277991235256195,
-0.12311873584985733,
-0.17578600347042084,
-0.06654827296733856,
0.009760108776390553,
0.10465722531080246,
0.015642458572983742,
0.0946015790104866,
0.007128213066607714,
-0.11252258718013763,
0.06305865943431854,
0.03397420793771744,
-0.22762253880500793,
0.0006893770187161863,
0.06642123311758041,
-0.07006710022687912,
-0.0024247700348496437,
-0.026499588042497635,
0.05657242611050606,
0.0656052976846695,
0.054629553109407425,
-0.00971333310008049,
0.03816632181406021,
0.0034184439573436975,
-0.0585215799510479,
0.016623929142951965,
0.05121519789099693,
0.02472509816288948,
-0.09763528406620026,
0.06927435845136642,
-0.1574270874261856,
0.04766253009438515,
-0.0030655991286039352,
-0.04124255105853081,
0.006064958870410919,
0.008823691867291927,
-0.06491616368293762,
0.05165379121899605,
0.07916834205389023,
-0.0016257909592241049,
-0.0062433634884655476,
-0.057178743183612823,
-0.02632102556526661,
-0.027755750343203545,
-0.09291748702526093,
-0.10495562851428986,
-0.14682936668395996,
-0.11640441417694092,
0.09368976950645447,
-0.01011267676949501,
-0.1848134547472,
0.022154374048113823,
-0.08606051653623581,
0.08319322764873505,
-0.1670055389404297,
0.08040720224380493,
0.07041648775339127,
0.013038921169936657,
-0.0031511052511632442,
-0.02002427540719509,
0.054132770746946335,
0.086809903383255,
-0.10407156497240067,
-0.07400695979595184
] |
null | null | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
#
This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - UR dataset.
It achieves the following results on the evaluation set:
- Loss: 3.8433
- Wer: 0.9852
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 64
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 2000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:------:|:----:|:---------------:|:------:|
| 1.468 | 166.67 | 500 | 3.0262 | 1.0035 |
| 0.0572 | 333.33 | 1000 | 3.5352 | 0.9721 |
| 0.0209 | 500.0 | 1500 | 3.7266 | 0.9834 |
| 0.0092 | 666.67 | 2000 | 3.8433 | 0.9852 |
### Framework versions
- Transformers 4.16.0.dev0
- Pytorch 1.10.1+cu102
- Datasets 1.17.1.dev0
- Tokenizers 0.11.0
| {"language": ["ur"], "license": "apache-2.0", "tags": ["automatic-speech-recognition", "mozilla-foundation/common_voice_7_0", "generated_from_trainer"], "datasets": ["common_voice"], "model-index": [{"name": "", "results": []}]} | automatic-speech-recognition | Maniac/wav2vec2-xls-r-60-urdu | [
"transformers",
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"mozilla-foundation/common_voice_7_0",
"generated_from_trainer",
"ur",
"dataset:common_voice",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [
"ur"
] | TAGS
#transformers #pytorch #wav2vec2 #automatic-speech-recognition #mozilla-foundation/common_voice_7_0 #generated_from_trainer #ur #dataset-common_voice #license-apache-2.0 #endpoints_compatible #region-us
|
This model is a fine-tuned version of facebook/wav2vec2-large-xlsr-53 on the MOZILLA-FOUNDATION/COMMON\_VOICE\_7\_0 - UR dataset.
It achieves the following results on the evaluation set:
* Loss: 3.8433
* Wer: 0.9852
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 0.0003
* train\_batch\_size: 64
* eval\_batch\_size: 8
* seed: 42
* gradient\_accumulation\_steps: 2
* total\_train\_batch\_size: 128
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* training\_steps: 2000
* mixed\_precision\_training: Native AMP
### Training results
### Framework versions
* Transformers 4.16.0.dev0
* Pytorch 1.10.1+cu102
* Datasets 1.17.1.dev0
* Tokenizers 0.11.0
| [
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0003\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 128\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* training\\_steps: 2000\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.16.0.dev0\n* Pytorch 1.10.1+cu102\n* Datasets 1.17.1.dev0\n* Tokenizers 0.11.0"
] | [
"TAGS\n#transformers #pytorch #wav2vec2 #automatic-speech-recognition #mozilla-foundation/common_voice_7_0 #generated_from_trainer #ur #dataset-common_voice #license-apache-2.0 #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0003\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 128\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* training\\_steps: 2000\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.16.0.dev0\n* Pytorch 1.10.1+cu102\n* Datasets 1.17.1.dev0\n* Tokenizers 0.11.0"
] | [
79,
139,
4,
41
] | [
"passage: TAGS\n#transformers #pytorch #wav2vec2 #automatic-speech-recognition #mozilla-foundation/common_voice_7_0 #generated_from_trainer #ur #dataset-common_voice #license-apache-2.0 #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0003\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 128\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* training\\_steps: 2000\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.16.0.dev0\n* Pytorch 1.10.1+cu102\n* Datasets 1.17.1.dev0\n* Tokenizers 0.11.0"
] | [
-0.1509663164615631,
0.07271314412355423,
-0.0024924944154918194,
0.016726970672607422,
0.14452411234378815,
-0.02109452337026596,
0.07539517432451248,
0.14826937019824982,
-0.10237064957618713,
0.08476688712835312,
0.07185959815979004,
0.07852903008460999,
0.08387110382318497,
0.10362235456705093,
-0.007016532588750124,
-0.3240821659564972,
0.02959403209388256,
0.008046993985772133,
-0.10637421905994415,
0.11942701041698456,
0.12552598118782043,
-0.09644533693790436,
0.0070596239529550076,
0.05897426977753639,
-0.111720509827137,
0.008551464416086674,
0.0018732999451458454,
-0.0823025330901146,
0.11262348294258118,
0.049850184470415115,
0.07122848927974701,
0.02488372102379799,
0.07109390199184418,
-0.25799107551574707,
0.01485490147024393,
0.07360231131315231,
0.06641997396945953,
0.06981116533279419,
0.11346740275621414,
-0.02668794058263302,
0.10510987788438797,
-0.030951136723160744,
0.043060287833213806,
0.09673846513032913,
-0.09432069212198257,
-0.3517318665981293,
-0.11142850667238235,
0.018470631912350655,
0.10646352171897888,
0.09704449027776718,
-0.03416299819946289,
0.039976801723241806,
-0.06353452056646347,
0.07333684712648392,
0.24119673669338226,
-0.2292592078447342,
-0.08254443854093552,
-0.05006922408938408,
0.055319447070360184,
0.010146803222596645,
-0.11564602702856064,
-0.013815326616168022,
0.04405945539474487,
0.027598878368735313,
0.09398461133241653,
0.02337482199072838,
-0.013770943507552147,
-0.008071431890130043,
-0.14020952582359314,
-0.06301926076412201,
0.15562689304351807,
0.08675634115934372,
-0.06240174546837807,
-0.06480670720338821,
-0.0008101179264485836,
-0.17463795840740204,
-0.04970051348209381,
0.032506123185157776,
0.019732143729925156,
-0.03028726764023304,
-0.11971617490053177,
-0.005409453064203262,
-0.07913240045309067,
-0.10234151780605316,
0.019779717549681664,
0.16793353855609894,
0.04119741916656494,
-0.02796606719493866,
0.009190753102302551,
0.09523892402648926,
0.027950596064329147,
-0.13054196536540985,
-0.039453666657209396,
0.03949460759758949,
-0.07878109067678452,
0.0017920712707564235,
-0.046590954065322876,
-0.017318326979875565,
0.008357154205441475,
0.12257684767246246,
-0.00854624155908823,
0.06142108887434006,
-0.011412075720727444,
0.040702980011701584,
-0.10749933868646622,
0.20058125257492065,
-0.07847847044467926,
-0.01537604071199894,
-0.022897634655237198,
0.07959841936826706,
-0.016160020604729652,
-0.020781802013516426,
-0.05753335356712341,
0.02667546272277832,
0.1109004095196724,
0.06344553083181381,
-0.007527267560362816,
0.0016898094909265637,
-0.05994254723191261,
-0.027947356924414635,
-0.019298983737826347,
-0.11316006630659103,
0.0197946447879076,
0.02857806533575058,
-0.09709715843200684,
0.041635386645793915,
-0.0015553951961919665,
0.025641685351729393,
-0.03394778445363045,
0.07781440019607544,
-0.06227041408419609,
0.005110017489641905,
-0.10094103217124939,
-0.11172898858785629,
0.04401254653930664,
-0.013767007738351822,
-0.015253609046339989,
-0.09373942762613297,
-0.1135348379611969,
-0.05726418271660805,
0.043872036039829254,
-0.03705178201198578,
-0.07524236291646957,
-0.06194513291120529,
-0.07216934859752655,
0.05731789767742157,
-0.046756647527217865,
0.1494510918855667,
-0.04691767692565918,
0.12009147554636002,
0.04830976203083992,
0.027027493342757225,
0.032862596213817596,
0.08011212199926376,
-0.04461219534277916,
0.038017529994249344,
-0.1263393759727478,
0.07680412381887436,
-0.11010248214006424,
0.07979601621627808,
-0.15332277119159698,
-0.1274746209383011,
-0.015816062688827515,
-0.008500456809997559,
0.12164473533630371,
0.09129613637924194,
-0.15098315477371216,
-0.10772112011909485,
0.16329194605350494,
-0.08554340898990631,
-0.11644940823316574,
0.13183219730854034,
0.005810278933495283,
0.014185871928930283,
0.050958745181560516,
0.1790824681520462,
0.11106063425540924,
-0.08662158995866776,
-0.0029457383789122105,
-0.07494934648275375,
0.13569656014442444,
-0.003514277283102274,
0.12336266040802002,
-0.06622909754514694,
-0.013463983312249184,
0.011380203999578953,
-0.03515297919511795,
0.08519516885280609,
-0.10316795855760574,
-0.07779467850923538,
-0.027197344228625298,
-0.08750329911708832,
0.009934931993484497,
0.05887668952345848,
0.0399530827999115,
-0.09669019281864166,
-0.1252918690443039,
0.029283761978149414,
0.12192577123641968,
-0.10348902642726898,
0.043320972472429276,
-0.10146936029195786,
0.0726388543844223,
-0.04523453861474991,
-0.006852293852716684,
-0.15800581872463226,
-0.0021757646463811398,
0.03580596670508385,
-0.07213092595338821,
0.016428060829639435,
-0.08356960117816925,
0.057383958250284195,
0.018915601074695587,
-0.044000331312417984,
-0.07012292742729187,
-0.09060971438884735,
-0.030161261558532715,
-0.043927330523729324,
-0.195701003074646,
-0.09553637355566025,
-0.014444099739193916,
0.14414484798908234,
-0.18097805976867676,
0.015742138028144836,
0.038466718047857285,
0.11350122094154358,
0.022754443809390068,
-0.049026548862457275,
-0.0011708891252055764,
0.0816820040345192,
-0.023105857893824577,
-0.06089099124073982,
0.03635716810822487,
0.03282884880900383,
-0.1165214404463768,
0.0680384635925293,
-0.0913291871547699,
0.10021321475505829,
0.09748808294534683,
-0.03743039071559906,
-0.03808389604091644,
-0.0458810068666935,
-0.075681671500206,
-0.051281366497278214,
-0.030227279290556908,
-0.03234994783997536,
0.13830488920211792,
0.026827825233340263,
0.12061414122581482,
-0.10101623833179474,
-0.037458598613739014,
0.04374583438038826,
0.001743794302456081,
-0.002524650888517499,
0.10605152696371078,
0.06217760592699051,
-0.0025925023946911097,
0.0832897499203682,
0.03735455125570297,
-0.08316800743341446,
0.1589156836271286,
-0.07440241426229477,
-0.1260407716035843,
-0.009217843413352966,
0.02115696296095848,
0.04870465770363808,
0.11856978386640549,
-0.18294525146484375,
-0.01568884402513504,
0.03225449100136757,
0.03689126670360565,
0.03895745053887367,
-0.20982646942138672,
-0.00046650576405227184,
0.02774246409535408,
-0.08757954835891724,
-0.07266415655612946,
0.00706704705953598,
-0.01867848075926304,
0.08467603474855423,
0.01120817381888628,
-0.04650476574897766,
-0.016030792146921158,
-0.03432188183069229,
-0.09777042269706726,
0.17603331804275513,
-0.1013137549161911,
-0.16552963852882385,
-0.15481778979301453,
-0.03847356513142586,
-0.01833355985581875,
-0.007226870860904455,
0.053863730281591415,
-0.10558949410915375,
-0.025934169068932533,
-0.046713147312402725,
0.059463419020175934,
-0.08664710819721222,
0.030893750488758087,
-0.0006100395694375038,
0.02321567013859749,
0.09891092777252197,
-0.1157102882862091,
0.02420234866440296,
-0.006327488459646702,
-0.058036498725414276,
0.0031134700402617455,
0.012731661088764668,
0.11390538513660431,
0.1861354559659958,
0.05057349056005478,
0.03149174153804779,
-0.05823788419365883,
0.1371951848268509,
-0.1190652921795845,
-0.037112344056367874,
0.1535768210887909,
0.05210014805197716,
0.04445493966341019,
0.1130540668964386,
0.050824329257011414,
-0.07916262000799179,
0.038398146629333496,
0.044680558145046234,
-0.028094487264752388,
-0.26078957319259644,
-0.030243514105677605,
-0.08401035517454147,
-0.017107702791690826,
0.09138316661119461,
0.03075668402016163,
0.036125846207141876,
0.027855779975652695,
-0.04011284559965134,
-0.013682347722351551,
0.013641498982906342,
0.07682999223470688,
0.10241750627756119,
0.041550494730472565,
0.1323002725839615,
-0.020531056448817253,
-0.007979008369147778,
0.025358829647302628,
-0.0013141701929271221,
0.28270968794822693,
0.014175319112837315,
0.17713317275047302,
0.07030566036701202,
0.16709135472774506,
0.018444037064909935,
0.07793179899454117,
0.018445955589413643,
-0.007121005095541477,
0.030493203550577164,
-0.06125809997320175,
-0.0422494150698185,
0.02850407548248768,
0.09703503549098969,
0.05606728047132492,
-0.153147891163826,
-0.04839358851313591,
0.00965108908712864,
0.39704325795173645,
0.07755812257528305,
-0.28736361861228943,
-0.12158653885126114,
-0.005598404444754124,
-0.10021928697824478,
-0.052742719650268555,
0.034573301672935486,
0.0781588926911354,
-0.10372525453567505,
0.05258488282561302,
-0.06250409036874771,
0.12165841460227966,
-0.0340554341673851,
-0.020347293466329575,
0.06556670367717743,
0.07959047704935074,
0.002973955124616623,
0.07704269886016846,
-0.27602419257164,
0.29751163721084595,
-0.02485731616616249,
0.0997360497713089,
-0.016164710745215416,
0.037570759654045105,
0.0524100735783577,
-0.029567014425992966,
0.05124470591545105,
-0.007762306369841099,
-0.09345269203186035,
-0.17777137458324432,
-0.06838338077068329,
0.023374758660793304,
0.1303357034921646,
-0.05140843242406845,
0.1169741153717041,
-0.046577367931604385,
-0.010711207054555416,
0.04710929095745087,
-0.06553947180509567,
-0.15140677988529205,
-0.07949531823396683,
0.032224562019109726,
0.04943126440048218,
0.1400575041770935,
-0.1270286738872528,
-0.11254589259624481,
-0.0319269634783268,
0.14925529062747955,
-0.09806572645902634,
-0.015155792236328125,
-0.12717801332473755,
0.0871744155883789,
0.16442903876304626,
-0.06542839109897614,
0.06308848410844803,
0.0052448962815105915,
0.16067056357860565,
0.031189724802970886,
0.0019388347864151,
0.09525526314973831,
-0.08874993771314621,
-0.19818945229053497,
-0.054907094687223434,
0.1838628351688385,
0.011744875460863113,
0.06723589450120926,
-0.018781935796141624,
0.012302950024604797,
-0.017909927293658257,
-0.07903188467025757,
0.055064182728528976,
0.03531365841627121,
-0.04025454446673393,
0.06248067319393158,
-0.025698328390717506,
0.017693307250738144,
-0.0964837297797203,
-0.08564493060112,
0.14419840276241302,
0.23798193037509918,
-0.06853951513767242,
0.008218853734433651,
0.05622822791337967,
-0.047381773591041565,
-0.14586931467056274,
0.028194306418299675,
0.15667839348316193,
0.04002887383103371,
-0.052039846777915955,
-0.23665623366832733,
0.030337518081068993,
0.08530936390161514,
-0.043658871203660965,
0.09965243190526962,
-0.30720457434654236,
-0.1302945613861084,
0.08000510931015015,
0.08016279339790344,
-0.00791967660188675,
-0.1584583967924118,
-0.08654174208641052,
-0.03889211639761925,
-0.09161823242902756,
0.05074971541762352,
-0.006930893752723932,
0.12646164000034332,
0.007178397849202156,
0.06247200071811676,
0.012124724686145782,
-0.045615460723638535,
0.1523951143026352,
-0.017702540382742882,
0.018297536298632622,
0.00928408745676279,
0.08376714587211609,
0.05477076396346092,
-0.05028461292386055,
0.016431087628006935,
-0.026372434571385384,
0.0292501263320446,
-0.14705531299114227,
-0.04087518900632858,
-0.1039121076464653,
0.04040459915995598,
-0.02288612723350525,
-0.02990286983549595,
-0.020161090418696404,
0.04674488306045532,
0.05122821033000946,
0.027817746624350548,
0.12554189562797546,
-0.08433090150356293,
0.16467660665512085,
0.08202096074819565,
0.09413771331310272,
-0.050106219947338104,
-0.08964930474758148,
-0.006502517964690924,
-0.023518940433859825,
0.061113350093364716,
-0.13196642696857452,
0.03798792511224747,
0.13722951710224152,
0.06062794104218483,
0.14630143344402313,
0.06339110434055328,
-0.09780354797840118,
0.0507766418159008,
0.07716243714094162,
-0.02810247428715229,
-0.12797172367572784,
-0.03431304171681404,
0.12185956537723541,
-0.15068280696868896,
0.03868430107831955,
0.10636984556913376,
-0.0580253079533577,
-0.009319966658949852,
0.010195454582571983,
0.0034856318961828947,
-0.06264109909534454,
0.22317926585674286,
0.050262752920389175,
0.08876155316829681,
-0.09072422981262207,
0.09002811461687088,
0.05192512646317482,
-0.15465222299098969,
-0.003980404697358608,
0.0598636157810688,
-0.036107137799263,
-0.012254992499947548,
-0.044186584651470184,
0.016745269298553467,
-0.028570614755153656,
-0.08253054320812225,
-0.12723001837730408,
-0.15301261842250824,
0.09692174941301346,
0.09269214421510696,
0.023912839591503143,
0.03535940498113632,
-0.039265602827072144,
0.05118981748819351,
-0.1018814966082573,
0.07471026480197906,
0.09553754329681396,
0.06751518696546555,
-0.13723041117191315,
0.13675153255462646,
0.032711151987314224,
0.02708273008465767,
0.01038578525185585,
-0.040953412652015686,
-0.0642707347869873,
0.05006101354956627,
-0.1256874054670334,
-0.03514515608549118,
-0.0639994740486145,
-0.01607348769903183,
0.011273729614913464,
-0.07133209705352783,
-0.08782438933849335,
0.041419658809900284,
-0.1278819739818573,
-0.054338809102773666,
-0.01482213381677866,
0.06832370907068253,
-0.09014439582824707,
-0.006439959164708853,
0.059771034866571426,
-0.11817313730716705,
0.0870533287525177,
0.06606943160295486,
0.02863937057554722,
0.045306771993637085,
-0.08759644627571106,
-0.0020151729695498943,
0.030711205676198006,
-0.0032604557927697897,
0.01475883275270462,
-0.17074817419052124,
0.010818800888955593,
0.0037865792401134968,
0.03269044682383537,
-0.014003206044435501,
-0.011380304582417011,
-0.14039131999015808,
-0.06336841732263565,
-0.004483489785343409,
-0.03664578124880791,
-0.044575851410627365,
0.05481872335076332,
0.050296347588300705,
0.0717560350894928,
0.14044520258903503,
-0.07684443145990372,
0.040321942418813705,
-0.22386595606803894,
0.03610410541296005,
-0.05801558867096901,
-0.0711594820022583,
-0.06152387708425522,
-0.016078481450676918,
0.08123551309108734,
-0.052970580756664276,
0.06762626022100449,
-0.06149473413825035,
0.09481187164783478,
0.035535115748643875,
-0.12405384331941605,
0.04780479520559311,
0.03408784419298172,
0.2568685710430145,
0.07299801707267761,
-0.004809154197573662,
0.09849242120981216,
-0.010545016266405582,
0.04830741137266159,
0.1658630669116974,
0.12905149161815643,
0.15609301626682281,
0.07994920760393143,
0.11822476238012314,
0.07531262934207916,
-0.09531714767217636,
-0.12883296608924866,
0.09217150509357452,
-0.0002219716552644968,
0.13166697323322296,
0.00234584859572351,
0.24041138589382172,
0.1632123738527298,
-0.18026886880397797,
0.06831316649913788,
-0.0113367959856987,
-0.0670221596956253,
-0.09706149995326996,
-0.07028511166572571,
-0.06977162510156631,
-0.22042667865753174,
0.015294445678591728,
-0.11792903393507004,
0.0655505433678627,
0.04471827670931816,
0.03391652926802635,
0.022418085485696793,
0.10469551384449005,
0.052928660064935684,
-0.03351763263344765,
0.14939357340335846,
-0.023292116820812225,
-0.014598200097680092,
-0.04220925271511078,
-0.11830071359872818,
0.06944141536951065,
-0.02523624338209629,
0.06965424120426178,
-0.030781645327806473,
-0.1242673322558403,
0.0642419382929802,
0.01955895498394966,
-0.10876471549272537,
0.019056174904108047,
-0.003344343276694417,
0.07355168461799622,
0.10002028942108154,
0.030001454055309296,
0.0011356143513694406,
-0.002441984135657549,
0.27573004364967346,
-0.11051109433174133,
-0.04762957990169525,
-0.14678215980529785,
0.2506054639816284,
0.03463483974337578,
-0.022276995703577995,
0.00854781549423933,
-0.08037823438644409,
-0.022271115332841873,
0.18039025366306305,
0.10476919263601303,
0.024522336199879646,
-0.03989284485578537,
0.00048793823225423694,
-0.02399567887187004,
-0.06050045043230057,
0.08481402695178986,
0.12471508979797363,
0.06160968542098999,
-0.0537555031478405,
-0.037171173840761185,
-0.05826711282134056,
-0.0493626594543457,
-0.01296811643987894,
0.09074392169713974,
-0.006285232026129961,
-0.025543799623847008,
-0.029400700703263283,
0.13685470819473267,
-0.06896812468767166,
-0.0970592126250267,
0.002318226732313633,
-0.1413753628730774,
-0.18101218342781067,
-0.04239523783326149,
0.021593645215034485,
0.05020160600543022,
0.05692163482308388,
-0.022248923778533936,
-0.008432669565081596,
0.12557852268218994,
0.010338197462260723,
-0.034339141100645065,
-0.15981490910053253,
0.09845184534788132,
-0.0879654586315155,
0.20571540296077728,
-0.05534734949469566,
0.0008450518362224102,
0.12394357472658157,
0.08257488161325455,
-0.08902443200349808,
0.05556211620569229,
0.0702727809548378,
-0.12989471852779388,
0.05613037571310997,
0.22031012177467346,
-0.028795912861824036,
0.16169752180576324,
0.020758504047989845,
-0.12619593739509583,
0.025846777483820915,
-0.07847780734300613,
-0.038231413811445236,
-0.08442603796720505,
-0.005837566219270229,
-0.06181885302066803,
0.10126953572034836,
0.19207677245140076,
-0.09146498143672943,
-0.030724521726369858,
-0.07045753300189972,
0.007733259350061417,
0.04534310847520828,
0.1191273033618927,
-0.03592316433787346,
-0.2938418984413147,
0.013130970299243927,
-0.0013931089779362082,
-0.003496864577755332,
-0.2440464198589325,
-0.07032229006290436,
0.044433336704969406,
-0.07679648697376251,
-0.02829139307141304,
0.11427493393421173,
0.04866747558116913,
0.03175496682524681,
-0.052100446075201035,
-0.12525907158851624,
-0.031592030078172684,
0.20244120061397552,
-0.1783490628004074,
-0.061297766864299774
] |
null | null | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
#
This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - UR dataset.
It achieves the following results on the evaluation set:
- Loss: 1.5614
- Wer: 0.6765
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 1000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 1.9115 | 20.83 | 500 | 1.5400 | 0.7280 |
| 0.1155 | 41.67 | 1000 | 1.5614 | 0.6765 |
### Framework versions
- Transformers 4.16.0.dev0
- Pytorch 1.10.1+cu102
- Datasets 1.17.1.dev0
- Tokenizers 0.11.0 | {"language": ["ur"], "license": "apache-2.0", "tags": ["automatic-speech-recognition", "mozilla-foundation/common_voice_7_0", "generated_from_trainer", "sv", "robust-speech-event", "model_for_talk", "hf-asr-leaderboard"], "datasets": ["mozilla-foundation/common_voice_7_0"], "model-index": [{"name": "", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Common Voice 8.0", "type": "mozilla-foundation/common_voice_8_0", "args": "ur"}, "metrics": [{"type": "wer", "value": 67.48, "name": "Test WER"}]}]}]} | automatic-speech-recognition | Maniac/wav2vec2-xls-r-urdu | [
"transformers",
"pytorch",
"safetensors",
"wav2vec2",
"automatic-speech-recognition",
"mozilla-foundation/common_voice_7_0",
"generated_from_trainer",
"sv",
"robust-speech-event",
"model_for_talk",
"hf-asr-leaderboard",
"ur",
"dataset:mozilla-foundation/common_voice_7_0",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [
"ur"
] | TAGS
#transformers #pytorch #safetensors #wav2vec2 #automatic-speech-recognition #mozilla-foundation/common_voice_7_0 #generated_from_trainer #sv #robust-speech-event #model_for_talk #hf-asr-leaderboard #ur #dataset-mozilla-foundation/common_voice_7_0 #license-apache-2.0 #endpoints_compatible #region-us
|
This model is a fine-tuned version of facebook/wav2vec2-large-xlsr-53 on the MOZILLA-FOUNDATION/COMMON\_VOICE\_7\_0 - UR dataset.
It achieves the following results on the evaluation set:
* Loss: 1.5614
* Wer: 0.6765
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 0.0003
* train\_batch\_size: 16
* eval\_batch\_size: 8
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* training\_steps: 1000
* mixed\_precision\_training: Native AMP
### Training results
### Framework versions
* Transformers 4.16.0.dev0
* Pytorch 1.10.1+cu102
* Datasets 1.17.1.dev0
* Tokenizers 0.11.0
| [
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0003\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* training\\_steps: 1000\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.16.0.dev0\n* Pytorch 1.10.1+cu102\n* Datasets 1.17.1.dev0\n* Tokenizers 0.11.0"
] | [
"TAGS\n#transformers #pytorch #safetensors #wav2vec2 #automatic-speech-recognition #mozilla-foundation/common_voice_7_0 #generated_from_trainer #sv #robust-speech-event #model_for_talk #hf-asr-leaderboard #ur #dataset-mozilla-foundation/common_voice_7_0 #license-apache-2.0 #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0003\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* training\\_steps: 1000\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.16.0.dev0\n* Pytorch 1.10.1+cu102\n* Datasets 1.17.1.dev0\n* Tokenizers 0.11.0"
] | [
120,
111,
4,
41
] | [
"passage: TAGS\n#transformers #pytorch #safetensors #wav2vec2 #automatic-speech-recognition #mozilla-foundation/common_voice_7_0 #generated_from_trainer #sv #robust-speech-event #model_for_talk #hf-asr-leaderboard #ur #dataset-mozilla-foundation/common_voice_7_0 #license-apache-2.0 #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0003\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* training\\_steps: 1000\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.16.0.dev0\n* Pytorch 1.10.1+cu102\n* Datasets 1.17.1.dev0\n* Tokenizers 0.11.0"
] | [
-0.11361376941204071,
0.07735990732908249,
-0.0050772568210959435,
0.02343389019370079,
0.11962194740772247,
-0.004041535314172506,
0.12343203276395798,
0.14082616567611694,
-0.12603774666786194,
0.07381953299045563,
0.08460036665201187,
0.08466728776693344,
0.08631094545125961,
0.13231348991394043,
-0.02428937517106533,
-0.25548508763313293,
0.037472497671842575,
-0.016404787078499794,
-0.06561391800642014,
0.10432415455579758,
0.10261418670415878,
-0.11887259781360626,
0.021476224064826965,
0.033747732639312744,
-0.10092861205339432,
0.006492077838629484,
-0.016748394817113876,
-0.0647394061088562,
0.10903055965900421,
0.03118695132434368,
0.06310224533081055,
0.04673192650079727,
0.09122051298618317,
-0.25753259658813477,
0.014788356609642506,
0.07351469993591309,
0.04672464355826378,
0.05032377690076828,
0.08174551278352737,
-0.007996723055839539,
0.07189494371414185,
-0.04156319424510002,
0.05536409467458725,
0.05822348594665527,
-0.09483081847429276,
-0.2848206162452698,
-0.10225364565849304,
0.04825679957866669,
0.08674783259630203,
0.07825352996587753,
-0.028504665940999985,
0.06341808289289474,
-0.09101880341768265,
0.08725754171609879,
0.19323211908340454,
-0.212204247713089,
-0.060952771455049515,
-0.03199383243918419,
0.03771072253584862,
0.05942593142390251,
-0.10813421756029129,
-0.029103506356477737,
0.02733287587761879,
0.02667611464858055,
0.10676515102386475,
0.009143941104412079,
-0.024607131257653236,
-0.01818583533167839,
-0.13404054939746857,
-0.05680862441658974,
0.11691588908433914,
0.05577341094613075,
-0.012726690620183945,
-0.11113619059324265,
-0.03337627649307251,
-0.13891831040382385,
-0.05466889217495918,
0.009754526428878307,
0.014560169540345669,
-0.020275935530662537,
-0.049906175583601,
0.01617840863764286,
-0.058769699186086655,
-0.07289031147956848,
0.05260026454925537,
0.12991178035736084,
0.04749659076333046,
-0.01812046207487583,
-0.02774016745388508,
0.08507247269153595,
0.05163644999265671,
-0.15833452343940735,
-0.01044307928532362,
0.017462538555264473,
-0.06111832335591316,
-0.004154163878411055,
0.000040583821828477085,
-0.017171744257211685,
0.06747136265039444,
0.09505947679281235,
-0.06490202993154526,
0.09500481188297272,
-0.011277270503342152,
0.028487959876656532,
-0.0919090062379837,
0.1528751105070114,
-0.04315763711929321,
-0.030325954779982567,
-0.012963038869202137,
0.13369439542293549,
0.0011272166157141328,
-0.00982049573212862,
-0.07357349246740341,
0.03725719451904297,
0.08695357292890549,
0.04984400048851967,
-0.02618524245917797,
0.03907190263271332,
-0.05064044147729874,
-0.010612218640744686,
-0.019551794975996017,
-0.1310480237007141,
0.03104512393474579,
0.070330411195755,
-0.0450199618935585,
0.01735580898821354,
-0.021454080939292908,
0.011119541712105274,
-0.04863442853093147,
0.05804255232214928,
-0.03379172459244728,
0.003466787049546838,
-0.0944879949092865,
-0.10626780241727829,
0.03703431785106659,
-0.040502239018678665,
-0.01481609046459198,
-0.08528205752372742,
-0.10149703919887543,
-0.06929734349250793,
0.033661097288131714,
-0.0285812821239233,
-0.040501613169908524,
-0.09431645274162292,
-0.08324704319238663,
0.04478258267045021,
-0.033834245055913925,
0.1312088817358017,
-0.05976153537631035,
0.09075551480054855,
0.006593441590666771,
0.044776760041713715,
0.08572640269994736,
0.06182118132710457,
-0.01770876906812191,
0.04029453918337822,
-0.12896732985973358,
0.10562875121831894,
-0.12093723565340042,
0.05296770855784416,
-0.11126313358545303,
-0.09762810915708542,
-0.024081680923700333,
0.0023363137152045965,
0.1129467710852623,
0.1182919517159462,
-0.15265871584415436,
-0.09081445634365082,
0.19330640137195587,
-0.07202925533056259,
-0.051489632576704025,
0.13672398030757904,
-0.031251903623342514,
-0.028021888807415962,
0.050954170525074005,
0.20304089784622192,
0.1269434690475464,
-0.08256670832633972,
0.025969961658120155,
-0.04949535056948662,
0.09212375432252884,
0.03539907559752464,
0.05824321508407593,
-0.047549955546855927,
0.03953051567077637,
0.012893232516944408,
-0.004489323124289513,
0.069804348051548,
-0.08103933185338974,
-0.07171694189310074,
-0.026056604459881783,
-0.07276445627212524,
0.016337264329195023,
0.05292637646198273,
0.016788773238658905,
-0.08514823019504547,
-0.11670440435409546,
0.004122144542634487,
0.11555924266576767,
-0.11306671798229218,
0.027906835079193115,
-0.10885313153266907,
0.08003457635641098,
-0.015416467562317848,
0.011317920871078968,
-0.14884985983371735,
0.03270791098475456,
0.029094010591506958,
-0.03501284867525101,
-0.008620408363640308,
-0.003325961297377944,
0.07515913248062134,
0.026791485026478767,
-0.03614438325166702,
-0.06306113302707672,
-0.058738529682159424,
0.004635833203792572,
-0.035085901618003845,
-0.22837203741073608,
-0.042361002415418625,
-0.04113088920712471,
0.13520628213882446,
-0.1872672289609909,
0.024030715227127075,
0.07564052939414978,
0.13245150446891785,
0.02912607043981552,
-0.03849736973643303,
0.012785808183252811,
0.07983314245939255,
-0.00999661348760128,
-0.07192229479551315,
0.03516309708356857,
0.023064710199832916,
-0.0828128308057785,
0.04409538209438324,
-0.13671422004699707,
0.08629332482814789,
0.09991691261529922,
0.0009503797627985477,
-0.05575535446405411,
-0.01705888658761978,
-0.05048481002449989,
-0.03584975749254227,
-0.03266977518796921,
0.006312757730484009,
0.18202251195907593,
0.009889003820717335,
0.12452365458011627,
-0.07777035236358643,
-0.03633452206850052,
0.038522254675626755,
0.010039784014225006,
0.020858973264694214,
0.14971283078193665,
0.021158382296562195,
-0.028016431257128716,
0.10001801699399948,
0.025074996054172516,
-0.04629499092698097,
0.17799052596092224,
-0.08803902566432953,
-0.06972185522317886,
-0.006456805858761072,
0.026419444009661674,
0.009951334446668625,
0.10909289866685867,
-0.1876811385154724,
-0.03629225492477417,
0.01742657646536827,
0.02919347956776619,
0.029703278094530106,
-0.19869951903820038,
0.011556093581020832,
0.026188377290964127,
-0.08767763525247574,
-0.026251086965203285,
0.003422628389671445,
0.008210382424294949,
0.08426937460899353,
-0.004613835830241442,
-0.08224979788064957,
-0.014070309698581696,
-0.036902572959661484,
-0.0976540595293045,
0.15362496674060822,
-0.10188183933496475,
-0.150069922208786,
-0.09642117470502853,
-0.014504041522741318,
-0.009535643272101879,
-0.01093850377947092,
0.050149861723184586,
-0.11744663864374161,
-0.02910054475069046,
-0.055517345666885376,
0.006690476089715958,
-0.021990885958075523,
-0.0002109657070832327,
0.06675095111131668,
0.014133632183074951,
0.06541380286216736,
-0.11141293495893478,
0.0019116821931675076,
-0.021929316222667694,
-0.006489075720310211,
0.013960294425487518,
0.028910081833600998,
0.07931358367204666,
0.1702745109796524,
0.027301155030727386,
0.044022902846336365,
-0.04138723388314247,
0.16592800617218018,
-0.1217259094119072,
-0.016159921884536743,
0.13379986584186554,
-0.003331422572955489,
0.04983340576291084,
0.14467594027519226,
0.04346989467740059,
-0.0672079548239708,
-0.00040077284211292863,
0.006370831746608019,
-0.018955398350954056,
-0.2324577122926712,
-0.020949305966496468,
-0.07977626472711563,
-0.05123457312583923,
0.06583572924137115,
0.03477621451020241,
-0.01802598126232624,
0.021204117685556412,
-0.027210701256990433,
-0.017629306763410568,
0.06293843686580658,
0.04793179780244827,
0.10041224211454391,
0.018904119729995728,
0.11255204677581787,
-0.02400444820523262,
-0.03410639241337776,
0.017940837889909744,
-0.011335683986544609,
0.22945503890514374,
0.0042891004122793674,
0.13540415465831757,
0.06491134315729141,
0.15021905303001404,
0.023089051246643066,
0.029660379514098167,
0.007773893419653177,
0.002401742385700345,
0.019042467698454857,
-0.0509549081325531,
-0.060358934104442596,
0.017774470150470734,
0.0638783648610115,
0.020876897498965263,
-0.09113863110542297,
0.023287666961550713,
0.03900739550590515,
0.3722955584526062,
0.05104883387684822,
-0.27479127049446106,
-0.08574611693620682,
0.009838503785431385,
-0.07675717025995255,
-0.03849584609270096,
0.03799336776137352,
0.13587559759616852,
-0.07614047825336456,
0.05757760629057884,
-0.044370148330926895,
0.08535540103912354,
-0.07094506174325943,
0.018064424395561218,
0.033819783478975296,
0.11860773712396622,
0.0030810304451733828,
0.056358322501182556,
-0.2884715795516968,
0.2627932131290436,
-0.010320071130990982,
0.11366833001375198,
-0.041114091873168945,
0.04124896228313446,
0.04972880333662033,
0.007233744952827692,
0.062119897454977036,
-0.0055342307314276695,
-0.13853010535240173,
-0.15013954043388367,
-0.0799398347735405,
0.023928014561533928,
0.10914865881204605,
0.0022225051652640104,
0.09669213742017746,
-0.042398564517498016,
-0.016658635810017586,
0.04201468825340271,
-0.0958094373345375,
-0.14955268800258636,
-0.09685320407152176,
0.02632218971848488,
0.0539737343788147,
0.08178270608186722,
-0.1020447388291359,
-0.09375535696744919,
-0.06502211093902588,
0.1193293035030365,
-0.09914518147706985,
-0.0249343179166317,
-0.12042011320590973,
0.0343593992292881,
0.09952571988105774,
-0.052026960998773575,
0.029576892033219337,
0.026521189138293266,
0.14368773996829987,
0.0013951706932857633,
-0.014145500026643276,
0.07911855727434158,
-0.08705075085163116,
-0.21705098450183868,
-0.04215517267584801,
0.15848399698734283,
0.046466097235679626,
0.059134840965270996,
-0.0004038851475343108,
0.014748292043805122,
-0.00225880672223866,
-0.07182344794273376,
0.06927008926868439,
0.10376208275556564,
0.001548538450151682,
0.026310425251722336,
-0.03031931072473526,
-0.053960248827934265,
-0.07844431698322296,
-0.06063913553953171,
0.12930892407894135,
0.21177780628204346,
-0.08081872761249542,
0.07423187047243118,
0.08402601629495621,
-0.07010103017091751,
-0.17385196685791016,
0.004847419448196888,
0.105437271296978,
0.04702884703874588,
-0.04437914490699768,
-0.18287287652492523,
-0.02780011110007763,
0.03845396265387535,
-0.02369471825659275,
0.060900796204805374,
-0.32961305975914,
-0.12671586871147156,
0.10221462696790695,
0.05937565490603447,
0.02338007651269436,
-0.13029849529266357,
-0.047069355845451355,
-0.033927228301763535,
-0.07474397122859955,
0.010596080683171749,
-0.05336005613207817,
0.11685405671596527,
0.0016889714170247316,
0.059068694710731506,
0.01724686287343502,
-0.0549604557454586,
0.11448372900485992,
-0.018648458644747734,
0.04390859603881836,
-0.025951137766242027,
0.036949269473552704,
0.028936244547367096,
-0.06714840233325958,
0.0005250300746411085,
-0.05578447878360748,
0.03138759359717369,
-0.12305393069982529,
-0.02876865305006504,
-0.09898676723241806,
0.012422127649188042,
-0.024918001145124435,
-0.017449554055929184,
-0.022542361170053482,
0.032868653535842896,
0.0893401950597763,
0.012255251407623291,
0.10124822705984116,
-0.08127067238092422,
0.14445118606090546,
0.12344095855951309,
0.1310984492301941,
-0.051520101726055145,
-0.06626272946596146,
-0.002737422240898013,
-0.011248038150370121,
0.05706038698554039,
-0.12574803829193115,
0.05582793802022934,
0.12433741986751556,
0.034178536385297775,
0.1477130502462387,
0.0611693412065506,
-0.09670916944742203,
0.03564397618174553,
0.04815518483519554,
-0.08927501738071442,
-0.16737401485443115,
-0.009881646372377872,
0.048331908881664276,
-0.10165877640247345,
0.018816670402884483,
0.11994482576847076,
-0.055362556129693985,
-0.005789692513644695,
-0.0013669284526258707,
0.050812847912311554,
-0.045118678361177444,
0.21042779088020325,
0.04451081529259682,
0.08244680613279343,
-0.09401272237300873,
0.08207030594348907,
0.039320044219493866,
-0.10255337506532669,
0.049044232815504074,
0.07702145725488663,
-0.06474866718053818,
-0.028287775814533234,
0.020503301173448563,
0.11059150099754333,
0.09294282644987106,
-0.08510767668485641,
-0.136873260140419,
-0.1670076847076416,
0.08883678168058395,
0.0871497094631195,
0.0138695752248168,
0.02356794662773609,
-0.028790518641471863,
0.027784213423728943,
-0.09529518336057663,
0.09434325993061066,
0.0833059549331665,
0.03653886914253235,
-0.11883020401000977,
0.1170683279633522,
0.01871565729379654,
0.0007418164750561118,
-0.003696374362334609,
-0.015341350808739662,
-0.10296067595481873,
0.04763306304812431,
-0.13575005531311035,
0.00042361512896604836,
-0.05784376338124275,
0.010981238447129726,
0.005347223486751318,
-0.050019364804029465,
-0.05829785019159317,
0.04930141568183899,
-0.11379346996545792,
-0.017219770699739456,
-0.019340751692652702,
0.06586119532585144,
-0.0887516438961029,
-0.0019846297800540924,
0.011182856746017933,
-0.12077981978654861,
0.08337080478668213,
0.04653725028038025,
-0.019879529252648354,
0.022057101130485535,
-0.11689693480730057,
-0.03398463502526283,
0.035484541207551956,
0.009419739246368408,
0.024041105061769485,
-0.1632699966430664,
0.0013690008781850338,
0.002129880478605628,
-0.00047836266458034515,
-0.011024200357496738,
0.02914590574800968,
-0.10271114856004715,
0.011959577910602093,
-0.01839464157819748,
-0.053429581224918365,
-0.0477491058409214,
0.0762447938323021,
0.08218501508235931,
0.02633516676723957,
0.15539050102233887,
-0.09883227199316025,
0.061441559344530106,
-0.21239066123962402,
0.004031291697174311,
0.003570059547200799,
-0.08187346160411835,
-0.06685458868741989,
-0.022095676511526108,
0.10566765069961548,
-0.05484024062752724,
0.08475883305072784,
-0.018923750147223473,
0.04052086919546127,
0.028355054557323456,
-0.1468876600265503,
-0.022449102252721786,
0.051606979221105576,
0.14274871349334717,
0.031247921288013458,
-0.01882893219590187,
0.0636836364865303,
-0.03918346390128136,
0.06335163116455078,
0.11928673833608627,
0.1294378787279129,
0.17069914937019348,
0.09431138634681702,
0.08142275363206863,
0.09338639676570892,
-0.09371589869260788,
-0.11297287791967392,
0.15074917674064636,
-0.06594950705766678,
0.13611871004104614,
-0.05276764929294586,
0.18771465122699738,
0.13594892621040344,
-0.15965919196605682,
0.07417444884777069,
-0.058520104736089706,
-0.07541459053754807,
-0.10902013629674911,
-0.08195477724075317,
-0.07674021273851395,
-0.19973158836364746,
0.032237935811281204,
-0.09992001950740814,
0.05962872505187988,
0.04470447450876236,
0.04342147707939148,
0.02357531152665615,
0.08192327618598938,
0.07250144332647324,
-0.0034238360822200775,
0.11642257124185562,
-0.012592772021889687,
-0.012562272138893604,
-0.08997189253568649,
-0.11186610907316208,
0.07950817793607712,
-0.02957039512693882,
0.07390391826629639,
-0.01600617729127407,
-0.08475802093744278,
0.036231931298971176,
0.003642483614385128,
-0.07959127426147461,
0.04167767986655235,
-0.011856931261718273,
0.06846974045038223,
0.08015773445367813,
0.049883417785167694,
-0.01309424638748169,
0.0004415149160195142,
0.18546175956726074,
-0.07700159400701523,
-0.09104851633310318,
-0.13665668666362762,
0.18101823329925537,
0.015623710118234158,
0.010110964998602867,
0.02503890171647072,
-0.07088503986597061,
-0.005901831667870283,
0.19962935149669647,
0.15531742572784424,
-0.0007006326341070235,
-0.010834611020982265,
-0.013929267413914204,
-0.01542843971401453,
-0.05072524771094322,
0.08292540907859802,
0.13919207453727722,
0.017767155542969704,
-0.02771337889134884,
-0.015703024342656136,
-0.02261202596127987,
-0.050826411694288254,
-0.023793337866663933,
0.08030235767364502,
-0.005247658118605614,
-0.0012354946229606867,
-0.039042871445417404,
0.09564916044473648,
-0.05801116302609444,
-0.15965452790260315,
0.01415458507835865,
-0.15650895237922668,
-0.15246638655662537,
-0.027095872908830643,
0.0777105912566185,
0.039507802575826645,
0.04802890494465828,
-0.011487149633467197,
-0.019496846944093704,
0.12329336255788803,
-0.005882401950657368,
-0.010134060867130756,
-0.09802476316690445,
0.07499145716428757,
-0.1383531093597412,
0.15628422796726227,
-0.05043233931064606,
0.027155769988894463,
0.11875925213098526,
0.06584639847278595,
-0.07891958206892014,
0.04721718281507492,
0.05820653587579727,
-0.11475508660078049,
0.013909393921494484,
0.16899465024471283,
-0.03832518681883812,
0.12636247277259827,
0.03817695379257202,
-0.10302609205245972,
0.03078039363026619,
-0.07890887558460236,
-0.05335979163646698,
-0.04441848024725914,
0.0067005944438278675,
-0.03137117996811867,
0.12269313633441925,
0.1742287278175354,
-0.05508410930633545,
0.003646921832114458,
-0.060667794197797775,
0.01697554998099804,
0.010020912624895573,
0.08340498805046082,
-0.039637934416532516,
-0.27616244554519653,
0.007956002838909626,
0.025714300572872162,
0.01306600496172905,
-0.1895054578781128,
-0.08578818291425705,
0.026259226724505424,
-0.0541248582303524,
-0.06015916168689728,
0.10947975516319275,
0.06595216691493988,
0.06262826919555664,
-0.057864271104335785,
-0.13633862137794495,
-0.015846671536564827,
0.18550902605056763,
-0.1445433646440506,
-0.04237942397594452
] |
null | null | transformers | Language Detection Model for Nepali, English, Hindi and Spanish
Model fine tuned on xlm-roberta-large | {} | text-classification | Manishl7/xlm-roberta-large-language-detection | [
"transformers",
"pytorch",
"roberta",
"text-classification",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [] | TAGS
#transformers #pytorch #roberta #text-classification #autotrain_compatible #endpoints_compatible #region-us
| Language Detection Model for Nepali, English, Hindi and Spanish
Model fine tuned on xlm-roberta-large | [] | [
"TAGS\n#transformers #pytorch #roberta #text-classification #autotrain_compatible #endpoints_compatible #region-us \n"
] | [
37
] | [
"passage: TAGS\n#transformers #pytorch #roberta #text-classification #autotrain_compatible #endpoints_compatible #region-us \n"
] | [
-0.020008964464068413,
0.044132623821496964,
-0.0078112599439918995,
0.02638433128595352,
0.20928440988063812,
0.035342395305633545,
0.06615248322486877,
0.11328862607479095,
0.016332678496837616,
-0.028178846463561058,
0.1062050312757492,
0.244922935962677,
-0.040547244250774384,
0.11052706092596054,
-0.11703961342573166,
-0.3019167184829712,
0.0651109591126442,
0.058234453201293945,
0.0004814834101125598,
0.11527911573648453,
0.09698275476694107,
-0.07739077508449554,
0.06869864463806152,
-0.03217874467372894,
-0.131941020488739,
0.042836710810661316,
0.04529296234250069,
-0.13870608806610107,
0.09858331084251404,
0.04921972379088402,
0.15171344578266144,
0.01987096667289734,
-0.06366993486881256,
-0.1485668271780014,
0.03940661624073982,
0.0016886860830709338,
-0.08661011606454849,
0.03708817437291145,
0.071238212287426,
-0.14339829981327057,
0.04450083151459694,
0.03611757233738899,
0.02662758156657219,
0.05500191077589989,
-0.1467411369085312,
-0.06837250292301178,
-0.015736868605017662,
0.030547795817255974,
0.06831184029579163,
0.06859925389289856,
-0.003380601992830634,
0.14116983115673065,
-0.1399628221988678,
0.12732058763504028,
0.10533753782510757,
-0.2779976427555084,
-0.01969316229224205,
0.09297934174537659,
0.03233207389712334,
0.04336971044540405,
-0.0469091534614563,
0.05149709805846214,
0.02325548231601715,
0.005723325069993734,
-0.013593494892120361,
-0.07786429673433304,
-0.13017228245735168,
0.029447631910443306,
-0.07575114071369171,
-0.047911252826452255,
0.18931140005588531,
-0.06078016012907028,
0.06419374793767929,
-0.02578158490359783,
-0.09002748131752014,
-0.04515666514635086,
-0.02595321089029312,
0.02780180424451828,
-0.04802282154560089,
0.06563033908605576,
0.02161816507577896,
0.010254548862576485,
-0.10361794382333755,
0.025263015180826187,
-0.21374544501304626,
0.22683702409267426,
0.014008278027176857,
0.04628974571824074,
-0.17974287271499634,
0.04919026419520378,
0.016432149335741997,
-0.09800734370946884,
0.04059531167149544,
-0.10359881818294525,
0.019286664202809334,
-0.036020707339048386,
-0.07521474361419678,
-0.04318004101514816,
0.08935294300317764,
0.17481516301631927,
0.060050930827856064,
0.05660588666796684,
-0.02891738899052143,
0.08364686369895935,
0.034934286028146744,
0.12381786108016968,
0.029145758599042892,
-0.0430731363594532,
0.054288964718580246,
-0.13852715492248535,
0.005985075607895851,
-0.06892093271017075,
-0.15193496644496918,
-0.043890099972486496,
0.05996817350387573,
0.08541124314069748,
0.016340363770723343,
0.08751767128705978,
-0.05123571678996086,
-0.025786807760596275,
0.057079561054706573,
-0.07623042166233063,
0.010047397576272488,
0.009102854877710342,
0.021692194044589996,
0.10377813875675201,
-0.016680341213941574,
0.0019239634275436401,
-0.07883065193891525,
0.13569426536560059,
-0.05062291771173477,
0.002834826707839966,
-0.028882183134555817,
-0.06732304394245148,
0.031353920698165894,
-0.1529940962791443,
0.04031229764223099,
-0.18075710535049438,
-0.10555167496204376,
-0.0007299539283849299,
0.01633904129266739,
-0.010452449321746826,
-0.036828503012657166,
-0.029121527448296547,
-0.0010542483069002628,
0.0465390607714653,
-0.05203495919704437,
-0.05372150242328644,
-0.0710693895816803,
0.09455125033855438,
-0.025662148371338844,
0.07735227048397064,
-0.11272741109132767,
0.07412353903055191,
-0.09475456178188324,
-0.029008569195866585,
-0.14016872644424438,
0.04407212883234024,
-0.04205916076898575,
0.18818572163581848,
0.013361545279622078,
-0.03987136483192444,
-0.05454714596271515,
0.06222211569547653,
-0.06554840505123138,
0.16502423584461212,
-0.055415909737348557,
-0.1103559210896492,
0.21572303771972656,
-0.08793190866708755,
-0.12616907060146332,
0.07853521406650543,
-0.01983499526977539,
0.014107154682278633,
0.09935758262872696,
0.18871597945690155,
0.10630406439304352,
0.016910504549741745,
0.0883619412779808,
0.09970127791166306,
-0.10351017117500305,
-0.1213667243719101,
-0.003216387936845422,
-0.008271720260381699,
-0.12229956686496735,
0.057527974247932434,
0.08477486670017242,
0.06781025230884552,
-0.04844829812645912,
-0.03921041637659073,
-0.016000164672732353,
-0.011660793796181679,
0.11266223341226578,
0.0542222298681736,
0.11704793572425842,
-0.08393700420856476,
-0.0022737428080290556,
-0.022228462621569633,
-0.005893548019230366,
0.02648397535085678,
0.028688877820968628,
-0.05932282656431198,
0.11452367901802063,
0.02017734758555889,
0.029400894418358803,
-0.2367136925458908,
-0.06601598858833313,
-0.020603468641638756,
0.1433582305908203,
-0.010105208493769169,
0.10095411539077759,
0.04427468404173851,
-0.06928575038909912,
-0.01621636003255844,
-0.009299000725150108,
0.17815911769866943,
0.01738034375011921,
-0.04921546205878258,
-0.07032492011785507,
0.07650125026702881,
-0.07516951113939285,
0.015835674479603767,
-0.07112815976142883,
0.016271501779556274,
0.07571322470903397,
0.11224865168333054,
0.008744978345930576,
0.0727425292134285,
-0.02016051858663559,
0.06210291013121605,
-0.07318591326475143,
0.022908657789230347,
0.10824329406023026,
-0.004980417434126139,
-0.06107798591256142,
0.1551254838705063,
-0.14208556711673737,
0.27617180347442627,
0.19884657859802246,
-0.2908918559551239,
-0.02017652988433838,
-0.025536252185702324,
-0.004497346933931112,
0.02869114652276039,
0.03061705082654953,
0.020218806341290474,
0.08507369458675385,
-0.004770483355969191,
0.19971705973148346,
-0.023923929780721664,
-0.03995136916637421,
-0.006853953469544649,
-0.05899958312511444,
-0.02046085335314274,
0.09736490249633789,
0.06067580729722977,
-0.20302586257457733,
0.1880679875612259,
0.18911747634410858,
0.004468548111617565,
0.15545931458473206,
0.0003551404515746981,
0.04150131344795227,
0.0840771347284317,
-0.04905596002936363,
-0.014827928505837917,
-0.08001329749822617,
-0.17313796281814575,
-0.0473613403737545,
0.07346320897340775,
0.02623208612203598,
0.06899876892566681,
-0.10228913277387619,
-0.039061445742845535,
0.00035962145193479955,
0.028382880613207817,
-0.013808752410113811,
0.09584128856658936,
0.07520584017038345,
0.1137809306383133,
0.0046613202430307865,
-0.0636981874704361,
0.10756023973226547,
0.001925493124872446,
-0.07367260009050369,
0.1902109980583191,
-0.1323123574256897,
-0.337295800447464,
-0.15708862245082855,
-0.2121734917163849,
-0.019831912592053413,
0.06118001043796539,
0.10692126303911209,
-0.11363879591226578,
-0.04476870596408844,
0.04283493384718895,
-0.0034252714831382036,
-0.06604110449552536,
0.03876585140824318,
-0.06533156335353851,
0.08773002028465271,
-0.06364738941192627,
-0.05990470200777054,
-0.06569340825080872,
-0.038312867283821106,
-0.013243465684354305,
0.15560667216777802,
-0.12804582715034485,
0.08351859450340271,
0.1680022031068802,
-0.0029614458326250315,
0.06352407485246658,
-0.035965193063020706,
0.15339027345180511,
-0.10014189779758453,
-0.030315415933728218,
0.1889757513999939,
-0.068211130797863,
0.0744536817073822,
0.16308091580867767,
0.014739030972123146,
-0.0636824518442154,
0.030278878286480904,
-0.034673016518354416,
-0.10021910816431046,
-0.22630487382411957,
-0.14426615834236145,
-0.12350988388061523,
0.04796411097049713,
0.05659063905477524,
0.07286151498556137,
0.14150547981262207,
0.07591188699007034,
0.016282901167869568,
0.00013132939056959003,
0.0014127136673778296,
0.09078255295753479,
0.2534273564815521,
0.009143847972154617,
0.14892973005771637,
-0.07104091346263885,
-0.13614638149738312,
0.08464624732732773,
0.01240177545696497,
0.12425845116376877,
0.09204304963350296,
0.004151592496782541,
0.010810011066496372,
0.055354043841362,
0.16762010753154755,
0.10863393545150757,
0.043654248118400574,
-0.016212422400712967,
-0.020722083747386932,
0.008428140543401241,
-0.06790567189455032,
0.01627505198121071,
0.05736133083701134,
-0.15321840345859528,
-0.07510635256767273,
-0.13223819434642792,
0.09712949395179749,
0.09360931813716888,
0.0470423586666584,
-0.19960257411003113,
0.005815644282847643,
0.0936809852719307,
-0.0333959199488163,
-0.09875739365816116,
0.07462789863348007,
-0.07721393555402756,
-0.15226376056671143,
0.10575620085000992,
-0.032381944358348846,
0.13865694403648376,
-0.08692946285009384,
0.0790829285979271,
-0.055491261184215546,
-0.1101168543100357,
0.02726965956389904,
0.11307073384523392,
-0.266848623752594,
0.23194316029548645,
0.005795670207589865,
-0.06619521975517273,
-0.07798527181148529,
-0.02415461093187332,
0.04554189369082451,
0.19904311001300812,
0.074777752161026,
-0.0025721739511936903,
-0.0985921323299408,
-0.1604350209236145,
-0.0035795620642602444,
0.003904567565768957,
0.12411849945783615,
-0.031422633677721024,
-0.008662420324981213,
-0.048047564923763275,
-0.02887197583913803,
-0.036892786622047424,
-0.058628011494874954,
0.046003229916095734,
-0.17000669240951538,
0.05320185050368309,
0.03264983743429184,
0.053446345031261444,
0.021807091310620308,
-0.03694950044155121,
-0.10292581468820572,
0.20319914817810059,
-0.07320132106542587,
-0.07115907967090607,
-0.11742512881755829,
-0.0709628164768219,
0.02500193938612938,
-0.09203493595123291,
0.0746789500117302,
-0.09320281445980072,
0.01885121501982212,
-0.06376928836107254,
-0.19728536903858185,
0.12246022373437881,
-0.09933560341596603,
-0.025960171595215797,
-0.05696910247206688,
0.1400504857301712,
-0.08192209899425507,
0.008517257869243622,
0.03329753130674362,
0.0311837550252676,
-0.101662777364254,
-0.07855576276779175,
-0.006188572850078344,
0.003921836148947477,
0.04948630556464195,
0.07072073966264725,
-0.08801282197237015,
-0.08284960687160492,
-0.038000740110874176,
-0.000636666314676404,
0.2934253215789795,
0.15669852495193481,
-0.06931452453136444,
0.1525820940732956,
0.12009288370609283,
-0.07215527445077896,
-0.3365217447280884,
-0.08695725351572037,
-0.11067883670330048,
-0.03977072983980179,
-0.046555936336517334,
-0.1571168452501297,
0.11588511615991592,
-0.004439007956534624,
-0.020042624324560165,
0.07348743081092834,
-0.15523993968963623,
-0.08477700501680374,
0.19448399543762207,
-0.03307865187525749,
0.4068463146686554,
-0.11054953187704086,
-0.0950624942779541,
-0.07110202312469482,
-0.11997730284929276,
0.11309017986059189,
-0.012477992102503777,
0.09084546566009521,
-0.01921740733087063,
0.05707107484340668,
0.04382467269897461,
-0.038832247257232666,
0.09420378506183624,
0.010473021306097507,
0.019014105200767517,
-0.1254121959209442,
-0.10295052826404572,
0.04397515580058098,
-0.01995539292693138,
-0.017540106549859047,
-0.004275078419595957,
0.018242914229631424,
-0.16359899938106537,
-0.04212464764714241,
-0.0764581710100174,
0.05086830258369446,
0.042068950831890106,
-0.029563607648015022,
-0.007691054604947567,
-0.01661510579288006,
-0.006875237450003624,
-0.00004427770909387618,
0.25804147124290466,
-0.058748915791511536,
0.17537914216518402,
0.08201849460601807,
0.1287056803703308,
-0.1240130364894867,
0.03093533031642437,
-0.0719410628080368,
-0.06300289183855057,
0.056417182087898254,
-0.08991438895463943,
0.06572704762220383,
0.12093320488929749,
-0.05827133730053902,
0.05707010254263878,
0.11047960072755814,
0.05665024742484093,
-0.01672348380088806,
0.17151936888694763,
-0.21784354746341705,
0.039013735949993134,
-0.044656746089458466,
-0.028644291684031487,
0.0673145204782486,
0.06059737876057625,
0.13576023280620575,
0.056735020130872726,
-0.050879377871751785,
0.0027266712859272957,
-0.005394025705754757,
-0.006150494329631329,
0.053126439452171326,
0.06565799564123154,
0.03482401371002197,
-0.13315033912658691,
0.05063670501112938,
0.0488823726773262,
-0.1517987698316574,
-0.012782548554241657,
0.14544247090816498,
-0.16107147932052612,
-0.12472042441368103,
-0.008331404998898506,
0.12478770315647125,
-0.14226394891738892,
-0.04139966145157814,
-0.07949703186750412,
-0.13279509544372559,
0.07259250432252884,
0.21434538066387177,
0.12083859741687775,
0.07850685715675354,
-0.042793743312358856,
-0.04786950722336769,
-0.0023539469111710787,
-0.012482158839702606,
0.01542683970183134,
0.025215521454811096,
-0.1102122887969017,
0.020501524209976196,
-0.018913518637418747,
0.15162764489650726,
-0.09223692864179611,
-0.07566172629594803,
-0.17453664541244507,
0.05083347484469414,
-0.09629858285188675,
-0.03000663034617901,
-0.07866353541612625,
-0.022550096735358238,
-0.0028236843645572662,
-0.044283416122198105,
-0.0488961786031723,
-0.06393264979124069,
-0.12171278893947601,
0.03886346146464348,
-0.029917839914560318,
0.037657231092453,
-0.06475012004375458,
-0.04363161697983742,
0.10111245512962341,
-0.03200976178050041,
0.10144995152950287,
0.11017206311225891,
-0.0850227028131485,
0.09229160100221634,
-0.14469486474990845,
-0.11688804626464844,
0.12373711168766022,
0.01293914020061493,
0.06899435073137283,
0.06232675164937973,
0.043563924729824066,
0.06726560741662979,
0.018487147986888885,
0.07367441058158875,
0.053072553128004074,
-0.1265084147453308,
0.06561767309904099,
-0.036320216953754425,
-0.18026919662952423,
-0.048072449862957,
-0.03972756490111351,
0.10033562034368515,
0.002716359216719866,
0.1519702523946762,
-0.0539398267865181,
0.10532274842262268,
-0.027349798008799553,
0.010220712050795555,
-0.02422005869448185,
-0.21375028789043427,
-0.06186143308877945,
-0.0875529870390892,
0.020722882822155952,
0.0073815686628222466,
0.252583771944046,
0.05999443680047989,
0.043384622782468796,
0.05349669232964516,
0.09076128900051117,
0.006726719904690981,
0.02686336264014244,
0.16989776492118835,
0.10625749826431274,
-0.054806992411613464,
-0.05736768618226051,
0.0645746961236,
0.02236839570105076,
-0.004619908984750509,
0.13472703099250793,
0.07847650349140167,
-0.003241969272494316,
0.07508169859647751,
-0.022816574200987816,
0.055117711424827576,
-0.09602399915456772,
-0.16602522134780884,
-0.03789302334189415,
0.06136997044086456,
0.015683189034461975,
0.02769125998020172,
0.11872325092554092,
-0.02512430213391781,
0.04980659484863281,
-0.05039367452263832,
-0.047553956508636475,
-0.190480038523674,
-0.08713943511247635,
-0.1058601662516594,
-0.09514910727739334,
0.01605161279439926,
-0.07684782892465591,
-0.004868034739047289,
0.08577817678451538,
0.04222368076443672,
-0.05062175542116165,
0.061918362975120544,
0.013334243558347225,
-0.06097227334976196,
0.08177100121974945,
-0.04358189180493355,
0.034621722996234894,
0.009182103909552097,
-0.021071596071124077,
-0.13983911275863647,
-0.020003166049718857,
-0.04568071663379669,
0.04369695112109184,
-0.05934172868728638,
0.01186833344399929,
-0.15804150700569153,
-0.1167970523238182,
-0.02196607179939747,
0.06443385779857635,
-0.043019507080316544,
0.130898118019104,
0.007071374449878931,
0.0023405568208545446,
0.051037952303886414,
0.2136451154947281,
-0.05474230647087097,
-0.0692630410194397,
-0.049248065799474716,
0.22245341539382935,
0.08240340650081635,
0.10381010919809341,
-0.019030237570405006,
-0.010240653529763222,
-0.07025635242462158,
0.32316410541534424,
0.29418379068374634,
-0.039947621524333954,
0.0507243387401104,
0.01590515859425068,
0.03608250990509987,
0.1671287715435028,
0.1311587393283844,
0.09011198580265045,
0.23601709306240082,
-0.06328054517507553,
-0.04345982149243355,
-0.01966611109673977,
-0.020104875788092613,
-0.12282752990722656,
0.0899764820933342,
0.055597834289073944,
-0.05273459479212761,
-0.06209932267665863,
0.11512468755245209,
-0.2119985967874527,
0.14972861111164093,
0.014138193801045418,
-0.21562917530536652,
-0.07939939200878143,
-0.029313646256923676,
0.12147574126720428,
0.0022966889664530754,
0.08494418114423752,
-0.0009001587750390172,
-0.12122118473052979,
0.015007257461547852,
0.024496188387274742,
-0.21694234013557434,
-0.02909899316728115,
0.06782764196395874,
-0.03080557845532894,
-0.003602581797167659,
-0.033146586269140244,
0.021333782002329826,
0.08633527159690857,
0.06039969623088837,
-0.01826026290655136,
0.04458854719996452,
-0.0026062342803925276,
-0.034958090633153915,
0.02856798656284809,
0.025836622342467308,
-0.0018466500332579017,
-0.10822580754756927,
0.0704243928194046,
-0.1465485692024231,
0.05887974053621292,
-0.08138486742973328,
-0.04419925808906555,
-0.01359280850738287,
0.04496964067220688,
-0.06153792887926102,
0.05272408947348595,
0.10471534729003906,
-0.0008891951874829829,
-0.02254260517656803,
-0.05042839050292969,
-0.0399518720805645,
0.0006140783079899848,
-0.13396838307380676,
-0.14770886301994324,
-0.08994549512863159,
-0.0952795073390007,
0.11147317290306091,
0.0045949253253638744,
-0.17804133892059326,
-0.0027761408127844334,
-0.11016383022069931,
0.054672446101903915,
-0.16769617795944214,
0.0989537462592125,
0.04410397261381149,
0.011924069374799728,
-0.014897520653903484,
-0.04637180641293526,
0.04843989759683609,
0.07801199704408646,
-0.12207385152578354,
-0.09432519972324371
] |
null | null | transformers |
# Harry Potter DialoGPT Model | {"tags": ["conversational"]} | text-generation | Manthan/DialoGPT-small-harrypotter | [
"transformers",
"pytorch",
"gpt2",
"text-generation",
"conversational",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [] | TAGS
#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
# Harry Potter DialoGPT Model | [
"# Harry Potter DialoGPT Model"
] | [
"TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"# Harry Potter DialoGPT Model"
] | [
51,
8
] | [
"passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# Harry Potter DialoGPT Model"
] | [
-0.0009023238671943545,
0.07815738022327423,
-0.006546166725456715,
0.07792752981185913,
0.10655936598777771,
0.048972971737384796,
0.17639793455600739,
0.12185695022344589,
0.016568755730986595,
-0.04774167761206627,
0.11647630482912064,
0.2130284160375595,
-0.002118367003276944,
0.024608047679066658,
-0.05022026598453522,
-0.3065771162509918,
0.0474756620824337,
0.014356585219502449,
-0.07174845039844513,
0.11724270135164261,
0.09064973145723343,
-0.046179238706827164,
0.08330509811639786,
-0.009135239757597446,
-0.13198648393154144,
-0.039482954889535904,
0.019292812794446945,
-0.11745545268058777,
0.1662212759256363,
0.05298272892832756,
0.02469746209681034,
-0.008447164669632912,
-0.06598151475191116,
-0.15036040544509888,
0.037190426141023636,
-0.027472136542201042,
-0.01080626156181097,
0.05462246760725975,
0.023526115342974663,
-0.07521048933267593,
0.170567125082016,
0.17678891122341156,
0.0833497866988182,
0.0349111407995224,
-0.14917024970054626,
-0.045548245310783386,
0.008950977586209774,
0.05421316996216774,
-0.017893504351377487,
0.09349167346954346,
-0.019903047010302544,
0.11801653355360031,
-0.04491448402404785,
0.09210366010665894,
0.15255063772201538,
-0.4016275703907013,
-0.027563704177737236,
0.08920855820178986,
0.05989706888794899,
0.12076901644468307,
-0.10560955852270126,
0.03972794860601425,
-0.0039703017100691795,
0.01236654631793499,
-0.014540530741214752,
-0.08304883539676666,
-0.07308239489793777,
0.032504837960004807,
-0.1272556483745575,
0.008525865152478218,
0.23756256699562073,
-0.10643257945775986,
0.037069112062454224,
-0.09791990369558334,
-0.07414398342370987,
0.048336777836084366,
-0.053761593997478485,
-0.081727035343647,
-0.054839808493852615,
0.06347949057817459,
0.004366500303149223,
-0.06301609426736832,
-0.08326146006584167,
-0.0006536149303428829,
-0.12781435251235962,
0.17595994472503662,
0.061243366450071335,
0.041611745953559875,
-0.21322020888328552,
0.08940251916646957,
0.04477722570300102,
-0.04711297154426575,
0.007116159424185753,
-0.11796226352453232,
0.04023287072777748,
0.005483259446918964,
-0.03256071358919144,
-0.021854614838957787,
0.0393419973552227,
0.13909944891929626,
-0.01777748204767704,
0.03252175822854042,
0.006831915583461523,
0.05811219662427902,
0.08162496984004974,
0.02222144603729248,
0.019291909411549568,
-0.0818009302020073,
0.019385190680623055,
-0.08128736168146133,
-0.0030400939285755157,
-0.048940129578113556,
-0.17071883380413055,
-0.07477642595767975,
0.052610911428928375,
0.020047198981046677,
0.03746970370411873,
0.08054786175489426,
-0.0017944995779544115,
-0.05560554191470146,
0.03284840285778046,
0.01671096310019493,
-0.020622212439775467,
-0.010361049324274063,
-0.02412462793290615,
0.19123271107673645,
0.019619356840848923,
0.014111656695604324,
-0.12379156798124313,
0.10023640841245651,
-0.08179095387458801,
0.0037731381598860025,
0.02743307314813137,
-0.04204464703798294,
-0.004716555587947369,
0.02917117439210415,
0.023101668804883957,
-0.1252521574497223,
-0.1099385917186737,
-0.0030569476075470448,
-0.012054097838699818,
-0.036421261727809906,
-0.10490952432155609,
-0.08483029156923294,
-0.012153145857155323,
0.0449371263384819,
-0.013397793285548687,
0.007936403155326843,
-0.05143149942159653,
0.0985720232129097,
-0.0514979362487793,
0.09873400628566742,
-0.08342572301626205,
0.06359215080738068,
-0.09124887734651566,
-0.061886150389909744,
-0.11452563107013702,
0.05216052383184433,
0.012905281968414783,
0.066250741481781,
0.016998225823044777,
-0.044836658984422684,
-0.014836243353784084,
0.05253177136182785,
-0.07656687498092651,
0.1940697431564331,
-0.041674621403217316,
-0.12459053844213486,
0.24146439135074615,
-0.09138800948858261,
-0.1802034229040146,
0.12973085045814514,
-0.022254703566432,
0.08523941785097122,
0.12802475690841675,
0.20380465686321259,
-0.00019822151807602495,
-0.01302915159612894,
0.07281201332807541,
0.07031642645597458,
-0.09803894907236099,
0.06239739805459976,
0.029653839766979218,
-0.008071083575487137,
-0.08906278014183044,
0.05762826278805733,
0.046033453196287155,
-0.010650773532688618,
-0.035073768347501755,
-0.001896020956337452,
-0.012895751744508743,
-0.022185025736689568,
0.14126582443714142,
-0.02006692811846733,
0.1300428807735443,
-0.06926563382148743,
-0.03515486419200897,
-0.009500149637460709,
0.03533667325973511,
-0.04091939330101013,
0.08151165395975113,
-0.0436173714697361,
0.10586477071046829,
0.09034156054258347,
0.053724925965070724,
-0.13120363652706146,
0.00466286763548851,
-0.015246815048158169,
0.17014820873737335,
0.08964069187641144,
0.05222717300057411,
0.06265474855899811,
-0.0020888058934360743,
-0.06708643585443497,
0.045407816767692566,
0.13778303563594818,
-0.037020038813352585,
-0.12218865007162094,
-0.1755627691745758,
0.051157694309949875,
-0.045444171875715256,
0.10855234414339066,
-0.10010123997926712,
0.022670533508062363,
-0.055906031280756,
0.07772238552570343,
-0.024998966604471207,
0.020512236282229424,
-0.0013405600329861045,
-0.021700702607631683,
-0.08356887847185135,
-0.002377772703766823,
0.08597290515899658,
-0.02048647589981556,
-0.06707409024238586,
0.16556480526924133,
-0.16400809586048126,
0.1631954461336136,
0.2116095870733261,
-0.28542569279670715,
-0.005696662236005068,
-0.15163889527320862,
-0.0208092350512743,
0.019645055755972862,
0.07834604382514954,
0.026225795969367027,
0.2044338881969452,
-0.012928472831845284,
0.16565458476543427,
-0.05699567869305611,
-0.07730039209127426,
-0.06881127506494522,
-0.048101142048835754,
0.013522743247449398,
0.09095205366611481,
0.04542696103453636,
-0.11962861567735672,
0.13119758665561676,
0.1054433062672615,
0.06484298408031464,
0.12711186707019806,
0.1030748188495636,
-0.008113685995340347,
0.07252490520477295,
-0.03624548763036728,
-0.03462279960513115,
-0.09254947304725647,
-0.30446043610572815,
-0.04840317741036415,
0.0939924493432045,
0.007963384501636028,
0.09285714477300644,
-0.0919896736741066,
-0.03311870992183685,
0.006042704917490482,
0.009473444893956184,
0.028337622061371803,
0.09653715789318085,
0.013490920886397362,
0.15320514142513275,
-0.008011690340936184,
-0.03430786728858948,
0.05891305208206177,
0.017982570454478264,
-0.09147711098194122,
0.17280617356300354,
-0.17050009965896606,
-0.27190929651260376,
-0.06990014761686325,
-0.21745692193508148,
-0.013139115646481514,
0.05258983001112938,
0.0786920040845871,
-0.11818131804466248,
-0.018352627754211426,
-0.006239492911845446,
0.05685517191886902,
-0.2425733357667923,
0.0004911290016025305,
-0.1354890614748001,
0.0501418262720108,
-0.1974833607673645,
-0.09718500077724457,
-0.02271542325615883,
-0.013450481928884983,
-0.0464281290769577,
0.13365240395069122,
-0.1448695808649063,
-0.011572926305234432,
0.2329535037279129,
0.032479673624038696,
0.027794739231467247,
-0.05020907148718834,
0.19788463413715363,
-0.0958966314792633,
-0.023973820731043816,
0.11024576425552368,
-0.05038975924253464,
0.04834126681089401,
0.06649978458881378,
-0.012981836684048176,
-0.08557141572237015,
0.023789849132299423,
-0.068336620926857,
-0.03150583803653717,
-0.27926525473594666,
-0.0930178239941597,
-0.09319330751895905,
0.11305391043424606,
0.04079577326774597,
0.06421639025211334,
0.16545771062374115,
0.05191578343510628,
-0.024325082078576088,
-0.03006586618721485,
0.11609793454408646,
0.12905290722846985,
0.2277202159166336,
-0.06067761778831482,
0.10221996158361435,
0.009445492178201675,
-0.08203992247581482,
0.06062209978699684,
0.056782789528369904,
0.06324724853038788,
0.02584579586982727,
0.03694582358002663,
-0.030939655378460884,
0.1121687963604927,
0.12571842968463898,
0.05258069559931755,
0.0481170229613781,
0.0002127334737451747,
-0.0561506561934948,
-0.008168719708919525,
-0.05726633965969086,
0.06774696707725525,
0.061340972781181335,
-0.12918008863925934,
-0.08061543852090836,
0.0011613310780376196,
0.06660808622837067,
-0.016230419278144836,
0.06823775917291641,
-0.13560809195041656,
-0.03582429885864258,
0.0790911465883255,
-0.07693151384592056,
-0.14156894385814667,
0.11972879618406296,
-0.026570770889520645,
-0.19904157519340515,
0.05265914276242256,
0.007704653777182102,
0.0908159390091896,
-0.06360849738121033,
0.05343840271234512,
-0.13023801147937775,
-0.12935101985931396,
-0.018437571823596954,
0.07945099472999573,
-0.3450873792171478,
0.13536721467971802,
-0.013286802917718887,
-0.02876877970993519,
-0.06474969536066055,
-0.02640824392437935,
0.013905409723520279,
0.12719078361988068,
0.08667250722646713,
0.0008821099763736129,
0.0991629809141159,
0.03823768347501755,
0.04188435152173042,
-0.002011700300499797,
0.10950417071580887,
0.0050011589191854,
0.004797275178134441,
-0.04982118681073189,
0.007274609990417957,
-0.05164213851094246,
-0.07472953200340271,
0.08393982797861099,
-0.20678792893886566,
0.09087453782558441,
-0.03378438204526901,
0.08427679538726807,
0.04304937273263931,
-0.018965769559144974,
-0.1001204177737236,
0.19745583832263947,
-0.012206900864839554,
-0.11405988782644272,
-0.07517550885677338,
-0.02810264565050602,
0.09103139489889145,
-0.013817726634442806,
0.012886416167020798,
-0.045470476150512695,
0.032183047384023666,
-0.1263762265443802,
-0.1597503274679184,
0.08734500408172607,
-0.04441224783658981,
-0.10894393920898438,
-0.025462759658694267,
0.20382575690746307,
-0.007266622502356768,
0.08242089301347733,
0.01605331338942051,
0.010653935372829437,
-0.18066231906414032,
-0.04018142446875572,
0.02645772136747837,
-0.0016437612939625978,
0.005979063920676708,
0.047698814421892166,
0.019091911613941193,
0.06207629665732384,
-0.1069745197892189,
-0.013920160941779613,
0.3158324360847473,
0.15978319942951202,
-0.00912671908736229,
0.14943915605545044,
0.1093616932630539,
-0.08669080585241318,
-0.17238758504390717,
-0.1171615794301033,
-0.1210922971367836,
-0.08425768464803696,
-0.10681738704442978,
-0.1525043100118637,
0.09535340964794159,
-0.03392014652490616,
0.03498011827468872,
0.14615866541862488,
-0.280263751745224,
-0.10949636250734329,
0.13820378482341766,
0.010744688101112843,
0.3510635495185852,
-0.12303631007671356,
-0.044944874942302704,
-0.06214528530836105,
-0.16933435201644897,
0.08021392673254013,
-0.031203703954815865,
0.11581093072891235,
-0.0744495838880539,
0.19395925104618073,
0.01719796098768711,
0.014287159778177738,
0.0916559100151062,
0.05038322135806084,
-0.05808406323194504,
-0.07368700206279755,
-0.10248131304979324,
0.010812131687998772,
0.03546109423041344,
0.010252019390463829,
-0.008802837692201138,
0.0211968794465065,
-0.11341743916273117,
-0.050869911909103394,
-0.06302189081907272,
0.0072614275850355625,
-0.01001308299601078,
-0.042155615985393524,
-0.05533592775464058,
-0.022557416930794716,
-0.020093943923711777,
0.02266426384449005,
0.14185629785060883,
-0.07527699321508408,
0.18586260080337524,
0.02357078716158867,
0.1586609035730362,
-0.11956068128347397,
-0.06724818795919418,
-0.029193658381700516,
-0.05280323326587677,
0.06468886137008667,
-0.08884575963020325,
-0.027708567678928375,
0.1332162618637085,
-0.01903904788196087,
0.04655366763472557,
0.12936700880527496,
0.02046884410083294,
0.015383756719529629,
0.034968774765729904,
-0.2578005790710449,
-0.07463036477565765,
-0.03505445644259453,
-0.012416874058544636,
0.05272092670202255,
0.05525677278637886,
0.19735674560070038,
-0.03551921248435974,
-0.08521962910890579,
0.020131373777985573,
0.02735883742570877,
-0.02776256389915943,
0.10749414563179016,
0.019579345360398293,
-0.004837906453758478,
-0.16151933372020721,
0.08257976174354553,
-0.005964108742773533,
-0.08297000825405121,
0.028665626421570778,
0.2024049311876297,
-0.12141239643096924,
-0.10309756547212601,
-0.06804922968149185,
0.07315051555633545,
-0.09220825880765915,
0.016043387353420258,
-0.005091092549264431,
-0.1521538347005844,
0.06916408240795135,
0.07598215341567993,
0.04075418785214424,
0.06513199955224991,
-0.11743064224720001,
-0.015730571001768112,
-0.04170290008187294,
-0.002195435343310237,
0.03521120920777321,
0.01863143965601921,
-0.057492829859256744,
0.15846455097198486,
-0.0676199421286583,
0.08538917452096939,
-0.0744810476899147,
-0.1058846190571785,
-0.1395980566740036,
0.04660497233271599,
-0.08038312196731567,
-0.07247276604175568,
-0.12832807004451752,
-0.052204377949237823,
-0.0067099276930093765,
-0.03388519585132599,
0.006552806124091148,
-0.06627799570560455,
-0.10922821611166,
0.01822470687329769,
-0.00743203004822135,
-0.009385870769619942,
-0.06096754968166351,
0.026706209406256676,
0.06246216222643852,
-0.039788868278265,
0.15730851888656616,
0.22509248554706573,
-0.13591648638248444,
0.11564400047063828,
-0.09797432273626328,
-0.105463907122612,
0.046008042991161346,
0.009427277371287346,
0.03594303876161575,
0.0503489226102829,
-0.03594081476330757,
0.0044484552927315235,
0.03905477747321129,
0.08074651658535004,
0.08456914126873016,
-0.06776505708694458,
0.020801106467843056,
-0.05122765153646469,
-0.14904099702835083,
-0.016655439510941505,
-0.0464773029088974,
0.06876829266548157,
-0.006725262850522995,
0.11020535975694656,
-0.0515950471162796,
0.07739507406949997,
-0.07558431476354599,
0.050614211708307266,
0.021146971732378006,
-0.14688286185264587,
-0.006612539757043123,
-0.07093682140111923,
0.042144812643527985,
-0.008834975771605968,
0.20241086184978485,
-0.03228091076016426,
0.010342049412429333,
0.033811055123806,
0.06203942745923996,
-0.01957780309021473,
0.009357001632452011,
0.2014283686876297,
0.12640917301177979,
-0.08496357500553131,
-0.02679651789367199,
0.06793134659528732,
0.07248228788375854,
0.07093550264835358,
0.10807815194129944,
-0.015352966263890266,
0.028434239327907562,
0.07829629629850388,
-0.060215238481760025,
0.07576877623796463,
-0.08603982627391815,
-0.11668483167886734,
0.05793621391057968,
0.012955795042216778,
-0.055695828050374985,
0.20305177569389343,
0.19142870604991913,
-0.026278704404830933,
0.018410727381706238,
-0.0029499190859496593,
-0.10117456316947937,
-0.15619947016239166,
-0.05423750728368759,
-0.07170962542295456,
-0.1319410353899002,
-0.004549739416688681,
-0.16646917164325714,
0.022016216069459915,
-0.01132756657898426,
0.09506805986166,
-0.06855440139770508,
-0.01345991250127554,
0.1364889293909073,
-0.1055467277765274,
0.0847758799791336,
-0.024517204612493515,
0.07877567410469055,
-0.03746940940618515,
-0.018209461122751236,
-0.10342709720134735,
0.007514837197959423,
0.01131442841142416,
0.06840907037258148,
-0.10897937417030334,
0.02432350255548954,
-0.12208317965269089,
-0.08617185056209564,
-0.026142612099647522,
0.09279687702655792,
-0.0403008833527565,
0.15116846561431885,
0.02645145356655121,
-0.06710928678512573,
-0.004313822835683823,
0.2646709978580475,
-0.08046227693557739,
-0.08319197595119476,
-0.030799202620983124,
0.2152107208967209,
0.04053696244955063,
0.06396269053220749,
0.019140036776661873,
0.038027774542570114,
-0.07184682041406631,
0.2957373559474945,
0.34401440620422363,
-0.1318037211894989,
-0.007773484103381634,
0.04225075617432594,
0.04406323283910751,
0.14687567949295044,
0.07998795062303543,
0.11360671371221542,
0.2849363386631012,
-0.09197647124528885,
0.016657205298542976,
-0.04230864346027374,
-0.01424806285649538,
-0.06908884644508362,
0.045314885675907135,
0.08216670155525208,
-0.09241747111082077,
-0.022950593382120132,
0.08125471323728561,
-0.29741767048835754,
0.10791494697332382,
-0.15600289404392242,
-0.14948409795761108,
-0.05027429759502411,
-0.008771711029112339,
0.014683255925774574,
0.019041186198592186,
0.09663030505180359,
0.025651484727859497,
-0.07275258749723434,
0.07816889137029648,
0.024486342445015907,
-0.23020237684249878,
-0.01345184724777937,
0.1456068754196167,
-0.06789913028478622,
-0.025938833132386208,
-0.021313713863492012,
0.051610056310892105,
0.05763651058077812,
0.09027529507875443,
-0.03809558227658272,
-0.0746568813920021,
-0.007141788024455309,
-0.022818787023425102,
0.01914946548640728,
0.0597183033823967,
0.06841408461332321,
-0.0920223817229271,
0.1167774423956871,
-0.07350476831197739,
0.0650370642542839,
0.037623800337314606,
-0.022277191281318665,
0.0018526542698964477,
0.013183658011257648,
-0.06512464582920074,
0.05533479526638985,
0.1295643299818039,
-0.025459708645939827,
-0.002524374984204769,
-0.028180841356515884,
-0.0767761766910553,
-0.024015206843614578,
-0.04643676429986954,
-0.09101243317127228,
-0.18130090832710266,
-0.12738600373268127,
0.041754670441150665,
-0.03240608796477318,
-0.2046082615852356,
0.0060346988029778,
-0.1128578633069992,
0.03700976446270943,
-0.14154092967510223,
0.10004086047410965,
0.07216610759496689,
0.004716616589576006,
0.006774604320526123,
0.0675399899482727,
0.045677728950977325,
0.14796748757362366,
-0.16543124616146088,
-0.04919974133372307
] |
null | null | null | return im
def main():
st.title("Lowlight Enhancement")
st.write("This is a simple lowlight enhancement app with great performance and does not require paired images to train.")
st.write("The model runs at 1000/11 FPS on single GPU/CPU on images with a size of 1200*900*3")
uploaded_file = st.file_uploader("Lowlight Image")
if uploaded_file:
data_lowlight = Image.open(uploaded_file)
col1, col2 = st.columns(2)
col1.write("Original (Lowlight)")
col1.image(data_lowlight, caption="Lowlight Image", use_column_width=True)
| {} | null | Manyman3231/lowlight-enhancement | [
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [] | TAGS
#region-us
| return im
def main():
URL("Lowlight Enhancement")
URL("This is a simple lowlight enhancement app with great performance and does not require paired images to train.")
URL("The model runs at 1000/11 FPS on single GPU/CPU on images with a size of 1200*900*3")
uploaded_file = st.file_uploader("Lowlight Image")
if uploaded_file:
data_lowlight = URL(uploaded_file)
col1, col2 = st.columns(2)
URL("Original (Lowlight)")
URL(data_lowlight, caption="Lowlight Image", use_column_width=True)
| [] | [
"TAGS\n#region-us \n"
] | [
6
] | [
"passage: TAGS\n#region-us \n"
] | [
0.024608636274933815,
-0.026205500587821007,
-0.009666500613093376,
-0.10395516455173492,
0.08638657629489899,
0.059816278517246246,
0.01882290467619896,
0.020661840215325356,
0.23975107073783875,
-0.005599027033895254,
0.1219947561621666,
0.0015615287702530622,
-0.037353623658418655,
0.03733762726187706,
-0.0035912662278860807,
-0.17583473026752472,
0.03876631706953049,
-0.018274923786520958,
0.01843859627842903,
0.026470553129911423,
-0.07776834815740585,
-0.07564429938793182,
0.015296397730708122,
-0.10247814655303955,
-0.083692267537117,
0.11002834886312485,
0.031466204673051834,
-0.019670886918902397,
0.10779199749231339,
-0.04243955761194229,
0.18699054419994354,
-0.011512263678014278,
-0.11213519424200058,
-0.2536850869655609,
0.021806683391332626,
-0.01765260472893715,
-0.08747660368680954,
0.01506110467016697,
0.0665089413523674,
-0.09014441072940826,
-0.0588928684592247,
0.0795099288225174,
-0.01132340170443058,
0.04246443510055542,
-0.27593839168548584,
-0.12684126198291779,
-0.05297930911183357,
-0.1421966552734375,
0.08651168644428253,
0.04035491496324539,
0.008764253929257393,
0.15506891906261444,
-0.20897391438484192,
0.004104613792151213,
0.08255259692668915,
-0.2538507878780365,
0.05591634660959244,
0.17671173810958862,
0.03623908758163452,
0.18037272989749908,
0.0060391901060938835,
0.11029672622680664,
0.0716743916273117,
-0.024263937026262283,
-0.17590197920799255,
-0.08127854019403458,
-0.04696211963891983,
0.16642488539218903,
-0.06727185100317001,
-0.14248386025428772,
0.34701237082481384,
0.00015008423360995948,
0.009657775051891804,
0.16921205818653107,
-0.059524230659008026,
-0.09972117841243744,
0.07259953022003174,
0.016484731808304787,
0.018492350354790688,
0.1471305936574936,
0.16307872533798218,
-0.0458691343665123,
-0.13837823271751404,
-0.018630273640155792,
-0.22798998653888702,
0.17510560154914856,
-0.03248048573732376,
0.13137903809547424,
-0.27447956800460815,
0.01684025302529335,
-0.2570667266845703,
0.0032130838371813297,
0.04178816080093384,
-0.06004921346902847,
-0.0226522795855999,
-0.013265985064208508,
-0.08018817007541656,
0.004899587947875261,
0.06192673370242119,
0.1266920566558838,
-0.06128726154565811,
0.06128238886594772,
-0.09319206327199936,
0.141696035861969,
0.07166698575019836,
0.07868369668722153,
0.13037432730197906,
0.041205424815416336,
-0.07187089323997498,
-0.21872246265411377,
-0.0026476888451725245,
-0.06275863200426102,
-0.09502086788415909,
-0.0020165652967989445,
-0.11606067419052124,
0.17244569957256317,
-0.030802514404058456,
-0.09825427830219269,
-0.11208184063434601,
0.09148659557104111,
-0.032992321997880936,
-0.03437839448451996,
-0.03552987426519394,
-0.020977836102247238,
0.019381176680326462,
0.04704452306032181,
-0.1548958420753479,
-0.005131472367793322,
0.07039852440357208,
0.11502562463283539,
-0.1346137970685959,
-0.003783059772104025,
-0.07908964157104492,
0.03039063885807991,
0.07654735445976257,
-0.16510222852230072,
0.03158547356724739,
-0.1124754324555397,
-0.07531405985355377,
0.002912673633545637,
-0.015710093080997467,
-0.016202643513679504,
0.166526660323143,
-0.0020451415330171585,
0.0714716836810112,
-0.026345307007431984,
-0.05890209600329399,
-0.11243434250354767,
-0.08489254862070084,
0.05390460044145584,
0.03670717030763626,
0.03266148269176483,
-0.2193479984998703,
0.014805203303694725,
-0.12762966752052307,
0.1360815018415451,
-0.10566820204257965,
-0.04705966264009476,
-0.022842247039079666,
0.20562705397605896,
0.037286072969436646,
0.08762791007757187,
-0.22171171009540558,
0.039756543934345245,
-0.05404696613550186,
0.18480908870697021,
-0.1502426266670227,
-0.0799463614821434,
0.20813211798667908,
-0.07964949309825897,
-0.10115210711956024,
0.021235812455415726,
0.020391687750816345,
0.026287272572517395,
0.0766737088561058,
0.4564172327518463,
-0.09766800701618195,
-0.09146861732006073,
0.10178250074386597,
0.17055274546146393,
-0.12427149713039398,
-0.1827561855316162,
0.06446871906518936,
-0.16666454076766968,
-0.1973118633031845,
0.0018917324487119913,
0.09222044050693512,
0.038269978016614914,
-0.07875611633062363,
-0.020746968686580658,
0.06325206160545349,
-0.0007678253459744155,
0.09095914661884308,
0.03755716234445572,
0.09034032374620438,
-0.08716782182455063,
0.11115926504135132,
-0.05017651244997978,
0.004037132486701012,
0.1343354731798172,
0.027325427159667015,
-0.03223329409956932,
0.08694463223218918,
-0.0485352948307991,
0.05295134335756302,
-0.1662379503250122,
-0.15068690478801727,
0.03398871049284935,
0.06283251196146011,
0.03186952322721481,
0.1280253529548645,
0.08141885697841644,
-0.10732853412628174,
0.022690722718834877,
-0.004228927195072174,
0.058398615568876266,
0.03891623765230179,
0.006107209715992212,
0.008764320984482765,
0.0961301177740097,
-0.10607069730758667,
-0.13589619100093842,
-0.07336436957120895,
-0.014715781435370445,
0.14371353387832642,
-0.0302802175283432,
0.07690227776765823,
-0.004240254405885935,
0.00013200697139836848,
0.06930823624134064,
0.08137880265712738,
0.016412746161222458,
0.08971183747053146,
-0.05237193778157234,
-0.05160155147314072,
0.10863113403320312,
-0.13533565402030945,
0.17837053537368774,
0.14053137600421906,
-0.20532016456127167,
0.029453208670020103,
-0.06838275492191315,
0.03670361638069153,
-0.008162540383636951,
0.0975119024515152,
-0.08272241055965424,
-0.02106042578816414,
0.013134466484189034,
0.0052274600602686405,
-0.013007243163883686,
0.017682146281003952,
-0.07295988500118256,
-0.07787393033504486,
-0.10233919322490692,
0.08436838537454605,
0.11562882363796234,
-0.10282530635595322,
0.14214380085468292,
0.4384984076023102,
0.11495281755924225,
0.21582984924316406,
-0.09581480920314789,
-0.0412987545132637,
0.007486371789127588,
0.0001535322517156601,
-0.04476691037416458,
0.08031861484050751,
-0.15973517298698425,
-0.038901735097169876,
0.027348900213837624,
0.07128690183162689,
0.11475157737731934,
-0.14959022402763367,
-0.09639324247837067,
-0.00793045200407505,
0.0022841424215584993,
-0.1249532699584961,
0.023905446752905846,
-0.03974650055170059,
0.04015624523162842,
0.07232289016246796,
-0.021535737439990044,
0.13939237594604492,
-0.04166141897439957,
-0.0639561116695404,
0.07585346698760986,
-0.2017085999250412,
-0.23179671168327332,
-0.12309670448303223,
-0.14680525660514832,
0.04366797208786011,
0.05154111236333847,
0.01726446859538555,
-0.17635835707187653,
-0.015074856579303741,
0.07706750929355621,
0.07820965349674225,
-0.20886357128620148,
-0.022814949974417686,
-0.004290030337870121,
0.0895976573228836,
-0.10227091610431671,
-0.0017130117630586028,
-0.04419664293527603,
-0.10150232166051865,
0.0017003051470965147,
0.07279510796070099,
-0.137485533952713,
0.13807645440101624,
0.21589438617229462,
0.07225540280342102,
0.07359948754310608,
-0.019093448296189308,
0.09936179965734482,
-0.10856141895055771,
-0.16549113392829895,
0.08348225057125092,
-0.06234746053814888,
0.047262318432331085,
0.17534415423870087,
0.03307317942380905,
-0.13904969394207,
-0.015682822093367577,
-0.0402069091796875,
-0.15603256225585938,
-0.238995760679245,
-0.09178274869918823,
-0.1182505264878273,
0.16442428529262543,
0.0009358620154671371,
0.06651917099952698,
0.08258313685655594,
-0.022042419761419296,
0.16447891294956207,
-0.07379321753978729,
-0.07578866183757782,
-0.006978808436542749,
0.12375060468912125,
-0.056660156697034836,
-0.03080669604241848,
-0.10566964000463486,
-0.008295975625514984,
0.1151021271944046,
0.15304014086723328,
0.12214863300323486,
0.2957419455051422,
0.08268889784812927,
0.026645636186003685,
0.08958091586828232,
0.17622539401054382,
0.09495089203119278,
0.07838419824838638,
-0.045413073152303696,
-0.014814783819019794,
0.014317171648144722,
-0.04022889584302902,
0.010141594335436821,
0.14683100581169128,
-0.2679629921913147,
-0.006678564939647913,
-0.2710230350494385,
0.0965198427438736,
-0.10913380235433578,
0.11837165057659149,
-0.01015760749578476,
0.10194015502929688,
0.11082887649536133,
0.03233652561903,
-0.03858073800802231,
0.16613617539405823,
0.08450309932231903,
-0.11277695000171661,
0.001758623169735074,
0.03737903758883476,
0.09715615212917328,
-0.02818971499800682,
0.12721189856529236,
-0.11048974841833115,
-0.1464834064245224,
0.013753619976341724,
0.07152791321277618,
-0.15373679995536804,
0.3138748109340668,
0.012069208547472954,
-0.13481520116329193,
-0.01481647603213787,
-0.09957809001207352,
-0.006440147757530212,
0.1254177987575531,
0.09333524852991104,
0.07935678958892822,
-0.2185502052307129,
-0.13339371979236603,
0.05872276425361633,
-0.00575496768578887,
0.22408108413219452,
-0.034034017473459244,
-0.11356475204229355,
-0.027013886719942093,
0.04241163283586502,
-0.06043251231312752,
0.08524788916110992,
0.023536119610071182,
-0.08113526552915573,
-0.032957352697849274,
0.05323701351881027,
0.012368366122245789,
0.00524376705288887,
0.09360801428556442,
0.020107939839363098,
-0.0009265501867048442,
0.01785753294825554,
0.047885000705718994,
-0.0675911232829094,
-0.1984109878540039,
0.09357594698667526,
-0.05215044692158699,
0.0015536568826064467,
-0.08013670891523361,
-0.15122665464878082,
-0.08837161958217621,
-0.16009655594825745,
0.12540200352668762,
-0.034406669437885284,
0.12700119614601135,
-0.06619787961244583,
0.17341409623622894,
-0.07871770113706589,
0.04481020197272301,
-0.047349292784929276,
0.050332702696323395,
-0.007268077693879604,
-0.07756082713603973,
0.16585899889469147,
-0.15564003586769104,
0.01809087023139,
0.19572502374649048,
-0.018915493041276932,
0.07177707552909851,
0.021322092041373253,
-0.0636206790804863,
0.23147478699684143,
0.3014698624610901,
0.008138049393892288,
0.1665448248386383,
0.3018903136253357,
-0.07466315478086472,
-0.2642788887023926,
-0.05505012720823288,
-0.2841376066207886,
-0.05371501296758652,
0.10716094076633453,
-0.22523896396160126,
0.06986407935619354,
0.14383509755134583,
-0.06471995264291763,
0.30228954553604126,
-0.21825523674488068,
0.012589273042976856,
0.15434536337852478,
-0.08868814259767532,
0.5515313148498535,
-0.1133413165807724,
-0.17677772045135498,
-0.008122089318931103,
-0.08741296827793121,
0.10602109134197235,
-0.0340677872300148,
0.06877441704273224,
0.013465235009789467,
0.04797380417585373,
0.048932258039712906,
-0.03111894056200981,
0.22701001167297363,
0.008710170164704323,
0.09015397727489471,
-0.07378865778446198,
-0.18624304234981537,
0.11639340221881866,
-0.04359482601284981,
-0.08891059458255768,
0.0849778801202774,
-0.05942516401410103,
-0.11078983545303345,
0.04663389176130295,
-0.07950539886951447,
-0.024862350896000862,
0.08423490077257156,
-0.04678233340382576,
-0.042606171220541,
-0.008054176345467567,
-0.1618063747882843,
-0.0002289071271661669,
0.31360217928886414,
-0.07096036523580551,
0.16695955395698547,
0.03677211329340935,
0.00038613268407061696,
-0.11027684062719345,
0.030288029462099075,
-0.05203165486454964,
-0.021576624363660812,
0.09578979015350342,
-0.11096979677677155,
0.03204701095819473,
0.14160704612731934,
-0.04864364117383957,
0.05846960097551346,
0.09256096184253693,
-0.0849417969584465,
0.007583672646433115,
0.17753590643405914,
-0.17537221312522888,
-0.1273445188999176,
-0.006135711446404457,
-0.09862716495990753,
0.14055661857128143,
0.04394126310944557,
0.05191568285226822,
0.16669964790344238,
0.03967129811644554,
-0.029474308714270592,
-0.02817419543862343,
-0.1153380498290062,
-0.0201893113553524,
0.040153320878744125,
0.00045633706031367183,
-0.08791285753250122,
0.2262638509273529,
0.06409153342247009,
-0.1328488290309906,
-0.051157206296920776,
0.2161225974559784,
-0.06805316358804703,
-0.04911920800805092,
-0.223562553524971,
0.10752306133508682,
-0.07112517952919006,
-0.0965060144662857,
0.05453834682703018,
-0.02270081453025341,
0.005106312222778797,
0.181985542178154,
0.03941008821129799,
0.11070270836353302,
0.03738937899470329,
-0.02448922023177147,
0.15798696875572205,
-0.142850860953331,
-0.14191335439682007,
-0.025354057550430298,
-0.08757315576076508,
-0.13844476640224457,
-0.026804137974977493,
0.1617041826248169,
-0.09177309274673462,
-0.14772607386112213,
-0.2621181011199951,
0.10968475043773651,
-0.16432365775108337,
-0.10192688554525375,
-0.03469514101743698,
-0.08968492597341537,
0.0696166530251503,
0.030301768332719803,
-0.03093348816037178,
-0.06706760823726654,
-0.18593791127204895,
0.0816768929362297,
0.06349513679742813,
0.045533183962106705,
-0.017847947776317596,
0.0067379772663116455,
0.1720137596130371,
0.025955144315958023,
0.10040043294429779,
0.16762186586856842,
0.011397695168852806,
0.2246655523777008,
-0.1671202927827835,
-0.11496317386627197,
0.1336962729692459,
-0.026543032377958298,
0.06762003898620605,
0.16792191565036774,
-0.0772583931684494,
0.015526676550507545,
-0.028136352077126503,
0.07066910713911057,
-0.11003983020782471,
-0.105624258518219,
0.007937257178127766,
0.02567129209637642,
-0.2755882740020752,
-0.005599735304713249,
-0.19717298448085785,
0.14788752794265747,
0.02579621411859989,
0.03297143429517746,
0.10257530212402344,
0.10404334217309952,
0.08312062919139862,
-0.0017710148822516203,
0.03226327523589134,
-0.1176818460226059,
0.02753005363047123,
-0.059239376336336136,
-0.020663779228925705,
0.017624232918024063,
0.36952024698257446,
-0.03603357449173927,
-0.046802736818790436,
0.003710439894348383,
0.1307835876941681,
-0.02139742486178875,
0.017395347356796265,
0.13209912180900574,
0.12607666850090027,
-0.08595693111419678,
-0.1504845917224884,
0.04888554662466049,
-0.04565655067563057,
-0.02836887165904045,
0.1464131623506546,
0.05905961990356445,
0.1050296202301979,
0.0908031314611435,
-0.014463032595813274,
-0.00318976235575974,
0.012856799177825451,
-0.15486004948616028,
0.06223496049642563,
-0.010558074340224266,
0.012565906159579754,
0.017934376373887062,
0.15238402783870697,
-0.005540105979889631,
0.07739730179309845,
-0.09889880567789078,
0.004208535887300968,
-0.13498884439468384,
-0.07913459837436676,
0.03617347031831741,
-0.13393273949623108,
0.04141177982091904,
-0.01871878281235695,
0.029611799865961075,
0.30386561155319214,
0.02558239921927452,
-0.020639164373278618,
0.12512871623039246,
-0.1214587539434433,
-0.12050267308950424,
-0.001594188273884356,
-0.029960084706544876,
0.0791488066315651,
-0.02633434161543846,
-0.0997740775346756,
-0.1001306027173996,
-0.15166029334068298,
-0.09759195148944855,
0.05182836204767227,
-0.04993441700935364,
-0.059362251311540604,
-0.17634081840515137,
-0.05707859992980957,
-0.05147340148687363,
0.14025864005088806,
-0.12263951450586319,
0.15159130096435547,
-0.014490418136119843,
0.004084470681846142,
0.04405883327126503,
0.1950942426919937,
-0.03644494712352753,
0.08714226633310318,
0.0154351145029068,
0.1522706001996994,
-0.05119588226079941,
0.14720745384693146,
-0.10931728035211563,
-0.04014137014746666,
-0.06710435450077057,
0.21513493359088898,
0.25630924105644226,
-0.06136954948306084,
-0.008937356993556023,
-0.012760217301547527,
0.058654606342315674,
0.1073930487036705,
0.16049085557460785,
0.002326392102986574,
0.2802925705909729,
-0.03133585304021835,
0.04815128445625305,
0.02901598811149597,
0.013607407920062542,
-0.06336209923028946,
0.03397751972079277,
0.07539387792348862,
-0.035039983689785004,
-0.1412304788827896,
0.15837742388248444,
-0.21980468928813934,
0.18157227337360382,
0.11640069633722305,
-0.19996967911720276,
-0.013728445395827293,
-0.04882071167230606,
0.1689416468143463,
-0.0856364443898201,
0.1637246012687683,
-0.0903693437576294,
-0.2108195722103119,
-0.2056000679731369,
0.03867346793413162,
-0.34623071551322937,
-0.254462867975235,
0.10422009229660034,
0.1488201916217804,
0.04015883058309555,
-0.018507536500692368,
-0.019967829808592796,
-0.018367022275924683,
0.04877542704343796,
-0.0067357709631323814,
0.06014643982052803,
0.031397558748722076,
-0.02988368645310402,
-0.24127542972564697,
-0.029804671183228493,
0.023964406922459602,
-0.07093082368373871,
0.07464958727359772,
-0.06874357163906097,
-0.022495782002806664,
0.08059766888618469,
-0.03066304884850979,
0.03298592567443848,
-0.035373736172914505,
-0.16326889395713806,
0.027529051527380943,
0.03900543600320816,
0.036012712866067886,
0.00634160777553916,
0.0008072225609794259,
-0.03455270454287529,
0.0644603744149208,
-0.16716794669628143,
-0.16015739738941193,
0.14140215516090393,
-0.06745140254497528,
0.2779497504234314,
-0.05812826007604599,
-0.0809100940823555,
0.04766704887151718,
-0.03426874056458473,
0.1807648241519928,
-0.07756473124027252,
0.047254521399736404,
0.12766779959201813,
0.011127962730824947,
0.03121316432952881,
-0.3092964291572571,
0.11082969605922699,
-0.000795336440205574,
-0.006093299947679043,
-0.07581598311662674
] |
null | null | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# pegasus-samsum
This model is a fine-tuned version of [google/pegasus-cnn_dailymail](https://huggingface.co/google/pegasus-cnn_dailymail) on the samsum dataset.
It achieves the following results on the evaluation set:
- Loss: 1.4844
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 1.6936 | 0.54 | 500 | 1.4844 |
### Framework versions
- Transformers 4.11.3
- Pytorch 1.10.0+cu111
- Datasets 1.16.1
- Tokenizers 0.10.3
| {"tags": ["generated_from_trainer"], "datasets": ["samsum"], "model-index": [{"name": "pegasus-samsum", "results": []}]} | text2text-generation | Mapcar/pegasus-samsum | [
"transformers",
"pytorch",
"tensorboard",
"pegasus",
"text2text-generation",
"generated_from_trainer",
"dataset:samsum",
"autotrain_compatible",
"endpoints_compatible",
"has_space",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [] | TAGS
#transformers #pytorch #tensorboard #pegasus #text2text-generation #generated_from_trainer #dataset-samsum #autotrain_compatible #endpoints_compatible #has_space #region-us
| pegasus-samsum
==============
This model is a fine-tuned version of google/pegasus-cnn\_dailymail on the samsum dataset.
It achieves the following results on the evaluation set:
* Loss: 1.4844
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 5e-05
* train\_batch\_size: 1
* eval\_batch\_size: 1
* seed: 42
* gradient\_accumulation\_steps: 16
* total\_train\_batch\_size: 16
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* lr\_scheduler\_warmup\_steps: 500
* num\_epochs: 1
### Training results
### Framework versions
* Transformers 4.11.3
* Pytorch 1.10.0+cu111
* Datasets 1.16.1
* Tokenizers 0.10.3
| [
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 1\n* eval\\_batch\\_size: 1\n* seed: 42\n* gradient\\_accumulation\\_steps: 16\n* total\\_train\\_batch\\_size: 16\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 500\n* num\\_epochs: 1",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.11.3\n* Pytorch 1.10.0+cu111\n* Datasets 1.16.1\n* Tokenizers 0.10.3"
] | [
"TAGS\n#transformers #pytorch #tensorboard #pegasus #text2text-generation #generated_from_trainer #dataset-samsum #autotrain_compatible #endpoints_compatible #has_space #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 1\n* eval\\_batch\\_size: 1\n* seed: 42\n* gradient\\_accumulation\\_steps: 16\n* total\\_train\\_batch\\_size: 16\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 500\n* num\\_epochs: 1",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.11.3\n* Pytorch 1.10.0+cu111\n* Datasets 1.16.1\n* Tokenizers 0.10.3"
] | [
61,
144,
4,
33
] | [
"passage: TAGS\n#transformers #pytorch #tensorboard #pegasus #text2text-generation #generated_from_trainer #dataset-samsum #autotrain_compatible #endpoints_compatible #has_space #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 1\n* eval\\_batch\\_size: 1\n* seed: 42\n* gradient\\_accumulation\\_steps: 16\n* total\\_train\\_batch\\_size: 16\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 500\n* num\\_epochs: 1### Training results### Framework versions\n\n\n* Transformers 4.11.3\n* Pytorch 1.10.0+cu111\n* Datasets 1.16.1\n* Tokenizers 0.10.3"
] | [
-0.12408656626939774,
0.09166134893894196,
-0.0027671451680362225,
0.09561838209629059,
0.15314622223377228,
0.026220669969916344,
0.13231635093688965,
0.12437482923269272,
-0.10318295657634735,
0.07837358862161636,
0.13671432435512543,
0.10180254280567169,
0.03981492295861244,
0.12916328012943268,
-0.03192027285695076,
-0.28216418623924255,
-0.012161780148744583,
0.028086183592677116,
-0.1528310775756836,
0.14130091667175293,
0.06881902366876602,
-0.12859173119068146,
0.07147864252328873,
0.004339838400483131,
-0.16616083681583405,
-0.02218005247414112,
-0.016884151846170425,
-0.05726410821080208,
0.14277511835098267,
0.017608895897865295,
0.13885189592838287,
0.0342412106692791,
0.10652494430541992,
-0.15084563195705414,
0.0030209203250706196,
0.06400211155414581,
0.025759248062968254,
0.10325324535369873,
0.07963886857032776,
0.003845387604087591,
0.1268353909254074,
-0.0955602154135704,
0.05924233794212341,
0.0030605567153543234,
-0.12665317952632904,
-0.22260157763957977,
-0.07869083434343338,
0.04663417115807533,
0.07993879914283752,
0.09357426315546036,
-0.012867743149399757,
0.10350330173969269,
-0.08225440979003906,
0.092058926820755,
0.27045467495918274,
-0.26247867941856384,
-0.08781429380178452,
0.004147929139435291,
0.040281858295202255,
0.0561603344976902,
-0.10906028002500534,
-0.022038107737898827,
0.036219749599695206,
0.037425681948661804,
0.13202591240406036,
-0.005835769232362509,
-0.0105245066806674,
0.01735616847872734,
-0.1492491215467453,
-0.05435262247920036,
0.08626928180456161,
0.020890286192297935,
-0.014170526526868343,
-0.0659836158156395,
-0.07863447815179825,
-0.24354490637779236,
-0.02139965444803238,
0.006787653546780348,
0.02552270144224167,
-0.07419901341199875,
-0.10426605492830276,
0.023763973265886307,
-0.09076861292123795,
-0.07144958525896072,
-0.014214844442903996,
0.14525377750396729,
0.043813418596982956,
0.011810529045760632,
-0.013320707716047764,
0.13143517076969147,
0.0690157487988472,
-0.16850219666957855,
0.04085293784737587,
0.03218335285782814,
-0.06169642135500908,
-0.019677624106407166,
-0.04805740714073181,
-0.024621712043881416,
-0.013478374108672142,
0.12114137411117554,
-0.06380076706409454,
0.03866579383611679,
0.07370680570602417,
0.025866983458399773,
-0.08700206130743027,
0.1952793002128601,
-0.09549379348754883,
-0.04538540542125702,
-0.03695336729288101,
0.11836700886487961,
0.005619644653052092,
-0.021602483466267586,
-0.07903911173343658,
-0.0016146136913448572,
0.11347468942403793,
0.02838960476219654,
-0.02961171232163906,
0.04119392856955528,
-0.033490248024463654,
-0.025248419493436813,
0.03621930629014969,
-0.09589538723230362,
0.030606059357523918,
0.008692122995853424,
-0.09964063763618469,
0.014086684212088585,
0.0113294068723917,
-0.016427572816610336,
-0.01915852539241314,
0.16040226817131042,
-0.09715559333562851,
0.006831256672739983,
-0.0892370268702507,
-0.11816342920064926,
0.013940969482064247,
-0.10268445312976837,
-0.004393207374960184,
-0.06716258823871613,
-0.12681983411312103,
-0.04637955501675606,
0.04677756875753403,
-0.06154097244143486,
-0.06512042135000229,
-0.039832521229982376,
-0.0987117663025856,
0.040194071829319,
-0.012987587600946426,
0.17226067185401917,
-0.04680986702442169,
0.13198639452457428,
0.03597274795174599,
0.08901122212409973,
0.0356360599398613,
0.055224742740392685,
-0.07722426950931549,
0.03720277547836304,
-0.16859520971775055,
0.05853385105729103,
-0.03620989993214607,
0.04396147280931473,
-0.09935225546360016,
-0.1347990185022354,
0.004092044197022915,
-0.015537004917860031,
0.11026220768690109,
0.11247310042381287,
-0.16903851926326752,
-0.09533487260341644,
0.15743841230869293,
-0.06648726761341095,
-0.09738347679376602,
0.12665660679340363,
-0.025808556005358696,
-0.013389327563345432,
0.030106600373983383,
0.12220382690429688,
0.07038486003875732,
-0.0821070447564125,
-0.02283228002488613,
-0.030595483258366585,
0.09385598450899124,
-0.029130985960364342,
0.08899202197790146,
0.021350055932998657,
0.0612010657787323,
0.00020631424558814615,
-0.041384559124708176,
0.06381429731845856,
-0.12051800638437271,
-0.08701490610837936,
-0.02210022322833538,
-0.09210461378097534,
0.07314891368150711,
0.07759498804807663,
0.07313916087150574,
-0.077803835272789,
-0.11575671285390854,
0.036089975386857986,
0.08577025681734085,
-0.08556259423494339,
0.017889970913529396,
-0.038975100964307785,
0.07684706896543503,
-0.059256695210933685,
-0.013404843397438526,
-0.20180557668209076,
-0.04545873403549194,
0.007838264107704163,
0.00289572193287313,
0.008036788552999496,
0.010453891940414906,
0.08711610734462738,
0.08172197639942169,
-0.05367187410593033,
-0.04549860209226608,
-0.05023021996021271,
-0.02179032936692238,
-0.12646536529064178,
-0.2047937959432602,
-0.08512374013662338,
-0.010175052098929882,
0.1418866664171219,
-0.19896626472473145,
0.02337416261434555,
-0.01655224710702896,
0.11276624351739883,
0.016624508425593376,
-0.02931514009833336,
-0.028224529698491096,
0.09013195335865021,
-0.030141467228531837,
-0.06622151285409927,
0.05056100711226463,
-0.016451669856905937,
-0.08530166000127792,
-0.01959235407412052,
-0.13002532720565796,
0.13984458148479462,
0.11663758009672165,
-0.027574364095926285,
-0.11117271333932877,
0.007773536257445812,
-0.07769156247377396,
-0.04908975213766098,
-0.042611315846443176,
0.013234693557024002,
0.1662958264350891,
0.03637947514653206,
0.1400221884250641,
-0.06980277597904205,
-0.06792765855789185,
0.04073234647512436,
-0.0002552589576225728,
0.013396051712334156,
0.14909102022647858,
0.09664804488420486,
-0.057667750865221024,
0.1301203966140747,
0.11931365728378296,
-0.09661737829446793,
0.13015116751194,
-0.05140536278486252,
-0.10499473661184311,
-0.03659280017018318,
-0.01797497645020485,
0.022078171372413635,
0.11621427536010742,
-0.1003054603934288,
-0.02105892263352871,
0.025056354701519012,
0.006544000934809446,
0.013753252103924751,
-0.21874548494815826,
-0.03278718888759613,
0.04349694773554802,
-0.03358152508735657,
-0.023302463814616203,
-0.010972566902637482,
0.021460633724927902,
0.12060392647981644,
0.0019633430056273937,
-0.06793421506881714,
-0.010905878618359566,
0.004548783414065838,
-0.05600603297352791,
0.20568832755088806,
-0.04908854886889458,
-0.14746101200580597,
-0.12159859389066696,
-0.005682552233338356,
-0.03158262372016907,
-0.008087020367383957,
0.030289188027381897,
-0.09289635717868805,
-0.015226808376610279,
-0.05002851411700249,
0.03829723224043846,
-0.010822473093867302,
0.04921328276395798,
0.014236243441700935,
-0.010173753835260868,
0.05738446116447449,
-0.09723702073097229,
0.017746081575751305,
-0.04606418311595917,
-0.04221164062619209,
0.05196220800280571,
0.057612475007772446,
0.11128658801317215,
0.15542693436145782,
-0.022256944328546524,
0.01018791738897562,
-0.022208770737051964,
0.20648029446601868,
-0.09511008113622665,
-0.018599221482872963,
0.12392321228981018,
-0.0009801301639527082,
0.05741049721837044,
0.11684086918830872,
0.06681133061647415,
-0.06690745055675507,
0.0023094487842172384,
0.0374072901904583,
-0.04318350926041603,
-0.21533198654651642,
-0.031123843044042587,
-0.05023466795682907,
0.010968927294015884,
0.1282748132944107,
0.009336991235613823,
-0.014182619750499725,
0.047105275094509125,
0.003839341690763831,
0.06384043395519257,
-0.04664371907711029,
0.04507479816675186,
0.07275345921516418,
0.046762898564338684,
0.1356011927127838,
-0.023334302008152008,
-0.07529538869857788,
0.022092824801802635,
-0.02197970636188984,
0.2196759432554245,
-0.06627905368804932,
0.14580674469470978,
0.02113153040409088,
0.15865255892276764,
0.007695102132856846,
0.11095449328422546,
0.006077231373637915,
-0.03138619661331177,
0.007207335904240608,
-0.0421149842441082,
-0.04017498344182968,
0.00734162051230669,
0.011860014870762825,
0.04386761784553528,
-0.13331952691078186,
0.016112079843878746,
0.02826196514070034,
0.28548863530158997,
0.0725446343421936,
-0.3357531428337097,
-0.10570724308490753,
-0.016645479947328568,
-0.029356807470321655,
-0.019749386236071587,
0.007380461320281029,
0.15506286919116974,
-0.09515036642551422,
0.031439654529094696,
-0.08667628467082977,
0.08262069523334503,
-0.07113011926412582,
0.020704973489046097,
0.10664152354001999,
0.08308882266283035,
-0.005197654012590647,
0.052069682627916336,
-0.2382083237171173,
0.2937418520450592,
-0.005011849571019411,
0.0490044429898262,
-0.07040704041719437,
0.007128060795366764,
0.013023191131651402,
-0.010172117501497269,
0.0484609417617321,
-0.011007341556251049,
-0.03313658386468887,
-0.21092166006565094,
-0.11082209646701813,
0.011440988630056381,
0.11678360402584076,
-0.0697675496339798,
0.12896735966205597,
-0.023298313841223717,
-0.01993943564593792,
0.045933257788419724,
-0.03619072213768959,
-0.014645788818597794,
-0.09860352426767349,
0.026735620573163033,
-0.014410674571990967,
-0.025072935968637466,
-0.06624452769756317,
-0.1429171860218048,
-0.09464607387781143,
0.1424788236618042,
-0.037155527621507645,
-0.041764914989471436,
-0.13022129237651825,
0.1129833310842514,
0.16802984476089478,
-0.0890888050198555,
0.026030581444501877,
0.01724635250866413,
0.0719006210565567,
0.019828857854008675,
-0.048559509217739105,
0.10086185485124588,
-0.060158248990774155,
-0.21918466687202454,
-0.055193204432725906,
0.1348167508840561,
0.031675759702920914,
0.07632999122142792,
-0.04713251441717148,
0.035109277814626694,
-0.03051324188709259,
-0.083926722407341,
0.037169378250837326,
-0.023220263421535492,
0.07174854725599289,
0.022993499413132668,
-0.01630001701414585,
0.03836579620838165,
-0.05063045769929886,
-0.022577818483114243,
0.15302778780460358,
0.2575382590293884,
-0.10253766179084778,
0.004902213346213102,
0.031627677381038666,
-0.03703588992357254,
-0.18262363970279694,
0.0075524067506194115,
0.12134236097335815,
0.040106747299432755,
0.01319800317287445,
-0.17477507889270782,
0.06866756081581116,
0.10475640743970871,
-0.012473407201468945,
0.0993269607424736,
-0.3614538013935089,
-0.13906437158584595,
0.06962946057319641,
0.11409953981637955,
0.04616560786962509,
-0.16829949617385864,
-0.025024089962244034,
0.009732535108923912,
-0.11372887343168259,
0.10403573513031006,
-0.019923733547329903,
0.1280856728553772,
-0.03178676217794418,
0.06697256863117218,
0.02191607467830181,
-0.07422927767038345,
0.12360287457704544,
-0.007519096601754427,
0.06970846652984619,
-0.025002088397741318,
-0.024998338893055916,
0.04666566848754883,
-0.05540723353624344,
0.0014721555635333061,
-0.07118804007768631,
0.02701295167207718,
-0.08693031966686249,
-0.011407073587179184,
-0.1099577471613884,
0.017360910773277283,
-0.050822146236896515,
-0.04459856450557709,
-0.020049048587679863,
0.02853151224553585,
0.041710805147886276,
-0.021341443061828613,
0.12205075472593307,
0.014812841080129147,
0.16040103137493134,
0.1103287935256958,
0.053347937762737274,
-0.02071007527410984,
-0.08267700672149658,
-0.006886693183332682,
0.010218199342489243,
0.05421648919582367,
-0.13440978527069092,
0.007457182742655277,
0.17255687713623047,
0.05925879254937172,
0.11685620993375778,
0.07527659088373184,
-0.032527368515729904,
0.004477411042898893,
0.06631368398666382,
-0.14722315967082977,
-0.09271416068077087,
-0.013098087161779404,
-0.0489170104265213,
-0.15133395791053772,
0.03534277155995369,
0.10734415799379349,
-0.06848312169313431,
-0.01906326413154602,
-0.0018885203171521425,
0.012428928166627884,
-0.029725294560194016,
0.25168129801750183,
0.03671017289161682,
0.08604831993579865,
-0.10739052295684814,
0.05098193883895874,
0.06682971864938736,
-0.13645032048225403,
0.008010326884686947,
0.11199168860912323,
-0.06179013103246689,
-0.00918450579047203,
0.06443921476602554,
0.09287511557340622,
-0.04867281764745712,
-0.0077669741585850716,
-0.14711697399616241,
-0.12214131653308868,
0.08388273417949677,
0.14373280107975006,
0.07014733552932739,
0.038497794419527054,
-0.04327564314007759,
0.021658163517713547,
-0.14113807678222656,
0.10830266028642654,
0.09395841509103775,
0.08207899332046509,
-0.13200309872627258,
0.19009540975093842,
-0.005476620979607105,
0.04163733869791031,
-0.016692111268639565,
0.030537372455000877,
-0.11001493781805038,
0.002236614003777504,
-0.09577050060033798,
-0.04007216542959213,
-0.03286042809486389,
-0.01504935510456562,
-0.014877097681164742,
-0.04899849370121956,
-0.045343149453401566,
-0.00015007442561909556,
-0.1047007367014885,
-0.042059846222400665,
-0.004454123321920633,
0.019135592505335808,
-0.12778328359127045,
-0.020099766552448273,
0.033176109194755554,
-0.09874369204044342,
0.090799480676651,
0.054466091096401215,
0.03354751318693161,
0.028035523369908333,
-0.06334580481052399,
0.003939749673008919,
0.03622587397694588,
0.0002526787284296006,
0.0738021582365036,
-0.10324607789516449,
0.0021529451478272676,
-0.04064454138278961,
0.04653210565447807,
0.016938604414463043,
0.038279939442873,
-0.1321076601743698,
0.021766530349850655,
-0.02350858971476555,
-0.05102023482322693,
-0.06863334029912949,
0.04331931471824646,
0.06906434148550034,
0.027026550844311714,
0.15298017859458923,
-0.07438348233699799,
0.07026606798171997,
-0.23817406594753265,
-0.013430803082883358,
-0.01546360645443201,
-0.10011346638202667,
-0.06207282841205597,
-0.03846928849816322,
0.09579013288021088,
-0.05854904279112816,
0.07681237906217575,
0.0047606211155653,
0.07747890800237656,
0.02673557586967945,
-0.026583625003695488,
0.0006692077731713653,
0.050409846007823944,
0.1538170725107193,
0.03749629855155945,
-0.043549880385398865,
0.05312266945838928,
0.05315808206796646,
0.08148935437202454,
0.14659196138381958,
0.21742206811904907,
0.10379514843225479,
0.016898460686206818,
0.07795538753271103,
0.035648174583911896,
-0.0996713638305664,
-0.18577511608600616,
0.0448395311832428,
-0.07727573066949844,
0.11571189761161804,
-0.030141768977046013,
0.19590099155902863,
0.06699540466070175,
-0.179081991314888,
0.03792104125022888,
-0.0534445159137249,
-0.09817741811275482,
-0.09086295962333679,
-0.02843235619366169,
-0.05681512877345085,
-0.12863178551197052,
-0.0008384144166484475,
-0.10923254489898682,
0.03086836077272892,
0.10629385709762573,
0.0261665191501379,
0.009618048556149006,
0.15002334117889404,
0.06784184277057648,
0.03159090131521225,
0.07184313237667084,
0.05364292487502098,
0.007934666238725185,
-0.05356820672750473,
-0.0631384328007698,
-0.008961291052401066,
-0.019331134855747223,
0.04886593669652939,
-0.06758536398410797,
-0.0930282399058342,
0.06167655065655708,
0.016649555414915085,
-0.11065039783716202,
0.016924291849136353,
0.0010680813575163484,
0.0857158973813057,
0.05623096600174904,
0.0005927578313276172,
0.023466220125555992,
-0.05176948755979538,
0.23897163569927216,
-0.10055147111415863,
-0.05185859277844429,
-0.11373956501483917,
0.2651945948600769,
0.00714575219899416,
-0.0374605655670166,
0.041670192033052444,
-0.07014594972133636,
-0.03168914467096329,
0.19834119081497192,
0.19272878766059875,
-0.07309382408857346,
-0.01643315702676773,
0.02666279673576355,
-0.009192517958581448,
-0.026811247691512108,
0.09880264103412628,
0.1257464587688446,
0.11428702622652054,
-0.10310807824134827,
-0.03789173811674118,
-0.053807735443115234,
-0.03938876837491989,
-0.021429333835840225,
0.06044817715883255,
0.033586278557777405,
0.006250021513551474,
-0.044585805386304855,
0.05590520426630974,
-0.06644688546657562,
-0.13325488567352295,
0.0712440088391304,
-0.2510375678539276,
-0.18719753623008728,
-0.020834969356656075,
0.09014230221509933,
0.003194197313860059,
0.08141659200191498,
0.0013110837899148464,
-0.020750360563397408,
0.07956269383430481,
-0.016034236177802086,
-0.06082030385732651,
-0.0751328095793724,
0.08002505451440811,
-0.08741836994886398,
0.15750443935394287,
-0.05066782608628273,
0.04421260580420494,
0.12102679163217545,
0.06611303240060806,
-0.096697598695755,
0.008992984890937805,
0.07572955638170242,
-0.1097189262509346,
0.025290371850132942,
0.16038788855075836,
-0.028622601181268692,
0.05965913459658623,
0.033527128398418427,
-0.13429652154445648,
0.01046955119818449,
-0.07203420251607895,
-0.011816635727882385,
-0.03672927990555763,
-0.04343295842409134,
-0.01752859726548195,
0.1482861489057541,
0.25526857376098633,
-0.038954149931669235,
0.003172260010614991,
-0.05376926064491272,
-0.014002148993313313,
0.04899141192436218,
0.09818132221698761,
-0.053560782223939896,
-0.2676717936992645,
0.008868519216775894,
0.012303069233894348,
0.00027019341359846294,
-0.2252500206232071,
-0.07773315906524658,
0.03364180028438568,
-0.07470334321260452,
-0.09160011261701584,
0.095308817923069,
0.03757042437791824,
0.0623323954641819,
-0.04215877875685692,
-0.031264714896678925,
-0.06910089403390884,
0.16697750985622406,
-0.18049117922782898,
-0.08023303002119064
] |
null | null | transformers |
# Harry Potter DialoGPT Model | {"tags": ["conversational"]} | text-generation | Mara/DialoGPT-medium-harrypotter | [
"transformers",
"pytorch",
"gpt2",
"text-generation",
"conversational",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [] | TAGS
#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
# Harry Potter DialoGPT Model | [
"# Harry Potter DialoGPT Model"
] | [
"TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"# Harry Potter DialoGPT Model"
] | [
51,
8
] | [
"passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# Harry Potter DialoGPT Model"
] | [
-0.0009023238671943545,
0.07815738022327423,
-0.006546166725456715,
0.07792752981185913,
0.10655936598777771,
0.048972971737384796,
0.17639793455600739,
0.12185695022344589,
0.016568755730986595,
-0.04774167761206627,
0.11647630482912064,
0.2130284160375595,
-0.002118367003276944,
0.024608047679066658,
-0.05022026598453522,
-0.3065771162509918,
0.0474756620824337,
0.014356585219502449,
-0.07174845039844513,
0.11724270135164261,
0.09064973145723343,
-0.046179238706827164,
0.08330509811639786,
-0.009135239757597446,
-0.13198648393154144,
-0.039482954889535904,
0.019292812794446945,
-0.11745545268058777,
0.1662212759256363,
0.05298272892832756,
0.02469746209681034,
-0.008447164669632912,
-0.06598151475191116,
-0.15036040544509888,
0.037190426141023636,
-0.027472136542201042,
-0.01080626156181097,
0.05462246760725975,
0.023526115342974663,
-0.07521048933267593,
0.170567125082016,
0.17678891122341156,
0.0833497866988182,
0.0349111407995224,
-0.14917024970054626,
-0.045548245310783386,
0.008950977586209774,
0.05421316996216774,
-0.017893504351377487,
0.09349167346954346,
-0.019903047010302544,
0.11801653355360031,
-0.04491448402404785,
0.09210366010665894,
0.15255063772201538,
-0.4016275703907013,
-0.027563704177737236,
0.08920855820178986,
0.05989706888794899,
0.12076901644468307,
-0.10560955852270126,
0.03972794860601425,
-0.0039703017100691795,
0.01236654631793499,
-0.014540530741214752,
-0.08304883539676666,
-0.07308239489793777,
0.032504837960004807,
-0.1272556483745575,
0.008525865152478218,
0.23756256699562073,
-0.10643257945775986,
0.037069112062454224,
-0.09791990369558334,
-0.07414398342370987,
0.048336777836084366,
-0.053761593997478485,
-0.081727035343647,
-0.054839808493852615,
0.06347949057817459,
0.004366500303149223,
-0.06301609426736832,
-0.08326146006584167,
-0.0006536149303428829,
-0.12781435251235962,
0.17595994472503662,
0.061243366450071335,
0.041611745953559875,
-0.21322020888328552,
0.08940251916646957,
0.04477722570300102,
-0.04711297154426575,
0.007116159424185753,
-0.11796226352453232,
0.04023287072777748,
0.005483259446918964,
-0.03256071358919144,
-0.021854614838957787,
0.0393419973552227,
0.13909944891929626,
-0.01777748204767704,
0.03252175822854042,
0.006831915583461523,
0.05811219662427902,
0.08162496984004974,
0.02222144603729248,
0.019291909411549568,
-0.0818009302020073,
0.019385190680623055,
-0.08128736168146133,
-0.0030400939285755157,
-0.048940129578113556,
-0.17071883380413055,
-0.07477642595767975,
0.052610911428928375,
0.020047198981046677,
0.03746970370411873,
0.08054786175489426,
-0.0017944995779544115,
-0.05560554191470146,
0.03284840285778046,
0.01671096310019493,
-0.020622212439775467,
-0.010361049324274063,
-0.02412462793290615,
0.19123271107673645,
0.019619356840848923,
0.014111656695604324,
-0.12379156798124313,
0.10023640841245651,
-0.08179095387458801,
0.0037731381598860025,
0.02743307314813137,
-0.04204464703798294,
-0.004716555587947369,
0.02917117439210415,
0.023101668804883957,
-0.1252521574497223,
-0.1099385917186737,
-0.0030569476075470448,
-0.012054097838699818,
-0.036421261727809906,
-0.10490952432155609,
-0.08483029156923294,
-0.012153145857155323,
0.0449371263384819,
-0.013397793285548687,
0.007936403155326843,
-0.05143149942159653,
0.0985720232129097,
-0.0514979362487793,
0.09873400628566742,
-0.08342572301626205,
0.06359215080738068,
-0.09124887734651566,
-0.061886150389909744,
-0.11452563107013702,
0.05216052383184433,
0.012905281968414783,
0.066250741481781,
0.016998225823044777,
-0.044836658984422684,
-0.014836243353784084,
0.05253177136182785,
-0.07656687498092651,
0.1940697431564331,
-0.041674621403217316,
-0.12459053844213486,
0.24146439135074615,
-0.09138800948858261,
-0.1802034229040146,
0.12973085045814514,
-0.022254703566432,
0.08523941785097122,
0.12802475690841675,
0.20380465686321259,
-0.00019822151807602495,
-0.01302915159612894,
0.07281201332807541,
0.07031642645597458,
-0.09803894907236099,
0.06239739805459976,
0.029653839766979218,
-0.008071083575487137,
-0.08906278014183044,
0.05762826278805733,
0.046033453196287155,
-0.010650773532688618,
-0.035073768347501755,
-0.001896020956337452,
-0.012895751744508743,
-0.022185025736689568,
0.14126582443714142,
-0.02006692811846733,
0.1300428807735443,
-0.06926563382148743,
-0.03515486419200897,
-0.009500149637460709,
0.03533667325973511,
-0.04091939330101013,
0.08151165395975113,
-0.0436173714697361,
0.10586477071046829,
0.09034156054258347,
0.053724925965070724,
-0.13120363652706146,
0.00466286763548851,
-0.015246815048158169,
0.17014820873737335,
0.08964069187641144,
0.05222717300057411,
0.06265474855899811,
-0.0020888058934360743,
-0.06708643585443497,
0.045407816767692566,
0.13778303563594818,
-0.037020038813352585,
-0.12218865007162094,
-0.1755627691745758,
0.051157694309949875,
-0.045444171875715256,
0.10855234414339066,
-0.10010123997926712,
0.022670533508062363,
-0.055906031280756,
0.07772238552570343,
-0.024998966604471207,
0.020512236282229424,
-0.0013405600329861045,
-0.021700702607631683,
-0.08356887847185135,
-0.002377772703766823,
0.08597290515899658,
-0.02048647589981556,
-0.06707409024238586,
0.16556480526924133,
-0.16400809586048126,
0.1631954461336136,
0.2116095870733261,
-0.28542569279670715,
-0.005696662236005068,
-0.15163889527320862,
-0.0208092350512743,
0.019645055755972862,
0.07834604382514954,
0.026225795969367027,
0.2044338881969452,
-0.012928472831845284,
0.16565458476543427,
-0.05699567869305611,
-0.07730039209127426,
-0.06881127506494522,
-0.048101142048835754,
0.013522743247449398,
0.09095205366611481,
0.04542696103453636,
-0.11962861567735672,
0.13119758665561676,
0.1054433062672615,
0.06484298408031464,
0.12711186707019806,
0.1030748188495636,
-0.008113685995340347,
0.07252490520477295,
-0.03624548763036728,
-0.03462279960513115,
-0.09254947304725647,
-0.30446043610572815,
-0.04840317741036415,
0.0939924493432045,
0.007963384501636028,
0.09285714477300644,
-0.0919896736741066,
-0.03311870992183685,
0.006042704917490482,
0.009473444893956184,
0.028337622061371803,
0.09653715789318085,
0.013490920886397362,
0.15320514142513275,
-0.008011690340936184,
-0.03430786728858948,
0.05891305208206177,
0.017982570454478264,
-0.09147711098194122,
0.17280617356300354,
-0.17050009965896606,
-0.27190929651260376,
-0.06990014761686325,
-0.21745692193508148,
-0.013139115646481514,
0.05258983001112938,
0.0786920040845871,
-0.11818131804466248,
-0.018352627754211426,
-0.006239492911845446,
0.05685517191886902,
-0.2425733357667923,
0.0004911290016025305,
-0.1354890614748001,
0.0501418262720108,
-0.1974833607673645,
-0.09718500077724457,
-0.02271542325615883,
-0.013450481928884983,
-0.0464281290769577,
0.13365240395069122,
-0.1448695808649063,
-0.011572926305234432,
0.2329535037279129,
0.032479673624038696,
0.027794739231467247,
-0.05020907148718834,
0.19788463413715363,
-0.0958966314792633,
-0.023973820731043816,
0.11024576425552368,
-0.05038975924253464,
0.04834126681089401,
0.06649978458881378,
-0.012981836684048176,
-0.08557141572237015,
0.023789849132299423,
-0.068336620926857,
-0.03150583803653717,
-0.27926525473594666,
-0.0930178239941597,
-0.09319330751895905,
0.11305391043424606,
0.04079577326774597,
0.06421639025211334,
0.16545771062374115,
0.05191578343510628,
-0.024325082078576088,
-0.03006586618721485,
0.11609793454408646,
0.12905290722846985,
0.2277202159166336,
-0.06067761778831482,
0.10221996158361435,
0.009445492178201675,
-0.08203992247581482,
0.06062209978699684,
0.056782789528369904,
0.06324724853038788,
0.02584579586982727,
0.03694582358002663,
-0.030939655378460884,
0.1121687963604927,
0.12571842968463898,
0.05258069559931755,
0.0481170229613781,
0.0002127334737451747,
-0.0561506561934948,
-0.008168719708919525,
-0.05726633965969086,
0.06774696707725525,
0.061340972781181335,
-0.12918008863925934,
-0.08061543852090836,
0.0011613310780376196,
0.06660808622837067,
-0.016230419278144836,
0.06823775917291641,
-0.13560809195041656,
-0.03582429885864258,
0.0790911465883255,
-0.07693151384592056,
-0.14156894385814667,
0.11972879618406296,
-0.026570770889520645,
-0.19904157519340515,
0.05265914276242256,
0.007704653777182102,
0.0908159390091896,
-0.06360849738121033,
0.05343840271234512,
-0.13023801147937775,
-0.12935101985931396,
-0.018437571823596954,
0.07945099472999573,
-0.3450873792171478,
0.13536721467971802,
-0.013286802917718887,
-0.02876877970993519,
-0.06474969536066055,
-0.02640824392437935,
0.013905409723520279,
0.12719078361988068,
0.08667250722646713,
0.0008821099763736129,
0.0991629809141159,
0.03823768347501755,
0.04188435152173042,
-0.002011700300499797,
0.10950417071580887,
0.0050011589191854,
0.004797275178134441,
-0.04982118681073189,
0.007274609990417957,
-0.05164213851094246,
-0.07472953200340271,
0.08393982797861099,
-0.20678792893886566,
0.09087453782558441,
-0.03378438204526901,
0.08427679538726807,
0.04304937273263931,
-0.018965769559144974,
-0.1001204177737236,
0.19745583832263947,
-0.012206900864839554,
-0.11405988782644272,
-0.07517550885677338,
-0.02810264565050602,
0.09103139489889145,
-0.013817726634442806,
0.012886416167020798,
-0.045470476150512695,
0.032183047384023666,
-0.1263762265443802,
-0.1597503274679184,
0.08734500408172607,
-0.04441224783658981,
-0.10894393920898438,
-0.025462759658694267,
0.20382575690746307,
-0.007266622502356768,
0.08242089301347733,
0.01605331338942051,
0.010653935372829437,
-0.18066231906414032,
-0.04018142446875572,
0.02645772136747837,
-0.0016437612939625978,
0.005979063920676708,
0.047698814421892166,
0.019091911613941193,
0.06207629665732384,
-0.1069745197892189,
-0.013920160941779613,
0.3158324360847473,
0.15978319942951202,
-0.00912671908736229,
0.14943915605545044,
0.1093616932630539,
-0.08669080585241318,
-0.17238758504390717,
-0.1171615794301033,
-0.1210922971367836,
-0.08425768464803696,
-0.10681738704442978,
-0.1525043100118637,
0.09535340964794159,
-0.03392014652490616,
0.03498011827468872,
0.14615866541862488,
-0.280263751745224,
-0.10949636250734329,
0.13820378482341766,
0.010744688101112843,
0.3510635495185852,
-0.12303631007671356,
-0.044944874942302704,
-0.06214528530836105,
-0.16933435201644897,
0.08021392673254013,
-0.031203703954815865,
0.11581093072891235,
-0.0744495838880539,
0.19395925104618073,
0.01719796098768711,
0.014287159778177738,
0.0916559100151062,
0.05038322135806084,
-0.05808406323194504,
-0.07368700206279755,
-0.10248131304979324,
0.010812131687998772,
0.03546109423041344,
0.010252019390463829,
-0.008802837692201138,
0.0211968794465065,
-0.11341743916273117,
-0.050869911909103394,
-0.06302189081907272,
0.0072614275850355625,
-0.01001308299601078,
-0.042155615985393524,
-0.05533592775464058,
-0.022557416930794716,
-0.020093943923711777,
0.02266426384449005,
0.14185629785060883,
-0.07527699321508408,
0.18586260080337524,
0.02357078716158867,
0.1586609035730362,
-0.11956068128347397,
-0.06724818795919418,
-0.029193658381700516,
-0.05280323326587677,
0.06468886137008667,
-0.08884575963020325,
-0.027708567678928375,
0.1332162618637085,
-0.01903904788196087,
0.04655366763472557,
0.12936700880527496,
0.02046884410083294,
0.015383756719529629,
0.034968774765729904,
-0.2578005790710449,
-0.07463036477565765,
-0.03505445644259453,
-0.012416874058544636,
0.05272092670202255,
0.05525677278637886,
0.19735674560070038,
-0.03551921248435974,
-0.08521962910890579,
0.020131373777985573,
0.02735883742570877,
-0.02776256389915943,
0.10749414563179016,
0.019579345360398293,
-0.004837906453758478,
-0.16151933372020721,
0.08257976174354553,
-0.005964108742773533,
-0.08297000825405121,
0.028665626421570778,
0.2024049311876297,
-0.12141239643096924,
-0.10309756547212601,
-0.06804922968149185,
0.07315051555633545,
-0.09220825880765915,
0.016043387353420258,
-0.005091092549264431,
-0.1521538347005844,
0.06916408240795135,
0.07598215341567993,
0.04075418785214424,
0.06513199955224991,
-0.11743064224720001,
-0.015730571001768112,
-0.04170290008187294,
-0.002195435343310237,
0.03521120920777321,
0.01863143965601921,
-0.057492829859256744,
0.15846455097198486,
-0.0676199421286583,
0.08538917452096939,
-0.0744810476899147,
-0.1058846190571785,
-0.1395980566740036,
0.04660497233271599,
-0.08038312196731567,
-0.07247276604175568,
-0.12832807004451752,
-0.052204377949237823,
-0.0067099276930093765,
-0.03388519585132599,
0.006552806124091148,
-0.06627799570560455,
-0.10922821611166,
0.01822470687329769,
-0.00743203004822135,
-0.009385870769619942,
-0.06096754968166351,
0.026706209406256676,
0.06246216222643852,
-0.039788868278265,
0.15730851888656616,
0.22509248554706573,
-0.13591648638248444,
0.11564400047063828,
-0.09797432273626328,
-0.105463907122612,
0.046008042991161346,
0.009427277371287346,
0.03594303876161575,
0.0503489226102829,
-0.03594081476330757,
0.0044484552927315235,
0.03905477747321129,
0.08074651658535004,
0.08456914126873016,
-0.06776505708694458,
0.020801106467843056,
-0.05122765153646469,
-0.14904099702835083,
-0.016655439510941505,
-0.0464773029088974,
0.06876829266548157,
-0.006725262850522995,
0.11020535975694656,
-0.0515950471162796,
0.07739507406949997,
-0.07558431476354599,
0.050614211708307266,
0.021146971732378006,
-0.14688286185264587,
-0.006612539757043123,
-0.07093682140111923,
0.042144812643527985,
-0.008834975771605968,
0.20241086184978485,
-0.03228091076016426,
0.010342049412429333,
0.033811055123806,
0.06203942745923996,
-0.01957780309021473,
0.009357001632452011,
0.2014283686876297,
0.12640917301177979,
-0.08496357500553131,
-0.02679651789367199,
0.06793134659528732,
0.07248228788375854,
0.07093550264835358,
0.10807815194129944,
-0.015352966263890266,
0.028434239327907562,
0.07829629629850388,
-0.060215238481760025,
0.07576877623796463,
-0.08603982627391815,
-0.11668483167886734,
0.05793621391057968,
0.012955795042216778,
-0.055695828050374985,
0.20305177569389343,
0.19142870604991913,
-0.026278704404830933,
0.018410727381706238,
-0.0029499190859496593,
-0.10117456316947937,
-0.15619947016239166,
-0.05423750728368759,
-0.07170962542295456,
-0.1319410353899002,
-0.004549739416688681,
-0.16646917164325714,
0.022016216069459915,
-0.01132756657898426,
0.09506805986166,
-0.06855440139770508,
-0.01345991250127554,
0.1364889293909073,
-0.1055467277765274,
0.0847758799791336,
-0.024517204612493515,
0.07877567410469055,
-0.03746940940618515,
-0.018209461122751236,
-0.10342709720134735,
0.007514837197959423,
0.01131442841142416,
0.06840907037258148,
-0.10897937417030334,
0.02432350255548954,
-0.12208317965269089,
-0.08617185056209564,
-0.026142612099647522,
0.09279687702655792,
-0.0403008833527565,
0.15116846561431885,
0.02645145356655121,
-0.06710928678512573,
-0.004313822835683823,
0.2646709978580475,
-0.08046227693557739,
-0.08319197595119476,
-0.030799202620983124,
0.2152107208967209,
0.04053696244955063,
0.06396269053220749,
0.019140036776661873,
0.038027774542570114,
-0.07184682041406631,
0.2957373559474945,
0.34401440620422363,
-0.1318037211894989,
-0.007773484103381634,
0.04225075617432594,
0.04406323283910751,
0.14687567949295044,
0.07998795062303543,
0.11360671371221542,
0.2849363386631012,
-0.09197647124528885,
0.016657205298542976,
-0.04230864346027374,
-0.01424806285649538,
-0.06908884644508362,
0.045314885675907135,
0.08216670155525208,
-0.09241747111082077,
-0.022950593382120132,
0.08125471323728561,
-0.29741767048835754,
0.10791494697332382,
-0.15600289404392242,
-0.14948409795761108,
-0.05027429759502411,
-0.008771711029112339,
0.014683255925774574,
0.019041186198592186,
0.09663030505180359,
0.025651484727859497,
-0.07275258749723434,
0.07816889137029648,
0.024486342445015907,
-0.23020237684249878,
-0.01345184724777937,
0.1456068754196167,
-0.06789913028478622,
-0.025938833132386208,
-0.021313713863492012,
0.051610056310892105,
0.05763651058077812,
0.09027529507875443,
-0.03809558227658272,
-0.0746568813920021,
-0.007141788024455309,
-0.022818787023425102,
0.01914946548640728,
0.0597183033823967,
0.06841408461332321,
-0.0920223817229271,
0.1167774423956871,
-0.07350476831197739,
0.0650370642542839,
0.037623800337314606,
-0.022277191281318665,
0.0018526542698964477,
0.013183658011257648,
-0.06512464582920074,
0.05533479526638985,
0.1295643299818039,
-0.025459708645939827,
-0.002524374984204769,
-0.028180841356515884,
-0.0767761766910553,
-0.024015206843614578,
-0.04643676429986954,
-0.09101243317127228,
-0.18130090832710266,
-0.12738600373268127,
0.041754670441150665,
-0.03240608796477318,
-0.2046082615852356,
0.0060346988029778,
-0.1128578633069992,
0.03700976446270943,
-0.14154092967510223,
0.10004086047410965,
0.07216610759496689,
0.004716616589576006,
0.006774604320526123,
0.0675399899482727,
0.045677728950977325,
0.14796748757362366,
-0.16543124616146088,
-0.04919974133372307
] |
null | null | transformers |
# Pegasus XSUM Gigaword
## Model description
Pegasus XSUM model finetuned to Gigaword Summarization task, significantly better performance than pegasus gigaword, but still doesn't match model paper performance.
## Intended uses & limitations
Produces short summaries with the coherence of the XSUM Model
#### How to use
```python
# You can include sample code which will be formatted
```
#### Limitations and bias
Still has all the biases of any of the abstractive models, but seems a little less prone to hallucination.
## Training data
Initialized with pegasus-XSUM
## Training procedure
Trained for 11500 iterations on Gigaword corpus using OOB seq2seq (from hugging face using the default parameters)
## Eval results
Evaluated on Gigaword test set (from hugging face using the default parameters)
run_summarization.py --model_name_or_path pegasus-xsum/checkpoint-11500/ --do_predict --dataset_name gigaword --dataset_config "3.0.0" --source_prefix "summarize: " --output_dir pegasus-xsum --per_device_train_batch_size=8 --per_device_eval_batch_size=8 --overwrite_output_dir --predict_with_generate
| Metric | Score |
| ----------- | ----------- |
| eval_rouge1 | 34.1958 |
| eval_rouge2 | 15.4033 |
| eval_rougeL | 31.4488 |
run_summarization.py --model_name_or_path google/pegasus-gigaword --do_predict --dataset_name gigaword --dataset_config "3.0.0" --source_prefix "summarize: " --output_dir pegasus-xsum --per_device_train_batch_size=8 --per_device_eval_batch_size=8 --overwrite_output_dir --predict_with_generate
| Metric | Score |
| ----------- | ----------- |
| eval_rouge1 | 20.8111 |
| eval_rouge2 | 8.766 |
| eval_rougeL | 18.4431 |
### BibTeX entry and citation info
```bibtex
@inproceedings{...,
year={2020}
}
```
| {"language": ["English"], "tags": [], "datasets": ["XSUM", "Gigaword"], "metrics": ["Rouge"]} | text2text-generation | Marc/pegasus_xsum_gigaword | [
"transformers",
"pytorch",
"pegasus",
"text2text-generation",
"dataset:XSUM",
"dataset:Gigaword",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [
"English"
] | TAGS
#transformers #pytorch #pegasus #text2text-generation #dataset-XSUM #dataset-Gigaword #autotrain_compatible #endpoints_compatible #region-us
| Pegasus XSUM Gigaword
=====================
Model description
-----------------
Pegasus XSUM model finetuned to Gigaword Summarization task, significantly better performance than pegasus gigaword, but still doesn't match model paper performance.
Intended uses & limitations
---------------------------
Produces short summaries with the coherence of the XSUM Model
#### How to use
#### Limitations and bias
Still has all the biases of any of the abstractive models, but seems a little less prone to hallucination.
Training data
-------------
Initialized with pegasus-XSUM
Training procedure
------------------
Trained for 11500 iterations on Gigaword corpus using OOB seq2seq (from hugging face using the default parameters)
Eval results
------------
Evaluated on Gigaword test set (from hugging face using the default parameters)
run\_summarization.py --model\_name\_or\_path pegasus-xsum/checkpoint-11500/ --do\_predict --dataset\_name gigaword --dataset\_config "3.0.0" --source\_prefix "summarize: " --output\_dir pegasus-xsum --per\_device\_train\_batch\_size=8 --per\_device\_eval\_batch\_size=8 --overwrite\_output\_dir --predict\_with\_generate
run\_summarization.py --model\_name\_or\_path google/pegasus-gigaword --do\_predict --dataset\_name gigaword --dataset\_config "3.0.0" --source\_prefix "summarize: " --output\_dir pegasus-xsum --per\_device\_train\_batch\_size=8 --per\_device\_eval\_batch\_size=8 --overwrite\_output\_dir --predict\_with\_generate
### BibTeX entry and citation info
| [
"#### How to use",
"#### Limitations and bias\n\n\nStill has all the biases of any of the abstractive models, but seems a little less prone to hallucination.\n\n\nTraining data\n-------------\n\n\nInitialized with pegasus-XSUM\n\n\nTraining procedure\n------------------\n\n\nTrained for 11500 iterations on Gigaword corpus using OOB seq2seq (from hugging face using the default parameters)\n\n\nEval results\n------------\n\n\nEvaluated on Gigaword test set (from hugging face using the default parameters)\nrun\\_summarization.py --model\\_name\\_or\\_path pegasus-xsum/checkpoint-11500/ --do\\_predict --dataset\\_name gigaword --dataset\\_config \"3.0.0\" --source\\_prefix \"summarize: \" --output\\_dir pegasus-xsum --per\\_device\\_train\\_batch\\_size=8 --per\\_device\\_eval\\_batch\\_size=8 --overwrite\\_output\\_dir --predict\\_with\\_generate\n\n\n\nrun\\_summarization.py --model\\_name\\_or\\_path google/pegasus-gigaword --do\\_predict --dataset\\_name gigaword --dataset\\_config \"3.0.0\" --source\\_prefix \"summarize: \" --output\\_dir pegasus-xsum --per\\_device\\_train\\_batch\\_size=8 --per\\_device\\_eval\\_batch\\_size=8 --overwrite\\_output\\_dir --predict\\_with\\_generate",
"### BibTeX entry and citation info"
] | [
"TAGS\n#transformers #pytorch #pegasus #text2text-generation #dataset-XSUM #dataset-Gigaword #autotrain_compatible #endpoints_compatible #region-us \n",
"#### How to use",
"#### Limitations and bias\n\n\nStill has all the biases of any of the abstractive models, but seems a little less prone to hallucination.\n\n\nTraining data\n-------------\n\n\nInitialized with pegasus-XSUM\n\n\nTraining procedure\n------------------\n\n\nTrained for 11500 iterations on Gigaword corpus using OOB seq2seq (from hugging face using the default parameters)\n\n\nEval results\n------------\n\n\nEvaluated on Gigaword test set (from hugging face using the default parameters)\nrun\\_summarization.py --model\\_name\\_or\\_path pegasus-xsum/checkpoint-11500/ --do\\_predict --dataset\\_name gigaword --dataset\\_config \"3.0.0\" --source\\_prefix \"summarize: \" --output\\_dir pegasus-xsum --per\\_device\\_train\\_batch\\_size=8 --per\\_device\\_eval\\_batch\\_size=8 --overwrite\\_output\\_dir --predict\\_with\\_generate\n\n\n\nrun\\_summarization.py --model\\_name\\_or\\_path google/pegasus-gigaword --do\\_predict --dataset\\_name gigaword --dataset\\_config \"3.0.0\" --source\\_prefix \"summarize: \" --output\\_dir pegasus-xsum --per\\_device\\_train\\_batch\\_size=8 --per\\_device\\_eval\\_batch\\_size=8 --overwrite\\_output\\_dir --predict\\_with\\_generate",
"### BibTeX entry and citation info"
] | [
53,
5,
384,
11
] | [
"passage: TAGS\n#transformers #pytorch #pegasus #text2text-generation #dataset-XSUM #dataset-Gigaword #autotrain_compatible #endpoints_compatible #region-us \n#### How to use#### Limitations and bias\n\n\nStill has all the biases of any of the abstractive models, but seems a little less prone to hallucination.\n\n\nTraining data\n-------------\n\n\nInitialized with pegasus-XSUM\n\n\nTraining procedure\n------------------\n\n\nTrained for 11500 iterations on Gigaword corpus using OOB seq2seq (from hugging face using the default parameters)\n\n\nEval results\n------------\n\n\nEvaluated on Gigaword test set (from hugging face using the default parameters)\nrun\\_summarization.py --model\\_name\\_or\\_path pegasus-xsum/checkpoint-11500/ --do\\_predict --dataset\\_name gigaword --dataset\\_config \"3.0.0\" --source\\_prefix \"summarize: \" --output\\_dir pegasus-xsum --per\\_device\\_train\\_batch\\_size=8 --per\\_device\\_eval\\_batch\\_size=8 --overwrite\\_output\\_dir --predict\\_with\\_generate\n\n\n\nrun\\_summarization.py --model\\_name\\_or\\_path google/pegasus-gigaword --do\\_predict --dataset\\_name gigaword --dataset\\_config \"3.0.0\" --source\\_prefix \"summarize: \" --output\\_dir pegasus-xsum --per\\_device\\_train\\_batch\\_size=8 --per\\_device\\_eval\\_batch\\_size=8 --overwrite\\_output\\_dir --predict\\_with\\_generate### BibTeX entry and citation info"
] | [
-0.07973603159189224,
0.1642620861530304,
-0.005785426124930382,
0.06615269929170609,
0.07417911291122437,
0.056719452142715454,
0.0449507012963295,
0.15384946763515472,
-0.039701998233795166,
0.15402036905288696,
0.10567544400691986,
0.062450651079416275,
0.11754218488931656,
0.17424550652503967,
-0.000761908246204257,
-0.2090185135602951,
0.016838477924466133,
-0.09123434871435165,
-0.0013171666068956256,
0.11461932212114334,
0.0905444324016571,
-0.07232176512479782,
0.04365592822432518,
-0.022130019962787628,
-0.03147116303443909,
-0.03132879361510277,
-0.03387584164738655,
-0.04233196750283241,
-0.009630330838263035,
0.05215205252170563,
0.02033212035894394,
0.004497924353927374,
0.02139122784137726,
-0.2656458914279938,
0.0027842570561915636,
0.059749387204647064,
0.015761079266667366,
0.08020025491714478,
0.1486658900976181,
-0.0391131266951561,
0.06837078928947449,
-0.12099619209766388,
0.02063906565308571,
0.05921168997883797,
-0.12405576556921005,
-0.21282045543193817,
-0.08206938207149506,
0.0968390628695488,
0.08115287125110626,
0.06865525990724564,
-0.0854242742061615,
0.07081620395183563,
-0.049864012748003006,
0.06856357306241989,
0.1648699939250946,
-0.12882858514785767,
-0.06859365105628967,
-0.04326960816979408,
0.02883394993841648,
-0.04335777834057808,
-0.08567516505718231,
-0.06897993385791779,
-0.034326065331697464,
0.04109520837664604,
0.003205395070835948,
-0.005981950554996729,
0.0645485445857048,
0.0015563627239316702,
-0.09092561900615692,
-0.04675934463739395,
0.0886024683713913,
0.07667568325996399,
-0.0369916632771492,
-0.17796586453914642,
-0.02261289767920971,
-0.14324533939361572,
-0.01741557940840721,
0.012293771840631962,
0.016542557626962662,
-0.02189895510673523,
0.05619955062866211,
0.0239336509257555,
-0.05494791641831398,
-0.0383991040289402,
-0.013600769452750683,
0.03051070123910904,
0.04928479343652725,
-0.033631280064582825,
0.056736454367637634,
0.10394144058227539,
-0.026253297924995422,
-0.18255053460597992,
-0.04455103725194931,
-0.04581571742892265,
-0.11627867817878723,
0.002376841614022851,
0.026654159650206566,
0.05789387971162796,
0.10478375852108002,
0.2070753574371338,
-0.032451365143060684,
0.08760862052440643,
0.018705638125538826,
-0.006258351728320122,
0.04276004061102867,
0.11051258444786072,
-0.1369650512933731,
-0.11550626903772354,
-0.0069899726659059525,
0.08772061765193939,
0.001558098359964788,
0.004853569436818361,
0.005242485087364912,
0.0051382058300077915,
0.09060323983430862,
0.026279391720891,
0.11474402248859406,
0.054467473179101944,
-0.12511920928955078,
-0.04653498902916908,
0.08724655210971832,
-0.1601797342300415,
0.061192627996206284,
0.04836626350879669,
-0.06122558191418648,
0.006481809541583061,
0.049845874309539795,
-0.043582331389188766,
-0.11119938641786575,
0.08577468991279602,
-0.07191621512174606,
0.005548268556594849,
-0.10061468929052353,
-0.08637449890375137,
0.005940534174442291,
-0.015162593685090542,
-0.03887328505516052,
-0.03321351483464241,
-0.047063566744327545,
-0.10866494476795197,
0.0822136178612709,
-0.13206170499324799,
-0.04658142849802971,
-0.057698823511600494,
-0.11490530520677567,
0.05599347874522209,
-0.02727293223142624,
0.09247314184904099,
-0.05880098044872284,
0.06441888958215714,
0.08954077959060669,
0.047793447971343994,
0.10894348472356796,
0.02792118676006794,
-0.07824968546628952,
0.084649957716465,
-0.1875707358121872,
0.1430589109659195,
-0.08158200234174728,
0.029537808150053024,
-0.1562645584344864,
-0.06385069340467453,
0.04237993806600571,
0.008249972015619278,
0.10315908491611481,
0.1625850945711136,
-0.14903108775615692,
-0.005627912003546953,
0.2555024027824402,
-0.03351842984557152,
-0.11591222882270813,
0.10066484659910202,
-0.029123984277248383,
-0.010865823365747929,
0.022848190739750862,
0.06353534758090973,
0.07018246501684189,
-0.09594199061393738,
-0.07840728014707565,
-0.06212987005710602,
0.058636777102947235,
0.15824076533317566,
0.08697285503149033,
-0.06075167655944824,
0.09902391582727432,
0.03379235416650772,
-0.02253606729209423,
-0.005886479280889034,
-0.03235224261879921,
-0.054761309176683426,
0.00014231837121769786,
-0.008133135735988617,
-0.026168284937739372,
0.010074907913804054,
-0.037857573479413986,
-0.06248285993933678,
-0.20304515957832336,
-0.07953309267759323,
0.04739129915833473,
-0.0310734324157238,
-0.01639404147863388,
-0.10893455147743225,
0.047753699123859406,
-0.00305537274107337,
0.020959053188562393,
-0.14892388880252838,
-0.042759209871292114,
0.013485226780176163,
-0.018841058015823364,
0.05801939591765404,
-0.11277394741773605,
0.04653814062476158,
0.02993437461555004,
-0.027905359864234924,
-0.03414769843220711,
0.04707812890410423,
-0.01709853857755661,
0.005843316204845905,
-0.1770889163017273,
-0.005891451612114906,
0.003340145107358694,
0.14512155950069427,
-0.1623658835887909,
0.029162323102355003,
0.06932676583528519,
0.11618741601705551,
-0.03029385209083557,
-0.06441742181777954,
0.026580287143588066,
-0.02007525973021984,
-0.03560233861207962,
-0.06125717982649803,
-0.008312249556183815,
-0.021117711439728737,
-0.06567841023206711,
-0.01076305191963911,
-0.1606268584728241,
-0.02847672812640667,
0.11977344751358032,
0.01716069132089615,
-0.1589968502521515,
-0.0853780135512352,
-0.04229968413710594,
-0.06555834412574768,
-0.01785312034189701,
-0.05096299201250076,
0.15947405993938446,
0.05684814602136612,
0.05309626832604408,
-0.041689831763505936,
-0.041976429522037506,
0.002803329611197114,
-0.025454051792621613,
-0.006053992547094822,
0.12443754822015762,
0.011537782847881317,
-0.10247134417295456,
0.10996013879776001,
0.002110883826389909,
-0.014588807709515095,
0.051217976957559586,
-0.03748835250735283,
-0.08443554490804672,
-0.10103512555360794,
0.06521334499120712,
0.045373305678367615,
0.025906171649694443,
-0.09548322856426239,
0.038705889135599136,
0.05141688138246536,
-0.0005809722351841629,
0.009849845431745052,
-0.08670566231012344,
0.03620884567499161,
0.02774718403816223,
-0.040577150881290436,
-0.022381402552127838,
-0.030031763017177582,
0.014337669126689434,
0.04527374729514122,
0.025743769481778145,
0.06942486017942429,
0.019093213602900505,
-0.058636121451854706,
-0.08645722270011902,
0.1435403972864151,
-0.09448754042387009,
-0.1910802572965622,
-0.13081389665603638,
-0.04367472976446152,
-0.019351787865161896,
-0.013222874142229557,
0.02361069619655609,
-0.022279400378465652,
-0.07122531533241272,
-0.0633438229560852,
0.05483702942728996,
0.047066885977983475,
-0.03008907288312912,
-0.08913677930831909,
0.028494251891970634,
0.10088631510734558,
-0.06063316762447357,
-0.007510623428970575,
0.047337163239717484,
-0.052462201565504074,
0.03132051229476929,
0.06609757989645004,
0.08723506331443787,
0.037080563604831696,
0.05771937593817711,
0.006907230708748102,
0.029143057763576508,
0.23377881944179535,
-0.10564401745796204,
0.05047382414340973,
0.09956386685371399,
-0.04230978339910507,
0.06649693846702576,
0.20585572719573975,
0.010848787613213062,
-0.07829228043556213,
0.022740226238965988,
0.06188753992319107,
0.005889808759093285,
-0.21760377287864685,
-0.002513350686058402,
-0.0603937953710556,
-0.023182079195976257,
0.13273200392723083,
0.03783143311738968,
-0.03762887790799141,
0.07432129979133606,
-0.071358323097229,
-0.013677556999027729,
0.028374571353197098,
0.06270021200180054,
0.06837920844554901,
0.04343348369002342,
0.09777029603719711,
0.0038123575504869223,
0.0004866823728661984,
0.05163291096687317,
0.02276707999408245,
0.15103085339069366,
-0.08022727817296982,
0.2163132131099701,
0.07527296245098114,
0.11173111200332642,
-0.03252562880516052,
-0.0007777778664603829,
0.009874101728200912,
0.045856401324272156,
0.012162644416093826,
-0.057856298983097076,
-0.06351230293512344,
0.04742193967103958,
0.10651493072509766,
0.030671197921037674,
-0.00415465421974659,
-0.00397940818220377,
0.09620576351881027,
0.18395669758319855,
0.03206843510270119,
-0.25575172901153564,
-0.0293258186429739,
0.03474888205528259,
-0.07651907950639725,
-0.08816909790039062,
-0.02021902985870838,
0.07086645066738129,
-0.09657080471515656,
0.09586209058761597,
-0.05502273142337799,
0.08880369365215302,
-0.12535594403743744,
-0.002941057551652193,
0.0899306982755661,
0.1248149573802948,
0.040237829089164734,
0.07928013056516647,
-0.21238572895526886,
0.14946284890174866,
0.0008258652524091303,
0.061341580003499985,
-0.052416760474443436,
0.1046857014298439,
0.004038207698613405,
-0.14016979932785034,
0.14919385313987732,
-0.035358186811208725,
-0.015753161162137985,
-0.07667925953865051,
-0.11916540563106537,
-0.006476537324488163,
0.0747763141989708,
-0.09671932458877563,
0.12566369771957397,
-0.03431941196322441,
-0.04777343571186066,
-0.01295711100101471,
-0.006747253704816103,
-0.10355638712644577,
-0.1548481583595276,
0.03816650062799454,
-0.09358851611614227,
0.05129014328122139,
-0.0411275215446949,
-0.017148621380329132,
-0.0989064872264862,
0.23812471330165863,
-0.21726861596107483,
-0.0886242687702179,
-0.12413927912712097,
0.12339863181114197,
0.17750756442546844,
-0.08823421597480774,
0.020146969705820084,
-0.030460497364401817,
0.07166648656129837,
0.07083271443843842,
0.010034877806901932,
0.13822214305400848,
-0.04695773869752884,
-0.16740715503692627,
-0.046186573803424835,
0.1249619796872139,
0.04631692171096802,
0.040710918605327606,
-0.05534326657652855,
0.05730080232024193,
-0.02548310160636902,
-0.1201711967587471,
0.06587211042642593,
0.08127737790346146,
0.09154791384935379,
0.06080220639705658,
-0.012835820205509663,
-0.07383263111114502,
-0.09353967010974884,
-0.01738067902624607,
0.06535752862691879,
0.2744797468185425,
-0.06390315294265747,
0.0314200185239315,
0.02843543328344822,
-0.0637766420841217,
-0.19885441660881042,
-0.020707082003355026,
0.11768921464681625,
0.03734783083200455,
0.008892246522009373,
-0.1889413297176361,
0.06890897452831268,
0.10722798109054565,
0.002252220408990979,
0.13539834320545197,
-0.1790459305047989,
-0.13693132996559143,
0.07332027703523636,
0.03460419550538063,
-0.2667540907859802,
-0.19215761125087738,
-0.09221529215574265,
-0.03320973366498947,
-0.06165128946304321,
0.08674288541078568,
0.05571293085813522,
0.06916593760251999,
0.022796958684921265,
-0.01716022752225399,
0.05279187858104706,
-0.07129396498203278,
0.2074236124753952,
-0.019113510847091675,
0.0197561327368021,
-0.10217032581567764,
-0.023172156885266304,
0.027125436812639236,
-0.048972103744745255,
0.06323990970849991,
-0.04017968475818634,
0.020435091108083725,
-0.04598567634820938,
-0.048293501138687134,
-0.06219727173447609,
-0.026302697136998177,
-0.05993705987930298,
-0.021747088059782982,
-0.025857724249362946,
0.06534557044506073,
0.10909299552440643,
-0.006096272263675928,
0.04887672886252403,
-0.08815553784370422,
0.004562087822705507,
0.15580303966999054,
0.08538622409105301,
0.07054049521684647,
-0.16202569007873535,
0.012902173213660717,
0.039077047258615494,
-0.0013186805881559849,
-0.11076655983924866,
0.05126424878835678,
0.1196354478597641,
0.008996284566819668,
0.14429885149002075,
0.013650068081915379,
-0.1237514540553093,
-0.021561769768595695,
0.07463545352220535,
-0.0806213840842247,
-0.11653067171573639,
-0.003936715889722109,
-0.03754815831780434,
-0.1943608969449997,
-0.13120684027671814,
0.07137233018875122,
0.033083777874708176,
-0.026574186980724335,
0.06452570110559464,
0.11416337639093399,
-0.03351759910583496,
0.2027781903743744,
0.012033048085868359,
0.07655565440654755,
-0.0990341454744339,
0.03400363773107529,
0.09771863371133804,
-0.08442378789186478,
0.04424012824892998,
0.16106446087360382,
-0.03281745687127113,
-0.021444646641612053,
-0.009146240539848804,
0.015035186894237995,
0.11212792247533798,
-0.018047725781798363,
-0.054080989211797714,
-0.059910599142313004,
0.07000059634447098,
-0.04834848642349243,
0.02767852693796158,
0.02513713948428631,
0.04912513867020607,
0.007331072818487883,
-0.0636310800909996,
0.14553695917129517,
0.10608480870723724,
0.05781199783086777,
-0.07967199385166168,
0.016082044690847397,
-0.011148739606142044,
-0.02724600024521351,
0.01589299365878105,
0.020253954455256462,
-0.12378442287445068,
0.008709593676030636,
-0.09001509845256805,
0.0821814239025116,
-0.11816983669996262,
-0.019322173669934273,
0.037918657064437866,
-0.019249599426984787,
-0.00858769379556179,
-0.012668272480368614,
-0.060416463762521744,
-0.11970110237598419,
-0.0314798504114151,
0.08187098056077957,
-0.1332407295703888,
-0.014519849792122841,
0.06738187372684479,
-0.11991792172193527,
0.09237165004014969,
0.014426279813051224,
-0.01611199416220188,
-0.05786586180329323,
-0.11663391441106796,
-0.03435666486620903,
0.0026021553203463554,
0.018804647028446198,
0.01853286847472191,
-0.22727133333683014,
0.041048794984817505,
-0.015080876648426056,
-0.058091212064027786,
-0.0014532757923007011,
0.012892170809209347,
-0.16296620666980743,
-0.0017630113288760185,
-0.00812565628439188,
-0.025435179471969604,
-0.07317712903022766,
0.03974524885416031,
0.09795528650283813,
-0.015162058174610138,
0.14969360828399658,
-0.05607488751411438,
0.08496152609586716,
-0.19066213071346283,
-0.000883301894646138,
-0.0038106830324977636,
-0.004897669423371553,
0.05833479017019272,
-0.014465948566794395,
0.12061025947332382,
-0.036860715597867966,
0.12195705622434616,
-0.005929138045758009,
-0.010252111591398716,
0.0427357517182827,
-0.03272576630115509,
0.003050924278795719,
0.06940659135580063,
0.06296979635953903,
0.0003001961740665138,
-0.043561968952417374,
0.03244774416089058,
0.0007331878296099603,
-0.0072954874485731125,
0.033788781613111496,
0.1210399940609932,
0.1267460584640503,
0.07274923473596573,
0.02237810008227825,
0.051604654639959335,
-0.12096654623746872,
-0.04528461769223213,
0.2124391794204712,
-0.0828617662191391,
0.08326232433319092,
-0.0632094070315361,
0.025354711338877678,
0.04107280820608139,
-0.15880200266838074,
0.0731486976146698,
-0.06897314637899399,
-0.1051286980509758,
-0.06853870302438736,
-0.16063818335533142,
-0.08570405095815659,
-0.03427405282855034,
0.0030825952999293804,
-0.09989370405673981,
0.041783977299928665,
0.09963392466306686,
0.023160194978117943,
-0.0220646895468235,
0.13460731506347656,
0.02086244709789753,
-0.07528641819953918,
0.06466025859117508,
0.03833899646997452,
-0.04069468751549721,
-0.008452218025922775,
-0.03687048703432083,
0.008912922814488411,
0.08586394786834717,
0.09799369424581528,
0.041651658713817596,
-0.04041631892323494,
0.028912149369716644,
-0.07042326778173447,
-0.10015632957220078,
-0.013718552887439728,
0.01136268675327301,
-0.0063766553066670895,
0.1777007132768631,
0.029802020639181137,
0.015127593651413918,
-0.022161949425935745,
0.16155295073986053,
-0.06770182400941849,
-0.09443657845258713,
-0.17549462616443634,
0.07520665973424911,
-0.011145700700581074,
-0.0019281556596979499,
0.01208194624632597,
-0.1264093965291977,
-0.005764946807175875,
0.14280623197555542,
0.19729195535182953,
-0.0267036035656929,
-0.009735260158777237,
0.06267307698726654,
0.0027842416893690825,
-0.013682622462511063,
0.04539239779114723,
0.05685269087553024,
0.14428648352622986,
-0.034597691148519516,
0.04935732111334801,
0.015139492228627205,
-0.09075095504522324,
-0.008840376511216164,
0.061885107308626175,
0.02673988975584507,
0.07705701142549515,
-0.047264259308576584,
0.10589013993740082,
-0.10365211963653564,
-0.17616546154022217,
0.07475380599498749,
-0.10502925515174866,
-0.1813618540763855,
-0.030112380161881447,
0.032866381108760834,
0.03236422687768936,
0.05102158710360527,
0.02839762531220913,
-0.027548279613256454,
0.160149484872818,
0.0025068861432373524,
-0.05884276703000069,
-0.01806609332561493,
0.03647041693329811,
-0.07871732860803604,
0.2383531928062439,
0.0007578513468615711,
0.07878243923187256,
0.1522808074951172,
-0.01729583740234375,
-0.1330290138721466,
0.004667516332119703,
0.07266898453235626,
-0.09514164179563522,
0.095669686794281,
0.1479506939649582,
-0.009118658490478992,
0.07270113378763199,
0.08182317018508911,
-0.05047842860221863,
-0.0082594258710742,
-0.08413517475128174,
-0.024966353550553322,
-0.148677796125412,
0.050786469131708145,
-0.09852682054042816,
0.12515366077423096,
0.21022042632102966,
-0.06538618355989456,
-0.008864488452672958,
-0.04629720002412796,
0.043002814054489136,
-0.020413966849446297,
0.16911259293556213,
-0.011599933728575706,
-0.2053099274635315,
0.04694793000817299,
0.04489334300160408,
0.10031048953533173,
-0.1863771378993988,
-0.047223541885614395,
0.0631033182144165,
-0.025374792516231537,
-0.07928316295146942,
0.11011965572834015,
0.020867949351668358,
0.060798678547143936,
-0.05772347375750542,
-0.05890750139951706,
-0.02836960181593895,
0.12217302620410919,
-0.1340963989496231,
-0.06395070254802704
] |
null | null | transformers |
# ixambert-base-cased finetuned for QA
This is a basic implementation of the multilingual model ["ixambert-base-cased"](https://huggingface.co/ixa-ehu/ixambert-base-cased), fine-tuned on SQuAD v1.1 and an experimental version of SQuAD1.1 in Basque (1/3 size of original SQuAD1.1), that is able to answer basic factual questions in English, Spanish and Basque.
## Overview
* **Language model:** ixambert-base-cased
* **Languages:** English, Spanish and Basque
* **Downstream task:** Extractive QA
* **Training data:** SQuAD v1.1 + experimental SQuAD1.1 in Basque
* **Eval data:** SQuAD v1.1 + experimental SQuAD1.1 in Basque
* **Infrastructure:** 1x GeForce RTX 2080
## Outputs
The model outputs the answer to the question, the start and end positions of the answer in the original context, and a score for the probability for that span of text to be the correct answer. For example:
```python
{'score': 0.9667195081710815, 'start': 101, 'end': 105, 'answer': '1820'}
```
## How to use
```python
from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline
model_name = "MarcBrun/ixambert-finetuned-squad-eu-en"
# To get predictions
context = "Florence Nightingale, known for being the founder of modern nursing, was born in Florence, Italy, in 1820"
question = "When was Florence Nightingale born?"
qa = pipeline("question-answering", model=model_name, tokenizer=model_name)
pred = qa(question=question,context=context)
# To load the model and tokenizer
model = AutoModelForQuestionAnswering.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
```
## Hyperparameters
```
batch_size = 8
n_epochs = 3
learning_rate = 2e-5
optimizer = AdamW
lr_schedule = linear
max_seq_len = 384
doc_stride = 128
``` | {"language": ["en", "es", "eu"], "datasets": ["squad"], "widget": [{"text": "When was Florence Nightingale born?", "context": "Florence Nightingale, known for being the founder of modern nursing, was born in Florence, Italy, in 1820.", "example_title": "English"}, {"text": "\u00bfPor qu\u00e9 provincias pasa el Tajo?", "context": "El Tajo es el r\u00edo m\u00e1s largo de la pen\u00ednsula ib\u00e9rica, a la que atraviesa en su parte central, siguiendo un rumbo este-oeste, con una leve inclinaci\u00f3n hacia el suroeste, que se acent\u00faa cuando llega a Portugal, donde recibe el nombre de Tejo.\nNace en los montes Universales, en la sierra de Albarrac\u00edn, sobre la rama occidental del sistema Ib\u00e9rico y, despu\u00e9s de recorrer 1007 km, llega al oc\u00e9ano Atl\u00e1ntico en la ciudad de Lisboa. En su desembocadura forma el estuario del mar de la Paja, en el que vierte un caudal medio de 456 m\u00b3/s. En sus primeros 816 km atraviesa Espa\u00f1a, donde discurre por cuatro comunidades aut\u00f3nomas (Arag\u00f3n, Castilla-La Mancha, Madrid y Extremadura) y un total de seis provincias (Teruel, Guadalajara, Cuenca, Madrid, Toledo y C\u00e1ceres).", "example_title": "Espa\u00f1ol"}, {"text": "Zer beste izenak ditu Tartalo?", "context": "Tartalo euskal mitologiako izaki begibakar artzain erraldoia da. Tartalo izena zenbait euskal hizkeratan herskari-bustidurarekin ahoskatu ohi denez, horrelaxe ere idazten da batzuetan: Ttarttalo. Euskal Herriko zenbait tokitan, Torto edo Anxo ere esaten diote.", "example_title": "Euskara"}]} | question-answering | MarcBrun/ixambert-finetuned-squad-eu-en | [
"transformers",
"pytorch",
"bert",
"question-answering",
"en",
"es",
"eu",
"dataset:squad",
"endpoints_compatible",
"has_space",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [
"en",
"es",
"eu"
] | TAGS
#transformers #pytorch #bert #question-answering #en #es #eu #dataset-squad #endpoints_compatible #has_space #region-us
|
# ixambert-base-cased finetuned for QA
This is a basic implementation of the multilingual model "ixambert-base-cased", fine-tuned on SQuAD v1.1 and an experimental version of SQuAD1.1 in Basque (1/3 size of original SQuAD1.1), that is able to answer basic factual questions in English, Spanish and Basque.
## Overview
* Language model: ixambert-base-cased
* Languages: English, Spanish and Basque
* Downstream task: Extractive QA
* Training data: SQuAD v1.1 + experimental SQuAD1.1 in Basque
* Eval data: SQuAD v1.1 + experimental SQuAD1.1 in Basque
* Infrastructure: 1x GeForce RTX 2080
## Outputs
The model outputs the answer to the question, the start and end positions of the answer in the original context, and a score for the probability for that span of text to be the correct answer. For example:
## How to use
## Hyperparameters
| [
"# ixambert-base-cased finetuned for QA\n\nThis is a basic implementation of the multilingual model \"ixambert-base-cased\", fine-tuned on SQuAD v1.1 and an experimental version of SQuAD1.1 in Basque (1/3 size of original SQuAD1.1), that is able to answer basic factual questions in English, Spanish and Basque.",
"## Overview\n\n* Language model: ixambert-base-cased\n* Languages: English, Spanish and Basque\n* Downstream task: Extractive QA\n* Training data: SQuAD v1.1 + experimental SQuAD1.1 in Basque\n* Eval data: SQuAD v1.1 + experimental SQuAD1.1 in Basque\n* Infrastructure: 1x GeForce RTX 2080",
"## Outputs\n\nThe model outputs the answer to the question, the start and end positions of the answer in the original context, and a score for the probability for that span of text to be the correct answer. For example:",
"## How to use",
"## Hyperparameters"
] | [
"TAGS\n#transformers #pytorch #bert #question-answering #en #es #eu #dataset-squad #endpoints_compatible #has_space #region-us \n",
"# ixambert-base-cased finetuned for QA\n\nThis is a basic implementation of the multilingual model \"ixambert-base-cased\", fine-tuned on SQuAD v1.1 and an experimental version of SQuAD1.1 in Basque (1/3 size of original SQuAD1.1), that is able to answer basic factual questions in English, Spanish and Basque.",
"## Overview\n\n* Language model: ixambert-base-cased\n* Languages: English, Spanish and Basque\n* Downstream task: Extractive QA\n* Training data: SQuAD v1.1 + experimental SQuAD1.1 in Basque\n* Eval data: SQuAD v1.1 + experimental SQuAD1.1 in Basque\n* Infrastructure: 1x GeForce RTX 2080",
"## Outputs\n\nThe model outputs the answer to the question, the start and end positions of the answer in the original context, and a score for the probability for that span of text to be the correct answer. For example:",
"## How to use",
"## Hyperparameters"
] | [
45,
86,
84,
49,
4,
5
] | [
"passage: TAGS\n#transformers #pytorch #bert #question-answering #en #es #eu #dataset-squad #endpoints_compatible #has_space #region-us \n# ixambert-base-cased finetuned for QA\n\nThis is a basic implementation of the multilingual model \"ixambert-base-cased\", fine-tuned on SQuAD v1.1 and an experimental version of SQuAD1.1 in Basque (1/3 size of original SQuAD1.1), that is able to answer basic factual questions in English, Spanish and Basque.## Overview\n\n* Language model: ixambert-base-cased\n* Languages: English, Spanish and Basque\n* Downstream task: Extractive QA\n* Training data: SQuAD v1.1 + experimental SQuAD1.1 in Basque\n* Eval data: SQuAD v1.1 + experimental SQuAD1.1 in Basque\n* Infrastructure: 1x GeForce RTX 2080## Outputs\n\nThe model outputs the answer to the question, the start and end positions of the answer in the original context, and a score for the probability for that span of text to be the correct answer. For example:## How to use## Hyperparameters"
] | [
-0.12817084789276123,
0.07148495316505432,
-0.002365934196859598,
0.09651566296815872,
0.12111712992191315,
-0.0012515303678810596,
0.04134560376405716,
0.11070530116558075,
-0.0008977825636975467,
0.11515410244464874,
0.08981481939554214,
0.10337763279676437,
0.054378680884838104,
0.083892323076725,
-0.061838265508413315,
-0.12480650842189789,
-0.030403776094317436,
-0.07366394996643066,
-0.04256877303123474,
0.07149451225996017,
0.08920169621706009,
-0.07159121334552765,
0.0772259384393692,
0.006651758681982756,
-0.03778355196118355,
0.06756186485290527,
0.017217565327882767,
-0.05157989636063576,
0.0922216922044754,
0.11720424890518188,
0.047327976673841476,
-0.03682412952184677,
0.08548619598150253,
-0.15613895654678345,
0.007184948306530714,
0.02347160130739212,
-0.046943943947553635,
0.07175983488559723,
0.11652200669050217,
-0.00397038459777832,
0.010718530975282192,
-0.05385402962565422,
0.006433362606912851,
0.05507843941450119,
-0.08456780016422272,
-0.038529351353645325,
-0.07878589630126953,
-0.02144608087837696,
0.0886259526014328,
0.07616101950407028,
-0.040910422801971436,
0.07677561789751053,
-0.06624117493629456,
0.03530893474817276,
0.1388688087463379,
-0.1398938000202179,
-0.0847967118024826,
-0.03256355971097946,
0.06445503234863281,
0.11456663906574249,
-0.022573400288820267,
0.007534456439316273,
0.05405601114034653,
0.052990563213825226,
-0.03894671052694321,
-0.05565522611141205,
-0.006525689736008644,
0.021206293255090714,
-0.11880216002464294,
-0.028376152738928795,
0.026146763935685158,
-0.021757373586297035,
-0.030924338847398758,
-0.10794869810342789,
-0.0988130196928978,
0.04379027336835861,
-0.012160084210336208,
-0.05577560514211655,
-0.0010858485475182533,
-0.02781648002564907,
0.08835984766483307,
-0.0781414806842804,
-0.07057105004787445,
-0.06955206394195557,
-0.09804534167051315,
0.1090383529663086,
0.041884321719408035,
0.02330130524933338,
-0.05714673176407814,
0.0942007452249527,
-0.14214420318603516,
-0.11650120466947556,
-0.022051027044653893,
-0.04317177087068558,
-0.07526959478855133,
0.023356715217232704,
0.006062047090381384,
-0.08967866003513336,
0.03974570333957672,
0.14370635151863098,
-0.1414949595928192,
0.04064417630434036,
-0.009157788008451462,
0.00980580784380436,
0.06605441868305206,
0.18374566733837128,
-0.021161045879125595,
-0.10433544963598251,
-0.01212615892291069,
0.007306214421987534,
-0.06512636691331863,
-0.0057907747104763985,
-0.1196378767490387,
-0.070029616355896,
-0.012878690846264362,
0.09153186529874802,
0.10259494930505753,
-0.042075905948877335,
-0.016168057918548584,
-0.09019466489553452,
0.10992761701345444,
-0.12474589794874191,
0.010588075034320354,
-0.00590645894408226,
-0.08200997859239578,
0.03265651315450668,
-0.06098422035574913,
-0.04587925970554352,
-0.08782178163528442,
-0.06153789535164833,
-0.06136544048786163,
0.007304850034415722,
-0.10048525035381317,
-0.10146193206310272,
0.01149004977196455,
-0.04482618346810341,
-0.03920053318142891,
-0.10225452482700348,
-0.03931739553809166,
-0.10978490859270096,
0.04692874103784561,
-0.12188679724931717,
0.01353823859244585,
-0.10873882472515106,
-0.00012669657007791102,
0.059532906860113144,
-0.042172353714704514,
0.04288103058934212,
-0.01696973480284214,
0.026806022971868515,
0.0426541306078434,
0.03246036171913147,
-0.012964943423867226,
0.0459776371717453,
-0.04303453862667084,
0.009864975698292255,
-0.2041875422000885,
0.12797477841377258,
-0.06959039717912674,
-0.08933081477880478,
-0.15390907227993011,
-0.01888277381658554,
0.0875270888209343,
0.06577014178037643,
0.08013653755187988,
0.13876673579216003,
-0.24045631289482117,
0.027908161282539368,
0.16144979000091553,
-0.016622217372059822,
-0.08791293948888779,
0.13066275417804718,
-0.04298928380012512,
0.09266535192728043,
0.03574509918689728,
0.1163133755326271,
0.05316797271370888,
-0.1785271167755127,
-0.06182871386408806,
0.05199555680155754,
0.007986190728843212,
-0.004728412255644798,
0.10889186710119247,
-0.07610742002725601,
0.04958321899175644,
-0.008437522687017918,
-0.11288075894117355,
-0.02446819096803665,
-0.030089382082223892,
-0.05676558241248131,
0.023694219067692757,
-0.002795999636873603,
0.0070532504469156265,
0.010536633431911469,
0.03171871230006218,
0.010999196209013462,
-0.12218326330184937,
-0.040710825473070145,
0.04115068539977074,
-0.020066477358341217,
0.026185188442468643,
-0.07451831549406052,
0.0920330211520195,
-0.1276521384716034,
-0.01274892222136259,
-0.19855768978595734,
-0.0639711245894432,
-0.003656716551631689,
0.011880641803145409,
0.08877704292535782,
-0.026233481243252754,
0.03903330862522125,
0.028226526454091072,
-0.016573665663599968,
0.01287554856389761,
-0.0045351264998316765,
-0.04919595643877983,
-0.08823013305664062,
-0.11853650212287903,
0.017229603603482246,
-0.07257293909788132,
-0.09256776422262192,
-0.10021607577800751,
-0.015494786202907562,
-0.036467649042606354,
-0.048935417085886,
-0.034749094396829605,
0.014043062925338745,
-0.09306041896343231,
0.02750432677567005,
-0.06033369153738022,
-0.03431619703769684,
0.034202493727207184,
-0.05336913466453552,
0.011699297465384007,
0.06331205368041992,
-0.11074580252170563,
-0.030509039759635925,
0.08633124828338623,
-0.0008931762422434986,
-0.11426535993814468,
-0.06794190406799316,
0.010576769709587097,
0.022152872756123543,
-0.057144396007061005,
-0.04751542955636978,
0.25894591212272644,
0.02422824129462242,
0.1222536489367485,
-0.1250104010105133,
-0.030736535787582397,
0.02183249592781067,
-0.03251253068447113,
0.011607269756495953,
0.14784184098243713,
0.14489851891994476,
-0.10879359394311905,
0.09092800319194794,
0.0361480675637722,
0.007313826587051153,
0.14792035520076752,
-0.02427837811410427,
-0.08541034907102585,
-0.05030640587210655,
0.052303992211818695,
0.03278617560863495,
0.10160785913467407,
-0.0180025864392519,
0.005777852144092321,
0.028753511607646942,
0.06114308163523674,
0.07059512287378311,
-0.10366341471672058,
0.02431967481970787,
-0.020314225926995277,
-0.05112949013710022,
-0.021274270489811897,
0.031995758414268494,
0.02622641995549202,
0.0877009779214859,
0.06992878019809723,
-0.007488305680453777,
-0.0099845165386796,
-0.028489872813224792,
-0.08080928772687912,
0.19834665954113007,
-0.11745703965425491,
-0.17094150185585022,
-0.14977556467056274,
-0.06567028909921646,
-0.04129358381032944,
0.03780752047896385,
0.03839993476867676,
-0.1203937903046608,
-0.03160298988223076,
-0.004072053357958794,
0.19242322444915771,
-0.048455704003572464,
-0.08074850589036942,
-0.06549210846424103,
0.008909272961318493,
-0.027930259704589844,
-0.1564704179763794,
0.005674111191183329,
-0.030157824978232384,
-0.10244758427143097,
-0.02801293320953846,
-0.029662977904081345,
0.0873345136642456,
0.11549773812294006,
-0.009486406110227108,
-0.00992101151496172,
0.009590313769876957,
0.2953774034976959,
-0.08681797981262207,
0.03785502910614014,
0.13274426758289337,
0.036289338022470474,
0.07162650674581528,
0.1199350357055664,
0.04873937740921974,
-0.05501815676689148,
-0.007098672445863485,
0.019425563514232635,
-0.08763626217842102,
-0.25444790720939636,
-0.09503146260976791,
-0.042572423815727234,
-0.029972918331623077,
0.07214254885911942,
0.023354869335889816,
-0.0702933743596077,
0.0953340008854866,
-0.005501194391399622,
-0.015942616388201714,
-0.0601983405649662,
0.06644140183925629,
0.09313034266233444,
0.014319080859422684,
0.08822149783372879,
-0.014315126463770866,
-0.019252892583608627,
0.13991335034370422,
0.05415886268019676,
0.1517128050327301,
-0.042623359709978104,
0.04129695147275925,
0.06592054665088654,
0.13223084807395935,
-0.023132948204874992,
0.07206583023071289,
-0.022581445053219795,
0.03199557960033417,
-0.07552746683359146,
-0.04030346870422363,
-0.024262113496661186,
0.0344775952398777,
0.044429711997509,
-0.059882838279008865,
-0.08832091093063354,
-0.05371207743883133,
0.03424421325325966,
0.05151171609759331,
-0.007056333124637604,
-0.12343768775463104,
-0.04246305301785469,
0.013477989472448826,
-0.07747678458690643,
-0.09411739557981491,
0.038925036787986755,
0.098094642162323,
-0.14840659499168396,
-0.057878319174051285,
-0.05393661931157112,
0.1286327987909317,
0.013932633213698864,
0.018314743414521217,
0.0011114318622276187,
0.083064004778862,
0.001541353645734489,
0.09665233641862869,
-0.153763085603714,
0.17185808718204498,
0.06084716320037842,
0.03397202491760254,
-0.05016936734318733,
0.07261621206998825,
0.022178051993250847,
-0.0580168291926384,
0.16887116432189941,
-0.01234849076718092,
-0.05100265145301819,
-0.10692375898361206,
-0.04364786297082901,
0.01905733533203602,
0.0815449208021164,
-0.0626591295003891,
0.11248598247766495,
0.01269620843231678,
0.025819726288318634,
-0.03272700682282448,
0.054788488894701004,
-0.0418865866959095,
-0.20914870500564575,
-0.05328930914402008,
-0.08831486850976944,
-0.07009843736886978,
0.010124806314706802,
-0.044878039509058,
-0.07733386754989624,
0.050103649497032166,
-0.09382513165473938,
-0.04686237499117851,
-0.12273671478033066,
-0.03756652772426605,
0.1439846307039261,
-0.13704133033752441,
0.03254123032093048,
-0.01710311509668827,
0.020418602973222733,
-0.029574831947684288,
-0.08689898252487183,
0.11175479739904404,
-0.13600783050060272,
-0.07587884366512299,
-0.0530550517141819,
0.07867169380187988,
0.12426313757896423,
0.019653044641017914,
0.026757674291729927,
0.021236324682831764,
-0.08898340910673141,
-0.13695552945137024,
-0.05570809915661812,
0.026432611048221588,
0.09466411173343658,
0.06750121712684631,
-0.03390594944357872,
-0.14934641122817993,
-0.044342756271362305,
0.03148088604211807,
0.11278712749481201,
0.13178904354572296,
-0.05881211906671524,
0.11681953817605972,
0.11880367994308472,
-0.09291815757751465,
-0.22386705875396729,
-0.01999773271381855,
0.14608407020568848,
0.02587791346013546,
0.10716448724269867,
-0.15425869822502136,
0.05073358118534088,
0.0011490440228953958,
-0.03912108391523361,
0.02504420280456543,
-0.2076815664768219,
-0.07753219455480576,
0.04770151898264885,
0.01857885904610157,
0.10504115372896194,
-0.06762860715389252,
-0.05268694832921028,
0.011371197178959846,
-0.014376427978277206,
0.13429512083530426,
0.018801767379045486,
0.07440661638975143,
0.0008544547599740326,
0.08345974236726761,
0.04104040190577507,
-0.019104517996311188,
0.1351078897714615,
-0.004854908213019371,
-0.00005972029975964688,
-0.018894318491220474,
-0.05933025851845741,
0.0053213550709187984,
-0.04556073248386383,
0.024273939430713654,
-0.020233821123838425,
0.03574652224779129,
-0.17293095588684082,
-0.06463927030563354,
-0.046053219586610794,
0.02138485200703144,
-0.05812336876988411,
-0.04703943058848381,
-0.03789627552032471,
0.03184911608695984,
0.08715527504682541,
0.0027422497514635324,
0.03834185376763344,
-0.04340476542711258,
0.013971695676445961,
0.25786688923835754,
0.09385369718074799,
0.07307551056146622,
-0.1429448127746582,
0.027739332988858223,
0.04618028551340103,
0.061034899204969406,
-0.12050661444664001,
0.0637541115283966,
0.1024690568447113,
-0.0018541248282417655,
0.025973578914999962,
0.021776298061013222,
-0.10433201491832733,
0.05519789829850197,
0.03745558112859726,
0.00921214371919632,
-0.1140657439827919,
-0.03378703445196152,
-0.08728781342506409,
-0.07105854153633118,
-0.018093740567564964,
0.1272021234035492,
0.057372625917196274,
-0.05911727249622345,
-0.021432433277368546,
0.03208373859524727,
0.01209671888500452,
0.1779528111219406,
0.07340661436319351,
0.03261271491646767,
-0.07256711274385452,
-0.026417165994644165,
0.044899631291627884,
-0.05056688189506531,
0.06338176876306534,
0.15682536363601685,
-0.010906214825809002,
-0.02815946377813816,
0.10070399194955826,
0.12289834767580032,
-0.23573645949363708,
-0.048615485429763794,
-0.05375455692410469,
-0.013046192936599255,
0.04583684355020523,
0.0880783423781395,
0.060908980667591095,
-0.09408962726593018,
-0.016605403274297714,
0.0013432282721623778,
0.0025177947245538235,
0.0906837061047554,
0.06221845746040344,
-0.017426881939172745,
-0.011378881521522999,
-0.06717510521411896,
-0.018619060516357422,
0.0866599828004837,
-0.03435443341732025,
0.003463388653472066,
-0.15932871401309967,
0.01928158663213253,
-0.20997147262096405,
0.11035199463367462,
-0.018478604033589363,
-0.0006673558964394033,
-0.03807232528924942,
-0.007074378896504641,
-0.0065646399743855,
0.011427017860114574,
-0.06041925773024559,
-0.003979453817009926,
-0.05489624664187431,
0.053950466215610504,
-0.07916069775819778,
0.06078651547431946,
0.029201803728938103,
-0.011414285749197006,
0.033645838499069214,
-0.01855957694351673,
-0.045102253556251526,
0.09412689507007599,
-0.14602331817150116,
0.006603782065212727,
-0.0707152932882309,
0.07631424069404602,
0.11634324491024017,
-0.03857351467013359,
0.03935464471578598,
-0.0006034378311596811,
0.06138138473033905,
-0.016468845307826996,
0.040552861988544464,
-0.0910237729549408,
0.1118226870894432,
0.0005879936506971717,
-0.10599901527166367,
-0.047652605921030045,
0.12380529195070267,
0.0232241228222847,
0.043255701661109924,
0.07722192257642746,
-0.08350692689418793,
0.09798947721719742,
-0.10885389894247055,
-0.015212345868349075,
0.04734869301319122,
0.05611138045787811,
0.02288169041275978,
-0.07643082737922668,
0.06569309532642365,
-0.013160700909793377,
0.15086527168750763,
0.1561088114976883,
0.12463641911745071,
0.010275311768054962,
-0.0506192222237587,
-0.004269416444003582,
-0.01915225386619568,
0.07143950462341309,
-0.008461616933345795,
0.04162178188562393,
-0.05661501735448837,
0.10461834073066711,
0.004422495141625404,
0.05365520715713501,
0.10997918993234634,
0.06410593539476395,
0.07713333517313004,
0.039068520069122314,
0.0312504880130291,
-0.050298213958740234,
-0.08032328635454178,
0.039544302970170975,
-0.010369724594056606,
-0.04297464340925217,
-0.04221005737781525,
0.06299320608377457,
0.019262734800577164,
-0.11359924077987671,
0.13032963871955872,
-0.03301060572266579,
-0.054743748158216476,
-0.1462700515985489,
-0.08774318546056747,
-0.07002488523721695,
-0.10519703477621078,
0.00852623488754034,
-0.09533212333917618,
0.09730919450521469,
0.128346785902977,
0.038755010813474655,
-0.025857659056782722,
0.09375515580177307,
-0.06991467624902725,
-0.10243389010429382,
0.025994738563895226,
0.057900235056877136,
0.13232627511024475,
0.021682901307940483,
0.0772421658039093,
-0.011625975370407104,
0.022325977683067322,
0.0855475589632988,
0.05912129953503609,
-0.03297114744782448,
0.0055340733379125595,
-0.06504984200000763,
-0.018239786848425865,
-0.02904548868536949,
0.04863531142473221,
0.03850517049431801,
0.29169726371765137,
0.005853593815118074,
-0.041923075914382935,
-0.024366270750761032,
0.22751931846141815,
-0.06205456331372261,
-0.08403049409389496,
-0.13292014598846436,
0.1822100430727005,
0.008017806336283684,
0.07183685898780823,
-0.008300508372485638,
-0.09471195191144943,
-0.02815338596701622,
0.18680426478385925,
0.1842545121908188,
-0.0662476047873497,
-0.02937690168619156,
0.03654561564326286,
0.011776728555560112,
0.011952130123972893,
0.09093870967626572,
0.057718418538570404,
0.37005746364593506,
-0.06771158427000046,
0.007104602642357349,
-0.017018772661685944,
0.010120367631316185,
-0.03353459760546684,
0.13269159197807312,
0.002809785772114992,
0.009138844907283783,
-0.04502638801932335,
0.10787925869226456,
-0.030319692566990852,
-0.2763798236846924,
0.01136812474578619,
-0.08352555334568024,
-0.10840930044651031,
-0.03086525946855545,
0.09730587899684906,
0.020034685730934143,
0.08334793895483017,
0.011165552772581577,
-0.012988141737878323,
0.053784169256687164,
-0.0025613217148929834,
-0.06422668695449829,
-0.014284812845289707,
0.11253377050161362,
-0.17779091000556946,
0.25060954689979553,
0.015471120364964008,
0.0746513232588768,
0.11608655750751495,
-0.020433323457837105,
-0.0497635193169117,
0.03725575655698776,
0.04706166684627533,
-0.06351971626281738,
0.07579473406076431,
0.0519431047141552,
-0.004270651843398809,
0.008005953393876553,
0.02550034411251545,
-0.11562260240316391,
0.04771335422992706,
0.02675485424697399,
-0.03223901987075806,
-0.15760566294193268,
0.0803866758942604,
-0.14997845888137817,
0.14368292689323425,
0.11372364312410355,
0.018917609006166458,
0.04305325821042061,
-0.06961295008659363,
0.06608857214450836,
-0.0553852841258049,
0.194322869181633,
-0.04230864346027374,
-0.1734192669391632,
0.008983932435512543,
0.08959896862506866,
0.002339843427762389,
-0.28203994035720825,
-0.00617998605594039,
-0.0036476990208029747,
0.016467846930027008,
-0.027510646730661392,
0.0575416125357151,
0.0642419084906578,
0.005631617270410061,
-0.023806584998965263,
-0.06027498096227646,
-0.08643078058958054,
0.069181427359581,
-0.018316084519028664,
-0.03891050070524216
] |
null | null | transformers |
# ixambert-base-cased finetuned for QA
This is a basic implementation of the multilingual model ["ixambert-base-cased"](https://huggingface.co/ixa-ehu/ixambert-base-cased), fine-tuned on an experimental version of SQuAD1.1 in Basque (1/3 size of original SQuAD1.1), that is able to answer basic factual questions.
## Overview
* **Language model:** ixambert-base-cased
* **Languages:** English, Spanish and Basque
* **Downstream task:** Extractive QA
* **Training data:** Experimental SQuAD1.1 in Basque
* **Eval data:** Experimental SQuAD1.1 in Basque
* **Infrastructure:** 1x GeForce RTX 2080
## Outputs
The model outputs the answer to the question, the start and end positions of the answer in the original context, and a score for the probability for that span of text to be the correct answer. For example:
```python
{'score': 0.9667195081710815, 'start': 101, 'end': 105, 'answer': '1820'}
```
## How to use
```python
from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline
model_name = "MarcBrun/ixambert-finetuned-squad-eu"
# To get predictions
context = "Florence Nightingale, known for being the founder of modern nursing, was born in Florence, Italy, in 1820"
question = "When was Florence Nightingale born?"
qa = pipeline("question-answering", model=model_name, tokenizer=model_name)
pred = qa(question=question,context=context)
# To load the model and tokenizer
model = AutoModelForQuestionAnswering.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
```
## Hyperparameters
```
batch_size = 8
n_epochs = 3
learning_rate = 2e-5
optimizer = AdamW
lr_schedule = linear
max_seq_len = 384
doc_stride = 128
``` | {"language": ["en", "es", "eu"], "widget": [{"text": "When was Florence Nightingale born?", "context": "Florence Nightingale, known for being the founder of modern nursing, was born in Florence, Italy, in 1820.", "example_title": "English"}, {"text": "\u00bfPor qu\u00e9 provincias pasa el Tajo?", "context": "El Tajo es el r\u00edo m\u00e1s largo de la pen\u00ednsula ib\u00e9rica, a la que atraviesa en su parte central, siguiendo un rumbo este-oeste, con una leve inclinaci\u00f3n hacia el suroeste, que se acent\u00faa cuando llega a Portugal, donde recibe el nombre de Tejo.\nNace en los montes Universales, en la sierra de Albarrac\u00edn, sobre la rama occidental del sistema Ib\u00e9rico y, despu\u00e9s de recorrer 1007 km, llega al oc\u00e9ano Atl\u00e1ntico en la ciudad de Lisboa. En su desembocadura forma el estuario del mar de la Paja, en el que vierte un caudal medio de 456 m\u00b3/s. En sus primeros 816 km atraviesa Espa\u00f1a, donde discurre por cuatro comunidades aut\u00f3nomas (Arag\u00f3n, Castilla-La Mancha, Madrid y Extremadura) y un total de seis provincias (Teruel, Guadalajara, Cuenca, Madrid, Toledo y C\u00e1ceres).", "example_title": "Espa\u00f1ol"}, {"text": "Zer beste izenak ditu Tartalo?", "context": "Tartalo euskal mitologiako izaki begibakar artzain erraldoia da. Tartalo izena zenbait euskal hizkeratan herskari-bustidurarekin ahoskatu ohi denez, horrelaxe ere idazten da batzuetan: Ttarttalo. Euskal Herriko zenbait tokitan, Torto edo Anxo ere esaten diote.", "example_title": "Euskara"}]} | question-answering | MarcBrun/ixambert-finetuned-squad-eu | [
"transformers",
"pytorch",
"bert",
"question-answering",
"en",
"es",
"eu",
"endpoints_compatible",
"has_space",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [
"en",
"es",
"eu"
] | TAGS
#transformers #pytorch #bert #question-answering #en #es #eu #endpoints_compatible #has_space #region-us
|
# ixambert-base-cased finetuned for QA
This is a basic implementation of the multilingual model "ixambert-base-cased", fine-tuned on an experimental version of SQuAD1.1 in Basque (1/3 size of original SQuAD1.1), that is able to answer basic factual questions.
## Overview
* Language model: ixambert-base-cased
* Languages: English, Spanish and Basque
* Downstream task: Extractive QA
* Training data: Experimental SQuAD1.1 in Basque
* Eval data: Experimental SQuAD1.1 in Basque
* Infrastructure: 1x GeForce RTX 2080
## Outputs
The model outputs the answer to the question, the start and end positions of the answer in the original context, and a score for the probability for that span of text to be the correct answer. For example:
## How to use
## Hyperparameters
| [
"# ixambert-base-cased finetuned for QA\n\nThis is a basic implementation of the multilingual model \"ixambert-base-cased\", fine-tuned on an experimental version of SQuAD1.1 in Basque (1/3 size of original SQuAD1.1), that is able to answer basic factual questions.",
"## Overview\n\n* Language model: ixambert-base-cased\n* Languages: English, Spanish and Basque\n* Downstream task: Extractive QA\n* Training data: Experimental SQuAD1.1 in Basque\n* Eval data: Experimental SQuAD1.1 in Basque\n* Infrastructure: 1x GeForce RTX 2080",
"## Outputs\n\nThe model outputs the answer to the question, the start and end positions of the answer in the original context, and a score for the probability for that span of text to be the correct answer. For example:",
"## How to use",
"## Hyperparameters"
] | [
"TAGS\n#transformers #pytorch #bert #question-answering #en #es #eu #endpoints_compatible #has_space #region-us \n",
"# ixambert-base-cased finetuned for QA\n\nThis is a basic implementation of the multilingual model \"ixambert-base-cased\", fine-tuned on an experimental version of SQuAD1.1 in Basque (1/3 size of original SQuAD1.1), that is able to answer basic factual questions.",
"## Overview\n\n* Language model: ixambert-base-cased\n* Languages: English, Spanish and Basque\n* Downstream task: Extractive QA\n* Training data: Experimental SQuAD1.1 in Basque\n* Eval data: Experimental SQuAD1.1 in Basque\n* Infrastructure: 1x GeForce RTX 2080",
"## Outputs\n\nThe model outputs the answer to the question, the start and end positions of the answer in the original context, and a score for the probability for that span of text to be the correct answer. For example:",
"## How to use",
"## Hyperparameters"
] | [
39,
73,
74,
49,
4,
5
] | [
"passage: TAGS\n#transformers #pytorch #bert #question-answering #en #es #eu #endpoints_compatible #has_space #region-us \n# ixambert-base-cased finetuned for QA\n\nThis is a basic implementation of the multilingual model \"ixambert-base-cased\", fine-tuned on an experimental version of SQuAD1.1 in Basque (1/3 size of original SQuAD1.1), that is able to answer basic factual questions.## Overview\n\n* Language model: ixambert-base-cased\n* Languages: English, Spanish and Basque\n* Downstream task: Extractive QA\n* Training data: Experimental SQuAD1.1 in Basque\n* Eval data: Experimental SQuAD1.1 in Basque\n* Infrastructure: 1x GeForce RTX 2080## Outputs\n\nThe model outputs the answer to the question, the start and end positions of the answer in the original context, and a score for the probability for that span of text to be the correct answer. For example:## How to use## Hyperparameters"
] | [
-0.14969980716705322,
-0.04447893425822258,
-0.002374237636104226,
0.0902450829744339,
0.08321414887905121,
-0.03225121274590492,
-0.030638601630926132,
0.09403098374605179,
0.01586044766008854,
0.14645709097385406,
0.10363586992025375,
0.07728130370378494,
0.06946656107902527,
0.09735620021820068,
-0.10719619691371918,
-0.099639892578125,
-0.040643028914928436,
-0.012764804065227509,
0.011151968501508236,
0.09591133892536163,
0.06966400146484375,
-0.0841575339436531,
0.05665687844157219,
0.0022526057437062263,
-0.007641632575541735,
0.07899575680494308,
0.047842562198638916,
-0.08037766814231873,
0.10436012595891953,
0.09724235534667969,
0.06344376504421234,
0.01977767050266266,
0.024397816509008408,
-0.2029210776090622,
0.01630510948598385,
-0.009569486603140831,
-0.03854997083544731,
0.05158764496445656,
0.1062229722738266,
-0.07766233384609222,
-0.060708075761795044,
-0.018185434862971306,
-0.014137374237179756,
0.043637070804834366,
-0.10810132324695587,
-0.0018046482000499964,
-0.04434755817055702,
-0.0413440503180027,
0.07145002484321594,
0.03829188644886017,
-0.06736195087432861,
0.06306540966033936,
-0.11832879483699799,
0.031711943447589874,
0.19402055442333221,
-0.22581858932971954,
-0.06179381161928177,
0.044848840683698654,
0.034019824117422104,
0.12836486101150513,
-0.02219483256340027,
0.011143242940306664,
0.14249350130558014,
0.04411764815449715,
-0.034431248903274536,
-0.06041437014937401,
0.02689529024064541,
0.026509327813982964,
-0.13102728128433228,
-0.07202186435461044,
0.09792298078536987,
-0.0004968936555087566,
-0.0806603878736496,
-0.10462027788162231,
-0.07544026523828506,
-0.019390197470784187,
-0.006066278554499149,
-0.06444597244262695,
-0.044968824833631516,
-0.040329962968826294,
0.06046443060040474,
0.02204947918653488,
-0.08622616529464722,
-0.09702371805906296,
-0.12785017490386963,
0.1858266144990921,
0.044143497943878174,
0.014100984670221806,
-0.06049351021647453,
0.13797856867313385,
-0.11513694375753403,
-0.11012017726898193,
-0.02949647791683674,
-0.0331372506916523,
-0.06463757902383804,
0.04050968959927559,
-0.0006267137359827757,
-0.055401988327503204,
0.033390067517757416,
0.16131339967250824,
-0.157659649848938,
-0.011183077469468117,
-0.036108631640672684,
0.02959016151726246,
0.06727521866559982,
0.13207417726516724,
0.0012926360359415412,
-0.15172718465328217,
-0.02339819446206093,
0.01583840325474739,
-0.04226115718483925,
-0.009095792658627033,
-0.08835387974977493,
-0.13643094897270203,
0.028628874570131302,
0.123727947473526,
0.09208625555038452,
-0.03245266154408455,
-0.07526496797800064,
-0.09223290532827377,
0.09014613181352615,
-0.10223864018917084,
-0.05188840255141258,
0.004834209568798542,
-0.11092252284288406,
-0.0013003235217183828,
-0.08611106127500534,
-0.012883496470749378,
-0.07610081881284714,
-0.06047630310058594,
-0.042246896773576736,
-0.015606696717441082,
-0.05206771939992905,
-0.12197843939065933,
0.017852453514933586,
-0.010816422291100025,
-0.026281248778104782,
-0.1294546276330948,
-0.004267009440809488,
-0.10526508837938309,
-0.0114607447758317,
-0.0894738957285881,
-0.005523771978914738,
-0.0952288806438446,
0.009470028802752495,
0.008194816298782825,
-0.07044268399477005,
0.050040751695632935,
-0.03492322936654091,
0.09013038128614426,
0.05845402553677559,
0.06392224133014679,
0.028212154284119606,
0.025914976373314857,
-0.10207530111074448,
0.019405435770750046,
-0.18444178998470306,
0.10807044804096222,
-0.06869509816169739,
-0.08408951014280319,
-0.13954530656337738,
-0.06580163538455963,
0.010717321187257767,
0.07791625708341599,
0.08786650002002716,
0.1536124050617218,
-0.1676516979932785,
-0.006477886810898781,
0.16801629960536957,
-0.05319186672568321,
-0.12969271838665009,
0.13580365478992462,
-0.041989557445049286,
0.11023999005556107,
0.042422834783792496,
0.18559230864048004,
0.017960909754037857,
-0.16480955481529236,
-0.07747077196836472,
0.012928505428135395,
-0.003358728252351284,
0.0013574445620179176,
0.12139640003442764,
-0.05581281706690788,
-0.039410192519426346,
0.01962721347808838,
-0.07941155880689621,
-0.025716977193951607,
-0.04671286419034004,
-0.06275718659162521,
0.029117632657289505,
0.009830526076257229,
0.01881781779229641,
0.03133511170744896,
0.04064313322305679,
-0.01729414239525795,
-0.09204435348510742,
-0.1478598415851593,
0.005994104780256748,
-0.03316333889961243,
0.03572167828679085,
-0.08361414074897766,
0.13938800990581512,
-0.15887735784053802,
-0.015217277221381664,
-0.18347565829753876,
0.018524201586842537,
0.014823547564446926,
0.04250627011060715,
0.029288843274116516,
0.03571922704577446,
0.027310291305184364,
-0.013015213422477245,
-0.022132601588964462,
-0.023647092282772064,
0.008393111638724804,
-0.06976848095655441,
-0.09750673919916153,
-0.08404531329870224,
0.01926225796341896,
-0.06476648896932602,
-0.07925592362880707,
-0.11065886914730072,
-0.012039490975439548,
0.02569187991321087,
-0.05965137109160423,
-0.011039997451007366,
0.02105657197535038,
-0.06481362879276276,
0.07915200293064117,
-0.08633561432361603,
0.018881311640143394,
0.0478593073785305,
-0.054250750690698624,
-0.02703818865120411,
0.05868601053953171,
-0.12291864305734634,
0.02876741997897625,
0.09057890623807907,
-0.004809912294149399,
-0.10605175793170929,
-0.14444899559020996,
-0.04565531015396118,
0.035590097308158875,
-0.05338366702198982,
-0.027529584243893623,
0.2120875120162964,
0.019145537167787552,
0.1285087913274765,
-0.15204280614852905,
0.01380931492894888,
0.03287912905216217,
-0.033282723277807236,
0.034346889704465866,
0.1963428258895874,
0.08086904883384705,
-0.0513041689991951,
0.06884907931089401,
0.03128959983587265,
0.03479722887277603,
0.12107645720243454,
-0.027444081380963326,
-0.10215462744235992,
-0.013416367582976818,
0.09894163906574249,
0.03641512617468834,
0.14064207673072815,
-0.05366385355591774,
0.006866829004138708,
0.04100148007273674,
0.07340287417173386,
0.06331656128168106,
-0.10736274719238281,
-0.021712487563490868,
-0.023119650781154633,
-0.06073453649878502,
-0.042494043707847595,
0.0657443180680275,
0.039532531052827835,
0.11229514330625534,
0.03896564617753029,
-0.05583876371383667,
-0.004434199072420597,
-0.04490361362695694,
-0.07972489297389984,
0.21882592141628265,
-0.0170290544629097,
-0.19786188006401062,
-0.11189392954111099,
-0.018896952271461487,
-0.05313008651137352,
0.03399871289730072,
0.06888066232204437,
-0.09501545131206512,
0.0020718679297715425,
-0.012130116112530231,
0.27582117915153503,
-0.05547086149454117,
-0.05122465640306473,
-0.09917781502008438,
-0.0018370852340012789,
-0.03139256313443184,
-0.13381899893283844,
-0.0014888449804857373,
-0.08540366590023041,
-0.12569448351860046,
0.01929807849228382,
-0.10292606800794601,
0.14191344380378723,
0.13005881011486053,
-0.002982432721182704,
-0.002014337107539177,
-0.03683260455727577,
0.26083117723464966,
-0.09225289523601532,
-0.006618835963308811,
0.13988010585308075,
0.07818477600812912,
0.03651311248540878,
0.1869800090789795,
0.013718671165406704,
-0.06475035846233368,
0.02705485001206398,
0.024185555055737495,
-0.08609434962272644,
-0.2549840807914734,
-0.11152403801679611,
-0.028074095025658607,
0.04497804492712021,
0.0869082361459732,
0.003597781527787447,
-0.041898008435964584,
0.1174330785870552,
-0.0374680794775486,
-0.03109227865934372,
-0.06360473483800888,
0.06680028885602951,
0.08352231234312057,
-0.010441811755299568,
0.13332071900367737,
-0.01259690523147583,
-0.059935037046670914,
0.13830935955047607,
0.10457471758127213,
0.13791424036026,
-0.0714099109172821,
0.021795613691210747,
0.09817230701446533,
0.19519121944904327,
0.00642169127240777,
0.06390946358442307,
-0.01669398695230484,
0.011698628775775433,
-0.0709424838423729,
-0.03263721615076065,
-0.03098224475979805,
0.027759823948144913,
0.04047369584441185,
-0.009276286698877811,
-0.14082978665828705,
-0.12109899520874023,
0.026724286377429962,
0.05699126794934273,
0.025894789025187492,
-0.07951872050762177,
-0.05833159387111664,
0.02295706607401371,
-0.06551992148160934,
-0.05801663175225258,
0.09961742162704468,
0.10711192339658737,
-0.1440434753894806,
-0.06481248885393143,
-0.05361392721533775,
0.13395066559314728,
0.06096003204584122,
0.022886307910084724,
-0.09399369359016418,
-0.0023974161595106125,
-0.024235494434833527,
0.11727198958396912,
-0.22148820757865906,
0.1986956149339676,
0.046533308923244476,
0.0199950709939003,
-0.05263342335820198,
0.016332095488905907,
-0.010226856917142868,
-0.03866257891058922,
0.2052706778049469,
-0.04333364591002464,
0.01760094054043293,
-0.19990922510623932,
-0.011664063669741154,
0.03321268782019615,
0.060048822313547134,
-0.08762681484222412,
0.12642790377140045,
0.052091632038354874,
0.07495863735675812,
-0.031787335872650146,
0.07390455156564713,
-0.04586273804306984,
-0.13389022648334503,
-0.07699504494667053,
-0.04246028512716293,
-0.03086269460618496,
-0.022469183430075645,
-0.06726190447807312,
-0.08591654896736145,
0.031103655695915222,
-0.14988268911838531,
-0.03659813478589058,
-0.07565759867429733,
-0.00539413234218955,
0.09018822014331818,
-0.1346096247434616,
-0.0134276133030653,
-0.03064063750207424,
0.037748292088508606,
-0.059291619807481766,
-0.06361159682273865,
0.0950763151049614,
-0.1010344848036766,
-0.08533214032649994,
-0.02762003242969513,
0.12708671391010284,
0.07052040845155716,
0.034050483256578445,
0.03347671777009964,
-0.002749538281932473,
-0.078090600669384,
-0.14597971737384796,
-0.049685969948768616,
-0.08900908380746841,
0.09146992862224579,
0.08514907211065292,
-0.02506251074373722,
-0.17232581973075867,
-0.07524055987596512,
0.01874190755188465,
0.14612805843353271,
0.16118644177913666,
-0.08713968843221664,
0.09312155097723007,
0.09667454659938812,
-0.05948310345411301,
-0.25579139590263367,
-0.008838807232677937,
0.0993521437048912,
0.04196268692612648,
0.09451671689748764,
-0.09718530625104904,
0.02590463124215603,
0.006135269068181515,
-0.0318906269967556,
0.006582561880350113,
-0.2754157483577728,
-0.06767499446868896,
0.038264546543359756,
0.05810412019491196,
0.2209581583738327,
-0.07916894555091858,
-0.04795543849468231,
0.036526765674352646,
-0.052954740822315216,
0.09776008129119873,
0.008634699508547783,
0.09070001542568207,
-0.05653172358870506,
0.11222221702337265,
0.04168395698070526,
-0.014877187088131905,
0.14782045781612396,
0.005727470852434635,
0.010302109643816948,
0.009649324230849743,
-0.03629933297634125,
-0.0001341096794931218,
-0.022456856444478035,
0.02737635187804699,
0.004772226791828871,
0.03565351665019989,
-0.20131105184555054,
-0.08302466571331024,
-0.05475655198097229,
0.04684056341648102,
-0.06735125184059143,
-0.05218537896871567,
-0.083711639046669,
0.005284987855702639,
0.07757493853569031,
0.012931705452501774,
0.049499232321977615,
-0.07767433673143387,
0.06839267909526825,
0.17308205366134644,
0.10020443052053452,
0.05410521477460861,
-0.12505735456943512,
0.05343211814761162,
0.03329462185502052,
0.11222711205482483,
-0.14943717420101166,
0.06606822460889816,
0.14654886722564697,
0.026160135865211487,
0.016467882320284843,
0.037749119102954865,
-0.1191922277212143,
0.07454338669776917,
0.03754521906375885,
-0.02188827469944954,
-0.11373896151781082,
-0.03739425539970398,
-0.04803352430462837,
-0.07574029266834259,
0.02154173143208027,
0.08665046095848083,
0.043412208557128906,
-0.03601310774683952,
-0.034955792129039764,
-0.009523614309728146,
0.01952817663550377,
0.1419525444507599,
0.0762244462966919,
0.03925927355885506,
-0.07613003998994827,
-0.01958470791578293,
0.0433773472905159,
-0.1224752739071846,
0.0486198253929615,
0.02561980113387108,
-0.022579150274395943,
-0.015517857857048512,
0.043126050382852554,
0.09991668909788132,
-0.21792620420455933,
-0.06669145077466965,
-0.0886078029870987,
-0.06383557617664337,
0.030546192079782486,
0.11409879475831985,
0.09128700941801071,
-0.06909745186567307,
0.021980520337820053,
-0.03110172040760517,
0.006209868006408215,
0.07441157847642899,
0.09291002154350281,
-0.036953531205654144,
0.013983700424432755,
-0.040752019733190536,
0.005276061594486237,
0.07848040014505386,
-0.038298144936561584,
-0.04007740691304207,
-0.13644687831401825,
0.0611979141831398,
-0.17333738505840302,
0.10559947043657303,
-0.03524046763777733,
0.01035932544618845,
-0.056978244334459305,
-0.02915903925895691,
-0.04211314395070076,
0.0017423873068764806,
-0.061916597187519073,
0.042824968695640564,
-0.043449804186820984,
0.06207912787795067,
-0.08648958057165146,
0.029365094378590584,
0.038461510092020035,
-0.02044333890080452,
0.019062047824263573,
-0.031091678887605667,
-0.049245886504650116,
0.09046418964862823,
-0.16246336698532104,
0.06235714256763458,
-0.04550841450691223,
0.07125511020421982,
0.06184707209467888,
0.0022043869830667973,
0.046705350279808044,
0.03184806555509567,
0.03151102364063263,
0.018119582906365395,
0.00841763336211443,
-0.11536998301744461,
0.07188213616609573,
0.000757272879127413,
-0.08117184787988663,
-0.0687193050980568,
0.12163233011960983,
-0.008723446168005466,
0.07287324219942093,
0.04305632784962654,
-0.08717412501573563,
0.08118461817502975,
-0.1238243356347084,
-0.025051305070519447,
0.025282438844442368,
0.05656556040048599,
-0.0074609750881791115,
-0.04324521869421005,
0.04987499117851257,
0.01838093064725399,
0.1817261129617691,
0.13097026944160461,
0.10226183384656906,
0.013142863288521767,
-0.0810069590806961,
0.10341494530439377,
-0.037105824798345566,
0.10771618783473969,
0.017827382311224937,
0.039556123316287994,
-0.04618581011891365,
0.12232472747564316,
0.03075319156050682,
0.127334862947464,
0.08884359896183014,
0.10254427790641785,
0.06320623308420181,
0.012440950609743595,
-0.07097071409225464,
-0.05772728845477104,
0.00671871704980731,
-0.014064906165003777,
0.004883692599833012,
-0.08659203350543976,
0.015576399862766266,
0.07911685109138489,
0.05999882519245148,
-0.07724454998970032,
0.10040298104286194,
-0.013721148483455181,
-0.05394210293889046,
-0.13909615576267242,
-0.07549594342708588,
-0.061061568558216095,
-0.10153274983167648,
0.020293615758419037,
-0.1014723926782608,
0.037340063601732254,
0.153506800532341,
0.04209504649043083,
-0.0193910114467144,
0.120204858481884,
-0.05107404664158821,
-0.11394533514976501,
0.04997417703270912,
0.022257070988416672,
0.14042094349861145,
0.047611068934202194,
0.09008381515741348,
0.04007728770375252,
-0.02989877201616764,
0.06769929826259613,
0.0708339661359787,
-0.028363440185785294,
-0.015133506618440151,
-0.051245592534542084,
-0.01604399085044861,
-0.05030301585793495,
0.046377409249544144,
0.08743307739496231,
0.3817775249481201,
0.038484107702970505,
-0.010572551749646664,
-0.019821176305413246,
0.24517008662223816,
-0.019951267167925835,
-0.032961636781692505,
-0.11210925132036209,
0.19863419234752655,
0.037033561617136,
0.07091304659843445,
-0.00770830363035202,
-0.0780639499425888,
-0.0194072388112545,
0.2141234278678894,
0.10389110445976257,
-0.03440266102552414,
-0.02944784052670002,
0.031999457627534866,
0.01626157946884632,
0.06494730710983276,
0.06959180533885956,
0.05187828093767166,
0.38116511702537537,
-0.08872315287590027,
-0.02020685002207756,
-0.0386253222823143,
0.018893977627158165,
-0.0023014284670352936,
0.15644992887973785,
0.0028704069554805756,
-0.010031750425696373,
-0.1093156710267067,
0.10079158842563629,
-0.03743273764848709,
-0.2187143862247467,
0.05424829572439194,
-0.1333865076303482,
-0.09311169385910034,
-0.045188743621110916,
0.09359002858400345,
0.013806539587676525,
0.08546368032693863,
-0.006580046843737364,
0.019595127552747726,
-0.01610572077333927,
0.004745101556181908,
-0.06120523437857628,
-0.006053917109966278,
0.09355073422193527,
-0.11851155757904053,
0.20668862760066986,
0.0043533979915082455,
0.13936126232147217,
0.10454773157835007,
-0.0010926421964541078,
-0.01564732752740383,
0.048574358224868774,
0.05316910147666931,
0.0005191486561670899,
0.047381408512592316,
0.025230051949620247,
0.039224401116371155,
0.025228748098015785,
0.053968943655490875,
-0.11231846362352371,
0.05625071004033089,
0.027844103053212166,
-0.05761265754699707,
-0.1877279132604599,
0.08044636994600296,
-0.0947345420718193,
0.09661707282066345,
0.0631449893116951,
-0.003329274943098426,
0.038863830268383026,
-0.07337668538093567,
0.049765653908252716,
-0.04276440292596817,
0.19214265048503876,
0.00841594859957695,
-0.15527431666851044,
0.02282930351793766,
0.06923256814479828,
-0.019262248650193214,
-0.3360387682914734,
0.017127571627497673,
0.018715213984251022,
0.037813667207956314,
-0.006742259953171015,
0.05803409591317177,
0.021463271230459213,
0.019140372052788734,
-0.01891615055501461,
-0.06999374181032181,
-0.060135725885629654,
0.09534580260515213,
-0.0025378530845046043,
-0.08162282407283783
] |
null | null | transformers |
# ixambert-base-cased finetuned for QA
This is a basic implementation of the multilingual model ["ixambert-base-cased"](https://huggingface.co/ixa-ehu/ixambert-base-cased), fine-tuned on SQuAD v1.1, that is able to answer basic factual questions in English, Spanish and Basque.
## Overview
* **Language model:** ixambert-base-cased
* **Languages:** English, Spanish and Basque
* **Downstream task:** Extractive QA
* **Training data:** SQuAD v1.1
* **Eval data:** SQuAD v1.1
* **Infrastructure:** 1x GeForce RTX 2080
## Outputs
The model outputs the answer to the question, the start and end positions of the answer in the original context, and a score for the probability for that span of text to be the correct answer. For example:
```python
{'score': 0.9667195081710815, 'start': 101, 'end': 105, 'answer': '1820'}
```
## How to use
```python
from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline
model_name = "MarcBrun/ixambert-finetuned-squad"
# To get predictions
context = "Florence Nightingale, known for being the founder of modern nursing, was born in Florence, Italy, in 1820"
question = "When was Florence Nightingale born?"
qa = pipeline("question-answering", model=model_name, tokenizer=model_name)
pred = qa(question=question,context=context)
# To load the model and tokenizer
model = AutoModelForQuestionAnswering.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
```
## Hyperparameters
```
batch_size = 8
n_epochs = 3
learning_rate = 2e-5
optimizer = AdamW
lr_schedule = linear
max_seq_len = 384
doc_stride = 128
``` | {"language": ["en", "es", "eu"], "datasets": ["squad"], "widget": [{"text": "When was Florence Nightingale born?", "context": "Florence Nightingale, known for being the founder of modern nursing, was born in Florence, Italy, in 1820.", "example_title": "English"}, {"text": "\u00bfPor qu\u00e9 provincias pasa el Tajo?", "context": "El Tajo es el r\u00edo m\u00e1s largo de la pen\u00ednsula ib\u00e9rica, a la que atraviesa en su parte central, siguiendo un rumbo este-oeste, con una leve inclinaci\u00f3n hacia el suroeste, que se acent\u00faa cuando llega a Portugal, donde recibe el nombre de Tejo.\nNace en los montes Universales, en la sierra de Albarrac\u00edn, sobre la rama occidental del sistema Ib\u00e9rico y, despu\u00e9s de recorrer 1007 km, llega al oc\u00e9ano Atl\u00e1ntico en la ciudad de Lisboa. En su desembocadura forma el estuario del mar de la Paja, en el que vierte un caudal medio de 456 m\u00b3/s. En sus primeros 816 km atraviesa Espa\u00f1a, donde discurre por cuatro comunidades aut\u00f3nomas (Arag\u00f3n, Castilla-La Mancha, Madrid y Extremadura) y un total de seis provincias (Teruel, Guadalajara, Cuenca, Madrid, Toledo y C\u00e1ceres).", "example_title": "Espa\u00f1ol"}, {"text": "Zer beste izenak ditu Tartalo?", "context": "Tartalo euskal mitologiako izaki begibakar artzain erraldoia da. Tartalo izena zenbait euskal hizkeratan herskari-bustidurarekin ahoskatu ohi denez, horrelaxe ere idazten da batzuetan: Ttarttalo. Euskal Herriko zenbait tokitan, Torto edo Anxo ere esaten diote.", "example_title": "Euskara"}]} | question-answering | MarcBrun/ixambert-finetuned-squad | [
"transformers",
"pytorch",
"bert",
"question-answering",
"en",
"es",
"eu",
"dataset:squad",
"endpoints_compatible",
"has_space",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [
"en",
"es",
"eu"
] | TAGS
#transformers #pytorch #bert #question-answering #en #es #eu #dataset-squad #endpoints_compatible #has_space #region-us
|
# ixambert-base-cased finetuned for QA
This is a basic implementation of the multilingual model "ixambert-base-cased", fine-tuned on SQuAD v1.1, that is able to answer basic factual questions in English, Spanish and Basque.
## Overview
* Language model: ixambert-base-cased
* Languages: English, Spanish and Basque
* Downstream task: Extractive QA
* Training data: SQuAD v1.1
* Eval data: SQuAD v1.1
* Infrastructure: 1x GeForce RTX 2080
## Outputs
The model outputs the answer to the question, the start and end positions of the answer in the original context, and a score for the probability for that span of text to be the correct answer. For example:
## How to use
## Hyperparameters
| [
"# ixambert-base-cased finetuned for QA\n\nThis is a basic implementation of the multilingual model \"ixambert-base-cased\", fine-tuned on SQuAD v1.1, that is able to answer basic factual questions in English, Spanish and Basque.",
"## Overview\n\n* Language model: ixambert-base-cased\n* Languages: English, Spanish and Basque\n* Downstream task: Extractive QA\n* Training data: SQuAD v1.1\n* Eval data: SQuAD v1.1\n* Infrastructure: 1x GeForce RTX 2080",
"## Outputs\n\nThe model outputs the answer to the question, the start and end positions of the answer in the original context, and a score for the probability for that span of text to be the correct answer. For example:",
"## How to use",
"## Hyperparameters"
] | [
"TAGS\n#transformers #pytorch #bert #question-answering #en #es #eu #dataset-squad #endpoints_compatible #has_space #region-us \n",
"# ixambert-base-cased finetuned for QA\n\nThis is a basic implementation of the multilingual model \"ixambert-base-cased\", fine-tuned on SQuAD v1.1, that is able to answer basic factual questions in English, Spanish and Basque.",
"## Overview\n\n* Language model: ixambert-base-cased\n* Languages: English, Spanish and Basque\n* Downstream task: Extractive QA\n* Training data: SQuAD v1.1\n* Eval data: SQuAD v1.1\n* Infrastructure: 1x GeForce RTX 2080",
"## Outputs\n\nThe model outputs the answer to the question, the start and end positions of the answer in the original context, and a score for the probability for that span of text to be the correct answer. For example:",
"## How to use",
"## Hyperparameters"
] | [
45,
65,
66,
49,
4,
5
] | [
"passage: TAGS\n#transformers #pytorch #bert #question-answering #en #es #eu #dataset-squad #endpoints_compatible #has_space #region-us \n# ixambert-base-cased finetuned for QA\n\nThis is a basic implementation of the multilingual model \"ixambert-base-cased\", fine-tuned on SQuAD v1.1, that is able to answer basic factual questions in English, Spanish and Basque.## Overview\n\n* Language model: ixambert-base-cased\n* Languages: English, Spanish and Basque\n* Downstream task: Extractive QA\n* Training data: SQuAD v1.1\n* Eval data: SQuAD v1.1\n* Infrastructure: 1x GeForce RTX 2080## Outputs\n\nThe model outputs the answer to the question, the start and end positions of the answer in the original context, and a score for the probability for that span of text to be the correct answer. For example:## How to use## Hyperparameters"
] | [
-0.13896293938159943,
-0.0610334575176239,
-0.00045225289068184793,
0.06793801486492157,
0.10136546194553375,
-0.03282221779227257,
-0.04504483565688133,
0.0997559055685997,
0.015438095666468143,
0.10554587095975876,
0.08895520120859146,
0.04880846291780472,
0.06399481743574142,
0.05424046888947487,
-0.07682564109563828,
-0.13765516877174377,
-0.02940010093152523,
-0.04418225213885307,
-0.024181602522730827,
0.08838152140378952,
0.0806371420621872,
-0.0959467664361,
0.060174934566020966,
0.01164915319532156,
-0.00872775074094534,
0.050474632531404495,
0.022945186123251915,
-0.07789270579814911,
0.11905715614557266,
0.13373558223247528,
0.08301763981580734,
0.011422746814787388,
0.032965704798698425,
-0.24873560667037964,
0.02157311886548996,
-0.007029951084405184,
-0.044266410171985626,
0.04424402117729187,
0.04691855609416962,
-0.039880119264125824,
-0.08103451132774353,
-0.0493580587208271,
0.0016438070451840758,
0.06655529886484146,
-0.10546334832906723,
-0.039801813662052155,
-0.007836819626390934,
-0.0007796706049703062,
0.11467774212360382,
0.07224255800247192,
-0.05245256423950195,
0.0535803884267807,
-0.10817492753267288,
0.05953802540898323,
0.09917197376489639,
-0.2965227961540222,
-0.06471146643161774,
0.040391724556684494,
0.06817486882209778,
0.16817526519298553,
-0.0683295726776123,
0.034929387271404266,
0.06091247498989105,
0.030893871560692787,
-0.009942169301211834,
-0.0812002494931221,
-0.024359028786420822,
0.05054990574717522,
-0.12817078828811646,
-0.03218286484479904,
0.12968222796916962,
-0.012569703161716461,
-0.044529277831315994,
-0.10255620628595352,
-0.09386666119098663,
0.012041137553751469,
-0.018938811495900154,
-0.051625289022922516,
-0.024296849966049194,
0.0006172961439006031,
0.04398299753665924,
-0.07732360810041428,
-0.09694156050682068,
-0.08573848754167557,
-0.10246551036834717,
0.1732686311006546,
0.04316186532378197,
0.01120055466890335,
-0.10067757219076157,
0.11565855145454407,
-0.10112426429986954,
-0.09741944819688797,
-0.03385300189256668,
-0.04555767774581909,
-0.12898515164852142,
0.028160497546195984,
-0.02402513287961483,
-0.04754366725683212,
0.01275174506008625,
0.15080413222312927,
-0.11521343141794205,
0.010477966628968716,
-0.03115634247660637,
0.035211142152547836,
0.04375850409269333,
0.20515970885753632,
-0.050100311636924744,
-0.13028378784656525,
-0.015293377451598644,
-0.03695306181907654,
-0.03811794891953468,
-0.034792616963386536,
-0.11328497529029846,
-0.1040172353386879,
-0.005753046367317438,
0.12651866674423218,
0.08357878029346466,
-0.02092842198908329,
-0.048942681401968,
-0.09361033886671066,
0.05351991206407547,
-0.07795874774456024,
-0.024311786517500877,
0.008412855677306652,
-0.08087854087352753,
0.009658043272793293,
-0.05830990523099899,
0.0029696847777813673,
-0.06603968888521194,
-0.03900669515132904,
-0.05522288382053375,
-0.01184332650154829,
-0.05068540200591087,
-0.14642366766929626,
0.011408794671297073,
-0.04171745106577873,
-0.011284809559583664,
-0.1030488982796669,
-0.04834849014878273,
-0.07190179079771042,
-0.010490563698112965,
-0.07629425078630447,
0.02338414266705513,
-0.07795693725347519,
0.011825778521597385,
0.026367314159870148,
-0.04297768324613571,
0.049801528453826904,
-0.03446058928966522,
0.07525214552879333,
0.029515990987420082,
0.07688089460134506,
-0.03344080224633217,
0.03958600386977196,
-0.08067213743925095,
0.002090018941089511,
-0.15347075462341309,
0.10155802220106125,
-0.06049271300435066,
-0.053366731852293015,
-0.10368406027555466,
-0.04846478998661041,
0.01529387291520834,
0.07427169382572174,
0.06358632445335388,
0.11030127853155136,
-0.16317406296730042,
-0.0032938187941908836,
0.17000378668308258,
-0.03890856355428696,
-0.09854248911142349,
0.11687708646059036,
-0.007363516837358475,
0.10323076695203781,
0.05338500067591667,
0.19301648437976837,
0.01420548278838396,
-0.15699118375778198,
-0.04493765905499458,
0.019999314099550247,
-0.02425723895430565,
-0.007505334448069334,
0.10072042793035507,
-0.03826650604605675,
-0.018851062282919884,
0.03228721022605896,
-0.09029834717512131,
0.018629156053066254,
-0.03470182046294212,
-0.04659485071897507,
0.007881552912294865,
-0.018961189314723015,
-0.01144640613347292,
0.01712023839354515,
0.05040266737341881,
0.012664434500038624,
-0.07656431943178177,
-0.04141407087445259,
-0.00527047086507082,
-0.02981719560921192,
0.019924357533454895,
-0.09110944718122482,
0.1242106482386589,
-0.11580763757228851,
0.01402417290955782,
-0.18882541358470917,
-0.07150458544492722,
-0.006836710963398218,
0.09953606128692627,
0.022747036069631577,
0.025215553119778633,
0.03575022518634796,
-0.001859094831161201,
-0.04525159299373627,
-0.033972177654504776,
0.03669316694140434,
-0.03871118277311325,
-0.09429118782281876,
-0.09177445620298386,
0.022994257509708405,
-0.06204960122704506,
-0.0043839276768267155,
-0.12013457715511322,
0.009692264720797539,
0.004306669346988201,
-0.03883755952119827,
0.0105647724121809,
0.04535696655511856,
-0.03454088792204857,
0.07100102305412292,
-0.06656069308519363,
0.017249993979930878,
0.04438145086169243,
-0.0435110442340374,
-0.07198688387870789,
0.0816754475235939,
-0.13398127257823944,
0.02421852946281433,
0.0954219326376915,
-0.05881039798259735,
-0.05173735320568085,
-0.08108914643526077,
-0.039944157004356384,
0.017396189272403717,
-0.022519338876008987,
-0.04992162808775902,
0.1546056568622589,
0.030407125130295753,
0.13291755318641663,
-0.1152137815952301,
-0.013197614811360836,
0.023906832560896873,
-0.025247234851121902,
0.048117633908987045,
0.1562448889017105,
0.06320620328187943,
-0.08357468992471695,
0.055721644312143326,
0.07386260479688644,
0.054758235812187195,
0.19418758153915405,
-0.00520302215591073,
-0.09983251988887787,
0.008102730847895145,
0.10890060663223267,
0.016835132613778114,
0.14404107630252838,
-0.06535601615905762,
-0.014582762494683266,
0.03159227594733238,
0.07022937387228012,
0.031097186729311943,
-0.11576303094625473,
-0.008368128910660744,
0.002249701414257288,
-0.05497864633798599,
-0.09654005616903305,
0.03293449804186821,
0.009639037773013115,
0.09898345172405243,
0.01779547892510891,
-0.02333325706422329,
-0.025043562054634094,
-0.034847185015678406,
-0.08433272689580917,
0.22139468789100647,
-0.07423575222492218,
-0.23390313982963562,
-0.1008189469575882,
-0.0754745602607727,
-0.03989705443382263,
0.028781039640307426,
0.09157253056764603,
-0.11935082823038101,
-0.005913349334150553,
0.010880556888878345,
0.18422234058380127,
-0.06091681495308876,
-0.06295284628868103,
-0.1317659616470337,
0.01015140675008297,
-0.03197664022445679,
-0.14542359113693237,
-0.0006693457253277302,
-0.08636486530303955,
-0.12547892332077026,
0.048732612282037735,
-0.09405981004238129,
0.15199759602546692,
0.13396497070789337,
-0.0033139227889478207,
-0.007529571186751127,
-0.05343114212155342,
0.2208935022354126,
-0.08467593789100647,
0.04918483644723892,
0.11750227212905884,
0.011738622561097145,
0.05187198147177696,
0.18728028237819672,
0.003977818880230188,
-0.07088210433721542,
0.024127241224050522,
0.03534331172704697,
-0.06881824135780334,
-0.2571425139904022,
-0.10936988145112991,
-0.07251973450183868,
0.0029150478076189756,
0.026732804253697395,
0.04566432163119316,
-0.0359979085624218,
0.07716482877731323,
-0.045453112572431564,
-0.031095916405320168,
-0.01827169582247734,
0.08615110069513321,
0.1440925896167755,
-0.03523261100053787,
0.1618572175502777,
0.000311997311655432,
-0.04031846299767494,
0.1229202076792717,
0.11559230834245682,
0.1675748974084854,
-0.01985940709710121,
0.08682993054389954,
0.06695187091827393,
0.13814929127693176,
0.044688787311315536,
0.061872467398643494,
-0.033603306859731674,
-0.008180429227650166,
-0.059610091149806976,
-0.0228410717099905,
-0.0006364957080222666,
0.045895908027887344,
0.06653805077075958,
-0.037452347576618195,
-0.09530779719352722,
-0.04255183786153793,
0.035877525806427,
0.12408771365880966,
0.020038805902004242,
-0.06458304077386856,
-0.07583525776863098,
0.021253006532788277,
-0.052802566438913345,
-0.09709960967302322,
0.0703650712966919,
0.13817822933197021,
-0.1152956634759903,
-0.09150230884552002,
-0.003906954545527697,
0.15342019498348236,
0.04418933391571045,
0.03439241275191307,
-0.08195973187685013,
-0.058689966797828674,
-0.01960369572043419,
0.12045614421367645,
-0.21627622842788696,
0.1793404072523117,
0.06958556175231934,
0.030633816495537758,
-0.02084527350962162,
0.019002094864845276,
-0.01651635393500328,
0.04823661968111992,
0.20076681673526764,
0.009296619333326817,
0.012276891618967056,
-0.24084264039993286,
-0.020228585228323936,
0.05099347233772278,
0.07963039726018906,
-0.04419909790158272,
0.09951336681842804,
0.039151281118392944,
0.04171563684940338,
-0.0011718501336872578,
0.02716687135398388,
-0.06893511861562729,
-0.13922512531280518,
-0.0600433386862278,
-0.01026140060275793,
0.010490096174180508,
-0.01702556014060974,
-0.02500254288315773,
-0.0505702942609787,
0.07875961065292358,
-0.16864338517189026,
-0.06042478233575821,
-0.1107516661286354,
-0.00324156298302114,
0.07580803334712982,
-0.13014613091945648,
0.008100390434265137,
-0.026870304718613625,
0.024821851402521133,
-0.04108886048197746,
-0.044848304241895676,
0.14683198928833008,
-0.11358485370874405,
-0.05921187996864319,
-0.059045031666755676,
0.11546099931001663,
0.0443984754383564,
0.058574289083480835,
0.036059655249118805,
0.021926339715719223,
-0.1251637041568756,
-0.15938638150691986,
-0.03369252756237984,
-0.026285499334335327,
0.05161173641681671,
0.04577218368649483,
-0.09587391465902328,
-0.11074274033308029,
-0.04750589281320572,
0.02246524952352047,
0.22362120449543,
0.16202960908412933,
-0.09556955844163895,
0.08914814889431,
0.16491596400737762,
-0.06135653704404831,
-0.248472660779953,
-0.03268676996231079,
0.049434538930654526,
0.06611193716526031,
0.06378594785928726,
-0.15179623663425446,
0.04258616641163826,
0.014070479199290276,
-0.021316833794116974,
0.009008052758872509,
-0.21765269339084625,
-0.06931091099977493,
0.06076754629611969,
0.05628181993961334,
0.21849842369556427,
-0.09395354241132736,
-0.05687656253576279,
0.03187296912074089,
-0.06418966501951218,
0.0885864794254303,
-0.09510663151741028,
0.08478032052516937,
-0.03676827996969223,
0.0669257864356041,
0.008416584692895412,
-0.013814165256917477,
0.12024760991334915,
0.0015653445152565837,
-0.01592021808028221,
0.02895851619541645,
0.010900725610554218,
0.07114648073911667,
-0.01963755302131176,
0.03039553388953209,
-0.012246831320226192,
0.031113386154174805,
-0.21166138350963593,
-0.0818084105849266,
-0.04919639229774475,
0.045321274548769,
-0.050841838121414185,
-0.07545821368694305,
-0.014950842596590519,
-0.0010479985503479838,
0.04461504891514778,
-0.0014728100504726171,
0.015008346177637577,
-0.11250793188810349,
0.05963647738099098,
0.12054182589054108,
0.07965252548456192,
-0.007506254594773054,
-0.08053100854158401,
0.029644202440977097,
0.028125358745455742,
0.11502597481012344,
-0.14776736497879028,
0.07221680134534836,
0.14096514880657196,
0.03338208794593811,
0.04609262943267822,
0.0535067617893219,
-0.047136131674051285,
0.06746610254049301,
0.01319969817996025,
-0.04931635782122612,
-0.11238719522953033,
-0.045804593712091446,
-0.06240975856781006,
-0.026419667527079582,
-0.0025429073721170425,
0.09321215748786926,
0.0423906147480011,
-0.03475739434361458,
-0.010202640667557716,
-0.014796704053878784,
0.036888670176267624,
0.12404331564903259,
0.08143885433673859,
0.03487260267138481,
-0.0861060693860054,
-0.023754986003041267,
0.05905057489871979,
-0.09817135334014893,
0.04716853052377701,
0.05319538339972496,
-0.08353712409734726,
-0.04332124441862106,
-0.016914406791329384,
0.08213360607624054,
-0.18234296143054962,
-0.07595916092395782,
-0.06079789996147156,
-0.06039327010512352,
0.02845783904194832,
0.08869587630033493,
0.042162321507930756,
-0.0661935955286026,
-0.02019825205206871,
-0.03326982632279396,
0.013665193691849709,
0.09978555887937546,
0.013730669394135475,
-0.027567602694034576,
0.003205970162525773,
-0.08571586012840271,
0.019128352403640747,
0.07967585325241089,
-0.031796518713235855,
-0.08399208635091782,
-0.14678694307804108,
0.06011513993144035,
-0.21453221142292023,
0.055947478860616684,
-0.023086067289114,
-0.01279553584754467,
-0.062850221991539,
-0.06551223993301392,
-0.03297395631670952,
0.00584098557010293,
-0.06197304651141167,
0.012915701605379581,
-0.03648868575692177,
0.05020404979586601,
-0.13935458660125732,
-0.0008142549195326865,
0.03237415477633476,
-0.01666952110826969,
0.07405327260494232,
0.0066046458669006824,
-0.03778434917330742,
0.08795984089374542,
-0.11008026450872421,
-0.0071937753818929195,
-0.030939923599362373,
0.05953284353017807,
0.11577118188142776,
0.011712195351719856,
0.04957953467965126,
0.015567041002213955,
0.008415710180997849,
0.009924092330038548,
0.02343713492155075,
-0.10410904139280319,
0.04477732628583908,
-0.040182337164878845,
-0.09428063035011292,
-0.05515092611312866,
0.0947161316871643,
-0.0077397204004228115,
0.07609082013368607,
0.047134388238191605,
-0.06017493084073067,
0.07984741777181625,
-0.12695609033107758,
-0.01690005511045456,
0.02842654101550579,
0.05127346143126488,
-0.031374432146549225,
-0.08757902681827545,
0.037987466901540756,
-0.03368532285094261,
0.16915369033813477,
0.059718865901231766,
0.1777838170528412,
0.011861485429108143,
-0.03839116543531418,
0.05515717342495918,
-0.04646097123622894,
0.15934032201766968,
0.05131489410996437,
0.0350642129778862,
-0.015502658672630787,
0.0912298783659935,
0.01987253688275814,
0.12009740620851517,
0.0863201767206192,
0.09530682116746902,
0.1047166958451271,
0.04747293144464493,
-0.02945929951965809,
-0.04647770896553993,
-0.08051757514476776,
-0.034873440861701965,
-0.01199032086879015,
-0.05278012901544571,
-0.01069521252065897,
0.056069664657115936,
0.10491636395454407,
-0.09494626522064209,
0.04834410548210144,
-0.03203713893890381,
-0.06880109012126923,
-0.1385846883058548,
-0.04571518674492836,
-0.054635874927043915,
-0.0788392424583435,
0.0052550057880580425,
-0.11724787205457687,
0.0034185145050287247,
0.0676632672548294,
0.06365795433521271,
0.00695544620975852,
0.13413937389850616,
-0.007569330278784037,
-0.10725639760494232,
0.028738468885421753,
0.03370536491274834,
0.17418035864830017,
0.032359763979911804,
0.07826218008995056,
0.027287272736430168,
-0.03442968428134918,
0.042893361300230026,
0.07102886587381363,
-0.03057434782385826,
-0.0039623798802495,
-0.08463756740093231,
-0.027674943208694458,
-0.06421982496976852,
0.08811789005994797,
0.01811504177749157,
0.3239823877811432,
0.024382727220654488,
-0.00878894329071045,
-0.0026851119473576546,
0.2947554886341095,
-0.051421985030174255,
-0.07209126651287079,
-0.08931126445531845,
0.19425587356090546,
0.048282697796821594,
0.07476095855236053,
-0.035127002745866776,
-0.09825513511896133,
-0.00787138007581234,
0.22589540481567383,
0.13656364381313324,
-0.07439257204532623,
-0.007938683032989502,
0.06011412665247917,
0.01097867265343666,
0.06086474284529686,
0.05827592685818672,
0.09001695364713669,
0.3710328936576843,
-0.09090527892112732,
-0.012733450159430504,
-0.04074202850461006,
-0.02299298346042633,
-0.03039710596203804,
0.1430005431175232,
0.03585869073867798,
-0.027968425303697586,
-0.08364101499319077,
0.10765903443098068,
-0.02714168280363083,
-0.13414299488067627,
0.016144050285220146,
-0.12864048779010773,
-0.08669393509626389,
-0.040352415293455124,
0.09455011785030365,
0.007700074464082718,
0.05926721915602684,
-0.01953766867518425,
-0.002960522659122944,
0.06078958883881569,
0.007906140759587288,
-0.06353883445262909,
-0.015900274738669395,
0.10517872124910355,
-0.06027299538254738,
0.12561699748039246,
-0.0009255569893866777,
0.10329713672399521,
0.09409750252962112,
0.04143725335597992,
-0.03390585258603096,
0.05775246024131775,
0.038750145584344864,
-0.03573179617524147,
0.0011767599498853087,
0.05343251675367355,
0.027674101293087006,
0.04975024610757828,
0.06300824880599976,
-0.11372087895870209,
0.08752540498971939,
-0.05074729025363922,
-0.0557149238884449,
-0.15640254318714142,
0.07319700717926025,
-0.06980074942111969,
0.11733318865299225,
0.07937904447317123,
0.005520051810890436,
0.031081276014447212,
-0.06682053953409195,
0.026560986414551735,
-0.022918103262782097,
0.1622111201286316,
-0.018904268741607666,
-0.11080224812030792,
0.017956119030714035,
0.1083747074007988,
0.0118248937651515,
-0.2774594724178314,
-0.00861341878771782,
-0.00017444284458179027,
0.042156461626291275,
-0.002062298357486725,
0.06282563507556915,
0.09273397922515869,
0.02675802819430828,
-0.03303663805127144,
-0.08002262562513351,
-0.018111957237124443,
0.08191657066345215,
-0.049236271530389786,
-0.07556463032960892
] |
null | null | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-legal_data
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 6.9101
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 100
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| No log | 1.0 | 26 | 5.3529 |
| No log | 2.0 | 52 | 5.4226 |
| No log | 3.0 | 78 | 5.2550 |
| No log | 4.0 | 104 | 5.1011 |
| No log | 5.0 | 130 | 5.1857 |
| No log | 6.0 | 156 | 5.5119 |
| No log | 7.0 | 182 | 5.4480 |
| No log | 8.0 | 208 | 5.6993 |
| No log | 9.0 | 234 | 5.9614 |
| No log | 10.0 | 260 | 5.6987 |
| No log | 11.0 | 286 | 5.6679 |
| No log | 12.0 | 312 | 5.9850 |
| No log | 13.0 | 338 | 5.6065 |
| No log | 14.0 | 364 | 5.3162 |
| No log | 15.0 | 390 | 5.7856 |
| No log | 16.0 | 416 | 5.5786 |
| No log | 17.0 | 442 | 5.6028 |
| No log | 18.0 | 468 | 5.7649 |
| No log | 19.0 | 494 | 5.5382 |
| 1.8345 | 20.0 | 520 | 6.3654 |
| 1.8345 | 21.0 | 546 | 5.3575 |
| 1.8345 | 22.0 | 572 | 5.3808 |
| 1.8345 | 23.0 | 598 | 5.9340 |
| 1.8345 | 24.0 | 624 | 6.1475 |
| 1.8345 | 25.0 | 650 | 6.2188 |
| 1.8345 | 26.0 | 676 | 5.7651 |
| 1.8345 | 27.0 | 702 | 6.2629 |
| 1.8345 | 28.0 | 728 | 6.1356 |
| 1.8345 | 29.0 | 754 | 5.9255 |
| 1.8345 | 30.0 | 780 | 6.4252 |
| 1.8345 | 31.0 | 806 | 5.6967 |
| 1.8345 | 32.0 | 832 | 6.4324 |
| 1.8345 | 33.0 | 858 | 6.5087 |
| 1.8345 | 34.0 | 884 | 6.1113 |
| 1.8345 | 35.0 | 910 | 6.7443 |
| 1.8345 | 36.0 | 936 | 6.6970 |
| 1.8345 | 37.0 | 962 | 6.5578 |
| 1.8345 | 38.0 | 988 | 6.1963 |
| 0.2251 | 39.0 | 1014 | 6.4893 |
| 0.2251 | 40.0 | 1040 | 6.6347 |
| 0.2251 | 41.0 | 1066 | 6.7106 |
| 0.2251 | 42.0 | 1092 | 6.8129 |
| 0.2251 | 43.0 | 1118 | 6.6386 |
| 0.2251 | 44.0 | 1144 | 6.4134 |
| 0.2251 | 45.0 | 1170 | 6.6883 |
| 0.2251 | 46.0 | 1196 | 6.6406 |
| 0.2251 | 47.0 | 1222 | 6.3065 |
| 0.2251 | 48.0 | 1248 | 7.0281 |
| 0.2251 | 49.0 | 1274 | 7.3646 |
| 0.2251 | 50.0 | 1300 | 7.1086 |
| 0.2251 | 51.0 | 1326 | 6.4749 |
| 0.2251 | 52.0 | 1352 | 6.3303 |
| 0.2251 | 53.0 | 1378 | 6.2919 |
| 0.2251 | 54.0 | 1404 | 6.3855 |
| 0.2251 | 55.0 | 1430 | 6.9501 |
| 0.2251 | 56.0 | 1456 | 6.8714 |
| 0.2251 | 57.0 | 1482 | 6.9856 |
| 0.0891 | 58.0 | 1508 | 6.9910 |
| 0.0891 | 59.0 | 1534 | 6.9293 |
| 0.0891 | 60.0 | 1560 | 7.3493 |
| 0.0891 | 61.0 | 1586 | 7.1834 |
| 0.0891 | 62.0 | 1612 | 7.0479 |
| 0.0891 | 63.0 | 1638 | 6.7674 |
| 0.0891 | 64.0 | 1664 | 6.7553 |
| 0.0891 | 65.0 | 1690 | 7.3074 |
| 0.0891 | 66.0 | 1716 | 6.8071 |
| 0.0891 | 67.0 | 1742 | 7.6622 |
| 0.0891 | 68.0 | 1768 | 6.9555 |
| 0.0891 | 69.0 | 1794 | 7.0153 |
| 0.0891 | 70.0 | 1820 | 7.2085 |
| 0.0891 | 71.0 | 1846 | 6.7582 |
| 0.0891 | 72.0 | 1872 | 6.7989 |
| 0.0891 | 73.0 | 1898 | 6.7012 |
| 0.0891 | 74.0 | 1924 | 7.0088 |
| 0.0891 | 75.0 | 1950 | 7.1024 |
| 0.0891 | 76.0 | 1976 | 6.6968 |
| 0.058 | 77.0 | 2002 | 7.5249 |
| 0.058 | 78.0 | 2028 | 6.9199 |
| 0.058 | 79.0 | 2054 | 7.1995 |
| 0.058 | 80.0 | 2080 | 6.9349 |
| 0.058 | 81.0 | 2106 | 7.4025 |
| 0.058 | 82.0 | 2132 | 7.4199 |
| 0.058 | 83.0 | 2158 | 6.8081 |
| 0.058 | 84.0 | 2184 | 7.4777 |
| 0.058 | 85.0 | 2210 | 7.1990 |
| 0.058 | 86.0 | 2236 | 7.0062 |
| 0.058 | 87.0 | 2262 | 7.5724 |
| 0.058 | 88.0 | 2288 | 6.9362 |
| 0.058 | 89.0 | 2314 | 7.1368 |
| 0.058 | 90.0 | 2340 | 7.2183 |
| 0.058 | 91.0 | 2366 | 6.8684 |
| 0.058 | 92.0 | 2392 | 7.1433 |
| 0.058 | 93.0 | 2418 | 7.2161 |
| 0.058 | 94.0 | 2444 | 7.1442 |
| 0.058 | 95.0 | 2470 | 7.3098 |
| 0.058 | 96.0 | 2496 | 7.1264 |
| 0.0512 | 97.0 | 2522 | 6.9424 |
| 0.0512 | 98.0 | 2548 | 6.9155 |
| 0.0512 | 99.0 | 2574 | 6.9038 |
| 0.0512 | 100.0 | 2600 | 6.9101 |
### Framework versions
- Transformers 4.11.3
- Pytorch 1.9.0+cu102
- Datasets 1.12.1
- Tokenizers 0.10.3
| {"license": "apache-2.0", "tags": ["generated_from_trainer"], "model-index": [{"name": "distilbert-base-uncased-finetuned-legal_data", "results": []}]} | question-answering | MariamD/distilbert-base-uncased-finetuned-legal_data | [
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"question-answering",
"generated_from_trainer",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [] | TAGS
#transformers #pytorch #tensorboard #distilbert #question-answering #generated_from_trainer #license-apache-2.0 #endpoints_compatible #region-us
| distilbert-base-uncased-finetuned-legal\_data
=============================================
This model is a fine-tuned version of distilbert-base-uncased on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 6.9101
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 16
* eval\_batch\_size: 16
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 100
### Training results
### Framework versions
* Transformers 4.11.3
* Pytorch 1.9.0+cu102
* Datasets 1.12.1
* Tokenizers 0.10.3
| [
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 100",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.11.3\n* Pytorch 1.9.0+cu102\n* Datasets 1.12.1\n* Tokenizers 0.10.3"
] | [
"TAGS\n#transformers #pytorch #tensorboard #distilbert #question-answering #generated_from_trainer #license-apache-2.0 #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 100",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.11.3\n* Pytorch 1.9.0+cu102\n* Datasets 1.12.1\n* Tokenizers 0.10.3"
] | [
50,
98,
4,
34
] | [
"passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #question-answering #generated_from_trainer #license-apache-2.0 #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 100### Training results### Framework versions\n\n\n* Transformers 4.11.3\n* Pytorch 1.9.0+cu102\n* Datasets 1.12.1\n* Tokenizers 0.10.3"
] | [
-0.10118985921144485,
0.05233021825551987,
-0.001779892947524786,
0.11760102957487106,
0.17029547691345215,
0.0252293162047863,
0.10521848499774933,
0.10494036227464676,
-0.09852024167776108,
0.03293890133500099,
0.12591692805290222,
0.16819517314434052,
-0.002352971350774169,
0.051273513585329056,
-0.05220281332731247,
-0.22269558906555176,
-0.02521630749106407,
0.04345906153321266,
-0.09350401163101196,
0.1401282548904419,
0.07888881862163544,
-0.15515658259391785,
0.06562098860740662,
-0.00298601808026433,
-0.2309214472770691,
0.012646005488932133,
0.008447980508208275,
-0.035077448934316635,
0.15227636694908142,
-0.006488285027444363,
0.14182785153388977,
-0.003937585279345512,
0.0938115045428276,
-0.17974728345870972,
0.014908012002706528,
0.05536855012178421,
0.010164523497223854,
0.07959939539432526,
0.04713653400540352,
0.003413149854168296,
0.10388348996639252,
-0.0877770334482193,
0.05170898139476776,
0.019687507301568985,
-0.12769055366516113,
-0.2383863627910614,
-0.10712753236293793,
0.008406125009059906,
0.06592586636543274,
0.11870136857032776,
-0.003141321474686265,
0.16847911477088928,
-0.11404464393854141,
0.09154406934976578,
0.24928326904773712,
-0.29456955194473267,
-0.08070158213376999,
0.049944400787353516,
0.023592401295900345,
0.08204431086778641,
-0.10916373133659363,
-0.027696503326296806,
0.05792975798249245,
0.05392219126224518,
0.11055346578359604,
-0.044830381870269775,
-0.13069863617420197,
0.03847600519657135,
-0.1521112024784088,
-0.026946956291794777,
0.09149951487779617,
0.048088159412145615,
-0.028275979682803154,
-0.007299698423594236,
-0.06732388585805893,
-0.13359929621219635,
-0.030110521242022514,
-0.025192443281412125,
0.053861647844314575,
-0.05096400901675224,
-0.09026362746953964,
-0.0025843537878245115,
-0.10393135249614716,
-0.08664495497941971,
-0.07376307994127274,
0.14858880639076233,
0.03893756493926048,
0.02941143698990345,
-0.040159761905670166,
0.10515471547842026,
-0.0028606881387531757,
-0.13973882794380188,
0.026277659460902214,
0.03750140592455864,
-0.031054511666297913,
-0.044641464948654175,
-0.06807051599025726,
-0.06728317588567734,
0.02228309027850628,
0.11740101873874664,
-0.06423276662826538,
0.040400125086307526,
0.054461847990751266,
0.04276351258158684,
-0.10458258539438248,
0.1858654022216797,
-0.0488743782043457,
-0.02188178151845932,
-0.006563910748809576,
0.045598819851875305,
-0.0017287576338276267,
-0.0041325995698571205,
-0.10006456822156906,
0.0016670620534569025,
0.09233534336090088,
0.017042582854628563,
-0.048745378851890564,
0.04579069837927818,
-0.04089954122900963,
-0.010709310881793499,
-0.036891523748636246,
-0.08838875591754913,
0.04013215750455856,
-0.004053955432027578,
-0.08634202182292938,
-0.00207566493190825,
0.005679875146597624,
0.018123621121048927,
-0.007717358414083719,
0.13541755080223083,
-0.08876261115074158,
0.047769010066986084,
-0.11190523952245712,
-0.09901580214500427,
0.021236145868897438,
-0.07884809374809265,
0.02149982377886772,
-0.0825829952955246,
-0.1515466570854187,
-0.02003300003707409,
0.06525442749261856,
-0.02921106293797493,
-0.03629378601908684,
-0.03217390179634094,
-0.09775445610284805,
-0.011176266707479954,
-0.01879158988595009,
0.1812696009874344,
-0.05713597685098648,
0.12244103103876114,
0.040886566042900085,
0.0635422021150589,
-0.04729802533984184,
0.04674962908029556,
-0.0914655327796936,
0.01345369778573513,
-0.18866576254367828,
0.026382578536868095,
-0.06198423355817795,
0.07854700833559036,
-0.08947654813528061,
-0.1218867227435112,
0.01894230954349041,
-0.017825672402977943,
0.0946500226855278,
0.08656338602304459,
-0.18494819104671478,
-0.05976877361536026,
0.14080409705638885,
-0.04707411676645279,
-0.1359616369009018,
0.12466274201869965,
-0.06349251419305801,
0.03276366740465164,
0.07259786874055862,
0.1648574024438858,
0.03686138615012169,
-0.10917447507381439,
0.02385779470205307,
-0.012128312140703201,
0.04755091667175293,
-0.06698735803365707,
0.05122804269194603,
-0.0054914988577365875,
0.021170321851968765,
0.021346036344766617,
-0.06207497417926788,
0.05304209142923355,
-0.11611606925725937,
-0.09522995352745056,
-0.05534355714917183,
-0.10585980862379074,
0.03007444180548191,
0.08689458668231964,
0.07199131697416306,
-0.10493636876344681,
-0.06938663125038147,
0.07780611515045166,
0.06321942061185837,
-0.05139412358403206,
0.030196906998753548,
-0.05799506604671478,
0.06745271384716034,
-0.055929187685251236,
-0.030042005702853203,
-0.19820536673069,
-0.0162259079515934,
-0.0018562623299658298,
0.009891237132251263,
0.02898736484348774,
0.04062109440565109,
0.08210881799459457,
0.045640815049409866,
-0.05688073858618736,
-0.01153542660176754,
-0.055596012622117996,
-0.0031104895751923323,
-0.1407410055398941,
-0.20000097155570984,
-0.031812380999326706,
-0.011519785970449448,
0.08505968004465103,
-0.18356327712535858,
0.022361984476447105,
-0.03438239544630051,
0.06655775010585785,
-0.007982457987964153,
-0.009553118608891964,
-0.06210988014936447,
0.09120842814445496,
-0.008944977074861526,
-0.0462687686085701,
0.06588739901781082,
-0.007437008898705244,
-0.08791492134332657,
-0.0836310014128685,
-0.06983725726604462,
0.1659897267818451,
0.1373530477285385,
-0.1428956538438797,
-0.07432994246482849,
0.01995084434747696,
-0.0669913962483406,
-0.029123473912477493,
-0.04618963971734047,
0.049243099987506866,
0.18529100716114044,
0.001328050740994513,
0.12277982383966446,
-0.07658183574676514,
-0.049349501729011536,
0.005565852392464876,
-0.03039771132171154,
0.0652477815747261,
0.11987753212451935,
0.13797739148139954,
-0.06398417055606842,
0.12858566641807556,
0.16642451286315918,
-0.12209608405828476,
0.08428259938955307,
-0.06316538900136948,
-0.08681179583072662,
-0.031179029494524002,
-0.0027097074780613184,
-0.001645280048251152,
0.13161873817443848,
-0.13194333016872406,
0.008282211609184742,
0.015591972507536411,
0.020732766017317772,
0.019723568111658096,
-0.2408733367919922,
-0.06096946448087692,
0.017662320286035538,
-0.03795887157320976,
-0.0304239634424448,
-0.01762690395116806,
0.017911013215780258,
0.10280496627092361,
-0.00918422732502222,
-0.07215742766857147,
0.02412266656756401,
-0.006631302181631327,
-0.06083239987492561,
0.21767140924930573,
-0.06427447497844696,
-0.07429388910531998,
-0.0835903063416481,
-0.05368509516119957,
-0.03546937555074692,
-0.0035698027350008488,
0.055483199656009674,
-0.10161885619163513,
-0.01764592155814171,
-0.040514394640922546,
0.015666821971535683,
-0.0015246369875967503,
0.03350824862718582,
0.011453757993876934,
-0.007341933436691761,
0.07814662158489227,
-0.11996988207101822,
0.0049605295062065125,
-0.0665108785033226,
-0.07864708453416824,
0.05094661936163902,
0.06735661625862122,
0.13147102296352386,
0.1556459367275238,
-0.016226312145590782,
-0.0005780069041065872,
-0.016488198190927505,
0.26185256242752075,
-0.07741940021514893,
-0.040982361882925034,
0.1250801980495453,
-0.0034915583673864603,
0.06187184154987335,
0.10284732282161713,
0.08876443654298782,
-0.10460355132818222,
0.009385421872138977,
0.039740439504384995,
-0.03604297339916229,
-0.2352835088968277,
-0.023670407012104988,
-0.05948776751756668,
-0.048658255487680435,
0.0658659115433693,
0.024039722979068756,
0.03207743167877197,
0.06683111190795898,
0.051214348524808884,
0.05781184509396553,
-0.06507767736911774,
0.04108361899852753,
0.09800498187541962,
0.04761723428964615,
0.11670971661806107,
-0.0444490872323513,
-0.07260748744010925,
0.021458737552165985,
-0.014638989232480526,
0.2504311501979828,
0.0034340498968958855,
0.12235698103904724,
0.07862506061792374,
0.2101980745792389,
-0.017248893156647682,
0.08356239646673203,
-0.009352825582027435,
-0.059253718703985214,
-0.006893289741128683,
-0.038960494101047516,
-0.01916802115738392,
0.0066804285161197186,
-0.044756144285202026,
0.07183773815631866,
-0.08880285173654556,
-0.024245254695415497,
0.06349889189004898,
0.26339566707611084,
0.016315219923853874,
-0.286734938621521,
-0.07317113131284714,
-0.00598297081887722,
-0.03735388442873955,
0.005008066538721323,
0.011174951680004597,
0.11531610786914825,
-0.08886188268661499,
0.005797418300062418,
-0.06618013232946396,
0.10713861137628555,
0.006680641323328018,
0.043227873742580414,
0.06307240575551987,
0.0952252522110939,
0.009837314486503601,
0.07592038065195084,
-0.3270915746688843,
0.2837319076061249,
0.003270119195804,
0.09625338762998581,
-0.07301531732082367,
-0.01442931778728962,
0.024177074432373047,
0.024809284135699272,
0.06494215875864029,
-0.014676935970783234,
0.00959497969597578,
-0.1744479089975357,
-0.029630709439516068,
0.042221587151288986,
0.10570941865444183,
-0.00876634381711483,
0.09837642312049866,
-0.011827003210783005,
0.00974829401820898,
0.08185891062021255,
0.0035443741362541914,
-0.06111994758248329,
-0.06619779020547867,
-0.026650920510292053,
0.00043670294689945877,
-0.06624014675617218,
-0.06580276042222977,
-0.10584182292222977,
-0.1407988965511322,
0.11025809496641159,
-0.00275468360632658,
-0.018743323162198067,
-0.10776713490486145,
0.09267356246709824,
0.10461550205945969,
-0.07709428668022156,
0.036097586154937744,
0.022524762898683548,
0.02238612435758114,
0.037922970950603485,
-0.05507756769657135,
0.09899307042360306,
-0.061824195086956024,
-0.15821503102779388,
-0.050539933145046234,
0.1043335422873497,
0.053920019418001175,
0.07233444601297379,
-0.013354838825762272,
0.01979362964630127,
-0.05442887172102928,
-0.11132750660181046,
0.027127457782626152,
-0.0444517657160759,
0.08818855881690979,
0.015992118045687675,
-0.02722083032131195,
0.04682033509016037,
-0.06121767312288284,
-0.016435427591204643,
0.17545022070407867,
0.24327190220355988,
-0.09538815170526505,
-0.0029217898845672607,
0.03508235514163971,
-0.04707039147615433,
-0.17751851677894592,
0.07296758890151978,
0.07613738626241684,
-0.009519901126623154,
0.057246722280979156,
-0.1433800607919693,
0.1636565923690796,
0.11235514283180237,
-0.010309675708413124,
0.11544922739267349,
-0.3624133765697479,
-0.12202953547239304,
0.08621375262737274,
0.17498263716697693,
0.12934841215610504,
-0.16246652603149414,
-0.019825872033834457,
-0.009594076313078403,
-0.16547046601772308,
0.09649672359228134,
-0.10675051063299179,
0.10979355871677399,
-0.02547604776918888,
0.10809032618999481,
-0.0019018471939489245,
-0.07509669661521912,
0.12709550559520721,
0.029850350692868233,
0.11441287398338318,
-0.05210579186677933,
-0.0298851877450943,
0.06829775869846344,
-0.018805641680955887,
0.0037000058218836784,
-0.06359762698411942,
0.034265775233507156,
-0.0730377584695816,
-0.011659001000225544,
-0.10114233195781708,
0.03848310559988022,
-0.04478318616747856,
-0.05750962346792221,
-0.03400341421365738,
0.01891374960541725,
0.04631378874182701,
-0.017717745155096054,
0.1072232574224472,
0.027173442766070366,
0.15694528818130493,
0.0711241140961647,
0.07028122246265411,
-0.07776142656803131,
-0.10129718482494354,
-0.0023170525673776865,
-0.006826329510658979,
0.05999871343374252,
-0.1363353282213211,
0.017946720123291016,
0.15705421566963196,
0.049919918179512024,
0.11342824995517731,
0.08407416939735413,
-0.028404567390680313,
0.00891796313226223,
0.045437004417181015,
-0.1574908047914505,
-0.12385248392820358,
0.02692423015832901,
-0.067118339240551,
-0.1047663614153862,
0.0595477931201458,
0.060444340109825134,
-0.05638013407588005,
-0.0064001744613051414,
-0.00029317167354747653,
-0.013677969574928284,
-0.0745139867067337,
0.21688248217105865,
0.08310022950172424,
0.05117664858698845,
-0.10905150324106216,
0.06705235689878464,
0.04853447899222374,
-0.09808043390512466,
-0.015699107199907303,
0.06463153660297394,
-0.06866280734539032,
-0.031088246032595634,
0.11710958927869797,
0.17448997497558594,
-0.05396975949406624,
-0.024049311876296997,
-0.13462893664836884,
-0.11356659978628159,
0.07028540968894958,
0.1692679524421692,
0.11688953638076782,
-0.004189207684248686,
-0.05078570917248726,
0.030923942103981972,
-0.121973916888237,
0.0772629827260971,
0.0427512563765049,
0.069203220307827,
-0.12408797442913055,
0.15653058886528015,
0.007501969113945961,
0.04974711686372757,
-0.020711209625005722,
0.04649914428591728,
-0.10266093909740448,
0.03817932680249214,
-0.1455223560333252,
-0.044650573283433914,
-0.016258852556347847,
-0.00947277806699276,
-0.007048649247735739,
-0.08998914808034897,
-0.06683868914842606,
0.020252320915460587,
-0.13111263513565063,
-0.02237766794860363,
0.05361538752913475,
0.028734344989061356,
-0.13985271751880646,
-0.04339948669075966,
0.04023296386003494,
-0.05306369811296463,
0.05031849071383476,
0.06386246532201767,
0.009961600415408611,
0.07327494770288467,
-0.16901183128356934,
-0.02559254691004753,
0.05393321439623833,
0.016514625400304794,
0.08653727918863297,
-0.07375559210777283,
-0.02238551340997219,
0.003009914420545101,
0.09595455229282379,
0.018222028389573097,
0.04687827080488205,
-0.13708312809467316,
-0.012634155340492725,
-0.031237278133630753,
-0.09511662274599075,
-0.06491655111312866,
0.0024407252203673124,
0.09156235307455063,
0.028589587658643723,
0.19664350152015686,
-0.0639127641916275,
0.05957242101430893,
-0.22308547794818878,
-0.008583043701946735,
-0.011515811085700989,
-0.09087877720594406,
-0.11964101344347,
-0.055925771594047546,
0.07384704798460007,
-0.0633869543671608,
0.12035136669874191,
-0.006796516012400389,
0.06502373516559601,
0.027968399226665497,
-0.013228297233581543,
0.01966414973139763,
0.01815059967339039,
0.24467012286186218,
0.029618816450238228,
-0.02572713792324066,
0.06868603825569153,
0.05909769982099533,
0.0773298367857933,
0.09670750796794891,
0.22333112359046936,
0.1830052137374878,
0.00835902988910675,
0.07347789406776428,
0.03831297159194946,
-0.049628857523202896,
-0.13216155767440796,
0.03706586733460426,
-0.03918064385652542,
0.07585562020540237,
-0.026606911793351173,
0.24325454235076904,
0.058007534593343735,
-0.17320628464221954,
0.053358037024736404,
-0.06733952462673187,
-0.09414951503276825,
-0.08759260177612305,
-0.005266540218144655,
-0.07023220509290695,
-0.15096625685691833,
0.020991211757063866,
-0.10996389389038086,
0.02464282512664795,
0.13735683262348175,
0.014548102393746376,
-0.026092849671840668,
0.1894812285900116,
0.04776924103498459,
0.040881067514419556,
0.04345688596367836,
0.001746008638292551,
-0.02442570962011814,
-0.07885368168354034,
-0.04994508996605873,
-0.017762543633580208,
-0.027861272916197777,
0.043679844588041306,
-0.058517441153526306,
-0.09811563789844513,
0.027638161554932594,
-0.024747656658291817,
-0.09300282597541809,
0.016744710505008698,
0.030785037204623222,
0.07914286106824875,
0.055645912885665894,
0.008993216790258884,
0.034285176545381546,
-0.02674197591841221,
0.22716307640075684,
-0.08762993663549423,
-0.10609348863363266,
-0.0876171737909317,
0.23988617956638336,
0.029440347105264664,
-0.017522824928164482,
0.03231864422559738,
-0.06811459362506866,
0.01155624259263277,
0.24184906482696533,
0.17494118213653564,
-0.12733890116214752,
-0.012268297374248505,
0.009616545401513577,
-0.011438717134296894,
-0.04885854572057724,
0.10071061551570892,
0.14768671989440918,
0.05756784975528717,
-0.11472785472869873,
-0.0416363961994648,
-0.07069338113069534,
-0.015555489808321,
-0.04369240999221802,
0.04700396955013275,
0.04745739698410034,
-0.005844363942742348,
-0.0431765541434288,
0.07858811318874359,
-0.06497862190008163,
-0.13982611894607544,
0.08063102513551712,
-0.19897057116031647,
-0.16379523277282715,
-0.013956161215901375,
0.1358906626701355,
-0.001609604456461966,
0.059261925518512726,
-0.036742158234119415,
0.0071790749207139015,
0.05942163243889809,
-0.02555685304105282,
-0.07437305152416229,
-0.0914667546749115,
0.11944282054901123,
-0.12000614404678345,
0.1861048936843872,
-0.037701524794101715,
0.09805497527122498,
0.12641221284866333,
0.06528959423303604,
-0.06396475434303284,
0.07042395323514938,
0.06559574604034424,
-0.12862296402454376,
0.01331583596765995,
0.08754867315292358,
-0.016877098008990288,
0.03333337604999542,
0.042359646409749985,
-0.12265844643115997,
0.02174731343984604,
-0.03694983199238777,
-0.031345970928668976,
-0.07035455852746964,
-0.04233730956912041,
-0.06492289900779724,
0.12014253437519073,
0.21555377542972565,
-0.029643431305885315,
0.03294222429394722,
-0.08061158657073975,
0.012595733627676964,
0.05352437123656273,
0.03601107373833656,
-0.09247925877571106,
-0.22904127836227417,
0.029899153858423233,
0.057438526302576065,
-0.037856172770261765,
-0.18831896781921387,
-0.09788963943719864,
0.028457198292016983,
-0.07978110760450363,
-0.07505746930837631,
0.06293994933366776,
0.08352844417095184,
0.05882389470934868,
-0.042776741087436676,
-0.10815131664276123,
-0.08973848819732666,
0.16147038340568542,
-0.15545912086963654,
-0.07916396111249924
] |
null | null | transformers |
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# bert-model-english
This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.1408
- Train Sparse Categorical Accuracy: 0.9512
- Validation Loss: nan
- Validation Sparse Categorical Accuracy: 0.0
- Epoch: 4
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'learning_rate': 5e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False}
- training_precision: float32
### Training results
| Train Loss | Train Sparse Categorical Accuracy | Validation Loss | Validation Sparse Categorical Accuracy | Epoch |
|:----------:|:---------------------------------:|:---------------:|:--------------------------------------:|:-----:|
| 0.2775 | 0.8887 | nan | 0.0 | 0 |
| 0.1702 | 0.9390 | nan | 0.0 | 1 |
| 0.1300 | 0.9555 | nan | 0.0 | 2 |
| 0.1346 | 0.9544 | nan | 0.0 | 3 |
| 0.1408 | 0.9512 | nan | 0.0 | 4 |
### Framework versions
- Transformers 4.16.2
- TensorFlow 2.7.0
- Datasets 1.18.3
- Tokenizers 0.11.0
| {"license": "apache-2.0", "tags": ["generated_from_keras_callback"], "model-index": [{"name": "bert-model-english", "results": []}]} | text-classification | MarioPenguin/bert-model-english | [
"transformers",
"tf",
"bert",
"text-classification",
"generated_from_keras_callback",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [] | TAGS
#transformers #tf #bert #text-classification #generated_from_keras_callback #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
| bert-model-english
==================
This model is a fine-tuned version of bert-base-cased on an unknown dataset.
It achieves the following results on the evaluation set:
* Train Loss: 0.1408
* Train Sparse Categorical Accuracy: 0.9512
* Validation Loss: nan
* Validation Sparse Categorical Accuracy: 0.0
* Epoch: 4
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* optimizer: {'name': 'Adam', 'learning\_rate': 5e-05, 'decay': 0.0, 'beta\_1': 0.9, 'beta\_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False}
* training\_precision: float32
### Training results
### Framework versions
* Transformers 4.16.2
* TensorFlow 2.7.0
* Datasets 1.18.3
* Tokenizers 0.11.0
| [
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* optimizer: {'name': 'Adam', 'learning\\_rate': 5e-05, 'decay': 0.0, 'beta\\_1': 0.9, 'beta\\_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False}\n* training\\_precision: float32",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.16.2\n* TensorFlow 2.7.0\n* Datasets 1.18.3\n* Tokenizers 0.11.0"
] | [
"TAGS\n#transformers #tf #bert #text-classification #generated_from_keras_callback #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* optimizer: {'name': 'Adam', 'learning\\_rate': 5e-05, 'decay': 0.0, 'beta\\_1': 0.9, 'beta\\_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False}\n* training\\_precision: float32",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.16.2\n* TensorFlow 2.7.0\n* Datasets 1.18.3\n* Tokenizers 0.11.0"
] | [
54,
99,
4,
33
] | [
"passage: TAGS\n#transformers #tf #bert #text-classification #generated_from_keras_callback #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* optimizer: {'name': 'Adam', 'learning\\_rate': 5e-05, 'decay': 0.0, 'beta\\_1': 0.9, 'beta\\_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False}\n* training\\_precision: float32### Training results### Framework versions\n\n\n* Transformers 4.16.2\n* TensorFlow 2.7.0\n* Datasets 1.18.3\n* Tokenizers 0.11.0"
] | [
-0.04901175573468208,
0.02745315246284008,
-0.0025872548576444387,
0.08225959539413452,
0.1745181530714035,
0.030297739431262016,
0.12480733543634415,
0.10991672426462173,
-0.12708044052124023,
0.03801697492599487,
0.14511485397815704,
0.19501258432865143,
0.03331105783581734,
0.10570385307073593,
-0.11893036961555481,
-0.16545255482196808,
0.05463438108563423,
0.002582367043942213,
-0.07062859833240509,
0.09185533970594406,
0.09974172711372375,
-0.0849916860461235,
0.11357242614030838,
0.0020819955971091986,
-0.20304562151432037,
0.05364583060145378,
0.10921644419431686,
-0.08735370635986328,
0.12550030648708344,
0.09310760349035263,
0.08997875452041626,
-0.013274396769702435,
0.016065724194049835,
-0.1703680008649826,
0.01515729259699583,
0.09990102052688599,
-0.025118067860603333,
0.06839240342378616,
0.016063837334513664,
-0.014820094220340252,
0.13982772827148438,
-0.08044611662626266,
0.03169332817196846,
0.03839157521724701,
-0.1254069060087204,
-0.2199523001909256,
-0.1289873570203781,
-0.016896916553378105,
0.06618306785821915,
0.09367823600769043,
0.007523954380303621,
0.21314717829227448,
-0.051953867077827454,
0.10329433530569077,
0.17056886851787567,
-0.3640322983264923,
-0.052556321024894714,
0.021489478647708893,
-0.008538532070815563,
0.054946910589933395,
-0.04269362986087799,
0.05353635177016258,
0.07515176385641098,
0.044048208743333817,
0.06391484290361404,
-0.04087500274181366,
-0.14468638598918915,
-0.011062582023441792,
-0.0947866216301918,
-0.013451915234327316,
0.14828698337078094,
0.035384051501750946,
-0.06638022512197495,
-0.01812644489109516,
-0.04166990518569946,
-0.1158546432852745,
0.00321171130053699,
-0.05679014325141907,
0.036379288882017136,
0.004751625005155802,
-0.033638227730989456,
-0.04964056611061096,
-0.08808603882789612,
-0.048662614077329636,
-0.12714166939258575,
0.16411025822162628,
0.013128542341291904,
0.061224471777677536,
-0.046906519681215286,
0.04950224235653877,
-0.06387428194284439,
-0.11063871532678604,
-0.0017187874764204025,
0.005060885567218065,
-0.0179204773157835,
-0.052898820489645004,
-0.1164516881108284,
-0.1414899080991745,
0.05321502313017845,
0.1038479134440422,
-0.03356010094285011,
0.07299339026212692,
-0.08194729685783386,
0.03180614113807678,
-0.11552751809358597,
0.16342155635356903,
-0.015929417684674263,
0.006571526173502207,
0.05221232399344444,
-0.013958104886114597,
0.061128418892621994,
-0.03694987669587135,
-0.11059356480836868,
0.004496137145906687,
0.07472439110279083,
0.020877733826637268,
-0.07814536243677139,
0.10244186967611313,
-0.06344766169786453,
-0.008138841018080711,
-0.02942032366991043,
-0.09014523774385452,
0.029462577775120735,
-0.01628621481359005,
-0.08462673425674438,
-0.013321581296622753,
0.07352853566408157,
0.024208588525652885,
-0.04301981255412102,
0.043142300099134445,
-0.061602190136909485,
-0.005555696785449982,
-0.0927978977560997,
-0.1282929629087448,
0.022984759882092476,
-0.08919816464185715,
0.01180710643529892,
-0.10511928796768188,
-0.18383455276489258,
-0.01147241797298193,
0.06653452664613724,
-0.03250608220696449,
-0.013806351460516453,
-0.0577358715236187,
-0.13657093048095703,
0.03106154501438141,
-0.018921969458460808,
0.15943288803100586,
-0.05817423388361931,
0.05093877390027046,
0.004562774207442999,
0.06380362808704376,
-0.14931271970272064,
0.04108723625540733,
-0.056114595383405685,
-0.008997000753879547,
-0.1783103197813034,
0.05184965208172798,
-0.05390843749046326,
0.06342161446809769,
-0.12939198315143585,
-0.06367812305688858,
0.03735603764653206,
0.023554475978016853,
0.09404603391885757,
0.08009392023086548,
-0.1739039570093155,
-0.05128386244177818,
0.10333413630723953,
-0.07868801057338715,
-0.1194583997130394,
0.09649551659822464,
-0.0654146745800972,
0.060558024793863297,
0.09901268035173416,
0.11997916549444199,
-0.01842948980629444,
-0.10490318387746811,
0.055958185344934464,
-0.02002042718231678,
-0.033128004521131516,
-0.013926227577030659,
0.010534253902733326,
-0.007494052406400442,
-0.09495320916175842,
0.031064361333847046,
-0.010332961566746235,
0.03232346102595329,
-0.06799846142530441,
-0.07472042739391327,
-0.047087956219911575,
-0.08041208237409592,
0.030821530148386955,
0.020835503935813904,
0.09210420399904251,
-0.11364889144897461,
-0.0969739556312561,
0.05990883335471153,
0.012957364320755005,
-0.024776838719844818,
0.03848390653729439,
-0.08842717856168747,
0.013258267194032669,
0.011468215845525265,
0.011771188117563725,
-0.17929017543792725,
-0.04128795117139816,
0.008185542188584805,
0.0630863606929779,
0.046651244163513184,
0.001721053384244442,
0.06563100963830948,
-0.00241970201022923,
-0.05922828987240791,
0.04655594006180763,
0.026716137304902077,
0.025551922619342804,
-0.10913962870836258,
-0.22491325438022614,
0.02261977456510067,
-0.020862428471446037,
0.07187602669000626,
-0.2466614693403244,
0.00814083218574524,
0.025759480893611908,
0.09915385395288467,
0.029668182134628296,
0.018957721069455147,
-0.05493049696087837,
0.0609750896692276,
-0.03773759305477142,
-0.04958901181817055,
0.04120682552456856,
0.030627788975834846,
-0.1316501945257187,
0.011401393450796604,
-0.13190874457359314,
0.15989950299263,
0.1623707264661789,
-0.13603876531124115,
-0.11102641373872757,
0.06171301379799843,
-0.010381117463111877,
-0.013202707283198833,
0.0005296726594679058,
0.0269762072712183,
0.18549717962741852,
-0.015559437684714794,
0.15127363801002502,
-0.06187090650200844,
-0.03020443581044674,
0.038248706609010696,
-0.038066621869802475,
-0.01609322614967823,
0.09198442846536636,
0.005601327866315842,
-0.18834124505519867,
0.10844602435827255,
0.15056754648685455,
-0.1148342415690422,
0.09311691671609879,
-0.03539364039897919,
-0.04224838316440582,
-0.04133286699652672,
0.005458755884319544,
0.03869721665978432,
0.06804228574037552,
-0.10101905465126038,
0.0015163073549047112,
0.021528543904423714,
0.027098655700683594,
-0.0009289272129535675,
-0.20301373302936554,
-0.014791354537010193,
0.00125076191034168,
-0.03731166571378708,
0.0031847774516791105,
0.014876940287649632,
0.02200639806687832,
0.13596175611019135,
0.029314130544662476,
-0.05318160727620125,
0.09823846817016602,
-0.013222802430391312,
-0.0913047194480896,
0.21821530163288116,
-0.1513272076845169,
-0.134630486369133,
-0.12111195921897888,
-0.08680877089500427,
-0.08039072901010513,
0.01610165275633335,
0.02584945596754551,
-0.10667667537927628,
-0.06892215460538864,
-0.06805917620658875,
-0.010706792585551739,
-0.016033267602324486,
0.052576687186956406,
0.045583855360746384,
-0.00852146279066801,
0.11478880047798157,
-0.10005753487348557,
-0.045817021280527115,
-0.04930931702256203,
-0.07501569390296936,
0.037926483899354935,
-0.002339736558496952,
0.042006272822618484,
0.10684775561094284,
-0.03681501746177673,
0.02435602806508541,
-0.0519530363380909,
0.22411389648914337,
-0.046676501631736755,
-0.03977913036942482,
0.13415981829166412,
-0.04829166829586029,
0.03296910598874092,
0.10796710103750229,
0.036279212683439255,
-0.1380796581506729,
0.05400758981704712,
0.05654730275273323,
-0.039002612233161926,
-0.2579987049102783,
-0.03139936178922653,
-0.040261466056108475,
-0.11413484811782837,
0.0251943226903677,
0.03696989640593529,
0.15570800006389618,
0.029136015102267265,
0.04938700795173645,
0.125013068318367,
-0.0036318933125585318,
0.05329976603388786,
0.19839225709438324,
0.0573771707713604,
0.10446498543024063,
-0.06090988591313362,
-0.01858566701412201,
0.060008078813552856,
-0.03629952296614647,
0.19207872450351715,
0.04746794328093529,
0.03843206539750099,
0.06841891258955002,
0.08004679530858994,
-0.022536607459187508,
0.022323010489344597,
0.01653795875608921,
-0.05606620013713837,
-0.01574987731873989,
-0.052721038460731506,
-0.04685452952980995,
0.058440301567316055,
-0.10108575969934464,
0.06212674453854561,
-0.08930906653404236,
0.012562480755150318,
0.06707677990198135,
0.2486828714609146,
0.03946784511208534,
-0.31771594285964966,
-0.09838372468948364,
0.009848260320723057,
-0.03141576051712036,
-0.03381281718611717,
0.00287546101026237,
0.07245928794145584,
-0.07170560210943222,
0.10923952609300613,
-0.06045147404074669,
0.07451165467500687,
0.009976341389119625,
0.06398644298315048,
0.06889951229095459,
0.09943574666976929,
0.00632862513884902,
0.02923378348350525,
-0.361287921667099,
0.28696468472480774,
0.040360137820243835,
0.1356642097234726,
-0.0946536734700203,
0.014920574612915516,
0.04174584150314331,
0.04700268432497978,
0.08061375468969345,
-0.017911015078425407,
-0.13355864584445953,
-0.14372624456882477,
-0.01225393358618021,
0.030654869973659515,
0.1360412836074829,
0.06988904625177383,
0.08416087180376053,
-0.03882039710879326,
0.022535771131515503,
0.09216385334730148,
0.02689400315284729,
-0.1295316219329834,
-0.06882759183645248,
0.005853656679391861,
0.06771419942378998,
-0.057719048112630844,
-0.05377623438835144,
-0.08039123564958572,
-0.11606179922819138,
0.21449436247348785,
-0.05129079893231392,
-0.02163168042898178,
-0.12790848314762115,
0.10047778487205505,
0.04030710086226463,
-0.053850650787353516,
0.045435529202222824,
-0.003091854741796851,
0.04100381210446358,
0.05650131031870842,
-0.14093641936779022,
0.1538510024547577,
-0.0337924063205719,
-0.1607404202222824,
-0.056364092975854874,
0.0675518661737442,
0.033584751188755035,
0.04679933562874794,
0.015996426343917847,
0.051384344696998596,
0.02459602802991867,
-0.09178715199232101,
0.07705577462911606,
0.01115631964057684,
0.052060816437006,
0.028730658814311028,
-0.03405190631747246,
-0.0344231016933918,
-0.04517976939678192,
-0.016257861629128456,
0.17800839245319366,
0.25332269072532654,
-0.09017441421747208,
0.03176574781537056,
-0.01963082328438759,
-0.08815162628889084,
-0.23047620058059692,
0.11824961751699448,
0.06917297095060349,
0.007516396697610617,
-0.011387082748115063,
-0.14876481890678406,
0.11683209985494614,
0.08635421842336655,
-0.015000586397945881,
0.09260011464357376,
-0.2545721232891083,
-0.15203171968460083,
0.11717637628316879,
0.13642777502536774,
0.22579152882099152,
-0.15020060539245605,
-0.033779896795749664,
-0.08698437362909317,
-0.06523950397968292,
0.18081755936145782,
-0.1510946899652481,
0.10201290249824524,
0.02028719149529934,
0.06684209406375885,
-0.00211875862441957,
-0.021536558866500854,
0.1080550029873848,
-0.0364379920065403,
0.12770144641399384,
-0.07196851074695587,
-0.042979683727025986,
0.09674596041440964,
-0.0406607910990715,
0.01805739663541317,
-0.05369853600859642,
0.022753247991204262,
-0.06111707165837288,
0.0010981386294588447,
-0.07528100162744522,
0.06535454839468002,
-0.028740758076310158,
-0.028464829549193382,
-0.025406742468476295,
0.026927689090371132,
0.07008600980043411,
-0.04219839349389076,
0.16492952406406403,
-0.018427036702632904,
0.1788695901632309,
0.16203497350215912,
0.10756539553403854,
-0.055547937750816345,
0.08116119354963303,
0.0692737028002739,
-0.04344644770026207,
0.0856003388762474,
-0.16091623902320862,
0.05201667174696922,
0.113648921251297,
-0.016272656619548798,
0.12906956672668457,
0.07165151834487915,
-0.0352293998003006,
0.025521792471408844,
0.07123889029026031,
-0.1564285308122635,
-0.09711182117462158,
0.020695261657238007,
-0.024248966947197914,
-0.046193595975637436,
0.07791221886873245,
0.1527089774608612,
-0.04132932797074318,
0.019001798704266548,
0.003386293537914753,
0.004791943822056055,
-0.09571626037359238,
0.12656699120998383,
0.02456449158489704,
0.0075157638639211655,
-0.09868013113737106,
0.13181331753730774,
0.03126685321331024,
-0.080368272960186,
0.09291678667068481,
0.01641760766506195,
-0.07760918885469437,
-0.02341216802597046,
0.07977256923913956,
0.15127702057361603,
-0.024081023409962654,
-0.07034788280725479,
-0.1153961792588234,
-0.16996781527996063,
0.06310876458883286,
0.26654210686683655,
0.08433198183774948,
0.03336014971137047,
-0.0475839227437973,
-0.010669191367924213,
-0.07716499269008636,
0.03144798055291176,
0.021257394924759865,
0.046182576566934586,
-0.13848383724689484,
0.16068333387374878,
-0.020145133137702942,
0.024864472448825836,
-0.04801381751894951,
0.02947874926030636,
-0.15853723883628845,
0.0024302350357174873,
-0.17505024373531342,
-0.003983801230788231,
0.012797079049050808,
-0.0011664811754599214,
0.03407665714621544,
-0.07411547750234604,
-0.101542167365551,
0.04466255381703377,
-0.11463874578475952,
-0.02061060443520546,
0.06221301853656769,
0.04250573739409447,
-0.1115979477763176,
-0.07536187767982483,
0.012894604355096817,
-0.054839838296175,
0.04012797400355339,
0.08700519055128098,
-0.014455434866249561,
0.08905179053544998,
-0.184647336602211,
-0.006092569325119257,
0.09732687473297119,
0.008474708534777164,
0.08684337139129639,
-0.09297844022512436,
-0.011378579773008823,
0.028873013332486153,
0.07066660374403,
0.036239299923181534,
0.13473151624202728,
-0.09146221727132797,
-0.05891020968556404,
-0.011498995125293732,
-0.04574068263173103,
-0.04223558306694031,
0.03584326058626175,
0.14010821282863617,
-0.005055386107414961,
0.19712309539318085,
-0.11592303961515427,
-0.018272263929247856,
-0.15166614949703217,
0.014266402460634708,
-0.010132555849850178,
-0.1326577514410019,
-0.1310599446296692,
-0.033808473497629166,
0.0841188058257103,
-0.07092658430337906,
0.1537475436925888,
0.001183310174383223,
0.07400863617658615,
0.056283097714185715,
-0.02957710437476635,
-0.04948782920837402,
0.051313649863004684,
0.2081059217453003,
0.044742923229932785,
-0.017993459478020668,
0.031145380809903145,
0.010585907846689224,
0.09635499864816666,
0.09764397889375687,
0.2481483817100525,
0.12863920629024506,
-0.015790347009897232,
0.1466313749551773,
0.04406033828854561,
-0.0421239472925663,
-0.07756981253623962,
0.08183027803897858,
-0.09048101305961609,
0.15743090212345123,
-0.04381836578249931,
0.09164205193519592,
0.06251531094312668,
-0.16294732689857483,
0.01775679737329483,
-0.09297413378953934,
-0.078140988945961,
-0.1510990560054779,
-0.08672375231981277,
-0.10893511772155762,
-0.12361165136098862,
0.00538185378536582,
-0.09967875480651855,
0.05379953607916832,
0.057235777378082275,
0.019599733874201775,
-0.02413812279701233,
0.12457367032766342,
-0.0697370171546936,
0.0053750756196677685,
0.09800391644239426,
-0.02695462293922901,
-0.03357237949967384,
-0.0797058716416359,
-0.06225944682955742,
0.028100185096263885,
-0.008141297847032547,
0.02130749076604843,
-0.010393613018095493,
-0.01049644872546196,
0.04026930406689644,
-0.0592447929084301,
-0.09255599975585938,
0.04562481865286827,
0.050287049263715744,
0.026864642277359962,
0.029667096212506294,
0.046771179884672165,
-0.0008451913599856198,
-0.0025317827239632607,
0.16978003084659576,
-0.10228859633207321,
-0.04665751755237579,
-0.1425289362668991,
0.30051133036613464,
0.013157960027456284,
0.047335777431726456,
0.000204687166842632,
-0.05366593971848488,
-0.036413054913282394,
0.23358702659606934,
0.18073834478855133,
-0.10179535299539566,
-0.010279118083417416,
0.017910059541463852,
-0.0013166760327294469,
-0.04734185338020325,
0.1457449346780777,
0.09454449266195297,
-0.037952352315187454,
-0.06522435694932938,
-0.050806790590286255,
-0.024650104343891144,
0.0015835148515179753,
-0.03547529876232147,
0.07100701332092285,
0.0353722907602787,
-0.020269038155674934,
-0.008846654556691647,
0.055835504084825516,
-0.06967044621706009,
-0.10782789438962936,
0.051659565418958664,
-0.1980852484703064,
-0.15681196749210358,
-0.002909080358222127,
0.013950888998806477,
-0.006705255713313818,
0.06720219552516937,
-0.02625296451151371,
0.00008949203038355336,
0.07698067277669907,
-0.0430416576564312,
-0.04196861758828163,
-0.09396734833717346,
0.08805274218320847,
-0.12242814153432846,
0.17570281028747559,
-0.01798068918287754,
0.06535795331001282,
0.12232023477554321,
0.052203837782144547,
-0.06530623883008957,
0.05887340381741524,
0.03056909888982773,
-0.09968618303537369,
0.01159647572785616,
0.05131980776786804,
-0.03200342133641243,
0.09577947109937668,
0.05833815410733223,
-0.07930616289377213,
0.06081950291991234,
-0.11075250059366226,
-0.11066529154777527,
-0.023174606263637543,
-0.05031008645892143,
-0.10136237740516663,
0.11568313837051392,
0.23205846548080444,
-0.02715272270143032,
0.0410478450357914,
-0.05423690378665924,
-0.006793866399675608,
0.06922764331102371,
-0.0002929661422967911,
-0.08048940449953079,
-0.21773411333560944,
0.05222195386886597,
0.13097290694713593,
0.00948537141084671,
-0.19270353019237518,
-0.07259530574083328,
-0.022559382021427155,
-0.03337143734097481,
-0.09302869439125061,
0.07376997917890549,
0.09341081976890564,
0.037405937910079956,
-0.059948474168777466,
-0.16764777898788452,
-0.0317390076816082,
0.15597565472126007,
-0.0814352035522461,
-0.09136306494474411
] |
null | null | transformers |
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# bert-model-english1
This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.0274
- Train Accuracy: 0.9914
- Validation Loss: 0.3493
- Validation Accuracy: 0.9303
- Epoch: 2
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'learning_rate': 5e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False}
- training_precision: float32
### Training results
| Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch |
|:----------:|:--------------:|:---------------:|:-------------------:|:-----:|
| 0.0366 | 0.9885 | 0.3013 | 0.9299 | 0 |
| 0.0261 | 0.9912 | 0.3445 | 0.9351 | 1 |
| 0.0274 | 0.9914 | 0.3493 | 0.9303 | 2 |
### Framework versions
- Transformers 4.16.2
- TensorFlow 2.7.0
- Datasets 1.18.3
- Tokenizers 0.11.0
| {"license": "apache-2.0", "tags": ["generated_from_keras_callback"], "model-index": [{"name": "bert-model-english1", "results": []}]} | text-classification | MarioPenguin/bert-model-english1 | [
"transformers",
"tf",
"bert",
"text-classification",
"generated_from_keras_callback",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [] | TAGS
#transformers #tf #bert #text-classification #generated_from_keras_callback #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
| bert-model-english1
===================
This model is a fine-tuned version of bert-base-cased on an unknown dataset.
It achieves the following results on the evaluation set:
* Train Loss: 0.0274
* Train Accuracy: 0.9914
* Validation Loss: 0.3493
* Validation Accuracy: 0.9303
* Epoch: 2
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* optimizer: {'name': 'Adam', 'learning\_rate': 5e-05, 'decay': 0.0, 'beta\_1': 0.9, 'beta\_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False}
* training\_precision: float32
### Training results
### Framework versions
* Transformers 4.16.2
* TensorFlow 2.7.0
* Datasets 1.18.3
* Tokenizers 0.11.0
| [
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* optimizer: {'name': 'Adam', 'learning\\_rate': 5e-05, 'decay': 0.0, 'beta\\_1': 0.9, 'beta\\_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False}\n* training\\_precision: float32",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.16.2\n* TensorFlow 2.7.0\n* Datasets 1.18.3\n* Tokenizers 0.11.0"
] | [
"TAGS\n#transformers #tf #bert #text-classification #generated_from_keras_callback #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* optimizer: {'name': 'Adam', 'learning\\_rate': 5e-05, 'decay': 0.0, 'beta\\_1': 0.9, 'beta\\_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False}\n* training\\_precision: float32",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.16.2\n* TensorFlow 2.7.0\n* Datasets 1.18.3\n* Tokenizers 0.11.0"
] | [
54,
99,
4,
33
] | [
"passage: TAGS\n#transformers #tf #bert #text-classification #generated_from_keras_callback #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* optimizer: {'name': 'Adam', 'learning\\_rate': 5e-05, 'decay': 0.0, 'beta\\_1': 0.9, 'beta\\_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False}\n* training\\_precision: float32### Training results### Framework versions\n\n\n* Transformers 4.16.2\n* TensorFlow 2.7.0\n* Datasets 1.18.3\n* Tokenizers 0.11.0"
] | [
-0.04901175573468208,
0.02745315246284008,
-0.0025872548576444387,
0.08225959539413452,
0.1745181530714035,
0.030297739431262016,
0.12480733543634415,
0.10991672426462173,
-0.12708044052124023,
0.03801697492599487,
0.14511485397815704,
0.19501258432865143,
0.03331105783581734,
0.10570385307073593,
-0.11893036961555481,
-0.16545255482196808,
0.05463438108563423,
0.002582367043942213,
-0.07062859833240509,
0.09185533970594406,
0.09974172711372375,
-0.0849916860461235,
0.11357242614030838,
0.0020819955971091986,
-0.20304562151432037,
0.05364583060145378,
0.10921644419431686,
-0.08735370635986328,
0.12550030648708344,
0.09310760349035263,
0.08997875452041626,
-0.013274396769702435,
0.016065724194049835,
-0.1703680008649826,
0.01515729259699583,
0.09990102052688599,
-0.025118067860603333,
0.06839240342378616,
0.016063837334513664,
-0.014820094220340252,
0.13982772827148438,
-0.08044611662626266,
0.03169332817196846,
0.03839157521724701,
-0.1254069060087204,
-0.2199523001909256,
-0.1289873570203781,
-0.016896916553378105,
0.06618306785821915,
0.09367823600769043,
0.007523954380303621,
0.21314717829227448,
-0.051953867077827454,
0.10329433530569077,
0.17056886851787567,
-0.3640322983264923,
-0.052556321024894714,
0.021489478647708893,
-0.008538532070815563,
0.054946910589933395,
-0.04269362986087799,
0.05353635177016258,
0.07515176385641098,
0.044048208743333817,
0.06391484290361404,
-0.04087500274181366,
-0.14468638598918915,
-0.011062582023441792,
-0.0947866216301918,
-0.013451915234327316,
0.14828698337078094,
0.035384051501750946,
-0.06638022512197495,
-0.01812644489109516,
-0.04166990518569946,
-0.1158546432852745,
0.00321171130053699,
-0.05679014325141907,
0.036379288882017136,
0.004751625005155802,
-0.033638227730989456,
-0.04964056611061096,
-0.08808603882789612,
-0.048662614077329636,
-0.12714166939258575,
0.16411025822162628,
0.013128542341291904,
0.061224471777677536,
-0.046906519681215286,
0.04950224235653877,
-0.06387428194284439,
-0.11063871532678604,
-0.0017187874764204025,
0.005060885567218065,
-0.0179204773157835,
-0.052898820489645004,
-0.1164516881108284,
-0.1414899080991745,
0.05321502313017845,
0.1038479134440422,
-0.03356010094285011,
0.07299339026212692,
-0.08194729685783386,
0.03180614113807678,
-0.11552751809358597,
0.16342155635356903,
-0.015929417684674263,
0.006571526173502207,
0.05221232399344444,
-0.013958104886114597,
0.061128418892621994,
-0.03694987669587135,
-0.11059356480836868,
0.004496137145906687,
0.07472439110279083,
0.020877733826637268,
-0.07814536243677139,
0.10244186967611313,
-0.06344766169786453,
-0.008138841018080711,
-0.02942032366991043,
-0.09014523774385452,
0.029462577775120735,
-0.01628621481359005,
-0.08462673425674438,
-0.013321581296622753,
0.07352853566408157,
0.024208588525652885,
-0.04301981255412102,
0.043142300099134445,
-0.061602190136909485,
-0.005555696785449982,
-0.0927978977560997,
-0.1282929629087448,
0.022984759882092476,
-0.08919816464185715,
0.01180710643529892,
-0.10511928796768188,
-0.18383455276489258,
-0.01147241797298193,
0.06653452664613724,
-0.03250608220696449,
-0.013806351460516453,
-0.0577358715236187,
-0.13657093048095703,
0.03106154501438141,
-0.018921969458460808,
0.15943288803100586,
-0.05817423388361931,
0.05093877390027046,
0.004562774207442999,
0.06380362808704376,
-0.14931271970272064,
0.04108723625540733,
-0.056114595383405685,
-0.008997000753879547,
-0.1783103197813034,
0.05184965208172798,
-0.05390843749046326,
0.06342161446809769,
-0.12939198315143585,
-0.06367812305688858,
0.03735603764653206,
0.023554475978016853,
0.09404603391885757,
0.08009392023086548,
-0.1739039570093155,
-0.05128386244177818,
0.10333413630723953,
-0.07868801057338715,
-0.1194583997130394,
0.09649551659822464,
-0.0654146745800972,
0.060558024793863297,
0.09901268035173416,
0.11997916549444199,
-0.01842948980629444,
-0.10490318387746811,
0.055958185344934464,
-0.02002042718231678,
-0.033128004521131516,
-0.013926227577030659,
0.010534253902733326,
-0.007494052406400442,
-0.09495320916175842,
0.031064361333847046,
-0.010332961566746235,
0.03232346102595329,
-0.06799846142530441,
-0.07472042739391327,
-0.047087956219911575,
-0.08041208237409592,
0.030821530148386955,
0.020835503935813904,
0.09210420399904251,
-0.11364889144897461,
-0.0969739556312561,
0.05990883335471153,
0.012957364320755005,
-0.024776838719844818,
0.03848390653729439,
-0.08842717856168747,
0.013258267194032669,
0.011468215845525265,
0.011771188117563725,
-0.17929017543792725,
-0.04128795117139816,
0.008185542188584805,
0.0630863606929779,
0.046651244163513184,
0.001721053384244442,
0.06563100963830948,
-0.00241970201022923,
-0.05922828987240791,
0.04655594006180763,
0.026716137304902077,
0.025551922619342804,
-0.10913962870836258,
-0.22491325438022614,
0.02261977456510067,
-0.020862428471446037,
0.07187602669000626,
-0.2466614693403244,
0.00814083218574524,
0.025759480893611908,
0.09915385395288467,
0.029668182134628296,
0.018957721069455147,
-0.05493049696087837,
0.0609750896692276,
-0.03773759305477142,
-0.04958901181817055,
0.04120682552456856,
0.030627788975834846,
-0.1316501945257187,
0.011401393450796604,
-0.13190874457359314,
0.15989950299263,
0.1623707264661789,
-0.13603876531124115,
-0.11102641373872757,
0.06171301379799843,
-0.010381117463111877,
-0.013202707283198833,
0.0005296726594679058,
0.0269762072712183,
0.18549717962741852,
-0.015559437684714794,
0.15127363801002502,
-0.06187090650200844,
-0.03020443581044674,
0.038248706609010696,
-0.038066621869802475,
-0.01609322614967823,
0.09198442846536636,
0.005601327866315842,
-0.18834124505519867,
0.10844602435827255,
0.15056754648685455,
-0.1148342415690422,
0.09311691671609879,
-0.03539364039897919,
-0.04224838316440582,
-0.04133286699652672,
0.005458755884319544,
0.03869721665978432,
0.06804228574037552,
-0.10101905465126038,
0.0015163073549047112,
0.021528543904423714,
0.027098655700683594,
-0.0009289272129535675,
-0.20301373302936554,
-0.014791354537010193,
0.00125076191034168,
-0.03731166571378708,
0.0031847774516791105,
0.014876940287649632,
0.02200639806687832,
0.13596175611019135,
0.029314130544662476,
-0.05318160727620125,
0.09823846817016602,
-0.013222802430391312,
-0.0913047194480896,
0.21821530163288116,
-0.1513272076845169,
-0.134630486369133,
-0.12111195921897888,
-0.08680877089500427,
-0.08039072901010513,
0.01610165275633335,
0.02584945596754551,
-0.10667667537927628,
-0.06892215460538864,
-0.06805917620658875,
-0.010706792585551739,
-0.016033267602324486,
0.052576687186956406,
0.045583855360746384,
-0.00852146279066801,
0.11478880047798157,
-0.10005753487348557,
-0.045817021280527115,
-0.04930931702256203,
-0.07501569390296936,
0.037926483899354935,
-0.002339736558496952,
0.042006272822618484,
0.10684775561094284,
-0.03681501746177673,
0.02435602806508541,
-0.0519530363380909,
0.22411389648914337,
-0.046676501631736755,
-0.03977913036942482,
0.13415981829166412,
-0.04829166829586029,
0.03296910598874092,
0.10796710103750229,
0.036279212683439255,
-0.1380796581506729,
0.05400758981704712,
0.05654730275273323,
-0.039002612233161926,
-0.2579987049102783,
-0.03139936178922653,
-0.040261466056108475,
-0.11413484811782837,
0.0251943226903677,
0.03696989640593529,
0.15570800006389618,
0.029136015102267265,
0.04938700795173645,
0.125013068318367,
-0.0036318933125585318,
0.05329976603388786,
0.19839225709438324,
0.0573771707713604,
0.10446498543024063,
-0.06090988591313362,
-0.01858566701412201,
0.060008078813552856,
-0.03629952296614647,
0.19207872450351715,
0.04746794328093529,
0.03843206539750099,
0.06841891258955002,
0.08004679530858994,
-0.022536607459187508,
0.022323010489344597,
0.01653795875608921,
-0.05606620013713837,
-0.01574987731873989,
-0.052721038460731506,
-0.04685452952980995,
0.058440301567316055,
-0.10108575969934464,
0.06212674453854561,
-0.08930906653404236,
0.012562480755150318,
0.06707677990198135,
0.2486828714609146,
0.03946784511208534,
-0.31771594285964966,
-0.09838372468948364,
0.009848260320723057,
-0.03141576051712036,
-0.03381281718611717,
0.00287546101026237,
0.07245928794145584,
-0.07170560210943222,
0.10923952609300613,
-0.06045147404074669,
0.07451165467500687,
0.009976341389119625,
0.06398644298315048,
0.06889951229095459,
0.09943574666976929,
0.00632862513884902,
0.02923378348350525,
-0.361287921667099,
0.28696468472480774,
0.040360137820243835,
0.1356642097234726,
-0.0946536734700203,
0.014920574612915516,
0.04174584150314331,
0.04700268432497978,
0.08061375468969345,
-0.017911015078425407,
-0.13355864584445953,
-0.14372624456882477,
-0.01225393358618021,
0.030654869973659515,
0.1360412836074829,
0.06988904625177383,
0.08416087180376053,
-0.03882039710879326,
0.022535771131515503,
0.09216385334730148,
0.02689400315284729,
-0.1295316219329834,
-0.06882759183645248,
0.005853656679391861,
0.06771419942378998,
-0.057719048112630844,
-0.05377623438835144,
-0.08039123564958572,
-0.11606179922819138,
0.21449436247348785,
-0.05129079893231392,
-0.02163168042898178,
-0.12790848314762115,
0.10047778487205505,
0.04030710086226463,
-0.053850650787353516,
0.045435529202222824,
-0.003091854741796851,
0.04100381210446358,
0.05650131031870842,
-0.14093641936779022,
0.1538510024547577,
-0.0337924063205719,
-0.1607404202222824,
-0.056364092975854874,
0.0675518661737442,
0.033584751188755035,
0.04679933562874794,
0.015996426343917847,
0.051384344696998596,
0.02459602802991867,
-0.09178715199232101,
0.07705577462911606,
0.01115631964057684,
0.052060816437006,
0.028730658814311028,
-0.03405190631747246,
-0.0344231016933918,
-0.04517976939678192,
-0.016257861629128456,
0.17800839245319366,
0.25332269072532654,
-0.09017441421747208,
0.03176574781537056,
-0.01963082328438759,
-0.08815162628889084,
-0.23047620058059692,
0.11824961751699448,
0.06917297095060349,
0.007516396697610617,
-0.011387082748115063,
-0.14876481890678406,
0.11683209985494614,
0.08635421842336655,
-0.015000586397945881,
0.09260011464357376,
-0.2545721232891083,
-0.15203171968460083,
0.11717637628316879,
0.13642777502536774,
0.22579152882099152,
-0.15020060539245605,
-0.033779896795749664,
-0.08698437362909317,
-0.06523950397968292,
0.18081755936145782,
-0.1510946899652481,
0.10201290249824524,
0.02028719149529934,
0.06684209406375885,
-0.00211875862441957,
-0.021536558866500854,
0.1080550029873848,
-0.0364379920065403,
0.12770144641399384,
-0.07196851074695587,
-0.042979683727025986,
0.09674596041440964,
-0.0406607910990715,
0.01805739663541317,
-0.05369853600859642,
0.022753247991204262,
-0.06111707165837288,
0.0010981386294588447,
-0.07528100162744522,
0.06535454839468002,
-0.028740758076310158,
-0.028464829549193382,
-0.025406742468476295,
0.026927689090371132,
0.07008600980043411,
-0.04219839349389076,
0.16492952406406403,
-0.018427036702632904,
0.1788695901632309,
0.16203497350215912,
0.10756539553403854,
-0.055547937750816345,
0.08116119354963303,
0.0692737028002739,
-0.04344644770026207,
0.0856003388762474,
-0.16091623902320862,
0.05201667174696922,
0.113648921251297,
-0.016272656619548798,
0.12906956672668457,
0.07165151834487915,
-0.0352293998003006,
0.025521792471408844,
0.07123889029026031,
-0.1564285308122635,
-0.09711182117462158,
0.020695261657238007,
-0.024248966947197914,
-0.046193595975637436,
0.07791221886873245,
0.1527089774608612,
-0.04132932797074318,
0.019001798704266548,
0.003386293537914753,
0.004791943822056055,
-0.09571626037359238,
0.12656699120998383,
0.02456449158489704,
0.0075157638639211655,
-0.09868013113737106,
0.13181331753730774,
0.03126685321331024,
-0.080368272960186,
0.09291678667068481,
0.01641760766506195,
-0.07760918885469437,
-0.02341216802597046,
0.07977256923913956,
0.15127702057361603,
-0.024081023409962654,
-0.07034788280725479,
-0.1153961792588234,
-0.16996781527996063,
0.06310876458883286,
0.26654210686683655,
0.08433198183774948,
0.03336014971137047,
-0.0475839227437973,
-0.010669191367924213,
-0.07716499269008636,
0.03144798055291176,
0.021257394924759865,
0.046182576566934586,
-0.13848383724689484,
0.16068333387374878,
-0.020145133137702942,
0.024864472448825836,
-0.04801381751894951,
0.02947874926030636,
-0.15853723883628845,
0.0024302350357174873,
-0.17505024373531342,
-0.003983801230788231,
0.012797079049050808,
-0.0011664811754599214,
0.03407665714621544,
-0.07411547750234604,
-0.101542167365551,
0.04466255381703377,
-0.11463874578475952,
-0.02061060443520546,
0.06221301853656769,
0.04250573739409447,
-0.1115979477763176,
-0.07536187767982483,
0.012894604355096817,
-0.054839838296175,
0.04012797400355339,
0.08700519055128098,
-0.014455434866249561,
0.08905179053544998,
-0.184647336602211,
-0.006092569325119257,
0.09732687473297119,
0.008474708534777164,
0.08684337139129639,
-0.09297844022512436,
-0.011378579773008823,
0.028873013332486153,
0.07066660374403,
0.036239299923181534,
0.13473151624202728,
-0.09146221727132797,
-0.05891020968556404,
-0.011498995125293732,
-0.04574068263173103,
-0.04223558306694031,
0.03584326058626175,
0.14010821282863617,
-0.005055386107414961,
0.19712309539318085,
-0.11592303961515427,
-0.018272263929247856,
-0.15166614949703217,
0.014266402460634708,
-0.010132555849850178,
-0.1326577514410019,
-0.1310599446296692,
-0.033808473497629166,
0.0841188058257103,
-0.07092658430337906,
0.1537475436925888,
0.001183310174383223,
0.07400863617658615,
0.056283097714185715,
-0.02957710437476635,
-0.04948782920837402,
0.051313649863004684,
0.2081059217453003,
0.044742923229932785,
-0.017993459478020668,
0.031145380809903145,
0.010585907846689224,
0.09635499864816666,
0.09764397889375687,
0.2481483817100525,
0.12863920629024506,
-0.015790347009897232,
0.1466313749551773,
0.04406033828854561,
-0.0421239472925663,
-0.07756981253623962,
0.08183027803897858,
-0.09048101305961609,
0.15743090212345123,
-0.04381836578249931,
0.09164205193519592,
0.06251531094312668,
-0.16294732689857483,
0.01775679737329483,
-0.09297413378953934,
-0.078140988945961,
-0.1510990560054779,
-0.08672375231981277,
-0.10893511772155762,
-0.12361165136098862,
0.00538185378536582,
-0.09967875480651855,
0.05379953607916832,
0.057235777378082275,
0.019599733874201775,
-0.02413812279701233,
0.12457367032766342,
-0.0697370171546936,
0.0053750756196677685,
0.09800391644239426,
-0.02695462293922901,
-0.03357237949967384,
-0.0797058716416359,
-0.06225944682955742,
0.028100185096263885,
-0.008141297847032547,
0.02130749076604843,
-0.010393613018095493,
-0.01049644872546196,
0.04026930406689644,
-0.0592447929084301,
-0.09255599975585938,
0.04562481865286827,
0.050287049263715744,
0.026864642277359962,
0.029667096212506294,
0.046771179884672165,
-0.0008451913599856198,
-0.0025317827239632607,
0.16978003084659576,
-0.10228859633207321,
-0.04665751755237579,
-0.1425289362668991,
0.30051133036613464,
0.013157960027456284,
0.047335777431726456,
0.000204687166842632,
-0.05366593971848488,
-0.036413054913282394,
0.23358702659606934,
0.18073834478855133,
-0.10179535299539566,
-0.010279118083417416,
0.017910059541463852,
-0.0013166760327294469,
-0.04734185338020325,
0.1457449346780777,
0.09454449266195297,
-0.037952352315187454,
-0.06522435694932938,
-0.050806790590286255,
-0.024650104343891144,
0.0015835148515179753,
-0.03547529876232147,
0.07100701332092285,
0.0353722907602787,
-0.020269038155674934,
-0.008846654556691647,
0.055835504084825516,
-0.06967044621706009,
-0.10782789438962936,
0.051659565418958664,
-0.1980852484703064,
-0.15681196749210358,
-0.002909080358222127,
0.013950888998806477,
-0.006705255713313818,
0.06720219552516937,
-0.02625296451151371,
0.00008949203038355336,
0.07698067277669907,
-0.0430416576564312,
-0.04196861758828163,
-0.09396734833717346,
0.08805274218320847,
-0.12242814153432846,
0.17570281028747559,
-0.01798068918287754,
0.06535795331001282,
0.12232023477554321,
0.052203837782144547,
-0.06530623883008957,
0.05887340381741524,
0.03056909888982773,
-0.09968618303537369,
0.01159647572785616,
0.05131980776786804,
-0.03200342133641243,
0.09577947109937668,
0.05833815410733223,
-0.07930616289377213,
0.06081950291991234,
-0.11075250059366226,
-0.11066529154777527,
-0.023174606263637543,
-0.05031008645892143,
-0.10136237740516663,
0.11568313837051392,
0.23205846548080444,
-0.02715272270143032,
0.0410478450357914,
-0.05423690378665924,
-0.006793866399675608,
0.06922764331102371,
-0.0002929661422967911,
-0.08048940449953079,
-0.21773411333560944,
0.05222195386886597,
0.13097290694713593,
0.00948537141084671,
-0.19270353019237518,
-0.07259530574083328,
-0.022559382021427155,
-0.03337143734097481,
-0.09302869439125061,
0.07376997917890549,
0.09341081976890564,
0.037405937910079956,
-0.059948474168777466,
-0.16764777898788452,
-0.0317390076816082,
0.15597565472126007,
-0.0814352035522461,
-0.09136306494474411
] |
null | null | transformers | {} | text-classification | MarioPenguin/beto_amazon | [
"transformers",
"tf",
"bert",
"text-classification",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [] | TAGS
#transformers #tf #bert #text-classification #autotrain_compatible #endpoints_compatible #region-us
| [] | [
"TAGS\n#transformers #tf #bert #text-classification #autotrain_compatible #endpoints_compatible #region-us \n"
] | [
35
] | [
"passage: TAGS\n#transformers #tf #bert #text-classification #autotrain_compatible #endpoints_compatible #region-us \n"
] | [
-0.007682218216359615,
0.0038787848316133022,
-0.005975706502795219,
0.034181639552116394,
0.1910032480955124,
0.052485160529613495,
0.062034495174884796,
0.10767170041799545,
0.04927787557244301,
-0.04722719267010689,
0.09624633938074112,
0.1873200684785843,
-0.0312579944729805,
0.1625693142414093,
-0.14169614017009735,
-0.28020691871643066,
0.052912406623363495,
0.058359868824481964,
-0.05832754075527191,
0.0837068259716034,
0.09839992970228195,
-0.03932494670152664,
0.09732595086097717,
-0.06702917814254761,
-0.16229605674743652,
0.07229955494403839,
0.08365137130022049,
-0.14053654670715332,
0.10313338786363602,
0.12522952258586884,
0.1338677704334259,
0.04249821975827217,
-0.07539541274309158,
-0.13644996285438538,
0.031102795153856277,
0.02129104733467102,
-0.11532096564769745,
0.023487988859415054,
0.0695737823843956,
-0.08492818474769592,
0.018574906513094902,
0.044760145246982574,
0.02063159830868244,
0.08935524523258209,
-0.1693524420261383,
-0.06540939211845398,
-0.008474390022456646,
0.01164185255765915,
0.05486560985445976,
0.03160027414560318,
0.007587605621665716,
0.1384633332490921,
-0.0979144498705864,
0.14691133797168732,
0.057144153863191605,
-0.3187352120876312,
-0.019307829439640045,
0.10146553069353104,
0.0008892631158232689,
0.06133967638015747,
-0.046099938452243805,
0.07471824437379837,
0.05858945846557617,
0.0029871768783777952,
0.01937151327729225,
-0.08668757230043411,
-0.13161717355251312,
0.05186657980084419,
-0.0793096274137497,
-0.011504742316901684,
0.2351655662059784,
-0.013221440836787224,
0.04121120646595955,
0.006789222825318575,
-0.10000324249267578,
-0.04734532907605171,
-0.02739899978041649,
-0.018853910267353058,
-0.044796258211135864,
0.09848320484161377,
0.016573844477534294,
-0.006800465285778046,
-0.09490421414375305,
0.023709731176495552,
-0.24611148238182068,
0.196328803896904,
-0.01906437613070011,
0.04973015934228897,
-0.1920398622751236,
0.017569851130247116,
-0.05967544764280319,
-0.08792628347873688,
0.03582397475838661,
-0.10235054790973663,
-0.04917808994650841,
-0.07779575139284134,
-0.059327490627765656,
-0.0738186314702034,
0.0822942927479744,
0.1480715125799179,
0.06552936881780624,
0.07403569668531418,
-0.11630598455667496,
0.054651957005262375,
0.000151517684571445,
0.12925982475280762,
0.013730842620134354,
-0.0721868947148323,
0.04122239351272583,
-0.18713919818401337,
-0.058099210262298584,
-0.07817716151475906,
-0.1686052680015564,
-0.033078085631132126,
0.045280635356903076,
0.07209645211696625,
-0.02182338945567608,
0.12365572154521942,
-0.03176022693514824,
-0.021083150058984756,
0.08276517689228058,
-0.07782317698001862,
0.011604457162320614,
0.0006017468986101449,
0.04614758491516113,
0.07925837486982346,
0.005434455815702677,
-0.0070703593082726,
-0.053034458309412,
0.09750285744667053,
-0.05856543406844139,
-0.04182656109333038,
-0.008486633189022541,
-0.1003652811050415,
0.032523009926080704,
-0.11347824335098267,
0.038037873804569244,
-0.21495835483074188,
-0.08655887842178345,
0.031793564558029175,
0.0217912457883358,
-0.02106429636478424,
0.0056282044388353825,
-0.015797363594174385,
-0.015360396355390549,
0.06509068608283997,
-0.04538113623857498,
-0.05496658384799957,
-0.0739331841468811,
0.06534647196531296,
-0.026118572801351547,
0.07990292459726334,
-0.1770438700914383,
0.06386034935712814,
-0.04979304224252701,
-0.023914970457553864,
-0.15774433314800262,
0.06906582415103912,
-0.05167454481124878,
0.19156791269779205,
-0.014261176809668541,
-0.009513656608760357,
-0.09356600791215897,
0.0680704116821289,
-0.08429785817861557,
0.1614186018705368,
-0.12944625318050385,
-0.0899486392736435,
0.22829774022102356,
-0.082901231944561,
-0.1778285950422287,
0.08693589270114899,
-0.0065559339709579945,
0.05081598088145256,
0.1045181080698967,
0.19725146889686584,
0.12210048735141754,
-0.003643403062596917,
0.13454468548297882,
0.1512315720319748,
-0.11042714864015579,
-0.06709342449903488,
-0.017968010157346725,
0.0008504868601448834,
-0.18091148138046265,
0.03298468515276909,
0.10788232833147049,
0.10351551324129105,
-0.040200281888246536,
-0.020354878157377243,
-0.02031582221388817,
-0.017664678394794464,
0.10965369641780853,
0.014433441683650017,
0.1114705502986908,
-0.09431081265211105,
0.018721846863627434,
0.011547623202204704,
-0.04681650921702385,
0.027438292279839516,
0.01808897592127323,
-0.09214218705892563,
0.05535050109028816,
0.01956806518137455,
0.047046564519405365,
-0.1984105408191681,
-0.13684338331222534,
0.00343071180395782,
0.19317549467086792,
0.0004603473062161356,
0.16151908040046692,
0.05996144190430641,
-0.07416366040706635,
-0.03356442227959633,
0.006443080957978964,
0.21388275921344757,
0.05591195821762085,
-0.04486599192023277,
-0.08003786951303482,
0.10134537518024445,
-0.07744071632623672,
-0.03297646343708038,
-0.10154759883880615,
-0.00003884083344019018,
0.15006113052368164,
0.12349878251552582,
0.06366821378469467,
0.08146965503692627,
-0.03396974503993988,
0.0365988090634346,
-0.07086682319641113,
-0.014253541827201843,
0.07649186998605728,
0.0007130251615308225,
-0.09646587818861008,
0.1955868899822235,
-0.1442902833223343,
0.3307698667049408,
0.1960933655500412,
-0.25422006845474243,
-0.061261169612407684,
-0.010867156088352203,
0.004248871933668852,
0.029401026666164398,
0.06574146449565887,
-0.04249000549316406,
0.05097103863954544,
-0.0332120917737484,
0.20114141702651978,
-0.030590316280722618,
-0.05059673264622688,
0.005698704160749912,
-0.028661468997597694,
-0.05288081243634224,
0.057918597012758255,
0.021896129474043846,
-0.3038007915019989,
0.18937404453754425,
0.21948032081127167,
0.07702749967575073,
0.19870148599147797,
-0.023096363991498947,
0.02831456996500492,
0.0755075141787529,
-0.012235562317073345,
0.01003218162804842,
-0.06738275289535522,
-0.18045653402805328,
-0.04260340332984924,
0.06833972781896591,
0.047712378203868866,
0.05538570135831833,
-0.08050794154405594,
-0.024881307035684586,
0.0369037427008152,
-0.0038899320643395185,
-0.006401600781828165,
0.10016728192567825,
0.05299735814332962,
0.13139095902442932,
0.017811346799135208,
-0.07895925641059875,
0.13475348055362701,
0.002171494299545884,
-0.1298082023859024,
0.16977225244045258,
-0.17429740726947784,
-0.3209591507911682,
-0.155587300658226,
-0.222377210855484,
-0.01646307297050953,
0.07202164828777313,
0.09765283018350601,
-0.11476045101881027,
-0.0675334557890892,
0.018252475187182426,
-0.002048582537099719,
-0.06063336506485939,
0.0779765322804451,
-0.04676571115851402,
0.0696447566151619,
-0.027734223753213882,
-0.0660211518406868,
-0.07355525344610214,
0.0176727045327425,
0.0043039810843765736,
0.13775186240673065,
-0.18015128374099731,
0.10156560689210892,
0.17757779359817505,
-0.033408839255571365,
0.0787455216050148,
-0.06266289949417114,
0.2009001076221466,
-0.11338981240987778,
0.020361945033073425,
0.1357584297657013,
-0.0964922085404396,
0.038364168256521225,
0.16474206745624542,
0.0028366828337311745,
-0.09929792582988739,
0.05411883071064949,
-0.023940838873386383,
-0.10391901433467865,
-0.211782768368721,
-0.11221042275428772,
-0.13884353637695312,
0.07367473840713501,
0.040147196501493454,
0.08070040494203568,
0.1712932586669922,
0.04121379181742668,
0.037271566689014435,
0.060932453721761703,
0.018537597730755806,
0.07141771912574768,
0.22378632426261902,
0.011270533315837383,
0.1231507733464241,
-0.08287119120359421,
-0.10907331854104996,
0.12181998789310455,
0.00007833579002181068,
0.08109596371650696,
0.12841036915779114,
0.04391181468963623,
-0.005339629482477903,
0.01055885385721922,
0.15543901920318604,
0.14084555208683014,
0.03860121965408325,
-0.042371876537799835,
-0.023905573412775993,
-0.002485324162989855,
-0.025646673515439034,
0.03820865601301193,
0.029629329219460487,
-0.17870423197746277,
-0.05944649875164032,
-0.13372766971588135,
0.09864687919616699,
0.07962667942047119,
0.06369712948799133,
-0.20515486598014832,
0.0062643252313137054,
0.08482378721237183,
-0.040844954550266266,
-0.11114560812711716,
0.07585527747869492,
0.014482708647847176,
-0.10985256731510162,
0.13877616822719574,
-0.01813129335641861,
0.12694650888442993,
-0.013588692992925644,
0.08165057748556137,
0.01206996850669384,
-0.13100707530975342,
-0.00379561772570014,
0.08993750065565109,
-0.3261062502861023,
0.2235204428434372,
0.032622192054986954,
-0.08055290579795837,
-0.07235835492610931,
-0.025041135028004646,
0.03847424313426018,
0.25661736726760864,
0.08402815461158752,
0.001171580865047872,
-0.08427431434392929,
-0.17146004736423492,
0.039998188614845276,
0.002071059076115489,
0.15716847777366638,
-0.02510126121342182,
-0.022935155779123306,
-0.0528748594224453,
-0.03718072921037674,
0.014948870986700058,
0.01704525202512741,
-0.005933990236371756,
-0.16725224256515503,
0.05503912642598152,
0.039481982588768005,
0.07050784677267075,
0.012257714755833149,
0.005878876429051161,
-0.12653428316116333,
0.19392868876457214,
-0.05260061100125313,
-0.04140030965209007,
-0.16529110074043274,
-0.06699344515800476,
0.007152048405259848,
-0.06908176094293594,
0.06667108088731766,
-0.06830465793609619,
0.0362887866795063,
-0.04322492331266403,
-0.24518641829490662,
0.16001459956169128,
-0.10329513251781464,
-0.0026748646050691605,
-0.06790231168270111,
0.11052768677473068,
-0.09570518136024475,
0.00939872208982706,
0.047927338629961014,
-0.009961238130927086,
0.00030366884311661124,
-0.06851742416620255,
-0.005623307079076767,
-0.04046874865889549,
0.0023432327434420586,
0.02844351902604103,
-0.09754598140716553,
-0.05000358819961548,
-0.01693626306951046,
0.003182005835697055,
0.2751912474632263,
0.14228565990924835,
-0.0787443220615387,
0.13809195160865784,
0.07701027393341064,
-0.06032278761267662,
-0.32800939679145813,
-0.02496417611837387,
-0.11573995649814606,
-0.04128408804535866,
-0.03867466747760773,
-0.12468180060386658,
0.10094781219959259,
-0.043207913637161255,
0.011203410103917122,
0.10141348093748093,
-0.07941872626543045,
-0.09624257683753967,
0.18690821528434753,
-0.02573898807168007,
0.35803574323654175,
-0.12138967961072922,
-0.10232691466808319,
-0.0727536603808403,
-0.1236531212925911,
0.15403865277767181,
-0.05277246609330177,
0.06512869149446487,
0.03604789450764656,
0.021731792017817497,
0.04025082662701607,
-0.0035518466029316187,
0.07636675983667374,
0.010912792757153511,
0.040782053023576736,
-0.12477067857980728,
-0.08580932021141052,
0.03142734616994858,
-0.019552791491150856,
-0.0001776818244252354,
0.02430383674800396,
0.013926686719059944,
-0.13783644139766693,
-0.0355382077395916,
-0.05310047045350075,
0.042590733617544174,
0.04454857110977173,
-0.06246953830122948,
-0.005455792881548405,
-0.012655189260840416,
0.01819605939090252,
-0.039903439581394196,
0.22679145634174347,
-0.08040498197078705,
0.18110810220241547,
0.12310359627008438,
0.17033667862415314,
-0.18251127004623413,
0.08327928930521011,
-0.040081560611724854,
-0.07318291813135147,
0.06263797730207443,
-0.1216415986418724,
0.10660795122385025,
0.09881109744310379,
-0.07267750054597855,
0.10171403735876083,
0.11677110940217972,
0.04912104830145836,
-0.05505317449569702,
0.17877577245235443,
-0.20565353333950043,
0.008491935208439827,
-0.09470361471176147,
-0.08106058835983276,
0.08482996374368668,
0.035445068031549454,
0.1583741456270218,
0.048901282250881195,
0.003160064108669758,
0.008926613256335258,
-0.046287138015031815,
-0.03597432002425194,
0.054885510355234146,
0.07926662266254425,
0.028560537844896317,
-0.12265067547559738,
0.046384360641241074,
0.030201414600014687,
-0.15196697413921356,
0.00995650514960289,
0.12304452806711197,
-0.17315573990345,
-0.11293930560350418,
0.019299928098917007,
0.1795276403427124,
-0.1315912902355194,
-0.05087616667151451,
-0.036751773208379745,
-0.13482250273227692,
0.0808851420879364,
0.31696584820747375,
0.0797569751739502,
0.11232538521289825,
-0.03271229937672615,
-0.03509609028697014,
0.026098741218447685,
-0.016851838678121567,
-0.024033652618527412,
0.03982267528772354,
-0.1450318694114685,
0.06303390115499496,
-0.07186777889728546,
0.14857928454875946,
-0.11431299149990082,
-0.04200006648898125,
-0.20148178935050964,
0.012436420656740665,
-0.11737697571516037,
-0.03379854932427406,
-0.0371939018368721,
-0.009188315831124783,
0.029775075614452362,
-0.05582037940621376,
-0.04971301183104515,
-0.06816498935222626,
-0.13102009892463684,
0.04147928208112717,
-0.003914068918675184,
0.052404310554265976,
-0.04095814377069473,
-0.05120187625288963,
0.07444154471158981,
-0.033469315618276596,
0.09348277747631073,
0.0838104858994484,
-0.09536493569612503,
0.1182318851351738,
-0.15515698492527008,
-0.1089569479227066,
0.13165564835071564,
0.015522382222115993,
0.10583247989416122,
0.09575434774160385,
0.03746357187628746,
0.049800604581832886,
0.002232691738754511,
0.07221534848213196,
0.048163335770368576,
-0.09374690800905228,
0.03937949612736702,
-0.06880848854780197,
-0.15709608793258667,
-0.0403272807598114,
-0.02843220718204975,
0.12554843723773956,
-0.006119688507169485,
0.10553105920553207,
-0.06314564496278763,
0.060970745980739594,
-0.03682230785489082,
-0.00915525108575821,
-0.00439941231161356,
-0.1954977661371231,
-0.025812586769461632,
-0.07978001981973648,
0.022433174774050713,
-0.0027464991435408592,
0.22783634066581726,
0.04763968661427498,
0.0585150308907032,
0.07220594584941864,
0.010156395845115185,
0.013834589160978794,
0.018763961270451546,
0.21372105181217194,
0.09516315907239914,
-0.05187347158789635,
-0.11128444224596024,
0.06115167587995529,
0.023144735023379326,
-0.013785007409751415,
0.1320430189371109,
0.0354725681245327,
-0.14570367336273193,
0.08777736127376556,
-0.02288212440907955,
0.008186436258256435,
-0.0695580318570137,
-0.15927284955978394,
-0.053969066590070724,
0.08536968380212784,
0.0043737092055380344,
-0.0184926874935627,
0.11888610571622849,
-0.06490989774465561,
0.05536169186234474,
-0.04952618479728699,
-0.05092779919505119,
-0.19241909682750702,
-0.08599468320608139,
-0.1126316487789154,
-0.1263105869293213,
0.012282845564186573,
-0.09361377358436584,
0.027656830847263336,
0.03494826704263687,
0.07110757380723953,
-0.020906126126646996,
0.10860517621040344,
-0.06930091977119446,
-0.07374097406864166,
0.10440616309642792,
-0.035434789955616,
0.02960202656686306,
-0.006869228091090918,
-0.03794443979859352,
-0.1304340809583664,
-0.013612366281449795,
-0.08791664987802505,
0.03290080651640892,
-0.013201460242271423,
0.011651632376015186,
-0.1448524296283722,
-0.09862814098596573,
-0.0182539951056242,
0.05306394770741463,
-0.08822126686573029,
0.10697609186172485,
0.014284401200711727,
-0.0047340402379632,
0.058735255151987076,
0.1897999495267868,
-0.07786031067371368,
-0.054187510162591934,
-0.10793209075927734,
0.21548976004123688,
0.05843821540474892,
0.1531309187412262,
-0.037292663007974625,
-0.023729966953396797,
-0.0859614834189415,
0.337110310792923,
0.2539695203304291,
-0.05588002875447273,
0.05213034525513649,
0.01492015365511179,
0.040168602019548416,
0.15800245106220245,
0.18416272103786469,
0.055252693593502045,
0.17536915838718414,
-0.02599436230957508,
-0.0648268610239029,
0.002611056435853243,
-0.010855400934815407,
-0.08034034818410873,
0.14156970381736755,
0.08433333784341812,
-0.039272092282772064,
-0.04892202094197273,
0.12192035466432571,
-0.16404539346694946,
0.10528238862752914,
-0.004983209539204836,
-0.18782161176204681,
-0.05704792961478233,
-0.055843621492385864,
0.04898233339190483,
-0.0226138886064291,
0.07559655606746674,
-0.011649719439446926,
-0.10512552410364151,
0.007015509530901909,
0.030570754781365395,
-0.22647079825401306,
-0.008486876264214516,
0.0519220270216465,
-0.06752125173807144,
-0.011480859480798244,
-0.02583279088139534,
-0.010131046175956726,
0.08225277066230774,
0.06346189975738525,
-0.0016588129801675677,
0.058372125029563904,
-0.005403785966336727,
-0.015009436756372452,
0.0012990979012101889,
0.03319864347577095,
-0.011102895252406597,
-0.05529601126909256,
0.06735115498304367,
-0.20489701628684998,
0.05028533563017845,
-0.03643433377146721,
-0.07872317731380463,
-0.01580553874373436,
0.02342059463262558,
-0.08382149040699005,
0.07768598198890686,
0.12616553902626038,
0.007369253784418106,
0.009193342179059982,
-0.05063098669052124,
-0.025857020169496536,
0.027431169524788857,
-0.13401789963245392,
-0.13641676306724548,
-0.06333229690790176,
-0.10425595939159393,
0.09925343096256256,
-0.01295515988022089,
-0.15633416175842285,
-0.004082367289811373,
-0.10463190078735352,
0.08692757040262222,
-0.15779589116573334,
0.14175443351268768,
0.08074064552783966,
0.023524774238467216,
-0.020282384008169174,
-0.1100965291261673,
0.06211749091744423,
0.08012773096561432,
-0.10711760073900223,
-0.07972251623868942
] |
||
null | null | transformers |
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# beto_amazon_posneu
This model is a fine-tuned version of [dccuchile/bert-base-spanish-wwm-uncased](https://huggingface.co/dccuchile/bert-base-spanish-wwm-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.1277
- Train Accuracy: 0.9550
- Validation Loss: 0.3439
- Validation Accuracy: 0.8905
- Epoch: 2
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'learning_rate': 5e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False}
- training_precision: float32
### Training results
| Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch |
|:----------:|:--------------:|:---------------:|:-------------------:|:-----:|
| 0.3195 | 0.8712 | 0.3454 | 0.8580 | 0 |
| 0.1774 | 0.9358 | 0.3258 | 0.8802 | 1 |
| 0.1277 | 0.9550 | 0.3439 | 0.8905 | 2 |
### Framework versions
- Transformers 4.16.2
- TensorFlow 2.7.0
- Datasets 1.18.3
- Tokenizers 0.11.0
| {"tags": ["generated_from_keras_callback"], "model-index": [{"name": "beto_amazon_posneu", "results": []}]} | text-classification | MarioPenguin/beto_amazon_posneu | [
"transformers",
"tf",
"bert",
"text-classification",
"generated_from_keras_callback",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [] | TAGS
#transformers #tf #bert #text-classification #generated_from_keras_callback #autotrain_compatible #endpoints_compatible #region-us
| beto\_amazon\_posneu
====================
This model is a fine-tuned version of dccuchile/bert-base-spanish-wwm-uncased on an unknown dataset.
It achieves the following results on the evaluation set:
* Train Loss: 0.1277
* Train Accuracy: 0.9550
* Validation Loss: 0.3439
* Validation Accuracy: 0.8905
* Epoch: 2
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* optimizer: {'name': 'Adam', 'learning\_rate': 5e-05, 'decay': 0.0, 'beta\_1': 0.9, 'beta\_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False}
* training\_precision: float32
### Training results
### Framework versions
* Transformers 4.16.2
* TensorFlow 2.7.0
* Datasets 1.18.3
* Tokenizers 0.11.0
| [
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* optimizer: {'name': 'Adam', 'learning\\_rate': 5e-05, 'decay': 0.0, 'beta\\_1': 0.9, 'beta\\_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False}\n* training\\_precision: float32",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.16.2\n* TensorFlow 2.7.0\n* Datasets 1.18.3\n* Tokenizers 0.11.0"
] | [
"TAGS\n#transformers #tf #bert #text-classification #generated_from_keras_callback #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* optimizer: {'name': 'Adam', 'learning\\_rate': 5e-05, 'decay': 0.0, 'beta\\_1': 0.9, 'beta\\_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False}\n* training\\_precision: float32",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.16.2\n* TensorFlow 2.7.0\n* Datasets 1.18.3\n* Tokenizers 0.11.0"
] | [
46,
99,
4,
33
] | [
"passage: TAGS\n#transformers #tf #bert #text-classification #generated_from_keras_callback #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* optimizer: {'name': 'Adam', 'learning\\_rate': 5e-05, 'decay': 0.0, 'beta\\_1': 0.9, 'beta\\_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False}\n* training\\_precision: float32### Training results### Framework versions\n\n\n* Transformers 4.16.2\n* TensorFlow 2.7.0\n* Datasets 1.18.3\n* Tokenizers 0.11.0"
] | [
-0.05135169252753258,
-0.03144019469618797,
-0.0017367660766467452,
0.07483674585819244,
0.2096972018480301,
0.037676695734262466,
0.11273030936717987,
0.09472861140966415,
-0.14861777424812317,
0.04509395733475685,
0.13425098359584808,
0.19195295870304108,
0.009122922085225582,
0.10003367811441422,
-0.12885543704032898,
-0.2208518385887146,
0.01956433802843094,
0.012741907499730587,
-0.09840915352106094,
0.10176756978034973,
0.08855398744344711,
-0.11559120565652847,
0.11450643092393875,
-0.009514852426946163,
-0.23908181488513947,
0.053048186004161835,
0.1076420396566391,
-0.08782044798135757,
0.132754385471344,
0.08619175106287003,
0.12889038026332855,
-0.0021751425229012966,
0.04656380042433739,
-0.1372874677181244,
0.021001135930418968,
0.1075059026479721,
-0.014549696817994118,
0.06965763121843338,
0.02990097552537918,
-0.015405645594000816,
0.17133590579032898,
-0.10718889534473419,
0.05258674547076225,
0.023766273632645607,
-0.1451525241136551,
-0.18033789098262787,
-0.09060782194137573,
-0.05136223882436752,
0.061654478311538696,
0.08415072411298752,
0.0033959909342229366,
0.24103324115276337,
-0.06202583760023117,
0.12132713943719864,
0.1708316057920456,
-0.34893742203712463,
-0.07531557977199554,
0.011080059222877026,
0.005204548127949238,
0.06547697633504868,
-0.07269538193941116,
0.06372206658124924,
0.08124223351478577,
0.04394492879509926,
0.0663878470659256,
-0.0386282242834568,
-0.1448546200990677,
-0.002304762601852417,
-0.1108192652463913,
0.01579083502292633,
0.09624036401510239,
0.02241428755223751,
-0.055227480828762054,
-0.004006987437605858,
-0.06343691051006317,
-0.13929902017116547,
-0.01155017502605915,
-0.07093490660190582,
0.03505873307585716,
-0.034337446093559265,
-0.07999739795923233,
-0.04239795356988907,
-0.08909638226032257,
-0.059697870165109634,
-0.1253676563501358,
0.23433668911457062,
0.007942900992929935,
0.0560227632522583,
-0.05657653883099556,
0.062110066413879395,
-0.05292743816971779,
-0.11705504357814789,
0.02221633493900299,
0.012774249538779259,
-0.05110408365726471,
-0.08079006522893906,
-0.12207949906587601,
-0.19107404351234436,
0.01701122336089611,
0.07562863081693649,
-0.025692131370306015,
0.07517317682504654,
-0.06538919359445572,
0.012226739898324013,
-0.09863291680812836,
0.18500307202339172,
-0.017334187403321266,
0.011552578769624233,
0.045302122831344604,
-0.01487358845770359,
0.032316841185092926,
-0.038894835859537125,
-0.09765484929084778,
0.006937169469892979,
0.08079743385314941,
-0.00025409532827325165,
-0.09583606570959091,
0.10935290157794952,
-0.038421787321567535,
-0.012215495109558105,
-0.026194479316473007,
-0.08450264483690262,
0.04643741250038147,
-0.014345632866024971,
-0.08646659553050995,
-0.00021616021695081145,
0.0499478317797184,
0.004389598965644836,
-0.036884669214487076,
0.10390014946460724,
-0.07152895629405975,
0.008493241854012012,
-0.09701675921678543,
-0.15328921377658844,
0.004290582146495581,
-0.08631153404712677,
0.011851173825562,
-0.10167194157838821,
-0.14502529799938202,
-0.012828811071813107,
0.051741886883974075,
-0.04302254319190979,
0.011328315362334251,
-0.05428462475538254,
-0.12267107516527176,
0.033693037927150726,
-0.01211212296038866,
0.17179878056049347,
-0.05390623211860657,
0.06276271492242813,
0.03775308281183243,
0.07418374717235565,
-0.14061732590198517,
0.03367168828845024,
-0.058943189680576324,
-0.02293786220252514,
-0.2042081654071808,
0.05948415398597717,
-0.034411318600177765,
0.06203159689903259,
-0.09021453559398651,
-0.08994365483522415,
0.0173007994890213,
0.021353527903556824,
0.10372800379991531,
0.08241517096757889,
-0.16539731621742249,
-0.06957634538412094,
0.0996241346001625,
-0.0697317123413086,
-0.0979989543557167,
0.09318706393241882,
-0.06941984593868256,
0.03735741600394249,
0.10502421110868454,
0.11628510802984238,
-0.019913513213396072,
-0.11339280754327774,
0.05450979620218277,
-0.03973478451371193,
-0.04051089659333229,
-0.009836689569056034,
-0.00631922110915184,
0.029671888798475266,
-0.06131419911980629,
0.020739104598760605,
0.011767186224460602,
0.028450271114706993,
-0.10345663875341415,
-0.06482360512018204,
-0.042631909251213074,
-0.0776553675532341,
0.042165763676166534,
0.037515848875045776,
0.11131143569946289,
-0.12943458557128906,
-0.09153790026903152,
0.09247255325317383,
-0.008417556993663311,
-0.031464580446481705,
0.038513898849487305,
-0.08182897418737411,
0.005528773181140423,
-0.017523696646094322,
-0.0007496665930375457,
-0.19913971424102783,
-0.061085328459739685,
0.0015433796215802431,
0.11867886036634445,
0.044852904975414276,
0.010500414296984673,
0.08853766322135925,
0.02338038571178913,
-0.06865572184324265,
0.04740350693464279,
0.017984937876462936,
0.016191165894269943,
-0.13063040375709534,
-0.2222878783941269,
0.015392797067761421,
-0.0303129144012928,
0.036136265844106674,
-0.2466539889574051,
-0.003638671478256583,
0.02389564737677574,
0.1151449903845787,
0.04576927796006203,
0.0028427820652723312,
-0.06294219195842743,
0.0804416686296463,
-0.031059224158525467,
-0.047282420098781586,
0.04041505604982376,
0.012243049219250679,
-0.11372476071119308,
-0.019312705844640732,
-0.13871006667613983,
0.18994209170341492,
0.15969064831733704,
-0.16456899046897888,
-0.12978386878967285,
0.07155699282884598,
-0.0226654764264822,
-0.005164258647710085,
-0.015833856537938118,
0.04244065284729004,
0.20814456045627594,
-0.007665751967579126,
0.15669167041778564,
-0.04407297447323799,
-0.03459779545664787,
0.03335873782634735,
-0.024027971550822258,
0.002473248401656747,
0.08516476303339005,
0.010222331620752811,
-0.18779882788658142,
0.08539222925901413,
0.10554364323616028,
-0.11391859501600266,
0.1233874186873436,
-0.01816396415233612,
-0.05776357278227806,
-0.029890837147831917,
-0.017560793086886406,
0.03402204066514969,
0.07075633853673935,
-0.10521497577428818,
-0.018300849944353104,
0.0019220184767618775,
0.022424614056944847,
-0.0022205174900591373,
-0.21270233392715454,
-0.016861332580447197,
0.012227602303028107,
-0.02094307914376259,
-0.007764440029859543,
0.01664292812347412,
0.03590945154428482,
0.14589838683605194,
0.028113245964050293,
-0.03566910699009895,
0.0642322227358818,
-0.011093019507825375,
-0.08172781765460968,
0.22126875817775726,
-0.12029299885034561,
-0.10380061715841293,
-0.1084914430975914,
-0.08607175201177597,
-0.07991128414869308,
0.02227848209440708,
0.016626419499516487,
-0.12717555463314056,
-0.06021623685956001,
-0.05187699571251869,
0.011259804479777813,
-0.001381728332489729,
0.07369459420442581,
0.030960295349359512,
-0.01053392793983221,
0.09659945219755173,
-0.09722523391246796,
-0.03624237701296806,
-0.07619793713092804,
-0.0737680122256279,
0.05134712532162666,
0.03210875019431114,
0.07085222005844116,
0.12284756451845169,
-0.06669721752405167,
0.028289197012782097,
-0.04671895131468773,
0.2350151687860489,
-0.06834284961223602,
-0.04467063769698143,
0.10222101211547852,
-0.05414827540516853,
0.019528210163116455,
0.08879722654819489,
0.04904327169060707,
-0.14033980667591095,
0.05527585372328758,
0.06252914667129517,
-0.04536369442939758,
-0.23098236322402954,
-0.03530723229050636,
-0.03914156183600426,
-0.13422130048274994,
0.02800782024860382,
0.031020672991871834,
0.0997328981757164,
0.01947508379817009,
0.06638520210981369,
0.12033853679895401,
-0.0335366427898407,
0.048356927931308746,
0.18095703423023224,
0.059595588594675064,
0.11761405318975449,
-0.05604511871933937,
-0.06520650535821915,
0.05322274565696716,
-0.08164509385824203,
0.18507720530033112,
0.03392331302165985,
0.024368926882743835,
0.04157200828194618,
0.052536074072122574,
-0.009400824084877968,
0.05788206681609154,
0.02593560516834259,
-0.08168289065361023,
-0.0010734251700341702,
-0.04415333643555641,
-0.041968733072280884,
0.04414622113108635,
-0.0798240602016449,
0.05210978165268898,
-0.10677210241556168,
0.007430690340697765,
0.06741037219762802,
0.23466157913208008,
0.04651986062526703,
-0.34746047854423523,
-0.0958515852689743,
-0.004176631104201078,
-0.03172103315591812,
-0.030861061066389084,
-0.012487733736634254,
0.10075526684522629,
-0.06932010501623154,
0.1050388365983963,
-0.07171039283275604,
0.07931182533502579,
-0.0013257537502795458,
0.06181461736559868,
0.06297501921653748,
0.10769586265087128,
-0.021073566749691963,
0.015332440845668316,
-0.33213692903518677,
0.29801589250564575,
0.03629680350422859,
0.13920320570468903,
-0.08433519303798676,
-0.0067292070016264915,
0.038418691605329514,
0.06762852519750595,
0.04703482985496521,
-0.02794649638235569,
-0.10258658230304718,
-0.18766038119792938,
-0.005655274260789156,
0.04316568747162819,
0.1684497892856598,
0.07950063794851303,
0.10205000638961792,
-0.029424576088786125,
0.010572520084679127,
0.09778561443090439,
-0.013339937664568424,
-0.11719982326030731,
-0.042321719229221344,
-0.013625148683786392,
0.040478553622961044,
-0.06478078663349152,
-0.038726724684238434,
-0.10527351498603821,
-0.08689769357442856,
0.20423273742198944,
0.00763954920694232,
-0.003170447191223502,
-0.1447325497865677,
0.1345570981502533,
0.042205337435007095,
-0.054841190576553345,
0.0319635309278965,
0.018533091992139816,
0.046073067933321,
0.06953124701976776,
-0.12932345271110535,
0.15628045797348022,
-0.02992895618081093,
-0.15343907475471497,
-0.05991130322217941,
0.06280555576086044,
0.03404882550239563,
0.04798554256558418,
0.0029135621152818203,
0.04981165751814842,
0.03641903027892113,
-0.08533668518066406,
0.08252883702516556,
-0.03240123391151428,
0.036552734673023224,
0.02849806845188141,
-0.029098236933350563,
-0.008619233034551144,
-0.04044541344046593,
0.015470786020159721,
0.17559945583343506,
0.2340206652879715,
-0.07307076454162598,
0.0004673333023674786,
-0.027707265689969063,
-0.0722394734621048,
-0.22168245911598206,
0.15051522850990295,
0.08736412227153778,
0.020571941509842873,
-0.010891325771808624,
-0.1377747505903244,
0.12617120146751404,
0.07146098464727402,
0.002712809946388006,
0.1064230352640152,
-0.2334543913602829,
-0.1597890406847,
0.10614488273859024,
0.15664517879486084,
0.22815555334091187,
-0.14878679811954498,
-0.021457470953464508,
-0.08344220370054245,
-0.055763375014066696,
0.16634555160999298,
-0.12905052304267883,
0.11039433628320694,
0.016476774588227272,
0.07230231165885925,
0.008919418789446354,
-0.024448217824101448,
0.08238391578197479,
-0.04597951099276543,
0.134269580245018,
-0.07149440795183182,
-0.05598049610853195,
0.10135062038898468,
-0.030628066509962082,
-0.009059266187250614,
-0.021241318434476852,
0.01680825836956501,
-0.06358478218317032,
-0.004595143720507622,
-0.08661261945962906,
0.0600704662501812,
-0.015533878467977047,
-0.03862139582633972,
-0.015263983979821205,
0.012967092916369438,
0.04852906987071037,
-0.050638359040021896,
0.1468864381313324,
-0.024767670780420303,
0.18646922707557678,
0.13282549381256104,
0.11840944737195969,
-0.07231304794549942,
0.08169860392808914,
0.07842332124710083,
-0.026886675506830215,
0.08337248116731644,
-0.145641028881073,
0.040654655545949936,
0.1258634626865387,
-0.0007763508474454284,
0.12257830053567886,
0.09293712675571442,
-0.012018025852739811,
0.032405346632003784,
0.08503850549459457,
-0.16708818078041077,
-0.07279181480407715,
0.014615500345826149,
-0.09523258358240128,
-0.04587236046791077,
0.08280210196971893,
0.15190105140209198,
-0.04724269360303879,
0.02584419772028923,
-0.007069534156471491,
-0.025141989812254906,
-0.0911790058016777,
0.1639992594718933,
0.03432168811559677,
0.014357446692883968,
-0.09762061387300491,
0.09308966249227524,
0.021066611632704735,
-0.09414052218198776,
0.07543274760246277,
0.05163268372416496,
-0.07046151161193848,
-0.005447540432214737,
0.10546811670064926,
0.1903083622455597,
-0.03419795632362366,
-0.030859515070915222,
-0.1351453810930252,
-0.14537660777568817,
0.06528759747743607,
0.2870536148548126,
0.08159324526786804,
0.010076308622956276,
-0.07508940994739532,
0.019294006749987602,
-0.11541752517223358,
0.02724721096456051,
0.03277275711297989,
0.06418941169977188,
-0.13732527196407318,
0.20559930801391602,
-0.03271424025297165,
0.028259554877877235,
-0.06472984701395035,
0.02633146569132805,
-0.15758590400218964,
0.007412791717797518,
-0.15458765625953674,
-0.036313947290182114,
0.028632834553718567,
-0.011265730485320091,
0.029777584597468376,
-0.07827319949865341,
-0.11135835200548172,
0.026453837752342224,
-0.11610560864210129,
-0.013522191904485226,
0.06571537256240845,
0.011357273906469345,
-0.11847052723169327,
-0.0686335414648056,
0.005104190204292536,
-0.05770011991262436,
0.03587940335273743,
0.091158926486969,
-0.01148480735719204,
0.09526022523641586,
-0.18715418875217438,
-0.021994328126311302,
0.1101389229297638,
-0.008339212276041508,
0.11043869704008102,
-0.045637477189302444,
0.0013802805915474892,
0.01701459102332592,
0.11627191305160522,
0.0420677624642849,
0.1367870271205902,
-0.08528754115104675,
-0.03437342494726181,
-0.025073517113924026,
-0.069412462413311,
-0.037744466215372086,
0.029823018237948418,
0.11533696949481964,
0.0025436647702008486,
0.18409521877765656,
-0.12390473484992981,
0.0017917380901053548,
-0.1732725352048874,
0.0028346688486635685,
-0.00016928893455769867,
-0.13468031585216522,
-0.11054625362157822,
-0.03562445566058159,
0.1076560989022255,
-0.07031752169132233,
0.14000697433948517,
0.032995402812957764,
0.10127482563257217,
0.06272075325250626,
-0.02079862542450428,
-0.05742518976330757,
0.05736679211258888,
0.20174388587474823,
0.0685473382472992,
-0.033834993839263916,
0.033763326704502106,
0.042080141603946686,
0.11387321352958679,
0.10086601972579956,
0.2754085063934326,
0.11808590590953827,
-0.04387006536126137,
0.14198528230190277,
0.0419609360396862,
-0.0404190868139267,
-0.09538774937391281,
0.048730283975601196,
-0.11014983057975769,
0.15485501289367676,
-0.04258778691291809,
0.07459673285484314,
0.047391731292009354,
-0.15085828304290771,
0.015280467458069324,
-0.09496766328811646,
-0.08765024691820145,
-0.14679570496082306,
-0.03267892450094223,
-0.11517183482646942,
-0.14443665742874146,
0.02422231249511242,
-0.10726121068000793,
0.055295225232839584,
0.051572371274232864,
0.028548406437039375,
-0.015205008909106255,
0.1767616719007492,
-0.03884990140795708,
0.025020863860845566,
0.11314895749092102,
-0.021551981568336487,
-0.022529905661940575,
-0.06465665251016617,
-0.055230189114809036,
0.007735779043287039,
-0.021460210904479027,
0.01707247458398342,
-0.026051122695207596,
-0.057095952332019806,
0.039378274232149124,
-0.04165790230035782,
-0.1145770326256752,
0.04894391819834709,
0.0616830438375473,
0.031705211848020554,
0.01345242653042078,
0.034200187772512436,
0.003976456355303526,
-0.02450912445783615,
0.19157780706882477,
-0.1016511470079422,
-0.03603129833936691,
-0.13420617580413818,
0.3111758530139923,
0.03155650570988655,
0.05417441204190254,
-0.0009213930461555719,
-0.06492085754871368,
-0.04146460071206093,
0.2218620479106903,
0.18145570158958435,
-0.11367190629243851,
-0.0047128028236329556,
0.010950416326522827,
0.0015311695169657469,
-0.03172646090388298,
0.16598990559577942,
0.08818130195140839,
-0.03226854279637337,
-0.07354137301445007,
-0.06628062576055527,
-0.02694833278656006,
-0.010188973508775234,
-0.006648811511695385,
0.058645911514759064,
0.06929130852222443,
-0.006143301259726286,
-0.02878461964428425,
0.06254454702138901,
-0.057818930596113205,
-0.12094755470752716,
0.0750422552227974,
-0.22032664716243744,
-0.16147653758525848,
-0.004401748068630695,
0.010633471421897411,
-0.014711366966366768,
0.09065718203783035,
-0.02191600389778614,
-0.019319608807563782,
0.05638677626848221,
-0.03548822179436684,
-0.04787664860486984,
-0.09488008171319962,
0.09138011932373047,
-0.16288435459136963,
0.15252533555030823,
-0.03112596832215786,
0.06649359315633774,
0.11419535428285599,
0.055594950914382935,
-0.03940402716398239,
0.06178771331906319,
0.019469188526272774,
-0.1323578804731369,
0.015319601632654667,
0.10477513819932938,
-0.039393432438373566,
0.06805434077978134,
0.051742397248744965,
-0.1303831934928894,
0.05421163886785507,
-0.12282609939575195,
-0.09017747640609741,
-0.03271923586726189,
-0.059359580278396606,
-0.09451426565647125,
0.11688484996557236,
0.2643152177333832,
-0.0018989571835845709,
0.06609207391738892,
-0.06300133466720581,
-0.005050096195191145,
0.0761096328496933,
0.02920222468674183,
-0.09538276493549347,
-0.2595881521701813,
0.03621864691376686,
0.1455666422843933,
-0.017291154712438583,
-0.22698074579238892,
-0.0708642229437828,
-0.009896726347506046,
-0.03900226205587387,
-0.07640261948108673,
0.08575168251991272,
0.08320490270853043,
0.04143497347831726,
-0.05762654170393944,
-0.17671838402748108,
-0.025870805606245995,
0.1635822355747223,
-0.11621202528476715,
-0.09005975723266602
] |
null | null | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned-model
This model is a fine-tuned version of [cardiffnlp/twitter-roberta-base-sentiment](https://huggingface.co/cardiffnlp/twitter-roberta-base-sentiment) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8601
- Accuracy: 0.6117
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 84 | 0.8663 | 0.5914 |
| No log | 2.0 | 168 | 0.8601 | 0.6117 |
### Framework versions
- Transformers 4.16.1
- Pytorch 1.10.0+cu111
- Datasets 1.18.2
- Tokenizers 0.11.0
| {"tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "finetuned-model", "results": []}]} | text-classification | MarioPenguin/finetuned-model | [
"transformers",
"pytorch",
"tensorboard",
"roberta",
"text-classification",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [] | TAGS
#transformers #pytorch #tensorboard #roberta #text-classification #generated_from_trainer #autotrain_compatible #endpoints_compatible #region-us
| finetuned-model
===============
This model is a fine-tuned version of cardiffnlp/twitter-roberta-base-sentiment on an unknown dataset.
It achieves the following results on the evaluation set:
* Loss: 0.8601
* Accuracy: 0.6117
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 64
* eval\_batch\_size: 64
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 2
### Training results
### Framework versions
* Transformers 4.16.1
* Pytorch 1.10.0+cu111
* Datasets 1.18.2
* Tokenizers 0.11.0
| [
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 2",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.16.1\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.2\n* Tokenizers 0.11.0"
] | [
"TAGS\n#transformers #pytorch #tensorboard #roberta #text-classification #generated_from_trainer #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 2",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.16.1\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.2\n* Tokenizers 0.11.0"
] | [
48,
98,
4,
33
] | [
"passage: TAGS\n#transformers #pytorch #tensorboard #roberta #text-classification #generated_from_trainer #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 2### Training results### Framework versions\n\n\n* Transformers 4.16.1\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.2\n* Tokenizers 0.11.0"
] | [
-0.0859682634472847,
0.05082647129893303,
-0.0018241266952827573,
0.11690497398376465,
0.2111092209815979,
0.032820623368024826,
0.11159129440784454,
0.1100233718752861,
-0.11884991079568863,
0.029960550367832184,
0.11807063221931458,
0.17272628843784332,
0.006508568301796913,
0.09269849210977554,
-0.06058186665177345,
-0.2772543132305145,
-0.03580969572067261,
0.039356328547000885,
-0.08840974420309067,
0.1290034055709839,
0.07953405380249023,
-0.1536536067724228,
0.07675665616989136,
-0.015207251533865929,
-0.2548350989818573,
0.021517446264624596,
0.02871624380350113,
-0.05864103138446808,
0.14881019294261932,
0.014562681317329407,
0.16517551243305206,
0.0007550412556156516,
0.09829157590866089,
-0.16381970047950745,
0.014114629477262497,
0.0609845407307148,
0.013732949271798134,
0.086069755256176,
0.060282424092292786,
-0.014066903851926327,
0.10754939913749695,
-0.09760227054357529,
0.06261271983385086,
0.0032080328091979027,
-0.13073337078094482,
-0.19363538920879364,
-0.06954386085271835,
-0.008277231827378273,
0.047640398144721985,
0.09944606572389603,
-0.010614207945764065,
0.1516515463590622,
-0.10673171281814575,
0.100946344435215,
0.21227532625198364,
-0.26512008905410767,
-0.08556824177503586,
0.04859770089387894,
-0.005550928879529238,
0.09450327605009079,
-0.12255913764238358,
-0.013603737577795982,
0.057053085416555405,
0.054114703088998795,
0.11680404096841812,
-0.030618298798799515,
-0.1260453760623932,
0.024317458271980286,
-0.14596712589263916,
-0.00009727931319503114,
0.06521686166524887,
0.014194749295711517,
-0.013697502203285694,
-0.015923455357551575,
-0.06549553573131561,
-0.16371411085128784,
-0.040865007787942886,
-0.022961247712373734,
0.04577292501926422,
-0.053612373769283295,
-0.10398079454898834,
0.003227399429306388,
-0.10231669992208481,
-0.0621282123029232,
-0.07909054309129715,
0.15712356567382812,
0.03713474050164223,
0.014211336150765419,
-0.039126668125391006,
0.10569562017917633,
-0.0065282853320240974,
-0.1316235512495041,
0.05421392619609833,
0.027591878548264503,
-0.030069908127188683,
-0.06536794453859329,
-0.07141639292240143,
-0.10576044768095016,
-0.0007703427691012621,
0.07978835701942444,
-0.05572611466050148,
0.056246668100357056,
0.023210665211081505,
0.04042452573776245,
-0.09148775786161423,
0.19912223517894745,
-0.04300512373447418,
-0.025734994560480118,
-0.0008626230410300195,
0.049395304173231125,
-0.007103046402335167,
-0.014826223254203796,
-0.11303731799125671,
0.0015603075735270977,
0.11236320436000824,
0.003874442307278514,
-0.07699549198150635,
0.06894435733556747,
-0.04060487076640129,
-0.0201166570186615,
-0.04151102900505066,
-0.09656927734613419,
0.048189032822847366,
-0.010141409002244473,
-0.09483382105827332,
-0.002458928618580103,
0.013104680925607681,
0.015050418674945831,
-0.01693587750196457,
0.1623256504535675,
-0.09155236184597015,
0.051048532128334045,
-0.1197962611913681,
-0.12384685128927231,
0.0065915267914533615,
-0.0810641497373581,
0.01964731328189373,
-0.09571263194084167,
-0.14202608168125153,
-0.02774427831172943,
0.053785454481840134,
-0.041257478296756744,
-0.032407648861408234,
-0.05572569742798805,
-0.07405486702919006,
0.010946778580546379,
-0.011541422456502914,
0.17296937108039856,
-0.05033152177929878,
0.11678697913885117,
0.04873919486999512,
0.08081365376710892,
-0.05339190363883972,
0.052643440663814545,
-0.08892080932855606,
-0.006432153284549713,
-0.20824481546878815,
0.05466679111123085,
-0.051280710846185684,
0.07079708576202393,
-0.06375157833099365,
-0.11231210827827454,
-0.003181099658831954,
0.001967939082533121,
0.09073733538389206,
0.0814325213432312,
-0.17915670573711395,
-0.0862484723329544,
0.16255158185958862,
-0.059170451015233994,
-0.07848021388053894,
0.1158057451248169,
-0.07190463691949844,
0.04063667356967926,
0.08190463483333588,
0.16856269538402557,
0.05882018432021141,
-0.0692833736538887,
0.02350294031202793,
-0.02998209185898304,
0.04883065074682236,
-0.05476677417755127,
0.035567186772823334,
0.020609548315405846,
0.011465626768767834,
0.030791498720645905,
-0.00795811228454113,
0.06611806899309158,
-0.11848484724760056,
-0.08761142939329147,
-0.035513412207365036,
-0.10788103938102722,
0.06331364810466766,
0.09080296754837036,
0.10784469544887543,
-0.10168400406837463,
-0.06486256420612335,
0.0929812639951706,
0.055827558040618896,
-0.05394231528043747,
0.022416571155190468,
-0.05193505808711052,
0.054506462067365646,
-0.049347180873155594,
-0.025692980736494064,
-0.21083901822566986,
-0.02887490950524807,
0.0010107833659276366,
0.04800574854016304,
0.03926566615700722,
0.03357763588428497,
0.08709974586963654,
0.05956311151385307,
-0.06761215627193451,
0.001916601206175983,
-0.019152112305164337,
-0.010564977303147316,
-0.1527133733034134,
-0.19959896802902222,
-0.01073170080780983,
-0.017710966989398003,
0.10914818942546844,
-0.22070805728435516,
0.02678309753537178,
-0.02862265519797802,
0.08305292576551437,
0.017698150128126144,
-0.009148295037448406,
-0.056723929941654205,
0.11311087012290955,
-0.02462138421833515,
-0.04660623520612717,
0.07418747246265411,
-0.014849314466118813,
-0.07251112163066864,
-0.07518485933542252,
-0.10999926179647446,
0.17766813933849335,
0.1427621692419052,
-0.1578001081943512,
-0.10362769663333893,
0.015951454639434814,
-0.05546572431921959,
-0.0219670869410038,
-0.058467987924814224,
0.04748492315411568,
0.194159135222435,
-0.012340045534074306,
0.15481212735176086,
-0.055555716156959534,
-0.039893124252557755,
0.01739726960659027,
-0.03392989560961723,
0.043571837246418,
0.1195826455950737,
0.1285342276096344,
-0.07684259861707687,
0.13466309010982513,
0.12278417497873306,
-0.12918463349342346,
0.15756581723690033,
-0.02077661082148552,
-0.07309600710868835,
-0.009947343729436398,
-0.030364230275154114,
0.006890125572681427,
0.09193557500839233,
-0.11887778341770172,
-0.021299974992871284,
0.0009787578601390123,
0.017095137387514114,
0.03333964943885803,
-0.23280775547027588,
-0.04817357286810875,
0.025748714804649353,
-0.012436256743967533,
0.007425177842378616,
-0.025359604507684708,
0.026477355509996414,
0.12545070052146912,
0.0034207901917397976,
-0.06661805510520935,
0.024107126519083977,
0.0012280975934118032,
-0.06827495992183685,
0.21270033717155457,
-0.07296951860189438,
-0.13191188871860504,
-0.10473254323005676,
-0.07686470448970795,
-0.03829572722315788,
0.015950223430991173,
0.035850830376148224,
-0.12789955735206604,
-0.011126494035124779,
-0.03448255732655525,
0.03397522121667862,
0.00598449120298028,
0.05007445812225342,
0.0027530090883374214,
0.009899472817778587,
0.06180591136217117,
-0.09927544742822647,
-0.0032866913825273514,
-0.0771811455488205,
-0.07811006903648376,
0.0627410039305687,
0.05275418609380722,
0.11976632475852966,
0.17638720571994781,
-0.0494031086564064,
0.004865413065999746,
-0.028698936104774475,
0.2222827672958374,
-0.07752624899148941,
-0.03445443883538246,
0.10349231213331223,
-0.023003147915005684,
0.049613967537879944,
0.10133901983499527,
0.07808481901884079,
-0.09568428993225098,
0.019630057737231255,
0.04380716755986214,
-0.0477670356631279,
-0.21565094590187073,
-0.037143364548683167,
-0.05210788920521736,
-0.036895908415317535,
0.08645781129598618,
0.017068443819880486,
0.029302341863512993,
0.07016949355602264,
0.06827641278505325,
0.09308017790317535,
-0.056898314505815506,
0.042039625346660614,
0.0948873981833458,
0.04624093696475029,
0.13188186287879944,
-0.04326577112078667,
-0.09652302414178848,
0.02714678831398487,
-0.028295543044805527,
0.2196127027273178,
-0.006628365255892277,
0.08168075978755951,
0.040188029408454895,
0.1702422946691513,
0.010686598718166351,
0.07661284506320953,
0.0038762150797992945,
-0.06496772915124893,
-0.0023273364640772343,
-0.03105100989341736,
-0.04869818687438965,
0.009961962699890137,
-0.03099968098104,
0.049112383276224136,
-0.11712069064378738,
-0.009467501193284988,
0.05804780498147011,
0.2215108573436737,
0.023874247446656227,
-0.31552228331565857,
-0.07058253139257431,
0.0017422988312318921,
-0.029930397868156433,
-0.009041713550686836,
0.007222847081720829,
0.11985784769058228,
-0.0990094542503357,
0.023600155487656593,
-0.07451608031988144,
0.09087121486663818,
-0.049022138118743896,
0.04601982235908508,
0.05499954894185066,
0.11144337803125381,
-0.006279531866312027,
0.0682801604270935,
-0.3136518597602844,
0.26665952801704407,
0.008625825867056847,
0.08149708807468414,
-0.07988811284303665,
-0.012246716767549515,
0.03595590218901634,
0.0350535549223423,
0.02953936532139778,
-0.02004300244152546,
-0.03463727980852127,
-0.21116386353969574,
-0.02861138992011547,
0.029365980997681618,
0.12937119603157043,
-0.010181289166212082,
0.10029381513595581,
-0.018705526366829872,
0.004876016639173031,
0.0764605700969696,
-0.04430694505572319,
-0.045356493443250656,
-0.08486861735582352,
-0.0272678192704916,
0.008947804570198059,
-0.07246062904596329,
-0.04835694283246994,
-0.1216084361076355,
-0.13111251592636108,
0.15258266031742096,
0.002985048573464155,
-0.014214343391358852,
-0.11895065009593964,
0.13348205387592316,
0.07142633199691772,
-0.08086240291595459,
0.03359861299395561,
0.016422687098383904,
0.056576795876026154,
0.025965340435504913,
-0.06649737060070038,
0.11312893778085709,
-0.05129917338490486,
-0.15759111940860748,
-0.06627136468887329,
0.08401843160390854,
0.040791820734739304,
0.06910862028598785,
-0.021331727504730225,
0.019946621730923653,
-0.020664993673563004,
-0.08728302270174026,
0.04229927062988281,
-0.02737860567867756,
0.06479846686124802,
0.039573363959789276,
-0.05717043951153755,
-0.010747789405286312,
-0.0568864569067955,
-0.01701553538441658,
0.20088224112987518,
0.21994373202323914,
-0.09316587448120117,
-0.005563270300626755,
0.02943820133805275,
-0.06643444299697876,
-0.20893923938274384,
0.09968101978302002,
0.08626273274421692,
0.01171655673533678,
0.04634819179773331,
-0.17483405768871307,
0.1414383053779602,
0.10445856302976608,
-0.00027244104421697557,
0.11803723126649857,
-0.3150157332420349,
-0.13016250729560852,
0.09210910648107529,
0.16714616119861603,
0.13971932232379913,
-0.14846813678741455,
-0.012367506511509418,
-0.025622813031077385,
-0.09312178194522858,
0.10488412529230118,
-0.08792658895254135,
0.127672478556633,
-0.018998315557837486,
0.10290704667568207,
0.013424578122794628,
-0.06570039689540863,
0.09755362570285797,
0.003134952625259757,
0.10843473672866821,
-0.07160672545433044,
-0.05848705768585205,
0.045539166778326035,
-0.02762107364833355,
-0.0190365519374609,
-0.035024307668209076,
0.014871066436171532,
-0.07483165711164474,
-0.020487062633037567,
-0.09426093101501465,
0.03337042033672333,
-0.030028250068426132,
-0.06371131539344788,
-0.03131577745079994,
0.030898774042725563,
0.035125862807035446,
-0.017604708671569824,
0.1127505823969841,
-0.0012589809484779835,
0.17446470260620117,
0.09799409657716751,
0.07788136601448059,
-0.04453760012984276,
-0.024842092767357826,
0.004715724848210812,
-0.009864166378974915,
0.054526664316654205,
-0.1374632716178894,
0.020085429772734642,
0.1548582911491394,
0.023319417610764503,
0.12348084151744843,
0.09507596492767334,
-0.01723017729818821,
0.024972686544060707,
0.08079218119382858,
-0.16274559497833252,
-0.06862544268369675,
0.0019638321828097105,
-0.08684127032756805,
-0.09587784856557846,
0.04592309519648552,
0.08611880242824554,
-0.06591448187828064,
-0.007954633794724941,
-0.00980810821056366,
-0.014821839518845081,
-0.0651264414191246,
0.21869149804115295,
0.0782688558101654,
0.0425725020468235,
-0.09866417199373245,
0.06479119509458542,
0.06099577620625496,
-0.08638003468513489,
0.005379973445087671,
0.09373880177736282,
-0.07257397472858429,
-0.02469784766435623,
0.10706640779972076,
0.2074829488992691,
-0.06218982860445976,
-0.01636095903813839,
-0.14796103537082672,
-0.10854419320821762,
0.06518238037824631,
0.18976521492004395,
0.10753326117992401,
-0.004888572730123997,
-0.06248646229505539,
0.031790588051080704,
-0.1503819078207016,
0.0731688141822815,
0.04376377537846565,
0.07859297096729279,
-0.1333346664905548,
0.1981058120727539,
0.0037088897079229355,
0.04040103405714035,
-0.034258220344781876,
0.03238177299499512,
-0.12361779063940048,
0.023346634581685066,
-0.11423031240701675,
-0.04961889609694481,
0.003456501057371497,
-0.010150483809411526,
-0.004685401916503906,
-0.06507682055234909,
-0.06081974878907204,
-0.0021434430964291096,
-0.12643934786319733,
-0.016837485134601593,
0.034822072833776474,
0.023161988705396652,
-0.1106332540512085,
-0.0393000990152359,
0.019494853913784027,
-0.04702001065015793,
0.05151434615254402,
0.048797741532325745,
0.01801784336566925,
0.07686785608530045,
-0.1642313152551651,
-0.01275003794580698,
0.06871316581964493,
-0.005060923285782337,
0.0874607264995575,
-0.04361778125166893,
-0.0032933184411376715,
-0.012048691511154175,
0.10934325307607651,
0.03355654329061508,
0.08351842314004898,
-0.13511411845684052,
0.02506805956363678,
-0.03478599339723587,
-0.1043679416179657,
-0.06489232182502747,
0.038196247071027756,
0.07510646432638168,
0.013619005680084229,
0.17596259713172913,
-0.09051185846328735,
0.0557200163602829,
-0.21415303647518158,
-0.008182364515960217,
-0.01393993478268385,
-0.10973546653985977,
-0.09514188766479492,
-0.06163562461733818,
0.0794481709599495,
-0.05553806945681572,
0.12361273169517517,
0.05151599645614624,
0.05819491669535637,
0.029746077954769135,
-0.029408462345600128,
-0.006363752763718367,
0.0374426394701004,
0.1935625672340393,
0.04791928827762604,
-0.048354607075452805,
0.05861129239201546,
0.07806684821844101,
0.10358289629220963,
0.1198505163192749,
0.2205008864402771,
0.14786982536315918,
-0.026647018268704414,
0.0870291218161583,
0.02859818935394287,
-0.04722294583916664,
-0.14470480382442474,
0.04166286066174507,
-0.07702736556529999,
0.08283567428588867,
-0.036966849118471146,
0.19309648871421814,
0.05780279263854027,
-0.15707416832447052,
0.046032533049583435,
-0.07196273654699326,
-0.10502205789089203,
-0.10430409014225006,
-0.005175375379621983,
-0.08876705914735794,
-0.13525651395320892,
0.015083346515893936,
-0.11020471900701523,
0.021457761526107788,
0.12471945583820343,
0.012887601740658283,
-0.02410123683512211,
0.1866346150636673,
0.03763843700289726,
0.03513125702738762,
0.07247605919837952,
0.010880609042942524,
-0.01335669495165348,
-0.0971001610159874,
-0.06461411714553833,
-0.037321384996175766,
-0.0043892101384699345,
0.03531057387590408,
-0.06405244022607803,
-0.09086434543132782,
0.02917718142271042,
-0.018217844888567924,
-0.1041661873459816,
0.026568841189146042,
0.028481993824243546,
0.07462972402572632,
0.030633900314569473,
-0.003765503875911236,
0.010658897459506989,
-0.030448369681835175,
0.23448584973812103,
-0.08670602738857269,
-0.07682967931032181,
-0.09743005037307739,
0.27260464429855347,
0.0409395769238472,
0.010040956549346447,
0.01255710143595934,
-0.07378135621547699,
0.009423934854567051,
0.24640221893787384,
0.20622536540031433,
-0.12502653896808624,
-0.006808481179177761,
0.007241059560328722,
-0.008851466700434685,
-0.022683581337332726,
0.13678167760372162,
0.12816865742206573,
0.04880519211292267,
-0.11308325827121735,
-0.03902004659175873,
-0.051020022481679916,
-0.015154356136918068,
-0.03431950882077217,
0.061304498463869095,
0.06234733387827873,
0.022269610315561295,
-0.061881739646196365,
0.06536837667226791,
-0.07765643298625946,
-0.1126163899898529,
0.0745522603392601,
-0.2376910299062729,
-0.17592257261276245,
-0.009621424600481987,
0.10960785299539566,
-0.014915725216269493,
0.07354050129652023,
-0.028144098818302155,
-0.003253109287470579,
0.025596674531698227,
-0.02764372155070305,
-0.06953022629022598,
-0.08114773780107498,
0.08729349076747894,
-0.11750690639019012,
0.16796046495437622,
-0.055248238146305084,
0.06313586980104446,
0.12672047317028046,
0.06344017386436462,
-0.044703882187604904,
0.05827503278851509,
0.037671301513910294,
-0.09857659041881561,
0.02299664169549942,
0.12748438119888306,
-0.03749452531337738,
0.04789663851261139,
0.048084013164043427,
-0.1386193186044693,
0.03773171082139015,
-0.09676460921764374,
-0.0450170636177063,
-0.04244304448366165,
-0.046183034777641296,
-0.05889482796192169,
0.12221644818782806,
0.24352651834487915,
-0.00745278550311923,
0.036553021520376205,
-0.07934849709272385,
0.0005460588727146387,
0.045886244624853134,
0.06227343901991844,
-0.10433541238307953,
-0.2536514401435852,
0.004547190852463245,
0.0835038498044014,
-0.03397481143474579,
-0.24853841960430145,
-0.08368612825870514,
0.0028429804369807243,
-0.07076550275087357,
-0.09288156777620316,
0.09110137075185776,
0.07829339057207108,
0.05725576728582382,
-0.048868577927351,
-0.11882370710372925,
-0.07250835746526718,
0.16464321315288544,
-0.15324999392032623,
-0.08823169767856598
] |
null | null | transformers |
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# roberta-model-english
This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.1140
- Train Accuracy: 0.9596
- Validation Loss: 0.2166
- Validation Accuracy: 0.9301
- Epoch: 2
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'learning_rate': 5e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False}
- training_precision: float32
### Training results
| Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch |
|:----------:|:--------------:|:---------------:|:-------------------:|:-----:|
| 0.2922 | 0.8804 | 0.2054 | 0.9162 | 0 |
| 0.1710 | 0.9352 | 0.1879 | 0.9353 | 1 |
| 0.1140 | 0.9596 | 0.2166 | 0.9301 | 2 |
### Framework versions
- Transformers 4.16.2
- TensorFlow 2.7.0
- Tokenizers 0.11.0
| {"license": "mit", "tags": ["generated_from_keras_callback"], "model-index": [{"name": "roberta-model-english", "results": []}]} | text-classification | MarioPenguin/roberta-model-english | [
"transformers",
"tf",
"roberta",
"text-classification",
"generated_from_keras_callback",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [] | TAGS
#transformers #tf #roberta #text-classification #generated_from_keras_callback #license-mit #autotrain_compatible #endpoints_compatible #region-us
| roberta-model-english
=====================
This model is a fine-tuned version of roberta-base on an unknown dataset.
It achieves the following results on the evaluation set:
* Train Loss: 0.1140
* Train Accuracy: 0.9596
* Validation Loss: 0.2166
* Validation Accuracy: 0.9301
* Epoch: 2
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* optimizer: {'name': 'Adam', 'learning\_rate': 5e-05, 'decay': 0.0, 'beta\_1': 0.9, 'beta\_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False}
* training\_precision: float32
### Training results
### Framework versions
* Transformers 4.16.2
* TensorFlow 2.7.0
* Tokenizers 0.11.0
| [
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* optimizer: {'name': 'Adam', 'learning\\_rate': 5e-05, 'decay': 0.0, 'beta\\_1': 0.9, 'beta\\_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False}\n* training\\_precision: float32",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.16.2\n* TensorFlow 2.7.0\n* Tokenizers 0.11.0"
] | [
"TAGS\n#transformers #tf #roberta #text-classification #generated_from_keras_callback #license-mit #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* optimizer: {'name': 'Adam', 'learning\\_rate': 5e-05, 'decay': 0.0, 'beta\\_1': 0.9, 'beta\\_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False}\n* training\\_precision: float32",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.16.2\n* TensorFlow 2.7.0\n* Tokenizers 0.11.0"
] | [
52,
99,
4,
25
] | [
"passage: TAGS\n#transformers #tf #roberta #text-classification #generated_from_keras_callback #license-mit #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* optimizer: {'name': 'Adam', 'learning\\_rate': 5e-05, 'decay': 0.0, 'beta\\_1': 0.9, 'beta\\_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False}\n* training\\_precision: float32### Training results### Framework versions\n\n\n* Transformers 4.16.2\n* TensorFlow 2.7.0\n* Tokenizers 0.11.0"
] | [
-0.029028531163930893,
-0.0030179207678884268,
-0.0026484879199415445,
0.08085248619318008,
0.19047802686691284,
0.03697159141302109,
0.14093299210071564,
0.10953880101442337,
-0.1224326491355896,
0.034259527921676636,
0.14338909089565277,
0.21744976937770844,
0.0282436516135931,
0.09403664618730545,
-0.12449827045202255,
-0.18679015338420868,
0.03541825711727142,
0.005472628399729729,
-0.06338178366422653,
0.09832417964935303,
0.10009905695915222,
-0.08893545717000961,
0.11349165439605713,
0.011702917516231537,
-0.2398795634508133,
0.05468243733048439,
0.12848293781280518,
-0.09391151368618011,
0.13280893862247467,
0.09342551976442337,
0.10801558196544647,
-0.005167078692466021,
0.019689876586198807,
-0.1525866538286209,
0.021250713616609573,
0.0877465158700943,
-0.02428225614130497,
0.06753890961408615,
0.01662839762866497,
-0.023129554465413094,
0.16051174700260162,
-0.06533845514059067,
0.041052766144275665,
0.03941754624247551,
-0.13646508753299713,
-0.1921563595533371,
-0.11512964963912964,
-0.02097962610423565,
0.047286976128816605,
0.09515362232923508,
-0.0021204848308116198,
0.23292434215545654,
-0.06192678585648537,
0.10476791113615036,
0.151272252202034,
-0.35294458270072937,
-0.05883651226758957,
0.025633588433265686,
0.006943847518414259,
0.05013037845492363,
-0.0567035935819149,
0.06110105291008949,
0.08004432916641235,
0.03759336844086647,
0.048880089074373245,
-0.04575168713927269,
-0.12955498695373535,
-0.016728315502405167,
-0.09381347894668579,
-0.0026426096446812153,
0.12697309255599976,
0.024203337728977203,
-0.06669352948665619,
-0.0234000813215971,
-0.035464026033878326,
-0.12352178245782852,
0.004992946982383728,
-0.07066695392131805,
0.02651083841919899,
-0.0003949199162889272,
-0.0692657008767128,
-0.05178838223218918,
-0.09487618505954742,
-0.0505487434566021,
-0.13076737523078918,
0.21245646476745605,
0.013710198923945427,
0.05463479086756706,
-0.054476700723171234,
0.05287307873368263,
-0.07479825615882874,
-0.10409354418516159,
0.009196699596941471,
0.0004465849488042295,
-0.015814846381545067,
-0.0692019835114479,
-0.11735478043556213,
-0.1700286865234375,
0.04343165457248688,
0.10057392716407776,
-0.027675718069076538,
0.06634370982646942,
-0.07238152623176575,
0.031150145456194878,
-0.10963581502437592,
0.17045553028583527,
0.0006506511708721519,
0.014837970957159996,
0.046335618942976,
-0.010515833273530006,
0.05206581950187683,
-0.040695518255233765,
-0.1139085590839386,
-0.010582818649709225,
0.07206721603870392,
0.009192712604999542,
-0.07888379693031311,
0.11455584317445755,
-0.06538600474596024,
-0.00867773313075304,
-0.04873373731970787,
-0.07662401348352432,
0.03344357758760452,
-0.022633709013462067,
-0.09350752830505371,
-0.012419816106557846,
0.06452827900648117,
0.02290697954595089,
-0.02746507339179516,
0.058278147131204605,
-0.07027937471866608,
0.0026627788320183754,
-0.1020648330450058,
-0.13825128972530365,
0.012026776559650898,
-0.09079134464263916,
0.0173027366399765,
-0.11077059060335159,
-0.16807051002979279,
-0.01884390041232109,
0.05060971528291702,
-0.0332791768014431,
0.003291022963821888,
-0.06624776124954224,
-0.13161033391952515,
0.029645031318068504,
-0.012559822760522366,
0.13689850270748138,
-0.04827636107802391,
0.06798438727855682,
0.014683040790259838,
0.06503342092037201,
-0.1587314009666443,
0.040555939078330994,
-0.06907372176647186,
-0.017900455743074417,
-0.17944110929965973,
0.05945654213428497,
-0.038872577250003815,
0.06970978528261185,
-0.1094755306839943,
-0.06858839094638824,
0.009762817993760109,
0.033266425132751465,
0.09181566536426544,
0.07724768668413162,
-0.16554898023605347,
-0.06493185460567474,
0.10049685090780258,
-0.07992304116487503,
-0.10947678983211517,
0.10165872424840927,
-0.07997491955757141,
0.09271028637886047,
0.1023755669593811,
0.1353245973587036,
-0.018194591626524925,
-0.1019919142127037,
0.05732015520334244,
-0.0485885813832283,
-0.07091137766838074,
0.0045798360370099545,
-0.010010059922933578,
-0.0044068386778235435,
-0.0880899503827095,
0.027415776625275612,
0.00677151745185256,
0.02843957394361496,
-0.079134501516819,
-0.07193166762590408,
-0.03923887386918068,
-0.06726576387882233,
0.051247548311948776,
0.0294698104262352,
0.10388940572738647,
-0.12547606229782104,
-0.09486651420593262,
0.06666892021894455,
-0.0008324964437633753,
-0.020105279982089996,
0.025218164548277855,
-0.09350858628749847,
0.00994864758104086,
0.015822311863303185,
0.0022111632861196995,
-0.17915993928909302,
-0.04405059292912483,
0.004878643900156021,
0.07552868127822876,
0.07453145831823349,
0.015217000618577003,
0.06692537665367126,
-0.002590796211734414,
-0.051119595766067505,
0.05215567350387573,
0.02713540568947792,
0.023630252107977867,
-0.10744424164295197,
-0.21571719646453857,
0.037210725247859955,
-0.015537464059889317,
0.07597368210554123,
-0.2572516202926636,
0.015334265306591988,
0.020465979352593422,
0.0962856113910675,
0.030591892078518867,
0.018656456843018532,
-0.05954444408416748,
0.07430890202522278,
-0.039810653775930405,
-0.03759260103106499,
0.044974662363529205,
0.01874314807355404,
-0.13238754868507385,
-0.0020158078987151384,
-0.15574491024017334,
0.16141052544116974,
0.16823844611644745,
-0.16110996901988983,
-0.14046427607536316,
0.054895851761102676,
-0.005516162142157555,
-0.008222121745347977,
0.001571637112647295,
0.03333739936351776,
0.19445157051086426,
-0.027853798121213913,
0.14566092193126678,
-0.0527457669377327,
-0.020852165296673775,
0.036104533821344376,
-0.05122356489300728,
-0.010228133760392666,
0.08242952078580856,
0.01410812046378851,
-0.21931029856204987,
0.10568703711032867,
0.12943024933338165,
-0.11006886512041092,
0.12625886499881744,
-0.011715266853570938,
-0.03183668106794357,
-0.052660901099443436,
0.0015991119435057044,
0.0386916920542717,
0.05258863419294357,
-0.10199771076440811,
-0.008566530421376228,
0.012803731486201286,
0.01041133888065815,
-0.000540914770681411,
-0.21457913517951965,
-0.02579834684729576,
0.0011870823800563812,
-0.02223646268248558,
-0.006839824840426445,
0.03175037354230881,
0.03219872713088989,
0.13681355118751526,
0.033252742141485214,
-0.046055302023887634,
0.09822031110525131,
-0.011590753681957722,
-0.08750005066394806,
0.20968632400035858,
-0.1337469518184662,
-0.12581470608711243,
-0.13786868751049042,
-0.08513116836547852,
-0.08062954246997833,
0.028871826827526093,
0.021820256486535072,
-0.09817676991224289,
-0.05912652984261513,
-0.046936217695474625,
0.010496166534721851,
-0.018661711364984512,
0.04746575281023979,
0.023309387266635895,
0.005953249521553516,
0.09575866162776947,
-0.09700305759906769,
-0.048281230032444,
-0.0599333681166172,
-0.0840722993016243,
0.06223849952220917,
-0.003940373193472624,
0.05258980765938759,
0.10862182825803757,
-0.05822310596704483,
0.015922414138913155,
-0.06257111579179764,
0.22089776396751404,
-0.06976958364248276,
-0.048264775425195694,
0.12598660588264465,
-0.04729428142309189,
0.03222745656967163,
0.11841639876365662,
0.04135528579354286,
-0.13391928374767303,
0.05888133496046066,
0.045859500765800476,
-0.043607473373413086,
-0.23882077634334564,
-0.02377595566213131,
-0.03497037664055824,
-0.1239413395524025,
0.026643065735697746,
0.034626320004463196,
0.1751030832529068,
0.044335395097732544,
0.05570796877145767,
0.11993645131587982,
-0.0008645365596748888,
0.05960370600223541,
0.21655108034610748,
0.059889428317546844,
0.11810518801212311,
-0.055610157549381256,
-0.049466535449028015,
0.04747871309518814,
-0.05466851219534874,
0.19341613352298737,
0.05862702801823616,
0.026925183832645416,
0.07055684179067612,
0.07306287437677383,
0.0014721355400979519,
0.011268068104982376,
0.03898546099662781,
-0.06783211976289749,
-0.011907984502613544,
-0.044002413749694824,
-0.05806252360343933,
0.059741951525211334,
-0.07333460450172424,
0.05158159136772156,
-0.08439487963914871,
0.003958034794777632,
0.06752721220254898,
0.2149391770362854,
0.03384120762348175,
-0.3329595625400543,
-0.09712675958871841,
0.0019249847391620278,
-0.030381610617041588,
-0.028319401666522026,
-0.007565021514892578,
0.06393493711948395,
-0.08494129031896591,
0.10666802525520325,
-0.06443733721971512,
0.06555622816085815,
0.006018381100147963,
0.07163112610578537,
0.048294223845005035,
0.10419652611017227,
-0.008787075988948345,
0.025837352499365807,
-0.35785889625549316,
0.2902922034263611,
0.03734707459807396,
0.14634215831756592,
-0.0864190086722374,
0.001538009149953723,
0.04161335527896881,
0.04075102135539055,
0.06633688509464264,
-0.033207967877388,
-0.1271045058965683,
-0.17599375545978546,
0.012240438722074032,
0.02605869434773922,
0.1709875762462616,
0.07148530334234238,
0.09947111457586288,
-0.04451842978596687,
0.03077986277639866,
0.09279345721006393,
0.00603602547198534,
-0.12435130029916763,
-0.062386542558670044,
0.0062944297678768635,
0.053287506103515625,
-0.048178695142269135,
-0.042050011456012726,
-0.07997503131628036,
-0.1049235537648201,
0.20515957474708557,
-0.040903240442276,
-0.015999292954802513,
-0.12787386775016785,
0.10687255859375,
0.03358883038163185,
-0.057587865740060806,
0.04250657185912132,
0.002927442779764533,
0.03068697825074196,
0.049074601382017136,
-0.1323365867137909,
0.15931780636310577,
-0.014818243682384491,
-0.16013126075267792,
-0.05585729330778122,
0.05935312807559967,
0.02911127358675003,
0.04846910759806633,
0.019956696778535843,
0.05611422657966614,
0.02002197690308094,
-0.09070808440446854,
0.08305716514587402,
-0.002811393467709422,
0.024748995900154114,
0.03747882321476936,
-0.024296114221215248,
-0.04396966099739075,
-0.05841778591275215,
-0.007682740222662687,
0.17575012147426605,
0.26429852843284607,
-0.08146753162145615,
0.017063330858945847,
-0.025264805182814598,
-0.08369141817092896,
-0.22580374777317047,
0.1338944137096405,
0.06712894886732101,
0.012175051495432854,
-0.0005931063205935061,
-0.12661436200141907,
0.08333864063024521,
0.09400267899036407,
-0.005383952055126429,
0.09791471809148788,
-0.25603750348091125,
-0.15890082716941833,
0.09919651597738266,
0.14341391623020172,
0.22300471365451813,
-0.14601324498653412,
-0.03555403649806976,
-0.0783107802271843,
-0.05874542146921158,
0.175447478890419,
-0.11281231790781021,
0.12041883170604706,
0.0179948378354311,
0.08455418050289154,
0.001716003636829555,
-0.019572298973798752,
0.09414239227771759,
-0.049794651567935944,
0.1377483308315277,
-0.07904763519763947,
-0.07601252943277359,
0.10610008239746094,
-0.02356129139661789,
0.008114569820463657,
-0.01867554523050785,
0.00670961756259203,
-0.04875872656702995,
-0.004431942477822304,
-0.0818362906575203,
0.07565580308437347,
-0.025400221347808838,
-0.03670860454440117,
-0.03235972672700882,
0.026102498173713684,
0.04138639569282532,
-0.04872523248195648,
0.14966797828674316,
-0.03927979990839958,
0.20192012190818787,
0.15603592991828918,
0.11077302694320679,
-0.03928385302424431,
0.09200632572174072,
0.07404334843158722,
-0.04390686750411987,
0.08206016570329666,
-0.14205238223075867,
0.037173543125391006,
0.11365555226802826,
-0.008212799206376076,
0.13840287923812866,
0.08056826889514923,
-0.026039935648441315,
0.057375796139240265,
0.08394750952720642,
-0.14886942505836487,
-0.10310860723257065,
0.01923382841050625,
-0.06434604525566101,
-0.032816000282764435,
0.07234320789575577,
0.15610231459140778,
-0.04816074296832085,
0.019373677670955658,
-0.0008899084641598165,
-0.013279767706990242,
-0.09166863560676575,
0.12246691435575485,
0.031161148101091385,
-0.0030451463535428047,
-0.09077338129281998,
0.11644494533538818,
0.03328796103596687,
-0.07222260534763336,
0.0881114974617958,
0.016960332170128822,
-0.06861092150211334,
-0.018361428752541542,
0.05182972177863121,
0.1571197360754013,
-0.059852179139852524,
-0.05056675150990486,
-0.12438368797302246,
-0.16422170400619507,
0.044005054980516434,
0.26748916506767273,
0.08086086809635162,
0.029932087287306786,
-0.05313171073794365,
0.000503861578181386,
-0.09865789860486984,
0.02015688456594944,
0.026064958423376083,
0.05218391492962837,
-0.1348339319229126,
0.20077411830425262,
-0.02170119248330593,
0.012683103792369366,
-0.056085847318172455,
0.020388446748256683,
-0.16622214019298553,
0.003131004748865962,
-0.14499962329864502,
-0.020543145015835762,
0.007613937836140394,
-0.004947570618242025,
0.03984375670552254,
-0.07535375654697418,
-0.10685992985963821,
0.028051236644387245,
-0.11685466021299362,
-0.015723589807748795,
0.0746854916214943,
0.03459455072879791,
-0.10790446400642395,
-0.07059355080127716,
0.017935214564204216,
-0.0456593781709671,
0.027426667511463165,
0.09693699330091476,
-0.015502449125051498,
0.08939915150403976,
-0.19584757089614868,
-0.0010057284962385893,
0.10238165408372879,
-0.007822355255484581,
0.08440649509429932,
-0.06777697056531906,
-0.004253996070474386,
0.02097753994166851,
0.08974841237068176,
0.04842445254325867,
0.12286817282438278,
-0.09352060407400131,
-0.04812785983085632,
-0.007440732792019844,
-0.06285092234611511,
-0.04581201821565628,
0.039430998265743256,
0.12523247301578522,
-0.009784645400941372,
0.2042033076286316,
-0.12353706359863281,
-0.009676914662122726,
-0.1501370221376419,
0.013502828776836395,
-0.0061774346977472305,
-0.13529090583324432,
-0.12080389261245728,
-0.045752525329589844,
0.08696206659078598,
-0.062444496899843216,
0.14690180122852325,
0.017751634120941162,
0.07455241680145264,
0.05555165931582451,
-0.016607554629445076,
-0.05467544123530388,
0.04387390613555908,
0.20169803500175476,
0.053720809519290924,
-0.02541694976389408,
0.019364235922694206,
0.028341742232441902,
0.09387423098087311,
0.06075755134224892,
0.24087494611740112,
0.12544824182987213,
-0.04813471436500549,
0.13486619293689728,
0.0585424080491066,
-0.01956530660390854,
-0.08119983226060867,
0.08493274450302124,
-0.08542721718549728,
0.1342165619134903,
-0.053283046931028366,
0.07043634355068207,
0.08326675742864609,
-0.15407004952430725,
0.014187476597726345,
-0.09000981599092484,
-0.08057789504528046,
-0.14781688153743744,
-0.08347224444150925,
-0.11806818842887878,
-0.12204425036907196,
0.02164604142308235,
-0.08912109583616257,
0.05750204622745514,
0.05279573053121567,
0.018261510878801346,
-0.03753386065363884,
0.13739383220672607,
-0.07166037708520889,
-0.001203032094053924,
0.0991411805152893,
-0.03282354027032852,
-0.02621104195713997,
-0.1003495305776596,
-0.056914713233709335,
0.02133355103433132,
-0.014179181307554245,
0.0219106562435627,
-0.012440858408808708,
-0.031194405630230904,
0.017272917553782463,
-0.07264332473278046,
-0.0990588515996933,
0.048631928861141205,
0.06870293617248535,
0.02830205112695694,
0.003728175535798073,
0.0418209582567215,
-0.008062809705734253,
-0.009416316635906696,
0.18230710923671722,
-0.09087251126766205,
-0.04702968895435333,
-0.12998497486114502,
0.31074583530426025,
0.02001577988266945,
0.05716199055314064,
-0.0051968595944345,
-0.060508765280246735,
-0.020129229873418808,
0.2224436104297638,
0.19352169334888458,
-0.10438302904367447,
0.0013808353105559945,
0.01197972521185875,
0.001131954719312489,
-0.03878767043352127,
0.1495257019996643,
0.07059504091739655,
-0.04396885633468628,
-0.06327121704816818,
-0.03377419710159302,
-0.02417287789285183,
0.007392798084765673,
-0.023552358150482178,
0.06611976027488708,
0.0445278100669384,
-0.016231710091233253,
-0.02317056618630886,
0.06993253529071808,
-0.0754295140504837,
-0.09721854329109192,
0.06220673397183418,
-0.20764687657356262,
-0.1498207449913025,
0.001696418970823288,
0.01226746290922165,
-0.012048090808093548,
0.0863041803240776,
-0.03127380833029747,
-0.008565999567508698,
0.0360279306769371,
-0.03390803188085556,
-0.04959423467516899,
-0.0786886140704155,
0.08916398882865906,
-0.10826742649078369,
0.15264664590358734,
-0.02814236655831337,
0.07101450860500336,
0.11944054812192917,
0.055974144488573074,
-0.04819406941533089,
0.07593371719121933,
0.02580955997109413,
-0.10366068035364151,
0.019007038325071335,
0.06655188649892807,
-0.021158013492822647,
0.09078136086463928,
0.06954474747180939,
-0.09718716889619827,
0.0833054780960083,
-0.13364297151565552,
-0.10321330279111862,
-0.03357652574777603,
-0.04100583493709564,
-0.09548410773277283,
0.11892484128475189,
0.24770407378673553,
-0.015110637992620468,
0.04972105845808983,
-0.04887150600552559,
-0.015650080516934395,
0.09042064100503922,
0.009198692627251148,
-0.09026096761226654,
-0.23217056691646576,
0.036978766322135925,
0.1467331051826477,
-0.002176503650844097,
-0.2198186218738556,
-0.07080261409282684,
-0.032548632472753525,
-0.03434441238641739,
-0.08480463922023773,
0.07779353857040405,
0.09253749996423721,
0.03939499333500862,
-0.05091972276568413,
-0.1893271952867508,
-0.029156895354390144,
0.1654871255159378,
-0.08576446771621704,
-0.08887572586536407
] |
null | null | null | # albertZero
albertZero is a PyTorch model with a prediction head fine-tuned for SQuAD 2.0.
Based on Hugging Face's albert-base-v2, albertZero employs a novel method to speed up fine-tuning. It re-initializes weights of final linear layer in the shared albert transformer block, resulting in a 2% point improvement during the early epochs of fine-tuning.
## Usage
albertZero can be loaded like this:
```python
tokenizer = AutoTokenizer.from_pretrained('MarshallHo/albertZero-squad2-base-v2')
model = AutoModel.from_pretrained('MarshallHo/albertZero-squad2-base-v2')
```
or
```python
from transformers import AlbertModel, AlbertTokenizer, AlbertForQuestionAnswering, AlbertPreTrainedModel
mytokenizer = AlbertTokenizer.from_pretrained('albert-base-v2')
model = AlbertForQuestionAnsweringAVPool.from_pretrained('albert-base-v2')
model.load_state_dict(torch.load('albertZero-squad2-base-v2.bin'))
```
## References
The goal of [ALBERT](https://arxiv.org/abs/1909.11942) is to reduce the memory requirement of the groundbreaking
language model [BERT](https://arxiv.org/abs/1810.04805), while providing a similar level of performance. ALBERT mainly uses 2 methods to reduce the number of parameters – parameter sharing and factorized embedding.
The field of NLP has undergone major improvements in recent years. The
replacement of recurrent architectures by attention-based models has allowed NLP tasks such as
question-answering to approach human level performance. In order to push the limits further, the
[SQuAD2.0](https://arxiv.org/abs/1806.03822) dataset was created in 2018 with 50,000 additional unanswerable questions, addressing a major weakness of the original version of the dataset.
At the time of writing, near the top of the [SQuAD2.0 leaderboard](https://rajpurkar.github.io/SQuAD-explorer/) is Shanghai Jiao Tong University’s [Retro-Reader](http://arxiv.org/abs/2001.09694).
We have re-implemented their non-ensemble ALBERT model with the SQUAD2.0 prediction head.
## Acknowledgments
Thanks to the generosity of the team at Hugging Face and all the groups referenced above ! | {} | null | MarshallHo/albertZero-squad2-base-v2 | [
"arxiv:1909.11942",
"arxiv:1810.04805",
"arxiv:1806.03822",
"arxiv:2001.09694",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [
"1909.11942",
"1810.04805",
"1806.03822",
"2001.09694"
] | [] | TAGS
#arxiv-1909.11942 #arxiv-1810.04805 #arxiv-1806.03822 #arxiv-2001.09694 #region-us
| # albertZero
albertZero is a PyTorch model with a prediction head fine-tuned for SQuAD 2.0.
Based on Hugging Face's albert-base-v2, albertZero employs a novel method to speed up fine-tuning. It re-initializes weights of final linear layer in the shared albert transformer block, resulting in a 2% point improvement during the early epochs of fine-tuning.
## Usage
albertZero can be loaded like this:
or
## References
The goal of ALBERT is to reduce the memory requirement of the groundbreaking
language model BERT, while providing a similar level of performance. ALBERT mainly uses 2 methods to reduce the number of parameters – parameter sharing and factorized embedding.
The field of NLP has undergone major improvements in recent years. The
replacement of recurrent architectures by attention-based models has allowed NLP tasks such as
question-answering to approach human level performance. In order to push the limits further, the
SQuAD2.0 dataset was created in 2018 with 50,000 additional unanswerable questions, addressing a major weakness of the original version of the dataset.
At the time of writing, near the top of the SQuAD2.0 leaderboard is Shanghai Jiao Tong University’s Retro-Reader.
We have re-implemented their non-ensemble ALBERT model with the SQUAD2.0 prediction head.
## Acknowledgments
Thanks to the generosity of the team at Hugging Face and all the groups referenced above ! | [
"# albertZero\n\nalbertZero is a PyTorch model with a prediction head fine-tuned for SQuAD 2.0. \n\nBased on Hugging Face's albert-base-v2, albertZero employs a novel method to speed up fine-tuning. It re-initializes weights of final linear layer in the shared albert transformer block, resulting in a 2% point improvement during the early epochs of fine-tuning.",
"## Usage\n\nalbertZero can be loaded like this:\n\n\n\nor",
"## References\n\nThe goal of ALBERT is to reduce the memory requirement of the groundbreaking\nlanguage model BERT, while providing a similar level of performance. ALBERT mainly uses 2 methods to reduce the number of parameters – parameter sharing and factorized embedding. \n\nThe field of NLP has undergone major improvements in recent years. The\nreplacement of recurrent architectures by attention-based models has allowed NLP tasks such as\nquestion-answering to approach human level performance. In order to push the limits further, the\nSQuAD2.0 dataset was created in 2018 with 50,000 additional unanswerable questions, addressing a major weakness of the original version of the dataset.\n\nAt the time of writing, near the top of the SQuAD2.0 leaderboard is Shanghai Jiao Tong University’s Retro-Reader.\nWe have re-implemented their non-ensemble ALBERT model with the SQUAD2.0 prediction head.",
"## Acknowledgments\n\nThanks to the generosity of the team at Hugging Face and all the groups referenced above !"
] | [
"TAGS\n#arxiv-1909.11942 #arxiv-1810.04805 #arxiv-1806.03822 #arxiv-2001.09694 #region-us \n",
"# albertZero\n\nalbertZero is a PyTorch model with a prediction head fine-tuned for SQuAD 2.0. \n\nBased on Hugging Face's albert-base-v2, albertZero employs a novel method to speed up fine-tuning. It re-initializes weights of final linear layer in the shared albert transformer block, resulting in a 2% point improvement during the early epochs of fine-tuning.",
"## Usage\n\nalbertZero can be loaded like this:\n\n\n\nor",
"## References\n\nThe goal of ALBERT is to reduce the memory requirement of the groundbreaking\nlanguage model BERT, while providing a similar level of performance. ALBERT mainly uses 2 methods to reduce the number of parameters – parameter sharing and factorized embedding. \n\nThe field of NLP has undergone major improvements in recent years. The\nreplacement of recurrent architectures by attention-based models has allowed NLP tasks such as\nquestion-answering to approach human level performance. In order to push the limits further, the\nSQuAD2.0 dataset was created in 2018 with 50,000 additional unanswerable questions, addressing a major weakness of the original version of the dataset.\n\nAt the time of writing, near the top of the SQuAD2.0 leaderboard is Shanghai Jiao Tong University’s Retro-Reader.\nWe have re-implemented their non-ensemble ALBERT model with the SQUAD2.0 prediction head.",
"## Acknowledgments\n\nThanks to the generosity of the team at Hugging Face and all the groups referenced above !"
] | [
40,
105,
15,
209,
26
] | [
"passage: TAGS\n#arxiv-1909.11942 #arxiv-1810.04805 #arxiv-1806.03822 #arxiv-2001.09694 #region-us \n# albertZero\n\nalbertZero is a PyTorch model with a prediction head fine-tuned for SQuAD 2.0. \n\nBased on Hugging Face's albert-base-v2, albertZero employs a novel method to speed up fine-tuning. It re-initializes weights of final linear layer in the shared albert transformer block, resulting in a 2% point improvement during the early epochs of fine-tuning.## Usage\n\nalbertZero can be loaded like this:\n\n\n\nor## References\n\nThe goal of ALBERT is to reduce the memory requirement of the groundbreaking\nlanguage model BERT, while providing a similar level of performance. ALBERT mainly uses 2 methods to reduce the number of parameters – parameter sharing and factorized embedding. \n\nThe field of NLP has undergone major improvements in recent years. The\nreplacement of recurrent architectures by attention-based models has allowed NLP tasks such as\nquestion-answering to approach human level performance. In order to push the limits further, the\nSQuAD2.0 dataset was created in 2018 with 50,000 additional unanswerable questions, addressing a major weakness of the original version of the dataset.\n\nAt the time of writing, near the top of the SQuAD2.0 leaderboard is Shanghai Jiao Tong University’s Retro-Reader.\nWe have re-implemented their non-ensemble ALBERT model with the SQUAD2.0 prediction head.## Acknowledgments\n\nThanks to the generosity of the team at Hugging Face and all the groups referenced above !"
] | [
-0.05428960546851158,
0.13214652240276337,
-0.00042825803393498063,
0.052075598388910294,
0.06920265406370163,
0.012851923704147339,
0.06094880402088165,
0.09619113802909851,
0.0656733587384224,
0.1214369609951973,
0.05895921587944031,
-0.012435736134648323,
0.05470265448093414,
0.15370304882526398,
0.009751108475029469,
-0.15877588093280792,
0.05847273766994476,
-0.0711996927857399,
-0.0635257288813591,
0.01898684725165367,
0.03180011734366417,
-0.13082505762577057,
0.09153715521097183,
-0.01950235478579998,
-0.028018811717629433,
0.02558455988764763,
-0.048647440969944,
-0.017324373126029968,
0.09959578514099121,
0.08057606965303421,
0.015535152517259121,
0.006756751798093319,
0.04297005012631416,
-0.12404865771532059,
0.0008319290354847908,
0.08850385993719101,
0.04333537071943283,
0.07754366844892502,
0.041639022529125214,
0.08178240060806274,
0.056907474994659424,
-0.09357819706201553,
0.019045354798436165,
0.048343535512685776,
-0.09778096526861191,
-0.13238361477851868,
-0.1282709836959839,
0.10851675271987915,
0.0849214643239975,
-0.008020659908652306,
-0.015129409730434418,
0.07806815952062607,
0.06832478195428848,
0.0017381070647388697,
0.21393972635269165,
-0.3554821014404297,
-0.017783908173441887,
0.04650963470339775,
0.04259532690048218,
0.125111386179924,
-0.05582704022526741,
0.013758305460214615,
0.08830278366804123,
-0.04011126607656479,
0.07952790707349777,
-0.02503908984363079,
0.0021890008356422186,
-0.012515775859355927,
-0.11855583637952805,
-0.022939037531614304,
0.13457250595092773,
-0.004439860116690397,
-0.0964386984705925,
-0.12096851319074631,
-0.0863221287727356,
0.0020400932990014553,
0.019263623282313347,
-0.13691706955432892,
0.06338990479707718,
-0.022725678980350494,
0.0950000062584877,
-0.11298176646232605,
-0.06205916032195091,
0.010823975317180157,
-0.010428939014673233,
0.18432597815990448,
0.056451473385095596,
0.013002217747271061,
-0.01404440589249134,
0.05901803448796272,
-0.0827086940407753,
-0.07444706559181213,
-0.04872540012001991,
-0.07969529926776886,
-0.0889153778553009,
0.036323029547929764,
-0.018442334607243538,
-0.008827128447592258,
-0.03340645506978035,
0.17900757491588593,
-0.06656760722398758,
0.07452305406332016,
-0.02183220349252224,
0.027365712448954582,
0.04876123368740082,
0.11450444161891937,
-0.08445914089679718,
-0.10572472214698792,
0.04151352867484093,
0.035558946430683136,
0.027842771261930466,
-0.07378900051116943,
-0.03911978378891945,
-0.021858353167772293,
0.0005053706699982285,
0.04017049819231033,
-0.016583655029535294,
0.012847095727920532,
-0.024452470242977142,
-0.07141721993684769,
0.14098651707172394,
-0.1115611270070076,
-0.03616145998239517,
-0.053580619394779205,
-0.021964862942695618,
0.04620349779725075,
0.031041307374835014,
-0.008678268641233444,
-0.013223729096353054,
0.10497445613145828,
-0.1095983237028122,
-0.112202487885952,
-0.05498330667614937,
-0.07002278417348862,
0.008530565537512302,
-0.13466329872608185,
-0.03354274854063988,
-0.07307437807321548,
-0.09930358827114105,
-0.0016335675027221441,
0.028618814423680305,
-0.0012418002588674426,
-0.04974929988384247,
0.01734398491680622,
-0.033647917211055756,
-0.034873075783252716,
-0.04115338996052742,
0.01676875539124012,
-0.01806168258190155,
0.026421276852488518,
-0.007757627405226231,
0.09908479452133179,
-0.09328128397464752,
0.0075215562246739864,
-0.06246265396475792,
0.07046148180961609,
-0.12493114918470383,
-0.0097054373472929,
-0.051677778363227844,
-0.02706199139356613,
-0.055479761213064194,
0.00003690372614073567,
-0.04397786036133766,
-0.0024674120359122753,
0.06454142183065414,
0.12989023327827454,
-0.1838715821504593,
-0.07392275333404541,
0.07682052999734879,
-0.08687202632427216,
-0.08154120296239853,
0.08422292023897171,
-0.0009822131833061576,
0.0062178452499210835,
0.04785323143005371,
0.07995091378688812,
0.06072322279214859,
-0.02145727351307869,
-0.11397156864404678,
-0.06962443888187408,
-0.03494339808821678,
0.029685452580451965,
0.04074535518884659,
0.029211033135652542,
0.036513227969408035,
0.05744078755378723,
0.01940316893160343,
-0.030524980276823044,
-0.048354391008615494,
-0.06784799695014954,
0.01609445922076702,
-0.06304015219211578,
0.03807318955659866,
-0.03593515604734421,
-0.003490499686449766,
0.018526092171669006,
-0.07208847254514694,
-0.10447921603918076,
0.08086200803518295,
-0.035500023514032364,
0.03445063903927803,
-0.0889696329832077,
0.04767005518078804,
-0.03555213287472725,
0.04435425251722336,
-0.1614653617143631,
-0.07503718882799149,
0.06460532546043396,
-0.12708215415477753,
0.03680844604969025,
0.15266788005828857,
0.032722536474466324,
0.039924245327711105,
-0.03770725429058075,
0.031121598556637764,
-0.01627224311232567,
-0.08528674393892288,
-0.07704164832830429,
-0.12022513896226883,
-0.04985234886407852,
-0.05527443811297417,
0.10599774122238159,
-0.08265271037817001,
-0.01998962089419365,
-0.11926400661468506,
0.07331575453281403,
0.046148061752319336,
-0.08078467100858688,
-0.026672501116991043,
0.014365251176059246,
-0.03808837756514549,
-0.07821540534496307,
0.01919124647974968,
-0.018576640635728836,
-0.04541845992207527,
0.09316655993461609,
-0.18870510160923004,
-0.025080466642975807,
0.06210590526461601,
0.11973977833986282,
-0.014667434617877007,
-0.02440536394715309,
-0.06439255177974701,
-0.03717394173145294,
-0.007500519044697285,
0.030119573697447777,
0.1866050511598587,
0.04858407750725746,
0.07503286004066467,
-0.08787015080451965,
-0.048922099173069,
0.04426756501197815,
0.005987284239381552,
-0.0011972921201959252,
0.00006707865395583212,
0.05847204849123955,
-0.11099721491336823,
0.020709911361336708,
0.09583713114261627,
0.06815765053033829,
0.11593248695135117,
0.043422408401966095,
-0.08577172458171844,
-0.0038378487806767225,
-0.028819875791668892,
0.02107461728155613,
0.1113683208823204,
0.02304096333682537,
-0.009580609388649464,
0.04890691116452217,
0.006552469450980425,
0.04881461337208748,
-0.043611422181129456,
0.060048364102840424,
-0.00123778625857085,
-0.013919709250330925,
-0.004673924762755632,
0.02954361028969288,
-0.03369499742984772,
0.10801267623901367,
0.03499632701277733,
0.10258468985557556,
-0.03758929669857025,
-0.00007990536687429994,
-0.05545835196971893,
0.1149866059422493,
-0.026991326361894608,
-0.19721797108650208,
-0.10838349908590317,
-0.00874178297817707,
-0.11854051053524017,
0.01055068802088499,
0.0026468068826943636,
-0.06253819167613983,
-0.080329030752182,
-0.06677383929491043,
0.03559929504990578,
-0.04657983407378197,
0.017608407884836197,
0.005792522337287664,
-0.024915331974625587,
0.09753397852182388,
-0.09907975047826767,
-0.0028882124461233616,
-0.05756596475839615,
-0.07662992179393768,
0.03605563938617706,
0.0918101817369461,
0.10459593683481216,
0.04548799991607666,
-0.026935655623674393,
-0.047366753220558167,
-0.018499888479709625,
0.10188410431146622,
-0.02850944548845291,
0.005465071182698011,
0.11971112340688705,
-0.06256403028964996,
0.06458573043346405,
0.033484771847724915,
-0.04387269169092178,
-0.12763503193855286,
0.014337856322526932,
0.09730519354343414,
-0.06293244659900665,
-0.23367083072662354,
-0.0749266967177391,
-0.07779406756162643,
-0.0012773661874234676,
0.08938219398260117,
0.025479022413492203,
-0.06147296726703644,
0.03587866947054863,
-0.07903013378381729,
0.10815208405256271,
-0.11654830724000931,
0.08731074631214142,
0.06537675112485886,
-0.023001477122306824,
0.08639072626829147,
-0.041320864111185074,
0.0037969450931996107,
0.11997593939304352,
0.00015841829008422792,
0.32531556487083435,
-0.011350440792739391,
0.02601979859173298,
0.034648507833480835,
0.1249338909983635,
0.008724600076675415,
0.07884369790554047,
0.005765724461525679,
-0.022937005385756493,
-0.09552250802516937,
-0.027575243264436722,
-0.14613690972328186,
0.08677805215120316,
0.006718797609210014,
-0.0663171112537384,
-0.042856063693761826,
0.11381451040506363,
0.002202734351158142,
0.22050487995147705,
0.010342663154006004,
-0.1658485233783722,
-0.020245831459760666,
0.041957467794418335,
-0.011025970801711082,
-0.10127688944339752,
0.03338496387004852,
0.11860775202512741,
-0.00861363671720028,
0.061930954456329346,
-0.060169052332639694,
0.07055462151765823,
-0.11414705961942673,
0.039152842015028,
-0.09593981504440308,
0.09376109391450882,
0.01961911842226982,
0.05948454514145851,
-0.0775112509727478,
0.1583574414253235,
0.03969758003950119,
0.007583221420645714,
-0.08521804958581924,
0.008352571167051792,
0.007115625776350498,
-0.12570589780807495,
0.14952251315116882,
0.010024677030742168,
-0.042787857353687286,
-0.056267108768224716,
-0.10616800934076309,
0.07912001758813858,
0.13892211019992828,
-0.03932750225067139,
0.10461314022541046,
-0.023944975808262825,
0.04207201302051544,
-0.022558562457561493,
0.13368576765060425,
-0.10462063550949097,
-0.1575479656457901,
0.05039360746741295,
0.002345676301047206,
-0.12095784395933151,
-0.03918970003724098,
-0.021013401448726654,
-0.0018395938677713275,
0.20373693108558655,
0.023627907037734985,
0.003665453754365444,
-0.1244971975684166,
0.029785243794322014,
0.13807569444179535,
-0.06938532739877701,
0.009454354643821716,
0.01318337582051754,
0.13607676327228546,
-0.0458228699862957,
-0.12072105705738068,
0.026962213218212128,
-0.05879915878176689,
-0.11832435429096222,
-0.03688879311084747,
0.07296042889356613,
0.06228823587298393,
0.016738811507821083,
-0.046707477420568466,
0.0009055544505827129,
0.0734531581401825,
-0.10607597231864929,
0.06526115536689758,
0.1878657042980194,
-0.019528504461050034,
-0.0038433705922216177,
-0.08931543678045273,
0.091985784471035,
-0.046202294528484344,
0.04416265711188316,
0.04041964188218117,
0.3418426215648651,
-0.05624326691031456,
0.16534659266471863,
0.16111429035663605,
-0.09792767465114594,
-0.20498572289943695,
-0.07180570811033249,
0.031145652756094933,
0.027540380135178566,
0.0746692419052124,
-0.18820072710514069,
0.045027296990156174,
0.045684970915317535,
-0.02269178070127964,
0.09324150532484055,
-0.08529926836490631,
-0.11501741409301758,
0.06068366393446922,
0.001409623771905899,
0.3676837980747223,
-0.08068489283323288,
-0.0015831637429073453,
-0.044154200702905655,
-0.057771988213062286,
0.04396336153149605,
0.0059576076455414295,
0.09431643784046173,
-0.05475595220923424,
-0.020773964002728462,
0.05489837005734444,
-0.03050542250275612,
0.11940380185842514,
-0.01147383637726307,
0.052441179752349854,
-0.030534768477082253,
0.036452434957027435,
0.06336194276809692,
-0.06951113790273666,
0.06751219183206558,
0.007565243169665337,
0.052896175533533096,
-0.10934433341026306,
-0.042496953159570694,
0.039068978279829025,
0.01799275353550911,
0.004482003394514322,
-0.05876835435628891,
-0.09510540962219238,
0.09642055630683899,
0.044179461896419525,
0.033580780029296875,
0.040571216493844986,
-0.012236148118972778,
0.011870146729052067,
0.0815313458442688,
0.12667077779769897,
-0.15566064417362213,
0.07106268405914307,
-0.0033315725158900023,
0.0009336477378383279,
0.07451491802930832,
-0.19224373996257782,
0.050006844103336334,
0.1164330467581749,
-0.0007323622703552246,
0.013398834504187107,
0.03832681477069855,
-0.13025714457035065,
0.02861061878502369,
0.06220415234565735,
-0.21182706952095032,
-0.11229120939970016,
0.01727602630853653,
0.02435944601893425,
-0.11447791010141373,
0.01805853843688965,
0.1359662264585495,
-0.054270438849925995,
-0.010896912775933743,
-0.015923740342259407,
0.03169708326458931,
0.02227647230029106,
0.049270063638687134,
-0.02739889919757843,
0.012223144993185997,
-0.08040335774421692,
0.19078923761844635,
0.06198820844292641,
-0.03599104657769203,
0.0688854530453682,
-0.008353602141141891,
-0.03177914395928383,
-0.007069243583828211,
-0.07402507960796356,
0.11336485296487808,
-0.0360635444521904,
-0.05275910720229149,
-0.024267882108688354,
0.021214326843619347,
0.01655726693570614,
-0.04316718131303787,
-0.006849278695881367,
0.024424614384770393,
-0.036464642733335495,
0.012154913507401943,
-0.09053974598646164,
0.01315704733133316,
0.01878621056675911,
0.06030657887458801,
-0.12191876769065857,
-0.0015031900256872177,
-0.008282077498733997,
0.013521013781428337,
-0.033902622759342194,
-0.010664025321602821,
-0.06841802597045898,
-0.04586669057607651,
-0.08208594471216202,
-0.052771735936403275,
-0.00029274020926095545,
-0.0412212535738945,
-0.015523386187851429,
-0.02454213984310627,
-0.08050620555877686,
-0.0045360964722931385,
-0.06267572194337845,
-0.04710439592599869,
-0.031011609360575676,
0.05836009606719017,
-0.1008320152759552,
0.015484524890780449,
0.01553360465914011,
-0.07149694859981537,
0.10867761075496674,
-0.024433406069874763,
-0.01491699367761612,
0.062430158257484436,
0.006464899983257055,
-0.022414591163396835,
0.025032751262187958,
0.06453851610422134,
0.048584140837192535,
-0.054606352001428604,
-0.021477295085787773,
0.024279123172163963,
-0.0006000275025144219,
-0.035850100219249725,
-0.05525980889797211,
-0.066988505423069,
0.0059671178460121155,
-0.02944905497133732,
-0.03399629890918732,
-0.054887931793928146,
-0.054121311753988266,
0.11638347059488297,
0.09411594271659851,
0.08450739830732346,
-0.009887135587632656,
-0.019334128126502037,
-0.17555734515190125,
-0.024425920099020004,
0.03411797434091568,
0.00031354030943475664,
0.08298859000205994,
-0.06537497788667679,
0.040915075689554214,
-0.002212945371866226,
0.1837938278913498,
-0.06096801906824112,
0.0046262843534350395,
0.010793901048600674,
-0.08864245563745499,
-0.12219671905040741,
-0.030578047037124634,
0.07521278411149979,
0.08705325424671173,
-0.01962386816740036,
-0.011609692126512527,
0.04949645698070526,
0.021952344104647636,
0.05733032152056694,
0.26316288113594055,
0.02335604652762413,
0.05981137976050377,
0.06700371950864792,
0.0027290196157991886,
-0.13264617323875427,
-0.07034891843795776,
0.205027237534523,
-0.06936822831630707,
0.07784846425056458,
0.024448316544294357,
0.03500766307115555,
0.15366105735301971,
-0.11764953285455704,
0.0807255357503891,
-0.028694631531834602,
-0.0051467022858560085,
-0.10846138745546341,
-0.01530425250530243,
-0.06698663532733917,
-0.09077780693769455,
0.02473933808505535,
-0.10462822020053864,
0.041366588324308395,
0.08668423444032669,
-0.021877456456422806,
-0.013999267481267452,
0.03064299188554287,
-0.09701269865036011,
-0.045563165098428726,
0.01738320104777813,
0.01848359778523445,
0.0022987867705523968,
0.025015924125909805,
-0.04839874058961868,
0.04036475718021393,
0.06820318847894669,
0.06142958253622055,
0.03919607773423195,
0.07495356351137161,
0.08403080701828003,
0.00022753153461962938,
-0.06010967120528221,
-0.03438090905547142,
-0.01909090206027031,
0.03133312240242958,
0.09989478439092636,
0.013497310690581799,
-0.017132656648755074,
-0.039169393479824066,
0.1380581110715866,
-0.03795917332172394,
0.05337611585855484,
-0.10143351554870605,
0.17771923542022705,
0.07852832973003387,
0.018805382773280144,
-0.0012990067480131984,
-0.07822547852993011,
-0.031217407435178757,
0.10609722882509232,
0.10091113299131393,
-0.057650960981845856,
-0.030972884967923164,
-0.008232430554926395,
0.008497324772179127,
-0.08507512509822845,
0.15687260031700134,
0.06705863028764725,
0.21980994939804077,
0.001074435655027628,
-0.02230904996395111,
-0.022090597078204155,
0.03924107924103737,
-0.0028394863475114107,
0.1972731053829193,
0.00018874018860515207,
0.013314396142959595,
-0.07590005546808243,
-0.02414453960955143,
-0.011243229731917381,
-0.22812731564044952,
-0.006583462934941053,
-0.12552641332149506,
-0.1045651063323021,
-0.000528488599229604,
0.0017528565367683768,
-0.027567142620682716,
0.10077740252017975,
-0.029430607333779335,
0.011846288107335567,
0.1568877249956131,
-0.0091547267511487,
-0.05512198805809021,
-0.05981258675456047,
0.04028491675853729,
0.03450808301568031,
0.22886839509010315,
0.04533129930496216,
0.0010110388975590467,
0.03286084160208702,
-0.010794327594339848,
-0.15561769902706146,
-0.024397816509008408,
-0.04372737556695938,
-0.07460427284240723,
-0.017487971112132072,
0.14950792491436005,
-0.027781393378973007,
0.0170137919485569,
0.08194567263126373,
0.008515717461705208,
-0.006333168596029282,
-0.012328074313700199,
-0.0016986677655950189,
-0.03783705085515976,
0.05369139835238457,
-0.09217255562543869,
0.1415928304195404,
0.0792655199766159,
-0.0014981881249696016,
0.007810067385435104,
-0.046157561242580414,
0.062546506524086,
-0.003946286626160145,
0.09725295752286911,
-0.014355001039803028,
-0.09385617822408676,
0.002955774078145623,
-0.058495134115219116,
-0.043065473437309265,
-0.18632176518440247,
-0.02291296049952507,
0.022257007658481598,
-0.009739669039845467,
-0.03133373335003853,
0.07759031653404236,
-0.000818437896668911,
0.007534082978963852,
-0.050017550587654114,
-0.12032760679721832,
0.021311882883310318,
0.06257545202970505,
-0.0721890777349472,
-0.06798392534255981
] |
null | null | transformers |
# Neo-GPT-Title-Generation-Electric-Car
Title generator based on Neo-GPT 125M fine-tuned on a dataset of 39k url's title. All urls are selected on the TOP 10 google on a list of Keywords about "Electric car" - "Electric car for sale".
# Pipeline example
```python
import pandas as pd
from transformers import AutoModelForMaskedLM
from transformers import GPT2Tokenizer, TrainingArguments, AutoModelForCausalLM, AutoConfig
model = AutoModelForCausalLM.from_pretrained('Martian/Neo-GPT-Title-Generation-Electric-Car')
tokenizer = GPT2Tokenizer.from_pretrained('Martian/Neo-GPT-Title-Generation-Electric-Car', bos_token='<|startoftext|>',
eos_token='<|endoftext|>', pad_token='<|pad|>')
prompt = "<|startoftext|> Electric car"
input_ids = tokenizer(prompt, return_tensors="pt").input_ids
gen_tokens = model.generate(input_ids, do_sample=True, top_k=100, min_length = 30, max_length=150, top_p=0.90, num_return_sequences=20, skip_special_tokens=True)
list_title_gen = []
for i, sample_output in enumerate(gen_tokens):
title = tokenizer.decode(sample_output, skip_special_tokens=True)
list_title_gen.append(title)
for i in list_title_gen:
try:
list_title_gen[list_title_gen.index(i)] = i.split(' | ')[0]
except:
continue
try:
list_title_gen[list_title_gen.index(i)] = i.split(' - ')[0]
except:
continue
try:
list_title_gen[list_title_gen.index(i)] = i.split(' — ')[0]
except:
continue
list_title_gen = [sub.replace('�', ' ').replace('\\r',' ').replace('\
',' ').replace('\\t', ' ').replace('\\xa0', '') for sub in list_title_gen]
list_title_gen = [sub if sub != '<|startoftext|> Electric car' else '' for sub in list_title_gen]
for i in list_title_gen:
print(i)
```
# Todo
- Improve the quality of the training sample
- Add more data
| {"language": ["en"], "widget": [{"text": "Tesla range"}, {"text": "Nissan Leaf is"}, {"text": "Tesla is"}, {"text": "The best electric car"}]} | text-generation | Martian/Neo-GPT-Title-Generation-Electric-Car | [
"transformers",
"pytorch",
"gpt_neo",
"text-generation",
"en",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [
"en"
] | TAGS
#transformers #pytorch #gpt_neo #text-generation #en #autotrain_compatible #endpoints_compatible #region-us
|
# Neo-GPT-Title-Generation-Electric-Car
Title generator based on Neo-GPT 125M fine-tuned on a dataset of 39k url's title. All urls are selected on the TOP 10 google on a list of Keywords about "Electric car" - "Electric car for sale".
# Pipeline example
# Todo
- Improve the quality of the training sample
- Add more data
| [
"# Neo-GPT-Title-Generation-Electric-Car\n\nTitle generator based on Neo-GPT 125M fine-tuned on a dataset of 39k url's title. All urls are selected on the TOP 10 google on a list of Keywords about \"Electric car\" - \"Electric car for sale\".",
"# Pipeline example",
"# Todo\n- Improve the quality of the training sample\n- Add more data"
] | [
"TAGS\n#transformers #pytorch #gpt_neo #text-generation #en #autotrain_compatible #endpoints_compatible #region-us \n",
"# Neo-GPT-Title-Generation-Electric-Car\n\nTitle generator based on Neo-GPT 125M fine-tuned on a dataset of 39k url's title. All urls are selected on the TOP 10 google on a list of Keywords about \"Electric car\" - \"Electric car for sale\".",
"# Pipeline example",
"# Todo\n- Improve the quality of the training sample\n- Add more data"
] | [
41,
77,
4,
15
] | [
"passage: TAGS\n#transformers #pytorch #gpt_neo #text-generation #en #autotrain_compatible #endpoints_compatible #region-us \n# Neo-GPT-Title-Generation-Electric-Car\n\nTitle generator based on Neo-GPT 125M fine-tuned on a dataset of 39k url's title. All urls are selected on the TOP 10 google on a list of Keywords about \"Electric car\" - \"Electric car for sale\".# Pipeline example# Todo\n- Improve the quality of the training sample\n- Add more data"
] | [
-0.06901252269744873,
0.08912335336208344,
-0.0023944813292473555,
0.11872541904449463,
0.20904654264450073,
0.04310451075434685,
0.027528805658221245,
0.06801655888557434,
-0.043198008090257645,
-0.028434807434678078,
0.12891574203968048,
0.18742768466472626,
0.009032800793647766,
0.12069293856620789,
0.07739022374153137,
-0.32594355940818787,
0.029738930985331535,
0.044158197939395905,
0.07496221363544464,
0.14145329594612122,
0.07013104856014252,
-0.06527236849069595,
0.09333860874176025,
0.03081401251256466,
-0.17480796575546265,
0.05866899713873863,
0.0914553701877594,
-0.16643789410591125,
0.12437684834003448,
-0.011306136846542358,
0.10365239530801773,
0.024730471894145012,
0.04002043977379799,
-0.0095241479575634,
0.024408066645264626,
0.02376437559723854,
-0.06676740944385529,
0.07854272425174713,
0.020088713616132736,
-0.0797659158706665,
0.12606778740882874,
0.09179136157035828,
0.05765650421380997,
0.05195987969636917,
-0.13159404695034027,
-0.1889125406742096,
-0.0074866157956421375,
0.04149319604039192,
0.043556228280067444,
0.12394020706415176,
-0.02365546114742756,
0.21059805154800415,
-0.09515919536352158,
0.07013368606567383,
0.24092446267604828,
-0.2631528675556183,
-0.018041124567389488,
0.14882560074329376,
0.04227268323302269,
-0.0541762076318264,
-0.06230296194553375,
0.08619397133588791,
0.01189995277673006,
0.016174908727407455,
0.06912790238857269,
-0.011893515475094318,
-0.15033671259880066,
0.05966922268271446,
-0.12008266896009445,
0.042392220348119736,
0.1673785001039505,
0.016329508274793625,
-0.001102763693779707,
-0.012088541872799397,
-0.08418264240026474,
-0.13140174746513367,
-0.06497293710708618,
-0.07657420635223389,
-0.04551592096686363,
0.01604766771197319,
-0.09269250929355621,
-0.005634404253214598,
-0.09014316648244858,
-0.11374302953481674,
-0.155269056558609,
0.22814905643463135,
0.03210335597395897,
0.05884012207388878,
-0.022896813228726387,
0.1351771205663681,
-0.01925581507384777,
-0.05698751285672188,
-0.035565271973609924,
-0.12370377033948898,
-0.006136266048997641,
-0.040080610662698746,
-0.019665054976940155,
0.04668598994612694,
0.0022974833846092224,
0.08841963857412338,
0.1569509506225586,
-0.002153479028493166,
0.1062670350074768,
0.021561607718467712,
0.004299248103052378,
0.09262430667877197,
-0.04133015125989914,
-0.04650147631764412,
0.09258638322353363,
-0.0700983926653862,
0.02288592979311943,
-0.027002278715372086,
-0.1198582872748375,
-0.027138864621520042,
0.006607493385672569,
0.03982611000537872,
-0.031058846041560173,
0.1360929310321808,
-0.1248505488038063,
-0.010889527387917042,
-0.014223341830074787,
-0.08563866466283798,
0.044610582292079926,
-0.08011758327484131,
-0.008448298089206219,
0.014968459494411945,
0.03930915147066116,
0.0017539713298901916,
-0.04045309126377106,
0.0033007939346134663,
-0.1334989368915558,
-0.0735698714852333,
-0.098107248544693,
-0.013286885805428028,
0.0079574566334486,
-0.03469744697213173,
0.010800116695463657,
-0.18407908082008362,
-0.2623272240161896,
0.0648861676454544,
0.026030823588371277,
0.012107094749808311,
-0.09767808020114899,
-0.003175239311531186,
0.003376404754817486,
0.0011117463000118732,
-0.032252322882413864,
0.021390777081251144,
-0.0616697333753109,
0.0864153802394867,
0.04875917732715607,
0.0733003243803978,
-0.08868405967950821,
0.02688564360141754,
-0.14314430952072144,
-0.08292265981435776,
-0.1902967244386673,
0.08287178725004196,
-0.053432583808898926,
0.07353319972753525,
-0.061851054430007935,
-0.036596715450286865,
-0.0839957669377327,
0.02888636849820614,
0.016380732879042625,
0.16980203986167908,
-0.022579770535230637,
-0.1592710018157959,
0.2047826051712036,
-0.08641401678323746,
-0.06075416877865791,
0.06844843178987503,
-0.011777447536587715,
0.0710277110338211,
0.1997765451669693,
0.015382864512503147,
0.09786488860845566,
-0.05876003950834274,
-0.08440599590539932,
-0.0013829304371029139,
-0.1887778788805008,
-0.12001959979534149,
0.030828392133116722,
0.028511445969343185,
-0.21203464269638062,
0.0682421326637268,
0.06905845552682877,
0.02965029887855053,
-0.06547016650438309,
-0.05445162579417229,
-0.03126828372478485,
0.057832617312669754,
0.0936746597290039,
0.025712719187140465,
0.017102299258112907,
-0.04232492670416832,
-0.17510929703712463,
0.000300256913760677,
0.03768721967935562,
0.04077313840389252,
0.0003014614339917898,
-0.12278911471366882,
0.09423118829727173,
-0.0263377632945776,
0.04046377167105675,
-0.08541391044855118,
-0.23800218105316162,
0.007048351224511862,
0.013598524034023285,
0.06723219901323318,
-0.04816519469022751,
0.0225785244256258,
0.018447674810886383,
-0.040897712111473083,
0.028663460165262222,
-0.05857134237885475,
-0.03091622143983841,
-0.03559251129627228,
-0.13777200877666473,
0.02375979721546173,
0.030101904645562172,
-0.03887129947543144,
-0.05459525063633919,
0.015757810324430466,
0.17008885741233826,
0.10922081023454666,
-0.00582717452198267,
-0.01908397488296032,
-0.03866817429661751,
-0.014899556525051594,
-0.033361442387104034,
-0.029315045103430748,
0.03514350950717926,
0.014228926971554756,
-0.08489000797271729,
0.06628973037004471,
-0.06695771217346191,
0.17685440182685852,
0.20005865395069122,
-0.16796502470970154,
-0.08632520586252213,
0.052261970937252045,
-0.04163660109043121,
0.004689274355769157,
-0.07995424419641495,
-0.07299728691577911,
0.11894615739583969,
-0.014417925849556923,
0.0599726140499115,
-0.022258542478084564,
-0.029248889535665512,
0.05277111008763313,
0.052064474672079086,
0.03516595810651779,
0.053850576281547546,
0.3024563193321228,
-0.0841263085603714,
0.12000755220651627,
-0.03675846382975578,
-0.037094831466674805,
0.16214320063591003,
0.049020860344171524,
-0.0451357364654541,
-0.005031972657889128,
-0.13979054987430573,
-0.012147336266934872,
0.07001641392707825,
-0.10533641278743744,
-0.026899583637714386,
0.04086245223879814,
-0.008386733941733837,
0.024741156026721,
-0.13373194634914398,
-0.038997162133455276,
-0.03285640850663185,
-0.012707311660051346,
-0.01818288303911686,
0.09140047430992126,
-0.053901154547929764,
0.033897191286087036,
0.02567475102841854,
-0.04067728668451309,
0.1172918751835823,
0.05313068628311157,
-0.059851132333278656,
0.17121003568172455,
-0.028104351833462715,
-0.23643195629119873,
-0.21962366998195648,
-0.10048004239797592,
-0.031066041439771652,
0.05039796978235245,
0.08279280364513397,
-0.09437786787748337,
-0.0853089913725853,
0.07469816505908966,
0.16094593703746796,
0.014525079168379307,
0.10457339137792587,
-0.10996032506227493,
-0.019989408552646637,
-0.06505802273750305,
-0.12286322563886642,
-0.01568017527461052,
-0.024654779583215714,
-0.17405582964420319,
0.09297212958335876,
-0.06483106315135956,
0.07075699418783188,
0.1271418035030365,
0.01356195192784071,
0.027002640068531036,
-0.07263480871915817,
0.19213348627090454,
-0.12276558578014374,
-0.008553010411560535,
0.11794014275074005,
0.10179606080055237,
0.06071797385811806,
0.10634969174861908,
0.017009027302265167,
-0.09599517285823822,
0.07349850982427597,
0.047922588884830475,
-0.07645002007484436,
-0.22635763883590698,
-0.063763827085495,
-0.06445574015378952,
0.03824321925640106,
0.021229639649391174,
0.047697681933641434,
0.06705046445131302,
0.14619895815849304,
-0.010709061287343502,
0.11435853689908981,
-0.054368067532777786,
0.11139914393424988,
0.2157401740550995,
0.027295101433992386,
0.14915762841701508,
-0.046328138560056686,
-0.12978817522525787,
0.09683860093355179,
-0.025469491258263588,
0.22781555354595184,
0.0693381130695343,
0.10772805660963058,
0.04455575346946716,
0.0851462334394455,
0.14168468117713928,
0.07007484138011932,
0.09701541811227798,
-0.03227771818637848,
0.030261915177106857,
-0.02551330253481865,
-0.022059138864278793,
0.014974619261920452,
-0.0047178929671645164,
-0.04233170300722122,
0.01426636055111885,
-0.02256455458700657,
0.07096786797046661,
0.12051272392272949,
-0.00943515170365572,
-0.37463098764419556,
0.003437483450397849,
-0.03361055999994278,
-0.11172453314065933,
-0.06635388731956482,
0.02563636377453804,
-0.1584537923336029,
-0.14511355757713318,
0.09381246566772461,
-0.030644305050373077,
0.07190699130296707,
-0.020105943083763123,
0.026293888688087463,
0.01495360117405653,
0.06148282811045647,
-0.05335412919521332,
0.11393492668867111,
-0.17596755921840668,
0.1732555478811264,
0.020155414938926697,
0.05350428447127342,
-0.025662638247013092,
0.0018421458080410957,
0.024059457704424858,
0.07828985899686813,
0.06985656917095184,
-0.04475070908665657,
-0.036047037690877914,
-0.08903339505195618,
-0.11330617219209671,
0.08362477272748947,
0.04365577548742294,
-0.13796375691890717,
0.04210873320698738,
-0.04925670847296715,
-0.0038935926277190447,
0.00027784862322732806,
0.03013237565755844,
-0.11044799536466599,
-0.1237003356218338,
0.03729000315070152,
0.0877569392323494,
0.1491689532995224,
-0.013810547068715096,
-0.1357499361038208,
-0.0500735379755497,
0.15263663232326508,
-0.11621390283107758,
-0.1089865118265152,
-0.15511590242385864,
0.07441296428442001,
0.029460785910487175,
-0.06004192307591438,
0.10431978106498718,
-0.0018615730805322528,
0.117140032351017,
0.06982474774122238,
-0.1149371787905693,
0.16620256006717682,
-0.05153804272413254,
-0.07120304554700851,
-0.051173463463783264,
0.19945916533470154,
0.017234526574611664,
0.01611803099513054,
-0.02510060742497444,
0.05560906231403351,
-0.03012130968272686,
-0.1254357248544693,
0.0705314576625824,
-0.017984122037887573,
0.07271424680948257,
0.003322198987007141,
-0.06681857258081436,
-0.0029895256739109755,
-0.021131739020347595,
-0.0395531952381134,
0.13254600763320923,
0.08910459280014038,
-0.055667173117399216,
0.0620419941842556,
0.12827938795089722,
-0.03800570219755173,
-0.2682926654815674,
-0.003951784688979387,
0.04630003497004509,
0.012731682509183884,
-0.03891392797231674,
-0.2499760240316391,
0.1997077316045761,
0.09874389320611954,
-0.052427612245082855,
0.13960547745227814,
-0.08419398963451385,
-0.11979614198207855,
0.06888042390346527,
0.0393967404961586,
0.23231792449951172,
-0.08524228632450104,
-0.031090566888451576,
-0.09541665017604828,
-0.15952414274215698,
0.23105959594249725,
-0.03823917731642723,
0.0958324447274208,
-0.0013281957944855094,
0.1399918645620346,
-0.016429957002401352,
0.010451707057654858,
0.02385541796684265,
-0.010394959710538387,
0.0064036548137664795,
-0.023843077942728996,
0.011969097889959812,
0.18521855771541595,
0.04503234848380089,
0.04091231897473335,
0.06347876042127609,
-0.010683435946702957,
0.012021046131849289,
-0.11849001795053482,
-0.017833415418863297,
0.13598760962486267,
0.03422108292579651,
-0.12147999554872513,
-0.03376561030745506,
-0.0220870990306139,
-0.06532827764749527,
-0.052111655473709106,
0.042227983474731445,
0.013526702299714088,
0.0691027119755745,
-0.13640812039375305,
0.10191763192415237,
-0.10258617997169495,
-0.14448128640651703,
-0.05009911581873894,
-0.08964414894580841,
0.14831610023975372,
-0.07909652590751648,
0.05331793427467346,
0.07119319587945938,
-0.0052457996644079685,
0.03036893717944622,
0.11523118615150452,
-0.03843988850712776,
-0.04177643358707428,
0.15025725960731506,
-0.1743527352809906,
-0.0021011224016547203,
-0.10471279174089432,
-0.04155295714735985,
-0.0020268154330551624,
0.1436823606491089,
0.0848553404211998,
-0.020159726962447166,
-0.07892163097858429,
0.06437887251377106,
-0.04583693668246269,
-0.0228806734085083,
0.04178497940301895,
0.030384114012122154,
0.03509396314620972,
-0.14878565073013306,
0.012756293639540672,
0.05903872475028038,
-0.02448475919663906,
-0.04221661761403084,
0.09337934851646423,
-0.12571105360984802,
-0.05374019220471382,
-0.08474710583686829,
0.13122400641441345,
-0.1716652810573578,
-0.04373185336589813,
-0.06274333596229553,
-0.06438834220170975,
0.08815818279981613,
0.0803263708949089,
0.0979921966791153,
0.10934429615736008,
0.010061497800052166,
0.0833544060587883,
-0.1163063570857048,
-0.011448909528553486,
-0.0667419508099556,
0.04894415661692619,
-0.2229214459657669,
0.05593039467930794,
0.02433479204773903,
0.03140008822083473,
-0.0997692123055458,
-0.0019298447296023369,
-0.0828043594956398,
0.04055027291178703,
0.1496598869562149,
-0.05139319226145744,
-0.015755735337734222,
0.005236712750047445,
0.024097269400954247,
-0.03398995101451874,
-0.10933709889650345,
0.03193165361881256,
-0.08384981006383896,
0.009069102816283703,
0.027127617970108986,
0.019004156813025475,
-0.06684673577547073,
0.04522252455353737,
0.0876629501581192,
-0.02442276105284691,
0.1116829365491867,
0.04650937765836716,
0.06419792026281357,
0.14497382938861847,
-0.09517059475183487,
0.07184366881847382,
0.08569420874118805,
0.037538401782512665,
0.008534939959645271,
0.04541303589940071,
0.04897729307413101,
0.0026597436517477036,
0.0941016897559166,
0.031916577368974686,
-0.09417818486690521,
-0.18196624517440796,
0.006562850438058376,
-0.03731343522667885,
-0.09475671499967575,
-0.025561489164829254,
-0.04261060804128647,
0.027812562882900238,
0.0197742972522974,
0.22267569601535797,
-0.06803678721189499,
-0.02479514665901661,
-0.10538270324468613,
0.07011820375919342,
-0.04318782314658165,
-0.07993709295988083,
-0.09494458138942719,
-0.03292069211602211,
0.02579409070312977,
-0.008101086132228374,
0.2763316333293915,
0.09336548298597336,
-0.04823843762278557,
0.039905574172735214,
0.09631205350160599,
0.08665748685598373,
-0.032026492059230804,
0.1547211855649948,
0.1886056661605835,
0.02966398186981678,
0.04406221956014633,
0.078435979783535,
0.07706630975008011,
-0.0923086628317833,
0.09963379055261612,
-0.07872810959815979,
0.054106734693050385,
0.03735502436757088,
0.02320578694343567,
-0.01762267015874386,
-0.16240307688713074,
-0.04517846927046776,
-0.07878299802541733,
0.010650440119206905,
0.01576297916471958,
0.05199352279305458,
0.12678304314613342,
0.02402961440384388,
0.037198297679424286,
0.03386584669351578,
-0.025623993948101997,
-0.2063046395778656,
-0.1864680051803589,
-0.10631483793258667,
-0.22380460798740387,
0.07211536914110184,
-0.038255732506513596,
-0.09930400550365448,
0.0642557367682457,
0.020521346479654312,
-0.044625673443078995,
0.10653108358383179,
-0.027052363380789757,
-0.05578020587563515,
0.022490929812192917,
-0.050278786569833755,
-0.08116850256919861,
-0.040236566215753555,
-0.03768949583172798,
-0.07489756494760513,
0.04700563848018646,
-0.025798223912715912,
-0.030222423374652863,
-0.09807655960321426,
0.03889765962958336,
-0.07821182161569595,
-0.02124122343957424,
-0.05417376011610031,
0.0024485005997121334,
-0.03983926400542259,
-0.10317403823137283,
-0.0063096750527620316,
-0.020049890503287315,
0.048965997993946075,
0.20782272517681122,
-0.02120339125394821,
-0.016985652968287468,
-0.08593475073575974,
0.10030319541692734,
0.033056847751140594,
0.08240503817796707,
-0.002586380345746875,
-0.11317591369152069,
-0.022311894223093987,
0.18992666900157928,
0.17719188332557678,
0.06952613592147827,
-0.023588716983795166,
0.041647933423519135,
-0.013251302763819695,
0.03126802667975426,
0.09811648726463318,
0.010376637801527977,
0.22778761386871338,
-0.04868578910827637,
-0.10117723047733307,
-0.04124750569462776,
-0.006688836496323347,
-0.032398924231529236,
0.021626096218824387,
0.022201115265488625,
-0.009937244467437267,
-0.055343370884656906,
0.07677699625492096,
-0.18173176050186157,
-0.023740701377391815,
-0.004171345382928848,
-0.07813144475221634,
-0.11475390940904617,
-0.029080858454108238,
0.04516534507274628,
0.048593949526548386,
0.09986822307109833,
0.010579575784504414,
-0.025200964882969856,
-0.04596159607172012,
0.058735791593790054,
-0.29689961671829224,
-0.12299726903438568,
0.11688044667243958,
0.09481939673423767,
0.2089482545852661,
-0.0769243910908699,
0.14899080991744995,
0.06258394569158554,
-0.032844893634319305,
-0.05803511291742325,
0.06998123973608017,
-0.027672206982970238,
-0.13507044315338135,
0.06641543656587601,
-0.02229614183306694,
0.0399479903280735,
-0.015032405965030193,
-0.04277260601520538,
-0.0312577560544014,
-0.021370360627770424,
-0.05532357469201088,
-0.015273620374500751,
-0.10676208138465881,
0.042173441499471664,
-0.10226555913686752,
0.07453953474760056,
0.11555793136358261,
-0.028165368363261223,
-0.031478408724069595,
-0.08304992318153381,
0.08941338211297989,
0.09161927551031113,
-0.049390312284231186,
-0.012345082126557827,
-0.1722513735294342,
-0.06277596950531006,
0.11893655359745026,
-0.019896171987056732,
-0.10787814110517502,
-0.024028832092881203,
-0.042192552238702774,
-0.014448132365942001,
-0.17038339376449585,
0.046058159321546555,
0.07712478935718536,
0.03548251837491989,
0.004158631898462772,
-0.06695546209812164,
0.0041531287133693695,
0.01784268580377102,
-0.21580801904201508,
-0.11257001757621765
] |
null | null | transformers | # wav2vec2-large-xlsr-53-breton
The model can be used directly (without a language model) as follows:
```python
import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
lang = "br"
test_dataset = load_dataset("common_voice", lang, split="test[:2%]")
processor = Wav2Vec2Processor.from_pretrained("Marxav/wav2vec2-large-xlsr-53-breton")
model = Wav2Vec2ForCTC.from_pretrained("Marxav/wav2vec2-large-xlsr-53-breton")
resampler = torchaudio.transforms.Resample(48_000, 16_000)
chars_to_ignore_regex = '[\\,\,\?\.\!\;\:\"\“\%\”\�\(\)\/\«\»\½\…]'
# Preprocessing the datasets.
# We need to read the audio files as arrays
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() + " "
batch["sentence"] = re.sub("ʼ", "'", batch["sentence"])
batch["sentence"] = re.sub("’", "'", batch["sentence"])
batch["sentence"] = re.sub('‘', "'", batch["sentence"])
return batch
nb_samples = 2
test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"][:nb_samples], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
print("Prediction:", processor.batch_decode(predicted_ids))
print("Reference:", test_dataset["sentence"][:nb_samples])
```
The above code leads to the following prediction for the first two samples:
* Prediction: ["neller ket dont a-benn eus netra la vez ser merc'hed evel sich", 'an eil hag egile']
* Reference: ["N'haller ket dont a-benn eus netra pa vezer nec'het evel-se.", 'An eil hag egile.']
The model can be evaluated as follows on the {language} test data of Common Voice.
```python
import re
import torch
import torchaudio
from datasets import load_dataset, load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
lang = 'br'
test_dataset = load_dataset("common_voice", lang, split="test")
wer = load_metric("wer")
processor = Wav2Vec2Processor.from_pretrained('Marxav/wav2vec2-large-xlsr-53-breton')
model = Wav2Vec2ForCTC.from_pretrained('Marxav/wav2vec2-large-xlsr-53-breton')
model.to("cuda")
chars_to_ignore_regex = '[\\,\,\?\.\!\;\:\"\“\%\”\�\(\)\/\«\»\½\…]'
resampler = torchaudio.transforms.Resample(48_000, 16_000)
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def speech_file_to_array_fn(batch):
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() + " "
batch["sentence"] = re.sub("ʼ", "'", batch["sentence"])
batch["sentence"] = re.sub("’", "'", batch["sentence"])
batch["sentence"] = re.sub('‘', "'", batch["sentence"])
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(remove_special_characters)
test_dataset = test_dataset.map(speech_file_to_array_fn)
# Preprocessing the datasets.
# We need to read the audio files as arrays
def evaluate(batch):
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
pred_ids = torch.argmax(logits, dim=-1)
batch["pred_strings"] = processor.batch_decode(pred_ids)
return batch
result = test_dataset.map(evaluate, batched=True, batch_size=8)
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
```
**Test Result**: 43.43%
## Training
The Common Voice `train`, `validation` datasets were used for training. | {"language": "br", "license": "apache-2.0", "tags": ["audio", "automatic-speech-recognition", "speech", "xlsr-fine-tuning-week"], "datasets": ["common_voice"], "model-index": [{"name": "XLSR Wav2Vec2 Breton by Marxav", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice br", "type": "common_voice", "args": "br"}, "metrics": [{"type": "wer", "value": 43.43, "name": "Test WER"}]}]}]} | automatic-speech-recognition | Marxav/wav2vec2-large-xlsr-53-breton | [
"transformers",
"pytorch",
"jax",
"wav2vec2",
"automatic-speech-recognition",
"audio",
"speech",
"xlsr-fine-tuning-week",
"br",
"dataset:common_voice",
"license:apache-2.0",
"model-index",
"endpoints_compatible",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [
"br"
] | TAGS
#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #br #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us
| # wav2vec2-large-xlsr-53-breton
The model can be used directly (without a language model) as follows:
The above code leads to the following prediction for the first two samples:
* Prediction: ["neller ket dont a-benn eus netra la vez ser merc'hed evel sich", 'an eil hag egile']
* Reference: ["N'haller ket dont a-benn eus netra pa vezer nec'het evel-se.", 'An eil hag egile.']
The model can be evaluated as follows on the {language} test data of Common Voice.
Test Result: 43.43%
## Training
The Common Voice 'train', 'validation' datasets were used for training. | [
"# wav2vec2-large-xlsr-53-breton\nThe model can be used directly (without a language model) as follows:\n\nThe above code leads to the following prediction for the first two samples:\n* Prediction: [\"neller ket dont a-benn eus netra la vez ser merc'hed evel sich\", 'an eil hag egile']\n* Reference: [\"N'haller ket dont a-benn eus netra pa vezer nec'het evel-se.\", 'An eil hag egile.']\n\nThe model can be evaluated as follows on the {language} test data of Common Voice.\n\n\nTest Result: 43.43%",
"## Training\nThe Common Voice 'train', 'validation' datasets were used for training."
] | [
"TAGS\n#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #br #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us \n",
"# wav2vec2-large-xlsr-53-breton\nThe model can be used directly (without a language model) as follows:\n\nThe above code leads to the following prediction for the first two samples:\n* Prediction: [\"neller ket dont a-benn eus netra la vez ser merc'hed evel sich\", 'an eil hag egile']\n* Reference: [\"N'haller ket dont a-benn eus netra pa vezer nec'het evel-se.\", 'An eil hag egile.']\n\nThe model can be evaluated as follows on the {language} test data of Common Voice.\n\n\nTest Result: 43.43%",
"## Training\nThe Common Voice 'train', 'validation' datasets were used for training."
] | [
80,
151,
23
] | [
"passage: TAGS\n#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #br #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us \n# wav2vec2-large-xlsr-53-breton\nThe model can be used directly (without a language model) as follows:\n\nThe above code leads to the following prediction for the first two samples:\n* Prediction: [\"neller ket dont a-benn eus netra la vez ser merc'hed evel sich\", 'an eil hag egile']\n* Reference: [\"N'haller ket dont a-benn eus netra pa vezer nec'het evel-se.\", 'An eil hag egile.']\n\nThe model can be evaluated as follows on the {language} test data of Common Voice.\n\n\nTest Result: 43.43%## Training\nThe Common Voice 'train', 'validation' datasets were used for training."
] | [
-0.10910305380821228,
-0.01729993149638176,
-0.005371724255383015,
-0.015491025522351265,
-0.01352361124008894,
0.005412390921264887,
0.1339590847492218,
0.10580920428037643,
0.06889654695987701,
0.06038525700569153,
0.03515494614839554,
0.07264222949743271,
0.017700374126434326,
0.10355383902788162,
-0.004759523551911116,
-0.08814942091703415,
0.05038066580891609,
0.005783121567219496,
0.0929737240076065,
0.06739811599254608,
0.1332639455795288,
-0.05291212722659111,
0.028501151129603386,
0.09511622041463852,
-0.04466966539621353,
0.05341130867600441,
0.003502424107864499,
-0.08033358305692673,
0.13383705914020538,
0.02452271431684494,
0.05418861657381058,
0.01152240764349699,
0.011638576164841652,
-0.28231510519981384,
-0.0009535890421830118,
-0.012351750396192074,
0.0384691096842289,
-0.015322938561439514,
0.023265842348337173,
-0.06964980810880661,
-0.030619390308856964,
0.06207750365138054,
-0.0037790716160088778,
0.039408933371305466,
-0.01605234108865261,
-0.1269710808992386,
-0.04199756309390068,
0.00855826772749424,
0.07966471463441849,
0.08503534644842148,
-0.06838575750589371,
0.09424141049385071,
-0.13483893871307373,
0.07977253943681717,
0.17038951814174652,
-0.2239120900630951,
0.029741555452346802,
0.035220466554164886,
0.00339418719522655,
-0.03374296799302101,
-0.05182531476020813,
0.0085702920332551,
0.1021886095404625,
0.02191673219203949,
-0.08157817274332047,
-0.015225245617330074,
-0.11498241871595383,
-0.0027706255204975605,
-0.14227603375911713,
-0.004062903579324484,
0.2989823818206787,
0.024922527372837067,
-0.07687969505786896,
-0.05205566808581352,
0.007828815840184689,
0.012607734650373459,
0.05019224062561989,
-0.08384349197149277,
0.0107569620013237,
-0.027024375274777412,
0.05775554105639458,
0.006293861195445061,
-0.12559546530246735,
-0.08754324913024902,
-0.08023157715797424,
0.11503187566995621,
0.07386483997106552,
-0.03054332174360752,
-0.053714312613010406,
0.05253114178776741,
-0.14904169738292694,
-0.058141078799963,
-0.08008532971143723,
0.04412127658724785,
-0.043279070407152176,
-0.029966359958052635,
-0.06784224510192871,
-0.15694734454154968,
0.1288193315267563,
0.11605335026979446,
0.050259724259376526,
0.03266886621713638,
-0.05753791332244873,
0.051727455109357834,
0.057939525693655014,
0.10290201753377914,
0.003537258133292198,
-0.028468474745750427,
-0.0275670625269413,
0.03128262981772423,
-0.001196760917082429,
-0.011242523789405823,
-0.03826248645782471,
-0.052162207663059235,
0.08122692257165909,
0.02037898078560829,
-0.04388803988695145,
-0.022248204797506332,
-0.09409332275390625,
0.0028563477098941803,
-0.05854816734790802,
-0.1306375414133072,
-0.0363452173769474,
0.04999949038028717,
-0.019201334565877914,
0.07070861011743546,
0.039070285856723785,
0.05042754486203194,
-0.04781871289014816,
0.0010172418551519513,
-0.01708146743476391,
0.004868438467383385,
0.02003055438399315,
-0.04925419017672539,
0.03818714991211891,
-0.028736459091305733,
-0.0008053554920479655,
-0.1053897887468338,
-0.10273528099060059,
-0.08689479529857635,
-0.009400689043104649,
0.025416182354092598,
-0.03207786753773689,
-0.12574462592601776,
-0.025239942595362663,
-0.012476509436964989,
-0.06210188567638397,
-0.05784904956817627,
-0.0693168193101883,
0.030300404876470566,
0.0533137172460556,
0.029937997460365295,
0.08156116306781769,
0.052592407912015915,
-0.08404100686311722,
-0.016465431079268456,
-0.056070927530527115,
0.0985938087105751,
-0.11494050174951553,
-0.08426030725240707,
-0.11332152038812637,
-0.043450213968753815,
-0.03871634230017662,
0.0696486085653305,
0.05681340768933296,
0.1092514917254448,
-0.2184605896472931,
-0.09244954586029053,
0.07601425051689148,
-0.13116206228733063,
-0.10159793496131897,
0.19649538397789001,
0.00014123768778517842,
0.08026517182588577,
0.10349275916814804,
0.3310226798057556,
0.07850934565067291,
-0.17876172065734863,
-0.05607898533344269,
0.046051956713199615,
0.07141680270433426,
0.060491591691970825,
0.060283489525318146,
-0.09981101006269455,
-0.0471452921628952,
0.0004331276868470013,
-0.08369141817092896,
0.0055237701162695885,
-0.044384073466062546,
-0.03996972367167473,
0.0010499813361093402,
-0.07576382160186768,
0.09435703605413437,
-0.020948803052306175,
-0.0067202430218458176,
-0.06289875507354736,
-0.04700798913836479,
0.09617006033658981,
0.14237762987613678,
-0.08685871213674545,
0.05860801786184311,
-0.1159972995519638,
0.13912621140480042,
-0.058207686990499496,
-0.04683301970362663,
-0.06771115958690643,
0.05173957720398903,
0.016357161104679108,
-0.06830182671546936,
0.09241298586130142,
0.1566527634859085,
0.01181287132203579,
-0.007773305289447308,
-0.01735195890069008,
-0.04245321825146675,
-0.01527003850787878,
0.009962293319404125,
-0.04677608236670494,
-0.19131365418434143,
0.02969156578183174,
-0.033267486840486526,
0.1155846118927002,
-0.1245049312710762,
-0.021002091467380524,
0.018385790288448334,
0.08610901981592178,
-0.019787399098277092,
0.02059340290725231,
0.022888753563165665,
0.035918813198804855,
-0.0522649846971035,
0.05625138059258461,
-0.030872102826833725,
-0.009237435646355152,
-0.0990234762430191,
0.11978085339069366,
-0.07255996018648148,
-0.011669239960610867,
0.07465917617082596,
-0.06697864830493927,
-0.032172370702028275,
0.08154239505529404,
-0.03579412400722504,
-0.049397893249988556,
-0.08946756273508072,
-0.05525444820523262,
0.23228701949119568,
-0.006300292443484068,
0.07072945684194565,
-0.07633606344461441,
-0.07364346832036972,
-0.014189043082296848,
-0.1296917051076889,
-0.014099312014877796,
0.10102880001068115,
-0.06899487972259521,
0.0383392758667469,
0.03696952387690544,
0.010065215639770031,
-0.16772568225860596,
0.2193889617919922,
-0.03540146350860596,
-0.07679669559001923,
-0.005643532611429691,
0.033005811274051666,
-0.03555825725197792,
0.079131580889225,
-0.21303784847259521,
-0.01838613487780094,
0.02786250226199627,
0.08796463906764984,
0.06598048657178879,
-0.12105211615562439,
0.021158870309591293,
0.0023478169459849596,
-0.11260763555765152,
-0.058673471212387085,
0.08726295828819275,
-0.04070863872766495,
0.047079671174287796,
-0.06411052495241165,
-0.09962543100118637,
-0.00767030892893672,
-0.047956109046936035,
-0.16517344117164612,
0.1316649466753006,
-0.0922793298959732,
-0.12197767943143845,
-0.11357583105564117,
0.05198453366756439,
-0.08435434103012085,
0.010128313675522804,
0.11378318816423416,
-0.1223234012722969,
-0.04059703275561333,
-0.06574643403291702,
0.11614276468753815,
-0.045645806938409805,
-0.002604176290333271,
-0.011269854381680489,
-0.07046308368444443,
0.05912339314818382,
-0.1695288121700287,
-0.006578334141522646,
-0.05250478908419609,
-0.04054175689816475,
-0.010770217515528202,
-0.04342060163617134,
0.030192306265234947,
0.17005644738674164,
0.04650145769119263,
-0.01831592060625553,
-0.031233249232172966,
0.227427676320076,
-0.07697819173336029,
-0.0497187003493309,
0.09731734544038773,
-0.04239172115921974,
-0.0036484766751527786,
0.10658451914787292,
-0.003115396946668625,
-0.0647832527756691,
-0.0026626235339790583,
0.06384897977113724,
0.028146417811512947,
-0.343814879655838,
-0.08293573558330536,
-0.03107777237892151,
-0.005461688153445721,
-0.06819020211696625,
0.02814546413719654,
0.07851438969373703,
0.0007994199986569583,
0.000007590731911477633,
-0.04360589385032654,
0.05388703569769859,
0.017313560470938683,
0.22285708785057068,
-0.023061497136950493,
0.06003066152334213,
-0.015928085893392563,
-0.0418468602001667,
0.036517221480607986,
0.10361091792583466,
0.07447726279497147,
0.02415522187948227,
0.10281679034233093,
0.13357652723789215,
0.09211328625679016,
0.0002688964013941586,
-0.008200662210583687,
-0.0784606859087944,
0.030401377007365227,
0.016687409952282906,
-0.03832278028130531,
0.041947465389966965,
0.0625169649720192,
0.09715477377176285,
-0.007938290014863014,
-0.0385824516415596,
0.0158933587372303,
0.09900128096342087,
0.12895311415195465,
0.15579545497894287,
-0.11561745405197144,
-0.07071931660175323,
0.0128144146874547,
-0.08793332427740097,
-0.015291950665414333,
0.06195748969912529,
0.07900238782167435,
-0.06547997891902924,
0.11168677359819412,
0.07915210723876953,
0.029375402256846428,
-0.049775607883930206,
0.023722372949123383,
-0.09505008161067963,
0.019073080271482468,
0.002414490794762969,
0.10368288308382034,
-0.30402377247810364,
0.18604135513305664,
0.00525137223303318,
0.09347034245729446,
-0.004794052802026272,
-0.0024276641197502613,
-0.02597089484333992,
0.0526060126721859,
0.13068728148937225,
0.017167219892144203,
0.05698995292186737,
-0.06085467338562012,
-0.02638757973909378,
0.047110460698604584,
0.020645666867494583,
-0.019187716767191887,
0.02726360224187374,
0.016934605315327644,
0.014613776467740536,
0.01409574132412672,
-0.018570972606539726,
-0.17937126755714417,
-0.01699594408273697,
0.056555479764938354,
0.11535954475402832,
0.04108395054936409,
-0.02729976736009121,
-0.11071107536554337,
-0.174581378698349,
0.08497647196054459,
-0.18921196460723877,
-0.0313003808259964,
-0.021948067471385002,
-0.071103036403656,
0.13357006013393402,
-0.06950993835926056,
-0.01787332445383072,
0.056508176028728485,
0.10236837714910507,
-0.04319934919476509,
0.010476256720721722,
0.03635231778025627,
-0.09680217504501343,
-0.12889115512371063,
-0.044190797954797745,
0.16561834514141083,
0.08816554397344589,
0.09405627101659775,
0.04914873093366623,
0.00519970990717411,
-0.018894623965024948,
-0.02575276978313923,
0.03754401579499245,
0.1267612725496292,
-0.1381218582391739,
0.07225757837295532,
-0.00889621488749981,
-0.13125592470169067,
-0.1440712958574295,
-0.08969303965568542,
0.11843590438365936,
0.17612725496292114,
-0.015026763081550598,
0.09949193149805069,
0.21766714751720428,
-0.13380661606788635,
-0.1813332736492157,
-0.021467464044690132,
0.09628833830356598,
0.07492061704397202,
-0.04856804013252258,
-0.1216411367058754,
0.15552861988544464,
0.051530320197343826,
-0.03592091426253319,
-0.07259536534547806,
-0.26010751724243164,
-0.15853281319141388,
0.19131417572498322,
-0.07386841624975204,
0.1425033062696457,
-0.021350158378481865,
-0.033505167812108994,
-0.028387831524014473,
-0.0007235467783175409,
-0.04855513945221901,
-0.09597936272621155,
0.08005469292402267,
0.0385703518986702,
0.10828156769275665,
0.021665047854185104,
0.006011284422129393,
0.14171387255191803,
0.20852215588092804,
0.0012289881706237793,
0.00426142755895853,
0.0672878623008728,
-0.09335441887378693,
-0.018394554033875465,
0.19722865521907806,
-0.04440987482666969,
0.02771521545946598,
-0.08586974442005157,
-0.06461160629987717,
-0.0535007044672966,
0.13822650909423828,
0.011073606088757515,
-0.03517506644129753,
-0.03427568078041077,
-0.04717914015054703,
0.024485621601343155,
0.0017528684111312032,
0.07509016245603561,
-0.08080940693616867,
0.07698044925928116,
0.02295110933482647,
0.18112479150295258,
-0.017817068845033646,
-0.11740793287754059,
0.03342382609844208,
-0.04502740874886513,
0.0742153599858284,
-0.04544032737612724,
0.03840426728129387,
0.11938607692718506,
0.03659394755959511,
0.14218735694885254,
0.020060833543539047,
-0.18177491426467896,
0.045121390372514725,
0.03850363567471504,
-0.06839918345212936,
-0.12123118340969086,
0.005887453444302082,
-0.09875445812940598,
-0.052803609520196915,
0.07621137797832489,
0.1556822508573532,
-0.06538761407136917,
-0.004310609307140112,
-0.012612921185791492,
0.019419660791754723,
-0.10463597625494003,
0.22818413376808167,
0.0498524084687233,
0.060434143990278244,
-0.0748787671327591,
0.06615351140499115,
0.0022187447175383568,
0.00438993563875556,
0.1013953909277916,
-0.06327340751886368,
-0.028542710468173027,
-0.0745624303817749,
-0.05152422934770584,
0.2195225954055786,
-0.03593350574374199,
-0.11691554635763168,
-0.07504507154226303,
-0.09511715173721313,
0.0033893354702740908,
0.2061455249786377,
0.07820843160152435,
0.07015672326087952,
0.001981614623218775,
-0.015891509130597115,
-0.03840375319123268,
0.09886682778596878,
0.13222317397594452,
0.060831453651189804,
-0.12232561409473419,
0.0932922437787056,
0.032719578593969345,
0.06987524032592773,
-0.015876777470111847,
-0.04245138168334961,
-0.05630379542708397,
0.06823969632387161,
-0.08083297312259674,
0.05318676307797432,
-0.03589348867535591,
0.023266494274139404,
0.07033403217792511,
-0.09522918611764908,
-0.017464732751250267,
0.061299920082092285,
-0.0797828882932663,
0.05914603918790817,
0.026852557435631752,
0.1388038694858551,
-0.1281198263168335,
0.011564134620130062,
0.04400404542684555,
-0.08739025890827179,
0.09830548614263535,
0.06615174561738968,
-0.049765944480895996,
0.1302611380815506,
-0.2172795683145523,
-0.02000029943883419,
0.050363630056381226,
0.07300441712141037,
-0.009534265846014023,
-0.16710694134235382,
-0.03006083145737648,
0.05748768523335457,
0.057855334132909775,
-0.004363004583865404,
0.04126733914017677,
-0.05805962160229683,
-0.05872717499732971,
-0.08151132613420486,
-0.07781205326318741,
-0.032229214906692505,
-0.004300987347960472,
0.10250041633844376,
0.09429838508367538,
0.1589595228433609,
-0.09149904549121857,
0.05628214031457901,
-0.06755538284778595,
0.0331147238612175,
-0.014792879112064838,
-0.019549395889043808,
-0.12851794064044952,
-0.03336923196911812,
0.04327559843659401,
-0.10414882749319077,
0.09908968210220337,
-0.029631178826093674,
0.05002536252140999,
-0.012423550710082054,
-0.12487934529781342,
-0.06415929645299911,
0.02039237506687641,
0.11695994436740875,
0.01831059716641903,
0.022209303453564644,
-0.11872079968452454,
-0.06285025924444199,
0.029918113723397255,
0.09417913109064102,
-0.009253473952412605,
0.08359622955322266,
-0.013010330498218536,
0.11236805468797684,
0.10463045537471771,
-0.10951238870620728,
-0.07784152030944824,
0.006305675487965345,
-0.08647782355546951,
0.05390920862555504,
0.022961657494306564,
0.18190349638462067,
0.13137857615947723,
-0.10321427881717682,
0.05119270458817482,
-0.042031414806842804,
-0.08368503302335739,
-0.15789788961410522,
-0.11484609544277191,
-0.09990701824426651,
-0.12203115224838257,
0.05359261482954025,
-0.0988004133105278,
0.025303762406110764,
0.07900074124336243,
0.08619076758623123,
0.012180797755718231,
0.14656415581703186,
-0.016843507066369057,
-0.06390035897493362,
0.05293350666761398,
-0.0704365000128746,
-0.023744547739624977,
-0.06157755106687546,
-0.0005242702318355441,
0.1275893747806549,
0.025214409455657005,
0.019996631890535355,
-0.011867108754813671,
0.008495950140058994,
0.016005391255021095,
-0.08186029642820358,
-0.07342875748872757,
0.0025344628375023603,
-0.028718112036585808,
0.05898221954703331,
0.07006087154150009,
0.11303962022066116,
-0.05015674605965614,
0.03688111528754234,
0.08198267221450806,
-0.024703480303287506,
-0.14856621623039246,
-0.16160397231578827,
0.1262837052345276,
0.04463967680931091,
0.06265608221292496,
-0.010946085676550865,
-0.10114838182926178,
-0.028615282848477364,
0.17866578698158264,
0.11175068467855453,
0.08102113753557205,
0.010450972244143486,
0.004496575798839331,
-0.0031546344980597496,
-0.009540952742099762,
-0.06805470585823059,
0.05096909776329994,
0.21552635729312897,
0.00755232572555542,
0.02110311947762966,
-0.07211484760046005,
-0.021174216642975807,
0.04094648361206055,
0.06199992820620537,
-0.031769927591085434,
-0.07894761115312576,
-0.03342840448021889,
0.08553667366504669,
-0.07923512160778046,
-0.17957863211631775,
-0.07694777846336365,
-0.07401169091463089,
-0.0816669836640358,
-0.012223856523633003,
0.11450265347957611,
0.04769544303417206,
0.014276623725891113,
-0.05686415731906891,
-0.05131874606013298,
0.12953145802021027,
-0.017053108662366867,
-0.06997397541999817,
-0.054857704788446426,
0.04129888489842415,
0.023645363748073578,
0.08311167359352112,
0.022190427407622337,
0.22256045043468475,
0.030491217970848083,
0.07462360709905624,
-0.00928795337677002,
0.13192066550254822,
0.02943006344139576,
-0.013591166585683823,
0.017844298854470253,
0.12406261265277863,
0.0016494103474542499,
0.16911138594150543,
0.09359727054834366,
-0.12308621406555176,
0.023529142141342163,
-0.015480619855225086,
-0.06468934565782547,
-0.12416627258062363,
0.04699062928557396,
-0.08483721315860748,
0.09669134765863419,
0.07733766734600067,
-0.04411027580499649,
-0.04805593565106392,
-0.04999374970793724,
0.033288802951574326,
-0.004405916202813387,
0.0013211816549301147,
0.002726740902289748,
-0.2299966663122177,
0.05409735441207886,
-0.08169221878051758,
0.004575603175908327,
-0.16160042583942413,
-0.04395075887441635,
0.03108825534582138,
-0.02134445495903492,
-0.0008678811136633158,
0.05664505064487457,
0.12250855565071106,
0.029701590538024902,
-0.048584260046482086,
-0.0033423854038119316,
0.017442235723137856,
0.09104278683662415,
-0.0898565724492073,
-0.1289825141429901
] |
null | null | transformers |
# GPT2 - RUS | {"language": "ru", "tags": ["text-generation"]} | text-generation | Mary222/GPT2_RU_GAME | [
"transformers",
"pytorch",
"gpt2",
"text-generation",
"ru",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [
"ru"
] | TAGS
#transformers #pytorch #gpt2 #text-generation #ru #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
# GPT2 - RUS | [
"# GPT2 - RUS"
] | [
"TAGS\n#transformers #pytorch #gpt2 #text-generation #ru #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"# GPT2 - RUS"
] | [
49,
7
] | [
"passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #ru #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# GPT2 - RUS"
] | [
-0.00519120367243886,
-0.022561686113476753,
-0.007596803829073906,
0.027643540874123573,
0.14348329603672028,
0.04741635173559189,
0.14076685905456543,
0.09847523272037506,
0.04966764897108078,
-0.005836662836372852,
0.198514923453331,
0.09829526394605637,
-0.004303532186895609,
0.10892949253320694,
-0.0027985076885670424,
-0.2793978750705719,
0.07184869796037674,
0.019321255385875702,
-0.060192033648490906,
0.12074270099401474,
0.0961117073893547,
-0.029754001647233963,
0.08361269533634186,
-0.01682775467634201,
-0.1632949411869049,
0.0341312475502491,
0.07704346626996994,
-0.1302386224269867,
0.1239718422293663,
0.08251646161079407,
0.072904571890831,
0.025236627086997032,
-0.05518567934632301,
-0.10075037181377411,
0.009497102349996567,
0.004437679890543222,
-0.1123058870434761,
0.056387972086668015,
0.11674775183200836,
-0.1007215827703476,
0.20335617661476135,
0.027923746034502983,
-0.05529777333140373,
0.03563017025589943,
-0.14591549336910248,
-0.08964543044567108,
-0.06596796214580536,
0.0983213260769844,
0.03364867344498634,
0.11994517594575882,
-0.02552942745387554,
0.1203906238079071,
-0.06840329617261887,
0.08543050289154053,
0.1765928864479065,
-0.4095193147659302,
-0.005889644380658865,
0.0986812561750412,
-0.03486963361501694,
0.07076051831245422,
0.03715027868747711,
0.11200957745313644,
0.006362952291965485,
-0.0003543096245266497,
-0.012845480814576149,
-0.04848652333021164,
-0.0650225430727005,
0.052013836801052094,
-0.11208679527044296,
-0.05733760446310043,
0.21742506325244904,
-0.066304512321949,
0.0868762880563736,
-0.004740026779472828,
-0.08081080764532089,
-0.10855792462825775,
-0.0017332464922219515,
-0.02209903486073017,
-0.08728388696908951,
0.06542260944843292,
0.0341460257768631,
-0.09173055738210678,
-0.15695609152317047,
-0.04900094121694565,
-0.18389128148555756,
0.24891093373298645,
0.03905206546187401,
0.10308823734521866,
-0.11186890304088593,
0.09539317339658737,
-0.089888796210289,
-0.05539141595363617,
0.022401239722967148,
-0.11104321479797363,
0.010741172358393669,
0.02736402302980423,
-0.07505236566066742,
-0.01127445325255394,
0.06780096143484116,
0.15706253051757812,
-0.03470384329557419,
0.026490727439522743,
0.07502985745668411,
0.10447301715612411,
-0.018300287425518036,
0.09376778453588486,
-0.027486193925142288,
-0.005222867708653212,
0.03973152115941048,
-0.19838517904281616,
-0.009530077688395977,
-0.053296755999326706,
-0.18631292879581451,
-0.10477590560913086,
0.0456717349588871,
0.057599909603595734,
-0.01877403073012829,
0.08547791838645935,
-0.035883091390132904,
0.010756579227745533,
0.07048287987709045,
-0.052363377064466476,
-0.016928385943174362,
-0.0304990466684103,
0.0074049439281225204,
0.11161167919635773,
-0.03255738317966461,
0.014723153784871101,
-0.1164662167429924,
0.07279697805643082,
-0.026630504056811333,
0.02216721512377262,
-0.02847258187830448,
-0.0688541904091835,
0.00745548028498888,
-0.12372330576181412,
0.016804594546556473,
-0.1884877234697342,
-0.11289388686418533,
0.02126743085682392,
0.02584683895111084,
-0.06701408326625824,
0.009575954638421535,
-0.003423164365813136,
-0.04119002819061279,
0.049313075840473175,
-0.05525838956236839,
-0.02618766948580742,
-0.05418155714869499,
0.068247489631176,
-0.06317905336618423,
0.10326189547777176,
-0.09348790347576141,
0.04264058172702789,
-0.1140684112906456,
-0.0472157746553421,
-0.07631133496761322,
0.09178325533866882,
-0.06535642594099045,
0.04058269038796425,
-0.029999466612935066,
-0.03346605598926544,
-0.04870269075036049,
0.0353795550763607,
-0.009134500287473202,
0.17550894618034363,
-0.06976275891065598,
-0.12215150147676468,
0.2883366048336029,
-0.11185971647500992,
-0.10266436636447906,
0.11114346235990524,
0.034966468811035156,
-0.0006472945096902549,
0.10328071564435959,
0.1523466855287552,
0.03204374015331268,
0.002161991549655795,
0.016751106828451157,
0.04840453341603279,
-0.13615290820598602,
-0.05462343245744705,
0.046298518776893616,
0.016959529370069504,
-0.09577107429504395,
0.053224172443151474,
0.026152903214097023,
0.07113932073116302,
-0.061856020241975784,
-0.039583779871463776,
-0.027904439717531204,
0.010653670877218246,
0.09327615797519684,
-0.02227655053138733,
0.13995669782161713,
-0.09247077256441116,
-0.09181821346282959,
-0.08848944306373596,
-0.0010482951765879989,
0.012761733494699001,
0.04498634114861488,
-0.05229385942220688,
0.13260242342948914,
-0.01821913942694664,
0.07034073024988174,
-0.1485065519809723,
-0.055063627660274506,
-0.023937691003084183,
0.16988593339920044,
0.028110960498452187,
0.09872053563594818,
0.07742587476968765,
-0.027512291446328163,
-0.04278356954455376,
0.015549616888165474,
0.07416310906410217,
-0.028525015339255333,
-0.04443417116999626,
-0.09187308698892593,
0.07801498472690582,
-0.03368033468723297,
-0.019928712397813797,
-0.02911118045449257,
0.006951558403670788,
0.09761559218168259,
0.116020567715168,
-0.02663186751306057,
0.06291935592889786,
-0.07983815670013428,
0.025157928466796875,
-0.08561909943819046,
0.01416774746030569,
0.08601009100675583,
-0.0392509363591671,
-0.07502767443656921,
0.18443027138710022,
-0.07129527628421783,
0.2153051793575287,
0.20847631990909576,
-0.19172872602939606,
-0.05014968290925026,
-0.02890695445239544,
-0.02840232662856579,
0.027700316160917282,
0.08712387084960938,
0.01163731049746275,
0.11272633820772171,
0.005472314078360796,
0.11562862247228622,
-0.036445703357458115,
-0.03517407551407814,
0.035502299666404724,
-0.0815090462565422,
-0.028022054582834244,
0.09614474326372147,
0.12585046887397766,
-0.1413647085428238,
0.18403039872646332,
0.14631721377372742,
0.019295459613204002,
0.20308993756771088,
0.04354993626475334,
-0.04456297308206558,
0.04614871367812157,
-0.0379689522087574,
-0.02292882837355137,
-0.006439560558646917,
-0.11195341497659683,
-0.03965071961283684,
0.08531364053487778,
0.04369021952152252,
0.08143656700849533,
-0.142377570271492,
-0.053883083164691925,
-0.028403403237462044,
-0.04806026443839073,
0.015093657188117504,
0.10987960547208786,
-0.004104293417185545,
0.14222551882266998,
0.009352394379675388,
0.01595114916563034,
0.08323033154010773,
0.0347614511847496,
-0.09818832576274872,
0.16831594705581665,
-0.12591134011745453,
-0.3511248230934143,
-0.13585862517356873,
-0.1085810512304306,
-0.049174241721630096,
0.0775022879242897,
0.08819086849689484,
-0.1811864972114563,
-0.019076121971011162,
0.051065947860479355,
0.16033922135829926,
-0.07886572182178497,
0.05885257199406624,
-0.0765986517071724,
0.07674093544483185,
-0.1044590026140213,
-0.019643036648631096,
-0.07982489466667175,
-0.03953874111175537,
-0.08496953547000885,
0.19434140622615814,
-0.09419350326061249,
0.04393523558974266,
0.12437108159065247,
-0.00038096841308288276,
0.05136902257800102,
-0.06097157299518585,
0.15674743056297302,
-0.12310485541820526,
0.018993917852640152,
0.1667124480009079,
-0.004246945027261972,
0.0669950470328331,
0.08517224341630936,
-0.013836698606610298,
-0.07112683355808258,
0.025424329563975334,
-0.049945950508117676,
-0.11008879542350769,
-0.24109619855880737,
-0.15374526381492615,
-0.08857115358114243,
0.0758315846323967,
0.020834339782595634,
0.032242611050605774,
0.10633662343025208,
0.11721894890069962,
-0.04571712762117386,
-0.0049785771407186985,
0.007819629274308681,
0.07580848038196564,
0.20252640545368195,
-0.01759745553135872,
0.17274019122123718,
-0.08897963911294937,
-0.07996093481779099,
0.13773952424526215,
0.022577647119760513,
0.18951615691184998,
0.06821835786104202,
-0.008998917415738106,
0.012852254323661327,
0.11875007301568985,
0.13023439049720764,
0.08709557354450226,
0.08397001773118973,
-0.03424258157610893,
0.0050217341631650925,
-0.024817999452352524,
-0.04086340218782425,
0.08868751674890518,
-0.0031366944313049316,
-0.19159100949764252,
-0.022702399641275406,
-0.03767591342329979,
0.10761044919490814,
0.10373180359601974,
0.07179735600948334,
-0.20028802752494812,
-0.09428752213716507,
0.04882422462105751,
0.014072543941438198,
-0.09291555732488632,
0.07089973986148834,
-0.0326450951397419,
-0.15618498623371124,
0.08063150942325592,
-0.041242074221372604,
0.08893740922212601,
0.0035328820813447237,
0.060901571065187454,
-0.017356816679239273,
-0.058621276170015335,
0.012702519074082375,
0.1428079903125763,
-0.29986289143562317,
0.2704389691352844,
-0.015128734521567822,
-0.07436765730381012,
-0.11909312754869461,
-0.010110479779541492,
-0.006520570255815983,
0.10350827127695084,
0.11976656317710876,
0.026198940351605415,
-0.11238360404968262,
-0.10766193270683289,
-0.04011615365743637,
0.04173329845070839,
0.13942962884902954,
-0.06802435219287872,
0.015177031978964806,
-0.048272933810949326,
0.014602857641875744,
-0.04075997322797775,
-0.03404338285326958,
-0.026555517688393593,
-0.1700630933046341,
0.0897892639040947,
0.021975822746753693,
0.05526049807667732,
0.012803187593817711,
-0.06215991452336311,
-0.12163092941045761,
0.251228928565979,
-0.06896017491817474,
-0.13125079870224,
-0.09457172453403473,
-0.011311057955026627,
0.0861591324210167,
-0.10809862613677979,
0.0771496444940567,
-0.05317673832178116,
0.03274738788604736,
-0.06060529872775078,
-0.18794065713882446,
0.1164025142788887,
-0.09336268156766891,
-0.0896056592464447,
0.00702724140137434,
0.20249038934707642,
-0.019737618044018745,
0.02691558562219143,
-0.010482072830200195,
0.07152271270751953,
-0.09326455742120743,
-0.10842575877904892,
0.07280036062002182,
-0.017197929322719574,
0.029423264786601067,
0.03122415393590927,
-0.041023071855306625,
-0.021327802911400795,
-0.06293324381113052,
-0.07433201372623444,
0.28550416231155396,
0.20905084908008575,
-0.1192186176776886,
0.22877267003059387,
0.016970401629805565,
-0.031448204070329666,
-0.3072665333747864,
-0.07600454986095428,
-0.05398881807923317,
-0.007495982106775045,
-0.07086603343486786,
-0.21144096553325653,
0.01586381159722805,
0.03537650778889656,
-0.03064013086259365,
0.14149095118045807,
-0.1877063363790512,
-0.10374026000499725,
0.11702574044466019,
-0.04068421572446823,
0.3484555780887604,
-0.08420868217945099,
-0.05398135259747505,
-0.07658395171165466,
-0.11385632306337357,
0.14465481042861938,
0.04235391691327095,
0.09920773655176163,
-0.04462888464331627,
0.12066660076379776,
0.037657905369997025,
-0.024542583152651787,
0.10228535532951355,
-0.01942659541964531,
-0.043122548609972,
-0.11213424056768417,
0.006484381388872862,
0.09858887642621994,
0.02853485383093357,
0.0018806983716785908,
0.023951755836606026,
0.022045297548174858,
-0.09549256414175034,
-0.0640660747885704,
-0.05024585500359535,
0.04309944808483124,
0.04029225558042526,
-0.09098721295595169,
-0.040400631725788116,
-0.03137608617544174,
-0.033688951283693314,
-0.026805611327290535,
0.17671696841716766,
-0.020284494385123253,
0.08619103580713272,
0.011738714762032032,
0.03947613760828972,
-0.10257971286773682,
0.04923676326870918,
-0.0350431390106678,
-0.07207231968641281,
0.07917714864015579,
-0.14587847888469696,
0.024566074833273888,
0.1269679218530655,
-0.08175761252641678,
-0.00024164517526514828,
0.0823817029595375,
-0.025545787066221237,
-0.0037747130263596773,
0.14738668501377106,
-0.2935028374195099,
-0.004882785491645336,
-0.06808697432279587,
-0.05097676441073418,
0.15992814302444458,
0.07275637984275818,
0.17011143267154694,
-0.04788241535425186,
-0.05173734948039055,
-0.0043240259401500225,
-0.00978078506886959,
-0.058515314012765884,
0.07612501829862595,
-0.010563144460320473,
0.0003878603456541896,
-0.11652088910341263,
0.07664105296134949,
-0.00825208518654108,
-0.113229900598526,
0.040316544473171234,
0.09566423296928406,
-0.16966168582439423,
-0.11991573125123978,
-0.009519456885755062,
-0.0009145696531049907,
-0.19694532454013824,
-0.05190664902329445,
-0.02647521160542965,
-0.11473048478364944,
0.09796653687953949,
0.062155526131391525,
0.09758760780096054,
0.05007784813642502,
-0.018189048394560814,
-0.01324757281690836,
-0.0007007569074630737,
-0.02566269226372242,
0.02713002823293209,
-0.006355366203933954,
-0.11265388876199722,
0.05079786852002144,
-0.023018697276711464,
0.12623780965805054,
-0.09687568247318268,
-0.02739151194691658,
-0.12124472111463547,
0.031705692410469055,
-0.1180330142378807,
-0.0936349555850029,
-0.08479095250368118,
-0.06998373568058014,
-0.045688532292842865,
-0.06787417083978653,
-0.05667262151837349,
-0.030390173196792603,
-0.12331137806177139,
0.03577907755970955,
-0.0776144415140152,
0.01848294399678707,
-0.05970693379640579,
0.0035443648230284452,
0.07966407388448715,
-0.014737637713551521,
0.15271447598934174,
0.20272324979305267,
-0.027234770357608795,
0.15279342234134674,
-0.08757445216178894,
0.008667189627885818,
0.09146038442850113,
0.02275177650153637,
0.0450158454477787,
0.05972801521420479,
0.0376192070543766,
0.03809267655014992,
0.028731945902109146,
0.09055627137422562,
0.028605526313185692,
-0.08576657623052597,
0.04556817188858986,
-0.0870363861322403,
-0.11186524480581284,
-0.027882346883416176,
-0.015452067367732525,
0.047567788511514664,
0.052215635776519775,
0.12534917891025543,
-0.07553751766681671,
0.10929334908723831,
-0.049347519874572754,
0.04499796777963638,
-0.010365575551986694,
-0.1562078893184662,
-0.06496333330869675,
-0.07467414438724518,
0.03865973651409149,
0.0017359870253130794,
0.3000047504901886,
0.05921085923910141,
0.021968724206089973,
0.03906083106994629,
0.07445045560598373,
0.02321729063987732,
0.022480005398392677,
0.16167977452278137,
0.11307728290557861,
-0.049774330109357834,
-0.13643227517604828,
0.08651677519083023,
0.00762055953964591,
-0.07864683121442795,
0.13707956671714783,
0.0023910412564873695,
0.026268567889928818,
0.06612762063741684,
-0.03144792094826698,
-0.01613612100481987,
-0.07558297365903854,
-0.13202553987503052,
-0.0882168784737587,
0.013550793752074242,
-0.018958214670419693,
0.12053561955690384,
0.1891884207725525,
-0.05972902476787567,
0.031988997012376785,
-0.02138056606054306,
-0.03792290762066841,
-0.15498016774654388,
-0.1899077594280243,
-0.08889482915401459,
-0.17039532959461212,
0.027672911062836647,
-0.09153621643781662,
0.029011420905590057,
0.05290227755904198,
0.08202246576547623,
-0.06344082951545715,
0.0843324214220047,
-0.0006311364704743028,
-0.10708785057067871,
0.0651942789554596,
-0.013030018657445908,
0.030832646414637566,
0.03327479213476181,
-0.06127848103642464,
-0.08008011430501938,
-0.010837111622095108,
-0.017868977040052414,
0.052778713405132294,
-0.07910353690385818,
-0.002709437860175967,
-0.1154392883181572,
-0.08145441114902496,
-0.05465381219983101,
0.09585380554199219,
-0.0053924331441521645,
0.06257390230894089,
-0.007567782420665026,
-0.012384425848722458,
0.014871181920170784,
0.23703797161579132,
-0.035661254078149796,
-0.07072491943836212,
-0.027216872200369835,
0.17774757742881775,
0.028308192268013954,
0.1394246369600296,
-0.013006206601858139,
0.00848494004458189,
-0.09533438086509705,
0.32067787647247314,
0.3611678183078766,
-0.008747594431042671,
0.023053182289004326,
0.018670478835701942,
0.0432121604681015,
0.12489161640405655,
0.12103206664323807,
0.07798358798027039,
0.20593641698360443,
-0.08681364357471466,
-0.07394202798604965,
-0.07854756712913513,
0.039015427231788635,
-0.0948939323425293,
0.088411346077919,
0.039219003170728683,
-0.09157268702983856,
-0.041301093995571136,
0.11202089488506317,
-0.18278713524341583,
0.11190932244062424,
-0.04797517508268356,
-0.18040750920772552,
-0.07652703672647476,
0.07516365498304367,
0.11116619408130646,
0.026428479701280594,
0.111236572265625,
-0.00877019390463829,
-0.08994001895189285,
0.027819480746984482,
0.06537636369466782,
-0.2319709211587906,
0.0030535943806171417,
0.058334168046712875,
0.008839166723191738,
0.0059003750793635845,
-0.030807750299572945,
0.14118048548698425,
0.07783588767051697,
0.05920041352510452,
-0.04532857984304428,
0.01572507992386818,
0.013397041708230972,
-0.04266754165291786,
0.009504995308816433,
0.013521409593522549,
0.013094091787934303,
-0.15622618794441223,
0.10832898318767548,
-0.11877212673425674,
0.034322261810302734,
-0.024428626522421837,
0.0007000694167800248,
0.014384700916707516,
0.0920504704117775,
-0.10812021046876907,
0.04419047012925148,
0.1158340647816658,
-0.02336135506629944,
-0.02184082195162773,
-0.08356833457946777,
0.006430305074900389,
0.024883467704057693,
-0.0357026644051075,
-0.07502789795398712,
-0.13811956346035004,
-0.09216780960559845,
0.11389663815498352,
0.010668559931218624,
-0.12509509921073914,
0.009104388765990734,
-0.11479770392179489,
0.0715905949473381,
-0.15780329704284668,
0.11409778147935867,
0.037931155413389206,
0.006893477868288755,
0.004124908242374659,
-0.04883918911218643,
0.055743973702192307,
0.05387866124510765,
-0.10421633720397949,
-0.09506364166736603
] |
null | null | transformers |
# GPT2 - RUS | {"language": "ru", "tags": ["text-generation"]} | text-generation | Mary222/GPT2_standard | [
"transformers",
"pytorch",
"gpt2",
"feature-extraction",
"text-generation",
"ru",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [
"ru"
] | TAGS
#transformers #pytorch #gpt2 #feature-extraction #text-generation #ru #endpoints_compatible #text-generation-inference #region-us
|
# GPT2 - RUS | [
"# GPT2 - RUS"
] | [
"TAGS\n#transformers #pytorch #gpt2 #feature-extraction #text-generation #ru #endpoints_compatible #text-generation-inference #region-us \n",
"# GPT2 - RUS"
] | [
47,
7
] | [
"passage: TAGS\n#transformers #pytorch #gpt2 #feature-extraction #text-generation #ru #endpoints_compatible #text-generation-inference #region-us \n# GPT2 - RUS"
] | [
-0.013653847388923168,
-0.038437217473983765,
-0.008177190087735653,
0.03573990240693092,
0.13849709928035736,
0.057603344321250916,
0.078948974609375,
0.1162635013461113,
0.02695523388683796,
0.005248039960861206,
0.16822874546051025,
0.09192246198654175,
0.014333253726363182,
0.05938269942998886,
0.00502702547237277,
-0.28659212589263916,
0.08893578499555588,
0.028443176299333572,
-0.075626440346241,
0.12239111959934235,
0.08668506890535355,
-0.02160092443227768,
0.08312132209539413,
-0.006231684237718582,
-0.14840446412563324,
0.0367303192615509,
0.07143544405698776,
-0.10995160788297653,
0.1121344268321991,
0.07276605814695358,
0.05524280294775963,
0.008865403942763805,
-0.08159871399402618,
-0.13288119435310364,
0.013924974948167801,
0.013698033057153225,
-0.12023992091417313,
0.049223463982343674,
0.1110016256570816,
-0.12664665281772614,
0.24283911287784576,
0.01196399424225092,
-0.0682506114244461,
0.031621113419532776,
-0.15550002455711365,
-0.11809937655925751,
-0.08344325423240662,
0.1424681693315506,
0.0037863352335989475,
0.13724219799041748,
-0.03537639230489731,
0.057249534875154495,
-0.08164815604686737,
0.07923305779695511,
0.25096508860588074,
-0.38760268688201904,
-0.005701514892280102,
0.08212745934724808,
0.023865144699811935,
0.06939675658941269,
0.030819235369563103,
0.10088697820901871,
-0.016158176586031914,
-0.005709037184715271,
-0.026998288929462433,
-0.0508248545229435,
-0.052236173301935196,
0.06564188003540039,
-0.11792491376399994,
-0.08294104039669037,
0.1875486522912979,
-0.03666377812623978,
0.08477118611335754,
-0.010591632686555386,
-0.07925944030284882,
-0.1135643944144249,
-0.014442823827266693,
0.0013209334574639797,
-0.07894492149353027,
0.07162720710039139,
0.04373261705040932,
-0.11426488310098648,
-0.14912253618240356,
-0.0711178258061409,
-0.15665659308433533,
0.2215804010629654,
0.038180261850357056,
0.11297862231731415,
-0.12580271065235138,
0.08526120334863663,
-0.13985948264598846,
-0.05339577794075012,
0.0009207561379298568,
-0.10788960009813309,
0.0246108565479517,
0.060569535940885544,
-0.06979487091302872,
-0.034523263573646545,
0.0727229192852974,
0.10649292916059494,
-0.12017195671796799,
0.02736811712384224,
0.05902516096830368,
0.12185695022344589,
-0.019862474873661995,
0.09481889009475708,
-0.04577355459332466,
0.020472003147006035,
0.01621026173233986,
-0.19723853468894958,
-0.02466646395623684,
-0.051813364028930664,
-0.16481465101242065,
-0.1070706769824028,
0.02871958538889885,
0.06018712371587753,
-0.006256294436752796,
0.06964272260665894,
-0.03709498792886734,
0.005646685138344765,
0.06269501149654388,
-0.05447620898485184,
-0.022394422441720963,
-0.009332042187452316,
0.014031556434929371,
0.11577986180782318,
-0.031508639454841614,
-0.014227071776986122,
-0.1390729397535324,
0.030812880024313927,
-0.03874935954809189,
0.0517599955201149,
-0.022608404979109764,
-0.07212495803833008,
0.007785741239786148,
-0.16116490960121155,
-0.004446033854037523,
-0.16154836118221283,
-0.1286318600177765,
0.030687933787703514,
0.026417192071676254,
-0.05853325501084328,
0.0425412654876709,
-0.006562237162142992,
-0.059209469705820084,
0.03868886083364487,
-0.04665766656398773,
-0.05257400870323181,
-0.05872627720236778,
0.07726594805717468,
-0.08407026529312134,
0.09407681971788406,
-0.09386913478374481,
0.05362316220998764,
-0.10594119876623154,
-0.013918210752308369,
-0.11792321503162384,
0.1162930354475975,
-0.0593012198805809,
0.03954263776540756,
-0.05217716097831726,
-0.06772279739379883,
-0.074760302901268,
0.03121027909219265,
-0.024045679718255997,
0.17892161011695862,
-0.07365234941244125,
-0.13289064168930054,
0.3221948444843292,
-0.12695731222629547,
-0.10504788905382156,
0.09183964133262634,
0.023215483874082565,
-0.03207898885011673,
0.09549233317375183,
0.2305888831615448,
0.052783284336328506,
0.02744441106915474,
-0.004816864151507616,
0.08150661736726761,
-0.14464983344078064,
-0.03633565828204155,
0.06609947979450226,
-0.013404607772827148,
-0.03150530159473419,
0.029092207551002502,
-0.011999929323792458,
0.07227770984172821,
-0.04812072589993477,
-0.043781355023384094,
-0.03293651342391968,
0.02392939105629921,
0.10683125257492065,
-0.028102831915020943,
0.1280067265033722,
-0.059184495359659195,
-0.0960383340716362,
-0.08251960575580597,
-0.006609180010855198,
-0.029727796092629433,
0.07190890610218048,
-0.05315016210079193,
0.17163775861263275,
-0.01463409699499607,
0.06861032545566559,
-0.1837356984615326,
-0.03608355671167374,
-0.03367205709218979,
0.1344604790210724,
0.011762318201363087,
0.07115253061056137,
0.07761527597904205,
-0.042646631598472595,
-0.04295484721660614,
0.016214191913604736,
0.012589321471750736,
-0.03850013390183449,
-0.0147636029869318,
-0.0864371806383133,
0.04370773956179619,
-0.03241585195064545,
-0.06712976843118668,
-0.024099064990878105,
0.013905290514230728,
0.14016404747962952,
0.08491529524326324,
-0.017830820754170418,
0.030677037313580513,
-0.07302333414554596,
0.017620423808693886,
-0.055053602904081345,
-0.008168812841176987,
0.07806418836116791,
-0.04713606834411621,
-0.09314568340778351,
0.18223237991333008,
-0.03371831402182579,
0.17622128129005432,
0.19095157086849213,
-0.1770058572292328,
-0.03709590062499046,
-0.026729241013526917,
-0.03367956727743149,
0.05573814734816551,
0.0916532352566719,
-0.01478375680744648,
0.1598939597606659,
0.018863780423998833,
0.09913606196641922,
-0.05455728620290756,
-0.03501490131020546,
0.027478979900479317,
-0.04786594212055206,
-0.01973881945014,
0.10003495961427689,
0.10651207715272903,
-0.13228483498096466,
0.1635352075099945,
0.1381702870130539,
0.035076502710580826,
0.2048998326063156,
0.006729344371706247,
-0.07022348046302795,
0.04415081813931465,
0.006188046652823687,
-0.027491338551044464,
0.0008390109287574887,
-0.18122893571853638,
-0.04196680337190628,
0.07285669445991516,
0.06441560387611389,
0.11126143485307693,
-0.13552162051200867,
-0.057720646262168884,
-0.018100634217262268,
-0.08706419914960861,
-0.05725904181599617,
0.08604898303747177,
0.006860825698822737,
0.12558069825172424,
0.024793898686766624,
0.05984564870595932,
0.07412838190793991,
0.027434250339865685,
-0.09284275025129318,
0.19398406147956848,
-0.11085698008537292,
-0.3351868689060211,
-0.11965103447437286,
-0.06338029354810715,
-0.03510012850165367,
0.06398499757051468,
0.1010398268699646,
-0.1822834461927414,
0.010846327058970928,
0.023871755227446556,
0.18660524487495422,
-0.11287981271743774,
0.04386649280786514,
-0.07726753503084183,
0.07314090430736542,
-0.10715833306312561,
-0.043520864099264145,
-0.07085257768630981,
-0.04576790705323219,
-0.07813408970832825,
0.16219136118888855,
-0.09992742538452148,
0.04884245619177818,
0.12794393301010132,
0.014769518747925758,
0.07102144509553909,
-0.06615687161684036,
0.15230056643486023,
-0.1239120215177536,
-0.01181054674088955,
0.18876829743385315,
0.00021864011068828404,
0.07505734264850616,
0.04096445068717003,
-0.010009258054196835,
-0.05871671810746193,
-0.011257762089371681,
-0.04011781886219978,
-0.11443331092596054,
-0.25970175862312317,
-0.12739920616149902,
-0.10229954123497009,
0.08311162143945694,
0.00007199007814051583,
0.03995092958211899,
0.06986932456493378,
0.09722325950860977,
-0.03443101793527603,
-0.02221616730093956,
0.028440043330192566,
0.05447058007121086,
0.16020087897777557,
-0.018114658072590828,
0.13092251121997833,
-0.08443773537874222,
-0.055158209055662155,
0.12391958385705948,
0.010994323529303074,
0.2703767418861389,
0.039360854774713516,
0.03861652687191963,
0.03774363547563553,
0.12365072965621948,
0.10545089095830917,
0.08947213739156723,
0.047742441296577454,
-0.020632298663258553,
0.008615680038928986,
-0.027105769142508507,
-0.029263418167829514,
0.06683021038770676,
0.030797535553574562,
-0.18296176195144653,
-0.044478025287389755,
-0.062218960374593735,
0.13530275225639343,
0.10548415780067444,
0.049636948853731155,
-0.18052609264850616,
-0.09525450319051743,
0.05244695767760277,
0.01507909968495369,
-0.08532688766717911,
0.07538183033466339,
-0.006200571544468403,
-0.14885492622852325,
0.07609250396490097,
-0.047328513115644455,
0.09997080266475677,
0.005401963833719492,
0.04885797202587128,
-0.026218509301543236,
-0.09061417728662491,
0.017837947234511375,
0.13866347074508667,
-0.22478637099266052,
0.2836660146713257,
-0.015583568252623081,
-0.05680818110704422,
-0.09732665866613388,
-0.0016854939749464393,
-0.009915631264448166,
0.09881487488746643,
0.1727137416601181,
0.034546054899692535,
-0.08818662911653519,
-0.07585151493549347,
-0.0237390398979187,
0.04416085034608841,
0.1560671031475067,
-0.08847282826900482,
0.00859595276415348,
-0.031339216977357864,
0.02898593805730343,
-0.04759228974580765,
0.005282330326735973,
0.005317416973412037,
-0.1688690036535263,
0.07442371547222137,
-0.029182011261582375,
0.0668206438422203,
-0.0034104487858712673,
-0.03076949529349804,
-0.06451112031936646,
0.24695587158203125,
-0.10023383796215057,
-0.13967399299144745,
-0.09058810770511627,
-0.005151455290615559,
0.09615666419267654,
-0.09690398722887039,
0.07690935581922531,
-0.025028668344020844,
0.03526131436228752,
-0.06217502802610397,
-0.19210979342460632,
0.10948015004396439,
-0.07322178781032562,
-0.058286380022764206,
0.035807494074106216,
0.23071616888046265,
-0.0048685441724956036,
0.022782884538173676,
0.006408436689525843,
0.058057114481925964,
-0.08271130174398422,
-0.12808653712272644,
0.05652469024062157,
-0.0027489960193634033,
0.029665088281035423,
0.07769950479269028,
-0.02483215183019638,
0.00317930756136775,
-0.06537598371505737,
-0.02873946540057659,
0.29834944009780884,
0.14615489542484283,
-0.10800356417894363,
0.2342672049999237,
-0.006890355609357357,
-0.027644004672765732,
-0.2792365252971649,
-0.04406896233558655,
-0.044842999428510666,
-0.018762750551104546,
-0.06546921283006668,
-0.21255378425121307,
0.01661214791238308,
0.04911127686500549,
-0.007811078801751137,
0.15203538537025452,
-0.251028448343277,
-0.08465316146612167,
0.06780008971691132,
-0.03581000491976738,
0.3070976138114929,
-0.09957291930913925,
-0.06608729809522629,
-0.06044342741370201,
-0.168035089969635,
0.14624691009521484,
-0.029109932482242584,
0.10689650475978851,
-0.039436422288417816,
0.09705039858818054,
0.03258632868528366,
-0.030365101993083954,
0.11367765069007874,
0.018255431205034256,
-0.024881636723876,
-0.0893508791923523,
-0.013716504909098148,
0.15922750532627106,
0.02862529270350933,
0.01078152284026146,
0.010599219240248203,
0.03128278627991676,
-0.12228353321552277,
-0.05594635754823685,
-0.08345888555049896,
0.03661764785647392,
0.04098809137940407,
-0.07477841526269913,
-0.05936681106686592,
-0.03652577102184296,
-0.0021861528512090445,
0.0023499522358179092,
0.20283539593219757,
-0.028898676857352257,
0.07619284838438034,
-0.024706460535526276,
0.017902500927448273,
-0.09618231654167175,
-0.07160960137844086,
-0.03126049414277077,
-0.04589291289448738,
0.09429048001766205,
-0.18827788531780243,
0.03022906556725502,
0.11706812679767609,
-0.062160294502973557,
0.013903903774917126,
0.09935350716114044,
-0.02880963310599327,
0.02378946915268898,
0.13585375249385834,
-0.25912752747535706,
-0.05923518165946007,
-0.06989365816116333,
-0.09872731566429138,
0.12809228897094727,
0.07544171065092087,
0.16663046181201935,
-0.03159044310450554,
-0.040198493748903275,
-0.015557033941149712,
-0.0036185244098305702,
-0.09152498841285706,
0.06283412873744965,
-0.023207688704133034,
0.010157207027077675,
-0.12759263813495636,
0.07996669411659241,
-0.02258414402604103,
-0.1490643471479416,
0.024165550246834755,
0.09420516341924667,
-0.1616593599319458,
-0.11343007534742355,
-0.05789065361022949,
-0.0072162337601184845,
-0.17006874084472656,
-0.03973912447690964,
-0.02027761936187744,
-0.11122886091470718,
0.09534680098295212,
0.07008877396583557,
0.0741536021232605,
0.07013846188783646,
-0.019590897485613823,
-0.009936021640896797,
0.014665293507277966,
-0.05774057283997536,
0.018777858465909958,
-0.03834966942667961,
-0.10508903861045837,
0.06261572241783142,
-0.02103114128112793,
0.13239338994026184,
-0.0800267904996872,
-0.015348291024565697,
-0.10347294062376022,
0.0439021997153759,
-0.0908503532409668,
-0.06213243305683136,
-0.10628184676170349,
-0.07076101750135422,
-0.05282513424754143,
-0.0311020128428936,
-0.060933034867048264,
-0.011360859498381615,
-0.12488184869289398,
0.01612665131688118,
-0.09290017932653427,
0.008895942941308022,
-0.07804303616285324,
0.01455756090581417,
0.0711679682135582,
-0.027405017986893654,
0.16421295702457428,
0.22938573360443115,
-0.03625509515404701,
0.1694207340478897,
-0.12288064509630203,
-0.020577790215611458,
0.09273500740528107,
0.01236572302877903,
0.009300578385591507,
0.06809569895267487,
0.05107280611991882,
0.01873824931681156,
-0.009966131299734116,
0.07684151828289032,
-0.03296401724219322,
-0.09996303170919418,
0.0200614295899868,
-0.09374377876520157,
-0.08401082456111908,
-0.032005149871110916,
-0.005481871776282787,
0.0649680495262146,
0.06975030899047852,
0.10433218628168106,
-0.05201897770166397,
0.11414434760808945,
-0.0542738102376461,
0.03909182921051979,
0.008521193638443947,
-0.13369038701057434,
-0.022059541195631027,
-0.07453737407922745,
0.04098450019955635,
-0.010462363250553608,
0.3015943467617035,
0.05197666957974434,
0.008055823855102062,
0.02664904110133648,
0.05562997981905937,
0.05189797282218933,
0.0247673187404871,
0.21230380237102509,
0.10572443157434464,
-0.06611649692058563,
-0.12168817967176437,
0.07007601112127304,
0.004400744568556547,
-0.04624902829527855,
0.16468195617198944,
0.05452927201986313,
0.04270900413393974,
0.06987635046243668,
-0.012421375140547752,
-0.0010303073795512319,
-0.06682665646076202,
-0.11944693326950073,
-0.05427384376525879,
0.024409787729382515,
0.002338881604373455,
0.1259717047214508,
0.1987272948026657,
-0.0750652328133583,
0.06674382090568542,
0.02056337520480156,
-0.05297331139445305,
-0.12484429776668549,
-0.15166281163692474,
-0.06608299165964127,
-0.1876640021800995,
0.03282760828733444,
-0.11610926687717438,
0.03344924747943878,
0.07774302363395691,
0.0668969377875328,
-0.042389266192913055,
0.12070195376873016,
0.011495080776512623,
-0.12323162704706192,
0.10107070952653885,
-0.015828855335712433,
0.026270117610692978,
0.0814862921833992,
-0.044516514986753464,
-0.02064884826540947,
-0.06206110864877701,
0.0001755726698320359,
0.06662959605455399,
-0.07934445142745972,
0.011180542409420013,
-0.130119189620018,
-0.07882861793041229,
-0.04731293022632599,
0.10340309143066406,
-0.018071336671710014,
0.08607117831707001,
0.006805250886827707,
-0.042754270136356354,
0.013537270948290825,
0.24465961754322052,
-0.0328952893614769,
-0.031249014660716057,
-0.024433519691228867,
0.12958547472953796,
0.07990063726902008,
0.12122677266597748,
-0.011888633482158184,
-0.01622295379638672,
-0.06907670199871063,
0.27518150210380554,
0.35228589177131653,
0.013748112134635448,
0.025380922481417656,
0.03426594287157059,
0.046970583498477936,
0.13979949057102203,
0.08294203132390976,
0.08111587166786194,
0.22656665742397308,
-0.08043400943279266,
-0.08286180347204208,
-0.06746269017457962,
0.03316692262887955,
-0.09728147089481354,
0.08483370393514633,
0.05417816713452339,
-0.10455353558063507,
-0.034175511449575424,
0.13605853915214539,
-0.20685456693172455,
0.061945244669914246,
-0.0025277878157794476,
-0.19121205806732178,
-0.06699123233556747,
0.03786635771393776,
0.10135568678379059,
0.050227560102939606,
0.12461667507886887,
-0.0009629253763705492,
-0.11601509153842926,
0.026466356590390205,
0.09065813571214676,
-0.2640240490436554,
-0.016659261658787727,
0.0580575205385685,
0.008240976370871067,
0.003622213378548622,
-0.03978293389081955,
0.10862795263528824,
0.07242219150066376,
0.06330561637878418,
-0.018605507910251617,
0.029144596308469772,
0.010605283081531525,
-0.030047504231333733,
-0.012862092815339565,
0.03565852716565132,
0.0016649509780108929,
-0.17495299875736237,
0.10622379183769226,
-0.11933699995279312,
0.02054949663579464,
-0.00001870712367235683,
-0.0016186381690204144,
-0.0026567894965410233,
0.038568202406167984,
-0.11437772959470749,
0.018909096717834473,
0.14048252999782562,
-0.018183128908276558,
-0.018781302496790886,
-0.09104400128126144,
0.000006620226031373022,
0.03367113322019577,
-0.022507470101118088,
-0.08375583589076996,
-0.11745503544807434,
-0.09062197804450989,
0.12242603302001953,
-0.001395892002619803,
-0.11454512923955917,
0.0023224856704473495,
-0.08496171981096268,
0.08302993327379227,
-0.13849718868732452,
0.10733605921268463,
0.0412423200905323,
0.010356543585658073,
0.014985873363912106,
-0.05352570861577988,
0.07270950824022293,
0.07316204905509949,
-0.09495986998081207,
-0.08700298517942429
] |
null | null | transformers |
# GPT2 - RUS | {"language": "ru", "tags": ["text-generation"]} | text-generation | Mary222/MADE_AI_Dungeon_model_RUS | [
"transformers",
"pytorch",
"gpt2",
"text-generation",
"ru",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [
"ru"
] | TAGS
#transformers #pytorch #gpt2 #text-generation #ru #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
# GPT2 - RUS | [
"# GPT2 - RUS"
] | [
"TAGS\n#transformers #pytorch #gpt2 #text-generation #ru #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"# GPT2 - RUS"
] | [
49,
7
] | [
"passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #ru #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# GPT2 - RUS"
] | [
-0.00519120367243886,
-0.022561686113476753,
-0.007596803829073906,
0.027643540874123573,
0.14348329603672028,
0.04741635173559189,
0.14076685905456543,
0.09847523272037506,
0.04966764897108078,
-0.005836662836372852,
0.198514923453331,
0.09829526394605637,
-0.004303532186895609,
0.10892949253320694,
-0.0027985076885670424,
-0.2793978750705719,
0.07184869796037674,
0.019321255385875702,
-0.060192033648490906,
0.12074270099401474,
0.0961117073893547,
-0.029754001647233963,
0.08361269533634186,
-0.01682775467634201,
-0.1632949411869049,
0.0341312475502491,
0.07704346626996994,
-0.1302386224269867,
0.1239718422293663,
0.08251646161079407,
0.072904571890831,
0.025236627086997032,
-0.05518567934632301,
-0.10075037181377411,
0.009497102349996567,
0.004437679890543222,
-0.1123058870434761,
0.056387972086668015,
0.11674775183200836,
-0.1007215827703476,
0.20335617661476135,
0.027923746034502983,
-0.05529777333140373,
0.03563017025589943,
-0.14591549336910248,
-0.08964543044567108,
-0.06596796214580536,
0.0983213260769844,
0.03364867344498634,
0.11994517594575882,
-0.02552942745387554,
0.1203906238079071,
-0.06840329617261887,
0.08543050289154053,
0.1765928864479065,
-0.4095193147659302,
-0.005889644380658865,
0.0986812561750412,
-0.03486963361501694,
0.07076051831245422,
0.03715027868747711,
0.11200957745313644,
0.006362952291965485,
-0.0003543096245266497,
-0.012845480814576149,
-0.04848652333021164,
-0.0650225430727005,
0.052013836801052094,
-0.11208679527044296,
-0.05733760446310043,
0.21742506325244904,
-0.066304512321949,
0.0868762880563736,
-0.004740026779472828,
-0.08081080764532089,
-0.10855792462825775,
-0.0017332464922219515,
-0.02209903486073017,
-0.08728388696908951,
0.06542260944843292,
0.0341460257768631,
-0.09173055738210678,
-0.15695609152317047,
-0.04900094121694565,
-0.18389128148555756,
0.24891093373298645,
0.03905206546187401,
0.10308823734521866,
-0.11186890304088593,
0.09539317339658737,
-0.089888796210289,
-0.05539141595363617,
0.022401239722967148,
-0.11104321479797363,
0.010741172358393669,
0.02736402302980423,
-0.07505236566066742,
-0.01127445325255394,
0.06780096143484116,
0.15706253051757812,
-0.03470384329557419,
0.026490727439522743,
0.07502985745668411,
0.10447301715612411,
-0.018300287425518036,
0.09376778453588486,
-0.027486193925142288,
-0.005222867708653212,
0.03973152115941048,
-0.19838517904281616,
-0.009530077688395977,
-0.053296755999326706,
-0.18631292879581451,
-0.10477590560913086,
0.0456717349588871,
0.057599909603595734,
-0.01877403073012829,
0.08547791838645935,
-0.035883091390132904,
0.010756579227745533,
0.07048287987709045,
-0.052363377064466476,
-0.016928385943174362,
-0.0304990466684103,
0.0074049439281225204,
0.11161167919635773,
-0.03255738317966461,
0.014723153784871101,
-0.1164662167429924,
0.07279697805643082,
-0.026630504056811333,
0.02216721512377262,
-0.02847258187830448,
-0.0688541904091835,
0.00745548028498888,
-0.12372330576181412,
0.016804594546556473,
-0.1884877234697342,
-0.11289388686418533,
0.02126743085682392,
0.02584683895111084,
-0.06701408326625824,
0.009575954638421535,
-0.003423164365813136,
-0.04119002819061279,
0.049313075840473175,
-0.05525838956236839,
-0.02618766948580742,
-0.05418155714869499,
0.068247489631176,
-0.06317905336618423,
0.10326189547777176,
-0.09348790347576141,
0.04264058172702789,
-0.1140684112906456,
-0.0472157746553421,
-0.07631133496761322,
0.09178325533866882,
-0.06535642594099045,
0.04058269038796425,
-0.029999466612935066,
-0.03346605598926544,
-0.04870269075036049,
0.0353795550763607,
-0.009134500287473202,
0.17550894618034363,
-0.06976275891065598,
-0.12215150147676468,
0.2883366048336029,
-0.11185971647500992,
-0.10266436636447906,
0.11114346235990524,
0.034966468811035156,
-0.0006472945096902549,
0.10328071564435959,
0.1523466855287552,
0.03204374015331268,
0.002161991549655795,
0.016751106828451157,
0.04840453341603279,
-0.13615290820598602,
-0.05462343245744705,
0.046298518776893616,
0.016959529370069504,
-0.09577107429504395,
0.053224172443151474,
0.026152903214097023,
0.07113932073116302,
-0.061856020241975784,
-0.039583779871463776,
-0.027904439717531204,
0.010653670877218246,
0.09327615797519684,
-0.02227655053138733,
0.13995669782161713,
-0.09247077256441116,
-0.09181821346282959,
-0.08848944306373596,
-0.0010482951765879989,
0.012761733494699001,
0.04498634114861488,
-0.05229385942220688,
0.13260242342948914,
-0.01821913942694664,
0.07034073024988174,
-0.1485065519809723,
-0.055063627660274506,
-0.023937691003084183,
0.16988593339920044,
0.028110960498452187,
0.09872053563594818,
0.07742587476968765,
-0.027512291446328163,
-0.04278356954455376,
0.015549616888165474,
0.07416310906410217,
-0.028525015339255333,
-0.04443417116999626,
-0.09187308698892593,
0.07801498472690582,
-0.03368033468723297,
-0.019928712397813797,
-0.02911118045449257,
0.006951558403670788,
0.09761559218168259,
0.116020567715168,
-0.02663186751306057,
0.06291935592889786,
-0.07983815670013428,
0.025157928466796875,
-0.08561909943819046,
0.01416774746030569,
0.08601009100675583,
-0.0392509363591671,
-0.07502767443656921,
0.18443027138710022,
-0.07129527628421783,
0.2153051793575287,
0.20847631990909576,
-0.19172872602939606,
-0.05014968290925026,
-0.02890695445239544,
-0.02840232662856579,
0.027700316160917282,
0.08712387084960938,
0.01163731049746275,
0.11272633820772171,
0.005472314078360796,
0.11562862247228622,
-0.036445703357458115,
-0.03517407551407814,
0.035502299666404724,
-0.0815090462565422,
-0.028022054582834244,
0.09614474326372147,
0.12585046887397766,
-0.1413647085428238,
0.18403039872646332,
0.14631721377372742,
0.019295459613204002,
0.20308993756771088,
0.04354993626475334,
-0.04456297308206558,
0.04614871367812157,
-0.0379689522087574,
-0.02292882837355137,
-0.006439560558646917,
-0.11195341497659683,
-0.03965071961283684,
0.08531364053487778,
0.04369021952152252,
0.08143656700849533,
-0.142377570271492,
-0.053883083164691925,
-0.028403403237462044,
-0.04806026443839073,
0.015093657188117504,
0.10987960547208786,
-0.004104293417185545,
0.14222551882266998,
0.009352394379675388,
0.01595114916563034,
0.08323033154010773,
0.0347614511847496,
-0.09818832576274872,
0.16831594705581665,
-0.12591134011745453,
-0.3511248230934143,
-0.13585862517356873,
-0.1085810512304306,
-0.049174241721630096,
0.0775022879242897,
0.08819086849689484,
-0.1811864972114563,
-0.019076121971011162,
0.051065947860479355,
0.16033922135829926,
-0.07886572182178497,
0.05885257199406624,
-0.0765986517071724,
0.07674093544483185,
-0.1044590026140213,
-0.019643036648631096,
-0.07982489466667175,
-0.03953874111175537,
-0.08496953547000885,
0.19434140622615814,
-0.09419350326061249,
0.04393523558974266,
0.12437108159065247,
-0.00038096841308288276,
0.05136902257800102,
-0.06097157299518585,
0.15674743056297302,
-0.12310485541820526,
0.018993917852640152,
0.1667124480009079,
-0.004246945027261972,
0.0669950470328331,
0.08517224341630936,
-0.013836698606610298,
-0.07112683355808258,
0.025424329563975334,
-0.049945950508117676,
-0.11008879542350769,
-0.24109619855880737,
-0.15374526381492615,
-0.08857115358114243,
0.0758315846323967,
0.020834339782595634,
0.032242611050605774,
0.10633662343025208,
0.11721894890069962,
-0.04571712762117386,
-0.0049785771407186985,
0.007819629274308681,
0.07580848038196564,
0.20252640545368195,
-0.01759745553135872,
0.17274019122123718,
-0.08897963911294937,
-0.07996093481779099,
0.13773952424526215,
0.022577647119760513,
0.18951615691184998,
0.06821835786104202,
-0.008998917415738106,
0.012852254323661327,
0.11875007301568985,
0.13023439049720764,
0.08709557354450226,
0.08397001773118973,
-0.03424258157610893,
0.0050217341631650925,
-0.024817999452352524,
-0.04086340218782425,
0.08868751674890518,
-0.0031366944313049316,
-0.19159100949764252,
-0.022702399641275406,
-0.03767591342329979,
0.10761044919490814,
0.10373180359601974,
0.07179735600948334,
-0.20028802752494812,
-0.09428752213716507,
0.04882422462105751,
0.014072543941438198,
-0.09291555732488632,
0.07089973986148834,
-0.0326450951397419,
-0.15618498623371124,
0.08063150942325592,
-0.041242074221372604,
0.08893740922212601,
0.0035328820813447237,
0.060901571065187454,
-0.017356816679239273,
-0.058621276170015335,
0.012702519074082375,
0.1428079903125763,
-0.29986289143562317,
0.2704389691352844,
-0.015128734521567822,
-0.07436765730381012,
-0.11909312754869461,
-0.010110479779541492,
-0.006520570255815983,
0.10350827127695084,
0.11976656317710876,
0.026198940351605415,
-0.11238360404968262,
-0.10766193270683289,
-0.04011615365743637,
0.04173329845070839,
0.13942962884902954,
-0.06802435219287872,
0.015177031978964806,
-0.048272933810949326,
0.014602857641875744,
-0.04075997322797775,
-0.03404338285326958,
-0.026555517688393593,
-0.1700630933046341,
0.0897892639040947,
0.021975822746753693,
0.05526049807667732,
0.012803187593817711,
-0.06215991452336311,
-0.12163092941045761,
0.251228928565979,
-0.06896017491817474,
-0.13125079870224,
-0.09457172453403473,
-0.011311057955026627,
0.0861591324210167,
-0.10809862613677979,
0.0771496444940567,
-0.05317673832178116,
0.03274738788604736,
-0.06060529872775078,
-0.18794065713882446,
0.1164025142788887,
-0.09336268156766891,
-0.0896056592464447,
0.00702724140137434,
0.20249038934707642,
-0.019737618044018745,
0.02691558562219143,
-0.010482072830200195,
0.07152271270751953,
-0.09326455742120743,
-0.10842575877904892,
0.07280036062002182,
-0.017197929322719574,
0.029423264786601067,
0.03122415393590927,
-0.041023071855306625,
-0.021327802911400795,
-0.06293324381113052,
-0.07433201372623444,
0.28550416231155396,
0.20905084908008575,
-0.1192186176776886,
0.22877267003059387,
0.016970401629805565,
-0.031448204070329666,
-0.3072665333747864,
-0.07600454986095428,
-0.05398881807923317,
-0.007495982106775045,
-0.07086603343486786,
-0.21144096553325653,
0.01586381159722805,
0.03537650778889656,
-0.03064013086259365,
0.14149095118045807,
-0.1877063363790512,
-0.10374026000499725,
0.11702574044466019,
-0.04068421572446823,
0.3484555780887604,
-0.08420868217945099,
-0.05398135259747505,
-0.07658395171165466,
-0.11385632306337357,
0.14465481042861938,
0.04235391691327095,
0.09920773655176163,
-0.04462888464331627,
0.12066660076379776,
0.037657905369997025,
-0.024542583152651787,
0.10228535532951355,
-0.01942659541964531,
-0.043122548609972,
-0.11213424056768417,
0.006484381388872862,
0.09858887642621994,
0.02853485383093357,
0.0018806983716785908,
0.023951755836606026,
0.022045297548174858,
-0.09549256414175034,
-0.0640660747885704,
-0.05024585500359535,
0.04309944808483124,
0.04029225558042526,
-0.09098721295595169,
-0.040400631725788116,
-0.03137608617544174,
-0.033688951283693314,
-0.026805611327290535,
0.17671696841716766,
-0.020284494385123253,
0.08619103580713272,
0.011738714762032032,
0.03947613760828972,
-0.10257971286773682,
0.04923676326870918,
-0.0350431390106678,
-0.07207231968641281,
0.07917714864015579,
-0.14587847888469696,
0.024566074833273888,
0.1269679218530655,
-0.08175761252641678,
-0.00024164517526514828,
0.0823817029595375,
-0.025545787066221237,
-0.0037747130263596773,
0.14738668501377106,
-0.2935028374195099,
-0.004882785491645336,
-0.06808697432279587,
-0.05097676441073418,
0.15992814302444458,
0.07275637984275818,
0.17011143267154694,
-0.04788241535425186,
-0.05173734948039055,
-0.0043240259401500225,
-0.00978078506886959,
-0.058515314012765884,
0.07612501829862595,
-0.010563144460320473,
0.0003878603456541896,
-0.11652088910341263,
0.07664105296134949,
-0.00825208518654108,
-0.113229900598526,
0.040316544473171234,
0.09566423296928406,
-0.16966168582439423,
-0.11991573125123978,
-0.009519456885755062,
-0.0009145696531049907,
-0.19694532454013824,
-0.05190664902329445,
-0.02647521160542965,
-0.11473048478364944,
0.09796653687953949,
0.062155526131391525,
0.09758760780096054,
0.05007784813642502,
-0.018189048394560814,
-0.01324757281690836,
-0.0007007569074630737,
-0.02566269226372242,
0.02713002823293209,
-0.006355366203933954,
-0.11265388876199722,
0.05079786852002144,
-0.023018697276711464,
0.12623780965805054,
-0.09687568247318268,
-0.02739151194691658,
-0.12124472111463547,
0.031705692410469055,
-0.1180330142378807,
-0.0936349555850029,
-0.08479095250368118,
-0.06998373568058014,
-0.045688532292842865,
-0.06787417083978653,
-0.05667262151837349,
-0.030390173196792603,
-0.12331137806177139,
0.03577907755970955,
-0.0776144415140152,
0.01848294399678707,
-0.05970693379640579,
0.0035443648230284452,
0.07966407388448715,
-0.014737637713551521,
0.15271447598934174,
0.20272324979305267,
-0.027234770357608795,
0.15279342234134674,
-0.08757445216178894,
0.008667189627885818,
0.09146038442850113,
0.02275177650153637,
0.0450158454477787,
0.05972801521420479,
0.0376192070543766,
0.03809267655014992,
0.028731945902109146,
0.09055627137422562,
0.028605526313185692,
-0.08576657623052597,
0.04556817188858986,
-0.0870363861322403,
-0.11186524480581284,
-0.027882346883416176,
-0.015452067367732525,
0.047567788511514664,
0.052215635776519775,
0.12534917891025543,
-0.07553751766681671,
0.10929334908723831,
-0.049347519874572754,
0.04499796777963638,
-0.010365575551986694,
-0.1562078893184662,
-0.06496333330869675,
-0.07467414438724518,
0.03865973651409149,
0.0017359870253130794,
0.3000047504901886,
0.05921085923910141,
0.021968724206089973,
0.03906083106994629,
0.07445045560598373,
0.02321729063987732,
0.022480005398392677,
0.16167977452278137,
0.11307728290557861,
-0.049774330109357834,
-0.13643227517604828,
0.08651677519083023,
0.00762055953964591,
-0.07864683121442795,
0.13707956671714783,
0.0023910412564873695,
0.026268567889928818,
0.06612762063741684,
-0.03144792094826698,
-0.01613612100481987,
-0.07558297365903854,
-0.13202553987503052,
-0.0882168784737587,
0.013550793752074242,
-0.018958214670419693,
0.12053561955690384,
0.1891884207725525,
-0.05972902476787567,
0.031988997012376785,
-0.02138056606054306,
-0.03792290762066841,
-0.15498016774654388,
-0.1899077594280243,
-0.08889482915401459,
-0.17039532959461212,
0.027672911062836647,
-0.09153621643781662,
0.029011420905590057,
0.05290227755904198,
0.08202246576547623,
-0.06344082951545715,
0.0843324214220047,
-0.0006311364704743028,
-0.10708785057067871,
0.0651942789554596,
-0.013030018657445908,
0.030832646414637566,
0.03327479213476181,
-0.06127848103642464,
-0.08008011430501938,
-0.010837111622095108,
-0.017868977040052414,
0.052778713405132294,
-0.07910353690385818,
-0.002709437860175967,
-0.1154392883181572,
-0.08145441114902496,
-0.05465381219983101,
0.09585380554199219,
-0.0053924331441521645,
0.06257390230894089,
-0.007567782420665026,
-0.012384425848722458,
0.014871181920170784,
0.23703797161579132,
-0.035661254078149796,
-0.07072491943836212,
-0.027216872200369835,
0.17774757742881775,
0.028308192268013954,
0.1394246369600296,
-0.013006206601858139,
0.00848494004458189,
-0.09533438086509705,
0.32067787647247314,
0.3611678183078766,
-0.008747594431042671,
0.023053182289004326,
0.018670478835701942,
0.0432121604681015,
0.12489161640405655,
0.12103206664323807,
0.07798358798027039,
0.20593641698360443,
-0.08681364357471466,
-0.07394202798604965,
-0.07854756712913513,
0.039015427231788635,
-0.0948939323425293,
0.088411346077919,
0.039219003170728683,
-0.09157268702983856,
-0.041301093995571136,
0.11202089488506317,
-0.18278713524341583,
0.11190932244062424,
-0.04797517508268356,
-0.18040750920772552,
-0.07652703672647476,
0.07516365498304367,
0.11116619408130646,
0.026428479701280594,
0.111236572265625,
-0.00877019390463829,
-0.08994001895189285,
0.027819480746984482,
0.06537636369466782,
-0.2319709211587906,
0.0030535943806171417,
0.058334168046712875,
0.008839166723191738,
0.0059003750793635845,
-0.030807750299572945,
0.14118048548698425,
0.07783588767051697,
0.05920041352510452,
-0.04532857984304428,
0.01572507992386818,
0.013397041708230972,
-0.04266754165291786,
0.009504995308816433,
0.013521409593522549,
0.013094091787934303,
-0.15622618794441223,
0.10832898318767548,
-0.11877212673425674,
0.034322261810302734,
-0.024428626522421837,
0.0007000694167800248,
0.014384700916707516,
0.0920504704117775,
-0.10812021046876907,
0.04419047012925148,
0.1158340647816658,
-0.02336135506629944,
-0.02184082195162773,
-0.08356833457946777,
0.006430305074900389,
0.024883467704057693,
-0.0357026644051075,
-0.07502789795398712,
-0.13811956346035004,
-0.09216780960559845,
0.11389663815498352,
0.010668559931218624,
-0.12509509921073914,
0.009104388765990734,
-0.11479770392179489,
0.0715905949473381,
-0.15780329704284668,
0.11409778147935867,
0.037931155413389206,
0.006893477868288755,
0.004124908242374659,
-0.04883918911218643,
0.055743973702192307,
0.05387866124510765,
-0.10421633720397949,
-0.09506364166736603
] |
null | null | transformers |
# GPT2 - RUS | {"language": "ru", "tags": ["text-generation"]} | text-generation | Mary222/SBERBANK_RUS | [
"transformers",
"pytorch",
"gpt2",
"text-generation",
"ru",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [
"ru"
] | TAGS
#transformers #pytorch #gpt2 #text-generation #ru #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
# GPT2 - RUS | [
"# GPT2 - RUS"
] | [
"TAGS\n#transformers #pytorch #gpt2 #text-generation #ru #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"# GPT2 - RUS"
] | [
49,
7
] | [
"passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #ru #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# GPT2 - RUS"
] | [
-0.00519120367243886,
-0.022561686113476753,
-0.007596803829073906,
0.027643540874123573,
0.14348329603672028,
0.04741635173559189,
0.14076685905456543,
0.09847523272037506,
0.04966764897108078,
-0.005836662836372852,
0.198514923453331,
0.09829526394605637,
-0.004303532186895609,
0.10892949253320694,
-0.0027985076885670424,
-0.2793978750705719,
0.07184869796037674,
0.019321255385875702,
-0.060192033648490906,
0.12074270099401474,
0.0961117073893547,
-0.029754001647233963,
0.08361269533634186,
-0.01682775467634201,
-0.1632949411869049,
0.0341312475502491,
0.07704346626996994,
-0.1302386224269867,
0.1239718422293663,
0.08251646161079407,
0.072904571890831,
0.025236627086997032,
-0.05518567934632301,
-0.10075037181377411,
0.009497102349996567,
0.004437679890543222,
-0.1123058870434761,
0.056387972086668015,
0.11674775183200836,
-0.1007215827703476,
0.20335617661476135,
0.027923746034502983,
-0.05529777333140373,
0.03563017025589943,
-0.14591549336910248,
-0.08964543044567108,
-0.06596796214580536,
0.0983213260769844,
0.03364867344498634,
0.11994517594575882,
-0.02552942745387554,
0.1203906238079071,
-0.06840329617261887,
0.08543050289154053,
0.1765928864479065,
-0.4095193147659302,
-0.005889644380658865,
0.0986812561750412,
-0.03486963361501694,
0.07076051831245422,
0.03715027868747711,
0.11200957745313644,
0.006362952291965485,
-0.0003543096245266497,
-0.012845480814576149,
-0.04848652333021164,
-0.0650225430727005,
0.052013836801052094,
-0.11208679527044296,
-0.05733760446310043,
0.21742506325244904,
-0.066304512321949,
0.0868762880563736,
-0.004740026779472828,
-0.08081080764532089,
-0.10855792462825775,
-0.0017332464922219515,
-0.02209903486073017,
-0.08728388696908951,
0.06542260944843292,
0.0341460257768631,
-0.09173055738210678,
-0.15695609152317047,
-0.04900094121694565,
-0.18389128148555756,
0.24891093373298645,
0.03905206546187401,
0.10308823734521866,
-0.11186890304088593,
0.09539317339658737,
-0.089888796210289,
-0.05539141595363617,
0.022401239722967148,
-0.11104321479797363,
0.010741172358393669,
0.02736402302980423,
-0.07505236566066742,
-0.01127445325255394,
0.06780096143484116,
0.15706253051757812,
-0.03470384329557419,
0.026490727439522743,
0.07502985745668411,
0.10447301715612411,
-0.018300287425518036,
0.09376778453588486,
-0.027486193925142288,
-0.005222867708653212,
0.03973152115941048,
-0.19838517904281616,
-0.009530077688395977,
-0.053296755999326706,
-0.18631292879581451,
-0.10477590560913086,
0.0456717349588871,
0.057599909603595734,
-0.01877403073012829,
0.08547791838645935,
-0.035883091390132904,
0.010756579227745533,
0.07048287987709045,
-0.052363377064466476,
-0.016928385943174362,
-0.0304990466684103,
0.0074049439281225204,
0.11161167919635773,
-0.03255738317966461,
0.014723153784871101,
-0.1164662167429924,
0.07279697805643082,
-0.026630504056811333,
0.02216721512377262,
-0.02847258187830448,
-0.0688541904091835,
0.00745548028498888,
-0.12372330576181412,
0.016804594546556473,
-0.1884877234697342,
-0.11289388686418533,
0.02126743085682392,
0.02584683895111084,
-0.06701408326625824,
0.009575954638421535,
-0.003423164365813136,
-0.04119002819061279,
0.049313075840473175,
-0.05525838956236839,
-0.02618766948580742,
-0.05418155714869499,
0.068247489631176,
-0.06317905336618423,
0.10326189547777176,
-0.09348790347576141,
0.04264058172702789,
-0.1140684112906456,
-0.0472157746553421,
-0.07631133496761322,
0.09178325533866882,
-0.06535642594099045,
0.04058269038796425,
-0.029999466612935066,
-0.03346605598926544,
-0.04870269075036049,
0.0353795550763607,
-0.009134500287473202,
0.17550894618034363,
-0.06976275891065598,
-0.12215150147676468,
0.2883366048336029,
-0.11185971647500992,
-0.10266436636447906,
0.11114346235990524,
0.034966468811035156,
-0.0006472945096902549,
0.10328071564435959,
0.1523466855287552,
0.03204374015331268,
0.002161991549655795,
0.016751106828451157,
0.04840453341603279,
-0.13615290820598602,
-0.05462343245744705,
0.046298518776893616,
0.016959529370069504,
-0.09577107429504395,
0.053224172443151474,
0.026152903214097023,
0.07113932073116302,
-0.061856020241975784,
-0.039583779871463776,
-0.027904439717531204,
0.010653670877218246,
0.09327615797519684,
-0.02227655053138733,
0.13995669782161713,
-0.09247077256441116,
-0.09181821346282959,
-0.08848944306373596,
-0.0010482951765879989,
0.012761733494699001,
0.04498634114861488,
-0.05229385942220688,
0.13260242342948914,
-0.01821913942694664,
0.07034073024988174,
-0.1485065519809723,
-0.055063627660274506,
-0.023937691003084183,
0.16988593339920044,
0.028110960498452187,
0.09872053563594818,
0.07742587476968765,
-0.027512291446328163,
-0.04278356954455376,
0.015549616888165474,
0.07416310906410217,
-0.028525015339255333,
-0.04443417116999626,
-0.09187308698892593,
0.07801498472690582,
-0.03368033468723297,
-0.019928712397813797,
-0.02911118045449257,
0.006951558403670788,
0.09761559218168259,
0.116020567715168,
-0.02663186751306057,
0.06291935592889786,
-0.07983815670013428,
0.025157928466796875,
-0.08561909943819046,
0.01416774746030569,
0.08601009100675583,
-0.0392509363591671,
-0.07502767443656921,
0.18443027138710022,
-0.07129527628421783,
0.2153051793575287,
0.20847631990909576,
-0.19172872602939606,
-0.05014968290925026,
-0.02890695445239544,
-0.02840232662856579,
0.027700316160917282,
0.08712387084960938,
0.01163731049746275,
0.11272633820772171,
0.005472314078360796,
0.11562862247228622,
-0.036445703357458115,
-0.03517407551407814,
0.035502299666404724,
-0.0815090462565422,
-0.028022054582834244,
0.09614474326372147,
0.12585046887397766,
-0.1413647085428238,
0.18403039872646332,
0.14631721377372742,
0.019295459613204002,
0.20308993756771088,
0.04354993626475334,
-0.04456297308206558,
0.04614871367812157,
-0.0379689522087574,
-0.02292882837355137,
-0.006439560558646917,
-0.11195341497659683,
-0.03965071961283684,
0.08531364053487778,
0.04369021952152252,
0.08143656700849533,
-0.142377570271492,
-0.053883083164691925,
-0.028403403237462044,
-0.04806026443839073,
0.015093657188117504,
0.10987960547208786,
-0.004104293417185545,
0.14222551882266998,
0.009352394379675388,
0.01595114916563034,
0.08323033154010773,
0.0347614511847496,
-0.09818832576274872,
0.16831594705581665,
-0.12591134011745453,
-0.3511248230934143,
-0.13585862517356873,
-0.1085810512304306,
-0.049174241721630096,
0.0775022879242897,
0.08819086849689484,
-0.1811864972114563,
-0.019076121971011162,
0.051065947860479355,
0.16033922135829926,
-0.07886572182178497,
0.05885257199406624,
-0.0765986517071724,
0.07674093544483185,
-0.1044590026140213,
-0.019643036648631096,
-0.07982489466667175,
-0.03953874111175537,
-0.08496953547000885,
0.19434140622615814,
-0.09419350326061249,
0.04393523558974266,
0.12437108159065247,
-0.00038096841308288276,
0.05136902257800102,
-0.06097157299518585,
0.15674743056297302,
-0.12310485541820526,
0.018993917852640152,
0.1667124480009079,
-0.004246945027261972,
0.0669950470328331,
0.08517224341630936,
-0.013836698606610298,
-0.07112683355808258,
0.025424329563975334,
-0.049945950508117676,
-0.11008879542350769,
-0.24109619855880737,
-0.15374526381492615,
-0.08857115358114243,
0.0758315846323967,
0.020834339782595634,
0.032242611050605774,
0.10633662343025208,
0.11721894890069962,
-0.04571712762117386,
-0.0049785771407186985,
0.007819629274308681,
0.07580848038196564,
0.20252640545368195,
-0.01759745553135872,
0.17274019122123718,
-0.08897963911294937,
-0.07996093481779099,
0.13773952424526215,
0.022577647119760513,
0.18951615691184998,
0.06821835786104202,
-0.008998917415738106,
0.012852254323661327,
0.11875007301568985,
0.13023439049720764,
0.08709557354450226,
0.08397001773118973,
-0.03424258157610893,
0.0050217341631650925,
-0.024817999452352524,
-0.04086340218782425,
0.08868751674890518,
-0.0031366944313049316,
-0.19159100949764252,
-0.022702399641275406,
-0.03767591342329979,
0.10761044919490814,
0.10373180359601974,
0.07179735600948334,
-0.20028802752494812,
-0.09428752213716507,
0.04882422462105751,
0.014072543941438198,
-0.09291555732488632,
0.07089973986148834,
-0.0326450951397419,
-0.15618498623371124,
0.08063150942325592,
-0.041242074221372604,
0.08893740922212601,
0.0035328820813447237,
0.060901571065187454,
-0.017356816679239273,
-0.058621276170015335,
0.012702519074082375,
0.1428079903125763,
-0.29986289143562317,
0.2704389691352844,
-0.015128734521567822,
-0.07436765730381012,
-0.11909312754869461,
-0.010110479779541492,
-0.006520570255815983,
0.10350827127695084,
0.11976656317710876,
0.026198940351605415,
-0.11238360404968262,
-0.10766193270683289,
-0.04011615365743637,
0.04173329845070839,
0.13942962884902954,
-0.06802435219287872,
0.015177031978964806,
-0.048272933810949326,
0.014602857641875744,
-0.04075997322797775,
-0.03404338285326958,
-0.026555517688393593,
-0.1700630933046341,
0.0897892639040947,
0.021975822746753693,
0.05526049807667732,
0.012803187593817711,
-0.06215991452336311,
-0.12163092941045761,
0.251228928565979,
-0.06896017491817474,
-0.13125079870224,
-0.09457172453403473,
-0.011311057955026627,
0.0861591324210167,
-0.10809862613677979,
0.0771496444940567,
-0.05317673832178116,
0.03274738788604736,
-0.06060529872775078,
-0.18794065713882446,
0.1164025142788887,
-0.09336268156766891,
-0.0896056592464447,
0.00702724140137434,
0.20249038934707642,
-0.019737618044018745,
0.02691558562219143,
-0.010482072830200195,
0.07152271270751953,
-0.09326455742120743,
-0.10842575877904892,
0.07280036062002182,
-0.017197929322719574,
0.029423264786601067,
0.03122415393590927,
-0.041023071855306625,
-0.021327802911400795,
-0.06293324381113052,
-0.07433201372623444,
0.28550416231155396,
0.20905084908008575,
-0.1192186176776886,
0.22877267003059387,
0.016970401629805565,
-0.031448204070329666,
-0.3072665333747864,
-0.07600454986095428,
-0.05398881807923317,
-0.007495982106775045,
-0.07086603343486786,
-0.21144096553325653,
0.01586381159722805,
0.03537650778889656,
-0.03064013086259365,
0.14149095118045807,
-0.1877063363790512,
-0.10374026000499725,
0.11702574044466019,
-0.04068421572446823,
0.3484555780887604,
-0.08420868217945099,
-0.05398135259747505,
-0.07658395171165466,
-0.11385632306337357,
0.14465481042861938,
0.04235391691327095,
0.09920773655176163,
-0.04462888464331627,
0.12066660076379776,
0.037657905369997025,
-0.024542583152651787,
0.10228535532951355,
-0.01942659541964531,
-0.043122548609972,
-0.11213424056768417,
0.006484381388872862,
0.09858887642621994,
0.02853485383093357,
0.0018806983716785908,
0.023951755836606026,
0.022045297548174858,
-0.09549256414175034,
-0.0640660747885704,
-0.05024585500359535,
0.04309944808483124,
0.04029225558042526,
-0.09098721295595169,
-0.040400631725788116,
-0.03137608617544174,
-0.033688951283693314,
-0.026805611327290535,
0.17671696841716766,
-0.020284494385123253,
0.08619103580713272,
0.011738714762032032,
0.03947613760828972,
-0.10257971286773682,
0.04923676326870918,
-0.0350431390106678,
-0.07207231968641281,
0.07917714864015579,
-0.14587847888469696,
0.024566074833273888,
0.1269679218530655,
-0.08175761252641678,
-0.00024164517526514828,
0.0823817029595375,
-0.025545787066221237,
-0.0037747130263596773,
0.14738668501377106,
-0.2935028374195099,
-0.004882785491645336,
-0.06808697432279587,
-0.05097676441073418,
0.15992814302444458,
0.07275637984275818,
0.17011143267154694,
-0.04788241535425186,
-0.05173734948039055,
-0.0043240259401500225,
-0.00978078506886959,
-0.058515314012765884,
0.07612501829862595,
-0.010563144460320473,
0.0003878603456541896,
-0.11652088910341263,
0.07664105296134949,
-0.00825208518654108,
-0.113229900598526,
0.040316544473171234,
0.09566423296928406,
-0.16966168582439423,
-0.11991573125123978,
-0.009519456885755062,
-0.0009145696531049907,
-0.19694532454013824,
-0.05190664902329445,
-0.02647521160542965,
-0.11473048478364944,
0.09796653687953949,
0.062155526131391525,
0.09758760780096054,
0.05007784813642502,
-0.018189048394560814,
-0.01324757281690836,
-0.0007007569074630737,
-0.02566269226372242,
0.02713002823293209,
-0.006355366203933954,
-0.11265388876199722,
0.05079786852002144,
-0.023018697276711464,
0.12623780965805054,
-0.09687568247318268,
-0.02739151194691658,
-0.12124472111463547,
0.031705692410469055,
-0.1180330142378807,
-0.0936349555850029,
-0.08479095250368118,
-0.06998373568058014,
-0.045688532292842865,
-0.06787417083978653,
-0.05667262151837349,
-0.030390173196792603,
-0.12331137806177139,
0.03577907755970955,
-0.0776144415140152,
0.01848294399678707,
-0.05970693379640579,
0.0035443648230284452,
0.07966407388448715,
-0.014737637713551521,
0.15271447598934174,
0.20272324979305267,
-0.027234770357608795,
0.15279342234134674,
-0.08757445216178894,
0.008667189627885818,
0.09146038442850113,
0.02275177650153637,
0.0450158454477787,
0.05972801521420479,
0.0376192070543766,
0.03809267655014992,
0.028731945902109146,
0.09055627137422562,
0.028605526313185692,
-0.08576657623052597,
0.04556817188858986,
-0.0870363861322403,
-0.11186524480581284,
-0.027882346883416176,
-0.015452067367732525,
0.047567788511514664,
0.052215635776519775,
0.12534917891025543,
-0.07553751766681671,
0.10929334908723831,
-0.049347519874572754,
0.04499796777963638,
-0.010365575551986694,
-0.1562078893184662,
-0.06496333330869675,
-0.07467414438724518,
0.03865973651409149,
0.0017359870253130794,
0.3000047504901886,
0.05921085923910141,
0.021968724206089973,
0.03906083106994629,
0.07445045560598373,
0.02321729063987732,
0.022480005398392677,
0.16167977452278137,
0.11307728290557861,
-0.049774330109357834,
-0.13643227517604828,
0.08651677519083023,
0.00762055953964591,
-0.07864683121442795,
0.13707956671714783,
0.0023910412564873695,
0.026268567889928818,
0.06612762063741684,
-0.03144792094826698,
-0.01613612100481987,
-0.07558297365903854,
-0.13202553987503052,
-0.0882168784737587,
0.013550793752074242,
-0.018958214670419693,
0.12053561955690384,
0.1891884207725525,
-0.05972902476787567,
0.031988997012376785,
-0.02138056606054306,
-0.03792290762066841,
-0.15498016774654388,
-0.1899077594280243,
-0.08889482915401459,
-0.17039532959461212,
0.027672911062836647,
-0.09153621643781662,
0.029011420905590057,
0.05290227755904198,
0.08202246576547623,
-0.06344082951545715,
0.0843324214220047,
-0.0006311364704743028,
-0.10708785057067871,
0.0651942789554596,
-0.013030018657445908,
0.030832646414637566,
0.03327479213476181,
-0.06127848103642464,
-0.08008011430501938,
-0.010837111622095108,
-0.017868977040052414,
0.052778713405132294,
-0.07910353690385818,
-0.002709437860175967,
-0.1154392883181572,
-0.08145441114902496,
-0.05465381219983101,
0.09585380554199219,
-0.0053924331441521645,
0.06257390230894089,
-0.007567782420665026,
-0.012384425848722458,
0.014871181920170784,
0.23703797161579132,
-0.035661254078149796,
-0.07072491943836212,
-0.027216872200369835,
0.17774757742881775,
0.028308192268013954,
0.1394246369600296,
-0.013006206601858139,
0.00848494004458189,
-0.09533438086509705,
0.32067787647247314,
0.3611678183078766,
-0.008747594431042671,
0.023053182289004326,
0.018670478835701942,
0.0432121604681015,
0.12489161640405655,
0.12103206664323807,
0.07798358798027039,
0.20593641698360443,
-0.08681364357471466,
-0.07394202798604965,
-0.07854756712913513,
0.039015427231788635,
-0.0948939323425293,
0.088411346077919,
0.039219003170728683,
-0.09157268702983856,
-0.041301093995571136,
0.11202089488506317,
-0.18278713524341583,
0.11190932244062424,
-0.04797517508268356,
-0.18040750920772552,
-0.07652703672647476,
0.07516365498304367,
0.11116619408130646,
0.026428479701280594,
0.111236572265625,
-0.00877019390463829,
-0.08994001895189285,
0.027819480746984482,
0.06537636369466782,
-0.2319709211587906,
0.0030535943806171417,
0.058334168046712875,
0.008839166723191738,
0.0059003750793635845,
-0.030807750299572945,
0.14118048548698425,
0.07783588767051697,
0.05920041352510452,
-0.04532857984304428,
0.01572507992386818,
0.013397041708230972,
-0.04266754165291786,
0.009504995308816433,
0.013521409593522549,
0.013094091787934303,
-0.15622618794441223,
0.10832898318767548,
-0.11877212673425674,
0.034322261810302734,
-0.024428626522421837,
0.0007000694167800248,
0.014384700916707516,
0.0920504704117775,
-0.10812021046876907,
0.04419047012925148,
0.1158340647816658,
-0.02336135506629944,
-0.02184082195162773,
-0.08356833457946777,
0.006430305074900389,
0.024883467704057693,
-0.0357026644051075,
-0.07502789795398712,
-0.13811956346035004,
-0.09216780960559845,
0.11389663815498352,
0.010668559931218624,
-0.12509509921073914,
0.009104388765990734,
-0.11479770392179489,
0.0715905949473381,
-0.15780329704284668,
0.11409778147935867,
0.037931155413389206,
0.006893477868288755,
0.004124908242374659,
-0.04883918911218643,
0.055743973702192307,
0.05387866124510765,
-0.10421633720397949,
-0.09506364166736603
] |
null | null | transformers |
# LSTM
| {"language": "ru", "license": "apache-2.0", "tags": ["text-generation"], "datasets": ["bookcorpus", "wikipedia"]} | text-generation | Mary222/made-ai-dungeon | [
"transformers",
"text-generation",
"ru",
"dataset:bookcorpus",
"dataset:wikipedia",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [
"ru"
] | TAGS
#transformers #text-generation #ru #dataset-bookcorpus #dataset-wikipedia #license-apache-2.0 #endpoints_compatible #region-us
|
# LSTM
| [
"# LSTM"
] | [
"TAGS\n#transformers #text-generation #ru #dataset-bookcorpus #dataset-wikipedia #license-apache-2.0 #endpoints_compatible #region-us \n",
"# LSTM"
] | [
44,
4
] | [
"passage: TAGS\n#transformers #text-generation #ru #dataset-bookcorpus #dataset-wikipedia #license-apache-2.0 #endpoints_compatible #region-us \n# LSTM"
] | [
-0.022557221353054047,
0.0747034102678299,
-0.00462769391015172,
0.015634942799806595,
0.06235891953110695,
0.04703342542052269,
0.14569181203842163,
0.1323525309562683,
0.022929145023226738,
-0.09405959397554398,
0.1299658566713333,
0.15661461651325226,
-0.012100541964173317,
0.057456307113170624,
-0.06997484713792801,
-0.1979249119758606,
0.10754106938838959,
0.01677621714770794,
-0.14999625086784363,
0.05633717402815819,
0.1217494010925293,
-0.0021582981571555138,
0.0949288159608841,
-0.0670672282576561,
-0.04535772651433945,
0.030368603765964508,
0.03253818303346634,
-0.09855513274669647,
0.09254520386457443,
0.07267658412456512,
0.037027012556791306,
0.048513248562812805,
0.010287984274327755,
-0.2047697752714157,
0.01696753315627575,
-0.011974265798926353,
-0.10122434794902802,
0.022191843017935753,
-0.03659602627158165,
-0.045314591377973557,
0.18240267038345337,
-0.0618334598839283,
-0.04665512591600418,
0.04066634550690651,
-0.08303950726985931,
-0.079610675573349,
-0.1331588178873062,
0.04934112727642059,
0.034035574644804,
0.06543754786252975,
0.04569045081734657,
0.06415890157222748,
-0.06598523259162903,
0.0706973522901535,
0.19411222636699677,
-0.34987926483154297,
-0.009622493758797646,
0.14012816548347473,
0.047889284789562225,
0.05160287395119667,
-0.006649421527981758,
0.11815222352743149,
0.05004934221506119,
-0.0038982839323580265,
0.030693156644701958,
-0.07741986960172653,
-0.03390044346451759,
0.11883951723575592,
-0.03994341939687729,
-0.03980473428964615,
0.3688454329967499,
-0.020754991099238396,
0.056770168244838715,
-0.006825661286711693,
-0.05638180300593376,
0.0715833380818367,
-0.023225825279951096,
0.0646970272064209,
0.022409196943044662,
0.0944174975156784,
0.048581261187791824,
-0.11683420836925507,
-0.09261078387498856,
-0.0038513478357344866,
-0.18033361434936523,
0.056472890079021454,
-0.002841261448338628,
0.0883839949965477,
-0.11457552015781403,
0.005994245409965515,
-0.049068331718444824,
-0.0733511745929718,
-0.04827835410833359,
-0.11381487548351288,
0.053852830082178116,
0.04978135600686073,
-0.06959576159715652,
-0.016100037842988968,
0.15167216956615448,
0.1468832790851593,
0.013934535905718803,
-0.03694762662053108,
-0.018842333927750587,
0.11787538975477219,
-0.027690328657627106,
-0.0004074698081240058,
-0.025735769420862198,
-0.0864403173327446,
0.0979728251695633,
-0.12481426447629929,
0.07515086233615875,
-0.02337743528187275,
-0.10593630373477936,
-0.06850211322307587,
-0.09277287125587463,
0.06235337257385254,
0.0706753209233284,
0.06060124188661575,
-0.002670733956620097,
0.019319606944918633,
0.0931193083524704,
-0.05170341208577156,
-0.03453674912452698,
-0.034689661115407944,
-0.0169561505317688,
0.08464004099369049,
0.09887880831956863,
0.006511439103633165,
-0.042347609996795654,
-0.0035637819673866034,
-0.03107595071196556,
-0.03196755424141884,
-0.036208923906087875,
-0.011310156434774399,
0.08136396110057831,
-0.08179347962141037,
0.06671591103076935,
-0.09747803956270218,
-0.2890494763851166,
0.011900560930371284,
0.09153509140014648,
-0.021319545805454254,
-0.0321599580347538,
0.02257564663887024,
-0.051806073635816574,
0.06506244093179703,
-0.06020868569612503,
-0.03147682175040245,
-0.09451230615377426,
0.03471904620528221,
-0.1408635973930359,
0.06260630488395691,
-0.23134534060955048,
0.052068356424570084,
-0.07707344740629196,
-0.010502957738935947,
-0.06271971762180328,
0.04775061458349228,
-0.11633295565843582,
0.14941838383674622,
-0.034034863114356995,
0.00022635552159044892,
-0.035737983882427216,
0.028472712263464928,
-0.047045208513736725,
0.14882291853427887,
-0.1777220517396927,
-0.027460316196084023,
0.17950628697872162,
-0.09812366217374802,
-0.21130269765853882,
0.04548348858952522,
-0.01976281777024269,
0.07835829257965088,
0.09591950476169586,
0.1907401978969574,
0.10270106792449951,
0.02070588245987892,
-0.0007409533718600869,
0.13985632359981537,
-0.03125637397170067,
-0.17266248166561127,
0.04065427929162979,
0.008958125486969948,
-0.03998388722538948,
0.06149822473526001,
-0.020461244508624077,
0.03431778401136398,
0.018997807055711746,
-0.0831063985824585,
-0.10021434724330902,
-0.074099101126194,
0.005973605439066887,
-0.007245327811688185,
0.057442668825387955,
-0.06710472702980042,
0.0007940017967484891,
0.06806828081607819,
0.044991280883550644,
0.010233930312097073,
0.07254426926374435,
-0.011662840843200684,
0.02623886801302433,
0.05685657635331154,
0.07255498319864273,
-0.1349487602710724,
-0.03848160803318024,
-0.05676078051328659,
0.0962432473897934,
0.040978558361530304,
0.07810913771390915,
0.043311990797519684,
-0.10549125075340271,
-0.0788709968328476,
0.06317989528179169,
0.07600590586662292,
0.03867931663990021,
0.013453856110572815,
-0.15367501974105835,
0.06744181364774704,
-0.03155714273452759,
-0.07348914444446564,
-0.053392451256513596,
0.04033821076154709,
0.029635727405548096,
0.08372027426958084,
-0.0249934159219265,
0.08192440867424011,
-0.009956048801541328,
-0.036302581429481506,
-0.0770348384976387,
-0.010114382952451706,
0.08770187199115753,
0.016182107850909233,
-0.12528859078884125,
0.14549872279167175,
0.03565990552306175,
0.20157374441623688,
0.18414823710918427,
-0.09207628667354584,
0.07841527462005615,
0.024655280634760857,
-0.00950551126152277,
0.01693221740424633,
0.010603031143546104,
0.00625190231949091,
-0.036907121539115906,
0.013743771240115166,
0.07255195826292038,
-0.05885649099946022,
-0.0364176481962204,
-0.041724011301994324,
-0.05549939349293709,
-0.010093826800584793,
0.06887473165988922,
0.1273329108953476,
-0.15665918588638306,
0.1647694706916809,
0.26518356800079346,
-0.00795937143266201,
0.11644112318754196,
-0.0676434338092804,
-0.006470873951911926,
0.05124858394265175,
-0.04159824550151825,
-0.029904168099164963,
0.06688369810581207,
-0.10408596694469452,
-0.006077829282730818,
0.0910024493932724,
0.03895387798547745,
0.05263322964310646,
-0.11008935421705246,
-0.07578971236944199,
-0.011760324239730835,
-0.06985842436552048,
-0.09713904559612274,
0.07757596671581268,
-0.035288531333208084,
0.13649600744247437,
-0.05248875916004181,
-0.0077682617120444775,
0.08452163636684418,
-0.019654184579849243,
-0.06646616011857986,
0.1695515513420105,
-0.17106595635414124,
-0.21238639950752258,
-0.12072782218456268,
-0.06279785931110382,
-0.09109299629926682,
0.008399957790970802,
0.11203613877296448,
-0.051595546305179596,
-0.047790057957172394,
-0.02242632955312729,
0.01808946020901203,
-0.0010515130124986172,
-0.0020685147028416395,
0.023265104740858078,
0.10854339599609375,
-0.05557236447930336,
-0.12873485684394836,
-0.045315660536289215,
0.04176860675215721,
0.009521386586129665,
0.06108427047729492,
-0.1303737461566925,
0.09209709614515305,
0.02902066707611084,
0.04236692190170288,
-0.0043273973278701305,
-0.026102028787136078,
0.13371993601322174,
-0.04048211872577667,
0.04834926873445511,
0.1785528063774109,
0.008393882773816586,
0.020724143832921982,
0.1652553826570511,
0.030293874442577362,
-0.07774849236011505,
0.018295954912900925,
-0.04571405425667763,
-0.11350114643573761,
-0.33351895213127136,
-0.10507658869028091,
-0.12329085171222687,
0.07015709578990936,
-0.030396878719329834,
0.05128176882863045,
0.030698833987116814,
0.07838544249534607,
-0.022596852853894234,
0.03734192997217178,
0.07786086201667786,
0.030322711914777756,
0.20371192693710327,
-0.010069280862808228,
0.10010309517383575,
-0.17854046821594238,
0.03700636327266693,
0.1516442596912384,
0.11823517829179764,
0.21834692358970642,
0.05260699987411499,
0.11176065355539322,
0.09818731248378754,
0.08993086218833923,
0.038293175399303436,
0.1339220106601715,
0.029424767941236496,
0.00436768215149641,
-0.03832444176077843,
-0.008490131236612797,
-0.025027943775057793,
0.08606701344251633,
-0.10874496400356293,
-0.12631945312023163,
-0.0018807220039889216,
-0.0535769984126091,
0.10986527055501938,
0.17581899464130402,
0.03390870243310928,
-0.13401684165000916,
-0.012049741111695766,
0.1402260661125183,
0.022428302094340324,
-0.03724480792880058,
0.1199379488825798,
-0.04409733787178993,
-0.07153181731700897,
0.16812704503536224,
0.01913372427225113,
0.12165461480617523,
0.014966091141104698,
0.0005064188153482974,
-0.030879974365234375,
-0.15256060659885406,
0.048307981342077255,
0.12365485727787018,
-0.2744472324848175,
0.25674471259117126,
-0.00830644741654396,
-0.02893642894923687,
-0.05297878757119179,
-0.0057311514392495155,
0.05897204577922821,
0.28658682107925415,
0.15336859226226807,
0.0353950597345829,
-0.2033836543560028,
0.09329063445329666,
-0.00993034802377224,
0.045020606368780136,
0.006273063365370035,
0.007744619622826576,
-0.017773481085896492,
-0.05721293017268181,
-0.00314663490280509,
0.010984315536916256,
0.055615443736314774,
-0.05854256451129913,
-0.1985110193490982,
0.03324747830629349,
0.07575768977403641,
-0.007893385365605354,
-0.060211677104234695,
0.015456652268767357,
-0.024470210075378418,
0.23631952702999115,
-0.022369464859366417,
-0.09659290313720703,
-0.11653729528188705,
-0.10228455066680908,
0.09171470999717712,
-0.03070651739835739,
0.03503309190273285,
-0.0163270290941,
0.009785490110516548,
-0.05055737867951393,
-0.23230227828025818,
0.05809938535094261,
-0.128046452999115,
0.0020962702110409737,
-0.006210487801581621,
0.09755133092403412,
-0.06850208342075348,
0.03691631928086281,
0.0312587134540081,
0.01741684041917324,
-0.07964269816875458,
-0.1112520694732666,
-0.017972338944673538,
0.11348803341388702,
0.03907666727900505,
0.02115607261657715,
-0.1609942764043808,
-0.07255540788173676,
0.035651419311761856,
-0.08415640145540237,
0.20781104266643524,
0.14982713758945465,
-0.08891678601503372,
0.22298701107501984,
0.10065123438835144,
-0.13827405869960785,
-0.32528311014175415,
-0.0996975228190422,
-0.1823742538690567,
-0.04443987458944321,
-0.023438671603798866,
-0.14023417234420776,
0.13516665995121002,
0.037588462233543396,
-0.04209643229842186,
0.03654075041413307,
-0.22929565608501434,
-0.09579157829284668,
0.13038751482963562,
-0.06154012680053711,
0.3294489085674286,
-0.14653633534908295,
-0.051966242492198944,
-0.16519750654697418,
-0.15458470582962036,
0.16511353850364685,
-0.18035918474197388,
0.05291620269417763,
-0.0001958442444447428,
0.0753474235534668,
-0.0362359844148159,
-0.010002205148339272,
0.1328272819519043,
0.014108016155660152,
0.022548731416463852,
-0.09434140473604202,
0.0625142902135849,
0.10244062542915344,
-0.044872913509607315,
0.06781058758497238,
-0.0902906209230423,
0.04267794266343117,
-0.1460191160440445,
-0.013312037102878094,
-0.035057131201028824,
0.06539694964885712,
-0.00030071803485043347,
-0.032952770590782166,
-0.1075589656829834,
-0.009442390874028206,
0.05980651080608368,
-0.025366945192217827,
0.2791617512702942,
0.027835020795464516,
0.05570248141884804,
0.03120042011141777,
0.11575441807508469,
-0.11169262230396271,
0.036897461861371994,
-0.040135160088539124,
-0.05382166802883148,
0.008183230645954609,
-0.28356993198394775,
0.018969593569636345,
0.10051953792572021,
-0.058269206434488297,
0.0306033156812191,
0.07152505964040756,
0.01883729360997677,
-0.023930925875902176,
0.1320337951183319,
-0.150153249502182,
-0.04104103147983551,
-0.012498188763856888,
0.02500373125076294,
0.03773144260048866,
0.07107288390398026,
0.15270696580410004,
-0.02841164544224739,
-0.01930472068488598,
0.004104673862457275,
0.07274077087640762,
-0.0807550847530365,
0.05503110587596893,
0.04401719570159912,
-0.016883783042430878,
-0.12300212681293488,
0.16352330148220062,
-0.025884369388222694,
-0.10635353624820709,
-0.009843598119914532,
0.07816606014966965,
-0.16708382964134216,
-0.11504555493593216,
0.06754962354898453,
0.008097887970507145,
-0.1717032790184021,
-0.07583106309175491,
-0.04035715013742447,
-0.13783830404281616,
0.06677724421024323,
0.1828298419713974,
0.09519707411527634,
0.04845351353287697,
0.009607295505702496,
-0.07530895620584488,
0.06899838149547577,
0.021518686786293983,
-0.03244302049279213,
0.016895446926355362,
-0.07559030503034592,
-0.158064067363739,
-0.06043420359492302,
0.09280566871166229,
-0.0520317479968071,
0.06666894257068634,
-0.12070058286190033,
0.03651941940188408,
-0.1947128027677536,
0.00010305958130629733,
-0.12385726720094681,
-0.01832849532365799,
-0.027727734297513962,
-0.10424007475376129,
-0.0840805396437645,
-0.02556779235601425,
-0.12211780250072479,
-0.011066974140703678,
-0.05846122279763222,
0.10376951098442078,
-0.11949104815721512,
-0.047536954283714294,
0.10157129168510437,
-0.015370666980743408,
0.0762988030910492,
0.09564810246229172,
-0.07436062395572662,
0.14265874028205872,
-0.12326952069997787,
-0.06511443108320236,
0.06341566890478134,
0.05977817624807358,
0.03084498643875122,
-0.02263614721596241,
-0.016826152801513672,
0.11173171550035477,
-0.012346855364739895,
0.06366022676229477,
-0.07688194513320923,
-0.07258832454681396,
-0.04308093339204788,
-0.09764818847179413,
-0.0593302920460701,
0.014084032736718655,
-0.05859724432229996,
0.20836155116558075,
0.061651043593883514,
0.1635417938232422,
-0.028367726132273674,
0.013924890197813511,
-0.04147420451045036,
0.04957062751054764,
0.0011867043795064092,
-0.17641685903072357,
-0.08429345488548279,
-0.0627831295132637,
-0.005033938214182854,
-0.021794216707348824,
0.3318692743778229,
-0.021909939125180244,
-0.05682467669248581,
0.07257996499538422,
0.040235377848148346,
-0.017350438982248306,
0.037503428757190704,
0.2912200391292572,
0.0579880066215992,
-0.0028516107704490423,
-0.07624971121549606,
0.026417162269353867,
0.026891715824604034,
-0.01449657417833805,
0.11450603604316711,
0.13973449170589447,
0.08706431090831757,
0.09566490352153778,
0.00968620739877224,
0.014455960132181644,
0.014551772736012936,
-0.08223818242549896,
0.010859434492886066,
0.06442008912563324,
-0.006493926513940096,
0.10787452757358551,
0.14210376143455505,
-0.1124521866440773,
0.06924889981746674,
-0.04812353849411011,
-0.05565909668803215,
-0.1677502691745758,
-0.09776489436626434,
-0.0792243629693985,
-0.15140901505947113,
0.002289552241563797,
-0.14061075448989868,
0.029641907662153244,
0.09595382958650589,
0.07261188328266144,
-0.027796190232038498,
-0.036388594657182693,
-0.10182057321071625,
-0.05629771947860718,
0.039766885340213776,
-0.02082422375679016,
-0.04762251675128937,
-0.01852571591734886,
-0.027106119319796562,
-0.05962264537811279,
-0.03212782368063927,
-0.07842987030744553,
0.07255130261182785,
0.00027776509523391724,
0.05164884775876999,
-0.11386894434690475,
-0.02813788875937462,
-0.06182132288813591,
0.056749384850263596,
-0.0017399260541424155,
0.10910217463970184,
0.047091640532016754,
-0.0326913520693779,
0.11191076785326004,
0.23545148968696594,
-0.06744997203350067,
-0.1508282721042633,
-0.11181758344173431,
-0.021037371829152107,
0.020736942067742348,
0.04825223982334137,
-0.02488059550523758,
-0.0017760886112228036,
-0.04790861904621124,
0.2969662845134735,
0.33035677671432495,
-0.0410786047577858,
0.011117473244667053,
-0.03742217272520065,
0.03449364751577377,
0.05352385714650154,
0.09725786000490189,
0.1283855140209198,
0.1590336114168167,
-0.05263006314635277,
-0.09284456074237823,
-0.05710885301232338,
0.003049054415896535,
-0.14317011833190918,
0.10281379520893097,
-0.0007660919218324125,
-0.11275991052389145,
0.006763168144971132,
0.15877534449100494,
-0.14741995930671692,
-0.006631904281675816,
-0.028604287654161453,
-0.12569983303546906,
-0.04543992504477501,
-0.03182890638709068,
0.1075429767370224,
-0.0157884880900383,
0.0057239290326833725,
-0.03424042463302612,
-0.059619322419166565,
0.1243957132101059,
0.011660028249025345,
-0.25692903995513916,
-0.016379935666918755,
0.09621594846248627,
0.028907014057040215,
0.06812722980976105,
-0.02080710418522358,
0.007793764118105173,
0.07008771598339081,
0.006498853210359812,
-0.09571550786495209,
0.04923386126756668,
0.031686410307884216,
0.011210122145712376,
-0.00013400700117927045,
-0.03975353762507439,
-0.07607359439134598,
-0.02485048957169056,
0.11820106953382492,
0.004504109732806683,
0.035936422646045685,
0.07297863811254501,
-0.076556496322155,
-0.026846924796700478,
0.04490840435028076,
-0.1308741271495819,
0.07025765627622604,
0.057641804218292236,
-0.038789160549640656,
0.004338855855166912,
-0.06546679884195328,
-0.005295716226100922,
0.014103137888014317,
-0.11535953730344772,
-0.0285939984023571,
-0.018437664955854416,
-0.07874229550361633,
0.07980930060148239,
0.04445015639066696,
-0.1182335913181305,
-0.025834934785962105,
-0.07790908217430115,
0.04453520476818085,
-0.1382681280374527,
0.10346034914255142,
0.12349171191453934,
-0.034184303134679794,
-0.025043806061148643,
-0.06170465052127838,
0.049228351563215256,
0.02440238744020462,
-0.052079781889915466,
-0.12055642902851105
] |
null | null | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# opus-mt-ar-en-finetuned-ar-to-en
This model is a fine-tuned version of [Helsinki-NLP/opus-mt-ar-en](https://huggingface.co/Helsinki-NLP/opus-mt-ar-en) on the opus_wikipedia dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
- mixed_precision_training: Native AMP
### Framework versions
- Transformers 4.10.0
- Pytorch 1.9.0+cu102
- Datasets 1.11.0
- Tokenizers 0.10.3
| {"tags": ["generated_from_trainer"], "datasets": ["opus_wikipedia"]} | text2text-generation | MaryaAI/opus-mt-ar-en-finetuned-ar-to-en | [
"transformers",
"pytorch",
"tensorboard",
"marian",
"text2text-generation",
"generated_from_trainer",
"dataset:opus_wikipedia",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [] | TAGS
#transformers #pytorch #tensorboard #marian #text2text-generation #generated_from_trainer #dataset-opus_wikipedia #autotrain_compatible #endpoints_compatible #region-us
|
# opus-mt-ar-en-finetuned-ar-to-en
This model is a fine-tuned version of Helsinki-NLP/opus-mt-ar-en on the opus_wikipedia dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
- mixed_precision_training: Native AMP
### Framework versions
- Transformers 4.10.0
- Pytorch 1.9.0+cu102
- Datasets 1.11.0
- Tokenizers 0.10.3
| [
"# opus-mt-ar-en-finetuned-ar-to-en\n\nThis model is a fine-tuned version of Helsinki-NLP/opus-mt-ar-en on the opus_wikipedia dataset.",
"## Model description\n\nMore information needed",
"## Intended uses & limitations\n\nMore information needed",
"## Training and evaluation data\n\nMore information needed",
"## Training procedure",
"### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 16\n- eval_batch_size: 16\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 1\n- mixed_precision_training: Native AMP",
"### Framework versions\n\n- Transformers 4.10.0\n- Pytorch 1.9.0+cu102\n- Datasets 1.11.0\n- Tokenizers 0.10.3"
] | [
"TAGS\n#transformers #pytorch #tensorboard #marian #text2text-generation #generated_from_trainer #dataset-opus_wikipedia #autotrain_compatible #endpoints_compatible #region-us \n",
"# opus-mt-ar-en-finetuned-ar-to-en\n\nThis model is a fine-tuned version of Helsinki-NLP/opus-mt-ar-en on the opus_wikipedia dataset.",
"## Model description\n\nMore information needed",
"## Intended uses & limitations\n\nMore information needed",
"## Training and evaluation data\n\nMore information needed",
"## Training procedure",
"### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 16\n- eval_batch_size: 16\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 1\n- mixed_precision_training: Native AMP",
"### Framework versions\n\n- Transformers 4.10.0\n- Pytorch 1.9.0+cu102\n- Datasets 1.11.0\n- Tokenizers 0.10.3"
] | [
58,
51,
6,
12,
8,
3,
103,
34
] | [
"passage: TAGS\n#transformers #pytorch #tensorboard #marian #text2text-generation #generated_from_trainer #dataset-opus_wikipedia #autotrain_compatible #endpoints_compatible #region-us \n# opus-mt-ar-en-finetuned-ar-to-en\n\nThis model is a fine-tuned version of Helsinki-NLP/opus-mt-ar-en on the opus_wikipedia dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 16\n- eval_batch_size: 16\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 1\n- mixed_precision_training: Native AMP### Framework versions\n\n- Transformers 4.10.0\n- Pytorch 1.9.0+cu102\n- Datasets 1.11.0\n- Tokenizers 0.10.3"
] | [
-0.08919649571180344,
0.13888287544250488,
-0.0012570926919579506,
0.08638964593410492,
0.12987464666366577,
0.01766481250524521,
0.1112273633480072,
0.11983855068683624,
-0.06459484249353409,
0.055676449090242386,
0.06228046491742134,
0.03532174974679947,
0.06490291655063629,
0.11039702594280243,
-0.0374501496553421,
-0.27226242423057556,
0.02080688439309597,
0.019928084686398506,
-0.08856280893087387,
0.08875831961631775,
0.10253065079450607,
-0.08260055631399155,
0.056734152138233185,
-0.0004443550715222955,
-0.12732718884944916,
0.04029661417007446,
-0.04610564559698105,
-0.06718253344297409,
0.1067262813448906,
0.011340628378093243,
0.10069426149129868,
0.0026418466586619616,
0.1406150758266449,
-0.21904481947422028,
0.00256655877456069,
0.060154497623443604,
0.04349324479699135,
0.06679066270589828,
0.06863369792699814,
0.039638765156269073,
0.1318664401769638,
-0.17260687053203583,
0.1063588410615921,
-0.011180277913808823,
-0.0307282917201519,
-0.09150382876396179,
-0.04801525920629501,
0.03402196243405342,
0.1057068258523941,
0.1182955950498581,
0.009166128933429718,
0.1469910591840744,
-0.07903013378381729,
0.0873001217842102,
0.16854621469974518,
-0.21041223406791687,
-0.0697251707315445,
0.043041180819272995,
0.052676133811473846,
0.0887049213051796,
-0.09573657810688019,
0.007101483643054962,
0.031892865896224976,
0.04864736646413803,
0.06394772231578827,
-0.030822522938251495,
-0.11804769188165665,
-0.011566977947950363,
-0.12412651628255844,
0.003243914805352688,
0.19712527096271515,
0.041189853101968765,
-0.00564211793243885,
-0.08943589776754379,
-0.033099088817834854,
-0.0672990158200264,
-0.019503412768244743,
-0.06994657218456268,
0.024341022595763206,
-0.055791426450014114,
-0.015898611396551132,
-0.08668667078018188,
-0.08642454445362091,
-0.044777605682611465,
0.006011886987835169,
0.07575106620788574,
0.04308261722326279,
0.005455248989164829,
-0.027687184512615204,
0.07795944809913635,
-0.03039468638598919,
-0.10338938236236572,
-0.00004359910235507414,
0.005880453623831272,
-0.07699872553348541,
-0.08274290710687637,
-0.02514558658003807,
-0.08730366826057434,
-0.004536889493465424,
0.0786215141415596,
-0.05599677935242653,
0.05680827796459198,
0.00840581301599741,
0.0043655321933329105,
0.0016771841328591108,
0.1141108050942421,
-0.05463710054755211,
-0.07175096124410629,
0.008273310028016567,
0.06007072329521179,
-0.007070412393659353,
-0.014755913987755775,
-0.08595508337020874,
-0.06345266848802567,
0.10605388134717941,
0.05876852199435234,
-0.046453602612018585,
0.023471727967262268,
-0.005292002111673355,
-0.049374692142009735,
-0.010060329921543598,
-0.14779448509216309,
0.06075802072882652,
-0.03093089535832405,
-0.0783616229891777,
0.011103156954050064,
0.01994694396853447,
0.007553480565547943,
-0.0837087631225586,
0.08935036510229111,
-0.06053517386317253,
0.026710160076618195,
-0.06616757810115814,
-0.07837130129337311,
0.040521278977394104,
-0.08841770142316818,
0.0021208273246884346,
-0.07451877743005753,
-0.15867765247821808,
-0.034948550164699554,
0.06332630664110184,
-0.058239880949258804,
-0.04062950983643532,
-0.06778664886951447,
-0.04333002492785454,
-0.000013176232641853858,
-0.013748430646955967,
0.10636993497610092,
-0.05352772772312164,
0.037476200610399246,
-0.043969377875328064,
0.018678342923521996,
0.009594584815204144,
0.049275752156972885,
-0.07734354585409164,
0.0027237744070589542,
-0.1353977918624878,
0.06481647491455078,
-0.09660026431083679,
0.019523514434695244,
-0.11528444290161133,
-0.10982532054185867,
0.0004861725901719183,
-0.017589567229151726,
0.06337492913007736,
0.1402701437473297,
-0.1753045916557312,
-0.019480742514133453,
0.11313055455684662,
-0.08255548775196075,
-0.05162698030471802,
0.12499948590993881,
-0.04436821490526199,
0.03852088004350662,
0.07300199568271637,
0.17991961538791656,
0.09276152402162552,
-0.14766369760036469,
-0.011657512746751308,
-0.010425461456179619,
0.063199982047081,
-0.02553541213274002,
0.048366729170084,
0.015491124242544174,
0.040999773889780045,
0.020237019285559654,
-0.027956606820225716,
-0.015685373917222023,
-0.05597696453332901,
-0.10109677910804749,
-0.04689988121390343,
-0.07277730107307434,
-0.018746275454759598,
0.04732995852828026,
0.054075293242931366,
-0.08378882706165314,
-0.08473453670740128,
0.12287455052137375,
0.1184825450181961,
-0.07677649706602097,
0.03679269552230835,
-0.048837434500455856,
0.022884180769324303,
-0.051671627908945084,
-0.03509967774152756,
-0.18293282389640808,
-0.09802654385566711,
0.026776092126965523,
-0.07336781173944473,
0.05686333775520325,
0.03732707351446152,
0.07103730738162994,
0.07434726506471634,
-0.056645117700099945,
0.007018344476819038,
-0.08653979748487473,
0.013970855623483658,
-0.10077112168073654,
-0.17663206160068512,
-0.019298993051052094,
-0.02599547803401947,
0.13739652931690216,
-0.24816752970218658,
-0.006370751187205315,
-0.011696328409016132,
0.1500115990638733,
0.01691017486155033,
-0.04456064850091934,
-0.004874624311923981,
0.06319399923086166,
-0.015817193314433098,
-0.09231105446815491,
0.027900803834199905,
-0.01894856058061123,
-0.06847120821475983,
-0.05011458694934845,
-0.10345906019210815,
0.037727370858192444,
0.07431704550981522,
0.01787716895341873,
-0.0951937586069107,
-0.029847826808691025,
-0.05425013229250908,
-0.05243159085512161,
-0.09593746811151505,
0.03739207983016968,
0.1967046558856964,
0.001674781204201281,
0.10152698308229446,
-0.05325758084654808,
-0.04093446582555771,
0.016781074926257133,
-0.001387975993566215,
-0.05299429967999458,
0.10934742540121078,
0.12609504163265228,
-0.13586828112602234,
0.07297053933143616,
0.04969838634133339,
-0.08736895769834518,
0.18377795815467834,
-0.016798110678792,
-0.11061748117208481,
-0.007552766241133213,
-0.012369150295853615,
-0.015325065702199936,
0.14802023768424988,
-0.13477157056331635,
-0.0004364670894574374,
0.02688242681324482,
0.03616144135594368,
0.05995388701558113,
-0.15838994085788727,
-0.008861424401402473,
0.018073439598083496,
-0.04119031876325607,
0.011166250333189964,
-0.02728598564863205,
0.034136589616537094,
0.09598734974861145,
0.004462552722543478,
-0.03779716417193413,
0.0010931629221886396,
-0.006793685723096132,
-0.08178462833166122,
0.1653280407190323,
-0.11075258255004883,
-0.22035716474056244,
-0.1327761709690094,
0.07048700004816055,
-0.07962857186794281,
-0.03732149302959442,
0.01919763907790184,
-0.09213916957378387,
-0.06287214159965515,
-0.10726563632488251,
0.011209387332201004,
-0.04803371801972389,
-0.02152192033827305,
0.015663262456655502,
0.050823844969272614,
0.038666628301143646,
-0.10988087207078934,
0.010366014204919338,
-0.01647009328007698,
-0.07000594586133957,
-0.013103382661938667,
0.014767657034099102,
0.11218824237585068,
0.11123230308294296,
-0.042601969093084335,
0.032409150153398514,
-0.00859471783041954,
0.18230527639389038,
-0.09131091088056564,
0.033115558326244354,
0.08245346695184708,
0.022203898057341576,
0.024364802986383438,
0.13563843071460724,
0.024541527032852173,
-0.08062267303466797,
0.015669552609324455,
0.06934709846973419,
-0.007983868941664696,
-0.2409578412771225,
-0.07261994481086731,
-0.043463703244924545,
-0.05621621757745743,
0.12044443935155869,
0.05884760990738869,
-0.0026002514641731977,
0.051372017711400986,
0.00764789804816246,
0.03311454877257347,
-0.0016671434277668595,
0.0697350949048996,
0.09595514088869095,
0.042787667363882065,
0.07004042714834213,
-0.040407732129096985,
-0.05155111476778984,
0.07740336656570435,
0.03214941546320915,
0.2605999708175659,
-0.026311438530683517,
0.08216218650341034,
0.008168070577085018,
0.13297156989574432,
-0.013889065012335777,
0.04920528456568718,
0.047442223876714706,
-0.0039529697969555855,
0.02552683837711811,
-0.05774254351854324,
-0.01724473387002945,
0.03911492973566055,
0.01344132237136364,
-0.0066754077561199665,
-0.08275102823972702,
0.022829674184322357,
0.011316743679344654,
0.2355954647064209,
0.038251977413892746,
-0.25984135270118713,
-0.07271708548069,
0.011814258061349392,
-0.042582880705595016,
-0.07767674326896667,
0.016744034364819527,
0.13859766721725464,
-0.12830503284931183,
0.0591401606798172,
-0.06552667915821075,
0.10486521571874619,
-0.05396955832839012,
-0.025238633155822754,
0.05001962557435036,
0.11095649749040604,
-0.000889884599018842,
0.11044570803642273,
-0.1892097145318985,
0.2417610138654709,
0.02053418941795826,
0.1319226622581482,
-0.0910005047917366,
0.015342908911406994,
0.006550283636897802,
0.10468803346157074,
0.11720632761716843,
0.017120247706770897,
-0.10265758633613586,
-0.15757907927036285,
-0.12235862761735916,
0.04818253591656685,
0.08519788831472397,
-0.0015596995363011956,
0.06717117130756378,
-0.03150232136249542,
0.00876213051378727,
0.040668703615665436,
-0.09920187294483185,
-0.17658354341983795,
-0.15724609792232513,
0.024270974099636078,
0.039202675223350525,
-0.072043776512146,
-0.047296326607465744,
-0.12962116301059723,
-0.012589960359036922,
0.21228648722171783,
0.0852196216583252,
-0.03154420852661133,
-0.15018349885940552,
0.05372251942753792,
0.1404677927494049,
-0.06426522135734558,
-0.011475691571831703,
0.02915751002728939,
0.13682487607002258,
0.0035649724304676056,
-0.06918506324291229,
0.042088307440280914,
-0.05774318799376488,
-0.0867263525724411,
-0.027729352936148643,
0.115195631980896,
0.07574965804815292,
0.05195236951112747,
0.027019603177905083,
0.025062665343284607,
0.010813998058438301,
-0.08248007297515869,
-0.0042240978218615055,
0.06782744824886322,
0.10314624756574631,
0.054750245064496994,
-0.11977652460336685,
0.016164420172572136,
-0.054474469274282455,
-0.04010552912950516,
0.15683551132678986,
0.16312776505947113,
-0.07268373668193817,
0.08185217529535294,
0.09464634209871292,
-0.11281077563762665,
-0.19214320182800293,
0.09063086658716202,
0.08409764617681503,
0.03770739212632179,
0.038511570543050766,
-0.18512894213199615,
0.11609212309122086,
0.11741712689399719,
-0.0038942801766097546,
0.05950010195374489,
-0.3017745018005371,
-0.12563179433345795,
0.09248444437980652,
0.13523165881633759,
-0.003832257119938731,
-0.10219090431928635,
-0.003626761492341757,
-0.03725693002343178,
-0.1366329789161682,
0.12107007205486298,
-0.04610651731491089,
0.11658351868391037,
0.0024460116401314735,
0.12555336952209473,
0.026896996423602104,
-0.047844793647527695,
0.14555984735488892,
0.03184695169329643,
0.05482339859008789,
-0.06585358083248138,
0.05471543222665787,
0.0459728017449379,
-0.0703602209687233,
0.09809031337499619,
-0.0011482432018965483,
0.021663732826709747,
-0.14985434710979462,
-0.05100021883845329,
-0.049736138433218,
0.10983607918024063,
-0.04310760647058487,
-0.06567452102899551,
-0.04238765314221382,
0.0843370109796524,
0.08258283138275146,
-0.04235067963600159,
0.08512518554925919,
0.007746867835521698,
0.08210030943155289,
0.04847337678074837,
0.12319882214069366,
-0.03749702125787735,
-0.06894806027412415,
0.019872520118951797,
-0.016459690406918526,
0.04345720261335373,
-0.05332597345113754,
0.019769949838519096,
0.15593555569648743,
0.014990191906690598,
0.13799725472927094,
0.0052766939625144005,
-0.04190397262573242,
-0.015357738360762596,
0.031429026275873184,
-0.1323881596326828,
-0.1302827000617981,
-0.02526753768324852,
-0.06877162307500839,
-0.08180081099271774,
0.004015068057924509,
0.1118728369474411,
-0.10246379673480988,
-0.004820710048079491,
-0.022109361365437508,
0.03982776403427124,
-0.032433174550533295,
0.19051215052604675,
0.02242572046816349,
0.04355192184448242,
-0.07328113913536072,
0.13688179850578308,
0.07444838434457779,
-0.13035783171653748,
0.08177103847265244,
0.11171845346689224,
-0.08002770692110062,
-0.03848494216799736,
0.0977986678481102,
0.173519566655159,
-0.026127927005290985,
-0.06574468314647675,
-0.09979898482561111,
-0.08103577792644501,
0.03995281830430031,
0.07712564617395401,
0.0429629385471344,
-0.04304133728146553,
-0.04394663870334625,
-0.0018818556563928723,
-0.18873794376850128,
0.09195340424776077,
0.06189841777086258,
0.04065777361392975,
-0.12204176187515259,
0.11117788404226303,
0.001421967870555818,
0.04419133812189102,
-0.024214064702391624,
0.024344485253095627,
-0.0745522752404213,
-0.019092421978712082,
-0.11553303152322769,
-0.010001949034631252,
-0.04477791115641594,
0.020050760358572006,
-0.030408618971705437,
-0.049456626176834106,
-0.06621383130550385,
0.03009338304400444,
-0.06677388399839401,
-0.03455090522766113,
-0.018696045503020287,
0.03488428518176079,
-0.116118423640728,
-0.017856799066066742,
0.02325231023132801,
-0.07726909965276718,
0.042291104793548584,
0.05521009489893913,
-0.005128293763846159,
0.040447335690259933,
-0.07046624273061752,
0.000439035939052701,
0.020549502223730087,
0.04586101323366165,
0.08610714972019196,
-0.11445918679237366,
-0.014445624314248562,
0.026963384822010994,
0.08310580253601074,
0.027103692293167114,
0.04940240457653999,
-0.10036984831094742,
-0.04613497853279114,
-0.1012982428073883,
-0.0988372415304184,
-0.057827550917863846,
0.07377109676599503,
0.12390098720788956,
0.0241533275693655,
0.15046724677085876,
-0.08312081545591354,
0.07648435235023499,
-0.17629364132881165,
-0.03164910525083542,
0.012279854156076908,
-0.03577931597828865,
-0.0021212687715888023,
-0.030443666502833366,
0.08641853928565979,
-0.05983284115791321,
0.1362806111574173,
0.037902992218732834,
0.07591557502746582,
0.05030057206749916,
-0.10020603984594345,
-0.04295618087053299,
0.004283687565475702,
0.15183374285697937,
0.058890435844659805,
-0.01920699141919613,
0.09811009466648102,
-0.010755219496786594,
0.07252798974514008,
0.12675389647483826,
0.18618476390838623,
0.1598994880914688,
-0.010502129793167114,
0.08009422570466995,
0.07217497378587723,
-0.09172369539737701,
-0.12261965870857239,
0.10483267158269882,
-0.019510148093104362,
0.11740393191576004,
-0.028752682730555534,
0.1645224392414093,
0.09278436005115509,
-0.18328414857387543,
0.05661734938621521,
-0.059940025210380554,
-0.14968840777873993,
-0.12892693281173706,
-0.09887547791004181,
-0.1103009581565857,
-0.07794857025146484,
0.01719067059457302,
-0.14087267220020294,
0.032946474850177765,
0.06794290244579315,
0.04829908534884453,
-0.007133896462619305,
0.1514996588230133,
-0.03823436424136162,
0.012715821154415607,
0.08825495094060898,
0.017935870215296745,
0.008299336768686771,
-0.07830363512039185,
-0.0488722026348114,
0.025489777326583862,
0.014836618676781654,
0.062126532196998596,
-0.04294760525226593,
-0.008715788833796978,
0.028560146689414978,
-0.007814213633537292,
-0.05973898619413376,
0.0075032650493085384,
0.013576533645391464,
0.04916747659444809,
0.0539693683385849,
0.063873790204525,
-0.03221864253282547,
-0.039976656436920166,
0.25622594356536865,
-0.0403490774333477,
-0.09974193572998047,
-0.13962697982788086,
0.13408663868904114,
0.027626462280750275,
-0.012336734682321548,
0.07263335585594177,
-0.10113437473773956,
0.001622857991605997,
0.1846805065870285,
0.17645561695098877,
-0.036987897008657455,
-0.030275026336312294,
-0.02102404087781906,
-0.01345768291503191,
-0.04512099176645279,
0.10338037461042404,
0.08771923929452896,
0.03328290954232216,
-0.0699457973241806,
-0.043473608791828156,
-0.03495563194155693,
-0.0256497822701931,
-0.1150280013680458,
0.06117095798254013,
0.040707964450120926,
0.010404804721474648,
-0.04488905146718025,
0.10188084095716476,
-0.0073146759532392025,
-0.17618905007839203,
0.022042065858840942,
-0.17083881795406342,
-0.20003020763397217,
-0.023028414696455002,
0.10573150217533112,
-0.0573560893535614,
0.04391706362366676,
-0.020732291042804718,
0.0011479489039629698,
0.10339635610580444,
0.002844090573489666,
-0.06581785529851913,
-0.10155919939279556,
0.08147907257080078,
-0.045723069459199905,
0.2106831818819046,
0.01651461236178875,
0.05688052251935005,
0.0910390317440033,
0.013868361711502075,
-0.10726984590291977,
0.03932986035943031,
0.07552575320005417,
-0.026560431346297264,
0.03531879559159279,
0.1781655251979828,
-0.07445807009935379,
0.0702027976512909,
0.046756528317928314,
-0.10506825894117355,
-0.019999707117676735,
-0.08921527117490768,
-0.020192448049783707,
-0.04845988377928734,
0.012006526812911034,
-0.08508026599884033,
0.1534145027399063,
0.2074817270040512,
-0.012707451358437538,
0.00574613967910409,
-0.10472899675369263,
0.0477440170943737,
0.041054241359233856,
0.06696390360593796,
-0.011926336213946342,
-0.21750271320343018,
-0.028647737577557564,
-0.017101364210247993,
0.026063712313771248,
-0.21801826357841492,
-0.09954889863729477,
0.03365336358547211,
-0.06897979229688644,
-0.06739085912704468,
0.10853460431098938,
0.06306536495685577,
0.028141377493739128,
-0.045309729874134064,
-0.12013062834739685,
-0.0094464011490345,
0.12615564465522766,
-0.1448812633752823,
-0.050837259739637375
] |
null | null | transformers |
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# opus-mt-ar-en-finetunedTanzil-v5-ar-to-en
This model is a fine-tuned version of [Helsinki-NLP/opus-mt-ar-en](https://huggingface.co/Helsinki-NLP/opus-mt-ar-en) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.8101
- Validation Loss: 0.9477
- Train Bleu: 9.3241
- Train Gen Len: 88.73
- Train Rouge1: 56.4906
- Train Rouge2: 34.2668
- Train Rougel: 53.2279
- Train Rougelsum: 53.7836
- Epoch: 2
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32
### Training results
| Train Loss | Validation Loss | Train Bleu | Train Gen Len | Train Rouge1 | Train Rouge2 | Train Rougel | Train Rougelsum | Epoch |
|:----------:|:---------------:|:----------:|:-------------:|:------------:|:------------:|:------------:|:---------------:|:-----:|
| 0.8735 | 0.9809 | 11.0863 | 78.68 | 56.4557 | 33.3673 | 53.4828 | 54.1197 | 0 |
| 0.8408 | 0.9647 | 9.8543 | 88.955 | 57.3797 | 34.3539 | 53.8783 | 54.3714 | 1 |
| 0.8101 | 0.9477 | 9.3241 | 88.73 | 56.4906 | 34.2668 | 53.2279 | 53.7836 | 2 |
### Framework versions
- Transformers 4.17.0.dev0
- TensorFlow 2.7.0
- Datasets 1.18.4.dev0
- Tokenizers 0.10.3
| {"license": "apache-2.0", "tags": ["generated_from_keras_callback"], "model-index": [{"name": "opus-mt-ar-en-finetunedTanzil-v5-ar-to-en", "results": []}]} | text2text-generation | MaryaAI/opus-mt-ar-en-finetunedTanzil-v5-ar-to-en | [
"transformers",
"tf",
"marian",
"text2text-generation",
"generated_from_keras_callback",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [] | TAGS
#transformers #tf #marian #text2text-generation #generated_from_keras_callback #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
| opus-mt-ar-en-finetunedTanzil-v5-ar-to-en
=========================================
This model is a fine-tuned version of Helsinki-NLP/opus-mt-ar-en on an unknown dataset.
It achieves the following results on the evaluation set:
* Train Loss: 0.8101
* Validation Loss: 0.9477
* Train Bleu: 9.3241
* Train Gen Len: 88.73
* Train Rouge1: 56.4906
* Train Rouge2: 34.2668
* Train Rougel: 53.2279
* Train Rougelsum: 53.7836
* Epoch: 2
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* optimizer: {'name': 'AdamWeightDecay', 'learning\_rate': 2e-05, 'decay': 0.0, 'beta\_1': 0.9, 'beta\_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight\_decay\_rate': 0.01}
* training\_precision: float32
### Training results
### Framework versions
* Transformers 4.17.0.dev0
* TensorFlow 2.7.0
* Datasets 1.18.4.dev0
* Tokenizers 0.10.3
| [
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* optimizer: {'name': 'AdamWeightDecay', 'learning\\_rate': 2e-05, 'decay': 0.0, 'beta\\_1': 0.9, 'beta\\_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight\\_decay\\_rate': 0.01}\n* training\\_precision: float32",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.17.0.dev0\n* TensorFlow 2.7.0\n* Datasets 1.18.4.dev0\n* Tokenizers 0.10.3"
] | [
"TAGS\n#transformers #tf #marian #text2text-generation #generated_from_keras_callback #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* optimizer: {'name': 'AdamWeightDecay', 'learning\\_rate': 2e-05, 'decay': 0.0, 'beta\\_1': 0.9, 'beta\\_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight\\_decay\\_rate': 0.01}\n* training\\_precision: float32",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.17.0.dev0\n* TensorFlow 2.7.0\n* Datasets 1.18.4.dev0\n* Tokenizers 0.10.3"
] | [
57,
118,
4,
37
] | [
"passage: TAGS\n#transformers #tf #marian #text2text-generation #generated_from_keras_callback #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* optimizer: {'name': 'AdamWeightDecay', 'learning\\_rate': 2e-05, 'decay': 0.0, 'beta\\_1': 0.9, 'beta\\_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight\\_decay\\_rate': 0.01}\n* training\\_precision: float32### Training results### Framework versions\n\n\n* Transformers 4.17.0.dev0\n* TensorFlow 2.7.0\n* Datasets 1.18.4.dev0\n* Tokenizers 0.10.3"
] | [
-0.04904639348387718,
0.045330960303545,
-0.0035664911847561598,
0.09131387621164322,
0.15027594566345215,
0.035660602152347565,
0.13357941806316376,
0.1530332863330841,
-0.14441990852355957,
0.059266768395900726,
0.13843998312950134,
0.1656283140182495,
0.03616275638341904,
0.13867239654064178,
-0.11458512395620346,
-0.16943126916885376,
0.043305668979883194,
0.002127292100340128,
-0.05751219764351845,
0.09213709831237793,
0.09452261030673981,
-0.07473650574684143,
0.11893197149038315,
-0.005812353454530239,
-0.18115629255771637,
0.04768723249435425,
0.09911426156759262,
-0.08745510131120682,
0.11914427578449249,
0.07662025094032288,
0.07378342002630234,
0.0011026511201635003,
0.02204171195626259,
-0.16219376027584076,
0.010115633718669415,
0.10191309452056885,
-0.013358807191252708,
0.07685444504022598,
0.02366514876484871,
-0.0005910744657739997,
0.15661396086215973,
-0.1217181384563446,
0.022892741486430168,
0.03603729233145714,
-0.12381067126989365,
-0.1947350949048996,
-0.12319920212030411,
-0.010749801993370056,
0.030296526849269867,
0.08925517648458481,
0.005392125342041254,
0.20922985672950745,
-0.021816590800881386,
0.10773435980081558,
0.16972297430038452,
-0.33101189136505127,
-0.05437590926885605,
0.04346386343240738,
0.010952766984701157,
0.06183868646621704,
-0.040536828339099884,
0.062555231153965,
0.07295291870832443,
0.04782399907708168,
0.07063360512256622,
-0.035944659262895584,
-0.1020459234714508,
-0.01030200906097889,
-0.09529295563697815,
-0.03548748046159744,
0.16787157952785492,
0.0331643708050251,
-0.06317315995693207,
-0.03101176582276821,
-0.07373110949993134,
-0.12338827550411224,
0.00044191547203809023,
-0.07094131410121918,
0.026290226727724075,
0.0221170112490654,
-0.07212845981121063,
-0.06417586654424667,
-0.08268477022647858,
-0.05688975378870964,
-0.1084599643945694,
0.12652099132537842,
0.0033092652447521687,
0.05061570182442665,
-0.03980356082320213,
0.06246123090386391,
-0.07747998088598251,
-0.12915559113025665,
-0.011236793361604214,
0.008607301861047745,
-0.013583395630121231,
-0.04703742265701294,
-0.09633198380470276,
-0.1273036152124405,
0.0674094706773758,
0.11117593944072723,
-0.07071337103843689,
0.06639673560857773,
-0.11852581053972244,
0.016198329627513885,
-0.11220014840364456,
0.13540644943714142,
-0.022641655057668686,
-0.044308487325906754,
0.06195516139268875,
0.021162383258342743,
0.06916419416666031,
-0.03983303904533386,
-0.07946798205375671,
-0.032721035182476044,
0.1142558604478836,
0.013845693320035934,
-0.04124952107667923,
0.10159040242433548,
-0.048376016318798065,
-0.007956192828714848,
-0.007382474839687347,
-0.08881938457489014,
0.027235297486186028,
-0.02254404127597809,
-0.08361320942640305,
0.027721667662262917,
0.0843326523900032,
0.014417929574847221,
-0.05147567018866539,
0.03784418851137161,
-0.07174016535282135,
-0.026707924902439117,
-0.09236131608486176,
-0.12278660386800766,
0.04419035464525223,
-0.05992365628480911,
-0.016859831288456917,
-0.09702268987894058,
-0.2191953957080841,
-0.015280748717486858,
0.05020054057240486,
-0.051329437643289566,
-0.01465744711458683,
-0.05889071896672249,
-0.1496942788362503,
0.052091456949710846,
-0.015959566459059715,
0.1424170285463333,
-0.05049792677164078,
0.07889949530363083,
0.020800894126296043,
0.061071354895830154,
-0.12148989737033844,
0.04018522799015045,
-0.05672648921608925,
-0.017400899901986122,
-0.19707582890987396,
0.07688771933317184,
-0.03625376150012016,
0.03799090534448624,
-0.13556182384490967,
-0.06097092479467392,
-0.020919375121593475,
0.017500465735793114,
0.10941855609416962,
0.11658511310815811,
-0.1864512860774994,
-0.04129021242260933,
0.11538002640008926,
-0.09894029051065445,
-0.1145038902759552,
0.1171877458691597,
-0.046396877616643906,
0.062030766159296036,
0.10091852396726608,
0.10182199627161026,
-0.027181847020983696,
-0.0882328450679779,
0.028481367975473404,
-0.030483447015285492,
-0.027392376214265823,
-0.006983451545238495,
0.016757655888795853,
-0.0211031474173069,
-0.05367228016257286,
0.01275607943534851,
-0.00900899339467287,
0.020061161369085312,
-0.06379701942205429,
-0.0604630745947361,
-0.07290775328874588,
-0.0606856532394886,
0.036602411419153214,
0.013864987529814243,
0.06943108886480331,
-0.10051936656236649,
-0.11940724402666092,
0.06133255735039711,
0.039862457662820816,
-0.037651918828487396,
0.0506487712264061,
-0.07656217366456985,
0.032537125051021576,
-0.014872674830257893,
0.009675228968262672,
-0.18254156410694122,
-0.02642911672592163,
0.024685824289917946,
0.05677960440516472,
0.041595637798309326,
0.013996572233736515,
0.07794278115034103,
-0.000003150023530906765,
-0.07476120442152023,
0.030269896611571312,
0.002394112991169095,
0.013292131014168262,
-0.08538004755973816,
-0.23499871790409088,
0.03497791662812233,
-0.022580239921808243,
0.07479722797870636,
-0.2214825302362442,
0.008468207903206348,
0.0659172534942627,
0.1099502369761467,
0.03673236817121506,
0.005099073518067598,
-0.050745006650686264,
0.04499896988272667,
-0.03706164285540581,
-0.06256861984729767,
0.03667297214269638,
0.041139669716358185,
-0.12614022195339203,
0.021137429401278496,
-0.15876998007297516,
0.11422900855541229,
0.16252541542053223,
-0.10704627633094788,
-0.10230065137147903,
0.044156260788440704,
-0.0072133601643145084,
-0.033353377133607864,
-0.00957581214606762,
-0.011618892662227154,
0.1346598118543625,
0.004211622290313244,
0.1395680159330368,
-0.06686301529407501,
-0.027989737689495087,
0.028998402878642082,
-0.010978471487760544,
-0.020534714683890343,
0.057669248431921005,
-0.0013347349595278502,
-0.16271916031837463,
0.10088976472616196,
0.12550868093967438,
-0.10754407942295074,
0.12205632776021957,
-0.03885067626833916,
-0.06681031733751297,
-0.042863521724939346,
0.01854642666876316,
0.03569656237959862,
0.05882468447089195,
-0.09803134948015213,
0.014241104945540428,
0.02581854909658432,
0.037682533264160156,
-3.00757392324158e-7,
-0.17903143167495728,
0.006414277479052544,
-0.00965898111462593,
-0.06507296860218048,
0.014446992427110672,
0.03858290985226631,
0.019386645406484604,
0.1324244886636734,
0.03023788519203663,
-0.0323718823492527,
0.09382808208465576,
-0.010060063563287258,
-0.0859009176492691,
0.1966368705034256,
-0.13280180096626282,
-0.13102386891841888,
-0.13824313879013062,
-0.06376900523900986,
-0.08117862790822983,
0.014659450389444828,
0.03802495449781418,
-0.08213909715414047,
-0.05997372046113014,
-0.06623910367488861,
0.010693833231925964,
-0.008372305892407894,
0.0520896352827549,
0.049313049763441086,
-0.013487625867128372,
0.11602757126092911,
-0.1124093309044838,
-0.04619928076863289,
-0.024121979251503944,
-0.05637183412909508,
0.0329391248524189,
0.005959340371191502,
0.05186937004327774,
0.0902298167347908,
-0.039462823420763016,
0.028638070449233055,
-0.0597546212375164,
0.2137170135974884,
-0.05095019191503525,
0.002936314092949033,
0.17215706408023834,
-0.01950889825820923,
0.05119190737605095,
0.10986007750034332,
0.0282998476177454,
-0.11348573118448257,
0.0514906607568264,
0.0617787167429924,
-0.02496097981929779,
-0.2513529062271118,
-0.027915460988879204,
-0.03687259554862976,
-0.08386675268411636,
0.027003251016139984,
0.03872181847691536,
0.16903719305992126,
0.021892651915550232,
0.019273219630122185,
0.12094596028327942,
0.013046052306890488,
0.06823884695768356,
0.21515171229839325,
0.05834968015551567,
0.118646539747715,
-0.050986289978027344,
-0.012163206934928894,
0.08138611167669296,
-0.024126769974827766,
0.18208818137645721,
0.014034047722816467,
0.07180057466030121,
0.0662870779633522,
0.052222419530153275,
-0.019993983209133148,
0.030605604872107506,
0.01542320940643549,
-0.02411462925374508,
-0.024266093969345093,
-0.0716119259595871,
-0.04849231243133545,
0.05087706819176674,
-0.11363083869218826,
0.07133342325687408,
-0.09212972223758698,
0.060618676245212555,
0.07009521871805191,
0.24446387588977814,
0.05231240764260292,
-0.328052282333374,
-0.08425377309322357,
0.0049433051608502865,
-0.0253254733979702,
-0.039586614817380905,
-0.010828357189893723,
0.07399704307317734,
-0.06983307003974915,
0.11219790577888489,
-0.07840724289417267,
0.06855244189500809,
-0.008603202179074287,
0.05962555855512619,
0.06051111966371536,
0.12231915444135666,
-0.004231984261423349,
0.023146778345108032,
-0.3764221966266632,
0.26775941252708435,
0.043759413063526154,
0.1393848955631256,
-0.08702564239501953,
0.02953333780169487,
0.05102717876434326,
0.044571805745363235,
0.07201366126537323,
-0.033874768763780594,
-0.12285321205854416,
-0.09667719155550003,
-0.04322175681591034,
0.020698538050055504,
0.11909711360931396,
0.0839388519525528,
0.08827049285173416,
-0.061520013958215714,
0.021565185859799385,
0.09553258121013641,
0.007649282459169626,
-0.15685392916202545,
-0.05073866620659828,
0.030135177075862885,
0.07954440265893936,
-0.03723379969596863,
-0.059182897210121155,
-0.08716806024312973,
-0.06085675209760666,
0.19137443602085114,
-0.025656741112470627,
-0.025484295561909676,
-0.13116541504859924,
0.12381435185670853,
0.08235599100589752,
-0.060697346925735474,
0.047711532562971115,
-0.0024514764081686735,
0.05055532231926918,
0.06402906030416489,
-0.12312699109315872,
0.12099085003137589,
-0.026874857023358345,
-0.1684717983007431,
-0.04030159115791321,
0.06618902087211609,
0.01473816204816103,
0.04426386579871178,
0.0068793874233961105,
0.05440777912735939,
0.021766046062111855,
-0.08939801901578903,
0.05487016960978508,
0.01684737019240856,
0.05357775837182999,
0.021051835268735886,
-0.03388088941574097,
-0.040896665304899216,
-0.04101837798953056,
-0.01989002153277397,
0.14972659945487976,
0.23797594010829926,
-0.07319218665361404,
0.024268312379717827,
0.015048953704535961,
-0.08277605473995209,
-0.21520566940307617,
0.08738820999860764,
0.05441834405064583,
0.009066568687558174,
-0.02171768993139267,
-0.13228091597557068,
0.07559836655855179,
0.0801914632320404,
-0.007201130036264658,
0.07078707218170166,
-0.2765161097049713,
-0.1514875888824463,
0.07549963891506195,
0.11373413354158401,
0.1891791671514511,
-0.16023682057857513,
-0.04694681987166405,
-0.07401572167873383,
-0.06215856969356537,
0.14290712773799896,
-0.15423336625099182,
0.09904152154922485,
0.0071997325867414474,
0.06668835878372192,
0.003532098140567541,
-0.028091993182897568,
0.0912473127245903,
-0.03433623164892197,
0.10293471813201904,
-0.0728248879313469,
-0.01669691503047943,
0.1167047843337059,
-0.06362758576869965,
0.044480349868535995,
-0.07529421150684357,
0.03664296120405197,
-0.08073774725198746,
0.009559821337461472,
-0.07676487416028976,
0.05964120477437973,
-0.03393701836466789,
-0.03612196817994118,
-0.008263872005045414,
0.024098072201013565,
0.06112730875611305,
-0.042623139917850494,
0.12945067882537842,
-0.011062083765864372,
0.14636899530887604,
0.17299407720565796,
0.10558963567018509,
-0.055744923651218414,
0.09191670268774033,
0.07382708787918091,
-0.04818347468972206,
0.06516046822071075,
-0.17689481377601624,
0.049210771918296814,
0.10301658511161804,
-0.01643826812505722,
0.1356808841228485,
0.062356799840927124,
-0.050324440002441406,
0.018552076071500778,
0.07997272908687592,
-0.16314584016799927,
-0.0764647051692009,
0.011732143349945545,
-0.06080366298556328,
-0.06889301538467407,
0.04855245351791382,
0.16741187870502472,
-0.032015882432460785,
0.0291143711656332,
0.016357753425836563,
0.007659717928618193,
-0.08805590867996216,
0.14431367814540863,
0.011056170798838139,
0.009506919421255589,
-0.0909518152475357,
0.1312885880470276,
0.025199415162205696,
-0.07528533041477203,
0.09859845042228699,
0.04913727566599846,
-0.07932601869106293,
-0.024699727073311806,
0.06481503695249557,
0.1498890072107315,
-0.050765033811330795,
-0.06368249654769897,
-0.12232482433319092,
-0.12146127223968506,
0.05830371379852295,
0.24365828931331635,
0.06683224439620972,
0.05013180524110794,
-0.05352628231048584,
-0.004086621571332216,
-0.09450341761112213,
0.06623025983572006,
0.05343477800488472,
0.05714389309287071,
-0.14478299021720886,
0.17845419049263,
-0.02390250936150551,
0.001101456000469625,
-0.041734479367733,
0.047034263610839844,
-0.13238689303398132,
-0.013770909048616886,
-0.15544813871383667,
-0.0007866088999435306,
0.007786465808749199,
-0.01666259579360485,
0.018611567094922066,
-0.07428707927465439,
-0.09242422133684158,
0.04123343154788017,
-0.08343079686164856,
-0.03346022218465805,
0.04935947433114052,
0.037726759910583496,
-0.12696242332458496,
-0.06801746785640717,
0.002916856436058879,
-0.0694364681839943,
0.0529545433819294,
0.06716351211071014,
-0.006179646588861942,
0.06216970458626747,
-0.12517283856868744,
0.008051090873777866,
0.09065308421850204,
-0.002112428192049265,
0.06016458198428154,
-0.098455511033535,
0.012016684748232365,
0.01743311993777752,
0.07203352451324463,
0.03517501801252365,
0.1321551352739334,
-0.08837961405515671,
-0.03135102987289429,
-0.03853955864906311,
-0.04235775023698807,
-0.04437713325023651,
0.05273834615945816,
0.15936630964279175,
0.002802088391035795,
0.18746855854988098,
-0.11306291073560715,
-0.019962912425398827,
-0.17396071553230286,
0.03361597657203674,
-0.0033533808309584856,
-0.11933881789445877,
-0.14180989563465118,
-0.027087057009339333,
0.09505578130483627,
-0.06973111629486084,
0.1090271919965744,
-0.009061828255653381,
0.0810062438249588,
0.06166103854775429,
-0.0475664921104908,
-0.0631226971745491,
0.022343343123793602,
0.20277820527553558,
0.042232561856508255,
-0.018525490537285805,
0.0332343764603138,
0.007968730293214321,
0.09833748638629913,
0.0729949101805687,
0.2302912324666977,
0.13212235271930695,
-0.010243483819067478,
0.1498207449913025,
0.06488540768623352,
-0.027786485850811005,
-0.1068875789642334,
0.10778659582138062,
-0.07400940358638763,
0.138126939535141,
-0.05309570953249931,
0.09346450865268707,
0.08357597142457962,
-0.1601627916097641,
0.013278613798320293,
-0.06706611067056656,
-0.06952625513076782,
-0.1487642526626587,
-0.07392585277557373,
-0.11299584805965424,
-0.1384686380624771,
0.004105339292436838,
-0.11586175858974457,
0.07011169195175171,
0.03822629526257515,
0.02195497788488865,
-0.043445006012916565,
0.11227738112211227,
-0.06000637635588646,
-0.007723081391304731,
0.09093495458364487,
-0.014767576940357685,
-0.008193999528884888,
-0.045003537088632584,
-0.07407339662313461,
0.03268749266862869,
0.028834693133831024,
0.029377691447734833,
0.003295107278972864,
0.0048955935053527355,
0.04370541125535965,
-0.06322018802165985,
-0.09528245776891708,
0.04067511856555939,
0.054246269166469574,
0.027257923036813736,
0.07180937379598618,
0.05037609115242958,
-0.010306751355528831,
-0.0040511260740458965,
0.17484186589717865,
-0.10027053207159042,
-0.07366346567869186,
-0.15886665880680084,
0.24732095003128052,
0.02091294713318348,
0.0368584580719471,
-0.002426102291792631,
-0.07887519896030426,
-0.04503587260842323,
0.2102050930261612,
0.15317843854427338,
-0.07402703166007996,
-0.019948506727814674,
0.044009532779455185,
-0.002885136753320694,
-0.042513225227594376,
0.1249222457408905,
0.08496358245611191,
-0.04212877154350281,
-0.0505087785422802,
-0.05400213226675987,
-0.029684731736779213,
-0.0038262903690338135,
-0.032493915408849716,
0.07002709060907364,
0.009732470847666264,
-0.022451302036643028,
0.006082413252443075,
0.05525767058134079,
-0.022304097190499306,
-0.10011487454175949,
0.011012553237378597,
-0.2144887000322342,
-0.14370672404766083,
0.0033617292065173388,
0.006184935104101896,
-0.013633295893669128,
0.05377788096666336,
-0.030775032937526703,
0.010007964447140694,
0.08803100883960724,
-0.04135887697339058,
-0.0498412549495697,
-0.07641255110502243,
0.06372033804655075,
-0.08933784812688828,
0.15470470488071442,
-0.015834370627999306,
0.04503560811281204,
0.13172155618667603,
0.04241355508565903,
-0.09555196017026901,
0.058940690010786057,
0.026982981711626053,
-0.08203572779893875,
0.022097071632742882,
0.08023280650377274,
-0.03547925129532814,
0.10240896046161652,
0.0718991756439209,
-0.07562365382909775,
0.03200351074337959,
-0.07003065943717957,
-0.0924178883433342,
-0.039811935275793076,
-0.04416511952877045,
-0.0989743322134018,
0.1284208744764328,
0.22408130764961243,
-0.023089846596121788,
0.05303638428449631,
-0.06437473744153976,
0.0003981411282438785,
0.06136803701519966,
0.0022962361108511686,
-0.06613943725824356,
-0.2149352729320526,
0.04308526590466499,
0.10040981322526932,
0.012801164761185646,
-0.2190680354833603,
-0.07732374966144562,
-0.01610873080790043,
-0.027661295607686043,
-0.12200842052698135,
0.09825930744409561,
0.06941170990467072,
0.030319305136799812,
-0.04047611728310585,
-0.13815119862556458,
-0.028582308441400528,
0.15958920121192932,
-0.12031034380197525,
-0.08077874034643173
] |
null | null | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# opus-mt-en-ar-finetuned-Math-13-10-en-to-ar
This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-ar](https://huggingface.co/Helsinki-NLP/opus-mt-en-ar) on the syssr_en_ar dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
- mixed_precision_training: Native AMP
### Framework versions
- Transformers 4.11.3
- Pytorch 1.9.0+cu111
- Datasets 1.13.0
- Tokenizers 0.10.3
| {"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["syssr_en_ar"], "model-index": [{"name": "opus-mt-en-ar-finetuned-Math-13-10-en-to-ar", "results": []}]} | text2text-generation | MaryaAI/opus-mt-en-ar-finetuned-Math-13-10-en-to-ar | [
"transformers",
"pytorch",
"tensorboard",
"marian",
"text2text-generation",
"generated_from_trainer",
"dataset:syssr_en_ar",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [] | TAGS
#transformers #pytorch #tensorboard #marian #text2text-generation #generated_from_trainer #dataset-syssr_en_ar #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
|
# opus-mt-en-ar-finetuned-Math-13-10-en-to-ar
This model is a fine-tuned version of Helsinki-NLP/opus-mt-en-ar on the syssr_en_ar dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
- mixed_precision_training: Native AMP
### Framework versions
- Transformers 4.11.3
- Pytorch 1.9.0+cu111
- Datasets 1.13.0
- Tokenizers 0.10.3
| [
"# opus-mt-en-ar-finetuned-Math-13-10-en-to-ar\n\nThis model is a fine-tuned version of Helsinki-NLP/opus-mt-en-ar on the syssr_en_ar dataset.",
"## Model description\n\nMore information needed",
"## Intended uses & limitations\n\nMore information needed",
"## Training and evaluation data\n\nMore information needed",
"## Training procedure",
"### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 16\n- eval_batch_size: 16\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 5\n- mixed_precision_training: Native AMP",
"### Framework versions\n\n- Transformers 4.11.3\n- Pytorch 1.9.0+cu111\n- Datasets 1.13.0\n- Tokenizers 0.10.3"
] | [
"TAGS\n#transformers #pytorch #tensorboard #marian #text2text-generation #generated_from_trainer #dataset-syssr_en_ar #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"# opus-mt-en-ar-finetuned-Math-13-10-en-to-ar\n\nThis model is a fine-tuned version of Helsinki-NLP/opus-mt-en-ar on the syssr_en_ar dataset.",
"## Model description\n\nMore information needed",
"## Intended uses & limitations\n\nMore information needed",
"## Training and evaluation data\n\nMore information needed",
"## Training procedure",
"### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 16\n- eval_batch_size: 16\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 5\n- mixed_precision_training: Native AMP",
"### Framework versions\n\n- Transformers 4.11.3\n- Pytorch 1.9.0+cu111\n- Datasets 1.13.0\n- Tokenizers 0.10.3"
] | [
69,
59,
6,
12,
8,
3,
103,
34
] | [
"passage: TAGS\n#transformers #pytorch #tensorboard #marian #text2text-generation #generated_from_trainer #dataset-syssr_en_ar #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n# opus-mt-en-ar-finetuned-Math-13-10-en-to-ar\n\nThis model is a fine-tuned version of Helsinki-NLP/opus-mt-en-ar on the syssr_en_ar dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 16\n- eval_batch_size: 16\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 5\n- mixed_precision_training: Native AMP### Framework versions\n\n- Transformers 4.11.3\n- Pytorch 1.9.0+cu111\n- Datasets 1.13.0\n- Tokenizers 0.10.3"
] | [
-0.10865006595849991,
0.16133344173431396,
-0.003730455180630088,
0.07503841072320938,
0.11379797756671906,
0.002961324527859688,
0.12180937081575394,
0.14012347161769867,
-0.05303336679935455,
0.08180106431245804,
0.07842157036066055,
0.031654492020606995,
0.07534228265285492,
0.12441941350698471,
-0.04552571102976799,
-0.24809235334396362,
0.03311082720756531,
0.009182223118841648,
-0.07184121012687683,
0.09330521523952484,
0.11953172087669373,
-0.06492313742637634,
0.07239625602960587,
0.021105332300066948,
-0.10230819135904312,
0.016458293423056602,
-0.04227152094244957,
-0.08283219486474991,
0.08891541510820389,
0.0164807066321373,
0.08597366511821747,
0.02015869878232479,
0.10046930611133575,
-0.19218985736370087,
-0.0022792029194533825,
0.05315209552645683,
0.03360775485634804,
0.09304944425821304,
0.07527358084917068,
0.03924759104847908,
0.07744007557630539,
-0.13938267529010773,
0.10002820938825607,
0.005156118888407946,
-0.06545324623584747,
-0.10514520108699799,
-0.08437526971101761,
0.04550861194729805,
0.10070347785949707,
0.10462461411952972,
0.010689407587051392,
0.15487386286258698,
-0.022563334554433823,
0.0729738101363182,
0.16844388842582703,
-0.24077099561691284,
-0.06838817149400711,
0.024320831522345543,
0.07422955334186554,
0.0690317451953888,
-0.07799436897039413,
-0.005889226216822863,
0.029863491654396057,
0.03632750362157822,
0.06864166259765625,
-0.020647065714001656,
-0.05120663717389107,
-0.02277868241071701,
-0.13457849621772766,
-0.03203282877802849,
0.20539075136184692,
0.04257918521761894,
-0.03660717234015465,
-0.08693442493677139,
-0.051194336265325546,
-0.08963453024625778,
-0.01562076061964035,
-0.06798234581947327,
0.015170693397521973,
-0.04386761784553528,
-0.03044453263282776,
-0.08672970533370972,
-0.08890220522880554,
-0.029166094958782196,
0.011877627111971378,
0.09326587617397308,
0.029656514525413513,
0.017112087458372116,
-0.029623225331306458,
0.07422388345003128,
-0.0415542833507061,
-0.14550906419754028,
-0.0010482994839549065,
-0.014322328381240368,
-0.05541780963540077,
-0.0678098201751709,
-0.03700163587927818,
-0.10827958583831787,
-0.01052120327949524,
0.11992506682872772,
-0.02255200408399105,
0.05340917035937309,
-0.0030313439201563597,
0.005826145876199007,
-0.010910400189459324,
0.14969803392887115,
-0.048548623919487,
-0.06918016076087952,
0.017373133450746536,
0.11106665432453156,
0.024144180119037628,
-0.032311998307704926,
-0.09684667736291885,
-0.048568759113550186,
0.09415420889854431,
0.05678648501634598,
-0.006778292823582888,
0.012959256768226624,
-0.027581462636590004,
-0.06152229383587837,
0.07042868435382843,
-0.141733780503273,
0.03624501824378967,
-0.04018285870552063,
-0.08393604308366776,
-0.017263948917388916,
0.018778318539261818,
0.02006690204143524,
-0.06571639329195023,
0.08255801349878311,
-0.06834594160318375,
-0.004910570569336414,
-0.0631406158208847,
-0.05975893512368202,
0.04320027306675911,
-0.06752319633960724,
0.004067568574100733,
-0.07735524326562881,
-0.16875791549682617,
-0.022451194003224373,
0.06501494348049164,
-0.06483244150876999,
-0.06648139655590057,
-0.02310863509774208,
-0.05886707827448845,
0.022387748584151268,
-0.024494601413607597,
0.08460980653762817,
-0.03681924566626549,
0.046012911945581436,
0.0013321018777787685,
0.004228371195495129,
0.007430019322782755,
0.04755892604589462,
-0.08824899792671204,
0.02982024848461151,
-0.1114409863948822,
0.06288139522075653,
-0.09599282592535019,
0.01680455170571804,
-0.12472208589315414,
-0.10285124182701111,
0.003165000583976507,
-0.0381726436316967,
0.09446622431278229,
0.11671848595142365,
-0.14927659928798676,
-0.01257553044706583,
0.10327362269163132,
-0.09064830839633942,
-0.10634483397006989,
0.12084349244832993,
-0.02230057679116726,
0.02729492448270321,
0.04563596099615097,
0.1667150855064392,
0.11670207977294922,
-0.14575207233428955,
-0.03155824542045593,
0.008890625089406967,
0.08740965276956558,
-0.020194848999381065,
0.0904390811920166,
0.0132053904235363,
0.056810736656188965,
0.020234346389770508,
-0.048162851482629776,
-0.024118823930621147,
-0.04379148408770561,
-0.10740037262439728,
-0.05073748901486397,
-0.058091819286346436,
0.010302833281457424,
0.04271559417247772,
0.030521441251039505,
-0.0803905799984932,
-0.10502578318119049,
0.09902003407478333,
0.12087903171777725,
-0.04807029664516449,
0.030274970456957817,
-0.071096271276474,
0.0555981770157814,
-0.06724455207586288,
-0.030824346467852592,
-0.18720529973506927,
-0.08715177327394485,
0.042713314294815063,
-0.06839767098426819,
0.049196723848581314,
0.01873069442808628,
0.05970970168709755,
0.07300344854593277,
-0.04061910882592201,
-0.017465149983763695,
-0.10222028195858002,
-0.0005437415093183517,
-0.10438951104879379,
-0.1468200385570526,
-0.046258024871349335,
-0.03930364549160004,
0.15137717127799988,
-0.18200945854187012,
0.012365058995783329,
0.019625168293714523,
0.14253473281860352,
0.022771097719669342,
-0.04299767315387726,
0.0007454598089680076,
0.04462070018053055,
-0.012790707871317863,
-0.08753479272127151,
0.026453182101249695,
0.0069520543329417706,
-0.08682961761951447,
-0.025422364473342896,
-0.15262427926063538,
0.07998354732990265,
0.08240997046232224,
0.03996468335390091,
-0.057018838822841644,
-0.015613347291946411,
-0.054479002952575684,
-0.04839634522795677,
-0.050527822226285934,
-0.007812644354999065,
0.1794193536043167,
0.025499772280454636,
0.11396085470914841,
-0.07542259991168976,
-0.04732519015669823,
0.024865953251719475,
-0.013932868838310242,
-0.061146609485149384,
0.07767334580421448,
0.047161635011434555,
-0.15025533735752106,
0.08846312016248703,
0.11010918021202087,
-0.05692248046398163,
0.13796716928482056,
-0.03299260884523392,
-0.11001691222190857,
-0.039481282234191895,
-0.007530068513005972,
0.007021473255008459,
0.12849165499210358,
-0.09985215216875076,
0.0002939804398920387,
0.044282764196395874,
0.03268521651625633,
0.04389568790793419,
-0.15133249759674072,
-0.0021668151021003723,
0.03000674583017826,
-0.03492654114961624,
0.006499923765659332,
-0.008466002531349659,
0.007834307849407196,
0.07563931494951248,
0.026488129049539566,
-0.038352467119693756,
0.00979231670498848,
-0.019339531660079956,
-0.06927222013473511,
0.14990116655826569,
-0.11364047974348068,
-0.21538417041301727,
-0.17050565779209137,
0.02597636729478836,
-0.07931731641292572,
-0.023372387513518333,
0.023211844265460968,
-0.05363038554787636,
-0.06986090540885925,
-0.10536295920610428,
-0.01815471053123474,
-0.07188665121793747,
-0.026909109205007553,
0.05042523145675659,
0.03178325667977333,
0.07592891156673431,
-0.11632626503705978,
0.008516569621860981,
0.004929262213408947,
-0.04110082611441612,
-0.024146506562829018,
0.02703176438808441,
0.10203792154788971,
0.09098317474126816,
-0.0347670242190361,
0.02242504432797432,
-0.025793589651584625,
0.21897822618484497,
-0.08199536800384521,
0.010636337101459503,
0.14871905744075775,
-0.009195367805659771,
0.06437481194734573,
0.13588392734527588,
0.029651615768671036,
-0.06819458305835724,
0.007915941067039967,
0.036052193492650986,
-0.010329601354897022,
-0.25766006112098694,
-0.04926040396094322,
-0.042760640382766724,
-0.024312591180205345,
0.11358552426099777,
0.05182401090860367,
0.019102074205875397,
0.06589991599321365,
-0.02759649232029915,
0.046465110033750534,
-0.006270916201174259,
0.09986525774002075,
0.12281792610883713,
0.05075637996196747,
0.08790568262338638,
-0.030298763886094093,
-0.028966616839170456,
0.07783831655979156,
0.05593718960881233,
0.2114761918783188,
-0.01865597814321518,
0.14319615066051483,
0.0027649381663650274,
0.14426928758621216,
-0.024692833423614502,
0.037950336933135986,
0.02072708122432232,
0.02086014859378338,
0.0014149443013593554,
-0.07267476618289948,
-0.042147401720285416,
0.03983059152960777,
-0.016766341403126717,
0.014433050528168678,
-0.0640760287642479,
0.03674517199397087,
0.004369829315692186,
0.22158248722553253,
0.042076580226421356,
-0.2733786404132843,
-0.07845299690961838,
0.023820051923394203,
-0.02296207845211029,
-0.06932047009468079,
0.0036156384740024805,
0.09481705725193024,
-0.11092113703489304,
0.0697493627667427,
-0.08591630309820175,
0.10920748114585876,
-0.030130913481116295,
-0.010126182809472084,
0.05367623642086983,
0.11075899749994278,
0.01903720758855343,
0.10600241273641586,
-0.18685811758041382,
0.2240593433380127,
0.032520320266485214,
0.10868362337350845,
-0.072553351521492,
0.051049407571554184,
0.008478503674268723,
0.0872245654463768,
0.10520005226135254,
0.0076109012588858604,
-0.09383219480514526,
-0.13888491690158844,
-0.1387508362531662,
0.02226870134472847,
0.09052278846502304,
-0.028100185096263885,
0.06746521592140198,
-0.042707283049821854,
0.0035966967698186636,
0.034336380660533905,
-0.03172686696052551,
-0.13136859238147736,
-0.15889090299606323,
0.07781387865543365,
0.01177817303687334,
-0.058327943086624146,
-0.06379814445972443,
-0.11188042908906937,
-0.03315718472003937,
0.20019502937793732,
0.06428290158510208,
-0.04613379016518593,
-0.14549139142036438,
0.03615518659353256,
0.16501262784004211,
-0.07676878571510315,
0.0011823932873085141,
0.007806925568729639,
0.1384187489748001,
0.003056545974686742,
-0.07956679165363312,
0.05001396685838699,
-0.06001526489853859,
-0.12220270931720734,
-0.03215382248163223,
0.1365119367837906,
0.007149500772356987,
0.05210718885064125,
0.010578670538961887,
0.036823999136686325,
-0.01181634608656168,
-0.07546590268611908,
0.0005955644883215427,
0.027882283553481102,
0.08810069411993027,
0.018566973507404327,
-0.06344190984964371,
0.014596779830753803,
-0.06011011078953743,
-0.022385645657777786,
0.12207367271184921,
0.20734862983226776,
-0.06535407900810242,
0.06890779733657837,
0.09847530722618103,
-0.08697481453418732,
-0.1689739227294922,
0.03711025416851044,
0.09671900421380997,
0.0251704603433609,
0.050135720521211624,
-0.1619739979505539,
0.06371760368347168,
0.1092538833618164,
-0.03131505474448204,
0.04599691554903984,
-0.2964931130409241,
-0.12729781866073608,
0.06524190306663513,
0.10817564278841019,
0.015528572723269463,
-0.12457475066184998,
-0.04357389733195305,
-0.027757177129387856,
-0.14731840789318085,
0.10613124817609787,
-0.043917275965213776,
0.09465578943490982,
0.0010758473072201014,
0.0958307683467865,
0.030386358499526978,
-0.048097677528858185,
0.16746091842651367,
0.00549500435590744,
0.03898525983095169,
-0.06232636794447899,
0.058428917080163956,
0.10688094049692154,
-0.0821719765663147,
0.1036592572927475,
-0.025983663275837898,
0.04444481432437897,
-0.1509246677160263,
-0.029621506109833717,
-0.03319697827100754,
0.07978316396474838,
-0.0545375682413578,
-0.057974014431238174,
-0.03078172355890274,
0.060209255665540695,
0.07082659751176834,
-0.04165591672062874,
0.13175445795059204,
0.02789749763906002,
0.0699058398604393,
0.1322232335805893,
0.11577937006950378,
-0.017017284408211708,
-0.08701429516077042,
0.013764588162302971,
-0.027105597779154778,
0.0480436272919178,
-0.08228668570518494,
0.020331749692559242,
0.1310233324766159,
0.004620303399860859,
0.11808845400810242,
-0.0012745984131470323,
-0.06425249576568604,
-0.009662572294473648,
0.029326964169740677,
-0.1250472515821457,
-0.11511466652154922,
-0.04353814944624901,
0.03734474256634712,
-0.1327066421508789,
0.011452347040176392,
0.1400667130947113,
-0.0703069344162941,
-0.01934499479830265,
0.0005134349339641631,
0.03301535174250603,
-0.008301272056996822,
0.17517468333244324,
0.029132938012480736,
0.05452928692102432,
-0.06511875241994858,
0.1291929930448532,
0.09496547281742096,
-0.12573306262493134,
0.06876921653747559,
0.0831560418009758,
-0.08635657280683517,
-0.03229780122637749,
0.03873516246676445,
0.11243413388729095,
-0.02810709923505783,
-0.05454390123486519,
-0.09217268228530884,
-0.05692204833030701,
0.029012661427259445,
0.07767225056886673,
0.04645039141178131,
-0.026608729735016823,
-0.03399540111422539,
0.005846835672855377,
-0.14309225976467133,
0.11902064085006714,
0.05289395898580551,
0.07702196389436722,
-0.13221785426139832,
0.06788163632154465,
-0.005450504831969738,
0.04384097456932068,
-0.017350321635603905,
0.021629296243190765,
-0.04545794054865837,
-0.03531678766012192,
-0.10518228262662888,
0.009290436282753944,
-0.04247928783297539,
0.006207266356796026,
-0.03880222141742706,
-0.0633215457201004,
-0.05706876143813133,
0.03613923490047455,
-0.061136964708566666,
-0.052331969141960144,
-0.023124562576413155,
0.03047671914100647,
-0.12416452914476395,
-0.020956018939614296,
0.031142815947532654,
-0.09286841750144958,
0.06116589903831482,
0.05042644590139389,
0.0072287400253117085,
0.02046145498752594,
-0.017461998388171196,
0.016498057171702385,
0.006292222999036312,
0.06107185408473015,
0.0687437430024147,
-0.10379503667354584,
-0.012666894122958183,
0.00998936127871275,
0.041757889091968536,
0.012799768708646297,
0.08272197842597961,
-0.12086270749568939,
-0.04771517962217331,
-0.05312294140458107,
-0.07543741911649704,
-0.05319672450423241,
0.06537189334630966,
0.11114451289176941,
0.024461589753627777,
0.15530207753181458,
-0.062133368104696274,
0.06617503613233566,
-0.1897919774055481,
-0.01734810136258602,
0.014560764655470848,
-0.04894019290804863,
-0.03454401716589928,
-0.03764411807060242,
0.07378081232309341,
-0.06739117205142975,
0.11643773317337036,
0.011787155643105507,
0.1186080053448677,
0.05339520052075386,
-0.05967934802174568,
0.007779349572956562,
0.003272122936323285,
0.14866088330745697,
0.06315530091524124,
-0.006217554211616516,
0.07903701812028885,
-0.03479604795575142,
0.04737948253750801,
0.05520990490913391,
0.12298008054494858,
0.1400996893644333,
0.02792820893228054,
0.07812707126140594,
0.07442198693752289,
-0.059080734848976135,
-0.1587802916765213,
0.04084533080458641,
-0.0138670289888978,
0.10882293432950974,
-0.017686353996396065,
0.15348930656909943,
0.1023174375295639,
-0.16687263548374176,
0.05774321407079697,
-0.05885031446814537,
-0.1169281154870987,
-0.10848763585090637,
-0.11410052329301834,
-0.09293651580810547,
-0.07470111548900604,
0.011178209446370602,
-0.13567571341991425,
0.03555946424603462,
0.07553207129240036,
0.013417631387710571,
-0.009266608394682407,
0.1320633888244629,
-0.04295513778924942,
0.00030091727967374027,
0.06404722481966019,
0.019020885229110718,
0.01972452737390995,
-0.03596609830856323,
-0.05195235088467598,
0.03606650233268738,
0.04388788715004921,
0.07563145458698273,
-0.034709230065345764,
0.0246354378759861,
0.01923459954559803,
-0.004807129967957735,
-0.08224966377019882,
0.00869639590382576,
0.020395535975694656,
0.04411182925105095,
0.05578381195664406,
0.03966842591762543,
0.0000754724969738163,
-0.03786897659301758,
0.2492118626832962,
-0.058375339955091476,
-0.07478978484869003,
-0.13786941766738892,
0.12225156277418137,
0.020440930500626564,
-0.019716447219252586,
0.06698712706565857,
-0.09962569922208786,
-0.0059866271913051605,
0.14456845819950104,
0.15788403153419495,
-0.05130346119403839,
-0.03593132644891739,
0.0034497082233428955,
-0.008174093440175056,
-0.054118067026138306,
0.09320341050624847,
0.07903415709733963,
0.026325715705752373,
-0.06496328860521317,
-0.02325669303536415,
-0.029217595234513283,
-0.01702873781323433,
-0.09485170990228653,
0.07104164361953735,
0.0027771135792136192,
-0.006190329324454069,
-0.025687919929623604,
0.08476369827985764,
0.018636099994182587,
-0.16059303283691406,
-0.013227981515228748,
-0.18745002150535583,
-0.20429503917694092,
-0.011688893660902977,
0.12480118125677109,
-0.03578796610236168,
0.05270562693476677,
-0.0013931005960330367,
0.0033225163351744413,
0.09834647178649902,
-0.0026024342514574528,
-0.049237169325351715,
-0.07661288976669312,
0.08794049918651581,
-0.07233956456184387,
0.20660224556922913,
0.016090476885437965,
0.064995676279068,
0.09458795934915543,
0.016001233831048012,
-0.1243983581662178,
0.01865268684923649,
0.09627833217382431,
-0.026043333113193512,
0.04130704700946808,
0.1724858283996582,
-0.05404309555888176,
0.08721339702606201,
0.053311556577682495,
-0.10121822357177734,
-0.04716518893837929,
-0.045961908996105194,
-0.0006532764527946711,
-0.03954117372632027,
0.0021781977266073227,
-0.07894115149974823,
0.16726233065128326,
0.1849474012851715,
-0.03410351276397705,
-0.021281462162733078,
-0.08144881576299667,
0.03249216824769974,
0.042539700865745544,
0.06511573493480682,
-0.01551185641437769,
-0.19587287306785583,
-0.03144044056534767,
0.03220660611987114,
0.04559905454516411,
-0.22739370167255402,
-0.09469106793403625,
0.04481644183397293,
-0.04995979741215706,
-0.07371887564659119,
0.1050330325961113,
0.04072405397891998,
0.009743332862854004,
-0.03736904636025429,
-0.0617559552192688,
-0.038231901824474335,
0.11718615144491196,
-0.15364894270896912,
-0.05038454756140709
] |
null | null | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# opus-mt-en-ar-finetuned-dummyData-10-10-ar-to-en
This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-ar](https://huggingface.co/Helsinki-NLP/opus-mt-en-ar) on the syssr_en_ar dataset.
It achieves the following results on the evaluation set:
- Loss: 1.2046
- Bleu: 7.9946
- Gen Len: 20.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|
| No log | 1.0 | 1 | 1.2038 | 7.9946 | 20.0 |
| No log | 2.0 | 2 | 1.2038 | 7.9946 | 20.0 |
| No log | 3.0 | 3 | 1.2038 | 7.9946 | 20.0 |
| No log | 4.0 | 4 | 1.2036 | 7.9946 | 20.0 |
| No log | 5.0 | 5 | 1.2046 | 7.9946 | 20.0 |
### Framework versions
- Transformers 4.11.3
- Pytorch 1.9.0+cu111
- Datasets 1.12.1
- Tokenizers 0.10.3
| {"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["syssr_en_ar"], "metrics": ["bleu"], "model-index": [{"name": "opus-mt-en-ar-finetuned-dummyData-10-10-ar-to-en", "results": [{"task": {"type": "text2text-generation", "name": "Sequence-to-sequence Language Modeling"}, "dataset": {"name": "syssr_en_ar", "type": "syssr_en_ar", "args": "default"}, "metrics": [{"type": "bleu", "value": 7.9946, "name": "Bleu"}]}]}]} | text2text-generation | MaryaAI/opus-mt-en-ar-finetuned-dummyData-10-10-ar-to-en | [
"transformers",
"pytorch",
"tensorboard",
"marian",
"text2text-generation",
"generated_from_trainer",
"dataset:syssr_en_ar",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [] | TAGS
#transformers #pytorch #tensorboard #marian #text2text-generation #generated_from_trainer #dataset-syssr_en_ar #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us
| opus-mt-en-ar-finetuned-dummyData-10-10-ar-to-en
================================================
This model is a fine-tuned version of Helsinki-NLP/opus-mt-en-ar on the syssr\_en\_ar dataset.
It achieves the following results on the evaluation set:
* Loss: 1.2046
* Bleu: 7.9946
* Gen Len: 20.0
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 16
* eval\_batch\_size: 16
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 5
* mixed\_precision\_training: Native AMP
### Training results
### Framework versions
* Transformers 4.11.3
* Pytorch 1.9.0+cu111
* Datasets 1.12.1
* Tokenizers 0.10.3
| [
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.11.3\n* Pytorch 1.9.0+cu111\n* Datasets 1.12.1\n* Tokenizers 0.10.3"
] | [
"TAGS\n#transformers #pytorch #tensorboard #marian #text2text-generation #generated_from_trainer #dataset-syssr_en_ar #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.11.3\n* Pytorch 1.9.0+cu111\n* Datasets 1.12.1\n* Tokenizers 0.10.3"
] | [
73,
113,
4,
34
] | [
"passage: TAGS\n#transformers #pytorch #tensorboard #marian #text2text-generation #generated_from_trainer #dataset-syssr_en_ar #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.11.3\n* Pytorch 1.9.0+cu111\n* Datasets 1.12.1\n* Tokenizers 0.10.3"
] | [
-0.09375159442424774,
0.10942485183477402,
-0.0044633978977799416,
0.09109717607498169,
0.10743865370750427,
-0.005463361274451017,
0.16972556710243225,
0.15088696777820587,
-0.11289101839065552,
0.053437490016222,
0.13465183973312378,
0.14067858457565308,
0.04392137750983238,
0.16345198452472687,
-0.06282783299684525,
-0.2634718418121338,
0.051373858004808426,
0.04652039706707001,
-0.03613734617829323,
0.12174921482801437,
0.09131980687379837,
-0.12254341691732407,
0.09326839447021484,
0.03932325541973114,
-0.17130085825920105,
-0.010055875405669212,
-0.000045363289245869964,
-0.0847453698515892,
0.11084160208702087,
0.026009077206254005,
0.09652930498123169,
0.04187069460749626,
0.06372220069169998,
-0.15929782390594482,
0.008894769474864006,
0.05328063294291496,
0.012436888180673122,
0.10753192007541656,
0.06291018426418304,
-0.01396656222641468,
0.10644455999135971,
-0.07210934162139893,
0.07052342593669891,
0.01974601484835148,
-0.12769779562950134,
-0.2719414532184601,
-0.11451955884695053,
0.03746598958969116,
0.06664109975099564,
0.08053422719240189,
0.000004099566467630211,
0.17901140451431274,
-0.024307183921337128,
0.10622983425855637,
0.25847163796424866,
-0.2887501120567322,
-0.05782323703169823,
-0.009972047992050648,
0.05364391580224037,
0.07019610702991486,
-0.06718964874744415,
-0.027484402060508728,
0.022777941077947617,
0.03848481923341751,
0.14499002695083618,
-0.015168794430792332,
-0.0254618301987648,
-0.016604909673333168,
-0.14044272899627686,
-0.06952566653490067,
0.15975336730480194,
0.03256307914853096,
-0.03979124501347542,
-0.05133870989084244,
-0.075528085231781,
-0.16114690899848938,
-0.05136938765645027,
-0.012381712906062603,
0.0534285344183445,
-0.030578281730413437,
-0.08944424986839294,
-0.030238648876547813,
-0.07632946223020554,
-0.03891991451382637,
-0.06295755505561829,
0.14079804718494415,
0.052855297923088074,
0.024600256234407425,
-0.06810999661684036,
0.06348467618227005,
-0.04171575978398323,
-0.15852494537830353,
-0.006396218668669462,
0.01405172236263752,
0.01717032492160797,
-0.03658520430326462,
-0.035377249121665955,
-0.12094849348068237,
0.012919769622385502,
0.1598149687051773,
-0.10365816950798035,
0.07307528704404831,
-0.026583733037114143,
0.04325345158576965,
-0.07676535844802856,
0.19178427755832672,
-0.02311619557440281,
0.019525492563843727,
0.01020900160074234,
0.06010768562555313,
0.04855359345674515,
-0.03227471560239792,
-0.11185594648122787,
0.04864272102713585,
0.10700313001871109,
0.020003415644168854,
-0.029593881219625473,
0.062218211591243744,
-0.04163184389472008,
-0.028952302411198616,
0.043404120951890945,
-0.10015552490949631,
0.040133535861968994,
-0.009722712449729443,
-0.07065969705581665,
-0.00178111984860152,
0.015593663789331913,
0.013352805748581886,
-0.03504990413784981,
0.0921814814209938,
-0.07892034947872162,
0.024197468534111977,
-0.08227569609880447,
-0.14201253652572632,
0.03499675169587135,
-0.10049755871295929,
0.008389212191104889,
-0.09241286665201187,
-0.1471576690673828,
-0.005212337244302034,
0.07195911556482315,
-0.048090413212776184,
-0.04771708324551582,
-0.03876417875289917,
-0.09201882034540176,
0.04150526598095894,
-0.02281467616558075,
0.064686119556427,
-0.06991229951381683,
0.0768735408782959,
0.034004781395196915,
0.07431155443191528,
-0.04276345297694206,
0.04738103225827217,
-0.09284750372171402,
0.035185664892196655,
-0.2150946855545044,
0.05343940854072571,
-0.05700645223259926,
0.0836351290345192,
-0.11056260019540787,
-0.10059082508087158,
0.024372512474656105,
-0.021210890263319016,
0.10010109841823578,
0.08503817766904831,
-0.1682189404964447,
-0.0759732648730278,
0.19081231951713562,
-0.09140962362289429,
-0.12813900411128998,
0.12869687378406525,
-0.04907264560461044,
0.022627219557762146,
0.05598641559481621,
0.2204400599002838,
0.04271046817302704,
-0.09709960967302322,
0.009961248375475407,
-0.045186858624219894,
0.04843231290578842,
-0.04975786432623863,
0.07610633969306946,
-0.0010860420297831297,
0.08241350203752518,
0.00776754692196846,
0.006607651710510254,
0.027691448107361794,
-0.09005706757307053,
-0.08108251541852951,
-0.05214206129312515,
-0.06493214517831802,
0.016485439613461494,
0.03936915099620819,
0.06870677322149277,
-0.12459798902273178,
-0.10511469095945358,
0.06345069408416748,
0.07346211373806,
-0.0739511027932167,
0.05658842623233795,
-0.10974196344614029,
0.09866678714752197,
-0.04809710755944252,
-0.0013988978462293744,
-0.1809995472431183,
-0.004426086787134409,
0.033046040683984756,
-0.03272448107600212,
0.03466777876019478,
-0.03109726309776306,
0.07092121243476868,
0.06502149254083633,
-0.024729594588279724,
-0.02108331210911274,
-0.022196820005774498,
0.008939679712057114,
-0.11060274392366409,
-0.21399348974227905,
-0.03209556266665459,
-0.03744049742817879,
0.07863406836986542,
-0.14537222683429718,
0.04677940532565117,
0.05909734219312668,
0.11289273202419281,
0.03901616111397743,
-0.015223139896988869,
-0.023065442219376564,
0.0685615986585617,
-0.04671448841691017,
-0.06994497776031494,
0.05704329162836075,
0.027344979345798492,
-0.08418040722608566,
0.006767292972654104,
-0.15450480580329895,
0.15046535432338715,
0.14157477021217346,
-0.0334906280040741,
-0.04206601530313492,
0.008421224541962147,
-0.04703173413872719,
-0.02458920143544674,
-0.011745586059987545,
0.030848167836666107,
0.16152112185955048,
0.01982293650507927,
0.15815557539463043,
-0.09507597982883453,
-0.04171955585479736,
0.04970988631248474,
-0.04387218505144119,
-0.00779949314892292,
0.10442144423723221,
0.044607680290937424,
-0.10966624319553375,
0.1343851387500763,
0.15214040875434875,
-0.05940769985318184,
0.11916989833116531,
-0.06532149016857147,
-0.06702698022127151,
-0.03852280229330063,
-0.021673256531357765,
0.026421193033456802,
0.09386894851922989,
-0.12401487678289413,
-0.019644616171717644,
0.036970317363739014,
0.03933842480182648,
0.007271945476531982,
-0.19452214241027832,
0.010439183562994003,
0.04486078768968582,
-0.05367889255285263,
-0.039631422609090805,
-0.012348850257694721,
0.014117619954049587,
0.09718140214681625,
0.01569414883852005,
-0.08018189668655396,
0.025290070101618767,
0.010442719794809818,
-0.061173707246780396,
0.1754930019378662,
-0.10243566334247589,
-0.16654740273952484,
-0.12198955565690994,
-0.10864196717739105,
-0.05552302300930023,
0.00022305530728772283,
0.08900004625320435,
-0.07650656998157501,
-0.05466553196310997,
-0.09774661809206009,
-0.0090541522949934,
-0.015117074362933636,
0.018525827676057816,
0.05821441113948822,
-0.011329155415296555,
0.07395240664482117,
-0.11527080833911896,
-0.027351750060915947,
-0.02498641051352024,
-0.0006051012896932662,
0.062207795679569244,
0.020401347428560257,
0.11462800949811935,
0.12318634241819382,
-0.03522258996963501,
0.036856915801763535,
-0.031876400113105774,
0.23003743588924408,
-0.06924072653055191,
-0.015135219320654869,
0.1392102986574173,
-0.013129075057804585,
0.08334094285964966,
0.12280222028493881,
0.05454108864068985,
-0.08969317376613617,
-0.011657140217721462,
0.011262286454439163,
-0.045693811029195786,
-0.22847828269004822,
-0.02237689681351185,
-0.046117205172777176,
0.006357975769788027,
0.09892230480909348,
0.032907165586948395,
0.043072666972875595,
0.04943437501788139,
0.01799343340098858,
0.05474420264363289,
-0.0027817306108772755,
0.11306514590978622,
0.1348329335451126,
0.054632823914289474,
0.14693790674209595,
-0.05273350328207016,
-0.03382781893014908,
0.056384678930044174,
0.009272255934774876,
0.22637683153152466,
0.020832013338804245,
0.2010733038187027,
0.05731523036956787,
0.15024949610233307,
0.02264038845896721,
0.05503210797905922,
-0.00653443718329072,
-0.005055386107414961,
-0.02448084205389023,
-0.04170411452651024,
-0.0302280243486166,
0.02135210484266281,
-0.07517880946397781,
0.024117134511470795,
-0.11066964268684387,
0.03392675146460533,
0.05229222774505615,
0.2901695668697357,
0.023402854800224304,
-0.35700565576553345,
-0.10034943372011185,
0.012478331103920937,
-0.04996147006750107,
-0.03107784315943718,
0.014739958569407463,
0.0642104297876358,
-0.06987573951482773,
0.06799595057964325,
-0.08255133777856827,
0.1150670200586319,
-0.05490913242101669,
0.04343036189675331,
0.045166779309511185,
0.10462907701730728,
0.001495250267907977,
0.05124269053339958,
-0.2899142801761627,
0.283613383769989,
0.02047242596745491,
0.06748175621032715,
-0.06550988554954529,
0.021772539243102074,
0.0162514541298151,
0.05938075855374336,
0.05070900544524193,
-0.015707476064562798,
-0.13459531962871552,
-0.15563753247261047,
-0.09157920628786087,
0.014480514451861382,
0.09184396266937256,
0.021090639755129814,
0.11338600516319275,
-0.023155832663178444,
0.004800396505743265,
0.050483062863349915,
-0.019652776420116425,
-0.05885174870491028,
-0.10121846199035645,
0.02872309461236,
0.03997299447655678,
-0.023136010393500328,
-0.07211213558912277,
-0.09942308068275452,
-0.0793963223695755,
0.16859565675258636,
0.02573494240641594,
-0.05419835075736046,
-0.12345356494188309,
0.03680598363280296,
0.09020104259252548,
-0.08956678211688995,
0.03256111592054367,
-0.014818153344094753,
0.11432303488254547,
0.008124614134430885,
-0.07699253410100937,
0.1207154393196106,
-0.0567457489669323,
-0.16913385689258575,
-0.04622780904173851,
0.09556479007005692,
0.016516268253326416,
0.063683420419693,
-0.007183571346104145,
0.04391691833734512,
-0.03778165951371193,
-0.07203923910856247,
0.02707517333328724,
-0.0017118852119892836,
0.06564754992723465,
-0.0446564145386219,
-0.01694001629948616,
0.021615589037537575,
-0.07078200578689575,
-0.026570096611976624,
0.16933682560920715,
0.26887834072113037,
-0.08865801990032196,
0.06899009644985199,
0.057022251188755035,
-0.06137259304523468,
-0.15488994121551514,
0.010690130293369293,
0.04551137983798981,
-0.005741444416344166,
0.005639602430164814,
-0.18046952784061432,
0.030921965837478638,
0.10092487186193466,
-0.02368440479040146,
0.05007292330265045,
-0.3168068528175354,
-0.1271669566631317,
0.10842487961053848,
0.12293362617492676,
0.08655763417482376,
-0.17024552822113037,
-0.04378865286707878,
-0.03170233964920044,
-0.13935816287994385,
0.12125731259584427,
-0.12021657824516296,
0.1090615838766098,
-0.02526029199361801,
0.0979142114520073,
0.007848070003092289,
-0.053707022219896317,
0.12422648817300797,
-0.010132892057299614,
0.08802971243858337,
-0.06979664415121078,
0.03491102531552315,
0.11664529889822006,
-0.07676434516906738,
0.04990069568157196,
-0.08776066452264786,
0.034108966588974,
-0.0905415266752243,
-0.01661430485546589,
-0.059056539088487625,
0.0036478901747614145,
-0.02859410084784031,
-0.03592910245060921,
-0.05134283006191254,
0.003931256942451,
0.07160665094852448,
-0.02121579274535179,
0.21516606211662292,
0.02716223895549774,
0.13131818175315857,
0.15811984241008759,
0.09329747408628464,
-0.1325647085905075,
-0.04443051293492317,
0.005050887353718281,
-0.026806024834513664,
0.046895671635866165,
-0.16201288998126984,
0.0434851236641407,
0.13651424646377563,
-0.0034249499440193176,
0.12317036837339401,
0.06299308687448502,
-0.06215602904558182,
0.024734539911150932,
0.04883527755737305,
-0.1545780450105667,
-0.1218765527009964,
0.015089091844856739,
0.04475279897451401,
-0.10335920751094818,
0.061951540410518646,
0.13483698666095734,
-0.05596527084708214,
-0.02154754474759102,
0.004810451064258814,
0.020133990794420242,
-0.017645670101046562,
0.17800147831439972,
0.024562662467360497,
0.056082870811223984,
-0.1093914732336998,
0.08680848032236099,
0.06047958508133888,
-0.10514198243618011,
0.04954836145043373,
0.1107732355594635,
-0.09319248795509338,
-0.029401058331131935,
0.0457925908267498,
0.167343869805336,
-0.06959554553031921,
-0.057132795453071594,
-0.16481421887874603,
-0.12323619425296783,
0.0910789892077446,
0.1746433973312378,
0.06871981173753738,
-0.0014101802371442318,
-0.03707573935389519,
0.002612330485135317,
-0.11669164150953293,
0.09125711023807526,
0.05541284382343292,
0.0775623545050621,
-0.13257570564746857,
0.12391480803489685,
-0.0056710438802838326,
0.03203980624675751,
-0.014894873835146427,
0.015997493639588356,
-0.10337519645690918,
0.006204368080943823,
-0.15228338539600372,
0.004714193753898144,
-0.054291579872369766,
-0.006538794841617346,
-0.010672043077647686,
-0.0501524917781353,
-0.0626043751835823,
0.020846180617809296,
-0.1153324693441391,
-0.02966662123799324,
0.011720746755599976,
0.03509892523288727,
-0.12007787823677063,
-0.021542571485042572,
0.014286184683442116,
-0.07782591134309769,
0.07299870252609253,
0.04799706116318703,
-0.0077672675251960754,
0.027326812967658043,
-0.055668290704488754,
-0.0041893888264894485,
0.06084286421537399,
0.010348716750741005,
0.07779483497142792,
-0.11813674867153168,
-0.025315871462225914,
0.018633127212524414,
0.02901611477136612,
0.017276864498853683,
0.09801346063613892,
-0.11526718735694885,
0.000420541618950665,
-0.007217004429548979,
-0.0724264532327652,
-0.05629883334040642,
0.05843735113739967,
0.10432694107294083,
0.018852651119232178,
0.19160336256027222,
-0.07220788300037384,
0.03088531643152237,
-0.19422146677970886,
0.0064307344146072865,
0.010998042300343513,
-0.14109104871749878,
-0.0760573297739029,
-0.05247299745678902,
0.05924462154507637,
-0.07436913251876831,
0.133108988404274,
0.02007642202079296,
0.023999996483325958,
0.05110521614551544,
-0.04192429035902023,
-0.030164450407028198,
0.018108230084180832,
0.1621984839439392,
0.03569469600915909,
-0.035424716770648956,
0.07122141867876053,
0.020361995324492455,
0.08590966463088989,
0.10468202829360962,
0.19308680295944214,
0.1475420594215393,
0.05833802744746208,
0.10036370903253555,
0.0473301038146019,
-0.02890315279364586,
-0.17950193583965302,
0.055615730583667755,
-0.027081523090600967,
0.1374731808900833,
-0.00474534509703517,
0.19406166672706604,
0.12972836196422577,
-0.14476296305656433,
0.05370808020234108,
-0.03980909287929535,
-0.08216453343629837,
-0.119732566177845,
-0.0819026306271553,
-0.09777779132127762,
-0.15058384835720062,
-0.011255486868321896,
-0.11957500874996185,
0.052442342042922974,
0.05622435733675957,
0.013959089294075966,
-0.006993801333010197,
0.09962259978055954,
0.018420260399580002,
0.010015198960900307,
0.04804985225200653,
-0.0029420938808470964,
-0.044404249638319016,
-0.05563773959875107,
-0.08189152926206589,
0.00804270338267088,
0.01434284821152687,
0.04942372441291809,
-0.00023106949811335653,
-0.01207653433084488,
0.04148366302251816,
-0.036689601838588715,
-0.11797158420085907,
0.014630729332566261,
0.02850985899567604,
0.058018170297145844,
0.029735134914517403,
0.010210958309471607,
-0.005516607314348221,
-0.0036383431870490313,
0.1987968534231186,
-0.07211757451295853,
-0.06721314787864685,
-0.11139068007469177,
0.23084357380867004,
0.016435660421848297,
-0.0364764928817749,
0.029427891597151756,
-0.06238062307238579,
-0.02236262708902359,
0.19728928804397583,
0.19649624824523926,
-0.03374228626489639,
-0.013803118839859962,
-0.018209276720881462,
-0.008995023556053638,
-0.02891678549349308,
0.09014404565095901,
0.12227661907672882,
0.0207954254001379,
-0.07201404869556427,
-0.028658417984843254,
-0.06504998356103897,
-0.006749430205672979,
-0.0658823773264885,
0.06486248970031738,
0.020808231085538864,
-0.007444420363754034,
-0.03253791853785515,
0.053916651755571365,
-0.054753974080085754,
-0.06637602299451828,
0.012047084979712963,
-0.20070983469486237,
-0.155317485332489,
0.0037713623605668545,
0.09179383516311646,
-0.0036609016824513674,
0.05972224473953247,
-0.003171430202201009,
-0.002014381345361471,
0.08734001964330673,
-0.017064638435840607,
-0.07902432233095169,
-0.07307085394859314,
0.10405541956424713,
-0.16636961698532104,
0.19103661179542542,
-0.030917534604668617,
0.03236738219857216,
0.1374414712190628,
0.05108274146914482,
-0.10591188818216324,
0.05371857434511185,
0.04309898614883423,
-0.05253094807267189,
0.009150935336947441,
0.11333851516246796,
-0.02862376905977726,
0.07637353241443634,
0.057130005210638046,
-0.12466304749250412,
-0.01666691154241562,
-0.08104794472455978,
-0.03984644263982773,
-0.014575611799955368,
-0.04884210228919983,
-0.052809301763772964,
0.10873976349830627,
0.19059345126152039,
-0.03712743520736694,
0.0002574656973592937,
-0.06195792183279991,
0.01833181269466877,
0.06667295843362808,
-0.013868427835404873,
-0.06102250516414642,
-0.2545025646686554,
0.0016263104043900967,
0.08085769414901733,
-0.0015879785642027855,
-0.25157907605171204,
-0.09404341876506805,
-0.0060934340581297874,
-0.043532922863960266,
-0.0999755933880806,
0.08730117231607437,
0.08989910781383514,
0.044693924486637115,
-0.06487496197223663,
-0.021771855652332306,
-0.0704817920923233,
0.1670045703649521,
-0.1401941180229187,
-0.05981787294149399
] |
null | null | transformers |
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# MaryaAI/opus-mt-en-ar-finetunedSTEM-v4-en-to-ar
This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-ar](https://huggingface.co/Helsinki-NLP/opus-mt-en-ar) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 2.0589
- Validation Loss: 5.3227
- Epoch: 0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32
### Training results
| Train Loss | Validation Loss | Epoch |
|:----------:|:---------------:|:-----:|
| 2.0589 | 5.3227 | 0 |
### Framework versions
- Transformers 4.17.0.dev0
- TensorFlow 2.7.0
- Datasets 1.18.3.dev0
- Tokenizers 0.10.3
| {"license": "apache-2.0", "tags": ["generated_from_keras_callback"], "model-index": [{"name": "MaryaAI/opus-mt-en-ar-finetunedSTEM-v4-en-to-ar", "results": []}]} | text2text-generation | MaryaAI/opus-mt-en-ar-finetunedSTEM-v4-en-to-ar | [
"transformers",
"tf",
"tensorboard",
"marian",
"text2text-generation",
"generated_from_keras_callback",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [] | TAGS
#transformers #tf #tensorboard #marian #text2text-generation #generated_from_keras_callback #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
| MaryaAI/opus-mt-en-ar-finetunedSTEM-v4-en-to-ar
===============================================
This model is a fine-tuned version of Helsinki-NLP/opus-mt-en-ar on an unknown dataset.
It achieves the following results on the evaluation set:
* Train Loss: 2.0589
* Validation Loss: 5.3227
* Epoch: 0
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* optimizer: {'name': 'AdamWeightDecay', 'learning\_rate': 2e-05, 'decay': 0.0, 'beta\_1': 0.9, 'beta\_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight\_decay\_rate': 0.01}
* training\_precision: float32
### Training results
### Framework versions
* Transformers 4.17.0.dev0
* TensorFlow 2.7.0
* Datasets 1.18.3.dev0
* Tokenizers 0.10.3
| [
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* optimizer: {'name': 'AdamWeightDecay', 'learning\\_rate': 2e-05, 'decay': 0.0, 'beta\\_1': 0.9, 'beta\\_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight\\_decay\\_rate': 0.01}\n* training\\_precision: float32",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.17.0.dev0\n* TensorFlow 2.7.0\n* Datasets 1.18.3.dev0\n* Tokenizers 0.10.3"
] | [
"TAGS\n#transformers #tf #tensorboard #marian #text2text-generation #generated_from_keras_callback #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* optimizer: {'name': 'AdamWeightDecay', 'learning\\_rate': 2e-05, 'decay': 0.0, 'beta\\_1': 0.9, 'beta\\_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight\\_decay\\_rate': 0.01}\n* training\\_precision: float32",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.17.0.dev0\n* TensorFlow 2.7.0\n* Datasets 1.18.3.dev0\n* Tokenizers 0.10.3"
] | [
61,
118,
4,
37
] | [
"passage: TAGS\n#transformers #tf #tensorboard #marian #text2text-generation #generated_from_keras_callback #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* optimizer: {'name': 'AdamWeightDecay', 'learning\\_rate': 2e-05, 'decay': 0.0, 'beta\\_1': 0.9, 'beta\\_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight\\_decay\\_rate': 0.01}\n* training\\_precision: float32### Training results### Framework versions\n\n\n* Transformers 4.17.0.dev0\n* TensorFlow 2.7.0\n* Datasets 1.18.3.dev0\n* Tokenizers 0.10.3"
] | [
-0.06070037931203842,
0.061158452183008194,
-0.004456176422536373,
0.0751156434416771,
0.12015561014413834,
0.0127524109557271,
0.15327678620815277,
0.1536697894334793,
-0.1268380880355835,
0.08234427124261856,
0.14475397765636444,
0.1678203046321869,
0.0357394814491272,
0.14706265926361084,
-0.11233256012201309,
-0.17277267575263977,
0.04525655880570412,
0.020200056955218315,
-0.06189984083175659,
0.08769997954368591,
0.0800870805978775,
-0.08768251538276672,
0.1027391254901886,
0.00528719462454319,
-0.1740889847278595,
0.04596219211816788,
0.10031870752573013,
-0.08795486390590668,
0.10580583661794662,
0.08412681519985199,
0.07928735017776489,
0.033716604113578796,
0.012616877444088459,
-0.1653427928686142,
0.013681397773325443,
0.11472342908382416,
-0.013981412164866924,
0.08504234999418259,
0.028122704476118088,
-0.007953783497214317,
0.14491084218025208,
-0.10199485719203949,
0.03171949461102486,
0.04059389606118202,
-0.11453147232532501,
-0.21964001655578613,
-0.12553773820400238,
0.011523924767971039,
0.0350445955991745,
0.07519985735416412,
0.004349736496806145,
0.21276873350143433,
0.007617682684212923,
0.11004115641117096,
0.20641058683395386,
-0.33918631076812744,
-0.05418549105525017,
0.036068350076675415,
0.02007250115275383,
0.059343121945858,
-0.04363005608320236,
0.06692709028720856,
0.06666888296604156,
0.03487785533070564,
0.0922934040427208,
-0.03106655552983284,
-0.05324151739478111,
-0.02738720364868641,
-0.0983937531709671,
-0.029150672256946564,
0.14105503261089325,
0.01907915063202381,
-0.06006820499897003,
-0.05397484451532364,
-0.08385077118873596,
-0.15759924054145813,
-0.01370177324861288,
-0.06693097949028015,
0.027531396597623825,
0.013667216524481773,
-0.07604425400495529,
-0.06974149495363235,
-0.0776376947760582,
-0.04184545949101448,
-0.09200047701597214,
0.13745632767677307,
0.01764995977282524,
0.05187712609767914,
-0.05011595040559769,
0.042663201689720154,
-0.0842055082321167,
-0.13422125577926636,
-0.006441332399845123,
0.002564195077866316,
-0.008281495422124863,
-0.03941289335489273,
-0.0757720023393631,
-0.17155924439430237,
0.07144763320684433,
0.12615779042243958,
-0.10744655132293701,
0.09089310467243195,
-0.122255340218544,
0.03089269995689392,
-0.11745617538690567,
0.12721769511699677,
-0.007593574933707714,
-0.019116641953587532,
0.057386256754398346,
0.026955390349030495,
0.08386500924825668,
-0.050932228565216064,
-0.08601131290197372,
0.006599343381822109,
0.08986292034387589,
0.016557004302740097,
-0.028423888608813286,
0.09009423106908798,
-0.039447885006666183,
-0.005413376726210117,
-0.003154107602313161,
-0.09489557147026062,
0.031862977892160416,
-0.014259674586355686,
-0.06282015889883041,
0.02965310402214527,
0.06350207328796387,
-0.0016765417531132698,
-0.06416794657707214,
0.035933490842580795,
-0.06270120292901993,
-0.028005218133330345,
-0.08513785898685455,
-0.1321732997894287,
0.04546148702502251,
-0.10860607773065567,
-0.028632475063204765,
-0.0904584601521492,
-0.16138139367103577,
-0.013369767926633358,
0.05858859792351723,
-0.049206677824258804,
-0.006762179546058178,
-0.03949006274342537,
-0.14177840948104858,
0.059763889759778976,
-0.018386410549283028,
0.10946249961853027,
-0.047861937433481216,
0.06249357759952545,
0.02037409134209156,
0.0780521109700203,
-0.11010795086622238,
0.034753140062093735,
-0.04370923340320587,
0.006232423707842827,
-0.21417035162448883,
0.06616060435771942,
-0.05690337345004082,
0.02631409838795662,
-0.13538014888763428,
-0.05091005936264992,
-0.012795188464224339,
0.01191619597375393,
0.11849083006381989,
0.10706179589033127,
-0.18519915640354156,
-0.062406428158283234,
0.14388826489448547,
-0.106814906001091,
-0.09650790691375732,
0.12103932350873947,
-0.03892093151807785,
0.015522877685725689,
0.08394292742013931,
0.13397656381130219,
-0.006558764260262251,
-0.09775467962026596,
0.009743991307914257,
-0.028440309688448906,
-0.013732776045799255,
-0.01806531473994255,
0.005945815704762936,
-0.03520485386252403,
0.002387397922575474,
0.009809472598135471,
0.008236924186348915,
0.010186798870563507,
-0.05744720995426178,
-0.059290360659360886,
-0.06945443153381348,
-0.054758232086896896,
0.04598131775856018,
0.02301851287484169,
0.06634834408760071,
-0.10989060997962952,
-0.12735319137573242,
0.0629367008805275,
0.02478698082268238,
-0.062192998826503754,
0.06277721375226974,
-0.09570199251174927,
0.060476530343294144,
-0.027597984299063683,
0.021854793652892113,
-0.18741294741630554,
-0.043497953563928604,
0.025068705901503563,
0.04399627447128296,
0.028417382389307022,
0.006822786759585142,
0.0808941200375557,
0.0112913828343153,
-0.06619240343570709,
0.03021344542503357,
0.007461102679371834,
0.007747131399810314,
-0.09284333884716034,
-0.2462417185306549,
0.021982114762067795,
-0.038391727954149246,
0.03876283019781113,
-0.20855268836021423,
0.027391444891691208,
0.09703130275011063,
0.1223025694489479,
0.05404415726661682,
-0.013689596205949783,
-0.04357924684882164,
0.050902992486953735,
-0.046830929815769196,
-0.06608240306377411,
0.04166577383875847,
0.03318759426474571,
-0.12738589942455292,
0.04841937497258186,
-0.1787610799074173,
0.13515834510326385,
0.16479799151420593,
-0.06856947392225266,
-0.0865066722035408,
0.040927644819021225,
-0.017641425132751465,
-0.023979967460036278,
-0.010125568136572838,
0.009832781739532948,
0.1409318596124649,
0.017015188932418823,
0.14868560433387756,
-0.07327785342931747,
-0.04390307515859604,
0.044067829847335815,
-0.0181108508259058,
-0.03208581730723381,
0.05508960783481598,
0.003058751579374075,
-0.12902189791202545,
0.10937280207872391,
0.12566670775413513,
-0.10461403429508209,
0.13471107184886932,
-0.05508711189031601,
-0.06305256485939026,
-0.0374935157597065,
0.025602366775274277,
0.05020792409777641,
0.07208740711212158,
-0.10830716043710709,
-0.001615127781406045,
0.019798006862401962,
0.024634510278701782,
0.0037849457003176212,
-0.17568199336528778,
0.0206934604793787,
0.0013542873784899712,
-0.07145343720912933,
0.030824802815914154,
0.027834385633468628,
0.009357606060802937,
0.1275644302368164,
0.022547733038663864,
-0.024756040424108505,
0.07397980988025665,
-0.002097139833495021,
-0.08099927753210068,
0.1871766448020935,
-0.1250385195016861,
-0.13224951922893524,
-0.12494200468063354,
-0.07387430965900421,
-0.08922093361616135,
0.009613169357180595,
0.03727863356471062,
-0.10069918632507324,
-0.06635339558124542,
-0.0813298299908638,
-0.006625290494412184,
-0.003190798917785287,
0.0597354955971241,
0.06439443677663803,
-0.014293921180069447,
0.12157826125621796,
-0.11117378622293472,
-0.04352204129099846,
-0.03230446204543114,
-0.0365816093981266,
0.028443122282624245,
0.02430761232972145,
0.052509672939777374,
0.10497798025608063,
-0.04607308283448219,
0.038105309009552,
-0.055489588528871536,
0.18139447271823883,
-0.056883491575717926,
0.014128751121461391,
0.16239401698112488,
-0.02805701456964016,
0.06114408001303673,
0.10373081266880035,
0.03557028993964195,
-0.11058373004198074,
0.027472244575619698,
0.07967094331979752,
-0.0472482405602932,
-0.25669151544570923,
-0.013910564593970776,
-0.04118892922997475,
-0.05749407410621643,
0.040857430547475815,
0.048914600163698196,
0.1505439281463623,
0.027085445821285248,
0.015333125367760658,
0.1127723902463913,
0.015242889523506165,
0.07880596071481705,
0.20468087494373322,
0.05697300285100937,
0.13268239796161652,
-0.06329577416181564,
-0.0015090948436409235,
0.0769701674580574,
-0.011625480838119984,
0.19745078682899475,
0.017949605360627174,
0.12076675146818161,
0.07660165429115295,
0.0593876950442791,
-0.00021941852173767984,
0.01649831235408783,
0.005539420526474714,
-0.0280506182461977,
-0.006695519667118788,
-0.07328999042510986,
-0.032258156687021255,
0.03440922871232033,
-0.09785357117652893,
0.04484977945685387,
-0.08074244856834412,
0.0900779440999031,
0.0665976032614708,
0.2666766941547394,
0.04953596368432045,
-0.32685020565986633,
-0.090544693171978,
0.010696430690586567,
-0.02667842246592045,
-0.031047921627759933,
-0.003330807900056243,
0.10385939478874207,
-0.04468756169080734,
0.11897508800029755,
-0.08566635847091675,
0.07291435450315475,
-0.0287823174148798,
0.05383109673857689,
0.04678700119256973,
0.12428013235330582,
-0.004462537355720997,
0.000268005853286013,
-0.3551347553730011,
0.26320719718933105,
0.04780290648341179,
0.12762852013111115,
-0.07981927692890167,
0.037975013256073,
0.04457797482609749,
0.045196011662483215,
0.07607528567314148,
-0.03640452399849892,
-0.1429131180047989,
-0.07843118160963058,
-0.050461944192647934,
0.010903333313763142,
0.12089026719331741,
0.08906762301921844,
0.0866192877292633,
-0.050537873059511185,
0.0119329784065485,
0.08537604659795761,
-0.013544414192438126,
-0.1356002241373062,
-0.07139768451452255,
0.024483125656843185,
0.08430130779743195,
-0.07874131947755814,
-0.06508312374353409,
-0.087003692984581,
-0.07175944745540619,
0.2252531498670578,
-0.056325022131204605,
-0.042024437338113785,
-0.13852064311504364,
0.10693584382534027,
0.059810571372509,
-0.05924364551901817,
0.043799612671136856,
-0.0068463827483356,
0.08133811503648758,
0.03327763080596924,
-0.13157296180725098,
0.1264551728963852,
-0.035230398178100586,
-0.1749436855316162,
-0.047815706580877304,
0.0825548842549324,
0.009070915170013905,
0.04473312944173813,
0.003674520645290613,
0.05182809755206108,
0.043527696281671524,
-0.08731061220169067,
0.07276859879493713,
0.020107394084334373,
0.05083657056093216,
-0.030577978119254112,
-0.016538769006729126,
-0.04476923123002052,
-0.034060146659612656,
0.0002864022389985621,
0.14728331565856934,
0.24319280683994293,
-0.08476060628890991,
0.051032330840826035,
0.024516195058822632,
-0.08228301256895065,
-0.2197219878435135,
0.0868685245513916,
0.053749412298202515,
-0.0031819138675928116,
-0.038060709834098816,
-0.14605900645256042,
0.062377817928791046,
0.08190815150737762,
-0.01055074017494917,
0.08248402178287506,
-0.27812567353248596,
-0.1591847836971283,
0.07971492409706116,
0.12686587870121002,
0.16644874215126038,
-0.1647394895553589,
-0.06062733754515648,
-0.066921167075634,
-0.060609906911849976,
0.13874736428260803,
-0.17773205041885376,
0.08914800733327866,
0.006664982996881008,
0.03507956117391586,
0.004206065554171801,
-0.043874431401491165,
0.08572067320346832,
-0.046440884470939636,
0.09598776698112488,
-0.07082223147153854,
0.014208106324076653,
0.14518284797668457,
-0.0690360739827156,
0.04033802077174187,
-0.09081243723630905,
0.01989029161632061,
-0.06184135377407074,
0.00006537757144542411,
-0.06799860298633575,
0.05799349024891853,
-0.034564536064863205,
-0.03377771005034447,
-0.022517703473567963,
0.005638294853270054,
0.06008308008313179,
-0.038793761283159256,
0.1717928946018219,
-0.016966579481959343,
0.1691121906042099,
0.20636792480945587,
0.11296702921390533,
-0.07959619909524918,
0.0537002757191658,
0.07657694071531296,
-0.052593015134334564,
0.06981735676527023,
-0.19343386590480804,
0.0511636920273304,
0.09855787456035614,
-0.013000178150832653,
0.11567181348800659,
0.061841126531362534,
-0.06115414574742317,
0.03495871275663376,
0.07723477482795715,
-0.15560327470302582,
-0.1126142218708992,
0.021583762019872665,
-0.04639720544219017,
-0.06575185060501099,
0.07727095484733582,
0.16784773766994476,
-0.03153105080127716,
0.03223942965269089,
0.020109448581933975,
0.006947566755115986,
-0.06405480951070786,
0.1415451467037201,
0.015381278470158577,
0.02545832470059395,
-0.09025417268276215,
0.1270751953125,
0.01790083386003971,
-0.1095116138458252,
0.11229028552770615,
0.07185599952936172,
-0.07959064841270447,
-0.020230716094374657,
0.05568312853574753,
0.13950388133525848,
-0.02724088542163372,
-0.06602226197719574,
-0.14183197915554047,
-0.13035228848457336,
0.07714051753282547,
0.26536810398101807,
0.05020495876669884,
0.033304110169410706,
-0.05020379647612572,
-0.0024988935329020023,
-0.10756576061248779,
0.06388965994119644,
0.029714887961745262,
0.06067033112049103,
-0.13809923827648163,
0.15280845761299133,
-0.011514020152390003,
-0.004555569030344486,
-0.039137065410614014,
0.04137098044157028,
-0.1387707144021988,
-0.012160783633589745,
-0.1633603870868683,
0.0015465907054021955,
-0.010579143650829792,
-0.025712544098496437,
0.009930322878062725,
-0.058375678956508636,
-0.09544231742620468,
0.04819018021225929,
-0.0862315222620964,
-0.032278481870889664,
0.03831526264548302,
0.021196220070123672,
-0.1383451521396637,
-0.03520824760198593,
-0.013895710930228233,
-0.07540719956159592,
0.06049509719014168,
0.04139648377895355,
-0.011789163574576378,
0.051732007414102554,
-0.09965828061103821,
0.008905836381018162,
0.09050609171390533,
-0.007519842125475407,
0.06050853431224823,
-0.07926332950592041,
0.005875745788216591,
0.01445066649466753,
0.05623077601194382,
0.03408520668745041,
0.13637925684452057,
-0.0811580941081047,
-0.012761102989315987,
-0.036926575005054474,
-0.03538299351930618,
-0.04955979809165001,
0.0719265416264534,
0.15776121616363525,
0.0031642497051507235,
0.1763617992401123,
-0.11488934606313705,
-0.020944057032465935,
-0.16935011744499207,
0.028352266177535057,
0.014114352874457836,
-0.12305566668510437,
-0.0919525995850563,
-0.01047652866691351,
0.08706722408533096,
-0.08484093099832535,
0.10746826976537704,
-0.01757732778787613,
0.053816717118024826,
0.07367777079343796,
-0.06520240008831024,
-0.08089267462491989,
0.03539756312966347,
0.18765248358249664,
0.039540573954582214,
-0.02661222405731678,
0.022233905270695686,
0.0034563776571303606,
0.10049881041049957,
0.08276163786649704,
0.23940235376358032,
0.12086741626262665,
-0.005616902839392424,
0.15084543824195862,
0.060874804854393005,
-0.02989480271935463,
-0.139573872089386,
0.13122542202472687,
-0.09988699108362198,
0.16378648579120636,
-0.04203303903341293,
0.09112705290317535,
0.12511633336544037,
-0.15253235399723053,
0.025470919907093048,
-0.04484774172306061,
-0.07217678427696228,
-0.15978281199932098,
-0.10539107769727707,
-0.10611690580844879,
-0.1339293271303177,
0.005665993317961693,
-0.11250197142362595,
0.06600706279277802,
0.017471104860305786,
0.030608803033828735,
-0.024853644892573357,
0.1253286600112915,
-0.03153066709637642,
-0.004065752495080233,
0.09385529160499573,
-0.006885821931064129,
-0.02790972962975502,
-0.04343093931674957,
-0.07341668754816055,
0.029503466561436653,
0.009341062977910042,
0.028145821765065193,
0.02123294025659561,
0.012796862050890923,
0.054518599063158035,
-0.04904374107718468,
-0.09994018077850342,
0.04442330822348595,
0.05332189053297043,
0.03888171166181564,
0.06923804432153702,
0.03777359053492546,
-0.01950138993561268,
-0.016916368156671524,
0.15220807492733002,
-0.0965166836977005,
-0.051148369908332825,
-0.15630890429019928,
0.23901644349098206,
0.022308001294732094,
0.025020847097039223,
-0.0038670708891004324,
-0.07662048935890198,
-0.044830091297626495,
0.19596916437149048,
0.16981442272663116,
-0.033716462552547455,
-0.007061294745653868,
0.03161868825554848,
-0.004353469703346491,
-0.04789094254374504,
0.13791222870349884,
0.08331748098134995,
-0.009839886799454689,
-0.03762265667319298,
-0.06601960211992264,
-0.018952101469039917,
-0.010864386335015297,
-0.05278732627630234,
0.09166796505451202,
0.017245758324861526,
-0.018829217180609703,
0.002558856038376689,
0.041004426777362823,
-0.030825283378362656,
-0.08944044262170792,
0.03553049638867378,
-0.2119281142950058,
-0.13810761272907257,
0.008463422767817974,
0.01362769678235054,
-0.03184139356017113,
0.04609926789999008,
-0.0077844648621976376,
0.004452938213944435,
0.08581830561161041,
-0.037353504449129105,
-0.06123840808868408,
-0.059167325496673584,
0.05574207007884979,
-0.11775559931993484,
0.1573960930109024,
-0.019631054252386093,
0.027484580874443054,
0.13818958401679993,
0.03630997985601425,
-0.09341289848089218,
0.057674773037433624,
0.028921792283654213,
-0.09570124000310898,
-0.003719382919371128,
0.09282200038433075,
-0.030471716076135635,
0.11074072122573853,
0.07217935472726822,
-0.07387185841798782,
0.020124388858675957,
-0.10383020341396332,
-0.0871717557311058,
-0.0349394828081131,
-0.040992431342601776,
-0.09925498813390732,
0.11625830084085464,
0.20733653008937836,
-0.012492598034441471,
0.03664594143629074,
-0.05800032988190651,
0.0023533471394330263,
0.06640983372926712,
0.00486998725682497,
-0.058866724371910095,
-0.23171398043632507,
0.051812369376420975,
0.10604822635650635,
0.01022416539490223,
-0.24496512115001678,
-0.07597032934427261,
-0.01356835663318634,
-0.01766197755932808,
-0.12527768313884735,
0.07901881635189056,
0.0899980440735817,
0.04220769926905632,
-0.04869357496500015,
-0.12405466288328171,
-0.021513264626264572,
0.14898738265037537,
-0.11918462812900543,
-0.06310315430164337
] |
null | null | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# opus-mt-en-ro-finetuned-en-to-ro
This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-ro](https://huggingface.co/Helsinki-NLP/opus-mt-en-ro) on the wmt16 dataset.
It achieves the following results on the evaluation set:
- Loss: 1.2886
- Bleu: 28.1599
- Gen Len: 34.1236
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len |
|:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|
| 0.7437 | 1.0 | 38145 | 1.2886 | 28.1599 | 34.1236 |
### Framework versions
- Transformers 4.10.0
- Pytorch 1.9.0+cu102
- Datasets 1.11.0
- Tokenizers 0.10.3
| {"tags": ["generated_from_trainer"], "datasets": ["wmt16"], "metrics": ["bleu"], "model-index": [{"name": "opus-mt-en-ro-finetuned-en-to-ro", "results": [{"task": {"type": "text2text-generation", "name": "Sequence-to-sequence Language Modeling"}, "dataset": {"name": "wmt16", "type": "wmt16", "args": "ro-en"}, "metrics": [{"type": "bleu", "value": 28.1599, "name": "Bleu"}]}]}]} | text2text-generation | MaryaAI/opus-mt-en-ro-finetuned-en-to-ro | [
"transformers",
"pytorch",
"tensorboard",
"marian",
"text2text-generation",
"generated_from_trainer",
"dataset:wmt16",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [] | TAGS
#transformers #pytorch #tensorboard #marian #text2text-generation #generated_from_trainer #dataset-wmt16 #model-index #autotrain_compatible #endpoints_compatible #region-us
| opus-mt-en-ro-finetuned-en-to-ro
================================
This model is a fine-tuned version of Helsinki-NLP/opus-mt-en-ro on the wmt16 dataset.
It achieves the following results on the evaluation set:
* Loss: 1.2886
* Bleu: 28.1599
* Gen Len: 34.1236
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 16
* eval\_batch\_size: 16
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 1
* mixed\_precision\_training: Native AMP
### Training results
### Framework versions
* Transformers 4.10.0
* Pytorch 1.9.0+cu102
* Datasets 1.11.0
* Tokenizers 0.10.3
| [
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 1\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.10.0\n* Pytorch 1.9.0+cu102\n* Datasets 1.11.0\n* Tokenizers 0.10.3"
] | [
"TAGS\n#transformers #pytorch #tensorboard #marian #text2text-generation #generated_from_trainer #dataset-wmt16 #model-index #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 1\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.10.0\n* Pytorch 1.9.0+cu102\n* Datasets 1.11.0\n* Tokenizers 0.10.3"
] | [
61,
113,
4,
34
] | [
"passage: TAGS\n#transformers #pytorch #tensorboard #marian #text2text-generation #generated_from_trainer #dataset-wmt16 #model-index #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 1\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.10.0\n* Pytorch 1.9.0+cu102\n* Datasets 1.11.0\n* Tokenizers 0.10.3"
] | [
-0.10694894939661026,
0.048792969435453415,
-0.002790086204186082,
0.11178869754076004,
0.16573579609394073,
0.025855736806988716,
0.1288929283618927,
0.12266480922698975,
-0.1116282269358635,
0.023251350969076157,
0.12242414057254791,
0.144574373960495,
0.013426206074655056,
0.09704633802175522,
-0.04361829161643982,
-0.2809930443763733,
-0.015639865770936012,
0.04371869936585426,
-0.07936213910579681,
0.13602827489376068,
0.07992104440927505,
-0.14486603438854218,
0.08315518498420715,
0.014346594922244549,
-0.19771385192871094,
0.01816929318010807,
0.011567064560949802,
-0.05044018104672432,
0.15052931010723114,
0.03240957111120224,
0.14147165417671204,
0.018742818385362625,
0.09605638682842255,
-0.17514589428901672,
0.018416129052639008,
0.052791204303503036,
0.016324544325470924,
0.0954740047454834,
0.08149068802595139,
-0.023590095341205597,
0.13886944949626923,
-0.08830520510673523,
0.05164487659931183,
0.020209548994898796,
-0.13714349269866943,
-0.20546723902225494,
-0.0660155713558197,
0.008112269453704357,
0.050606869161129,
0.1062740907073021,
-0.016574392095208168,
0.13554206490516663,
-0.08615300059318542,
0.10029897838830948,
0.22699172794818878,
-0.25006479024887085,
-0.07323779165744781,
0.01255999319255352,
0.026666849851608276,
0.08037911355495453,
-0.09518270939588547,
-0.007210368290543556,
0.04100916162133217,
0.051388029009103775,
0.12801869213581085,
-0.029331866651773453,
-0.08835230022668839,
0.025572938844561577,
-0.1433047503232956,
-0.01499395351856947,
0.1159430593252182,
0.035508353263139725,
-0.01955139823257923,
-0.027992047369480133,
-0.06788643449544907,
-0.1353958696126938,
-0.03773680701851845,
-0.018886903300881386,
0.035697851330041885,
-0.03613092005252838,
-0.11525940150022507,
-0.02389642968773842,
-0.0999218299984932,
-0.062398433685302734,
-0.06790037453174591,
0.13650673627853394,
0.03311125934123993,
0.0049827080219984055,
-0.052314165979623795,
0.10053828358650208,
-0.003219478763639927,
-0.1370304673910141,
0.029895292595028877,
0.025099467486143112,
-0.01859498955309391,
-0.053042568266391754,
-0.07018301635980606,
-0.1064935252070427,
0.00011358472693245858,
0.07549838721752167,
-0.07070931047201157,
0.04933852329850197,
0.02916497364640236,
0.029900353401899338,
-0.08134818822145462,
0.1782740354537964,
-0.06111939996480942,
-0.02290029078722,
-0.00632605841383338,
0.059714220464229584,
-0.00897751934826374,
-0.024078989401459694,
-0.1076594814658165,
-0.00011409032595111057,
0.09879758208990097,
0.00045652902917936444,
-0.06140159070491791,
0.0717785507440567,
-0.043315589427948,
-0.03900573030114174,
-0.02958311140537262,
-0.08885051310062408,
0.04183217138051987,
0.006912080105394125,
-0.09067416936159134,
0.010262948460876942,
0.022410279139876366,
0.024214796721935272,
-0.01760883629322052,
0.11045020073652267,
-0.09436303377151489,
0.042744848877191544,
-0.10363337397575378,
-0.14183557033538818,
0.007622275967150927,
-0.06387384980916977,
0.013474997133016586,
-0.08267856389284134,
-0.1745734065771103,
-0.02103320322930813,
0.042234305292367935,
-0.03088977187871933,
-0.03116919845342636,
-0.06793846935033798,
-0.061151180416345596,
0.01830609329044819,
0.0020478456281125546,
0.1534125655889511,
-0.05352383479475975,
0.10450789332389832,
0.037691883742809296,
0.06128036975860596,
-0.027092264965176582,
0.05623069033026695,
-0.09444255381822586,
0.011851447634398937,
-0.17122653126716614,
0.07464044541120529,
-0.03007192723453045,
0.06090477108955383,
-0.08477339893579483,
-0.10253880172967911,
-0.007164976093918085,
0.007315788418054581,
0.09727027267217636,
0.10495991259813309,
-0.18866482377052307,
-0.0938577800989151,
0.17301252484321594,
-0.053057245910167694,
-0.08668404072523117,
0.12327547371387482,
-0.08184365183115005,
0.0460403710603714,
0.0747564509510994,
0.17286263406276703,
0.04934366047382355,
-0.0562814362347126,
0.03689990192651749,
-0.032532285898923874,
0.05717899650335312,
-0.024444544687867165,
0.055027976632118225,
0.004833775106817484,
0.0029726391658186913,
0.013341877609491348,
-0.006172177381813526,
0.0560496486723423,
-0.12053035199642181,
-0.08840518444776535,
-0.0361567959189415,
-0.0974767729640007,
0.06431390345096588,
0.06510378420352936,
0.076154924929142,
-0.10946150869131088,
-0.09079554677009583,
0.08213484287261963,
0.07983621209859848,
-0.06989768892526627,
0.030077317729592323,
-0.069059357047081,
0.053795840591192245,
-0.0482192263007164,
-0.019655941054224968,
-0.18755929172039032,
-0.01976277306675911,
-0.00021672958973795176,
0.022410141304135323,
0.03977096080780029,
0.02539892867207527,
0.08700074255466461,
0.08104118704795837,
-0.049351539462804794,
-0.015814580023288727,
-0.037883348762989044,
-0.0013308541383594275,
-0.13227829337120056,
-0.22189702093601227,
-0.03371009975671768,
-0.02041027322411537,
0.13499747216701508,
-0.23507529497146606,
0.03514304384589195,
-0.014751264825463295,
0.08001154661178589,
0.0153891546651721,
-0.018340330570936203,
-0.03358825668692589,
0.08929876238107681,
-0.03745889291167259,
-0.042068272829055786,
0.07481563091278076,
-0.005761567037552595,
-0.10695712268352509,
-0.03788764029741287,
-0.14379431307315826,
0.13267524540424347,
0.12353669852018356,
-0.14860424399375916,
-0.08068394660949707,
-0.008627803064882755,
-0.05256453529000282,
-0.031915098428726196,
-0.058816585689783096,
0.02812332473695278,
0.20046669244766235,
0.0012543813791126013,
0.14996463060379028,
-0.06633296608924866,
-0.03686882182955742,
0.019028756767511368,
-0.02937125228345394,
0.03096602112054825,
0.13815732300281525,
0.10086896270513535,
-0.08950472623109818,
0.11429859697818756,
0.13307130336761475,
-0.08676139265298843,
0.1569412499666214,
-0.019770942628383636,
-0.08282365649938583,
-0.02570967748761177,
-0.043666206300258636,
-0.0017302915221080184,
0.08805399388074875,
-0.1490209400653839,
-0.009672414511442184,
0.013976852409541607,
0.022210940718650818,
0.02062201499938965,
-0.2221003770828247,
-0.041826795786619186,
0.05575255677103996,
-0.031681228429079056,
-0.03590768575668335,
-0.023491675034165382,
0.02051115781068802,
0.11494060605764389,
-0.0013926040846854448,
-0.0633813813328743,
0.01702822558581829,
0.0008544152951799333,
-0.07961942255496979,
0.2091781049966812,
-0.07559600472450256,
-0.13961023092269897,
-0.10503547638654709,
-0.08615940064191818,
-0.04707825556397438,
0.012076769955456257,
0.05267319828271866,
-0.10375439375638962,
-0.01535924430936575,
-0.06322609633207321,
0.06583265215158463,
-0.018968747928738594,
0.02630159631371498,
0.0011905241990461946,
-0.010475045070052147,
0.06712181121110916,
-0.10938134789466858,
-0.00004232904757373035,
-0.05624876916408539,
-0.07039100676774979,
0.05523444712162018,
0.03822503983974457,
0.13442690670490265,
0.16342489421367645,
-0.030652865767478943,
0.01699921488761902,
-0.02527019754052162,
0.2427036464214325,
-0.06892339140176773,
-0.018896490335464478,
0.12498848140239716,
-0.01476375199854374,
0.04944517835974693,
0.09754829108715057,
0.07937346398830414,
-0.0790199488401413,
0.0040877521969377995,
0.050234753638505936,
-0.0400298610329628,
-0.2172156572341919,
-0.03575459495186806,
-0.046441636979579926,
-0.01825897768139839,
0.0836474597454071,
0.008549201302230358,
0.04826594889163971,
0.07288409769535065,
0.03949173539876938,
0.06030017137527466,
-0.03541494905948639,
0.051283761858940125,
0.10975464433431625,
0.04898194596171379,
0.14172910153865814,
-0.034792546182870865,
-0.0799107626080513,
0.03666917607188225,
-0.02826891653239727,
0.21958276629447937,
-0.0007593432674184442,
0.1360091120004654,
0.056046511977910995,
0.1513132005929947,
0.008422287181019783,
0.066748708486557,
0.005974397528916597,
-0.04659159854054451,
-0.01831495575606823,
-0.04375552758574486,
-0.020795494318008423,
0.01262502372264862,
-0.046333763748407364,
0.06205061450600624,
-0.14067231118679047,
0.014277231879532337,
0.049198590219020844,
0.23067082464694977,
0.03973601758480072,
-0.32916828989982605,
-0.09289860725402832,
0.0018225625390186906,
-0.031205609440803528,
-0.01011478342115879,
0.010456482879817486,
0.10572495311498642,
-0.09654612839221954,
0.032747458666563034,
-0.07242158055305481,
0.1111411526799202,
-0.05187908187508583,
0.05904395505785942,
0.0433998741209507,
0.1365816742181778,
-0.019535837695002556,
0.07714942842721939,
-0.30323970317840576,
0.28953856229782104,
0.016859492287039757,
0.06929269433021545,
-0.07369166612625122,
-0.01973344199359417,
0.03845273703336716,
0.056231312453746796,
0.03668476641178131,
-0.015965020284056664,
-0.039174534380435944,
-0.2034686952829361,
-0.04748492315411568,
0.03401903435587883,
0.1058647632598877,
-0.019264303147792816,
0.1203852966427803,
-0.020677905529737473,
0.013242448680102825,
0.07749474048614502,
0.01048422884196043,
-0.08796239644289017,
-0.08953332155942917,
-0.017009146511554718,
0.017892606556415558,
-0.043340932577848434,
-0.05745042487978935,
-0.1193782389163971,
-0.11190260201692581,
0.14007578790187836,
0.027874428778886795,
-0.019584666937589645,
-0.12169092893600464,
0.10772459954023361,
0.07921986281871796,
-0.09110105782747269,
0.009247480891644955,
0.021911771968007088,
0.0805264338850975,
0.022484809160232544,
-0.0648416057229042,
0.12046527862548828,
-0.05939435586333275,
-0.16248345375061035,
-0.06326931715011597,
0.09196949750185013,
0.06097270920872688,
0.07651949673891068,
-0.017725935205817223,
0.018068958073854446,
-0.034446462988853455,
-0.07717160135507584,
0.03578384965658188,
-0.012223465368151665,
0.04165071249008179,
0.024790260940790176,
-0.04705756530165672,
0.04002489894628525,
-0.07177809625864029,
-0.02864108979701996,
0.19210490584373474,
0.22962753474712372,
-0.08984348177909851,
0.013414278626441956,
0.03737253323197365,
-0.07476802170276642,
-0.1840505301952362,
0.07428209483623505,
0.062465205788612366,
0.018046990036964417,
0.057173553854227066,
-0.19580210745334625,
0.10640574991703033,
0.10088711977005005,
0.007146789692342281,
0.08920960873365402,
-0.3434582054615021,
-0.13185985386371613,
0.10140368342399597,
0.15528886020183563,
0.10518549382686615,
-0.1416020542383194,
-0.014265774749219418,
-0.01869671232998371,
-0.1088748648762703,
0.10956329107284546,
-0.12515902519226074,
0.1223660409450531,
-0.013347581960260868,
0.11690730601549149,
0.018064072355628014,
-0.05257781967520714,
0.1082037165760994,
0.00686259800568223,
0.09821128845214844,
-0.060445595532655716,
-0.007637964095920324,
0.05411297455430031,
-0.03395094722509384,
-0.014405284076929092,
-0.07113759964704514,
0.02175237610936165,
-0.0947398990392685,
-0.027255935594439507,
-0.08838067948818207,
0.033925969153642654,
-0.038814887404441833,
-0.06951263546943665,
-0.01762976124882698,
0.017138948664069176,
0.051431551575660706,
-0.011161336675286293,
0.11058362573385239,
-0.01615878753364086,
0.16194362938404083,
0.08722317218780518,
0.10233920067548752,
-0.06812163442373276,
-0.03164725750684738,
-0.005191689822822809,
-0.009365729987621307,
0.05014100298285484,
-0.13272212445735931,
0.028034111484885216,
0.1423814594745636,
0.026593424379825592,
0.13966257870197296,
0.08662838488817215,
-0.035737935453653336,
0.019118139520287514,
0.05294618010520935,
-0.15366102755069733,
-0.11030051112174988,
-0.022052353248000145,
-0.055972203612327576,
-0.10205932706594467,
0.03997904434800148,
0.11085823178291321,
-0.06127987056970596,
-0.012658881954848766,
-0.011706339195370674,
-0.008247379213571548,
-0.05586332082748413,
0.209926575422287,
0.05886492505669594,
0.04683186486363411,
-0.10123831033706665,
0.05793618783354759,
0.04775988683104515,
-0.08198419958353043,
0.018013419583439827,
0.11028298735618591,
-0.06545738130807877,
-0.03970271721482277,
0.06925110518932343,
0.23897014558315277,
-0.08859915286302567,
-0.031757134944200516,
-0.15190109610557556,
-0.12177938222885132,
0.0815325379371643,
0.17316199839115143,
0.09189572930335999,
-0.002216153545305133,
-0.06582489609718323,
0.016170933842658997,
-0.13796211779117584,
0.09008077532052994,
0.07425764948129654,
0.06328366696834564,
-0.12195198237895966,
0.20526371896266937,
0.0017505792202427983,
0.04026666656136513,
-0.024999024346470833,
0.012577297165989876,
-0.09782573580741882,
0.018315231427550316,
-0.1684359610080719,
-0.041559454053640366,
-0.029159583151340485,
-0.0020295921713113785,
-0.018127137795090675,
-0.06304881721735,
-0.05872315913438797,
0.0012240156065672636,
-0.11469550430774689,
-0.024740949273109436,
0.02876153402030468,
0.033039506524801254,
-0.10906796902418137,
-0.03283536806702614,
0.017587849870324135,
-0.05705373361706734,
0.06180526688694954,
0.046181820333004,
0.010696503333747387,
0.05040065199136734,
-0.14763525128364563,
0.014784167520701885,
0.03870115056633949,
0.003264808561652899,
0.0698641985654831,
-0.06874242424964905,
-0.007360030896961689,
-0.02004767768085003,
0.0763125792145729,
0.014457088895142078,
0.06749141216278076,
-0.11519233882427216,
0.012605356052517891,
-0.016596654430031776,
-0.08665349334478378,
-0.06735050678253174,
0.046717703342437744,
0.058282747864723206,
0.024199288338422775,
0.18044500052928925,
-0.08774545788764954,
0.06468677520751953,
-0.23242922127246857,
0.0004172914777882397,
-0.003420609747990966,
-0.10391148924827576,
-0.1093013808131218,
-0.07768376916646957,
0.08458466082811356,
-0.07038512080907822,
0.11701253801584244,
0.026423873379826546,
0.06319983303546906,
0.02879505045711994,
-0.025151345878839493,
0.012103159911930561,
0.014439023099839687,
0.20628175139427185,
0.039734501391649246,
-0.04406951367855072,
0.06365540623664856,
0.0673435628414154,
0.11058097332715988,
0.15964432060718536,
0.2160026729106903,
0.1442095935344696,
0.00664078164845705,
0.07899003475904465,
0.047113917768001556,
-0.04659601300954819,
-0.14605706930160522,
0.03661895543336868,
-0.02809658832848072,
0.08806711435317993,
-0.030829625204205513,
0.2004094272851944,
0.0837770476937294,
-0.15755844116210938,
0.05174877122044563,
-0.05337771773338318,
-0.09519543498754501,
-0.11865457147359848,
-0.06004166975617409,
-0.08806879818439484,
-0.13747087121009827,
-0.005576504394412041,
-0.12430163472890854,
0.033703457564115524,
0.0827329158782959,
0.01702370122075081,
-0.02602509967982769,
0.1560538411140442,
0.048202019184827805,
0.02059660665690899,
0.05673948675394058,
0.0004565258277580142,
-0.005013763904571533,
-0.08347959071397781,
-0.07301824539899826,
0.0017005446134135127,
-0.005254649557173252,
0.028629986569285393,
-0.05777451768517494,
-0.0686500072479248,
0.029584191739559174,
-0.02974606677889824,
-0.11894380301237106,
0.012704036198556423,
0.015112104825675488,
0.07291179150342941,
0.04133160784840584,
0.013322904706001282,
-0.0015546145150437951,
-0.02378178760409355,
0.23698610067367554,
-0.07218176871538162,
-0.07532879710197449,
-0.09819440543651581,
0.26586994528770447,
0.03142999857664108,
-0.005226845853030682,
0.027732376009225845,
-0.06885024160146713,
0.015036963857710361,
0.2511301040649414,
0.21760053932666779,
-0.11488956958055496,
-0.006825556047260761,
-0.0011385499965399504,
-0.007443624082952738,
-0.013979543000459671,
0.10310970991849899,
0.10845239460468292,
0.03462192788720131,
-0.1043379008769989,
-0.0349031500518322,
-0.0635479986667633,
-0.010838418267667294,
-0.03693486005067825,
0.08301406353712082,
0.06545372307300568,
0.010230978019535542,
-0.03582517430186272,
0.06091444939374924,
-0.07931294292211533,
-0.0806032046675682,
0.020295102149248123,
-0.2097596377134323,
-0.15973910689353943,
-0.03216949850320816,
0.0879947692155838,
0.021856725215911865,
0.07981565594673157,
-0.030083734542131424,
0.0034721449483186007,
0.059439610689878464,
-0.014995012432336807,
-0.08068810403347015,
-0.07779760658740997,
0.10202565044164658,
-0.12319197505712509,
0.16945502161979675,
-0.04807980731129646,
0.03524726256728172,
0.13182470202445984,
0.06372413039207458,
-0.06489839404821396,
0.06748200207948685,
0.043755777180194855,
-0.061258938163518906,
0.022940469905734062,
0.12014190107584,
-0.03271432965993881,
0.05477708578109741,
0.05266854912042618,
-0.16089476644992828,
0.03488043695688248,
-0.08567921817302704,
-0.052016716450452805,
-0.01625927723944187,
-0.044712550938129425,
-0.04488392919301987,
0.12813499569892883,
0.23760277032852173,
-0.02262459136545658,
0.01847737841308117,
-0.07588745653629303,
0.0022036328446120024,
0.05901602283120155,
0.056871671229600906,
-0.0793352946639061,
-0.24563837051391602,
-0.003046188037842512,
0.06650310754776001,
-0.019004564732313156,
-0.27310001850128174,
-0.09750928729772568,
0.0037679264787584543,
-0.07500232011079788,
-0.08158683031797409,
0.09470707178115845,
0.10146239399909973,
0.06116018444299698,
-0.04911862313747406,
-0.051682986319065094,
-0.06554578989744186,
0.1756150722503662,
-0.1429760903120041,
-0.07604160159826279
] |
null | null | transformers |
# Rick and Morty DialoGPT Model | {"tags": ["conversational"]} | text-generation | MathiasVS/DialoGPT-small-RickAndMorty | [
"transformers",
"pytorch",
"gpt2",
"text-generation",
"conversational",
"autotrain_compatible",
"endpoints_compatible",
"has_space",
"text-generation-inference",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [] | TAGS
#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us
|
# Rick and Morty DialoGPT Model | [
"# Rick and Morty DialoGPT Model"
] | [
"TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us \n",
"# Rick and Morty DialoGPT Model"
] | [
55,
10
] | [
"passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us \n# Rick and Morty DialoGPT Model"
] | [
-0.012218646705150604,
0.11012493818998337,
-0.004753046669065952,
0.011482016183435917,
0.10922618210315704,
-0.0047217002138495445,
0.12140238285064697,
0.14385409653186798,
-0.033700358122587204,
-0.005461092572659254,
0.1498766839504242,
0.16388873755931854,
-0.017840679734945297,
0.03737715259194374,
-0.07334701716899872,
-0.332166850566864,
0.04987460374832153,
0.04450993239879608,
-0.06203129515051842,
0.10582305490970612,
0.09896685928106308,
-0.056205522269010544,
0.0691862553358078,
0.01474919356405735,
-0.12783841788768768,
0.02392154186964035,
0.004734853748232126,
-0.10009226202964783,
0.1134977787733078,
0.061018288135528564,
0.05055106803774834,
0.03925260901451111,
-0.05042177438735962,
-0.1095414012670517,
0.04784393683075905,
0.01097696553915739,
-0.04420171678066254,
0.08085455745458603,
0.00014393268793355674,
-0.08086337149143219,
0.13265959918498993,
0.08881499618291855,
-0.007158554159104824,
0.016123462468385696,
-0.15919001400470734,
-0.057408858090639114,
-0.021580029278993607,
0.03589293733239174,
0.02664569392800331,
0.10619866102933884,
-0.04480103775858879,
0.11487600952386856,
-0.06978332251310349,
0.1035069152712822,
0.15333200991153717,
-0.28518885374069214,
-0.013032075949013233,
0.17740067839622498,
0.07751460373401642,
0.040202945470809937,
-0.052221156656742096,
0.09576261043548584,
0.015396954491734505,
-0.008652553893625736,
-0.020643865689635277,
-0.0671873390674591,
-0.09115112572908401,
0.058298420161008835,
-0.09837064146995544,
-0.01150621846318245,
0.23724694550037384,
-0.03203151747584343,
0.10251042991876602,
-0.06725548207759857,
-0.09915158897638321,
-0.023112693801522255,
-0.029263202100992203,
-0.02246464230120182,
-0.08582388609647751,
0.07749481499195099,
-0.04366397112607956,
-0.08723761141300201,
-0.12174798548221588,
-0.012956912629306316,
-0.16618022322654724,
0.15775366127490997,
0.02010263316333294,
0.03544476255774498,
-0.1991093009710312,
0.08241117000579834,
-0.05823136866092682,
-0.11188595741987228,
0.03772247955203056,
-0.07637869566679001,
0.0029892544262111187,
0.02183089777827263,
-0.06241137161850929,
-0.0022938859183341265,
0.08324437588453293,
0.1131434291601181,
-0.015470205806195736,
0.008973938412964344,
-0.008262830786406994,
0.056631892919540405,
0.05512380599975586,
0.05365004763007164,
-0.05228153243660927,
-0.01717258244752884,
0.005149588454514742,
-0.06776009500026703,
0.00042614113772287965,
-0.08021619915962219,
-0.20395980775356293,
-0.00033033519866876304,
0.06519175320863724,
0.032887548208236694,
0.04662671312689781,
0.13030782341957092,
0.012295486405491829,
-0.025766756385564804,
0.04171516001224518,
-0.02293097786605358,
0.009424208663403988,
0.02369236946105957,
0.003333800472319126,
0.11852909624576569,
0.021129941567778587,
0.052842266857624054,
-0.09135326743125916,
0.0007817943696863949,
-0.054163239896297455,
-0.006869629491120577,
-0.04118172824382782,
-0.09413933753967285,
0.008149567060172558,
-0.013766219839453697,
0.011715522967278957,
-0.13694879412651062,
-0.10854427516460419,
-0.003291090251877904,
0.0077230422757565975,
-0.05694065988063812,
-0.10586941242218018,
-0.06722350418567657,
-0.05322066694498062,
0.07519298791885376,
-0.05841159075498581,
0.04727711156010628,
-0.040322814136743546,
0.08301231265068054,
-0.043912578374147415,
0.09309874475002289,
-0.10421597957611084,
0.09537427127361298,
-0.05474236235022545,
-0.035369567573070526,
-0.06667336076498032,
0.09703993052244186,
0.004938039928674698,
0.03012920543551445,
-0.028695788234472275,
-0.019777672365307808,
-0.12707214057445526,
0.07411713153123856,
-0.024865278974175453,
0.20175084471702576,
-0.1175624430179596,
-0.08428037166595459,
0.195933997631073,
-0.036187078803777695,
-0.11221350729465485,
0.11850284039974213,
-0.034433513879776,
0.07956098765134811,
0.07631631195545197,
0.20461463928222656,
0.0456840842962265,
-0.01447229366749525,
0.07750944048166275,
0.12406671047210693,
-0.059202443808317184,
0.005968018434941769,
0.03479514643549919,
-0.020509440451860428,
-0.05282074585556984,
0.011437281966209412,
0.07413996756076813,
0.046558450907468796,
-0.04991724714636803,
-0.01914825290441513,
-0.0028027433436363935,
-0.005267610773444176,
0.08600891381502151,
-0.011277053505182266,
0.12943553924560547,
-0.0506862998008728,
-0.09365876764059067,
-0.00046975177247077227,
0.02800757810473442,
-0.05369880050420761,
0.03701617196202278,
-0.054775066673755646,
0.06473396718502045,
-0.029554475098848343,
0.05495204031467438,
-0.17402800917625427,
-0.09573996812105179,
-0.06227206438779831,
0.2228136509656906,
0.06703254580497742,
0.18085640668869019,
0.06418802589178085,
-0.06290026009082794,
0.0017827488481998444,
0.03255745396018028,
0.17981252074241638,
0.011287098750472069,
-0.09191068261861801,
-0.10232570767402649,
0.07886247336864471,
-0.0861150473356247,
0.04752413555979729,
-0.04444890096783638,
0.01979980058968067,
0.04476524889469147,
0.11862452328205109,
-0.04610857740044594,
0.045951515436172485,
0.009189451113343239,
-0.02856285870075226,
-0.08320672065019608,
0.0009596613235771656,
0.08382067084312439,
-0.003199358470737934,
-0.08130531758069992,
0.24891994893550873,
-0.23623178899288177,
0.153076171875,
0.1966366022825241,
-0.2159213274717331,
0.01106012612581253,
-0.07936467975378036,
-0.020178573206067085,
0.025083690881729126,
0.023675402626395226,
-0.060432951897382736,
0.18205280601978302,
-0.03726755827665329,
0.15941797196865082,
-0.04482710361480713,
-0.040100984275341034,
-0.04896273463964462,
-0.0528116300702095,
-0.01935844123363495,
0.11587438732385635,
0.0710352212190628,
-0.14709706604480743,
0.19301056861877441,
0.11971332877874374,
0.015831535682082176,
0.16973356902599335,
0.03128601238131523,
0.016762668266892433,
0.03722488880157471,
-0.026876214891672134,
-0.050153519958257675,
-0.05230281502008438,
-0.2162250578403473,
-0.029209492728114128,
0.08457400649785995,
0.048620980232954025,
0.10029098391532898,
-0.10787690430879593,
-0.03266194090247154,
0.009652347303926945,
-0.010189203545451164,
0.023171480745077133,
0.14738181233406067,
0.02628150023519993,
0.12186894565820694,
-0.012614430859684944,
-0.07239700108766556,
0.06798876821994781,
0.019905291497707367,
-0.07110528647899628,
0.1627788096666336,
-0.12356211990118027,
-0.335827112197876,
-0.09290789067745209,
-0.17033925652503967,
-0.03312322124838829,
0.04219771921634674,
0.11544229835271835,
-0.1366877555847168,
-0.023385655134916306,
-0.03243091329932213,
0.06822797656059265,
-0.15098528563976288,
0.016452116891741753,
-0.03628353402018547,
-0.016072381287813187,
-0.12770487368106842,
-0.10255394876003265,
-0.04531848430633545,
-0.053061291575431824,
-0.031990405172109604,
0.10671509057283401,
-0.11151551455259323,
0.0225993525236845,
0.23934872448444366,
0.03426564112305641,
0.06444922089576721,
-0.03182615339756012,
0.1914939135313034,
-0.0815715417265892,
0.030268952250480652,
0.24109086394309998,
-0.020047757774591446,
0.075269915163517,
0.12724578380584717,
-0.004251571837812662,
-0.028848933055996895,
0.029905395582318306,
0.011566306464374065,
-0.09435271471738815,
-0.17544791102409363,
-0.1079186499118805,
-0.12937824428081512,
0.03190944716334343,
0.05089709907770157,
0.050149962306022644,
0.14604482054710388,
0.05739360675215721,
-0.04004984721541405,
-0.017391424626111984,
0.04632885381579399,
0.07423043251037598,
0.24528054893016815,
-0.07364977151155472,
0.1699962019920349,
-0.026640791445970535,
-0.16184844076633453,
0.07685229182243347,
0.0713675320148468,
0.07251301407814026,
0.05551409721374512,
0.08822687715291977,
0.008602067828178406,
0.05132231116294861,
0.1340877264738083,
0.0400245301425457,
-0.0059121958911418915,
-0.03432786464691162,
-0.05192223936319351,
-0.042481303215026855,
0.011579175479710102,
0.06195932999253273,
0.08696066588163376,
-0.17674238979816437,
-0.02326575480401516,
-0.021112021058797836,
0.05548238381743431,
-0.027054203674197197,
0.11771775782108307,
-0.18322211503982544,
-0.007067214231938124,
0.08023366332054138,
-0.002482927870005369,
-0.09127768874168396,
0.07148055732250214,
0.041099466383457184,
-0.07787910103797913,
0.01865149475634098,
-0.017955100163817406,
0.11862432956695557,
-0.029611462727189064,
0.08224835991859436,
-0.12292031198740005,
-0.04354511573910713,
-0.01248886901885271,
0.1075858622789383,
-0.2785758674144745,
0.1828591227531433,
-0.013090763241052628,
-0.08001775294542313,
-0.10483518242835999,
-0.013524075970053673,
0.04555179923772812,
0.09504275023937225,
0.08134100586175919,
-0.019947415217757225,
-0.10311457514762878,
0.06597237288951874,
-0.028156066313385963,
0.021372759714722633,
0.09670042246580124,
-0.046957049518823624,
-0.010767786763608456,
-0.054798588156700134,
0.013736957684159279,
0.04480377957224846,
-0.021829959005117416,
0.019118469208478928,
-0.20386254787445068,
0.09320717304944992,
0.10382501035928726,
0.04251823201775551,
0.02958032675087452,
-0.04045441746711731,
-0.17101678252220154,
0.2496311366558075,
0.040494516491889954,
-0.07847777009010315,
-0.11097639799118042,
0.03422516584396362,
0.07182013243436813,
-0.0642123818397522,
-0.01737581193447113,
-0.07690639793872833,
0.05867185443639755,
-0.07960430532693863,
-0.18540871143341064,
0.11835198849439621,
-0.09305805712938309,
-0.046374984085559845,
-0.039032164961099625,
0.20235586166381836,
-0.056063249707221985,
0.032259125262498856,
0.03116656094789505,
0.03293946757912636,
-0.15852391719818115,
-0.10003209859132767,
0.01328912191092968,
-0.027433177456259727,
0.04352038726210594,
0.015240713953971863,
-0.030426841229200363,
-0.005021065007895231,
-0.021273335441946983,
0.004980319645255804,
0.31233376264572144,
0.11940956115722656,
-0.08215507864952087,
0.15040408074855804,
0.07467055320739746,
-0.04740764573216438,
-0.31339386105537415,
-0.09857800602912903,
-0.09486257284879684,
-0.03605431318283081,
-0.04077092930674553,
-0.15517041087150574,
0.06135208159685135,
-0.04712679609656334,
-0.03210299089550972,
0.03685130923986435,
-0.25471121072769165,
-0.09904111921787262,
0.1810643970966339,
-0.04778202623128891,
0.4020058512687683,
-0.1264181137084961,
-0.05942745506763458,
-0.03732571750879288,
-0.123879574239254,
0.1846875250339508,
-0.05952780321240425,
0.10438606142997742,
0.0079113794490695,
0.2011347860097885,
0.06326252222061157,
-0.013393725268542767,
0.1029089093208313,
-0.007607713807374239,
-0.035274721682071686,
-0.10309294611215591,
-0.12516112625598907,
0.01550751831382513,
-0.021001260727643967,
0.03289220109581947,
-0.10830216109752655,
0.04805075749754906,
-0.1252545416355133,
-0.03316681459546089,
-0.08329370617866516,
0.03710799291729927,
0.013009095564484596,
-0.06882811337709427,
-0.04382598400115967,
-0.03590834140777588,
-0.00022135479957796633,
0.005606753285974264,
0.23031598329544067,
-0.10849209874868393,
0.14889879524707794,
0.10015694051980972,
0.10427137464284897,
-0.10026383399963379,
-0.03282963111996651,
-0.014998306520283222,
-0.05415785685181618,
0.07145287096500397,
-0.1603166162967682,
0.03857867792248726,
0.08671217411756516,
-0.02994510345160961,
0.08135352283716202,
0.1130911260843277,
-0.025253240019083023,
0.003640346694737673,
0.09211555868387222,
-0.2308700680732727,
-0.10609045624732971,
-0.07332441210746765,
0.04659111052751541,
0.04589630290865898,
0.07624836266040802,
0.20930127799510956,
0.00994920078665018,
-0.01765989325940609,
0.023016734048724174,
0.02678052708506584,
-0.018018024042248726,
0.041066206991672516,
0.029354475438594818,
0.04627835005521774,
-0.13320408761501312,
0.027173595502972603,
0.015610959380865097,
-0.07568158954381943,
0.0393478199839592,
0.155035138130188,
-0.08632202446460724,
-0.139873206615448,
-0.07125963270664215,
0.1352655440568924,
-0.11377639323472977,
-0.0029083637055009604,
-0.04039428010582924,
-0.1223168596625328,
0.07590333372354507,
0.10091501474380493,
0.05935794860124588,
0.04039563983678818,
-0.08539655059576035,
-0.03333237022161484,
-0.040140677243471146,
0.021143397316336632,
0.009158425964415073,
-0.0160903912037611,
-0.05494164302945137,
0.05901705101132393,
-0.047254934906959534,
0.11421241611242294,
-0.09339733421802521,
-0.08775284886360168,
-0.17206984758377075,
0.013082131743431091,
-0.05250086262822151,
-0.10140258818864822,
-0.09359116107225418,
-0.04809267446398735,
0.015034623444080353,
-0.05208507552742958,
-0.032174061983823776,
-0.024229442700743675,
-0.10669471323490143,
0.027302535250782967,
-0.05821286141872406,
0.010891321115195751,
-0.09129294008016586,
0.013517657294869423,
0.04709210619330406,
-0.01816634088754654,
0.13488203287124634,
0.09328237920999527,
-0.10860666632652283,
0.08222270756959915,
-0.1275918036699295,
-0.08663585782051086,
0.08263832330703735,
0.02598871849477291,
0.052909210324287415,
0.029351165518164635,
-0.001967761432752013,
0.03233477100729942,
0.07720455527305603,
0.036914974451065063,
0.026035640388727188,
-0.06493114680051804,
0.06172209978103638,
-0.07344797253608704,
-0.11875847727060318,
-0.03685721009969711,
0.0016848579980432987,
0.012210341170430183,
0.06813150644302368,
0.10401184856891632,
-0.036284398287534714,
0.0797373354434967,
-0.06413599848747253,
0.04609992355108261,
0.005328513216227293,
-0.1761081963777542,
0.017667630687355995,
-0.07821190357208252,
0.04759660363197327,
0.0013359118020161986,
0.18325933814048767,
0.06537643820047379,
-0.06563906371593475,
0.03382967785000801,
0.06659752130508423,
0.0692150741815567,
-0.004840361885726452,
0.18621408939361572,
0.09515473246574402,
-0.05180959403514862,
-0.0991080179810524,
0.08834358304738998,
0.06080566719174385,
0.06490278244018555,
0.12913915514945984,
-0.004319360945373774,
0.024174606427550316,
0.09009172022342682,
0.008883362635970116,
-0.019551433622837067,
-0.10096284002065659,
-0.08965059369802475,
-0.017464246600866318,
0.04193853214383125,
-0.06086575612425804,
0.07477369159460068,
0.17939254641532898,
-0.010411374270915985,
0.027555258944630623,
-0.03863650560379028,
-0.049980755895376205,
-0.1887718141078949,
-0.18753060698509216,
-0.09181099385023117,
-0.14645187556743622,
-0.026917489245533943,
-0.13105370104312897,
0.05882837995886803,
0.07557003945112228,
0.08097314834594727,
-0.025671232491731644,
0.03245893120765686,
0.022749824449419975,
-0.08981189876794815,
0.033361487090587616,
-0.04490199685096741,
0.09997344017028809,
-0.019153926521539688,
0.005541270133107901,
-0.05083920806646347,
0.028848018497228622,
0.010309427045285702,
0.03471552953124046,
-0.015809834003448486,
0.015370560809969902,
-0.11875561624765396,
-0.09567588567733765,
-0.07066967338323593,
0.04834204539656639,
0.017820095643401146,
0.18648305535316467,
0.022740043699741364,
-0.03320728614926338,
0.01894662342965603,
0.22614111006259918,
-0.08711639791727066,
-0.07992389798164368,
-0.06876909732818604,
0.18698930740356445,
-0.013011614792048931,
0.08948864787817001,
-0.05047110095620155,
-0.009447460994124413,
-0.09300197660923004,
0.30840179324150085,
0.32665160298347473,
-0.11393766105175018,
0.028592459857463837,
0.006367724854499102,
0.03157983720302582,
0.1162729561328888,
0.0662447139620781,
0.11710161715745926,
0.25293272733688354,
-0.06943412125110626,
-0.056422509253025055,
-0.013059494085609913,
-0.023740272969007492,
-0.07368054240942001,
0.05777493864297867,
0.04966603219509125,
-0.07878328859806061,
-0.013024105690419674,
0.09112410247325897,
-0.2193899154663086,
0.04796459898352623,
-0.12035499513149261,
-0.18683460354804993,
-0.07477088272571564,
0.02901797741651535,
0.13748018443584442,
-0.010265263728797436,
0.09652490168809891,
-0.024320406839251518,
-0.058806080371141434,
0.019178340211510658,
0.011379591189324856,
-0.18605555593967438,
0.026796914637088776,
0.0880991593003273,
-0.034956082701683044,
-0.06579610705375671,
-0.026363074779510498,
0.057398490607738495,
0.11714854091405869,
0.03320639207959175,
-0.01693088375031948,
0.056243494153022766,
0.009067581966519356,
-0.08278308063745499,
0.018437519669532776,
0.014612287282943726,
0.00718457018956542,
-0.061997897922992706,
0.09208301454782486,
-0.18906261026859283,
0.028080590069293976,
-0.042155101895332336,
-0.051557283848524094,
-0.011992783285677433,
0.005786213558167219,
-0.05619044974446297,
0.08810251206159592,
0.07742270082235336,
-0.021407412365078926,
-0.031588420271873474,
-0.008431199938058853,
-0.030191102996468544,
-0.026962406933307648,
-0.059987667948007584,
-0.10277266055345535,
-0.148870587348938,
-0.10393854230642319,
0.07793137431144714,
-0.006471366621553898,
-0.20544004440307617,
-0.0010582678951323032,
-0.10599945485591888,
0.055369794368743896,
-0.0936850979924202,
0.09149867296218872,
0.10205436497926712,
0.004885011352598667,
-0.011032676324248314,
0.0047231316566467285,
0.03212355449795723,
0.07310797274112701,
-0.13553965091705322,
-0.07092496752738953
] |
null | null | transformers |
# German BERT for News Classification
This a bert-base-german-cased model finetuned for text classification on german news articles
## Training data
Used the training set from the 10KGNAD dataset (gnad10 on HuggingFace Datasets). | {"language": ["de"], "tags": ["text-classification", "german-news-classification"], "datasets": ["gnad10"], "metrics": ["accuracy", "precision", "recall", "f1"], "model-index": [{"name": "Mathking/bert-base-german-cased-gnad10", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "gnad10", "type": "gnad10", "config": "default", "split": "train"}, "metrics": [{"type": "accuracy", "value": 0.9557598702001082, "name": "Accuracy", "verified": true, "verifyToken": "eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNTkxNjAwNTYzYjRjZmQ0M2UxMWQzYzk0YWFjZjRmYzcwNGEyYmRiNDIwNTlmNDNhYjAzNzBmNzU5MTg3MTM1ZSIsInZlcnNpb24iOjF9.1KfABx9YVvR2QiSXwtCBV8ijYGqwiQD3N3i7c1KV2Ke9tQvWA4_HnN7wvCKokESR-zEwIHWfALSveWIgoiSNBg"}, {"type": "f1", "value": 0.9550736462647613, "name": "F1 Macro", "verified": true, "verifyToken": "eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZDNkYjU0NzAxNjBlOGQ1MWU2OGE5NWFkOGFlNTYwZGFkNTRiMDcwNDRlYmNiMTUxMzViM2Q4MmUyMjU2ZTQwYyIsInZlcnNpb24iOjF9.E9ysIc4ZYrpOpQTJsmLRN1q8Pg-5pWLlvs8WbTeJy2JYNmpBNblaGyeiHckZ8g8gD3Rqv7W9inpivmHRcI4-BQ"}, {"type": "f1", "value": 0.9557598702001082, "name": "F1 Micro", "verified": true, "verifyToken": "eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNWMxNmVjMjYyNTAxYmYwN2YxNjAzOWQ2MDY3OGRhYzE4NWYwYTUyNjRhNmU2M2Y3MzFiYzI2ZTk4YWQ3NGNkNSIsInZlcnNpb24iOjF9.csdfLvORGZJY11TbWzylKfhz53BAncrjNgCDIGtWzK1AtJutkJj-SQo8rEd9o3Z5BKlH3Ta28O3Y7wKoc4PuDQ"}, {"type": "f1", "value": 0.9556789875763837, "name": "F1 Weighted", "verified": true, "verifyToken": "eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiY2I1ZmNjMzViMDY1YWMyNzRkNDY0OTY1YTFkZWViN2JiMDlkMjJjNTZmZDFjZDIxZjA0YzI1NThiODUwMDlhZiIsInZlcnNpb24iOjF9.83yH-SfIAeB9Y3XNPcnn8N3g9puooZRgcBfNMeAKNqNM93U1qEE6JjFvhZBO_UU05cgfqnPp7Pt6h-JQcmdwBA"}, {"type": "precision", "value": 0.953834169384936, "name": "Precision Macro", "verified": true, "verifyToken": "eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYjQ4YjA2MTZlMmYxMTA4ZTM5MDU1NjI3ZWE4YTBiZDBhMDUwN2FiODZkNjM5OWNiNGU2NjU5ZDE0OTUyODZmNyIsInZlcnNpb24iOjF9.sWcghxM9DeaaldnXR5sLz8KUHVhdjJ8GY_c4f-kZ0-0BDzf4CYURUVziWnlrRTjlUH-hVyfdKd1ufHvLotRgCg"}, {"type": "precision", "value": 0.9557598702001082, "name": "Precision Micro", "verified": true, "verifyToken": "eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiOWIzZmNlZTcxNzhhMzZhNWQ1ZWI4YzZjMDYyOTMwY2Q5N2EwMzFhMzE4OTFkZjg1NTIyYjVkMGNjZDYwZmQ2YSIsInZlcnNpb24iOjF9.rQ7ZIKeP25hLfHaYdPqX-VZCHoL-YohqGV9NZ-TAIHvNQbj0lPpX_nS89cJ1C0tSoHCeP14lIOWNncRJzQOOCA"}, {"type": "precision", "value": 0.9558822798145145, "name": "Precision Weighted", "verified": true, "verifyToken": "eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZDQzOTMxMGQ4YTI5MDUzNjdhNzdjY2QzNGVlNzUyODE4ZTI1MTY4NTkxZDVhMTBjZjhhMjlmNzRiNjEyOTk3NiIsInZlcnNpb24iOjF9.DWBZXL1mP7oNYQJKCORItDvkZm-l7TcIETNjdeVyS0BnxoEbqEE22OOJwnGLAk-wHtfx7jEKAA7ijQ1qF7cfAg"}, {"type": "recall", "value": 0.956651983810566, "name": "Recall Macro", "verified": true, "verifyToken": "eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNTFhYTUyZWQ0N2VhOWQxMjY0MGM1ZjExOGE4NDQ5ODMzMmQ5YThkZTYzZjg0YmUwMDhlZDllMDk3MzY2ZWUzZSIsInZlcnNpb24iOjF9.H7UhmKtJ_5FZOQmZP-wPTrHHde-XxtMAj3kluHz6-8P1KOwJkxk24Lu7vTwHf3564XtnJC8eW2C5uyWDTpcgBg"}, {"type": "recall", "value": 0.9557598702001082, "name": "Recall Micro", "verified": true, "verifyToken": "eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZGY1MWZkOWYzNjg1NGU5YmFmODY2MDNjYWQ3OTUwNTgzMWRlZGUwNzU5NDY2NzFjZTMxOTBiMWVhZWIyNDYzMCIsInZlcnNpb24iOjF9.oKQ0zRYEs-sloah-BJvBKX5SFqWt8UX-0jCi3ldaLwNVJjM-rcdvsERyoYQ-QTLPKsZp4nko3-ic-BDCwGp9Bw"}, {"type": "recall", "value": 0.9557598702001082, "name": "Recall Weighted", "verified": true, "verifyToken": "eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNDlhMmIwOTBkOTIzOTlkZjNiMzlkMmE5NzQ3MzY5NTUxODQyMzY1OTJjNWY4NjI0N2NjYmY5NjkwZjU0MTA1YyIsInZlcnNpb24iOjF9.4FExU6skNNcvIrToS3MR04Q7ho7_PITTqPk8WMdOggaVvnwj8ujxcXyJMSRioQ1ttVlpg_oGismsSD9zttYkBg"}, {"type": "loss", "value": 0.17337004840373993, "name": "loss", "verified": true, "verifyToken": "eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMzVmMmQ5OGE0OTU3MTg0NDg4YzhlODU1NWUyODM0NzFjODM3MTY5MWI2OTAyMzU5OTQ2YTljZTJkN2JkYTcyNSIsInZlcnNpb24iOjF9.jeYTrX35vtswkWi8ROqynY_W4rHfxonic74PviTNAKJzTF7tUCI2a9IBavXvSQhMfGv0NEkZzX8N8o4hQTvWDw"}]}]}]} | text-classification | laiking/bert-base-german-cased-gnad10 | [
"transformers",
"pytorch",
"safetensors",
"bert",
"text-classification",
"german-news-classification",
"de",
"dataset:gnad10",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [
"de"
] | TAGS
#transformers #pytorch #safetensors #bert #text-classification #german-news-classification #de #dataset-gnad10 #model-index #autotrain_compatible #endpoints_compatible #region-us
|
# German BERT for News Classification
This a bert-base-german-cased model finetuned for text classification on german news articles
## Training data
Used the training set from the 10KGNAD dataset (gnad10 on HuggingFace Datasets). | [
"# German BERT for News Classification\n\nThis a bert-base-german-cased model finetuned for text classification on german news articles",
"## Training data\nUsed the training set from the 10KGNAD dataset (gnad10 on HuggingFace Datasets)."
] | [
"TAGS\n#transformers #pytorch #safetensors #bert #text-classification #german-news-classification #de #dataset-gnad10 #model-index #autotrain_compatible #endpoints_compatible #region-us \n",
"# German BERT for News Classification\n\nThis a bert-base-german-cased model finetuned for text classification on german news articles",
"## Training data\nUsed the training set from the 10KGNAD dataset (gnad10 on HuggingFace Datasets)."
] | [
62,
32,
28
] | [
"passage: TAGS\n#transformers #pytorch #safetensors #bert #text-classification #german-news-classification #de #dataset-gnad10 #model-index #autotrain_compatible #endpoints_compatible #region-us \n# German BERT for News Classification\n\nThis a bert-base-german-cased model finetuned for text classification on german news articles## Training data\nUsed the training set from the 10KGNAD dataset (gnad10 on HuggingFace Datasets)."
] | [
-0.06213722005486488,
0.022069638594985008,
-0.0009046680643223226,
0.026518603786826134,
0.13352467119693756,
0.022403521463274956,
0.16298842430114746,
0.04628043249249458,
0.014892169274389744,
-0.04098941385746002,
0.09113049507141113,
0.0316605269908905,
-0.05253340303897858,
0.15357737243175507,
-0.08105015754699707,
-0.2593071758747101,
0.12298869341611862,
0.011083435267210007,
0.08890202641487122,
0.09645815193653107,
0.12439388036727905,
-0.06090851128101349,
0.045733481645584106,
-0.03691203147172928,
-0.11440280079841614,
0.05245678499341011,
0.04593106359243393,
-0.096638023853302,
0.13487102091312408,
0.017278069630265236,
0.08756374567747116,
0.017842687666416168,
0.0380757711827755,
-0.07356111705303192,
0.03444558382034302,
0.011870739050209522,
-0.08910541236400604,
0.06154331937432289,
0.02536184899508953,
-0.12311720103025436,
0.05013960599899292,
-0.1359991878271103,
-0.02326939068734646,
0.012617984786629677,
-0.1391957551240921,
-0.073003388941288,
-0.02579892985522747,
0.0984150841832161,
0.10408192873001099,
0.10780442506074905,
-0.05012796074151993,
0.05904706194996834,
-0.1297861784696579,
0.06691975146532059,
0.03744939714670181,
-0.28448620438575745,
-0.04488104581832886,
0.12796397507190704,
-0.025442739948630333,
-0.001607363810762763,
-0.09136277437210083,
0.11691983044147491,
0.07746241241693497,
-0.0018980727763846517,
-0.03406902030110359,
-0.034821901470422745,
-0.0098401615396142,
-0.044437017291784286,
-0.0968618392944336,
-0.026370465755462646,
0.10171633213758469,
0.015651987865567207,
-0.023645145818591118,
-0.1696518361568451,
0.012385471723973751,
0.061557505279779434,
-0.046358898282051086,
0.03276081010699272,
-0.10635823756456375,
-0.006909392774105072,
0.0030647777020931244,
0.0040450808592140675,
-0.0836435854434967,
-0.01772911846637726,
-0.11952461302280426,
0.32935893535614014,
-0.0018407341558486223,
0.02985251508653164,
-0.0418216846883297,
0.11446408927440643,
-0.060997284948825836,
-0.10934273898601532,
0.0401977002620697,
-0.09983517974615097,
-0.006078556180000305,
-0.02081175334751606,
-0.08139637857675552,
-0.05041809752583504,
0.029690450057387352,
0.0460066981613636,
-0.10269767045974731,
-0.007580799050629139,
-0.007736061699688435,
0.03327128663659096,
0.051640890538692474,
0.062097497284412384,
-0.09184889495372772,
-0.0675821453332901,
-0.02643698640167713,
-0.039703432470560074,
0.027163518592715263,
0.0037852139212191105,
-0.10120920836925507,
-0.022498449310660362,
0.05697720870375633,
-0.0135481096804142,
-0.060561396181583405,
0.18039104342460632,
-0.04606249928474426,
-0.01919393427670002,
0.05607281252741814,
-0.06582444906234741,
-0.023806480690836906,
-0.0030392215121537447,
-0.03809612616896629,
0.0040449053049087524,
-0.05855162814259529,
0.050444647669792175,
-0.011780076660215855,
0.16900387406349182,
-0.05152060464024544,
-0.05054087191820145,
-0.0017277688020840287,
-0.08693411201238632,
0.009012040682137012,
-0.1804015338420868,
0.005561781115829945,
-0.11460590362548828,
-0.19577574729919434,
-0.01680440828204155,
0.02135690487921238,
0.0055876681581139565,
0.021163173019886017,
-0.13433313369750977,
-0.04450114443898201,
0.08551350235939026,
-0.004174650646746159,
-0.02703028731048107,
-0.07573264092206955,
0.043912988156080246,
-0.10982026159763336,
0.05289652943611145,
-0.16361363232135773,
0.026208456605672836,
-0.1423868089914322,
-0.028078176081180573,
-0.09871095418930054,
0.16267883777618408,
-0.1126793771982193,
0.08596844971179962,
-0.023594390600919724,
-0.019458604976534843,
-0.012850104831159115,
0.061135128140449524,
-0.0035203299485147,
0.21695977449417114,
-0.15210366249084473,
-0.10128134489059448,
0.1270132213830948,
-0.09809437394142151,
0.05108106508851051,
0.0797654464840889,
-0.1201505959033966,
0.028756069019436836,
0.19390815496444702,
0.20838388800621033,
0.06760793179273605,
-0.00971954595297575,
-0.10258494317531586,
-0.006078963167965412,
-0.06076895445585251,
0.08029355853796005,
0.06581881642341614,
0.09134827554225922,
-0.21146175265312195,
0.04812350869178772,
-0.06483615189790726,
0.05103933811187744,
-0.04053535312414169,
-0.041913896799087524,
0.03413533791899681,
0.011291836388409138,
0.24761761724948883,
0.021096302196383476,
0.06182714179158211,
-0.10445461422204971,
-0.09557230025529861,
0.08319306373596191,
0.05236824229359627,
-0.0390666127204895,
-0.008157104253768921,
-0.0888804942369461,
0.03732846677303314,
-0.045888036489486694,
0.04741329699754715,
-0.07347360253334045,
-0.0910276472568512,
-0.0273020938038826,
0.13261891901493073,
0.020396672189235687,
0.06437529623508453,
0.06251359730958939,
-0.04216846078634262,
-0.09697234630584717,
-0.03715737909078598,
0.02670205570757389,
0.003521233331412077,
-0.03366030752658844,
-0.14404812455177307,
0.06827069073915482,
-0.07292769849300385,
0.1564411073923111,
-0.1777350753545761,
0.004162765573710203,
0.06038608402013779,
0.0971241146326065,
0.00750591978430748,
0.032916244119405746,
0.012622043490409851,
0.02266082353889942,
-0.015201850794255733,
0.02504710480570793,
0.10191334038972855,
-0.008287125267088413,
-0.10635874420404434,
0.12231095135211945,
0.004996313713490963,
0.104670949280262,
0.10373220592737198,
-0.058494724333286285,
-0.063862144947052,
-0.03530806303024292,
-0.0713537186384201,
0.04507992044091225,
-0.0869130864739418,
-0.07017475366592407,
0.18198303878307343,
-0.08844827860593796,
0.09687881916761398,
-0.051496751606464386,
-0.07624956965446472,
0.013388513587415218,
0.008163942955434322,
-0.08613242954015732,
0.14702896773815155,
-0.1439058482646942,
-0.14184321463108063,
0.11860772967338562,
0.14780768752098083,
0.03169237822294235,
0.2524065375328064,
0.016469681635499,
0.03513549268245697,
0.04808283597230911,
-0.08376165479421616,
-0.038448821753263474,
0.05144406855106354,
-0.11937043815851212,
0.002852463396266103,
0.04340009018778801,
0.03762025758624077,
0.036526959389448166,
-0.032887764275074005,
-0.08833850920200348,
-0.048719123005867004,
-0.028731852769851685,
-0.06618262827396393,
0.053832076489925385,
-0.01232246495783329,
0.11950021237134933,
0.03622929006814957,
-0.09920904785394669,
0.10096431523561478,
-0.02209809608757496,
-0.07899250835180283,
0.16851073503494263,
-0.044100068509578705,
-0.3141084611415863,
-0.10636917501688004,
-0.09693556278944016,
-0.12222962081432343,
0.04934712126851082,
0.029466835781931877,
-0.13449406623840332,
-0.022016990929841995,
-0.03877156972885132,
0.005817544646561146,
0.09392490983009338,
0.04999329149723053,
0.008219275623559952,
-0.020226508378982544,
0.011993246152997017,
-0.08806484937667847,
-0.04947223141789436,
-0.11193767935037613,
-0.06386420875787735,
0.04794485494494438,
-0.07031957060098648,
0.06191222369670868,
0.07638651877641678,
-0.006533233914524317,
0.051704041659832,
-0.060436248779296875,
0.18173806369304657,
-0.1522795557975769,
0.022432668134570122,
0.022173186764121056,
-0.09654122591018677,
0.013338856399059296,
0.19035960733890533,
0.05369928851723671,
-0.043140605092048645,
0.05026847869157791,
0.030986493453383446,
-0.02613147534430027,
-0.16818277537822723,
-0.1868608593940735,
0.009308000095188618,
0.05737308785319328,
0.03167326748371124,
0.04064485430717468,
0.08714330941438675,
0.058243922889232635,
-0.04344293475151062,
-0.010836351662874222,
0.0733354464173317,
0.03491980582475662,
0.05126374214887619,
-0.0014237789437174797,
0.11006851494312286,
-0.0152654480189085,
-0.14104795455932617,
0.09464047104120255,
-0.07164031267166138,
0.0705961212515831,
0.025767570361495018,
-0.08272664994001389,
0.030848421156406403,
-0.06732885539531708,
0.1286454051733017,
0.09939486533403397,
-0.0024431657511740923,
-0.09914548695087433,
0.0038669623900204897,
-0.05116184055805206,
0.051262736320495605,
0.016525255516171455,
-0.107937753200531,
-0.013816125690937042,
-0.05855068564414978,
-0.17238272726535797,
0.1509801745414734,
0.12448104470968246,
0.1761145144701004,
-0.21695266664028168,
-0.07443148642778397,
0.03374271094799042,
-0.06043325737118721,
-0.09045138955116272,
0.02215065062046051,
0.0401311069726944,
-0.1253550946712494,
0.16280493140220642,
0.012478015385568142,
0.09786804020404816,
-0.09192349016666412,
0.04412580654025078,
-0.10254168510437012,
-0.11916613578796387,
-0.08058608323335648,
0.16391324996948242,
-0.27205583453178406,
0.2531929612159729,
0.015471944585442543,
0.06368718296289444,
-0.08562100678682327,
-0.08671516180038452,
0.04483480006456375,
0.13593056797981262,
0.18376143276691437,
0.028229856863617897,
0.08607016503810883,
-0.08316002786159515,
-0.17798282206058502,
0.03669453784823418,
0.03421172872185707,
-0.11760574579238892,
0.04935488849878311,
0.02020227536559105,
-0.0035171699710190296,
0.02557423710823059,
-0.028486141934990883,
-0.14294004440307617,
-0.06675411015748978,
-0.019530098885297775,
0.1363345980644226,
0.09651756286621094,
-0.0028598702047020197,
-0.1473713517189026,
-0.14473263919353485,
0.14449229836463928,
-0.036911491304636,
-0.07006227225065231,
-0.13979041576385498,
0.06209767237305641,
-0.08785323053598404,
-0.04442654550075531,
-0.01979978382587433,
0.04990902543067932,
0.12605595588684082,
-0.03335724025964737,
-0.15187841653823853,
0.08762481063604355,
-0.07617827504873276,
-0.10057471692562103,
-0.029432576149702072,
0.15344396233558655,
0.1651412397623062,
0.01171377394348383,
0.07662755250930786,
0.024437377229332924,
0.0648001953959465,
-0.09624955803155899,
0.04839303344488144,
0.010370106436312199,
0.03703402727842331,
0.13649620115756989,
-0.09223050624132156,
-0.2959495782852173,
-0.05845479667186737,
0.0490666888654232,
0.18635742366313934,
0.14308765530586243,
-0.08124101907014847,
0.10109546035528183,
0.17001548409461975,
-0.003002493642270565,
-0.4022214710712433,
0.05000689998269081,
0.06445068120956421,
0.017768679186701775,
-0.10510268807411194,
-0.1109970435500145,
0.1836211085319519,
0.07308691740036011,
-0.03467024862766266,
0.0017576569225639105,
-0.11436242610216141,
-0.10873652994632721,
0.15936166048049927,
-0.06364475190639496,
0.4223891794681549,
-0.00853421725332737,
-0.05160096660256386,
-0.09258999675512314,
-0.030725203454494476,
0.22434915602207184,
-0.1565648317337036,
0.06508727371692657,
-0.027885861694812775,
-0.011973029933869839,
0.019116677343845367,
-0.0085035664960742,
0.10132919251918793,
0.16843117773532867,
0.0506792813539505,
-0.12549549341201782,
-0.13086284697055817,
0.10530972480773926,
0.0009440358262509108,
0.06862741708755493,
-0.08768246322870255,
0.01469207089394331,
-0.22533398866653442,
-0.054215025156736374,
-0.08935365080833435,
0.11012324690818787,
0.002241923473775387,
-0.06529547274112701,
-0.02423727698624134,
0.07490449398756027,
-0.00936584547162056,
0.02490636147558689,
0.21098461747169495,
-0.0890655666589737,
0.0829598531126976,
-0.09336353093385696,
0.13988268375396729,
-0.027455367147922516,
0.07866736501455307,
-0.04052586108446121,
-0.07974620908498764,
0.05321560055017471,
-0.10823150724172592,
0.02101307362318039,
0.10614698380231857,
-0.007044925354421139,
0.11573565006256104,
0.09441482275724411,
0.013412377797067165,
0.024208370596170425,
0.12209907919168472,
-0.26551926136016846,
-0.039266496896743774,
-0.11225888878107071,
-0.0994483232498169,
0.025790195912122726,
0.14713425934314728,
0.16222348809242249,
-0.010735779069364071,
0.004228697624057531,
0.029236387461423874,
-0.036536552011966705,
-0.055894117802381516,
0.08314075320959091,
0.03863026201725006,
0.029701801016926765,
-0.1291656792163849,
0.10793770104646683,
0.04346909746527672,
-0.028566814959049225,
0.05753476545214653,
0.059995293617248535,
-0.17595654726028442,
-0.06550927460193634,
-0.07768688350915909,
0.2504444420337677,
-0.05970145761966705,
-0.08313345909118652,
-0.03425165265798569,
-0.1003955528140068,
0.07779359072446823,
0.15132930874824524,
0.12405365705490112,
0.040450528264045715,
-0.037396278232336044,
-0.04968450218439102,
0.00022291256755124778,
0.08910629898309708,
0.07545965164899826,
0.03151138871908188,
-0.046909213066101074,
0.0071792276576161385,
-0.05374086648225784,
0.13438467681407928,
-0.11996104568243027,
-0.05008169636130333,
-0.12177367508411407,
0.012425092048943043,
-0.10936278849840164,
-0.012529097497463226,
0.005902906879782677,
-0.02342481166124344,
-0.06566290557384491,
-0.10169761627912521,
-0.0008838926441967487,
-0.03236781805753708,
-0.0562201589345932,
0.041819509118795395,
0.03261663019657135,
0.031313251703977585,
-0.10078496485948563,
-0.03420070558786392,
-0.012451613321900368,
-0.022179167717695236,
0.1463981568813324,
0.1030145063996315,
-0.023031575605273247,
0.11992450058460236,
-0.20135417580604553,
-0.03155496343970299,
0.07366091758012772,
-0.07912348955869675,
0.016147760674357414,
0.06899119168519974,
0.036452870815992355,
0.07055801153182983,
0.00493780430406332,
0.13172094523906708,
0.06491455435752869,
-0.06596583873033524,
0.14544598758220673,
0.007916493341326714,
-0.06002171337604523,
-0.03744212165474892,
0.025330694392323494,
0.07313928008079529,
0.037841640412807465,
0.22078080475330353,
-0.10066375136375427,
-0.00048072473146021366,
-0.029423870146274567,
0.04528455808758736,
-0.0024668367113918066,
-0.22627322375774384,
-0.08862049132585526,
0.004945684690028429,
0.02110251784324646,
-0.02426670864224434,
0.19076673686504364,
0.047410059720277786,
-0.10097852349281311,
0.025960484519600868,
0.0735233798623085,
0.026043307036161423,
0.014805588871240616,
0.2010577917098999,
0.07585077732801437,
-0.03843281418085098,
-0.1286940574645996,
0.03805818781256676,
0.04667432978749275,
0.06280876696109772,
0.08094954490661621,
0.0839584693312645,
-0.014229361899197102,
0.06613517552614212,
0.03650563210248947,
0.03315765783190727,
-0.07627292722463608,
-0.05146394297480583,
-0.13188335299491882,
0.060276009142398834,
-0.018667539581656456,
0.12781119346618652,
0.08121699839830399,
-0.10075126588344574,
0.02062448114156723,
0.03896135464310646,
-0.02561279758810997,
-0.05234947428107262,
-0.16988186538219452,
-0.0823226049542427,
-0.09290661662817001,
0.019989753141999245,
-0.08503933995962143,
-0.06682352721691132,
0.13509739935398102,
0.09488028287887573,
-0.04234747588634491,
0.18660153448581696,
-0.10875886678695679,
-0.0021671680733561516,
0.25885894894599915,
-0.05208408460021019,
0.013527394272387028,
-0.03879217430949211,
-0.01790446974337101,
-0.01251517329365015,
0.06672227382659912,
0.01921292208135128,
0.005207084119319916,
0.04794635251164436,
-0.011528211645781994,
-0.07227214425802231,
-0.09225532412528992,
-0.02321864664554596,
0.05353531241416931,
0.048875004053115845,
0.04209214821457863,
0.05790138989686966,
0.01719203218817711,
0.017081622034311295,
0.195646733045578,
0.005006013438105583,
-0.07075101882219315,
-0.08386196941137314,
0.10597876459360123,
0.021769065409898758,
0.1278809905052185,
-0.021000072360038757,
-0.11615951359272003,
-0.0004724329337477684,
0.21609848737716675,
0.2789384424686432,
-0.020639212802052498,
0.04852409288287163,
-0.036739908158779144,
0.035298556089401245,
0.13603265583515167,
0.08617778867483139,
-0.027397396042943,
0.20898693799972534,
-0.05509330332279205,
-0.0710020437836647,
0.009582891128957272,
-0.04457231983542442,
-0.007410392165184021,
0.08360616862773895,
0.034942321479320526,
-0.0905473381280899,
-0.13376614451408386,
0.14049866795539856,
-0.11149069666862488,
-0.027033239603042603,
-0.11283035576343536,
-0.10346396267414093,
-0.13038742542266846,
-0.0753847286105156,
-0.013474913313984871,
0.0332845076918602,
0.0855657160282135,
0.0291160698980093,
0.038423921912908554,
-0.055764369666576385,
-0.0010224860161542892,
-0.030802538618445396,
-0.11084738373756409,
0.03248570114374161,
0.035032324492931366,
0.16769255697727203,
-0.03589673712849617,
0.0629367083311081,
0.08447892218828201,
-0.04122130200266838,
-0.018086450174450874,
0.05503588169813156,
-0.04764854535460472,
0.03191575035452843,
0.025487665086984634,
0.07728055119514465,
-0.016723107546567917,
-0.06720560789108276,
0.08598168194293976,
-0.15433461964130402,
0.09198477864265442,
-0.05112779140472412,
-0.16000555455684662,
-0.11626780778169632,
0.15128503739833832,
-0.011230881325900555,
0.09215293079614639,
0.18637609481811523,
-0.01423051580786705,
0.006720860954374075,
-0.06704150140285492,
0.0502982996404171,
0.02456711418926716,
-0.1072065457701683,
-0.00018717125931289047,
-0.1650654524564743,
-0.015395459719002247,
0.031624045222997665,
-0.01801241561770439,
-0.2583999037742615,
0.04458342492580414,
-0.13546228408813477,
0.0301450677216053,
-0.03950035199522972,
0.04018291085958481,
0.08516556769609451,
-0.011918315663933754,
0.010480767115950584,
-0.07270538061857224,
0.041632600128650665,
0.017402367666363716,
-0.04794705659151077,
-0.10041531175374985
] |
null | null | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-common_voice-nl-demo
This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the COMMON_VOICE - NL dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3523
- Wer: 0.2046
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 15.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 3.0536 | 1.12 | 500 | 0.5349 | 0.4338 |
| 0.2543 | 2.24 | 1000 | 0.3859 | 0.3029 |
| 0.1472 | 3.36 | 1500 | 0.3471 | 0.2818 |
| 0.1088 | 4.47 | 2000 | 0.3489 | 0.2731 |
| 0.0855 | 5.59 | 2500 | 0.3582 | 0.2558 |
| 0.0721 | 6.71 | 3000 | 0.3457 | 0.2471 |
| 0.0653 | 7.83 | 3500 | 0.3299 | 0.2357 |
| 0.0527 | 8.95 | 4000 | 0.3440 | 0.2334 |
| 0.0444 | 10.07 | 4500 | 0.3417 | 0.2289 |
| 0.0404 | 11.19 | 5000 | 0.3691 | 0.2204 |
| 0.0345 | 12.3 | 5500 | 0.3453 | 0.2102 |
| 0.0288 | 13.42 | 6000 | 0.3634 | 0.2089 |
| 0.027 | 14.54 | 6500 | 0.3532 | 0.2044 |
### Framework versions
- Transformers 4.17.0.dev0
- Pytorch 1.10.2+cu102
- Datasets 1.18.3
- Tokenizers 0.11.0
| {"language": ["nl"], "license": "apache-2.0", "tags": ["automatic-speech-recognition", "common_voice", "generated_from_trainer"], "datasets": ["common_voice"], "model-index": [{"name": "wav2vec2-common_voice-nl-demo", "results": []}]} | automatic-speech-recognition | MatsUy/wav2vec2-common_voice-nl-demo | [
"transformers",
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"common_voice",
"generated_from_trainer",
"nl",
"dataset:common_voice",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [
"nl"
] | TAGS
#transformers #pytorch #wav2vec2 #automatic-speech-recognition #common_voice #generated_from_trainer #nl #dataset-common_voice #license-apache-2.0 #endpoints_compatible #region-us
| wav2vec2-common\_voice-nl-demo
==============================
This model is a fine-tuned version of facebook/wav2vec2-large-xlsr-53 on the COMMON\_VOICE - NL dataset.
It achieves the following results on the evaluation set:
* Loss: 0.3523
* Wer: 0.2046
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 0.0003
* train\_batch\_size: 4
* eval\_batch\_size: 4
* seed: 42
* gradient\_accumulation\_steps: 8
* total\_train\_batch\_size: 32
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* lr\_scheduler\_warmup\_steps: 500
* num\_epochs: 15.0
* mixed\_precision\_training: Native AMP
### Training results
### Framework versions
* Transformers 4.17.0.dev0
* Pytorch 1.10.2+cu102
* Datasets 1.18.3
* Tokenizers 0.11.0
| [
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0003\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* gradient\\_accumulation\\_steps: 8\n* total\\_train\\_batch\\_size: 32\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 500\n* num\\_epochs: 15.0\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.17.0.dev0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.3\n* Tokenizers 0.11.0"
] | [
"TAGS\n#transformers #pytorch #wav2vec2 #automatic-speech-recognition #common_voice #generated_from_trainer #nl #dataset-common_voice #license-apache-2.0 #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0003\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* gradient\\_accumulation\\_steps: 8\n* total\\_train\\_batch\\_size: 32\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 500\n* num\\_epochs: 15.0\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.17.0.dev0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.3\n* Tokenizers 0.11.0"
] | [
69,
159,
4,
38
] | [
"passage: TAGS\n#transformers #pytorch #wav2vec2 #automatic-speech-recognition #common_voice #generated_from_trainer #nl #dataset-common_voice #license-apache-2.0 #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0003\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* gradient\\_accumulation\\_steps: 8\n* total\\_train\\_batch\\_size: 32\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 500\n* num\\_epochs: 15.0\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.17.0.dev0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.3\n* Tokenizers 0.11.0"
] | [
-0.10756727308034897,
0.06999841332435608,
-0.0032505535054951906,
0.03637571260333061,
0.11965026706457138,
0.014105553738772869,
0.09411390125751495,
0.14216744899749756,
-0.09537716954946518,
0.08211805671453476,
0.08220984041690826,
0.06156215816736221,
0.06138889864087105,
0.09368403255939484,
-0.015443120151758194,
-0.3107786774635315,
0.0164127629250288,
-0.004192084539681673,
-0.09227937459945679,
0.0999525710940361,
0.09797687828540802,
-0.1009332686662674,
0.005417183041572571,
0.016847247257828712,
-0.11223013699054718,
0.0042153000831604,
-0.023678015917539597,
-0.051820848137140274,
0.1282193809747696,
0.06230468675494194,
0.08122054487466812,
0.0221969336271286,
0.09052777290344238,
-0.29089248180389404,
0.01622219756245613,
0.0492636077105999,
0.03909459337592125,
0.06246574595570564,
0.09681213647127151,
-0.006730732508003712,
0.14255249500274658,
-0.06740696728229523,
0.06478802114725113,
0.05050137639045715,
-0.09636509418487549,
-0.3120996356010437,
-0.08211136609315872,
0.023295395076274872,
0.13681606948375702,
0.09763754159212112,
-0.042337872087955475,
0.05481228977441788,
-0.08390608429908752,
0.10237160325050354,
0.22329536080360413,
-0.2391151487827301,
-0.07251647114753723,
-0.02291453629732132,
0.058441001921892166,
0.03431526944041252,
-0.10832574218511581,
-0.01945819891989231,
0.028553571552038193,
0.045500919222831726,
0.07785169035196304,
0.006201796233654022,
-0.04039500653743744,
0.008967258967459202,
-0.139084592461586,
-0.03958914428949356,
0.10864308476448059,
0.08333832025527954,
-0.023986095562577248,
-0.10271590948104858,
-0.01017947681248188,
-0.2073913961648941,
-0.05174244940280914,
0.0016868812963366508,
0.026117220520973206,
-0.02550361305475235,
-0.09618037939071655,
0.02320074662566185,
-0.07883661240339279,
-0.08584991097450256,
0.012954151257872581,
0.1352626085281372,
0.04038609564304352,
-0.050787318497896194,
0.013628875836730003,
0.09264110028743744,
0.037148889154195786,
-0.13338865339756012,
0.010741260834038258,
0.060124579817056656,
-0.10954518616199493,
-0.02409452572464943,
-0.04094364494085312,
-0.0628802552819252,
0.018536588177084923,
0.10527320951223373,
-0.01470813900232315,
0.08706817030906677,
-0.006995829287916422,
0.021661439910531044,
-0.06745705753564835,
0.15534651279449463,
-0.05345785245299339,
-0.07003507018089294,
-0.04392658919095993,
0.08691854774951935,
-0.004434540402144194,
-0.014084646478295326,
-0.07641718536615372,
0.014885060489177704,
0.10437380522489548,
0.05092586576938629,
-0.013963557779788971,
0.0077630747109651566,
-0.07219704985618591,
-0.010970276780426502,
-0.015191467478871346,
-0.10166145861148834,
0.041075028479099274,
0.036593515425920486,
-0.04079638049006462,
0.007227280177175999,
0.0077222175896167755,
0.03630703315138817,
-0.0160447359085083,
0.12962472438812256,
-0.044528573751449585,
0.007217674981802702,
-0.05442100018262863,
-0.11253181099891663,
0.041071247309446335,
-0.004230049438774586,
-0.0006317404331639409,
-0.06382517516613007,
-0.07619252055883408,
-0.06210217624902725,
0.047451019287109375,
-0.046216074377298355,
-0.07727039605379105,
-0.08471544831991196,
-0.06227279454469681,
0.05416756495833397,
-0.02627180516719818,
0.17926330864429474,
-0.06440901756286621,
0.11073118448257446,
0.018776364624500275,
0.03126280754804611,
0.04124664515256882,
0.07970920950174332,
-0.0324523001909256,
0.03310469910502434,
-0.13339878618717194,
0.08795619755983353,
-0.08527383953332901,
0.03496749326586723,
-0.14380759000778198,
-0.12063080072402954,
-0.007778272032737732,
0.006123454309999943,
0.10286100953817368,
0.09487846493721008,
-0.20941272377967834,
-0.10362192243337631,
0.16304336488246918,
-0.07370635867118835,
-0.07572406530380249,
0.16421133279800415,
-0.02909739688038826,
-0.01768733188509941,
0.05053257569670677,
0.17338109016418457,
0.1065998524427414,
-0.09990843385457993,
0.020307132974267006,
-0.05907700955867767,
0.1379324495792389,
0.05532968044281006,
0.08737000077962875,
-0.05166255310177803,
0.016539394855499268,
-0.005521636456251144,
-0.002680407138541341,
0.08468083292245865,
-0.08816131949424744,
-0.08121857047080994,
-0.013214259408414364,
-0.07276441901922226,
0.023003337904810905,
0.051930949091911316,
0.013178196735680103,
-0.10037636011838913,
-0.12173682451248169,
0.036664530634880066,
0.11355951428413391,
-0.10558139532804489,
0.04419749230146408,
-0.06577975302934647,
0.035506654530763626,
-0.013404288329184055,
-0.015037347562611103,
-0.16221940517425537,
0.02079118974506855,
0.029591426253318787,
-0.04871687293052673,
0.045424845069646835,
0.002762961434200406,
0.06902839988470078,
0.04680551588535309,
-0.06822279840707779,
-0.05823668837547302,
-0.04929516091942787,
0.009536178782582283,
-0.07780350744724274,
-0.24855366349220276,
-0.06537459790706635,
-0.03399542719125748,
0.16263096034526825,
-0.21561504900455475,
-0.003304385347291827,
0.02147182635962963,
0.12223540991544724,
0.03137096017599106,
-0.047346848994493484,
0.00014103390276432037,
0.10416978597640991,
-0.01282061729580164,
-0.05370519310235977,
0.029503118246793747,
0.004556840751320124,
-0.14600886404514313,
0.00885193794965744,
-0.13135027885437012,
0.06220405176281929,
0.09505708515644073,
-0.019136693328619003,
-0.09824355691671371,
-0.06794866174459457,
-0.053719356656074524,
-0.06681745499372482,
-0.029693908989429474,
-0.0021693382877856493,
0.2142743021249771,
0.03360232338309288,
0.10641435533761978,
-0.058390893042087555,
-0.035867512226104736,
0.033092740923166275,
0.013892294839024544,
-0.011029294691979885,
0.13450361788272858,
0.059350062161684036,
-0.0637468695640564,
0.08535364270210266,
0.06785386800765991,
-0.07416851073503494,
0.15841948986053467,
-0.07184155285358429,
-0.10064829140901566,
-0.03818107396364212,
0.018867984414100647,
0.020175470039248466,
0.09526798129081726,
-0.16698500514030457,
-0.007621035911142826,
0.013802891597151756,
0.02767551876604557,
0.022570157423615456,
-0.20074927806854248,
-0.006120797246694565,
0.049868009984493256,
-0.07242942601442337,
-0.03476260229945183,
-0.01034314464777708,
-0.007459735032171011,
0.08239320665597916,
0.0064954254776239395,
-0.06567379832267761,
-0.015115227550268173,
-0.03388654440641403,
-0.09114867448806763,
0.17152468860149384,
-0.1168869137763977,
-0.13548721373081207,
-0.1256496012210846,
-0.0553775392472744,
0.0015219494234770536,
-0.014845949597656727,
0.0688696801662445,
-0.12033648788928986,
-0.028748178854584694,
-0.05506974086165428,
0.0550852045416832,
-0.07470309734344482,
0.030270056799054146,
-0.026519088074564934,
0.004577919840812683,
0.06640235334634781,
-0.10778579115867615,
0.021738246083259583,
-0.01010121125727892,
-0.019241034984588623,
0.01036364771425724,
0.03643188998103142,
0.08394743502140045,
0.1754588633775711,
0.051739178597927094,
0.003409421071410179,
-0.05514884367585182,
0.16611042618751526,
-0.11942838132381439,
-0.027586130425333977,
0.09751057624816895,
-0.007987110875546932,
0.027561374008655548,
0.15683084726333618,
0.05784190818667412,
-0.0793260931968689,
0.01911802589893341,
0.032146163284778595,
-0.008157323114573956,
-0.24898989498615265,
-0.05036679655313492,
-0.07608847320079803,
-0.01655127853155136,
0.08772185444831848,
0.028973756358027458,
-0.022597840055823326,
0.003795973025262356,
-0.027580268681049347,
0.00525842048227787,
0.015744391828775406,
0.058627430349588394,
0.11335565149784088,
0.02871653437614441,
0.11210274696350098,
-0.013686265796422958,
-0.028164716437458992,
0.03275011479854584,
-0.011870872229337692,
0.22521261870861053,
0.02311856485903263,
0.17004694044589996,
0.048722296953201294,
0.15051627159118652,
0.011634664610028267,
0.037574272602796555,
0.024512087926268578,
-0.018232550472021103,
0.01657811738550663,
-0.05383329838514328,
-0.03401678428053856,
0.0336608923971653,
0.132389098405838,
0.01936311274766922,
-0.11943739652633667,
-0.0328591912984848,
0.00758671760559082,
0.35182586312294006,
0.0735122412443161,
-0.2533891201019287,
-0.09491720050573349,
0.011147437617182732,
-0.09579417109489441,
-0.03142915666103363,
0.02919340878725052,
0.11568424850702286,
-0.09277916699647903,
0.07232169806957245,
-0.051029279828071594,
0.0918877124786377,
-0.05990740656852722,
0.011384877376258373,
0.060424789786338806,
0.06862731277942657,
-0.006115990225225687,
0.06338819861412048,
-0.26190686225891113,
0.30337491631507874,
-0.010713142342865467,
0.07242744415998459,
-0.028722502291202545,
0.03772394359111786,
0.0265774205327034,
-0.04394889250397682,
0.05614273622632027,
-0.012429249472916126,
-0.12869612872600555,
-0.17801688611507416,
-0.06453333050012589,
0.02153756283223629,
0.1188720092177391,
-0.040249522775411606,
0.11339762061834335,
-0.028206268325448036,
-0.019156668335199356,
0.06206013262271881,
-0.04861757904291153,
-0.1061631292104721,
-0.10975390672683716,
0.011571037583053112,
0.052753183990716934,
0.09732890129089355,
-0.09133321046829224,
-0.10763402283191681,
-0.08850237727165222,
0.16753198206424713,
-0.0772009864449501,
0.0028968218248337507,
-0.11343128979206085,
0.09537144005298615,
0.16783128678798676,
-0.06797164678573608,
0.052411895245313644,
0.031348902732133865,
0.10456688702106476,
0.008785218931734562,
0.0039021908305585384,
0.11841403692960739,
-0.07578758150339127,
-0.19260600209236145,
-0.06821385771036148,
0.1881592571735382,
0.04586997628211975,
0.09076420217752457,
-0.028891121968626976,
0.032195016741752625,
-0.01058869156986475,
-0.059712283313274384,
0.05989202857017517,
0.04040984436869621,
-0.00645814323797822,
0.07486188411712646,
-0.03756269812583923,
-0.039298489689826965,
-0.07855340093374252,
-0.09933155030012131,
0.17129433155059814,
0.31125500798225403,
-0.08560281246900558,
0.06119798123836517,
0.049210306257009506,
-0.05319812893867493,
-0.12232418358325958,
0.008569009602069855,
0.13707448542118073,
0.04937577247619629,
0.027034323662519455,
-0.22118762135505676,
0.02950354479253292,
0.07961498945951462,
-0.016736004501581192,
0.05023070424795151,
-0.32715585827827454,
-0.1373116374015808,
0.115488201379776,
0.07314754277467728,
-0.017991147935390472,
-0.13929970562458038,
-0.055511973798274994,
-0.02667810581624508,
-0.10174967348575592,
0.034799184650182724,
-0.01613791286945343,
0.1354082077741623,
0.016376683488488197,
0.059200119227170944,
0.03031521663069725,
-0.0382530614733696,
0.1384456604719162,
-0.020591553300619125,
0.04562126100063324,
-0.0070566278882324696,
0.038427628576755524,
-0.05269494652748108,
-0.03502187132835388,
-0.009217395447194576,
-0.09357296675443649,
0.006403930019587278,
-0.11170113831758499,
-0.03714219108223915,
-0.07792185246944427,
0.014075757004320621,
-0.04199414327740669,
-0.044041771441698074,
-0.025466790422797203,
0.03406103327870369,
0.07263462990522385,
-0.0007531246519647539,
0.10744880139827728,
-0.07371653616428375,
0.168046772480011,
0.08287595212459564,
0.10689587891101837,
0.012523608282208443,
-0.09132856875658035,
-0.011734750121831894,
-0.028867041692137718,
0.044071514159440994,
-0.09734854102134705,
0.029462512582540512,
0.13780759274959564,
0.04920678213238716,
0.16095851361751556,
0.045376911759376526,
-0.08051475882530212,
0.021734129637479782,
0.057680100202560425,
-0.06599684059619904,
-0.14943349361419678,
-0.014352671802043915,
0.05022618547081947,
-0.13602522015571594,
-0.022082848474383354,
0.11940744519233704,
-0.0485353097319603,
-0.017784541472792625,
0.021267807111144066,
0.026549343019723892,
-0.06667439639568329,
0.23397201299667358,
-0.002865217160433531,
0.074697345495224,
-0.09339335560798645,
0.056323856115341187,
0.07239900529384613,
-0.17464496195316315,
0.03966234251856804,
0.08083976060152054,
-0.031253665685653687,
-0.022501904517412186,
0.03464889153838158,
0.08808401226997375,
0.0278818067163229,
-0.04753831773996353,
-0.09446641057729721,
-0.1572491079568863,
0.0811091959476471,
0.0910976231098175,
0.02707754075527191,
0.026899250224232674,
-0.04676450416445732,
0.04506895691156387,
-0.0983964204788208,
0.09633844345808029,
0.10440509766340256,
0.06414986401796341,
-0.122585229575634,
0.16932517290115356,
0.011055469512939453,
-0.01019454188644886,
0.008657577447593212,
-0.009667440317571163,
-0.08640816807746887,
0.03344570845365524,
-0.13419656455516815,
-0.030407320708036423,
-0.04756087064743042,
0.006591057404875755,
0.0135685745626688,
-0.05378229543566704,
-0.04094986990094185,
0.016587430611252785,
-0.117094986140728,
-0.04171028733253479,
-0.020555511116981506,
0.0797344446182251,
-0.09236141294240952,
-0.02466750331223011,
0.04180585965514183,
-0.10025524348020554,
0.09092668443918228,
0.06029673293232918,
0.014015455730259418,
0.03962526470422745,
-0.13251693546772003,
-0.004252489190548658,
0.048401840031147,
0.00045265749213285744,
0.010583627037703991,
-0.19082874059677124,
-0.02616114541888237,
-0.01456235907971859,
0.03292223438620567,
-0.0012611841084435582,
0.026135455816984177,
-0.12643352150917053,
-0.046699270606040955,
-0.03872499614953995,
-0.07309352606534958,
-0.0556483268737793,
0.03534708172082901,
0.06336621195077896,
0.0453067272901535,
0.1594540923833847,
-0.10457194596529007,
0.07244807481765747,
-0.21378186345100403,
0.00822349451482296,
-0.049971550703048706,
-0.06122039258480072,
-0.09216950088739395,
-0.03874865919351578,
0.08622771501541138,
-0.054924458265304565,
0.07246334850788116,
-0.06301771849393845,
0.056754741817712784,
0.028151744976639748,
-0.12410016357898712,
0.013652153313159943,
0.035405728965997696,
0.22365020215511322,
0.05609816685318947,
-0.036412499845027924,
0.05503357946872711,
-0.0002666967047844082,
0.05524984002113342,
0.20196880400180817,
0.1200200691819191,
0.1576547920703888,
0.06741084903478622,
0.07760489732027054,
0.07108290493488312,
-0.12466844171285629,
-0.11554065346717834,
0.12044307589530945,
-0.025583390146493912,
0.13594631850719452,
-0.021415580064058304,
0.2573535442352295,
0.08968376368284225,
-0.19770050048828125,
0.07090883702039719,
-0.044271789491176605,
-0.08304613083600998,
-0.09303496778011322,
-0.04639115929603577,
-0.07698648422956467,
-0.18284232914447784,
0.005801440216600895,
-0.10401169210672379,
0.06255845725536346,
0.02623993717133999,
0.04171789065003395,
0.0274769626557827,
0.107989601790905,
0.03130365535616875,
-0.013726633042097092,
0.10944762080907822,
0.012266155332326889,
-0.01132322009652853,
-0.06876922398805618,
-0.08830016851425171,
0.06733668595552444,
-0.041777536273002625,
0.04372027516365051,
-0.03242009878158569,
-0.10492173582315445,
0.06285283714532852,
0.005123951006680727,
-0.11328285932540894,
0.028900139033794403,
-0.013252749107778072,
0.07950612902641296,
0.13150842487812042,
0.0462072528898716,
-0.006537354085594416,
-0.01128651387989521,
0.2328115701675415,
-0.10395738482475281,
-0.07798409461975098,
-0.12633223831653595,
0.25042837858200073,
0.005362663418054581,
-0.015082885511219501,
0.011766080744564533,
-0.06778876483440399,
-0.0006416183896362782,
0.13238070905208588,
0.1578540951013565,
-0.0018270360305905342,
-0.010330656543374062,
0.02304152213037014,
-0.013594028539955616,
-0.04653971642255783,
0.05892625451087952,
0.13046766817569733,
0.0631403848528862,
-0.054512299597263336,
-0.015082068741321564,
-0.0578843392431736,
-0.05244281888008118,
-0.010787824168801308,
0.06726401299238205,
0.027988893911242485,
-0.022979600355029106,
-0.010515404865145683,
0.1295800805091858,
-0.05893680453300476,
-0.1571144163608551,
0.0015497540589421988,
-0.18824495375156403,
-0.17713463306427002,
-0.03172629699110985,
0.0762147307395935,
0.06224245950579643,
0.044414252042770386,
-0.017581000924110413,
-0.01747855544090271,
0.12070056796073914,
-0.0028839868027716875,
-0.03571632504463196,
-0.1195923462510109,
0.08631793409585953,
-0.07390118390321732,
0.14651301503181458,
-0.031687069684267044,
0.05182294175028801,
0.11274412274360657,
0.09795206785202026,
-0.04889559745788574,
0.05989524722099304,
0.07917173951864243,
-0.13972435891628265,
0.059502195566892624,
0.2016313225030899,
-0.050284117460250854,
0.16809043288230896,
0.0517059862613678,
-0.10917156934738159,
0.04154808819293976,
-0.106988325715065,
-0.06585055589675903,
-0.050028372555971146,
0.0061493185348808765,
-0.044224902987480164,
0.1351577490568161,
0.20628225803375244,
-0.06778517365455627,
-0.024763980880379677,
-0.053602054715156555,
-0.004217497073113918,
0.04562269151210785,
0.14436063170433044,
-0.05254947021603584,
-0.27372851967811584,
0.023920956999063492,
0.014190482906997204,
0.024304524064064026,
-0.23526321351528168,
-0.10872513800859451,
0.03897613286972046,
-0.057198427617549896,
-0.0642932876944542,
0.11891830712556839,
0.0613565668463707,
0.030444232746958733,
-0.05541813001036644,
-0.1255967915058136,
-0.016153518110513687,
0.1829606294631958,
-0.1668493151664734,
-0.059446606785058975
] |
null | null | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# 4
This model is a fine-tuned version of [GroNLP/bert-base-dutch-cased](https://huggingface.co/GroNLP/bert-base-dutch-cased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1243
- Precision: 0.5220
- Recall: 0.6137
- F1: 0.5641
- Accuracy: 0.9630
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 134 | 0.1357 | 0.4549 | 0.5521 | 0.4988 | 0.9574 |
| No log | 2.0 | 268 | 0.1243 | 0.5220 | 0.6137 | 0.5641 | 0.9630 |
### Framework versions
- Transformers 4.12.5
- Pytorch 1.10.0+cu111
- Tokenizers 0.10.3
| {"tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "4", "results": []}]} | token-classification | Matthijsvanhof/4 | [
"transformers",
"pytorch",
"tensorboard",
"bert",
"token-classification",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [] | TAGS
#transformers #pytorch #tensorboard #bert #token-classification #generated_from_trainer #autotrain_compatible #endpoints_compatible #region-us
| 4
=
This model is a fine-tuned version of GroNLP/bert-base-dutch-cased on an unknown dataset.
It achieves the following results on the evaluation set:
* Loss: 0.1243
* Precision: 0.5220
* Recall: 0.6137
* F1: 0.5641
* Accuracy: 0.9630
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 8
* eval\_batch\_size: 8
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 2
### Training results
### Framework versions
* Transformers 4.12.5
* Pytorch 1.10.0+cu111
* Tokenizers 0.10.3
| [
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 2",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.10.0+cu111\n* Tokenizers 0.10.3"
] | [
"TAGS\n#transformers #pytorch #tensorboard #bert #token-classification #generated_from_trainer #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 2",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.10.0+cu111\n* Tokenizers 0.10.3"
] | [
48,
98,
4,
27
] | [
"passage: TAGS\n#transformers #pytorch #tensorboard #bert #token-classification #generated_from_trainer #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 2### Training results### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.10.0+cu111\n* Tokenizers 0.10.3"
] | [
-0.0840420126914978,
0.04261359944939613,
-0.0020071929320693016,
0.11544931679964066,
0.20555393397808075,
0.029834287241101265,
0.1112898588180542,
0.09681394696235657,
-0.10904907435178757,
0.029770059511065483,
0.11901722103357315,
0.17363950610160828,
-0.005376716144382954,
0.07480715960264206,
-0.05086766555905342,
-0.2810041904449463,
-0.03184477239847183,
0.05338646098971367,
-0.09317264705896378,
0.12012439966201782,
0.07781132310628891,
-0.16532842814922333,
0.07577169686555862,
0.0002435580681776628,
-0.2733789384365082,
0.024721022695302963,
0.03771154209971428,
-0.06354810297489166,
0.149102583527565,
0.006285145413130522,
0.1727495938539505,
-0.0007260650163516402,
0.10318679362535477,
-0.1495095044374466,
0.009957179427146912,
0.05685993283987045,
0.02237006649374962,
0.08827631920576096,
0.06734936684370041,
0.003878881921991706,
0.08898992091417313,
-0.08532184362411499,
0.0663376897573471,
0.0005903851706534624,
-0.12619712948799133,
-0.21016845107078552,
-0.06367193162441254,
0.003252126043662429,
0.04756230488419533,
0.08717656135559082,
-0.004333882126957178,
0.16621635854244232,
-0.11075103282928467,
0.09457581490278244,
0.2266925424337387,
-0.28010421991348267,
-0.08611316978931427,
0.04426407441496849,
-0.0023129202891141176,
0.08294679969549179,
-0.1274728775024414,
-0.019128525629639626,
0.060434915125370026,
0.05395689606666565,
0.12949565052986145,
-0.03722525015473366,
-0.09971147775650024,
0.027140984311699867,
-0.15469813346862793,
0.008668665774166584,
0.04093854874372482,
0.015594398602843285,
-0.01957654394209385,
-0.004066381603479385,
-0.06337999552488327,
-0.16590213775634766,
-0.04653079807758331,
-0.04522252082824707,
0.04802070930600166,
-0.056603848934173584,
-0.10629074275493622,
0.0066316076554358006,
-0.10052638500928879,
-0.06436876952648163,
-0.06646212190389633,
0.1918909102678299,
0.04363429918885231,
0.010252422653138638,
-0.041850410401821136,
0.10814280807971954,
-0.016075721010565758,
-0.1304357796907425,
0.06261336803436279,
0.03386295214295387,
-0.024544714018702507,
-0.07550894469022751,
-0.0680621936917305,
-0.09782733768224716,
-0.0034173273015767336,
0.08255401998758316,
-0.05359950289130211,
0.05156842619180679,
0.04011853039264679,
0.03945678845047951,
-0.09908245503902435,
0.21723362803459167,
-0.04017980396747589,
-0.015286893583834171,
-0.005400411318987608,
0.0507725328207016,
-0.021254058927297592,
-0.009545118547976017,
-0.11333668231964111,
0.006597628816962242,
0.12741954624652863,
-0.002929954556748271,
-0.08701685070991516,
0.06764403730630875,
-0.03732796013355255,
-0.02017197385430336,
-0.037846606224775314,
-0.09472750127315521,
0.06042473390698433,
-0.01190366130322218,
-0.08911041915416718,
0.011569480411708355,
0.0002855307830031961,
0.016132285818457603,
-0.009502975270152092,
0.17956700921058655,
-0.10400760173797607,
0.05629875138401985,
-0.12086637318134308,
-0.12032020092010498,
-0.0030161284375935793,
-0.06707541644573212,
0.02393006719648838,
-0.09547946602106094,
-0.09747371077537537,
-0.013877682387828827,
0.058239325881004333,
-0.03261774033308029,
-0.02992146834731102,
-0.04007561132311821,
-0.07186689972877502,
0.003911884035915136,
-0.010794715955853462,
0.1524079442024231,
-0.04287217929959297,
0.11221551895141602,
0.05790798366069794,
0.07476581633090973,
-0.05454368516802788,
0.05271846055984497,
-0.09412248432636261,
0.004374476615339518,
-0.2311929315328598,
0.026309365406632423,
-0.05740717798471451,
0.07895522564649582,
-0.06627349555492401,
-0.11599523574113846,
0.011019406840205193,
-0.0031207010615617037,
0.09178727120161057,
0.07144835591316223,
-0.16026833653450012,
-0.09429407119750977,
0.14997531473636627,
-0.057239655405282974,
-0.07324033975601196,
0.11797363311052322,
-0.06488410383462906,
0.03263453394174576,
0.07750300318002701,
0.16035893559455872,
0.05569439008831978,
-0.08246117830276489,
0.02863619476556778,
-0.026746198534965515,
0.044473979622125626,
-0.05012764036655426,
0.02752911113202572,
0.019620591774582863,
0.0023663854226469994,
0.031779997050762177,
-0.019790375605225563,
0.05950296297669411,
-0.11896676570177078,
-0.08257840573787689,
-0.0332314595580101,
-0.10425270348787308,
0.0742444172501564,
0.08491086959838867,
0.10929860919713974,
-0.09822642803192139,
-0.06875106692314148,
0.12137875705957413,
0.045077040791511536,
-0.045165322721004486,
0.02377038635313511,
-0.06109766289591789,
0.05880478024482727,
-0.0634201169013977,
-0.03098933771252632,
-0.20076504349708557,
-0.037353746592998505,
0.010194297879934311,
0.026173878461122513,
0.04402967169880867,
0.0356636680662632,
0.08867082744836807,
0.06693605333566666,
-0.06019886955618858,
-0.0065440344624221325,
-0.023907363414764404,
-0.004634051118046045,
-0.16466130316257477,
-0.19623126089572906,
-0.026237746700644493,
-0.01211916096508503,
0.07675383239984512,
-0.21159660816192627,
0.025399543344974518,
-0.023200243711471558,
0.09021367132663727,
0.017663558945059776,
-0.00612120795994997,
-0.07214893400669098,
0.11705373972654343,
-0.017810624092817307,
-0.04350167140364647,
0.07128988951444626,
-0.02158472314476967,
-0.07125181704759598,
-0.08705190569162369,
-0.11050967127084732,
0.20067884027957916,
0.13858099281787872,
-0.16719964146614075,
-0.10317329317331314,
0.0071180458180606365,
-0.05586177855730057,
-0.019433364272117615,
-0.04768594726920128,
0.04955177381634712,
0.19735409319400787,
-0.012832000851631165,
0.14868170022964478,
-0.05321231111884117,
-0.04590274766087532,
0.018455782905220985,
-0.03606904670596123,
0.037571825087070465,
0.09970000386238098,
0.13751377165317535,
-0.07650076597929001,
0.12961848080158234,
0.1492171436548233,
-0.1323949247598648,
0.1395094245672226,
-0.01871124468743801,
-0.07458733767271042,
-0.017674118280410767,
-0.030365347862243652,
0.00822202954441309,
0.09852047264575958,
-0.12085453420877457,
-0.028419870883226395,
-0.002548281801864505,
0.01939678005874157,
0.026390397921204567,
-0.24053938686847687,
-0.04403804615139961,
0.029730672016739845,
-0.0008587019983679056,
0.01662295311689377,
-0.027393119409680367,
0.023962220177054405,
0.11785931140184402,
0.006295247469097376,
-0.08497674018144608,
0.024290110915899277,
0.008288359269499779,
-0.0622161366045475,
0.20505915582180023,
-0.06790110468864441,
-0.10537586361169815,
-0.10559044778347015,
-0.08448535948991776,
-0.040354881435632706,
0.014873092994093895,
0.037474725395441055,
-0.12369263172149658,
-0.012427609413862228,
-0.01934937573969364,
0.028635382652282715,
0.005534392315894365,
0.06461244821548462,
-0.00025528203696012497,
-0.0036678817123174667,
0.07281368970870972,
-0.09865178167819977,
-0.007093334104865789,
-0.07360224425792694,
-0.07682046294212341,
0.054955050349235535,
0.066659115254879,
0.1176348626613617,
0.18105752766132355,
-0.055579643696546555,
0.0031381777953356504,
-0.022744541987776756,
0.23771671950817108,
-0.0727086290717125,
-0.04122520238161087,
0.09696699678897858,
-0.03374394029378891,
0.055532000958919525,
0.09645677357912064,
0.08764483034610748,
-0.09449274837970734,
0.012015126645565033,
0.044890932738780975,
-0.039097100496292114,
-0.19376492500305176,
-0.025838548317551613,
-0.04263724386692047,
-0.04711822420358658,
0.09247718751430511,
0.020164912566542625,
0.03372177854180336,
0.06911566853523254,
0.07496101409196854,
0.10460466891527176,
-0.07144539803266525,
0.04831640049815178,
0.08679958432912827,
0.04848488047719002,
0.12885285913944244,
-0.030377380549907684,
-0.11140377074480057,
0.014413876459002495,
-0.027338454499840736,
0.20903776586055756,
0.013878519646823406,
0.07502048462629318,
0.04181460663676262,
0.18629984557628632,
0.014243893325328827,
0.08157418668270111,
-0.0016143531538546085,
-0.07501858472824097,
-0.0005647114012390375,
-0.034768279641866684,
-0.03223291411995888,
0.012816507369279861,
-0.01999717578291893,
0.05627317726612091,
-0.11858086287975311,
-0.01538686640560627,
0.056595925241708755,
0.23300136625766754,
0.01641322672367096,
-0.3155488073825836,
-0.06610511988401413,
-0.009368885308504105,
-0.0374547615647316,
-0.00350537640042603,
0.008039431646466255,
0.11693677306175232,
-0.09059923142194748,
0.009810349904000759,
-0.07515725493431091,
0.08546765893697739,
-0.03213994950056076,
0.05487099289894104,
0.07024941593408585,
0.11923205107450485,
-0.00252224481664598,
0.05846184492111206,
-0.30598053336143494,
0.264079213142395,
0.011550947092473507,
0.0798463374376297,
-0.06803179532289505,
-0.00767961610108614,
0.03380211815237999,
0.055718034505844116,
0.01937752217054367,
-0.021401232108473778,
-0.029920678585767746,
-0.2342730313539505,
-0.020742807537317276,
0.0286919716745615,
0.1379217803478241,
-0.01396975014358759,
0.10308840870857239,
-0.021310051903128624,
0.001031732652336359,
0.08242862671613693,
-0.028952134773135185,
-0.04884140193462372,
-0.06684011965990067,
-0.024169594049453735,
0.003943475428968668,
-0.06669948995113373,
-0.0529407262802124,
-0.1195906400680542,
-0.1426238864660263,
0.15615962445735931,
0.014536774717271328,
-0.0020497601944953203,
-0.12299925833940506,
0.11428443342447281,
0.06724785268306732,
-0.07910911738872528,
0.03679336979985237,
0.01614517532289028,
0.060745809227228165,
0.03000914491713047,
-0.06199559196829796,
0.12335412949323654,
-0.05226468667387962,
-0.15160012245178223,
-0.0695401281118393,
0.07980254292488098,
0.039802297949790955,
0.0658223107457161,
-0.018430029973387718,
0.01573498360812664,
-0.010686763562262058,
-0.08731483668088913,
0.04630429297685623,
-0.037564583122730255,
0.04953279346227646,
0.004381418693810701,
-0.05791304633021355,
0.010682511143386364,
-0.060935020446777344,
-0.004061616491526365,
0.1862952560186386,
0.2320711612701416,
-0.09403432160615921,
-0.023111961781978607,
0.03907373175024986,
-0.060445014387369156,
-0.1949305236339569,
0.09917697310447693,
0.08250989019870758,
0.0011596481781452894,
0.05045656859874725,
-0.1603122055530548,
0.1588989794254303,
0.10681984573602676,
0.0006194855668582022,
0.11322284489870071,
-0.3093012571334839,
-0.13109268248081207,
0.10209189355373383,
0.17640434205532074,
0.12128683924674988,
-0.13820336759090424,
-0.011618707329034805,
-0.013709436170756817,
-0.09626730531454086,
0.09406619518995285,
-0.0691813975572586,
0.11657882481813431,
-0.016362838447093964,
0.10725350677967072,
0.011670802719891071,
-0.06673138588666916,
0.09056103229522705,
0.006396562792360783,
0.11380428820848465,
-0.06096317619085312,
-0.08276715874671936,
0.031015973538160324,
-0.026148630306124687,
-0.02519115060567856,
-0.022709647193551064,
0.007633684203028679,
-0.05271986126899719,
-0.019564149901270866,
-0.09193814545869827,
0.04159408062696457,
-0.029972851276397705,
-0.07050029933452606,
-0.028541984036564827,
0.027641309425234795,
0.024300623685121536,
-0.02283172495663166,
0.11394555866718292,
0.008802716620266438,
0.17887094616889954,
0.0995686799287796,
0.06984294205904007,
-0.07159283757209778,
-0.046411555260419846,
0.0045993574894964695,
-0.010512434877455235,
0.07397361099720001,
-0.11115363240242004,
0.021708115935325623,
0.1568807065486908,
0.022736232727766037,
0.11754149943590164,
0.09605789184570312,
-0.018400592729449272,
0.016144046559929848,
0.07521332800388336,
-0.1639162302017212,
-0.06436678022146225,
0.0014884289121255279,
-0.07272683084011078,
-0.09254413843154907,
0.058461807668209076,
0.08160951733589172,
-0.07375737279653549,
-0.011024920269846916,
-0.006099667400121689,
-0.03426551818847656,
-0.07522948831319809,
0.21819870173931122,
0.0769779235124588,
0.042939867824316025,
-0.09217695891857147,
0.04851880297064781,
0.06337407976388931,
-0.09087855368852615,
-0.01072675921022892,
0.0847926065325737,
-0.07204408198595047,
-0.017481405287981033,
0.10906274616718292,
0.20991109311580658,
-0.06538613140583038,
-0.011040724813938141,
-0.14901508390903473,
-0.10673918575048447,
0.06248451769351959,
0.1884346604347229,
0.11060268431901932,
-0.008466558530926704,
-0.06426701694726944,
0.04741179198026657,
-0.14478150010108948,
0.06726544350385666,
0.031322792172431946,
0.09226970374584198,
-0.1523682028055191,
0.21758504211902618,
0.0030328130815178156,
0.0444013774394989,
-0.033891770988702774,
0.03357879817485809,
-0.13030637800693512,
0.020925922319293022,
-0.11001250147819519,
-0.06480077654123306,
0.0018732225289568305,
-0.010160451754927635,
0.0029359180480241776,
-0.0756167471408844,
-0.06110154464840889,
-0.0003206281107850373,
-0.13360178470611572,
-0.01617903634905815,
0.05034199357032776,
0.021909093484282494,
-0.10633256286382675,
-0.033543411642313004,
0.023148389533162117,
-0.04792702943086624,
0.046210967004299164,
0.042598217725753784,
0.02227427251636982,
0.08087455481290817,
-0.15176904201507568,
-0.017876243218779564,
0.07273238152265549,
-0.006656805984675884,
0.10124558955430984,
-0.038427937775850296,
-0.008286903612315655,
-0.018105771392583847,
0.11497584730386734,
0.02603840082883835,
0.07972617447376251,
-0.1411970853805542,
0.005221700761467218,
-0.030276188626885414,
-0.11468024551868439,
-0.06631562858819962,
0.017549116164445877,
0.07764139026403427,
0.0024295817129313946,
0.18021973967552185,
-0.0892210304737091,
0.05487443134188652,
-0.20736971497535706,
-0.010774482041597366,
-0.0137983039021492,
-0.10767757892608643,
-0.09370157867670059,
-0.06144638732075691,
0.06967983394861221,
-0.05703946202993393,
0.10968776047229767,
0.04559992253780365,
0.05802791565656662,
0.03571692481637001,
-0.04332812875509262,
-0.008916006423532963,
0.03869295492768288,
0.19332872331142426,
0.0519656166434288,
-0.04474812373518944,
0.05272302031517029,
0.08130039274692535,
0.10182657837867737,
0.11656654626131058,
0.21648621559143066,
0.14465221762657166,
-0.04072889685630798,
0.08769554644823074,
0.03277074173092842,
-0.04286443069577217,
-0.18076364696025848,
0.028160007670521736,
-0.07516001909971237,
0.08626087754964828,
-0.03620827943086624,
0.2104455977678299,
0.06861673295497894,
-0.15453417599201202,
0.0442390963435173,
-0.06555831432342529,
-0.10202807188034058,
-0.10089346766471863,
-0.00664041843265295,
-0.08091472834348679,
-0.14110593497753143,
0.01460194867104292,
-0.09676997363567352,
0.018199782818555832,
0.1137675940990448,
0.011127638630568981,
-0.02362450771033764,
0.20800930261611938,
0.03720421344041824,
0.04714706540107727,
0.060560375452041626,
0.008806823752820492,
-0.021449465304613113,
-0.10073228925466537,
-0.06221544370055199,
-0.04983535036444664,
-0.01034380029886961,
0.027808815240859985,
-0.07699929922819138,
-0.10167466104030609,
0.022114232182502747,
-0.00820721872150898,
-0.1043737381696701,
0.02884618751704693,
0.01675838604569435,
0.06627605855464935,
0.0013941560173407197,
-0.011125230230391026,
0.011921131052076817,
-0.03808652609586716,
0.21367621421813965,
-0.09384988248348236,
-0.07488860934972763,
-0.0912991613149643,
0.30339038372039795,
0.037610650062561035,
0.021403061226010323,
0.011188182979822159,
-0.06895127892494202,
0.006932435557246208,
0.2421272248029709,
0.18686234951019287,
-0.12495047599077225,
-0.0013817610451951623,
0.004764997866004705,
-0.014018393121659756,
-0.04282337427139282,
0.1376502513885498,
0.12442661076784134,
0.04293671250343323,
-0.10927839577198029,
-0.03434314578771591,
-0.06061926484107971,
-0.013459264300763607,
-0.04370017722249031,
0.05453437939286232,
0.07581470161676407,
0.030295968055725098,
-0.06717517971992493,
0.052256274968385696,
-0.06088004261255264,
-0.101857990026474,
0.07873282581567764,
-0.21413150429725647,
-0.16744017601013184,
-0.005523195955902338,
0.11618854850530624,
-0.020987877622246742,
0.08173190802335739,
-0.030140627175569534,
-0.013012372888624668,
0.028457915410399437,
-0.02489747665822506,
-0.06371988356113434,
-0.08638444542884827,
0.10367618501186371,
-0.11282755434513092,
0.1832052320241928,
-0.050010956823825836,
0.06724435091018677,
0.12228748202323914,
0.0693725049495697,
-0.042186640202999115,
0.04575281962752342,
0.04236259683966637,
-0.1265534609556198,
0.00923228356987238,
0.12326259911060333,
-0.029922975227236748,
0.059333864599466324,
0.03730571269989014,
-0.15304702520370483,
0.038959380239248276,
-0.1017410010099411,
-0.0404384471476078,
-0.03811763972043991,
-0.055994145572185516,
-0.05422530323266983,
0.11658920347690582,
0.23783427476882935,
-0.0013179871020838618,
0.029009712859988213,
-0.07932284474372864,
0.00791741069406271,
0.05744652822613716,
0.05565614998340607,
-0.11056166887283325,
-0.25311142206192017,
0.012500982731580734,
0.07478528469800949,
-0.046830881386995316,
-0.22016067802906036,
-0.09524655342102051,
0.013004951179027557,
-0.06702233850955963,
-0.09318116307258606,
0.08210106194019318,
0.07795745879411697,
0.06148122623562813,
-0.04947616904973984,
-0.13646504282951355,
-0.0812315121293068,
0.1582939177751541,
-0.1538688987493515,
-0.08322550356388092
] |
null | null | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-base-dutch-cased-finetuned-NER
This model is a fine-tuned version of [GroNLP/bert-base-dutch-cased](https://huggingface.co/GroNLP/bert-base-dutch-cased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1078
- Precision: 0.6129
- Recall: 0.6639
- F1: 0.6374
- Accuracy: 0.9688
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 267 | 0.1131 | 0.6090 | 0.6264 | 0.6176 | 0.9678 |
| 0.1495 | 2.0 | 534 | 0.1078 | 0.6129 | 0.6639 | 0.6374 | 0.9688 |
### Framework versions
- Transformers 4.12.5
- Pytorch 1.10.0+cu111
- Datasets 1.16.1
- Tokenizers 0.10.3
| {"tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "bert-base-dutch-cased-finetuned-NER", "results": []}]} | token-classification | Matthijsvanhof/bert-base-dutch-cased-finetuned-NER | [
"transformers",
"pytorch",
"tensorboard",
"bert",
"token-classification",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [] | TAGS
#transformers #pytorch #tensorboard #bert #token-classification #generated_from_trainer #autotrain_compatible #endpoints_compatible #region-us
| bert-base-dutch-cased-finetuned-NER
===================================
This model is a fine-tuned version of GroNLP/bert-base-dutch-cased on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 0.1078
* Precision: 0.6129
* Recall: 0.6639
* F1: 0.6374
* Accuracy: 0.9688
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 8
* eval\_batch\_size: 8
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 2
### Training results
### Framework versions
* Transformers 4.12.5
* Pytorch 1.10.0+cu111
* Datasets 1.16.1
* Tokenizers 0.10.3
| [
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 2",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.10.0+cu111\n* Datasets 1.16.1\n* Tokenizers 0.10.3"
] | [
"TAGS\n#transformers #pytorch #tensorboard #bert #token-classification #generated_from_trainer #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 2",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.10.0+cu111\n* Datasets 1.16.1\n* Tokenizers 0.10.3"
] | [
48,
98,
4,
33
] | [
"passage: TAGS\n#transformers #pytorch #tensorboard #bert #token-classification #generated_from_trainer #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 2### Training results### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.10.0+cu111\n* Datasets 1.16.1\n* Tokenizers 0.10.3"
] | [
-0.09285590052604675,
0.05547519028186798,
-0.0017910010647028685,
0.11759438365697861,
0.2070489227771759,
0.03477310389280319,
0.10734681040048599,
0.10185577720403671,
-0.10707367211580276,
0.031222539022564888,
0.11585471034049988,
0.1700478047132492,
0.00042939477134495974,
0.08542431145906448,
-0.05264434218406677,
-0.2771449089050293,
-0.03202180936932564,
0.047382500022649765,
-0.09696836769580841,
0.12188269942998886,
0.07674074918031693,
-0.16407537460327148,
0.07589925080537796,
-0.006619374733418226,
-0.2595929503440857,
0.021265776827931404,
0.0337686724960804,
-0.05775703862309456,
0.14816202223300934,
0.00825378019362688,
0.16777200996875763,
-0.0020439799409359694,
0.10706976056098938,
-0.15548357367515564,
0.009572392329573631,
0.06145712733268738,
0.021079890429973602,
0.08902739733457565,
0.06725387275218964,
0.002488073892891407,
0.08509980142116547,
-0.08905236423015594,
0.06601230800151825,
0.0035526819992810488,
-0.12616316974163055,
-0.21138738095760345,
-0.06912972778081894,
-0.002056887373328209,
0.05227966979146004,
0.08849871903657913,
-0.0058598145842552185,
0.15840785205364227,
-0.10990817099809647,
0.09262509644031525,
0.22578708827495575,
-0.2748124301433563,
-0.08480727672576904,
0.05272851511836052,
-0.007258376106619835,
0.08563560992479324,
-0.12746261060237885,
-0.017461806535720825,
0.05917546898126602,
0.05298718065023422,
0.12562882900238037,
-0.0329827144742012,
-0.10751237720251083,
0.028257116675376892,
-0.15137426555156708,
0.006432792171835899,
0.0519995354115963,
0.018265677616000175,
-0.01794995181262493,
-0.01057299505919218,
-0.06432978063821793,
-0.16672664880752563,
-0.041986677795648575,
-0.036305539309978485,
0.047065529972314835,
-0.05991153046488762,
-0.10199844837188721,
0.013331823982298374,
-0.10012289881706238,
-0.06701428443193436,
-0.06926684081554413,
0.17037269473075867,
0.04199720174074173,
0.012431543320417404,
-0.03624051809310913,
0.11109362542629242,
-0.00985457468777895,
-0.13118265569210052,
0.05664941295981407,
0.03057447075843811,
-0.03310079872608185,
-0.07118505984544754,
-0.0670071467757225,
-0.0921948179602623,
-0.0023980126716196537,
0.08161977678537369,
-0.04706142470240593,
0.0519973449409008,
0.03557279706001282,
0.03622700273990631,
-0.09194374084472656,
0.20155386626720428,
-0.04810691624879837,
-0.025352854281663895,
-0.00936063751578331,
0.05043438449501991,
-0.020926186814904213,
-0.008801528252661228,
-0.10757061839103699,
0.007329138461500406,
0.12204466015100479,
0.0007645657169632614,
-0.08250230550765991,
0.06561702489852905,
-0.04087166488170624,
-0.023508215323090553,
-0.036101412028074265,
-0.09448710083961487,
0.058115918189287186,
-0.008657136932015419,
-0.09391465038061142,
0.0053291963413357735,
0.00244680093601346,
0.01515385415405035,
-0.007011778187006712,
0.1748531311750412,
-0.10275924205780029,
0.05001014098525047,
-0.11842867732048035,
-0.1217704638838768,
0.002404817147180438,
-0.07460381090641022,
0.023100893944501877,
-0.09187041968107224,
-0.11528877168893814,
-0.01743260771036148,
0.058274444192647934,
-0.03818143531680107,
-0.029406897723674774,
-0.0440874807536602,
-0.07033798843622208,
0.005521632730960846,
-0.01252874918282032,
0.16438493132591248,
-0.046657104045152664,
0.11279554665088654,
0.04843825846910477,
0.07747451961040497,
-0.049454230815172195,
0.05367434397339821,
-0.09155789762735367,
0.0018150836694985628,
-0.21881848573684692,
0.0320998840034008,
-0.06099537014961243,
0.06883793324232101,
-0.07069621980190277,
-0.11457226425409317,
0.011809060350060463,
-0.005679155234247446,
0.09123057126998901,
0.07807290554046631,
-0.1730845421552658,
-0.08776173740625381,
0.14775314927101135,
-0.058161430060863495,
-0.07819393277168274,
0.11485965549945831,
-0.06656257063150406,
0.030900802463293076,
0.07734786719083786,
0.15748156607151031,
0.0607125423848629,
-0.0803673043847084,
0.020446883514523506,
-0.027691587805747986,
0.05641511082649231,
-0.053723957389593124,
0.03457682952284813,
0.019986361265182495,
0.006615658290684223,
0.03097061812877655,
-0.019025731831789017,
0.06187748163938522,
-0.12231581658124924,
-0.08431175351142883,
-0.029486682265996933,
-0.10787241905927658,
0.07194004207849503,
0.08780351281166077,
0.10400541871786118,
-0.0942409336566925,
-0.06667691469192505,
0.11510170251131058,
0.05420802906155586,
-0.049351613968610764,
0.019884470850229263,
-0.05474909767508507,
0.05788537114858627,
-0.06654452532529831,
-0.031906042248010635,
-0.2015811949968338,
-0.04507672041654587,
0.007588733918964863,
0.027228232473134995,
0.033913977444171906,
0.03830482065677643,
0.08883833885192871,
0.06897661089897156,
-0.06546374410390854,
-0.0047378200106322765,
-0.02389688976109028,
-0.0032999885734170675,
-0.16215774416923523,
-0.20206435024738312,
-0.03021937981247902,
-0.01369275152683258,
0.08840945363044739,
-0.2163134664297104,
0.021701160818338394,
-0.02658388577401638,
0.09430374205112457,
0.019115107133984566,
-0.012589794583618641,
-0.06683584302663803,
0.11059989035129547,
-0.020756803452968597,
-0.04652731120586395,
0.0690353512763977,
-0.022564075887203217,
-0.06933604925870895,
-0.08518271148204803,
-0.10418278723955154,
0.19242744147777557,
0.1367066204547882,
-0.15709125995635986,
-0.10062351822853088,
0.008110624738037586,
-0.05798870697617531,
-0.023871153593063354,
-0.05816126987338066,
0.04796570539474487,
0.1827106922864914,
-0.010435276664793491,
0.14807875454425812,
-0.05299009382724762,
-0.044238146394491196,
0.020875228568911552,
-0.03151596710085869,
0.038031529635190964,
0.10868126899003983,
0.1398444026708603,
-0.07276847213506699,
0.1334460973739624,
0.14055326581001282,
-0.12381571531295776,
0.139939546585083,
-0.020288096740841866,
-0.07918987423181534,
-0.01663549244403839,
-0.0342058502137661,
0.006761251483112574,
0.10790269076824188,
-0.11851514130830765,
-0.020308807492256165,
0.002277292078360915,
0.023912381380796432,
0.02676544152200222,
-0.23525892198085785,
-0.04651153087615967,
0.02793976478278637,
-0.004996097180992365,
0.010764298029243946,
-0.028613632544875145,
0.02400076761841774,
0.12154409289360046,
0.0013120427029207349,
-0.07808082550764084,
0.02280448190867901,
0.004843716509640217,
-0.06452950090169907,
0.2092103660106659,
-0.07072750478982925,
-0.10917187482118607,
-0.09939078986644745,
-0.08329186588525772,
-0.043176647275686264,
0.011756758205592632,
0.03617468476295471,
-0.12359081208705902,
-0.01375562697649002,
-0.025351284071803093,
0.032053835690021515,
0.006439971271902323,
0.06130146235227585,
-0.0016737364931032062,
-0.0033917701803147793,
0.07003766298294067,
-0.0993000939488411,
-0.002445781836286187,
-0.0754627138376236,
-0.07717600464820862,
0.05440441891551018,
0.06464970856904984,
0.11858437955379486,
0.17815400660037994,
-0.04841703921556473,
0.004855696577578783,
-0.02393198013305664,
0.23496946692466736,
-0.07104246318340302,
-0.03768187388777733,
0.094778873026371,
-0.02937045693397522,
0.051129572093486786,
0.10044962912797928,
0.08711203187704086,
-0.09528915584087372,
0.011042959988117218,
0.05047781765460968,
-0.04078220948576927,
-0.20094601809978485,
-0.03257348760962486,
-0.04527423903346062,
-0.04166414216160774,
0.09397299587726593,
0.01777462661266327,
0.02829291857779026,
0.06978325545787811,
0.07081788778305054,
0.09820311516523361,
-0.06904161721467972,
0.04386373609304428,
0.08314322680234909,
0.04570819064974785,
0.12725424766540527,
-0.031611066311597824,
-0.0990574061870575,
0.019972866401076317,
-0.02369767241179943,
0.22003132104873657,
0.002532443730160594,
0.07448933273553848,
0.042119309306144714,
0.18659608066082,
0.008251206949353218,
0.08425378799438477,
-0.0006992974667809904,
-0.06905941665172577,
-0.0008401985978707671,
-0.03462629020214081,
-0.03415072336792946,
0.011683182790875435,
-0.022162148728966713,
0.056126728653907776,
-0.12119623273611069,
-0.014638977125287056,
0.05467769503593445,
0.22708241641521454,
0.029114043340086937,
-0.314663827419281,
-0.06868349760770798,
-0.0072565521113574505,
-0.032652899622917175,
-0.007554381154477596,
0.007952867075800896,
0.12213499844074249,
-0.09167896956205368,
0.013780101202428341,
-0.07656256854534149,
0.08517523854970932,
-0.03851465880870819,
0.04590468108654022,
0.07626226544380188,
0.11427336931228638,
-0.0047081233933568,
0.06386376917362213,
-0.30492228269577026,
0.2683887481689453,
0.010799435898661613,
0.07716656476259232,
-0.0759778693318367,
-0.010459773242473602,
0.031032904982566833,
0.04188065603375435,
0.02773263491690159,
-0.018362781032919884,
-0.025048764422535896,
-0.23387891054153442,
-0.02833210676908493,
0.029097119346261024,
0.12965473532676697,
-0.020106373354792595,
0.10307186096906662,
-0.018555069342255592,
-0.00021346849098335952,
0.08037078380584717,
-0.03148414567112923,
-0.052490103989839554,
-0.07157008349895477,
-0.023565173149108887,
0.006481066811829805,
-0.06961163878440857,
-0.05107380449771881,
-0.12360583245754242,
-0.14220596849918365,
0.14979597926139832,
0.009279104880988598,
-0.007804419379681349,
-0.12384037673473358,
0.12615610659122467,
0.07806360721588135,
-0.07921911031007767,
0.03777530416846275,
0.019367726519703865,
0.057379692792892456,
0.03426850587129593,
-0.06360746175050735,
0.12013518065214157,
-0.055179450660943985,
-0.1585499346256256,
-0.07162302732467651,
0.08285672962665558,
0.04749147966504097,
0.0687093660235405,
-0.019135158509016037,
0.018632367253303528,
-0.009625113569200039,
-0.08734685182571411,
0.045342739671468735,
-0.029929228127002716,
0.05861419439315796,
0.020432449877262115,
-0.055702630430459976,
0.006915058940649033,
-0.055605243891477585,
-0.007693065330386162,
0.1859358698129654,
0.22950045764446259,
-0.09559202194213867,
-0.016815554350614548,
0.03520001471042633,
-0.06388045847415924,
-0.1975422352552414,
0.10052631795406342,
0.08491124212741852,
0.003827430075034499,
0.05589628964662552,
-0.167247012257576,
0.16182316839694977,
0.1078021302819252,
-0.0010922843357548118,
0.11716202646493912,
-0.3118874728679657,
-0.12903185188770294,
0.10147883743047714,
0.17386260628700256,
0.12376576662063599,
-0.1403326839208603,
-0.012014106847345829,
-0.012753372080624104,
-0.10513300448656082,
0.10250510275363922,
-0.07290910929441452,
0.11854247748851776,
-0.018666386604309082,
0.10139425098896027,
0.013444636017084122,
-0.0676945224404335,
0.09505441784858704,
0.013198685832321644,
0.11092276871204376,
-0.061110902577638626,
-0.07399599254131317,
0.03431353718042374,
-0.02650049328804016,
-0.023221028968691826,
-0.023219989612698555,
0.010381166823208332,
-0.06492210924625397,
-0.018532775342464447,
-0.0936364158987999,
0.036584846675395966,
-0.030462512746453285,
-0.07161948084831238,
-0.028721340000629425,
0.03481986001133919,
0.03288692608475685,
-0.021530387923121452,
0.11153686046600342,
0.011634998954832554,
0.17645463347434998,
0.0956215187907219,
0.0685853511095047,
-0.060005057603120804,
-0.04666389897465706,
0.0006476972484961152,
-0.00988059677183628,
0.06665751338005066,
-0.11694096028804779,
0.023665260523557663,
0.16035398840904236,
0.025791866704821587,
0.11862628906965256,
0.09518825262784958,
-0.020702248439192772,
0.016871638596057892,
0.07450242340564728,
-0.16320928931236267,
-0.06673015654087067,
0.0027672788128256798,
-0.08154207468032837,
-0.10111946612596512,
0.058791469782590866,
0.08254949748516083,
-0.0719781219959259,
-0.008165067993104458,
-0.007702894974499941,
-0.023071788251399994,
-0.06999777257442474,
0.22958792746067047,
0.07493606209754944,
0.044920772314071655,
-0.09778877347707748,
0.054612066596746445,
0.06053825095295906,
-0.08841589838266373,
-0.00904297549277544,
0.08039867132902145,
-0.07169679552316666,
-0.01876278966665268,
0.10727933049201965,
0.2022484838962555,
-0.06153208762407303,
-0.011241408064961433,
-0.14539207518100739,
-0.10640936344861984,
0.06321551650762558,
0.18338435888290405,
0.10954209417104721,
-0.0034401947632431984,
-0.061190661042928696,
0.041135024279356,
-0.14588332176208496,
0.07393525540828705,
0.0399988628923893,
0.08880911022424698,
-0.15074142813682556,
0.20669597387313843,
0.002009654650464654,
0.04242996498942375,
-0.033344876021146774,
0.034856196492910385,
-0.1264728307723999,
0.019943634048104286,
-0.11422925442457199,
-0.06088702753186226,
0.0006103203049860895,
-0.00997733511030674,
-0.00019174757471773773,
-0.07519659399986267,
-0.05829152464866638,
-0.00014311066479422152,
-0.13064491748809814,
-0.016717541962862015,
0.046490561217069626,
0.023904409259557724,
-0.11230722069740295,
-0.036284659057855606,
0.0202691238373518,
-0.047425512224435806,
0.050261568278074265,
0.04287732020020485,
0.025623859837651253,
0.07839711010456085,
-0.15393231809139252,
-0.017055746167898178,
0.0694972351193428,
-0.004329255316406488,
0.10261763632297516,
-0.043645311146974564,
-0.008735156618058681,
-0.016085203737020493,
0.10851338505744934,
0.026262693107128143,
0.07715686410665512,
-0.13883718848228455,
0.005977387074381113,
-0.03616149351000786,
-0.10524242371320724,
-0.06353116780519485,
0.02134709805250168,
0.07814273983240128,
0.008400246500968933,
0.17894460260868073,
-0.08539139479398727,
0.057675473392009735,
-0.21555010974407196,
-0.011868860572576523,
-0.014352967031300068,
-0.10414563864469528,
-0.09546390175819397,
-0.056162647902965546,
0.07567043602466583,
-0.05512027069926262,
0.11460793763399124,
0.04544566571712494,
0.06170305237174034,
0.03138125315308571,
-0.038094282150268555,
-0.005459904205054045,
0.0391363725066185,
0.19573815166950226,
0.04928140342235565,
-0.043671391904354095,
0.054701924324035645,
0.08209595829248428,
0.10162424296140671,
0.12158393859863281,
0.22151346504688263,
0.14299270510673523,
-0.03347478806972504,
0.08226313441991806,
0.03179097920656204,
-0.05480459704995155,
-0.17275603115558624,
0.032438866794109344,
-0.0777682289481163,
0.08799513429403305,
-0.034320149570703506,
0.20568537712097168,
0.0528939925134182,
-0.1600714772939682,
0.04279683902859688,
-0.06888255476951599,
-0.10218961536884308,
-0.10266958922147751,
-0.00736586470156908,
-0.0818006694316864,
-0.141337051987648,
0.012041613459587097,
-0.10408825427293777,
0.01940935291349888,
0.12715566158294678,
0.0150423813611269,
-0.018519464880228043,
0.20093342661857605,
0.036803945899009705,
0.047989003360271454,
0.0592186339199543,
0.014439849182963371,
-0.018242312595248222,
-0.09856734424829483,
-0.06227618455886841,
-0.04439853876829147,
-0.007438117638230324,
0.02961552143096924,
-0.07716383785009384,
-0.09782490134239197,
0.02903519757091999,
-0.005232313182204962,
-0.10581126809120178,
0.026113303378224373,
0.01587546616792679,
0.06799943000078201,
0.015468616969883442,
-0.006626189220696688,
0.01804344542324543,
-0.03805774077773094,
0.21786443889141083,
-0.09213799983263016,
-0.06839686632156372,
-0.09495909512042999,
0.2909861207008362,
0.037878166884183884,
0.015795873478055,
0.017899498343467712,
-0.0727870911359787,
0.008256981149315834,
0.23857764899730682,
0.19304531812667847,
-0.12344972044229507,
-0.0056903609074652195,
0.009217921644449234,
-0.01400474738329649,
-0.03821796551346779,
0.13672186434268951,
0.12340336292982101,
0.05049782246351242,
-0.1101711243391037,
-0.03740382194519043,
-0.05654587596654892,
-0.016340207308530807,
-0.035615772008895874,
0.05481698364019394,
0.07095516473054886,
0.028264977037906647,
-0.06528075784444809,
0.05828000232577324,
-0.06388252228498459,
-0.11330712586641312,
0.08139625936746597,
-0.22052006423473358,
-0.17398113012313843,
-0.01110211480408907,
0.11365847289562225,
-0.015836600214242935,
0.07507943361997604,
-0.031173955649137497,
-0.005915098357945681,
0.03751664236187935,
-0.024062035605311394,
-0.06609302014112473,
-0.09433630108833313,
0.10060609132051468,
-0.10866019874811172,
0.1884114295244217,
-0.05099736899137497,
0.06678619235754013,
0.12268085032701492,
0.06459131836891174,
-0.04988139867782593,
0.041718631982803345,
0.0445842482149601,
-0.11967068910598755,
0.012224885635077953,
0.12445589154958725,
-0.03262379765510559,
0.06274852901697159,
0.03708285465836525,
-0.1508985012769699,
0.03501647338271141,
-0.09687066078186035,
-0.04171009734272957,
-0.0392993800342083,
-0.05113304406404495,
-0.05171959847211838,
0.12111785262823105,
0.23658479750156403,
-0.007037523668259382,
0.0301068015396595,
-0.07992327213287354,
0.007524800952523947,
0.05047842115163803,
0.061232611536979675,
-0.10374376177787781,
-0.2542645335197449,
0.012372694909572601,
0.0707496628165245,
-0.04063798114657402,
-0.21937844157218933,
-0.09106651693582535,
0.01531634759157896,
-0.07301643490791321,
-0.09225396066904068,
0.08415721356868744,
0.07737716287374496,
0.06053701415657997,
-0.052287064492702484,
-0.12617290019989014,
-0.07888391613960266,
0.1580546647310257,
-0.15493451058864594,
-0.08579690009355545
] |
null | null | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-base-dutch-cased-finetuned-NER8
This model is a fine-tuned version of [GroNLP/bert-base-dutch-cased](https://huggingface.co/GroNLP/bert-base-dutch-cased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1482
- Precision: 0.4716
- Recall: 0.4359
- F1: 0.4530
- Accuracy: 0.9569
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 68 | 0.1705 | 0.3582 | 0.3488 | 0.3535 | 0.9475 |
| No log | 2.0 | 136 | 0.1482 | 0.4716 | 0.4359 | 0.4530 | 0.9569 |
### Framework versions
- Transformers 4.12.5
- Pytorch 1.10.0+cu111
- Tokenizers 0.10.3
| {"tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "bert-base-dutch-cased-finetuned-NER8", "results": []}]} | token-classification | Matthijsvanhof/bert-base-dutch-cased-finetuned-NER8 | [
"transformers",
"pytorch",
"tensorboard",
"bert",
"token-classification",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [] | TAGS
#transformers #pytorch #tensorboard #bert #token-classification #generated_from_trainer #autotrain_compatible #endpoints_compatible #region-us
| bert-base-dutch-cased-finetuned-NER8
====================================
This model is a fine-tuned version of GroNLP/bert-base-dutch-cased on an unknown dataset.
It achieves the following results on the evaluation set:
* Loss: 0.1482
* Precision: 0.4716
* Recall: 0.4359
* F1: 0.4530
* Accuracy: 0.9569
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 8
* eval\_batch\_size: 8
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 2
### Training results
### Framework versions
* Transformers 4.12.5
* Pytorch 1.10.0+cu111
* Tokenizers 0.10.3
| [
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 2",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.10.0+cu111\n* Tokenizers 0.10.3"
] | [
"TAGS\n#transformers #pytorch #tensorboard #bert #token-classification #generated_from_trainer #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 2",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.10.0+cu111\n* Tokenizers 0.10.3"
] | [
48,
98,
4,
27
] | [
"passage: TAGS\n#transformers #pytorch #tensorboard #bert #token-classification #generated_from_trainer #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 2### Training results### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.10.0+cu111\n* Tokenizers 0.10.3"
] | [
-0.0840420126914978,
0.04261359944939613,
-0.0020071929320693016,
0.11544931679964066,
0.20555393397808075,
0.029834287241101265,
0.1112898588180542,
0.09681394696235657,
-0.10904907435178757,
0.029770059511065483,
0.11901722103357315,
0.17363950610160828,
-0.005376716144382954,
0.07480715960264206,
-0.05086766555905342,
-0.2810041904449463,
-0.03184477239847183,
0.05338646098971367,
-0.09317264705896378,
0.12012439966201782,
0.07781132310628891,
-0.16532842814922333,
0.07577169686555862,
0.0002435580681776628,
-0.2733789384365082,
0.024721022695302963,
0.03771154209971428,
-0.06354810297489166,
0.149102583527565,
0.006285145413130522,
0.1727495938539505,
-0.0007260650163516402,
0.10318679362535477,
-0.1495095044374466,
0.009957179427146912,
0.05685993283987045,
0.02237006649374962,
0.08827631920576096,
0.06734936684370041,
0.003878881921991706,
0.08898992091417313,
-0.08532184362411499,
0.0663376897573471,
0.0005903851706534624,
-0.12619712948799133,
-0.21016845107078552,
-0.06367193162441254,
0.003252126043662429,
0.04756230488419533,
0.08717656135559082,
-0.004333882126957178,
0.16621635854244232,
-0.11075103282928467,
0.09457581490278244,
0.2266925424337387,
-0.28010421991348267,
-0.08611316978931427,
0.04426407441496849,
-0.0023129202891141176,
0.08294679969549179,
-0.1274728775024414,
-0.019128525629639626,
0.060434915125370026,
0.05395689606666565,
0.12949565052986145,
-0.03722525015473366,
-0.09971147775650024,
0.027140984311699867,
-0.15469813346862793,
0.008668665774166584,
0.04093854874372482,
0.015594398602843285,
-0.01957654394209385,
-0.004066381603479385,
-0.06337999552488327,
-0.16590213775634766,
-0.04653079807758331,
-0.04522252082824707,
0.04802070930600166,
-0.056603848934173584,
-0.10629074275493622,
0.0066316076554358006,
-0.10052638500928879,
-0.06436876952648163,
-0.06646212190389633,
0.1918909102678299,
0.04363429918885231,
0.010252422653138638,
-0.041850410401821136,
0.10814280807971954,
-0.016075721010565758,
-0.1304357796907425,
0.06261336803436279,
0.03386295214295387,
-0.024544714018702507,
-0.07550894469022751,
-0.0680621936917305,
-0.09782733768224716,
-0.0034173273015767336,
0.08255401998758316,
-0.05359950289130211,
0.05156842619180679,
0.04011853039264679,
0.03945678845047951,
-0.09908245503902435,
0.21723362803459167,
-0.04017980396747589,
-0.015286893583834171,
-0.005400411318987608,
0.0507725328207016,
-0.021254058927297592,
-0.009545118547976017,
-0.11333668231964111,
0.006597628816962242,
0.12741954624652863,
-0.002929954556748271,
-0.08701685070991516,
0.06764403730630875,
-0.03732796013355255,
-0.02017197385430336,
-0.037846606224775314,
-0.09472750127315521,
0.06042473390698433,
-0.01190366130322218,
-0.08911041915416718,
0.011569480411708355,
0.0002855307830031961,
0.016132285818457603,
-0.009502975270152092,
0.17956700921058655,
-0.10400760173797607,
0.05629875138401985,
-0.12086637318134308,
-0.12032020092010498,
-0.0030161284375935793,
-0.06707541644573212,
0.02393006719648838,
-0.09547946602106094,
-0.09747371077537537,
-0.013877682387828827,
0.058239325881004333,
-0.03261774033308029,
-0.02992146834731102,
-0.04007561132311821,
-0.07186689972877502,
0.003911884035915136,
-0.010794715955853462,
0.1524079442024231,
-0.04287217929959297,
0.11221551895141602,
0.05790798366069794,
0.07476581633090973,
-0.05454368516802788,
0.05271846055984497,
-0.09412248432636261,
0.004374476615339518,
-0.2311929315328598,
0.026309365406632423,
-0.05740717798471451,
0.07895522564649582,
-0.06627349555492401,
-0.11599523574113846,
0.011019406840205193,
-0.0031207010615617037,
0.09178727120161057,
0.07144835591316223,
-0.16026833653450012,
-0.09429407119750977,
0.14997531473636627,
-0.057239655405282974,
-0.07324033975601196,
0.11797363311052322,
-0.06488410383462906,
0.03263453394174576,
0.07750300318002701,
0.16035893559455872,
0.05569439008831978,
-0.08246117830276489,
0.02863619476556778,
-0.026746198534965515,
0.044473979622125626,
-0.05012764036655426,
0.02752911113202572,
0.019620591774582863,
0.0023663854226469994,
0.031779997050762177,
-0.019790375605225563,
0.05950296297669411,
-0.11896676570177078,
-0.08257840573787689,
-0.0332314595580101,
-0.10425270348787308,
0.0742444172501564,
0.08491086959838867,
0.10929860919713974,
-0.09822642803192139,
-0.06875106692314148,
0.12137875705957413,
0.045077040791511536,
-0.045165322721004486,
0.02377038635313511,
-0.06109766289591789,
0.05880478024482727,
-0.0634201169013977,
-0.03098933771252632,
-0.20076504349708557,
-0.037353746592998505,
0.010194297879934311,
0.026173878461122513,
0.04402967169880867,
0.0356636680662632,
0.08867082744836807,
0.06693605333566666,
-0.06019886955618858,
-0.0065440344624221325,
-0.023907363414764404,
-0.004634051118046045,
-0.16466130316257477,
-0.19623126089572906,
-0.026237746700644493,
-0.01211916096508503,
0.07675383239984512,
-0.21159660816192627,
0.025399543344974518,
-0.023200243711471558,
0.09021367132663727,
0.017663558945059776,
-0.00612120795994997,
-0.07214893400669098,
0.11705373972654343,
-0.017810624092817307,
-0.04350167140364647,
0.07128988951444626,
-0.02158472314476967,
-0.07125181704759598,
-0.08705190569162369,
-0.11050967127084732,
0.20067884027957916,
0.13858099281787872,
-0.16719964146614075,
-0.10317329317331314,
0.0071180458180606365,
-0.05586177855730057,
-0.019433364272117615,
-0.04768594726920128,
0.04955177381634712,
0.19735409319400787,
-0.012832000851631165,
0.14868170022964478,
-0.05321231111884117,
-0.04590274766087532,
0.018455782905220985,
-0.03606904670596123,
0.037571825087070465,
0.09970000386238098,
0.13751377165317535,
-0.07650076597929001,
0.12961848080158234,
0.1492171436548233,
-0.1323949247598648,
0.1395094245672226,
-0.01871124468743801,
-0.07458733767271042,
-0.017674118280410767,
-0.030365347862243652,
0.00822202954441309,
0.09852047264575958,
-0.12085453420877457,
-0.028419870883226395,
-0.002548281801864505,
0.01939678005874157,
0.026390397921204567,
-0.24053938686847687,
-0.04403804615139961,
0.029730672016739845,
-0.0008587019983679056,
0.01662295311689377,
-0.027393119409680367,
0.023962220177054405,
0.11785931140184402,
0.006295247469097376,
-0.08497674018144608,
0.024290110915899277,
0.008288359269499779,
-0.0622161366045475,
0.20505915582180023,
-0.06790110468864441,
-0.10537586361169815,
-0.10559044778347015,
-0.08448535948991776,
-0.040354881435632706,
0.014873092994093895,
0.037474725395441055,
-0.12369263172149658,
-0.012427609413862228,
-0.01934937573969364,
0.028635382652282715,
0.005534392315894365,
0.06461244821548462,
-0.00025528203696012497,
-0.0036678817123174667,
0.07281368970870972,
-0.09865178167819977,
-0.007093334104865789,
-0.07360224425792694,
-0.07682046294212341,
0.054955050349235535,
0.066659115254879,
0.1176348626613617,
0.18105752766132355,
-0.055579643696546555,
0.0031381777953356504,
-0.022744541987776756,
0.23771671950817108,
-0.0727086290717125,
-0.04122520238161087,
0.09696699678897858,
-0.03374394029378891,
0.055532000958919525,
0.09645677357912064,
0.08764483034610748,
-0.09449274837970734,
0.012015126645565033,
0.044890932738780975,
-0.039097100496292114,
-0.19376492500305176,
-0.025838548317551613,
-0.04263724386692047,
-0.04711822420358658,
0.09247718751430511,
0.020164912566542625,
0.03372177854180336,
0.06911566853523254,
0.07496101409196854,
0.10460466891527176,
-0.07144539803266525,
0.04831640049815178,
0.08679958432912827,
0.04848488047719002,
0.12885285913944244,
-0.030377380549907684,
-0.11140377074480057,
0.014413876459002495,
-0.027338454499840736,
0.20903776586055756,
0.013878519646823406,
0.07502048462629318,
0.04181460663676262,
0.18629984557628632,
0.014243893325328827,
0.08157418668270111,
-0.0016143531538546085,
-0.07501858472824097,
-0.0005647114012390375,
-0.034768279641866684,
-0.03223291411995888,
0.012816507369279861,
-0.01999717578291893,
0.05627317726612091,
-0.11858086287975311,
-0.01538686640560627,
0.056595925241708755,
0.23300136625766754,
0.01641322672367096,
-0.3155488073825836,
-0.06610511988401413,
-0.009368885308504105,
-0.0374547615647316,
-0.00350537640042603,
0.008039431646466255,
0.11693677306175232,
-0.09059923142194748,
0.009810349904000759,
-0.07515725493431091,
0.08546765893697739,
-0.03213994950056076,
0.05487099289894104,
0.07024941593408585,
0.11923205107450485,
-0.00252224481664598,
0.05846184492111206,
-0.30598053336143494,
0.264079213142395,
0.011550947092473507,
0.0798463374376297,
-0.06803179532289505,
-0.00767961610108614,
0.03380211815237999,
0.055718034505844116,
0.01937752217054367,
-0.021401232108473778,
-0.029920678585767746,
-0.2342730313539505,
-0.020742807537317276,
0.0286919716745615,
0.1379217803478241,
-0.01396975014358759,
0.10308840870857239,
-0.021310051903128624,
0.001031732652336359,
0.08242862671613693,
-0.028952134773135185,
-0.04884140193462372,
-0.06684011965990067,
-0.024169594049453735,
0.003943475428968668,
-0.06669948995113373,
-0.0529407262802124,
-0.1195906400680542,
-0.1426238864660263,
0.15615962445735931,
0.014536774717271328,
-0.0020497601944953203,
-0.12299925833940506,
0.11428443342447281,
0.06724785268306732,
-0.07910911738872528,
0.03679336979985237,
0.01614517532289028,
0.060745809227228165,
0.03000914491713047,
-0.06199559196829796,
0.12335412949323654,
-0.05226468667387962,
-0.15160012245178223,
-0.0695401281118393,
0.07980254292488098,
0.039802297949790955,
0.0658223107457161,
-0.018430029973387718,
0.01573498360812664,
-0.010686763562262058,
-0.08731483668088913,
0.04630429297685623,
-0.037564583122730255,
0.04953279346227646,
0.004381418693810701,
-0.05791304633021355,
0.010682511143386364,
-0.060935020446777344,
-0.004061616491526365,
0.1862952560186386,
0.2320711612701416,
-0.09403432160615921,
-0.023111961781978607,
0.03907373175024986,
-0.060445014387369156,
-0.1949305236339569,
0.09917697310447693,
0.08250989019870758,
0.0011596481781452894,
0.05045656859874725,
-0.1603122055530548,
0.1588989794254303,
0.10681984573602676,
0.0006194855668582022,
0.11322284489870071,
-0.3093012571334839,
-0.13109268248081207,
0.10209189355373383,
0.17640434205532074,
0.12128683924674988,
-0.13820336759090424,
-0.011618707329034805,
-0.013709436170756817,
-0.09626730531454086,
0.09406619518995285,
-0.0691813975572586,
0.11657882481813431,
-0.016362838447093964,
0.10725350677967072,
0.011670802719891071,
-0.06673138588666916,
0.09056103229522705,
0.006396562792360783,
0.11380428820848465,
-0.06096317619085312,
-0.08276715874671936,
0.031015973538160324,
-0.026148630306124687,
-0.02519115060567856,
-0.022709647193551064,
0.007633684203028679,
-0.05271986126899719,
-0.019564149901270866,
-0.09193814545869827,
0.04159408062696457,
-0.029972851276397705,
-0.07050029933452606,
-0.028541984036564827,
0.027641309425234795,
0.024300623685121536,
-0.02283172495663166,
0.11394555866718292,
0.008802716620266438,
0.17887094616889954,
0.0995686799287796,
0.06984294205904007,
-0.07159283757209778,
-0.046411555260419846,
0.0045993574894964695,
-0.010512434877455235,
0.07397361099720001,
-0.11115363240242004,
0.021708115935325623,
0.1568807065486908,
0.022736232727766037,
0.11754149943590164,
0.09605789184570312,
-0.018400592729449272,
0.016144046559929848,
0.07521332800388336,
-0.1639162302017212,
-0.06436678022146225,
0.0014884289121255279,
-0.07272683084011078,
-0.09254413843154907,
0.058461807668209076,
0.08160951733589172,
-0.07375737279653549,
-0.011024920269846916,
-0.006099667400121689,
-0.03426551818847656,
-0.07522948831319809,
0.21819870173931122,
0.0769779235124588,
0.042939867824316025,
-0.09217695891857147,
0.04851880297064781,
0.06337407976388931,
-0.09087855368852615,
-0.01072675921022892,
0.0847926065325737,
-0.07204408198595047,
-0.017481405287981033,
0.10906274616718292,
0.20991109311580658,
-0.06538613140583038,
-0.011040724813938141,
-0.14901508390903473,
-0.10673918575048447,
0.06248451769351959,
0.1884346604347229,
0.11060268431901932,
-0.008466558530926704,
-0.06426701694726944,
0.04741179198026657,
-0.14478150010108948,
0.06726544350385666,
0.031322792172431946,
0.09226970374584198,
-0.1523682028055191,
0.21758504211902618,
0.0030328130815178156,
0.0444013774394989,
-0.033891770988702774,
0.03357879817485809,
-0.13030637800693512,
0.020925922319293022,
-0.11001250147819519,
-0.06480077654123306,
0.0018732225289568305,
-0.010160451754927635,
0.0029359180480241776,
-0.0756167471408844,
-0.06110154464840889,
-0.0003206281107850373,
-0.13360178470611572,
-0.01617903634905815,
0.05034199357032776,
0.021909093484282494,
-0.10633256286382675,
-0.033543411642313004,
0.023148389533162117,
-0.04792702943086624,
0.046210967004299164,
0.042598217725753784,
0.02227427251636982,
0.08087455481290817,
-0.15176904201507568,
-0.017876243218779564,
0.07273238152265549,
-0.006656805984675884,
0.10124558955430984,
-0.038427937775850296,
-0.008286903612315655,
-0.018105771392583847,
0.11497584730386734,
0.02603840082883835,
0.07972617447376251,
-0.1411970853805542,
0.005221700761467218,
-0.030276188626885414,
-0.11468024551868439,
-0.06631562858819962,
0.017549116164445877,
0.07764139026403427,
0.0024295817129313946,
0.18021973967552185,
-0.0892210304737091,
0.05487443134188652,
-0.20736971497535706,
-0.010774482041597366,
-0.0137983039021492,
-0.10767757892608643,
-0.09370157867670059,
-0.06144638732075691,
0.06967983394861221,
-0.05703946202993393,
0.10968776047229767,
0.04559992253780365,
0.05802791565656662,
0.03571692481637001,
-0.04332812875509262,
-0.008916006423532963,
0.03869295492768288,
0.19332872331142426,
0.0519656166434288,
-0.04474812373518944,
0.05272302031517029,
0.08130039274692535,
0.10182657837867737,
0.11656654626131058,
0.21648621559143066,
0.14465221762657166,
-0.04072889685630798,
0.08769554644823074,
0.03277074173092842,
-0.04286443069577217,
-0.18076364696025848,
0.028160007670521736,
-0.07516001909971237,
0.08626087754964828,
-0.03620827943086624,
0.2104455977678299,
0.06861673295497894,
-0.15453417599201202,
0.0442390963435173,
-0.06555831432342529,
-0.10202807188034058,
-0.10089346766471863,
-0.00664041843265295,
-0.08091472834348679,
-0.14110593497753143,
0.01460194867104292,
-0.09676997363567352,
0.018199782818555832,
0.1137675940990448,
0.011127638630568981,
-0.02362450771033764,
0.20800930261611938,
0.03720421344041824,
0.04714706540107727,
0.060560375452041626,
0.008806823752820492,
-0.021449465304613113,
-0.10073228925466537,
-0.06221544370055199,
-0.04983535036444664,
-0.01034380029886961,
0.027808815240859985,
-0.07699929922819138,
-0.10167466104030609,
0.022114232182502747,
-0.00820721872150898,
-0.1043737381696701,
0.02884618751704693,
0.01675838604569435,
0.06627605855464935,
0.0013941560173407197,
-0.011125230230391026,
0.011921131052076817,
-0.03808652609586716,
0.21367621421813965,
-0.09384988248348236,
-0.07488860934972763,
-0.0912991613149643,
0.30339038372039795,
0.037610650062561035,
0.021403061226010323,
0.011188182979822159,
-0.06895127892494202,
0.006932435557246208,
0.2421272248029709,
0.18686234951019287,
-0.12495047599077225,
-0.0013817610451951623,
0.004764997866004705,
-0.014018393121659756,
-0.04282337427139282,
0.1376502513885498,
0.12442661076784134,
0.04293671250343323,
-0.10927839577198029,
-0.03434314578771591,
-0.06061926484107971,
-0.013459264300763607,
-0.04370017722249031,
0.05453437939286232,
0.07581470161676407,
0.030295968055725098,
-0.06717517971992493,
0.052256274968385696,
-0.06088004261255264,
-0.101857990026474,
0.07873282581567764,
-0.21413150429725647,
-0.16744017601013184,
-0.005523195955902338,
0.11618854850530624,
-0.020987877622246742,
0.08173190802335739,
-0.030140627175569534,
-0.013012372888624668,
0.028457915410399437,
-0.02489747665822506,
-0.06371988356113434,
-0.08638444542884827,
0.10367618501186371,
-0.11282755434513092,
0.1832052320241928,
-0.050010956823825836,
0.06724435091018677,
0.12228748202323914,
0.0693725049495697,
-0.042186640202999115,
0.04575281962752342,
0.04236259683966637,
-0.1265534609556198,
0.00923228356987238,
0.12326259911060333,
-0.029922975227236748,
0.059333864599466324,
0.03730571269989014,
-0.15304702520370483,
0.038959380239248276,
-0.1017410010099411,
-0.0404384471476078,
-0.03811763972043991,
-0.055994145572185516,
-0.05422530323266983,
0.11658920347690582,
0.23783427476882935,
-0.0013179871020838618,
0.029009712859988213,
-0.07932284474372864,
0.00791741069406271,
0.05744652822613716,
0.05565614998340607,
-0.11056166887283325,
-0.25311142206192017,
0.012500982731580734,
0.07478528469800949,
-0.046830881386995316,
-0.22016067802906036,
-0.09524655342102051,
0.013004951179027557,
-0.06702233850955963,
-0.09318116307258606,
0.08210106194019318,
0.07795745879411697,
0.06148122623562813,
-0.04947616904973984,
-0.13646504282951355,
-0.0812315121293068,
0.1582939177751541,
-0.1538688987493515,
-0.08322550356388092
] |
null | null | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-base-dutch-cased-finetuned-mBERT
This model is a fine-tuned version of [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0898
- Precision: 0.7255
- Recall: 0.7255
- F1: 0.7255
- Accuracy: 0.9758
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.1603 | 1.0 | 533 | 0.0928 | 0.6896 | 0.6962 | 0.6929 | 0.9742 |
| 0.0832 | 2.0 | 1066 | 0.0898 | 0.7255 | 0.7255 | 0.7255 | 0.9758 |
### Framework versions
- Transformers 4.12.5
- Pytorch 1.10.0+cu111
- Tokenizers 0.10.3
| {"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "bert-base-dutch-cased-finetuned-mBERT", "results": []}]} | token-classification | Matthijsvanhof/bert-base-dutch-cased-finetuned-mBERT | [
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"token-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [] | TAGS
#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
| bert-base-dutch-cased-finetuned-mBERT
=====================================
This model is a fine-tuned version of distilbert-base-multilingual-cased on an unknown dataset.
It achieves the following results on the evaluation set:
* Loss: 0.0898
* Precision: 0.7255
* Recall: 0.7255
* F1: 0.7255
* Accuracy: 0.9758
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 8
* eval\_batch\_size: 8
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 2
### Training results
### Framework versions
* Transformers 4.12.5
* Pytorch 1.10.0+cu111
* Tokenizers 0.10.3
| [
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 2",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.10.0+cu111\n* Tokenizers 0.10.3"
] | [
"TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 2",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.10.0+cu111\n* Tokenizers 0.10.3"
] | [
58,
98,
4,
27
] | [
"passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 2### Training results### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.10.0+cu111\n* Tokenizers 0.10.3"
] | [
-0.09884530305862427,
0.07721500098705292,
-0.0023392837028950453,
0.1253724992275238,
0.17603006958961487,
0.016729822382330894,
0.11381437629461288,
0.11215329170227051,
-0.1023252084851265,
0.017338071018457413,
0.12361551821231842,
0.19151751697063446,
-0.004841072950512171,
0.10535307973623276,
-0.050290949642658234,
-0.2598187029361725,
-0.011502109467983246,
0.06142164766788483,
-0.09048078209161758,
0.13435450196266174,
0.09898769110441208,
-0.1412809044122696,
0.08310554921627045,
0.015745367854833603,
-0.24539737403392792,
0.010788504965603352,
0.020893266424536705,
-0.06912189722061157,
0.15264327824115753,
0.011740133166313171,
0.13609591126441956,
-0.002004872774705291,
0.0875534787774086,
-0.16038823127746582,
0.004955650307238102,
0.04320495203137398,
0.019893644377589226,
0.09083577990531921,
0.058513566851615906,
0.010255654342472553,
0.10225431621074677,
-0.06878736615180969,
0.05298592150211334,
0.01741882972419262,
-0.11738128215074539,
-0.23511554300785065,
-0.07750692963600159,
0.036975614726543427,
0.06512465327978134,
0.0991341844201088,
0.007974985055625439,
0.14047440886497498,
-0.09470915049314499,
0.0912761464715004,
0.23338226974010468,
-0.2775112986564636,
-0.06628171354532242,
0.03709159418940544,
0.0035714409314095974,
0.05316486582159996,
-0.11333112418651581,
-0.038905419409275055,
0.05912678316235542,
0.0458301417529583,
0.14126436412334442,
-0.041643962264060974,
-0.1091141477227211,
0.013529827818274498,
-0.14969485998153687,
-0.027721276506781578,
0.11701406538486481,
0.030709881335496902,
-0.035317495465278625,
-0.02623046562075615,
-0.05910755321383476,
-0.16407929360866547,
-0.04055549576878548,
-0.021427148953080177,
0.04492301493883133,
-0.03795638307929039,
-0.06595862656831741,
0.014354420825839043,
-0.10720870643854141,
-0.07014463096857071,
-0.0729333907365799,
0.1688256412744522,
0.04725762456655502,
0.009043760597705841,
-0.023305337876081467,
0.11477040499448776,
0.013165120966732502,
-0.1262955367565155,
0.033238060772418976,
0.03388238325715065,
0.0036739297211170197,
-0.05725743621587753,
-0.06620784848928452,
-0.02782445028424263,
0.004432244226336479,
0.1278456300497055,
-0.06094365566968918,
0.04118519276380539,
0.05625540763139725,
0.04464820399880409,
-0.11000091582536697,
0.2105429321527481,
-0.03001450002193451,
0.005338490940630436,
0.0040887794457376,
0.0446087047457695,
-0.0078016952611505985,
0.005402993876487017,
-0.1170075461268425,
-0.01128310989588499,
0.12886746227741241,
0.01230272650718689,
-0.0788680911064148,
0.0688021257519722,
-0.05297132954001427,
-0.03051767684519291,
0.013255314901471138,
-0.0965411439538002,
0.03636287897825241,
-0.01039927452802658,
-0.08532746881246567,
-0.0008206284837797284,
0.021230367943644524,
0.012578615918755531,
-0.015818022191524506,
0.12683935463428497,
-0.08817054331302643,
0.04389122128486633,
-0.10163836926221848,
-0.09567049890756607,
0.007377649657428265,
-0.07535230368375778,
0.03512512892484665,
-0.10936888307332993,
-0.14057929813861847,
-0.008620661683380604,
0.05832380801439285,
-0.014042550697922707,
-0.06260999292135239,
-0.033860061317682266,
-0.0704394280910492,
-0.005660366732627153,
-0.01448756828904152,
0.13536027073860168,
-0.05016224831342697,
0.11185642331838608,
0.04753992706537247,
0.06493658572435379,
-0.04511026293039322,
0.06114600971341133,
-0.10577555745840073,
0.010100786574184895,
-0.2015456110239029,
0.02391330525279045,
-0.047608472406864166,
0.08270357549190521,
-0.09385385364294052,
-0.12142958492040634,
0.023527897894382477,
-0.011291969567537308,
0.06483335047960281,
0.07597104460000992,
-0.14417290687561035,
-0.08282136917114258,
0.13697107136249542,
-0.0657205879688263,
-0.10376030951738358,
0.11370100826025009,
-0.056365471333265305,
0.0551656149327755,
0.06874579936265945,
0.14556589722633362,
0.08493554592132568,
-0.06966003775596619,
0.028851494193077087,
-0.0011399820214137435,
0.03772763907909393,
-0.07402250915765762,
0.055282510817050934,
0.006904337089508772,
-0.018094317987561226,
0.03823506459593773,
-0.04284694790840149,
0.06997032463550568,
-0.09723720699548721,
-0.09234240651130676,
-0.04246040806174278,
-0.09934452921152115,
0.05902469530701637,
0.07660441845655441,
0.09752264618873596,
-0.08619660884141922,
-0.06006241962313652,
0.09329497814178467,
0.07905410975217819,
-0.051164012402296066,
0.02698271907866001,
-0.05590444803237915,
0.05893183872103691,
-0.043730881065130234,
-0.029022954404354095,
-0.19295896589756012,
0.00199214369058609,
0.015083971433341503,
-0.024849293753504753,
0.026206456124782562,
0.026214992627501488,
0.06882078945636749,
0.06107378751039505,
-0.048883166164159775,
-0.02657543495297432,
-0.02518162876367569,
-0.003010459477081895,
-0.1406359225511551,
-0.1813787817955017,
-0.03110119141638279,
-0.011115835048258305,
0.10627447813749313,
-0.19190892577171326,
0.03444846346974373,
-0.025375431403517723,
0.07464052736759186,
0.002978432457894087,
0.0008195373811759055,
-0.05954479053616524,
0.09526295214891434,
-0.03177659213542938,
-0.04900893568992615,
0.0742054209113121,
-0.001068166340701282,
-0.08031877130270004,
-0.060834869742393494,
-0.087845079600811,
0.19582007825374603,
0.13796517252922058,
-0.13907477259635925,
-0.08811169862747192,
-0.007949733175337315,
-0.06377658247947693,
-0.035294145345687866,
-0.034700751304626465,
0.04782392457127571,
0.1799912452697754,
-0.018589477986097336,
0.1520368605852127,
-0.06524695456027985,
-0.05207310616970062,
0.023091381415724754,
-0.03867024555802345,
0.0337580069899559,
0.10807745903730392,
0.12400837242603302,
-0.08079840987920761,
0.1414090245962143,
0.17413106560707092,
-0.10933578014373779,
0.11133778095245361,
-0.04595266655087471,
-0.06770332902669907,
-0.015475151129066944,
-0.014116774313151836,
0.0014451144961640239,
0.08574975281953812,
-0.1256031095981598,
-0.005996575579047203,
0.018635716289281845,
0.022446822375059128,
0.018327075988054276,
-0.23439930379390717,
-0.03640325367450714,
0.030505187809467316,
-0.026699533686041832,
0.015537404455244541,
-0.012815341353416443,
0.01097860187292099,
0.1002357006072998,
0.005780440755188465,
-0.10586073249578476,
0.04534328728914261,
0.01389218121767044,
-0.07214172929525375,
0.21338722109794617,
-0.08222413063049316,
-0.14103282988071442,
-0.12779833376407623,
-0.07859828323125839,
-0.03821183368563652,
0.01647508144378662,
0.0600404292345047,
-0.09121992439031601,
-0.025101028382778168,
-0.03566987067461014,
0.020015042275190353,
-0.005625206511467695,
0.05247165635228157,
0.009782551787793636,
0.010380050167441368,
0.08399388939142227,
-0.10264553874731064,
-0.008795531466603279,
-0.04973645135760307,
-0.07122725248336792,
0.05202535539865494,
0.04013870656490326,
0.10334262251853943,
0.16276432573795319,
-0.02900766022503376,
0.0021068633068352938,
-0.024286171421408653,
0.2303594946861267,
-0.05995498225092888,
-0.034188635647296906,
0.14506012201309204,
-0.00750366598367691,
0.059664949774742126,
0.10240588337182999,
0.07654472440481186,
-0.08552870899438858,
0.011982472613453865,
0.023281924426555634,
-0.03157892823219299,
-0.2064584195613861,
-0.04401173070073128,
-0.0501595102250576,
-0.028391381725668907,
0.11138702929019928,
0.028897760435938835,
0.05943018198013306,
0.07708709686994553,
0.05013411492109299,
0.10482596606016159,
-0.054090745747089386,
0.05868794023990631,
0.12189706414937973,
0.05033443495631218,
0.11982838064432144,
-0.037665653973817825,
-0.08731651306152344,
0.02591673843562603,
-0.009105861186981201,
0.2255030870437622,
0.014837936498224735,
0.11522535979747772,
0.05522453412413597,
0.1988133043050766,
0.004783586598932743,
0.08775031566619873,
-0.00022823186009190977,
-0.04711975157260895,
-0.01165111642330885,
-0.03606146201491356,
-0.03668481856584549,
0.01867508701980114,
-0.056349609047174454,
0.06145177409052849,
-0.11678747087717056,
-0.013330784626305103,
0.04668824002146721,
0.26335135102272034,
0.014220381155610085,
-0.324791818857193,
-0.08862689882516861,
-0.01053616777062416,
-0.038459498435258865,
-0.017648236826062202,
0.02063615992665291,
0.07496947050094604,
-0.09929237514734268,
0.011820344254374504,
-0.07218458503484726,
0.08850540965795517,
-0.038931433111429214,
0.052294377237558365,
0.07981719821691513,
0.08787310868501663,
0.02329847775399685,
0.08076845109462738,
-0.3175118863582611,
0.26702484488487244,
-0.0029659580904990435,
0.06868932396173477,
-0.07124969363212585,
0.003005817998200655,
0.03797565773129463,
0.0672493502497673,
0.047967493534088135,
-0.014366510324180126,
-0.03281951695680618,
-0.22526192665100098,
-0.04178168624639511,
0.022755850106477737,
0.09136644750833511,
-0.03128442540764809,
0.08619334548711777,
-0.03694162517786026,
0.005387756507843733,
0.07829882949590683,
-0.03609403222799301,
-0.0455210842192173,
-0.07751347869634628,
-0.00777564337477088,
0.014631688594818115,
-0.033508770167827606,
-0.06680329889059067,
-0.11055487394332886,
-0.13479869067668915,
0.1494331806898117,
-0.019516797736287117,
-0.02786882407963276,
-0.11452777683734894,
0.07408469915390015,
0.08697880804538727,
-0.09176892787218094,
0.0611148364841938,
0.003445874433964491,
0.062011491507291794,
0.038051802664995193,
-0.07204379886388779,
0.1091696098446846,
-0.06276810169219971,
-0.16366763412952423,
-0.05348731949925423,
0.09403222799301147,
0.029414666816592216,
0.05750194936990738,
-0.011619685217738152,
0.009293019771575928,
-0.04276765137910843,
-0.09443621337413788,
0.0167151540517807,
-0.02102200873196125,
0.06866835802793503,
0.012557211332023144,
-0.06169097125530243,
0.019375933334231377,
-0.06627495586872101,
-0.029450058937072754,
0.1748996078968048,
0.23205453157424927,
-0.10111956298351288,
-0.000005321054686646676,
0.0404253825545311,
-0.060062892735004425,
-0.18978722393512726,
0.03925955668091774,
0.067021943628788,
-0.004227983299642801,
0.037729885429143906,
-0.1687871515750885,
0.14467880129814148,
0.10828356444835663,
-0.013515898957848549,
0.10532288998365402,
-0.3279811441898346,
-0.12650513648986816,
0.13165494799613953,
0.1514614075422287,
0.12047892808914185,
-0.1317773312330246,
-0.017228059470653534,
-0.012558731250464916,
-0.12047971785068512,
0.08591757714748383,
-0.04929807037115097,
0.11864717304706573,
-0.04094136133790016,
0.09053876250982285,
0.0026404992677271366,
-0.06010451167821884,
0.11305277049541473,
0.03238476812839508,
0.10301481932401657,
-0.05373493582010269,
-0.053400635719299316,
0.01707538403570652,
-0.03508869931101799,
0.007416553795337677,
-0.05299745872616768,
0.0321219302713871,
-0.07459908723831177,
-0.016491051763296127,
-0.08216613531112671,
0.055759016424417496,
-0.030225304886698723,
-0.06384894251823425,
-0.039329685270786285,
0.025245727971196175,
0.032882437109947205,
-0.015876591205596924,
0.12463712692260742,
0.038519565016031265,
0.14225386083126068,
0.11760745942592621,
0.047906264662742615,
-0.06428299844264984,
-0.08082646876573563,
-0.021404577419161797,
-0.01364515908062458,
0.06989046931266785,
-0.12174942344427109,
0.03130032494664192,
0.14832483232021332,
0.02188251167535782,
0.12586529552936554,
0.08661911636590958,
-0.009590945206582546,
0.0033982633613049984,
0.06036176532506943,
-0.1599458009004593,
-0.05879103019833565,
-0.006327712442725897,
-0.05224548652768135,
-0.09419486671686172,
0.06075388938188553,
0.08110921084880829,
-0.077493816614151,
-0.013884617947041988,
-0.004789114464074373,
-0.01260737981647253,
-0.06983332335948944,
0.20779648423194885,
0.0650876834988594,
0.04727542772889137,
-0.10141501575708389,
0.06348832696676254,
0.061934128403663635,
-0.06787022203207016,
-0.020123952999711037,
0.06217757612466812,
-0.0874384418129921,
-0.039554473012685776,
0.10376665741205215,
0.15913806855678558,
-0.08536847680807114,
-0.03823382779955864,
-0.14152443408966064,
-0.12061716616153717,
0.07929400354623795,
0.1496073454618454,
0.12951970100402832,
0.020497051998972893,
-0.060900233685970306,
0.017589332535862923,
-0.12351229041814804,
0.07197985053062439,
0.04119373857975006,
0.08554315567016602,
-0.160957470536232,
0.17883078753948212,
0.008943404071033001,
0.05600552260875702,
-0.021504338830709457,
0.02611178532242775,
-0.10382863134145737,
0.017093131318688393,
-0.10583208501338959,
-0.03594961389899254,
-0.02210938185453415,
0.006891137920320034,
0.0024190153926610947,
-0.0649232342839241,
-0.047015756368637085,
0.02050067111849785,
-0.12413923442363739,
-0.020271625369787216,
0.03802817314863205,
0.059404339641332626,
-0.103200264275074,
-0.04320090264081955,
0.031106755137443542,
-0.059186242520809174,
0.05944555625319481,
0.04740717634558678,
0.019290318712592125,
0.06081967055797577,
-0.12579654157161713,
-0.005263908766210079,
0.08537884056568146,
0.013855962082743645,
0.07195091247558594,
-0.08896591514348984,
-0.0071077048778533936,
0.0009375354857183993,
0.07425004243850708,
0.01272085402160883,
0.0678543820977211,
-0.15547025203704834,
-0.013429445214569569,
-0.03562936931848526,
-0.08957555890083313,
-0.07321419566869736,
0.011735218577086926,
0.08960700780153275,
0.006129848770797253,
0.19604001939296722,
-0.07414235174655914,
0.039900556206703186,
-0.20424363017082214,
-0.0015233958838507533,
-0.021870985627174377,
-0.11642260104417801,
-0.12847386300563812,
-0.06678122282028198,
0.0533086322247982,
-0.046600524336099625,
0.1200457513332367,
0.0185680128633976,
0.04116186872124672,
0.028262702748179436,
-0.03275347501039505,
0.007956513203680515,
0.02495264820754528,
0.2177906334400177,
0.0397101566195488,
-0.03035151958465576,
0.06724758446216583,
0.05850975215435028,
0.0951497033238411,
0.10447317361831665,
0.17792129516601562,
0.1587165892124176,
-0.03875594213604927,
0.08515028655529022,
0.02359727770090103,
-0.04038262739777565,
-0.18069078028202057,
0.03843924030661583,
-0.04984680190682411,
0.08882493525743484,
-0.019676536321640015,
0.22090372443199158,
0.06327353417873383,
-0.16807779669761658,
0.04519291967153549,
-0.045667652040719986,
-0.08509553223848343,
-0.095257468521595,
-0.0272982157766819,
-0.08125054836273193,
-0.14199024438858032,
0.0013369788648560643,
-0.09239358454942703,
0.010294511914253235,
0.10613612830638885,
0.0038874000310897827,
-0.02910066768527031,
0.1687508523464203,
0.02989346906542778,
0.02784968912601471,
0.052087146788835526,
-0.00013965241669211537,
-0.03366798907518387,
-0.10772170126438141,
-0.06557479500770569,
-0.03247452899813652,
-0.010456554591655731,
0.03460812568664551,
-0.07159668952226639,
-0.0798889696598053,
0.02726348303258419,
-0.019679099321365356,
-0.092136450111866,
0.020767483860254288,
0.013813331723213196,
0.05600517988204956,
0.024877920746803284,
0.000053386916988529265,
0.01584704779088497,
-0.019621890038251877,
0.20670375227928162,
-0.08389980345964432,
-0.08835592865943909,
-0.08671971410512924,
0.29153621196746826,
0.049396902322769165,
-0.0031374378595501184,
0.032365985214710236,
-0.05397234112024307,
-0.0018630673876032233,
0.25531524419784546,
0.17076195776462555,
-0.0866449847817421,
-0.006429145112633705,
0.007549578323960304,
-0.016353901475667953,
-0.029844770208001137,
0.11937536299228668,
0.14270929992198944,
0.042119767516851425,
-0.10129948705434799,
-0.03999510407447815,
-0.06142522767186165,
-0.008968321606516838,
-0.06041301414370537,
0.049162350594997406,
0.039351873099803925,
0.0072821942158043385,
-0.04590361565351486,
0.04842231795191765,
-0.05712883546948433,
-0.08920558542013168,
0.07511505484580994,
-0.18498371541500092,
-0.1593657284975052,
-0.007941915653645992,
0.1157008558511734,
-0.004628821276128292,
0.06171318516135216,
-0.036407358944416046,
-0.0024933575186878443,
0.06041533872485161,
-0.02258281409740448,
-0.08156514912843704,
-0.07620467245578766,
0.1011154055595398,
-0.08711683005094528,
0.18876731395721436,
-0.042333364486694336,
0.07632902264595032,
0.11941348016262054,
0.07423323392868042,
-0.0716588944196701,
0.05599497631192207,
0.03686254844069481,
-0.09012624621391296,
0.03137329965829849,
0.0867215245962143,
-0.021984156221151352,
0.0521804578602314,
0.028444459661841393,
-0.13253289461135864,
0.02254958637058735,
-0.06693883240222931,
-0.04106460139155388,
-0.044411417096853256,
-0.05387861281633377,
-0.04941897466778755,
0.12260805070400238,
0.21520712971687317,
-0.024115346372127533,
0.0038165601436048746,
-0.07730536162853241,
0.015821760520339012,
0.06238030642271042,
0.008970515802502632,
-0.08729168027639389,
-0.22032511234283447,
0.011134445667266846,
0.04807185009121895,
-0.030975570902228355,
-0.18978311121463776,
-0.10370513051748276,
0.0026513568591326475,
-0.08110257238149643,
-0.09796346724033356,
0.08072397112846375,
0.06011049449443817,
0.05630812421441078,
-0.048433028161525726,
-0.08357886224985123,
-0.09722467511892319,
0.14950701594352722,
-0.15659840404987335,
-0.09315504133701324
] |
null | null | transformers | This repository shares smaller version of bert-base-multilingual-uncased that keeps only Ukrainian, English, and Russian tokens in the vocabulary.
| Model | Num parameters | Size |
| ----------------------------------------- | -------------- | --------- |
| bert-base-multilingual-uncased | 167 million | ~650 MB |
| MaxVortman/bert-base-ukr-eng-rus-uncased | 110 million | ~423 MB | | {} | feature-extraction | mshamrai/bert-base-ukr-eng-rus-uncased | [
"transformers",
"pytorch",
"bert",
"feature-extraction",
"endpoints_compatible",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [] | TAGS
#transformers #pytorch #bert #feature-extraction #endpoints_compatible #region-us
| This repository shares smaller version of bert-base-multilingual-uncased that keeps only Ukrainian, English, and Russian tokens in the vocabulary.
Model: bert-base-multilingual-uncased, Num parameters: 167 million, Size: ~650 MB
Model: MaxVortman/bert-base-ukr-eng-rus-uncased, Num parameters: 110 million, Size: ~423 MB
| [] | [
"TAGS\n#transformers #pytorch #bert #feature-extraction #endpoints_compatible #region-us \n"
] | [
29
] | [
"passage: TAGS\n#transformers #pytorch #bert #feature-extraction #endpoints_compatible #region-us \n"
] | [
-0.0680389553308487,
-0.01353863999247551,
-0.009260591119527817,
0.003671469632536173,
0.13468711078166962,
0.03987877443432808,
-0.0037161505315452814,
0.08307137340307236,
0.06908576935529709,
-0.009869525209069252,
0.10839105397462845,
0.22950756549835205,
-0.03434249758720398,
0.027836797758936882,
-0.06780551373958588,
-0.2686935067176819,
0.08416040241718292,
0.1071663498878479,
-0.04096720367670059,
0.08816211670637131,
0.04718845710158348,
-0.10185960680246353,
0.059242263436317444,
-0.017401615157723427,
-0.13960762321949005,
0.0563788041472435,
0.027032675221562386,
-0.08215486258268356,
0.11170924454927444,
0.02429274097084999,
0.171868696808815,
0.00669759139418602,
-0.10259579122066498,
-0.1729365438222885,
0.024251695722341537,
-0.016173768788576126,
-0.06165656819939613,
0.030105262994766235,
0.07771246135234833,
-0.10020971298217773,
0.020183663815259933,
0.09852731972932816,
0.01621491089463234,
0.024930456653237343,
-0.16311487555503845,
-0.17609833180904388,
-0.05667632818222046,
0.04488549754023552,
0.011052189394831657,
0.0923970639705658,
0.017688613384962082,
0.13918437063694,
-0.16459354758262634,
0.0862865000963211,
0.20043151080608368,
-0.2896837890148163,
0.005618520081043243,
0.0522591732442379,
0.113655686378479,
0.001720004715025425,
-0.01478634774684906,
0.03469560667872429,
-0.004047111142426729,
0.02000080794095993,
-0.006694010924547911,
-0.09492320567369461,
-0.04227415472269058,
0.06858084350824356,
-0.10082858055830002,
-0.0836600661277771,
0.20075856149196625,
-0.01962403394281864,
0.051189083606004715,
0.03468365967273712,
-0.10027022659778595,
-0.05228475481271744,
-0.027127007022500038,
-0.0054167937487363815,
-0.017817793413996696,
0.05698308348655701,
0.01829976961016655,
-0.01984529010951519,
-0.10944897681474686,
0.021823197603225708,
-0.20916391909122467,
0.2347520887851715,
0.014309053309261799,
0.08769264817237854,
-0.20601022243499756,
0.05224275588989258,
-0.09036950021982193,
-0.09105360507965088,
0.021519731730222702,
-0.08566883206367493,
0.041528768837451935,
0.002083035884425044,
-0.07495059072971344,
0.017543062567710876,
0.047651853412389755,
0.14729511737823486,
-0.014067264273762703,
0.025938095524907112,
0.0008498468669131398,
0.1009284183382988,
0.030102098360657692,
0.13388332724571228,
0.011944600380957127,
-0.02840438298881054,
0.01732935756444931,
-0.1329825222492218,
-0.036133281886577606,
-0.051770441234111786,
-0.12022732943296432,
-0.047808099538087845,
0.045948151499032974,
0.08258914202451706,
0.022342177107930183,
0.005320239346474409,
-0.08945681154727936,
-0.015853654593229294,
0.059366438537836075,
-0.07202005386352539,
0.0043303403072059155,
-0.000528825621586293,
0.03741177171468735,
0.18082594871520996,
-0.029030190780758858,
-0.03096860460937023,
-0.04084136709570885,
0.09087810665369034,
-0.08448517322540283,
0.014714745804667473,
-0.05083002150058746,
-0.062201209366321564,
0.03654183819890022,
-0.16100244224071503,
0.057043030858039856,
-0.14560800790786743,
-0.09376321732997894,
0.039873939007520676,
0.05335168540477753,
-0.002770928665995598,
0.03388800472021103,
0.0009603195358067751,
-0.018828926607966423,
-0.007003897335380316,
-0.06842755526304245,
-0.08064226061105728,
-0.06478630751371384,
0.09923757612705231,
0.00029352123965509236,
0.04672098159790039,
-0.12116226553916931,
0.08672743290662766,
-0.09672944992780685,
0.03750492259860039,
-0.16180843114852905,
-0.008461673744022846,
-0.02150292508304119,
0.16466088593006134,
-0.005621116608381271,
-0.07621955871582031,
-0.11902043223381042,
0.047062430530786514,
-0.035698723047971725,
0.14959093928337097,
-0.05622879043221474,
-0.13087990880012512,
0.20922459661960602,
-0.11588329821825027,
-0.1731778234243393,
0.05696214735507965,
-0.008520878851413727,
-0.015484592877328396,
0.06328354775905609,
0.20762446522712708,
0.0946868285536766,
-0.044678352773189545,
0.08127391338348389,
0.1397486925125122,
-0.11663860827684402,
-0.14153334498405457,
0.027016308158636093,
-0.042085859924554825,
-0.07503706961870193,
0.041700031608343124,
0.011108353734016418,
0.09523002058267593,
-0.0771002322435379,
-0.030855905264616013,
-0.01680048368871212,
-0.01671411283314228,
0.08776957541704178,
0.055555809289216995,
0.10667075961828232,
-0.03498975560069084,
0.011802191846072674,
0.03473251312971115,
-0.014134183526039124,
0.0038637330289930105,
0.04732990637421608,
-0.060643456876277924,
0.1918257176876068,
-0.07546142488718033,
0.003813444171100855,
-0.2566893398761749,
-0.06994711607694626,
0.00528657017275691,
0.06658254563808441,
-0.04811577871441841,
0.15633022785186768,
0.09267178922891617,
-0.07167497277259827,
0.016395436599850655,
-0.03712666034698486,
0.08581963181495667,
0.02451246976852417,
-0.033985935151576996,
-0.04179177060723305,
-0.011763811111450195,
-0.07896506786346436,
-0.09305226802825928,
-0.010189443826675415,
-0.01599530130624771,
0.09464821219444275,
0.10299675166606903,
0.01377725787460804,
0.03143538534641266,
-0.06555043905973434,
0.06333392858505249,
-0.022575706243515015,
0.018025120720267296,
0.09356045722961426,
-0.021321585401892662,
-0.06097353622317314,
0.13765394687652588,
-0.094614177942276,
0.3545747399330139,
0.19013811647891998,
-0.3164325952529907,
0.018932169303297997,
-0.04782366380095482,
-0.00977459829300642,
0.036739129573106766,
0.09889727830886841,
-0.029969865456223488,
0.09724640101194382,
0.027196763083338737,
0.13298392295837402,
-0.030379584059119225,
-0.03850182890892029,
0.0005746455863118172,
-0.02981492318212986,
-0.05865705385804176,
0.07086624205112457,
0.07261653989553452,
-0.15486454963684082,
0.16527150571346283,
0.26989927887916565,
0.03292781859636307,
0.12406831979751587,
-0.0661960020661354,
-0.0376574881374836,
0.019656166434288025,
0.009992681443691254,
-0.040347639471292496,
0.046730417758226395,
-0.2736447751522064,
-0.052413634955883026,
0.0692915990948677,
0.02405851148068905,
0.0952937975525856,
-0.12900009751319885,
-0.04021916538476944,
0.03706459701061249,
0.014877407811582088,
-0.08638262748718262,
0.0609026663005352,
0.05720122531056404,
0.05891529843211174,
0.019035693258047104,
-0.06259000301361084,
0.10445338487625122,
0.00871498417109251,
-0.04073162376880646,
0.17662526667118073,
-0.123042032122612,
-0.2620071768760681,
-0.12311730533838272,
-0.15138909220695496,
0.015030097216367722,
0.01922003924846649,
0.08840186893939972,
-0.06919815391302109,
-0.031516414135694504,
0.06873156130313873,
0.03529629856348038,
-0.14966927468776703,
0.029128234833478928,
-0.07160747051239014,
0.03280840069055557,
-0.07802597433328629,
-0.0789455845952034,
-0.06994608044624329,
-0.06953756511211395,
-0.009727881290018559,
0.09203583002090454,
-0.1189604178071022,
0.10165828466415405,
0.13272233307361603,
0.0363771878182888,
0.08464014530181885,
-0.008833634667098522,
0.1828852891921997,
-0.05849464610219002,
-0.0809895321726799,
0.21144624054431915,
-0.04404043033719063,
0.0901838093996048,
0.09279557317495346,
0.039735835045576096,
-0.06724223494529724,
-0.04217485338449478,
-0.06174955144524574,
-0.10350338369607925,
-0.18064221739768982,
-0.09564316272735596,
-0.14665037393569946,
0.014125813730061054,
0.01768936589360237,
0.03677418455481529,
0.08474641293287277,
0.06241949275135994,
0.0594039149582386,
-0.04961218684911728,
-0.04142293706536293,
0.02869315631687641,
0.21291007101535797,
-0.022173935547471046,
0.09922134131193161,
-0.0371907539665699,
-0.0987340658903122,
0.07145325094461441,
0.03712000325322151,
0.24907712638378143,
0.10089749097824097,
0.035659585148096085,
0.0526948980987072,
0.17874057590961456,
0.13417154550552368,
0.17221486568450928,
-0.020648453384637833,
-0.02667684480547905,
-0.01199409831315279,
0.002160619245842099,
-0.05968237295746803,
0.013288183137774467,
0.17365947365760803,
-0.1238851547241211,
-0.08988935500383377,
-0.2173749804496765,
0.07477087527513504,
0.06237781420350075,
0.031422216445207596,
-0.18417076766490936,
0.003690242301672697,
0.0649406686425209,
-0.00521667068824172,
-0.04713871702551842,
0.07263871282339096,
-0.017426704987883568,
-0.11952719837427139,
0.034282006323337555,
-0.05946141108870506,
0.10967221111059189,
-0.012345034629106522,
0.07638204097747803,
-0.026442036032676697,
-0.12944473326206207,
0.06673547625541687,
0.07164321839809418,
-0.19538965821266174,
0.2909071147441864,
-0.012455099262297153,
-0.06202757731080055,
-0.04829925298690796,
0.005193088203668594,
0.012985559180378914,
0.160504549741745,
0.1260947436094284,
0.022533811628818512,
-0.0578787624835968,
-0.1674206554889679,
0.04693714529275894,
0.028735041618347168,
0.13825884461402893,
-0.05239944905042648,
-0.014248479157686234,
-0.02063719928264618,
-0.011673306114971638,
-0.020329756662249565,
0.05532294511795044,
0.08330490440130234,
-0.14671963453292847,
0.052545733749866486,
-0.06558147072792053,
0.0409327894449234,
-0.012272844091057777,
-0.00765871349722147,
-0.047818366438150406,
0.14944994449615479,
-0.0652761161327362,
-0.048871852457523346,
-0.1053028553724289,
-0.10936398059129715,
0.12579044699668884,
-0.0932580903172493,
0.09765078127384186,
-0.06662343442440033,
-0.03391622006893158,
-0.06140284985303879,
-0.20473268628120422,
0.1305530071258545,
-0.09915255755186081,
0.04976314306259155,
-0.038567788898944855,
0.181097149848938,
-0.060539573431015015,
0.005303262732923031,
0.026644282042980194,
0.01667754538357258,
-0.11381230503320694,
-0.08549114316701889,
-0.015935804694890976,
-0.016310077160596848,
0.0518048033118248,
0.06849704682826996,
-0.062081992626190186,
0.04358658939599991,
0.00031327479518949986,
0.06365568935871124,
0.24294216930866241,
0.14630047976970673,
-0.051170576363801956,
0.11532986164093018,
0.14450006186962128,
-0.031972140073776245,
-0.27944883704185486,
-0.06474616378545761,
-0.13329371809959412,
-0.03996938094496727,
-0.0014406027039512992,
-0.13789600133895874,
0.14261819422245026,
0.044858112931251526,
-0.006724648643285036,
0.11656755954027176,
-0.24167363345623016,
-0.05383818969130516,
0.16473250091075897,
0.01709013618528843,
0.44809144735336304,
-0.11115505546331406,
-0.09658455848693848,
0.012760866433382034,
-0.2474503070116043,
0.10122992098331451,
0.014938225969672203,
0.0646388828754425,
-0.02196873165667057,
0.05254409834742546,
0.0362543947994709,
-0.0707058236002922,
0.1153612732887268,
0.036213282495737076,
0.044825151562690735,
-0.05749816447496414,
-0.12735342979431152,
0.05762515589594841,
-0.0197214987128973,
-0.0027702997904270887,
0.06281710416078568,
0.01907024346292019,
-0.15264934301376343,
-0.028649672865867615,
-0.1261925846338272,
0.07312501221895218,
0.036964092403650284,
-0.035512425005435944,
0.003519417019560933,
-0.027797704562544823,
-0.003173819277435541,
0.024623822420835495,
0.2571793794631958,
-0.02694554440677166,
0.12917625904083252,
0.020508399233222008,
0.05970452353358269,
-0.2093375027179718,
-0.1727571189403534,
-0.06916570663452148,
-0.04265722632408142,
0.09737759083509445,
-0.03340640291571617,
0.05482974648475647,
0.14861060678958893,
-0.01582632027566433,
0.028938481584191322,
0.1354859471321106,
0.012413929216563702,
-0.017079832032322884,
0.12271753698587418,
-0.1915288269519806,
-0.02804369106888771,
-0.03969001770019531,
-0.08020538836717606,
0.08018501847982407,
0.07493545114994049,
0.09324722737073898,
0.06881885975599289,
-0.012770483270287514,
-0.0276129599660635,
-0.03462065011262894,
-0.07952789962291718,
0.0472898855805397,
0.03613487631082535,
0.03859974071383476,
-0.13946987688541412,
0.03557739406824112,
-0.016765620559453964,
-0.2670823633670807,
-0.05293544381856918,
0.07872454822063446,
-0.11887070536613464,
-0.10548925399780273,
-0.08829343318939209,
0.11399594694375992,
-0.1680411845445633,
-0.027427881956100464,
-0.03792887181043625,
-0.12483807653188705,
0.07226365804672241,
0.21823963522911072,
0.10136004537343979,
0.1148689016699791,
-0.045093145221471786,
0.0007684463635087013,
0.024442041292786598,
-0.0601712167263031,
0.01604810729622841,
0.016433462500572205,
-0.0998239740729332,
-0.0008209992665797472,
-0.020151354372501373,
0.15397760272026062,
-0.0796075239777565,
-0.06533236801624298,
-0.15189164876937866,
0.07058283686637878,
-0.0721585750579834,
-0.08680808544158936,
-0.1218729019165039,
-0.05743737146258354,
0.024261746555566788,
-0.05391566827893257,
-0.03601766377687454,
-0.021656449884176254,
-0.14623980224132538,
0.04485916718840599,
0.010332317091524601,
-0.005168382078409195,
-0.06595148891210556,
-0.030757123604416847,
0.11516020447015762,
-0.06426966190338135,
0.07983355224132538,
0.19698777794837952,
-0.06767240911722183,
0.13421446084976196,
-0.12187573313713074,
-0.17356571555137634,
0.10550028830766678,
0.028678571805357933,
0.08807408809661865,
0.07333525270223618,
0.031008796766400337,
0.07151902467012405,
-0.0006563866045325994,
0.03527871519327164,
-0.026205046102404594,
-0.13518503308296204,
-0.022110003978013992,
0.008841688744723797,
-0.18046444654464722,
-0.03447321802377701,
-0.07454892992973328,
0.15258778631687164,
0.02735028602182865,
0.11539342999458313,
0.016432136297225952,
0.10955704003572464,
-0.04023033380508423,
-0.0037069369573146105,
0.006354177836328745,
-0.1867031753063202,
0.027574164792895317,
-0.07603352516889572,
0.009099473245441914,
0.004562267567962408,
0.26294976472854614,
-0.016851287335157394,
0.06874511390924454,
0.019947905093431473,
0.0317598320543766,
0.06296208500862122,
0.029733985662460327,
0.2593200206756592,
0.1191045418381691,
-0.04764638841152191,
-0.09192530065774918,
0.09628601372241974,
0.0015705273253843188,
0.0005639182054437697,
0.12658140063285828,
0.12427230179309845,
0.03164798021316528,
0.10732870548963547,
0.03856581449508667,
0.04636436328291893,
-0.1138598844408989,
-0.24980735778808594,
0.006955720484256744,
0.07651596516370773,
0.030513912439346313,
0.09611864387989044,
0.11702555418014526,
-0.040339987725019455,
0.09750796854496002,
-0.006009524688124657,
-0.03278311714529991,
-0.1306307315826416,
-0.048490166664123535,
-0.05248153209686279,
-0.1226581484079361,
0.010182006284594536,
-0.07812222838401794,
0.0005351413274183869,
0.15948551893234253,
0.02424205094575882,
-0.019147196784615517,
0.14117267727851868,
0.03290129452943802,
-0.05950130149722099,
0.0636630430817604,
-0.017126450315117836,
0.0027530856896191835,
0.04465898126363754,
-0.016934748739004135,
-0.11656554788351059,
-0.08354712277650833,
-0.050883643329143524,
0.024923330172896385,
-0.09700026363134384,
0.004247597418725491,
-0.11320921033620834,
-0.11535467207431793,
-0.04546694457530975,
0.048496924340724945,
-0.07876671850681305,
0.1265949159860611,
-0.016160227358341217,
0.0028664041310548782,
0.009360520169138908,
0.15711569786071777,
-0.07741065323352814,
-0.012710070237517357,
-0.020163269713521004,
0.21036958694458008,
0.0989537462592125,
0.10912171006202698,
-0.0009331207838840783,
0.015002057887613773,
-0.05219440162181854,
0.29989543557167053,
0.2444397360086441,
-0.028167791664600372,
0.04460100829601288,
0.0873914435505867,
0.038083989173173904,
0.0968138724565506,
0.09690817445516586,
0.10102183371782303,
0.3200364112854004,
-0.07682528346776962,
-0.045907747000455856,
-0.03448496013879776,
-0.00849792081862688,
-0.09551121294498444,
0.035898253321647644,
0.07948186993598938,
-0.06152723729610443,
-0.07321841269731522,
0.10746033489704132,
-0.16515599191188812,
0.11578583717346191,
0.11013679206371307,
-0.20921821892261505,
-0.049416057765483856,
-0.07384659349918365,
0.17109091579914093,
-0.0024887267500162125,
0.1266387403011322,
-0.04354546591639519,
-0.13439299166202545,
0.06285285204648972,
0.048469748347997665,
-0.2756679356098175,
-0.0980004072189331,
0.11060073226690292,
0.024665147066116333,
0.007802571170032024,
-0.02169145829975605,
-0.004367694724351168,
0.06355959177017212,
0.09860705584287643,
-0.0003893781395163387,
0.02548590861260891,
0.03634477034211159,
-0.10912884771823883,
-0.08365445584058762,
0.008976423181593418,
0.008719995617866516,
-0.08448972553014755,
0.023103585466742516,
-0.19627802073955536,
0.044169794768095016,
-0.0157186109572649,
-0.044235143810510635,
0.003991053905338049,
-0.029606744647026062,
-0.059212785214185715,
0.03327903896570206,
0.08572027087211609,
0.023666096851229668,
-0.03819211944937706,
-0.05403012037277222,
0.0019490038976073265,
0.07524687796831131,
-0.06805311143398285,
-0.173606276512146,
-0.04840735346078873,
-0.08657971769571304,
0.0992082953453064,
-0.05511601269245148,
-0.0752784013748169,
-0.04562166705727577,
-0.03257971256971359,
0.06480588763952255,
-0.12087775766849518,
0.04490482062101364,
0.03911556303501129,
0.041156258434057236,
0.0160878524184227,
-0.035335659980773926,
0.044597625732421875,
0.07137373089790344,
-0.11931539326906204,
-0.07447930425405502
] |
null | null | transformers |
#Rick and Morty DialoGPT Model | {"tags": ["conversational"]} | text-generation | MaxW0748/DialoGPT-small-Rick | [
"transformers",
"pytorch",
"gpt2",
"text-generation",
"conversational",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [] | TAGS
#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
#Rick and Morty DialoGPT Model | [] | [
"TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n"
] | [
51
] | [
"passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n"
] | [
-0.009697278961539268,
0.03208012506365776,
-0.007204889785498381,
0.004809224978089333,
0.16726240515708923,
0.014898733235895634,
0.09765533357858658,
0.13672804832458496,
-0.007841327227652073,
-0.031050153076648712,
0.14490588009357452,
0.20411323010921478,
-0.006439372431486845,
0.0661218985915184,
-0.07572533935308456,
-0.2683109939098358,
0.05759621039032936,
0.046649303287267685,
0.016515716910362244,
0.1200079694390297,
0.08573378622531891,
-0.05473608896136284,
0.08714032918214798,
-0.014583407901227474,
-0.150366872549057,
0.017733458429574966,
0.043394338339567184,
-0.12260226160287857,
0.11910516023635864,
0.05462685227394104,
0.07063519209623337,
0.014929565601050854,
-0.07541623711585999,
-0.1631229966878891,
0.03031250834465027,
0.01425902172923088,
-0.0594632662832737,
0.04757995903491974,
0.059961482882499695,
-0.10165371745824814,
0.10819483548402786,
0.09530027210712433,
-0.013078106567263603,
0.06798283755779266,
-0.16849711537361145,
-0.020869607105851173,
-0.01446688175201416,
0.009899779222905636,
0.05550243332982063,
0.09964893013238907,
-0.03413357585668564,
0.10497362166643143,
-0.09214533120393753,
0.11017382889986038,
0.10932035744190216,
-0.32057443261146545,
-0.005767723545432091,
0.09167823940515518,
0.039358653128147125,
0.07352814823389053,
-0.04467793554067612,
0.06258884817361832,
0.018015462905168533,
0.017986174672842026,
-0.014015024527907372,
-0.07283061742782593,
-0.11612214148044586,
0.04717336222529411,
-0.08668071031570435,
-0.059868961572647095,
0.2244078367948532,
-0.05464440956711769,
0.06881742179393768,
-0.05281897634267807,
-0.10522868484258652,
-0.04308144748210907,
-0.029833965003490448,
0.00475557055324316,
-0.07660607248544693,
0.08692064881324768,
0.00869679357856512,
-0.09547875821590424,
-0.1376667022705078,
-0.02496783249080181,
-0.1776352822780609,
0.16140350699424744,
0.02465328387916088,
0.05232657864689827,
-0.2027255892753601,
0.09623090922832489,
0.017906051129102707,
-0.08045592904090881,
0.022091427817940712,
-0.10046248883008957,
0.029131146147847176,
0.013760408386588097,
-0.04754498973488808,
-0.061387211084365845,
0.0843690037727356,
0.11199145019054413,
-0.01731434464454651,
0.025486016646027565,
-0.039331406354904175,
0.08100687712430954,
0.03553595021367073,
0.09077847748994827,
0.007288969587534666,
-0.028338588774204254,
0.025842782109975815,
-0.13719046115875244,
-0.003647835226729512,
-0.07116208970546722,
-0.16572439670562744,
-0.021088803187012672,
0.02994808368384838,
0.08289173990488052,
0.015449047088623047,
0.11682453751564026,
-0.03272046521306038,
-0.025152435526251793,
0.03602350503206253,
-0.047656361013650894,
-0.012649794109165668,
0.016648368909955025,
0.013163427822291851,
0.12399329990148544,
-0.0022096503525972366,
0.03235051408410072,
-0.13653022050857544,
0.031423524022102356,
-0.06793295592069626,
-0.003740974934771657,
-0.03486552834510803,
-0.040637075901031494,
0.009043924510478973,
-0.06862333416938782,
0.003486064961180091,
-0.15030112862586975,
-0.15063877403736115,
0.007587034720927477,
-0.007836631499230862,
-0.04107699543237686,
-0.06370922178030014,
-0.06952770054340363,
-0.013550350442528725,
0.04251532256603241,
-0.07093454152345657,
-0.011352915316820145,
-0.06403283774852753,
0.11004766076803207,
-0.03197755664587021,
0.07921615242958069,
-0.11953279376029968,
0.08390819281339645,
-0.11260783672332764,
-0.02386913076043129,
-0.060801517218351364,
0.09317506104707718,
-0.0006014376995153725,
0.09549830108880997,
-0.006563255097717047,
-0.017931854352355003,
-0.07981178909540176,
0.06445012241601944,
-0.042872510850429535,
0.21701598167419434,
-0.0615808479487896,
-0.11181682348251343,
0.28781595826148987,
-0.052628401666879654,
-0.1370542049407959,
0.11647392809391022,
0.008682746440172195,
0.05777018144726753,
0.10703510791063309,
0.19733482599258423,
-0.015276194550096989,
0.004040541127324104,
0.09471915662288666,
0.11263324320316315,
-0.11276852339506149,
-0.033160366117954254,
0.013019153848290443,
-0.04081077128648758,
-0.10867965966463089,
0.04689536616206169,
0.09810488671064377,
0.07090286910533905,
-0.04786505550146103,
-0.03377414867281914,
-0.01366397924721241,
0.0052589005790650845,
0.08885077387094498,
-0.007157256826758385,
0.10962837189435959,
-0.05819983780384064,
-0.03796621412038803,
-0.029282379895448685,
-0.012126247398555279,
-0.03951939567923546,
0.03137664496898651,
-0.043376367539167404,
0.10821941494941711,
-0.011204327456653118,
0.06364280730485916,
-0.16185984015464783,
-0.07691477984189987,
-0.017002692446112633,
0.1581239402294159,
0.024538565427064896,
0.09859629720449448,
0.0552486926317215,
-0.040398042649030685,
-0.0012767292791977525,
0.012792680412530899,
0.15581141412258148,
-0.022091681137681007,
-0.065607450902462,
-0.052166227251291275,
0.08642971515655518,
-0.05641226842999458,
0.04504093527793884,
-0.05937713757157326,
0.012367865070700645,
0.05064384639263153,
0.10342344641685486,
-0.00018274025933351368,
0.03323284164071083,
-0.008164864964783192,
0.002145637758076191,
-0.058205123990774155,
0.007405933458358049,
0.10799351334571838,
0.00036868182360194623,
-0.07365862280130386,
0.22074243426322937,
-0.17796069383621216,
0.1765957772731781,
0.1893044263124466,
-0.299345999956131,
0.017949223518371582,
-0.10759581625461578,
-0.04561871662735939,
0.014407722279429436,
0.05567655712366104,
-0.0454222597181797,
0.1703362911939621,
-0.009871348738670349,
0.18874616920948029,
-0.04946064203977585,
-0.04464937001466751,
-0.0200483538210392,
-0.05118836089968681,
-0.0024189651012420654,
0.07781197130680084,
0.10685696452856064,
-0.13992026448249817,
0.1964332014322281,
0.1621224284172058,
0.048237916082143784,
0.19945049285888672,
0.015346456319093704,
-0.011589210480451584,
0.0909530371427536,
0.005220826715230942,
-0.058739423751831055,
-0.07409929484128952,
-0.2594851851463318,
-0.030033592134714127,
0.07992640137672424,
0.0422382652759552,
0.1212305948138237,
-0.11349532753229141,
-0.038956157863140106,
-0.01763172075152397,
-0.023146281018853188,
0.021672505885362625,
0.0914369598031044,
0.06075398623943329,
0.13201528787612915,
-0.001710098935291171,
-0.007300339173525572,
0.10524573177099228,
0.01783694699406624,
-0.09354141354560852,
0.18308524787425995,
-0.13652534782886505,
-0.37097251415252686,
-0.13911493122577667,
-0.18057456612586975,
-0.05449081212282181,
0.05712554603815079,
0.11679314076900482,
-0.12011238187551498,
-0.018752124160528183,
0.01578843593597412,
0.10931742936372757,
-0.08449502289295197,
0.0021454424131661654,
-0.06880278885364532,
0.0321490578353405,
-0.10310184955596924,
-0.09194442629814148,
-0.055416494607925415,
-0.031392451375722885,
-0.08001253753900528,
0.1423761546611786,
-0.10777941346168518,
0.04476889222860336,
0.20262959599494934,
0.04653622955083847,
0.05625178664922714,
-0.044105201959609985,
0.19377262890338898,
-0.11264272034168243,
-0.01661740615963936,
0.19215328991413116,
-0.048360925167798996,
0.07476246356964111,
0.1232115849852562,
-0.006348740309476852,
-0.08765771239995956,
0.03011748194694519,
-0.02085109055042267,
-0.07988511025905609,
-0.23219464719295502,
-0.13938382267951965,
-0.12429051846265793,
0.09477275609970093,
0.028005298227071762,
0.056365787982940674,
0.17219258844852448,
0.06577219814062119,
-0.038416244089603424,
0.006410336587578058,
0.02959546446800232,
0.08237514644861221,
0.23417828977108002,
-0.06035616248846054,
0.1364797055721283,
-0.03420931473374367,
-0.14982740581035614,
0.08169995993375778,
0.0713929831981659,
0.10213395953178406,
0.06678459793329239,
0.0804823637008667,
0.0149586396291852,
0.06188136339187622,
0.1311223804950714,
0.08191446959972382,
0.019586285576224327,
-0.02480296604335308,
-0.03388110175728798,
-0.025523077696561813,
-0.05937909707427025,
0.040128443390131,
0.06589099019765854,
-0.16763372719287872,
-0.039227183908224106,
-0.09338314831256866,
0.09657008945941925,
0.0873042419552803,
0.06609832495450974,
-0.1842060089111328,
-0.008006223477423191,
0.08488986641168594,
-0.03854905813932419,
-0.13727426528930664,
0.09535189718008041,
0.01523482333868742,
-0.15144726634025574,
0.03139317408204079,
-0.04061909019947052,
0.12188644707202911,
-0.07804752141237259,
0.09809603542089462,
-0.08108244836330414,
-0.07448557764291763,
0.02123199962079525,
0.1261177361011505,
-0.30527687072753906,
0.20240111649036407,
-0.0024993624538183212,
-0.06486981362104416,
-0.1243603527545929,
-0.0032166161108762026,
0.002410882618278265,
0.07357452809810638,
0.10519039630889893,
-0.007196315098553896,
0.001897757756523788,
-0.06300821900367737,
-0.01829923689365387,
0.032471053302288055,
0.13080233335494995,
-0.0401318334043026,
-0.021158374845981598,
-0.050194524228572845,
-0.001653497340157628,
-0.03173094615340233,
-0.06934895366430283,
0.02002747356891632,
-0.19509181380271912,
0.08751901984214783,
0.04166261479258537,
0.09648149460554123,
0.029994789510965347,
0.004265148192644119,
-0.09651939570903778,
0.24698667228221893,
-0.07148019969463348,
-0.10072879493236542,
-0.10919588059186935,
-0.046813901513814926,
0.03569883480668068,
-0.05628936365246773,
0.04309194162487984,
-0.0788632407784462,
0.028997479006648064,
-0.06352769583463669,
-0.19235502183437347,
0.12410202622413635,
-0.09027006477117538,
-0.04412810131907463,
-0.02371402643620968,
0.2110891044139862,
-0.05598580464720726,
0.010335659608244896,
0.02930437959730625,
0.01208863127976656,
-0.11645778268575668,
-0.09678568691015244,
0.031018631532788277,
-0.007351789623498917,
0.050603240728378296,
0.041841957718133926,
-0.05915454775094986,
-0.017138581722974777,
-0.052199993282556534,
-0.022926922887563705,
0.3496883809566498,
0.14231905341148376,
-0.043836336582899094,
0.19347235560417175,
0.12347975373268127,
-0.07452994585037231,
-0.3159443140029907,
-0.1066238060593605,
-0.10937739163637161,
-0.04680149629712105,
-0.07012093812227249,
-0.2002030611038208,
0.06474938243627548,
0.00662544509395957,
-0.013415241613984108,
0.12749312818050385,
-0.2561831772327423,
-0.07571036368608475,
0.15906259417533875,
-0.017980827018618584,
0.3745945692062378,
-0.1168576180934906,
-0.10926306992769241,
-0.03950892388820648,
-0.14175476133823395,
0.16968177258968353,
-0.01989765651524067,
0.11221715062856674,
-0.009765521623194218,
0.14388824999332428,
0.05548359826207161,
-0.023479344323277473,
0.08544106781482697,
0.004999885335564613,
-0.03290518373250961,
-0.10304180532693863,
-0.05676887184381485,
0.007092386484146118,
0.02477436140179634,
0.018026655539870262,
-0.041834570467472076,
0.02227151393890381,
-0.11731979995965958,
-0.04657655209302902,
-0.08982590585947037,
0.04431166127324104,
0.03899754583835602,
-0.07325074821710587,
-0.002380647463724017,
-0.07165111601352692,
-0.012272949330508709,
0.022334342822432518,
0.20356793701648712,
-0.08029330521821976,
0.16448934376239777,
0.09239562600851059,
0.12419285625219345,
-0.14376309514045715,
-0.00019283240544609725,
-0.0762530043721199,
-0.05611240118741989,
0.07737895101308823,
-0.09433035552501678,
0.058893077075481415,
0.10901971161365509,
-0.04567738622426987,
0.08828683942556381,
0.10377411544322968,
0.008936077356338501,
0.003213887568563223,
0.10916902124881744,
-0.2667325437068939,
-0.0296600554138422,
-0.07532413303852081,
0.000883326749317348,
0.09092561900615692,
0.08562852442264557,
0.18840822577476501,
0.025361526757478714,
-0.04293036088347435,
-0.002770674182102084,
0.028597986325621605,
-0.039021048694849014,
0.051667019724845886,
0.001123449532315135,
0.01947369985282421,
-0.1530752182006836,
0.072522833943367,
0.01490565575659275,
-0.15215420722961426,
0.021316176280379295,
0.16572684049606323,
-0.11656328290700912,
-0.1283872276544571,
-0.06520111113786697,
0.08313824236392975,
-0.11755692958831787,
-0.01578943058848381,
-0.03279297426342964,
-0.13145680725574493,
0.07992171496152878,
0.12629036605358124,
0.05557859688997269,
0.0972496047616005,
-0.06061713397502899,
-0.020469192415475845,
-0.018721895292401314,
-0.014099318534135818,
-0.012384648434817791,
-0.007667020428925753,
-0.055978111922740936,
0.0590752474963665,
-0.026677248999476433,
0.1425808072090149,
-0.09221141785383224,
-0.1037059873342514,
-0.16142144799232483,
0.0374140702188015,
-0.11013076454401016,
-0.08825794607400894,
-0.08821134269237518,
-0.050188567489385605,
0.002360827289521694,
-0.019856395199894905,
-0.04037635400891304,
-0.05829505994915962,
-0.12300454825162888,
0.0338277705013752,
-0.040771447122097015,
0.024727050215005875,
-0.07512269169092178,
0.015856385231018066,
0.08507686108350754,
-0.03285100311040878,
0.15655414760112762,
0.1450488418340683,
-0.1006515845656395,
0.10741901397705078,
-0.14806775748729706,
-0.09138492494821548,
0.11116421222686768,
0.015329592861235142,
0.0449691042304039,
0.09723787009716034,
0.013362943194806576,
0.0635865181684494,
0.032776717096567154,
0.05308786407113075,
0.027619892731308937,
-0.11959987878799438,
0.06483134627342224,
-0.03626115620136261,
-0.14700546860694885,
-0.049338050186634064,
-0.05282869189977646,
0.01647452637553215,
0.013054544106125832,
0.09622690081596375,
-0.05301849544048309,
0.10698331147432327,
-0.04055701196193695,
0.0346808135509491,
0.017554637044668198,
-0.1730053424835205,
-0.03816922754049301,
-0.08538098633289337,
0.03681723028421402,
0.014741539023816586,
0.25266793370246887,
0.030072299763560295,
0.012416383251547813,
0.032671261578798294,
0.08285367488861084,
0.03899408504366875,
0.010228337720036507,
0.17482228577136993,
0.1162426546216011,
-0.06621865928173065,
-0.10445023328065872,
0.0729617029428482,
0.016332454979419708,
0.01286179106682539,
0.13617953658103943,
0.008365051820874214,
0.005795429926365614,
0.08649782836437225,
-0.016865963116288185,
0.009968153201043606,
-0.10052056610584259,
-0.13426925241947174,
-0.022176474332809448,
0.05151832848787308,
-0.04655967652797699,
0.11727844923734665,
0.1406494379043579,
-0.01806013658642769,
0.03222079202532768,
-0.021771740168333054,
-0.05699979141354561,
-0.1683429479598999,
-0.1429590880870819,
-0.06883849948644638,
-0.13416796922683716,
0.00897989235818386,
-0.11180389672517776,
0.05395037308335304,
0.06001098081469536,
0.06750501692295074,
-0.06899319589138031,
0.10220931470394135,
0.04626858979463577,
-0.11440542340278625,
0.06264589726924896,
-0.0296088308095932,
0.09430401772260666,
-0.02759445086121559,
-0.019505485892295837,
-0.09039592742919922,
0.014574515633285046,
0.011419114656746387,
0.06245238706469536,
-0.04707273095846176,
0.007463190704584122,
-0.14696238934993744,
-0.08972041308879852,
-0.0523175448179245,
0.0718572810292244,
-0.050409089773893356,
0.14282815158367157,
0.00775480642914772,
-0.0170906875282526,
0.039554283022880554,
0.22787313163280487,
-0.07476283609867096,
-0.04778539761900902,
-0.05269690603017807,
0.20717895030975342,
0.02975541539490223,
0.1171872541308403,
-0.022938819602131844,
-0.006106364540755749,
-0.0919521227478981,
0.3764844834804535,
0.30030161142349243,
-0.09031439572572708,
0.011794124729931355,
0.02137952297925949,
0.04502861574292183,
0.1316293478012085,
0.1216534823179245,
0.10318691283464432,
0.3006802201271057,
-0.07452366501092911,
-0.04653361067175865,
-0.012629742734134197,
-0.023858042433857918,
-0.09059546142816544,
0.1021224707365036,
0.04839762672781944,
-0.06382183730602264,
-0.03313443064689636,
0.0954432487487793,
-0.25862133502960205,
0.1277991235256195,
-0.12311873584985733,
-0.17578600347042084,
-0.06654827296733856,
0.009760108776390553,
0.10465722531080246,
0.015642458572983742,
0.0946015790104866,
0.007128213066607714,
-0.11252258718013763,
0.06305865943431854,
0.03397420793771744,
-0.22762253880500793,
0.0006893770187161863,
0.06642123311758041,
-0.07006710022687912,
-0.0024247700348496437,
-0.026499588042497635,
0.05657242611050606,
0.0656052976846695,
0.054629553109407425,
-0.00971333310008049,
0.03816632181406021,
0.0034184439573436975,
-0.0585215799510479,
0.016623929142951965,
0.05121519789099693,
0.02472509816288948,
-0.09763528406620026,
0.06927435845136642,
-0.1574270874261856,
0.04766253009438515,
-0.0030655991286039352,
-0.04124255105853081,
0.006064958870410919,
0.008823691867291927,
-0.06491616368293762,
0.05165379121899605,
0.07916834205389023,
-0.0016257909592241049,
-0.0062433634884655476,
-0.057178743183612823,
-0.02632102556526661,
-0.027755750343203545,
-0.09291748702526093,
-0.10495562851428986,
-0.14682936668395996,
-0.11640441417694092,
0.09368976950645447,
-0.01011267676949501,
-0.1848134547472,
0.022154374048113823,
-0.08606051653623581,
0.08319322764873505,
-0.1670055389404297,
0.08040720224380493,
0.07041648775339127,
0.013038921169936657,
-0.0031511052511632442,
-0.02002427540719509,
0.054132770746946335,
0.086809903383255,
-0.10407156497240067,
-0.07400695979595184
] |
null | null | transformers | hello
| {} | text2text-generation | Maya/essai1 | [
"transformers",
"pytorch",
"marian",
"text2text-generation",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [] | TAGS
#transformers #pytorch #marian #text2text-generation #autotrain_compatible #endpoints_compatible #region-us
| hello
| [] | [
"TAGS\n#transformers #pytorch #marian #text2text-generation #autotrain_compatible #endpoints_compatible #region-us \n"
] | [
39
] | [
"passage: TAGS\n#transformers #pytorch #marian #text2text-generation #autotrain_compatible #endpoints_compatible #region-us \n"
] | [
-0.04299061745405197,
0.02048153057694435,
-0.007905861362814903,
0.017341529950499535,
0.1674833744764328,
0.015022140927612782,
0.11233320832252502,
0.11863136291503906,
-0.021540861576795578,
-0.02743752859532833,
0.13554878532886505,
0.21845582127571106,
-0.029172958806157112,
0.13169614970684052,
-0.09187182039022446,
-0.27409499883651733,
0.05041339620947838,
0.07612357288599014,
-0.0032400432974100113,
0.11484647542238235,
0.08262503147125244,
-0.06914720684289932,
0.09544219821691513,
-0.020474469289183617,
-0.1502380520105362,
0.04810585081577301,
0.03681797534227371,
-0.12365291267633438,
0.10355763882398605,
0.05624402314424515,
0.14675100147724152,
0.049946922808885574,
-0.045320477336645126,
-0.12796320021152496,
0.03590502589941025,
-0.014642681926488876,
-0.05720677599310875,
0.043614622205495834,
0.11117127537727356,
-0.10207130759954453,
0.07960233837366104,
0.05127398297190666,
-0.014023883268237114,
0.050975557416677475,
-0.141337588429451,
-0.003813988296315074,
-0.027397429570555687,
0.014237596653401852,
0.05422891676425934,
0.08352058380842209,
0.003295850707218051,
0.1273125261068344,
-0.09657827764749527,
0.12222390621900558,
0.14130061864852905,
-0.2732044458389282,
-0.01754593662917614,
0.05375663563609123,
0.0771917775273323,
0.048981767147779465,
0.031092284247279167,
0.07454943656921387,
0.024584133177995682,
0.015090471133589745,
-0.03814702853560448,
-0.08287479728460312,
-0.12807047367095947,
0.019125670194625854,
-0.06934678554534912,
-0.04385405406355858,
0.22815698385238647,
-0.0767071545124054,
0.0690799281001091,
-0.016879798844456673,
-0.099354088306427,
-0.013246859423816204,
-0.023963650688529015,
-0.013139755465090275,
-0.057544030249118805,
0.06476068496704102,
-0.009456291794776917,
-0.06398481875658035,
-0.14808781445026398,
0.023103661835193634,
-0.21015530824661255,
0.14179550111293793,
0.009386908262968063,
0.06023368611931801,
-0.228738471865654,
0.054586537182331085,
0.01987987570464611,
-0.11919516324996948,
0.05574571341276169,
-0.10007449984550476,
0.0717792734503746,
-0.021906660869717598,
-0.07584639638662338,
-0.12714429199695587,
0.07903710007667542,
0.07602258026599884,
0.037012938410043716,
0.03882657736539841,
-0.033536311239004135,
0.09232339262962341,
0.03188752755522728,
0.08195699751377106,
0.024470625445246696,
-0.0647776648402214,
0.060782309621572495,
-0.13799309730529785,
0.02048647031188011,
-0.07564643770456314,
-0.15782196819782257,
-0.05491308867931366,
0.031704291701316833,
0.08069360256195068,
0.057991672307252884,
0.060139670968055725,
-0.04872484505176544,
-0.029799729585647583,
0.046476855874061584,
-0.06872976571321487,
0.01670474000275135,
0.005320677068084478,
0.002851170254871249,
0.15805108845233917,
0.012711133807897568,
0.022864853963255882,
-0.10496573150157928,
0.09458412975072861,
-0.045503005385398865,
-0.007045185659080744,
-0.04345158115029335,
-0.053234852850437164,
0.04123325273394585,
-0.08231240510940552,
0.02657659351825714,
-0.17579737305641174,
-0.13871575891971588,
-0.0033533284440636635,
0.02681393176317215,
-0.026966731995344162,
-0.04719308391213417,
-0.0374324657022953,
-0.0006928038201294839,
0.05385119467973709,
-0.06815992295742035,
-0.0218440480530262,
-0.04221982881426811,
0.09645102918148041,
-0.0016841458855196834,
0.08042199909687042,
-0.12622402608394623,
0.06601319462060928,
-0.09750280529260635,
-0.04340378940105438,
-0.07671932876110077,
0.05399606004357338,
0.017877332866191864,
0.15430141985416412,
0.006661383900791407,
-0.022485187277197838,
-0.09846191853284836,
0.06375280767679214,
-0.01495822612196207,
0.20534983277320862,
-0.0825159028172493,
-0.10552165657281876,
0.2378932535648346,
-0.08819123357534409,
-0.14648401737213135,
0.07553689181804657,
0.01727413944900036,
0.05550779774785042,
0.09919747710227966,
0.1461925357580185,
0.04413070157170296,
-0.00670899823307991,
0.1254817545413971,
0.08491205424070358,
-0.0924982875585556,
-0.12882496416568756,
-0.0065908655524253845,
-0.010184240527451038,
-0.0816330686211586,
0.05123698338866234,
0.10150077939033508,
0.0642603188753128,
-0.0642881691455841,
-0.04207714647054672,
-0.026692917570471764,
-0.02559005469083786,
0.07829973101615906,
0.04078594967722893,
0.1291339248418808,
-0.08218748867511749,
-0.004508859943598509,
-0.0162180308252573,
-0.021929264068603516,
0.00031268474413082004,
0.04560203477740288,
-0.038137562572956085,
0.11537297070026398,
0.0003460479201748967,
0.040071357041597366,
-0.1963561326265335,
-0.0669654831290245,
-0.030218396335840225,
0.12512415647506714,
0.01280762255191803,
0.12980711460113525,
0.06155146658420563,
-0.02653590776026249,
-0.005620982032269239,
0.005061175674200058,
0.16329088807106018,
-0.003611072665080428,
-0.06227447837591171,
-0.058005526661872864,
0.07050231099128723,
-0.06391232460737228,
0.0014707182999700308,
-0.05851858854293823,
0.018081603571772575,
0.05657599866390228,
0.11686942726373672,
0.006235404871404171,
0.05059210583567619,
-0.03281655162572861,
0.05868515744805336,
-0.07990337163209915,
0.033982351422309875,
0.11531098932027817,
0.013983803801238537,
-0.05219278857111931,
0.21131712198257446,
-0.1730288416147232,
0.24487535655498505,
0.2030440866947174,
-0.3098523020744324,
0.020243411883711815,
-0.028711896389722824,
-0.0019101056968793273,
0.012591271661221981,
0.04111480712890625,
0.007718425709754229,
0.06537321954965591,
0.007046302314847708,
0.20473767817020416,
-0.03254414349794388,
-0.024662215262651443,
-0.003334959503263235,
-0.08041892945766449,
-0.04062888026237488,
0.057202987372875214,
0.056970417499542236,
-0.1706417202949524,
0.16712318360805511,
0.18781808018684387,
0.017499972134828568,
0.17266418039798737,
0.027212493121623993,
-0.0024560363963246346,
0.07444459199905396,
-0.03142827749252319,
-0.020354298874735832,
-0.09067501127719879,
-0.17760434746742249,
-0.04715265333652496,
0.07095266878604889,
0.025686541572213173,
0.09793822467327118,
-0.11643775552511215,
-0.03148027881979942,
0.015634452924132347,
0.023734090849757195,
-0.023727159947156906,
0.08984461426734924,
0.06073128804564476,
0.10227663815021515,
-0.01795670948922634,
-0.009011562913656235,
0.0951899066567421,
0.00913733895868063,
-0.09033115208148956,
0.16307540237903595,
-0.1156284287571907,
-0.3414801359176636,
-0.1955106407403946,
-0.18287046253681183,
-0.017893711104989052,
0.0682854950428009,
0.1315252184867859,
-0.08807973563671112,
-0.028667084872722626,
0.031128734350204468,
0.04127572104334831,
-0.05830530822277069,
0.008623732253909111,
-0.04858684539794922,
0.07686641812324524,
-0.06063120812177658,
-0.07079384475946426,
-0.05323566496372223,
-0.014693448320031166,
-0.0284489206969738,
0.1524364948272705,
-0.13626033067703247,
0.09583679586648941,
0.1495550572872162,
-0.0020007521379739046,
0.06398148089647293,
-0.009028874337673187,
0.14812515676021576,
-0.07848699390888214,
-0.01206242199987173,
0.2486046850681305,
-0.04657157137989998,
0.08149297535419464,
0.1367443948984146,
0.0025138952769339085,
-0.059553518891334534,
0.019570626318454742,
-0.0630117803812027,
-0.09560505300760269,
-0.24417749047279358,
-0.13568075001239777,
-0.11484216898679733,
0.0681128054857254,
0.047187793999910355,
0.03988029807806015,
0.13521023094654083,
0.09607231616973877,
-0.0001227980392286554,
-0.0033515607938170433,
0.01273164339363575,
0.08158101886510849,
0.2223200649023056,
-0.01257301215082407,
0.15658165514469147,
-0.07011901587247849,
-0.12720638513565063,
0.10131079703569412,
0.035994891077280045,
0.10225390642881393,
0.07982201874256134,
0.0289271492511034,
0.01613372191786766,
0.06630086153745651,
0.14775989949703217,
0.1287880390882492,
0.06477569788694382,
-0.013175779022276402,
-0.0175136998295784,
-0.013162681832909584,
-0.06131197139620781,
0.03171708807349205,
0.03364803269505501,
-0.1597762107849121,
-0.09001649916172028,
-0.07121691852807999,
0.06106407567858696,
0.08874298632144928,
0.057280994951725006,
-0.2049395591020584,
0.011022829450666904,
0.0898711085319519,
-0.0051645138300955296,
-0.10405737906694412,
0.06230935826897621,
-0.012797035276889801,
-0.14642885327339172,
0.07699785381555557,
-0.027821077033877373,
0.13798080384731293,
-0.07486100494861603,
0.09081243723630905,
-0.0625600665807724,
-0.10658513754606247,
0.053014565259218216,
0.11629796773195267,
-0.2935488522052765,
0.2306448072195053,
0.0015548415249213576,
-0.05370503291487694,
-0.09260941296815872,
-0.013419636525213718,
0.008512570522725582,
0.15787667036056519,
0.0617530457675457,
-0.006749313790351152,
-0.11403001844882965,
-0.12846586108207703,
-0.014507225714623928,
0.014660573564469814,
0.13391952216625214,
0.009631086140871048,
-0.0021186741068959236,
-0.05211269110441208,
-0.029446175321936607,
-0.043693408370018005,
0.02216339111328125,
-0.0074485247023403645,
-0.18409088253974915,
0.07339759916067123,
0.04796046391129494,
0.06374679505825043,
0.010967900976538658,
-0.037419240921735764,
-0.05600299313664436,
0.23117002844810486,
-0.00013388590014073998,
-0.07219067215919495,
-0.1117376983165741,
-0.08211655914783478,
0.0395544059574604,
-0.09906407445669174,
0.05440325662493706,
-0.08005988597869873,
0.03445890173316002,
-0.07213284820318222,
-0.19736075401306152,
0.10885751247406006,
-0.10853913426399231,
-0.013232833705842495,
-0.064916230738163,
0.15073467791080475,
-0.07490371912717819,
0.002539788605645299,
0.03872012719511986,
0.01829460635781288,
-0.11934516578912735,
-0.05433674901723862,
-0.019406097009778023,
-0.006658364087343216,
0.05636902153491974,
0.003106872783973813,
-0.08958917111158371,
-0.04990943521261215,
-0.03218717873096466,
-0.04087665304541588,
0.3075355589389801,
0.13574372231960297,
-0.0509394034743309,
0.14766451716423035,
0.15299543738365173,
-0.08086417615413666,
-0.34205305576324463,
-0.10624293237924576,
-0.09502538293600082,
-0.015809468924999237,
-0.028031986206769943,
-0.15890590846538544,
0.06893202662467957,
-0.0036390922032296658,
-0.02516348659992218,
0.07824387401342392,
-0.2260613590478897,
-0.0932803824543953,
0.15164196491241455,
0.0031410434748977423,
0.4007178843021393,
-0.1305827498435974,
-0.10434527695178986,
-0.08334421366453171,
-0.17126847803592682,
0.10898662358522415,
-0.03472001105546951,
0.08341675251722336,
-0.010372959077358246,
0.11236749589443207,
0.050838321447372437,
-0.046796172857284546,
0.07660232484340668,
-0.032566867768764496,
-0.01883353479206562,
-0.13308294117450714,
-0.04369310289621353,
0.04934908449649811,
-0.019299130886793137,
0.007747740019112825,
-0.02157778851687908,
0.01757979951798916,
-0.12226363271474838,
-0.037290897220373154,
-0.09323853999376297,
0.044794321060180664,
0.03138329088687897,
-0.02825717255473137,
0.037724025547504425,
-0.07414238899946213,
-0.00342162256129086,
0.012787532061338425,
0.20721963047981262,
-0.0655430406332016,
0.15269140899181366,
0.12722060084342957,
0.1264062076807022,
-0.1627533882856369,
0.08155987411737442,
-0.07648200541734695,
-0.07901176065206528,
0.04528261721134186,
-0.06982895731925964,
0.06675053387880325,
0.10491432994604111,
-0.060568585991859436,
0.031514640897512436,
0.091362863779068,
0.027571387588977814,
-0.006481664255261421,
0.17226465046405792,
-0.23351766169071198,
0.04647950083017349,
-0.07963868230581284,
0.02197170816361904,
0.09241434931755066,
0.052847329527139664,
0.16631457209587097,
0.05967506021261215,
-0.05149567872285843,
-0.024492185562849045,
-0.005394491832703352,
-0.04156287759542465,
0.0750511884689331,
0.024763744324445724,
0.0158255435526371,
-0.1270609200000763,
0.0523785762488842,
0.031796205788850784,
-0.16357141733169556,
-0.0011661364696919918,
0.18556055426597595,
-0.12480738013982773,
-0.13375388085842133,
0.015180382877588272,
0.10570671409368515,
-0.16854673624038696,
-0.04942295327782631,
-0.08239348977804184,
-0.10880345851182938,
0.057304609566926956,
0.17863355576992035,
0.08606170117855072,
0.0685911625623703,
-0.03129398077726364,
-0.043353281915187836,
-0.02763701230287552,
-0.018010815605521202,
0.0442383773624897,
0.03391417860984802,
-0.09182736277580261,
0.0633029118180275,
-0.03580569848418236,
0.14381025731563568,
-0.08834642916917801,
-0.05989225581288338,
-0.13664287328720093,
0.03878789767622948,
-0.12538208067417145,
-0.06774391978979111,
-0.08578793704509735,
-0.06782272458076477,
-0.016752982512116432,
-0.04422794654965401,
-0.048288654536008835,
-0.04628721997141838,
-0.10784115642309189,
0.025905270129442215,
-0.06126409396529198,
0.011331952176988125,
-0.06999265402555466,
-0.020312244072556496,
0.09850413352251053,
-0.02986273728311062,
0.07308445125818253,
0.12061475217342377,
-0.09346423298120499,
0.08610998094081879,
-0.1392049938440323,
-0.11474160104990005,
0.10761674493551254,
0.03155124932527542,
0.0682273656129837,
0.07208913564682007,
0.027042746543884277,
0.0981433317065239,
0.04269345477223396,
0.042179495096206665,
0.06902097165584564,
-0.10794679820537567,
0.043616700917482376,
-0.024819204583764076,
-0.19041629135608673,
-0.04457239806652069,
-0.033969517797231674,
0.08259707689285278,
-0.0037075330037623644,
0.13251449167728424,
-0.0540972538292408,
0.12107058614492416,
-0.020021691918373108,
0.028577350080013275,
0.005630511790513992,
-0.17849789559841156,
-0.06580901890993118,
-0.10294023901224136,
0.026797788217663765,
0.009268869645893574,
0.21024295687675476,
0.025697320699691772,
0.0597645528614521,
0.04227485880255699,
0.06787262856960297,
0.013013933785259724,
0.01267758198082447,
0.174071803689003,
0.09769612550735474,
-0.04406432807445526,
-0.0932300016283989,
0.10335561633110046,
0.014320858754217625,
0.02409134991466999,
0.14235436916351318,
0.04014018923044205,
0.0036647701635956764,
0.10213232785463333,
-0.009030764922499657,
0.08382683247327805,
-0.1266191601753235,
-0.2274506539106369,
-0.022525982931256294,
0.041287753731012344,
-0.012803369201719761,
0.05264750123023987,
0.13920360803604126,
-0.02137114480137825,
0.032893016934394836,
-0.05882564187049866,
-0.044891707599163055,
-0.19973844289779663,
-0.14420555531978607,
-0.10311590135097504,
-0.08990249037742615,
-0.003088045632466674,
-0.08031830936670303,
0.038761697709560394,
0.040031105279922485,
0.03910589963197708,
-0.08056802302598953,
0.07794651389122009,
0.04336871951818466,
-0.08620623499155045,
0.04332820698618889,
-0.03473949432373047,
0.07457458972930908,
0.02453869953751564,
-0.005967691075056791,
-0.1418898105621338,
0.01601162925362587,
-0.024762874469161034,
0.07055077701807022,
-0.07933557033538818,
0.007714618928730488,
-0.13823053240776062,
-0.122284896671772,
-0.052567221224308014,
0.055203650146722794,
-0.008796542882919312,
0.13311398029327393,
-0.0024743087124079466,
-0.00567902997136116,
0.03733786940574646,
0.21181456744670868,
-0.058807943016290665,
-0.09642048925161362,
-0.027134407311677933,
0.18608734011650085,
0.07207795977592468,
0.11108003556728363,
-0.030897395685315132,
0.007248620502650738,
-0.1000303253531456,
0.3825521171092987,
0.2976725399494171,
-0.06469554454088211,
0.030960671603679657,
0.04575015604496002,
0.045002516359090805,
0.12673750519752502,
0.12283819913864136,
0.08872202038764954,
0.27414456009864807,
-0.07373438775539398,
-0.024872684851288795,
-0.023745300248265266,
-0.007948637939989567,
-0.14204570651054382,
0.11966346204280853,
0.013534849509596825,
-0.05650477483868599,
-0.03049476258456707,
0.1064809188246727,
-0.18916231393814087,
0.18861334025859833,
-0.04982715845108032,
-0.2128181904554367,
-0.049833230674266815,
-0.005969609599560499,
0.1756497472524643,
0.004541318863630295,
0.10552745312452316,
-0.006347697228193283,
-0.09114768356084824,
0.050759460777044296,
0.021664757281541824,
-0.22677843272686005,
-0.0009350212058052421,
0.04139188677072525,
-0.12457043677568436,
-0.009278549812734127,
-0.019557451829314232,
0.027379240840673447,
0.07250100374221802,
0.05971713364124298,
-0.035408277064561844,
0.04279978945851326,
-0.00047318186261691153,
-0.041961487382650375,
0.02999037317931652,
0.04254591837525368,
-0.016281021758913994,
-0.11165463924407959,
0.07316602021455765,
-0.16087889671325684,
0.05424763262271881,
-0.0382453128695488,
-0.007213514763861895,
0.022402485832571983,
0.03653740510344505,
-0.05188937485218048,
0.047886721789836884,
0.07912388443946838,
0.005198287777602673,
-0.013419111259281635,
-0.05353429540991783,
-0.023539287969470024,
0.012619944289326668,
-0.09138869494199753,
-0.12206486612558365,
-0.11797627806663513,
-0.12547236680984497,
0.09077771753072739,
0.0268833227455616,
-0.19153618812561035,
0.006989588495343924,
-0.1110205128788948,
0.033293891698122025,
-0.1836315542459488,
0.09644508361816406,
0.07820475846529007,
-0.005009776912629604,
0.0044454168528318405,
-0.03407707437872887,
0.060695067048072815,
0.08839738368988037,
-0.12326908111572266,
-0.10574152320623398
] |
null | null | transformers |
# Harry Potter DialoGPT Model | {"tags": ["conversational"]} | text-generation | MayankGupta/DialoGPT-small-harrypotter | [
"transformers",
"pytorch",
"gpt2",
"text-generation",
"conversational",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [] | TAGS
#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
# Harry Potter DialoGPT Model | [
"# Harry Potter DialoGPT Model"
] | [
"TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"# Harry Potter DialoGPT Model"
] | [
51,
8
] | [
"passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# Harry Potter DialoGPT Model"
] | [
-0.0009023238671943545,
0.07815738022327423,
-0.006546166725456715,
0.07792752981185913,
0.10655936598777771,
0.048972971737384796,
0.17639793455600739,
0.12185695022344589,
0.016568755730986595,
-0.04774167761206627,
0.11647630482912064,
0.2130284160375595,
-0.002118367003276944,
0.024608047679066658,
-0.05022026598453522,
-0.3065771162509918,
0.0474756620824337,
0.014356585219502449,
-0.07174845039844513,
0.11724270135164261,
0.09064973145723343,
-0.046179238706827164,
0.08330509811639786,
-0.009135239757597446,
-0.13198648393154144,
-0.039482954889535904,
0.019292812794446945,
-0.11745545268058777,
0.1662212759256363,
0.05298272892832756,
0.02469746209681034,
-0.008447164669632912,
-0.06598151475191116,
-0.15036040544509888,
0.037190426141023636,
-0.027472136542201042,
-0.01080626156181097,
0.05462246760725975,
0.023526115342974663,
-0.07521048933267593,
0.170567125082016,
0.17678891122341156,
0.0833497866988182,
0.0349111407995224,
-0.14917024970054626,
-0.045548245310783386,
0.008950977586209774,
0.05421316996216774,
-0.017893504351377487,
0.09349167346954346,
-0.019903047010302544,
0.11801653355360031,
-0.04491448402404785,
0.09210366010665894,
0.15255063772201538,
-0.4016275703907013,
-0.027563704177737236,
0.08920855820178986,
0.05989706888794899,
0.12076901644468307,
-0.10560955852270126,
0.03972794860601425,
-0.0039703017100691795,
0.01236654631793499,
-0.014540530741214752,
-0.08304883539676666,
-0.07308239489793777,
0.032504837960004807,
-0.1272556483745575,
0.008525865152478218,
0.23756256699562073,
-0.10643257945775986,
0.037069112062454224,
-0.09791990369558334,
-0.07414398342370987,
0.048336777836084366,
-0.053761593997478485,
-0.081727035343647,
-0.054839808493852615,
0.06347949057817459,
0.004366500303149223,
-0.06301609426736832,
-0.08326146006584167,
-0.0006536149303428829,
-0.12781435251235962,
0.17595994472503662,
0.061243366450071335,
0.041611745953559875,
-0.21322020888328552,
0.08940251916646957,
0.04477722570300102,
-0.04711297154426575,
0.007116159424185753,
-0.11796226352453232,
0.04023287072777748,
0.005483259446918964,
-0.03256071358919144,
-0.021854614838957787,
0.0393419973552227,
0.13909944891929626,
-0.01777748204767704,
0.03252175822854042,
0.006831915583461523,
0.05811219662427902,
0.08162496984004974,
0.02222144603729248,
0.019291909411549568,
-0.0818009302020073,
0.019385190680623055,
-0.08128736168146133,
-0.0030400939285755157,
-0.048940129578113556,
-0.17071883380413055,
-0.07477642595767975,
0.052610911428928375,
0.020047198981046677,
0.03746970370411873,
0.08054786175489426,
-0.0017944995779544115,
-0.05560554191470146,
0.03284840285778046,
0.01671096310019493,
-0.020622212439775467,
-0.010361049324274063,
-0.02412462793290615,
0.19123271107673645,
0.019619356840848923,
0.014111656695604324,
-0.12379156798124313,
0.10023640841245651,
-0.08179095387458801,
0.0037731381598860025,
0.02743307314813137,
-0.04204464703798294,
-0.004716555587947369,
0.02917117439210415,
0.023101668804883957,
-0.1252521574497223,
-0.1099385917186737,
-0.0030569476075470448,
-0.012054097838699818,
-0.036421261727809906,
-0.10490952432155609,
-0.08483029156923294,
-0.012153145857155323,
0.0449371263384819,
-0.013397793285548687,
0.007936403155326843,
-0.05143149942159653,
0.0985720232129097,
-0.0514979362487793,
0.09873400628566742,
-0.08342572301626205,
0.06359215080738068,
-0.09124887734651566,
-0.061886150389909744,
-0.11452563107013702,
0.05216052383184433,
0.012905281968414783,
0.066250741481781,
0.016998225823044777,
-0.044836658984422684,
-0.014836243353784084,
0.05253177136182785,
-0.07656687498092651,
0.1940697431564331,
-0.041674621403217316,
-0.12459053844213486,
0.24146439135074615,
-0.09138800948858261,
-0.1802034229040146,
0.12973085045814514,
-0.022254703566432,
0.08523941785097122,
0.12802475690841675,
0.20380465686321259,
-0.00019822151807602495,
-0.01302915159612894,
0.07281201332807541,
0.07031642645597458,
-0.09803894907236099,
0.06239739805459976,
0.029653839766979218,
-0.008071083575487137,
-0.08906278014183044,
0.05762826278805733,
0.046033453196287155,
-0.010650773532688618,
-0.035073768347501755,
-0.001896020956337452,
-0.012895751744508743,
-0.022185025736689568,
0.14126582443714142,
-0.02006692811846733,
0.1300428807735443,
-0.06926563382148743,
-0.03515486419200897,
-0.009500149637460709,
0.03533667325973511,
-0.04091939330101013,
0.08151165395975113,
-0.0436173714697361,
0.10586477071046829,
0.09034156054258347,
0.053724925965070724,
-0.13120363652706146,
0.00466286763548851,
-0.015246815048158169,
0.17014820873737335,
0.08964069187641144,
0.05222717300057411,
0.06265474855899811,
-0.0020888058934360743,
-0.06708643585443497,
0.045407816767692566,
0.13778303563594818,
-0.037020038813352585,
-0.12218865007162094,
-0.1755627691745758,
0.051157694309949875,
-0.045444171875715256,
0.10855234414339066,
-0.10010123997926712,
0.022670533508062363,
-0.055906031280756,
0.07772238552570343,
-0.024998966604471207,
0.020512236282229424,
-0.0013405600329861045,
-0.021700702607631683,
-0.08356887847185135,
-0.002377772703766823,
0.08597290515899658,
-0.02048647589981556,
-0.06707409024238586,
0.16556480526924133,
-0.16400809586048126,
0.1631954461336136,
0.2116095870733261,
-0.28542569279670715,
-0.005696662236005068,
-0.15163889527320862,
-0.0208092350512743,
0.019645055755972862,
0.07834604382514954,
0.026225795969367027,
0.2044338881969452,
-0.012928472831845284,
0.16565458476543427,
-0.05699567869305611,
-0.07730039209127426,
-0.06881127506494522,
-0.048101142048835754,
0.013522743247449398,
0.09095205366611481,
0.04542696103453636,
-0.11962861567735672,
0.13119758665561676,
0.1054433062672615,
0.06484298408031464,
0.12711186707019806,
0.1030748188495636,
-0.008113685995340347,
0.07252490520477295,
-0.03624548763036728,
-0.03462279960513115,
-0.09254947304725647,
-0.30446043610572815,
-0.04840317741036415,
0.0939924493432045,
0.007963384501636028,
0.09285714477300644,
-0.0919896736741066,
-0.03311870992183685,
0.006042704917490482,
0.009473444893956184,
0.028337622061371803,
0.09653715789318085,
0.013490920886397362,
0.15320514142513275,
-0.008011690340936184,
-0.03430786728858948,
0.05891305208206177,
0.017982570454478264,
-0.09147711098194122,
0.17280617356300354,
-0.17050009965896606,
-0.27190929651260376,
-0.06990014761686325,
-0.21745692193508148,
-0.013139115646481514,
0.05258983001112938,
0.0786920040845871,
-0.11818131804466248,
-0.018352627754211426,
-0.006239492911845446,
0.05685517191886902,
-0.2425733357667923,
0.0004911290016025305,
-0.1354890614748001,
0.0501418262720108,
-0.1974833607673645,
-0.09718500077724457,
-0.02271542325615883,
-0.013450481928884983,
-0.0464281290769577,
0.13365240395069122,
-0.1448695808649063,
-0.011572926305234432,
0.2329535037279129,
0.032479673624038696,
0.027794739231467247,
-0.05020907148718834,
0.19788463413715363,
-0.0958966314792633,
-0.023973820731043816,
0.11024576425552368,
-0.05038975924253464,
0.04834126681089401,
0.06649978458881378,
-0.012981836684048176,
-0.08557141572237015,
0.023789849132299423,
-0.068336620926857,
-0.03150583803653717,
-0.27926525473594666,
-0.0930178239941597,
-0.09319330751895905,
0.11305391043424606,
0.04079577326774597,
0.06421639025211334,
0.16545771062374115,
0.05191578343510628,
-0.024325082078576088,
-0.03006586618721485,
0.11609793454408646,
0.12905290722846985,
0.2277202159166336,
-0.06067761778831482,
0.10221996158361435,
0.009445492178201675,
-0.08203992247581482,
0.06062209978699684,
0.056782789528369904,
0.06324724853038788,
0.02584579586982727,
0.03694582358002663,
-0.030939655378460884,
0.1121687963604927,
0.12571842968463898,
0.05258069559931755,
0.0481170229613781,
0.0002127334737451747,
-0.0561506561934948,
-0.008168719708919525,
-0.05726633965969086,
0.06774696707725525,
0.061340972781181335,
-0.12918008863925934,
-0.08061543852090836,
0.0011613310780376196,
0.06660808622837067,
-0.016230419278144836,
0.06823775917291641,
-0.13560809195041656,
-0.03582429885864258,
0.0790911465883255,
-0.07693151384592056,
-0.14156894385814667,
0.11972879618406296,
-0.026570770889520645,
-0.19904157519340515,
0.05265914276242256,
0.007704653777182102,
0.0908159390091896,
-0.06360849738121033,
0.05343840271234512,
-0.13023801147937775,
-0.12935101985931396,
-0.018437571823596954,
0.07945099472999573,
-0.3450873792171478,
0.13536721467971802,
-0.013286802917718887,
-0.02876877970993519,
-0.06474969536066055,
-0.02640824392437935,
0.013905409723520279,
0.12719078361988068,
0.08667250722646713,
0.0008821099763736129,
0.0991629809141159,
0.03823768347501755,
0.04188435152173042,
-0.002011700300499797,
0.10950417071580887,
0.0050011589191854,
0.004797275178134441,
-0.04982118681073189,
0.007274609990417957,
-0.05164213851094246,
-0.07472953200340271,
0.08393982797861099,
-0.20678792893886566,
0.09087453782558441,
-0.03378438204526901,
0.08427679538726807,
0.04304937273263931,
-0.018965769559144974,
-0.1001204177737236,
0.19745583832263947,
-0.012206900864839554,
-0.11405988782644272,
-0.07517550885677338,
-0.02810264565050602,
0.09103139489889145,
-0.013817726634442806,
0.012886416167020798,
-0.045470476150512695,
0.032183047384023666,
-0.1263762265443802,
-0.1597503274679184,
0.08734500408172607,
-0.04441224783658981,
-0.10894393920898438,
-0.025462759658694267,
0.20382575690746307,
-0.007266622502356768,
0.08242089301347733,
0.01605331338942051,
0.010653935372829437,
-0.18066231906414032,
-0.04018142446875572,
0.02645772136747837,
-0.0016437612939625978,
0.005979063920676708,
0.047698814421892166,
0.019091911613941193,
0.06207629665732384,
-0.1069745197892189,
-0.013920160941779613,
0.3158324360847473,
0.15978319942951202,
-0.00912671908736229,
0.14943915605545044,
0.1093616932630539,
-0.08669080585241318,
-0.17238758504390717,
-0.1171615794301033,
-0.1210922971367836,
-0.08425768464803696,
-0.10681738704442978,
-0.1525043100118637,
0.09535340964794159,
-0.03392014652490616,
0.03498011827468872,
0.14615866541862488,
-0.280263751745224,
-0.10949636250734329,
0.13820378482341766,
0.010744688101112843,
0.3510635495185852,
-0.12303631007671356,
-0.044944874942302704,
-0.06214528530836105,
-0.16933435201644897,
0.08021392673254013,
-0.031203703954815865,
0.11581093072891235,
-0.0744495838880539,
0.19395925104618073,
0.01719796098768711,
0.014287159778177738,
0.0916559100151062,
0.05038322135806084,
-0.05808406323194504,
-0.07368700206279755,
-0.10248131304979324,
0.010812131687998772,
0.03546109423041344,
0.010252019390463829,
-0.008802837692201138,
0.0211968794465065,
-0.11341743916273117,
-0.050869911909103394,
-0.06302189081907272,
0.0072614275850355625,
-0.01001308299601078,
-0.042155615985393524,
-0.05533592775464058,
-0.022557416930794716,
-0.020093943923711777,
0.02266426384449005,
0.14185629785060883,
-0.07527699321508408,
0.18586260080337524,
0.02357078716158867,
0.1586609035730362,
-0.11956068128347397,
-0.06724818795919418,
-0.029193658381700516,
-0.05280323326587677,
0.06468886137008667,
-0.08884575963020325,
-0.027708567678928375,
0.1332162618637085,
-0.01903904788196087,
0.04655366763472557,
0.12936700880527496,
0.02046884410083294,
0.015383756719529629,
0.034968774765729904,
-0.2578005790710449,
-0.07463036477565765,
-0.03505445644259453,
-0.012416874058544636,
0.05272092670202255,
0.05525677278637886,
0.19735674560070038,
-0.03551921248435974,
-0.08521962910890579,
0.020131373777985573,
0.02735883742570877,
-0.02776256389915943,
0.10749414563179016,
0.019579345360398293,
-0.004837906453758478,
-0.16151933372020721,
0.08257976174354553,
-0.005964108742773533,
-0.08297000825405121,
0.028665626421570778,
0.2024049311876297,
-0.12141239643096924,
-0.10309756547212601,
-0.06804922968149185,
0.07315051555633545,
-0.09220825880765915,
0.016043387353420258,
-0.005091092549264431,
-0.1521538347005844,
0.06916408240795135,
0.07598215341567993,
0.04075418785214424,
0.06513199955224991,
-0.11743064224720001,
-0.015730571001768112,
-0.04170290008187294,
-0.002195435343310237,
0.03521120920777321,
0.01863143965601921,
-0.057492829859256744,
0.15846455097198486,
-0.0676199421286583,
0.08538917452096939,
-0.0744810476899147,
-0.1058846190571785,
-0.1395980566740036,
0.04660497233271599,
-0.08038312196731567,
-0.07247276604175568,
-0.12832807004451752,
-0.052204377949237823,
-0.0067099276930093765,
-0.03388519585132599,
0.006552806124091148,
-0.06627799570560455,
-0.10922821611166,
0.01822470687329769,
-0.00743203004822135,
-0.009385870769619942,
-0.06096754968166351,
0.026706209406256676,
0.06246216222643852,
-0.039788868278265,
0.15730851888656616,
0.22509248554706573,
-0.13591648638248444,
0.11564400047063828,
-0.09797432273626328,
-0.105463907122612,
0.046008042991161346,
0.009427277371287346,
0.03594303876161575,
0.0503489226102829,
-0.03594081476330757,
0.0044484552927315235,
0.03905477747321129,
0.08074651658535004,
0.08456914126873016,
-0.06776505708694458,
0.020801106467843056,
-0.05122765153646469,
-0.14904099702835083,
-0.016655439510941505,
-0.0464773029088974,
0.06876829266548157,
-0.006725262850522995,
0.11020535975694656,
-0.0515950471162796,
0.07739507406949997,
-0.07558431476354599,
0.050614211708307266,
0.021146971732378006,
-0.14688286185264587,
-0.006612539757043123,
-0.07093682140111923,
0.042144812643527985,
-0.008834975771605968,
0.20241086184978485,
-0.03228091076016426,
0.010342049412429333,
0.033811055123806,
0.06203942745923996,
-0.01957780309021473,
0.009357001632452011,
0.2014283686876297,
0.12640917301177979,
-0.08496357500553131,
-0.02679651789367199,
0.06793134659528732,
0.07248228788375854,
0.07093550264835358,
0.10807815194129944,
-0.015352966263890266,
0.028434239327907562,
0.07829629629850388,
-0.060215238481760025,
0.07576877623796463,
-0.08603982627391815,
-0.11668483167886734,
0.05793621391057968,
0.012955795042216778,
-0.055695828050374985,
0.20305177569389343,
0.19142870604991913,
-0.026278704404830933,
0.018410727381706238,
-0.0029499190859496593,
-0.10117456316947937,
-0.15619947016239166,
-0.05423750728368759,
-0.07170962542295456,
-0.1319410353899002,
-0.004549739416688681,
-0.16646917164325714,
0.022016216069459915,
-0.01132756657898426,
0.09506805986166,
-0.06855440139770508,
-0.01345991250127554,
0.1364889293909073,
-0.1055467277765274,
0.0847758799791336,
-0.024517204612493515,
0.07877567410469055,
-0.03746940940618515,
-0.018209461122751236,
-0.10342709720134735,
0.007514837197959423,
0.01131442841142416,
0.06840907037258148,
-0.10897937417030334,
0.02432350255548954,
-0.12208317965269089,
-0.08617185056209564,
-0.026142612099647522,
0.09279687702655792,
-0.0403008833527565,
0.15116846561431885,
0.02645145356655121,
-0.06710928678512573,
-0.004313822835683823,
0.2646709978580475,
-0.08046227693557739,
-0.08319197595119476,
-0.030799202620983124,
0.2152107208967209,
0.04053696244955063,
0.06396269053220749,
0.019140036776661873,
0.038027774542570114,
-0.07184682041406631,
0.2957373559474945,
0.34401440620422363,
-0.1318037211894989,
-0.007773484103381634,
0.04225075617432594,
0.04406323283910751,
0.14687567949295044,
0.07998795062303543,
0.11360671371221542,
0.2849363386631012,
-0.09197647124528885,
0.016657205298542976,
-0.04230864346027374,
-0.01424806285649538,
-0.06908884644508362,
0.045314885675907135,
0.08216670155525208,
-0.09241747111082077,
-0.022950593382120132,
0.08125471323728561,
-0.29741767048835754,
0.10791494697332382,
-0.15600289404392242,
-0.14948409795761108,
-0.05027429759502411,
-0.008771711029112339,
0.014683255925774574,
0.019041186198592186,
0.09663030505180359,
0.025651484727859497,
-0.07275258749723434,
0.07816889137029648,
0.024486342445015907,
-0.23020237684249878,
-0.01345184724777937,
0.1456068754196167,
-0.06789913028478622,
-0.025938833132386208,
-0.021313713863492012,
0.051610056310892105,
0.05763651058077812,
0.09027529507875443,
-0.03809558227658272,
-0.0746568813920021,
-0.007141788024455309,
-0.022818787023425102,
0.01914946548640728,
0.0597183033823967,
0.06841408461332321,
-0.0920223817229271,
0.1167774423956871,
-0.07350476831197739,
0.0650370642542839,
0.037623800337314606,
-0.022277191281318665,
0.0018526542698964477,
0.013183658011257648,
-0.06512464582920074,
0.05533479526638985,
0.1295643299818039,
-0.025459708645939827,
-0.002524374984204769,
-0.028180841356515884,
-0.0767761766910553,
-0.024015206843614578,
-0.04643676429986954,
-0.09101243317127228,
-0.18130090832710266,
-0.12738600373268127,
0.041754670441150665,
-0.03240608796477318,
-0.2046082615852356,
0.0060346988029778,
-0.1128578633069992,
0.03700976446270943,
-0.14154092967510223,
0.10004086047410965,
0.07216610759496689,
0.004716616589576006,
0.006774604320526123,
0.0675399899482727,
0.045677728950977325,
0.14796748757362366,
-0.16543124616146088,
-0.04919974133372307
] |
null | null | transformers |
# wav2vec2-large-xlsr-53-Czech
Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) in Czech using the [Common Voice](https://huggingface.co/datasets/common_voice)
When using this model, make sure that your speech input is sampled at 16kHz.
## Usage
The model can be used directly (without a language model) as follows:
```python
import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
test_dataset = load_dataset("common_voice", "cs", split="test[:2%]")
processor = Wav2Vec2Processor.from_pretrained("MehdiHosseiniMoghadam/wav2vec2-large-xlsr-53-Czech")
model = Wav2Vec2ForCTC.from_pretrained("MehdiHosseiniMoghadam/wav2vec2-large-xlsr-53-Czech")
resampler = torchaudio.transforms.Resample(48_000, 16_000)
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
print("Prediction:", processor.batch_decode(predicted_ids))
print("Reference:", test_dataset["sentence"][:2])
```
## Evaluation
The model can be evaluated as follows on the Czech test data of Common Voice.
```python
import torch
import torchaudio
from datasets import load_dataset, load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import re
test_dataset = load_dataset("common_voice", "cs", split="test")
wer = load_metric("wer")
processor = Wav2Vec2Processor.from_pretrained("MehdiHosseiniMoghadam/wav2vec2-large-xlsr-53-Czech")
model = Wav2Vec2ForCTC.from_pretrained("MehdiHosseiniMoghadam/wav2vec2-large-xlsr-53-Czech")
model.to("cuda")
chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\%\‘\”\�]'
resampler = torchaudio.transforms.Resample(48_000, 16_000)
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def speech_file_to_array_fn(batch):
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def evaluate(batch):
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
pred_ids = torch.argmax(logits, dim=-1)
batch["pred_strings"] = processor.batch_decode(pred_ids)
return batch
result = test_dataset.map(evaluate, batched=True, batch_size=8)
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
```
**Test Result**: 27.047806 %
## Training
The Common Voice `train`, `validation` datasets were used for training. | {"language": "cs", "license": "apache-2.0", "tags": ["audio", "automatic-speech-recognition", "speech", "xlsr-fine-tuning-week"], "datasets": ["common_voice"], "model-index": [{"name": "wav2vec2-large-xlsr-53-Czech by Mehdi Hosseini Moghadam", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice cs", "type": "common_voice", "args": "cs"}, "metrics": [{"type": "wer", "value": 27.047806, "name": "Test WER"}]}]}]} | automatic-speech-recognition | MehdiHosseiniMoghadam/wav2vec2-large-xlsr-53-Czech | [
"transformers",
"pytorch",
"jax",
"wav2vec2",
"automatic-speech-recognition",
"audio",
"speech",
"xlsr-fine-tuning-week",
"cs",
"dataset:common_voice",
"license:apache-2.0",
"model-index",
"endpoints_compatible",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [
"cs"
] | TAGS
#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #cs #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us
|
# wav2vec2-large-xlsr-53-Czech
Fine-tuned facebook/wav2vec2-large-xlsr-53 in Czech using the Common Voice
When using this model, make sure that your speech input is sampled at 16kHz.
## Usage
The model can be used directly (without a language model) as follows:
## Evaluation
The model can be evaluated as follows on the Czech test data of Common Voice.
Test Result: 27.047806 %
## Training
The Common Voice 'train', 'validation' datasets were used for training. | [
"# wav2vec2-large-xlsr-53-Czech\n\nFine-tuned facebook/wav2vec2-large-xlsr-53 in Czech using the Common Voice\n\nWhen using this model, make sure that your speech input is sampled at 16kHz.",
"## Usage\n\nThe model can be used directly (without a language model) as follows:",
"## Evaluation\n\nThe model can be evaluated as follows on the Czech test data of Common Voice.\n\n\n\nTest Result: 27.047806 %",
"## Training\n\nThe Common Voice 'train', 'validation' datasets were used for training."
] | [
"TAGS\n#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #cs #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us \n",
"# wav2vec2-large-xlsr-53-Czech\n\nFine-tuned facebook/wav2vec2-large-xlsr-53 in Czech using the Common Voice\n\nWhen using this model, make sure that your speech input is sampled at 16kHz.",
"## Usage\n\nThe model can be used directly (without a language model) as follows:",
"## Evaluation\n\nThe model can be evaluated as follows on the Czech test data of Common Voice.\n\n\n\nTest Result: 27.047806 %",
"## Training\n\nThe Common Voice 'train', 'validation' datasets were used for training."
] | [
80,
62,
20,
29,
23
] | [
"passage: TAGS\n#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #cs #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us \n# wav2vec2-large-xlsr-53-Czech\n\nFine-tuned facebook/wav2vec2-large-xlsr-53 in Czech using the Common Voice\n\nWhen using this model, make sure that your speech input is sampled at 16kHz.## Usage\n\nThe model can be used directly (without a language model) as follows:## Evaluation\n\nThe model can be evaluated as follows on the Czech test data of Common Voice.\n\n\n\nTest Result: 27.047806 %## Training\n\nThe Common Voice 'train', 'validation' datasets were used for training."
] | [
-0.16852886974811554,
0.015503785572946072,
-0.002406261395663023,
-0.005567652639001608,
0.09871050715446472,
-0.03764338418841362,
0.16003742814064026,
0.0876755341887474,
0.031217176467180252,
0.005021300166845322,
0.04356770217418671,
0.04409610852599144,
0.02193625643849373,
0.08105894178152084,
0.027791328728199005,
-0.2131883203983307,
0.05883003771305084,
0.011795686557888985,
0.061937279999256134,
0.1102779284119606,
0.10448101907968521,
-0.07586314529180527,
-0.049388255923986435,
0.11179859191179276,
-0.1431998759508133,
0.016914786770939827,
0.04391184449195862,
-0.10626204311847687,
0.15942412614822388,
0.051886118948459625,
0.050174832344055176,
0.0436578243970871,
0.08484763652086258,
-0.1652155965566635,
0.009824521839618683,
0.0010799558367580175,
-0.0024765522684901953,
0.01777123473584652,
0.05775459483265877,
-0.020726097747683525,
0.16640615463256836,
0.014304549433290958,
-0.024370737373828888,
0.04878045991063118,
-0.03770358860492706,
-0.25197339057922363,
-0.0014571762876585126,
0.0006471591768786311,
0.10568566620349884,
0.14946779608726501,
-0.06803299486637115,
0.13985177874565125,
-0.1544109731912613,
0.1084815040230751,
0.049318429082632065,
-0.22906829416751862,
0.0003483002947177738,
0.08676876127719879,
0.03620127588510513,
0.09921221435070038,
-0.060856521129608154,
0.045934125781059265,
0.022258155047893524,
0.02221156656742096,
0.03886399045586586,
-0.02721392922103405,
-0.14919660985469818,
-0.01523699052631855,
-0.16967196762561798,
-0.0488874651491642,
0.1725025475025177,
-0.02185382880270481,
-0.046126894652843475,
-0.14491814374923706,
0.0004261158173903823,
-0.010802950710058212,
-0.006693921983242035,
-0.042748697102069855,
-0.012470751069486141,
0.0012450406793504953,
0.0073603736236691475,
-0.032852187752723694,
-0.10471265763044357,
-0.14035473763942719,
0.02870921790599823,
0.11755979806184769,
0.015571696683764458,
0.012003406882286072,
-0.05527573451399803,
0.0688696950674057,
-0.03708868846297264,
-0.053541164845228195,
-0.008081511594355106,
0.04531552270054817,
-0.10708856582641602,
0.017992133274674416,
-0.11404255032539368,
-0.11258966475725174,
0.03460792079567909,
-0.04628860577940941,
0.05482220649719238,
0.01913658156991005,
0.021861618384718895,
0.05698542296886444,
0.020061563700437546,
0.14455777406692505,
-0.08691715449094772,
0.017462197691202164,
-0.016630059108138084,
-0.029545770958065987,
-0.03872650861740112,
-0.026381224393844604,
-0.12795935571193695,
-0.11358200758695602,
0.05980243533849716,
0.07249566167593002,
-0.06940784305334091,
0.030646642670035362,
-0.0021228736732155085,
-0.03231397643685341,
-0.00408810144290328,
-0.0798376277089119,
-0.031618405133485794,
0.0745464414358139,
-0.0031611670274287462,
0.13650140166282654,
-0.0024392269551753998,
0.030944399535655975,
-0.10562484711408615,
0.007589315064251423,
0.017647620290517807,
0.05899070203304291,
-0.04633935168385506,
-0.13192230463027954,
0.021481448784470558,
-0.045768748968839645,
-0.001901464187540114,
-0.08276144415140152,
-0.024572743102908134,
-0.06859873980283737,
-0.009360343217849731,
0.04077877104282379,
-0.01878390647470951,
-0.13331781327724457,
-0.03865915536880493,
-0.007910015992820263,
-0.05726053938269615,
0.03447367250919342,
-0.045600857585668564,
0.061028894037008286,
-0.030293043702840805,
0.0439387708902359,
-0.0020861546508967876,
0.053773269057273865,
-0.09214114397764206,
-0.06947482377290726,
0.0000833189333206974,
0.10867668688297272,
-0.08243990689516068,
-0.08079013228416443,
-0.05615086108446121,
-0.08102159947156906,
0.026840541511774063,
0.07443252205848694,
0.05116891488432884,
0.08134198933839798,
-0.22968065738677979,
-0.09625136852264404,
0.20419606566429138,
-0.12015028297901154,
-0.008766292594373226,
0.20842109620571136,
0.0018983607878908515,
0.06407299637794495,
0.14084970951080322,
0.2333490252494812,
0.1674194633960724,
-0.19722361862659454,
0.02398061566054821,
0.018190570175647736,
-0.011337204836308956,
-0.07523475587368011,
0.06853563338518143,
-0.04039949178695679,
0.0005215403507463634,
0.04634527489542961,
-0.12837842106819153,
0.07966859638690948,
-0.03073829971253872,
-0.05822385847568512,
-0.009432890452444553,
-0.08586785942316055,
0.08848382532596588,
0.03159083425998688,
0.02377711981534958,
-0.04434552416205406,
-0.07294298708438873,
0.074898861348629,
0.12802082300186157,
-0.13578781485557556,
0.05287519097328186,
-0.10957887023687363,
0.06977406144142151,
-0.1064525619149208,
-0.017460118979215622,
-0.143218532204628,
0.15482273697853088,
-0.004778621252626181,
0.007752591278403997,
0.048002373427152634,
0.20172013342380524,
0.0169709250330925,
0.006801800336688757,
-0.045953936874866486,
-0.016361303627490997,
-0.01979070156812668,
-0.0024971235543489456,
-0.027540575712919235,
-0.10943702608346939,
-0.03312937542796135,
-0.05831001326441765,
0.12045034021139145,
-0.07968977838754654,
-0.01753825508058071,
0.05019402131438255,
0.003274640068411827,
-0.037496376782655716,
0.00009871257498161867,
0.025518856942653656,
0.11657509207725525,
0.0368829071521759,
0.02764376811683178,
0.06558693945407867,
0.020076042041182518,
-0.06235934793949127,
0.12509284913539886,
-0.14869703352451324,
-0.0293106772005558,
0.11494428664445877,
-0.044572822749614716,
-0.0014174004318192601,
0.02739531546831131,
-0.016107724979519844,
0.0047306097112596035,
-0.038944002240896225,
-0.03357632830739021,
0.2917839586734772,
-0.013470618054270744,
0.07329677045345306,
-0.07770074158906937,
0.0028586136177182198,
0.046564627438783646,
-0.07449672371149063,
0.033763863146305084,
0.07564768940210342,
0.0442376434803009,
0.018321359530091286,
0.04083351790904999,
-0.0635877251625061,
-0.124315045773983,
0.2450629025697708,
-0.024635320529341698,
-0.11166824400424957,
0.01835850439965725,
-0.035015497356653214,
-0.015732860192656517,
0.13617190718650818,
-0.19777128100395203,
-0.05251312255859375,
0.03693842887878418,
0.05533847585320473,
0.0844581201672554,
-0.12486124038696289,
0.029510771855711937,
-0.0022310279309749603,
-0.1442001760005951,
-0.1565394401550293,
0.06832290440797806,
-0.05799229070544243,
0.046922821551561356,
-0.09157512336969376,
-0.05896643549203873,
0.011750138364732265,
-0.04065346717834473,
-0.1685606688261032,
0.1111462414264679,
-0.10427643358707428,
-0.24174152314662933,
-0.1592089682817459,
0.05006520450115204,
0.00005617764691123739,
0.021684378385543823,
0.08912409842014313,
-0.1183241754770279,
-0.01966855116188526,
0.01223418302834034,
0.11393830925226212,
-0.005356358364224434,
-0.04199106618762016,
-0.0896567553281784,
0.01615975610911846,
0.05107230320572853,
-0.13839539885520935,
0.0070707364939153194,
-0.04603953659534454,
-0.0498693473637104,
0.004725855775177479,
-0.01810034178197384,
0.037697188556194305,
0.1649637520313263,
0.024610500782728195,
0.02277296967804432,
-0.029207607731223106,
0.15471428632736206,
-0.11114946752786636,
-0.041627220809459686,
0.1482764482498169,
-0.015449460595846176,
-0.04692421481013298,
0.06317322701215744,
0.019443415105342865,
-0.04279796779155731,
-0.02004398964345455,
-0.029169823974370956,
-0.08026999980211258,
-0.1938772052526474,
-0.18468478322029114,
-0.08033276349306107,
-0.05294972285628319,
-0.031015576794743538,
-0.01847907155752182,
0.06018237769603729,
0.006437686271965504,
-0.03588533028960228,
-0.14450162649154663,
0.021214401349425316,
-0.00593179976567626,
0.163561150431633,
-0.0034211359452456236,
0.09103105217218399,
-0.0450986884534359,
-0.029600465670228004,
-0.0058066220954060555,
0.00512358546257019,
0.13747473061084747,
0.04123085364699364,
0.11889517307281494,
0.06321791559457779,
0.1522524505853653,
0.09669868648052216,
0.11358337104320526,
-0.03031606785953045,
0.011329032480716705,
0.030773520469665527,
-0.05696086212992668,
-0.05602370947599411,
0.009060020558536053,
0.14937809109687805,
-0.06096632406115532,
-0.08751361817121506,
-0.05153573676943779,
0.03815019503235817,
0.1897660195827484,
0.06435859203338623,
-0.16591469943523407,
-0.1057918518781662,
-0.06526156514883041,
-0.04601883515715599,
-0.00747195677831769,
0.03157806023955345,
0.1482444852590561,
-0.14122389256954193,
-0.0038509743753820658,
-0.0008317948086187243,
0.07217741012573242,
0.006662553641945124,
0.04295416921377182,
-0.08364998549222946,
0.03431841731071472,
0.013540184125304222,
0.12349877506494522,
-0.29272595047950745,
0.22780798375606537,
0.0051685115322470665,
0.13199064135551453,
-0.08548911660909653,
-0.016283070668578148,
0.0006346391164697707,
0.06588827818632126,
0.10310675948858261,
0.028221262618899345,
0.030466509982943535,
-0.06428415328264236,
-0.08439735323190689,
0.06459279358386993,
-0.00986872985959053,
0.020761221647262573,
0.04684370383620262,
0.008495173417031765,
-0.0031761613208800554,
0.011385715566575527,
-0.053066082298755646,
-0.06856396794319153,
-0.07982876151800156,
0.015146949328482151,
0.146884024143219,
0.06316321343183517,
-0.002042570849880576,
-0.11278444528579712,
-0.1334153711795807,
0.044255275279283524,
-0.0707177221775055,
-0.05301640182733536,
-0.07220698148012161,
-0.0505254752933979,
0.12492935359477997,
-0.0700763389468193,
0.021015478298068047,
0.09622172266244888,
0.13208214938640594,
-0.04441770166158676,
-0.019987039268016815,
0.04946127161383629,
-0.10337052494287491,
-0.09428047388792038,
0.030482010915875435,
0.17767228186130524,
0.11590547114610672,
0.08925939351320267,
0.058610349893569946,
0.03196960687637329,
0.002375711454078555,
-0.04610946401953697,
-0.012435365468263626,
0.0981578677892685,
-0.13304124772548676,
-0.0036157493013888597,
0.008696820586919785,
-0.14667542278766632,
-0.11829136312007904,
-0.03561495617032051,
0.16993139684200287,
0.08000949770212173,
-0.088688425719738,
0.19750124216079712,
0.19229145348072052,
-0.07260533422231674,
-0.21520723402500153,
-0.0025722295977175236,
0.10513000190258026,
0.143657848238945,
-0.03735905513167381,
-0.1735527068376541,
0.05487356707453728,
-0.011632760986685753,
-0.03810901194810867,
-0.07634125649929047,
-0.22974146902561188,
-0.12834769487380981,
0.1570175141096115,
-0.017973484471440315,
0.1203688308596611,
0.05045853555202484,
-0.0005692595732398331,
-0.008300838060677052,
-0.006604557856917381,
0.021107958629727364,
-0.08748571574687958,
0.10189615935087204,
0.04826594144105911,
0.0840802863240242,
0.07288134843111038,
-0.03082670085132122,
0.11175696551799774,
0.09229764342308044,
-0.04120159521698952,
-0.0017760962946340442,
0.07951752096414566,
0.036028552800416946,
0.026237543672323227,
0.13578951358795166,
-0.12144774198532104,
0.042593926191329956,
-0.08124017715454102,
-0.10337597131729126,
-0.09502848982810974,
0.08835548162460327,
0.0005807169945910573,
-0.051684267818927765,
0.024198459461331367,
-0.022858301177620888,
0.02143814042210579,
-0.00695212185382843,
-0.0701942890882492,
-0.1419236958026886,
0.011112678796052933,
0.11112052947282791,
0.19990061223506927,
-0.05998971685767174,
-0.060027267783880234,
0.0003389650082681328,
-0.031825046986341476,
0.13546836376190186,
-0.003955402877181768,
0.040323540568351746,
0.08721444010734558,
0.03921780362725258,
0.08627574890851974,
0.013346401043236256,
-0.10113321989774704,
0.05036619305610657,
0.012976867146790028,
-0.08641356229782104,
-0.09434939175844193,
-0.006579906214028597,
-0.03300126641988754,
0.008173095993697643,
0.04588022828102112,
0.11984817683696747,
-0.09506893903017044,
-0.01447352860122919,
-0.034397125244140625,
-0.014111105352640152,
-0.12128201127052307,
0.2097637951374054,
0.009321792982518673,
0.07571291923522949,
-0.11318673938512802,
-0.00953320600092411,
-0.03628992289304733,
-0.10218604654073715,
0.04131672531366348,
-0.06041302904486656,
-0.10550611466169357,
-0.06996903568506241,
0.030394304543733597,
0.08473717421293259,
-0.0121512021869421,
-0.13997240364551544,
-0.0738108828663826,
-0.11668172478675842,
-0.0024809299502521753,
0.10933113843202591,
0.0949067622423172,
0.014896394684910774,
-0.12825234234333038,
-0.041512664407491684,
-0.13452202081680298,
0.05777958407998085,
0.04971318319439888,
-0.03835101053118706,
-0.09139629453420639,
0.23316824436187744,
0.04820925369858742,
0.014161837287247181,
-0.05162937194108963,
-0.050824135541915894,
-0.011514955200254917,
0.08158090710639954,
-0.10535477846860886,
-0.034278787672519684,
-0.03873151168227196,
0.006407571490854025,
-0.0017494530184194446,
-0.06693607568740845,
0.007037702947854996,
0.07903823256492615,
-0.10415605455636978,
0.0641149953007698,
-0.015070106834173203,
0.03943149372935295,
-0.04993129149079323,
0.04012191295623779,
0.006370559334754944,
-0.060351308435201645,
0.10083580017089844,
0.16685700416564941,
-0.08567694574594498,
0.17177626490592957,
-0.18286776542663574,
-0.009278408251702785,
0.04312928766012192,
0.08030831068754196,
0.0017473878106102347,
-0.08159271627664566,
0.033471934497356415,
0.10306476056575775,
0.06603048741817474,
0.011855699121952057,
0.06974591314792633,
-0.03801502287387848,
0.0165773443877697,
-0.02963782474398613,
-0.018691718578338623,
-0.032864440232515335,
0.05419592186808586,
0.05958418920636177,
0.1418270766735077,
0.18580490350723267,
-0.10290856659412384,
0.09938187897205353,
-0.0672074556350708,
0.013093712739646435,
-0.0606967955827713,
-0.0021719823125749826,
-0.13379037380218506,
-0.08533384650945663,
0.07586772739887238,
-0.04349793493747711,
0.12008443474769592,
0.019091127440333366,
0.09219501167535782,
-0.029839012771844864,
-0.09311903268098831,
0.04838994890451431,
-0.00038168145692907274,
0.27672311663627625,
0.03320954367518425,
0.04127749428153038,
-0.03140019252896309,
0.015488891862332821,
-0.025369226932525635,
0.10295117646455765,
-0.013439206406474113,
0.14238578081130981,
0.039102498441934586,
0.0801941528916359,
0.1333295851945877,
-0.04927672818303108,
-0.048378024250268936,
-0.0671628788113594,
-0.10049796104431152,
0.018872970715165138,
-0.059494391083717346,
0.20508527755737305,
0.11462117731571198,
-0.10142651200294495,
0.10039527714252472,
0.009661342948675156,
-0.08805573731660843,
-0.12492075562477112,
-0.09109251201152802,
-0.049551207572221756,
-0.17066887021064758,
0.020240608602762222,
-0.09415426850318909,
0.0008965565939433873,
0.02661369927227497,
0.05402741953730583,
-0.04604951664805412,
0.17258726060390472,
-0.011394424363970757,
-0.08123450726270676,
0.079947330057621,
-0.07333768159151077,
0.0016893562860786915,
-0.09688067436218262,
0.012766905128955841,
0.1353086531162262,
0.028097085654735565,
0.0650373324751854,
-0.010290388949215412,
-0.08262649178504944,
-0.024551065638661385,
-0.06026556342840195,
-0.050675708800554276,
0.000013785394912702031,
-0.035606302320957184,
0.09982606023550034,
0.1620158553123474,
0.10344082117080688,
-0.08665310591459274,
-0.030674297362565994,
0.12704193592071533,
-0.04134460538625717,
-0.1797332465648651,
-0.14637449383735657,
0.1593952775001526,
0.017343558371067047,
0.04899321123957634,
-0.0006282341782934964,
-0.017435986548662186,
-0.008040961809456348,
0.22094127535820007,
0.21884410083293915,
0.05900922790169716,
0.024377822875976562,
-0.03970862925052643,
-0.009505687281489372,
-0.009167756885290146,
0.08166547864675522,
0.044951438903808594,
0.23415614664554596,
-0.015678195282816887,
0.017144132405519485,
-0.11507872492074966,
-0.040929924696683884,
0.00951408687978983,
0.03323318064212799,
-0.06431858986616135,
-0.1332119107246399,
-0.012748902663588524,
0.1427905410528183,
-0.0592799074947834,
-0.06673786044120789,
-0.12048276513814926,
-0.05944625660777092,
-0.09480951726436615,
0.013326847925782204,
0.06467342376708984,
0.10505612194538116,
0.053867824375629425,
-0.08264902234077454,
0.03204656019806862,
0.12956656515598297,
0.00622926652431488,
-0.04243204742670059,
-0.08008314669132233,
0.05553460493683815,
-0.0903339833021164,
0.023542502894997597,
-0.000009828023394220509,
0.1771988868713379,
0.03987623378634453,
0.11261305958032608,
-0.009770351462066174,
0.14758911728858948,
-0.01629914529621601,
-0.1224614754319191,
0.06598168611526489,
0.11402326822280884,
-0.040699657052755356,
0.10031851381063461,
0.011232330463826656,
-0.17622613906860352,
0.07713394612073898,
-0.09748348593711853,
-0.003687103046104312,
-0.04823732003569603,
0.09232974797487259,
-0.03915686160326004,
0.07065209001302719,
0.11064963042736053,
-0.06684287637472153,
-0.05666732415556908,
-0.05523741617798805,
0.06449950486421585,
0.029532896354794502,
-0.05389237776398659,
-0.0410032719373703,
-0.2567853331565857,
-0.01457400806248188,
-0.1147901862859726,
-0.06482835114002228,
-0.17296262085437775,
-0.03119669482111931,
-0.00593831529840827,
-0.08593680709600449,
0.009416060522198677,
0.013055462390184402,
0.039597976952791214,
0.00811033509671688,
0.01054175104945898,
0.0640302523970604,
0.04439037665724754,
0.13248929381370544,
-0.16543307900428772,
-0.11593929678201675
] |
null | null | transformers |
# wav2vec2-large-xlsr-53-Dutch
Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) in Dutch using the [Common Voice](https://huggingface.co/datasets/common_voice)
When using this model, make sure that your speech input is sampled at 16kHz.
## Usage
The model can be used directly (without a language model) as follows:
```python
import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
test_dataset = load_dataset("common_voice", "nl", split="test[:2%]")
processor = Wav2Vec2Processor.from_pretrained("MehdiHosseiniMoghadam/wav2vec2-large-xlsr-53-Dutch")
model = Wav2Vec2ForCTC.from_pretrained("MehdiHosseiniMoghadam/wav2vec2-large-xlsr-53-Dutch")
resampler = torchaudio.transforms.Resample(48_000, 16_000)
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
print("Prediction:", processor.batch_decode(predicted_ids))
print("Reference:", test_dataset["sentence"][:2])
```
## Evaluation
The model can be evaluated as follows on the Dutch test data of Common Voice.
```python
import torch
import torchaudio
from datasets import load_dataset, load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import re
test_dataset = load_dataset("common_voice", "nl", split="test")
wer = load_metric("wer")
processor = Wav2Vec2Processor.from_pretrained("MehdiHosseiniMoghadam/wav2vec2-large-xlsr-53-Dutch")
model = Wav2Vec2ForCTC.from_pretrained("MehdiHosseiniMoghadam/wav2vec2-large-xlsr-53-Dutch")
model.to("cuda")
chars_to_ignore_regex = '[\\\\,\\\\?\\\\.\\\\!\\\\-\\\\;\\\\:\\\\"\\\\“]'
resampler = torchaudio.transforms.Resample(48_000, 16_000)
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def speech_file_to_array_fn(batch):
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def evaluate(batch):
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
pred_ids = torch.argmax(logits, dim=-1)
batch["pred_strings"] = processor.batch_decode(pred_ids)
return batch
result = test_dataset.map(evaluate, batched=True, batch_size=8)
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
```
**Test Result**: 26.494162 %
## Training
The Common Voice `train`, `validation` datasets were used for training. | {"language": "nl", "license": "apache-2.0", "tags": ["audio", "automatic-speech-recognition", "speech", "xlsr-fine-tuning-week"], "datasets": ["common_voice"], "model-index": [{"name": "wav2vec2-large-xlsr-53-Dutch by Mehdi Hosseini Moghadam", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice nl", "type": "common_voice", "args": "nl"}, "metrics": [{"type": "wer", "value": 26.494162, "name": "Test WER"}]}]}]} | automatic-speech-recognition | MehdiHosseiniMoghadam/wav2vec2-large-xlsr-53-Dutch | [
"transformers",
"pytorch",
"jax",
"wav2vec2",
"automatic-speech-recognition",
"audio",
"speech",
"xlsr-fine-tuning-week",
"nl",
"dataset:common_voice",
"license:apache-2.0",
"model-index",
"endpoints_compatible",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [
"nl"
] | TAGS
#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #nl #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us
|
# wav2vec2-large-xlsr-53-Dutch
Fine-tuned facebook/wav2vec2-large-xlsr-53 in Dutch using the Common Voice
When using this model, make sure that your speech input is sampled at 16kHz.
## Usage
The model can be used directly (without a language model) as follows:
## Evaluation
The model can be evaluated as follows on the Dutch test data of Common Voice.
Test Result: 26.494162 %
## Training
The Common Voice 'train', 'validation' datasets were used for training. | [
"# wav2vec2-large-xlsr-53-Dutch\n\nFine-tuned facebook/wav2vec2-large-xlsr-53 in Dutch using the Common Voice\n\nWhen using this model, make sure that your speech input is sampled at 16kHz.",
"## Usage\n\nThe model can be used directly (without a language model) as follows:",
"## Evaluation\n\nThe model can be evaluated as follows on the Dutch test data of Common Voice.\n\n\n\nTest Result: 26.494162 %",
"## Training\n\nThe Common Voice 'train', 'validation' datasets were used for training."
] | [
"TAGS\n#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #nl #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us \n",
"# wav2vec2-large-xlsr-53-Dutch\n\nFine-tuned facebook/wav2vec2-large-xlsr-53 in Dutch using the Common Voice\n\nWhen using this model, make sure that your speech input is sampled at 16kHz.",
"## Usage\n\nThe model can be used directly (without a language model) as follows:",
"## Evaluation\n\nThe model can be evaluated as follows on the Dutch test data of Common Voice.\n\n\n\nTest Result: 26.494162 %",
"## Training\n\nThe Common Voice 'train', 'validation' datasets were used for training."
] | [
80,
62,
20,
29,
23
] | [
"passage: TAGS\n#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #nl #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us \n# wav2vec2-large-xlsr-53-Dutch\n\nFine-tuned facebook/wav2vec2-large-xlsr-53 in Dutch using the Common Voice\n\nWhen using this model, make sure that your speech input is sampled at 16kHz.## Usage\n\nThe model can be used directly (without a language model) as follows:## Evaluation\n\nThe model can be evaluated as follows on the Dutch test data of Common Voice.\n\n\n\nTest Result: 26.494162 %## Training\n\nThe Common Voice 'train', 'validation' datasets were used for training."
] | [
-0.142166405916214,
-0.0007103766547515988,
-0.002958789234980941,
-0.015164967626333237,
0.05883505195379257,
-0.07614739239215851,
0.1497906595468521,
0.07574015855789185,
0.03369339928030968,
-0.021932879462838173,
0.01669103465974331,
0.056231673806905746,
0.03014451265335083,
0.05676192790269852,
0.02154962159693241,
-0.22965107858181,
0.048349134624004364,
0.012020116671919823,
0.06704165786504745,
0.12107979506254196,
0.11572974175214767,
-0.07715557515621185,
-0.013603451661765575,
0.11115127056837082,
-0.13153907656669617,
0.03969177231192589,
0.02842528745532036,
-0.11455950140953064,
0.1616656631231308,
0.058054618537425995,
0.06939996033906937,
0.06712222099304199,
0.07862597703933716,
-0.18367426097393036,
0.009591986425220966,
0.016075219959020615,
0.03654241934418678,
0.017639650031924248,
0.04912423714995384,
0.011548463255167007,
0.0936276987195015,
0.08001301437616348,
-0.03062053583562374,
0.05589757487177849,
-0.05125359445810318,
-0.2411857694387436,
-0.009154727682471275,
-0.004723967518657446,
0.10047245770692825,
0.13205349445343018,
-0.05928129702806473,
0.11148800700902939,
-0.14508448541164398,
0.09296197444200516,
0.11369670182466507,
-0.21989870071411133,
-0.003373183775693178,
0.07913615554571152,
0.0664195641875267,
0.05979150906205177,
-0.08667357265949249,
0.02611859142780304,
0.014621824957430363,
0.05306091904640198,
0.03087765723466873,
-0.057013947516679764,
-0.14826038479804993,
-0.021883906796574593,
-0.13999579846858978,
-0.032150622457265854,
0.18036459386348724,
-0.0025536955799907446,
-0.07272642105817795,
-0.1333664208650589,
0.0008765389793552458,
0.027006076648831367,
-0.01970059610903263,
-0.10253562033176422,
0.009592825546860695,
0.016113562509417534,
-0.03155219554901123,
-0.0411505252122879,
-0.0893164873123169,
-0.1211012676358223,
-0.019461913034319878,
0.12293803691864014,
0.021808624267578125,
0.0002348207199247554,
-0.07208327203989029,
0.07693766802549362,
-0.0764046236872673,
-0.05233743414282799,
-0.036165542900562286,
0.02137407846748829,
-0.05778692290186882,
0.03225807845592499,
-0.06447131931781769,
-0.13660527765750885,
0.023398520424962044,
-0.05141960084438324,
0.04055764898657799,
0.009254954755306244,
-0.04458225145936012,
0.0794372409582138,
0.018589520826935768,
0.11557546257972717,
-0.08965367823839188,
-0.010385444387793541,
0.006971393246203661,
-0.01472996361553669,
-0.055602457374334335,
-0.00044285200419835746,
-0.08151819556951523,
-0.05818746238946915,
0.04892535135149956,
0.047601815313100815,
-0.06316851824522018,
0.0035135045181959867,
-0.025782855227589607,
-0.05342787131667137,
0.02569734863936901,
-0.08472360670566559,
-0.025468675419688225,
0.04387621209025383,
0.008113392628729343,
0.12444280087947845,
0.042672816663980484,
0.045505911111831665,
-0.09178822487592697,
-0.016035957261919975,
0.019303711131215096,
0.04219748079776764,
-0.03680775314569473,
-0.11912858486175537,
0.0020353083964437246,
0.023556150496006012,
-0.034843809902668,
-0.09283262491226196,
-0.10011646896600723,
-0.06764691323041916,
-0.01010430883616209,
0.027842054143548012,
-0.01949765346944332,
-0.12177882343530655,
-0.03490317985415459,
-0.034284912049770355,
-0.0644306018948555,
0.03708862140774727,
-0.027469703927636147,
0.06057850643992424,
0.006391065660864115,
0.05818413570523262,
0.005137844942510128,
0.08084776252508163,
-0.09965609759092331,
-0.05281047895550728,
-0.028328318148851395,
0.13063377141952515,
-0.06760287284851074,
-0.11549059301614761,
-0.08367536962032318,
-0.11877268552780151,
-0.045758023858070374,
0.08421874791383743,
0.05860145762562752,
0.06861119717359543,
-0.22292934358119965,
-0.10277823358774185,
0.21729245781898499,
-0.12023337185382843,
-0.0029038803186267614,
0.1949211210012436,
-0.011346062645316124,
0.0951991081237793,
0.12538161873817444,
0.21799059212207794,
0.12277473509311676,
-0.18670512735843658,
0.05258939042687416,
0.04536985233426094,
0.0051321531645953655,
-0.055943701416254044,
0.05378022789955139,
-0.039957452565431595,
-0.04592176154255867,
0.04939334839582443,
-0.09211105853319168,
0.0793725922703743,
-0.04794103652238846,
-0.04522226005792618,
-0.005679658614099026,
-0.08141805231571198,
0.10376787930727005,
0.04183583706617355,
0.0056930663995444775,
-0.02574673481285572,
-0.05872875452041626,
0.12045019119977951,
0.11496948450803757,
-0.141764298081398,
0.033688366413116455,
-0.1085432693362236,
0.008482334204018116,
-0.08276722580194473,
-0.026260223239660263,
-0.13627471029758453,
0.14879772067070007,
-0.010534053668379784,
0.02837214805185795,
0.05643625929951668,
0.2283785343170166,
0.018253030255436897,
0.015824686735868454,
-0.060038138180971146,
-0.021697361022233963,
-0.018945753574371338,
-0.009675770998001099,
-0.018824806436896324,
-0.0836162343621254,
-0.036249641329050064,
-0.04561896622180939,
0.045180436223745346,
-0.11068514734506607,
-0.029041916131973267,
0.014528017491102219,
0.0117723997682333,
-0.0031361610163003206,
-0.0029916800558567047,
0.054061420261859894,
0.11512751877307892,
0.03454872965812683,
0.026898672804236412,
0.04511437192559242,
0.013436955399811268,
-0.026069801300764084,
0.15713723003864288,
-0.11181987076997757,
0.02554367110133171,
0.0907842144370079,
-0.0880914032459259,
0.011133049614727497,
0.08738099783658981,
-0.03843765705823898,
-0.0194837749004364,
-0.08890298753976822,
-0.05169206112623215,
0.2920354902744293,
0.0028209700249135494,
0.09403513371944427,
-0.0936083123087883,
-0.016894562169909477,
0.028682643547654152,
-0.0732739120721817,
0.06108943372964859,
0.07037349045276642,
-0.03226011246442795,
0.05888606607913971,
0.021436305716633797,
-0.04178764298558235,
-0.10333935171365738,
0.2060716599225998,
-0.012752129696309566,
-0.06190866976976395,
0.006663138046860695,
-0.0300455279648304,
-0.03779514506459236,
0.08110568672418594,
-0.19343061745166779,
-0.04109520465135574,
0.05146040394902229,
0.07475777715444565,
0.06065504625439644,
-0.13267448544502258,
0.019943077117204666,
0.004022460896521807,
-0.1354113519191742,
-0.09675022214651108,
0.06810460239648819,
-0.03113142028450966,
0.03586583584547043,
-0.10534685105085373,
-0.10214193910360336,
0.006068204529583454,
-0.05507817491889,
-0.153968945145607,
0.13561692833900452,
-0.07056982815265656,
-0.2933350205421448,
-0.1403796523809433,
0.020037749782204628,
-0.02251771278679371,
0.006616291590034962,
0.0926484614610672,
-0.08648835867643356,
-0.024214133620262146,
-0.01815818063914776,
0.0915956199169159,
0.006545490585267544,
-0.04313123971223831,
-0.08463917672634125,
0.00032448783167637885,
0.0689288005232811,
-0.17945846915245056,
-0.010986975394189358,
-0.05389386788010597,
-0.07658931612968445,
0.004103981889784336,
-0.006273338105529547,
0.004506447818130255,
0.18083155155181885,
0.026050863787531853,
0.017020180821418762,
-0.016738004982471466,
0.1796335130929947,
-0.08254797011613846,
-0.026752198114991188,
0.17132337391376495,
0.022113019600510597,
-0.016447437927126884,
0.070217564702034,
0.03902096301317215,
-0.06731575727462769,
-0.013514428399503231,
0.004704070743173361,
-0.06817204505205154,
-0.21582238376140594,
-0.14658354222774506,
-0.06976749002933502,
-0.06556728482246399,
-0.042401064187288284,
-0.003943553194403648,
0.09283408522605896,
-0.005254107993096113,
0.012833904474973679,
-0.06664474308490753,
0.035932138562202454,
-0.007697470020502806,
0.15603384375572205,
-0.016331158578395844,
0.11581015586853027,
-0.03601556271314621,
-0.06433255225419998,
0.011225163005292416,
0.018223244696855545,
0.13513846695423126,
0.05642075836658478,
0.054317817091941833,
0.10361942648887634,
0.11434948444366455,
0.09945662319660187,
0.10451442003250122,
-0.062953419983387,
-0.012321692891418934,
0.006826027296483517,
-0.06622658669948578,
-0.03488120436668396,
0.002011145232245326,
0.09728708863258362,
-0.025864481925964355,
-0.054662805050611496,
-0.06481549888849258,
0.025014137849211693,
0.17603477835655212,
0.08703421801328659,
-0.1650543212890625,
-0.08021340519189835,
-0.04709634184837341,
-0.09413135051727295,
-0.007235224358737469,
0.06964732706546783,
0.1657201498746872,
-0.14932559430599213,
-0.01189135666936636,
-0.0036737823393195868,
0.08986178040504456,
-0.035649511963129044,
0.05301468446850777,
-0.08590416610240936,
0.053246140480041504,
0.018737997859716415,
0.10223877429962158,
-0.27514082193374634,
0.24398870766162872,
-0.018684186041355133,
0.12068607658147812,
-0.048140451312065125,
-0.02544316090643406,
-0.005146871320903301,
0.06719651073217392,
0.13763485848903656,
0.047311123460531235,
0.03712420538067818,
-0.05681462958455086,
-0.058269038796424866,
0.05865759402513504,
-0.020779801532626152,
0.03971857950091362,
0.017240146175026894,
0.022920291870832443,
-0.013945544138550758,
0.016530264168977737,
-0.028449323028326035,
-0.13781659305095673,
-0.02353842556476593,
0.016680749133229256,
0.1503783017396927,
0.10448934137821198,
-0.027879254892468452,
-0.09172874689102173,
-0.11687639355659485,
0.09437833726406097,
-0.0950569286942482,
-0.04635610058903694,
-0.06247431039810181,
-0.04494909569621086,
0.09960898011922836,
-0.051065199077129364,
-0.016084114089608192,
0.10303720086812973,
0.12209988385438919,
-0.03997296467423439,
-0.019492384046316147,
0.06946064531803131,
-0.11596805602312088,
-0.08684492856264114,
-0.000688698492012918,
0.17254211008548737,
0.11462277173995972,
0.08011903613805771,
0.07248369604349136,
-0.004526067525148392,
0.008566087111830711,
-0.07929328829050064,
-0.0072602625004947186,
0.08204624056816101,
-0.14621050655841827,
-0.005743850953876972,
0.016774313524365425,
-0.08826722949743271,
-0.09310436993837357,
-0.018884368240833282,
0.1676030158996582,
0.053563956171274185,
-0.057425644248723984,
0.17413552105426788,
0.2257048636674881,
-0.08990217745304108,
-0.2342272698879242,
-0.03331909328699112,
0.10188335180282593,
0.11470992863178253,
-0.03049001656472683,
-0.17269152402877808,
0.11211450397968292,
0.023572225123643875,
-0.03659733384847641,
-0.11603373289108276,
-0.28903332352638245,
-0.14502377808094025,
0.18693958222866058,
-0.02864600345492363,
0.1690922975540161,
0.0456707589328289,
-0.01642860285937786,
-0.01843840442597866,
-0.06800489872694016,
0.023595504462718964,
-0.09723597764968872,
0.09758277982473373,
0.026148425415158272,
0.10250582545995712,
0.04749660938978195,
-0.009240620769560337,
0.08089960366487503,
0.13971969485282898,
0.00922465231269598,
0.019306102767586708,
0.08165726810693741,
0.03768642991781235,
0.044119227677583694,
0.15527409315109253,
-0.06648026406764984,
0.031013859435915947,
-0.10369764268398285,
-0.08917012810707092,
-0.12320634722709656,
0.09229514002799988,
0.02341369353234768,
-0.060454100370407104,
0.035703860223293304,
-0.015652375295758247,
0.023122340440750122,
0.022760553285479546,
-0.05041912943124771,
-0.12817440927028656,
0.029898229986429214,
0.17345009744167328,
0.21016693115234375,
-0.0639171227812767,
-0.12654948234558105,
-0.012363381683826447,
-0.022784722968935966,
0.12105395644903183,
-0.013230813667178154,
0.0418548583984375,
0.06939271837472916,
0.04800180718302727,
0.11836785823106766,
0.022155173122882843,
-0.09524174779653549,
0.042965758591890335,
0.01801265776157379,
-0.05806591361761093,
-0.14399836957454681,
-0.030383959412574768,
0.03574547916650772,
0.0016260667471215129,
0.03920391574501991,
0.11628971993923187,
-0.10048377513885498,
-0.018476292490959167,
-0.016463899984955788,
0.005833838135004044,
-0.14674648642539978,
0.20656141638755798,
0.03133971989154816,
0.09241054207086563,
-0.10782835632562637,
0.0029988924507051706,
-0.013413828797638416,
-0.05036434158682823,
0.019664956256747246,
-0.03520794212818146,
-0.07377760857343674,
-0.06256429851055145,
0.0023226370103657246,
0.10012354701757431,
0.017019545659422874,
-0.128785640001297,
-0.05170557275414467,
-0.11811316013336182,
-0.010287687182426453,
0.06321548670530319,
0.07240726798772812,
0.03309227153658867,
-0.11381194740533829,
-0.052444204688072205,
-0.09288961440324783,
0.06391406804323196,
0.0672079399228096,
-0.008037734776735306,
-0.07314921170473099,
0.1904647797346115,
0.044561922550201416,
0.06219205632805824,
-0.061921585351228714,
-0.07982073724269867,
-0.016854094341397285,
0.07600311189889908,
-0.11444250494241714,
-0.023601796478033066,
-0.04826030135154724,
-0.006757999304682016,
0.00014017391367815435,
-0.07123222947120667,
0.005333754699677229,
0.08262281864881516,
-0.10479554533958435,
0.06612065434455872,
0.016561834141612053,
0.05751008540391922,
-0.06702633947134018,
0.023334698751568794,
0.03557788208127022,
-0.05168838053941727,
0.07948435842990875,
0.11728371679782867,
-0.10264024138450623,
0.1320178210735321,
-0.1849803328514099,
-0.03536529839038849,
0.05752963200211525,
0.07192299515008926,
0.0061961286701262,
-0.10449402034282684,
0.029516879469156265,
0.10818389803171158,
0.07800710946321487,
-0.01063649170100689,
0.05278642475605011,
-0.07862713187932968,
0.026281509548425674,
-0.049211904406547546,
-0.028790587559342384,
-0.03097100928425789,
0.04247042536735535,
0.05032265931367874,
0.13333763182163239,
0.14483650028705597,
-0.11313097178936005,
0.07911501824855804,
-0.11634168028831482,
0.009709401056170464,
-0.037695884704589844,
-0.023627102375030518,
-0.081351138651371,
-0.08996964246034622,
0.05457870289683342,
-0.04016541317105293,
0.1418006867170334,
0.04792655259370804,
0.04818924888968468,
-0.03721914067864418,
-0.12995314598083496,
0.003866836428642273,
-0.0026049285661429167,
0.21909640729427338,
0.029600175097584724,
0.02732698805630207,
-0.035887740552425385,
-0.01953296549618244,
-0.020252835005521774,
0.1347760558128357,
0.025337032973766327,
0.1764317750930786,
0.05309077352285385,
0.06909789890050888,
0.12781710922718048,
-0.018322020769119263,
-0.09381428360939026,
-0.046556826680898666,
-0.05350467190146446,
0.04987422749400139,
-0.07007663697004318,
0.17089104652404785,
0.08168531954288483,
-0.10440148413181305,
0.1296645998954773,
0.03523042052984238,
-0.07978679984807968,
-0.14410720765590668,
-0.11680427193641663,
-0.05436345934867859,
-0.1841890662908554,
0.012044718489050865,
-0.11233725398778915,
0.02121099829673767,
0.023609403520822525,
0.06234852969646454,
-0.03430997207760811,
0.15218719840049744,
-0.04235469922423363,
-0.0757373794913292,
0.09693825989961624,
-0.09313443303108215,
0.005924997851252556,
-0.11831524223089218,
0.058678507804870605,
0.13114410638809204,
0.05512657016515732,
0.06815997511148453,
0.00867060199379921,
-0.0592210479080677,
-0.02256699465215206,
-0.06646888703107834,
-0.06723684817552567,
-0.014500816352665424,
-0.04055672511458397,
0.07752548158168793,
0.11159760504961014,
0.11709699779748917,
-0.08942262828350067,
-0.007114795967936516,
0.1111198291182518,
-0.062365587800741196,
-0.20330296456813812,
-0.12284868210554123,
0.20442605018615723,
0.03405042737722397,
0.04980626329779625,
0.0021375189535319805,
-0.020995546132326126,
-0.013904465362429619,
0.2292657345533371,
0.2090977281332016,
0.054863691329956055,
0.023896122351288795,
-0.01348874345421791,
-0.01621604524552822,
-0.02111494541168213,
0.04934319481253624,
0.07097111642360687,
0.27916157245635986,
-0.021960975602269173,
0.010422416031360626,
-0.08297349512577057,
-0.07944809645414352,
0.008291647769510746,
0.02850732021033764,
-0.050665177404880524,
-0.11558551341295242,
-0.02865961752831936,
0.13509130477905273,
-0.08298793435096741,
-0.09379991888999939,
-0.09735741466283798,
-0.03896410018205643,
-0.08502373844385147,
-0.01266495417803526,
0.009992658160626888,
0.11540103703737259,
0.03030015341937542,
-0.07389345020055771,
0.023051714524626732,
0.1826670616865158,
-0.003916359972208738,
-0.03602847456932068,
-0.059383291751146317,
0.04652641341090202,
-0.055027712136507034,
0.001975221559405327,
0.00744818476960063,
0.18017414212226868,
0.029459858313202858,
0.09405486285686493,
-0.005264162085950375,
0.14569392800331116,
-0.02118782140314579,
-0.06956856697797775,
0.029088446870446205,
0.15258480608463287,
-0.01164951827377081,
0.0998920351266861,
-0.00953281857073307,
-0.17846731841564178,
0.034496985375881195,
-0.09945898503065109,
-0.03204519674181938,
-0.08176448196172714,
0.04798128828406334,
-0.015204126015305519,
0.06590593606233597,
0.0990554466843605,
-0.05871961638331413,
-0.04250818490982056,
-0.05989839881658554,
0.06413941085338593,
0.003252304857596755,
-0.051636017858982086,
-0.040410105139017105,
-0.22132565081119537,
-0.004956743214279413,
-0.06567364186048508,
-0.03286535292863846,
-0.21477258205413818,
-0.03763583302497864,
0.01988108456134796,
-0.07866977900266647,
0.029559990391135216,
0.03197494521737099,
0.06625361740589142,
0.020653236657381058,
0.010062208399176598,
0.031516145914793015,
0.03075988031923771,
0.12268126010894775,
-0.13569527864456177,
-0.10254229605197906
] |
null | null | transformers |
# wav2vec2-large-xlsr-53-French
Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) in French using the [Common Voice](https://huggingface.co/datasets/common_voice)
When using this model, make sure that your speech input is sampled at 16kHz.
## Usage
The model can be used directly (without a language model) as follows:
```python
import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
test_dataset = load_dataset("common_voice", "fr", split="test[:2%]")
processor = Wav2Vec2Processor.from_pretrained("MehdiHosseiniMoghadam/wav2vec2-large-xlsr-53-French")
model = Wav2Vec2ForCTC.from_pretrained("MehdiHosseiniMoghadam/wav2vec2-large-xlsr-53-French")
resampler = torchaudio.transforms.Resample(48_000, 16_000)
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
print("Prediction:", processor.batch_decode(predicted_ids))
print("Reference:", test_dataset["sentence"][:2])
```
## Evaluation
The model can be evaluated as follows on the French test data of Common Voice.
```python
import torch
import torchaudio
from datasets import load_dataset, load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import re
test_dataset = load_dataset("common_voice", "fr", split="test[:10%]")
wer = load_metric("wer")
processor = Wav2Vec2Processor.from_pretrained("MehdiHosseiniMoghadam/wav2vec2-large-xlsr-53-French")
model = Wav2Vec2ForCTC.from_pretrained("MehdiHosseiniMoghadam/wav2vec2-large-xlsr-53-French")
model.to("cuda")
chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\%\‘\”\�]'
resampler = torchaudio.transforms.Resample(48_000, 16_000)
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def speech_file_to_array_fn(batch):
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def evaluate(batch):
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
pred_ids = torch.argmax(logits, dim=-1)
batch["pred_strings"] = processor.batch_decode(pred_ids)
return batch
result = test_dataset.map(evaluate, batched=True, batch_size=8)
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
```
**Test Result**: 34.856015 %
## Training
10% of the Common Voice `train`, `validation` datasets were used for training.
## Testing
10% of the Common Voice `Test` dataset were used for training. | {"language": "fr", "license": "apache-2.0", "tags": ["audio", "automatic-speech-recognition", "speech", "xlsr-fine-tuning-week"], "datasets": ["common_voice"], "model-index": [{"name": "wav2vec2-large-xlsr-53-French by Mehdi Hosseini Moghadam", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice fr", "type": "common_voice", "args": "fr"}, "metrics": [{"type": "wer", "value": 34.856015, "name": "Test WER"}]}]}]} | automatic-speech-recognition | MehdiHosseiniMoghadam/wav2vec2-large-xlsr-53-French | [
"transformers",
"pytorch",
"jax",
"wav2vec2",
"automatic-speech-recognition",
"audio",
"speech",
"xlsr-fine-tuning-week",
"fr",
"dataset:common_voice",
"license:apache-2.0",
"model-index",
"endpoints_compatible",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [
"fr"
] | TAGS
#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #fr #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us
|
# wav2vec2-large-xlsr-53-French
Fine-tuned facebook/wav2vec2-large-xlsr-53 in French using the Common Voice
When using this model, make sure that your speech input is sampled at 16kHz.
## Usage
The model can be used directly (without a language model) as follows:
## Evaluation
The model can be evaluated as follows on the French test data of Common Voice.
Test Result: 34.856015 %
## Training
10% of the Common Voice 'train', 'validation' datasets were used for training.
## Testing
10% of the Common Voice 'Test' dataset were used for training. | [
"# wav2vec2-large-xlsr-53-French \n\nFine-tuned facebook/wav2vec2-large-xlsr-53 in French using the Common Voice\n\nWhen using this model, make sure that your speech input is sampled at 16kHz.",
"## Usage\n\nThe model can be used directly (without a language model) as follows:",
"## Evaluation\n\nThe model can be evaluated as follows on the French test data of Common Voice.\n\n\n\nTest Result: 34.856015 %",
"## Training\n\n10% of the Common Voice 'train', 'validation' datasets were used for training.",
"## Testing\n\n10% of the Common Voice 'Test' dataset were used for training."
] | [
"TAGS\n#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #fr #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us \n",
"# wav2vec2-large-xlsr-53-French \n\nFine-tuned facebook/wav2vec2-large-xlsr-53 in French using the Common Voice\n\nWhen using this model, make sure that your speech input is sampled at 16kHz.",
"## Usage\n\nThe model can be used directly (without a language model) as follows:",
"## Evaluation\n\nThe model can be evaluated as follows on the French test data of Common Voice.\n\n\n\nTest Result: 34.856015 %",
"## Training\n\n10% of the Common Voice 'train', 'validation' datasets were used for training.",
"## Testing\n\n10% of the Common Voice 'Test' dataset were used for training."
] | [
80,
62,
20,
29,
25,
18
] | [
"passage: TAGS\n#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #fr #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us \n# wav2vec2-large-xlsr-53-French \n\nFine-tuned facebook/wav2vec2-large-xlsr-53 in French using the Common Voice\n\nWhen using this model, make sure that your speech input is sampled at 16kHz.## Usage\n\nThe model can be used directly (without a language model) as follows:## Evaluation\n\nThe model can be evaluated as follows on the French test data of Common Voice.\n\n\n\nTest Result: 34.856015 %## Training\n\n10% of the Common Voice 'train', 'validation' datasets were used for training.## Testing\n\n10% of the Common Voice 'Test' dataset were used for training."
] | [
-0.12650354206562042,
0.043782755732536316,
-0.0028005202766507864,
-0.014566348865628242,
0.04495466500520706,
-0.04574501886963844,
0.18512555956840515,
0.10603601485490799,
0.009683053940534592,
-0.010397164151072502,
0.03676145151257515,
0.014862395823001862,
0.002326483838260174,
0.05012214183807373,
0.01171914953738451,
-0.1081482544541359,
0.014832000248134136,
0.029713280498981476,
0.043758004903793335,
0.13763435184955597,
0.10860602557659149,
-0.06493718922138214,
0.00037694137427024543,
0.09132654219865799,
-0.12254326045513153,
0.056059349328279495,
0.05766061693429947,
-0.10745581239461899,
0.17761178314685822,
0.06081013008952141,
0.06718330085277557,
0.04451984167098999,
0.06647059321403503,
-0.2164338082075119,
0.01077246479690075,
0.042209986597299576,
0.028289111331105232,
0.02818896621465683,
0.05031006038188934,
-0.027798013761639595,
0.031019559130072594,
0.10397817939519882,
0.016502343118190765,
0.08449726551771164,
-0.03083498403429985,
-0.18069148063659668,
-0.045668285340070724,
-0.04177223518490791,
0.03927311673760414,
0.14845305681228638,
-0.060415856540203094,
0.13817815482616425,
-0.18315386772155762,
0.09275179356336594,
0.13027945160865784,
-0.18199877440929413,
-0.0035469781141728163,
0.09109924733638763,
0.0980091243982315,
0.05379612371325493,
-0.051344431936740875,
0.028773494064807892,
0.07674627006053925,
0.036456651985645294,
-0.027547037228941917,
-0.031628694385290146,
-0.14325876533985138,
-0.02698579430580139,
-0.12896102666854858,
-0.06390706449747086,
0.24559810757637024,
0.00325281941331923,
-0.09595384448766708,
-0.15141946077346802,
0.006321929860860109,
-0.010250675491988659,
0.006444856058806181,
-0.09004450589418411,
0.026279810816049576,
-0.0015932132955640554,
-0.03867550566792488,
-0.014544735662639141,
-0.08769430965185165,
-0.15964053571224213,
-0.009714058600366116,
0.016873525455594063,
0.030570901930332184,
-0.006991022266447544,
-0.07883957028388977,
0.08492685109376907,
-0.15378402173519135,
-0.030177075415849686,
-0.004963554907590151,
0.025454150512814522,
-0.06624335050582886,
-0.008864829316735268,
-0.07956413924694061,
-0.1548004448413849,
0.08412732928991318,
0.04192184656858444,
0.029965704306960106,
0.03112025372684002,
-0.08616305142641068,
0.04854313284158707,
0.03752435743808746,
0.11796621233224869,
-0.05292137712240219,
-0.029452363029122353,
0.003995755687355995,
0.05152381956577301,
-0.0810818150639534,
0.010951281525194645,
-0.035898737609386444,
-0.03082302398979664,
0.0724966824054718,
0.04772882163524628,
-0.004552995320409536,
-0.03821994736790657,
-0.028661297634243965,
-0.022379344329237938,
0.02763899229466915,
-0.11592743545770645,
-0.02642747387290001,
0.07679563760757446,
-0.005796777084469795,
0.0722135677933693,
0.035198770463466644,
0.05095285177230835,
-0.0567857064306736,
-0.0422285720705986,
0.020347274839878082,
0.00820562057197094,
-0.04202929139137268,
-0.11108392477035522,
-0.00414645578712225,
0.00005141430301591754,
-0.032756078988313675,
-0.05308616906404495,
-0.0860234797000885,
-0.11653660237789154,
0.012460999190807343,
0.03282107412815094,
-0.037598080933094025,
-0.11253460496664047,
-0.05697329342365265,
-0.023031027987599373,
-0.03743300586938858,
0.06398046761751175,
-0.03648931905627251,
0.06747158616781235,
0.012113525532186031,
0.010762849822640419,
0.06080421805381775,
0.06932433694601059,
-0.07930025458335876,
-0.03435012698173523,
0.002453151158988476,
0.1526062935590744,
-0.05224725231528282,
-0.11861229687929153,
-0.09234055876731873,
-0.11066808551549911,
-0.046959783881902695,
0.06771621853113174,
0.07570920884609222,
0.11551918834447861,
-0.2763320803642273,
-0.09378599375486374,
0.196097269654274,
-0.11662552505731583,
-0.01755775325000286,
0.25288429856300354,
-0.03377918526530266,
0.0804777666926384,
0.12884047627449036,
0.22116203606128693,
0.12296362221240997,
-0.1793949007987976,
0.0013301654253154993,
0.008695852011442184,
0.013796191662549973,
0.03453720733523369,
0.08274952322244644,
-0.0897192731499672,
-0.05916063115000725,
0.002279945183545351,
-0.051442768424749374,
0.012470110319554806,
-0.04638206958770752,
-0.053033456206321716,
-0.028764130547642708,
-0.05492180958390236,
0.13221661746501923,
0.07846731692552567,
-0.021782495081424713,
-0.06253830343484879,
-0.09511369466781616,
0.06004577502608299,
0.1127169132232666,
-0.1476379781961441,
0.03126426041126251,
-0.09873206913471222,
0.08651217073202133,
-0.08330859243869781,
-0.048780519515275955,
-0.14740245044231415,
0.13472966849803925,
0.018068507313728333,
-0.008715132251381874,
0.06614532321691513,
0.22159592807292938,
0.03384174406528473,
0.0037876395508646965,
-0.054278213530778885,
-0.02324400283396244,
-0.051133472472429276,
-0.024966947734355927,
-0.03180825710296631,
-0.13850226998329163,
0.0005689249956049025,
-0.06987091153860092,
0.11803857982158661,
-0.16386856138706207,
-0.008685179986059666,
-0.0011711108963936567,
-0.009244303219020367,
-0.021151775494217873,
-0.009198425337672234,
0.018330730497837067,
0.07512158900499344,
0.002181452699005604,
0.013841155916452408,
0.035067129880189896,
-0.008670774288475513,
-0.01534392312169075,
0.10259325057268143,
-0.12737518548965454,
-0.01983661949634552,
0.10537564754486084,
-0.03584025427699089,
-0.05365967005491257,
0.07957476377487183,
-0.05689598247408867,
-0.0053323423489928246,
-0.07436497509479523,
-0.02826174534857273,
0.29897546768188477,
-0.011929118074476719,
0.10000669956207275,
-0.12809236347675323,
-0.03771968558430672,
0.029683146625757217,
-0.06367381662130356,
0.06267882138490677,
0.08591223508119583,
-0.019401900470256805,
0.05474885553121567,
0.039834581315517426,
-0.036019466817379,
-0.0957237035036087,
0.2001720815896988,
-0.03066967986524105,
-0.0862949937582016,
0.010043805465102196,
-0.008573771454393864,
-0.04094180092215538,
0.10092099010944366,
-0.1798781454563141,
-0.022252768278121948,
0.03476425260305405,
0.07620243728160858,
0.06766317784786224,
-0.15048560500144958,
0.04462446644902229,
0.00728735513985157,
-0.1293598711490631,
-0.13397124409675598,
0.06613133102655411,
-0.029573502019047737,
0.05282486602663994,
-0.07578561455011368,
-0.08904525637626648,
0.001233602873980999,
-0.051476310938596725,
-0.18737566471099854,
0.14339861273765564,
-0.06848783046007156,
-0.17965279519557953,
-0.0857219323515892,
0.08144359290599823,
-0.012801188975572586,
0.00808813888579607,
0.10029450058937073,
-0.12390215694904327,
0.004000573884695768,
-0.05189284682273865,
-0.010691494680941105,
-0.012285498902201653,
-0.04128911718726158,
-0.07540315389633179,
0.008361752144992352,
0.06959443539381027,
-0.17156052589416504,
0.00753466272726655,
-0.0518752820789814,
-0.08850012719631195,
-0.03202666714787483,
-0.015690268948674202,
-0.004820681642740965,
0.1819237917661667,
-0.0029714242555201054,
-0.0020226750057190657,
-0.024080505594611168,
0.18817225098609924,
-0.1193142756819725,
-0.053193457424640656,
0.16291865706443787,
0.027067506685853004,
-0.037207845598459244,
0.09959275275468826,
0.02355634607374668,
-0.05432937294244766,
-0.015973201021552086,
0.02850613184273243,
-0.048431504517793655,
-0.28588154911994934,
-0.12208083271980286,
-0.035427745431661606,
-0.039679154753685,
-0.03588801622390747,
-0.0004110837762709707,
0.12180613726377487,
-0.0033041625283658504,
-0.008318120613694191,
-0.09658010303974152,
0.0678112581372261,
-0.01588129810988903,
0.15066933631896973,
-0.028585052117705345,
0.09979385137557983,
-0.048267826437950134,
-0.0487016998231411,
0.006771983113139868,
-0.006239378824830055,
0.12228208780288696,
0.05486598238348961,
0.04041969031095505,
0.114878349006176,
0.10300853848457336,
0.06595934927463531,
0.06471800059080124,
-0.042070742696523666,
0.0024034585803747177,
0.010348846204578876,
-0.05364300683140755,
-0.020237915217876434,
-0.000607830414082855,
0.15041053295135498,
-0.03376225382089615,
-0.04905726760625839,
-0.08237874507904053,
0.04158542677760124,
0.19084471464157104,
0.108370341360569,
-0.16695280373096466,
-0.0716058537364006,
-0.06489523500204086,
-0.09301736950874329,
-0.021764127537608147,
0.05911913141608238,
0.16781339049339294,
-0.16826120018959045,
0.004743415862321854,
-0.004055505618453026,
0.0872795507311821,
0.018002482131123543,
0.03688324987888336,
-0.04232344031333923,
0.008079871535301208,
0.003754070494323969,
0.10114407539367676,
-0.31035882234573364,
0.20721304416656494,
0.0007243218715302646,
0.10069330036640167,
-0.0487104170024395,
0.0019080876372754574,
-0.01150905154645443,
0.03387511894106865,
0.15270672738552094,
0.0008181041921488941,
0.07025546580553055,
-0.027243589982390404,
-0.06478956341743469,
0.06818626075983047,
-0.008096348494291306,
0.0471426285803318,
0.04279099404811859,
0.004213307984173298,
-0.007366562262177467,
0.01550290547311306,
-0.04898611456155777,
-0.17536528408527374,
-0.04889310896396637,
0.012751513160765171,
0.0740538164973259,
0.06599955260753632,
-0.023833204060792923,
-0.1021706834435463,
-0.16272029280662537,
0.08969023823738098,
-0.10099268704652786,
-0.02216528356075287,
-0.03494258597493172,
-0.06523832678794861,
0.15310876071453094,
-0.0166900884360075,
0.028495896607637405,
0.07727792859077454,
0.09568148106336594,
-0.04244571551680565,
0.00007127461140044034,
0.0310760997235775,
-0.12453588843345642,
-0.12296927720308304,
-0.02038385719060898,
0.2186906933784485,
0.08705112338066101,
0.11554637551307678,
0.0710669457912445,
0.019671231508255005,
-0.008057445287704468,
-0.048298418521881104,
-0.01133155170828104,
0.05051774904131889,
-0.12013407796621323,
0.04408344626426697,
0.011096164584159851,
-0.16057147085666656,
-0.12856386601924896,
-0.016160285100340843,
0.18678124248981476,
0.08528561890125275,
-0.06253331899642944,
0.1616147756576538,
0.18807414174079895,
-0.12297870218753815,
-0.18476100265979767,
0.011467069387435913,
0.11833557486534119,
0.10077747702598572,
-0.022425580769777298,
-0.15324752032756805,
0.046672362834215164,
-0.003883233293890953,
-0.029700597748160362,
-0.05384218692779541,
-0.30074256658554077,
-0.14975935220718384,
0.12959763407707214,
-0.06634987145662308,
0.09301731735467911,
0.021462609991431236,
-0.004613072145730257,
-0.012554348446428776,
0.012831888161599636,
0.016826936975121498,
-0.1056092232465744,
0.09289905428886414,
0.02851969376206398,
0.04597008228302002,
0.05748501047492027,
-0.03915663808584213,
0.07833876460790634,
0.07705677300691605,
0.017316289246082306,
0.04030090570449829,
0.045438434928655624,
0.05264798924326897,
0.047172412276268005,
0.13396014273166656,
-0.04051949828863144,
0.057443153113126755,
-0.06884944438934326,
-0.07995560020208359,
-0.0986369326710701,
0.0698041319847107,
-0.012013432569801807,
-0.016705095767974854,
-0.003991524688899517,
-0.013176499865949154,
0.03924531117081642,
0.009535891003906727,
-0.10459985584020615,
-0.13542360067367554,
0.09660524129867554,
0.12280604988336563,
0.23151612281799316,
-0.0015504119219258428,
-0.13623343408107758,
0.04664960503578186,
-0.015801353380084038,
0.09892605990171432,
-0.08438458293676376,
0.050723765045404434,
0.09877825528383255,
0.057163055986166,
0.12922656536102295,
0.018225202336907387,
-0.12858644127845764,
0.03403785824775696,
0.002679603174328804,
-0.06415019184350967,
-0.13318805396556854,
-0.007641227450221777,
-0.060419563204050064,
-0.07055392116308212,
0.012810444459319115,
0.09906717389822006,
-0.0811430811882019,
-0.03795364499092102,
-0.025276323780417442,
-0.0023978701792657375,
-0.1476689577102661,
0.23391008377075195,
0.013900907710194588,
0.07817505300045013,
-0.10020772367715836,
-0.009437520056962967,
-0.01179997157305479,
-0.08245197683572769,
0.050505541265010834,
-0.05030667409300804,
-0.05061992630362511,
-0.04682762920856476,
0.026336681097745895,
0.13837990164756775,
0.06657642126083374,
-0.12030435353517532,
-0.11029843240976334,
-0.09656200557947159,
0.00584004633128643,
0.1341080516576767,
0.06451025605201721,
0.021240118891000748,
-0.058692917227745056,
-0.07430054247379303,
-0.12739485502243042,
0.09560763835906982,
0.0763632133603096,
-0.023783765733242035,
-0.06185031682252884,
0.1609768271446228,
0.06673851609230042,
0.05248202010989189,
-0.04025672376155853,
-0.05034877359867096,
-0.013403194025158882,
0.08487646281719208,
-0.07905617356300354,
-0.02284233644604683,
-0.00883158016949892,
0.011435729451477528,
0.018605466932058334,
-0.05067722871899605,
-0.0042244731448590755,
0.055985648185014725,
-0.09512786567211151,
0.058464907109737396,
0.026090720668435097,
0.07096873223781586,
-0.08658844232559204,
0.057105422019958496,
0.03805750608444214,
-0.07550807297229767,
0.06773632019758224,
0.09233133494853973,
-0.08236312121152878,
0.09900563955307007,
-0.19773852825164795,
-0.06740600615739822,
0.014051222242414951,
0.07980838418006897,
-0.04721314087510109,
-0.17923030257225037,
0.045658886432647705,
0.10516874492168427,
0.0707826018333435,
0.012455490417778492,
0.054078567773103714,
-0.04679057002067566,
0.01082488615065813,
-0.03422859311103821,
-0.026136215776205063,
-0.03977226838469505,
0.05005768686532974,
0.031162593513727188,
0.13277247548103333,
0.1645503044128418,
-0.09719132632017136,
0.11416252702474594,
-0.13498787581920624,
-0.012424366548657417,
-0.04835958778858185,
0.006066569592803717,
-0.10810569673776627,
-0.05037011206150055,
0.07247252017259598,
-0.035609301179647446,
0.16405674815177917,
0.042947717010974884,
0.08247724920511246,
-0.018383843824267387,
-0.10454121977090836,
0.003957693465054035,
0.002715925918892026,
0.17237430810928345,
0.007714802399277687,
0.029777036979794502,
-0.026371963322162628,
-0.014097660779953003,
-0.028021356090903282,
0.10387403517961502,
-0.006456802133470774,
0.16657212376594543,
0.015238934196531773,
0.055708978325128555,
0.08093509078025818,
-0.0711822584271431,
0.012830842286348343,
0.02686111256480217,
-0.07095803320407867,
0.05664149671792984,
-0.05663025751709938,
0.19822467863559723,
0.08786160498857498,
-0.11626476794481277,
0.14610005915164948,
0.005454306956380606,
-0.08808470517396927,
-0.16493335366249084,
-0.05476999282836914,
-0.07732702046632767,
-0.1434279978275299,
0.02225249819457531,
-0.09545362740755081,
0.036981355398893356,
0.052310019731521606,
0.058123670518398285,
-0.031970612704753876,
0.15329642593860626,
-0.06764630973339081,
-0.08356903493404388,
0.07156989723443985,
-0.08085483312606812,
0.014480912126600742,
-0.11830512434244156,
0.060642700642347336,
0.16850094497203827,
-0.0012766357976943254,
0.0635739415884018,
-0.0018867761828005314,
-0.03369857743382454,
0.01836950145661831,
-0.05948004871606827,
-0.04182146117091179,
0.009944116696715355,
-0.029268978163599968,
0.11231996864080429,
0.14591461420059204,
0.10462603718042374,
-0.07180991023778915,
0.010352584533393383,
0.0824119821190834,
-0.0427960529923439,
-0.19124628603458405,
-0.17789886891841888,
0.19602541625499725,
0.009207474999129772,
0.014540405012667179,
0.0038467771373689175,
-0.024073930457234383,
0.035701584070920944,
0.22869646549224854,
0.22657161951065063,
0.06792718172073364,
0.0013995347544550896,
0.01896177977323532,
-0.01702042669057846,
-0.0012114450801163912,
-0.014560183510184288,
0.0653248280286789,
0.22140313684940338,
-0.042163725942373276,
0.02635257877409458,
-0.0736689418554306,
-0.05491545423865318,
0.04459106922149658,
0.06307028979063034,
-0.04135429114103317,
-0.11275365948677063,
0.010443564504384995,
0.1340143084526062,
0.002793282037600875,
-0.1367557793855667,
-0.06640256196260452,
-0.09956980496644974,
-0.0800778940320015,
-0.010716943070292473,
0.015176504850387573,
0.07152161002159119,
0.0006375325028784573,
-0.061096228659152985,
-0.004528623074293137,
0.12901975214481354,
-0.03628963604569435,
-0.038012709468603134,
-0.07690491527318954,
0.03803499415516853,
-0.10217499732971191,
0.08581147342920303,
0.01775543950498104,
0.2308521568775177,
0.04757019877433777,
0.051471903920173645,
-0.010377691127359867,
0.10710738599300385,
0.024309484288096428,
-0.07236126065254211,
0.02264229767024517,
0.12276511639356613,
0.0024319887161254883,
0.12400097399950027,
-0.005979088135063648,
-0.09774188697338104,
0.08101477473974228,
-0.1426035761833191,
-0.05446985736489296,
-0.1279747486114502,
0.09101208299398422,
-0.05136137083172798,
0.09579196572303772,
0.10941421985626221,
-0.05636388435959816,
-0.0004544108232948929,
-0.08637549728155136,
0.04556696489453316,
0.02007242478430271,
-0.04000949487090111,
-0.04943668842315674,
-0.25727930665016174,
0.05148586258292198,
-0.10457687079906464,
-0.049178194254636765,
-0.22149071097373962,
-0.023890523239970207,
0.04923243075609207,
-0.08393822610378265,
0.022113684564828873,
0.01511769276112318,
0.07486928999423981,
0.02451283670961857,
-0.007646029349416494,
0.027844415977597237,
0.014939922839403152,
0.13009607791900635,
-0.12789563834667206,
-0.08968805521726608
] |
null | null | transformers |
# wav2vec2-large-xlsr-53-Georgian
Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) in Georgian using the [Common Voice](https://huggingface.co/datasets/common_voice)
When using this model, make sure that your speech input is sampled at 16kHz.
## Usage
The model can be used directly (without a language model) as follows:
```python
import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
test_dataset = load_dataset("common_voice", "ka", split="test[:2%]")
processor = Wav2Vec2Processor.from_pretrained("MehdiHosseiniMoghadam/wav2vec2-large-xlsr-53-Georgian")
model = Wav2Vec2ForCTC.from_pretrained("MehdiHosseiniMoghadam/wav2vec2-large-xlsr-53-Georgian")
resampler = torchaudio.transforms.Resample(48_000, 16_000)
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
print("Prediction:", processor.batch_decode(predicted_ids))
print("Reference:", test_dataset["sentence"][:2])
```
## Evaluation
The model can be evaluated as follows on the Georgian test data of Common Voice.
```python
import torch
import torchaudio
from datasets import load_dataset, load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import re
test_dataset = load_dataset("common_voice", "ka", split="test")
wer = load_metric("wer")
processor = Wav2Vec2Processor.from_pretrained("MehdiHosseiniMoghadam/wav2vec2-large-xlsr-53-Georgian")
model = Wav2Vec2ForCTC.from_pretrained("MehdiHosseiniMoghadam/wav2vec2-large-xlsr-53-Georgian")
model.to("cuda")
chars_to_ignore_regex = '[\\,\\?\\.\\!\\-\\;\\:\\"\\“]'
resampler = torchaudio.transforms.Resample(48_000, 16_000)
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def speech_file_to_array_fn(batch):
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def evaluate(batch):
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
pred_ids = torch.argmax(logits, dim=-1)
batch["pred_strings"] = processor.batch_decode(pred_ids)
return batch
result = test_dataset.map(evaluate, batched=True, batch_size=8)
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
```
**Test Result**: 60.504024 %
## Training
The Common Voice `train`, `validation` datasets were used for training. | {"language": "ka", "license": "apache-2.0", "tags": ["audio", "automatic-speech-recognition", "speech", "xlsr-fine-tuning-week"], "datasets": ["common_voice"], "model-index": [{"name": "wav2vec2-large-xlsr-53-Georgian by Mehdi Hosseini Moghadam", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice ka", "type": "common_voice", "args": "ka"}, "metrics": [{"type": "wer", "value": 60.504024, "name": "Test WER"}]}]}]} | automatic-speech-recognition | MehdiHosseiniMoghadam/wav2vec2-large-xlsr-53-Georgian | [
"transformers",
"pytorch",
"jax",
"wav2vec2",
"automatic-speech-recognition",
"audio",
"speech",
"xlsr-fine-tuning-week",
"ka",
"dataset:common_voice",
"license:apache-2.0",
"model-index",
"endpoints_compatible",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [
"ka"
] | TAGS
#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #ka #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us
|
# wav2vec2-large-xlsr-53-Georgian
Fine-tuned facebook/wav2vec2-large-xlsr-53 in Georgian using the Common Voice
When using this model, make sure that your speech input is sampled at 16kHz.
## Usage
The model can be used directly (without a language model) as follows:
## Evaluation
The model can be evaluated as follows on the Georgian test data of Common Voice.
Test Result: 60.504024 %
## Training
The Common Voice 'train', 'validation' datasets were used for training. | [
"# wav2vec2-large-xlsr-53-Georgian \n\nFine-tuned facebook/wav2vec2-large-xlsr-53 in Georgian using the Common Voice\n\nWhen using this model, make sure that your speech input is sampled at 16kHz.",
"## Usage\n\nThe model can be used directly (without a language model) as follows:",
"## Evaluation\n\nThe model can be evaluated as follows on the Georgian test data of Common Voice.\n\n\n\nTest Result: 60.504024 %",
"## Training\n\nThe Common Voice 'train', 'validation' datasets were used for training."
] | [
"TAGS\n#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #ka #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us \n",
"# wav2vec2-large-xlsr-53-Georgian \n\nFine-tuned facebook/wav2vec2-large-xlsr-53 in Georgian using the Common Voice\n\nWhen using this model, make sure that your speech input is sampled at 16kHz.",
"## Usage\n\nThe model can be used directly (without a language model) as follows:",
"## Evaluation\n\nThe model can be evaluated as follows on the Georgian test data of Common Voice.\n\n\n\nTest Result: 60.504024 %",
"## Training\n\nThe Common Voice 'train', 'validation' datasets were used for training."
] | [
80,
63,
20,
31,
23
] | [
"passage: TAGS\n#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #ka #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us \n# wav2vec2-large-xlsr-53-Georgian \n\nFine-tuned facebook/wav2vec2-large-xlsr-53 in Georgian using the Common Voice\n\nWhen using this model, make sure that your speech input is sampled at 16kHz.## Usage\n\nThe model can be used directly (without a language model) as follows:## Evaluation\n\nThe model can be evaluated as follows on the Georgian test data of Common Voice.\n\n\n\nTest Result: 60.504024 %## Training\n\nThe Common Voice 'train', 'validation' datasets were used for training."
] | [
-0.1441643238067627,
0.002212440362200141,
-0.002644529100507498,
-0.019960392266511917,
0.107213594019413,
-0.044476594775915146,
0.16847947239875793,
0.07634612172842026,
0.04752425476908684,
-0.0038065232802182436,
0.048704929649829865,
0.010684057138860226,
0.041051242500543594,
0.1159292683005333,
0.017991656437516212,
-0.22971270978450775,
-0.009277783334255219,
0.02000916376709938,
0.054558079689741135,
0.12595967948436737,
0.12539391219615936,
-0.07559937238693237,
0.0020681768655776978,
0.08323968201875687,
-0.18198512494564056,
0.04448658600449562,
0.06150713935494423,
-0.09932046383619308,
0.13797405362129211,
0.028680607676506042,
0.02514280192553997,
0.03968259319663048,
0.06042472645640373,
-0.21486006677150726,
0.016238708049058914,
0.03036542795598507,
0.04709070920944214,
0.006550053600221872,
0.022982420399785042,
-0.00596593227237463,
0.0924152061343193,
0.06033993139863014,
-0.029001226648688316,
0.08161680400371552,
-0.07526563107967377,
-0.2135535180568695,
-0.0257498137652874,
0.010129299946129322,
0.07315336912870407,
0.14177455008029938,
-0.07954234629869461,
0.07341025769710541,
-0.1353578269481659,
0.11237812787294388,
0.09954436123371124,
-0.20705454051494598,
0.0009504590416327119,
0.0649660974740982,
0.03395505249500275,
0.10005854815244675,
-0.017246441915631294,
0.06815017759799957,
0.018525565043091774,
0.03445369377732277,
0.01695595122873783,
-0.03024844266474247,
-0.1676957905292511,
-0.011390529572963715,
-0.14854581654071808,
-0.026803666725754738,
0.28308218717575073,
-0.01554712001234293,
-0.05413436517119408,
-0.14185187220573425,
0.0027758218348026276,
-0.005116856656968594,
-0.001266731764189899,
-0.06325070559978485,
-0.01738237589597702,
0.037439923733472824,
-0.015308686532080173,
-0.07402289658784866,
-0.1192852258682251,
-0.15876980125904083,
-0.030599471181631088,
0.15481717884540558,
0.023211654275655746,
0.02838881127536297,
-0.10085701942443848,
0.06964637339115143,
-0.14265176653862,
-0.07211284339427948,
0.0011900045210495591,
0.024766987189650536,
-0.06917106360197067,
0.02470209077000618,
-0.08387476950883865,
-0.18638990819454193,
0.03742963448166847,
-0.041215721517801285,
0.0395999476313591,
0.025579020380973816,
0.022161444649100304,
0.05951721593737602,
0.026377186179161072,
0.12528450787067413,
-0.020912883803248405,
-0.05493645742535591,
0.008527449332177639,
0.009285284206271172,
-0.06455577909946442,
-0.011750446632504463,
-0.06266850978136063,
-0.06446091085672379,
0.014777085743844509,
0.04918525740504265,
-0.0033525668550282717,
0.00856464821845293,
-0.042500000447034836,
-0.02992747165262699,
-0.06604596227407455,
-0.10080564767122269,
-0.06632281094789505,
0.05133840814232826,
0.01431706640869379,
0.03393224626779556,
0.03374061733484268,
0.039128731936216354,
-0.08046764135360718,
-0.05930057540535927,
0.00891784392297268,
0.014718570746481419,
0.0038941276725381613,
-0.062202222645282745,
-0.023683875799179077,
-0.08283967524766922,
-0.011003934778273106,
-0.08890877664089203,
-0.1353897899389267,
-0.06970901787281036,
-0.004115247633308172,
0.04479040578007698,
-0.052385617047548294,
-0.059151791036129,
-0.01593996398150921,
-0.037821538746356964,
-0.07332741469144821,
0.022139793261885643,
-0.031062176451086998,
0.08249848335981369,
0.02596152387559414,
0.04055747389793396,
0.05263293907046318,
0.09143958985805511,
-0.09528311342000961,
-0.06123187020421028,
0.0023720930330455303,
0.1687544733285904,
-0.035561129450798035,
-0.05135422572493553,
-0.07908374816179276,
-0.0579952597618103,
-0.052303463220596313,
0.08139190822839737,
0.048847492784261703,
0.107159323990345,
-0.22768732905387878,
-0.1274431049823761,
0.19633899629116058,
-0.12693072855472565,
-0.011793339625000954,
0.20856435596942902,
0.011778677813708782,
0.12533427774906158,
0.17881284654140472,
0.28579792380332947,
0.11106736212968826,
-0.14664509892463684,
0.03635376691818237,
-0.018090562894940376,
-0.02902921847999096,
-0.024808403104543686,
0.05605895444750786,
-0.07690630853176117,
-0.014971369877457619,
0.0545060969889164,
-0.08416145294904709,
0.0800449326634407,
-0.048500239849090576,
-0.06584431976079941,
-0.03389957919716835,
-0.09808649867773056,
0.057130273431539536,
0.04747593030333519,
0.006894759833812714,
-0.04658215492963791,
-0.07306238263845444,
-0.0011345477541908622,
0.1236116960644722,
-0.1427399069070816,
0.037427790462970734,
-0.12403161078691483,
0.09091601520776749,
-0.032024282962083817,
-0.018677961081266403,
-0.1642899513244629,
0.17357227206230164,
-0.002371602924540639,
0.056342996656894684,
0.07655806094408035,
0.12221293896436691,
0.0025902932975441217,
0.006546557880938053,
-0.040183212608098984,
-0.002708632033318281,
-0.004347231704741716,
-0.012398348189890385,
-0.03707074746489525,
-0.10839065164327621,
0.00976240448653698,
-0.04755581170320511,
0.09288860857486725,
-0.158117413520813,
0.0017652061069384217,
0.06948352605104446,
0.00957221444696188,
0.013091012835502625,
-0.02704094909131527,
0.02948760613799095,
0.09352002292871475,
0.031247761100530624,
0.011481762863695621,
0.0574178621172905,
-0.005351858679205179,
-0.013857533223927021,
0.1306959092617035,
-0.15018001198768616,
-0.04351112246513367,
0.0848393663764,
-0.03761063888669014,
-0.020905746147036552,
0.06547724455595016,
-0.012324904091656208,
-0.016435321420431137,
-0.03822479024529457,
-0.0028069433756172657,
0.3081154525279999,
-0.02287558652460575,
0.1032438799738884,
-0.07858697324991226,
0.020827779546380043,
0.04575954005122185,
-0.08789975941181183,
0.04319962486624718,
0.051727090030908585,
-0.030660370364785194,
-0.06378795206546783,
0.04408906027674675,
-0.03860161080956459,
-0.057106275111436844,
0.3198087811470032,
-0.037072841078042984,
-0.08850528299808502,
-0.01795843616127968,
-0.04874374344944954,
-0.04506317898631096,
0.10848506540060043,
-0.19171631336212158,
-0.07248365134000778,
0.01960301399230957,
0.059608228504657745,
0.09113336354494095,
-0.1315283626317978,
0.02972877211868763,
0.016820723190903664,
-0.1276840716600418,
-0.11197688430547714,
0.0895867571234703,
-0.05461223050951958,
0.01853018067777157,
-0.09472804516553879,
-0.011673827655613422,
0.008282002992928028,
-0.03764689713716507,
-0.1557132452726364,
0.1448548287153244,
-0.08170833438634872,
-0.18698139488697052,
-0.13063956797122955,
-0.023497650399804115,
0.02220878377556801,
0.011522822082042694,
0.09280382096767426,
-0.13381539285182953,
-0.004900711588561535,
-0.01879069209098816,
0.13061636686325073,
-0.011811171658337116,
-0.04732394963502884,
-0.08098535984754562,
0.011410289444029331,
0.045565325766801834,
-0.13001497089862823,
-0.018423693254590034,
-0.07188469171524048,
-0.05495764687657356,
0.0034875678829848766,
-0.04509804770350456,
-0.024053294211626053,
0.17089127004146576,
0.032336872071027756,
0.03006899170577526,
-0.023533454164862633,
0.1840745061635971,
-0.12115157395601273,
-0.05053691193461418,
0.21602989733219147,
0.009821617044508457,
-0.019518613815307617,
0.09026831388473511,
0.01417978759855032,
-0.05916876718401909,
-0.009537904523313046,
-0.01754281111061573,
-0.07153134047985077,
-0.23291699588298798,
-0.16340287029743195,
-0.07778596132993698,
-0.03516865149140358,
-0.03455570340156555,
-0.0019810316152870655,
0.048585135489702225,
0.028521737083792686,
0.0018696788465604186,
-0.13105301558971405,
0.05568751320242882,
-0.008085435256361961,
0.21297165751457214,
-0.03638485074043274,
0.09748125076293945,
-0.0399622805416584,
-0.004957987926900387,
0.03748347610235214,
-0.009508892893791199,
0.21230842173099518,
0.07144292443990707,
0.09979818761348724,
0.11945030838251114,
0.10786353051662445,
0.11657829582691193,
0.02702486701309681,
-0.01721932552754879,
-0.012523679062724113,
0.028841452673077583,
-0.055216364562511444,
-0.04028834030032158,
0.011926649138331413,
0.15626642107963562,
-0.08631949126720428,
-0.04828868433833122,
-0.030041111633181572,
0.010441338643431664,
0.2570742964744568,
0.09539388865232468,
-0.1878242790699005,
-0.10370082408189774,
-0.03351171687245369,
-0.0756090059876442,
-0.011159049347043037,
0.048030756413936615,
0.1456059068441391,
-0.1362600326538086,
0.002464988734573126,
0.0024335694033652544,
0.07638110965490341,
-0.025919781997799873,
0.02713172324001789,
-0.0806073546409607,
0.06216944009065628,
0.0068282922729849815,
0.08207680284976959,
-0.20054931938648224,
0.24802850186824799,
0.02017076686024666,
0.12346257269382477,
-0.046671535819768906,
-0.005717175547033548,
-0.0011447796132415533,
0.0920606330037117,
0.09306517988443375,
0.026735756546258926,
0.02559676207602024,
-0.0989980697631836,
-0.06330230832099915,
0.058417368680238724,
0.041486743837594986,
-0.009138182736933231,
0.027491863816976547,
-0.012228013016283512,
0.03632508963346481,
0.00793165061622858,
-0.10333701223134995,
-0.16262003779411316,
-0.06533851474523544,
0.00686289370059967,
0.15249590575695038,
0.0994439572095871,
-0.04201876372098923,
-0.08553068339824677,
-0.055860426276922226,
0.06399693340063095,
-0.0782942846417427,
-0.05970482900738716,
-0.058034446090459824,
-0.04544362425804138,
0.12326519936323166,
-0.06469888985157013,
0.030032915994524956,
0.0851123183965683,
0.08320837467908859,
-0.026991333812475204,
-0.02801750972867012,
0.033664584159851074,
-0.09864121675491333,
-0.09518027305603027,
-0.0031047589145600796,
0.18559576570987701,
0.15189123153686523,
0.04506811127066612,
0.06466621160507202,
0.02987709827721119,
-0.03427441790699959,
-0.03332888334989548,
0.017763342708349228,
0.07071749120950699,
-0.07731208950281143,
0.08476400375366211,
0.027132853865623474,
-0.20400308072566986,
-0.14333680272102356,
-0.05988922342658043,
0.1908249706029892,
0.10095382481813431,
-0.0686933621764183,
0.17053711414337158,
0.2414495199918747,
-0.08571545779705048,
-0.18862657248973846,
-0.02946224994957447,
0.1156768798828125,
0.15351620316505432,
0.022482533007860184,
-0.21755990386009216,
0.06916892528533936,
-0.022747065871953964,
-0.03496905788779259,
-0.04410171136260033,
-0.22616885602474213,
-0.13706570863723755,
0.17005915939807892,
-0.04244580492377281,
0.16293111443519592,
0.01996939443051815,
-0.01752961240708828,
0.025181910023093224,
-0.03253800421953201,
0.04488193988800049,
-0.06957241147756577,
0.14911368489265442,
0.01071619987487793,
0.08935583382844925,
0.05246790125966072,
-0.015347960405051708,
0.08801337331533432,
0.05021602660417557,
-0.027781391516327858,
-0.009798528626561165,
0.04710793495178223,
0.09883391112089157,
0.034474849700927734,
0.1090029627084732,
-0.06155887618660927,
0.05990147590637207,
-0.09005937725305557,
-0.10904794186353683,
-0.10713455826044083,
0.05869695544242859,
0.033085841685533524,
-0.052139732986688614,
0.015003475360572338,
-0.015026235021650791,
-0.009416023269295692,
-0.003865110455080867,
-0.08688540756702423,
-0.15028950572013855,
0.03477940708398819,
0.14618752896785736,
0.1806173026561737,
-0.06587056070566177,
-0.16289232671260834,
-0.032430049031972885,
-0.03467092663049698,
0.10491890460252762,
-0.10181645303964615,
0.022664252668619156,
0.05257834121584892,
0.05869857221841812,
0.12271048128604889,
0.009831918403506279,
-0.12437523156404495,
0.07597566395998001,
0.051142580807209015,
-0.07303882390260696,
-0.12276391685009003,
-0.04721909761428833,
-0.10781322419643402,
-0.024391936138272285,
0.04318580403923988,
0.11136911809444427,
-0.07279308885335922,
-0.01124264020472765,
-0.03386533632874489,
-0.01082065049558878,
-0.1462864726781845,
0.21496431529521942,
0.03550022095441818,
0.05500747635960579,
-0.09524790942668915,
0.03134208917617798,
-0.017392585054039955,
-0.003400935558602214,
0.020559918135404587,
-0.024637427181005478,
-0.08909614384174347,
-0.05777870491147041,
-0.07538603246212006,
0.024189485237002373,
0.05724359303712845,
-0.11733365058898926,
-0.05337706580758095,
-0.11178703606128693,
0.002167054917663336,
0.0721702054142952,
0.06767416000366211,
0.013149089179933071,
-0.15769924223423004,
-0.04726609215140343,
-0.10522885620594025,
0.06198769062757492,
0.09195493161678314,
-0.04286089539527893,
-0.1357395052909851,
0.17075549066066742,
0.0694129467010498,
0.06125884875655174,
-0.05218891426920891,
-0.09124834090471268,
0.01673106849193573,
0.09176415205001831,
-0.04892822355031967,
-0.05394408106803894,
-0.044066399335861206,
-0.005073520354926586,
-0.01444985717535019,
-0.08219120651483536,
-0.04288807511329651,
0.08954691886901855,
-0.09360891580581665,
0.057733017951250076,
0.003112413687631488,
0.0894002839922905,
-0.044844452291727066,
0.03569401800632477,
0.0381290577352047,
-0.05140738934278488,
0.10751038044691086,
0.12981799244880676,
-0.08385587483644485,
0.1299971640110016,
-0.13489829003810883,
-0.05207419395446777,
0.044136736541986465,
0.060735344886779785,
-0.04764506593346596,
-0.1157996729016304,
0.02120046317577362,
0.07262023538351059,
0.06784167140722275,
0.007886262610554695,
0.09272044152021408,
-0.060095421969890594,
0.002306518377736211,
-0.032568175345659256,
0.011385494843125343,
-0.044387709349393845,
0.026038680225610733,
0.032666366547346115,
0.1800675392150879,
0.16296319663524628,
-0.0934198871254921,
0.09378941357135773,
-0.12587185204029083,
0.019016698002815247,
-0.0595785453915596,
-0.048098739236593246,
-0.07027022540569305,
-0.061362188309431076,
0.07042206078767776,
-0.037630267441272736,
0.16274654865264893,
0.019501324743032455,
-0.00045495718950405717,
-0.015399745665490627,
-0.0632532387971878,
0.04780259355902672,
-0.02239079959690571,
0.24774529039859772,
0.03480646014213562,
0.03690585494041443,
-0.013809788040816784,
0.009990167804062366,
-0.015958456322550774,
0.14284059405326843,
-0.02903059683740139,
0.13143290579319,
0.016842780634760857,
0.052113406360149384,
0.09487329423427582,
-0.03243279084563255,
-0.04951680079102516,
-0.019264088943600655,
-0.15746580064296722,
0.0392037108540535,
-0.05627495050430298,
0.16806229948997498,
0.16930042207241058,
-0.0981898084282875,
0.10452745854854584,
0.03856457397341728,
-0.10606967657804489,
-0.16019339859485626,
-0.12388106435537338,
-0.05316486209630966,
-0.14618019759655,
0.03271013870835304,
-0.08627375215291977,
0.04445340111851692,
0.10322720557451248,
0.024217655882239342,
-0.03810369223356247,
0.15644291043281555,
0.016378162428736687,
-0.11035264283418655,
0.11248623579740524,
-0.09481190145015717,
-0.01943349279463291,
-0.10492533445358276,
0.034573301672935486,
0.13814674317836761,
-0.007782103959470987,
0.06163044646382332,
-0.0029888388235121965,
-0.10597103834152222,
0.020072996616363525,
-0.08350367099046707,
-0.05775122717022896,
-0.027878260239958763,
0.001594716333784163,
0.09206859767436981,
0.08131563663482666,
0.08922415226697922,
-0.08727779239416122,
0.014753805473446846,
0.15669217705726624,
-0.019275827333331108,
-0.17927852272987366,
-0.11175018548965454,
0.14251084625720978,
0.0455542616546154,
0.012608828023076057,
0.002698408905416727,
-0.034342534840106964,
0.005883956793695688,
0.21814236044883728,
0.23691891133785248,
0.07052499800920486,
0.04306311532855034,
-0.013098825700581074,
-0.01648508757352829,
-0.04154222458600998,
0.07080460339784622,
0.021940240636467934,
0.2437591701745987,
-0.004329994320869446,
0.06125875934958458,
-0.1015743538737297,
-0.07203400135040283,
-0.027515703812241554,
0.022096488624811172,
-0.021685680374503136,
-0.10261119902133942,
0.0028708740137517452,
0.16030080616474152,
-0.025779331102967262,
-0.03738069534301758,
-0.07068533450365067,
-0.11560409516096115,
-0.10215966403484344,
-0.0166764073073864,
0.03743918612599373,
0.07701973617076874,
0.013733991421759129,
-0.07930655032396317,
0.03788666054606438,
0.05116744711995125,
-0.014365492388606071,
-0.0790267363190651,
-0.0702507346868515,
0.07827745378017426,
-0.08003463596105576,
0.041925787925720215,
-0.018216988071799278,
0.19742253422737122,
0.013982796110212803,
0.07189344614744186,
-0.009863440878689289,
0.15897588431835175,
-0.044792890548706055,
-0.07337421923875809,
0.016280286014080048,
0.12281475216150284,
-0.03798442333936691,
0.09633029252290726,
0.027834346517920494,
-0.10660918802022934,
0.06790196150541306,
-0.10512757301330566,
-0.03206595405936241,
-0.08147629350423813,
0.042167048901319504,
-0.04564043879508972,
0.07694704085588455,
0.07606654614210129,
-0.06460109353065491,
-0.05864379182457924,
-0.06489463895559311,
0.057738423347473145,
0.08352366834878922,
-0.0006682543898932636,
-0.044709522277116776,
-0.2573160231113434,
-0.011491588316857815,
0.007203813176602125,
-0.04491428658366203,
-0.1715744286775589,
-0.049506742507219315,
-0.0004724080499727279,
-0.06616078317165375,
0.003942760173231363,
0.06161828711628914,
0.1167784184217453,
0.00810214038938284,
0.0068531460128724575,
-0.048950452357530594,
0.02484579011797905,
0.12517806887626648,
-0.20088039338588715,
-0.11624648422002792
] |
null | null | transformers |
# wav2vec2-large-xlsr-53-German
Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) in German using the [Common Voice](https://huggingface.co/datasets/common_voice)
When using this model, make sure that your speech input is sampled at 16kHz.
## Usage
The model can be used directly (without a language model) as follows:
```python
import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
test_dataset = load_dataset("common_voice", "de", split="test[:2%]")
processor = Wav2Vec2Processor.from_pretrained("MehdiHosseiniMoghadam/wav2vec2-large-xlsr-53-German")
model = Wav2Vec2ForCTC.from_pretrained("MehdiHosseiniMoghadam/wav2vec2-large-xlsr-53-German")
resampler = torchaudio.transforms.Resample(48_000, 16_000)
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
print("Prediction:", processor.batch_decode(predicted_ids))
print("Reference:", test_dataset["sentence"][:2])
```
## Evaluation
The model can be evaluated as follows on the Czech test data of Common Voice.
```python
import torch
import torchaudio
from datasets import load_dataset, load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import re
test_dataset = load_dataset("common_voice", "de", split="test[:15%]")
wer = load_metric("wer")
processor = Wav2Vec2Processor.from_pretrained("MehdiHosseiniMoghadam/wav2vec2-large-xlsr-53-German")
model = Wav2Vec2ForCTC.from_pretrained("MehdiHosseiniMoghadam/wav2vec2-large-xlsr-53-German")
model.to("cuda")
chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\%\‘\”\�]'
resampler = torchaudio.transforms.Resample(48_000, 16_000)
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def speech_file_to_array_fn(batch):
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def evaluate(batch):
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
pred_ids = torch.argmax(logits, dim=-1)
batch["pred_strings"] = processor.batch_decode(pred_ids)
return batch
result = test_dataset.map(evaluate, batched=True, batch_size=8)
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
```
**Test Result**: 25.284593 %
## Training
10% of the Common Voice `train`, `validation` datasets were used for training.
## Testing
15% of the Common Voice `Test` dataset were used for training. | {"language": "de", "license": "apache-2.0", "tags": ["audio", "automatic-speech-recognition", "speech", "xlsr-fine-tuning-week"], "datasets": ["common_voice"], "model-index": [{"name": "wav2vec2-large-xlsr-53-German by Mehdi Hosseini Moghadam", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice de", "type": "common_voice", "args": "de"}, "metrics": [{"type": "wer", "value": 25.284593, "name": "Test WER"}]}]}]} | automatic-speech-recognition | MehdiHosseiniMoghadam/wav2vec2-large-xlsr-53-German | [
"transformers",
"pytorch",
"jax",
"wav2vec2",
"automatic-speech-recognition",
"audio",
"speech",
"xlsr-fine-tuning-week",
"de",
"dataset:common_voice",
"license:apache-2.0",
"model-index",
"endpoints_compatible",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [
"de"
] | TAGS
#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #de #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us
|
# wav2vec2-large-xlsr-53-German
Fine-tuned facebook/wav2vec2-large-xlsr-53 in German using the Common Voice
When using this model, make sure that your speech input is sampled at 16kHz.
## Usage
The model can be used directly (without a language model) as follows:
## Evaluation
The model can be evaluated as follows on the Czech test data of Common Voice.
Test Result: 25.284593 %
## Training
10% of the Common Voice 'train', 'validation' datasets were used for training.
## Testing
15% of the Common Voice 'Test' dataset were used for training. | [
"# wav2vec2-large-xlsr-53-German\n\nFine-tuned facebook/wav2vec2-large-xlsr-53 in German using the Common Voice\n\nWhen using this model, make sure that your speech input is sampled at 16kHz.",
"## Usage\n\nThe model can be used directly (without a language model) as follows:",
"## Evaluation\n\nThe model can be evaluated as follows on the Czech test data of Common Voice.\n\n\n\nTest Result: 25.284593 %",
"## Training\n\n10% of the Common Voice 'train', 'validation' datasets were used for training.",
"## Testing\n\n15% of the Common Voice 'Test' dataset were used for training."
] | [
"TAGS\n#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #de #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us \n",
"# wav2vec2-large-xlsr-53-German\n\nFine-tuned facebook/wav2vec2-large-xlsr-53 in German using the Common Voice\n\nWhen using this model, make sure that your speech input is sampled at 16kHz.",
"## Usage\n\nThe model can be used directly (without a language model) as follows:",
"## Evaluation\n\nThe model can be evaluated as follows on the Czech test data of Common Voice.\n\n\n\nTest Result: 25.284593 %",
"## Training\n\n10% of the Common Voice 'train', 'validation' datasets were used for training.",
"## Testing\n\n15% of the Common Voice 'Test' dataset were used for training."
] | [
80,
60,
20,
29,
25,
18
] | [
"passage: TAGS\n#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #de #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us \n# wav2vec2-large-xlsr-53-German\n\nFine-tuned facebook/wav2vec2-large-xlsr-53 in German using the Common Voice\n\nWhen using this model, make sure that your speech input is sampled at 16kHz.## Usage\n\nThe model can be used directly (without a language model) as follows:## Evaluation\n\nThe model can be evaluated as follows on the Czech test data of Common Voice.\n\n\n\nTest Result: 25.284593 %## Training\n\n10% of the Common Voice 'train', 'validation' datasets were used for training.## Testing\n\n15% of the Common Voice 'Test' dataset were used for training."
] | [
-0.15585589408874512,
0.0066885510459542274,
-0.0022283303551375866,
-0.015009536407887936,
0.06423494964838028,
-0.010485803708434105,
0.168673574924469,
0.1124739795923233,
0.05134425312280655,
0.0228732842952013,
0.03808658942580223,
-0.0019259635591879487,
0.001258129603229463,
0.051056016236543655,
0.013503205962479115,
-0.10789313167333603,
0.03436298295855522,
0.00867515616118908,
0.054934605956077576,
0.11280886083841324,
0.10218163579702377,
-0.08008237928152084,
-0.04020556062459946,
0.09621347486972809,
-0.1303023099899292,
0.04405543953180313,
0.06272269785404205,
-0.08957082778215408,
0.17527346312999725,
0.05303875729441643,
0.057128746062517166,
0.018622776493430138,
0.047028880566358566,
-0.1856076568365097,
0.0044466168619692326,
0.005227420013397932,
0.006292772013694048,
0.011864564381539822,
0.062366195023059845,
-0.030475275591015816,
0.10503757745027542,
0.06848298758268356,
-0.012261344119906425,
0.07032336294651031,
-0.013789492659270763,
-0.2028331756591797,
-0.029750430956482887,
-0.00010073483281303197,
0.06706026196479797,
0.15269812941551208,
-0.07321992516517639,
0.1572308987379074,
-0.1697191745042801,
0.11050355434417725,
0.09139057993888855,
-0.195161372423172,
-0.01098098885267973,
0.12127583473920822,
0.048865046352148056,
0.0634467601776123,
-0.04413114860653877,
0.035377137362957,
0.07570425420999527,
0.04874732345342636,
-0.05880381911993027,
-0.023289183154702187,
-0.1325378268957138,
-0.03116774931550026,
-0.15467719733715057,
-0.07951326668262482,
0.20713475346565247,
-0.015797141939401627,
-0.07844570279121399,
-0.15173554420471191,
0.017090389505028725,
0.01853696070611477,
0.03575630486011505,
-0.056948963552713394,
-0.012256314046680927,
-0.02598113939166069,
-0.0028506279923021793,
-0.022517530247569084,
-0.10480386763811111,
-0.15196295082569122,
0.03700827807188034,
0.10899565368890762,
0.023322362452745438,
-0.011144285090267658,
-0.04415528103709221,
0.07930180430412292,
-0.1125156432390213,
-0.047305069863796234,
-0.018439900130033493,
0.0477859191596508,
-0.09309002757072449,
-0.013489496894180775,
-0.12245428562164307,
-0.2238507866859436,
0.08810137957334518,
0.007752621546387672,
0.05799494683742523,
0.025602975860238075,
-0.04498722404241562,
0.044706594198942184,
0.03775729611515999,
0.1329861879348755,
-0.05346936360001564,
0.012358338572084904,
-0.014464100822806358,
-0.0027685484383255243,
-0.05141144618391991,
-0.006454958580434322,
-0.07069889456033707,
-0.0743330866098404,
0.10111608356237411,
0.06866804510354996,
-0.03370899334549904,
-0.021926680579781532,
-0.021167375147342682,
-0.018292760476469994,
-0.0037097905296832323,
-0.106599822640419,
-0.03642144054174423,
0.07147692888975143,
0.01117283757776022,
0.07189527899026871,
0.0014790043933317065,
0.01828720234334469,
-0.07531130313873291,
0.01498141698539257,
0.03103036992251873,
0.028856787830591202,
-0.04741780832409859,
-0.13371163606643677,
0.031128855422139168,
-0.010921506211161613,
-0.0074713872745633125,
-0.06840803474187851,
-0.04265109449625015,
-0.11006640642881393,
0.0016626430442556739,
0.047674551606178284,
-0.015125655569136143,
-0.1011374294757843,
-0.05569898709654808,
-0.0014489928726106882,
-0.04695374518632889,
0.04505998641252518,
-0.03200732544064522,
0.07134642452001572,
0.00390411214902997,
0.0014449338195845485,
0.06972391903400421,
0.040500737726688385,
-0.10632479935884476,
-0.06313767284154892,
-0.022791864350438118,
0.12637683749198914,
-0.11259786039590836,
-0.10102322697639465,
-0.05332687869668007,
-0.08283944427967072,
0.017207609489560127,
0.0656261071562767,
0.0758552998304367,
0.1107654795050621,
-0.24535776674747467,
-0.09081373363733292,
0.19713541865348816,
-0.1490175426006317,
-0.02359027974307537,
0.23490384221076965,
-0.01573794148862362,
0.04952635616064072,
0.13305212557315826,
0.22985605895519257,
0.16762226819992065,
-0.2139257788658142,
-0.02695796638727188,
0.0018577304435893893,
0.009341929107904434,
0.009244688786566257,
0.07893037050962448,
-0.073536716401577,
-0.04979832470417023,
0.021218013018369675,
-0.11483904719352722,
0.05880219116806984,
-0.03155948594212532,
-0.04678162559866905,
-0.03241147845983505,
-0.07029406726360321,
0.12356503307819366,
0.06592081487178802,
-0.012434015050530434,
-0.08832502365112305,
-0.0861784964799881,
0.11084900051355362,
0.13318121433258057,
-0.13500161468982697,
0.029804585501551628,
-0.08341870456933975,
0.09688331186771393,
-0.12947694957256317,
-0.03635876998305321,
-0.15489605069160461,
0.12268699705600739,
0.02154877968132496,
-0.048694808036088943,
0.0648217499256134,
0.24141190946102142,
0.04848286882042885,
-0.005802650470286608,
-0.06289846450090408,
-0.029069053009152412,
-0.07733046263456345,
-0.022140836343169212,
-0.024874115362763405,
-0.14028196036815643,
-0.023391686379909515,
-0.06794717162847519,
0.10907652229070663,
-0.10027418285608292,
-0.021775880828499794,
0.023578831925988197,
0.02287670224905014,
-0.042004283517599106,
-0.0175909623503685,
0.03135975822806358,
0.09282837808132172,
0.011062338016927242,
0.024539943784475327,
0.022554852068424225,
0.013100088573992252,
-0.04339653253555298,
0.106849804520607,
-0.08308382332324982,
-0.03409101068973541,
0.09650914371013641,
-0.014425234869122505,
-0.043269820511341095,
0.06982426345348358,
-0.04846717044711113,
-0.0023436816409230232,
-0.07839309424161911,
-0.05332665145397186,
0.28611239790916443,
-0.01951497048139572,
0.05260668694972992,
-0.1088128387928009,
-0.02462429739534855,
0.04279765114188194,
-0.07635798305273056,
0.038761336356401443,
0.09573866426944733,
-0.024390850216150284,
0.015521720983088017,
0.05545966327190399,
-0.08189225941896439,
-0.14420172572135925,
0.2355007380247116,
-0.03616446629166603,
-0.11078030616044998,
0.014456222765147686,
0.0036169500090181828,
-0.02164631523191929,
0.1457928568124771,
-0.19468267261981964,
-0.012217513285577297,
0.03864618018269539,
0.07796120643615723,
0.08300711959600449,
-0.11628606915473938,
0.03367096558213234,
0.003942269831895828,
-0.13308383524417877,
-0.13331426680088043,
0.074671670794487,
-0.03926418349146843,
0.04457248002290726,
-0.09678702801465988,
-0.03893015906214714,
0.0005714731523767114,
-0.04317336156964302,
-0.19201521575450897,
0.12250372767448425,
-0.0824640542268753,
-0.2067791372537613,
-0.13212351500988007,
0.11200141906738281,
-0.035858385264873505,
0.0032905531115829945,
0.10455940663814545,
-0.13173066079616547,
-0.006888265255838633,
0.000283747969660908,
0.06310819834470749,
0.005135651212185621,
-0.03383273258805275,
-0.09948375821113586,
-0.0014785437379032373,
0.08570527285337448,
-0.14731130003929138,
0.009650788269937038,
-0.04388773813843727,
-0.04684413596987724,
-0.006250557955354452,
0.005526302382349968,
0.04191228374838829,
0.14338050782680511,
-0.014026673510670662,
0.002381646540015936,
-0.02822243981063366,
0.167987659573555,
-0.142061248421669,
-0.059925906360149384,
0.14925815165042877,
-0.016749201342463493,
-0.06431141495704651,
0.049412138760089874,
0.010721098631620407,
-0.05142604187130928,
-0.023714996874332428,
0.0033071041107177734,
-0.05127537250518799,
-0.27754321694374084,
-0.15797699987888336,
-0.0593997947871685,
-0.04030830040574074,
-0.03237752988934517,
-0.003252423135563731,
0.08004899322986603,
0.0009688876452855766,
-0.033908043056726456,
-0.13798728585243225,
0.0287387203425169,
-0.01581120304763317,
0.15937508642673492,
-0.011307044886052608,
0.07720305770635605,
-0.05083547905087471,
-0.024500465020537376,
0.006938342936336994,
-0.013844678178429604,
0.1132630780339241,
0.028061896562576294,
0.03846390172839165,
0.08212790638208389,
0.12532585859298706,
0.06150796264410019,
0.09099817276000977,
-0.051346126943826675,
0.0019995244219899178,
0.047644827514886856,
-0.06719765067100525,
-0.04314912483096123,
0.010773301124572754,
0.1563001424074173,
-0.03613371402025223,
-0.06048513948917389,
-0.07146827131509781,
0.06650762259960175,
0.20325078070163727,
0.09903062880039215,
-0.09989575296640396,
-0.1291608363389969,
-0.08542661368846893,
-0.08618282526731491,
-0.024989377707242966,
0.020966924726963043,
0.17912963032722473,
-0.15417881309986115,
0.027694227173924446,
-0.018047435209155083,
0.07844643294811249,
0.03813396766781807,
0.028461506590247154,
-0.07938286662101746,
0.007947131991386414,
0.0049314945936203,
0.14137552678585052,
-0.3512181043624878,
0.21501421928405762,
0.007297624833881855,
0.11987486481666565,
-0.08586618304252625,
0.0032748356461524963,
-0.00846889428794384,
-0.004869008902460337,
0.12302938103675842,
0.014423749409615993,
0.06848973780870438,
-0.02616661787033081,
-0.07142768055200577,
0.07665543258190155,
-0.009903146885335445,
0.05356863886117935,
0.04361580312252045,
0.019629180431365967,
0.017100609838962555,
0.005462631117552519,
-0.0511195994913578,
-0.12544924020767212,
-0.040177103132009506,
0.019306758418679237,
0.0717640295624733,
0.03292160853743553,
-0.012197373434901237,
-0.12074296921491623,
-0.16290202736854553,
0.08009170740842819,
-0.10218394547700882,
-0.02937283180654049,
-0.05760936811566353,
-0.030867932364344597,
0.15233400464057922,
-0.04741280525922775,
0.025594662874937057,
0.08196346461772919,
0.12304611504077911,
-0.07367904484272003,
0.00005565658284467645,
0.022335220128297806,
-0.11749472469091415,
-0.13200974464416504,
0.021740281954407692,
0.19544416666030884,
0.09412406384944916,
0.11727979779243469,
0.05727526172995567,
0.03335113078355789,
0.00933083239942789,
-0.05320708453655243,
0.009778451174497604,
0.03815986588597298,
-0.15755076706409454,
0.043476175516843796,
0.029874734580516815,
-0.1597646176815033,
-0.12369838356971741,
-0.04015912115573883,
0.17475053668022156,
0.10752792656421661,
-0.0708012729883194,
0.15244393050670624,
0.16234029829502106,
-0.10291123390197754,
-0.20701079070568085,
0.035567231476306915,
0.12250646948814392,
0.15435752272605896,
-0.024070875719189644,
-0.14264865219593048,
0.0519363097846508,
0.010377606377005577,
-0.044907424598932266,
-0.07973939925432205,
-0.22270555794239044,
-0.15164321660995483,
0.13993126153945923,
-0.04690467193722725,
0.056718043982982635,
0.04455779492855072,
-0.011326046660542488,
-0.003106145653873682,
0.016912467777729034,
-0.053071871399879456,
-0.07680109143257141,
0.09759785979986191,
0.042489245533943176,
0.05112028494477272,
0.08239065855741501,
-0.061118606477975845,
0.11340803653001785,
0.06616879254579544,
-0.000023336770027526654,
0.010864273644983768,
0.06868980824947357,
0.020848577842116356,
0.04237490892410278,
0.16714735329151154,
-0.10378049314022064,
0.0700656846165657,
-0.06924322247505188,
-0.0872715562582016,
-0.09368758648633957,
0.11861913651227951,
-0.013038688339293003,
-0.03980930894613266,
-0.0033535510301589966,
0.000803071481641382,
0.014425083063542843,
0.00027277544722892344,
-0.057340700179338455,
-0.1496070921421051,
0.07132596522569656,
0.09981835633516312,
0.2227049618959427,
-0.008116430602967739,
-0.08024413883686066,
0.03641868755221367,
-0.03274102509021759,
0.11281920969486237,
-0.04088996350765228,
0.05056343227624893,
0.11186882853507996,
0.07386571913957596,
0.10187399387359619,
-0.016047053039073944,
-0.14479829370975494,
0.052382998168468475,
0.008084917441010475,
-0.09055466204881668,
-0.13101787865161896,
-0.017140312120318413,
-0.06345508992671967,
-0.049123600125312805,
0.04109140858054161,
0.12712694704532623,
-0.10610738396644592,
-0.016919689252972603,
-0.03117048740386963,
-0.023194503039121628,
-0.13760389387607574,
0.251132994890213,
-0.0000689367443555966,
0.08753263205289841,
-0.10590342432260513,
0.0011849335860460997,
-0.03255414590239525,
-0.0986502468585968,
0.07551050931215286,
-0.08647415041923523,
-0.06003161147236824,
-0.046774640679359436,
0.04525083675980568,
0.1411752849817276,
0.015031839720904827,
-0.11872804909944534,
-0.1201251670718193,
-0.09657914936542511,
-0.010159405879676342,
0.1381394863128662,
0.09754256904125214,
0.018198072910308838,
-0.0655880868434906,
-0.04390563443303108,
-0.13381995260715485,
0.0891161859035492,
0.07846991717815399,
-0.014500248245894909,
-0.09822190552949905,
0.2105317860841751,
0.06161271408200264,
0.022899862378835678,
-0.04945380985736847,
-0.029712509363889694,
-0.011309731751680374,
0.0826907604932785,
-0.12205974757671356,
-0.04568548500537872,
-0.011727132834494114,
0.01655334234237671,
0.02018698677420616,
-0.07472776621580124,
0.004574144724756479,
0.0773765817284584,
-0.10235583782196045,
0.07001473754644394,
-0.010281850583851337,
0.054267652332782745,
-0.07868016511201859,
0.05642665922641754,
0.01621355302631855,
-0.06989573687314987,
0.09158078581094742,
0.13739986717700958,
-0.07080993801355362,
0.15079809725284576,
-0.18283812701702118,
-0.025948721915483475,
0.03977225348353386,
0.08446836471557617,
-0.02062949724495411,
-0.14049194753170013,
0.04395408183336258,
0.12149936705827713,
0.058791954070329666,
0.034793395549058914,
0.047695621848106384,
-0.03425401821732521,
0.03060493804514408,
-0.013439251109957695,
-0.038378871977329254,
-0.03285848721861839,
0.05857030674815178,
0.05932852253317833,
0.12201453745365143,
0.18423978984355927,
-0.10952568799257278,
0.13066180050373077,
-0.106802798807621,
-0.003831173526123166,
-0.0599924772977829,
0.004784089513123035,
-0.1615799367427826,
-0.04012858867645264,
0.07423566281795502,
-0.04607783630490303,
0.1423334777355194,
0.01648581214249134,
0.0846191868185997,
-0.005860795732587576,
-0.08817709237337112,
0.03513946384191513,
-0.0006394952652044594,
0.1899959146976471,
-0.007279624231159687,
0.04278635233640671,
-0.04457128047943115,
-0.00739274313673377,
-0.057577550411224365,
0.06680341809988022,
-0.0016982833622023463,
0.16729429364204407,
0.01554157119244337,
0.05314154922962189,
0.140358105301857,
-0.06675949692726135,
-0.028394997119903564,
-0.03988659009337425,
-0.09198042750358582,
0.05708973482251167,
-0.0273039061576128,
0.20245589315891266,
0.11047663539648056,
-0.1352403461933136,
0.13991491496562958,
-0.01623261719942093,
-0.07373381406068802,
-0.12485195696353912,
-0.052492495626211166,
-0.06995893269777298,
-0.15681461989879608,
0.03347669914364815,
-0.09800156950950623,
-0.009458470158278942,
0.02680785395205021,
0.059695206582546234,
-0.05709346383810043,
0.19605667889118195,
-0.03312045335769653,
-0.07217874377965927,
0.0856323391199112,
-0.08116109669208527,
0.008071823045611382,
-0.10267028957605362,
0.014320919290184975,
0.158119335770607,
0.012743161991238594,
0.05285770446062088,
-0.010372396558523178,
-0.04863327369093895,
-0.011559348553419113,
-0.05722947046160698,
-0.05377824231982231,
0.024850260466337204,
-0.03667900711297989,
0.12042561918497086,
0.1691301167011261,
0.09345186501741409,
-0.044989850372076035,
-0.024722103029489517,
0.08161294460296631,
-0.03519851341843605,
-0.18791599571704865,
-0.182241752743721,
0.17666803300380707,
-0.009548920206725597,
0.03794853389263153,
0.008561977185308933,
-0.024990657344460487,
0.025510916486382484,
0.20205141603946686,
0.19303694367408752,
0.08909496665000916,
0.021599216386675835,
-0.005328428465873003,
-0.016456197947263718,
-0.0027631826233118773,
0.016862653195858,
0.01585712842643261,
0.23126603662967682,
-0.01670769415795803,
0.043213170021772385,
-0.10079319030046463,
-0.047190193086862564,
0.07225547730922699,
0.04610683023929596,
-0.05095560476183891,
-0.138495072722435,
-0.006327011622488499,
0.1517946869134903,
0.001492081442847848,
-0.12166588753461838,
-0.10572822391986847,
-0.08624047785997391,
-0.10620594024658203,
-0.003335843561217189,
0.0625983327627182,
0.07892481237649918,
0.02540123648941517,
-0.0637926533818245,
0.024024777114391327,
0.1087588220834732,
-0.018144521862268448,
-0.013463077135384083,
-0.11558666080236435,
0.049828894436359406,
-0.06452075392007828,
0.0498732328414917,
0.026617994531989098,
0.2109435647726059,
0.05697767809033394,
0.08152766525745392,
-0.02013971284031868,
0.10784418135881424,
0.02781633473932743,
-0.14135976135730743,
0.04410514608025551,
0.1251249760389328,
-0.013878479599952698,
0.15095366537570953,
0.02455000951886177,
-0.14342691004276276,
0.06905531138181686,
-0.11768360435962677,
-0.006392763927578926,
-0.11522074788808823,
0.1252397745847702,
-0.04097820445895195,
0.0827799141407013,
0.15148106217384338,
-0.05928337574005127,
-0.03128618746995926,
-0.08534406870603561,
0.07588636130094528,
0.03741594776511192,
-0.01177595928311348,
-0.04485606029629707,
-0.28294384479522705,
0.03261043131351471,
-0.12262322753667831,
-0.08406203240156174,
-0.18413370847702026,
-0.03488295525312424,
0.04605187103152275,
-0.088078074157238,
0.02644163742661476,
0.017825845628976822,
0.05095846951007843,
0.014904821291565895,
0.014231192879378796,
0.04339366778731346,
0.038236167281866074,
0.11426673829555511,
-0.1218864694237709,
-0.09778782725334167
] |
null | null | transformers |
# wav2vec2-large-xlsr-53-Swedish
Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) in Swedish using the [Common Voice](https://huggingface.co/datasets/common_voice)
When using this model, make sure that your speech input is sampled at 16kHz.
## Usage
The model can be used directly (without a language model) as follows:
```python
import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
test_dataset = load_dataset("common_voice", "sv-SE", split="test[:2%]")
processor = Wav2Vec2Processor.from_pretrained("MehdiHosseiniMoghadam/wav2vec2-large-xlsr-53-Swedish")
model = Wav2Vec2ForCTC.from_pretrained("MehdiHosseiniMoghadam/wav2vec2-large-xlsr-53-Swedish")
resampler = torchaudio.transforms.Resample(48_000, 16_000)
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
print("Prediction:", processor.batch_decode(predicted_ids))
print("Reference:", test_dataset["sentence"][:2])
```
## Evaluation
The model can be evaluated as follows on the Swedish test data of Common Voice.
```python
import torch
import torchaudio
from datasets import load_dataset, load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import re
test_dataset = load_dataset("common_voice", "sv-SE", split="test")
wer = load_metric("wer")
processor = Wav2Vec2Processor.from_pretrained("MehdiHosseiniMoghadam/wav2vec2-large-xlsr-53-Swedish")
model = Wav2Vec2ForCTC.from_pretrained("MehdiHosseiniMoghadam/wav2vec2-large-xlsr-53-Swedish")
model.to("cuda")
chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“]'
resampler = torchaudio.transforms.Resample(48_000, 16_000)
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def speech_file_to_array_fn(batch):
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def evaluate(batch):
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
pred_ids = torch.argmax(logits, dim=-1)
batch["pred_strings"] = processor.batch_decode(pred_ids)
return batch
result = test_dataset.map(evaluate, batched=True, batch_size=8)
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
```
**Test Result**: 41.388337 %
## Training
The Common Voice `train`, `validation` datasets were used for training. | {"language": "sv-SE", "license": "apache-2.0", "tags": ["audio", "automatic-speech-recognition", "speech", "xlsr-fine-tuning-week"], "datasets": ["common_voice"], "model-index": [{"name": "wav2vec2-large-xlsr-53-Swedish by Mehdi Hosseini Moghadam", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice sv-SE", "type": "common_voice", "args": "sv-SE"}, "metrics": [{"type": "wer", "value": 41.388337, "name": "Test WER"}]}]}]} | automatic-speech-recognition | MehdiHosseiniMoghadam/wav2vec2-large-xlsr-53-Swedish | [
"transformers",
"pytorch",
"jax",
"wav2vec2",
"automatic-speech-recognition",
"audio",
"speech",
"xlsr-fine-tuning-week",
"dataset:common_voice",
"license:apache-2.0",
"model-index",
"endpoints_compatible",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [
"sv-SE"
] | TAGS
#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us
|
# wav2vec2-large-xlsr-53-Swedish
Fine-tuned facebook/wav2vec2-large-xlsr-53 in Swedish using the Common Voice
When using this model, make sure that your speech input is sampled at 16kHz.
## Usage
The model can be used directly (without a language model) as follows:
## Evaluation
The model can be evaluated as follows on the Swedish test data of Common Voice.
Test Result: 41.388337 %
## Training
The Common Voice 'train', 'validation' datasets were used for training. | [
"# wav2vec2-large-xlsr-53-Swedish\n\nFine-tuned facebook/wav2vec2-large-xlsr-53 in Swedish using the Common Voice\n\nWhen using this model, make sure that your speech input is sampled at 16kHz.",
"## Usage\n\nThe model can be used directly (without a language model) as follows:",
"## Evaluation\n\nThe model can be evaluated as follows on the Swedish test data of Common Voice.\n\n\n\nTest Result: 41.388337 %",
"## Training\n\nThe Common Voice 'train', 'validation' datasets were used for training."
] | [
"TAGS\n#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us \n",
"# wav2vec2-large-xlsr-53-Swedish\n\nFine-tuned facebook/wav2vec2-large-xlsr-53 in Swedish using the Common Voice\n\nWhen using this model, make sure that your speech input is sampled at 16kHz.",
"## Usage\n\nThe model can be used directly (without a language model) as follows:",
"## Evaluation\n\nThe model can be evaluated as follows on the Swedish test data of Common Voice.\n\n\n\nTest Result: 41.388337 %",
"## Training\n\nThe Common Voice 'train', 'validation' datasets were used for training."
] | [
78,
62,
20,
29,
23
] | [
"passage: TAGS\n#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us \n# wav2vec2-large-xlsr-53-Swedish\n\nFine-tuned facebook/wav2vec2-large-xlsr-53 in Swedish using the Common Voice\n\nWhen using this model, make sure that your speech input is sampled at 16kHz.## Usage\n\nThe model can be used directly (without a language model) as follows:## Evaluation\n\nThe model can be evaluated as follows on the Swedish test data of Common Voice.\n\n\n\nTest Result: 41.388337 %## Training\n\nThe Common Voice 'train', 'validation' datasets were used for training."
] | [
-0.1442115753889084,
0.010296936146914959,
-0.002093652496114373,
-0.011268951930105686,
0.08602942526340485,
-0.08244416862726212,
0.12096956372261047,
0.06103392317891121,
-0.014797795563936234,
-0.012657328508794308,
0.03588803857564926,
0.03860867768526077,
0.057375889271497726,
0.07248369604349136,
-0.0035798647440969944,
-0.2552664875984192,
0.03563883900642395,
-0.00320234801620245,
0.08748327940702438,
0.1090087741613388,
0.11590494960546494,
-0.055797185748815536,
-0.03570812940597534,
0.0993218719959259,
-0.0896838903427124,
0.03165263682603836,
0.05516340211033821,
-0.10483954101800919,
0.16016961634159088,
0.07516633719205856,
0.05335640534758568,
0.07878736406564713,
0.08985032886266708,
-0.15872031450271606,
0.01850489340722561,
-0.013914222829043865,
0.041172973811626434,
0.010201307013630867,
0.05268673226237297,
0.02728082798421383,
0.10938768833875656,
0.09329139441251755,
-0.02973901852965355,
0.05795983597636223,
0.0017390918219462037,
-0.24360817670822144,
-0.013920377008616924,
0.025201233103871346,
0.09512181580066681,
0.1257922351360321,
-0.07175312936306,
0.0728176012635231,
-0.1383036971092224,
0.10464759916067123,
0.1034696102142334,
-0.21194913983345032,
-0.004946521949023008,
0.13178953528404236,
0.07520213723182678,
0.08633216470479965,
-0.0468006432056427,
0.06204996630549431,
0.026443734765052795,
0.05557706207036972,
0.05112629011273384,
-0.05316116660833359,
-0.15564611554145813,
-0.03485265374183655,
-0.14785289764404297,
0.018097758293151855,
0.20867785811424255,
-0.005381583236157894,
-0.06473611295223236,
-0.14929041266441345,
0.014709003269672394,
0.037497252225875854,
-0.005155516322702169,
-0.10239487141370773,
0.018001604825258255,
0.001189532340504229,
-0.0055305734276771545,
-0.07957378029823303,
-0.11244580149650574,
-0.1243349239230156,
-0.010105395689606667,
0.07531917095184326,
0.007282462902367115,
0.006447147112339735,
-0.05260832607746124,
0.03285212814807892,
-0.12775960564613342,
-0.03676479309797287,
-0.03757394850254059,
0.002272313693538308,
-0.07795576006174088,
0.011745109222829342,
-0.10276912152767181,
-0.24473077058792114,
0.04201946407556534,
-0.05446748808026314,
0.026767103001475334,
0.006925453431904316,
-0.00937007088214159,
0.08086208999156952,
0.03112691268324852,
0.14831030368804932,
-0.08882281184196472,
-0.06045101210474968,
0.018973231315612793,
-0.017441637814044952,
-0.037022992968559265,
-0.026525234803557396,
-0.09539755433797836,
-0.09939519315958023,
0.06155543029308319,
0.026244988664984703,
-0.06707414984703064,
0.018390625715255737,
-0.017701005563139915,
-0.0369131825864315,
-0.0283307246863842,
-0.11129945516586304,
-0.04726564511656761,
0.04918873310089111,
0.006943505257368088,
0.12229298800230026,
0.07056926190853119,
0.048109155148267746,
-0.09680263698101044,
0.005700965877622366,
0.036513738334178925,
0.03994601592421532,
0.01635388284921646,
-0.11036995053291321,
0.010590150021016598,
-0.05900442972779274,
-0.015451867133378983,
-0.0951933041214943,
-0.05800790712237358,
-0.09895975142717361,
0.0025264949072152376,
0.03775852546095848,
-0.068018339574337,
-0.12117872387170792,
-0.023541681468486786,
-0.038237571716308594,
-0.09529857337474823,
0.04410359263420105,
-0.0334232896566391,
0.042601075023412704,
-0.027799617499113083,
0.05906780809164047,
-0.015587027184665203,
0.0799325555562973,
-0.09590157866477966,
-0.053731583058834076,
-0.05461079627275467,
0.15246528387069702,
-0.09751609712839127,
-0.07542892545461655,
-0.08440737426280975,
-0.09898269176483154,
-0.007411160971969366,
0.0982474759221077,
0.04060203582048416,
0.07784122228622437,
-0.21593405306339264,
-0.11240419000387192,
0.20043374598026276,
-0.14665380120277405,
-0.013471163809299469,
0.18169444799423218,
0.017742792144417763,
0.10022445023059845,
0.17252734303474426,
0.2542235553264618,
0.11462369561195374,
-0.16356277465820312,
0.03984508663415909,
0.06047409400343895,
-0.04720030352473259,
-0.07907338440418243,
0.06099657714366913,
-0.0664854571223259,
-0.026030566543340683,
0.049337469041347504,
-0.06984730064868927,
0.04654887318611145,
-0.008364979177713394,
-0.057680487632751465,
-0.0000579670122533571,
-0.09341279417276382,
0.046833787113428116,
0.038239531219005585,
0.01648956537246704,
-0.024309638887643814,
-0.03554624691605568,
0.10056484490633011,
0.07752461731433868,
-0.13263669610023499,
0.06590376049280167,
-0.07956293225288391,
0.05053047463297844,
-0.09387000650167465,
-0.013826071284711361,
-0.13323961198329926,
0.1225382387638092,
-0.05267661437392235,
0.05153631046414375,
0.07817594707012177,
0.2301611304283142,
0.024271853268146515,
0.007436957210302353,
-0.05463426932692528,
-0.0020842174999415874,
0.020058484748005867,
-0.015770208090543747,
-0.030681200325489044,
-0.08975875377655029,
-0.03048746846616268,
-0.05734894052147865,
0.061384402215480804,
-0.11617512255907059,
-0.03623715788125992,
0.007751997094601393,
-0.012897309847176075,
-0.010491223074495792,
-0.0014554867520928383,
0.07940179854631424,
0.09782155603170395,
0.04910122603178024,
0.03651726245880127,
0.07066158950328827,
-0.0017409060383215547,
-0.12786038219928741,
0.17758604884147644,
-0.07553096860647202,
0.01010935939848423,
0.08317281305789948,
-0.073795385658741,
-0.013681055046617985,
0.028879543766379356,
-0.01200894545763731,
-0.011186455376446247,
-0.07288727164268494,
-0.026648355647921562,
0.29674839973449707,
0.03111668862402439,
0.10557867586612701,
-0.09812231361865997,
0.025660507380962372,
0.03022531419992447,
-0.10906630754470825,
0.04179289937019348,
0.08425480127334595,
0.0008467299630865455,
-0.007849430665373802,
0.0036563605535775423,
-0.09280651807785034,
-0.12180927395820618,
0.27622511982917786,
-0.006671953946352005,
-0.08654466271400452,
0.04723425209522247,
-0.055414631962776184,
-0.04432385042309761,
0.05910240858793259,
-0.14413897693157196,
-0.037478141486644745,
0.047059327363967896,
0.05893952026963234,
0.07587967813014984,
-0.12145770341157913,
0.010857551358640194,
0.010464847087860107,
-0.1393725872039795,
-0.13028451800346375,
0.07937077432870865,
-0.04584392532706261,
0.01594870537519455,
-0.08921722322702408,
-0.10650145262479782,
0.018921706825494766,
-0.04380034655332565,
-0.17085453867912292,
0.13004069030284882,
-0.06383523344993591,
-0.2541484236717224,
-0.1575699895620346,
0.032084859907627106,
-0.03250724822282791,
0.01743142120540142,
0.10247873514890671,
-0.09891616553068161,
-0.02766759879887104,
-0.039146922528743744,
0.10955578833818436,
0.030760133638978004,
-0.053698472678661346,
-0.09053649008274078,
-0.003490971401333809,
0.07120228558778763,
-0.15297512710094452,
-0.001651126891374588,
-0.07411865890026093,
-0.06963247805833817,
-0.008707435801625252,
-0.013295214623212814,
0.0013743212912231684,
0.1703261137008667,
0.03361254185438156,
0.01795872487127781,
-0.014898435212671757,
0.17485740780830383,
-0.06219387799501419,
-0.024429690092802048,
0.17936904728412628,
-0.010105075314640999,
-0.0062105548568069935,
0.11370550096035004,
0.030581258237361908,
-0.03660821542143822,
-0.03955830633640289,
0.008197559975087643,
-0.08505100011825562,
-0.2312193512916565,
-0.13505882024765015,
-0.03820177912712097,
-0.03530149534344673,
-0.04688401147723198,
0.005412358324974775,
0.01395085733383894,
0.034107621759176254,
0.019245000556111336,
-0.14228364825248718,
0.05539942905306816,
-0.020595137029886246,
0.13284987211227417,
-0.03426136448979378,
0.12086254358291626,
-0.030185317620635033,
-0.006888851057738066,
0.011600365862250328,
0.01958394981920719,
0.11321645975112915,
0.04677224159240723,
0.030356217175722122,
0.09201907366514206,
0.09929036349058151,
0.08716084063053131,
0.09213573485612869,
-0.049467284232378006,
-0.02128894440829754,
0.02549605816602707,
-0.054719503968954086,
-0.06958191096782684,
0.03023420460522175,
0.14468175172805786,
-0.04952697828412056,
-0.038031212985515594,
-0.018920494243502617,
0.008335295133292675,
0.2113831341266632,
0.06849123537540436,
-0.15059906244277954,
-0.09852864593267441,
-0.04120301082730293,
-0.10710054636001587,
0.013297803699970245,
0.05612026900053024,
0.14202481508255005,
-0.15315383672714233,
0.05592717230319977,
-0.013121714815497398,
0.09847951680421829,
0.0052168723195791245,
0.039898596704006195,
-0.10066487640142441,
0.049310069531202316,
0.020651182159781456,
0.09320768713951111,
-0.19666001200675964,
0.21661140024662018,
-0.011482618749141693,
0.11324819922447205,
-0.045372940599918365,
-0.007510110270231962,
-0.004849953111261129,
0.12368995696306229,
0.1479635089635849,
0.03926710784435272,
0.017517579719424248,
-0.06138138100504875,
-0.052839428186416626,
0.06541478633880615,
-0.03747246041893959,
0.02199970744550228,
0.03017411008477211,
0.01584394834935665,
0.00883146096020937,
-0.02644134685397148,
-0.026801984757184982,
-0.09159743040800095,
-0.02378624863922596,
0.000279516534646973,
0.1386757493019104,
0.12116336077451706,
-0.018132012337446213,
-0.09753027558326721,
-0.1912749707698822,
0.09675373136997223,
-0.07671051472425461,
-0.10003361850976944,
-0.06546980887651443,
-0.050153739750385284,
0.07773053646087646,
-0.06030816584825516,
-0.010619165375828743,
0.09574321657419205,
0.10523858666419983,
-0.08104212582111359,
-0.000018703611203818582,
0.0495312474668026,
-0.09164620190858841,
-0.08262511342763901,
0.04151535406708717,
0.1956200748682022,
0.09820917993783951,
0.06769626587629318,
0.08517872542142868,
0.010746389627456665,
0.01041189581155777,
-0.06074352189898491,
0.006984149105846882,
0.1001671850681305,
-0.11839154362678528,
0.009103379212319851,
0.043195102363824844,
-0.16214823722839355,
-0.0967816486954689,
-0.021728532388806343,
0.2039649933576584,
0.07116203755140305,
-0.05952192842960358,
0.21194738149642944,
0.2508593797683716,
-0.07165546715259552,
-0.2366499900817871,
-0.052199553698301315,
0.12360770255327225,
0.12408127635717392,
0.02421783283352852,
-0.15622518956661224,
0.11913176625967026,
0.013780279085040092,
-0.035991545766592026,
-0.12374582886695862,
-0.22958309948444366,
-0.14566080272197723,
0.14862060546875,
-0.01750379614531994,
0.15077067911624908,
0.06201300770044327,
-0.027154169976711273,
-0.02723751589655876,
-0.009224975481629372,
-0.01653975248336792,
-0.10973457992076874,
0.13221950829029083,
0.04379698634147644,
0.12211396545171738,
0.06411349028348923,
-0.02013435587286949,
0.07971522212028503,
0.08119534701108932,
-0.034673385322093964,
-0.014324849471449852,
0.10513889044523239,
0.01543782651424408,
0.02743017114698887,
0.1891508251428604,
-0.1042880192399025,
0.015074312686920166,
-0.05877566337585449,
-0.12206274271011353,
-0.11399511992931366,
0.10411000996828079,
0.031181279569864273,
-0.05563759803771973,
0.03403862565755844,
-0.01713097281754017,
0.04273863136768341,
0.0017170360079035163,
-0.025019438937306404,
-0.21465037763118744,
0.035613756626844406,
0.18293824791908264,
0.23427613079547882,
-0.0859869197010994,
-0.1324164718389511,
-0.025193573907017708,
-0.044473905116319656,
0.12842483818531036,
-0.04093119129538536,
0.045592840760946274,
0.07125917077064514,
0.028229670599102974,
0.10613220185041428,
-0.013630107045173645,
-0.10266844183206558,
0.06812022626399994,
0.023875677958130836,
-0.055028036236763,
-0.13352246582508087,
-0.03137800469994545,
-0.08513229340314865,
-0.008299445733428001,
0.053357042372226715,
0.14277781546115875,
-0.10886388272047043,
-0.01188692357391119,
-0.022545453161001205,
0.014402232132852077,
-0.1539078801870346,
0.20250967144966125,
0.03336607664823532,
0.08341383188962936,
-0.11537474393844604,
0.03290418162941933,
-0.04727381467819214,
-0.031334035098552704,
0.04963025823235512,
-0.01573876105248928,
-0.07300183176994324,
-0.05885736644268036,
-0.026868237182497978,
0.09612623602151871,
0.002539166482165456,
-0.137483149766922,
-0.040692511945962906,
-0.1286611109972,
-0.004237472545355558,
0.07280876487493515,
0.06495780497789383,
0.006719889584928751,
-0.11440479010343552,
-0.07522542029619217,
-0.0738324373960495,
0.04384857043623924,
0.05685420334339142,
-0.045267585664987564,
-0.11211292445659637,
0.1998424381017685,
0.038999687880277634,
0.05778857320547104,
-0.0645875334739685,
-0.048226483166217804,
0.009619557298719883,
0.06911288946866989,
-0.12025941163301468,
-0.015171293169260025,
-0.045981042087078094,
0.02873523347079754,
-0.010035501793026924,
-0.04423860087990761,
-0.0014921005349606276,
0.08104308694601059,
-0.10989641398191452,
0.07011321187019348,
-0.012303783558309078,
0.03925960883498192,
-0.06960542500019073,
0.03020295687019825,
0.0016942992806434631,
-0.004816446453332901,
0.07751914113759995,
0.09247768670320511,
-0.1196667030453682,
0.15713422000408173,
-0.1772005259990692,
-0.01811952330172062,
0.06688867509365082,
0.044121719896793365,
-0.004967924673110247,
-0.06191818043589592,
-0.0009482339373789728,
0.10260484367609024,
0.03918866068124771,
-0.0026008794084191322,
0.042938146740198135,
-0.07268466055393219,
-0.006806512828916311,
-0.033814024180173874,
-0.012648053467273712,
-0.039919231086969376,
0.037669211626052856,
0.06426871567964554,
0.1483209878206253,
0.1855594664812088,
-0.11363689601421356,
0.09866616129875183,
-0.10361717641353607,
0.025283334776759148,
-0.039360411465168,
-0.025089368224143982,
-0.10653039067983627,
-0.08374421298503876,
0.04869004338979721,
-0.06754481792449951,
0.13203738629817963,
0.036975886672735214,
0.044773586094379425,
-0.03438354283571243,
-0.07327020913362503,
0.025742944329977036,
-0.011407656595110893,
0.23252037167549133,
0.029638072475790977,
0.04436919838190079,
-0.0068025002256035805,
0.011894124560058117,
-0.013509142212569714,
0.11053851246833801,
0.013854965567588806,
0.11002393066883087,
0.03286847844719887,
0.09937001019716263,
0.13108272850513458,
0.010075347498059273,
-0.07998242974281311,
-0.010700388811528683,
-0.05383238196372986,
0.03582777827978134,
-0.045976489782333374,
0.12649138271808624,
0.13533350825309753,
-0.08417785167694092,
0.11336028575897217,
0.04187997803092003,
-0.07514981180429459,
-0.18085238337516785,
-0.18551714718341827,
-0.09062416106462479,
-0.13680268824100494,
0.032436780631542206,
-0.09963774681091309,
0.003101644106209278,
0.032291825860738754,
0.05985382944345474,
-0.02912556380033493,
0.14976119995117188,
-0.0687825009226799,
-0.11305635422468185,
0.08653756231069565,
-0.09398680180311203,
0.001743287080898881,
-0.06779792904853821,
0.032702431082725525,
0.1687067151069641,
0.05507639795541763,
0.03750770539045334,
-0.004987072665244341,
-0.05572409927845001,
-0.021849103271961212,
-0.07393248379230499,
-0.06391268968582153,
-0.0172717422246933,
-0.010569768026471138,
0.11062964051961899,
0.08034304529428482,
0.1037367656826973,
-0.09472034126520157,
-0.02112434059381485,
0.1289408653974533,
-0.0458577461540699,
-0.16984538733959198,
-0.14671729505062103,
0.17822100222110748,
0.010190040804445744,
0.06581531465053558,
-0.009036137722432613,
-0.023686952888965607,
0.014136148616671562,
0.20984072983264923,
0.23129087686538696,
0.057387832552194595,
0.03690725564956665,
-0.04894016310572624,
-0.01436348631978035,
-0.02453259937465191,
0.049469850957393646,
0.025674061849713326,
0.19470377266407013,
-0.0016006188234314322,
0.05503304302692413,
-0.09267962723970413,
-0.06921694427728653,
0.00979587808251381,
0.03931668400764465,
-0.031593743711709976,
-0.08946023881435394,
-0.0267462320625782,
0.16217930614948273,
-0.0985487699508667,
-0.10010088235139847,
-0.09367351233959198,
-0.0217541866004467,
-0.11911802738904953,
-0.027544653043150902,
0.045410674065351486,
0.12401755899190903,
0.030303316190838814,
-0.04425068572163582,
0.04081744700670242,
0.11515267193317413,
-0.011795897036790848,
-0.05769531801342964,
-0.04836324602365494,
0.042380671948194504,
-0.033024419099092484,
0.0022189144510775805,
0.024204688146710396,
0.13505537807941437,
0.010041258297860622,
0.1007758378982544,
0.018218718469142914,
0.18023143708705902,
-0.026007067412137985,
-0.1007690280675888,
0.052588045597076416,
0.16055013239383698,
-0.024570640176534653,
0.13655255734920502,
-0.003983364440500736,
-0.199567973613739,
0.019078681245446205,
-0.08897576481103897,
-0.05665072053670883,
-0.0483713299036026,
0.07986312359571457,
-0.05031498894095421,
0.06700866669416428,
0.12437658756971359,
-0.04019159823656082,
-0.06314877420663834,
-0.08826180547475815,
0.07507125288248062,
0.00872921571135521,
-0.08581320196390152,
-0.04071611538529396,
-0.21626754105091095,
-0.03374507650732994,
-0.07417058944702148,
-0.060522060841321945,
-0.13827267289161682,
-0.019925151020288467,
-0.013034599833190441,
-0.06011202558875084,
0.024566737934947014,
0.017269467934966087,
0.0638527050614357,
0.0023076131474226713,
0.02833690121769905,
0.030738800764083862,
0.07048404961824417,
0.11658486723899841,
-0.18352088332176208,
-0.11070515960454941
] |
null | null | transformers |
# GPT-2 Story Generator
## Model description
Generate a short story from an input prompt.
Put the vocab ` [endprompt]` after your input.
Example of an input:
```
A person with a high school education gets sent back into the 1600s and tries to explain science and technology to the people. [endprompt]
```
#### Limitations and bias
The data we used to train was collected from reddit, so it could be very biased towards young, white, male demographic.
## Training data
The data was collected from scraping reddit. | {"language": ["en"], "tags": ["gpt2", "text-generation"], "pipeline_tag": "text-generation", "widget": [{"text": "A person with a high school education gets sent back into the 1600s and tries to explain science and technology to the people. [endprompt]"}, {"text": "A kid doodling in a math class accidentally creates the world's first functional magic circle in centuries. [endprompt]"}]} | text-generation | Meli/GPT2-Prompt | [
"transformers",
"pytorch",
"jax",
"gpt2",
"text-generation",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [
"en"
] | TAGS
#transformers #pytorch #jax #gpt2 #text-generation #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
# GPT-2 Story Generator
## Model description
Generate a short story from an input prompt.
Put the vocab ' [endprompt]' after your input.
Example of an input:
#### Limitations and bias
The data we used to train was collected from reddit, so it could be very biased towards young, white, male demographic.
## Training data
The data was collected from scraping reddit. | [
"# GPT-2 Story Generator",
"## Model description\n\nGenerate a short story from an input prompt.\n\nPut the vocab ' [endprompt]' after your input.\n\nExample of an input:",
"#### Limitations and bias\n\nThe data we used to train was collected from reddit, so it could be very biased towards young, white, male demographic.",
"## Training data\n\nThe data was collected from scraping reddit."
] | [
"TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"# GPT-2 Story Generator",
"## Model description\n\nGenerate a short story from an input prompt.\n\nPut the vocab ' [endprompt]' after your input.\n\nExample of an input:",
"#### Limitations and bias\n\nThe data we used to train was collected from reddit, so it could be very biased towards young, white, male demographic.",
"## Training data\n\nThe data was collected from scraping reddit."
] | [
52,
6,
35,
35,
13
] | [
"passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# GPT-2 Story Generator## Model description\n\nGenerate a short story from an input prompt.\n\nPut the vocab ' [endprompt]' after your input.\n\nExample of an input:#### Limitations and bias\n\nThe data we used to train was collected from reddit, so it could be very biased towards young, white, male demographic.## Training data\n\nThe data was collected from scraping reddit."
] | [
-0.0340007059276104,
0.09647025913000107,
-0.0024342609103769064,
0.02121998555958271,
0.13583850860595703,
0.031270258128643036,
0.16461381316184998,
0.10367490351200104,
-0.04877212271094322,
-0.12422825396060944,
0.2261255532503128,
0.046305593103170395,
0.041548214852809906,
0.06074715405702591,
0.012325309216976166,
-0.2517731487751007,
0.005504395812749863,
0.024783555418252945,
0.0676821768283844,
0.14724528789520264,
0.10113929957151413,
-0.041968587785959244,
0.08743838965892792,
0.0676027461886406,
-0.2386949211359024,
-0.00419417442753911,
0.036285966634750366,
-0.010106563568115234,
0.12305016070604324,
0.09312651306390762,
0.13655905425548553,
0.037476569414138794,
0.017621025443077087,
-0.143819198012352,
0.06153593957424164,
0.03652217239141464,
-0.03629903122782707,
0.06382174044847488,
0.0909152701497078,
-0.13326396048069,
0.23300737142562866,
0.1255306750535965,
0.016723021864891052,
0.07911297678947449,
-0.14556753635406494,
-0.021036924794316292,
0.023241223767399788,
0.009497210383415222,
0.05805084854364395,
0.14978604018688202,
-0.0422244556248188,
0.09712369740009308,
-0.22665740549564362,
0.07146987318992615,
0.11359954625368118,
-0.14215822517871857,
-0.02641545608639717,
0.03459042310714722,
0.06108460575342178,
-0.07268892973661423,
-0.14763084053993225,
0.003485785098746419,
0.0300256609916687,
0.04354886710643768,
-0.008873921819031239,
-0.014742041938006878,
-0.01603708229959011,
0.012364350259304047,
-0.10481073707342148,
-0.05949946865439415,
0.16534647345542908,
0.017259631305933,
-0.0018526725471019745,
-0.08765939623117447,
0.018784787505865097,
-0.05111236125230789,
0.02653888799250126,
0.03361695632338524,
-0.14575624465942383,
0.06330590695142746,
-0.12499430030584335,
-0.053653616458177567,
-0.12900446355342865,
-0.11818654835224152,
-0.048044733703136444,
0.046865202486515045,
0.001905202865600586,
0.079800546169281,
-0.20032905042171478,
0.10999012738466263,
0.11209721118211746,
-0.05067073926329613,
0.0573926642537117,
-0.11298496276140213,
0.004844242706894875,
-0.02965497598052025,
-0.07468236237764359,
-0.051171641796827316,
0.07213035225868225,
0.06349239498376846,
0.025615278631448746,
-0.0052927169017493725,
0.009658905677497387,
0.05803479254245758,
0.06727772951126099,
0.0036858466919511557,
-0.06343147903680801,
-0.023723477497696877,
0.003203820902854204,
-0.11213084310293198,
-0.0888911560177803,
-0.011041820980608463,
-0.13917531073093414,
-0.04957921430468559,
0.07721249014139175,
0.05998731404542923,
-0.006219259928911924,
0.11994277685880661,
-0.02365482784807682,
-0.06207024306058884,
-0.04044016823172569,
0.04415927454829216,
-0.05551533401012421,
0.028622128069400787,
-0.07768071442842484,
0.055272817611694336,
-0.030817413702607155,
0.030556244775652885,
-0.04323812574148178,
-0.04326028749346733,
-0.05953061580657959,
-0.018481777980923653,
-0.08076732605695724,
-0.10413870960474014,
-0.018704961985349655,
-0.04968131333589554,
0.046683721244335175,
-0.0876682698726654,
-0.23835372924804688,
-0.08889152109622955,
0.024723563343286514,
-0.038414210081100464,
-0.04315941780805588,
-0.1517791748046875,
-0.008350532501935959,
0.01605772040784359,
0.020078491419553757,
0.058279577642679214,
-0.06691815704107285,
0.06491514295339584,
-0.16697070002555847,
0.10974030196666718,
-0.07293946295976639,
0.043520238250494,
-0.11757458746433258,
-0.011775156483054161,
-0.03067859262228012,
0.12978202104568481,
0.07600503414869308,
0.13958072662353516,
-0.056580834090709686,
-0.05655069276690483,
-0.09142805635929108,
0.039383549243211746,
-0.06361161917448044,
0.185832217335701,
-0.11843136698007584,
-0.06392539292573929,
0.19770997762680054,
-0.08227867633104324,
-0.027177957817912102,
0.10716679692268372,
-0.08758717030286789,
0.19352203607559204,
0.1264677196741104,
0.21795682609081268,
0.08902773261070251,
0.029904501512646675,
0.054537415504455566,
0.04779151827096939,
-0.2171803116798401,
0.012985029257833958,
0.006147320382297039,
0.0481143482029438,
-0.09276296943426132,
-0.02147805690765381,
0.08962544053792953,
0.12933047115802765,
-0.10464764386415482,
-0.011659691110253334,
0.07048583775758743,
-0.06365863978862762,
0.08309755474328995,
0.02959311753511429,
0.05796458572149277,
-0.0066229249350726604,
-0.073622927069664,
-0.07943421602249146,
0.09081660956144333,
-0.04187234491109848,
-0.020558038726449013,
-0.14908824861049652,
0.03618667274713516,
0.0009807924507185817,
-0.03212651610374451,
-0.14492610096931458,
0.009586400352418423,
-0.08423030376434326,
0.18677903711795807,
-0.03264117240905762,
0.17893658578395844,
0.07167141884565353,
-0.020588064566254616,
-0.0443602129817009,
0.007971138693392277,
0.10890715569257736,
-0.024734102189540863,
-0.03343402221798897,
-0.13156715035438538,
0.03342428058385849,
-0.029735909774899483,
0.1353522539138794,
-0.17807570099830627,
0.02143903262913227,
0.12177194654941559,
0.06720148772001266,
0.055675629526376724,
0.0034306738525629044,
0.02762281894683838,
-0.04698197543621063,
-0.03311474248766899,
-0.059137098491191864,
0.07142041623592377,
0.05268515646457672,
-0.10763183236122131,
0.16671574115753174,
-0.09937748312950134,
-0.028009207919239998,
0.14528407156467438,
-0.3028692305088043,
-0.1416739672422409,
-0.00053706846665591,
-0.054810892790555954,
0.01687186397612095,
-0.05521346628665924,
-0.02370714582502842,
0.2119320183992386,
0.003727969713509083,
0.08050116151571274,
0.0023741801269352436,
-0.034585922956466675,
0.0022227708250284195,
-0.011621481738984585,
0.06728240847587585,
0.12078197300434113,
0.06080586463212967,
-0.20029406249523163,
0.10662462562322617,
-0.01776653714478016,
0.04137298837304115,
0.2367127537727356,
0.07949284464120865,
-0.023347344249486923,
0.039875876158475876,
-0.04987100884318352,
-0.03670765832066536,
0.03256455063819885,
-0.1866152584552765,
-0.007608155719935894,
0.046421218663454056,
-0.010473692789673805,
0.055978983640670776,
-0.1586804836988449,
-0.08947626501321793,
-0.04939306527376175,
-0.006675558164715767,
-0.06423568725585938,
0.057515934109687805,
-0.011434696614742279,
0.10361526161432266,
0.04033283516764641,
-0.027558352798223495,
0.08818372339010239,
-0.04187100753188133,
-0.12780365347862244,
0.19798821210861206,
0.005545429419726133,
-0.23070602118968964,
-0.09744998067617416,
-0.05239003524184227,
0.03055397979915142,
0.09487829357385635,
0.036355823278427124,
-0.12652912735939026,
0.028644906356930733,
0.00046154289157129824,
0.14679816365242004,
-0.09553073346614838,
0.0486757829785347,
-0.07067451626062393,
0.1015428900718689,
-0.07756075263023376,
-0.008988899178802967,
-0.029484255239367485,
-0.04073796421289444,
-0.07245364785194397,
0.12801049649715424,
-0.21495170891284943,
0.01161457970738411,
0.1510370671749115,
0.04518246650695801,
0.02898312546312809,
-0.06810986250638962,
0.25827792286872864,
-0.15128645300865173,
-0.03008270263671875,
0.12021344900131226,
-0.10321167856454849,
0.004624026827514172,
0.09243660420179367,
-0.029328854754567146,
-0.1018056645989418,
0.09558063000440598,
0.04234866052865982,
-0.076495461165905,
-0.14320684969425201,
-0.048526231199502945,
-0.046836212277412415,
0.023387160152196884,
0.06397231668233871,
0.05421344190835953,
0.13729168474674225,
0.11210998147726059,
-0.031207026913762093,
0.043120719492435455,
0.008862084709107876,
0.061446093022823334,
0.0433548241853714,
-0.05143143609166145,
0.09154050797224045,
-0.03444933146238327,
-0.09703853726387024,
0.03724491223692894,
-0.11468770354986191,
0.2546674907207489,
0.034896451979875565,
0.06635116785764694,
0.08074943721294403,
-0.014257203787565231,
0.10316876322031021,
0.07377645373344421,
0.05615685135126114,
-0.09109625220298767,
-0.03612567111849785,
0.01215815357863903,
-0.0737646222114563,
0.054107196629047394,
-0.005020665470510721,
-0.0352969616651535,
-0.06385348737239838,
0.0033529317006468773,
0.052000533789396286,
0.17566736042499542,
0.10880658030509949,
-0.27186843752861023,
-0.11570626497268677,
0.018791357055306435,
-0.0908033549785614,
-0.06533872336149216,
0.06116216257214546,
0.08633381128311157,
-0.15895245969295502,
-0.0035740688908845186,
0.02872840315103531,
0.11305389553308487,
-0.13583797216415405,
0.08606083691120148,
-0.02580845355987549,
-0.07700976729393005,
-0.05721617862582207,
0.1419980525970459,
-0.3079892694950104,
0.19720818102359772,
0.006860233377665281,
0.019803674891591072,
-0.162170872092247,
-0.11975084990262985,
-0.010592828504741192,
0.07640323042869568,
0.17759370803833008,
0.011299124918878078,
-0.004313815850764513,
-0.050194770097732544,
-0.03398695960640907,
0.01948847435414791,
0.05071977153420448,
-0.08602973073720932,
0.03811854124069214,
-0.034677326679229736,
0.05755764618515968,
-0.007978575304150581,
-0.08163846284151077,
-0.02616097405552864,
-0.08135379105806351,
-0.02484200708568096,
-0.017243167385458946,
0.10562165826559067,
0.025437362492084503,
-0.04291723296046257,
0.12587527930736542,
0.1395013928413391,
-0.029221368953585625,
-0.08630179613828659,
-0.09517380595207214,
0.13599687814712524,
-0.06442376226186752,
-0.03950054943561554,
-0.03711685910820961,
0.06027799844741821,
0.14801692962646484,
0.023203568533062935,
-0.0573929063975811,
0.08181799203157425,
-0.06384005397558212,
-0.1230030208826065,
-0.05837301164865494,
0.0768197700381279,
0.13149681687355042,
0.1125401109457016,
0.050183262676000595,
-0.023326408118009567,
-0.08640837669372559,
-0.12285204976797104,
0.05314546078443527,
-0.009475569240748882,
-0.05443365499377251,
-0.01284596137702465,
0.12272465229034424,
0.07558950781822205,
-0.0664118304848671,
-0.0660707950592041,
0.3072352111339569,
0.12018342316150665,
-0.049513597041368484,
0.11071436107158661,
0.029714256525039673,
-0.09118738025426865,
-0.31253859400749207,
0.05109245702624321,
-0.023401537910103798,
0.04145784676074982,
-0.03281567990779877,
-0.19182075560092926,
0.02504112385213375,
-0.0579724945127964,
0.03611310198903084,
0.03942936658859253,
-0.22364722192287445,
-0.054977379739284515,
0.11749938130378723,
0.020677650347352028,
0.2912346124649048,
-0.04919843375682831,
-0.005738076753914356,
-0.12616975605487823,
-0.06157105043530464,
0.18219438195228577,
-0.0755564495921135,
0.054198551923036575,
-0.04840623959898949,
0.1789642721414566,
0.040604427456855774,
-0.029458478093147278,
0.06692042946815491,
0.03433903306722641,
0.03651129826903343,
-0.12381456047296524,
-0.08912520110607147,
0.09518798440694809,
0.06589046120643616,
-0.046292342245578766,
0.0014079844113439322,
-0.04197390377521515,
-0.1735180914402008,
-0.08598154783248901,
-0.10812772810459137,
-0.001311943051405251,
0.010402959771454334,
-0.08157746493816376,
-0.06182040646672249,
0.05051602050662041,
0.028264552354812622,
0.021568680182099342,
0.001446253969334066,
-0.10748758167028427,
0.10604649037122726,
-0.11100505292415619,
0.20955726504325867,
-0.014740565791726112,
0.023255573585629463,
0.01721307821571827,
-0.004629378207027912,
0.07448580116033554,
-0.15758877992630005,
0.03381800279021263,
0.11149319261312485,
0.003861823119223118,
0.1148417741060257,
0.12360938638448715,
-0.027771057561039925,
0.06370487809181213,
0.07511316984891891,
-0.19495268166065216,
-0.047065019607543945,
-0.08249843120574951,
0.020514382049441338,
-0.03670358285307884,
-0.10797268152236938,
0.1055716797709465,
-0.03175387904047966,
-0.02307405322790146,
0.011049432680010796,
0.026630781590938568,
-0.06148003041744232,
0.056043826043605804,
0.05843615531921387,
0.027494212612509727,
-0.09493457525968552,
0.0014309088001027703,
0.0067401365377008915,
-0.0037726673763245344,
0.04974822327494621,
0.0003547876258380711,
-0.12030438333749771,
-0.07078326493501663,
-0.014027709141373634,
0.1836797297000885,
-0.0887117013335228,
-0.0665651485323906,
-0.08218767493963242,
-0.11608713120222092,
0.061855562031269073,
0.033927012234926224,
0.047513920813798904,
0.11396143585443497,
-0.024365130811929703,
-0.029302779585123062,
-0.11988415569067001,
0.007296455092728138,
-0.028247112408280373,
-0.089741051197052,
-0.056836698204278946,
0.12230443954467773,
0.017982130870223045,
0.06916224956512451,
-0.09509611129760742,
-0.06408697366714478,
-0.15783405303955078,
0.06671921908855438,
-0.10978387296199799,
0.013429648242890835,
-0.07202956825494766,
-0.0023873290047049522,
-0.027230512350797653,
-0.004224341828376055,
-0.062059272080659866,
-0.012754089199006557,
-0.13242244720458984,
0.050390176475048065,
0.0206117182970047,
-0.009784146212041378,
0.0344332680106163,
0.030676020309329033,
0.09848315268754959,
-0.003408229211345315,
0.10265420377254486,
0.07440564036369324,
-0.02528386563062668,
0.0594991035759449,
-0.19544465839862823,
-0.005687855649739504,
-0.0005997833213768899,
-0.03410525992512703,
-0.016553349792957306,
0.01821914128959179,
-0.02513483352959156,
0.019229646772146225,
-0.007716801483184099,
0.0736209973692894,
-0.004017641767859459,
-0.05557086318731308,
0.11387917399406433,
0.033962052315473557,
-0.011552502401173115,
-0.07532176375389099,
0.06302351504564285,
0.08631765842437744,
0.029941951856017113,
0.12297175824642181,
-0.03348406404256821,
0.10871972143650055,
-0.12863869965076447,
0.08025124669075012,
0.01360214315354824,
0.01170048862695694,
0.025398382917046547,
-0.08902812004089355,
0.04497087001800537,
0.017384879291057587,
0.19223278760910034,
0.04775996878743172,
0.07915858924388885,
0.025559671223163605,
0.13830797374248505,
0.031471893191337585,
-0.009175816550850868,
0.12722516059875488,
0.045916613191366196,
-0.013070674613118172,
-0.017364392057061195,
0.04952569305896759,
0.04409908130764961,
0.07535728067159653,
0.14930780231952667,
-0.04150567576289177,
0.042388398200273514,
0.0037680913228541613,
-0.08710645884275436,
0.06110570207238197,
-0.04665788263082504,
0.02658800594508648,
0.02141212671995163,
-0.0070970067754387856,
-0.05607501044869423,
0.11566818505525589,
0.17201589047908783,
-0.03722527250647545,
0.0032260490115731955,
-0.038267794996500015,
-0.07411889731884003,
-0.16801734268665314,
-0.1961737871170044,
-0.014661764726042747,
-0.1239873394370079,
0.051500994712114334,
-0.10881740599870682,
-0.010947511531412601,
0.07938933372497559,
0.03053390048444271,
-0.04459565505385399,
0.06547192484140396,
0.036036960780620575,
-0.09390118718147278,
0.046461448073387146,
-0.0768476128578186,
-0.0010477160103619099,
-0.109137162566185,
0.07545273751020432,
0.06470753997564316,
0.009285164065659046,
0.04970056563615799,
-0.023864073678851128,
-0.03002472035586834,
-0.01949198544025421,
-0.14596553146839142,
-0.06186993420124054,
-0.03080863691866398,
0.03512189909815788,
0.009299121797084808,
0.1192486584186554,
0.032532889395952225,
0.04004226252436638,
-0.0007084010867401958,
0.18932035565376282,
0.015929393470287323,
-0.027165863662958145,
-0.13901209831237793,
0.08182940632104874,
-0.029707124456763268,
0.004393721930682659,
-0.025941340252757072,
-0.02506028488278389,
0.06540767103433609,
0.32300594449043274,
0.2641558349132538,
-0.07597687095403671,
0.013338064774870872,
-0.02888917364180088,
0.010452625341713428,
0.0422838032245636,
0.05287095159292221,
0.020586373284459114,
0.06268991529941559,
-0.14790695905685425,
-0.02228447049856186,
-0.03893197327852249,
-0.020610732957720757,
0.07898032665252686,
-0.009781344793736935,
0.06136568635702133,
0.054497648030519485,
-0.09724854677915573,
0.17131704092025757,
-0.3127913177013397,
-0.06666313111782074,
-0.07152765989303589,
-0.08493874967098236,
-0.07164078950881958,
0.0171572957187891,
0.0016207388835027814,
0.07064801454544067,
0.13133640587329865,
-0.02915338985621929,
0.010486505925655365,
0.012040279805660248,
0.028429390862584114,
-0.19978633522987366,
-0.051032282412052155,
0.1207902729511261,
-0.045926533639431,
0.05789659544825554,
-0.10988408327102661,
0.08549018204212189,
0.09856946021318436,
0.012314960360527039,
-0.11004374176263809,
-0.01547908317297697,
-0.04925428330898285,
0.020880771800875664,
0.0038137396331876516,
0.18213503062725067,
-0.005360956769436598,
0.0002563357993494719,
0.06880839169025421,
-0.09638413786888123,
0.06696081161499023,
-0.19280053675174713,
-0.0130564384162426,
-0.04314841330051422,
0.048909224569797516,
-0.02272343449294567,
0.10439649224281311,
0.14862625300884247,
-0.07202275842428207,
0.0021795399952679873,
-0.05294691398739815,
-0.01578196883201599,
-0.053433824330568314,
-0.04385465011000633,
-0.08878631889820099,
-0.14408890902996063,
-0.04110769182443619,
0.10645386576652527,
-0.025848856195807457,
-0.2080252319574356,
0.04286614805459976,
-0.08628928661346436,
-0.06541332602500916,
0.00836095679551363,
0.07650692015886307,
0.0030325984116643667,
0.05501459911465645,
-0.02400016039609909,
0.012065926566720009,
0.0052620042115449905,
0.08765880018472672,
-0.0607571117579937,
-0.15075251460075378
] |
null | null | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-cola
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6324
- Matthews Correlation: 0.5207
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Matthews Correlation |
|:-------------:|:-----:|:----:|:---------------:|:--------------------:|
| 0.5245 | 1.0 | 535 | 0.5155 | 0.4181 |
| 0.3446 | 2.0 | 1070 | 0.5623 | 0.4777 |
| 0.2331 | 3.0 | 1605 | 0.6324 | 0.5207 |
| 0.1678 | 4.0 | 2140 | 0.7706 | 0.5106 |
| 0.1255 | 5.0 | 2675 | 0.8852 | 0.4998 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.0+cu111
- Datasets 1.18.0
- Tokenizers 0.10.3
| {"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["glue"], "metrics": ["matthews_correlation"], "model-index": [{"name": "distilbert-base-uncased-finetuned-cola", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "glue", "type": "glue", "args": "cola"}, "metrics": [{"type": "matthews_correlation", "value": 0.5206791471093309, "name": "Matthews Correlation"}]}]}]} | text-classification | MelissaTESSA/distilbert-base-uncased-finetuned-cola | [
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"dataset:glue",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [] | TAGS
#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #dataset-glue #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us
| distilbert-base-uncased-finetuned-cola
======================================
This model is a fine-tuned version of distilbert-base-uncased on the glue dataset.
It achieves the following results on the evaluation set:
* Loss: 0.6324
* Matthews Correlation: 0.5207
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 16
* eval\_batch\_size: 16
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 5
### Training results
### Framework versions
* Transformers 4.15.0
* Pytorch 1.10.0+cu111
* Datasets 1.18.0
* Tokenizers 0.10.3
| [
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] | [
"TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #dataset-glue #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] | [
67,
98,
4,
35
] | [
"passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #dataset-glue #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] | [
-0.10574699193239212,
0.09150970727205276,
-0.002221889328211546,
0.12303871661424637,
0.1644229143857956,
0.02964385785162449,
0.11418065428733826,
0.12970876693725586,
-0.08919671177864075,
0.0258101187646389,
0.12756742537021637,
0.16260862350463867,
0.020158758386969566,
0.12191565334796906,
-0.05445447564125061,
-0.2639211118221283,
-0.010276902467012405,
0.05284940078854561,
-0.040255215018987656,
0.13419625163078308,
0.0932815670967102,
-0.12389829009771347,
0.0916728600859642,
0.01309914980083704,
-0.19548551738262177,
0.0013088210253044963,
0.0005897274822928011,
-0.05394193157553673,
0.14345255494117737,
0.024465948343276978,
0.11919017881155014,
-0.0016087363474071026,
0.08036720007658005,
-0.193436861038208,
0.009990460239350796,
0.047128938138484955,
0.0037352838553488255,
0.09203101694583893,
0.042816340923309326,
-0.001426015398465097,
0.12640242278575897,
-0.09033050388097763,
0.05111240968108177,
0.02109670825302601,
-0.11469623446464539,
-0.21383076906204224,
-0.0800279751420021,
0.03996260091662407,
0.08052250742912292,
0.10933209210634232,
-0.007367439568042755,
0.12384623289108276,
-0.07680042833089828,
0.09504607319831848,
0.22993485629558563,
-0.29675546288490295,
-0.06587496399879456,
0.03566752001643181,
0.012684176675975323,
0.0382220633327961,
-0.10194852203130722,
-0.037278637290000916,
0.050746023654937744,
0.05314994975924492,
0.12854842841625214,
-0.030055580660700798,
-0.11210945248603821,
0.003000171622261405,
-0.137007474899292,
-0.0339813195168972,
0.16601018607616425,
0.042034704238176346,
-0.03141216188669205,
-0.06115489453077316,
-0.05728361755609512,
-0.1528596729040146,
-0.04007215052843094,
-0.01044462714344263,
0.047005556523799896,
-0.022838402539491653,
-0.04315579682588577,
-0.004650035407394171,
-0.1092267632484436,
-0.05855197459459305,
-0.07831680774688721,
0.1117313802242279,
0.036944326013326645,
0.009038976393640041,
-0.033380065113306046,
0.10883326083421707,
-0.009355161339044571,
-0.12524858117103577,
0.015248222276568413,
0.022272860631346703,
0.01834971085190773,
-0.04111248254776001,
-0.05470244213938713,
-0.06564810872077942,
0.008153753355145454,
0.12731648981571198,
-0.05843135714530945,
0.04452135041356087,
0.046664658933877945,
0.046739764511585236,
-0.0922369733452797,
0.19150198996067047,
-0.03199601173400879,
-0.022622982040047646,
0.011173354461789131,
0.04008617624640465,
0.02071211114525795,
-0.00930369459092617,
-0.12306998670101166,
0.0033269147388637066,
0.08944516628980637,
0.005465798079967499,
-0.06554017215967178,
0.0774092823266983,
-0.05338582396507263,
-0.020501744002103806,
0.003805846441537142,
-0.092376708984375,
0.02683897130191326,
-0.0028807399794459343,
-0.07020914554595947,
-0.01994006335735321,
0.035347066819667816,
0.014873884618282318,
-0.024913698434829712,
0.11317755281925201,
-0.08705886453390121,
0.029872039332985878,
-0.09422064572572708,
-0.10551777482032776,
0.019315678626298904,
-0.10435681790113449,
0.02661634422838688,
-0.0956491082906723,
-0.1830132007598877,
-0.016089556738734245,
0.06185867637395859,
-0.025585949420928955,
-0.05944601818919182,
-0.05640297383069992,
-0.06936697661876678,
0.015045384876430035,
-0.010469987988471985,
0.1190033033490181,
-0.06395300477743149,
0.08996238559484482,
0.027219876646995544,
0.06271479278802872,
-0.04401252418756485,
0.05667514726519585,
-0.10415748506784439,
0.016155369579792023,
-0.1598213016986847,
0.04041816294193268,
-0.04425527900457382,
0.07795736938714981,
-0.08337324857711792,
-0.10718391835689545,
0.00242647435516119,
-0.00465244147926569,
0.06712181866168976,
0.09468746185302734,
-0.1788618266582489,
-0.07367118448019028,
0.1655838042497635,
-0.07057782262563705,
-0.12610360980033875,
0.11946315318346024,
-0.06085413321852684,
0.05395055189728737,
0.059349074959754944,
0.17904150485992432,
0.07074229419231415,
-0.08134967088699341,
-0.003249700181186199,
0.02351328171789646,
0.04597122594714165,
-0.07207053154706955,
0.06604939699172974,
0.008725251071155071,
0.021188966929912567,
0.03683969005942345,
-0.02244829759001732,
0.061185322701931,
-0.0838036984205246,
-0.09494756162166595,
-0.04586677625775337,
-0.08061137795448303,
0.033676836639642715,
0.07672780007123947,
0.07169865071773529,
-0.09772004187107086,
-0.08116523176431656,
0.04509560391306877,
0.07782474160194397,
-0.05718550086021423,
0.03011373244225979,
-0.054801877588033676,
0.07546334713697433,
-0.02906121127307415,
-0.022448034957051277,
-0.18086451292037964,
-0.02659408561885357,
0.0055857435800135136,
0.005321982316672802,
0.011680885218083858,
0.01913473941385746,
0.061932168900966644,
0.05370311439037323,
-0.04894731938838959,
-0.01450276281684637,
-0.021431753411889076,
-0.0013801180757582188,
-0.1312013864517212,
-0.18990901112556458,
-0.028966661542654037,
-0.023548070341348648,
0.141725555062294,
-0.20643086731433868,
0.0461759939789772,
-0.011063660494983196,
0.07186280936002731,
0.009111904539167881,
-0.006047431845217943,
-0.03762305527925491,
0.07062572985887527,
-0.04543264955282211,
-0.05098385363817215,
0.0800023302435875,
0.0220621470361948,
-0.08925487846136093,
-0.045500773936510086,
-0.0929231122136116,
0.1574377715587616,
0.13114148378372192,
-0.10671543329954147,
-0.0784960463643074,
-0.017215322703123093,
-0.06788500398397446,
-0.03269239515066147,
-0.04726943373680115,
0.031363051384687424,
0.19456909596920013,
-0.005868142005056143,
0.15200965106487274,
-0.07064378261566162,
-0.049025122076272964,
0.021208180114626884,
-0.035982657223939896,
0.014745202846825123,
0.12839479744434357,
0.12973763048648834,
-0.0672171339392662,
0.15216119587421417,
0.14374487102031708,
-0.08648084104061127,
0.14002081751823425,
-0.040465183556079865,
-0.06633087247610092,
-0.015604300424456596,
-0.02896473929286003,
-0.010696775279939175,
0.09913158416748047,
-0.15722547471523285,
-0.0026735994033515453,
0.03336216136813164,
0.01898314245045185,
0.02545694075524807,
-0.2211402803659439,
-0.0380670428276062,
0.03657940775156021,
-0.03923147916793823,
-0.009903093799948692,
-0.005204441491514444,
0.005163697991520166,
0.10001060366630554,
0.004223693162202835,
-0.0836784690618515,
0.04192342236638069,
0.005698137450963259,
-0.08634421229362488,
0.21529723703861237,
-0.07978218048810959,
-0.17297381162643433,
-0.12360626459121704,
-0.07737994194030762,
-0.04395132139325142,
-0.001238985569216311,
0.07226777821779251,
-0.08929359167814255,
-0.033052295446395874,
-0.07369281351566315,
0.01450338214635849,
0.0039017151575535536,
0.028015224263072014,
0.011388684622943401,
0.0042588678188622,
0.06401197612285614,
-0.10645540803670883,
-0.019788840785622597,
-0.05644975230097771,
-0.0362827330827713,
0.042924270033836365,
0.028815992176532745,
0.11012408882379532,
0.1479114145040512,
-0.015774032101035118,
0.016355330124497414,
-0.03238692879676819,
0.2380126416683197,
-0.06004419922828674,
-0.020491868257522583,
0.14169515669345856,
-0.007068214938044548,
0.051429763436317444,
0.12007800489664078,
0.06913257390260696,
-0.08054493367671967,
0.005054922308772802,
0.03207238018512726,
-0.03744198754429817,
-0.22904497385025024,
-0.05397490784525871,
-0.06027171388268471,
0.005244285799562931,
0.09270403534173965,
0.025705739855766296,
0.02892596833407879,
0.07275156676769257,
0.04302596300840378,
0.08130757510662079,
-0.042262665927410126,
0.05978262051939964,
0.12806153297424316,
0.03662604093551636,
0.12544716894626617,
-0.04940314590930939,
-0.06270033866167068,
0.04166227579116821,
-0.014610105194151402,
0.2231808751821518,
0.003968763630837202,
0.12871916592121124,
0.059401582926511765,
0.16435694694519043,
-0.006158420350402594,
0.08089281618595123,
-0.013667854480445385,
-0.0412156879901886,
-0.014968241564929485,
-0.03711140528321266,
-0.039572522044181824,
0.026966344565153122,
-0.07461633533239365,
0.06235788017511368,
-0.1238163486123085,
0.01925928331911564,
0.06067033112049103,
0.255914568901062,
0.03584641218185425,
-0.3254505395889282,
-0.1003030464053154,
0.00198675156570971,
-0.03539799898862839,
-0.02733016200363636,
0.02960084192454815,
0.08861826360225677,
-0.09792119264602661,
0.03474656865000725,
-0.07499148696660995,
0.09793892502784729,
-0.047614939510822296,
0.050278909504413605,
0.08060435950756073,
0.08601803332567215,
0.012147570960223675,
0.09292320907115936,
-0.29414987564086914,
0.27560123801231384,
0.00022364393225871027,
0.06406594812870026,
-0.0811096802353859,
0.00928433146327734,
0.038015224039554596,
0.06328359991312027,
0.09049133211374283,
-0.012662411667406559,
-0.045707982033491135,
-0.17415106296539307,
-0.06602580100297928,
0.028462670743465424,
0.06309960782527924,
-0.029387515038251877,
0.08520964533090591,
-0.031087685376405716,
0.007165031973272562,
0.0703582912683487,
0.0049633425660431385,
-0.046665169298648834,
-0.10810916870832443,
-0.009019904769957066,
0.028154658153653145,
-0.06494946777820587,
-0.058946724981069565,
-0.1165085881948471,
-0.12428398430347443,
0.16640886664390564,
-0.030461197718977928,
-0.04252227395772934,
-0.10977210849523544,
0.08605346083641052,
0.05511318892240524,
-0.09004565328359604,
0.044061046093702316,
0.0011759544722735882,
0.08200643956661224,
0.021626465022563934,
-0.0747009813785553,
0.10432234406471252,
-0.07590310275554657,
-0.15068261325359344,
-0.06450671702623367,
0.10723252594470978,
0.02936895377933979,
0.06429130584001541,
-0.009153968654572964,
0.008879931643605232,
-0.04979727044701576,
-0.08986059576272964,
0.017089975997805595,
0.0007611435721628368,
0.08768553286790848,
0.008459556847810745,
-0.07035096734762192,
0.010092457756400108,
-0.05977173149585724,
-0.03205105662345886,
0.20840032398700714,
0.20955567061901093,
-0.10239951312541962,
0.02595059759914875,
0.01709146238863468,
-0.07342441380023956,
-0.19833609461784363,
0.032480791211128235,
0.05760990083217621,
0.00990027841180563,
0.03293952718377113,
-0.17524322867393494,
0.140821173787117,
0.1028025895357132,
-0.012408879585564137,
0.10254509001970291,
-0.31097444891929626,
-0.12331406772136688,
0.13507235050201416,
0.13113842904567719,
0.11231710016727448,
-0.12694573402404785,
-0.01957138068974018,
-0.022133823484182358,
-0.14143510162830353,
0.10883231461048126,
-0.08542533963918686,
0.11572902649641037,
-0.03651092201471329,
0.08464810252189636,
0.0027547753416001797,
-0.060555074363946915,
0.11379577964544296,
0.02979387901723385,
0.0927826389670372,
-0.06241221725940704,
-0.03587158024311066,
0.0281683262437582,
-0.04769054427742958,
0.0424623116850853,
-0.09641774743795395,
0.029959628358483315,
-0.11025798320770264,
-0.027455130591988564,
-0.06577378511428833,
0.044984012842178345,
-0.04102103039622307,
-0.06382209062576294,
-0.03912864997982979,
0.021760467439889908,
0.05444656312465668,
-0.007229467388242483,
0.13363583385944366,
0.02627558447420597,
0.14219926297664642,
0.09631923586130142,
0.07786185294389725,
-0.07996558398008347,
-0.07714398205280304,
-0.022295666858553886,
-0.011707625351846218,
0.04836102947592735,
-0.14280153810977936,
0.022908683866262436,
0.15426111221313477,
0.01953495852649212,
0.14551492035388947,
0.08355195075273514,
-0.017780963331460953,
0.0007364879129454494,
0.05939270183444023,
-0.16760851442813873,
-0.08784904330968857,
-0.013712635263800621,
-0.06312134861946106,
-0.11985652148723602,
0.04385856166481972,
0.0896887481212616,
-0.06828568875789642,
-0.008907939307391644,
-0.007430972997099161,
0.01481402013450861,
-0.05158726125955582,
0.17920692265033722,
0.05767498537898064,
0.0452873557806015,
-0.10030835121870041,
0.06853125244379044,
0.04415473714470863,
-0.07784123718738556,
0.011154305189847946,
0.07637082040309906,
-0.08745495975017548,
-0.05439426749944687,
0.0704912543296814,
0.1886192113161087,
-0.04563015326857567,
-0.04984121769666672,
-0.13911058008670807,
-0.12496323138475418,
0.08518878370523453,
0.14041614532470703,
0.11851948499679565,
0.009778427891433239,
-0.06645713746547699,
-0.0007576986099593341,
-0.11363153904676437,
0.10058259218931198,
0.04983150213956833,
0.0630212128162384,
-0.14513753354549408,
0.13858933746814728,
0.014633992686867714,
0.05235723778605461,
-0.01902252808213234,
0.027500545606017113,
-0.09778148680925369,
0.009336830116808414,
-0.09907571226358414,
-0.009479225613176823,
-0.039086129516363144,
0.009876909665763378,
-0.0050237481482326984,
-0.046158574521541595,
-0.05877677723765373,
0.014300999231636524,
-0.10721539705991745,
-0.021707192063331604,
0.027936125174164772,
0.0663837417960167,
-0.10575015842914581,
-0.03599728271365166,
0.02567133679986,
-0.06242181733250618,
0.07392608374357224,
0.04995151236653328,
0.01390848495066166,
0.0481695681810379,
-0.13224448263645172,
0.018400680273771286,
0.07612836360931396,
0.02635989524424076,
0.06499990075826645,
-0.0999947041273117,
-0.005151581950485706,
0.0020814924500882626,
0.03770638629794121,
0.021028146147727966,
0.07369302958250046,
-0.14300423860549927,
0.0019280873239040375,
-0.01874489150941372,
-0.07896372675895691,
-0.06860597431659698,
0.02678074687719345,
0.09080234915018082,
0.017161492258310318,
0.19979649782180786,
-0.07684026658535004,
0.04657537117600441,
-0.21299569308757782,
0.0074897343292832375,
-0.00876830704510212,
-0.11017684638500214,
-0.10067369043827057,
-0.0684543251991272,
0.05730797350406647,
-0.057893771678209305,
0.1536739021539688,
0.047158095985651016,
0.021166197955608368,
0.027802957221865654,
-0.014698171988129616,
0.013590307906270027,
0.011676624417304993,
0.19268402457237244,
0.02425900287926197,
-0.03904970362782478,
0.06080586835741997,
0.043516699224710464,
0.10713166743516922,
0.12307514250278473,
0.2049289047718048,
0.1441611349582672,
0.0010310952784493566,
0.10166773945093155,
0.03366097807884216,
-0.05258185788989067,
-0.1650606244802475,
0.04482370242476463,
-0.0402703694999218,
0.11112456023693085,
-0.019278179854154587,
0.21307776868343353,
0.06800496578216553,
-0.1719304621219635,
0.04970325529575348,
-0.056309644132852554,
-0.0864400789141655,
-0.11358723044395447,
-0.06106816604733467,
-0.08052743226289749,
-0.13053825497627258,
-0.0009598765172995627,
-0.11767730116844177,
0.00015248419367708266,
0.11696769297122955,
0.0045120189897716045,
-0.028612865135073662,
0.16116617619991302,
0.0091092549264431,
0.025261441245675087,
0.06355610489845276,
0.008900131098926067,
-0.0370115265250206,
-0.12443500012159348,
-0.05382134020328522,
-0.016815917566418648,
-0.016614917665719986,
0.0346698984503746,
-0.059713877737522125,
-0.03724439814686775,
0.031277161091566086,
-0.019714105874300003,
-0.09111941605806351,
0.003836573800072074,
0.016776150092482567,
0.057724397629499435,
0.0480206273496151,
0.010275926440954208,
0.018949320539832115,
-0.005862870253622532,
0.1990707963705063,
-0.07397736608982086,
-0.06339681893587112,
-0.10838683694601059,
0.23342598974704742,
0.04256758093833923,
-0.022951921448111534,
0.03199322894215584,
-0.06594222784042358,
0.005219373386353254,
0.2523467540740967,
0.20963488519191742,
-0.07289423793554306,
-0.00706175621598959,
0.011533655226230621,
-0.007555477786809206,
-0.018920354545116425,
0.09844256192445755,
0.14901460707187653,
0.05656224861741066,
-0.09308025240898132,
-0.05077947676181793,
-0.0602409765124321,
-0.01783042587339878,
-0.0402628518640995,
0.07304697483778,
0.046329181641340256,
0.0064404066652059555,
-0.03267249837517738,
0.05403541028499603,
-0.07004890590906143,
-0.09018521010875702,
0.05483955144882202,
-0.21560750901699066,
-0.16424690186977386,
-0.009430425241589546,
0.09643133729696274,
0.004726288840174675,
0.06232462450861931,
-0.0267392136156559,
-0.00451577827334404,
0.09348935633897781,
-0.019699161872267723,
-0.09747367352247238,
-0.0651467815041542,
0.08400276303291321,
-0.11795279383659363,
0.2225942462682724,
-0.044804032891988754,
0.052723031491041183,
0.1270662546157837,
0.07137440145015717,
-0.07307267934083939,
0.06363099068403244,
0.03831203281879425,
-0.03756340593099594,
0.03004550002515316,
0.0740073099732399,
-0.035173799842596054,
0.05622547119855881,
0.04682247340679169,
-0.13967016339302063,
0.019545795395970345,
-0.052903804928064346,
-0.061931416392326355,
-0.04836766794323921,
-0.02166617289185524,
-0.060912687331438065,
0.13131475448608398,
0.21713700890541077,
-0.027515392750501633,
-0.010560930706560612,
-0.07107927650213242,
0.011686996556818485,
0.051080431789159775,
0.021661071106791496,
-0.05678512528538704,
-0.21221794188022614,
0.0193268321454525,
0.05099974200129509,
-0.0193370021879673,
-0.2448500245809555,
-0.10044363886117935,
0.004146194085478783,
-0.07393744587898254,
-0.09677248448133469,
0.07144629210233688,
0.0880008414387703,
0.05215497314929962,
-0.0590873546898365,
-0.0395214781165123,
-0.07380376011133194,
0.14700600504875183,
-0.13905611634254456,
-0.09229153394699097
] |
null | null | null | Gggg | {} | null | Mervtttt/Ges | [
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [] | TAGS
#region-us
| Gggg | [] | [
"TAGS\n#region-us \n"
] | [
6
] | [
"passage: TAGS\n#region-us \n"
] | [
0.024608636274933815,
-0.026205500587821007,
-0.009666500613093376,
-0.10395516455173492,
0.08638657629489899,
0.059816278517246246,
0.01882290467619896,
0.020661840215325356,
0.23975107073783875,
-0.005599027033895254,
0.1219947561621666,
0.0015615287702530622,
-0.037353623658418655,
0.03733762726187706,
-0.0035912662278860807,
-0.17583473026752472,
0.03876631706953049,
-0.018274923786520958,
0.01843859627842903,
0.026470553129911423,
-0.07776834815740585,
-0.07564429938793182,
0.015296397730708122,
-0.10247814655303955,
-0.083692267537117,
0.11002834886312485,
0.031466204673051834,
-0.019670886918902397,
0.10779199749231339,
-0.04243955761194229,
0.18699054419994354,
-0.011512263678014278,
-0.11213519424200058,
-0.2536850869655609,
0.021806683391332626,
-0.01765260472893715,
-0.08747660368680954,
0.01506110467016697,
0.0665089413523674,
-0.09014441072940826,
-0.0588928684592247,
0.0795099288225174,
-0.01132340170443058,
0.04246443510055542,
-0.27593839168548584,
-0.12684126198291779,
-0.05297930911183357,
-0.1421966552734375,
0.08651168644428253,
0.04035491496324539,
0.008764253929257393,
0.15506891906261444,
-0.20897391438484192,
0.004104613792151213,
0.08255259692668915,
-0.2538507878780365,
0.05591634660959244,
0.17671173810958862,
0.03623908758163452,
0.18037272989749908,
0.0060391901060938835,
0.11029672622680664,
0.0716743916273117,
-0.024263937026262283,
-0.17590197920799255,
-0.08127854019403458,
-0.04696211963891983,
0.16642488539218903,
-0.06727185100317001,
-0.14248386025428772,
0.34701237082481384,
0.00015008423360995948,
0.009657775051891804,
0.16921205818653107,
-0.059524230659008026,
-0.09972117841243744,
0.07259953022003174,
0.016484731808304787,
0.018492350354790688,
0.1471305936574936,
0.16307872533798218,
-0.0458691343665123,
-0.13837823271751404,
-0.018630273640155792,
-0.22798998653888702,
0.17510560154914856,
-0.03248048573732376,
0.13137903809547424,
-0.27447956800460815,
0.01684025302529335,
-0.2570667266845703,
0.0032130838371813297,
0.04178816080093384,
-0.06004921346902847,
-0.0226522795855999,
-0.013265985064208508,
-0.08018817007541656,
0.004899587947875261,
0.06192673370242119,
0.1266920566558838,
-0.06128726154565811,
0.06128238886594772,
-0.09319206327199936,
0.141696035861969,
0.07166698575019836,
0.07868369668722153,
0.13037432730197906,
0.041205424815416336,
-0.07187089323997498,
-0.21872246265411377,
-0.0026476888451725245,
-0.06275863200426102,
-0.09502086788415909,
-0.0020165652967989445,
-0.11606067419052124,
0.17244569957256317,
-0.030802514404058456,
-0.09825427830219269,
-0.11208184063434601,
0.09148659557104111,
-0.032992321997880936,
-0.03437839448451996,
-0.03552987426519394,
-0.020977836102247238,
0.019381176680326462,
0.04704452306032181,
-0.1548958420753479,
-0.005131472367793322,
0.07039852440357208,
0.11502562463283539,
-0.1346137970685959,
-0.003783059772104025,
-0.07908964157104492,
0.03039063885807991,
0.07654735445976257,
-0.16510222852230072,
0.03158547356724739,
-0.1124754324555397,
-0.07531405985355377,
0.002912673633545637,
-0.015710093080997467,
-0.016202643513679504,
0.166526660323143,
-0.0020451415330171585,
0.0714716836810112,
-0.026345307007431984,
-0.05890209600329399,
-0.11243434250354767,
-0.08489254862070084,
0.05390460044145584,
0.03670717030763626,
0.03266148269176483,
-0.2193479984998703,
0.014805203303694725,
-0.12762966752052307,
0.1360815018415451,
-0.10566820204257965,
-0.04705966264009476,
-0.022842247039079666,
0.20562705397605896,
0.037286072969436646,
0.08762791007757187,
-0.22171171009540558,
0.039756543934345245,
-0.05404696613550186,
0.18480908870697021,
-0.1502426266670227,
-0.0799463614821434,
0.20813211798667908,
-0.07964949309825897,
-0.10115210711956024,
0.021235812455415726,
0.020391687750816345,
0.026287272572517395,
0.0766737088561058,
0.4564172327518463,
-0.09766800701618195,
-0.09146861732006073,
0.10178250074386597,
0.17055274546146393,
-0.12427149713039398,
-0.1827561855316162,
0.06446871906518936,
-0.16666454076766968,
-0.1973118633031845,
0.0018917324487119913,
0.09222044050693512,
0.038269978016614914,
-0.07875611633062363,
-0.020746968686580658,
0.06325206160545349,
-0.0007678253459744155,
0.09095914661884308,
0.03755716234445572,
0.09034032374620438,
-0.08716782182455063,
0.11115926504135132,
-0.05017651244997978,
0.004037132486701012,
0.1343354731798172,
0.027325427159667015,
-0.03223329409956932,
0.08694463223218918,
-0.0485352948307991,
0.05295134335756302,
-0.1662379503250122,
-0.15068690478801727,
0.03398871049284935,
0.06283251196146011,
0.03186952322721481,
0.1280253529548645,
0.08141885697841644,
-0.10732853412628174,
0.022690722718834877,
-0.004228927195072174,
0.058398615568876266,
0.03891623765230179,
0.006107209715992212,
0.008764320984482765,
0.0961301177740097,
-0.10607069730758667,
-0.13589619100093842,
-0.07336436957120895,
-0.014715781435370445,
0.14371353387832642,
-0.0302802175283432,
0.07690227776765823,
-0.004240254405885935,
0.00013200697139836848,
0.06930823624134064,
0.08137880265712738,
0.016412746161222458,
0.08971183747053146,
-0.05237193778157234,
-0.05160155147314072,
0.10863113403320312,
-0.13533565402030945,
0.17837053537368774,
0.14053137600421906,
-0.20532016456127167,
0.029453208670020103,
-0.06838275492191315,
0.03670361638069153,
-0.008162540383636951,
0.0975119024515152,
-0.08272241055965424,
-0.02106042578816414,
0.013134466484189034,
0.0052274600602686405,
-0.013007243163883686,
0.017682146281003952,
-0.07295988500118256,
-0.07787393033504486,
-0.10233919322490692,
0.08436838537454605,
0.11562882363796234,
-0.10282530635595322,
0.14214380085468292,
0.4384984076023102,
0.11495281755924225,
0.21582984924316406,
-0.09581480920314789,
-0.0412987545132637,
0.007486371789127588,
0.0001535322517156601,
-0.04476691037416458,
0.08031861484050751,
-0.15973517298698425,
-0.038901735097169876,
0.027348900213837624,
0.07128690183162689,
0.11475157737731934,
-0.14959022402763367,
-0.09639324247837067,
-0.00793045200407505,
0.0022841424215584993,
-0.1249532699584961,
0.023905446752905846,
-0.03974650055170059,
0.04015624523162842,
0.07232289016246796,
-0.021535737439990044,
0.13939237594604492,
-0.04166141897439957,
-0.0639561116695404,
0.07585346698760986,
-0.2017085999250412,
-0.23179671168327332,
-0.12309670448303223,
-0.14680525660514832,
0.04366797208786011,
0.05154111236333847,
0.01726446859538555,
-0.17635835707187653,
-0.015074856579303741,
0.07706750929355621,
0.07820965349674225,
-0.20886357128620148,
-0.022814949974417686,
-0.004290030337870121,
0.0895976573228836,
-0.10227091610431671,
-0.0017130117630586028,
-0.04419664293527603,
-0.10150232166051865,
0.0017003051470965147,
0.07279510796070099,
-0.137485533952713,
0.13807645440101624,
0.21589438617229462,
0.07225540280342102,
0.07359948754310608,
-0.019093448296189308,
0.09936179965734482,
-0.10856141895055771,
-0.16549113392829895,
0.08348225057125092,
-0.06234746053814888,
0.047262318432331085,
0.17534415423870087,
0.03307317942380905,
-0.13904969394207,
-0.015682822093367577,
-0.0402069091796875,
-0.15603256225585938,
-0.238995760679245,
-0.09178274869918823,
-0.1182505264878273,
0.16442428529262543,
0.0009358620154671371,
0.06651917099952698,
0.08258313685655594,
-0.022042419761419296,
0.16447891294956207,
-0.07379321753978729,
-0.07578866183757782,
-0.006978808436542749,
0.12375060468912125,
-0.056660156697034836,
-0.03080669604241848,
-0.10566964000463486,
-0.008295975625514984,
0.1151021271944046,
0.15304014086723328,
0.12214863300323486,
0.2957419455051422,
0.08268889784812927,
0.026645636186003685,
0.08958091586828232,
0.17622539401054382,
0.09495089203119278,
0.07838419824838638,
-0.045413073152303696,
-0.014814783819019794,
0.014317171648144722,
-0.04022889584302902,
0.010141594335436821,
0.14683100581169128,
-0.2679629921913147,
-0.006678564939647913,
-0.2710230350494385,
0.0965198427438736,
-0.10913380235433578,
0.11837165057659149,
-0.01015760749578476,
0.10194015502929688,
0.11082887649536133,
0.03233652561903,
-0.03858073800802231,
0.16613617539405823,
0.08450309932231903,
-0.11277695000171661,
0.001758623169735074,
0.03737903758883476,
0.09715615212917328,
-0.02818971499800682,
0.12721189856529236,
-0.11048974841833115,
-0.1464834064245224,
0.013753619976341724,
0.07152791321277618,
-0.15373679995536804,
0.3138748109340668,
0.012069208547472954,
-0.13481520116329193,
-0.01481647603213787,
-0.09957809001207352,
-0.006440147757530212,
0.1254177987575531,
0.09333524852991104,
0.07935678958892822,
-0.2185502052307129,
-0.13339371979236603,
0.05872276425361633,
-0.00575496768578887,
0.22408108413219452,
-0.034034017473459244,
-0.11356475204229355,
-0.027013886719942093,
0.04241163283586502,
-0.06043251231312752,
0.08524788916110992,
0.023536119610071182,
-0.08113526552915573,
-0.032957352697849274,
0.05323701351881027,
0.012368366122245789,
0.00524376705288887,
0.09360801428556442,
0.020107939839363098,
-0.0009265501867048442,
0.01785753294825554,
0.047885000705718994,
-0.0675911232829094,
-0.1984109878540039,
0.09357594698667526,
-0.05215044692158699,
0.0015536568826064467,
-0.08013670891523361,
-0.15122665464878082,
-0.08837161958217621,
-0.16009655594825745,
0.12540200352668762,
-0.034406669437885284,
0.12700119614601135,
-0.06619787961244583,
0.17341409623622894,
-0.07871770113706589,
0.04481020197272301,
-0.047349292784929276,
0.050332702696323395,
-0.007268077693879604,
-0.07756082713603973,
0.16585899889469147,
-0.15564003586769104,
0.01809087023139,
0.19572502374649048,
-0.018915493041276932,
0.07177707552909851,
0.021322092041373253,
-0.0636206790804863,
0.23147478699684143,
0.3014698624610901,
0.008138049393892288,
0.1665448248386383,
0.3018903136253357,
-0.07466315478086472,
-0.2642788887023926,
-0.05505012720823288,
-0.2841376066207886,
-0.05371501296758652,
0.10716094076633453,
-0.22523896396160126,
0.06986407935619354,
0.14383509755134583,
-0.06471995264291763,
0.30228954553604126,
-0.21825523674488068,
0.012589273042976856,
0.15434536337852478,
-0.08868814259767532,
0.5515313148498535,
-0.1133413165807724,
-0.17677772045135498,
-0.008122089318931103,
-0.08741296827793121,
0.10602109134197235,
-0.0340677872300148,
0.06877441704273224,
0.013465235009789467,
0.04797380417585373,
0.048932258039712906,
-0.03111894056200981,
0.22701001167297363,
0.008710170164704323,
0.09015397727489471,
-0.07378865778446198,
-0.18624304234981537,
0.11639340221881866,
-0.04359482601284981,
-0.08891059458255768,
0.0849778801202774,
-0.05942516401410103,
-0.11078983545303345,
0.04663389176130295,
-0.07950539886951447,
-0.024862350896000862,
0.08423490077257156,
-0.04678233340382576,
-0.042606171220541,
-0.008054176345467567,
-0.1618063747882843,
-0.0002289071271661669,
0.31360217928886414,
-0.07096036523580551,
0.16695955395698547,
0.03677211329340935,
0.00038613268407061696,
-0.11027684062719345,
0.030288029462099075,
-0.05203165486454964,
-0.021576624363660812,
0.09578979015350342,
-0.11096979677677155,
0.03204701095819473,
0.14160704612731934,
-0.04864364117383957,
0.05846960097551346,
0.09256096184253693,
-0.0849417969584465,
0.007583672646433115,
0.17753590643405914,
-0.17537221312522888,
-0.1273445188999176,
-0.006135711446404457,
-0.09862716495990753,
0.14055661857128143,
0.04394126310944557,
0.05191568285226822,
0.16669964790344238,
0.03967129811644554,
-0.029474308714270592,
-0.02817419543862343,
-0.1153380498290062,
-0.0201893113553524,
0.040153320878744125,
0.00045633706031367183,
-0.08791285753250122,
0.2262638509273529,
0.06409153342247009,
-0.1328488290309906,
-0.051157206296920776,
0.2161225974559784,
-0.06805316358804703,
-0.04911920800805092,
-0.223562553524971,
0.10752306133508682,
-0.07112517952919006,
-0.0965060144662857,
0.05453834682703018,
-0.02270081453025341,
0.005106312222778797,
0.181985542178154,
0.03941008821129799,
0.11070270836353302,
0.03738937899470329,
-0.02448922023177147,
0.15798696875572205,
-0.142850860953331,
-0.14191335439682007,
-0.025354057550430298,
-0.08757315576076508,
-0.13844476640224457,
-0.026804137974977493,
0.1617041826248169,
-0.09177309274673462,
-0.14772607386112213,
-0.2621181011199951,
0.10968475043773651,
-0.16432365775108337,
-0.10192688554525375,
-0.03469514101743698,
-0.08968492597341537,
0.0696166530251503,
0.030301768332719803,
-0.03093348816037178,
-0.06706760823726654,
-0.18593791127204895,
0.0816768929362297,
0.06349513679742813,
0.045533183962106705,
-0.017847947776317596,
0.0067379772663116455,
0.1720137596130371,
0.025955144315958023,
0.10040043294429779,
0.16762186586856842,
0.011397695168852806,
0.2246655523777008,
-0.1671202927827835,
-0.11496317386627197,
0.1336962729692459,
-0.026543032377958298,
0.06762003898620605,
0.16792191565036774,
-0.0772583931684494,
0.015526676550507545,
-0.028136352077126503,
0.07066910713911057,
-0.11003983020782471,
-0.105624258518219,
0.007937257178127766,
0.02567129209637642,
-0.2755882740020752,
-0.005599735304713249,
-0.19717298448085785,
0.14788752794265747,
0.02579621411859989,
0.03297143429517746,
0.10257530212402344,
0.10404334217309952,
0.08312062919139862,
-0.0017710148822516203,
0.03226327523589134,
-0.1176818460226059,
0.02753005363047123,
-0.059239376336336136,
-0.020663779228925705,
0.017624232918024063,
0.36952024698257446,
-0.03603357449173927,
-0.046802736818790436,
0.003710439894348383,
0.1307835876941681,
-0.02139742486178875,
0.017395347356796265,
0.13209912180900574,
0.12607666850090027,
-0.08595693111419678,
-0.1504845917224884,
0.04888554662466049,
-0.04565655067563057,
-0.02836887165904045,
0.1464131623506546,
0.05905961990356445,
0.1050296202301979,
0.0908031314611435,
-0.014463032595813274,
-0.00318976235575974,
0.012856799177825451,
-0.15486004948616028,
0.06223496049642563,
-0.010558074340224266,
0.012565906159579754,
0.017934376373887062,
0.15238402783870697,
-0.005540105979889631,
0.07739730179309845,
-0.09889880567789078,
0.004208535887300968,
-0.13498884439468384,
-0.07913459837436676,
0.03617347031831741,
-0.13393273949623108,
0.04141177982091904,
-0.01871878281235695,
0.029611799865961075,
0.30386561155319214,
0.02558239921927452,
-0.020639164373278618,
0.12512871623039246,
-0.1214587539434433,
-0.12050267308950424,
-0.001594188273884356,
-0.029960084706544876,
0.0791488066315651,
-0.02633434161543846,
-0.0997740775346756,
-0.1001306027173996,
-0.15166029334068298,
-0.09759195148944855,
0.05182836204767227,
-0.04993441700935364,
-0.059362251311540604,
-0.17634081840515137,
-0.05707859992980957,
-0.05147340148687363,
0.14025864005088806,
-0.12263951450586319,
0.15159130096435547,
-0.014490418136119843,
0.004084470681846142,
0.04405883327126503,
0.1950942426919937,
-0.03644494712352753,
0.08714226633310318,
0.0154351145029068,
0.1522706001996994,
-0.05119588226079941,
0.14720745384693146,
-0.10931728035211563,
-0.04014137014746666,
-0.06710435450077057,
0.21513493359088898,
0.25630924105644226,
-0.06136954948306084,
-0.008937356993556023,
-0.012760217301547527,
0.058654606342315674,
0.1073930487036705,
0.16049085557460785,
0.002326392102986574,
0.2802925705909729,
-0.03133585304021835,
0.04815128445625305,
0.02901598811149597,
0.013607407920062542,
-0.06336209923028946,
0.03397751972079277,
0.07539387792348862,
-0.035039983689785004,
-0.1412304788827896,
0.15837742388248444,
-0.21980468928813934,
0.18157227337360382,
0.11640069633722305,
-0.19996967911720276,
-0.013728445395827293,
-0.04882071167230606,
0.1689416468143463,
-0.0856364443898201,
0.1637246012687683,
-0.0903693437576294,
-0.2108195722103119,
-0.2056000679731369,
0.03867346793413162,
-0.34623071551322937,
-0.254462867975235,
0.10422009229660034,
0.1488201916217804,
0.04015883058309555,
-0.018507536500692368,
-0.019967829808592796,
-0.018367022275924683,
0.04877542704343796,
-0.0067357709631323814,
0.06014643982052803,
0.031397558748722076,
-0.02988368645310402,
-0.24127542972564697,
-0.029804671183228493,
0.023964406922459602,
-0.07093082368373871,
0.07464958727359772,
-0.06874357163906097,
-0.022495782002806664,
0.08059766888618469,
-0.03066304884850979,
0.03298592567443848,
-0.035373736172914505,
-0.16326889395713806,
0.027529051527380943,
0.03900543600320816,
0.036012712866067886,
0.00634160777553916,
0.0008072225609794259,
-0.03455270454287529,
0.0644603744149208,
-0.16716794669628143,
-0.16015739738941193,
0.14140215516090393,
-0.06745140254497528,
0.2779497504234314,
-0.05812826007604599,
-0.0809100940823555,
0.04766704887151718,
-0.03426874056458473,
0.1807648241519928,
-0.07756473124027252,
0.047254521399736404,
0.12766779959201813,
0.011127962730824947,
0.03121316432952881,
-0.3092964291572571,
0.11082969605922699,
-0.000795336440205574,
-0.006093299947679043,
-0.07581598311662674
] |
null | null | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-distilled-clinc
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the clinc_oos dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2663
- Accuracy: 0.9461
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 48
- eval_batch_size: 48
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 9
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 4.1991 | 1.0 | 318 | 3.1495 | 0.7523 |
| 2.4112 | 2.0 | 636 | 1.5868 | 0.8510 |
| 1.1887 | 3.0 | 954 | 0.7975 | 0.9203 |
| 0.5952 | 4.0 | 1272 | 0.4870 | 0.9319 |
| 0.3275 | 5.0 | 1590 | 0.3571 | 0.9419 |
| 0.2066 | 6.0 | 1908 | 0.3070 | 0.9429 |
| 0.1456 | 7.0 | 2226 | 0.2809 | 0.9448 |
| 0.1154 | 8.0 | 2544 | 0.2697 | 0.9468 |
| 0.1011 | 9.0 | 2862 | 0.2663 | 0.9461 |
### Framework versions
- Transformers 4.16.2
- Pytorch 1.10.0+cu111
- Datasets 1.18.3
- Tokenizers 0.11.0
| {"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["clinc_oos"], "metrics": ["accuracy"], "model-index": [{"name": "distilbert-base-uncased-distilled-clinc", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "clinc_oos", "type": "clinc_oos", "args": "plus"}, "metrics": [{"type": "accuracy", "value": 0.9461290322580646, "name": "Accuracy"}]}]}]} | text-classification | MhF/distilbert-base-uncased-distilled-clinc | [
"transformers",
"pytorch",
"distilbert",
"text-classification",
"generated_from_trainer",
"dataset:clinc_oos",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [] | TAGS
#transformers #pytorch #distilbert #text-classification #generated_from_trainer #dataset-clinc_oos #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us
| distilbert-base-uncased-distilled-clinc
=======================================
This model is a fine-tuned version of distilbert-base-uncased on the clinc\_oos dataset.
It achieves the following results on the evaluation set:
* Loss: 0.2663
* Accuracy: 0.9461
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 48
* eval\_batch\_size: 48
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 9
### Training results
### Framework versions
* Transformers 4.16.2
* Pytorch 1.10.0+cu111
* Datasets 1.18.3
* Tokenizers 0.11.0
| [
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 48\n* eval\\_batch\\_size: 48\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 9",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.16.2\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.3\n* Tokenizers 0.11.0"
] | [
"TAGS\n#transformers #pytorch #distilbert #text-classification #generated_from_trainer #dataset-clinc_oos #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 48\n* eval\\_batch\\_size: 48\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 9",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.16.2\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.3\n* Tokenizers 0.11.0"
] | [
66,
98,
4,
35
] | [
"passage: TAGS\n#transformers #pytorch #distilbert #text-classification #generated_from_trainer #dataset-clinc_oos #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 48\n* eval\\_batch\\_size: 48\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 9### Training results### Framework versions\n\n\n* Transformers 4.16.2\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.3\n* Tokenizers 0.11.0"
] | [
-0.10695059597492218,
0.08726992458105087,
-0.0016390635864809155,
0.12565109133720398,
0.16409151256084442,
0.026725126430392265,
0.10704100877046585,
0.12498167157173157,
-0.09777852147817612,
0.020146867260336876,
0.11298233270645142,
0.1652182936668396,
0.027339676395058632,
0.12250585108995438,
-0.08309363573789597,
-0.2381569892168045,
0.004961363971233368,
0.03720686212182045,
-0.06280001997947693,
0.12559178471565247,
0.09769012033939362,
-0.11508309096097946,
0.10145950317382812,
0.009448140859603882,
-0.17632150650024414,
0.01167055033147335,
0.0030764921102672815,
-0.06678280234336853,
0.11641202867031097,
0.037480756640434265,
0.10022435337305069,
0.007438587490469217,
0.08874110877513885,
-0.1962154358625412,
0.00516421627253294,
0.043603286147117615,
-0.013976904563605785,
0.07256118208169937,
0.03281252831220627,
0.003650070633739233,
0.15405809879302979,
-0.10316139459609985,
0.0519491508603096,
0.02150912582874298,
-0.11678722500801086,
-0.2051858901977539,
-0.07663872838020325,
0.03404401242733002,
0.09090325981378555,
0.1344829797744751,
0.0016747059999033809,
0.13083697855472565,
-0.11763901263475418,
0.08648942410945892,
0.2080143392086029,
-0.25823989510536194,
-0.062004685401916504,
0.013540550135076046,
0.008292384445667267,
0.04852014034986496,
-0.1092260479927063,
-0.058000918477773666,
0.044863760471343994,
0.03756129741668701,
0.09804338961839676,
-0.04283832758665085,
-0.09250961989164352,
0.02030797116458416,
-0.13136902451515198,
-0.0369146503508091,
0.18448632955551147,
0.06830214709043503,
-0.04159107059240341,
-0.028100216761231422,
-0.05330900475382805,
-0.16396264731884003,
-0.03129996731877327,
0.006938091944903135,
0.06894826143980026,
-0.021958883851766586,
-0.026521457359194756,
0.021515315398573875,
-0.10956787317991257,
-0.04139617830514908,
-0.09649558365345001,
0.13445456326007843,
0.024723082780838013,
0.01237548515200615,
-0.024003470316529274,
0.09757030010223389,
0.026083186268806458,
-0.12230077385902405,
-0.014211149886250496,
0.03830916807055473,
0.02032313495874405,
-0.04032145068049431,
-0.06168599799275398,
-0.014754069969058037,
0.029418237507343292,
0.10995806008577347,
-0.035280175507068634,
0.030246835201978683,
0.035404618829488754,
0.033168449997901917,
-0.07637564092874527,
0.19803157448768616,
-0.01884068176150322,
-0.01234695315361023,
0.02569306083023548,
0.0395067073404789,
0.011446970514953136,
-0.005214174278080463,
-0.11748045682907104,
0.012256111949682236,
0.07248127460479736,
-0.0036924341693520546,
-0.06487974524497986,
0.06530944257974625,
-0.06712515652179718,
-0.025261374190449715,
-0.00633907550945878,
-0.10381974279880524,
0.04830688238143921,
0.003745368681848049,
-0.08639020472764969,
-0.013045522384345531,
0.03588251397013664,
0.03631781041622162,
-0.037413693964481354,
0.09360069036483765,
-0.08548098057508469,
0.035369619727134705,
-0.09244246035814285,
-0.0799938514828682,
0.01265697367489338,
-0.09136438369750977,
0.047094207257032394,
-0.1026894673705101,
-0.1786651313304901,
-0.041708145290613174,
0.05499783530831337,
-0.007927882485091686,
-0.08033033460378647,
-0.08790435642004013,
-0.07323658466339111,
0.013866152614355087,
-0.00843985565006733,
0.11529361456632614,
-0.07152623683214188,
0.08746250718832016,
0.030058039352297783,
0.04355201870203018,
-0.0757191926240921,
0.05854203179478645,
-0.13143081963062286,
0.00949727650731802,
-0.11748749017715454,
0.035030726343393326,
-0.020777639001607895,
0.08500753343105316,
-0.06439647823572159,
-0.1011897474527359,
0.025153756141662598,
0.0055554891005158424,
0.050242532044649124,
0.09334857016801834,
-0.1522897630929947,
-0.06366115063428879,
0.12280537933111191,
-0.05930785834789276,
-0.12810634076595306,
0.10335414111614227,
-0.057801857590675354,
0.034934151917696,
0.05592042952775955,
0.14705483615398407,
0.061449822038412094,
-0.06482839584350586,
0.0000057802694755082484,
-0.006034701596945524,
0.06146438047289848,
-0.07873550802469254,
0.09419838339090347,
0.009829257614910603,
0.004670890048146248,
0.03408905118703842,
-0.03365855664014816,
0.04032546281814575,
-0.07548686861991882,
-0.10393963009119034,
-0.04977508261799812,
-0.08126956969499588,
-0.0013215814251452684,
0.07338980585336685,
0.06958594173192978,
-0.10665425658226013,
-0.07433359324932098,
0.03082893230021,
0.10102533549070358,
-0.05362430214881897,
0.02130797505378723,
-0.07051758468151093,
0.06897764652967453,
-0.04371386766433716,
-0.01920163631439209,
-0.1690032184123993,
-0.003416819032281637,
0.0023888058494776487,
0.020795224234461784,
0.007820268161594868,
0.022464271634817123,
0.0581241250038147,
0.05567513778805733,
-0.03137322515249252,
-0.02968914993107319,
-0.03009789250791073,
-0.001756457262672484,
-0.1171567514538765,
-0.19073742628097534,
-0.02139732614159584,
-0.01727617345750332,
0.15676522254943848,
-0.2249770313501358,
0.0353391058743,
-0.008958441205322742,
0.0720752626657486,
0.008032059296965599,
-0.0017821333603933454,
-0.05461733415722847,
0.08127262443304062,
-0.05199294164776802,
-0.055495500564575195,
0.06549441069364548,
0.019722379744052887,
-0.08834678679704666,
-0.06321050226688385,
-0.07666166126728058,
0.19539378583431244,
0.14204004406929016,
-0.09872662276029587,
-0.049066901206970215,
-0.0026692571118474007,
-0.07816747575998306,
-0.027006274089217186,
-0.045857902616262436,
0.059487152844667435,
0.22027944028377533,
-0.03146949037909508,
0.1296735554933548,
-0.06636977940797806,
-0.031984779983758926,
0.024646244943141937,
-0.04202837124466896,
0.013333937153220177,
0.1327536255121231,
0.13427422940731049,
-0.10104162991046906,
0.15901143848896027,
0.14575044810771942,
-0.07591094076633453,
0.11250640451908112,
-0.049640338867902756,
-0.06452769041061401,
-0.021665096282958984,
-0.030227530747652054,
-0.01150205172598362,
0.08839860558509827,
-0.16747112572193146,
0.00885613914579153,
0.022109264507889748,
0.01948443241417408,
0.02022118866443634,
-0.21280738711357117,
-0.0355183482170105,
0.04863249137997627,
-0.027413921430706978,
-0.04194347932934761,
-0.029726533219218254,
0.006183384917676449,
0.09627973288297653,
-0.00213381415233016,
-0.10017412900924683,
0.05964727699756622,
0.008285317569971085,
-0.08082502335309982,
0.2132362425327301,
-0.08614105731248856,
-0.15571431815624237,
-0.12417083978652954,
-0.07011111080646515,
-0.06623806804418564,
0.015979604795575142,
0.07289206981658936,
-0.07353082299232483,
-0.04045502096414566,
-0.08457229286432266,
0.015587158501148224,
0.010886188596487045,
0.037850476801395416,
0.03231240063905716,
0.017803940922021866,
0.06830474734306335,
-0.09133203327655792,
-0.038445618003606796,
-0.04267653450369835,
-0.0675102174282074,
0.03596891090273857,
0.025280911475419998,
0.12497538328170776,
0.11988572031259537,
-0.013441573828458786,
0.004089190624654293,
-0.007801646366715431,
0.20403344929218292,
-0.06467646360397339,
-0.05025096610188484,
0.1329413652420044,
0.0019048803951591253,
0.0316326841711998,
0.11510004103183746,
0.049141526222229004,
-0.09032731503248215,
0.005264563020318747,
0.031002234667539597,
-0.020925939083099365,
-0.2266395390033722,
-0.045681431889534,
-0.06652481853961945,
-0.023242542520165443,
0.09351247549057007,
0.036210283637046814,
0.04136945679783821,
0.07153578847646713,
0.04781612753868103,
0.10711707919836044,
-0.04422905296087265,
0.05220536142587662,
0.11111226677894592,
0.058340560644865036,
0.10450632125139236,
-0.03603478521108627,
-0.05503718554973602,
0.05061132460832596,
-0.02963504008948803,
0.2105357050895691,
0.008756001479923725,
0.1171911284327507,
0.044131144881248474,
0.16082201898097992,
-0.018899155780673027,
0.07558277994394302,
0.016817370429635048,
-0.03093189001083374,
-0.013368114829063416,
-0.027321210131049156,
-0.04635234549641609,
0.040673982352018356,
-0.06049376353621483,
0.08597064018249512,
-0.1567145437002182,
0.02980949357151985,
0.05528929457068443,
0.26852166652679443,
0.01712164841592312,
-0.34253033995628357,
-0.0894671082496643,
0.012181409634649754,
-0.04334549233317375,
-0.037483494728803635,
0.04346165433526039,
0.07227535545825958,
-0.09161680191755295,
0.019188953563570976,
-0.03729171305894852,
0.1021001860499382,
-0.052183300256729126,
0.04421688988804817,
0.07726909220218658,
0.08221225440502167,
0.014834852889180183,
0.09925353527069092,
-0.31310969591140747,
0.2600540816783905,
-0.008854743093252182,
0.08422131091356277,
-0.08596466481685638,
0.009345064871013165,
0.02942565083503723,
0.08171051740646362,
0.08777757734060287,
-0.009657928720116615,
-0.06051042303442955,
-0.18045371770858765,
-0.07272515445947647,
0.04232553765177727,
0.0460524819791317,
-0.06270083785057068,
0.09395480155944824,
-0.03460123389959335,
0.006648984272032976,
0.05790771543979645,
0.002610799390822649,
-0.03339890390634537,
-0.09845850616693497,
-0.012070119380950928,
0.04708974063396454,
-0.02322658710181713,
-0.07040245085954666,
-0.09925235062837601,
-0.0945795327425003,
0.16798166930675507,
-0.012330993078649044,
-0.024767866358160973,
-0.11706416308879852,
0.088978610932827,
0.06097136810421944,
-0.08793403208255768,
0.016835851594805717,
0.022642508149147034,
0.06392329186201096,
0.04739469289779663,
-0.0824127122759819,
0.11760033667087555,
-0.06707944720983505,
-0.16037766635417938,
-0.06303690373897552,
0.10132857412099838,
0.027325648814439774,
0.06643309444189072,
-0.00740374019369483,
0.008623902685940266,
-0.050390977412462234,
-0.08085788041353226,
0.011334792710840702,
0.031217273324728012,
0.10327426344156265,
0.031482480466365814,
-0.04968947544693947,
-0.00013153291365597397,
-0.0659945160150528,
-0.04338925704360008,
0.18404939770698547,
0.21151338517665863,
-0.08054225146770477,
0.022046277299523354,
-0.0030154187697917223,
-0.0849708542227745,
-0.16584263741970062,
0.034838296473026276,
0.04621845483779907,
0.030702900141477585,
0.0066701448522508144,
-0.15537843108177185,
0.14857542514801025,
0.11972721666097641,
-0.004618313629180193,
0.10767664760351181,
-0.3117898404598236,
-0.11592289805412292,
0.14343136548995972,
0.12730757892131805,
0.1632358878850937,
-0.13870905339717865,
0.0036573235411196947,
-0.04054045304656029,
-0.1428823322057724,
0.10835476219654083,
-0.07241575419902802,
0.10681160539388657,
-0.0420665517449379,
0.07874605804681778,
0.00947616621851921,
-0.050528381019830704,
0.12796342372894287,
0.03267786279320717,
0.09730664640665054,
-0.08719028532505035,
-0.03612155839800835,
0.013172627426683903,
-0.035399481654167175,
0.0209287591278553,
-0.08973689377307892,
0.02941444143652916,
-0.1380060315132141,
-0.035165634006261826,
-0.05993255600333214,
0.03817909583449364,
-0.03729571774601936,
-0.04946724325418472,
-0.023895518854260445,
0.024082664400339127,
0.08007468283176422,
-0.0006719345110468566,
0.15890014171600342,
0.025342801585793495,
0.11485964059829712,
0.06992184370756149,
0.07907874137163162,
-0.06932473182678223,
-0.06033068895339966,
-0.024683551862835884,
0.0002543716982472688,
0.04974314942955971,
-0.1362473964691162,
0.023785719648003578,
0.1577487289905548,
0.007906612940132618,
0.15085263550281525,
0.0893682911992073,
0.008697199635207653,
0.0014853617176413536,
0.052945494651794434,
-0.15745773911476135,
-0.05411791428923607,
-0.024245120584964752,
-0.0552218034863472,
-0.11364933848381042,
0.040649548172950745,
0.09090939909219742,
-0.07496025413274765,
-0.009043017402291298,
-0.016386888921260834,
0.040173694491386414,
-0.08477705717086792,
0.16411103308200836,
0.03509820997714996,
0.04285871982574463,
-0.10043887048959732,
0.07110896706581116,
0.06699234992265701,
-0.0834217518568039,
0.009510943666100502,
0.05760185420513153,
-0.07418879866600037,
-0.051072247326374054,
0.102824866771698,
0.19772936403751373,
-0.04530616104602814,
-0.0691862627863884,
-0.1498231738805771,
-0.1427338719367981,
0.0958799347281456,
0.13242322206497192,
0.11745841056108475,
0.023057997226715088,
-0.052258871495723724,
-0.02286752127110958,
-0.1323034018278122,
0.06326974183320999,
0.03714156150817871,
0.058939237147569656,
-0.14500750601291656,
0.10868574678897858,
-0.017741046845912933,
0.03902279958128929,
-0.008281541056931019,
0.030460940673947334,
-0.11450741440057755,
0.007581067271530628,
-0.09731289744377136,
-0.005258847493678331,
-0.036495160311460495,
0.026682928204536438,
0.01444006897509098,
-0.0671575665473938,
-0.06307848542928696,
0.024965427815914154,
-0.11165229231119156,
-0.029338503256440163,
0.03434593230485916,
0.0754612386226654,
-0.09034617990255356,
-0.05301831290125847,
0.017705131322145462,
-0.07079695165157318,
0.05857253074645996,
0.0813533216714859,
0.01745162159204483,
0.02910139225423336,
-0.14556759595870972,
0.02319546602666378,
0.06902814656496048,
0.030514327809214592,
0.07327303290367126,
-0.10232450813055038,
-0.0005826838314533234,
0.03881548345088959,
0.020288897678256035,
0.011158954352140427,
0.075379379093647,
-0.1403571367263794,
-0.023361563682556152,
-0.018709346652030945,
-0.09762139618396759,
-0.06108676642179489,
0.012889206409454346,
0.1118580773472786,
0.012194964103400707,
0.21417388319969177,
-0.06043442338705063,
0.05210641026496887,
-0.20116767287254333,
0.002617739839479327,
-0.006947805173695087,
-0.0951615571975708,
-0.10445850342512131,
-0.07839155197143555,
0.06526823341846466,
-0.046232517808675766,
0.13790084421634674,
0.039709314703941345,
0.06658171862363815,
0.01976180262863636,
-0.03475480526685715,
0.040154214948415756,
0.027970105409622192,
0.20624355971813202,
0.036782193928956985,
-0.04180021956562996,
0.09232787042856216,
0.024537384510040283,
0.11820374429225922,
0.12624821066856384,
0.19040830433368683,
0.13728222250938416,
0.014175623655319214,
0.11857062578201294,
0.032643478363752365,
-0.05659986287355423,
-0.1495336890220642,
0.03687608614563942,
-0.04106130078434944,
0.09921851009130478,
-0.030321214348077774,
0.18526886403560638,
0.0498264841735363,
-0.17005252838134766,
0.026721946895122528,
-0.065955251455307,
-0.0804942175745964,
-0.10802000015974045,
-0.048439472913742065,
-0.10015267878770828,
-0.14267969131469727,
0.0042923144064843655,
-0.11899066716432571,
0.009361580945551395,
0.08965102583169937,
-0.0018939848523586988,
-0.027422597631812096,
0.14868028461933136,
0.0030657874885946512,
0.03551734983921051,
0.05896976217627525,
-0.01262054406106472,
-0.03988051041960716,
-0.11609671264886856,
-0.07524945586919785,
-0.02255541831254959,
-0.04365629330277443,
0.033802323043346405,
-0.06316739320755005,
-0.031881432980298996,
0.044376078993082047,
-0.02878512442111969,
-0.08503810316324234,
0.009541518986225128,
-0.0004419306351337582,
0.05644761025905609,
0.05543368309736252,
0.029283974319696426,
0.02482505887746811,
0.0094379261136055,
0.20866523683071136,
-0.07429128885269165,
-0.0650799572467804,
-0.11749632656574249,
0.21439525485038757,
0.05957257002592087,
-0.03554088622331619,
0.04317614436149597,
-0.06663013249635696,
0.000962714315392077,
0.2302778661251068,
0.17739899456501007,
-0.06603221595287323,
-0.01190780196338892,
0.004588475450873375,
-0.01002169493585825,
-0.02614855207502842,
0.09806343913078308,
0.14726632833480835,
0.04140540957450867,
-0.08881893008947372,
-0.06589550524950027,
-0.055179957300424576,
-0.00039714836748316884,
-0.028597483411431313,
0.06206865236163139,
0.027644764631986618,
0.006070397328585386,
-0.016811588779091835,
0.03540891781449318,
-0.06481345742940903,
-0.08293906599283218,
0.08635251224040985,
-0.20787227153778076,
-0.15221171081066132,
-0.025606844574213028,
0.09877471625804901,
0.015281634405255318,
0.06655916571617126,
-0.02431609481573105,
-0.02395872212946415,
0.09615980833768845,
-0.015870068222284317,
-0.10565648972988129,
-0.0627308189868927,
0.08659747987985611,
-0.10777857899665833,
0.2165045440196991,
-0.04517412558197975,
0.07039123773574829,
0.11957748234272003,
0.0822872743010521,
-0.08145909011363983,
0.0660933181643486,
0.02697397954761982,
-0.04921981692314148,
0.05048389360308647,
0.06140384078025818,
-0.04781043529510498,
0.0684429183602333,
0.045178476721048355,
-0.12005651742219925,
0.018658161163330078,
-0.076711006462574,
-0.04310891777276993,
-0.03106330707669258,
-0.032395899295806885,
-0.07679477334022522,
0.12975278496742249,
0.21611405909061432,
-0.03250209614634514,
-0.011849306523799896,
-0.06798161566257477,
0.04781975969672203,
0.034628208726644516,
0.008867132477462292,
-0.05880596861243248,
-0.19491930305957794,
0.009930301457643509,
0.04219483211636543,
-0.01874079555273056,
-0.21993009746074677,
-0.09190322458744049,
0.0006399593548849225,
-0.09578613936901093,
-0.10606476664543152,
0.052189599722623825,
0.08539258688688278,
0.04010055214166641,
-0.07946737110614777,
-0.050768326967954636,
-0.06690628081560135,
0.15057536959648132,
-0.12435603886842728,
-0.09472952783107758
] |
null | null | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-clinc
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the clinc_oos dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7703
- Accuracy: 0.9187
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 48
- eval_batch_size: 48
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 4.2896 | 1.0 | 318 | 3.2887 | 0.7419 |
| 2.6309 | 2.0 | 636 | 1.8797 | 0.8310 |
| 1.5443 | 3.0 | 954 | 1.1537 | 0.8974 |
| 1.0097 | 4.0 | 1272 | 0.8560 | 0.9135 |
| 0.7918 | 5.0 | 1590 | 0.7703 | 0.9187 |
### Framework versions
- Transformers 4.16.2
- Pytorch 1.10.0+cu111
- Datasets 1.18.3
- Tokenizers 0.11.0
| {"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["clinc_oos"], "metrics": ["accuracy"], "model-index": [{"name": "distilbert-base-uncased-finetuned-clinc", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "clinc_oos", "type": "clinc_oos", "args": "plus"}, "metrics": [{"type": "accuracy", "value": 0.9187096774193548, "name": "Accuracy"}]}]}]} | text-classification | MhF/distilbert-base-uncased-finetuned-clinc | [
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"dataset:clinc_oos",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"has_space",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [] | TAGS
#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #dataset-clinc_oos #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #has_space #region-us
| distilbert-base-uncased-finetuned-clinc
=======================================
This model is a fine-tuned version of distilbert-base-uncased on the clinc\_oos dataset.
It achieves the following results on the evaluation set:
* Loss: 0.7703
* Accuracy: 0.9187
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 48
* eval\_batch\_size: 48
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 5
### Training results
### Framework versions
* Transformers 4.16.2
* Pytorch 1.10.0+cu111
* Datasets 1.18.3
* Tokenizers 0.11.0
| [
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 48\n* eval\\_batch\\_size: 48\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.16.2\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.3\n* Tokenizers 0.11.0"
] | [
"TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #dataset-clinc_oos #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #has_space #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 48\n* eval\\_batch\\_size: 48\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.16.2\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.3\n* Tokenizers 0.11.0"
] | [
74,
98,
4,
35
] | [
"passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #dataset-clinc_oos #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #has_space #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 48\n* eval\\_batch\\_size: 48\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.16.2\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.3\n* Tokenizers 0.11.0"
] | [
-0.09431806206703186,
0.11679577082395554,
-0.0023456986527889967,
0.12306787073612213,
0.14429818093776703,
0.021176768466830254,
0.12229941785335541,
0.13602130115032196,
-0.07167928665876389,
0.039318058639764786,
0.10657576471567154,
0.12979945540428162,
0.04173321649432182,
0.14064128696918488,
-0.08739002794027328,
-0.23687008023262024,
0.0062333764508366585,
0.04756012186408043,
-0.06952827423810959,
0.11783459037542343,
0.09404356777667999,
-0.10943884402513504,
0.09603367745876312,
-0.0038609355688095093,
-0.1543281227350235,
0.0007082498050294816,
-0.002192215994000435,
-0.06811954081058502,
0.10617313534021378,
0.042965177446603775,
0.10511171072721481,
0.027928108349442482,
0.07279383391141891,
-0.17898426949977875,
0.007443063892424107,
0.050211504101753235,
-0.019940350204706192,
0.08444619178771973,
0.03762069344520569,
0.008746594190597534,
0.11922885477542877,
-0.10957746207714081,
0.047109462320804596,
0.010123742744326591,
-0.12158633023500443,
-0.21913254261016846,
-0.06927990913391113,
0.026833688840270042,
0.07082966715097427,
0.11369882524013519,
-0.007641791831701994,
0.1421189159154892,
-0.08258368074893951,
0.08898252248764038,
0.20291712880134583,
-0.2684105634689331,
-0.06332536041736603,
0.057994600385427475,
0.03982194885611534,
0.08032948523759842,
-0.10943057388067245,
-0.0517241545021534,
0.02935870736837387,
0.039485346525907516,
0.12567563354969025,
-0.0429629422724247,
-0.04734919220209122,
0.019230488687753677,
-0.14005066454410553,
-0.03839389979839325,
0.1863919347524643,
0.07405132055282593,
-0.03148277848958969,
-0.041171059012413025,
-0.059641528874635696,
-0.1508459746837616,
-0.031646694988012314,
0.018998509272933006,
0.07328957319259644,
-0.02539581060409546,
-0.04139900952577591,
-0.00680968165397644,
-0.11123403906822205,
-0.020310159772634506,
-0.09156886488199234,
0.11446218192577362,
0.013570992276072502,
0.0065390123054385185,
-0.011009905487298965,
0.08991969376802444,
-0.0015587616944685578,
-0.1300460547208786,
0.006472326349467039,
0.03995203226804733,
0.014020274393260479,
-0.033603984862565994,
-0.06557195633649826,
-0.049539677798748016,
0.03018178790807724,
0.0918966755270958,
-0.04855717346072197,
0.03492951765656471,
0.018700046464800835,
0.050310682505369186,
-0.06997688859701157,
0.20712341368198395,
-0.034132733941078186,
-0.03287747502326965,
0.013957674615085125,
0.08286809921264648,
0.020463204011321068,
-0.018808642402291298,
-0.13365988433361053,
0.022620845586061478,
0.09845176339149475,
-0.013690478168427944,
-0.029924163594841957,
0.06654435396194458,
-0.0682745948433876,
-0.03239920735359192,
0.006997681688517332,
-0.10511527210474014,
0.04657601937651634,
0.0005601259181275964,
-0.08751325309276581,
-0.024748127907514572,
0.03919007629156113,
0.03117387183010578,
-0.04047512263059616,
0.08846230804920197,
-0.0905916839838028,
0.026994748041033745,
-0.0854983925819397,
-0.10220017284154892,
0.013054702430963516,
-0.09212920814752579,
0.031302668154239655,
-0.10773446410894394,
-0.14843451976776123,
-0.04705621674656868,
0.06769739836454391,
-0.019185950979590416,
-0.08552752435207367,
-0.07423017174005508,
-0.08061092346906662,
0.014899480156600475,
-0.011330068111419678,
0.10989227890968323,
-0.07081753760576248,
0.10036307573318481,
0.019733639433979988,
0.05090708285570145,
-0.08433740586042404,
0.060467611998319626,
-0.12410557270050049,
0.02268388867378235,
-0.11446978896856308,
0.028688328340649605,
-0.02844245731830597,
0.0713098794221878,
-0.0681791752576828,
-0.09955573827028275,
0.016823941841721535,
0.003014183137565851,
0.04972882941365242,
0.07378894835710526,
-0.1469249427318573,
-0.06122846156358719,
0.11677106469869614,
-0.04291309788823128,
-0.12701059877872467,
0.11475193500518799,
-0.047941986471414566,
0.023163968697190285,
0.039699725806713104,
0.19409747421741486,
0.07258263975381851,
-0.07149141281843185,
-0.005547970533370972,
-0.0015229436103254557,
0.07989048212766647,
-0.08293632417917252,
0.1026388630270958,
0.01650526002049446,
0.042151376605033875,
0.022087056189775467,
-0.03964399918913841,
0.039009906351566315,
-0.06583648920059204,
-0.09481712430715561,
-0.03894009813666344,
-0.08953569084405899,
0.012504725717008114,
0.0770251527428627,
0.06730993837118149,
-0.10302047431468964,
-0.089731864631176,
0.040074482560157776,
0.09108638018369675,
-0.06756944209337234,
0.02382279746234417,
-0.06824006140232086,
0.09473036229610443,
-0.05808436870574951,
-0.013156415894627571,
-0.16992081701755524,
-0.01222057081758976,
0.009164730086922646,
0.01193250436335802,
0.023427261039614677,
0.05667697638273239,
0.06706035137176514,
0.052241548895835876,
-0.042314592748880386,
-0.03482188284397125,
-0.022481629624962807,
0.005986239295452833,
-0.11584573239088058,
-0.17514729499816895,
-0.03291573002934456,
-0.02439984679222107,
0.16636894643306732,
-0.2184547334909439,
0.04126433655619621,
0.0017399428179487586,
0.08940297365188599,
0.02643599919974804,
-0.0037735593505203724,
-0.038263123482465744,
0.07971613854169846,
-0.04906678944826126,
-0.0648014172911644,
0.0732153058052063,
0.025406163185834885,
-0.08850537240505219,
-0.04900894686579704,
-0.1360902190208435,
0.20396988093852997,
0.15057192742824554,
-0.0746956393122673,
-0.03675169497728348,
-0.0029692542739212513,
-0.06922630965709686,
-0.01924349181354046,
-0.0279807448387146,
0.034397490322589874,
0.1761000007390976,
-0.02013925276696682,
0.1457328051328659,
-0.07406262308359146,
-0.028887374326586723,
0.02560162916779518,
-0.04191345348954201,
-0.014641006477177143,
0.13346542418003082,
0.10182539373636246,
-0.1015041321516037,
0.1720283180475235,
0.17514830827713013,
-0.07889728993177414,
0.12814262509346008,
-0.048450928181409836,
-0.05782008171081543,
-0.037617284804582596,
-0.021104883402585983,
-0.0024678523186594248,
0.09266895055770874,
-0.12033240497112274,
0.007847856730222702,
0.02576836757361889,
0.016819527372717857,
0.022657819092273712,
-0.20612014830112457,
-0.026203598827123642,
0.04805203154683113,
-0.03406354784965515,
-0.014344457536935806,
-0.024841994047164917,
0.00893037673085928,
0.09713394939899445,
0.003635121276602149,
-0.10678242892026901,
0.05298905074596405,
0.0033398387022316456,
-0.05633164197206497,
0.19194599986076355,
-0.07883205264806747,
-0.1913495808839798,
-0.1305566281080246,
-0.0521334707736969,
-0.06483686715364456,
0.017854442819952965,
0.062432244420051575,
-0.040834710001945496,
-0.03750848025083542,
-0.11096292734146118,
-0.0038806742522865534,
0.0016313582891598344,
0.022053055465221405,
0.02422020211815834,
0.012959138490259647,
0.07876452803611755,
-0.09070679545402527,
-0.03424385190010071,
-0.03040211834013462,
-0.04800469055771828,
0.04199426621198654,
0.018776733428239822,
0.11939142644405365,
0.1163032129406929,
-0.022860636934638023,
0.001811352325603366,
-0.010182936675846577,
0.2057098001241684,
-0.06795990467071533,
-0.02602970227599144,
0.1324034184217453,
0.0017372161382809281,
0.047999560832977295,
0.12413761764764786,
0.046056196093559265,
-0.07806488126516342,
0.0027312804013490677,
0.028380950912833214,
-0.025327367708086967,
-0.20442961156368256,
-0.044218458235263824,
-0.07398538291454315,
0.005167088005691767,
0.09888862073421478,
0.03355632349848747,
0.033560965210199356,
0.057749416679143906,
0.04700862616300583,
0.10374311357736588,
-0.031459517776966095,
0.05411012843251228,
0.1187484934926033,
0.054002657532691956,
0.11524980515241623,
-0.030493177473545074,
-0.05156866833567619,
0.05090902000665665,
0.002197681926190853,
0.18577679991722107,
-0.0007862087804824114,
0.13375675678253174,
0.02415861189365387,
0.15721744298934937,
-0.01600780338048935,
0.0545806922018528,
0.0074736010283231735,
-0.014847376383841038,
-0.026355765759944916,
-0.02601454220712185,
-0.03451627865433693,
0.03527103736996651,
-0.0023564593866467476,
0.05237238481640816,
-0.13354845345020294,
-0.012192236259579659,
0.049651388078927994,
0.23444055020809174,
0.030416419729590416,
-0.3404054343700409,
-0.07869158685207367,
0.0239566657692194,
-0.035824112594127655,
-0.03521359711885452,
0.03120727278292179,
0.10215076804161072,
-0.07708293199539185,
0.016937285661697388,
-0.05278944969177246,
0.0978977307677269,
-0.06320911645889282,
0.04856221377849579,
0.07125749439001083,
0.08077259361743927,
0.009677577763795853,
0.088594950735569,
-0.29379770159721375,
0.25294506549835205,
0.0013450153637677431,
0.055461492389440536,
-0.07525667548179626,
0.004500477574765682,
0.023253103718161583,
0.06456096470355988,
0.07097235321998596,
-0.00923948734998703,
-0.041867662221193314,
-0.18676047027111053,
-0.07103900611400604,
0.02979513816535473,
0.05574851110577583,
-0.06891532242298126,
0.1004742756485939,
-0.03923759609460831,
-0.0024498484563082457,
0.05669255182147026,
0.019754741340875626,
-0.00788110215216875,
-0.1051129475235939,
0.017013292759656906,
0.06740991026163101,
-0.03251751512289047,
-0.06972923874855042,
-0.09752876311540604,
-0.1188010424375534,
0.1603291630744934,
-0.0028318336699157953,
-0.028598204255104065,
-0.1104360967874527,
0.08912884443998337,
0.0748448297381401,
-0.08543013781309128,
0.004745580721646547,
0.009649831801652908,
0.06923883408308029,
0.03236714377999306,
-0.07864675670862198,
0.12187936902046204,
-0.05042433366179466,
-0.1524772047996521,
-0.0542769692838192,
0.10645737498998642,
0.0009281407110393047,
0.07427766919136047,
-0.018504828214645386,
0.022614294663071632,
-0.0552033931016922,
-0.062201905995607376,
0.019615538418293,
0.000896090583410114,
0.09391649812459946,
0.029201937839388847,
-0.03650486469268799,
-0.01535218395292759,
-0.05506817251443863,
-0.03457074984908104,
0.16983939707279205,
0.23934707045555115,
-0.07925516366958618,
0.013917830772697926,
0.01087299082428217,
-0.07033201307058334,
-0.1710788458585739,
0.022824257612228394,
0.034954819828271866,
0.029664304107427597,
0.03675756976008415,
-0.13761664927005768,
0.09007422626018524,
0.09910813719034195,
-0.013830779120326042,
0.11090587824583054,
-0.3047690987586975,
-0.11203185468912125,
0.12504886090755463,
0.12405281513929367,
0.1340107023715973,
-0.16422446072101593,
-0.00824395939707756,
-0.01879080943763256,
-0.13652807474136353,
0.13794749975204468,
-0.0814492478966713,
0.12345592677593231,
-0.02782147377729416,
0.07357000559568405,
0.018890321254730225,
-0.055910974740982056,
0.13980790972709656,
-0.0024595465511083603,
0.08720214664936066,
-0.09565857797861099,
-0.03720329701900482,
0.036513783037662506,
-0.0467115081846714,
0.021182114258408546,
-0.11131522804498672,
0.024157065898180008,
-0.13487650454044342,
-0.028530074283480644,
-0.06702709943056107,
0.02542835846543312,
-0.034402523189783096,
-0.05024377629160881,
-0.034399401396512985,
0.05338941887021065,
0.0759081244468689,
0.0047453525476157665,
0.1747061163187027,
0.017572807148098946,
0.12681923806667328,
0.14445734024047852,
0.06384076923131943,
-0.05921197310090065,
-0.06139836460351944,
-0.020914284512400627,
-0.007582691498100758,
0.04496736824512482,
-0.13923271000385284,
0.02261499874293804,
0.15944193303585052,
-0.004315568599849939,
0.15600746870040894,
0.07941772043704987,
-0.013308500871062279,
-0.0031672162003815174,
0.05470632389187813,
-0.16354718804359436,
-0.08667287975549698,
-0.027268435806035995,
-0.03875300660729408,
-0.12962070107460022,
0.02382119558751583,
0.11979791522026062,
-0.07531635463237762,
-0.003077481174841523,
-0.0000064644978010619525,
0.044078532606363297,
-0.06049839034676552,
0.15998175740242004,
0.049774568527936935,
0.0461290217936039,
-0.08147531002759933,
0.066905677318573,
0.09498558938503265,
-0.10381331294775009,
0.009711693041026592,
0.061993926763534546,
-0.0691521093249321,
-0.05479264631867409,
0.07686279714107513,
0.1679278463125229,
-0.039111897349357605,
-0.05594346299767494,
-0.16169828176498413,
-0.12742510437965393,
0.08480454236268997,
0.11994460225105286,
0.10729604214429855,
0.014351854100823402,
-0.040117692202329636,
-0.02254433184862137,
-0.11534276604652405,
0.08204172551631927,
0.04460573568940163,
0.06938692182302475,
-0.14213228225708008,
0.10795962065458298,
-0.024413282051682472,
0.0366826169192791,
-0.010684477165341377,
0.030497997999191284,
-0.12190969288349152,
-0.0074816602282226086,
-0.0885855033993721,
-0.0049166311509907246,
-0.023416293784976006,
0.018271027132868767,
0.004245205782353878,
-0.07622227817773819,
-0.06062828376889229,
0.01324441283941269,
-0.11742302030324936,
-0.03778533637523651,
0.023957742378115654,
0.06556005775928497,
-0.08986767381429672,
-0.06409312784671783,
0.01486659049987793,
-0.06970033794641495,
0.05773141235113144,
0.03897141292691231,
0.007976196706295013,
0.015023477375507355,
-0.123806431889534,
0.016405142843723297,
0.03998328372836113,
0.03555584326386452,
0.07035872340202332,
-0.09311862289905548,
-0.005921028554439545,
0.02684612199664116,
0.02862282283604145,
0.014097606763243675,
0.09229274839162827,
-0.13871358335018158,
-0.012852849438786507,
-0.03783822059631348,
-0.08818458020687103,
-0.06256894022226334,
0.029035767540335655,
0.0912410244345665,
0.034364003688097,
0.21159149706363678,
-0.05710450932383537,
0.04433414340019226,
-0.2061060518026352,
0.0029870409052819014,
-0.0001341063907602802,
-0.11752072721719742,
-0.06563269346952438,
-0.07466157525777817,
0.06611231714487076,
-0.04926217719912529,
0.11877290904521942,
0.056803684681653976,
0.06433382630348206,
0.02766442485153675,
-0.029592834413051605,
0.035890620201826096,
0.029369622468948364,
0.18077543377876282,
0.026377486065030098,
-0.04325425624847412,
0.08539769053459167,
0.017215708270668983,
0.1096368357539177,
0.12922723591327667,
0.1798759251832962,
0.14544829726219177,
0.014726342633366585,
0.11030785739421844,
0.03570888563990593,
-0.04815288260579109,
-0.15498793125152588,
0.06002363562583923,
-0.03616129234433174,
0.1213209480047226,
-0.04287353530526161,
0.18877670168876648,
0.05180014297366142,
-0.17035968601703644,
0.03301085904240608,
-0.07807262241840363,
-0.08228683471679688,
-0.08573585748672485,
-0.07207119464874268,
-0.09877556562423706,
-0.1297624409198761,
-0.013707705773413181,
-0.11041635274887085,
0.021004650741815567,
0.11221656203269958,
-0.0038784793578088284,
-0.023153115063905716,
0.13146038353443146,
-0.009467313066124916,
0.019994037225842476,
0.06706249713897705,
-0.010583742521703243,
-0.03513329476118088,
-0.1050485298037529,
-0.08958937972784042,
-0.023332277312874794,
-0.011611546389758587,
0.03152306005358696,
-0.05150756612420082,
-0.01667160913348198,
0.03626300022006035,
-0.030929584056138992,
-0.09793099761009216,
0.002208924852311611,
0.004280314315110445,
0.05918160825967789,
0.06037716940045357,
0.018283413723111153,
0.018798908218741417,
0.007333669345825911,
0.23044948279857635,
-0.0776200145483017,
-0.06306280195713043,
-0.10901042819023132,
0.18023663759231567,
0.030855415388941765,
-0.0449688695371151,
0.037783537060022354,
-0.0786672905087471,
-0.0084532480686903,
0.22322995960712433,
0.1906498521566391,
-0.09415511786937714,
-0.006680540274828672,
0.016066959127783775,
-0.004307271912693977,
-0.014554254710674286,
0.09689061343669891,
0.13445115089416504,
0.03479842096567154,
-0.09151003509759903,
-0.053141579031944275,
-0.05791878700256348,
0.007076912559568882,
-0.03265481814742088,
0.056747086346149445,
0.02547973394393921,
0.011160613968968391,
-0.026572925969958305,
0.03127003088593483,
-0.05414116010069847,
-0.10876255482435226,
0.06342938542366028,
-0.24017581343650818,
-0.1581571400165558,
-0.032084107398986816,
0.12100314348936081,
-0.003602829994633794,
0.06174803897738457,
-0.02660277858376503,
-0.0020403172820806503,
0.06125006824731827,
-0.024537328630685806,
-0.08233585208654404,
-0.047631483525037766,
0.08179979771375656,
-0.11702204495668411,
0.2006794810295105,
-0.04815728962421417,
0.060103390365839005,
0.12444452941417694,
0.06503569334745407,
-0.07262338697910309,
0.06607083976268768,
0.044594213366508484,
-0.04412844404578209,
0.04981579631567001,
0.07327018678188324,
-0.045562345534563065,
0.09227299690246582,
0.05453191325068474,
-0.11520861834287643,
0.006105110049247742,
-0.07113398611545563,
-0.037577204406261444,
-0.024310503154993057,
-0.04390112683176994,
-0.07369952648878098,
0.13399207592010498,
0.2015930563211441,
-0.03355313837528229,
-0.02644273452460766,
-0.059120140969753265,
0.02837548218667507,
0.04512191563844681,
0.007169018499553204,
-0.061969976872205734,
-0.1861920803785324,
-0.0009223050437867641,
0.010049262084066868,
-0.006085433531552553,
-0.23977698385715485,
-0.08374042063951492,
-0.011552871204912663,
-0.07213742285966873,
-0.10754546523094177,
0.07310071587562561,
0.08278203010559082,
0.024850137531757355,
-0.0857943445444107,
-0.023933475837111473,
-0.07230864465236664,
0.14633648097515106,
-0.13569223880767822,
-0.07929941266775131
] |
null | null | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-emotion
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2232
- Accuracy: 0.9215
- F1: 0.9218
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| 0.8098 | 1.0 | 250 | 0.3138 | 0.9025 | 0.9001 |
| 0.2429 | 2.0 | 500 | 0.2232 | 0.9215 | 0.9218 |
### Framework versions
- Transformers 4.16.2
- Pytorch 1.10.0+cu111
- Datasets 1.18.3
- Tokenizers 0.11.0
| {"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["emotion"], "metrics": ["accuracy", "f1"], "model-index": [{"name": "distilbert-base-uncased-finetuned-emotion", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "emotion", "type": "emotion", "args": "default"}, "metrics": [{"type": "accuracy", "value": 0.9215, "name": "Accuracy"}, {"type": "f1", "value": 0.9217985126397109, "name": "F1"}]}]}]} | text-classification | MhF/distilbert-base-uncased-finetuned-emotion | [
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"dataset:emotion",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [] | TAGS
#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #dataset-emotion #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us
| distilbert-base-uncased-finetuned-emotion
=========================================
This model is a fine-tuned version of distilbert-base-uncased on the emotion dataset.
It achieves the following results on the evaluation set:
* Loss: 0.2232
* Accuracy: 0.9215
* F1: 0.9218
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 64
* eval\_batch\_size: 64
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 2
### Training results
### Framework versions
* Transformers 4.16.2
* Pytorch 1.10.0+cu111
* Datasets 1.18.3
* Tokenizers 0.11.0
| [
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 2",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.16.2\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.3\n* Tokenizers 0.11.0"
] | [
"TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #dataset-emotion #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 2",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.16.2\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.3\n* Tokenizers 0.11.0"
] | [
67,
98,
4,
35
] | [
"passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #dataset-emotion #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 2### Training results### Framework versions\n\n\n* Transformers 4.16.2\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.3\n* Tokenizers 0.11.0"
] | [
-0.10729362070560455,
0.1047292947769165,
-0.0024711175356060266,
0.13316385447978973,
0.16401071846485138,
0.04042576253414154,
0.10044105350971222,
0.12800730764865875,
-0.0852288007736206,
0.03607739880681038,
0.11509311944246292,
0.16314564645290375,
0.02035607397556305,
0.10854325443506241,
-0.06299330294132233,
-0.27483588457107544,
-0.008726350031793118,
0.051931120455265045,
-0.0033133854158222675,
0.13180971145629883,
0.09558909386396408,
-0.1265009194612503,
0.09691281616687775,
0.007633947767317295,
-0.1788771152496338,
0.0042419941164553165,
0.002333219163119793,
-0.04618934169411659,
0.14245866239070892,
0.018829884007573128,
0.10378188639879227,
0.0042160204611718655,
0.08303368091583252,
-0.21592605113983154,
0.01686237007379532,
0.03884436935186386,
-0.0008284060168080032,
0.0867934301495552,
0.035970304161310196,
-0.017690220847725868,
0.15871582925319672,
-0.07400691509246826,
0.051401637494564056,
0.01809038780629635,
-0.10891712456941605,
-0.22057516872882843,
-0.08290493488311768,
0.04705986753106117,
0.06983020156621933,
0.12207958847284317,
-0.01847134716808796,
0.13202212750911713,
-0.09214302152395248,
0.09749164432287216,
0.2406737506389618,
-0.2591608166694641,
-0.06779301911592484,
0.013458365574479103,
0.014229160733520985,
0.03417785093188286,
-0.1190149188041687,
-0.042226482182741165,
0.05254526063799858,
0.05231756344437599,
0.11917786300182343,
-0.034545574337244034,
-0.09468395262956619,
0.005687303841114044,
-0.1268710047006607,
-0.04855029657483101,
0.16417168080806732,
0.05871021747589111,
-0.029439294710755348,
-0.060039691627025604,
-0.05639486759901047,
-0.16768014430999756,
-0.03451862558722496,
-0.011855937540531158,
0.05206918716430664,
-0.016418155282735825,
-0.06295408308506012,
0.01447153277695179,
-0.12162116169929504,
-0.039976008236408234,
-0.06780802458524704,
0.1075311154127121,
0.022186413407325745,
0.009949775412678719,
-0.021492179483175278,
0.10042563080787659,
0.0003224578977096826,
-0.1253768801689148,
0.01070945430546999,
0.01928461715579033,
0.030408021062612534,
-0.03198050707578659,
-0.06958989053964615,
-0.0558076873421669,
-0.007334659341722727,
0.10167807340621948,
-0.0694628581404686,
0.04918947070837021,
0.041475359350442886,
0.036121904850006104,
-0.06748844683170319,
0.19640591740608215,
-0.03118940442800522,
-0.02915976382791996,
-0.0018044040771201253,
0.05060819536447525,
0.02405879832804203,
-0.0032724638003855944,
-0.12272071838378906,
0.020775578916072845,
0.0907864049077034,
-0.001129860058426857,
-0.09488388895988464,
0.08389153331518173,
-0.0698997750878334,
-0.016850372776389122,
-0.016022395342588425,
-0.07870841026306152,
0.03298290818929672,
0.016868289560079575,
-0.07184309512376785,
0.002036898862570524,
0.030261674895882607,
0.007831711322069168,
-0.020847242325544357,
0.09522684663534164,
-0.07746980339288712,
0.027547942474484444,
-0.09554529935121536,
-0.10057154297828674,
0.0319836363196373,
-0.0933026447892189,
0.03707559034228325,
-0.09557268768548965,
-0.1969965547323227,
-0.02371833100914955,
0.06897696107625961,
-0.023075198754668236,
-0.049408528953790665,
-0.06973061710596085,
-0.06573869287967682,
0.022101590409874916,
-0.006038626190274954,
0.09978187829256058,
-0.06488972902297974,
0.08648522943258286,
0.029132578521966934,
0.08314822614192963,
-0.0327628068625927,
0.05228634178638458,
-0.11530283838510513,
0.007176255341619253,
-0.14477860927581787,
0.04921390488743782,
-0.040933482348918915,
0.08032797276973724,
-0.06651826202869415,
-0.11272696405649185,
0.014270448125898838,
-0.008701889775693417,
0.06811949610710144,
0.10830722749233246,
-0.1874769777059555,
-0.08503932505846024,
0.16656242311000824,
-0.06960446387529373,
-0.11231537163257599,
0.12582966685295105,
-0.06890527158975601,
0.06420158594846725,
0.06954458355903625,
0.17675773799419403,
0.04454420506954193,
-0.07582211494445801,
-0.021538954228162766,
0.011303065344691277,
0.046311553567647934,
-0.040882594883441925,
0.05243360996246338,
0.032127413898706436,
0.036118075251579285,
0.039608173072338104,
-0.009041768498718739,
0.06707309186458588,
-0.08848506212234497,
-0.09591000527143478,
-0.03961322456598282,
-0.08873633295297623,
0.035664066672325134,
0.08954097330570221,
0.06674152612686157,
-0.10992896556854248,
-0.07744910567998886,
0.025461889803409576,
0.09009505808353424,
-0.06347711384296417,
0.033417969942092896,
-0.06480710953474045,
0.06617280095815659,
-0.003511756658554077,
-0.01667897403240204,
-0.17729134857654572,
0.01630166359245777,
0.004542169161140919,
0.02844761498272419,
-0.00019540746870916337,
0.023198576644062996,
0.06452924013137817,
0.03740648180246353,
-0.05454067140817642,
-0.02172916568815708,
-0.03341880440711975,
-0.004205236677080393,
-0.11680345982313156,
-0.21564458310604095,
-0.01974746398627758,
-0.02661697380244732,
0.15774938464164734,
-0.2086779922246933,
0.03996117785573006,
-0.0019243378192186356,
0.05956423282623291,
0.012203168123960495,
-0.01787281036376953,
-0.033852286636829376,
0.06017862632870674,
-0.05613437667489052,
-0.042680077254772186,
0.07588963210582733,
0.01740330085158348,
-0.08511539548635483,
-0.030706949532032013,
-0.1021745353937149,
0.14219696819782257,
0.13248753547668457,
-0.10826127231121063,
-0.07062311470508575,
-0.011296364478766918,
-0.06772562861442566,
-0.017247330397367477,
-0.039187315851449966,
0.04301421716809273,
0.20019438862800598,
-0.00820479542016983,
0.14059090614318848,
-0.06494151055812836,
-0.031490977853536606,
0.026991359889507294,
-0.04239301756024361,
0.004276996944099665,
0.1287386417388916,
0.11800841987133026,
-0.06982634216547012,
0.14693941175937653,
0.13136978447437286,
-0.0891217440366745,
0.15249906480312347,
-0.03497766703367233,
-0.05877610668540001,
-0.02403487078845501,
-0.045619092881679535,
-0.01798650063574314,
0.10396979749202728,
-0.18228667974472046,
-0.012118436396121979,
0.0260163526982069,
0.005726987961679697,
0.007428900804370642,
-0.21971000730991364,
-0.04791821911931038,
0.04595760256052017,
-0.03812717646360397,
-0.010418609715998173,
-0.009262105450034142,
0.006111920345574617,
0.10368035733699799,
0.001138293300755322,
-0.08149299025535583,
0.03558086231350899,
0.0011295531876385212,
-0.08863750845193863,
0.2055307924747467,
-0.08933070302009583,
-0.17410141229629517,
-0.10471027344465256,
-0.07815846055746078,
-0.043997522443532944,
0.006574671249836683,
0.07453528046607971,
-0.10984637588262558,
-0.02622349001467228,
-0.07987094670534134,
0.01593250408768654,
0.009252005256712437,
0.024781929329037666,
0.036951471120119095,
-0.00465792091563344,
0.048271771520376205,
-0.10302270203828812,
-0.02403036691248417,
-0.06304781883955002,
-0.03993484005331993,
0.05265017971396446,
0.02005668729543686,
0.118043452501297,
0.16297343373298645,
-0.0076253884471952915,
0.01597556471824646,
-0.03907688334584236,
0.22747467458248138,
-0.07208378612995148,
-0.020123520866036415,
0.1348801553249359,
-0.012867340818047523,
0.05217314139008522,
0.12073347717523575,
0.062393803149461746,
-0.09354939311742783,
0.014609823934733868,
0.03963443264365196,
-0.03961718827486038,
-0.2182883620262146,
-0.041471026837825775,
-0.054045043885707855,
0.01904810592532158,
0.07290061563253403,
0.023992260918021202,
0.043753448873758316,
0.07843822985887527,
0.04238804057240486,
0.05585741251707077,
-0.05172137916088104,
0.060923103243112564,
0.12870679795742035,
0.02477360889315605,
0.10340405255556107,
-0.039904434233903885,
-0.051694296300411224,
0.05727382376790047,
-0.0235836673527956,
0.213295117020607,
-0.0046312324702739716,
0.14205609261989594,
0.05248811095952988,
0.16770078241825104,
-0.02623376064002514,
0.07764134556055069,
-0.018527843058109283,
-0.04362728074193001,
-0.029597122222185135,
-0.02704855240881443,
-0.061481259763240814,
0.037875134497880936,
-0.06760066747665405,
0.08125722408294678,
-0.13951994478702545,
0.016720419749617577,
0.06496018171310425,
0.28609931468963623,
0.03024904616177082,
-0.3238048255443573,
-0.1145019680261612,
0.006392969749867916,
-0.04281984642148018,
-0.012938925065100193,
0.02482636086642742,
0.08696186542510986,
-0.09557933360338211,
0.04103221744298935,
-0.06149192899465561,
0.08659522235393524,
-0.062083423137664795,
0.06185540556907654,
0.04686061665415764,
0.067520372569561,
0.011607197113335133,
0.0879162922501564,
-0.2901266813278198,
0.26659315824508667,
-0.009660146199166775,
0.06638708710670471,
-0.09171168506145477,
0.0015390677144750953,
0.057999737560749054,
0.0645095482468605,
0.07839592546224594,
-0.008353786543011665,
-0.025936177000403404,
-0.17033188045024872,
-0.03941094130277634,
0.030702056363224983,
0.05801006406545639,
-0.02464820072054863,
0.09037021547555923,
-0.024266205728054047,
0.007068659644573927,
0.07367045432329178,
0.036816757172346115,
-0.04217315465211868,
-0.1023501306772232,
-0.013262004591524601,
0.03541959077119827,
-0.057665735483169556,
-0.05188718065619469,
-0.12367169559001923,
-0.10359145700931549,
0.15542557835578918,
-0.00006500956806121394,
-0.027459781616926193,
-0.1068275198340416,
0.08591251820325851,
0.038172826170921326,
-0.08906199038028717,
0.028833167627453804,
0.007926978170871735,
0.08698344230651855,
0.020338594913482666,
-0.07427806407213211,
0.10831718146800995,
-0.07868301123380661,
-0.1688513159751892,
-0.06764310598373413,
0.09617795050144196,
0.04899711534380913,
0.07385817915201187,
-0.0006031826487742364,
-0.004917136859148741,
-0.05156872048974037,
-0.08633923530578613,
0.0346834622323513,
0.027141401544213295,
0.071261927485466,
0.004864595830440521,
-0.04629438370466232,
0.005747415591031313,
-0.06478627026081085,
-0.03439803794026375,
0.20143994688987732,
0.22080206871032715,
-0.09110598266124725,
0.03254473954439163,
0.0239409152418375,
-0.07410942763090134,
-0.19310620427131653,
0.047012005001306534,
0.06272011250257492,
0.011241049505770206,
0.03201361373066902,
-0.18438269197940826,
0.13110940158367157,
0.0807967260479927,
-0.012686248868703842,
0.09494052082300186,
-0.2900375425815582,
-0.11540846526622772,
0.13636305928230286,
0.13736146688461304,
0.13213872909545898,
-0.13606145977973938,
-0.000282821012660861,
-0.0331534817814827,
-0.12705792486667633,
0.11077027767896652,
-0.07835882902145386,
0.1183292344212532,
-0.023655373603105545,
0.12300385534763336,
0.008950582705438137,
-0.04902263730764389,
0.1094827726483345,
0.026648862287402153,
0.09621351957321167,
-0.0742063969373703,
-0.031891871243715286,
0.021660272032022476,
-0.046041831374168396,
0.037089988589286804,
-0.09613772481679916,
0.019534418359398842,
-0.12541505694389343,
-0.0347626730799675,
-0.08580275624990463,
0.03547784313559532,
-0.03688618168234825,
-0.06766413897275925,
-0.05050470307469368,
0.025199441239237785,
0.08290276676416397,
-0.003742208005860448,
0.09785968065261841,
0.021963901817798615,
0.10942701995372772,
0.10009158402681351,
0.09949485957622528,
-0.0653558224439621,
-0.0665293037891388,
-0.018882058560848236,
-0.010290192440152168,
0.046408869326114655,
-0.154057115316391,
0.019539862871170044,
0.14107957482337952,
0.018524620682001114,
0.15923410654067993,
0.086464524269104,
-0.03522064536809921,
0.019331954419612885,
0.06194582208991051,
-0.1536843329668045,
-0.08088555186986923,
-0.01619407907128334,
-0.06440259516239166,
-0.12118636071681976,
0.030513474717736244,
0.08062941581010818,
-0.07233089953660965,
-0.002700845478102565,
-0.017017927020788193,
0.019046444445848465,
-0.04211467504501343,
0.15935401618480682,
0.042615655809640884,
0.028050988912582397,
-0.10636944323778152,
0.07200022786855698,
0.02104838751256466,
-0.11235780268907547,
0.035800471901893616,
0.07812155783176422,
-0.07911717146635056,
-0.056450918316841125,
0.07246264815330505,
0.20851120352745056,
-0.0609748400747776,
-0.051515739411115646,
-0.14380614459514618,
-0.1296641081571579,
0.09157031029462814,
0.1478157788515091,
0.11339854449033737,
0.008251185528934002,
-0.08405079692602158,
0.02118947170674801,
-0.12219466269016266,
0.08870178461074829,
0.060448646545410156,
0.04329829663038254,
-0.1362001597881317,
0.11675106734037399,
0.0057970015332102776,
0.04512380063533783,
-0.02142210863530636,
0.01621556468307972,
-0.09014339745044708,
0.008532247506082058,
-0.12278182059526443,
-0.01684640347957611,
-0.04931967332959175,
0.010625757277011871,
0.0019121913937851787,
-0.042344022542238235,
-0.049806080758571625,
0.008135498501360416,
-0.11552951484918594,
-0.013957532122731209,
0.03357489034533501,
0.07033564150333405,
-0.11021576821804047,
-0.03861508145928383,
0.02313329093158245,
-0.06658323854207993,
0.09209239482879639,
0.06735558807849884,
0.012549255974590778,
0.05525312200188637,
-0.1553274542093277,
0.02430122159421444,
0.09489823132753372,
0.012762150727212429,
0.05802254378795624,
-0.08479415625333786,
-0.008534411899745464,
-0.00010694751108530909,
0.03706943988800049,
0.016222532838582993,
0.07832875102758408,
-0.12882113456726074,
0.016799401491880417,
0.008114504627883434,
-0.08316964656114578,
-0.06917650997638702,
0.03155684471130371,
0.08236025273799896,
0.008819040842354298,
0.19790464639663696,
-0.07840058207511902,
0.04377833008766174,
-0.21245789527893066,
0.007146566640585661,
-0.0014933281345292926,
-0.10025528073310852,
-0.12733981013298035,
-0.07039541751146317,
0.05881955474615097,
-0.05410310998558998,
0.13589723408222198,
0.045999959111213684,
0.01235200371593237,
0.014530939981341362,
-0.012251087464392185,
0.02399143949151039,
0.005510806571692228,
0.18603813648223877,
0.027695367112755775,
-0.05274145305156708,
0.06411328911781311,
0.05231228470802307,
0.11989478021860123,
0.13339386880397797,
0.20230893790721893,
0.13969458639621735,
0.033963028341531754,
0.11575202643871307,
0.02543461136519909,
-0.03262630105018616,
-0.15815185010433197,
0.024341994896531105,
-0.05765404924750328,
0.11692982167005539,
-0.0167445819824934,
0.2357674241065979,
0.0678008496761322,
-0.15977829694747925,
0.059805046766996384,
-0.0666084736585617,
-0.07921454310417175,
-0.1022128239274025,
-0.07239903509616852,
-0.08356468379497528,
-0.1417270004749298,
0.006583749316632748,
-0.13647694885730743,
0.007792337331920862,
0.08786148577928543,
0.011358031071722507,
-0.04143144190311432,
0.14075921475887299,
0.011778234504163265,
0.023106886073946953,
0.09100471436977386,
0.008729695342481136,
-0.06217772141098976,
-0.11704227328300476,
-0.05014779418706894,
-0.01657717674970627,
-0.023305591195821762,
0.04358667880296707,
-0.048993438482284546,
-0.0553666353225708,
0.025841066613793373,
-0.0172811858355999,
-0.09646714478731155,
0.006504023913294077,
0.012089506722986698,
0.06697583943605423,
0.04862723872065544,
0.002103988314047456,
0.022446153685450554,
-0.0012293654726818204,
0.18963707983493805,
-0.07616747915744781,
-0.026641009375452995,
-0.11109642684459686,
0.22364294528961182,
0.02844659984111786,
-0.018694207072257996,
0.030168691650032997,
-0.07148570567369461,
-0.004298421088606119,
0.25087398290634155,
0.20104657113552094,
-0.07867487519979477,
-0.006430341396480799,
-0.001906919525936246,
0.002854718128219247,
-0.04296019300818443,
0.0966230109333992,
0.15746144950389862,
0.03463737294077873,
-0.09859860688447952,
-0.031270258128643036,
-0.05984746292233467,
-0.02341749146580696,
-0.023579400032758713,
0.06165848299860954,
0.057010408490896225,
0.009236941114068031,
-0.040890660136938095,
0.0482877753674984,
-0.08954156190156937,
-0.10071983933448792,
0.07293747365474701,
-0.21676287055015564,
-0.15200334787368774,
-0.010801189579069614,
0.09315329790115356,
0.030188802629709244,
0.07307171821594238,
-0.01563802920281887,
-0.006410101894289255,
0.11621510982513428,
-0.020048778504133224,
-0.11753543466329575,
-0.06383446604013443,
0.09692142903804779,
-0.1351519227027893,
0.2077455222606659,
-0.06165296211838722,
0.03952718898653984,
0.12620560824871063,
0.07369670271873474,
-0.06323783099651337,
0.0695536807179451,
0.04448116943240166,
-0.05124595761299133,
0.012946334667503834,
0.10566786676645279,
-0.032710567116737366,
0.06821645051240921,
0.04730750992894173,
-0.15438665449619293,
0.020901495590806007,
-0.046528562903404236,
-0.059128664433956146,
-0.0503077358007431,
-0.008768591098487377,
-0.06569826602935791,
0.12388360500335693,
0.2201795130968094,
-0.027535736560821533,
-0.0036572322715073824,
-0.06962022930383682,
0.0093183983117342,
0.04277172312140465,
0.008951366879045963,
-0.05614110827445984,
-0.20786675810813904,
0.01562237087637186,
0.07017044723033905,
-0.014551161788403988,
-0.25191476941108704,
-0.10240420699119568,
0.003093148348852992,
-0.07040718197822571,
-0.09217037260532379,
0.061117835342884064,
0.06715869903564453,
0.05661793053150177,
-0.0508190281689167,
-0.05060721933841705,
-0.061116866767406464,
0.1666710376739502,
-0.1338857114315033,
-0.08686347305774689
] |
null | null | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xlm-roberta-base-finetuned-panx-all
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1753
- F1: 0.8520
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 24
- eval_batch_size: 24
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.2989 | 1.0 | 835 | 0.1878 | 0.8123 |
| 0.1548 | 2.0 | 1670 | 0.1745 | 0.8480 |
| 0.1012 | 3.0 | 2505 | 0.1753 | 0.8520 |
### Framework versions
- Transformers 4.16.2
- Pytorch 1.10.0+cu113
- Datasets 1.18.3
- Tokenizers 0.11.0
| {"license": "mit", "tags": ["generated_from_trainer"], "metrics": ["f1"], "model-index": [{"name": "xlm-roberta-base-finetuned-panx-all", "results": []}]} | token-classification | MhF/xlm-roberta-base-finetuned-panx-all | [
"transformers",
"pytorch",
"xlm-roberta",
"token-classification",
"generated_from_trainer",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [] | TAGS
#transformers #pytorch #xlm-roberta #token-classification #generated_from_trainer #license-mit #autotrain_compatible #endpoints_compatible #region-us
| xlm-roberta-base-finetuned-panx-all
===================================
This model is a fine-tuned version of xlm-roberta-base on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 0.1753
* F1: 0.8520
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 5e-05
* train\_batch\_size: 24
* eval\_batch\_size: 24
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 3
### Training results
### Framework versions
* Transformers 4.16.2
* Pytorch 1.10.0+cu113
* Datasets 1.18.3
* Tokenizers 0.11.0
| [
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 24\n* eval\\_batch\\_size: 24\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.16.2\n* Pytorch 1.10.0+cu113\n* Datasets 1.18.3\n* Tokenizers 0.11.0"
] | [
"TAGS\n#transformers #pytorch #xlm-roberta #token-classification #generated_from_trainer #license-mit #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 24\n* eval\\_batch\\_size: 24\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.16.2\n* Pytorch 1.10.0+cu113\n* Datasets 1.18.3\n* Tokenizers 0.11.0"
] | [
53,
98,
4,
35
] | [
"passage: TAGS\n#transformers #pytorch #xlm-roberta #token-classification #generated_from_trainer #license-mit #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 24\n* eval\\_batch\\_size: 24\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3### Training results### Framework versions\n\n\n* Transformers 4.16.2\n* Pytorch 1.10.0+cu113\n* Datasets 1.18.3\n* Tokenizers 0.11.0"
] | [
-0.10404819995164871,
0.06169690564274788,
-0.001358180190436542,
0.12218120694160461,
0.20749235153198242,
0.027356870472431183,
0.0892457664012909,
0.10810472816228867,
-0.10666882246732712,
0.01126864179968834,
0.12861528992652893,
0.20943683385849,
-0.00643515819683671,
0.12677447497844696,
-0.06900625675916672,
-0.2570095956325531,
-0.018668124452233315,
0.03831714764237404,
-0.06454173475503922,
0.13395178318023682,
0.09989925473928452,
-0.1491435021162033,
0.08532873541116714,
-0.0025159369688481092,
-0.25222525000572205,
0.019363531842827797,
0.032335471361875534,
-0.05522637069225311,
0.14995060861110687,
0.009408441372215748,
0.13605424761772156,
-0.00520417932420969,
0.09462562203407288,
-0.15974710881710052,
0.008190835826098919,
0.03975341096520424,
0.012027780525386333,
0.07765956968069077,
0.06190856918692589,
-0.009611020796000957,
0.10576730966567993,
-0.09063810855150223,
0.046136919409036636,
0.016326121985912323,
-0.13122449815273285,
-0.21686320006847382,
-0.08932396024465561,
0.0034009653609246016,
0.06663086265325546,
0.0980428084731102,
0.0024341873358935118,
0.16673557460308075,
-0.1091267466545105,
0.09628403931856155,
0.22399437427520752,
-0.29310861229896545,
-0.06793459504842758,
0.04174709692597389,
0.0008549506892450154,
0.06874647736549377,
-0.1110498234629631,
-0.020758232101798058,
0.06277292966842651,
0.05179301276803017,
0.12152885645627975,
-0.04796924814581871,
-0.10393919795751572,
0.027165090665221214,
-0.14344795048236847,
-0.021928919479250908,
0.1066356673836708,
0.02701621688902378,
-0.041512612253427505,
-0.021379688754677773,
-0.041728902608156204,
-0.1665928065776825,
-0.03659866377711296,
-0.008624773472547531,
0.044280681759119034,
-0.05135774612426758,
-0.07607263326644897,
0.023397797718644142,
-0.09520459175109863,
-0.062373895198106766,
-0.07527011632919312,
0.18967564404010773,
0.03840644657611847,
0.01625458151102066,
-0.016148487105965614,
0.10597866773605347,
0.006918307393789291,
-0.1208949163556099,
0.021326052024960518,
0.027759166434407234,
-0.010349360294640064,
-0.0693034902215004,
-0.07588832825422287,
-0.03093349002301693,
0.0008354554884135723,
0.10052502155303955,
-0.05866533890366554,
0.036402903497219086,
0.05441481992602348,
0.030964553356170654,
-0.08969882130622864,
0.19531631469726562,
-0.0267510786652565,
-0.009311440400779247,
0.011265001259744167,
0.026483742520213127,
-0.022188281640410423,
0.0041763815097510815,
-0.11430558562278748,
-0.008013282902538776,
0.11448324471712112,
0.026411132887005806,
-0.09565355628728867,
0.06529425829648972,
-0.052536625415086746,
-0.030066564679145813,
0.0022765332832932472,
-0.09794502705335617,
0.04113950952887535,
-0.025499360635876656,
-0.0890471562743187,
-0.03136119246482849,
-0.008842463605105877,
0.01824030466377735,
-0.014618337154388428,
0.1276751160621643,
-0.0937090739607811,
0.05533445253968239,
-0.10690029710531235,
-0.1078268513083458,
-0.007074414286762476,
-0.08783259242773056,
0.036986012011766434,
-0.10265538841485977,
-0.1551555097103119,
-0.02554897405207157,
0.042382027953863144,
-0.02205035276710987,
-0.060202520340681076,
-0.039541248232126236,
-0.06581012904644012,
-0.006763093173503876,
-0.01556809525936842,
0.15786860883235931,
-0.056606266647577286,
0.10857381671667099,
0.04563066363334656,
0.059069614857435226,
-0.05684917792677879,
0.06083488091826439,
-0.10392314195632935,
-0.0015908743953332305,
-0.19108863174915314,
0.043978821486234665,
-0.044363658875226974,
0.08881807327270508,
-0.07834666222333908,
-0.12147921323776245,
0.043124157935380936,
-0.009963023476302624,
0.07009106129407883,
0.07643555849790573,
-0.1518123894929886,
-0.06779495626688004,
0.13378910720348358,
-0.05150681734085083,
-0.10163295269012451,
0.09952055662870407,
-0.07428479194641113,
0.046100884675979614,
0.07572896778583527,
0.1510532647371292,
0.06656254082918167,
-0.07214992493391037,
0.0388994961977005,
-0.023180803284049034,
0.02910860814154148,
-0.08684421330690384,
0.052494194358587265,
0.021625330671668053,
-0.03169143944978714,
0.03944529965519905,
-0.033899251371622086,
0.06104135513305664,
-0.11197295039892197,
-0.0919102132320404,
-0.03826691210269928,
-0.10500875115394592,
0.037578970193862915,
0.07301118224859238,
0.09567052125930786,
-0.10907302051782608,
-0.04381569102406502,
0.07441036403179169,
0.06922637671232224,
-0.03574693202972412,
0.018511811271309853,
-0.05314818397164345,
0.056729212403297424,
-0.054969292134046555,
-0.03967335820198059,
-0.1965123414993286,
-0.017168404534459114,
0.010918967425823212,
0.03400913253426552,
0.029737526550889015,
0.025981074199080467,
0.0595305897295475,
0.06193501129746437,
-0.04769338667392731,
-0.013454518280923367,
-0.012517407536506653,
-0.003917303867638111,
-0.15057335793972015,
-0.17325212061405182,
-0.029581906273961067,
-0.01641116291284561,
0.09365896135568619,
-0.19754022359848022,
0.01976580172777176,
-0.0494547002017498,
0.06370886415243149,
-0.0011350451968610287,
-0.0071634030900895596,
-0.05626318231225014,
0.10904920101165771,
-0.02355349250137806,
-0.044325947761535645,
0.08157239109277725,
-0.004843669943511486,
-0.07050199061632156,
-0.052651043981313705,
-0.07919689267873764,
0.20841602981090546,
0.131539449095726,
-0.1393274962902069,
-0.10034596174955368,
-0.0071326023899018764,
-0.058315377682447433,
-0.0181391853839159,
-0.05323660373687744,
0.0713028684258461,
0.19509343802928925,
-0.025293627753853798,
0.1547897756099701,
-0.06475953012704849,
-0.04484809562563896,
0.020609896630048752,
-0.03461789712309837,
0.040515314787626266,
0.11800464987754822,
0.1328565925359726,
-0.1214292123913765,
0.13188722729682922,
0.1465202122926712,
-0.08348364382982254,
0.11267238855361938,
-0.03703446313738823,
-0.059839386492967606,
-0.024799460545182228,
-0.02700820565223694,
-0.006816379725933075,
0.08786275237798691,
-0.09709858894348145,
-0.010191991925239563,
0.014562196098268032,
0.02970227785408497,
0.018771613016724586,
-0.23026573657989502,
-0.0565045066177845,
0.029842862859368324,
-0.02101551927626133,
-0.014093130826950073,
-0.011706885881721973,
0.02200649492442608,
0.11077600717544556,
0.005760580766946077,
-0.09918082505464554,
0.04336925968527794,
0.01102240476757288,
-0.0766967162489891,
0.2139827162027359,
-0.08281311392784119,
-0.1268225610256195,
-0.10969362407922745,
-0.08663057535886765,
-0.05067479610443115,
0.012274299748241901,
0.04893884435296059,
-0.08778742700815201,
-0.0280554611235857,
-0.03619147092103958,
0.0026959485840052366,
-0.02058039978146553,
0.04424680769443512,
-0.008429241366684437,
0.00005246436921879649,
0.060143113136291504,
-0.09790857881307602,
-0.020471513271331787,
-0.06253904104232788,
-0.08199597150087357,
0.0587334968149662,
0.04540647566318512,
0.1147574782371521,
0.14694447815418243,
-0.0462862066924572,
0.007464562077075243,
-0.03418159484863281,
0.25868865847587585,
-0.06236117705702782,
-0.05212125554680824,
0.11985168606042862,
0.006449272856116295,
0.05116982385516167,
0.10929495096206665,
0.07551103085279465,
-0.10253960639238358,
0.01174631342291832,
0.023421764373779297,
-0.036504656076431274,
-0.20820342004299164,
-0.05145980790257454,
-0.05854761600494385,
-0.061168987303972244,
0.09513187408447266,
0.02655232511460781,
0.04712474346160889,
0.07122097164392471,
0.0559944212436676,
0.08254478126764297,
-0.07976945489645004,
0.06129320338368416,
0.10767976194620132,
0.05802345275878906,
0.12933377921581268,
-0.03950619325041771,
-0.08385720103979111,
0.02971872128546238,
-0.017652766779065132,
0.23921747505664825,
0.01867671124637127,
0.08023292571306229,
0.055885180830955505,
0.19553418457508087,
0.010876198299229145,
0.08982959389686584,
0.0106820585206151,
-0.05626106262207031,
-0.011624258011579514,
-0.025447985157370567,
-0.0389363169670105,
0.01603860780596733,
-0.04723866656422615,
0.045790642499923706,
-0.13384751975536346,
-0.030744343996047974,
0.048508524894714355,
0.24837619066238403,
0.02152075432240963,
-0.31919175386428833,
-0.06961330771446228,
-0.005741146858781576,
-0.04180794581770897,
-0.01720363460481167,
0.013271760195493698,
0.06911531835794449,
-0.11424896866083145,
0.020295729860663414,
-0.06179116666316986,
0.09617406874895096,
-0.025027252733707428,
0.044412966817617416,
0.07083060592412949,
0.08966963738203049,
0.0033616472501307726,
0.07523249834775925,
-0.3131367862224579,
0.28262975811958313,
0.00805410835891962,
0.0758027508854866,
-0.07606424391269684,
-0.012575258500874043,
0.035382989794015884,
0.06558535993099213,
0.04790380969643593,
-0.009387567639350891,
-0.06502047181129456,
-0.23966701328754425,
-0.01485435664653778,
0.033138707280159,
0.10228303074836731,
-0.019326046109199524,
0.09731224924325943,
-0.029104391112923622,
0.014262638986110687,
0.06756804138422012,
-0.02411993406713009,
-0.05192403495311737,
-0.06980057805776596,
-0.023983830586075783,
0.023709401488304138,
-0.03528789430856705,
-0.05321300029754639,
-0.10657299309968948,
-0.13758020102977753,
0.15761397778987885,
0.014467705972492695,
-0.026920223608613014,
-0.1250886172056198,
0.0881798043847084,
0.07014725357294083,
-0.08831591159105301,
0.046883076429367065,
0.01124491449445486,
0.0413244366645813,
0.036703940480947495,
-0.06756045669317245,
0.10564868897199631,
-0.05097067356109619,
-0.14963705837726593,
-0.05445219948887825,
0.08582785725593567,
0.025450997054576874,
0.06127428635954857,
-0.003142155706882477,
0.02285926043987274,
-0.03776666894555092,
-0.10045608133077621,
0.029714664444327354,
-0.048290103673934937,
0.08339609950780869,
0.03626447543501854,
-0.05786248669028282,
0.022512519732117653,
-0.06813215464353561,
-0.03032401204109192,
0.19194547832012177,
0.23774755001068115,
-0.10556765645742416,
0.006362302228808403,
0.005761784967035055,
-0.0655343160033226,
-0.18689127266407013,
0.06321006268262863,
0.07021056860685349,
0.006733984220772982,
0.04762426018714905,
-0.16411688923835754,
0.1476805955171585,
0.10809095948934555,
-0.005008189007639885,
0.11564088612794876,
-0.29789814352989197,
-0.12729708850383759,
0.1068229153752327,
0.1657387912273407,
0.16463400423526764,
-0.1256428360939026,
-0.0036290830466896296,
-0.016517169773578644,
-0.1086413562297821,
0.09526017308235168,
-0.028932513669133186,
0.12800870835781097,
-0.03858290612697601,
0.11410176008939743,
0.0033612202387303114,
-0.05295708402991295,
0.11069541424512863,
0.03925801068544388,
0.12645284831523895,
-0.05551263317465782,
-0.062343526631593704,
0.013662029057741165,
-0.025537878274917603,
0.00019131600856781006,
-0.04957222566008568,
0.03031136654317379,
-0.10693230479955673,
-0.018363459035754204,
-0.08660838752985,
0.0492718331515789,
-0.02267635613679886,
-0.06305935978889465,
-0.03353482857346535,
0.03425135090947151,
0.03737848997116089,
-0.023669781163334846,
0.11025024205446243,
0.01260374579578638,
0.15956662595272064,
0.08580461889505386,
0.06236085668206215,
-0.0793604776263237,
-0.04538809880614281,
-0.013042992912232876,
-0.01381018478423357,
0.05743589997291565,
-0.10842917114496231,
0.02502567321062088,
0.15016286075115204,
0.022278383374214172,
0.12721823155879974,
0.08930382132530212,
0.005458123981952667,
0.015283577144145966,
0.06849280744791031,
-0.1532025784254074,
-0.0511535108089447,
-0.00621261028572917,
-0.0765671655535698,
-0.07766600698232651,
0.05347447469830513,
0.07820543646812439,
-0.0667511448264122,
-0.02568107284605503,
-0.025424299761652946,
-0.013098991475999355,
-0.07286173850297928,
0.2067939043045044,
0.0726364403963089,
0.046501707285642624,
-0.11408805847167969,
0.04890819266438484,
0.05918113887310028,
-0.049777764827013016,
-0.012042618356645107,
0.07254832983016968,
-0.08091025799512863,
-0.038210827857255936,
0.11313176155090332,
0.1852467805147171,
-0.09955015778541565,
-0.02440965361893177,
-0.13135363161563873,
-0.1212395504117012,
0.07890740782022476,
0.1679515391588211,
0.1253834217786789,
0.0060613565146923065,
-0.0507032684981823,
-0.0014351274585351348,
-0.13391585648059845,
0.061457883566617966,
0.031970005482435226,
0.07562847435474396,
-0.14487969875335693,
0.191785991191864,
-0.004100984428077936,
0.06359854340553284,
-0.026290759444236755,
0.024394117295742035,
-0.10683386772871017,
0.020809287205338478,
-0.1055799052119255,
-0.04092813655734062,
-0.018191462382674217,
0.009345421567559242,
0.0012904478935524821,
-0.06880437582731247,
-0.05877099931240082,
0.019316278398036957,
-0.1328660547733307,
-0.02036920189857483,
0.043107982724905014,
0.04991450905799866,
-0.09673697501420975,
-0.05222184956073761,
0.01266335416585207,
-0.04012679681181908,
0.04701979458332062,
0.05161741003394127,
0.022008949890732765,
0.06226195767521858,
-0.14174053072929382,
-0.009942750446498394,
0.07177964597940445,
0.001143737812526524,
0.08707481622695923,
-0.08259253948926926,
0.005523409694433212,
0.014825143851339817,
0.08444725722074509,
0.027644068002700806,
0.059587512165308,
-0.14912940561771393,
-0.012875880114734173,
-0.02382579632103443,
-0.09258455783128738,
-0.06635031849145889,
0.010184424929320812,
0.09024105221033096,
0.00959897879511118,
0.19250859320163727,
-0.07671838998794556,
0.04946264252066612,
-0.2015911191701889,
-0.014894713647663593,
-0.028158152475953102,
-0.1141914427280426,
-0.14153464138507843,
-0.07111883908510208,
0.07040882855653763,
-0.03502548858523369,
0.14638493955135345,
0.058479297906160355,
0.05801456794142723,
0.025302058085799217,
-0.015711573883891106,
0.02061636373400688,
0.020988455042243004,
0.20917575061321259,
0.044776350259780884,
-0.03672691062092781,
0.08183717727661133,
0.07661622017621994,
0.08735645562410355,
0.10768554359674454,
0.20000894367694855,
0.15291725099086761,
-0.004985820036381483,
0.07221202552318573,
0.016139034181833267,
-0.05663278326392174,
-0.15335573256015778,
0.006278038024902344,
-0.03863359987735748,
0.07940719276666641,
-0.029024580493569374,
0.19199340045452118,
0.04903260990977287,
-0.17826662957668304,
0.05051301419734955,
-0.05708957090973854,
-0.08371562510728836,
-0.11012101918458939,
-0.01907832734286785,
-0.08750227093696594,
-0.13697662949562073,
0.011319075711071491,
-0.10183069854974747,
0.022005178034305573,
0.11542724817991257,
-0.0013198793167248368,
-0.025895677506923676,
0.14278052747249603,
0.022308804094791412,
0.03451293334364891,
0.057691264897584915,
-0.0047647422179579735,
-0.011245605535805225,
-0.10118307918310165,
-0.056092336773872375,
-0.03604957461357117,
-0.03874256834387779,
0.03797231987118721,
-0.0731162428855896,
-0.0884496197104454,
0.025478944182395935,
-0.032478440552949905,
-0.09568825364112854,
0.019902484491467476,
0.027210896834731102,
0.06622444838285446,
0.051676977425813675,
0.005849761888384819,
0.02158532850444317,
-0.021846165880560875,
0.21327829360961914,
-0.07104934006929398,
-0.08135714381933212,
-0.08476284891366959,
0.3178239166736603,
0.0610375702381134,
-0.0006129713729023933,
0.0325167141854763,
-0.05298558250069618,
0.021997220814228058,
0.23868967592716217,
0.1921180933713913,
-0.10572624951601028,
-0.0011852850439026952,
-0.01140066608786583,
-0.016592388972640038,
-0.012190699577331543,
0.13743948936462402,
0.12923230230808258,
0.041168857365846634,
-0.10590487718582153,
-0.03248748555779457,
-0.07212435454130173,
-0.00425292830914259,
-0.04888962581753731,
0.04370235279202461,
0.0484999418258667,
0.006862028036266565,
-0.043758783489465714,
0.056473299860954285,
-0.06255374848842621,
-0.07040674239397049,
0.09421616792678833,
-0.18430937826633453,
-0.1594003438949585,
-0.007686169818043709,
0.08065006136894226,
0.003476346144452691,
0.06782162934541702,
-0.03701530396938324,
0.0024918965063989162,
0.04556237533688545,
-0.02481471560895443,
-0.08266950398683548,
-0.09454464167356491,
0.11510074883699417,
-0.10567781329154968,
0.17692875862121582,
-0.045801062136888504,
0.08095186203718185,
0.11949664354324341,
0.07216934114694595,
-0.07112893462181091,
0.07648502290248871,
0.03587523475289345,
-0.08681035786867142,
0.04424271360039711,
0.09618008136749268,
-0.026308149099349976,
0.04726054146885872,
0.025220928713679314,
-0.1311240941286087,
0.03500180318951607,
-0.08394933491945267,
-0.038696788251399994,
-0.040265295654535294,
-0.046702999621629715,
-0.05130087956786156,
0.13030825555324554,
0.22670340538024902,
-0.018235651776194572,
0.020646221935749054,
-0.08243437856435776,
0.010126519948244095,
0.059717562049627304,
0.016168201342225075,
-0.10062933713197708,
-0.2286103367805481,
0.01140062976628542,
0.09492775052785873,
-0.040226127952337265,
-0.2094814032316208,
-0.0883287861943245,
-0.008887561038136482,
-0.08377480506896973,
-0.08747792989015579,
0.09042588621377945,
0.052356284111738205,
0.04700300469994545,
-0.04932516813278198,
-0.11365800350904465,
-0.08021124452352524,
0.1528458148241043,
-0.13742713630199432,
-0.09152252227067947
] |
null | null | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xlm-roberta-base-finetuned-panx-de-fr
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1576
- F1: 0.8571
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 24
- eval_batch_size: 24
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.2924 | 1.0 | 715 | 0.1819 | 0.8286 |
| 0.1503 | 2.0 | 1430 | 0.1580 | 0.8511 |
| 0.0972 | 3.0 | 2145 | 0.1576 | 0.8571 |
### Framework versions
- Transformers 4.16.2
- Pytorch 1.10.0+cu113
- Datasets 1.18.3
- Tokenizers 0.11.0
| {"license": "mit", "tags": ["generated_from_trainer"], "metrics": ["f1"], "model-index": [{"name": "xlm-roberta-base-finetuned-panx-de-fr", "results": []}]} | token-classification | MhF/xlm-roberta-base-finetuned-panx-de-fr | [
"transformers",
"pytorch",
"xlm-roberta",
"token-classification",
"generated_from_trainer",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [] | TAGS
#transformers #pytorch #xlm-roberta #token-classification #generated_from_trainer #license-mit #autotrain_compatible #endpoints_compatible #region-us
| xlm-roberta-base-finetuned-panx-de-fr
=====================================
This model is a fine-tuned version of xlm-roberta-base on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 0.1576
* F1: 0.8571
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 5e-05
* train\_batch\_size: 24
* eval\_batch\_size: 24
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 3
### Training results
### Framework versions
* Transformers 4.16.2
* Pytorch 1.10.0+cu113
* Datasets 1.18.3
* Tokenizers 0.11.0
| [
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 24\n* eval\\_batch\\_size: 24\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.16.2\n* Pytorch 1.10.0+cu113\n* Datasets 1.18.3\n* Tokenizers 0.11.0"
] | [
"TAGS\n#transformers #pytorch #xlm-roberta #token-classification #generated_from_trainer #license-mit #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 24\n* eval\\_batch\\_size: 24\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.16.2\n* Pytorch 1.10.0+cu113\n* Datasets 1.18.3\n* Tokenizers 0.11.0"
] | [
53,
98,
4,
35
] | [
"passage: TAGS\n#transformers #pytorch #xlm-roberta #token-classification #generated_from_trainer #license-mit #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 24\n* eval\\_batch\\_size: 24\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3### Training results### Framework versions\n\n\n* Transformers 4.16.2\n* Pytorch 1.10.0+cu113\n* Datasets 1.18.3\n* Tokenizers 0.11.0"
] | [
-0.10404819995164871,
0.06169690564274788,
-0.001358180190436542,
0.12218120694160461,
0.20749235153198242,
0.027356870472431183,
0.0892457664012909,
0.10810472816228867,
-0.10666882246732712,
0.01126864179968834,
0.12861528992652893,
0.20943683385849,
-0.00643515819683671,
0.12677447497844696,
-0.06900625675916672,
-0.2570095956325531,
-0.018668124452233315,
0.03831714764237404,
-0.06454173475503922,
0.13395178318023682,
0.09989925473928452,
-0.1491435021162033,
0.08532873541116714,
-0.0025159369688481092,
-0.25222525000572205,
0.019363531842827797,
0.032335471361875534,
-0.05522637069225311,
0.14995060861110687,
0.009408441372215748,
0.13605424761772156,
-0.00520417932420969,
0.09462562203407288,
-0.15974710881710052,
0.008190835826098919,
0.03975341096520424,
0.012027780525386333,
0.07765956968069077,
0.06190856918692589,
-0.009611020796000957,
0.10576730966567993,
-0.09063810855150223,
0.046136919409036636,
0.016326121985912323,
-0.13122449815273285,
-0.21686320006847382,
-0.08932396024465561,
0.0034009653609246016,
0.06663086265325546,
0.0980428084731102,
0.0024341873358935118,
0.16673557460308075,
-0.1091267466545105,
0.09628403931856155,
0.22399437427520752,
-0.29310861229896545,
-0.06793459504842758,
0.04174709692597389,
0.0008549506892450154,
0.06874647736549377,
-0.1110498234629631,
-0.020758232101798058,
0.06277292966842651,
0.05179301276803017,
0.12152885645627975,
-0.04796924814581871,
-0.10393919795751572,
0.027165090665221214,
-0.14344795048236847,
-0.021928919479250908,
0.1066356673836708,
0.02701621688902378,
-0.041512612253427505,
-0.021379688754677773,
-0.041728902608156204,
-0.1665928065776825,
-0.03659866377711296,
-0.008624773472547531,
0.044280681759119034,
-0.05135774612426758,
-0.07607263326644897,
0.023397797718644142,
-0.09520459175109863,
-0.062373895198106766,
-0.07527011632919312,
0.18967564404010773,
0.03840644657611847,
0.01625458151102066,
-0.016148487105965614,
0.10597866773605347,
0.006918307393789291,
-0.1208949163556099,
0.021326052024960518,
0.027759166434407234,
-0.010349360294640064,
-0.0693034902215004,
-0.07588832825422287,
-0.03093349002301693,
0.0008354554884135723,
0.10052502155303955,
-0.05866533890366554,
0.036402903497219086,
0.05441481992602348,
0.030964553356170654,
-0.08969882130622864,
0.19531631469726562,
-0.0267510786652565,
-0.009311440400779247,
0.011265001259744167,
0.026483742520213127,
-0.022188281640410423,
0.0041763815097510815,
-0.11430558562278748,
-0.008013282902538776,
0.11448324471712112,
0.026411132887005806,
-0.09565355628728867,
0.06529425829648972,
-0.052536625415086746,
-0.030066564679145813,
0.0022765332832932472,
-0.09794502705335617,
0.04113950952887535,
-0.025499360635876656,
-0.0890471562743187,
-0.03136119246482849,
-0.008842463605105877,
0.01824030466377735,
-0.014618337154388428,
0.1276751160621643,
-0.0937090739607811,
0.05533445253968239,
-0.10690029710531235,
-0.1078268513083458,
-0.007074414286762476,
-0.08783259242773056,
0.036986012011766434,
-0.10265538841485977,
-0.1551555097103119,
-0.02554897405207157,
0.042382027953863144,
-0.02205035276710987,
-0.060202520340681076,
-0.039541248232126236,
-0.06581012904644012,
-0.006763093173503876,
-0.01556809525936842,
0.15786860883235931,
-0.056606266647577286,
0.10857381671667099,
0.04563066363334656,
0.059069614857435226,
-0.05684917792677879,
0.06083488091826439,
-0.10392314195632935,
-0.0015908743953332305,
-0.19108863174915314,
0.043978821486234665,
-0.044363658875226974,
0.08881807327270508,
-0.07834666222333908,
-0.12147921323776245,
0.043124157935380936,
-0.009963023476302624,
0.07009106129407883,
0.07643555849790573,
-0.1518123894929886,
-0.06779495626688004,
0.13378910720348358,
-0.05150681734085083,
-0.10163295269012451,
0.09952055662870407,
-0.07428479194641113,
0.046100884675979614,
0.07572896778583527,
0.1510532647371292,
0.06656254082918167,
-0.07214992493391037,
0.0388994961977005,
-0.023180803284049034,
0.02910860814154148,
-0.08684421330690384,
0.052494194358587265,
0.021625330671668053,
-0.03169143944978714,
0.03944529965519905,
-0.033899251371622086,
0.06104135513305664,
-0.11197295039892197,
-0.0919102132320404,
-0.03826691210269928,
-0.10500875115394592,
0.037578970193862915,
0.07301118224859238,
0.09567052125930786,
-0.10907302051782608,
-0.04381569102406502,
0.07441036403179169,
0.06922637671232224,
-0.03574693202972412,
0.018511811271309853,
-0.05314818397164345,
0.056729212403297424,
-0.054969292134046555,
-0.03967335820198059,
-0.1965123414993286,
-0.017168404534459114,
0.010918967425823212,
0.03400913253426552,
0.029737526550889015,
0.025981074199080467,
0.0595305897295475,
0.06193501129746437,
-0.04769338667392731,
-0.013454518280923367,
-0.012517407536506653,
-0.003917303867638111,
-0.15057335793972015,
-0.17325212061405182,
-0.029581906273961067,
-0.01641116291284561,
0.09365896135568619,
-0.19754022359848022,
0.01976580172777176,
-0.0494547002017498,
0.06370886415243149,
-0.0011350451968610287,
-0.0071634030900895596,
-0.05626318231225014,
0.10904920101165771,
-0.02355349250137806,
-0.044325947761535645,
0.08157239109277725,
-0.004843669943511486,
-0.07050199061632156,
-0.052651043981313705,
-0.07919689267873764,
0.20841602981090546,
0.131539449095726,
-0.1393274962902069,
-0.10034596174955368,
-0.0071326023899018764,
-0.058315377682447433,
-0.0181391853839159,
-0.05323660373687744,
0.0713028684258461,
0.19509343802928925,
-0.025293627753853798,
0.1547897756099701,
-0.06475953012704849,
-0.04484809562563896,
0.020609896630048752,
-0.03461789712309837,
0.040515314787626266,
0.11800464987754822,
0.1328565925359726,
-0.1214292123913765,
0.13188722729682922,
0.1465202122926712,
-0.08348364382982254,
0.11267238855361938,
-0.03703446313738823,
-0.059839386492967606,
-0.024799460545182228,
-0.02700820565223694,
-0.006816379725933075,
0.08786275237798691,
-0.09709858894348145,
-0.010191991925239563,
0.014562196098268032,
0.02970227785408497,
0.018771613016724586,
-0.23026573657989502,
-0.0565045066177845,
0.029842862859368324,
-0.02101551927626133,
-0.014093130826950073,
-0.011706885881721973,
0.02200649492442608,
0.11077600717544556,
0.005760580766946077,
-0.09918082505464554,
0.04336925968527794,
0.01102240476757288,
-0.0766967162489891,
0.2139827162027359,
-0.08281311392784119,
-0.1268225610256195,
-0.10969362407922745,
-0.08663057535886765,
-0.05067479610443115,
0.012274299748241901,
0.04893884435296059,
-0.08778742700815201,
-0.0280554611235857,
-0.03619147092103958,
0.0026959485840052366,
-0.02058039978146553,
0.04424680769443512,
-0.008429241366684437,
0.00005246436921879649,
0.060143113136291504,
-0.09790857881307602,
-0.020471513271331787,
-0.06253904104232788,
-0.08199597150087357,
0.0587334968149662,
0.04540647566318512,
0.1147574782371521,
0.14694447815418243,
-0.0462862066924572,
0.007464562077075243,
-0.03418159484863281,
0.25868865847587585,
-0.06236117705702782,
-0.05212125554680824,
0.11985168606042862,
0.006449272856116295,
0.05116982385516167,
0.10929495096206665,
0.07551103085279465,
-0.10253960639238358,
0.01174631342291832,
0.023421764373779297,
-0.036504656076431274,
-0.20820342004299164,
-0.05145980790257454,
-0.05854761600494385,
-0.061168987303972244,
0.09513187408447266,
0.02655232511460781,
0.04712474346160889,
0.07122097164392471,
0.0559944212436676,
0.08254478126764297,
-0.07976945489645004,
0.06129320338368416,
0.10767976194620132,
0.05802345275878906,
0.12933377921581268,
-0.03950619325041771,
-0.08385720103979111,
0.02971872128546238,
-0.017652766779065132,
0.23921747505664825,
0.01867671124637127,
0.08023292571306229,
0.055885180830955505,
0.19553418457508087,
0.010876198299229145,
0.08982959389686584,
0.0106820585206151,
-0.05626106262207031,
-0.011624258011579514,
-0.025447985157370567,
-0.0389363169670105,
0.01603860780596733,
-0.04723866656422615,
0.045790642499923706,
-0.13384751975536346,
-0.030744343996047974,
0.048508524894714355,
0.24837619066238403,
0.02152075432240963,
-0.31919175386428833,
-0.06961330771446228,
-0.005741146858781576,
-0.04180794581770897,
-0.01720363460481167,
0.013271760195493698,
0.06911531835794449,
-0.11424896866083145,
0.020295729860663414,
-0.06179116666316986,
0.09617406874895096,
-0.025027252733707428,
0.044412966817617416,
0.07083060592412949,
0.08966963738203049,
0.0033616472501307726,
0.07523249834775925,
-0.3131367862224579,
0.28262975811958313,
0.00805410835891962,
0.0758027508854866,
-0.07606424391269684,
-0.012575258500874043,
0.035382989794015884,
0.06558535993099213,
0.04790380969643593,
-0.009387567639350891,
-0.06502047181129456,
-0.23966701328754425,
-0.01485435664653778,
0.033138707280159,
0.10228303074836731,
-0.019326046109199524,
0.09731224924325943,
-0.029104391112923622,
0.014262638986110687,
0.06756804138422012,
-0.02411993406713009,
-0.05192403495311737,
-0.06980057805776596,
-0.023983830586075783,
0.023709401488304138,
-0.03528789430856705,
-0.05321300029754639,
-0.10657299309968948,
-0.13758020102977753,
0.15761397778987885,
0.014467705972492695,
-0.026920223608613014,
-0.1250886172056198,
0.0881798043847084,
0.07014725357294083,
-0.08831591159105301,
0.046883076429367065,
0.01124491449445486,
0.0413244366645813,
0.036703940480947495,
-0.06756045669317245,
0.10564868897199631,
-0.05097067356109619,
-0.14963705837726593,
-0.05445219948887825,
0.08582785725593567,
0.025450997054576874,
0.06127428635954857,
-0.003142155706882477,
0.02285926043987274,
-0.03776666894555092,
-0.10045608133077621,
0.029714664444327354,
-0.048290103673934937,
0.08339609950780869,
0.03626447543501854,
-0.05786248669028282,
0.022512519732117653,
-0.06813215464353561,
-0.03032401204109192,
0.19194547832012177,
0.23774755001068115,
-0.10556765645742416,
0.006362302228808403,
0.005761784967035055,
-0.0655343160033226,
-0.18689127266407013,
0.06321006268262863,
0.07021056860685349,
0.006733984220772982,
0.04762426018714905,
-0.16411688923835754,
0.1476805955171585,
0.10809095948934555,
-0.005008189007639885,
0.11564088612794876,
-0.29789814352989197,
-0.12729708850383759,
0.1068229153752327,
0.1657387912273407,
0.16463400423526764,
-0.1256428360939026,
-0.0036290830466896296,
-0.016517169773578644,
-0.1086413562297821,
0.09526017308235168,
-0.028932513669133186,
0.12800870835781097,
-0.03858290612697601,
0.11410176008939743,
0.0033612202387303114,
-0.05295708402991295,
0.11069541424512863,
0.03925801068544388,
0.12645284831523895,
-0.05551263317465782,
-0.062343526631593704,
0.013662029057741165,
-0.025537878274917603,
0.00019131600856781006,
-0.04957222566008568,
0.03031136654317379,
-0.10693230479955673,
-0.018363459035754204,
-0.08660838752985,
0.0492718331515789,
-0.02267635613679886,
-0.06305935978889465,
-0.03353482857346535,
0.03425135090947151,
0.03737848997116089,
-0.023669781163334846,
0.11025024205446243,
0.01260374579578638,
0.15956662595272064,
0.08580461889505386,
0.06236085668206215,
-0.0793604776263237,
-0.04538809880614281,
-0.013042992912232876,
-0.01381018478423357,
0.05743589997291565,
-0.10842917114496231,
0.02502567321062088,
0.15016286075115204,
0.022278383374214172,
0.12721823155879974,
0.08930382132530212,
0.005458123981952667,
0.015283577144145966,
0.06849280744791031,
-0.1532025784254074,
-0.0511535108089447,
-0.00621261028572917,
-0.0765671655535698,
-0.07766600698232651,
0.05347447469830513,
0.07820543646812439,
-0.0667511448264122,
-0.02568107284605503,
-0.025424299761652946,
-0.013098991475999355,
-0.07286173850297928,
0.2067939043045044,
0.0726364403963089,
0.046501707285642624,
-0.11408805847167969,
0.04890819266438484,
0.05918113887310028,
-0.049777764827013016,
-0.012042618356645107,
0.07254832983016968,
-0.08091025799512863,
-0.038210827857255936,
0.11313176155090332,
0.1852467805147171,
-0.09955015778541565,
-0.02440965361893177,
-0.13135363161563873,
-0.1212395504117012,
0.07890740782022476,
0.1679515391588211,
0.1253834217786789,
0.0060613565146923065,
-0.0507032684981823,
-0.0014351274585351348,
-0.13391585648059845,
0.061457883566617966,
0.031970005482435226,
0.07562847435474396,
-0.14487969875335693,
0.191785991191864,
-0.004100984428077936,
0.06359854340553284,
-0.026290759444236755,
0.024394117295742035,
-0.10683386772871017,
0.020809287205338478,
-0.1055799052119255,
-0.04092813655734062,
-0.018191462382674217,
0.009345421567559242,
0.0012904478935524821,
-0.06880437582731247,
-0.05877099931240082,
0.019316278398036957,
-0.1328660547733307,
-0.02036920189857483,
0.043107982724905014,
0.04991450905799866,
-0.09673697501420975,
-0.05222184956073761,
0.01266335416585207,
-0.04012679681181908,
0.04701979458332062,
0.05161741003394127,
0.022008949890732765,
0.06226195767521858,
-0.14174053072929382,
-0.009942750446498394,
0.07177964597940445,
0.001143737812526524,
0.08707481622695923,
-0.08259253948926926,
0.005523409694433212,
0.014825143851339817,
0.08444725722074509,
0.027644068002700806,
0.059587512165308,
-0.14912940561771393,
-0.012875880114734173,
-0.02382579632103443,
-0.09258455783128738,
-0.06635031849145889,
0.010184424929320812,
0.09024105221033096,
0.00959897879511118,
0.19250859320163727,
-0.07671838998794556,
0.04946264252066612,
-0.2015911191701889,
-0.014894713647663593,
-0.028158152475953102,
-0.1141914427280426,
-0.14153464138507843,
-0.07111883908510208,
0.07040882855653763,
-0.03502548858523369,
0.14638493955135345,
0.058479297906160355,
0.05801456794142723,
0.025302058085799217,
-0.015711573883891106,
0.02061636373400688,
0.020988455042243004,
0.20917575061321259,
0.044776350259780884,
-0.03672691062092781,
0.08183717727661133,
0.07661622017621994,
0.08735645562410355,
0.10768554359674454,
0.20000894367694855,
0.15291725099086761,
-0.004985820036381483,
0.07221202552318573,
0.016139034181833267,
-0.05663278326392174,
-0.15335573256015778,
0.006278038024902344,
-0.03863359987735748,
0.07940719276666641,
-0.029024580493569374,
0.19199340045452118,
0.04903260990977287,
-0.17826662957668304,
0.05051301419734955,
-0.05708957090973854,
-0.08371562510728836,
-0.11012101918458939,
-0.01907832734286785,
-0.08750227093696594,
-0.13697662949562073,
0.011319075711071491,
-0.10183069854974747,
0.022005178034305573,
0.11542724817991257,
-0.0013198793167248368,
-0.025895677506923676,
0.14278052747249603,
0.022308804094791412,
0.03451293334364891,
0.057691264897584915,
-0.0047647422179579735,
-0.011245605535805225,
-0.10118307918310165,
-0.056092336773872375,
-0.03604957461357117,
-0.03874256834387779,
0.03797231987118721,
-0.0731162428855896,
-0.0884496197104454,
0.025478944182395935,
-0.032478440552949905,
-0.09568825364112854,
0.019902484491467476,
0.027210896834731102,
0.06622444838285446,
0.051676977425813675,
0.005849761888384819,
0.02158532850444317,
-0.021846165880560875,
0.21327829360961914,
-0.07104934006929398,
-0.08135714381933212,
-0.08476284891366959,
0.3178239166736603,
0.0610375702381134,
-0.0006129713729023933,
0.0325167141854763,
-0.05298558250069618,
0.021997220814228058,
0.23868967592716217,
0.1921180933713913,
-0.10572624951601028,
-0.0011852850439026952,
-0.01140066608786583,
-0.016592388972640038,
-0.012190699577331543,
0.13743948936462402,
0.12923230230808258,
0.041168857365846634,
-0.10590487718582153,
-0.03248748555779457,
-0.07212435454130173,
-0.00425292830914259,
-0.04888962581753731,
0.04370235279202461,
0.0484999418258667,
0.006862028036266565,
-0.043758783489465714,
0.056473299860954285,
-0.06255374848842621,
-0.07040674239397049,
0.09421616792678833,
-0.18430937826633453,
-0.1594003438949585,
-0.007686169818043709,
0.08065006136894226,
0.003476346144452691,
0.06782162934541702,
-0.03701530396938324,
0.0024918965063989162,
0.04556237533688545,
-0.02481471560895443,
-0.08266950398683548,
-0.09454464167356491,
0.11510074883699417,
-0.10567781329154968,
0.17692875862121582,
-0.045801062136888504,
0.08095186203718185,
0.11949664354324341,
0.07216934114694595,
-0.07112893462181091,
0.07648502290248871,
0.03587523475289345,
-0.08681035786867142,
0.04424271360039711,
0.09618008136749268,
-0.026308149099349976,
0.04726054146885872,
0.025220928713679314,
-0.1311240941286087,
0.03500180318951607,
-0.08394933491945267,
-0.038696788251399994,
-0.040265295654535294,
-0.046702999621629715,
-0.05130087956786156,
0.13030825555324554,
0.22670340538024902,
-0.018235651776194572,
0.020646221935749054,
-0.08243437856435776,
0.010126519948244095,
0.059717562049627304,
0.016168201342225075,
-0.10062933713197708,
-0.2286103367805481,
0.01140062976628542,
0.09492775052785873,
-0.040226127952337265,
-0.2094814032316208,
-0.0883287861943245,
-0.008887561038136482,
-0.08377480506896973,
-0.08747792989015579,
0.09042588621377945,
0.052356284111738205,
0.04700300469994545,
-0.04932516813278198,
-0.11365800350904465,
-0.08021124452352524,
0.1528458148241043,
-0.13742713630199432,
-0.09152252227067947
] |
null | null | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xlm-roberta-base-finetuned-panx-de
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1354
- F1: 0.8621
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 24
- eval_batch_size: 24
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.254 | 1.0 | 525 | 0.1652 | 0.8254 |
| 0.1293 | 2.0 | 1050 | 0.1431 | 0.8489 |
| 0.0797 | 3.0 | 1575 | 0.1354 | 0.8621 |
### Framework versions
- Transformers 4.16.2
- Pytorch 1.10.0+cu113
- Datasets 1.18.3
- Tokenizers 0.11.0
| {"license": "mit", "tags": ["generated_from_trainer"], "datasets": ["xtreme"], "metrics": ["f1"], "model-index": [{"name": "xlm-roberta-base-finetuned-panx-de", "results": [{"task": {"type": "token-classification", "name": "Token Classification"}, "dataset": {"name": "xtreme", "type": "xtreme", "args": "PAN-X.de"}, "metrics": [{"type": "f1", "value": 0.862053266560437, "name": "F1"}]}]}]} | token-classification | MhF/xlm-roberta-base-finetuned-panx-de | [
"transformers",
"pytorch",
"tensorboard",
"xlm-roberta",
"token-classification",
"generated_from_trainer",
"dataset:xtreme",
"license:mit",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [] | TAGS
#transformers #pytorch #tensorboard #xlm-roberta #token-classification #generated_from_trainer #dataset-xtreme #license-mit #model-index #autotrain_compatible #endpoints_compatible #region-us
| xlm-roberta-base-finetuned-panx-de
==================================
This model is a fine-tuned version of xlm-roberta-base on the xtreme dataset.
It achieves the following results on the evaluation set:
* Loss: 0.1354
* F1: 0.8621
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 5e-05
* train\_batch\_size: 24
* eval\_batch\_size: 24
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 3
### Training results
### Framework versions
* Transformers 4.16.2
* Pytorch 1.10.0+cu113
* Datasets 1.18.3
* Tokenizers 0.11.0
| [
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 24\n* eval\\_batch\\_size: 24\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.16.2\n* Pytorch 1.10.0+cu113\n* Datasets 1.18.3\n* Tokenizers 0.11.0"
] | [
"TAGS\n#transformers #pytorch #tensorboard #xlm-roberta #token-classification #generated_from_trainer #dataset-xtreme #license-mit #model-index #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 24\n* eval\\_batch\\_size: 24\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.16.2\n* Pytorch 1.10.0+cu113\n* Datasets 1.18.3\n* Tokenizers 0.11.0"
] | [
68,
98,
4,
35
] | [
"passage: TAGS\n#transformers #pytorch #tensorboard #xlm-roberta #token-classification #generated_from_trainer #dataset-xtreme #license-mit #model-index #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 24\n* eval\\_batch\\_size: 24\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3### Training results### Framework versions\n\n\n* Transformers 4.16.2\n* Pytorch 1.10.0+cu113\n* Datasets 1.18.3\n* Tokenizers 0.11.0"
] | [
-0.10667610913515091,
0.08047721534967422,
-0.002429419895634055,
0.12057135999202728,
0.17115528881549835,
0.03312401473522186,
0.11276769638061523,
0.1255398839712143,
-0.08585543930530548,
0.02696779929101467,
0.12097108364105225,
0.18411488831043243,
0.007747901137918234,
0.12489389628171921,
-0.056797705590724945,
-0.26593416929244995,
-0.017036570236086845,
0.06358324736356735,
-0.037422992289066315,
0.13317833840847015,
0.10034994035959244,
-0.14672403037548065,
0.08958737552165985,
0.01661788858473301,
-0.22441419959068298,
0.00961335189640522,
0.022453632205724716,
-0.05948814004659653,
0.1408604085445404,
0.02367478981614113,
0.13709408044815063,
0.0016529266722500324,
0.08823209255933762,
-0.16207487881183624,
0.00910867378115654,
0.043525781482458115,
0.0017426686827093363,
0.09096437692642212,
0.04175768420100212,
-0.009276174008846283,
0.11591160297393799,
-0.07392962276935577,
0.05439084768295288,
0.015195278450846672,
-0.12241068482398987,
-0.22972184419631958,
-0.08418040722608566,
0.047909487038850784,
0.07361626625061035,
0.09736859053373337,
-0.005620881449431181,
0.1574416160583496,
-0.08836416900157928,
0.09427935630083084,
0.22785113751888275,
-0.30538463592529297,
-0.06959190219640732,
0.038292296230793,
0.026255682110786438,
0.042715124785900116,
-0.10699237138032913,
-0.029664749279618263,
0.05533348023891449,
0.045296527445316315,
0.13453054428100586,
-0.03676643595099449,
-0.07142414152622223,
0.019337307661771774,
-0.14114411175251007,
-0.02987694926559925,
0.14479665458202362,
0.038178011775016785,
-0.03968276083469391,
-0.0569605715572834,
-0.04492400214076042,
-0.1697176694869995,
-0.036601513624191284,
-0.017234893515706062,
0.041740234941244125,
-0.047878142446279526,
-0.08041226118803024,
0.008922826498746872,
-0.10532627999782562,
-0.064297616481781,
-0.07704044878482819,
0.1690499484539032,
0.03864336013793945,
0.009701602160930634,
-0.029086899012327194,
0.11198347061872482,
-0.0015447016339749098,
-0.11691765487194061,
0.010359516367316246,
0.022688137367367744,
-0.003733276156708598,
-0.055078648030757904,
-0.04870903491973877,
-0.06892427057027817,
-0.012133408337831497,
0.12010200321674347,
-0.0542791523039341,
0.030248859897255898,
0.047849107533693314,
0.043586764484643936,
-0.0778660774230957,
0.19124843180179596,
-0.04304327443242073,
-0.010050131939351559,
-0.001358814537525177,
0.03651852533221245,
0.002739989897236228,
-0.0015672079753130674,
-0.12474624067544937,
-0.0010913872392848134,
0.09064015746116638,
0.013490356504917145,
-0.08057532459497452,
0.07532960176467896,
-0.04963843896985054,
-0.027213599532842636,
0.00045880445395596325,
-0.0845426693558693,
0.04099732264876366,
-0.011995377019047737,
-0.08043923228979111,
-0.018888894468545914,
0.010715512558817863,
0.008350067771971226,
-0.007679732050746679,
0.12439045310020447,
-0.1039975956082344,
0.032069165259599686,
-0.10145723819732666,
-0.11684179306030273,
0.00954918097704649,
-0.11144638806581497,
0.03628517687320709,
-0.09401372820138931,
-0.16478243470191956,
-0.01280450914055109,
0.051380231976509094,
-0.02611057460308075,
-0.04351215437054634,
-0.044190749526023865,
-0.06940144300460815,
0.010098094120621681,
-0.00970845203846693,
0.11870678514242172,
-0.053323857486248016,
0.10036080330610275,
0.0378655381500721,
0.06237445026636124,
-0.02843766286969185,
0.052903469651937485,
-0.09904541075229645,
0.014845170080661774,
-0.1741967499256134,
0.02931733801960945,
-0.04739030823111534,
0.06236419081687927,
-0.0783962681889534,
-0.11729305982589722,
0.016999108716845512,
0.002252819249406457,
0.0670340284705162,
0.07541780918836594,
-0.1612635850906372,
-0.08006755262613297,
0.16953495144844055,
-0.06790502369403839,
-0.11755463480949402,
0.11301525682210922,
-0.07227838039398193,
0.0494442954659462,
0.05573852360248566,
0.1556822508573532,
0.058420319110155106,
-0.09517716616392136,
-0.007528021931648254,
-0.005633320659399033,
0.021956590935587883,
-0.07083829492330551,
0.0607634112238884,
0.025369275361299515,
0.032043419778347015,
0.025132840499281883,
-0.02762356400489807,
0.04878580942749977,
-0.09928040951490402,
-0.08706244081258774,
-0.03640695661306381,
-0.08097083121538162,
0.048297978937625885,
0.07576920837163925,
0.07360906898975372,
-0.10418795049190521,
-0.09151291102170944,
0.0735568106174469,
0.07953308522701263,
-0.05439992621541023,
0.01847742311656475,
-0.0814126580953598,
0.08018006384372711,
-0.05854232609272003,
-0.03915254771709442,
-0.16905289888381958,
-0.02905733697116375,
0.006200488656759262,
0.01956968940794468,
0.011383241973817348,
0.040766146034002304,
0.0643744096159935,
0.061627548187971115,
-0.04800000786781311,
-0.02140207402408123,
-0.03358306363224983,
-0.0005278594326227903,
-0.13078616559505463,
-0.18382535874843597,
-0.04968641698360443,
-0.025151824578642845,
0.1094692051410675,
-0.20846900343894958,
0.036074500530958176,
-0.01654970832169056,
0.08112122118473053,
0.020249120891094208,
-0.012910490855574608,
-0.04634643718600273,
0.07901269942522049,
-0.041516054421663284,
-0.04487662389874458,
0.06781437247991562,
0.011429982259869576,
-0.08153381943702698,
-0.040848977863788605,
-0.10717270523309708,
0.18502992391586304,
0.13108080625534058,
-0.11078239977359772,
-0.09528806060552597,
-0.012860864400863647,
-0.06761082261800766,
-0.02728237397968769,
-0.051837336272001266,
0.031519483774900436,
0.18016216158866882,
-0.014518415555357933,
0.14723321795463562,
-0.07123535871505737,
-0.05413671210408211,
0.03538723289966583,
-0.03525959327816963,
0.012147927656769753,
0.11982732266187668,
0.13474661111831665,
-0.10458502918481827,
0.14556066691875458,
0.12560507655143738,
-0.07710256427526474,
0.1412481963634491,
-0.03378021717071533,
-0.0686529278755188,
-0.038771554827690125,
-0.03605356812477112,
-0.0033255936577916145,
0.12021886557340622,
-0.1397397816181183,
-0.010530032217502594,
0.02583218924701214,
0.012889087200164795,
0.017063399776816368,
-0.21924686431884766,
-0.0483534038066864,
0.04117562249302864,
-0.0280045997351408,
-0.019353847950696945,
0.0005904702702537179,
0.012025604955852032,
0.10221847891807556,
0.0028526997193694115,
-0.08962960541248322,
0.04446280375123024,
0.010155266150832176,
-0.08151891082525253,
0.20478284358978271,
-0.06803136318922043,
-0.1430271565914154,
-0.11477380245923996,
-0.07986629009246826,
-0.034485720098018646,
0.0005218458827584982,
0.05441395193338394,
-0.07254601269960403,
-0.030384505167603493,
-0.05749671161174774,
0.006910224910825491,
-0.01971372961997986,
0.032043203711509705,
0.004992275964468718,
-0.0015491163358092308,
0.0477135069668293,
-0.10281702131032944,
-0.018107352778315544,
-0.0681937113404274,
-0.054590970277786255,
0.047907598316669464,
0.03422737494111061,
0.11733649671077728,
0.14764441549777985,
-0.036446865648031235,
0.02008243091404438,
-0.03883920982480049,
0.22546735405921936,
-0.07396691292524338,
-0.03408130630850792,
0.126348614692688,
-0.002271702280268073,
0.04675064980983734,
0.10772073268890381,
0.07621483504772186,
-0.08117897808551788,
-0.007888540625572205,
0.034209419041872025,
-0.04007183015346527,
-0.21679696440696716,
-0.044239845126867294,
-0.05470890924334526,
-0.009362589567899704,
0.08603663742542267,
0.023538008332252502,
0.046831902116537094,
0.07499827444553375,
0.0456906333565712,
0.06833092123270035,
-0.06370588392019272,
0.06939760595560074,
0.10899819433689117,
0.044588908553123474,
0.13111042976379395,
-0.0396413579583168,
-0.06967725604772568,
0.031108522787690163,
-0.004689517430961132,
0.23778967559337616,
0.012594573199748993,
0.12202659249305725,
0.06281981617212296,
0.16358201205730438,
0.004797188565135002,
0.07427649199962616,
-0.010014388710260391,
-0.05365944281220436,
-0.007687678094953299,
-0.03165556862950325,
-0.02350809797644615,
0.025813747197389603,
-0.0495021790266037,
0.060812924057245255,
-0.1319745033979416,
0.007489542942494154,
0.054777998477220535,
0.23207536339759827,
0.027507560327649117,
-0.33220145106315613,
-0.09850319474935532,
-0.009916301816701889,
-0.04011180251836777,
-0.01915867254137993,
0.01867956668138504,
0.09051576256752014,
-0.09708981961011887,
0.020263660699129105,
-0.08288160711526871,
0.08506608009338379,
-0.042675431817770004,
0.0374642051756382,
0.08170187473297119,
0.0910235345363617,
-0.00043862921302206814,
0.08090706914663315,
-0.2747238874435425,
0.2892737090587616,
0.008025679737329483,
0.07736176252365112,
-0.07396931946277618,
-0.0010982616804540157,
0.019666379317641258,
0.061195164918899536,
0.09352175146341324,
-0.016373494639992714,
-0.055796753615140915,
-0.2055397778749466,
-0.031827155500650406,
0.01919802464544773,
0.08173879235982895,
-0.023919975385069847,
0.10643263161182404,
-0.02518361061811447,
0.005633041262626648,
0.07217653840780258,
0.0010758579010143876,
-0.031698428094387054,
-0.08860552310943604,
-0.007423903793096542,
0.019708136096596718,
-0.06673233956098557,
-0.060155369341373444,
-0.11820710450410843,
-0.12102246284484863,
0.15810057520866394,
-0.019027618691325188,
-0.03789885342121124,
-0.11242575943470001,
0.08538985252380371,
0.06188878044486046,
-0.08613227307796478,
0.04437793791294098,
0.01369399018585682,
0.08419172465801239,
0.022021790966391563,
-0.0558788999915123,
0.10800576210021973,
-0.071457140147686,
-0.1538129597902298,
-0.06983894109725952,
0.10482664406299591,
0.03532614931464195,
0.06069538742303848,
-0.001798697398044169,
0.015411557629704475,
-0.03580896928906441,
-0.08637101948261261,
0.042033176869153976,
-0.02379666268825531,
0.08811434358358383,
0.00038902569212950766,
-0.05011763423681259,
0.03067438118159771,
-0.056789882481098175,
-0.0221483763307333,
0.18593642115592957,
0.21426163613796234,
-0.11144870519638062,
0.013694114983081818,
0.004169420804828405,
-0.07116086781024933,
-0.1793750375509262,
0.054526712745428085,
0.05628577619791031,
0.015747591853141785,
0.036778006702661514,
-0.16817118227481842,
0.12345140427350998,
0.10156980901956558,
-0.007073603570461273,
0.10799796134233475,
-0.31465068459510803,
-0.1188834086060524,
0.11296133697032928,
0.14569136500358582,
0.11352711170911789,
-0.11761797964572906,
-0.009406466037034988,
0.003401400288566947,
-0.13290324807167053,
0.11309704184532166,
-0.05328406020998955,
0.12286034226417542,
-0.03698442503809929,
0.10353544354438782,
0.011149157769978046,
-0.06460285186767578,
0.09627740830183029,
0.029487771913409233,
0.1058480367064476,
-0.05170720815658569,
-0.06691832840442657,
0.03975091129541397,
-0.034506261348724365,
0.023609070107340813,
-0.06678876280784607,
0.022326635196805,
-0.11534974724054337,
-0.03183901682496071,
-0.07710224390029907,
0.04921932518482208,
-0.03525419160723686,
-0.07359785586595535,
-0.04189247265458107,
0.03609069809317589,
0.04464862123131752,
-0.01860339194536209,
0.12307654321193695,
0.02045500837266445,
0.14905309677124023,
0.09329274296760559,
0.08258975297212601,
-0.07704553753137589,
-0.0897534191608429,
-0.016699595376849174,
-0.012847550213336945,
0.058824095875024796,
-0.11977406591176987,
0.02138524129986763,
0.15094779431819916,
0.03254095837473869,
0.137950137257576,
0.09072209894657135,
-0.024077659472823143,
0.017325477674603462,
0.06152181699872017,
-0.15269877016544342,
-0.08614907413721085,
-0.01145888026803732,
-0.07441650331020355,
-0.10517750680446625,
0.06057930737733841,
0.08912896364927292,
-0.0740322470664978,
-0.014425413683056831,
-0.009178376756608486,
-0.00278643099591136,
-0.0522180050611496,
0.1814691424369812,
0.06321761757135391,
0.047483909875154495,
-0.09349776804447174,
0.046726297587156296,
0.04029408469796181,
-0.06322608143091202,
0.004945365712046623,
0.06194375827908516,
-0.07427216321229935,
-0.04069692641496658,
0.0441289059817791,
0.18604086339473724,
-0.08947943150997162,
-0.03665026277303696,
-0.14621436595916748,
-0.1160769984126091,
0.07996758818626404,
0.16280798614025116,
0.10755838453769684,
0.00945684127509594,
-0.06470734626054764,
0.012933359481394291,
-0.13830801844596863,
0.09480520337820053,
0.040969107300043106,
0.0710177943110466,
-0.15523339807987213,
0.17714478075504303,
0.0036620975006371737,
0.05226525291800499,
-0.021411407738924026,
0.027385924011468887,
-0.10290002822875977,
0.013859990984201431,
-0.09575775265693665,
-0.027700014412403107,
-0.04130291938781738,
0.0023874668404459953,
-0.004031643271446228,
-0.05390108749270439,
-0.06313220411539078,
0.017348242923617363,
-0.11280488967895508,
-0.009882556274533272,
0.054188814014196396,
0.05459778010845184,
-0.10055379569530487,
-0.03362086042761803,
0.010878028348088264,
-0.051743034273386,
0.06687305122613907,
0.04970836266875267,
0.03072708286345005,
0.0449635311961174,
-0.11806681752204895,
0.026610424742102623,
0.06360118836164474,
0.012438193894922733,
0.07803428918123245,
-0.09970330446958542,
0.0071271685883402824,
-0.0025452340487390757,
0.0395662859082222,
0.019549118354916573,
0.03881800174713135,
-0.14293761551380157,
0.0055524068884551525,
-0.008594498969614506,
-0.07121725380420685,
-0.0729292705655098,
0.03308068960905075,
0.08950547873973846,
0.013558187521994114,
0.18968480825424194,
-0.07291179150342941,
0.05093462020158768,
-0.21267685294151306,
-0.0015873444499447942,
-0.006268659140914679,
-0.10337302833795547,
-0.09950557351112366,
-0.05903013050556183,
0.058371737599372864,
-0.05947185680270195,
0.15278257429599762,
0.05789206549525261,
0.020924150943756104,
0.028036752715706825,
-0.035906657576560974,
0.020932527258992195,
0.010564851574599743,
0.19683976471424103,
0.021221918985247612,
-0.04175605997443199,
0.058760207146406174,
0.05028728395700455,
0.0936911329627037,
0.11262542754411697,
0.19586366415023804,
0.1451229751110077,
0.004960065707564354,
0.08510434627532959,
0.049261424690485,
-0.05886701121926308,
-0.18887250125408173,
0.02509918250143528,
-0.03639541566371918,
0.09666275978088379,
-0.022574985399842262,
0.19490624964237213,
0.08237749338150024,
-0.16445860266685486,
0.043756529688835144,
-0.0466591902077198,
-0.08279752731323242,
-0.10549377650022507,
-0.06431104987859726,
-0.08102905005216599,
-0.1287127435207367,
0.017484107986092567,
-0.11760862171649933,
0.0141520407050848,
0.09029833227396011,
0.005827861838042736,
-0.030714111402630806,
0.15304197371006012,
0.020540688186883926,
0.04089890792965889,
0.061377715319395065,
0.01374377217143774,
-0.02549814060330391,
-0.11689505726099014,
-0.04280179738998413,
-0.025447823107242584,
-0.03532886877655983,
0.032166916877031326,
-0.07081965357065201,
-0.04178356006741524,
0.022732743993401527,
-0.008338520303368568,
-0.09196379035711288,
0.0038756481371819973,
0.021045943722128868,
0.06734657287597656,
0.028926564380526543,
0.0035805776715278625,
0.024619676172733307,
-0.023630037903785706,
0.1964053213596344,
-0.06951483339071274,
-0.043919887393713,
-0.10153898596763611,
0.25403717160224915,
0.0469762422144413,
-0.012137058191001415,
0.03784891590476036,
-0.0628688633441925,
0.020990245044231415,
0.2330540269613266,
0.19963446259498596,
-0.06160556897521019,
0.0008065646979957819,
0.010398484766483307,
-0.011644581332802773,
-0.025416580960154533,
0.0994286760687828,
0.12117782980203629,
0.07442707568407059,
-0.08959334343671799,
-0.04450083151459694,
-0.07270161807537079,
-0.004351587034761906,
-0.016512397676706314,
0.06655415892601013,
0.0576031357049942,
0.00896693579852581,
-0.04125501587986946,
0.04770617559552193,
-0.05981602519750595,
-0.09406015276908875,
0.08811657875776291,
-0.2048339992761612,
-0.15441133081912994,
-0.0036670381668955088,
0.08725029975175858,
0.000872041389811784,
0.07464709132909775,
-0.032005663961172104,
-0.011668805032968521,
0.0824078917503357,
-0.010037018917500973,
-0.10033101588487625,
-0.0718279480934143,
0.097442127764225,
-0.09444723278284073,
0.2188006192445755,
-0.05419304221868515,
0.06753300130367279,
0.1259765774011612,
0.06582577526569366,
-0.07083908468484879,
0.0627031922340393,
0.04356202855706215,
-0.0608597993850708,
0.030584650114178658,
0.09341441094875336,
-0.02388070710003376,
0.07729163020849228,
0.03326650708913803,
-0.1525265872478485,
0.027578024193644524,
-0.08033667504787445,
-0.05890542268753052,
-0.05014814808964729,
-0.023190995678305626,
-0.04866825044155121,
0.1404917985200882,
0.2243659496307373,
-0.02476220205426216,
-0.011427376419305801,
-0.06586205214262009,
0.02134956605732441,
0.07278493791818619,
0.030413784086704254,
-0.058830376714468,
-0.22186391055583954,
0.016924181953072548,
0.07139766961336136,
-0.02820761129260063,
-0.2336762696504593,
-0.09419982880353928,
0.010032007470726967,
-0.08500058948993683,
-0.08409929275512695,
0.0654211938381195,
0.08960843831300735,
0.06334061175584793,
-0.06063440069556236,
-0.036398377269506454,
-0.07413125783205032,
0.14582975208759308,
-0.1374177187681198,
-0.08168718963861465
] |
null | null | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xlm-roberta-base-finetuned-panx-en
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3856
- F1: 0.6808
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 24
- eval_batch_size: 24
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 1.1038 | 1.0 | 50 | 0.5255 | 0.5331 |
| 0.4922 | 2.0 | 100 | 0.4377 | 0.6379 |
| 0.3664 | 3.0 | 150 | 0.3856 | 0.6808 |
### Framework versions
- Transformers 4.16.2
- Pytorch 1.10.0+cu113
- Datasets 1.18.3
- Tokenizers 0.11.0
| {"license": "mit", "tags": ["generated_from_trainer"], "datasets": ["xtreme"], "metrics": ["f1"], "model-index": [{"name": "xlm-roberta-base-finetuned-panx-en", "results": [{"task": {"type": "token-classification", "name": "Token Classification"}, "dataset": {"name": "xtreme", "type": "xtreme", "args": "PAN-X.en"}, "metrics": [{"type": "f1", "value": 0.6807563959955506, "name": "F1"}]}]}]} | token-classification | MhF/xlm-roberta-base-finetuned-panx-en | [
"transformers",
"pytorch",
"xlm-roberta",
"token-classification",
"generated_from_trainer",
"dataset:xtreme",
"license:mit",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [] | TAGS
#transformers #pytorch #xlm-roberta #token-classification #generated_from_trainer #dataset-xtreme #license-mit #model-index #autotrain_compatible #endpoints_compatible #region-us
| xlm-roberta-base-finetuned-panx-en
==================================
This model is a fine-tuned version of xlm-roberta-base on the xtreme dataset.
It achieves the following results on the evaluation set:
* Loss: 0.3856
* F1: 0.6808
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 5e-05
* train\_batch\_size: 24
* eval\_batch\_size: 24
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 3
### Training results
### Framework versions
* Transformers 4.16.2
* Pytorch 1.10.0+cu113
* Datasets 1.18.3
* Tokenizers 0.11.0
| [
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 24\n* eval\\_batch\\_size: 24\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.16.2\n* Pytorch 1.10.0+cu113\n* Datasets 1.18.3\n* Tokenizers 0.11.0"
] | [
"TAGS\n#transformers #pytorch #xlm-roberta #token-classification #generated_from_trainer #dataset-xtreme #license-mit #model-index #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 24\n* eval\\_batch\\_size: 24\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.16.2\n* Pytorch 1.10.0+cu113\n* Datasets 1.18.3\n* Tokenizers 0.11.0"
] | [
64,
98,
4,
35
] | [
"passage: TAGS\n#transformers #pytorch #xlm-roberta #token-classification #generated_from_trainer #dataset-xtreme #license-mit #model-index #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 24\n* eval\\_batch\\_size: 24\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3### Training results### Framework versions\n\n\n* Transformers 4.16.2\n* Pytorch 1.10.0+cu113\n* Datasets 1.18.3\n* Tokenizers 0.11.0"
] | [
-0.11436963826417923,
0.08216290175914764,
-0.0014988728798925877,
0.11899861693382263,
0.19123201072216034,
0.03974498435854912,
0.10350155830383301,
0.12138590216636658,
-0.09891786426305771,
0.013696652837097645,
0.12637798488140106,
0.1895143687725067,
0.0018154538702219725,
0.14313584566116333,
-0.06025582179427147,
-0.2619011700153351,
-0.003350334707647562,
0.052718475461006165,
-0.05394969880580902,
0.13216909766197205,
0.10750007629394531,
-0.14981958270072937,
0.10015495121479034,
0.006444386672228575,
-0.23981864750385284,
0.011690332554280758,
0.027355141937732697,
-0.05588614568114281,
0.1399359256029129,
0.03566553443670273,
0.1263839304447174,
0.0030200087931007147,
0.09853485971689224,
-0.17312058806419373,
0.008765882812440395,
0.038472212851047516,
-0.000443514552898705,
0.0844867005944252,
0.040070001035928726,
-0.013202887959778309,
0.12370803952217102,
-0.07902373373508453,
0.05092515051364899,
0.017474493011832237,
-0.13000470399856567,
-0.2246100902557373,
-0.08418529480695724,
0.047609493136405945,
0.07317133247852325,
0.10511699318885803,
-0.003314343513920903,
0.16014689207077026,
-0.10632647573947906,
0.09373842179775238,
0.21881651878356934,
-0.29668357968330383,
-0.06488552689552307,
0.031847983598709106,
0.014174254611134529,
0.04402214288711548,
-0.10793596506118774,
-0.02889988385140896,
0.06329386681318283,
0.04204453155398369,
0.12428336590528488,
-0.0391516275703907,
-0.07627827674150467,
0.026497427374124527,
-0.13929937779903412,
-0.02682936005294323,
0.15474264323711395,
0.04383007436990738,
-0.0396600179374218,
-0.04192468151450157,
-0.03334873914718628,
-0.16318167746067047,
-0.03406932204961777,
-0.010290565900504589,
0.043918341398239136,
-0.04895852878689766,
-0.08648735284805298,
0.02723311446607113,
-0.097513847053051,
-0.06545048207044601,
-0.0746387168765068,
0.1782958060503006,
0.037355661392211914,
0.01192114781588316,
-0.023329902440309525,
0.10323978215456009,
0.007858896628022194,
-0.11702941358089447,
0.004397858399897814,
0.017407357692718506,
-0.00815503764897585,
-0.06893662363290787,
-0.0570240393280983,
-0.020737405866384506,
-0.005045332480221987,
0.12494289875030518,
-0.05916045978665352,
0.023372575640678406,
0.06467283517122269,
0.029114963486790657,
-0.0722503587603569,
0.19237901270389557,
-0.0481749065220356,
-0.011949131265282631,
0.0016024229116737843,
0.03170987218618393,
-0.015658723190426826,
0.004205819685012102,
-0.12208401411771774,
-0.006747600622475147,
0.09584765136241913,
0.016837822273373604,
-0.09102528542280197,
0.07832750678062439,
-0.05287430062890053,
-0.028164485469460487,
0.0030340550001710653,
-0.08302824199199677,
0.04031585529446602,
-0.013750899583101273,
-0.08648565411567688,
-0.02910149097442627,
0.000869646726641804,
0.013589250855147839,
-0.010291717015206814,
0.11161969602108002,
-0.10701880604028702,
0.036874812096357346,
-0.10269305855035782,
-0.12077722698450089,
0.0035550203174352646,
-0.08824023604393005,
0.046746887266635895,
-0.09828832745552063,
-0.16740597784519196,
-0.021985862404108047,
0.042871154844760895,
-0.02204023115336895,
-0.06242973357439041,
-0.0528845489025116,
-0.07350925356149673,
0.003269244683906436,
-0.010601988062262535,
0.1220708116889,
-0.062120240181684494,
0.09998202323913574,
0.04162858426570892,
0.059219472110271454,
-0.04391959309577942,
0.05711580812931061,
-0.10268891602754593,
0.004278227686882019,
-0.16758884489536285,
0.04038360342383385,
-0.041206248104572296,
0.07446469366550446,
-0.07323607802391052,
-0.11914148181676865,
0.040456630289554596,
0.009273141622543335,
0.06437927484512329,
0.08528587222099304,
-0.1485435962677002,
-0.08106792718172073,
0.1537495106458664,
-0.06615190207958221,
-0.1300884187221527,
0.09811797738075256,
-0.0760919377207756,
0.05335647240281105,
0.07025817036628723,
0.14440350234508514,
0.06541960686445236,
-0.08486487716436386,
-0.004819395020604134,
-0.0051734731532633305,
0.024705344811081886,
-0.08546008914709091,
0.07162002474069595,
0.03291914239525795,
0.005287147127091885,
0.027629638090729713,
-0.04034605249762535,
0.05791088938713074,
-0.11497120559215546,
-0.09256569296121597,
-0.032520558685064316,
-0.09047923237085342,
0.03632182255387306,
0.07524582743644714,
0.07669538259506226,
-0.10682988911867142,
-0.07868388295173645,
0.08592458069324493,
0.09215538948774338,
-0.04909861460328102,
0.012347917072474957,
-0.08046656847000122,
0.06741593033075333,
-0.05226065218448639,
-0.04010547697544098,
-0.17410588264465332,
-0.024803929030895233,
-0.0007737993146292865,
0.04608692601323128,
0.008276378735899925,
0.03235065937042236,
0.05520401522517204,
0.05960376560688019,
-0.048801761120557785,
-0.02539115399122238,
-0.0294029638171196,
0.002539912471547723,
-0.13808301091194153,
-0.19332373142242432,
-0.04251654073596001,
-0.020142806693911552,
0.1249033659696579,
-0.22437715530395508,
0.029007108882069588,
-0.02871520258486271,
0.07426177710294724,
0.011721569113433361,
-0.003251854330301285,
-0.055020011961460114,
0.08822081983089447,
-0.03932200372219086,
-0.044027384370565414,
0.06838078051805496,
0.008939703926444054,
-0.0789722204208374,
-0.039984360337257385,
-0.0887172669172287,
0.20261014997959137,
0.1337142139673233,
-0.12298902869224548,
-0.09678778052330017,
-0.007630711887031794,
-0.06243331357836723,
-0.021630045026540756,
-0.05101507902145386,
0.04452797397971153,
0.17106518149375916,
-0.02558385394513607,
0.14947886765003204,
-0.06596679240465164,
-0.04439844563603401,
0.028379280120134354,
-0.033760398626327515,
0.023240994662046432,
0.12171880900859833,
0.1400671750307083,
-0.11191084235906601,
0.14908677339553833,
0.11894755065441132,
-0.06939534842967987,
0.128013476729393,
-0.03659433126449585,
-0.06909586489200592,
-0.034997597336769104,
-0.04681326076388359,
-0.013046471402049065,
0.11407805979251862,
-0.11632366478443146,
-0.011562669649720192,
0.024299196898937225,
0.01981676183640957,
0.017212720587849617,
-0.21563690900802612,
-0.054955627769231796,
0.039891187101602554,
-0.025775404646992683,
-0.039551831781864166,
-0.010044187307357788,
0.00947077851742506,
0.10504135489463806,
0.009683988057076931,
-0.09792460501194,
0.04537845030426979,
0.012410790659487247,
-0.08784876763820648,
0.21034382283687592,
-0.07726404070854187,
-0.13240265846252441,
-0.11652474105358124,
-0.08285752683877945,
-0.03622426465153694,
0.007236292585730553,
0.054457634687423706,
-0.07977548241615295,
-0.03372526168823242,
-0.049317218363285065,
0.01294370274990797,
-0.01984952762722969,
0.03348516672849655,
0.006480794865638018,
0.002270036842674017,
0.049839362502098083,
-0.09591551125049591,
-0.02081858180463314,
-0.06461232900619507,
-0.062210965901613235,
0.053143300116062164,
0.019623761996626854,
0.1198727935552597,
0.1424434334039688,
-0.03576461970806122,
0.01943080872297287,
-0.04389575496315956,
0.25205081701278687,
-0.07117243111133575,
-0.05165702849626541,
0.12126182019710541,
0.010276482440531254,
0.03498850017786026,
0.11536388099193573,
0.0684753879904747,
-0.09433591365814209,
-0.0003095936554018408,
0.028030406683683395,
-0.029434025287628174,
-0.21102295815944672,
-0.053717583417892456,
-0.05261370912194252,
-0.03661859408020973,
0.08837959170341492,
0.019413357600569725,
0.03773632273077965,
0.07559649646282196,
0.04220343381166458,
0.07248175889253616,
-0.06792391836643219,
0.06876213848590851,
0.10512872785329819,
0.05241573974490166,
0.13091912865638733,
-0.043336473405361176,
-0.06738448888063431,
0.03623181954026222,
-0.02437460795044899,
0.23761111497879028,
0.011558156460523605,
0.10338330268859863,
0.06057492643594742,
0.1650814563035965,
0.005606879014521837,
0.07697603106498718,
0.0051834541372954845,
-0.055139776319265366,
-0.00946803018450737,
-0.026650866493582726,
-0.03241030126810074,
0.023228013888001442,
-0.05301631987094879,
0.06065261363983154,
-0.15523022413253784,
0.007981430739164352,
0.058689821511507034,
0.23982639610767365,
0.036855947226285934,
-0.34025949239730835,
-0.09753699600696564,
-0.009854961186647415,
-0.03588749095797539,
-0.020682066679000854,
0.014720381237566471,
0.07522116601467133,
-0.10453054308891296,
0.020545706152915955,
-0.05856892466545105,
0.09376067668199539,
-0.035638388246297836,
0.045686960220336914,
0.07741833478212357,
0.09092041850090027,
-0.004357252269983292,
0.0824642926454544,
-0.2955634295940399,
0.28832894563674927,
0.0070073590613901615,
0.08248049765825272,
-0.07288496196269989,
-0.00936117023229599,
0.023743847385048866,
0.08832725137472153,
0.07804135233163834,
-0.010785143822431564,
-0.060929231345653534,
-0.22395974397659302,
-0.021751439198851585,
0.03574969619512558,
0.0767158567905426,
-0.024599624797701836,
0.11103778332471848,
-0.03090990148484707,
0.01349241379648447,
0.07555870711803436,
-0.00007651457417523488,
-0.03725636377930641,
-0.08015379309654236,
-0.019695162773132324,
0.011818300932645798,
-0.03565504774451256,
-0.05997641012072563,
-0.11697344481945038,
-0.12142240256071091,
0.1573163866996765,
-0.00981531385332346,
-0.03070564940571785,
-0.11674963682889938,
0.09840501844882965,
0.057556044310331345,
-0.092213474214077,
0.037570711225271225,
0.02186315692961216,
0.0731658935546875,
0.0356525182723999,
-0.05867455527186394,
0.1079450398683548,
-0.06341419368982315,
-0.15260575711727142,
-0.057940494269132614,
0.08980552852153778,
0.034407198429107666,
0.06497398763895035,
0.0016317326808348298,
0.018239961937069893,
-0.038960523903369904,
-0.08825114369392395,
0.025494296103715897,
-0.020786477252840996,
0.08989384025335312,
0.025797726586461067,
-0.0600430853664875,
0.033090658485889435,
-0.062009744346141815,
-0.029074091464281082,
0.188361257314682,
0.23482514917850494,
-0.11089865863323212,
0.003054240718483925,
0.0013566788984462619,
-0.07410746812820435,
-0.1882837861776352,
0.06031780689954758,
0.05481604114174843,
0.022217167541384697,
0.030596446245908737,
-0.17174124717712402,
0.13351373374462128,
0.10599040240049362,
-0.0009017300326377153,
0.09028779715299606,
-0.2955513596534729,
-0.11997119337320328,
0.11717075854539871,
0.14231634140014648,
0.1387888640165329,
-0.11679933965206146,
0.002065488835796714,
-0.020647751167416573,
-0.1322845071554184,
0.11279263347387314,
-0.04916840419173241,
0.12136766314506531,
-0.034070029854774475,
0.09306932240724564,
0.009489216841757298,
-0.05161649361252785,
0.10561338067054749,
0.041438762098550797,
0.117564857006073,
-0.05038420110940933,
-0.06973641365766525,
0.031193023547530174,
-0.03445027396082878,
0.01829131320118904,
-0.06203228607773781,
0.028923451900482178,
-0.1267935335636139,
-0.031008273363113403,
-0.08011296391487122,
0.040568169206380844,
-0.03253968805074692,
-0.0678277537226677,
-0.039108458906412125,
0.04112854227423668,
0.05100474879145622,
-0.02078377641737461,
0.1261122077703476,
0.012100320309400558,
0.14496253430843353,
0.06766268610954285,
0.08470959961414337,
-0.08388673514127731,
-0.06188330054283142,
-0.012614681385457516,
-0.014991601929068565,
0.06286494433879852,
-0.12694281339645386,
0.028911983594298363,
0.15148866176605225,
0.024095628410577774,
0.14668066799640656,
0.09270865470170975,
-0.00774750392884016,
0.006704912520945072,
0.06958355754613876,
-0.14650793373584747,
-0.07492947578430176,
-0.012758200988173485,
-0.08417113870382309,
-0.10491643846035004,
0.05329383537173271,
0.08774955570697784,
-0.07457901537418365,
-0.020306522026658058,
-0.019659804180264473,
-0.0046589067205786705,
-0.06828700006008148,
0.19097475707530975,
0.07165631651878357,
0.04667729511857033,
-0.1087474599480629,
0.046334683895111084,
0.03799278661608696,
-0.044190697371959686,
0.0026104189455509186,
0.05789440497756004,
-0.07891734689474106,
-0.04618369787931442,
0.07565062493085861,
0.19724589586257935,
-0.10639114677906036,
-0.041730936616659164,
-0.14412431418895721,
-0.12482167035341263,
0.0858638733625412,
0.16407287120819092,
0.12001969665288925,
0.016542358323931694,
-0.044627804309129715,
0.0004892611759714782,
-0.14315193891525269,
0.07668711990118027,
0.03397877514362335,
0.06451647728681564,
-0.1555926352739334,
0.19324186444282532,
-0.005333597306162119,
0.05980570241808891,
-0.024393189698457718,
0.02662535570561886,
-0.1197163462638855,
0.015381762757897377,
-0.1072821244597435,
-0.0309952050447464,
-0.0452880859375,
0.010538376867771149,
0.0044297343119978905,
-0.05804304778575897,
-0.06787515431642532,
0.019214682281017303,
-0.12087952345609665,
-0.011882785707712173,
0.052330054342746735,
0.06458622962236404,
-0.09650682657957077,
-0.03713372349739075,
0.005560739431530237,
-0.04946653172373772,
0.06298165023326874,
0.053129035979509354,
0.03265496343374252,
0.05577000975608826,
-0.12371541559696198,
0.012868620455265045,
0.06440827995538712,
0.007461529690772295,
0.08779594302177429,
-0.09992941468954086,
0.011539554223418236,
0.008104230277240276,
0.05107768252491951,
0.026148788630962372,
0.04300077259540558,
-0.1331465244293213,
-0.0032487937714904547,
-0.012922815047204494,
-0.0705837830901146,
-0.06860256940126419,
0.03572484478354454,
0.09413286298513412,
0.011181337758898735,
0.20211395621299744,
-0.07241328805685043,
0.03911159187555313,
-0.20864175260066986,
-0.002821684814989567,
-0.02039400488138199,
-0.10292154550552368,
-0.11756741255521774,
-0.06827826797962189,
0.06675133109092712,
-0.04846476390957832,
0.15926845371723175,
0.05514415353536606,
0.039845507591962814,
0.02924531139433384,
-0.024599388241767883,
0.022414378821849823,
0.018331291154026985,
0.2072865515947342,
0.03242827579379082,
-0.0374031737446785,
0.07177082449197769,
0.0631103664636612,
0.09669660031795502,
0.12287601828575134,
0.19441848993301392,
0.14783944189548492,
0.008169285021722317,
0.08258246630430222,
0.042839691042900085,
-0.06839238852262497,
-0.1541784405708313,
0.008040743879973888,
-0.039424650371074677,
0.08197673410177231,
-0.024419615045189857,
0.1872439682483673,
0.07117965817451477,
-0.17282630503177643,
0.043817855417728424,
-0.0612485446035862,
-0.08095851540565491,
-0.11154606193304062,
-0.035318464040756226,
-0.08987002074718475,
-0.14176107943058014,
0.014213255606591702,
-0.12320590019226074,
0.00632935855537653,
0.10535521060228348,
0.0018503557657822967,
-0.02990477718412876,
0.12711457908153534,
0.015195788815617561,
0.03782793879508972,
0.050633810460567474,
-0.0014095796504989266,
-0.02131027542054653,
-0.12255539745092392,
-0.04312639683485031,
-0.01655908115208149,
-0.03916485607624054,
0.03420833870768547,
-0.07266595214605331,
-0.05807604640722275,
0.031155332922935486,
-0.0194083321839571,
-0.09185913950204849,
0.01302096527069807,
0.023594094440340996,
0.06487599015235901,
0.03717924281954765,
0.006430379115045071,
0.022888263687491417,
-0.01629592664539814,
0.20849286019802094,
-0.06752245873212814,
-0.06448845565319061,
-0.11597135663032532,
0.2857775092124939,
0.06247120723128319,
-0.0029909361619502306,
0.03875966742634773,
-0.06030166894197464,
0.018973320722579956,
0.22909623384475708,
0.2062881737947464,
-0.08546915650367737,
0.0005180338630452752,
-0.003911284264177084,
-0.01239559892565012,
-0.023509981110692024,
0.10638587176799774,
0.12344813346862793,
0.0492025762796402,
-0.09264816343784332,
-0.0384763702750206,
-0.07486826926469803,
-0.0014395563630387187,
-0.010740344412624836,
0.05220017954707146,
0.05710618570446968,
0.005952389445155859,
-0.035947054624557495,
0.04835249483585358,
-0.0623173788189888,
-0.07504520565271378,
0.08712742477655411,
-0.19577696919441223,
-0.15450870990753174,
-0.011524424888193607,
0.060413897037506104,
0.014811385422945023,
0.07661215215921402,
-0.034331414848566055,
-0.009861629456281662,
0.07325059920549393,
-0.013198725879192352,
-0.10196882486343384,
-0.08886867016553879,
0.11392643302679062,
-0.08647555112838745,
0.20282095670700073,
-0.051082540303468704,
0.0726238340139389,
0.1286064237356186,
0.06750267744064331,
-0.07789085060358047,
0.07065197080373764,
0.033653661608695984,
-0.06356313079595566,
0.039195507764816284,
0.07693500816822052,
-0.03484167531132698,
0.07378298789262772,
0.03255413472652435,
-0.15124978125095367,
0.028943153098225594,
-0.08831965923309326,
-0.059418000280857086,
-0.04492110013961792,
-0.03333628922700882,
-0.049130234867334366,
0.13655219972133636,
0.2347915768623352,
-0.029949385672807693,
-0.000018238526536151767,
-0.06771434098482132,
0.02497054822742939,
0.06521487236022949,
0.024716423824429512,
-0.07069611549377441,
-0.22834627330303192,
0.01762404851615429,
0.0770171582698822,
-0.028476985171437263,
-0.22311726212501526,
-0.08355039358139038,
-0.0037769372574985027,
-0.08544792979955673,
-0.08023001998662949,
0.08551409840583801,
0.08288803696632385,
0.05873243510723114,
-0.06337666511535645,
-0.06212843209505081,
-0.076679527759552,
0.15396149456501007,
-0.1293550431728363,
-0.09847313910722733
] |
null | null | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xlm-roberta-base-finetuned-panx-fr
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2736
- F1: 0.8353
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 24
- eval_batch_size: 24
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.5826 | 1.0 | 191 | 0.3442 | 0.7888 |
| 0.2669 | 2.0 | 382 | 0.2848 | 0.8326 |
| 0.1818 | 3.0 | 573 | 0.2736 | 0.8353 |
### Framework versions
- Transformers 4.16.2
- Pytorch 1.10.0+cu113
- Datasets 1.18.3
- Tokenizers 0.11.0
| {"license": "mit", "tags": ["generated_from_trainer"], "datasets": ["xtreme"], "metrics": ["f1"], "model-index": [{"name": "xlm-roberta-base-finetuned-panx-fr", "results": [{"task": {"type": "token-classification", "name": "Token Classification"}, "dataset": {"name": "xtreme", "type": "xtreme", "args": "PAN-X.fr"}, "metrics": [{"type": "f1", "value": 0.8353494623655915, "name": "F1"}]}]}]} | token-classification | MhF/xlm-roberta-base-finetuned-panx-fr | [
"transformers",
"pytorch",
"xlm-roberta",
"token-classification",
"generated_from_trainer",
"dataset:xtreme",
"license:mit",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [] | TAGS
#transformers #pytorch #xlm-roberta #token-classification #generated_from_trainer #dataset-xtreme #license-mit #model-index #autotrain_compatible #endpoints_compatible #region-us
| xlm-roberta-base-finetuned-panx-fr
==================================
This model is a fine-tuned version of xlm-roberta-base on the xtreme dataset.
It achieves the following results on the evaluation set:
* Loss: 0.2736
* F1: 0.8353
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 5e-05
* train\_batch\_size: 24
* eval\_batch\_size: 24
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 3
### Training results
### Framework versions
* Transformers 4.16.2
* Pytorch 1.10.0+cu113
* Datasets 1.18.3
* Tokenizers 0.11.0
| [
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 24\n* eval\\_batch\\_size: 24\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.16.2\n* Pytorch 1.10.0+cu113\n* Datasets 1.18.3\n* Tokenizers 0.11.0"
] | [
"TAGS\n#transformers #pytorch #xlm-roberta #token-classification #generated_from_trainer #dataset-xtreme #license-mit #model-index #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 24\n* eval\\_batch\\_size: 24\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.16.2\n* Pytorch 1.10.0+cu113\n* Datasets 1.18.3\n* Tokenizers 0.11.0"
] | [
64,
98,
4,
35
] | [
"passage: TAGS\n#transformers #pytorch #xlm-roberta #token-classification #generated_from_trainer #dataset-xtreme #license-mit #model-index #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 24\n* eval\\_batch\\_size: 24\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3### Training results### Framework versions\n\n\n* Transformers 4.16.2\n* Pytorch 1.10.0+cu113\n* Datasets 1.18.3\n* Tokenizers 0.11.0"
] | [
-0.11436963826417923,
0.08216290175914764,
-0.0014988728798925877,
0.11899861693382263,
0.19123201072216034,
0.03974498435854912,
0.10350155830383301,
0.12138590216636658,
-0.09891786426305771,
0.013696652837097645,
0.12637798488140106,
0.1895143687725067,
0.0018154538702219725,
0.14313584566116333,
-0.06025582179427147,
-0.2619011700153351,
-0.003350334707647562,
0.052718475461006165,
-0.05394969880580902,
0.13216909766197205,
0.10750007629394531,
-0.14981958270072937,
0.10015495121479034,
0.006444386672228575,
-0.23981864750385284,
0.011690332554280758,
0.027355141937732697,
-0.05588614568114281,
0.1399359256029129,
0.03566553443670273,
0.1263839304447174,
0.0030200087931007147,
0.09853485971689224,
-0.17312058806419373,
0.008765882812440395,
0.038472212851047516,
-0.000443514552898705,
0.0844867005944252,
0.040070001035928726,
-0.013202887959778309,
0.12370803952217102,
-0.07902373373508453,
0.05092515051364899,
0.017474493011832237,
-0.13000470399856567,
-0.2246100902557373,
-0.08418529480695724,
0.047609493136405945,
0.07317133247852325,
0.10511699318885803,
-0.003314343513920903,
0.16014689207077026,
-0.10632647573947906,
0.09373842179775238,
0.21881651878356934,
-0.29668357968330383,
-0.06488552689552307,
0.031847983598709106,
0.014174254611134529,
0.04402214288711548,
-0.10793596506118774,
-0.02889988385140896,
0.06329386681318283,
0.04204453155398369,
0.12428336590528488,
-0.0391516275703907,
-0.07627827674150467,
0.026497427374124527,
-0.13929937779903412,
-0.02682936005294323,
0.15474264323711395,
0.04383007436990738,
-0.0396600179374218,
-0.04192468151450157,
-0.03334873914718628,
-0.16318167746067047,
-0.03406932204961777,
-0.010290565900504589,
0.043918341398239136,
-0.04895852878689766,
-0.08648735284805298,
0.02723311446607113,
-0.097513847053051,
-0.06545048207044601,
-0.0746387168765068,
0.1782958060503006,
0.037355661392211914,
0.01192114781588316,
-0.023329902440309525,
0.10323978215456009,
0.007858896628022194,
-0.11702941358089447,
0.004397858399897814,
0.017407357692718506,
-0.00815503764897585,
-0.06893662363290787,
-0.0570240393280983,
-0.020737405866384506,
-0.005045332480221987,
0.12494289875030518,
-0.05916045978665352,
0.023372575640678406,
0.06467283517122269,
0.029114963486790657,
-0.0722503587603569,
0.19237901270389557,
-0.0481749065220356,
-0.011949131265282631,
0.0016024229116737843,
0.03170987218618393,
-0.015658723190426826,
0.004205819685012102,
-0.12208401411771774,
-0.006747600622475147,
0.09584765136241913,
0.016837822273373604,
-0.09102528542280197,
0.07832750678062439,
-0.05287430062890053,
-0.028164485469460487,
0.0030340550001710653,
-0.08302824199199677,
0.04031585529446602,
-0.013750899583101273,
-0.08648565411567688,
-0.02910149097442627,
0.000869646726641804,
0.013589250855147839,
-0.010291717015206814,
0.11161969602108002,
-0.10701880604028702,
0.036874812096357346,
-0.10269305855035782,
-0.12077722698450089,
0.0035550203174352646,
-0.08824023604393005,
0.046746887266635895,
-0.09828832745552063,
-0.16740597784519196,
-0.021985862404108047,
0.042871154844760895,
-0.02204023115336895,
-0.06242973357439041,
-0.0528845489025116,
-0.07350925356149673,
0.003269244683906436,
-0.010601988062262535,
0.1220708116889,
-0.062120240181684494,
0.09998202323913574,
0.04162858426570892,
0.059219472110271454,
-0.04391959309577942,
0.05711580812931061,
-0.10268891602754593,
0.004278227686882019,
-0.16758884489536285,
0.04038360342383385,
-0.041206248104572296,
0.07446469366550446,
-0.07323607802391052,
-0.11914148181676865,
0.040456630289554596,
0.009273141622543335,
0.06437927484512329,
0.08528587222099304,
-0.1485435962677002,
-0.08106792718172073,
0.1537495106458664,
-0.06615190207958221,
-0.1300884187221527,
0.09811797738075256,
-0.0760919377207756,
0.05335647240281105,
0.07025817036628723,
0.14440350234508514,
0.06541960686445236,
-0.08486487716436386,
-0.004819395020604134,
-0.0051734731532633305,
0.024705344811081886,
-0.08546008914709091,
0.07162002474069595,
0.03291914239525795,
0.005287147127091885,
0.027629638090729713,
-0.04034605249762535,
0.05791088938713074,
-0.11497120559215546,
-0.09256569296121597,
-0.032520558685064316,
-0.09047923237085342,
0.03632182255387306,
0.07524582743644714,
0.07669538259506226,
-0.10682988911867142,
-0.07868388295173645,
0.08592458069324493,
0.09215538948774338,
-0.04909861460328102,
0.012347917072474957,
-0.08046656847000122,
0.06741593033075333,
-0.05226065218448639,
-0.04010547697544098,
-0.17410588264465332,
-0.024803929030895233,
-0.0007737993146292865,
0.04608692601323128,
0.008276378735899925,
0.03235065937042236,
0.05520401522517204,
0.05960376560688019,
-0.048801761120557785,
-0.02539115399122238,
-0.0294029638171196,
0.002539912471547723,
-0.13808301091194153,
-0.19332373142242432,
-0.04251654073596001,
-0.020142806693911552,
0.1249033659696579,
-0.22437715530395508,
0.029007108882069588,
-0.02871520258486271,
0.07426177710294724,
0.011721569113433361,
-0.003251854330301285,
-0.055020011961460114,
0.08822081983089447,
-0.03932200372219086,
-0.044027384370565414,
0.06838078051805496,
0.008939703926444054,
-0.0789722204208374,
-0.039984360337257385,
-0.0887172669172287,
0.20261014997959137,
0.1337142139673233,
-0.12298902869224548,
-0.09678778052330017,
-0.007630711887031794,
-0.06243331357836723,
-0.021630045026540756,
-0.05101507902145386,
0.04452797397971153,
0.17106518149375916,
-0.02558385394513607,
0.14947886765003204,
-0.06596679240465164,
-0.04439844563603401,
0.028379280120134354,
-0.033760398626327515,
0.023240994662046432,
0.12171880900859833,
0.1400671750307083,
-0.11191084235906601,
0.14908677339553833,
0.11894755065441132,
-0.06939534842967987,
0.128013476729393,
-0.03659433126449585,
-0.06909586489200592,
-0.034997597336769104,
-0.04681326076388359,
-0.013046471402049065,
0.11407805979251862,
-0.11632366478443146,
-0.011562669649720192,
0.024299196898937225,
0.01981676183640957,
0.017212720587849617,
-0.21563690900802612,
-0.054955627769231796,
0.039891187101602554,
-0.025775404646992683,
-0.039551831781864166,
-0.010044187307357788,
0.00947077851742506,
0.10504135489463806,
0.009683988057076931,
-0.09792460501194,
0.04537845030426979,
0.012410790659487247,
-0.08784876763820648,
0.21034382283687592,
-0.07726404070854187,
-0.13240265846252441,
-0.11652474105358124,
-0.08285752683877945,
-0.03622426465153694,
0.007236292585730553,
0.054457634687423706,
-0.07977548241615295,
-0.03372526168823242,
-0.049317218363285065,
0.01294370274990797,
-0.01984952762722969,
0.03348516672849655,
0.006480794865638018,
0.002270036842674017,
0.049839362502098083,
-0.09591551125049591,
-0.02081858180463314,
-0.06461232900619507,
-0.062210965901613235,
0.053143300116062164,
0.019623761996626854,
0.1198727935552597,
0.1424434334039688,
-0.03576461970806122,
0.01943080872297287,
-0.04389575496315956,
0.25205081701278687,
-0.07117243111133575,
-0.05165702849626541,
0.12126182019710541,
0.010276482440531254,
0.03498850017786026,
0.11536388099193573,
0.0684753879904747,
-0.09433591365814209,
-0.0003095936554018408,
0.028030406683683395,
-0.029434025287628174,
-0.21102295815944672,
-0.053717583417892456,
-0.05261370912194252,
-0.03661859408020973,
0.08837959170341492,
0.019413357600569725,
0.03773632273077965,
0.07559649646282196,
0.04220343381166458,
0.07248175889253616,
-0.06792391836643219,
0.06876213848590851,
0.10512872785329819,
0.05241573974490166,
0.13091912865638733,
-0.043336473405361176,
-0.06738448888063431,
0.03623181954026222,
-0.02437460795044899,
0.23761111497879028,
0.011558156460523605,
0.10338330268859863,
0.06057492643594742,
0.1650814563035965,
0.005606879014521837,
0.07697603106498718,
0.0051834541372954845,
-0.055139776319265366,
-0.00946803018450737,
-0.026650866493582726,
-0.03241030126810074,
0.023228013888001442,
-0.05301631987094879,
0.06065261363983154,
-0.15523022413253784,
0.007981430739164352,
0.058689821511507034,
0.23982639610767365,
0.036855947226285934,
-0.34025949239730835,
-0.09753699600696564,
-0.009854961186647415,
-0.03588749095797539,
-0.020682066679000854,
0.014720381237566471,
0.07522116601467133,
-0.10453054308891296,
0.020545706152915955,
-0.05856892466545105,
0.09376067668199539,
-0.035638388246297836,
0.045686960220336914,
0.07741833478212357,
0.09092041850090027,
-0.004357252269983292,
0.0824642926454544,
-0.2955634295940399,
0.28832894563674927,
0.0070073590613901615,
0.08248049765825272,
-0.07288496196269989,
-0.00936117023229599,
0.023743847385048866,
0.08832725137472153,
0.07804135233163834,
-0.010785143822431564,
-0.060929231345653534,
-0.22395974397659302,
-0.021751439198851585,
0.03574969619512558,
0.0767158567905426,
-0.024599624797701836,
0.11103778332471848,
-0.03090990148484707,
0.01349241379648447,
0.07555870711803436,
-0.00007651457417523488,
-0.03725636377930641,
-0.08015379309654236,
-0.019695162773132324,
0.011818300932645798,
-0.03565504774451256,
-0.05997641012072563,
-0.11697344481945038,
-0.12142240256071091,
0.1573163866996765,
-0.00981531385332346,
-0.03070564940571785,
-0.11674963682889938,
0.09840501844882965,
0.057556044310331345,
-0.092213474214077,
0.037570711225271225,
0.02186315692961216,
0.0731658935546875,
0.0356525182723999,
-0.05867455527186394,
0.1079450398683548,
-0.06341419368982315,
-0.15260575711727142,
-0.057940494269132614,
0.08980552852153778,
0.034407198429107666,
0.06497398763895035,
0.0016317326808348298,
0.018239961937069893,
-0.038960523903369904,
-0.08825114369392395,
0.025494296103715897,
-0.020786477252840996,
0.08989384025335312,
0.025797726586461067,
-0.0600430853664875,
0.033090658485889435,
-0.062009744346141815,
-0.029074091464281082,
0.188361257314682,
0.23482514917850494,
-0.11089865863323212,
0.003054240718483925,
0.0013566788984462619,
-0.07410746812820435,
-0.1882837861776352,
0.06031780689954758,
0.05481604114174843,
0.022217167541384697,
0.030596446245908737,
-0.17174124717712402,
0.13351373374462128,
0.10599040240049362,
-0.0009017300326377153,
0.09028779715299606,
-0.2955513596534729,
-0.11997119337320328,
0.11717075854539871,
0.14231634140014648,
0.1387888640165329,
-0.11679933965206146,
0.002065488835796714,
-0.020647751167416573,
-0.1322845071554184,
0.11279263347387314,
-0.04916840419173241,
0.12136766314506531,
-0.034070029854774475,
0.09306932240724564,
0.009489216841757298,
-0.05161649361252785,
0.10561338067054749,
0.041438762098550797,
0.117564857006073,
-0.05038420110940933,
-0.06973641365766525,
0.031193023547530174,
-0.03445027396082878,
0.01829131320118904,
-0.06203228607773781,
0.028923451900482178,
-0.1267935335636139,
-0.031008273363113403,
-0.08011296391487122,
0.040568169206380844,
-0.03253968805074692,
-0.0678277537226677,
-0.039108458906412125,
0.04112854227423668,
0.05100474879145622,
-0.02078377641737461,
0.1261122077703476,
0.012100320309400558,
0.14496253430843353,
0.06766268610954285,
0.08470959961414337,
-0.08388673514127731,
-0.06188330054283142,
-0.012614681385457516,
-0.014991601929068565,
0.06286494433879852,
-0.12694281339645386,
0.028911983594298363,
0.15148866176605225,
0.024095628410577774,
0.14668066799640656,
0.09270865470170975,
-0.00774750392884016,
0.006704912520945072,
0.06958355754613876,
-0.14650793373584747,
-0.07492947578430176,
-0.012758200988173485,
-0.08417113870382309,
-0.10491643846035004,
0.05329383537173271,
0.08774955570697784,
-0.07457901537418365,
-0.020306522026658058,
-0.019659804180264473,
-0.0046589067205786705,
-0.06828700006008148,
0.19097475707530975,
0.07165631651878357,
0.04667729511857033,
-0.1087474599480629,
0.046334683895111084,
0.03799278661608696,
-0.044190697371959686,
0.0026104189455509186,
0.05789440497756004,
-0.07891734689474106,
-0.04618369787931442,
0.07565062493085861,
0.19724589586257935,
-0.10639114677906036,
-0.041730936616659164,
-0.14412431418895721,
-0.12482167035341263,
0.0858638733625412,
0.16407287120819092,
0.12001969665288925,
0.016542358323931694,
-0.044627804309129715,
0.0004892611759714782,
-0.14315193891525269,
0.07668711990118027,
0.03397877514362335,
0.06451647728681564,
-0.1555926352739334,
0.19324186444282532,
-0.005333597306162119,
0.05980570241808891,
-0.024393189698457718,
0.02662535570561886,
-0.1197163462638855,
0.015381762757897377,
-0.1072821244597435,
-0.0309952050447464,
-0.0452880859375,
0.010538376867771149,
0.0044297343119978905,
-0.05804304778575897,
-0.06787515431642532,
0.019214682281017303,
-0.12087952345609665,
-0.011882785707712173,
0.052330054342746735,
0.06458622962236404,
-0.09650682657957077,
-0.03713372349739075,
0.005560739431530237,
-0.04946653172373772,
0.06298165023326874,
0.053129035979509354,
0.03265496343374252,
0.05577000975608826,
-0.12371541559696198,
0.012868620455265045,
0.06440827995538712,
0.007461529690772295,
0.08779594302177429,
-0.09992941468954086,
0.011539554223418236,
0.008104230277240276,
0.05107768252491951,
0.026148788630962372,
0.04300077259540558,
-0.1331465244293213,
-0.0032487937714904547,
-0.012922815047204494,
-0.0705837830901146,
-0.06860256940126419,
0.03572484478354454,
0.09413286298513412,
0.011181337758898735,
0.20211395621299744,
-0.07241328805685043,
0.03911159187555313,
-0.20864175260066986,
-0.002821684814989567,
-0.02039400488138199,
-0.10292154550552368,
-0.11756741255521774,
-0.06827826797962189,
0.06675133109092712,
-0.04846476390957832,
0.15926845371723175,
0.05514415353536606,
0.039845507591962814,
0.02924531139433384,
-0.024599388241767883,
0.022414378821849823,
0.018331291154026985,
0.2072865515947342,
0.03242827579379082,
-0.0374031737446785,
0.07177082449197769,
0.0631103664636612,
0.09669660031795502,
0.12287601828575134,
0.19441848993301392,
0.14783944189548492,
0.008169285021722317,
0.08258246630430222,
0.042839691042900085,
-0.06839238852262497,
-0.1541784405708313,
0.008040743879973888,
-0.039424650371074677,
0.08197673410177231,
-0.024419615045189857,
0.1872439682483673,
0.07117965817451477,
-0.17282630503177643,
0.043817855417728424,
-0.0612485446035862,
-0.08095851540565491,
-0.11154606193304062,
-0.035318464040756226,
-0.08987002074718475,
-0.14176107943058014,
0.014213255606591702,
-0.12320590019226074,
0.00632935855537653,
0.10535521060228348,
0.0018503557657822967,
-0.02990477718412876,
0.12711457908153534,
0.015195788815617561,
0.03782793879508972,
0.050633810460567474,
-0.0014095796504989266,
-0.02131027542054653,
-0.12255539745092392,
-0.04312639683485031,
-0.01655908115208149,
-0.03916485607624054,
0.03420833870768547,
-0.07266595214605331,
-0.05807604640722275,
0.031155332922935486,
-0.0194083321839571,
-0.09185913950204849,
0.01302096527069807,
0.023594094440340996,
0.06487599015235901,
0.03717924281954765,
0.006430379115045071,
0.022888263687491417,
-0.01629592664539814,
0.20849286019802094,
-0.06752245873212814,
-0.06448845565319061,
-0.11597135663032532,
0.2857775092124939,
0.06247120723128319,
-0.0029909361619502306,
0.03875966742634773,
-0.06030166894197464,
0.018973320722579956,
0.22909623384475708,
0.2062881737947464,
-0.08546915650367737,
0.0005180338630452752,
-0.003911284264177084,
-0.01239559892565012,
-0.023509981110692024,
0.10638587176799774,
0.12344813346862793,
0.0492025762796402,
-0.09264816343784332,
-0.0384763702750206,
-0.07486826926469803,
-0.0014395563630387187,
-0.010740344412624836,
0.05220017954707146,
0.05710618570446968,
0.005952389445155859,
-0.035947054624557495,
0.04835249483585358,
-0.0623173788189888,
-0.07504520565271378,
0.08712742477655411,
-0.19577696919441223,
-0.15450870990753174,
-0.011524424888193607,
0.060413897037506104,
0.014811385422945023,
0.07661215215921402,
-0.034331414848566055,
-0.009861629456281662,
0.07325059920549393,
-0.013198725879192352,
-0.10196882486343384,
-0.08886867016553879,
0.11392643302679062,
-0.08647555112838745,
0.20282095670700073,
-0.051082540303468704,
0.0726238340139389,
0.1286064237356186,
0.06750267744064331,
-0.07789085060358047,
0.07065197080373764,
0.033653661608695984,
-0.06356313079595566,
0.039195507764816284,
0.07693500816822052,
-0.03484167531132698,
0.07378298789262772,
0.03255413472652435,
-0.15124978125095367,
0.028943153098225594,
-0.08831965923309326,
-0.059418000280857086,
-0.04492110013961792,
-0.03333628922700882,
-0.049130234867334366,
0.13655219972133636,
0.2347915768623352,
-0.029949385672807693,
-0.000018238526536151767,
-0.06771434098482132,
0.02497054822742939,
0.06521487236022949,
0.024716423824429512,
-0.07069611549377441,
-0.22834627330303192,
0.01762404851615429,
0.0770171582698822,
-0.028476985171437263,
-0.22311726212501526,
-0.08355039358139038,
-0.0037769372574985027,
-0.08544792979955673,
-0.08023001998662949,
0.08551409840583801,
0.08288803696632385,
0.05873243510723114,
-0.06337666511535645,
-0.06212843209505081,
-0.076679527759552,
0.15396149456501007,
-0.1293550431728363,
-0.09847313910722733
] |
null | null | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xlm-roberta-base-finetuned-panx-it
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2491
- F1: 0.8213
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 24
- eval_batch_size: 24
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.8192 | 1.0 | 70 | 0.3300 | 0.7184 |
| 0.2949 | 2.0 | 140 | 0.2817 | 0.7959 |
| 0.189 | 3.0 | 210 | 0.2491 | 0.8213 |
### Framework versions
- Transformers 4.16.2
- Pytorch 1.10.0+cu113
- Datasets 1.18.3
- Tokenizers 0.11.0
| {"license": "mit", "tags": ["generated_from_trainer"], "datasets": ["xtreme"], "metrics": ["f1"], "model-index": [{"name": "xlm-roberta-base-finetuned-panx-it", "results": [{"task": {"type": "token-classification", "name": "Token Classification"}, "dataset": {"name": "xtreme", "type": "xtreme", "args": "PAN-X.it"}, "metrics": [{"type": "f1", "value": 0.8213114754098361, "name": "F1"}]}]}]} | token-classification | MhF/xlm-roberta-base-finetuned-panx-it | [
"transformers",
"pytorch",
"xlm-roberta",
"token-classification",
"generated_from_trainer",
"dataset:xtreme",
"license:mit",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [] | TAGS
#transformers #pytorch #xlm-roberta #token-classification #generated_from_trainer #dataset-xtreme #license-mit #model-index #autotrain_compatible #endpoints_compatible #region-us
| xlm-roberta-base-finetuned-panx-it
==================================
This model is a fine-tuned version of xlm-roberta-base on the xtreme dataset.
It achieves the following results on the evaluation set:
* Loss: 0.2491
* F1: 0.8213
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 5e-05
* train\_batch\_size: 24
* eval\_batch\_size: 24
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 3
### Training results
### Framework versions
* Transformers 4.16.2
* Pytorch 1.10.0+cu113
* Datasets 1.18.3
* Tokenizers 0.11.0
| [
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 24\n* eval\\_batch\\_size: 24\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.16.2\n* Pytorch 1.10.0+cu113\n* Datasets 1.18.3\n* Tokenizers 0.11.0"
] | [
"TAGS\n#transformers #pytorch #xlm-roberta #token-classification #generated_from_trainer #dataset-xtreme #license-mit #model-index #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 24\n* eval\\_batch\\_size: 24\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.16.2\n* Pytorch 1.10.0+cu113\n* Datasets 1.18.3\n* Tokenizers 0.11.0"
] | [
64,
98,
4,
35
] | [
"passage: TAGS\n#transformers #pytorch #xlm-roberta #token-classification #generated_from_trainer #dataset-xtreme #license-mit #model-index #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 24\n* eval\\_batch\\_size: 24\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3### Training results### Framework versions\n\n\n* Transformers 4.16.2\n* Pytorch 1.10.0+cu113\n* Datasets 1.18.3\n* Tokenizers 0.11.0"
] | [
-0.11436963826417923,
0.08216290175914764,
-0.0014988728798925877,
0.11899861693382263,
0.19123201072216034,
0.03974498435854912,
0.10350155830383301,
0.12138590216636658,
-0.09891786426305771,
0.013696652837097645,
0.12637798488140106,
0.1895143687725067,
0.0018154538702219725,
0.14313584566116333,
-0.06025582179427147,
-0.2619011700153351,
-0.003350334707647562,
0.052718475461006165,
-0.05394969880580902,
0.13216909766197205,
0.10750007629394531,
-0.14981958270072937,
0.10015495121479034,
0.006444386672228575,
-0.23981864750385284,
0.011690332554280758,
0.027355141937732697,
-0.05588614568114281,
0.1399359256029129,
0.03566553443670273,
0.1263839304447174,
0.0030200087931007147,
0.09853485971689224,
-0.17312058806419373,
0.008765882812440395,
0.038472212851047516,
-0.000443514552898705,
0.0844867005944252,
0.040070001035928726,
-0.013202887959778309,
0.12370803952217102,
-0.07902373373508453,
0.05092515051364899,
0.017474493011832237,
-0.13000470399856567,
-0.2246100902557373,
-0.08418529480695724,
0.047609493136405945,
0.07317133247852325,
0.10511699318885803,
-0.003314343513920903,
0.16014689207077026,
-0.10632647573947906,
0.09373842179775238,
0.21881651878356934,
-0.29668357968330383,
-0.06488552689552307,
0.031847983598709106,
0.014174254611134529,
0.04402214288711548,
-0.10793596506118774,
-0.02889988385140896,
0.06329386681318283,
0.04204453155398369,
0.12428336590528488,
-0.0391516275703907,
-0.07627827674150467,
0.026497427374124527,
-0.13929937779903412,
-0.02682936005294323,
0.15474264323711395,
0.04383007436990738,
-0.0396600179374218,
-0.04192468151450157,
-0.03334873914718628,
-0.16318167746067047,
-0.03406932204961777,
-0.010290565900504589,
0.043918341398239136,
-0.04895852878689766,
-0.08648735284805298,
0.02723311446607113,
-0.097513847053051,
-0.06545048207044601,
-0.0746387168765068,
0.1782958060503006,
0.037355661392211914,
0.01192114781588316,
-0.023329902440309525,
0.10323978215456009,
0.007858896628022194,
-0.11702941358089447,
0.004397858399897814,
0.017407357692718506,
-0.00815503764897585,
-0.06893662363290787,
-0.0570240393280983,
-0.020737405866384506,
-0.005045332480221987,
0.12494289875030518,
-0.05916045978665352,
0.023372575640678406,
0.06467283517122269,
0.029114963486790657,
-0.0722503587603569,
0.19237901270389557,
-0.0481749065220356,
-0.011949131265282631,
0.0016024229116737843,
0.03170987218618393,
-0.015658723190426826,
0.004205819685012102,
-0.12208401411771774,
-0.006747600622475147,
0.09584765136241913,
0.016837822273373604,
-0.09102528542280197,
0.07832750678062439,
-0.05287430062890053,
-0.028164485469460487,
0.0030340550001710653,
-0.08302824199199677,
0.04031585529446602,
-0.013750899583101273,
-0.08648565411567688,
-0.02910149097442627,
0.000869646726641804,
0.013589250855147839,
-0.010291717015206814,
0.11161969602108002,
-0.10701880604028702,
0.036874812096357346,
-0.10269305855035782,
-0.12077722698450089,
0.0035550203174352646,
-0.08824023604393005,
0.046746887266635895,
-0.09828832745552063,
-0.16740597784519196,
-0.021985862404108047,
0.042871154844760895,
-0.02204023115336895,
-0.06242973357439041,
-0.0528845489025116,
-0.07350925356149673,
0.003269244683906436,
-0.010601988062262535,
0.1220708116889,
-0.062120240181684494,
0.09998202323913574,
0.04162858426570892,
0.059219472110271454,
-0.04391959309577942,
0.05711580812931061,
-0.10268891602754593,
0.004278227686882019,
-0.16758884489536285,
0.04038360342383385,
-0.041206248104572296,
0.07446469366550446,
-0.07323607802391052,
-0.11914148181676865,
0.040456630289554596,
0.009273141622543335,
0.06437927484512329,
0.08528587222099304,
-0.1485435962677002,
-0.08106792718172073,
0.1537495106458664,
-0.06615190207958221,
-0.1300884187221527,
0.09811797738075256,
-0.0760919377207756,
0.05335647240281105,
0.07025817036628723,
0.14440350234508514,
0.06541960686445236,
-0.08486487716436386,
-0.004819395020604134,
-0.0051734731532633305,
0.024705344811081886,
-0.08546008914709091,
0.07162002474069595,
0.03291914239525795,
0.005287147127091885,
0.027629638090729713,
-0.04034605249762535,
0.05791088938713074,
-0.11497120559215546,
-0.09256569296121597,
-0.032520558685064316,
-0.09047923237085342,
0.03632182255387306,
0.07524582743644714,
0.07669538259506226,
-0.10682988911867142,
-0.07868388295173645,
0.08592458069324493,
0.09215538948774338,
-0.04909861460328102,
0.012347917072474957,
-0.08046656847000122,
0.06741593033075333,
-0.05226065218448639,
-0.04010547697544098,
-0.17410588264465332,
-0.024803929030895233,
-0.0007737993146292865,
0.04608692601323128,
0.008276378735899925,
0.03235065937042236,
0.05520401522517204,
0.05960376560688019,
-0.048801761120557785,
-0.02539115399122238,
-0.0294029638171196,
0.002539912471547723,
-0.13808301091194153,
-0.19332373142242432,
-0.04251654073596001,
-0.020142806693911552,
0.1249033659696579,
-0.22437715530395508,
0.029007108882069588,
-0.02871520258486271,
0.07426177710294724,
0.011721569113433361,
-0.003251854330301285,
-0.055020011961460114,
0.08822081983089447,
-0.03932200372219086,
-0.044027384370565414,
0.06838078051805496,
0.008939703926444054,
-0.0789722204208374,
-0.039984360337257385,
-0.0887172669172287,
0.20261014997959137,
0.1337142139673233,
-0.12298902869224548,
-0.09678778052330017,
-0.007630711887031794,
-0.06243331357836723,
-0.021630045026540756,
-0.05101507902145386,
0.04452797397971153,
0.17106518149375916,
-0.02558385394513607,
0.14947886765003204,
-0.06596679240465164,
-0.04439844563603401,
0.028379280120134354,
-0.033760398626327515,
0.023240994662046432,
0.12171880900859833,
0.1400671750307083,
-0.11191084235906601,
0.14908677339553833,
0.11894755065441132,
-0.06939534842967987,
0.128013476729393,
-0.03659433126449585,
-0.06909586489200592,
-0.034997597336769104,
-0.04681326076388359,
-0.013046471402049065,
0.11407805979251862,
-0.11632366478443146,
-0.011562669649720192,
0.024299196898937225,
0.01981676183640957,
0.017212720587849617,
-0.21563690900802612,
-0.054955627769231796,
0.039891187101602554,
-0.025775404646992683,
-0.039551831781864166,
-0.010044187307357788,
0.00947077851742506,
0.10504135489463806,
0.009683988057076931,
-0.09792460501194,
0.04537845030426979,
0.012410790659487247,
-0.08784876763820648,
0.21034382283687592,
-0.07726404070854187,
-0.13240265846252441,
-0.11652474105358124,
-0.08285752683877945,
-0.03622426465153694,
0.007236292585730553,
0.054457634687423706,
-0.07977548241615295,
-0.03372526168823242,
-0.049317218363285065,
0.01294370274990797,
-0.01984952762722969,
0.03348516672849655,
0.006480794865638018,
0.002270036842674017,
0.049839362502098083,
-0.09591551125049591,
-0.02081858180463314,
-0.06461232900619507,
-0.062210965901613235,
0.053143300116062164,
0.019623761996626854,
0.1198727935552597,
0.1424434334039688,
-0.03576461970806122,
0.01943080872297287,
-0.04389575496315956,
0.25205081701278687,
-0.07117243111133575,
-0.05165702849626541,
0.12126182019710541,
0.010276482440531254,
0.03498850017786026,
0.11536388099193573,
0.0684753879904747,
-0.09433591365814209,
-0.0003095936554018408,
0.028030406683683395,
-0.029434025287628174,
-0.21102295815944672,
-0.053717583417892456,
-0.05261370912194252,
-0.03661859408020973,
0.08837959170341492,
0.019413357600569725,
0.03773632273077965,
0.07559649646282196,
0.04220343381166458,
0.07248175889253616,
-0.06792391836643219,
0.06876213848590851,
0.10512872785329819,
0.05241573974490166,
0.13091912865638733,
-0.043336473405361176,
-0.06738448888063431,
0.03623181954026222,
-0.02437460795044899,
0.23761111497879028,
0.011558156460523605,
0.10338330268859863,
0.06057492643594742,
0.1650814563035965,
0.005606879014521837,
0.07697603106498718,
0.0051834541372954845,
-0.055139776319265366,
-0.00946803018450737,
-0.026650866493582726,
-0.03241030126810074,
0.023228013888001442,
-0.05301631987094879,
0.06065261363983154,
-0.15523022413253784,
0.007981430739164352,
0.058689821511507034,
0.23982639610767365,
0.036855947226285934,
-0.34025949239730835,
-0.09753699600696564,
-0.009854961186647415,
-0.03588749095797539,
-0.020682066679000854,
0.014720381237566471,
0.07522116601467133,
-0.10453054308891296,
0.020545706152915955,
-0.05856892466545105,
0.09376067668199539,
-0.035638388246297836,
0.045686960220336914,
0.07741833478212357,
0.09092041850090027,
-0.004357252269983292,
0.0824642926454544,
-0.2955634295940399,
0.28832894563674927,
0.0070073590613901615,
0.08248049765825272,
-0.07288496196269989,
-0.00936117023229599,
0.023743847385048866,
0.08832725137472153,
0.07804135233163834,
-0.010785143822431564,
-0.060929231345653534,
-0.22395974397659302,
-0.021751439198851585,
0.03574969619512558,
0.0767158567905426,
-0.024599624797701836,
0.11103778332471848,
-0.03090990148484707,
0.01349241379648447,
0.07555870711803436,
-0.00007651457417523488,
-0.03725636377930641,
-0.08015379309654236,
-0.019695162773132324,
0.011818300932645798,
-0.03565504774451256,
-0.05997641012072563,
-0.11697344481945038,
-0.12142240256071091,
0.1573163866996765,
-0.00981531385332346,
-0.03070564940571785,
-0.11674963682889938,
0.09840501844882965,
0.057556044310331345,
-0.092213474214077,
0.037570711225271225,
0.02186315692961216,
0.0731658935546875,
0.0356525182723999,
-0.05867455527186394,
0.1079450398683548,
-0.06341419368982315,
-0.15260575711727142,
-0.057940494269132614,
0.08980552852153778,
0.034407198429107666,
0.06497398763895035,
0.0016317326808348298,
0.018239961937069893,
-0.038960523903369904,
-0.08825114369392395,
0.025494296103715897,
-0.020786477252840996,
0.08989384025335312,
0.025797726586461067,
-0.0600430853664875,
0.033090658485889435,
-0.062009744346141815,
-0.029074091464281082,
0.188361257314682,
0.23482514917850494,
-0.11089865863323212,
0.003054240718483925,
0.0013566788984462619,
-0.07410746812820435,
-0.1882837861776352,
0.06031780689954758,
0.05481604114174843,
0.022217167541384697,
0.030596446245908737,
-0.17174124717712402,
0.13351373374462128,
0.10599040240049362,
-0.0009017300326377153,
0.09028779715299606,
-0.2955513596534729,
-0.11997119337320328,
0.11717075854539871,
0.14231634140014648,
0.1387888640165329,
-0.11679933965206146,
0.002065488835796714,
-0.020647751167416573,
-0.1322845071554184,
0.11279263347387314,
-0.04916840419173241,
0.12136766314506531,
-0.034070029854774475,
0.09306932240724564,
0.009489216841757298,
-0.05161649361252785,
0.10561338067054749,
0.041438762098550797,
0.117564857006073,
-0.05038420110940933,
-0.06973641365766525,
0.031193023547530174,
-0.03445027396082878,
0.01829131320118904,
-0.06203228607773781,
0.028923451900482178,
-0.1267935335636139,
-0.031008273363113403,
-0.08011296391487122,
0.040568169206380844,
-0.03253968805074692,
-0.0678277537226677,
-0.039108458906412125,
0.04112854227423668,
0.05100474879145622,
-0.02078377641737461,
0.1261122077703476,
0.012100320309400558,
0.14496253430843353,
0.06766268610954285,
0.08470959961414337,
-0.08388673514127731,
-0.06188330054283142,
-0.012614681385457516,
-0.014991601929068565,
0.06286494433879852,
-0.12694281339645386,
0.028911983594298363,
0.15148866176605225,
0.024095628410577774,
0.14668066799640656,
0.09270865470170975,
-0.00774750392884016,
0.006704912520945072,
0.06958355754613876,
-0.14650793373584747,
-0.07492947578430176,
-0.012758200988173485,
-0.08417113870382309,
-0.10491643846035004,
0.05329383537173271,
0.08774955570697784,
-0.07457901537418365,
-0.020306522026658058,
-0.019659804180264473,
-0.0046589067205786705,
-0.06828700006008148,
0.19097475707530975,
0.07165631651878357,
0.04667729511857033,
-0.1087474599480629,
0.046334683895111084,
0.03799278661608696,
-0.044190697371959686,
0.0026104189455509186,
0.05789440497756004,
-0.07891734689474106,
-0.04618369787931442,
0.07565062493085861,
0.19724589586257935,
-0.10639114677906036,
-0.041730936616659164,
-0.14412431418895721,
-0.12482167035341263,
0.0858638733625412,
0.16407287120819092,
0.12001969665288925,
0.016542358323931694,
-0.044627804309129715,
0.0004892611759714782,
-0.14315193891525269,
0.07668711990118027,
0.03397877514362335,
0.06451647728681564,
-0.1555926352739334,
0.19324186444282532,
-0.005333597306162119,
0.05980570241808891,
-0.024393189698457718,
0.02662535570561886,
-0.1197163462638855,
0.015381762757897377,
-0.1072821244597435,
-0.0309952050447464,
-0.0452880859375,
0.010538376867771149,
0.0044297343119978905,
-0.05804304778575897,
-0.06787515431642532,
0.019214682281017303,
-0.12087952345609665,
-0.011882785707712173,
0.052330054342746735,
0.06458622962236404,
-0.09650682657957077,
-0.03713372349739075,
0.005560739431530237,
-0.04946653172373772,
0.06298165023326874,
0.053129035979509354,
0.03265496343374252,
0.05577000975608826,
-0.12371541559696198,
0.012868620455265045,
0.06440827995538712,
0.007461529690772295,
0.08779594302177429,
-0.09992941468954086,
0.011539554223418236,
0.008104230277240276,
0.05107768252491951,
0.026148788630962372,
0.04300077259540558,
-0.1331465244293213,
-0.0032487937714904547,
-0.012922815047204494,
-0.0705837830901146,
-0.06860256940126419,
0.03572484478354454,
0.09413286298513412,
0.011181337758898735,
0.20211395621299744,
-0.07241328805685043,
0.03911159187555313,
-0.20864175260066986,
-0.002821684814989567,
-0.02039400488138199,
-0.10292154550552368,
-0.11756741255521774,
-0.06827826797962189,
0.06675133109092712,
-0.04846476390957832,
0.15926845371723175,
0.05514415353536606,
0.039845507591962814,
0.02924531139433384,
-0.024599388241767883,
0.022414378821849823,
0.018331291154026985,
0.2072865515947342,
0.03242827579379082,
-0.0374031737446785,
0.07177082449197769,
0.0631103664636612,
0.09669660031795502,
0.12287601828575134,
0.19441848993301392,
0.14783944189548492,
0.008169285021722317,
0.08258246630430222,
0.042839691042900085,
-0.06839238852262497,
-0.1541784405708313,
0.008040743879973888,
-0.039424650371074677,
0.08197673410177231,
-0.024419615045189857,
0.1872439682483673,
0.07117965817451477,
-0.17282630503177643,
0.043817855417728424,
-0.0612485446035862,
-0.08095851540565491,
-0.11154606193304062,
-0.035318464040756226,
-0.08987002074718475,
-0.14176107943058014,
0.014213255606591702,
-0.12320590019226074,
0.00632935855537653,
0.10535521060228348,
0.0018503557657822967,
-0.02990477718412876,
0.12711457908153534,
0.015195788815617561,
0.03782793879508972,
0.050633810460567474,
-0.0014095796504989266,
-0.02131027542054653,
-0.12255539745092392,
-0.04312639683485031,
-0.01655908115208149,
-0.03916485607624054,
0.03420833870768547,
-0.07266595214605331,
-0.05807604640722275,
0.031155332922935486,
-0.0194083321839571,
-0.09185913950204849,
0.01302096527069807,
0.023594094440340996,
0.06487599015235901,
0.03717924281954765,
0.006430379115045071,
0.022888263687491417,
-0.01629592664539814,
0.20849286019802094,
-0.06752245873212814,
-0.06448845565319061,
-0.11597135663032532,
0.2857775092124939,
0.06247120723128319,
-0.0029909361619502306,
0.03875966742634773,
-0.06030166894197464,
0.018973320722579956,
0.22909623384475708,
0.2062881737947464,
-0.08546915650367737,
0.0005180338630452752,
-0.003911284264177084,
-0.01239559892565012,
-0.023509981110692024,
0.10638587176799774,
0.12344813346862793,
0.0492025762796402,
-0.09264816343784332,
-0.0384763702750206,
-0.07486826926469803,
-0.0014395563630387187,
-0.010740344412624836,
0.05220017954707146,
0.05710618570446968,
0.005952389445155859,
-0.035947054624557495,
0.04835249483585358,
-0.0623173788189888,
-0.07504520565271378,
0.08712742477655411,
-0.19577696919441223,
-0.15450870990753174,
-0.011524424888193607,
0.060413897037506104,
0.014811385422945023,
0.07661215215921402,
-0.034331414848566055,
-0.009861629456281662,
0.07325059920549393,
-0.013198725879192352,
-0.10196882486343384,
-0.08886867016553879,
0.11392643302679062,
-0.08647555112838745,
0.20282095670700073,
-0.051082540303468704,
0.0726238340139389,
0.1286064237356186,
0.06750267744064331,
-0.07789085060358047,
0.07065197080373764,
0.033653661608695984,
-0.06356313079595566,
0.039195507764816284,
0.07693500816822052,
-0.03484167531132698,
0.07378298789262772,
0.03255413472652435,
-0.15124978125095367,
0.028943153098225594,
-0.08831965923309326,
-0.059418000280857086,
-0.04492110013961792,
-0.03333628922700882,
-0.049130234867334366,
0.13655219972133636,
0.2347915768623352,
-0.029949385672807693,
-0.000018238526536151767,
-0.06771434098482132,
0.02497054822742939,
0.06521487236022949,
0.024716423824429512,
-0.07069611549377441,
-0.22834627330303192,
0.01762404851615429,
0.0770171582698822,
-0.028476985171437263,
-0.22311726212501526,
-0.08355039358139038,
-0.0037769372574985027,
-0.08544792979955673,
-0.08023001998662949,
0.08551409840583801,
0.08288803696632385,
0.05873243510723114,
-0.06337666511535645,
-0.06212843209505081,
-0.076679527759552,
0.15396149456501007,
-0.1293550431728363,
-0.09847313910722733
] |
null | null | transformers |
# feinschwarz
This model is a fine-tuned version of [dbmdz/german-gpt2](https://huggingface.co/dbmdz/german-gpt2). The dataset was compiled from all texts of https://www.feinschwarz.net (as of October 2021). The homepage gathers essayistic texts on theological topics.
The model will be used to explore the challenges of text-generating AI for theology with a hands on approach. Can an AI generate theological knowledge? Is a text by Karl Rahner of more value than an AI-generated text? Can we even distinguish a Rahner text from an AI-generated text in the future? And the crucial question: Would it be bad if not?
The model is a very first attempt and in its current version certainly not yet a danger for academic theology 🤓
# Using the model
You can create text with the model using this code:
```python
from transformers import pipeline
pipe = pipeline('text-generation', model="Michael711/feinschwarz",
tokenizer="Michael711/feinschwarz")
text = pipe("Der Sinn des Lebens ist es", max_length=100)[0]["generated_text"]
print(text)
```
Have fun theologizing! | {"license": "mit", "tags": ["generated_from_trainer", "de"], "model-index": [{"name": "feinesblack", "results": []}]} | text-generation | Michael711/feinschwarz | [
"transformers",
"pytorch",
"gpt2",
"text-generation",
"generated_from_trainer",
"de",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [] | TAGS
#transformers #pytorch #gpt2 #text-generation #generated_from_trainer #de #license-mit #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
# feinschwarz
This model is a fine-tuned version of dbmdz/german-gpt2. The dataset was compiled from all texts of URL (as of October 2021). The homepage gathers essayistic texts on theological topics.
The model will be used to explore the challenges of text-generating AI for theology with a hands on approach. Can an AI generate theological knowledge? Is a text by Karl Rahner of more value than an AI-generated text? Can we even distinguish a Rahner text from an AI-generated text in the future? And the crucial question: Would it be bad if not?
The model is a very first attempt and in its current version certainly not yet a danger for academic theology
# Using the model
You can create text with the model using this code:
Have fun theologizing! | [
"# feinschwarz\n\nThis model is a fine-tuned version of dbmdz/german-gpt2. The dataset was compiled from all texts of URL (as of October 2021). The homepage gathers essayistic texts on theological topics.\n\nThe model will be used to explore the challenges of text-generating AI for theology with a hands on approach. Can an AI generate theological knowledge? Is a text by Karl Rahner of more value than an AI-generated text? Can we even distinguish a Rahner text from an AI-generated text in the future? And the crucial question: Would it be bad if not?\n\nThe model is a very first attempt and in its current version certainly not yet a danger for academic theology",
"# Using the model\n\nYou can create text with the model using this code:\n\n\n\nHave fun theologizing!"
] | [
"TAGS\n#transformers #pytorch #gpt2 #text-generation #generated_from_trainer #de #license-mit #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"# feinschwarz\n\nThis model is a fine-tuned version of dbmdz/german-gpt2. The dataset was compiled from all texts of URL (as of October 2021). The homepage gathers essayistic texts on theological topics.\n\nThe model will be used to explore the challenges of text-generating AI for theology with a hands on approach. Can an AI generate theological knowledge? Is a text by Karl Rahner of more value than an AI-generated text? Can we even distinguish a Rahner text from an AI-generated text in the future? And the crucial question: Would it be bad if not?\n\nThe model is a very first attempt and in its current version certainly not yet a danger for academic theology",
"# Using the model\n\nYou can create text with the model using this code:\n\n\n\nHave fun theologizing!"
] | [
61,
163,
22
] | [
"passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #generated_from_trainer #de #license-mit #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# feinschwarz\n\nThis model is a fine-tuned version of dbmdz/german-gpt2. The dataset was compiled from all texts of URL (as of October 2021). The homepage gathers essayistic texts on theological topics.\n\nThe model will be used to explore the challenges of text-generating AI for theology with a hands on approach. Can an AI generate theological knowledge? Is a text by Karl Rahner of more value than an AI-generated text? Can we even distinguish a Rahner text from an AI-generated text in the future? And the crucial question: Would it be bad if not?\n\nThe model is a very first attempt and in its current version certainly not yet a danger for academic theology# Using the model\n\nYou can create text with the model using this code:\n\n\n\nHave fun theologizing!"
] | [
-0.03890291601419449,
0.11958906054496765,
-0.0016347708879038692,
0.08013974875211716,
0.06969325989484787,
0.045594338327646255,
0.1286362260580063,
0.056609202176332474,
0.13870061933994293,
0.0701238140463829,
0.14972174167633057,
-0.017883166670799255,
0.027465082705020905,
0.07995832711458206,
0.00791942048817873,
-0.1765880584716797,
0.03308968245983124,
-0.018419956788420677,
0.0820971429347992,
0.0700690969824791,
0.04720517620444298,
-0.06064651906490326,
0.08124147355556488,
-0.02691918984055519,
-0.05725301802158356,
-0.05261605978012085,
-0.13075514137744904,
0.02522154338657856,
0.07655250281095505,
0.007288062945008278,
0.0004861250054091215,
0.005687744822353125,
0.03504073992371559,
0.025223536416888237,
0.04599650204181671,
0.0066916607320308685,
-0.03654802218079567,
0.022857405245304108,
0.05349253490567207,
-0.0468599833548069,
0.2983520030975342,
0.12335997074842453,
-0.05788658186793327,
0.0189313106238842,
-0.1316458284854889,
0.03278109431266785,
-0.16615082323551178,
0.11841659247875214,
0.03158698230981827,
0.07416337728500366,
-0.0724947527050972,
0.048174597322940826,
-0.006086195353418589,
0.09200211614370346,
0.15591539442539215,
-0.22843344509601593,
-0.052411336451768875,
0.1470036655664444,
0.042951226234436035,
0.14451725780963898,
-0.050319649279117584,
0.10440794378519058,
0.09531181305646896,
0.09988341480493546,
0.008691495284438133,
0.031122352927923203,
0.14665041863918304,
-0.08789367228746414,
-0.2236243337392807,
-0.14275477826595306,
0.16351303458213806,
-0.036545444279909134,
-0.026187554001808167,
-0.07487071305513382,
0.005038408096879721,
0.017547577619552612,
0.07662292569875717,
-0.12327805161476135,
-0.07291233539581299,
-0.04534788802266121,
0.12287411838769913,
-0.11031284183263779,
-0.08505221456289291,
-0.030488725751638412,
-0.06395110487937927,
0.22026695311069489,
0.046150289475917816,
0.008463308215141296,
0.012526718899607658,
0.15634138882160187,
-0.12325040996074677,
-0.07984977960586548,
-0.07881315052509308,
-0.05162155628204346,
0.08645466715097427,
-0.018246056511998177,
-0.07759660482406616,
-0.0021155597642064095,
-0.04281408339738846,
0.048266395926475525,
0.04167436063289642,
-0.0417691133916378,
0.03999225050210953,
0.00845471303910017,
0.13020089268684387,
0.036979902535676956,
-0.06450951099395752,
-0.003882071003317833,
0.06593633443117142,
0.13103562593460083,
0.05139971897006035,
0.01312311738729477,
-0.1130092665553093,
-0.0728709027171135,
0.08964887261390686,
0.08414781093597412,
-0.01628105342388153,
0.06164016202092171,
0.020572109147906303,
-0.045037683099508286,
-0.0011598782148212194,
-0.055508263409137726,
-0.08541257679462433,
-0.02721879631280899,
0.021354973316192627,
-0.023641319945454597,
0.08884825557470322,
-0.04576528072357178,
-0.0747627466917038,
0.010164448991417885,
-0.012160070240497589,
-0.03954548016190529,
-0.09723065048456192,
-0.03808305785059929,
0.05371248722076416,
-0.07507685571908951,
-0.06907591223716736,
-0.08548100292682648,
-0.0696013867855072,
-0.03185589239001274,
0.004286146257072687,
-0.014057903550565243,
0.010048752650618553,
-0.02611272782087326,
-0.056478071957826614,
-0.09622720628976822,
0.010999824851751328,
-0.06223318353295326,
0.03527957201004028,
0.058680158108472824,
-0.007246203254908323,
0.07275786250829697,
-0.025061702355742455,
0.07659314572811127,
-0.10228663682937622,
0.02704625204205513,
-0.14000841975212097,
0.05398593470454216,
-0.0813385546207428,
-0.02527599409222603,
-0.018554000183939934,
-0.020292246714234352,
-0.0699056014418602,
0.055676184594631195,
0.0632287859916687,
0.18425233662128448,
-0.054214634001255035,
-0.008357908576726913,
0.1479903906583786,
-0.14205291867256165,
-0.24751609563827515,
0.21658311784267426,
-0.020967606455087662,
0.11376293748617172,
0.04675956442952156,
0.18045692145824432,
0.003103547263890505,
-0.08107496052980423,
-0.04162582382559776,
-0.017126556485891342,
0.008475339971482754,
0.15300002694129944,
0.06884633004665375,
0.009279806166887283,
-0.10194924473762512,
-0.011906854808330536,
-0.06773149967193604,
-0.07083563506603241,
-0.07742913067340851,
-0.05150607228279114,
-0.025485223159193993,
-0.0524182990193367,
0.027026990428566933,
-0.007514625322073698,
-0.00008663931657793,
0.010683384723961353,
-0.041165925562381744,
-0.10202164947986603,
0.07423724979162216,
-0.08903302252292633,
-0.04647253081202507,
-0.045336440205574036,
0.13238726556301117,
-0.09112925082445145,
0.04475165158510208,
-0.08080627024173737,
-0.07414226979017258,
0.0071629914455115795,
-0.02074730582535267,
0.21884943544864655,
0.06901998072862625,
0.048128433525562286,
0.1006237268447876,
-0.018493108451366425,
0.018248289823532104,
-0.024372532963752747,
-0.01673855260014534,
-0.16112680733203888,
-0.031183917075395584,
-0.04194115847349167,
-0.03128623217344284,
0.1175009161233902,
-0.20174303650856018,
0.04098743945360184,
-0.013664772734045982,
0.09744039177894592,
-0.06684225797653198,
-0.034931011497974396,
0.05496715009212494,
-0.0638960748910904,
-0.03888754919171333,
-0.038529809564352036,
0.006638680584728718,
-0.04832122102379799,
-0.10728378593921661,
-0.023487376049160957,
-0.13097739219665527,
0.08461572974920273,
0.09075774252414703,
-0.02390783093869686,
-0.09151782840490341,
-0.030504215508699417,
-0.06786840409040451,
0.02684495970606804,
-0.028006475418806076,
-0.03495658189058304,
0.1334201991558075,
-0.013042950071394444,
0.03307192772626877,
-0.0803891122341156,
-0.03447992354631424,
0.002186873462051153,
-0.07608011364936829,
-0.03537014499306679,
0.14221304655075073,
0.04815002530813217,
-0.23246878385543823,
0.08875148743391037,
0.20005491375923157,
-0.11676669865846634,
0.010431164875626564,
0.015954183414578438,
-0.06264417618513107,
-0.01894240267574787,
0.02417059615254402,
-0.027339810505509377,
0.0198032446205616,
-0.08621497452259064,
-0.009666073136031628,
0.05602844059467316,
0.008329718373715878,
0.05165042728185654,
-0.10093993693590164,
-0.00217426591552794,
0.003647052450105548,
0.00048676467849873006,
0.004124258179217577,
0.09364582598209381,
-0.08021044731140137,
0.12372436374425888,
-0.02514587715268135,
0.0007445962401106954,
0.034031305462121964,
0.0024331111926585436,
-0.09860184043645859,
0.12774433195590973,
0.07881724834442139,
-0.14817190170288086,
-0.04605172574520111,
0.11839334666728973,
-0.08568070083856583,
0.051809102296829224,
0.08189894258975983,
0.0019631567411124706,
-0.06481289118528366,
-0.07862256467342377,
0.04730362445116043,
-0.0682818591594696,
-0.07008195668458939,
-0.0828198716044426,
-0.1555253267288208,
-0.052120279520750046,
-0.06246392801403999,
-0.04167543351650238,
-0.04776398837566376,
-0.19889186322689056,
0.06295009702444077,
-0.10326843708753586,
0.1129617914557457,
0.05993563309311867,
-0.049570538103580475,
0.05051589757204056,
-0.0131343649700284,
0.21811401844024658,
-0.10698949545621872,
0.04069490358233452,
0.1794705092906952,
-0.03824777901172638,
0.0826120674610138,
-0.03407752513885498,
-0.02869231626391411,
-0.09001732617616653,
0.03981255367398262,
0.01985475793480873,
-0.06392802298069,
-0.21336807310581207,
-0.07833915203809738,
-0.016228443011641502,
-0.023314669728279114,
0.05064418166875839,
0.01884780451655388,
0.10473570972681046,
0.14834748208522797,
-0.14708398282527924,
0.06533978134393692,
-0.037903446704149246,
0.07689370214939117,
0.0843682587146759,
0.005318771582096815,
0.09995636343955994,
-0.07752213627099991,
-0.04630008712410927,
0.07482141256332397,
0.05405354127287865,
0.24509261548519135,
-0.009693946689367294,
0.020756447687745094,
0.141938716173172,
0.16539157927036285,
-0.017597807571291924,
-0.026801100000739098,
-0.03776855766773224,
0.03129350021481514,
-0.099448561668396,
-0.0739823579788208,
-0.06357809901237488,
0.08039671182632446,
-0.09551984816789627,
-0.05834369733929634,
-0.09434188902378082,
0.02070261538028717,
0.05575449392199516,
0.15546999871730804,
-0.01908302679657936,
-0.17842406034469604,
-0.13239459693431854,
0.0038289609365165234,
0.0274689681828022,
-0.029792137444019318,
0.0871683657169342,
-0.014436163008213043,
-0.1166696697473526,
0.016153177246451378,
-0.022940363734960556,
0.08948731422424316,
-0.035046860575675964,
0.040636856108903885,
-0.08647462725639343,
-0.010976044461131096,
-0.023526450619101524,
0.15674376487731934,
-0.30441996455192566,
0.20712564885616302,
-0.011566578410565853,
0.03711993992328644,
-0.12058745324611664,
-0.07826954871416092,
0.11913749575614929,
0.18281888961791992,
0.10523656010627747,
-0.0002955966047011316,
0.1030818298459053,
0.014727613888680935,
0.02712823450565338,
0.020238740369677544,
0.09145919233560562,
-0.08243278414011002,
0.08474524319171906,
-0.02060995250940323,
0.05802248418331146,
-0.04155859723687172,
0.08708908408880234,
-0.10021983832120895,
-0.04764743149280548,
0.1340060532093048,
-0.016795553267002106,
0.042155519127845764,
-0.006236810702830553,
-0.12489738315343857,
-0.08976628631353378,
0.11493920534849167,
0.0019583136308938265,
-0.026822732761502266,
-0.04536023736000061,
-0.0065572625026106834,
0.029599523171782494,
-0.08228256553411484,
-0.03794484585523605,
-0.07671014219522476,
0.017966195940971375,
-0.05872705206274986,
-0.061555128544569016,
0.08394508063793182,
-0.10396387428045273,
-0.1592685431241989,
0.027432266622781754,
0.11836977303028107,
0.09909973293542862,
0.04120444878935814,
0.024886218830943108,
-0.013073500245809555,
-0.0382782407104969,
-0.12986664474010468,
0.07039212435483932,
0.11083730310201645,
-0.026246661320328712,
0.07193311303853989,
-0.026642750948667526,
-0.04919971525669098,
-0.0889376625418663,
-0.03589869663119316,
0.02013866789638996,
0.18895509839057922,
-0.03171917796134949,
0.0007379791932180524,
0.21784211695194244,
-0.06689712405204773,
-0.31400129199028015,
-0.0726935938000679,
-0.0384516641497612,
0.028337884694337845,
0.025697631761431694,
-0.08682511746883392,
0.09731464087963104,
0.07449252903461456,
-0.07383881509304047,
-0.007897299714386463,
-0.209866464138031,
-0.08765126764774323,
0.11810199171304703,
0.09631505608558655,
0.060621485114097595,
-0.14150673151016235,
-0.03350255638360977,
0.06465049833059311,
-0.06987979263067245,
0.12350015342235565,
-0.15031127631664276,
0.11766010522842407,
0.008468344807624817,
0.17412489652633667,
0.032389529049396515,
-0.027815720066428185,
0.07390175759792328,
0.018318401649594307,
0.02275782637298107,
-0.11182605475187302,
-0.05171472206711769,
0.10688354074954987,
-0.047600436955690384,
0.17316845059394836,
-0.04629269614815712,
0.07531820237636566,
-0.08982645720243454,
-0.05276628956198692,
-0.042048435658216476,
0.08317646384239197,
-0.01930944062769413,
-0.0729844719171524,
-0.10882727056741714,
0.03702087327837944,
0.00021193278371356428,
0.06772804260253906,
-0.005661734379827976,
-0.06779234856367111,
0.04043940454721451,
0.04913506656885147,
0.21261842548847198,
0.03538353741168976,
0.11713576316833496,
-0.07358013093471527,
-0.03477292135357857,
0.07377898693084717,
-0.06927022337913513,
0.013822995126247406,
0.14380697906017303,
0.017808901146054268,
0.08519212901592255,
0.03106749802827835,
-0.08353105187416077,
0.052602723240852356,
-0.03051595948636532,
-0.2102707475423813,
-0.3212815821170807,
-0.04652427136898041,
0.044023528695106506,
-0.10198704898357391,
0.21640585362911224,
0.13734905421733856,
-0.0916815921664238,
-0.023512132465839386,
-0.049770139157772064,
0.023719655349850655,
0.002524284878745675,
-0.01671919971704483,
0.004051469266414642,
-0.004642045125365257,
-0.03510042652487755,
0.054987698793411255,
0.05038798227906227,
-0.06946749240159988,
0.10217069089412689,
0.10558264702558517,
-0.050669603049755096,
-0.101810984313488,
-0.15542593598365784,
0.05786963552236557,
-0.15313217043876648,
0.012759779579937458,
0.06367189437150955,
-0.04743019863963127,
-0.02957358956336975,
0.09562744200229645,
0.07037737965583801,
-0.054028674960136414,
-0.06135019287467003,
0.06154532730579376,
-0.06297711282968521,
0.05915367975831032,
0.08864298462867737,
0.007471416611224413,
-0.028985848650336266,
0.12397933006286621,
-0.019618287682533264,
0.049854934215545654,
-0.08324535936117172,
-0.08071694523096085,
-0.03473399579524994,
-0.0401834137737751,
-0.10503121465444565,
-0.014083616435527802,
-0.028434909880161285,
0.01148675475269556,
-0.022248663008213043,
-0.13002757728099823,
0.02220483124256134,
0.06188848987221718,
-0.06705834716558456,
0.04657965525984764,
0.0019630587194114923,
0.1017366424202919,
-0.08720061928033829,
0.0016781099839136004,
0.043109845370054245,
-0.0018429062329232693,
0.14354382455348969,
0.06512036919593811,
-0.05866784602403641,
-0.03274849057197571,
-0.16779986023902893,
0.045416105538606644,
-0.04892420023679733,
0.06698194891214371,
-0.06462612748146057,
0.00954956840723753,
-0.02001376450061798,
0.02255396358668804,
0.03632272779941559,
0.047432754188776016,
0.030833490192890167,
-0.019391976296901703,
-0.034341081976890564,
0.06511691212654114,
-0.043162040412425995,
-0.07365597039461136,
0.057614658027887344,
-0.04793384298682213,
0.05053046718239784,
0.043504346162080765,
-0.032181572169065475,
0.031128952279686928,
-0.10086347162723541,
0.031932707875967026,
0.0008297530584968626,
-0.08276626467704773,
-0.23626364767551422,
-0.10878803580999374,
0.03835543245077133,
0.03817591443657875,
0.10321400314569473,
-0.004316433798521757,
-0.027706706896424294,
-0.009342680685222149,
0.06779048591852188,
0.10204519331455231,
-0.08816738426685333,
0.03104144148528576,
0.010746154934167862,
-0.038167569786310196,
-0.1230178028345108,
0.010158493183553219,
-0.10496395826339722,
-0.06454057991504669,
0.16951368749141693,
0.06086554005742073,
-0.05419274792075157,
-0.012208512984216213,
0.008039072155952454,
0.010704860091209412,
-0.1352681964635849,
-0.13236725330352783,
0.09414304792881012,
0.050802335143089294,
-0.06199027597904205,
0.12063484638929367,
0.12828324735164642,
-0.029144715517759323,
0.02686523087322712,
-0.09686625748872757,
-0.02199721336364746,
-0.03718418627977371,
-0.22162462770938873,
-0.017812779173254967,
0.003339435439556837,
0.016989806666970253,
-0.09034658223390579,
0.060201939195394516,
0.04919285699725151,
0.051856424659490585,
-0.1477968990802765,
0.22679057717323303,
-0.09510021656751633,
-0.03270573914051056,
0.05363933742046356,
-0.07085926085710526,
0.09475114196538925,
-0.0651608258485794,
-0.026815207675099373,
0.058569107204675674,
0.010520469397306442,
0.043884068727493286,
0.04294547811150551,
0.015311275608837605,
-0.04182278364896774,
-0.07778029143810272,
-0.06665213406085968,
-0.05461984500288963,
0.06400720775127411,
0.1015009954571724,
0.15685389935970306,
-0.017250508069992065,
-0.053908031433820724,
0.01766299270093441,
0.11656666547060013,
-0.007161944173276424,
-0.020878920331597328,
0.00026888740831054747,
0.37801656126976013,
-0.03822724148631096,
-0.010875883512198925,
0.005990048870444298,
-0.0035715335980057716,
0.045107290148735046,
0.16812041401863098,
0.1486309915781021,
-0.16386939585208893,
-0.051456112414598465,
-0.013948165811598301,
0.03538457304239273,
0.024972110986709595,
0.01886146515607834,
0.027902254834771156,
0.20933610200881958,
-0.07012949883937836,
0.17459386587142944,
-0.026178879663348198,
-0.004879546817392111,
0.008882232010364532,
0.015702657401561737,
0.0020423477981239557,
-0.013699252158403397,
-0.02448767051100731,
0.07043906301259995,
-0.01881076768040657,
-0.17792557179927826,
-0.18440558016300201,
-0.0331355519592762,
-0.09837809205055237,
-0.00042403899715282023,
-0.0762314721941948,
0.07260962575674057,
0.09254184365272522,
-0.04489742964506149,
0.033062174916267395,
0.09788723289966583,
0.010736861266195774,
-0.02514328993856907,
0.05380843207240105,
0.11464947462081909,
-0.09727925807237625,
0.19944171607494354,
0.023756753653287888,
0.12045717984437943,
0.07599873095750809,
-0.04782508313655853,
-0.061663102358579636,
0.03226076066493988,
0.055834442377090454,
-0.009598216973245144,
0.009027388878166676,
0.09769516438245773,
0.0173044316470623,
-0.032602518796920776,
0.10948729515075684,
-0.1638137400150299,
0.023189375177025795,
0.054703690111637115,
-0.08230613172054291,
-0.0004733102396130562,
0.08400687575340271,
-0.03354969993233681,
0.12526187300682068,
0.17284172773361206,
-0.03642476350069046,
-0.011590179987251759,
-0.05092315375804901,
0.045710913836956024,
0.0677303820848465,
-0.031953584402799606,
0.08236975222826004,
-0.12525928020477295,
-0.015124152414500713,
-0.025482814759016037,
-0.023436129093170166,
-0.24373769760131836,
-0.04073348268866539,
-0.08875711262226105,
0.09417904913425446,
-0.06483294814825058,
0.039699655026197433,
0.10402675718069077,
-0.02856920287013054,
0.017068590968847275,
-0.05649976059794426,
-0.08174742758274078,
0.054094698280096054,
-0.08008760958909988,
-0.047290366142988205
] |
null | null | transformers |
# Harry Potter DialoGPT Model | {"tags": ["conversational"]} | text-generation | MichaelTheLearner/DialoGPT-medium-harry | [
"transformers",
"pytorch",
"gpt2",
"text-generation",
"conversational",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [] | TAGS
#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
# Harry Potter DialoGPT Model | [
"# Harry Potter DialoGPT Model"
] | [
"TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"# Harry Potter DialoGPT Model"
] | [
51,
8
] | [
"passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# Harry Potter DialoGPT Model"
] | [
-0.0009023238671943545,
0.07815738022327423,
-0.006546166725456715,
0.07792752981185913,
0.10655936598777771,
0.048972971737384796,
0.17639793455600739,
0.12185695022344589,
0.016568755730986595,
-0.04774167761206627,
0.11647630482912064,
0.2130284160375595,
-0.002118367003276944,
0.024608047679066658,
-0.05022026598453522,
-0.3065771162509918,
0.0474756620824337,
0.014356585219502449,
-0.07174845039844513,
0.11724270135164261,
0.09064973145723343,
-0.046179238706827164,
0.08330509811639786,
-0.009135239757597446,
-0.13198648393154144,
-0.039482954889535904,
0.019292812794446945,
-0.11745545268058777,
0.1662212759256363,
0.05298272892832756,
0.02469746209681034,
-0.008447164669632912,
-0.06598151475191116,
-0.15036040544509888,
0.037190426141023636,
-0.027472136542201042,
-0.01080626156181097,
0.05462246760725975,
0.023526115342974663,
-0.07521048933267593,
0.170567125082016,
0.17678891122341156,
0.0833497866988182,
0.0349111407995224,
-0.14917024970054626,
-0.045548245310783386,
0.008950977586209774,
0.05421316996216774,
-0.017893504351377487,
0.09349167346954346,
-0.019903047010302544,
0.11801653355360031,
-0.04491448402404785,
0.09210366010665894,
0.15255063772201538,
-0.4016275703907013,
-0.027563704177737236,
0.08920855820178986,
0.05989706888794899,
0.12076901644468307,
-0.10560955852270126,
0.03972794860601425,
-0.0039703017100691795,
0.01236654631793499,
-0.014540530741214752,
-0.08304883539676666,
-0.07308239489793777,
0.032504837960004807,
-0.1272556483745575,
0.008525865152478218,
0.23756256699562073,
-0.10643257945775986,
0.037069112062454224,
-0.09791990369558334,
-0.07414398342370987,
0.048336777836084366,
-0.053761593997478485,
-0.081727035343647,
-0.054839808493852615,
0.06347949057817459,
0.004366500303149223,
-0.06301609426736832,
-0.08326146006584167,
-0.0006536149303428829,
-0.12781435251235962,
0.17595994472503662,
0.061243366450071335,
0.041611745953559875,
-0.21322020888328552,
0.08940251916646957,
0.04477722570300102,
-0.04711297154426575,
0.007116159424185753,
-0.11796226352453232,
0.04023287072777748,
0.005483259446918964,
-0.03256071358919144,
-0.021854614838957787,
0.0393419973552227,
0.13909944891929626,
-0.01777748204767704,
0.03252175822854042,
0.006831915583461523,
0.05811219662427902,
0.08162496984004974,
0.02222144603729248,
0.019291909411549568,
-0.0818009302020073,
0.019385190680623055,
-0.08128736168146133,
-0.0030400939285755157,
-0.048940129578113556,
-0.17071883380413055,
-0.07477642595767975,
0.052610911428928375,
0.020047198981046677,
0.03746970370411873,
0.08054786175489426,
-0.0017944995779544115,
-0.05560554191470146,
0.03284840285778046,
0.01671096310019493,
-0.020622212439775467,
-0.010361049324274063,
-0.02412462793290615,
0.19123271107673645,
0.019619356840848923,
0.014111656695604324,
-0.12379156798124313,
0.10023640841245651,
-0.08179095387458801,
0.0037731381598860025,
0.02743307314813137,
-0.04204464703798294,
-0.004716555587947369,
0.02917117439210415,
0.023101668804883957,
-0.1252521574497223,
-0.1099385917186737,
-0.0030569476075470448,
-0.012054097838699818,
-0.036421261727809906,
-0.10490952432155609,
-0.08483029156923294,
-0.012153145857155323,
0.0449371263384819,
-0.013397793285548687,
0.007936403155326843,
-0.05143149942159653,
0.0985720232129097,
-0.0514979362487793,
0.09873400628566742,
-0.08342572301626205,
0.06359215080738068,
-0.09124887734651566,
-0.061886150389909744,
-0.11452563107013702,
0.05216052383184433,
0.012905281968414783,
0.066250741481781,
0.016998225823044777,
-0.044836658984422684,
-0.014836243353784084,
0.05253177136182785,
-0.07656687498092651,
0.1940697431564331,
-0.041674621403217316,
-0.12459053844213486,
0.24146439135074615,
-0.09138800948858261,
-0.1802034229040146,
0.12973085045814514,
-0.022254703566432,
0.08523941785097122,
0.12802475690841675,
0.20380465686321259,
-0.00019822151807602495,
-0.01302915159612894,
0.07281201332807541,
0.07031642645597458,
-0.09803894907236099,
0.06239739805459976,
0.029653839766979218,
-0.008071083575487137,
-0.08906278014183044,
0.05762826278805733,
0.046033453196287155,
-0.010650773532688618,
-0.035073768347501755,
-0.001896020956337452,
-0.012895751744508743,
-0.022185025736689568,
0.14126582443714142,
-0.02006692811846733,
0.1300428807735443,
-0.06926563382148743,
-0.03515486419200897,
-0.009500149637460709,
0.03533667325973511,
-0.04091939330101013,
0.08151165395975113,
-0.0436173714697361,
0.10586477071046829,
0.09034156054258347,
0.053724925965070724,
-0.13120363652706146,
0.00466286763548851,
-0.015246815048158169,
0.17014820873737335,
0.08964069187641144,
0.05222717300057411,
0.06265474855899811,
-0.0020888058934360743,
-0.06708643585443497,
0.045407816767692566,
0.13778303563594818,
-0.037020038813352585,
-0.12218865007162094,
-0.1755627691745758,
0.051157694309949875,
-0.045444171875715256,
0.10855234414339066,
-0.10010123997926712,
0.022670533508062363,
-0.055906031280756,
0.07772238552570343,
-0.024998966604471207,
0.020512236282229424,
-0.0013405600329861045,
-0.021700702607631683,
-0.08356887847185135,
-0.002377772703766823,
0.08597290515899658,
-0.02048647589981556,
-0.06707409024238586,
0.16556480526924133,
-0.16400809586048126,
0.1631954461336136,
0.2116095870733261,
-0.28542569279670715,
-0.005696662236005068,
-0.15163889527320862,
-0.0208092350512743,
0.019645055755972862,
0.07834604382514954,
0.026225795969367027,
0.2044338881969452,
-0.012928472831845284,
0.16565458476543427,
-0.05699567869305611,
-0.07730039209127426,
-0.06881127506494522,
-0.048101142048835754,
0.013522743247449398,
0.09095205366611481,
0.04542696103453636,
-0.11962861567735672,
0.13119758665561676,
0.1054433062672615,
0.06484298408031464,
0.12711186707019806,
0.1030748188495636,
-0.008113685995340347,
0.07252490520477295,
-0.03624548763036728,
-0.03462279960513115,
-0.09254947304725647,
-0.30446043610572815,
-0.04840317741036415,
0.0939924493432045,
0.007963384501636028,
0.09285714477300644,
-0.0919896736741066,
-0.03311870992183685,
0.006042704917490482,
0.009473444893956184,
0.028337622061371803,
0.09653715789318085,
0.013490920886397362,
0.15320514142513275,
-0.008011690340936184,
-0.03430786728858948,
0.05891305208206177,
0.017982570454478264,
-0.09147711098194122,
0.17280617356300354,
-0.17050009965896606,
-0.27190929651260376,
-0.06990014761686325,
-0.21745692193508148,
-0.013139115646481514,
0.05258983001112938,
0.0786920040845871,
-0.11818131804466248,
-0.018352627754211426,
-0.006239492911845446,
0.05685517191886902,
-0.2425733357667923,
0.0004911290016025305,
-0.1354890614748001,
0.0501418262720108,
-0.1974833607673645,
-0.09718500077724457,
-0.02271542325615883,
-0.013450481928884983,
-0.0464281290769577,
0.13365240395069122,
-0.1448695808649063,
-0.011572926305234432,
0.2329535037279129,
0.032479673624038696,
0.027794739231467247,
-0.05020907148718834,
0.19788463413715363,
-0.0958966314792633,
-0.023973820731043816,
0.11024576425552368,
-0.05038975924253464,
0.04834126681089401,
0.06649978458881378,
-0.012981836684048176,
-0.08557141572237015,
0.023789849132299423,
-0.068336620926857,
-0.03150583803653717,
-0.27926525473594666,
-0.0930178239941597,
-0.09319330751895905,
0.11305391043424606,
0.04079577326774597,
0.06421639025211334,
0.16545771062374115,
0.05191578343510628,
-0.024325082078576088,
-0.03006586618721485,
0.11609793454408646,
0.12905290722846985,
0.2277202159166336,
-0.06067761778831482,
0.10221996158361435,
0.009445492178201675,
-0.08203992247581482,
0.06062209978699684,
0.056782789528369904,
0.06324724853038788,
0.02584579586982727,
0.03694582358002663,
-0.030939655378460884,
0.1121687963604927,
0.12571842968463898,
0.05258069559931755,
0.0481170229613781,
0.0002127334737451747,
-0.0561506561934948,
-0.008168719708919525,
-0.05726633965969086,
0.06774696707725525,
0.061340972781181335,
-0.12918008863925934,
-0.08061543852090836,
0.0011613310780376196,
0.06660808622837067,
-0.016230419278144836,
0.06823775917291641,
-0.13560809195041656,
-0.03582429885864258,
0.0790911465883255,
-0.07693151384592056,
-0.14156894385814667,
0.11972879618406296,
-0.026570770889520645,
-0.19904157519340515,
0.05265914276242256,
0.007704653777182102,
0.0908159390091896,
-0.06360849738121033,
0.05343840271234512,
-0.13023801147937775,
-0.12935101985931396,
-0.018437571823596954,
0.07945099472999573,
-0.3450873792171478,
0.13536721467971802,
-0.013286802917718887,
-0.02876877970993519,
-0.06474969536066055,
-0.02640824392437935,
0.013905409723520279,
0.12719078361988068,
0.08667250722646713,
0.0008821099763736129,
0.0991629809141159,
0.03823768347501755,
0.04188435152173042,
-0.002011700300499797,
0.10950417071580887,
0.0050011589191854,
0.004797275178134441,
-0.04982118681073189,
0.007274609990417957,
-0.05164213851094246,
-0.07472953200340271,
0.08393982797861099,
-0.20678792893886566,
0.09087453782558441,
-0.03378438204526901,
0.08427679538726807,
0.04304937273263931,
-0.018965769559144974,
-0.1001204177737236,
0.19745583832263947,
-0.012206900864839554,
-0.11405988782644272,
-0.07517550885677338,
-0.02810264565050602,
0.09103139489889145,
-0.013817726634442806,
0.012886416167020798,
-0.045470476150512695,
0.032183047384023666,
-0.1263762265443802,
-0.1597503274679184,
0.08734500408172607,
-0.04441224783658981,
-0.10894393920898438,
-0.025462759658694267,
0.20382575690746307,
-0.007266622502356768,
0.08242089301347733,
0.01605331338942051,
0.010653935372829437,
-0.18066231906414032,
-0.04018142446875572,
0.02645772136747837,
-0.0016437612939625978,
0.005979063920676708,
0.047698814421892166,
0.019091911613941193,
0.06207629665732384,
-0.1069745197892189,
-0.013920160941779613,
0.3158324360847473,
0.15978319942951202,
-0.00912671908736229,
0.14943915605545044,
0.1093616932630539,
-0.08669080585241318,
-0.17238758504390717,
-0.1171615794301033,
-0.1210922971367836,
-0.08425768464803696,
-0.10681738704442978,
-0.1525043100118637,
0.09535340964794159,
-0.03392014652490616,
0.03498011827468872,
0.14615866541862488,
-0.280263751745224,
-0.10949636250734329,
0.13820378482341766,
0.010744688101112843,
0.3510635495185852,
-0.12303631007671356,
-0.044944874942302704,
-0.06214528530836105,
-0.16933435201644897,
0.08021392673254013,
-0.031203703954815865,
0.11581093072891235,
-0.0744495838880539,
0.19395925104618073,
0.01719796098768711,
0.014287159778177738,
0.0916559100151062,
0.05038322135806084,
-0.05808406323194504,
-0.07368700206279755,
-0.10248131304979324,
0.010812131687998772,
0.03546109423041344,
0.010252019390463829,
-0.008802837692201138,
0.0211968794465065,
-0.11341743916273117,
-0.050869911909103394,
-0.06302189081907272,
0.0072614275850355625,
-0.01001308299601078,
-0.042155615985393524,
-0.05533592775464058,
-0.022557416930794716,
-0.020093943923711777,
0.02266426384449005,
0.14185629785060883,
-0.07527699321508408,
0.18586260080337524,
0.02357078716158867,
0.1586609035730362,
-0.11956068128347397,
-0.06724818795919418,
-0.029193658381700516,
-0.05280323326587677,
0.06468886137008667,
-0.08884575963020325,
-0.027708567678928375,
0.1332162618637085,
-0.01903904788196087,
0.04655366763472557,
0.12936700880527496,
0.02046884410083294,
0.015383756719529629,
0.034968774765729904,
-0.2578005790710449,
-0.07463036477565765,
-0.03505445644259453,
-0.012416874058544636,
0.05272092670202255,
0.05525677278637886,
0.19735674560070038,
-0.03551921248435974,
-0.08521962910890579,
0.020131373777985573,
0.02735883742570877,
-0.02776256389915943,
0.10749414563179016,
0.019579345360398293,
-0.004837906453758478,
-0.16151933372020721,
0.08257976174354553,
-0.005964108742773533,
-0.08297000825405121,
0.028665626421570778,
0.2024049311876297,
-0.12141239643096924,
-0.10309756547212601,
-0.06804922968149185,
0.07315051555633545,
-0.09220825880765915,
0.016043387353420258,
-0.005091092549264431,
-0.1521538347005844,
0.06916408240795135,
0.07598215341567993,
0.04075418785214424,
0.06513199955224991,
-0.11743064224720001,
-0.015730571001768112,
-0.04170290008187294,
-0.002195435343310237,
0.03521120920777321,
0.01863143965601921,
-0.057492829859256744,
0.15846455097198486,
-0.0676199421286583,
0.08538917452096939,
-0.0744810476899147,
-0.1058846190571785,
-0.1395980566740036,
0.04660497233271599,
-0.08038312196731567,
-0.07247276604175568,
-0.12832807004451752,
-0.052204377949237823,
-0.0067099276930093765,
-0.03388519585132599,
0.006552806124091148,
-0.06627799570560455,
-0.10922821611166,
0.01822470687329769,
-0.00743203004822135,
-0.009385870769619942,
-0.06096754968166351,
0.026706209406256676,
0.06246216222643852,
-0.039788868278265,
0.15730851888656616,
0.22509248554706573,
-0.13591648638248444,
0.11564400047063828,
-0.09797432273626328,
-0.105463907122612,
0.046008042991161346,
0.009427277371287346,
0.03594303876161575,
0.0503489226102829,
-0.03594081476330757,
0.0044484552927315235,
0.03905477747321129,
0.08074651658535004,
0.08456914126873016,
-0.06776505708694458,
0.020801106467843056,
-0.05122765153646469,
-0.14904099702835083,
-0.016655439510941505,
-0.0464773029088974,
0.06876829266548157,
-0.006725262850522995,
0.11020535975694656,
-0.0515950471162796,
0.07739507406949997,
-0.07558431476354599,
0.050614211708307266,
0.021146971732378006,
-0.14688286185264587,
-0.006612539757043123,
-0.07093682140111923,
0.042144812643527985,
-0.008834975771605968,
0.20241086184978485,
-0.03228091076016426,
0.010342049412429333,
0.033811055123806,
0.06203942745923996,
-0.01957780309021473,
0.009357001632452011,
0.2014283686876297,
0.12640917301177979,
-0.08496357500553131,
-0.02679651789367199,
0.06793134659528732,
0.07248228788375854,
0.07093550264835358,
0.10807815194129944,
-0.015352966263890266,
0.028434239327907562,
0.07829629629850388,
-0.060215238481760025,
0.07576877623796463,
-0.08603982627391815,
-0.11668483167886734,
0.05793621391057968,
0.012955795042216778,
-0.055695828050374985,
0.20305177569389343,
0.19142870604991913,
-0.026278704404830933,
0.018410727381706238,
-0.0029499190859496593,
-0.10117456316947937,
-0.15619947016239166,
-0.05423750728368759,
-0.07170962542295456,
-0.1319410353899002,
-0.004549739416688681,
-0.16646917164325714,
0.022016216069459915,
-0.01132756657898426,
0.09506805986166,
-0.06855440139770508,
-0.01345991250127554,
0.1364889293909073,
-0.1055467277765274,
0.0847758799791336,
-0.024517204612493515,
0.07877567410469055,
-0.03746940940618515,
-0.018209461122751236,
-0.10342709720134735,
0.007514837197959423,
0.01131442841142416,
0.06840907037258148,
-0.10897937417030334,
0.02432350255548954,
-0.12208317965269089,
-0.08617185056209564,
-0.026142612099647522,
0.09279687702655792,
-0.0403008833527565,
0.15116846561431885,
0.02645145356655121,
-0.06710928678512573,
-0.004313822835683823,
0.2646709978580475,
-0.08046227693557739,
-0.08319197595119476,
-0.030799202620983124,
0.2152107208967209,
0.04053696244955063,
0.06396269053220749,
0.019140036776661873,
0.038027774542570114,
-0.07184682041406631,
0.2957373559474945,
0.34401440620422363,
-0.1318037211894989,
-0.007773484103381634,
0.04225075617432594,
0.04406323283910751,
0.14687567949295044,
0.07998795062303543,
0.11360671371221542,
0.2849363386631012,
-0.09197647124528885,
0.016657205298542976,
-0.04230864346027374,
-0.01424806285649538,
-0.06908884644508362,
0.045314885675907135,
0.08216670155525208,
-0.09241747111082077,
-0.022950593382120132,
0.08125471323728561,
-0.29741767048835754,
0.10791494697332382,
-0.15600289404392242,
-0.14948409795761108,
-0.05027429759502411,
-0.008771711029112339,
0.014683255925774574,
0.019041186198592186,
0.09663030505180359,
0.025651484727859497,
-0.07275258749723434,
0.07816889137029648,
0.024486342445015907,
-0.23020237684249878,
-0.01345184724777937,
0.1456068754196167,
-0.06789913028478622,
-0.025938833132386208,
-0.021313713863492012,
0.051610056310892105,
0.05763651058077812,
0.09027529507875443,
-0.03809558227658272,
-0.0746568813920021,
-0.007141788024455309,
-0.022818787023425102,
0.01914946548640728,
0.0597183033823967,
0.06841408461332321,
-0.0920223817229271,
0.1167774423956871,
-0.07350476831197739,
0.0650370642542839,
0.037623800337314606,
-0.022277191281318665,
0.0018526542698964477,
0.013183658011257648,
-0.06512464582920074,
0.05533479526638985,
0.1295643299818039,
-0.025459708645939827,
-0.002524374984204769,
-0.028180841356515884,
-0.0767761766910553,
-0.024015206843614578,
-0.04643676429986954,
-0.09101243317127228,
-0.18130090832710266,
-0.12738600373268127,
0.041754670441150665,
-0.03240608796477318,
-0.2046082615852356,
0.0060346988029778,
-0.1128578633069992,
0.03700976446270943,
-0.14154092967510223,
0.10004086047410965,
0.07216610759496689,
0.004716616589576006,
0.006774604320526123,
0.0675399899482727,
0.045677728950977325,
0.14796748757362366,
-0.16543124616146088,
-0.04919974133372307
] |
null | null | transformers | ## About the model
The model has been trained on a collection of 500k articles with headings. Its purpose is to create a one-line heading suitable for the given article.
Sample code with a WikiNews article:
```python
import torch
from transformers import T5ForConditionalGeneration,T5Tokenizer
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = T5ForConditionalGeneration.from_pretrained("Michau/t5-base-en-generate-headline")
tokenizer = T5Tokenizer.from_pretrained("Michau/t5-base-en-generate-headline")
model = model.to(device)
article = '''
Very early yesterday morning, the United States President Donald Trump reported he and his wife First Lady Melania Trump tested positive for COVID-19. Officials said the Trumps' 14-year-old son Barron tested negative as did First Family and Senior Advisors Jared Kushner and Ivanka Trump.
Trump took to social media, posting at 12:54 am local time (0454 UTC) on Twitter, "Tonight, [Melania] and I tested positive for COVID-19. We will begin our quarantine and recovery process immediately. We will get through this TOGETHER!" Yesterday afternoon Marine One landed on the White House's South Lawn flying Trump to Walter Reed National Military Medical Center (WRNMMC) in Bethesda, Maryland.
Reports said both were showing "mild symptoms". Senior administration officials were tested as people were informed of the positive test. Senior advisor Hope Hicks had tested positive on Thursday.
Presidential physician Sean Conley issued a statement saying Trump has been given zinc, vitamin D, Pepcid and a daily Aspirin. Conley also gave a single dose of the experimental polyclonal antibodies drug from Regeneron Pharmaceuticals.
According to official statements, Trump, now operating from the WRNMMC, is to continue performing his duties as president during a 14-day quarantine. In the event of Trump becoming incapacitated, Vice President Mike Pence could take over the duties of president via the 25th Amendment of the US Constitution. The Pence family all tested negative as of yesterday and there were no changes regarding Pence's campaign events.
'''
text = "headline: " + article
max_len = 256
encoding = tokenizer.encode_plus(text, return_tensors = "pt")
input_ids = encoding["input_ids"].to(device)
attention_masks = encoding["attention_mask"].to(device)
beam_outputs = model.generate(
input_ids = input_ids,
attention_mask = attention_masks,
max_length = 64,
num_beams = 3,
early_stopping = True,
)
result = tokenizer.decode(beam_outputs[0])
print(result)
```
Result:
```Trump and First Lady Melania Test Positive for COVID-19```
| {} | text2text-generation | Michau/t5-base-en-generate-headline | [
"transformers",
"pytorch",
"tf",
"jax",
"t5",
"text2text-generation",
"autotrain_compatible",
"endpoints_compatible",
"has_space",
"text-generation-inference",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [] | TAGS
#transformers #pytorch #tf #jax #t5 #text2text-generation #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us
| ## About the model
The model has been trained on a collection of 500k articles with headings. Its purpose is to create a one-line heading suitable for the given article.
Sample code with a WikiNews article:
Result:
| [
"## About the model\n\nThe model has been trained on a collection of 500k articles with headings. Its purpose is to create a one-line heading suitable for the given article.\n\nSample code with a WikiNews article:\n\n\n\nResult:"
] | [
"TAGS\n#transformers #pytorch #tf #jax #t5 #text2text-generation #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us \n",
"## About the model\n\nThe model has been trained on a collection of 500k articles with headings. Its purpose is to create a one-line heading suitable for the given article.\n\nSample code with a WikiNews article:\n\n\n\nResult:"
] | [
58,
50
] | [
"passage: TAGS\n#transformers #pytorch #tf #jax #t5 #text2text-generation #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us \n## About the model\n\nThe model has been trained on a collection of 500k articles with headings. Its purpose is to create a one-line heading suitable for the given article.\n\nSample code with a WikiNews article:\n\n\n\nResult:"
] | [
0.009566371329128742,
-0.03402157500386238,
-0.0011101050768047571,
0.002562953857704997,
0.11693409830331802,
0.04109892249107361,
0.17172931134700775,
0.07209879159927368,
0.0282570980489254,
-0.030447976663708687,
0.2220216691493988,
0.14053303003311157,
-0.00477921636775136,
0.15015628933906555,
-0.04335939511656761,
-0.2813583314418793,
0.05203967168927193,
0.04542301222681999,
0.025976767763495445,
0.11166840046644211,
0.11779218167066574,
-0.07240160554647446,
0.0672663226723671,
0.01160481758415699,
-0.18659530580043793,
0.04210321977734566,
0.032465435564517975,
-0.08686960488557816,
0.08938036859035492,
0.06025243550539017,
0.14050130546092987,
0.034230757504701614,
0.04687314108014107,
-0.11748987436294556,
0.0415765605866909,
0.04009265452623367,
-0.05387622117996216,
0.08958037942647934,
0.03441455587744713,
0.019031023606657982,
0.21990637481212616,
-0.007269705645740032,
0.018873414024710655,
0.03635892644524574,
-0.11992660909891129,
0.058388132601976395,
0.003948681987822056,
0.1222662553191185,
0.053139958530664444,
0.0876489132642746,
-0.007683662232011557,
0.07898298650979996,
-0.08309205621480942,
0.10247025638818741,
0.11577875912189484,
-0.3084980547428131,
-0.03813433647155762,
0.11727993190288544,
0.020418701693415642,
0.024561377242207527,
-0.005426016636192799,
0.08623846620321274,
0.0716228038072586,
0.011554569937288761,
0.039291031658649445,
-0.07517398148775101,
-0.1788615733385086,
0.003006132785230875,
-0.10825084149837494,
-0.07909316569566727,
0.2998611032962799,
0.021617740392684937,
0.026449427008628845,
-0.040165845304727554,
-0.08567235618829727,
-0.020313406363129616,
-0.014117913320660591,
-0.038966529071331024,
-0.049280207604169846,
0.03980221599340439,
0.11583522707223892,
-0.06675489246845245,
-0.12337204068899155,
-0.03662924841046333,
-0.19195011258125305,
0.18152734637260437,
-0.02624264545738697,
0.10454771667718887,
-0.21508750319480896,
0.12833097577095032,
-0.022126153111457825,
-0.10988020151853561,
0.07160178571939468,
-0.08989723771810532,
0.01786769926548004,
-0.016850996762514114,
-0.024167584255337715,
-0.14417894184589386,
0.03886082023382187,
-0.0298207588493824,
0.006151536013931036,
-0.01571900025010109,
0.034930113703012466,
0.09030135720968246,
0.08812321722507477,
0.06735363602638245,
-0.0814967229962349,
-0.031844478100538254,
0.04683338478207588,
-0.035183135420084,
-0.03095080889761448,
-0.05509708449244499,
-0.15331949293613434,
-0.007197975181043148,
0.019792737439274788,
0.020000504329800606,
0.04243891313672066,
0.09713367372751236,
-0.023877279832959175,
-0.01496902946382761,
-0.00871607381850481,
-0.058852460235357285,
-0.0362011194229126,
-0.024611640721559525,
0.03737130016088486,
0.1594933718442917,
0.056252602487802505,
0.017373038455843925,
-0.08505310118198395,
0.08566804975271225,
-0.12192243337631226,
-0.03573498874902725,
-0.06230130419135094,
-0.08956461399793625,
0.007839885540306568,
-0.04219907522201538,
0.03926648572087288,
-0.12643925845623016,
-0.13800424337387085,
-0.06263399869203568,
0.06972231715917587,
-0.003977121785283089,
-0.10702616721391678,
-0.021541720256209373,
-0.01390893291682005,
0.05418432876467705,
-0.00786658562719822,
0.0801495686173439,
-0.04964581876993179,
0.07294831424951553,
-0.13618305325508118,
0.06548701226711273,
-0.17651908099651337,
0.02084505558013916,
-0.04398283734917641,
0.0061843255534768105,
-0.03524744138121605,
0.05886559933423996,
0.023428436368703842,
0.14362800121307373,
-0.010858356952667236,
0.002990635810419917,
-0.1420295387506485,
0.051828380674123764,
-0.00625342084094882,
0.20680226385593414,
-0.08306122571229935,
-0.03361710533499718,
0.10587602853775024,
-0.05379260703921318,
-0.1514665186405182,
0.04765363410115242,
-0.027603358030319214,
0.23298509418964386,
0.08061850816011429,
0.19640108942985535,
0.07215677201747894,
-0.0333453044295311,
0.07595018297433853,
0.11576481908559799,
-0.08701083809137344,
-0.053121183067560196,
-0.009168078191578388,
0.034006860107183456,
-0.20556704699993134,
0.027284055948257446,
0.05470553785562515,
0.008402339182794094,
-0.06663770228624344,
-0.04736589640378952,
-0.04075019434094429,
-0.030720431357622147,
-0.004275617189705372,
-0.016710469499230385,
0.1090582013130188,
-0.023972297087311745,
-0.03944080322980881,
-0.022726748138666153,
0.052230171859264374,
0.0017556606326252222,
0.01798534207046032,
-0.0018570764223113656,
0.05952708050608635,
-0.06080812215805054,
0.05043007805943489,
-0.15447410941123962,
-0.08519892394542694,
-0.026904338970780373,
0.18068157136440277,
0.05529509857296944,
0.20271413028240204,
-0.006041762884706259,
-0.0745776817202568,
0.0017944759456440806,
0.006764026824384928,
0.009295038878917694,
0.022525031119585037,
-0.11104192584753036,
-0.10097695142030716,
0.02325313910841942,
-0.057017479091882706,
-0.030694831162691116,
-0.1350434124469757,
0.013641955330967903,
-0.057998158037662506,
0.04777982458472252,
0.03355212137103081,
0.05708571523427963,
0.03779337927699089,
0.018474742770195007,
-0.06268128007650375,
0.018685534596443176,
0.07526066154241562,
-0.005684426985681057,
-0.07035469263792038,
0.12682580947875977,
-0.0639149397611618,
0.1973724216222763,
0.11571522802114487,
-0.2190578728914261,
-0.07681860774755478,
0.028239384293556213,
-0.03945916146039963,
0.003347319085150957,
-0.04331326112151146,
-0.09157128632068634,
0.02751804329454899,
-0.028614591807127,
0.08157271146774292,
-0.059589266777038574,
-0.02828737534582615,
0.026442082598805428,
-0.050004176795482635,
-0.01054071169346571,
0.06804247200489044,
0.15054984390735626,
-0.25097551941871643,
0.11323250085115433,
0.19770871102809906,
-0.012862811796367168,
0.20587177574634552,
-0.003543869126588106,
-0.049579620361328125,
0.042134519666433334,
-0.058470819145441055,
-0.05523443594574928,
0.01795523427426815,
-0.15984585881233215,
-0.017405914142727852,
0.045469414442777634,
0.026716435328125954,
0.06744586676359177,
-0.11605925858020782,
-0.03830310329794884,
0.011947589926421642,
0.03168274089694023,
-0.05554332211613655,
0.06271939724683762,
-0.026817621663212776,
0.1498875468969345,
0.01311174314469099,
-0.05971450358629227,
0.04596566781401634,
0.009319539181888103,
-0.11984673887491226,
0.16421495378017426,
-0.01112812664359808,
-0.20463933050632477,
-0.12727758288383484,
-0.014339246787130833,
-0.009163415059447289,
0.00444045290350914,
0.05816788598895073,
-0.05378959700465202,
-0.009012505412101746,
-0.04716881737112999,
0.009785814210772514,
-0.04526941105723381,
0.06643639504909515,
0.01696600764989853,
0.04742007330060005,
-0.05489857867360115,
-0.07215014845132828,
-0.06385032087564468,
-0.06426768004894257,
-0.007308527827262878,
0.0370846688747406,
-0.13815727829933167,
0.10626806318759918,
0.17820043861865997,
-0.011137894354760647,
0.06819175183773041,
-0.006424755323678255,
0.2509293258190155,
-0.10847283899784088,
0.10334564745426178,
0.09741673618555069,
-0.04877495765686035,
0.05718980357050896,
0.18098904192447662,
0.0568707101047039,
-0.05845443531870842,
0.05837199091911316,
-0.022541167214512825,
-0.06575090438127518,
-0.20791423320770264,
-0.06226439028978348,
-0.11652027815580368,
0.022336792200803757,
0.024327877908945084,
0.04195505753159523,
0.011327140964567661,
0.10593944787979126,
0.02212419919669628,
0.06804865598678589,
-0.052134446799755096,
0.03463684394955635,
0.07995683699846268,
-0.011684115044772625,
0.11592920869588852,
-0.08436944335699081,
-0.092278853058815,
0.0708647221326828,
-0.014665980823338032,
0.1467820703983307,
0.06052018329501152,
0.006623372435569763,
0.0746997818350792,
-0.000012649489690375049,
0.13395272195339203,
0.23865555226802826,
0.003718754043802619,
-0.06508778035640717,
-0.03645659610629082,
-0.02911054529249668,
-0.016576850786805153,
0.07813453674316406,
-0.07383602857589722,
-0.10440225154161453,
-0.05767178535461426,
-0.049610260874032974,
0.023456690832972527,
0.11649783700704575,
0.1590227633714676,
-0.1543368399143219,
0.012679025530815125,
0.05892502889037132,
-0.10011414438486099,
-0.11282677203416824,
0.0578048899769783,
0.05127231031656265,
-0.1254836916923523,
0.01950891688466072,
0.04542633518576622,
0.15420496463775635,
-0.043978024274110794,
0.07071984559297562,
-0.1206870749592781,
-0.12786738574504852,
-0.0572337731719017,
0.11765873432159424,
-0.2095308154821396,
0.2924772799015045,
0.012732735835015774,
-0.03538275510072708,
-0.10917018353939056,
-0.04290371388196945,
0.006233162246644497,
0.21491758525371552,
0.08532196283340454,
0.013761743903160095,
-0.06251015514135361,
-0.018221188336610794,
-0.029716497287154198,
0.027403606101870537,
0.023390447720885277,
-0.0669071152806282,
0.059541840106248856,
-0.01796802692115307,
0.01140978466719389,
0.01520222146064043,
0.10611294955015182,
-0.09343492984771729,
-0.15015099942684174,
0.015751611441373825,
0.07982777804136276,
0.0551646389067173,
0.014338972046971321,
-0.035924118012189865,
0.06531227380037308,
0.0981067419052124,
-0.003248167922720313,
-0.07556670159101486,
-0.13225921988487244,
0.01796893961727619,
0.007242776453495026,
-0.06336367130279541,
0.009722833521664143,
-0.041602928191423416,
-0.010601033456623554,
-0.02374686300754547,
-0.13002531230449677,
0.07050459831953049,
-0.09652979671955109,
-0.02276768907904625,
-0.04830586165189743,
0.07749824970960617,
-0.06873165816068649,
0.01649043895304203,
0.023790473118424416,
-0.013012184761464596,
-0.08426309376955032,
-0.1177261471748352,
-0.010718454606831074,
-0.045946840196847916,
0.0065190596505999565,
0.005818389821797609,
-0.09347597509622574,
-0.038202762603759766,
0.006203263998031616,
-0.04092314839363098,
0.20290371775627136,
0.08966392278671265,
-0.052828073501586914,
0.08265461772680283,
0.14971880614757538,
-0.08315867930650711,
-0.2861950695514679,
-0.10157608240842819,
-0.01841585338115692,
0.030780917033553123,
-0.009404019452631474,
-0.0999370664358139,
0.13442717492580414,
-0.03034781478345394,
-0.03644363209605217,
0.1401665061712265,
-0.21562480926513672,
-0.11462467908859253,
0.1439632624387741,
-0.00850994884967804,
0.4574126601219177,
-0.09225644916296005,
-0.032109279185533524,
-0.04438263922929764,
-0.10268177837133408,
0.20233705639839172,
-0.09792549908161163,
0.06341417133808136,
-0.006473827641457319,
0.095432348549366,
0.03296713903546333,
-0.02579096332192421,
0.0858023539185524,
-0.0366458036005497,
0.013640112243592739,
-0.10056651383638382,
-0.0853886529803276,
0.11857448518276215,
-0.00283722928725183,
0.12365622073411942,
-0.05334976315498352,
0.028073588386178017,
-0.13765482604503632,
-0.06090444326400757,
-0.0764922946691513,
0.0036950227804481983,
-0.0238806065171957,
-0.08447625488042831,
-0.018038662150502205,
-0.04206627607345581,
-0.024001240730285645,
-0.022797366604208946,
0.15769660472869873,
-0.077004574239254,
0.12729625403881073,
0.1036948710680008,
0.1575823277235031,
-0.11688355356454849,
0.0023650159128010273,
-0.029828043654561043,
-0.08968205004930496,
0.09713876992464066,
-0.185052290558815,
-0.019062688574194908,
0.07316526025533676,
-0.023757724091410637,
0.052264582365751266,
0.09906362742185593,
-0.01741074025630951,
-0.03140563890337944,
0.12145797908306122,
-0.24292322993278503,
-0.058655571192502975,
-0.08394113928079605,
-0.009565263986587524,
-0.05585455521941185,
0.0008566878386773169,
0.1436406821012497,
-0.03522993624210358,
-0.025120127946138382,
0.01838618889451027,
-0.001876874710433185,
-0.08275638520717621,
0.03375043720006943,
0.10814975202083588,
0.04453307390213013,
-0.07819325476884842,
-0.015455198474228382,
0.06792406737804413,
-0.0378926582634449,
-0.017790677025914192,
0.17967571318149567,
-0.12319053709506989,
-0.11233196407556534,
-0.010300800204277039,
0.16945858299732208,
-0.11694950610399246,
-0.06779008358716965,
-0.013480203226208687,
-0.0938924103975296,
0.045869968831539154,
0.14037738740444183,
0.07664769142866135,
0.0795459970831871,
-0.05641661956906319,
-0.09085250645875931,
-0.017451627179980278,
0.03663439303636551,
-0.0019177609356120229,
-0.0207781083881855,
-0.11331933736801147,
-0.0027019870467483997,
0.005415512714534998,
0.1874374896287918,
-0.103303924202919,
-0.024624573066830635,
-0.17252859473228455,
0.025357339531183243,
-0.07222769409418106,
-0.02373744733631611,
-0.05459613353013992,
-0.06344590336084366,
0.0041981711983680725,
-0.05565192177891731,
-0.08458899706602097,
-0.018956393003463745,
-0.10003373771905899,
0.02626408450305462,
-0.02393464185297489,
0.06104590371251106,
-0.001218621269799769,
0.0012071480741724372,
0.09708929061889648,
-0.016434280201792717,
0.06945241242647171,
0.008451391011476517,
-0.08520118147134781,
0.06654782593250275,
-0.08926498144865036,
0.034409694373607635,
0.023045480251312256,
-0.011542512103915215,
0.02282118797302246,
0.05365258827805519,
0.004595936741679907,
0.03451137617230415,
0.06452087312936783,
0.052901167422533035,
-0.027964597567915916,
-0.10575462132692337,
0.01593001000583172,
0.036118507385253906,
-0.14329437911510468,
-0.02126884274184704,
-0.030723555013537407,
0.023313695564866066,
0.03564905375242233,
0.15366540849208832,
-0.025540543720126152,
0.0608225055038929,
-0.08786796778440475,
0.05626511201262474,
0.012554369866847992,
-0.08978522568941116,
0.0013665525475516915,
-0.1216237023472786,
0.017929917201399803,
-0.014224744401872158,
0.20241186022758484,
0.07870255410671234,
-0.016435673460364342,
0.03164733946323395,
0.09340030699968338,
0.029375558719038963,
-0.022620007395744324,
0.17521360516548157,
0.05675225332379341,
-0.019268110394477844,
-0.1723281592130661,
0.023830166086554527,
-0.008947414346039295,
0.07851893454790115,
0.20367005467414856,
-0.012262029573321342,
0.03662781044840813,
0.0918344035744667,
-0.07277470827102661,
0.07960326969623566,
-0.03308897465467453,
-0.13813520967960358,
-0.03831223398447037,
0.02931061014533043,
-0.04238938167691231,
-0.03634873405098915,
0.2193547487258911,
0.02561456523835659,
0.040252331644296646,
0.02684846892952919,
-0.04176635667681694,
-0.18756452202796936,
-0.2192082405090332,
-0.07007552683353424,
-0.11462877690792084,
-0.02257361449301243,
-0.06291845440864563,
0.0252913199365139,
0.0693739652633667,
0.03442452847957611,
-0.06060827895998955,
0.10097283869981766,
0.0775991678237915,
-0.06934724003076553,
0.10988114029169083,
0.0019293938530609012,
0.03875674679875374,
-0.08900588750839233,
0.03222065046429634,
-0.1151338592171669,
-0.025788409635424614,
-0.04451068118214607,
0.029303474351763725,
-0.0714845284819603,
-0.010912708938121796,
-0.0809195265173912,
-0.08601684868335724,
-0.07458917051553726,
0.001569955493323505,
-0.012505369260907173,
0.11128886044025421,
0.006316571496427059,
0.006938256323337555,
0.007702502887696028,
0.1977706253528595,
-0.02553786151111126,
-0.10585429519414902,
-0.1163974180817604,
0.17506824433803558,
-0.005683428607881069,
0.06481767445802689,
-0.04477851465344429,
-0.038644302636384964,
-0.04810681194067001,
0.35344767570495605,
0.30831271409988403,
-0.08190906047821045,
0.023204544559121132,
-0.006495988927781582,
0.018847674131393433,
0.07077370584011078,
0.14594389498233795,
-0.020018214359879494,
0.29884758591651917,
-0.08525250107049942,
-0.017141658812761307,
-0.08538349717855453,
-0.013779671862721443,
-0.05516161397099495,
0.00588420033454895,
0.11944729089736938,
-0.07913901656866074,
-0.05848182365298271,
0.12171093374490738,
-0.17209188640117645,
0.05734603479504585,
-0.07247914373874664,
-0.10700743645429611,
-0.06073868274688721,
-0.018618974834680557,
0.02971622161567211,
0.006031529046595097,
0.09356077760457993,
-0.05823894217610359,
-0.02418363466858864,
0.02666248194873333,
-0.016997667029500008,
-0.12987090647220612,
-0.05011244863271713,
0.10324597358703613,
-0.04208924621343613,
0.03027614951133728,
-0.0023297348525375128,
0.025435078889131546,
0.046914827078580856,
-0.017587417736649513,
-0.08181077241897583,
0.08625394850969315,
-0.017868490889668465,
0.09068150073289871,
0.021248770877718925,
0.03128168359398842,
0.0014968754258006811,
-0.14149856567382812,
0.05253595858812332,
-0.18892896175384521,
0.014333941042423248,
-0.05716751143336296,
-0.013176984153687954,
-0.040369175374507904,
0.04756147041916847,
-0.041096143424510956,
0.11300668865442276,
0.1377808302640915,
-0.034070711582899094,
-0.004490653984248638,
-0.007952653802931309,
0.025244485586881638,
0.007068832404911518,
-0.07588548213243484,
-0.0798296332359314,
-0.057030607014894485,
-0.07263052463531494,
0.027104130014777184,
-0.03047160618007183,
-0.19958950579166412,
0.019694222137331963,
-0.06606923788785934,
0.0264334287494421,
-0.12110380828380585,
0.03536640852689743,
0.15564045310020447,
-0.003420177847146988,
-0.0085205789655447,
-0.08810371905565262,
0.033576712012290955,
0.05548471957445145,
-0.1048048809170723,
-0.11652830988168716
] |
null | null | transformers |
#harry | {"tags": ["conversational"]} | text-generation | Mierln/SmartHarry | [
"transformers",
"pytorch",
"gpt2",
"text-generation",
"conversational",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [] | TAGS
#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
#harry | [] | [
"TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n"
] | [
51
] | [
"passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n"
] | [
-0.009697278961539268,
0.03208012506365776,
-0.007204889785498381,
0.004809224978089333,
0.16726240515708923,
0.014898733235895634,
0.09765533357858658,
0.13672804832458496,
-0.007841327227652073,
-0.031050153076648712,
0.14490588009357452,
0.20411323010921478,
-0.006439372431486845,
0.0661218985915184,
-0.07572533935308456,
-0.2683109939098358,
0.05759621039032936,
0.046649303287267685,
0.016515716910362244,
0.1200079694390297,
0.08573378622531891,
-0.05473608896136284,
0.08714032918214798,
-0.014583407901227474,
-0.150366872549057,
0.017733458429574966,
0.043394338339567184,
-0.12260226160287857,
0.11910516023635864,
0.05462685227394104,
0.07063519209623337,
0.014929565601050854,
-0.07541623711585999,
-0.1631229966878891,
0.03031250834465027,
0.01425902172923088,
-0.0594632662832737,
0.04757995903491974,
0.059961482882499695,
-0.10165371745824814,
0.10819483548402786,
0.09530027210712433,
-0.013078106567263603,
0.06798283755779266,
-0.16849711537361145,
-0.020869607105851173,
-0.01446688175201416,
0.009899779222905636,
0.05550243332982063,
0.09964893013238907,
-0.03413357585668564,
0.10497362166643143,
-0.09214533120393753,
0.11017382889986038,
0.10932035744190216,
-0.32057443261146545,
-0.005767723545432091,
0.09167823940515518,
0.039358653128147125,
0.07352814823389053,
-0.04467793554067612,
0.06258884817361832,
0.018015462905168533,
0.017986174672842026,
-0.014015024527907372,
-0.07283061742782593,
-0.11612214148044586,
0.04717336222529411,
-0.08668071031570435,
-0.059868961572647095,
0.2244078367948532,
-0.05464440956711769,
0.06881742179393768,
-0.05281897634267807,
-0.10522868484258652,
-0.04308144748210907,
-0.029833965003490448,
0.00475557055324316,
-0.07660607248544693,
0.08692064881324768,
0.00869679357856512,
-0.09547875821590424,
-0.1376667022705078,
-0.02496783249080181,
-0.1776352822780609,
0.16140350699424744,
0.02465328387916088,
0.05232657864689827,
-0.2027255892753601,
0.09623090922832489,
0.017906051129102707,
-0.08045592904090881,
0.022091427817940712,
-0.10046248883008957,
0.029131146147847176,
0.013760408386588097,
-0.04754498973488808,
-0.061387211084365845,
0.0843690037727356,
0.11199145019054413,
-0.01731434464454651,
0.025486016646027565,
-0.039331406354904175,
0.08100687712430954,
0.03553595021367073,
0.09077847748994827,
0.007288969587534666,
-0.028338588774204254,
0.025842782109975815,
-0.13719046115875244,
-0.003647835226729512,
-0.07116208970546722,
-0.16572439670562744,
-0.021088803187012672,
0.02994808368384838,
0.08289173990488052,
0.015449047088623047,
0.11682453751564026,
-0.03272046521306038,
-0.025152435526251793,
0.03602350503206253,
-0.047656361013650894,
-0.012649794109165668,
0.016648368909955025,
0.013163427822291851,
0.12399329990148544,
-0.0022096503525972366,
0.03235051408410072,
-0.13653022050857544,
0.031423524022102356,
-0.06793295592069626,
-0.003740974934771657,
-0.03486552834510803,
-0.040637075901031494,
0.009043924510478973,
-0.06862333416938782,
0.003486064961180091,
-0.15030112862586975,
-0.15063877403736115,
0.007587034720927477,
-0.007836631499230862,
-0.04107699543237686,
-0.06370922178030014,
-0.06952770054340363,
-0.013550350442528725,
0.04251532256603241,
-0.07093454152345657,
-0.011352915316820145,
-0.06403283774852753,
0.11004766076803207,
-0.03197755664587021,
0.07921615242958069,
-0.11953279376029968,
0.08390819281339645,
-0.11260783672332764,
-0.02386913076043129,
-0.060801517218351364,
0.09317506104707718,
-0.0006014376995153725,
0.09549830108880997,
-0.006563255097717047,
-0.017931854352355003,
-0.07981178909540176,
0.06445012241601944,
-0.042872510850429535,
0.21701598167419434,
-0.0615808479487896,
-0.11181682348251343,
0.28781595826148987,
-0.052628401666879654,
-0.1370542049407959,
0.11647392809391022,
0.008682746440172195,
0.05777018144726753,
0.10703510791063309,
0.19733482599258423,
-0.015276194550096989,
0.004040541127324104,
0.09471915662288666,
0.11263324320316315,
-0.11276852339506149,
-0.033160366117954254,
0.013019153848290443,
-0.04081077128648758,
-0.10867965966463089,
0.04689536616206169,
0.09810488671064377,
0.07090286910533905,
-0.04786505550146103,
-0.03377414867281914,
-0.01366397924721241,
0.0052589005790650845,
0.08885077387094498,
-0.007157256826758385,
0.10962837189435959,
-0.05819983780384064,
-0.03796621412038803,
-0.029282379895448685,
-0.012126247398555279,
-0.03951939567923546,
0.03137664496898651,
-0.043376367539167404,
0.10821941494941711,
-0.011204327456653118,
0.06364280730485916,
-0.16185984015464783,
-0.07691477984189987,
-0.017002692446112633,
0.1581239402294159,
0.024538565427064896,
0.09859629720449448,
0.0552486926317215,
-0.040398042649030685,
-0.0012767292791977525,
0.012792680412530899,
0.15581141412258148,
-0.022091681137681007,
-0.065607450902462,
-0.052166227251291275,
0.08642971515655518,
-0.05641226842999458,
0.04504093527793884,
-0.05937713757157326,
0.012367865070700645,
0.05064384639263153,
0.10342344641685486,
-0.00018274025933351368,
0.03323284164071083,
-0.008164864964783192,
0.002145637758076191,
-0.058205123990774155,
0.007405933458358049,
0.10799351334571838,
0.00036868182360194623,
-0.07365862280130386,
0.22074243426322937,
-0.17796069383621216,
0.1765957772731781,
0.1893044263124466,
-0.299345999956131,
0.017949223518371582,
-0.10759581625461578,
-0.04561871662735939,
0.014407722279429436,
0.05567655712366104,
-0.0454222597181797,
0.1703362911939621,
-0.009871348738670349,
0.18874616920948029,
-0.04946064203977585,
-0.04464937001466751,
-0.0200483538210392,
-0.05118836089968681,
-0.0024189651012420654,
0.07781197130680084,
0.10685696452856064,
-0.13992026448249817,
0.1964332014322281,
0.1621224284172058,
0.048237916082143784,
0.19945049285888672,
0.015346456319093704,
-0.011589210480451584,
0.0909530371427536,
0.005220826715230942,
-0.058739423751831055,
-0.07409929484128952,
-0.2594851851463318,
-0.030033592134714127,
0.07992640137672424,
0.0422382652759552,
0.1212305948138237,
-0.11349532753229141,
-0.038956157863140106,
-0.01763172075152397,
-0.023146281018853188,
0.021672505885362625,
0.0914369598031044,
0.06075398623943329,
0.13201528787612915,
-0.001710098935291171,
-0.007300339173525572,
0.10524573177099228,
0.01783694699406624,
-0.09354141354560852,
0.18308524787425995,
-0.13652534782886505,
-0.37097251415252686,
-0.13911493122577667,
-0.18057456612586975,
-0.05449081212282181,
0.05712554603815079,
0.11679314076900482,
-0.12011238187551498,
-0.018752124160528183,
0.01578843593597412,
0.10931742936372757,
-0.08449502289295197,
0.0021454424131661654,
-0.06880278885364532,
0.0321490578353405,
-0.10310184955596924,
-0.09194442629814148,
-0.055416494607925415,
-0.031392451375722885,
-0.08001253753900528,
0.1423761546611786,
-0.10777941346168518,
0.04476889222860336,
0.20262959599494934,
0.04653622955083847,
0.05625178664922714,
-0.044105201959609985,
0.19377262890338898,
-0.11264272034168243,
-0.01661740615963936,
0.19215328991413116,
-0.048360925167798996,
0.07476246356964111,
0.1232115849852562,
-0.006348740309476852,
-0.08765771239995956,
0.03011748194694519,
-0.02085109055042267,
-0.07988511025905609,
-0.23219464719295502,
-0.13938382267951965,
-0.12429051846265793,
0.09477275609970093,
0.028005298227071762,
0.056365787982940674,
0.17219258844852448,
0.06577219814062119,
-0.038416244089603424,
0.006410336587578058,
0.02959546446800232,
0.08237514644861221,
0.23417828977108002,
-0.06035616248846054,
0.1364797055721283,
-0.03420931473374367,
-0.14982740581035614,
0.08169995993375778,
0.0713929831981659,
0.10213395953178406,
0.06678459793329239,
0.0804823637008667,
0.0149586396291852,
0.06188136339187622,
0.1311223804950714,
0.08191446959972382,
0.019586285576224327,
-0.02480296604335308,
-0.03388110175728798,
-0.025523077696561813,
-0.05937909707427025,
0.040128443390131,
0.06589099019765854,
-0.16763372719287872,
-0.039227183908224106,
-0.09338314831256866,
0.09657008945941925,
0.0873042419552803,
0.06609832495450974,
-0.1842060089111328,
-0.008006223477423191,
0.08488986641168594,
-0.03854905813932419,
-0.13727426528930664,
0.09535189718008041,
0.01523482333868742,
-0.15144726634025574,
0.03139317408204079,
-0.04061909019947052,
0.12188644707202911,
-0.07804752141237259,
0.09809603542089462,
-0.08108244836330414,
-0.07448557764291763,
0.02123199962079525,
0.1261177361011505,
-0.30527687072753906,
0.20240111649036407,
-0.0024993624538183212,
-0.06486981362104416,
-0.1243603527545929,
-0.0032166161108762026,
0.002410882618278265,
0.07357452809810638,
0.10519039630889893,
-0.007196315098553896,
0.001897757756523788,
-0.06300821900367737,
-0.01829923689365387,
0.032471053302288055,
0.13080233335494995,
-0.0401318334043026,
-0.021158374845981598,
-0.050194524228572845,
-0.001653497340157628,
-0.03173094615340233,
-0.06934895366430283,
0.02002747356891632,
-0.19509181380271912,
0.08751901984214783,
0.04166261479258537,
0.09648149460554123,
0.029994789510965347,
0.004265148192644119,
-0.09651939570903778,
0.24698667228221893,
-0.07148019969463348,
-0.10072879493236542,
-0.10919588059186935,
-0.046813901513814926,
0.03569883480668068,
-0.05628936365246773,
0.04309194162487984,
-0.0788632407784462,
0.028997479006648064,
-0.06352769583463669,
-0.19235502183437347,
0.12410202622413635,
-0.09027006477117538,
-0.04412810131907463,
-0.02371402643620968,
0.2110891044139862,
-0.05598580464720726,
0.010335659608244896,
0.02930437959730625,
0.01208863127976656,
-0.11645778268575668,
-0.09678568691015244,
0.031018631532788277,
-0.007351789623498917,
0.050603240728378296,
0.041841957718133926,
-0.05915454775094986,
-0.017138581722974777,
-0.052199993282556534,
-0.022926922887563705,
0.3496883809566498,
0.14231905341148376,
-0.043836336582899094,
0.19347235560417175,
0.12347975373268127,
-0.07452994585037231,
-0.3159443140029907,
-0.1066238060593605,
-0.10937739163637161,
-0.04680149629712105,
-0.07012093812227249,
-0.2002030611038208,
0.06474938243627548,
0.00662544509395957,
-0.013415241613984108,
0.12749312818050385,
-0.2561831772327423,
-0.07571036368608475,
0.15906259417533875,
-0.017980827018618584,
0.3745945692062378,
-0.1168576180934906,
-0.10926306992769241,
-0.03950892388820648,
-0.14175476133823395,
0.16968177258968353,
-0.01989765651524067,
0.11221715062856674,
-0.009765521623194218,
0.14388824999332428,
0.05548359826207161,
-0.023479344323277473,
0.08544106781482697,
0.004999885335564613,
-0.03290518373250961,
-0.10304180532693863,
-0.05676887184381485,
0.007092386484146118,
0.02477436140179634,
0.018026655539870262,
-0.041834570467472076,
0.02227151393890381,
-0.11731979995965958,
-0.04657655209302902,
-0.08982590585947037,
0.04431166127324104,
0.03899754583835602,
-0.07325074821710587,
-0.002380647463724017,
-0.07165111601352692,
-0.012272949330508709,
0.022334342822432518,
0.20356793701648712,
-0.08029330521821976,
0.16448934376239777,
0.09239562600851059,
0.12419285625219345,
-0.14376309514045715,
-0.00019283240544609725,
-0.0762530043721199,
-0.05611240118741989,
0.07737895101308823,
-0.09433035552501678,
0.058893077075481415,
0.10901971161365509,
-0.04567738622426987,
0.08828683942556381,
0.10377411544322968,
0.008936077356338501,
0.003213887568563223,
0.10916902124881744,
-0.2667325437068939,
-0.0296600554138422,
-0.07532413303852081,
0.000883326749317348,
0.09092561900615692,
0.08562852442264557,
0.18840822577476501,
0.025361526757478714,
-0.04293036088347435,
-0.002770674182102084,
0.028597986325621605,
-0.039021048694849014,
0.051667019724845886,
0.001123449532315135,
0.01947369985282421,
-0.1530752182006836,
0.072522833943367,
0.01490565575659275,
-0.15215420722961426,
0.021316176280379295,
0.16572684049606323,
-0.11656328290700912,
-0.1283872276544571,
-0.06520111113786697,
0.08313824236392975,
-0.11755692958831787,
-0.01578943058848381,
-0.03279297426342964,
-0.13145680725574493,
0.07992171496152878,
0.12629036605358124,
0.05557859688997269,
0.0972496047616005,
-0.06061713397502899,
-0.020469192415475845,
-0.018721895292401314,
-0.014099318534135818,
-0.012384648434817791,
-0.007667020428925753,
-0.055978111922740936,
0.0590752474963665,
-0.026677248999476433,
0.1425808072090149,
-0.09221141785383224,
-0.1037059873342514,
-0.16142144799232483,
0.0374140702188015,
-0.11013076454401016,
-0.08825794607400894,
-0.08821134269237518,
-0.050188567489385605,
0.002360827289521694,
-0.019856395199894905,
-0.04037635400891304,
-0.05829505994915962,
-0.12300454825162888,
0.0338277705013752,
-0.040771447122097015,
0.024727050215005875,
-0.07512269169092178,
0.015856385231018066,
0.08507686108350754,
-0.03285100311040878,
0.15655414760112762,
0.1450488418340683,
-0.1006515845656395,
0.10741901397705078,
-0.14806775748729706,
-0.09138492494821548,
0.11116421222686768,
0.015329592861235142,
0.0449691042304039,
0.09723787009716034,
0.013362943194806576,
0.0635865181684494,
0.032776717096567154,
0.05308786407113075,
0.027619892731308937,
-0.11959987878799438,
0.06483134627342224,
-0.03626115620136261,
-0.14700546860694885,
-0.049338050186634064,
-0.05282869189977646,
0.01647452637553215,
0.013054544106125832,
0.09622690081596375,
-0.05301849544048309,
0.10698331147432327,
-0.04055701196193695,
0.0346808135509491,
0.017554637044668198,
-0.1730053424835205,
-0.03816922754049301,
-0.08538098633289337,
0.03681723028421402,
0.014741539023816586,
0.25266793370246887,
0.030072299763560295,
0.012416383251547813,
0.032671261578798294,
0.08285367488861084,
0.03899408504366875,
0.010228337720036507,
0.17482228577136993,
0.1162426546216011,
-0.06621865928173065,
-0.10445023328065872,
0.0729617029428482,
0.016332454979419708,
0.01286179106682539,
0.13617953658103943,
0.008365051820874214,
0.005795429926365614,
0.08649782836437225,
-0.016865963116288185,
0.009968153201043606,
-0.10052056610584259,
-0.13426925241947174,
-0.022176474332809448,
0.05151832848787308,
-0.04655967652797699,
0.11727844923734665,
0.1406494379043579,
-0.01806013658642769,
0.03222079202532768,
-0.021771740168333054,
-0.05699979141354561,
-0.1683429479598999,
-0.1429590880870819,
-0.06883849948644638,
-0.13416796922683716,
0.00897989235818386,
-0.11180389672517776,
0.05395037308335304,
0.06001098081469536,
0.06750501692295074,
-0.06899319589138031,
0.10220931470394135,
0.04626858979463577,
-0.11440542340278625,
0.06264589726924896,
-0.0296088308095932,
0.09430401772260666,
-0.02759445086121559,
-0.019505485892295837,
-0.09039592742919922,
0.014574515633285046,
0.011419114656746387,
0.06245238706469536,
-0.04707273095846176,
0.007463190704584122,
-0.14696238934993744,
-0.08972041308879852,
-0.0523175448179245,
0.0718572810292244,
-0.050409089773893356,
0.14282815158367157,
0.00775480642914772,
-0.0170906875282526,
0.039554283022880554,
0.22787313163280487,
-0.07476283609867096,
-0.04778539761900902,
-0.05269690603017807,
0.20717895030975342,
0.02975541539490223,
0.1171872541308403,
-0.022938819602131844,
-0.006106364540755749,
-0.0919521227478981,
0.3764844834804535,
0.30030161142349243,
-0.09031439572572708,
0.011794124729931355,
0.02137952297925949,
0.04502861574292183,
0.1316293478012085,
0.1216534823179245,
0.10318691283464432,
0.3006802201271057,
-0.07452366501092911,
-0.04653361067175865,
-0.012629742734134197,
-0.023858042433857918,
-0.09059546142816544,
0.1021224707365036,
0.04839762672781944,
-0.06382183730602264,
-0.03313443064689636,
0.0954432487487793,
-0.25862133502960205,
0.1277991235256195,
-0.12311873584985733,
-0.17578600347042084,
-0.06654827296733856,
0.009760108776390553,
0.10465722531080246,
0.015642458572983742,
0.0946015790104866,
0.007128213066607714,
-0.11252258718013763,
0.06305865943431854,
0.03397420793771744,
-0.22762253880500793,
0.0006893770187161863,
0.06642123311758041,
-0.07006710022687912,
-0.0024247700348496437,
-0.026499588042497635,
0.05657242611050606,
0.0656052976846695,
0.054629553109407425,
-0.00971333310008049,
0.03816632181406021,
0.0034184439573436975,
-0.0585215799510479,
0.016623929142951965,
0.05121519789099693,
0.02472509816288948,
-0.09763528406620026,
0.06927435845136642,
-0.1574270874261856,
0.04766253009438515,
-0.0030655991286039352,
-0.04124255105853081,
0.006064958870410919,
0.008823691867291927,
-0.06491616368293762,
0.05165379121899605,
0.07916834205389023,
-0.0016257909592241049,
-0.0062433634884655476,
-0.057178743183612823,
-0.02632102556526661,
-0.027755750343203545,
-0.09291748702526093,
-0.10495562851428986,
-0.14682936668395996,
-0.11640441417694092,
0.09368976950645447,
-0.01011267676949501,
-0.1848134547472,
0.022154374048113823,
-0.08606051653623581,
0.08319322764873505,
-0.1670055389404297,
0.08040720224380493,
0.07041648775339127,
0.013038921169936657,
-0.0031511052511632442,
-0.02002427540719509,
0.054132770746946335,
0.086809903383255,
-0.10407156497240067,
-0.07400695979595184
] |
null | null | transformers |
# Edward Elric DialoGPT Model | {"tags": ["conversational"]} | text-generation | MightyCoderX/DialoGPT-medium-EdwardElric | [
"transformers",
"pytorch",
"gpt2",
"text-generation",
"conversational",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [] | TAGS
#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
# Edward Elric DialoGPT Model | [
"# Edward Elric DialoGPT Model"
] | [
"TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"# Edward Elric DialoGPT Model"
] | [
51,
9
] | [
"passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# Edward Elric DialoGPT Model"
] | [
-0.017397863790392876,
0.0879199206829071,
-0.006367306225001812,
0.03810550272464752,
0.10248364508152008,
0.004583759233355522,
0.15401378273963928,
0.11181757599115372,
-0.012589044868946075,
-0.05199332535266876,
0.15025055408477783,
0.19357270002365112,
-0.032656628638505936,
0.06796696782112122,
-0.08338519930839539,
-0.2953522205352783,
0.03873146325349808,
0.07443559169769287,
0.04388028383255005,
0.09147083759307861,
0.09744364023208618,
-0.06566866487264633,
0.08568674325942993,
0.012572333216667175,
-0.09452833235263824,
0.02643842063844204,
-0.011782845482230186,
-0.11889005452394485,
0.11539040505886078,
0.08949838578701019,
0.028744954615831375,
0.018956942483782768,
-0.03384212777018547,
-0.15650418400764465,
0.02543330378830433,
-0.03503895178437233,
-0.05713437497615814,
0.037887949496507645,
0.013319790363311768,
-0.10023649781942368,
0.1352381706237793,
0.11095823347568512,
0.024398474022746086,
0.004685677587985992,
-0.1498672366142273,
0.012515542097389698,
0.03474815934896469,
0.0740576684474945,
0.07693243771791458,
0.12542302906513214,
-0.032664090394973755,
0.10173792392015457,
-0.04562142491340637,
0.107282854616642,
0.09568719565868378,
-0.3147338330745697,
-0.0016671812627464533,
0.08105619251728058,
0.06659507751464844,
0.051122035831213,
-0.040148768573999405,
0.07392443716526031,
0.04730680212378502,
0.0036048991605639458,
0.0014909300953149796,
-0.07853856682777405,
-0.1111026257276535,
0.023995045572519302,
-0.08946362137794495,
-0.0028372358065098524,
0.24418103694915771,
-0.03217361494898796,
0.07285325229167938,
-0.053245238959789276,
-0.09857970476150513,
-0.014395330101251602,
0.00016794074326753616,
-0.059125833213329315,
-0.0625428855419159,
0.06371387094259262,
0.017046719789505005,
-0.10510373115539551,
-0.11926762759685516,
0.011318227276206017,
-0.2058136910200119,
0.18979783356189728,
0.03855957090854645,
0.02019633911550045,
-0.19056931138038635,
0.08812756091356277,
-0.04082309827208519,
-0.08906480669975281,
0.011277073062956333,
-0.07899122685194016,
0.04622693359851837,
0.004408457316458225,
-0.0257619209587574,
0.004127968102693558,
0.034720733761787415,
0.13901889324188232,
-0.03743275627493858,
-0.003388072829693556,
0.02919076196849346,
0.05457686260342598,
0.052580174058675766,
0.10271298885345459,
0.0016579972580075264,
-0.050079695880413055,
0.015008509159088135,
-0.1015072837471962,
0.007085601333528757,
-0.06059548631310463,
-0.21062427759170532,
-0.017341947183012962,
0.04175741598010063,
0.017815567553043365,
0.0002960828132927418,
0.08852845430374146,
-0.0175199955701828,
-0.04407954961061478,
0.015365596860647202,
-0.010596290230751038,
-0.006868254859000444,
-0.0035922809038311243,
-0.01662786863744259,
0.1146504357457161,
0.03868290036916733,
0.06930230557918549,
-0.11583004891872406,
0.05674102529883385,
-0.06549724191427231,
-0.015746543183922768,
-0.008231883868575096,
-0.0715690329670906,
-0.024879708886146545,
-0.04900035634636879,
0.05769716203212738,
-0.1545790284872055,
-0.15695753693580627,
0.0025128424167633057,
-0.0016195117495954037,
-0.030573628842830658,
-0.1090778335928917,
-0.13607262074947357,
-0.011627458035945892,
0.033232808113098145,
-0.06302724033594131,
-0.05310674011707306,
-0.070287324488163,
0.06575638055801392,
-0.020545419305562973,
0.07795491069555283,
-0.1053314357995987,
0.07487146556377411,
-0.08263491839170456,
-0.058697838336229324,
-0.07236193120479584,
0.10747092962265015,
0.040859803557395935,
0.04518438130617142,
-0.013180941343307495,
-0.023228412494063377,
-0.044399671256542206,
0.09485522657632828,
-0.034758858382701874,
0.2187846302986145,
-0.040350716561079025,
-0.1209663674235344,
0.2217106819152832,
-0.03750401362776756,
-0.14178109169006348,
0.12976239621639252,
-0.011167393997311592,
0.06321706622838974,
0.1311517357826233,
0.1769588142633438,
-0.0001031169667840004,
-0.023425588384270668,
0.06440508365631104,
0.11615804582834244,
-0.04979246109724045,
-0.0015916870906949043,
0.03571245074272156,
-0.011784669011831284,
-0.04613831639289856,
0.011974887922406197,
0.07382959872484207,
0.01359171699732542,
-0.0711517482995987,
-0.011069769971072674,
0.017942439764738083,
-0.007406656630337238,
0.08451223373413086,
-0.05195517838001251,
0.1281675547361374,
-0.04474327713251114,
-0.07004084438085556,
0.01937721110880375,
0.022725895047187805,
-0.0641813650727272,
0.045908499509096146,
-0.09564857929944992,
0.03734055906534195,
-0.023560043424367905,
0.039640989154577255,
-0.12081115692853928,
-0.04426664113998413,
-0.04609708860516548,
0.1928998827934265,
0.07296086102724075,
0.12302999198436737,
0.04021448642015457,
-0.02589683048427105,
-0.020975574851036072,
-0.0011854259064421058,
0.1395317018032074,
-0.01907692477107048,
-0.11573952436447144,
-0.11370228230953217,
0.11590319126844406,
-0.06342776864767075,
0.03397258371114731,
-0.0970320850610733,
0.010228899307549,
-0.043750613927841187,
0.08642465621232986,
-0.015362026169896126,
0.06292107701301575,
-0.0152110131457448,
-0.013554169796407223,
-0.09061424434185028,
0.017452649772167206,
0.07938329130411148,
-0.008014394901692867,
-0.13929572701454163,
0.2199236899614334,
-0.17198410630226135,
0.1843348890542984,
0.18036207556724548,
-0.27185311913490295,
0.026798415929079056,
-0.11247186362743378,
-0.024748625233769417,
-0.0031835653353482485,
0.045894816517829895,
-0.054284729063510895,
0.312564492225647,
-0.03443912789225578,
0.17258299887180328,
-0.04306039586663246,
-0.05592500418424606,
-0.04172832518815994,
-0.055728718638420105,
-0.012215860188007355,
0.1321045309305191,
0.09192957729101181,
-0.10065332800149918,
0.15763317048549652,
0.10448609292507172,
0.019384518265724182,
0.14828771352767944,
0.057113051414489746,
-0.00298800365999341,
0.07713142782449722,
-0.02764524333178997,
-0.05099761113524437,
-0.08499112725257874,
-0.28455212712287903,
-0.02899828739464283,
0.061200354248285294,
0.031588371843099594,
0.11367157101631165,
-0.09914633631706238,
-0.034851089119911194,
0.03442039713263512,
-0.004511128179728985,
0.01443568430840969,
0.08930982649326324,
0.001559610478579998,
0.1100289449095726,
-0.03239261731505394,
-0.10327388346195221,
0.05603761598467827,
0.029437871649861336,
-0.08964326232671738,
0.20162150263786316,
-0.12345919013023376,
-0.3087513744831085,
-0.09911736100912094,
-0.20326733589172363,
-0.06288830935955048,
0.06996039301156998,
0.13298070430755615,
-0.11415566504001617,
-0.03236455097794533,
-0.02383357845246792,
0.1013433188199997,
-0.12237046658992767,
0.01611286588013172,
-0.004353244323283434,
-0.015056800097227097,
-0.15585008263587952,
-0.11155678331851959,
-0.05597139522433281,
-0.04709164798259735,
-0.04304933175444603,
0.1257377564907074,
-0.14372578263282776,
0.02305031567811966,
0.23288266360759735,
0.039137065410614014,
0.040189795196056366,
-0.03450688719749451,
0.2236975133419037,
-0.09084857255220413,
-0.025636035948991776,
0.18373847007751465,
-0.05362210050225258,
0.07163724303245544,
0.10610614717006683,
-0.01150908786803484,
-0.08024779707193375,
0.04368620365858078,
-0.009774766862392426,
-0.04330410063266754,
-0.2521566152572632,
-0.1220080554485321,
-0.08454902470111847,
0.06756647676229477,
0.04530210793018341,
0.03320843353867531,
0.14230063557624817,
0.06106513366103172,
-0.03222188726067543,
0.05561197176575661,
0.05126974359154701,
0.09423888474702835,
0.2621493935585022,
-0.06367357075214386,
0.13157162070274353,
0.009600214660167694,
-0.17846103012561798,
0.08414385467767715,
0.04638010263442993,
0.08070133626461029,
0.07865472882986069,
0.054551295936107635,
0.004987828433513641,
-0.03909678012132645,
0.08947330713272095,
0.0688832700252533,
-0.006299750879406929,
-0.035982437431812286,
-0.054921120405197144,
-0.03756677731871605,
0.006468416191637516,
0.07289572060108185,
0.04586830735206604,
-0.12055492401123047,
-0.04866562783718109,
0.015496531501412392,
0.05738111212849617,
0.006330179050564766,
0.09825864434242249,
-0.20741859078407288,
-0.012430306524038315,
0.0834885835647583,
-0.05198176950216293,
-0.10889050364494324,
0.07995790243148804,
0.02538832277059555,
-0.09016142040491104,
0.04192871227860451,
0.027010954916477203,
0.1245446652173996,
-0.10916492342948914,
0.08169253915548325,
-0.133220374584198,
-0.07595991343259811,
-0.001079972367733717,
0.09551785886287689,
-0.29101499915122986,
0.20782418549060822,
-0.006545457988977432,
-0.036461878567934036,
-0.08029485493898392,
-0.010447072796523571,
0.008558910340070724,
0.14587250351905823,
0.12657848000526428,
-0.023770876228809357,
0.060317084193229675,
0.02218419685959816,
-0.07428404688835144,
0.03388567268848419,
0.08840417861938477,
-0.08180834352970123,
0.0005058469250798225,
-0.01644962839782238,
0.008585100993514061,
0.0032165434677153826,
-0.07252250611782074,
-0.018461884930729866,
-0.17395345866680145,
0.061212681233882904,
0.06013994291424751,
0.09400233626365662,
0.05981476604938507,
-0.060655202716588974,
-0.1057482361793518,
0.2354656159877777,
-0.02669389173388481,
-0.10175107419490814,
-0.07522429525852203,
-0.030968671664595604,
0.03494371846318245,
-0.07517462968826294,
0.00759926438331604,
-0.022184263914823532,
0.03982791304588318,
-0.08141399919986725,
-0.14420004189014435,
0.11501645296812057,
-0.09532787650823593,
-0.03228142112493515,
-0.04996483027935028,
0.1802826225757599,
0.0026958163361996412,
0.029101522639393806,
0.04527939856052399,
-0.02125324308872223,
-0.13744722306728363,
-0.09883090853691101,
0.00045068562030792236,
0.05197451263666153,
0.038412388414144516,
0.02929411083459854,
-0.03867700695991516,
-0.032417185604572296,
-0.06452599912881851,
-0.03812368959188461,
0.2909771203994751,
0.16598612070083618,
-0.020151294767856598,
0.11303964257240295,
0.14757953584194183,
-0.08987770229578018,
-0.24408002197742462,
-0.1084880381822586,
-0.07774273306131363,
-0.038791004568338394,
-0.06761331856250763,
-0.16327480971813202,
0.09951137006282806,
-0.020814288407564163,
0.011005625128746033,
0.09435020387172699,
-0.29418879747390747,
-0.12072211503982544,
0.18933863937854767,
-0.017154283821582794,
0.43041670322418213,
-0.07836693525314331,
-0.06847669184207916,
-0.06851064413785934,
-0.1622706949710846,
0.14456519484519958,
0.013544648885726929,
0.10871375352144241,
-0.006866501644253731,
0.16121956706047058,
0.04222950339317322,
0.033678121864795685,
0.07980787754058838,
0.043103642761707306,
-0.04454663395881653,
-0.07614998519420624,
-0.08600300550460815,
-0.028523262590169907,
0.012128699570894241,
0.028156176209449768,
-0.04944625869393349,
0.016094617545604706,
-0.1702278107404709,
-0.06962469965219498,
-0.03877110779285431,
0.04438779130578041,
0.019562650471925735,
-0.08722154796123505,
0.00218299962580204,
-0.07641389966011047,
0.007555140182375908,
0.006345590576529503,
0.1853373497724533,
-0.09380559623241425,
0.09996873140335083,
0.011095860973000526,
0.1560295671224594,
-0.14403052628040314,
-0.036220915615558624,
-0.046616826206445694,
-0.054224587976932526,
0.0749967023730278,
-0.11108529567718506,
0.0304431039839983,
0.1417156457901001,
-0.0504220686852932,
0.08749417960643768,
0.11413318663835526,
-0.0013146204873919487,
0.019434072077274323,
0.07850295305252075,
-0.24438712000846863,
-0.023911941796541214,
-0.08303922414779663,
-0.01194736547768116,
0.09725134074687958,
0.1169448122382164,
0.20597153902053833,
-0.019589673727750778,
-0.040026720613241196,
0.009674147702753544,
0.009029914624989033,
-0.026314925402402878,
0.07236045598983765,
-0.013035066425800323,
0.0018312351312488317,
-0.12389400601387024,
0.06402812898159027,
-0.005707780830562115,
-0.13516052067279816,
0.019754674285650253,
0.13837024569511414,
-0.07397040724754333,
-0.11681501567363739,
-0.05885807424783707,
0.1656184047460556,
-0.19065016508102417,
-0.008951149880886078,
-0.04232392460107803,
-0.12434268742799759,
0.07958025485277176,
0.12490112334489822,
0.060653578490018845,
0.04674521088600159,
-0.09087160229682922,
-0.008246532641351223,
-0.013176415115594864,
0.013793477788567543,
0.0642654150724411,
-0.014054629020392895,
-0.0732591450214386,
0.052440106868743896,
-0.03067188523709774,
0.12109740078449249,
-0.08015748113393784,
-0.07541438192129135,
-0.15760919451713562,
0.04950419068336487,
-0.06793543696403503,
-0.05093856900930405,
-0.06737171113491058,
-0.03251031041145325,
-0.007607643958181143,
-0.0375051274895668,
-0.04324888437986374,
-0.038738083094358444,
-0.10023128986358643,
0.04437641054391861,
-0.012603751383721828,
0.025072721764445305,
-0.06723257154226303,
0.005228125024586916,
0.03807225823402405,
-0.030131863430142403,
0.15880277752876282,
0.11319076269865036,
-0.1063711866736412,
0.06787928938865662,
-0.15692999958992004,
-0.037824928760528564,
0.11952053755521774,
0.02986745350062847,
0.06632795184850693,
0.05324582755565643,
-0.0015081154415383935,
0.048707395792007446,
0.05028683319687843,
0.031021034345030785,
0.02595752850174904,
-0.07973231375217438,
0.016282809898257256,
-0.04365713521838188,
-0.1587037593126297,
-0.039751265197992325,
-0.031216565519571304,
0.04902849346399307,
0.035357728600502014,
0.12114112079143524,
-0.047079529613256454,
0.07346750795841217,
-0.03690626099705696,
0.05716618150472641,
0.05074182152748108,
-0.15873464941978455,
0.006978125777095556,
-0.08433830738067627,
0.04046636074781418,
-0.010314314626157284,
0.20924128592014313,
0.01741097867488861,
0.027243075892329216,
0.027996687218546867,
0.033518072217702866,
0.004556815139949322,
0.001804254949092865,
0.19389943778514862,
0.08232355862855911,
-0.03185339644551277,
-0.11747945845127106,
0.09108669310808182,
0.09377550333738327,
0.08671890944242477,
0.13095027208328247,
-0.06052490696310997,
0.018139708787202835,
0.12745708227157593,
-0.01366942748427391,
0.03641975671052933,
-0.18184998631477356,
-0.18888023495674133,
0.026423178613185883,
0.04283735156059265,
-0.02428305894136429,
0.10705479979515076,
0.1675858497619629,
-0.01186966709792614,
0.007624674588441849,
0.004108884371817112,
-0.06132147088646889,
-0.19782619178295135,
-0.14977219700813293,
-0.0913085788488388,
-0.12105390429496765,
0.0027047251351177692,
-0.15941981971263885,
0.03680024296045303,
-0.0042222123593091965,
0.10239531844854355,
-0.06518694758415222,
0.023251071572303772,
0.037328872829675674,
-0.10936374962329865,
0.057288311421871185,
-0.027701137587428093,
0.09696401655673981,
-0.045586008578538895,
0.007527332752943039,
-0.08113822340965271,
0.05577966198325157,
-0.004185596480965614,
0.03088262490928173,
-0.0442773699760437,
0.009079392068088055,
-0.1036122739315033,
-0.07005056738853455,
-0.07355950772762299,
0.060822922736406326,
-0.0025378731079399586,
0.14353802800178528,
0.01035715639591217,
-0.03943062201142311,
0.030107002705335617,
0.24516603350639343,
-0.08938342332839966,
-0.08216813206672668,
-0.051916997879743576,
0.20472505688667297,
0.05024275928735733,
0.1346951723098755,
-0.024157365784049034,
-0.00023386382963508368,
-0.10657913982868195,
0.33772891759872437,
0.2628685235977173,
-0.09093641489744186,
0.008197595365345478,
0.013423147611320019,
0.05151212587952614,
0.12234476208686829,
0.040790170431137085,
0.11643674224615097,
0.29785847663879395,
-0.07497019320726395,
-0.04940525442361832,
-0.025768527761101723,
0.02344692125916481,
-0.04184182360768318,
0.05622439831495285,
0.06785416603088379,
-0.05846551060676575,
-0.020743243396282196,
0.08209048211574554,
-0.2584373950958252,
0.07737455517053604,
-0.14488831162452698,
-0.1697753667831421,
-0.05276713892817497,
0.019291618838906288,
0.11535125225782394,
0.024598369374871254,
0.10562597960233688,
0.005072241183370352,
-0.1075105369091034,
0.05154008790850639,
0.020844755694270134,
-0.21199572086334229,
0.007445636671036482,
0.05390384793281555,
-0.03961189463734627,
0.008964781649410725,
-0.008265634998679161,
0.09612846374511719,
0.06509658694267273,
0.06372959166765213,
0.004969782195985317,
0.040639638900756836,
-0.01141333021223545,
-0.03124164417386055,
0.049333978444337845,
0.010080080479383469,
0.002307802438735962,
-0.053501278162002563,
0.0826248899102211,
-0.1644807755947113,
0.0384821891784668,
0.03330492228269577,
-0.06899265199899673,
-0.006611526012420654,
0.029547028243541718,
-0.08462509512901306,
0.06610096246004105,
0.08198986947536469,
-0.0028799930587410927,
-0.033389605581760406,
-0.006070289760828018,
-0.013469165191054344,
-0.031738076359033585,
-0.03583362698554993,
-0.07431697100400925,
-0.1586664319038391,
-0.08323431760072708,
0.0947074219584465,
0.015507840551435947,
-0.17814040184020996,
0.013484902679920197,
-0.12864145636558533,
0.04901173710823059,
-0.13287141919136047,
0.07676082104444504,
0.10736994445323944,
0.016674142330884933,
-0.015202638693153858,
-0.028908027336001396,
0.03047097846865654,
0.07691247016191483,
-0.12133724987506866,
-0.10489401966333389
] |
null | null | transformers | kcbert-mlm-finetune | {} | fill-mask | stresscaptor/kcbert-mlm-finetune | [
"transformers",
"pytorch",
"bert",
"fill-mask",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [] | TAGS
#transformers #pytorch #bert #fill-mask #autotrain_compatible #endpoints_compatible #region-us
| kcbert-mlm-finetune | [] | [
"TAGS\n#transformers #pytorch #bert #fill-mask #autotrain_compatible #endpoints_compatible #region-us \n"
] | [
36
] | [
"passage: TAGS\n#transformers #pytorch #bert #fill-mask #autotrain_compatible #endpoints_compatible #region-us \n"
] | [
-0.06357412785291672,
0.00690077617764473,
-0.008467365056276321,
0.020235946401953697,
0.12968459725379944,
0.03302915394306183,
0.09807441383600235,
0.07729126513004303,
0.10806342214345932,
-0.009440856985747814,
0.15823203325271606,
0.20325462520122528,
-0.03393663093447685,
0.18361465632915497,
-0.065280981361866,
-0.2617916762828827,
0.06820162385702133,
0.06229938939213753,
-0.06546879559755325,
0.11254725605249405,
0.05687131732702255,
-0.0869792252779007,
0.07119062542915344,
-0.02728140354156494,
-0.10962541401386261,
0.04230697825551033,
0.05219662934541702,
-0.10162917524576187,
0.12035926431417465,
0.021910926327109337,
0.2123224288225174,
0.016079774126410484,
-0.07168376445770264,
-0.09227655827999115,
0.046415410935878754,
-0.0007212258642539382,
-0.07019324600696564,
0.04336128383874893,
0.01872076466679573,
-0.07103253155946732,
-0.03834306448698044,
0.05254431441426277,
0.027913549914956093,
0.0400172658264637,
-0.146876260638237,
-0.1195456013083458,
-0.012633946724236012,
0.03010692074894905,
0.04268079623579979,
0.060200124979019165,
0.019220897927880287,
0.21056215465068817,
-0.12365733087062836,
0.10502377897500992,
0.15344665944576263,
-0.3129054605960846,
0.002867099829018116,
0.06838289648294449,
0.07103738188743591,
-0.04424971342086792,
-0.023489616811275482,
0.05856989696621895,
0.01071459986269474,
0.022148624062538147,
0.044038139283657074,
-0.07715853303670883,
-0.044328734278678894,
0.01152737345546484,
-0.0813736543059349,
-0.059741389006376266,
0.16159793734550476,
-0.04301191866397858,
0.04482201114296913,
0.012044340372085571,
-0.13646052777767181,
-0.04112602770328522,
-0.0220506452023983,
-0.0066766394302248955,
-0.034124407917261124,
0.043702688068151474,
-0.030891025438904762,
-0.01450628973543644,
-0.11146465688943863,
0.02620311640202999,
-0.2388714849948883,
0.25444263219833374,
0.025913868099451065,
0.06962989270687103,
-0.19036757946014404,
0.04825044423341751,
-0.032656311988830566,
-0.12202991545200348,
0.05392675846815109,
-0.09348990768194199,
0.023280160501599312,
-0.004289025440812111,
-0.06674729287624359,
-0.024281397461891174,
0.07810400426387787,
0.19070357084274292,
0.07175330817699432,
0.038729287683963776,
0.022616418078541756,
0.10197576135396957,
0.015252627432346344,
0.0927167534828186,
0.02304348163306713,
-0.03693375736474991,
0.058425456285476685,
-0.11234977096319199,
0.02645397186279297,
-0.06413000077009201,
-0.13045111298561096,
-0.03655298054218292,
0.026817962527275085,
0.07910523563623428,
0.039121128618717194,
0.05921967700123787,
-0.09775126725435257,
-0.00039136706618592143,
0.10266957432031631,
-0.07596733421087265,
0.011552278883755207,
-0.012669426389038563,
0.05071375519037247,
0.10554905235767365,
0.019699934870004654,
-0.013951314613223076,
-0.02595921792089939,
0.12606576085090637,
-0.07414942234754562,
-0.0338914580643177,
-0.057671189308166504,
-0.0717587098479271,
0.04045988991856575,
-0.12276265770196915,
0.03537328913807869,
-0.18295785784721375,
-0.12786880135536194,
0.05937539413571358,
0.05743318796157837,
0.0075002796947956085,
-0.02198064886033535,
0.027785688638687134,
0.0016502209473401308,
0.014095489867031574,
-0.051991820335388184,
-0.05198881775140762,
-0.03936923295259476,
0.10392222553491592,
0.01174288708716631,
0.12164439260959625,
-0.12003052234649658,
0.04834338277578354,
-0.08534543961286545,
0.014317753724753857,
-0.15386703610420227,
-0.04163011908531189,
-0.028065448626875877,
0.1477208137512207,
-0.0017313070129603148,
-0.044967345893383026,
-0.1107422336935997,
0.03536098450422287,
-0.008266955614089966,
0.174587219953537,
-0.0640043392777443,
-0.13445088267326355,
0.238468199968338,
-0.10142715275287628,
-0.15124346315860748,
0.08353633433580399,
0.00263609504327178,
-0.00937309768050909,
0.05675121024250984,
0.109283447265625,
0.03876260668039322,
-0.14184610545635223,
0.0926179513335228,
0.11292947828769684,
-0.13638317584991455,
-0.12760622799396515,
0.022435644641518593,
-0.00732642924413085,
-0.12322323024272919,
0.04600539803504944,
0.07860185950994492,
0.1112794280052185,
-0.07251705229282379,
-0.04695776477456093,
-0.01390511728823185,
-0.03809646517038345,
0.1488271951675415,
0.03689313679933548,
0.09978006780147552,
-0.07845763862133026,
-0.02166028693318367,
-0.028704503551125526,
-0.008114258758723736,
0.06035853177309036,
0.038866739720106125,
-0.08729325234889984,
0.1360790729522705,
-0.0566742941737175,
0.010620499961078167,
-0.180439755320549,
-0.12009736150503159,
-0.0016330704092979431,
0.05382363870739937,
-0.027322817593812943,
0.12601551413536072,
0.11395162343978882,
-0.03539265692234039,
-0.007137839682400227,
-0.03099343180656433,
0.09945479035377502,
0.025088751688599586,
-0.03798593953251839,
-0.0885278731584549,
0.007986658252775669,
-0.08452948927879333,
-0.014333197847008705,
0.01457307767122984,
0.002566321985796094,
0.00016168280853889883,
0.13817834854125977,
-0.0010485704988241196,
0.03795786574482918,
-0.05177360028028488,
0.04081299155950546,
-0.034957047551870346,
0.01450793631374836,
0.09004251658916473,
-0.000576441758312285,
-0.06362977623939514,
0.15637962520122528,
-0.14581918716430664,
0.35973721742630005,
0.19387078285217285,
-0.3088320195674896,
-0.016066158190369606,
0.01958218589425087,
-0.01481733750551939,
-0.0028315566014498472,
0.056414127349853516,
-0.015269504860043526,
0.04143389314413071,
0.014644528739154339,
0.15166911482810974,
-0.015120322816073895,
-0.02077334001660347,
0.027502890676259995,
-0.0772947371006012,
-0.04431246966123581,
0.03279697522521019,
0.09859511256217957,
-0.13104848563671112,
0.17962734401226044,
0.2618531882762909,
0.004645867273211479,
0.13293692469596863,
0.01004520058631897,
-0.0017370838904753327,
0.012384308502078056,
-0.03448771312832832,
-0.02204137109220028,
0.036397550255060196,
-0.19078975915908813,
-0.037138842046260834,
0.07815047353506088,
-0.030133357271552086,
0.05545393377542496,
-0.11835511028766632,
-0.03323771432042122,
0.029111113399267197,
0.05119411274790764,
-0.07707978785037994,
0.12659992277622223,
0.04097466543316841,
0.0710253193974495,
0.0037192106246948242,
-0.07951492071151733,
0.11071927845478058,
0.007798798382282257,
-0.038606591522693634,
0.15219268202781677,
-0.13388566672801971,
-0.3540363311767578,
-0.1352192908525467,
-0.186979740858078,
0.010174541734158993,
0.04617423936724663,
0.07225015014410019,
-0.08286191523075104,
-0.05899273604154587,
0.09581182152032852,
-0.003480511251837015,
-0.02892324887216091,
0.06940968334674835,
-0.06169416382908821,
0.011217288672924042,
-0.027349013835191727,
-0.06347832828760147,
-0.07560451328754425,
-0.028934668749570847,
-0.02698061801493168,
0.15005719661712646,
-0.09269136935472488,
0.08664495497941971,
0.13057461380958557,
0.0057759047485888,
0.07016542553901672,
-0.0002483248827047646,
0.18727800250053406,
-0.06556744873523712,
-0.005412220023572445,
0.18072476983070374,
-0.05880381539463997,
0.1026553139090538,
0.1556575745344162,
0.020712751895189285,
-0.05158966779708862,
0.00875561498105526,
-0.05700365826487541,
-0.11636948585510254,
-0.1564129889011383,
-0.11075278371572495,
-0.13123051822185516,
-0.011434734798967838,
0.05559059977531433,
0.04917698726058006,
0.13644592463970184,
0.08514466881752014,
0.03654884546995163,
-0.018586870282888412,
-0.06805557757616043,
0.0498523935675621,
0.17366138100624084,
-0.030056441202759743,
0.1334504783153534,
-0.036830224096775055,
-0.14371523261070251,
0.059510327875614166,
0.0252390094101429,
0.12022719532251358,
0.10808205604553223,
-0.004712763242423534,
0.03895212337374687,
0.16281089186668396,
0.1563887745141983,
0.16660696268081665,
0.025009524077177048,
-0.057338543236255646,
-0.004954719450324774,
-0.009356440976262093,
-0.058457158505916595,
0.02018333598971367,
0.15226905047893524,
-0.1055486798286438,
-0.051534514874219894,
-0.145093634724617,
0.05207017809152603,
0.09619975835084915,
0.06738487631082535,
-0.22444024682044983,
0.012990519404411316,
0.06385935842990875,
0.007989094592630863,
-0.06883342564105988,
0.03757710009813309,
-0.02228686586022377,
-0.13463854789733887,
0.06749572604894638,
-0.05030853673815727,
0.09488040208816528,
0.03667333722114563,
0.07960424572229385,
-0.03426273167133331,
-0.06298200786113739,
0.04128245636820793,
0.0669965147972107,
-0.2517971694469452,
0.2858309745788574,
-0.008294520899653435,
-0.051533956080675125,
-0.08108772337436676,
-0.009787647053599358,
0.04465258866548538,
0.12031106650829315,
0.0992002934217453,
0.032960955053567886,
-0.021231580525636673,
-0.15835201740264893,
-0.012746589258313179,
0.028594577684998512,
0.10843918472528458,
-0.02854795753955841,
-0.016072293743491173,
-0.02141297422349453,
-0.054353177547454834,
-0.007548002991825342,
0.09288700670003891,
0.00021381601982284337,
-0.13055965304374695,
0.0781245231628418,
0.056197553873062134,
0.0030072317458689213,
-0.010090996511280537,
-0.05736343935132027,
-0.11168934404850006,
0.18835410475730896,
-0.02566578984260559,
-0.054508499801158905,
-0.10566588491201401,
-0.11198879778385162,
0.09742310643196106,
-0.10951992124319077,
0.1106313019990921,
-0.09603893011808395,
0.004723524209111929,
-0.09463068842887878,
-0.18368598818778992,
0.1582668572664261,
-0.1269671618938446,
-0.006225429475307465,
-0.07936962693929672,
0.15473303198814392,
-0.0639534443616867,
0.02866891399025917,
0.003773587988689542,
0.028899380937218666,
-0.10591752827167511,
-0.05296826362609863,
0.030782422050833702,
-0.05678727477788925,
0.04187817499041557,
0.044521696865558624,
-0.06555546075105667,
-0.01695936545729637,
0.019335398450493813,
0.04292288422584534,
0.23622342944145203,
0.2353804111480713,
-0.052708715200424194,
0.1417168378829956,
0.1806049793958664,
-0.028383145108819008,
-0.3410240709781647,
-0.11411335319280624,
-0.13666872680187225,
-0.003915437962859869,
0.007809142116457224,
-0.1327342689037323,
0.09345895051956177,
-0.032195452600717545,
-0.04637759178876877,
0.12031539529561996,
-0.15053622424602509,
-0.09246959537267685,
0.2436363250017166,
0.008315314538776875,
0.4863871932029724,
-0.09246446192264557,
-0.06652036309242249,
-0.03995967283844948,
-0.14584210515022278,
0.05183078721165657,
0.024809755384922028,
0.08875752240419388,
-0.015901152044534683,
0.08785346150398254,
0.03374331444501877,
-0.09186475723981857,
0.09677482396364212,
-0.03436388820409775,
0.01234909426420927,
-0.10329624265432358,
-0.09800854325294495,
0.06808411329984665,
-0.01401363592594862,
-0.01322801224887371,
0.015540778636932373,
0.007425607182085514,
-0.04579975828528404,
-0.020523425191640854,
-0.10680554807186127,
0.10987795889377594,
0.03320621699094772,
-0.062224309891462326,
0.03879779577255249,
-0.017917169257998466,
-0.009515928104519844,
0.0034782900474965572,
0.1910327970981598,
-0.008325624279677868,
0.17571797966957092,
0.08782124519348145,
0.0300945732742548,
-0.16413554549217224,
-0.0698731392621994,
-0.050175994634628296,
-0.0846821516752243,
0.08663877099752426,
0.008863678202033043,
0.05756894871592522,
0.11674199998378754,
-0.021469993516802788,
0.040903765708208084,
0.11679863929748535,
0.013281558640301228,
-0.03635825589299202,
0.15106870234012604,
-0.2260168492794037,
0.040877439081668854,
-0.024700431153178215,
-0.002281648339703679,
0.06495176255702972,
0.0602131113409996,
0.08886897563934326,
0.04362958297133446,
-0.03604341670870781,
-0.0080631198361516,
-0.011103777214884758,
-0.059563565999269485,
0.05411487817764282,
0.060502372682094574,
0.05677267909049988,
-0.13078919053077698,
0.0061960369348526,
-0.020739618688821793,
-0.2086004763841629,
-0.016145547851920128,
0.07876262068748474,
-0.12113361060619354,
-0.10942773520946503,
0.0038382872007787228,
0.09838655591011047,
-0.08085829019546509,
-0.03981052711606026,
-0.06243035942316055,
-0.11349830776453018,
0.05747007206082344,
0.2176428735256195,
0.1169067993760109,
0.0780315026640892,
-0.01989174261689186,
-0.01007353700697422,
-0.002601395593956113,
-0.015962328761816025,
0.02512223646044731,
0.033555783331394196,
-0.08247660100460052,
0.01702079549431801,
-0.008670814335346222,
0.16094514727592468,
-0.11036427319049835,
-0.05973701551556587,
-0.1687975972890854,
0.04017099365592003,
-0.06963387876749039,
-0.10318976640701294,
-0.09188957512378693,
-0.07771022617816925,
0.01973199099302292,
-0.07843679189682007,
-0.04138858988881111,
-0.03797203674912453,
-0.1261909008026123,
0.025888055562973022,
0.036669645458459854,
-0.015996644273400307,
-0.06865283101797104,
-0.044388484209775925,
0.13997533917427063,
-0.050470441579818726,
0.06897341459989548,
0.14721760153770447,
-0.08223868906497955,
0.08987827599048615,
-0.11864562332630157,
-0.14169776439666748,
0.09844960272312164,
0.024490095674991608,
0.09209379553794861,
0.06073470786213875,
0.01991713047027588,
0.054184310138225555,
0.03840716555714607,
0.039452992379665375,
0.08403609693050385,
-0.11287132650613785,
0.06809459626674652,
0.011329096741974354,
-0.1869479864835739,
-0.02397647127509117,
-0.09611000120639801,
0.07828033715486526,
0.0018079385627061129,
0.11844782531261444,
-0.0382930189371109,
0.10906048864126205,
-0.0436384454369545,
0.014289634302258492,
-0.02247670851647854,
-0.16372942924499512,
-0.004627579357475042,
-0.048289380967617035,
0.012862684205174446,
-0.013447915203869343,
0.23876222968101501,
-0.024661000818014145,
0.024913061410188675,
0.03820062428712845,
0.0719211995601654,
-0.003087579505518079,
0.0022083136718720198,
0.15241484344005585,
0.09013786166906357,
-0.05284610390663147,
-0.0749572142958641,
0.09104806929826736,
0.019679788500070572,
-0.05150250345468521,
0.13582676649093628,
0.06253648549318314,
0.04935529828071594,
0.09676174819469452,
0.00193702126853168,
0.04410434886813164,
-0.13451460003852844,
-0.2456214725971222,
-0.04142381623387337,
0.06802476942539215,
0.022965481504797935,
0.02864265814423561,
0.12449731677770615,
-0.011933309026062489,
0.057093679904937744,
-0.02881103754043579,
-0.022149965167045593,
-0.1927638053894043,
-0.12258896976709366,
-0.08218653500080109,
-0.07139991223812103,
0.023771436884999275,
-0.02313394285738468,
-0.020754177123308182,
0.09821733087301254,
0.034732282161712646,
-0.026418423280119896,
0.15178021788597107,
-0.003468479262664914,
-0.011058829724788666,
0.016801699995994568,
-0.01001247763633728,
0.0172751322388649,
0.032349079847335815,
-0.03294634073972702,
-0.16857078671455383,
0.004473234061151743,
-0.05259554460644722,
0.0047274017706513405,
-0.08785852044820786,
0.02359730750322342,
-0.09015554189682007,
-0.13330627977848053,
-0.07091958820819855,
0.0264219231903553,
-0.04996372386813164,
0.09263461828231812,
-0.013066912069916725,
0.05031539872288704,
0.0013845227658748627,
0.1200626865029335,
-0.07606708258390427,
-0.09816689789295197,
-0.04547613114118576,
0.1901932656764984,
0.041288163512945175,
0.0920717865228653,
-0.015353480353951454,
0.030952494591474533,
-0.11943032592535019,
0.34167152643203735,
0.314802885055542,
-0.049354273825883865,
0.0750916451215744,
0.054602526128292084,
0.03442682698369026,
0.07451198995113373,
0.1279372125864029,
0.0763775110244751,
0.2879911959171295,
-0.09316780418157578,
-0.04345858469605446,
-0.044293951243162155,
-0.03673816844820976,
-0.1208759993314743,
0.01128399558365345,
0.03953966125845909,
-0.03837299346923828,
-0.0634862631559372,
0.07261399179697037,
-0.17381651699543,
0.12662146985530853,
0.057949863374233246,
-0.21046149730682373,
-0.04841303452849388,
-0.027771536260843277,
0.17428803443908691,
0.017816947773098946,
0.1136963814496994,
-0.03833884000778198,
-0.08398560434579849,
0.062350668013095856,
0.022619010880589485,
-0.20338550209999084,
-0.06756751984357834,
0.10970646142959595,
-0.012227135710418224,
0.05940033122897148,
-0.017002668231725693,
0.031783878803253174,
0.0780811533331871,
0.07013798505067825,
-0.014899644069373608,
0.02075999788939953,
0.023412270471453667,
-0.10955478996038437,
-0.07060349732637405,
0.01478694099932909,
-0.0013840675819665194,
-0.11833599954843521,
0.02185012586414814,
-0.16461415588855743,
0.04151973873376846,
-0.09669603407382965,
-0.027114197611808777,
-0.0026749002281576395,
0.05793723464012146,
-0.04355005547404289,
0.04500356316566467,
0.06464733183383942,
0.018565697595477104,
-0.0383153110742569,
-0.05022261664271355,
-0.011393008753657341,
0.0629846602678299,
-0.11954975128173828,
-0.17594216763973236,
-0.08240210264921188,
-0.07172682136297226,
0.04485165327787399,
-0.010793168097734451,
-0.13988232612609863,
-0.04391428083181381,
-0.10527841746807098,
0.032555706799030304,
-0.15290100872516632,
0.04201599210500717,
0.04696520045399666,
0.04337937757372856,
0.017507996410131454,
-0.04434172064065933,
0.04486740753054619,
0.049446675926446915,
-0.155558243393898,
-0.09162718802690506
] |
null | null | transformers |
# FEEL-IT: Emotion and Sentiment Classification for the Italian Language
## FEEL-IT Python Package
You can find the package that uses this model for emotion and sentiment classification **[here](https://github.com/MilaNLProc/feel-it)** it is meant to be a very simple interface over HuggingFace models.
## License
Users should refer to the [following license](https://developer.twitter.com/en/developer-terms/commercial-terms)
## Abstract
Sentiment analysis is a common task to understand people's reactions online. Still, we often need more nuanced information: is the post negative because the user is angry or because they are sad?
An abundance of approaches has been introduced for tackling both tasks. However, at least for Italian, they all treat only one of the tasks at a time. We introduce *FEEL-IT*, a novel benchmark corpus of Italian Twitter posts annotated with four basic emotions: **anger, fear, joy, sadness**. By collapsing them, we can also do **sentiment analysis**. We evaluate our corpus on benchmark datasets for both emotion and sentiment classification, obtaining competitive results.
We release an [open-source Python library](https://github.com/MilaNLProc/feel-it), so researchers can use a model trained on FEEL-IT for inferring both sentiments and emotions from Italian text.
| Model | Download |
| ------ | -------------------------|
| `feel-it-italian-sentiment` | [Link](https://huggingface.co/MilaNLProc/feel-it-italian-sentiment) |
| `feel-it-italian-emotion` | [Link](https://huggingface.co/MilaNLProc/feel-it-italian-emotion) |
## Model
The *feel-it-italian-emotion* model performs **emotion classification (joy, fear, anger, sadness)** on Italian. We fine-tuned the [UmBERTo model](https://huggingface.co/Musixmatch/umberto-commoncrawl-cased-v1) on our new dataset (i.e., FEEL-IT) obtaining state-of-the-art performances on different benchmark corpora.
## Data
Our data has been collected by annotating tweets from a broad range of topics. In total, we have 2037 tweets annotated with an emotion label. More details can be found in our paper (https://aclanthology.org/2021.wassa-1.8/).
## Performance
We evaluate our performance using [MultiEmotions-It](http://ceur-ws.org/Vol-2769/paper_08.pdf). This dataset differs from FEEL-IT both in terms of topic variety and considered social media (i.e., YouTube and Facebook). We considered only the subset of emotions present in FEEL-IT. To give a point of reference, we also show the Most Frequent Class (MFC) baseline results. The results show that training on FEEL-IT brings stable performance even on datasets from different contexts.
| Training Dataset | Macro-F1 | Accuracy
| ------ | ------ |------ |
| MFC | 0.20 | 0.64 |
| FEEL-IT | **0.57** | **0.73** |
## Usage
```python
from transformers import pipeline
classifier = pipeline("text-classification",model='MilaNLProc/feel-it-italian-emotion',top_k=2)
prediction = classifier("Oggi sono proprio contento!")
print(prediction)
```
## Citation
Please use the following bibtex entry if you use this model in your project:
```
@inproceedings{bianchi2021feel,
title = {{"FEEL-IT: Emotion and Sentiment Classification for the Italian Language"}},
author = "Bianchi, Federico and Nozza, Debora and Hovy, Dirk",
booktitle = "Proceedings of the 11th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis",
year = "2021",
publisher = "Association for Computational Linguistics",
}
``` | {"language": "it", "tags": ["sentiment", "emotion", "Italian"]} | text-classification | MilaNLProc/feel-it-italian-emotion | [
"transformers",
"pytorch",
"tf",
"camembert",
"text-classification",
"sentiment",
"emotion",
"Italian",
"it",
"autotrain_compatible",
"endpoints_compatible",
"has_space",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [
"it"
] | TAGS
#transformers #pytorch #tf #camembert #text-classification #sentiment #emotion #Italian #it #autotrain_compatible #endpoints_compatible #has_space #region-us
| FEEL-IT: Emotion and Sentiment Classification for the Italian Language
======================================================================
FEEL-IT Python Package
----------------------
You can find the package that uses this model for emotion and sentiment classification here it is meant to be a very simple interface over HuggingFace models.
License
-------
Users should refer to the following license
Abstract
--------
Sentiment analysis is a common task to understand people's reactions online. Still, we often need more nuanced information: is the post negative because the user is angry or because they are sad?
An abundance of approaches has been introduced for tackling both tasks. However, at least for Italian, they all treat only one of the tasks at a time. We introduce *FEEL-IT*, a novel benchmark corpus of Italian Twitter posts annotated with four basic emotions: anger, fear, joy, sadness. By collapsing them, we can also do sentiment analysis. We evaluate our corpus on benchmark datasets for both emotion and sentiment classification, obtaining competitive results.
We release an open-source Python library, so researchers can use a model trained on FEEL-IT for inferring both sentiments and emotions from Italian text.
Model
-----
The *feel-it-italian-emotion* model performs emotion classification (joy, fear, anger, sadness) on Italian. We fine-tuned the UmBERTo model on our new dataset (i.e., FEEL-IT) obtaining state-of-the-art performances on different benchmark corpora.
Data
----
Our data has been collected by annotating tweets from a broad range of topics. In total, we have 2037 tweets annotated with an emotion label. More details can be found in our paper (URL
Performance
-----------
We evaluate our performance using MultiEmotions-It. This dataset differs from FEEL-IT both in terms of topic variety and considered social media (i.e., YouTube and Facebook). We considered only the subset of emotions present in FEEL-IT. To give a point of reference, we also show the Most Frequent Class (MFC) baseline results. The results show that training on FEEL-IT brings stable performance even on datasets from different contexts.
Training Dataset: MFC, Macro-F1: 0.20, Accuracy: 0.64
Training Dataset: FEEL-IT, Macro-F1: 0.57, Accuracy: 0.73
Usage
-----
Please use the following bibtex entry if you use this model in your project:
| [] | [
"TAGS\n#transformers #pytorch #tf #camembert #text-classification #sentiment #emotion #Italian #it #autotrain_compatible #endpoints_compatible #has_space #region-us \n"
] | [
56
] | [
"passage: TAGS\n#transformers #pytorch #tf #camembert #text-classification #sentiment #emotion #Italian #it #autotrain_compatible #endpoints_compatible #has_space #region-us \n"
] | [
-0.05174405127763748,
0.051023151725530624,
-0.007187739945948124,
0.07262186706066132,
0.15221735835075378,
0.07527746260166168,
-0.005411570426076651,
0.11482132971286774,
0.09977499395608902,
0.05101886764168739,
0.05506066605448723,
0.11839862167835236,
-0.018378403037786484,
0.02282925508916378,
-0.11422192305326462,
-0.30952662229537964,
-0.0010884886141866446,
0.07027868926525116,
0.03725861757993698,
0.10173039138317108,
0.10975959151983261,
-0.07426681369543076,
0.1228388324379921,
-0.034128885716199875,
-0.10996618121862411,
0.09704799205064774,
0.043637413531541824,
-0.057787418365478516,
0.1517971009016037,
0.07437954097986221,
0.12234170734882355,
0.035097088664770126,
-0.028388014063239098,
-0.13315223157405853,
0.04845662787556648,
0.03273266926407814,
-0.07152026146650314,
0.0037262856494635344,
0.10164753347635269,
-0.12896613776683807,
0.16451089084148407,
0.03143670782446861,
-0.032454729080200195,
0.02393213100731373,
-0.1264977604150772,
-0.08661271631717682,
0.007475912570953369,
0.035324033349752426,
-0.10025305300951004,
0.07800827920436859,
-0.03749578073620796,
0.15630391240119934,
-0.18942324817180634,
0.0923369973897934,
0.16108964383602142,
-0.16113749146461487,
-0.08398424088954926,
-0.012084917165338993,
0.08629032224416733,
0.06447751075029373,
-0.09900040924549103,
0.06972859054803848,
0.04431787505745888,
0.015149440616369247,
-0.04883000999689102,
-0.06996533274650574,
-0.047287717461586,
0.003218666650354862,
-0.052552465349435806,
-0.032349079847335815,
0.21260114014148712,
-0.022844413295388222,
0.06455422937870026,
-0.021708618849515915,
-0.05315910279750824,
-0.08901454508304596,
0.004180042073130608,
-0.046093422919511795,
-0.005645476747304201,
0.09286163002252579,
0.08694367110729218,
0.048939842730760574,
-0.14701242744922638,
0.10419300198554993,
-0.18972466886043549,
0.2368914932012558,
-0.02912273071706295,
0.008418694138526917,
-0.04161616787314415,
0.010883930139243603,
-0.05796768516302109,
-0.06546711176633835,
0.07226114720106125,
-0.07236846536397934,
0.06335613876581192,
-0.008509820327162743,
-0.0809515193104744,
0.01763460785150528,
0.02786143310368061,
0.026103653013706207,
-0.006891502067446709,
-0.023763133212924004,
0.00667210528627038,
0.091863252222538,
0.12387651950120926,
0.11648539453744888,
-0.03266433998942375,
-0.08311261236667633,
-0.10505381971597672,
-0.11499843746423721,
0.0037517824675887823,
-0.0367894284427166,
-0.1727534383535385,
-0.049990955740213394,
-0.013048766180872917,
0.018587274476885796,
0.026368074119091034,
0.09995294362306595,
-0.09338147938251495,
0.021645773202180862,
-0.10477529466152191,
-0.04449785128235817,
0.05489243566989899,
0.02724829502403736,
-0.014992421492934227,
0.2290741503238678,
-0.10377062857151031,
-0.031682565808296204,
-0.0400569774210453,
0.04249747470021248,
-0.045233529061079025,
0.0007180010434240103,
-0.030011439695954323,
-0.0788557156920433,
0.08532886207103729,
-0.1668016016483307,
0.06770923733711243,
-0.18234072625637054,
0.012947900220751762,
-0.02300683967769146,
0.0460776723921299,
-0.09634748846292496,
0.025157732889056206,
-0.00039916738751344383,
0.01961318776011467,
0.09612958878278732,
-0.011979500763118267,
-0.10530878603458405,
-0.07816030830144882,
0.08120515197515488,
-0.05357830598950386,
0.14884187281131744,
-0.12728646397590637,
0.036920223385095596,
-0.12070322036743164,
-0.03432626277208328,
-0.06763235479593277,
0.00036905656452290714,
-0.00928451493382454,
0.16489282250404358,
0.0556812658905983,
-0.033782780170440674,
-0.10569249838590622,
0.06067396700382233,
-0.0640142410993576,
0.20251891016960144,
-0.21397094428539276,
-0.08823254704475403,
0.1545465588569641,
-0.0797332301735878,
-0.0695071890950203,
0.18303532898426056,
0.0280039943754673,
0.10861385613679886,
0.0673031359910965,
0.2337455302476883,
-0.03835951164364815,
-0.028347473591566086,
-0.05168925225734711,
0.1411001831293106,
-0.08805584162473679,
0.06805389374494553,
0.01345669012516737,
0.10204553604125977,
0.06641780585050583,
0.04843277484178543,
0.0950842946767807,
0.07811400294303894,
-0.08394627273082733,
-0.060462430119514465,
-0.03637680783867836,
-0.021174591034650803,
0.1135568842291832,
0.08903153985738754,
0.07803381979465485,
-0.12283775955438614,
-0.06649076193571091,
-0.17480918765068054,
0.03894080966711044,
0.02802419289946556,
0.042707957327365875,
-0.04383617267012596,
0.20778602361679077,
0.12882141768932343,
-0.007749773561954498,
-0.15212877094745636,
0.021261775866150856,
-0.050236839801073074,
0.1900119036436081,
0.010405373759567738,
0.19865384697914124,
0.08273772895336151,
-0.10972043871879578,
-0.06708181649446487,
0.03336937353014946,
0.11530499905347824,
0.023833507671952248,
0.015184917487204075,
-0.21260610222816467,
0.08272608369588852,
-0.049474772065877914,
0.05864928290247917,
-0.11931098252534866,
0.023652423173189163,
0.18166132271289825,
0.12032584100961685,
-0.04982297122478485,
0.05769271031022072,
-0.1326410174369812,
0.006201597861945629,
-0.09688858687877655,
-0.011358499526977539,
0.08144168555736542,
-0.030014168471097946,
-0.05090045556426048,
0.18785718083381653,
-0.12174728512763977,
0.29162511229515076,
0.1919350028038025,
-0.34253883361816406,
-0.05545724183320999,
-0.03365832939743996,
-0.03736535459756851,
0.09990410506725311,
0.10354326665401459,
0.011764553375542164,
-0.007984883151948452,
-0.07299152761697769,
0.07232222706079483,
-0.0370674803853035,
0.050415895879268646,
0.03155576437711716,
-0.04786121845245361,
-0.14020521938800812,
0.07728961110115051,
0.043932460248470306,
-0.15535777807235718,
0.238067626953125,
0.3708811402320862,
-0.008387202396988869,
0.28159427642822266,
0.0411364883184433,
0.05223650485277176,
0.0283229760825634,
-0.05036814883351326,
-0.09132549911737442,
0.008929421193897724,
-0.2690736651420593,
-0.04150178283452988,
0.007437183056026697,
-0.021447589620947838,
0.019270146265625954,
-0.09441281855106354,
-0.08100083470344543,
0.008077896200120449,
0.04135872796177864,
-0.006616789381951094,
0.08623502403497696,
0.004083168692886829,
0.15812870860099792,
0.03969413787126541,
-0.11427333950996399,
0.06000777706503868,
0.037719596177339554,
-0.026778042316436768,
0.10225731879472733,
-0.1728508323431015,
-0.27283769845962524,
-0.0028196803759783506,
-0.06476336717605591,
-0.018842419609427452,
0.03236791118979454,
0.06006971374154091,
-0.15549567341804504,
0.022148586809635162,
0.03138202801346779,
0.04255099967122078,
-0.10297445952892303,
-0.007495061960071325,
-0.09916722029447556,
0.06353991478681564,
-0.1330195814371109,
-0.031026074662804604,
-0.07825660705566406,
-0.059795599430799484,
-0.07875892519950867,
0.07719555497169495,
-0.16035111248493195,
0.1276267021894455,
0.23480680584907532,
-0.019926372915506363,
0.05099640414118767,
-0.06806445866823196,
0.1523893028497696,
-0.19155581295490265,
0.030251797288656235,
0.11524862796068192,
-0.007590107154101133,
0.042064592242240906,
0.21767383813858032,
0.027059702202677727,
-0.07436499744653702,
-0.015046198852360249,
0.02488473616540432,
-0.07280344516038895,
-0.12131703644990921,
-0.12622897326946259,
-0.11102142184972763,
0.14106692373752594,
-0.04479459300637245,
0.07703208178281784,
0.10367009043693542,
0.0450051873922348,
0.006610874552279711,
-0.1831168830394745,
-0.06637643277645111,
0.019422976300120354,
0.20445135235786438,
-0.07449250668287277,
0.09427681565284729,
-0.01871880516409874,
-0.1054689884185791,
0.1810915321111679,
0.08574984222650528,
-0.02361535094678402,
0.038860056549310684,
0.045116301625967026,
0.020286476239562035,
0.14110374450683594,
0.044661685824394226,
0.02371704950928688,
0.05402658134698868,
-0.08860845863819122,
-0.047166887670755386,
0.0006375749944709241,
-0.034705422818660736,
0.06462521106004715,
0.11216054111719131,
-0.11475725471973419,
-0.09986864030361176,
-0.13541504740715027,
0.15374277532100677,
0.07598521560430527,
0.049770403653383255,
-0.15937091410160065,
0.02780444361269474,
0.04736274480819702,
0.025802191346883774,
-0.0748366191983223,
0.002983669750392437,
0.07296120375394821,
-0.13085868954658508,
0.07545308768749237,
0.06595294922590256,
0.07140519469976425,
-0.062028709799051285,
0.11429782956838608,
-0.13223661482334137,
-0.15509358048439026,
-0.0023628990165889263,
0.060581836849451065,
-0.20060907304286957,
0.2491476684808731,
0.019934114068746567,
-0.09887661784887314,
-0.08278682082891464,
-0.06696239858865738,
0.0941479504108429,
0.27172011137008667,
0.08965141326189041,
0.041953809559345245,
-0.014977019280195236,
-0.15979917347431183,
0.09969394654035568,
-0.031089968979358673,
0.18440918624401093,
0.011718211695551872,
-0.0639442428946495,
-0.03064793348312378,
0.0016474485164508224,
0.02247060276567936,
0.21559004485607147,
0.006261349190026522,
-0.17354533076286316,
0.08379686623811722,
0.09613120555877686,
-0.04639246314764023,
0.07607322186231613,
-0.10341291129589081,
-0.13621750473976135,
0.171179860830307,
0.047247264534235,
0.057085175067186356,
-0.11711104959249496,
-0.04925651475787163,
-0.04186409339308739,
-0.024537058547139168,
0.000379744655219838,
-0.07675673812627792,
0.025173036381602287,
-0.10474032908678055,
-0.08033634722232819,
0.182878777384758,
-0.0886317640542984,
-0.023976346477866173,
-0.07185228914022446,
0.06279401481151581,
-0.032562676817178726,
0.06296136975288391,
0.06066064164042473,
-0.029304584488272667,
-0.09104045480489731,
-0.04365408420562744,
0.08141887933015823,
-0.06485569477081299,
-0.05048026889562607,
0.09297316521406174,
-0.07845285534858704,
-0.06786444038152695,
-0.0046630441211164,
-0.05684492737054825,
0.20493891835212708,
0.15606556832790375,
-0.06945602595806122,
0.053077902644872665,
0.017529673874378204,
-0.06151597574353218,
-0.36456099152565,
0.050989266484975815,
-0.104921355843544,
-0.007301460485905409,
0.03808346018195152,
-0.08591900020837784,
0.01326666958630085,
-0.04101937264204025,
-0.027823977172374725,
0.025660315528512,
-0.1553402841091156,
-0.033388011157512665,
0.11992272734642029,
-0.03465365990996361,
0.40987110137939453,
-0.10293895751237869,
0.013926339335739613,
-0.04736074432730675,
-0.019786829128861427,
0.08569899201393127,
-0.0173458494246006,
0.06057285517454147,
0.017899099737405777,
0.06667579710483551,
0.04689885675907135,
0.024038653820753098,
0.1144276112318039,
0.0014494335046038032,
0.0005478124949149787,
-0.13025888800621033,
-0.1350436806678772,
0.015309848822653294,
0.024136198684573174,
-0.05656305328011513,
-0.03858131915330887,
-0.09326725453138351,
-0.10785721242427826,
-0.03178632631897926,
-0.17113475501537323,
0.08674250543117523,
-0.018753575161099434,
-0.050013232976198196,
-0.06339939683675766,
0.07374254614114761,
0.021603675559163094,
0.002547748386859894,
0.028110265731811523,
-0.10971657186746597,
0.11073483526706696,
0.10362912714481354,
0.14872223138809204,
-0.0997045710682869,
0.04646342620253563,
-0.021076567471027374,
-0.04336133971810341,
0.014997448772192001,
-0.03747878968715668,
0.044781897217035294,
0.10755188763141632,
-0.066507488489151,
0.03582475334405899,
0.11317149549722672,
-0.020330481231212616,
-0.04167785495519638,
0.17976294457912445,
-0.1424543857574463,
-0.04516840726137161,
-0.11235429346561432,
-0.10567183792591095,
0.07337713241577148,
-0.030709343031048775,
0.10047370940446854,
0.025542819872498512,
-0.012237699702382088,
-0.023366739973425865,
-0.045712001621723175,
-0.01767238788306713,
0.00407118396833539,
0.010759582743048668,
-0.05632098391652107,
-0.07150876522064209,
0.02987797185778618,
-0.02758500725030899,
-0.3240644335746765,
0.010065006092190742,
0.1712460219860077,
-0.08610183745622635,
-0.14105123281478882,
0.019870180636644363,
0.10200463980436325,
-0.19139376282691956,
-0.056472036987543106,
-0.08249069005250931,
-0.17795222997665405,
0.055697694420814514,
0.2072874903678894,
0.1007552295923233,
0.07498710602521896,
-0.06697429716587067,
-0.015471160411834717,
0.04918380081653595,
0.006964945700019598,
0.07570667564868927,
-0.04448733106255531,
-0.06037457659840584,
0.03734070435166359,
-0.02337983064353466,
0.10299582779407501,
-0.09256623685359955,
-0.07246594876050949,
-0.09907207638025284,
-0.026117753237485886,
-0.03732955828309059,
-0.15698404610157013,
-0.04058234766125679,
-0.055636320263147354,
0.019001245498657227,
-0.03899778425693512,
-0.03071928583085537,
-0.1230248287320137,
-0.139863520860672,
0.045223336666822433,
0.046113643795251846,
0.07878216356039047,
-0.03638116270303726,
-0.025316596031188965,
0.08172895014286041,
-0.03121178038418293,
0.13580870628356934,
0.089433953166008,
-0.053250886499881744,
0.09434553235769272,
-0.178927943110466,
-0.07309958338737488,
0.062137141823768616,
-0.02394474484026432,
0.03102419711649418,
0.15269102156162262,
0.018743105232715607,
0.056999899446964264,
0.010461682453751564,
0.07636452466249466,
0.016483794897794724,
-0.0294273030012846,
0.16412435472011566,
0.1248941496014595,
-0.21934078633785248,
-0.021797414869070053,
0.03456098958849907,
0.07813087850809097,
-0.07183340191841125,
0.028032444417476654,
-0.0502462275326252,
0.023945840075612068,
-0.01949360780417919,
0.04333137720823288,
0.0016507545951753855,
-0.1838436722755432,
-0.10035247355699539,
-0.07503239065408707,
0.023175375536084175,
0.04715698957443237,
0.140740767121315,
0.15855173766613007,
0.005537448450922966,
0.034998323768377304,
0.11587455868721008,
-0.023294277489185333,
-0.008824000135064125,
0.05901874229311943,
0.09714566171169281,
-0.09047571569681168,
-0.07456959784030914,
0.06926126778125763,
0.04170622676610947,
0.09838958829641342,
0.08085451275110245,
0.08687343448400497,
0.14122647047042847,
0.11520075798034668,
0.016993802040815353,
0.011850859969854355,
-0.05446759983897209,
-0.14551834762096405,
-0.05235493928194046,
0.0972878709435463,
-0.09793953597545624,
0.06753645092248917,
0.1082000583410263,
0.008348528295755386,
0.05873560160398483,
-0.08503080904483795,
-0.03517420217394829,
-0.1396438330411911,
-0.17654769122600555,
-0.0050495644100010395,
-0.11385844647884369,
-0.034057896584272385,
-0.11537535488605499,
0.06610006839036942,
-0.05074344947934151,
0.07305702567100525,
-0.11635338515043259,
0.09122062474489212,
-0.0353039987385273,
-0.08900105208158493,
0.15622016787528992,
-0.00034943321952596307,
0.09703412652015686,
-0.10756447166204453,
-0.05457392707467079,
-0.19415615499019623,
-0.026023264974355698,
-0.021315155550837517,
0.02631032094359398,
-0.09236020594835281,
-0.08504407852888107,
-0.14936251938343048,
-0.074181467294693,
-0.04938459396362305,
-0.000709641957655549,
-0.03749404847621918,
0.11405640095472336,
-0.061376508325338364,
0.016460193321108818,
0.020433098077774048,
0.188449889421463,
-0.042347803711891174,
0.09314414858818054,
-0.016818268224596977,
0.09780791401863098,
-0.01072909589856863,
0.1134638786315918,
-0.08831357955932617,
0.00007880652992753312,
-0.10327373445034027,
0.275266170501709,
0.2971106469631195,
-0.12168009579181671,
0.04145337641239166,
0.03107208013534546,
0.07539922744035721,
0.06195073947310448,
0.06208754703402519,
0.0903744027018547,
0.14328604936599731,
-0.12882596254348755,
0.06994576752185822,
-0.07984847575426102,
0.04487054795026779,
-0.02248828485608101,
0.07554890960454941,
0.15492717921733856,
-0.004675078671425581,
-0.08542482554912567,
0.09806134551763535,
-0.13796381652355194,
0.1534774750471115,
0.08713098615407944,
-0.27890899777412415,
-0.07138209044933319,
-0.017293047159910202,
0.12649700045585632,
0.0733935683965683,
0.17460867762565613,
-0.004093860276043415,
-0.11897072196006775,
0.05692238360643387,
0.0022329126950353384,
-0.24547579884529114,
-0.09401996433734894,
0.10279282182455063,
-0.1265835464000702,
0.06498724967241287,
-0.10596706718206406,
-0.033530496060848236,
0.12526187300682068,
0.06246905028820038,
0.06740239262580872,
-0.009791719727218151,
0.04423391446471214,
-0.033526599407196045,
-0.06876790523529053,
0.035262346267700195,
-0.02218537963926792,
-0.056081485003232956,
0.08931892365217209,
-0.21956469118595123,
0.11616189032793045,
-0.04421297833323479,
-0.05823814868927002,
-0.008088226430118084,
0.16526468098163605,
-0.09674475342035294,
0.028672436252236366,
0.11016171425580978,
0.05387653410434723,
-0.05776134505867958,
-0.07401812821626663,
-0.0532442182302475,
0.04038132354617119,
-0.05565844476222992,
-0.04919197037816048,
-0.03861180692911148,
-0.06368981301784515,
0.11315000057220459,
-0.007872572168707848,
-0.09145423769950867,
-0.05951443687081337,
-0.03008262626826763,
0.07267589122056961,
-0.15291467308998108,
0.019692515954375267,
0.05304541438817978,
0.02433839626610279,
0.02471284009516239,
-0.12793485820293427,
0.07262372970581055,
0.09478409588336945,
-0.037454281002283096,
-0.013506684452295303
] |
null | null | transformers |
# FEEL-IT: Emotion and Sentiment Classification for the Italian Language
## FEEL-IT Python Package
You can find the package that uses this model for emotion and sentiment classification **[here](https://github.com/MilaNLProc/feel-it)** it is meant to be a very simple interface over HuggingFace models.
## License
Users should refer to the [following license](https://developer.twitter.com/en/developer-terms/commercial-terms)
## Abstract
Sentiment analysis is a common task to understand people's reactions online. Still, we often need more nuanced information: is the post negative because the user is angry or because they are sad?
An abundance of approaches has been introduced for tackling both tasks. However, at least for Italian, they all treat only one of the tasks at a time. We introduce *FEEL-IT*, a novel benchmark corpus of Italian Twitter posts annotated with four basic emotions: **anger, fear, joy, sadness**. By collapsing them, we can also do **sentiment analysis**. We evaluate our corpus on benchmark datasets for both emotion and sentiment classification, obtaining competitive results.
We release an [open-source Python library](https://github.com/MilaNLProc/feel-it), so researchers can use a model trained on FEEL-IT for inferring both sentiments and emotions from Italian text.
| Model | Download |
| ------ | -------------------------|
| `feel-it-italian-sentiment` | [Link](https://huggingface.co/MilaNLProc/feel-it-italian-sentiment) |
| `feel-it-italian-emotion` | [Link](https://huggingface.co/MilaNLProc/feel-it-italian-emotion) |
## Model
The *feel-it-italian-sentiment* model performs **sentiment analysis** on Italian. We fine-tuned the [UmBERTo model](https://huggingface.co/Musixmatch/umberto-commoncrawl-cased-v1) on our new dataset (i.e., FEEL-IT) obtaining state-of-the-art performances on different benchmark corpora.
## Data
Our data has been collected by annotating tweets from a broad range of topics. In total, we have 2037 tweets annotated with an emotion label. More details can be found in our paper (https://aclanthology.org/2021.wassa-1.8/).
## Performance
We evaluate our performance using [SENTIPOLC16 Evalita](http://www.di.unito.it/~tutreeb/sentipolc-evalita16/). We collapsed the FEEL-IT classes into 2 by mapping joy to the *positive* class and anger, fear and sadness into the *negative* class. We compare three different experimental configurations training on FEEL-IT, SENTIPOLC16, or both by testing on the SENTIPOLC16 test set.
The results show that training on FEEL-IT can provide better results on the SENTIPOLC16 test set than those that can be obtained with the SENTIPOLC16 training set.
| Training Dataset | Macro-F1 | Accuracy
| ------ | ------ |------ |
| SENTIPOLC16 | 0.80 | 0.81 |
| FEEL-IT | **0.81** | **0.84** |
| FEEL-IT+SentiPolc | 0.81 | 0.82
## Usage
```python
from transformers import pipeline
classifier = pipeline("text-classification",model='MilaNLProc/feel-it-italian-sentiment',top_k=2)
prediction = classifier("Oggi sono proprio contento!")
print(prediction)
```
## Citation
Please use the following bibtex entry if you use this model in your project:
```
@inproceedings{bianchi2021feel,
title = {{"FEEL-IT: Emotion and Sentiment Classification for the Italian Language"}},
author = "Bianchi, Federico and Nozza, Debora and Hovy, Dirk",
booktitle = "Proceedings of the 11th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis",
year = "2021",
publisher = "Association for Computational Linguistics",
}
``` | {"language": "it", "tags": ["sentiment", "Italian"]} | text-classification | MilaNLProc/feel-it-italian-sentiment | [
"transformers",
"pytorch",
"tf",
"camembert",
"text-classification",
"sentiment",
"Italian",
"it",
"autotrain_compatible",
"endpoints_compatible",
"has_space",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [
"it"
] | TAGS
#transformers #pytorch #tf #camembert #text-classification #sentiment #Italian #it #autotrain_compatible #endpoints_compatible #has_space #region-us
| FEEL-IT: Emotion and Sentiment Classification for the Italian Language
======================================================================
FEEL-IT Python Package
----------------------
You can find the package that uses this model for emotion and sentiment classification here it is meant to be a very simple interface over HuggingFace models.
License
-------
Users should refer to the following license
Abstract
--------
Sentiment analysis is a common task to understand people's reactions online. Still, we often need more nuanced information: is the post negative because the user is angry or because they are sad?
An abundance of approaches has been introduced for tackling both tasks. However, at least for Italian, they all treat only one of the tasks at a time. We introduce *FEEL-IT*, a novel benchmark corpus of Italian Twitter posts annotated with four basic emotions: anger, fear, joy, sadness. By collapsing them, we can also do sentiment analysis. We evaluate our corpus on benchmark datasets for both emotion and sentiment classification, obtaining competitive results.
We release an open-source Python library, so researchers can use a model trained on FEEL-IT for inferring both sentiments and emotions from Italian text.
Model
-----
The *feel-it-italian-sentiment* model performs sentiment analysis on Italian. We fine-tuned the UmBERTo model on our new dataset (i.e., FEEL-IT) obtaining state-of-the-art performances on different benchmark corpora.
Data
----
Our data has been collected by annotating tweets from a broad range of topics. In total, we have 2037 tweets annotated with an emotion label. More details can be found in our paper (URL
Performance
-----------
We evaluate our performance using SENTIPOLC16 Evalita. We collapsed the FEEL-IT classes into 2 by mapping joy to the *positive* class and anger, fear and sadness into the *negative* class. We compare three different experimental configurations training on FEEL-IT, SENTIPOLC16, or both by testing on the SENTIPOLC16 test set.
The results show that training on FEEL-IT can provide better results on the SENTIPOLC16 test set than those that can be obtained with the SENTIPOLC16 training set.
Training Dataset: SENTIPOLC16, Macro-F1: 0.80, Accuracy: 0.81
Training Dataset: FEEL-IT, Macro-F1: 0.81, Accuracy: 0.84
Training Dataset: FEEL-IT+SentiPolc, Macro-F1: 0.81, Accuracy: 0.82
Usage
-----
Please use the following bibtex entry if you use this model in your project:
| [] | [
"TAGS\n#transformers #pytorch #tf #camembert #text-classification #sentiment #Italian #it #autotrain_compatible #endpoints_compatible #has_space #region-us \n"
] | [
53
] | [
"passage: TAGS\n#transformers #pytorch #tf #camembert #text-classification #sentiment #Italian #it #autotrain_compatible #endpoints_compatible #has_space #region-us \n"
] | [
-0.03766711801290512,
0.045123063027858734,
-0.006414099130779505,
0.06190945953130722,
0.1403743177652359,
0.06005149707198143,
0.032185111194849014,
0.11739737540483475,
0.09566333889961243,
0.044162601232528687,
0.07712525874376297,
0.11397742480039597,
-0.022694531828165054,
0.032130979001522064,
-0.10533025860786438,
-0.2925475835800171,
0.030198466032743454,
0.045618023723363876,
-0.022576307877898216,
0.10235457122325897,
0.12062951177358627,
-0.07986011356115341,
0.10164309293031693,
-0.040839020162820816,
-0.12204118072986603,
0.09726168215274811,
0.039867106825113297,
-0.08622131496667862,
0.15264470875263214,
0.09053220599889755,
0.1498182862997055,
0.03093133494257927,
-0.04346650093793869,
-0.10384292900562286,
0.04091736674308777,
0.031752098351716995,
-0.08708235621452332,
0.010464861989021301,
0.10216471552848816,
-0.11601047962903976,
0.13926060497760773,
0.030382515862584114,
-0.026394668966531754,
0.022458093240857124,
-0.14509649574756622,
-0.06300865113735199,
0.002653745235875249,
0.02517644129693508,
-0.0978357344865799,
0.06626974046230316,
-0.030273472890257835,
0.1482974737882614,
-0.2054716795682907,
0.10171322524547577,
0.13041187822818756,
-0.20212705433368683,
-0.07620968669652939,
0.02832782082259655,
0.05960254371166229,
0.10321049392223358,
-0.06902997195720673,
0.07760161906480789,
0.04637652263045311,
0.004666302353143692,
-0.05104934796690941,
-0.046537112444639206,
-0.06094351038336754,
0.01956600323319435,
-0.07194539904594421,
-0.043775759637355804,
0.2451639324426651,
-0.045022152364254,
0.0685495063662529,
-0.01437348872423172,
-0.06190795078873634,
-0.07813261449337006,
0.013896369375288486,
-0.04093445464968681,
-0.03186037391424179,
0.08809034526348114,
0.11387120932340622,
0.03018876723945141,
-0.14363476634025574,
0.07809946686029434,
-0.22378075122833252,
0.2732669711112976,
-0.0024270093999803066,
0.015149571001529694,
-0.08491858839988708,
0.03194337710738182,
-0.059408292174339294,
-0.08445652574300766,
0.0754956379532814,
-0.0746074914932251,
0.04859617352485657,
-0.015209225006401539,
-0.08072152733802795,
0.013190267607569695,
0.05248802527785301,
0.0701252818107605,
0.0076987710781395435,
-0.01011301577091217,
-0.008846884593367577,
0.1053352877497673,
0.09493298828601837,
0.11047033965587616,
-0.04584009572863579,
-0.07247715443372726,
-0.07210945338010788,
-0.11841308325529099,
0.0019907010719180107,
-0.04950884357094765,
-0.18310855329036713,
-0.07302208244800568,
0.0026917990762740374,
0.04406403750181198,
0.04253675043582916,
0.081851065158844,
-0.06904204934835434,
0.01015487965196371,
-0.05633251368999481,
-0.07567267119884491,
0.06021188572049141,
0.021520543843507767,
-0.017225949093699455,
0.20189771056175232,
-0.09568727761507034,
-0.029419895261526108,
-0.054250575602054596,
0.06489407271146774,
-0.06120939552783966,
-0.0030774332117289305,
-0.034706346690654755,
-0.10677383095026016,
0.06914441287517548,
-0.18167364597320557,
0.04206822067499161,
-0.17600390315055847,
0.03453551605343819,
-0.001561779179610312,
0.027044760063290596,
-0.08501481264829636,
0.017638064920902252,
0.0047660828568041325,
-0.008351295255124569,
0.0858236700296402,
-0.020676111802458763,
-0.07705637812614441,
-0.09361718595027924,
0.09670796990394592,
-0.05959349498152733,
0.11953118443489075,
-0.17455841600894928,
0.047572966665029526,
-0.09797285497188568,
-0.033129122108221054,
-0.09925926476716995,
-0.0057119810953736305,
-0.01939093880355358,
0.12720130383968353,
0.04385807365179062,
-0.03462417051196098,
-0.13600462675094604,
0.08158448338508606,
-0.04216688871383667,
0.18141873180866241,
-0.2022998183965683,
-0.07073113322257996,
0.14321765303611755,
-0.10258423537015915,
-0.07793468981981277,
0.18023273348808289,
0.027778074145317078,
0.08017724752426147,
0.06084302440285683,
0.22541289031505585,
-0.0031660597305744886,
-0.04942652955651283,
-0.016673075035214424,
0.1250714808702469,
-0.08696245402097702,
0.03705202043056488,
0.014636723324656487,
0.061280492693185806,
0.03109300509095192,
0.04004472866654396,
0.04884044826030731,
0.05971909686923027,
-0.07262251526117325,
-0.055258892476558685,
-0.044046130031347275,
-0.014832689426839352,
0.12272282689809799,
0.06492125988006592,
0.09253013879060745,
-0.11523592472076416,
-0.06868269294500351,
-0.14245620369911194,
0.02122393622994423,
0.03726793825626373,
0.0327320396900177,
-0.045940328389406204,
0.22605623304843903,
0.09813753515481949,
-0.0030702538788318634,
-0.1649656593799591,
-0.03227027505636215,
-0.034749481827020645,
0.1865728497505188,
0.007881799712777138,
0.2261652648448944,
0.07038045674562454,
-0.08961732685565948,
-0.058758534491062164,
0.02764933370053768,
0.11262979358434677,
0.023848574608564377,
0.0034424024634063244,
-0.17193281650543213,
0.08365210890769958,
-0.052340105175971985,
0.03221876546740532,
-0.11183177679777145,
0.019174085929989815,
0.1917911171913147,
0.1431976556777954,
-0.04330733045935631,
0.08591342717409134,
-0.12947013974189758,
0.027269186452031136,
-0.10200455784797668,
0.005643736571073532,
0.06599637120962143,
-0.04129791632294655,
-0.03542754799127579,
0.17353850603103638,
-0.13550004363059998,
0.32601651549339294,
0.21247099339962006,
-0.32302168011665344,
-0.0501074455678463,
-0.027878619730472565,
-0.025757543742656708,
0.07711561024188995,
0.06713985651731491,
-0.01751520484685898,
-0.009358740411698818,
-0.06307908892631531,
0.09280341863632202,
-0.060905180871486664,
0.03101579286158085,
0.024238206446170807,
-0.03704968839883804,
-0.12581324577331543,
0.08235159516334534,
0.06440763175487518,
-0.16784395277500153,
0.2426077425479889,
0.37837597727775574,
-0.01654408872127533,
0.26816344261169434,
0.027601320296525955,
0.03186769410967827,
0.04084007069468498,
-0.024425970390439034,
-0.07857964187860489,
0.01963210664689541,
-0.2539059817790985,
-0.04355628043413162,
0.020851977169513702,
0.010856184177100658,
0.03964225947856903,
-0.10536978393793106,
-0.06246635690331459,
0.003488181158900261,
0.04003684222698212,
-0.026014240458607674,
0.08598791062831879,
0.017424797639250755,
0.17103895545005798,
0.026799215003848076,
-0.1456519365310669,
0.08005635440349579,
0.024742068722844124,
-0.02224249206483364,
0.10956497490406036,
-0.16840997338294983,
-0.27365121245384216,
-0.031032538041472435,
-0.07258538901805878,
-0.026945456862449646,
0.04125210642814636,
0.06250486522912979,
-0.12733067572116852,
0.010213641449809074,
0.019118420779705048,
0.020754830911755562,
-0.1159970834851265,
0.015370847657322884,
-0.1312924325466156,
0.0711849182844162,
-0.1256995052099228,
-0.03663523122668266,
-0.08530087023973465,
-0.04742085561156273,
-0.07504996657371521,
0.07576253265142441,
-0.16441263258457184,
0.11910729855298996,
0.22180311381816864,
-0.025976594537496567,
0.06850576400756836,
-0.0536416657269001,
0.16197921335697174,
-0.17984876036643982,
0.030553387477993965,
0.1335924118757248,
0.0065958439372479916,
0.039086852222681046,
0.22049471735954285,
0.022717168554663658,
-0.05199699103832245,
-0.017003258690238,
0.005607806146144867,
-0.0853894054889679,
-0.1239856481552124,
-0.1466759443283081,
-0.1371614634990692,
0.08212272822856903,
-0.011640273034572601,
0.08077312260866165,
0.11106040328741074,
0.03843897208571434,
0.013637679629027843,
-0.14018599689006805,
-0.029626643285155296,
0.02278796397149563,
0.21777594089508057,
-0.05969077721238136,
0.13105256855487823,
-0.03790261596441269,
-0.11528728902339935,
0.15775753557682037,
0.08991935104131699,
0.005355177912861109,
0.04885414242744446,
0.03196633607149124,
0.027632303535938263,
0.14139078557491302,
0.08770035952329636,
0.01911521703004837,
0.07670366019010544,
-0.07580118626356125,
-0.0349503718316555,
-0.01954641379415989,
-0.026440247893333435,
0.055179912596940994,
0.1308973878622055,
-0.16259367763996124,
-0.07313080877065659,
-0.1478564590215683,
0.1516818404197693,
0.06054938584566116,
0.05387485399842262,
-0.16778449714183807,
0.033281661570072174,
0.06010114774107933,
0.02111387997865677,
-0.09239400923252106,
0.028328046202659607,
0.08866356313228607,
-0.11794120073318481,
0.05442473292350769,
0.056948352605104446,
0.08938657492399216,
-0.04046820476651192,
0.11286838352680206,
-0.09748266637325287,
-0.14862848818302155,
-0.009530792944133282,
0.07106640189886093,
-0.22280867397785187,
0.26672694087028503,
0.013060132972896099,
-0.09245216101408005,
-0.0898047387599945,
-0.05894363299012184,
0.07899675518274307,
0.28934019804000854,
0.09093885123729706,
0.03527163714170456,
-0.06882412731647491,
-0.15240702033042908,
0.09331654012203217,
-0.025382259860634804,
0.1847321093082428,
0.004552736412733793,
-0.06124483793973923,
-0.045204222202301025,
0.01147815864533186,
0.014475242234766483,
0.1764567792415619,
0.016593052074313164,
-0.18488532304763794,
0.0932617038488388,
0.09211241453886032,
-0.03728117793798447,
0.04905765876173973,
-0.09743167459964752,
-0.16774488985538483,
0.17215952277183533,
-0.013908074237406254,
0.035132065415382385,
-0.12311045080423355,
-0.047088153660297394,
-0.00862361490726471,
-0.03614021837711334,
0.012294632382690907,
-0.0930652767419815,
0.0245414599776268,
-0.09815338253974915,
-0.08067034184932709,
0.1750863790512085,
-0.08916091918945312,
-0.014000877737998962,
-0.07775016129016876,
0.09482582658529282,
-0.06348612159490585,
0.04311167821288109,
0.053720567375421524,
0.0063316309824585915,
-0.08077871054410934,
-0.05732136592268944,
0.045127127319574356,
-0.07838524132966995,
-0.021840106695890427,
0.11267159879207611,
-0.0907948836684227,
-0.0828607976436615,
0.011899023316800594,
-0.04205469787120819,
0.212784081697464,
0.13881392776966095,
-0.08021458238363266,
0.04665003716945648,
0.03456198051571846,
-0.05678414925932884,
-0.36744052171707153,
0.02042475901544094,
-0.11304040253162384,
-0.005239427555352449,
0.016850478947162628,
-0.08487042039632797,
0.022838173434138298,
-0.00209723599255085,
-0.03636219725012779,
0.03420843929052353,
-0.19851434230804443,
-0.0447162501513958,
0.10273512452840805,
-0.049286749213933945,
0.38943472504615784,
-0.08956583589315414,
-0.014580706134438515,
-0.021152781322598457,
-0.02957664243876934,
0.0863870307803154,
-0.02792532369494438,
0.06589870899915695,
0.01513153500854969,
0.025810765102505684,
0.05302002280950546,
0.0026488211005926132,
0.12962257862091064,
-0.0021598143503069878,
0.011416148394346237,
-0.12525048851966858,
-0.15323461592197418,
0.04389616474509239,
0.019032681360840797,
-0.05623511224985123,
-0.01859946921467781,
-0.07133930921554565,
-0.09521789103746414,
-0.025334252044558525,
-0.13995929062366486,
0.08671672642230988,
-0.02317982167005539,
-0.043686844408512115,
-0.04956752434372902,
0.05819595232605934,
0.005775017663836479,
0.005772129166871309,
0.11925260722637177,
-0.1117866262793541,
0.15218111872673035,
0.1146608516573906,
0.12407759577035904,
-0.12441505491733551,
0.0464128814637661,
-0.009043270722031593,
-0.036355480551719666,
0.023735126480460167,
-0.03282614424824715,
0.053660184144973755,
0.11832677572965622,
-0.06999503821134567,
0.04530894011259079,
0.1152971014380455,
0.009333059191703796,
-0.058987099677324295,
0.19233053922653198,
-0.1684306412935257,
-0.04157722741365433,
-0.09147137403488159,
-0.07631392031908035,
0.08328834176063538,
-0.010251802392303944,
0.12219910323619843,
0.04298567771911621,
-0.005679545924067497,
-0.009235728532075882,
-0.03901579603552818,
-0.03458238020539284,
0.021653953939676285,
0.03095025196671486,
-0.0319514162838459,
-0.08134905993938446,
0.032890450209379196,
0.01409768033772707,
-0.27131888270378113,
-0.00018774051568470895,
0.15970683097839355,
-0.09904950112104416,
-0.14762276411056519,
-0.02149278111755848,
0.061759136617183685,
-0.16527384519577026,
-0.06917716562747955,
-0.07810667157173157,
-0.15893808007240295,
0.05032648891210556,
0.19509078562259674,
0.11190447211265564,
0.08013466745615005,
-0.05398917198181152,
-0.04725165292620659,
0.046634431928396225,
0.011568903923034668,
0.04372377321124077,
-0.026320353150367737,
-0.07226753979921341,
0.06298688054084778,
-0.012769238092005253,
0.10342654585838318,
-0.09508005529642105,
-0.07377456873655319,
-0.12046857178211212,
-0.0013054778100922704,
-0.033663712441921234,
-0.12342466413974762,
-0.040565039962530136,
-0.06005467101931572,
0.010778065770864487,
-0.07798656821250916,
-0.05989571660757065,
-0.107242651283741,
-0.14675843715667725,
0.0526568777859211,
0.031174274161458015,
0.08410611003637314,
-0.04194549843668938,
-0.014147097244858742,
0.09305963665246964,
-0.024285992607474327,
0.11307457834482193,
0.08139898627996445,
-0.0695679783821106,
0.08954136073589325,
-0.14146092534065247,
-0.08292211592197418,
0.04886668547987938,
0.0022366936318576336,
0.04180426523089409,
0.10931950062513351,
0.030433164909482002,
0.0721936821937561,
0.016044871881604195,
0.08323648571968079,
0.008013271726667881,
-0.05243908241391182,
0.14895814657211304,
0.07531533390283585,
-0.2274497002363205,
-0.014567802660167217,
0.0420425608754158,
0.10536359250545502,
-0.060201313346624374,
0.03732479736208916,
-0.042143724858760834,
0.03178929165005684,
-0.002553715603426099,
0.051278140395879745,
-0.013847935013473034,
-0.19907887279987335,
-0.07610442489385605,
-0.07363136857748032,
0.01629619486629963,
0.03431759029626846,
0.17302095890045166,
0.14896772801876068,
0.02044430561363697,
0.05554208531975746,
0.10806392878293991,
-0.029331088066101074,
0.012710539624094963,
0.0806269496679306,
0.07727723568677902,
-0.06758943200111389,
-0.07499226927757263,
0.04359382018446922,
0.007430349942296743,
0.08566344529390335,
0.09130115807056427,
0.10688483715057373,
0.09190378338098526,
0.09945651888847351,
0.025840194895863533,
-0.022531889379024506,
-0.05612358823418617,
-0.12489188462495804,
-0.04053867980837822,
0.08190476894378662,
-0.10586028546094894,
0.026104215532541275,
0.11726560443639755,
-0.01971936970949173,
0.04932863637804985,
-0.09204956889152527,
-0.03594690561294556,
-0.14223910868167877,
-0.1669631451368332,
-0.020762290805578232,
-0.09817411005496979,
-0.04104011505842209,
-0.09424889087677002,
0.08385363221168518,
0.01098279096186161,
0.07445207238197327,
-0.10669245570898056,
0.09356167167425156,
-0.05249251052737236,
-0.10129542648792267,
0.11788354068994522,
-0.003702617483213544,
0.127711683511734,
-0.11354660242795944,
-0.06075739488005638,
-0.20206405222415924,
-0.021327389404177666,
-0.046962566673755646,
0.035692453384399414,
-0.0573592409491539,
-0.09112527221441269,
-0.1549130529165268,
-0.07132144272327423,
-0.05154760926961899,
0.01436280831694603,
-0.03451196104288101,
0.13998772203922272,
-0.041883356869220734,
0.009199246764183044,
0.025467906147241592,
0.22674152255058289,
-0.04911099746823311,
0.02083653397858143,
-0.04012320190668106,
0.13070960342884064,
0.034392714500427246,
0.1264096051454544,
-0.08062270283699036,
-0.012500150129199028,
-0.1005835235118866,
0.2662452161312103,
0.31927716732025146,
-0.11709437519311905,
0.0534711554646492,
0.033866044133901596,
0.0669790506362915,
0.11034378409385681,
0.056908972561359406,
0.0629199743270874,
0.18068037927150726,
-0.10671377182006836,
0.056469883769750595,
-0.07385954260826111,
0.047655630856752396,
-0.054385311901569366,
0.0953175500035286,
0.12120410799980164,
-0.03440198674798012,
-0.09129321575164795,
0.10671371966600418,
-0.11152542382478714,
0.1391432285308838,
0.06309599429368973,
-0.2807597815990448,
-0.08579576760530472,
0.0013356305425986648,
0.12416628748178482,
0.03233592212200165,
0.16373808681964874,
-0.031458351761102676,
-0.1265697479248047,
0.014151426963508129,
0.012377623468637466,
-0.20877328515052795,
-0.09572943300008774,
0.09470809251070023,
-0.083450548350811,
0.06300366669893265,
-0.07437308877706528,
-0.0029763150960206985,
0.13268347084522247,
0.07339511066675186,
0.04068736732006073,
-0.005385556723922491,
0.04400746896862984,
-0.02012837491929531,
-0.06794517487287521,
-0.008957881480455399,
-0.013582275249063969,
-0.07308495044708252,
0.10239575803279877,
-0.20207063853740692,
0.10871821641921997,
-0.06695196032524109,
-0.06569384038448334,
-0.005519755184650421,
0.12020135670900345,
-0.09075070917606354,
0.05264652892947197,
0.10944585502147675,
0.04172288626432419,
-0.05690424516797066,
-0.06512316316366196,
-0.05437389016151428,
0.03551841154694557,
-0.05964362993836403,
-0.08193256705999374,
-0.06905442476272583,
-0.058471906930208206,
0.08665235340595245,
-0.010516762733459473,
-0.06922057271003723,
-0.05015447363257408,
-0.03735316917300224,
0.0889882743358612,
-0.13890153169631958,
0.03761127591133118,
0.07331005483865738,
0.010449693538248539,
0.010581312701106071,
-0.09620187431573868,
0.06124727055430412,
0.06952691823244095,
-0.05049143731594086,
-0.023623203858733177
] |
null | null | transformers |
# Slovak GPT-J-1.4B
Slovak GPT-J-1.4B with the whopping `1,415,283,792` parameters is the latest and the largest model released in Slovak GPT-J series. Smaller variants, [Slovak GPT-J-405M](https://huggingface.co/Milos/slovak-gpt-j-405M) and [Slovak GPT-J-162M](https://huggingface.co/Milos/slovak-gpt-j-162M), are still available.
## Model Description
Model is based on [GPT-J](https://github.com/kingoflolz/mesh-transformer-jax/) and has over 1.4B trainable parameters.
<figure>
| Hyperparameter | Value |
|----------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| \\(n_{parameters}\\) | 1,415,283,792 |
| \\(n_{layers}\\) | 24 |
| \\(d_{model}\\) | 2048 |
| \\(d_{ff}\\) | 16384 |
| \\(n_{heads}\\) | 16 |
| \\(d_{head}\\) | 256 |
| \\(n_{ctx}\\) | 2048 |
| \\(n_{vocab}\\) | 50256 (same tokenizer as GPT-2/3†) |
| Positional Encoding | [Rotary Position Embedding (RoPE)](https://arxiv.org/abs/2104.09864) |
| RoPE Dimensions | [64](https://github.com/kingoflolz/mesh-transformer-jax/blob/f2aa66e0925de6593dcbb70e72399b97b4130482/mesh_transformer/layers.py#L223) |
<p><strong>†</strong> ByteLevelBPETokenizer was trained on the same Slovak corpus.</p></figure>
## Training data
Slovak GPT-J models were trained on a privately collected dataset consisting of predominantly Slovak text spanning different categories, e.g. web, news articles or even biblical texts - in total, over 40GB of text data was used to train this model.
The dataset was preprocessed and cleaned in a specific way that involves minor but a few caveats, so in order to achieve the expected performance, feel free to refer to [How to use] section. Please, keep in mind that despite the effort to remove inappropriate corpus, the model still might generate sensitive content or leak sensitive information.
## Training procedure
This model was trained for a bit more than 26.5 billion tokens over 48,001 steps on TPU v3-8 pod. The cross-entropy validation loss at the last step was `2.657`.
## Intended Use
Same as the original GPT-J, Slovak GPT-J learns an inner representation of the language that can be used to extract features useful for downstream tasks, however, the intended use is text generation from a prompt.
### How to use
This model along with the tokenizer can be easily loaded using the `AutoModelForCausalLM` functionality:
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("Milos/slovak-gpt-j-1.4B")
model = AutoModelForCausalLM.from_pretrained("Milos/slovak-gpt-j-1.4B")
```
When generating a prompt keep in mind these three things, and you should be good to go:
1. Never leave trailing whitespaces. There's a difference between how tokenizer encodes "Mám rád slovenčinu" (no space after `slovenčinu`) and "Mám rád slovenčinu " (trailing space after `slovenčinu`), i.e `[12805, 2872, 46878]` != `[12805, 2872, 46878, 221]`.
2. Always use good ol' US English primary double quotation marks, i.e. `""` instead of `„“`.
3. In case of a new line always enter `\n\n` instead of a single `\n`
To illustrate an example of a basic text generation:
```
>>> prompt = "Tradičné jedlo na Orave sú"
>>> encoded_input = tokenizer(prompt, return_tensors='pt')
>>> output = model.generate(**encoded_input)
>>> tokenizer.decode(output[0])
'Tradičné jedlo na Orave sú bryndzové halušky\n\nNa Orave sa v minulosti varilo viac druhov'
```
### Capabilities, Limitations, and Biases
Based on the parameter count and our internal testing this should be by far the most capable model out of all models released in Slovak GPT-J series.
For sake of simplicity, I have omitted all the boilerplate code and swapped `\n` for new lines in the examples that follow. These were generated with both `top_p` and `temperature` set to `0.9`.
A spin on "Mor ho!" by Samo Chalpuka
```
PROMPT
Zleteli orly z Tatry, tiahnu na podolia, ponad vysoké hory, ponad rovné polia; preleteli cez Dunaj, cez tú šíru vodu, sadli tam za pomedzím slovenského rodu.
Duní Dunaj a luna za lunou sa valí
OUTPUT
Zleteli orly z Tatry, tiahnu na podolia, ponad vysoké hory, ponad rovné polia; preleteli cez Dunaj, cez tú šíru vodu, sadli tam za pomedzím slovenského rodu.
Duní Dunaj a luna za lunou sa valí: nad ním svieti pevný hrad na vysokom bralí. Pod tým hradom je zem slovenská, na nej je Slovensko naše.
Na tom vrchu leží slovenský národ, pod tým bralom leží krajina slovenská. A pod tým hradom leží i jeho sláva: na tom vrchu, na tom brale leží sláva slovenského národa.```
```
Jokes are a bit hit or miss. Very often they contain vulgarisms and/or are highly politically incorrect. This one is rather exception than the rule.
```
PROMPT
Nasledujú najlepšie vtipy.
Prečo
OUTPUT
Nasledujú najlepšie vtipy.
Prečo má policajt pri sebe vždy dva nože? Jeden je na sebaobranu, druhý na boj zblízka.
```
The infamous unicorn prompt from GPT-2 paper.
```
PROMPT
V šokujúcom náleze vedci objavili stádo jednorožcov žijúcich v odľahlom, predtým nepreskúmanom údolí, v Andách. Ešte prekvapivejšie pre vedcov bol fakt, že jednorožce hovorili plynule po slovensky.
OUTPUT
V šokujúcom náleze vedci objavili stádo jednorožcov žijúcich v odľahlom, predtým nepreskúmanom údolí, v Andách. Ešte prekvapivejšie pre vedcov bol fakt, že jednorožce hovorili plynule po slovensky.
V Andách ich totiž žilo približne 700 jedincov, ktoré sa živili výhradne materským mliekom. Slováci sú tak pravdepodobne prvými Európanmi, ktorí v Andách stretli jednorožca. "Je to dôkaz, že tieto zvieratá sú inteligentné a že žijú v Andách už stovky rokov," povedal pre webový portál televízie JOJ profesor geológie, geografie a zoológie, Milan Kováč.
Podľa profesora Kováča si v Andách zvieratá vytvárajú svoj vlastný jazyk. Je to zároveň dôkaz, že jednorožce žili v minulosti aj v slovenských pohoriach. "Jednorožce sa tam síce vyskytovali, ale neboli tak dobre preskúmané, ako teraz v Andách."
Na Slovensku však ľudia o jednorožcoch donedávna vedeli veľmi málo.<|endoftext|>
```
Since the dataset contains profanity, politically incorrect language, and (unintentionally) even a bits of text in Czech, the model can generate them in some extent too. Here's an example of the model output when prompt is in Czech:
```
>>> prompt = "Věta nesmí být sprostá a musí být zcela"
>>> encoded_input = tokenizer(prompt, return_tensors='pt')
>>> output = model.generate(**encoded_input, max_length=16)
>>> tokenizer.decode(output[0])
'Věta nesmí být sprostá a musí být zcela pravdivá.'
```
## Citation and Related Information
This was done as a moonlighting project during summer of 2021 to better understand transformers. I didn't have much free time to open source it properly, so it all sat on my hard drive until now :)
If you use this model or have any questions about it feel free to hit me up at [twitter](https://twitter.com/miloskondela) or check out my [github](https://github.com/kondela) profile.
### BibTeX entry
To cite this model:
```bibtex
@misc{slovak-gpt-j-1.4B,
author = {Kondela, Milos},
title = {{Slovak GPT-J-1.4B}},
howpublished = {\url{https://huggingface.co/Milos/slovak-gpt-j-1.4B}},
year = 2022,
month = February
}
```
To cite the codebase that trained this model:
```bibtex
@misc{mesh-transformer-jax,
author = {Wang, Ben},
title = {{Mesh-Transformer-JAX: Model-Parallel Implementation of Transformer Language Model with JAX}},
howpublished = {\url{https://github.com/kingoflolz/mesh-transformer-jax}},
year = 2021,
month = May
}
```
## Acknowledgements
This project was generously supported by [TPU Research Cloud (TRC) program](https://sites.research.google/trc/about/). Shoutout also goes to [Ben Wang](https://github.com/kingoflolz) and great [EleutherAI community](https://www.eleuther.ai/). | {"language": ["sk"], "license": "gpl-3.0", "tags": ["Slovak GPT-J", "pytorch", "causal-lm"]} | text-generation | Milos/slovak-gpt-j-1.4B | [
"transformers",
"pytorch",
"gptj",
"text-generation",
"Slovak GPT-J",
"causal-lm",
"sk",
"arxiv:2104.09864",
"license:gpl-3.0",
"autotrain_compatible",
"endpoints_compatible",
"has_space",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [
"2104.09864"
] | [
"sk"
] | TAGS
#transformers #pytorch #gptj #text-generation #Slovak GPT-J #causal-lm #sk #arxiv-2104.09864 #license-gpl-3.0 #autotrain_compatible #endpoints_compatible #has_space #region-us
| Slovak GPT-J-1.4B
=================
Slovak GPT-J-1.4B with the whopping '1,415,283,792' parameters is the latest and the largest model released in Slovak GPT-J series. Smaller variants, Slovak GPT-J-405M and Slovak GPT-J-162M, are still available.
Model Description
-----------------
Model is based on GPT-J and has over 1.4B trainable parameters.
**†** ByteLevelBPETokenizer was trained on the same Slovak corpus.
Training data
-------------
Slovak GPT-J models were trained on a privately collected dataset consisting of predominantly Slovak text spanning different categories, e.g. web, news articles or even biblical texts - in total, over 40GB of text data was used to train this model.
The dataset was preprocessed and cleaned in a specific way that involves minor but a few caveats, so in order to achieve the expected performance, feel free to refer to [How to use] section. Please, keep in mind that despite the effort to remove inappropriate corpus, the model still might generate sensitive content or leak sensitive information.
Training procedure
------------------
This model was trained for a bit more than 26.5 billion tokens over 48,001 steps on TPU v3-8 pod. The cross-entropy validation loss at the last step was '2.657'.
Intended Use
------------
Same as the original GPT-J, Slovak GPT-J learns an inner representation of the language that can be used to extract features useful for downstream tasks, however, the intended use is text generation from a prompt.
### How to use
This model along with the tokenizer can be easily loaded using the 'AutoModelForCausalLM' functionality:
When generating a prompt keep in mind these three things, and you should be good to go:
1. Never leave trailing whitespaces. There's a difference between how tokenizer encodes "Mám rád slovenčinu" (no space after 'slovenčinu') and "Mám rád slovenčinu " (trailing space after 'slovenčinu'), i.e '[12805, 2872, 46878]' != '[12805, 2872, 46878, 221]'.
2. Always use good ol' US English primary double quotation marks, i.e. '""' instead of '„“'.
3. In case of a new line always enter '\n\n' instead of a single '\n'
To illustrate an example of a basic text generation:
### Capabilities, Limitations, and Biases
Based on the parameter count and our internal testing this should be by far the most capable model out of all models released in Slovak GPT-J series.
For sake of simplicity, I have omitted all the boilerplate code and swapped '\n' for new lines in the examples that follow. These were generated with both 'top\_p' and 'temperature' set to '0.9'.
A spin on "Mor ho!" by Samo Chalpuka
PROMPT
Nasledujú najlepšie vtipy.
Prečo
OUTPUT
Nasledujú najlepšie vtipy.
Prečo má policajt pri sebe vždy dva nože? Jeden je na sebaobranu, druhý na boj zblízka.
PROMPT
V šokujúcom náleze vedci objavili stádo jednorožcov žijúcich v odľahlom, predtým nepreskúmanom údolí, v Andách. Ešte prekvapivejšie pre vedcov bol fakt, že jednorožce hovorili plynule po slovensky.
OUTPUT
V šokujúcom náleze vedci objavili stádo jednorožcov žijúcich v odľahlom, predtým nepreskúmanom údolí, v Andách. Ešte prekvapivejšie pre vedcov bol fakt, že jednorožce hovorili plynule po slovensky.
V Andách ich totiž žilo približne 700 jedincov, ktoré sa živili výhradne materským mliekom. Slováci sú tak pravdepodobne prvými Európanmi, ktorí v Andách stretli jednorožca. "Je to dôkaz, že tieto zvieratá sú inteligentné a že žijú v Andách už stovky rokov," povedal pre webový portál televízie JOJ profesor geológie, geografie a zoológie, Milan Kováč.
Podľa profesora Kováča si v Andách zvieratá vytvárajú svoj vlastný jazyk. Je to zároveň dôkaz, že jednorožce žili v minulosti aj v slovenských pohoriach. "Jednorožce sa tam síce vyskytovali, ale neboli tak dobre preskúmané, ako teraz v Andách."
Na Slovensku však ľudia o jednorožcoch donedávna vedeli veľmi málo.<|endoftext|>
>
>
> >
> >
> > >
> > > prompt = "Věta nesmí být sprostá a musí být zcela"
> > > encoded\_input = tokenizer(prompt, return\_tensors='pt')
> > > output = model.generate(encoded\_input, max\_length=16)
> > > URL(output[0])
> > > 'Věta nesmí být sprostá a musí být zcela pravdivá.'
> > > bibtex
> > > @misc{slovak-gpt-j-1.4B,
> > > author = {Kondela, Milos},
> > > title = {{Slovak GPT-J-1.4B}},
> > > howpublished = {\url{URL
> > > year = 2022,
> > > month = February
> > > }
> > > bibtex
> > > @misc{mesh-transformer-jax,
> > > author = {Wang, Ben},
> > > title = {{Mesh-Transformer-JAX: Model-Parallel Implementation of Transformer Language Model with JAX}},
> > > howpublished = {\url{URL
> > > year = 2021,
> > > month = May
> > > }
> > > '''
> > >
> > >
> > >
> >
> >
> >
>
>
>
Acknowledgements
----------------
This project was generously supported by TPU Research Cloud (TRC) program. Shoutout also goes to Ben Wang and great EleutherAI community.
| [
"### How to use\n\n\nThis model along with the tokenizer can be easily loaded using the 'AutoModelForCausalLM' functionality:\n\n\nWhen generating a prompt keep in mind these three things, and you should be good to go:\n\n\n1. Never leave trailing whitespaces. There's a difference between how tokenizer encodes \"Mám rád slovenčinu\" (no space after 'slovenčinu') and \"Mám rád slovenčinu \" (trailing space after 'slovenčinu'), i.e '[12805, 2872, 46878]' != '[12805, 2872, 46878, 221]'.\n2. Always use good ol' US English primary double quotation marks, i.e. '\"\"' instead of '„“'.\n3. In case of a new line always enter '\\n\\n' instead of a single '\\n'\n\n\nTo illustrate an example of a basic text generation:",
"### Capabilities, Limitations, and Biases\n\n\nBased on the parameter count and our internal testing this should be by far the most capable model out of all models released in Slovak GPT-J series.\nFor sake of simplicity, I have omitted all the boilerplate code and swapped '\\n' for new lines in the examples that follow. These were generated with both 'top\\_p' and 'temperature' set to '0.9'.\n\n\nA spin on \"Mor ho!\" by Samo Chalpuka\n\n\nPROMPT\nNasledujú najlepšie vtipy.\n\n\nPrečo\nOUTPUT\nNasledujú najlepšie vtipy.\n\n\nPrečo má policajt pri sebe vždy dva nože? Jeden je na sebaobranu, druhý na boj zblízka.\n\n\nPROMPT\nV šokujúcom náleze vedci objavili stádo jednorožcov žijúcich v odľahlom, predtým nepreskúmanom údolí, v Andách. Ešte prekvapivejšie pre vedcov bol fakt, že jednorožce hovorili plynule po slovensky.\n\n\nOUTPUT\nV šokujúcom náleze vedci objavili stádo jednorožcov žijúcich v odľahlom, predtým nepreskúmanom údolí, v Andách. Ešte prekvapivejšie pre vedcov bol fakt, že jednorožce hovorili plynule po slovensky.\n\n\nV Andách ich totiž žilo približne 700 jedincov, ktoré sa živili výhradne materským mliekom. Slováci sú tak pravdepodobne prvými Európanmi, ktorí v Andách stretli jednorožca. \"Je to dôkaz, že tieto zvieratá sú inteligentné a že žijú v Andách už stovky rokov,\" povedal pre webový portál televízie JOJ profesor geológie, geografie a zoológie, Milan Kováč.\n\n\nPodľa profesora Kováča si v Andách zvieratá vytvárajú svoj vlastný jazyk. Je to zároveň dôkaz, že jednorožce žili v minulosti aj v slovenských pohoriach. \"Jednorožce sa tam síce vyskytovali, ale neboli tak dobre preskúmané, ako teraz v Andách.\"\n\n\nNa Slovensku však ľudia o jednorožcoch donedávna vedeli veľmi málo.<|endoftext|>\n\n\n\n> \n> \n> > \n> > \n> > > \n> > > prompt = \"Věta nesmí být sprostá a musí být zcela\"\n> > > encoded\\_input = tokenizer(prompt, return\\_tensors='pt')\n> > > output = model.generate(encoded\\_input, max\\_length=16)\n> > > URL(output[0])\n> > > 'Věta nesmí být sprostá a musí být zcela pravdivá.'\n> > > bibtex\n> > > @misc{slovak-gpt-j-1.4B,\n> > > author = {Kondela, Milos},\n> > > title = {{Slovak GPT-J-1.4B}},\n> > > howpublished = {\\url{URL\n> > > year = 2022,\n> > > month = February\n> > > }\n> > > bibtex\n> > > @misc{mesh-transformer-jax,\n> > > author = {Wang, Ben},\n> > > title = {{Mesh-Transformer-JAX: Model-Parallel Implementation of Transformer Language Model with JAX}},\n> > > howpublished = {\\url{URL\n> > > year = 2021,\n> > > month = May\n> > > }\n> > > '''\n> > > \n> > > \n> > > \n> > \n> > \n> > \n> \n> \n> \n\n\nAcknowledgements\n----------------\n\n\nThis project was generously supported by TPU Research Cloud (TRC) program. Shoutout also goes to Ben Wang and great EleutherAI community."
] | [
"TAGS\n#transformers #pytorch #gptj #text-generation #Slovak GPT-J #causal-lm #sk #arxiv-2104.09864 #license-gpl-3.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n",
"### How to use\n\n\nThis model along with the tokenizer can be easily loaded using the 'AutoModelForCausalLM' functionality:\n\n\nWhen generating a prompt keep in mind these three things, and you should be good to go:\n\n\n1. Never leave trailing whitespaces. There's a difference between how tokenizer encodes \"Mám rád slovenčinu\" (no space after 'slovenčinu') and \"Mám rád slovenčinu \" (trailing space after 'slovenčinu'), i.e '[12805, 2872, 46878]' != '[12805, 2872, 46878, 221]'.\n2. Always use good ol' US English primary double quotation marks, i.e. '\"\"' instead of '„“'.\n3. In case of a new line always enter '\\n\\n' instead of a single '\\n'\n\n\nTo illustrate an example of a basic text generation:",
"### Capabilities, Limitations, and Biases\n\n\nBased on the parameter count and our internal testing this should be by far the most capable model out of all models released in Slovak GPT-J series.\nFor sake of simplicity, I have omitted all the boilerplate code and swapped '\\n' for new lines in the examples that follow. These were generated with both 'top\\_p' and 'temperature' set to '0.9'.\n\n\nA spin on \"Mor ho!\" by Samo Chalpuka\n\n\nPROMPT\nNasledujú najlepšie vtipy.\n\n\nPrečo\nOUTPUT\nNasledujú najlepšie vtipy.\n\n\nPrečo má policajt pri sebe vždy dva nože? Jeden je na sebaobranu, druhý na boj zblízka.\n\n\nPROMPT\nV šokujúcom náleze vedci objavili stádo jednorožcov žijúcich v odľahlom, predtým nepreskúmanom údolí, v Andách. Ešte prekvapivejšie pre vedcov bol fakt, že jednorožce hovorili plynule po slovensky.\n\n\nOUTPUT\nV šokujúcom náleze vedci objavili stádo jednorožcov žijúcich v odľahlom, predtým nepreskúmanom údolí, v Andách. Ešte prekvapivejšie pre vedcov bol fakt, že jednorožce hovorili plynule po slovensky.\n\n\nV Andách ich totiž žilo približne 700 jedincov, ktoré sa živili výhradne materským mliekom. Slováci sú tak pravdepodobne prvými Európanmi, ktorí v Andách stretli jednorožca. \"Je to dôkaz, že tieto zvieratá sú inteligentné a že žijú v Andách už stovky rokov,\" povedal pre webový portál televízie JOJ profesor geológie, geografie a zoológie, Milan Kováč.\n\n\nPodľa profesora Kováča si v Andách zvieratá vytvárajú svoj vlastný jazyk. Je to zároveň dôkaz, že jednorožce žili v minulosti aj v slovenských pohoriach. \"Jednorožce sa tam síce vyskytovali, ale neboli tak dobre preskúmané, ako teraz v Andách.\"\n\n\nNa Slovensku však ľudia o jednorožcoch donedávna vedeli veľmi málo.<|endoftext|>\n\n\n\n> \n> \n> > \n> > \n> > > \n> > > prompt = \"Věta nesmí být sprostá a musí být zcela\"\n> > > encoded\\_input = tokenizer(prompt, return\\_tensors='pt')\n> > > output = model.generate(encoded\\_input, max\\_length=16)\n> > > URL(output[0])\n> > > 'Věta nesmí být sprostá a musí být zcela pravdivá.'\n> > > bibtex\n> > > @misc{slovak-gpt-j-1.4B,\n> > > author = {Kondela, Milos},\n> > > title = {{Slovak GPT-J-1.4B}},\n> > > howpublished = {\\url{URL\n> > > year = 2022,\n> > > month = February\n> > > }\n> > > bibtex\n> > > @misc{mesh-transformer-jax,\n> > > author = {Wang, Ben},\n> > > title = {{Mesh-Transformer-JAX: Model-Parallel Implementation of Transformer Language Model with JAX}},\n> > > howpublished = {\\url{URL\n> > > year = 2021,\n> > > month = May\n> > > }\n> > > '''\n> > > \n> > > \n> > > \n> > \n> > \n> > \n> \n> \n> \n\n\nAcknowledgements\n----------------\n\n\nThis project was generously supported by TPU Research Cloud (TRC) program. Shoutout also goes to Ben Wang and great EleutherAI community."
] | [
74,
208,
830
] | [
"passage: TAGS\n#transformers #pytorch #gptj #text-generation #Slovak GPT-J #causal-lm #sk #arxiv-2104.09864 #license-gpl-3.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n### How to use\n\n\nThis model along with the tokenizer can be easily loaded using the 'AutoModelForCausalLM' functionality:\n\n\nWhen generating a prompt keep in mind these three things, and you should be good to go:\n\n\n1. Never leave trailing whitespaces. There's a difference between how tokenizer encodes \"Mám rád slovenčinu\" (no space after 'slovenčinu') and \"Mám rád slovenčinu \" (trailing space after 'slovenčinu'), i.e '[12805, 2872, 46878]' != '[12805, 2872, 46878, 221]'.\n2. Always use good ol' US English primary double quotation marks, i.e. '\"\"' instead of '„“'.\n3. In case of a new line always enter '\\n\\n' instead of a single '\\n'\n\n\nTo illustrate an example of a basic text generation:"
] | [
-0.0057349856942892075,
-0.047072187066078186,
-0.007197163533419371,
0.051143579185009,
0.092738576233387,
0.017531631514430046,
0.187772735953331,
0.056786615401506424,
0.0424443818628788,
0.039976246654987335,
0.1467117965221405,
0.06433714181184769,
0.006206857040524483,
0.03895532339811325,
0.007760980632156134,
-0.26760950684547424,
0.1143471747636795,
0.00001194739706988912,
0.07026843726634979,
0.07851991802453995,
0.13009017705917358,
-0.08307619392871857,
0.025989195331931114,
0.006785652134567499,
-0.10594813525676727,
0.0038122856058180332,
0.011483747512102127,
-0.08277156203985214,
0.08501551300287247,
0.001962969545274973,
0.03614967316389084,
0.05298226326704025,
0.020832447335124016,
-0.1347028911113739,
0.018187949433922768,
0.020244885236024857,
0.0336078517138958,
0.027494320645928383,
-0.016996080055832863,
-0.016161669045686722,
0.15127713978290558,
-0.03070131130516529,
0.050586849451065063,
-0.025042617693543434,
-0.09316524118185043,
-0.15439869463443756,
-0.02682512439787388,
0.015049649402499199,
0.07973439991474152,
-0.05115141719579697,
0.008094076067209244,
0.11840975284576416,
-0.08727362751960754,
0.08514394611120224,
0.18166273832321167,
-0.27086547017097473,
-0.024220583960413933,
0.021979929879307747,
0.04220067709684372,
0.03963107988238335,
-0.030662385746836662,
0.0062517630867660046,
-0.017477313056588173,
-0.0001391430851072073,
0.04055844992399216,
-0.03069140389561653,
-0.023006649687886238,
0.04487684741616249,
-0.15315572917461395,
-0.07550155371427536,
0.17103010416030884,
-0.018227403983473778,
-0.026532240211963654,
-0.08844368904829025,
-0.027005339041352272,
-0.07627138495445251,
-0.026760011911392212,
-0.02314872480928898,
-0.029927324503660202,
-0.010677970014512539,
0.01147451438009739,
-0.14610305428504944,
-0.1211283877491951,
-0.012087436392903328,
-0.09364818036556244,
0.1948087066411972,
0.047742605209350586,
0.05772174522280693,
0.020907940343022346,
0.062263648957014084,
-0.10858641564846039,
-0.07460285723209381,
0.005533124320209026,
-0.05446575954556465,
0.04186837375164032,
0.012503089383244514,
-0.043638769537210464,
-0.11184925585985184,
0.0523238331079483,
0.1219559758901596,
-0.01634444110095501,
0.032000526785850525,
-0.003971239551901817,
0.08254770189523697,
-0.0033952572848647833,
0.1583092361688614,
-0.016179071739315987,
0.10786687582731247,
0.06842450797557831,
0.011341146193444729,
0.04904705286026001,
-0.08073317259550095,
-0.1693146824836731,
-0.04229648783802986,
0.1444271206855774,
0.06615281850099564,
-0.016149163246154785,
0.0366964153945446,
-0.040574949234724045,
0.0027594000566750765,
-0.003355594351887703,
-0.16757456958293915,
0.06903894990682602,
0.008202639408409595,
0.02060295082628727,
0.018042610958218575,
-0.07239671051502228,
0.04430055990815163,
-0.13774169981479645,
0.006017535924911499,
-0.01909472979605198,
0.09251774847507477,
-0.12017800658941269,
-0.1117963194847107,
0.038470298051834106,
-0.01879258267581463,
-0.04529635235667229,
-0.05014561861753464,
-0.12670455873012543,
0.027903525158762932,
0.04812280461192131,
-0.004857304506003857,
-0.018312521278858185,
-0.04116232693195343,
-0.015023847110569477,
0.010960646905004978,
-0.010940765962004662,
-0.09533899277448654,
-0.024705756455659866,
0.06014036387205124,
0.0472942516207695,
0.0723116397857666,
-0.09759705513715744,
0.01842452771961689,
-0.08420729637145996,
0.005908820312470198,
-0.2843395173549652,
0.07416817545890808,
-0.02182716876268387,
-0.0310989897698164,
-0.003720324020832777,
-0.039782531559467316,
-0.01444322895258665,
0.03915562480688095,
0.003042955417186022,
0.1038077250123024,
-0.11770309507846832,
-0.03096296451985836,
0.09014815092086792,
-0.12578067183494568,
0.0006206760881468654,
0.17268547415733337,
-0.029239961877465248,
-0.00853818655014038,
0.07527368515729904,
0.16639740765094757,
0.031193986535072327,
-0.14084550738334656,
0.08660276979207993,
0.031632740050554276,
-0.09421893209218979,
0.02353149652481079,
0.07548990100622177,
0.0001379782916046679,
0.038166631013154984,
0.028066858649253845,
-0.05285903438925743,
-0.014898796565830708,
-0.0238553024828434,
-0.014426054432988167,
-0.02027260884642601,
0.03880443423986435,
0.059241194278001785,
-0.04049253091216087,
-0.017869165167212486,
-0.09606022387742996,
-0.08557530492544174,
0.14884649217128754,
0.007061829324811697,
-0.0670533999800682,
0.05011509358882904,
-0.1252164989709854,
0.12516804039478302,
-0.09920480847358704,
-0.022683000192046165,
-0.10452304035425186,
-0.0660753846168518,
0.023090267553925514,
0.008320242166519165,
0.04270496591925621,
0.025017134845256805,
0.027448900043964386,
0.07783082872629166,
-0.021180149167776108,
0.03856828063726425,
0.008370986208319664,
0.010281194001436234,
-0.023314742371439934,
-0.06369490176439285,
-0.03782961145043373,
-0.014711008407175541,
-0.026255302131175995,
0.02298993244767189,
0.05732154846191406,
0.14981812238693237,
0.07726971060037613,
0.007022158242762089,
0.0032754475250840187,
-0.0012758938828483224,
0.04418068751692772,
-0.0027887055184692144,
0.00031161849619820714,
0.02727081999182701,
0.016471004113554955,
-0.05380621924996376,
0.15403346717357635,
-0.21496565639972687,
0.1136370599269867,
0.1075454130768776,
-0.09446761012077332,
-0.027619322761893272,
0.03719380125403404,
-0.03438057750463486,
0.05919226258993149,
-0.04125896468758583,
-0.06133407726883888,
0.13995137810707092,
0.034998007118701935,
0.08185949176549911,
-0.11945280432701111,
-0.07764539122581482,
-0.0014486178988590837,
-0.09221307188272476,
-0.07291217148303986,
0.06386513262987137,
0.11229681968688965,
-0.11590228229761124,
0.09396638721227646,
0.0572814866900444,
-0.05142713710665703,
0.23621422052383423,
-0.008135711774230003,
-0.05856965482234955,
-0.09871447831392288,
0.07618358731269836,
-0.04273849353194237,
0.08367887139320374,
-0.06233097240328789,
0.00959514919668436,
0.03576173260807991,
0.028057588264346123,
0.049273695796728134,
-0.1927551031112671,
0.018710914999246597,
0.01129497867077589,
-0.11002307385206223,
0.006859099958091974,
-0.013374407775700092,
0.054836757481098175,
0.11665517836809158,
-0.0032029643189162016,
0.002284818794578314,
0.04764479026198387,
0.017907802015542984,
-0.08146923780441284,
0.09028033167123795,
-0.12812785804271698,
-0.24445754289627075,
-0.20475558936595917,
0.03601287677884102,
-0.030608944594860077,
0.004479080904275179,
0.0723283514380455,
-0.011728080920875072,
-0.035681720823049545,
-0.07550567388534546,
0.0846705287694931,
-0.025816166773438454,
-0.062197066843509674,
-0.007652320899069309,
-0.01923673041164875,
-0.04136792942881584,
-0.11609180271625519,
-0.08514198660850525,
-0.01040066871792078,
0.012261267751455307,
0.0954626128077507,
0.03985149785876274,
0.047084491699934006,
0.04533514380455017,
-0.09719323366880417,
0.034539226442575455,
-0.015620425343513489,
0.19866982102394104,
-0.03162415325641632,
0.06469558924436569,
0.150814950466156,
-0.07122102379798889,
0.09863008558750153,
0.09786977618932724,
0.0045704590156674385,
-0.03545351326465607,
-0.03166447579860687,
-0.02124173194169998,
-0.08213097602128983,
-0.1301514357328415,
-0.007192754186689854,
-0.13381583988666534,
-0.02823474258184433,
-0.01980571821331978,
-0.016225920990109444,
-0.049560125917196274,
0.022012213245034218,
-0.06600488722324371,
0.030277902260422707,
0.10037918388843536,
0.11421070247888565,
0.3113085627555847,
0.016315432265400887,
0.08786296844482422,
-0.06459428369998932,
-0.13729320466518402,
0.039280809462070465,
0.0062085650861263275,
0.09165932983160019,
-0.026360606774687767,
0.03380899131298065,
0.052313778549432755,
0.047378405928611755,
0.09314673393964767,
0.09673745185136795,
-0.06563425064086914,
0.0323684997856617,
-0.03700771927833557,
-0.05272764712572098,
-0.06478894501924515,
0.0043134624138474464,
0.03285307064652443,
-0.08860602229833603,
-0.019410686567425728,
0.04986708238720894,
0.08861417323350906,
0.14845521748065948,
0.0420253612101078,
-0.18300500512123108,
-0.05177447199821472,
0.03286026418209076,
-0.020526718348264694,
-0.05978776887059212,
0.013759126886725426,
0.11378048360347748,
-0.08972731977701187,
0.05758233368396759,
0.0005523786530829966,
0.03912528231739998,
-0.0773657038807869,
0.08675622940063477,
-0.06126505881547928,
0.07094115018844604,
-0.004612678196281195,
0.08417502790689468,
-0.2617751359939575,
0.08713194727897644,
0.03135745972394943,
0.0293751023709774,
-0.06017313525080681,
0.03966958448290825,
0.004055132623761892,
-0.048437368124723434,
0.023795785382390022,
0.010317236185073853,
-0.15643686056137085,
-0.10280109196901321,
-0.020201215520501137,
0.007534086238592863,
0.095083087682724,
-0.0054997652769088745,
0.06643859297037125,
-0.048807304352521896,
0.030230771750211716,
-0.007274749223142862,
-0.04821058735251427,
-0.019847305491566658,
-0.1851530522108078,
0.07508107274770737,
0.004328297451138496,
-0.07589926570653915,
-0.031657297164201736,
-0.023325039073824883,
-0.0008312526042573154,
0.10927679389715195,
-0.07271483540534973,
-0.1552465409040451,
-0.08470365405082703,
-0.004980321973562241,
0.1478438675403595,
-0.05921503156423569,
-0.03515665978193283,
-0.04518904164433479,
0.1381109058856964,
-0.05045022442936897,
-0.05159414932131767,
0.04429306462407112,
-0.008269895799458027,
-0.1033996120095253,
0.016230305656790733,
0.17739661037921906,
-0.05235358700156212,
0.03810710087418556,
0.0409911647439003,
0.0803879126906395,
-0.02938241884112358,
-0.13887397944927216,
0.025479523465037346,
-0.04704037681221962,
-0.018977707251906395,
0.009551424533128738,
-0.13600045442581177,
-0.0034230947494506836,
-0.03795212507247925,
-0.005954262334853411,
0.23939736187458038,
0.2832818925380707,
-0.05445995554327965,
0.15724830329418182,
0.10505099594593048,
-0.07095813006162643,
-0.1557549238204956,
-0.13264037668704987,
-0.012472978793084621,
0.036369748413562775,
-0.040206119418144226,
-0.12190593034029007,
0.02957087941467762,
0.09160064160823822,
0.01799868792295456,
0.02079390175640583,
-0.2348162978887558,
-0.08571720123291016,
0.10654262453317642,
-0.001515344250947237,
0.20744428038597107,
-0.0933372750878334,
-0.043996889144182205,
-0.018851667642593384,
-0.09464981406927109,
0.18676772713661194,
0.04473619908094406,
0.0643523633480072,
0.02542881853878498,
0.10623572021722794,
0.06315099447965622,
-0.04483945667743683,
0.10631151497364044,
-0.08331529051065445,
0.05196423456072807,
-0.09100925177335739,
-0.10532470047473907,
0.11544573307037354,
-0.03608289361000061,
0.1562453806400299,
-0.04263126105070114,
-0.04027687758207321,
-0.08469203859567642,
-0.08650069683790207,
-0.01806265488266945,
0.0426529161632061,
-0.03405359759926796,
-0.04952103644609451,
-0.032172027975320816,
-0.05261135846376419,
0.009901143610477448,
-0.027183059602975845,
0.03374156355857849,
-0.04197309911251068,
0.11560526490211487,
0.11217038333415985,
0.10026788711547852,
-0.12334465980529785,
0.03493348881602287,
-0.0021742423996329308,
-0.008165687322616577,
0.0443393774330616,
0.044465258717536926,
0.08949622511863708,
0.08429090678691864,
-0.02971385046839714,
0.11600162088871002,
0.05104215070605278,
-0.05140094459056854,
0.01845959760248661,
0.06249497830867767,
-0.18532656133174896,
-0.09838234633207321,
0.01729492098093033,
0.03875015676021576,
0.019331933930516243,
-0.024157200008630753,
0.16509243845939636,
-0.01633388362824917,
-0.052592240273952484,
0.0026932174805551767,
0.078792504966259,
0.02110624872148037,
0.028024723753333092,
0.05907515436410904,
0.06425691395998001,
-0.08043663203716278,
-0.04997850954532623,
0.02219243161380291,
-0.07812632620334625,
0.04678674787282944,
0.06475479900836945,
-0.06783460825681686,
-0.05225396156311035,
-0.04127068817615509,
0.11007878929376602,
-0.08353541791439056,
-0.03626300022006035,
-0.11442991346120834,
-0.14048419892787933,
0.04882090911269188,
0.06916940957307816,
0.0573357418179512,
0.07242200523614883,
0.006261092144995928,
0.05495007336139679,
-0.049014657735824585,
0.07933931052684784,
-0.01624944992363453,
-0.024332920089364052,
-0.06534382700920105,
0.16731946170330048,
-0.022832045331597328,
0.028571315109729767,
-0.029922252520918846,
-0.0027693314477801323,
-0.11379172652959824,
-0.029099291190505028,
0.011462760157883167,
0.00007220248517114669,
-0.046426787972450256,
0.03637112304568291,
0.07368796318769455,
-0.04922839626669884,
-0.05134671926498413,
0.017702048644423485,
-0.12366872280836105,
-0.008031693287193775,
-0.0665021538734436,
0.020643800497055054,
-0.08389819413423538,
0.003381972433999181,
0.11451844871044159,
-0.08725813031196594,
0.07695910334587097,
0.04403843730688095,
-0.06947405636310577,
0.01547153852880001,
-0.03917195275425911,
-0.03264608234167099,
0.00032662120065651834,
0.033492203801870346,
-0.013316309079527855,
-0.043256793171167374,
0.06333879381418228,
0.09828388690948486,
0.0774422213435173,
0.028909387066960335,
0.10607246309518814,
-0.11639265716075897,
0.05259063467383385,
0.0016241018893197179,
-0.16316455602645874,
-0.04808168485760689,
0.04313391447067261,
0.02048078365623951,
0.044513169676065445,
0.13531813025474548,
-0.0673014372587204,
0.037391409277915955,
-0.05631688982248306,
0.00982812698930502,
0.030182531103491783,
-0.05829046666622162,
-0.05413094162940979,
-0.06706902384757996,
0.027823811396956444,
-0.014999170787632465,
0.19391624629497528,
0.05961480736732483,
-0.037473857402801514,
0.038454942405223846,
0.04093509167432785,
-0.0307632926851511,
0.02923562005162239,
0.06547556072473526,
0.005193862598389387,
-0.024425510317087173,
-0.056468717753887177,
-0.051615290343761444,
0.014901791699230671,
-0.08253314346075058,
0.11666768789291382,
0.04536425322294235,
0.07984708249568939,
0.055003754794597626,
0.05512252822518349,
0.041115958243608475,
-0.033788684755563736,
0.06801987439393997,
0.02693585492670536,
0.03953544422984123,
-0.020206855610013008,
0.18415161967277527,
0.21604956686496735,
-0.11552371829748154,
0.10294920951128006,
0.006373832933604717,
-0.04535730555653572,
-0.15215562283992767,
-0.13380193710327148,
-0.05665339529514313,
-0.10493451356887817,
0.009969905950129032,
-0.13654951751232147,
0.03443717584013939,
0.025021495297551155,
0.039679620414972305,
0.015077014453709126,
0.01309417374432087,
-0.009955895133316517,
-0.06259962916374207,
0.026937071233987808,
-0.03326522558927536,
0.0458308681845665,
0.10297241806983948,
-0.06928498297929764,
0.035614121705293655,
0.04360666126012802,
0.10374854505062103,
0.05802086368203163,
0.09593196213245392,
-0.05863988772034645,
-0.1460026353597641,
-0.03559671714901924,
-0.01717573031783104,
-0.028291694819927216,
0.0762803703546524,
0.016883758828043938,
-0.018222032114863396,
-0.06863762438297272,
-0.010972400195896626,
0.19093601405620575,
0.006810690276324749,
-0.2379109114408493,
-0.1128251925110817,
0.10616462677717209,
0.08117634057998657,
0.07822982221841812,
-0.03896191343665123,
-0.07419490069150925,
-0.042567599564790726,
0.13050536811351776,
0.19000259041786194,
-0.01666676253080368,
-0.017981482669711113,
-0.022236252203583717,
0.02062198705971241,
0.07852482050657272,
0.05922945216298103,
0.07829863578081131,
0.19060328602790833,
-0.05158773437142372,
0.049792688339948654,
-0.11279740929603577,
0.03282282501459122,
-0.15072059631347656,
0.08593619614839554,
-0.028665145859122276,
-0.02041953057050705,
-0.05980658531188965,
0.0823621153831482,
-0.03516125679016113,
-0.10598897933959961,
-0.09288454055786133,
-0.09974703937768936,
-0.07340659946203232,
0.07945416122674942,
0.17468887567520142,
-0.039761122316122055,
0.05763537436723709,
-0.027502911165356636,
-0.07338852435350418,
-0.025344504043459892,
0.04706510156393051,
-0.14499153196811676,
0.04662945121526718,
0.0940486267209053,
0.04710554704070091,
0.06609460711479187,
0.022434942424297333,
0.17603248357772827,
0.08730874955654144,
-0.059042204171419144,
-0.036685314029455185,
0.12405719608068466,
0.024219786748290062,
-0.04013902693986893,
0.028735734522342682,
0.045440707355737686,
0.017221825197339058,
-0.023876074701547623,
0.06455875933170319,
-0.07028263807296753,
-0.004626776557415724,
-0.03949359059333801,
-0.03249469771981239,
0.014363220892846584,
0.0029670570511370897,
-0.10543207079172134,
0.04572170600295067,
0.1198713406920433,
-0.027371032163500786,
-0.01579754427075386,
-0.05811672657728195,
0.014711963944137096,
-0.020135046914219856,
-0.06095324829220772,
-0.04988255351781845,
-0.1271294802427292,
-0.013749389909207821,
0.03499547764658928,
0.005823120474815369,
-0.1146378442645073,
-0.06680215895175934,
0.027199598029255867,
0.05308104678988457,
-0.09175797551870346,
0.09136294573545456,
0.10809558629989624,
0.020636677742004395,
-0.030403340235352516,
-0.14450056850910187,
-0.008998381905257702,
0.06406611204147339,
-0.023481830954551697,
0.005950274411588907
] |
null | null | transformers |
# Slovak GPT-J-162M
Slovak GPT-J-162M is the first model released in Slovak GPT-J series and the very first publicly available transformer trained predominantly on Slovak corpus. Since the initial release two other models were made public, [Slovak GPT-J-405M](https://huggingface.co/Milos/slovak-gpt-j-405M) and the largest [Slovak GPT-J-1.4B](https://huggingface.co/Milos/slovak-gpt-j-1.4B).
## Model Description
Model is based on [GPT-J](https://github.com/kingoflolz/mesh-transformer-jax/) and has over 162M trainable parameters.
<figure>
| Hyperparameter | Value |
|----------------------|-------------------------------------------------------------------------------------------------------------------------------|
| \\(n_{parameters}\\) | 162,454,608 |
| \\(n_{layers}\\) | 12 |
| \\(d_{model}\\) | 768 |
| \\(d_{ff}\\) | 16384 |
| \\(n_{heads}\\) | 16 |
| \\(d_{head}\\) | 256 |
| \\(n_{ctx}\\) | 2048 |
| \\(n_{vocab}\\) | 50256 (same tokenizer as GPT-2/3†) |
| Positional Encoding | [Rotary Position Embedding (RoPE)](https://arxiv.org/abs/2104.09864) |
| RoPE Dimensions | [64](https://github.com/kingoflolz/mesh-transformer-jax/blob/f2aa66e0925de6593dcbb70e72399b97b4130482/mesh_transformer/layers.py#L223) |
<p><strong>†</strong> ByteLevelBPETokenizer was trained on the same Slovak corpus.</p></figure>
## Training data
Slovak GPT-J-162M was trained on a privately collected dataset consisting of predominantly Slovak text spanning different categories, e.g. web, news articles or even biblical texts - in total, over 40GB of text data was used to train this model.
The dataset was preprocessed and cleaned in a specific way that involves minor but a few caveats, so in order to achieve the expected performance, feel free to refer to [How to use] section. Please, keep in mind that despite the effort to remove inappropriate parts of the corpus, the model still might generate sensitive content or leak sensitive information.
## Training procedure
This model was trained for almost 37 billion tokens over 69,001 steps on TPU v3-8 pod. The cross-entropy validation loss at the last step was 3.065.
## Intended Use
Same as the original GPT-J, Slovak GPT-J learns an inner representation of the language that can be used to extract features useful for downstream tasks, however, the intended use is text generation from a prompt.
### How to use
This model along with the tokenizer can be easily loaded using the `AutoModelForCausalLM` functionality:
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("Milos/slovak-gpt-j-162M")
model = AutoModelForCausalLM.from_pretrained("Milos/slovak-gpt-j-162M")
```
When generating a prompt keep in mind these three things, and you should be good to go:
1. Never leave trailing whitespaces. There's a difference between how tokenizer encodes "Mám rád slovenčinu" (no space after `slovenčinu`) and "Mám rád slovenčinu " (trailing space after `slovenčinu`), i.e `[12805, 2872, 46878]` != `[12805, 2872, 46878, 221]`.
2. Always use good ol' US English primary double quotation marks, i.e. `""` instead of `„“`.
3. In case of a new line always enter `\n\n` instead of a single `\n`
To illustrate an example of a basic text generation:
```
>>> prompt = "Moje najobľubenejšie mesto na severe Slovenska je"
>>> encoded_input = tokenizer(prompt, return_tensors='pt')
>>> output = model.generate(**encoded_input)
>>> tokenizer.decode(output[0])
'Moje najobľubenejšie mesto na severe Slovenska je Žilina.\n\nV Žiline sa nachádza množstvo zaujímavých miest'
```
### Capabilities, Limitations, and Biases
First and foremost, the capability of this particular model is very limited due to its relatively small size totalling only 162M parameters, hence the intended use of this particular model is to educate and have fun! :)
Since the dataset contains profanity, politically incorrect language, and (unintentionally) even a bits of text in Czech, the model can generate them in some extent too. Here's an example of the model output when prompt is in Czech:
```
>>> prompt = "Věta nesmí být sprostá a musí být zcela"
>>> encoded_input = tokenizer(prompt, return_tensors='pt')
>>> output = model.generate(**encoded_input, max_length=16)
>>> tokenizer.decode(output[0])
'Věta nesmí být sprostá a musí být zcela věrná.'
```
## Citation and Related Information
This was done as a moonlighting project during summer of 2021 to better understand transformers. I didn't have much free time to open source it properly, so it all sat on my hard drive until now. Based on the popularity and interest in this model I might release _substantially_ larger versions of Slovak GPT-J models that are way more capable.
If you use this model or have any questions about it feel free to hit me up at [twitter](https://twitter.com/miloskondela) or check out my [github](https://github.com/kondela) profile.
### BibTeX entry
To cite this model:
```bibtex
@misc{slovak-gpt-j-162m,
author = {Kondela, Milos},
title = {{Slovak GPT-J-162M}},
howpublished = {\url{https://huggingface.co/Milos/slovak-gpt-j-162M}},
year = 2022,
month = February
}
```
To cite the codebase that trained this model:
```bibtex
@misc{mesh-transformer-jax,
author = {Wang, Ben},
title = {{Mesh-Transformer-JAX: Model-Parallel Implementation of Transformer Language Model with JAX}},
howpublished = {\url{https://github.com/kingoflolz/mesh-transformer-jax}},
year = 2021,
month = May
}
```
## Acknowledgements
This project was generously supported by [TPU Research Cloud (TRC) program](https://sites.research.google/trc/about/). Shoutout also goes to [Ben Wang](https://github.com/kingoflolz) and great [EleutherAI community](https://www.eleuther.ai/). | {"language": ["sk"], "license": "gpl-3.0", "tags": ["Slovak GPT-J", "pytorch", "causal-lm"]} | text-generation | Milos/slovak-gpt-j-162M | [
"transformers",
"pytorch",
"gptj",
"text-generation",
"Slovak GPT-J",
"causal-lm",
"sk",
"arxiv:2104.09864",
"license:gpl-3.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [
"2104.09864"
] | [
"sk"
] | TAGS
#transformers #pytorch #gptj #text-generation #Slovak GPT-J #causal-lm #sk #arxiv-2104.09864 #license-gpl-3.0 #autotrain_compatible #endpoints_compatible #region-us
| Slovak GPT-J-162M
=================
Slovak GPT-J-162M is the first model released in Slovak GPT-J series and the very first publicly available transformer trained predominantly on Slovak corpus. Since the initial release two other models were made public, Slovak GPT-J-405M and the largest Slovak GPT-J-1.4B.
Model Description
-----------------
Model is based on GPT-J and has over 162M trainable parameters.
**†** ByteLevelBPETokenizer was trained on the same Slovak corpus.
Training data
-------------
Slovak GPT-J-162M was trained on a privately collected dataset consisting of predominantly Slovak text spanning different categories, e.g. web, news articles or even biblical texts - in total, over 40GB of text data was used to train this model.
The dataset was preprocessed and cleaned in a specific way that involves minor but a few caveats, so in order to achieve the expected performance, feel free to refer to [How to use] section. Please, keep in mind that despite the effort to remove inappropriate parts of the corpus, the model still might generate sensitive content or leak sensitive information.
Training procedure
------------------
This model was trained for almost 37 billion tokens over 69,001 steps on TPU v3-8 pod. The cross-entropy validation loss at the last step was 3.065.
Intended Use
------------
Same as the original GPT-J, Slovak GPT-J learns an inner representation of the language that can be used to extract features useful for downstream tasks, however, the intended use is text generation from a prompt.
### How to use
This model along with the tokenizer can be easily loaded using the 'AutoModelForCausalLM' functionality:
When generating a prompt keep in mind these three things, and you should be good to go:
1. Never leave trailing whitespaces. There's a difference between how tokenizer encodes "Mám rád slovenčinu" (no space after 'slovenčinu') and "Mám rád slovenčinu " (trailing space after 'slovenčinu'), i.e '[12805, 2872, 46878]' != '[12805, 2872, 46878, 221]'.
2. Always use good ol' US English primary double quotation marks, i.e. '""' instead of '„“'.
3. In case of a new line always enter '\n\n' instead of a single '\n'
To illustrate an example of a basic text generation:
### Capabilities, Limitations, and Biases
First and foremost, the capability of this particular model is very limited due to its relatively small size totalling only 162M parameters, hence the intended use of this particular model is to educate and have fun! :)
Since the dataset contains profanity, politically incorrect language, and (unintentionally) even a bits of text in Czech, the model can generate them in some extent too. Here's an example of the model output when prompt is in Czech:
and Related Information
This was done as a moonlighting project during summer of 2021 to better understand transformers. I didn't have much free time to open source it properly, so it all sat on my hard drive until now. Based on the popularity and interest in this model I might release *substantially* larger versions of Slovak GPT-J models that are way more capable.
If you use this model or have any questions about it feel free to hit me up at twitter or check out my github profile.
### BibTeX entry
To cite this model:
To cite the codebase that trained this model:
Acknowledgements
----------------
This project was generously supported by TPU Research Cloud (TRC) program. Shoutout also goes to Ben Wang and great EleutherAI community.
| [
"### How to use\n\n\nThis model along with the tokenizer can be easily loaded using the 'AutoModelForCausalLM' functionality:\n\n\nWhen generating a prompt keep in mind these three things, and you should be good to go:\n\n\n1. Never leave trailing whitespaces. There's a difference between how tokenizer encodes \"Mám rád slovenčinu\" (no space after 'slovenčinu') and \"Mám rád slovenčinu \" (trailing space after 'slovenčinu'), i.e '[12805, 2872, 46878]' != '[12805, 2872, 46878, 221]'.\n2. Always use good ol' US English primary double quotation marks, i.e. '\"\"' instead of '„“'.\n3. In case of a new line always enter '\\n\\n' instead of a single '\\n'\n\n\nTo illustrate an example of a basic text generation:",
"### Capabilities, Limitations, and Biases\n\n\nFirst and foremost, the capability of this particular model is very limited due to its relatively small size totalling only 162M parameters, hence the intended use of this particular model is to educate and have fun! :)\n\n\nSince the dataset contains profanity, politically incorrect language, and (unintentionally) even a bits of text in Czech, the model can generate them in some extent too. Here's an example of the model output when prompt is in Czech:\n\n\nand Related Information\n\n\nThis was done as a moonlighting project during summer of 2021 to better understand transformers. I didn't have much free time to open source it properly, so it all sat on my hard drive until now. Based on the popularity and interest in this model I might release *substantially* larger versions of Slovak GPT-J models that are way more capable.\n\n\nIf you use this model or have any questions about it feel free to hit me up at twitter or check out my github profile.",
"### BibTeX entry\n\n\nTo cite this model:\n\n\nTo cite the codebase that trained this model:\n\n\nAcknowledgements\n----------------\n\n\nThis project was generously supported by TPU Research Cloud (TRC) program. Shoutout also goes to Ben Wang and great EleutherAI community."
] | [
"TAGS\n#transformers #pytorch #gptj #text-generation #Slovak GPT-J #causal-lm #sk #arxiv-2104.09864 #license-gpl-3.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"### How to use\n\n\nThis model along with the tokenizer can be easily loaded using the 'AutoModelForCausalLM' functionality:\n\n\nWhen generating a prompt keep in mind these three things, and you should be good to go:\n\n\n1. Never leave trailing whitespaces. There's a difference between how tokenizer encodes \"Mám rád slovenčinu\" (no space after 'slovenčinu') and \"Mám rád slovenčinu \" (trailing space after 'slovenčinu'), i.e '[12805, 2872, 46878]' != '[12805, 2872, 46878, 221]'.\n2. Always use good ol' US English primary double quotation marks, i.e. '\"\"' instead of '„“'.\n3. In case of a new line always enter '\\n\\n' instead of a single '\\n'\n\n\nTo illustrate an example of a basic text generation:",
"### Capabilities, Limitations, and Biases\n\n\nFirst and foremost, the capability of this particular model is very limited due to its relatively small size totalling only 162M parameters, hence the intended use of this particular model is to educate and have fun! :)\n\n\nSince the dataset contains profanity, politically incorrect language, and (unintentionally) even a bits of text in Czech, the model can generate them in some extent too. Here's an example of the model output when prompt is in Czech:\n\n\nand Related Information\n\n\nThis was done as a moonlighting project during summer of 2021 to better understand transformers. I didn't have much free time to open source it properly, so it all sat on my hard drive until now. Based on the popularity and interest in this model I might release *substantially* larger versions of Slovak GPT-J models that are way more capable.\n\n\nIf you use this model or have any questions about it feel free to hit me up at twitter or check out my github profile.",
"### BibTeX entry\n\n\nTo cite this model:\n\n\nTo cite the codebase that trained this model:\n\n\nAcknowledgements\n----------------\n\n\nThis project was generously supported by TPU Research Cloud (TRC) program. Shoutout also goes to Ben Wang and great EleutherAI community."
] | [
70,
208,
227,
63
] | [
"passage: TAGS\n#transformers #pytorch #gptj #text-generation #Slovak GPT-J #causal-lm #sk #arxiv-2104.09864 #license-gpl-3.0 #autotrain_compatible #endpoints_compatible #region-us \n### How to use\n\n\nThis model along with the tokenizer can be easily loaded using the 'AutoModelForCausalLM' functionality:\n\n\nWhen generating a prompt keep in mind these three things, and you should be good to go:\n\n\n1. Never leave trailing whitespaces. There's a difference between how tokenizer encodes \"Mám rád slovenčinu\" (no space after 'slovenčinu') and \"Mám rád slovenčinu \" (trailing space after 'slovenčinu'), i.e '[12805, 2872, 46878]' != '[12805, 2872, 46878, 221]'.\n2. Always use good ol' US English primary double quotation marks, i.e. '\"\"' instead of '„“'.\n3. In case of a new line always enter '\\n\\n' instead of a single '\\n'\n\n\nTo illustrate an example of a basic text generation:### Capabilities, Limitations, and Biases\n\n\nFirst and foremost, the capability of this particular model is very limited due to its relatively small size totalling only 162M parameters, hence the intended use of this particular model is to educate and have fun! :)\n\n\nSince the dataset contains profanity, politically incorrect language, and (unintentionally) even a bits of text in Czech, the model can generate them in some extent too. Here's an example of the model output when prompt is in Czech:\n\n\nand Related Information\n\n\nThis was done as a moonlighting project during summer of 2021 to better understand transformers. I didn't have much free time to open source it properly, so it all sat on my hard drive until now. Based on the popularity and interest in this model I might release *substantially* larger versions of Slovak GPT-J models that are way more capable.\n\n\nIf you use this model or have any questions about it feel free to hit me up at twitter or check out my github profile."
] | [
-0.06641848385334015,
-0.02252829261124134,
-0.007983901537954807,
0.020889079198241234,
0.08639875799417496,
-0.007474017795175314,
0.0705656036734581,
0.04089771583676338,
0.10903546959161758,
0.09032931178808212,
0.07963507622480392,
0.0027105738408863544,
0.028809309005737305,
0.06986928731203079,
0.07993630319833755,
-0.24144762754440308,
0.12229129672050476,
-0.10673420876264572,
0.06074114888906479,
0.05155619606375694,
0.15039817988872528,
-0.07135991752147675,
0.011066124774515629,
0.0031525439117103815,
0.002386093605309725,
0.009623120538890362,
-0.03306948393583298,
-0.029776066541671753,
0.08618638664484024,
0.040666572749614716,
-0.01767933927476406,
0.010001069866120815,
0.0012811418855562806,
-0.17437827587127686,
0.004309259820729494,
0.03591025993227959,
0.015340795740485191,
0.0038031351286917925,
0.040426477789878845,
0.02791137620806694,
0.21811002492904663,
-0.1548384726047516,
0.03393915295600891,
0.0032541484106332064,
-0.1003418117761612,
-0.12377200275659561,
-0.06835148483514786,
-0.007467793300747871,
0.0969524160027504,
-0.029590724036097527,
-0.03906990960240364,
0.1573781669139862,
-0.025431333109736443,
0.07124875485897064,
0.11991234123706818,
-0.25950777530670166,
-0.027346797287464142,
-0.04166020080447197,
0.024616511538624763,
0.07035217434167862,
-0.04042939469218254,
-0.002541834022849798,
0.003257053904235363,
0.00923523586243391,
-0.005096313543617725,
0.0012203073129057884,
0.04354626312851906,
-0.011467074044048786,
-0.15405625104904175,
-0.09248633682727814,
0.15011130273342133,
0.009413392283022404,
-0.07512610405683517,
-0.13121452927589417,
-0.00686628045514226,
0.01693745329976082,
-0.0020193583332002163,
-0.013772075064480305,
-0.003966083284467459,
-0.008678480051457882,
0.10812639445066452,
-0.12763114273548126,
-0.1299140751361847,
0.005824801046401262,
-0.030161891132593155,
0.19173307716846466,
0.012218000367283821,
0.059145379811525345,
0.11370041966438293,
0.01299404539167881,
-0.06600823998451233,
-0.0779055580496788,
-0.060869261622428894,
-0.045967210084199905,
-0.07913091778755188,
-0.04971379414200783,
-0.039450857788324356,
-0.03513539582490921,
0.042630840092897415,
0.11744996160268784,
-0.04718976840376854,
0.0036251263227313757,
0.028500977903604507,
0.03584010899066925,
0.10134010016918182,
0.14537116885185242,
-0.08533389121294022,
0.03190939128398895,
0.02966206520795822,
-0.09812891483306885,
0.0669943317770958,
-0.022636430338025093,
-0.09972725808620453,
-0.06379237025976181,
0.12099803984165192,
0.0929296612739563,
0.01755271665751934,
0.035933319479227066,
-0.009330477565526962,
0.0015172134153544903,
0.10442125797271729,
-0.10814692080020905,
0.03483521193265915,
-0.013946923427283764,
-0.027013298124074936,
0.07865332067012787,
-0.0998176634311676,
0.0467396154999733,
-0.1317475289106369,
0.006104621104896069,
-0.021374860778450966,
0.04923068732023239,
-0.08365610241889954,
-0.1289728432893753,
0.09022968262434006,
0.017738210037350655,
-0.04504742845892906,
-0.09130656719207764,
-0.1158662885427475,
-0.0286103505641222,
0.002772044623270631,
-0.0467505156993866,
-0.020946554839611053,
-0.0031513741705566645,
-0.03968985006213188,
0.008344517089426517,
-0.0049751801416277885,
0.004042230546474457,
-0.026071319356560707,
0.02478097938001156,
-0.050834160298109055,
0.05370968207716942,
-0.02881731651723385,
-0.043471358716487885,
-0.1557994931936264,
0.011492420919239521,
-0.31648823618888855,
0.09396793693304062,
-0.07758498191833496,
0.026782892644405365,
-0.049252983182668686,
0.017783811315894127,
-0.0013664279831573367,
0.011350143700838089,
0.012534492649137974,
0.14375491440296173,
-0.1992693692445755,
0.01309897843748331,
0.04006876051425934,
-0.15963512659072876,
-0.034248821437358856,
0.1687653660774231,
0.009745405986905098,
0.05727922543883324,
0.13730411231517792,
0.09066142141819,
0.020971963182091713,
-0.14354854822158813,
-0.06905022263526917,
-0.01544742751866579,
-0.07660924643278122,
0.0544043630361557,
0.08248072117567062,
-0.029568113386631012,
0.08556145429611206,
0.014649721793830395,
-0.08513149619102478,
0.021103987470269203,
0.005134431179612875,
-0.007509442511945963,
0.010029763914644718,
-0.02452896162867546,
0.019912907853722572,
-0.005431652069091797,
-0.04275878518819809,
-0.1028200089931488,
-0.09828402101993561,
0.0831318199634552,
0.022207805886864662,
-0.008464434184134007,
0.045652080327272415,
-0.08602702617645264,
0.07615915685892105,
-0.09639805555343628,
-0.012580499053001404,
-0.12944433093070984,
-0.10523796826601028,
0.05228535085916519,
-0.033574916422367096,
0.02167411893606186,
-0.04537772014737129,
0.07977411895990372,
0.07759720832109451,
-0.010552564635872841,
0.04369281977415085,
0.014750706031918526,
0.028405271470546722,
-0.03847745060920715,
-0.11028236895799637,
-0.034636881202459335,
-0.01824619248509407,
0.06198294460773468,
0.01865159161388874,
-0.024921325966715813,
0.1673782467842102,
0.14403507113456726,
-0.001115154940634966,
-0.04407196119427681,
-0.02863103151321411,
0.012206567451357841,
0.030117733404040337,
-0.038852088153362274,
0.030793145298957825,
0.04886975884437561,
-0.019225556403398514,
0.17904101312160492,
-0.14032267034053802,
-0.13304099440574646,
0.08146506547927856,
-0.042393408715724945,
-0.06809518486261368,
0.0036201435141265392,
-0.03721248358488083,
0.017630811780691147,
-0.012468399479985237,
-0.12165363878011703,
0.07991889864206314,
0.044219087809324265,
-0.004036602098494768,
-0.08950568735599518,
-0.0809357613325119,
0.02169717289507389,
-0.06971754133701324,
-0.08183054625988007,
0.07587503641843796,
0.13966405391693115,
-0.20573340356349945,
0.06945378333330154,
-0.00749014038592577,
-0.015397080220282078,
0.21800601482391357,
-0.008602330461144447,
-0.13440614938735962,
-0.08518724888563156,
0.06940856575965881,
0.0014498841483145952,
0.13423548638820648,
-0.0761728435754776,
0.010276238434016705,
0.028328798711299896,
0.0063765328377485275,
0.05074016749858856,
-0.07623205333948135,
0.06280677765607834,
-0.0112470593303442,
-0.0673607736825943,
0.04708598554134369,
-0.004930791910737753,
-0.001217069337144494,
0.10548084229230881,
0.021368084475398064,
0.09713675081729889,
-0.0003831405483651906,
-0.013606947846710682,
-0.12999941408634186,
0.06941622495651245,
-0.10161033272743225,
-0.22858482599258423,
-0.13633494079113007,
0.08794353902339935,
0.013726024888455868,
0.006381625309586525,
0.015825429931282997,
-0.04059656336903572,
-0.07310027629137039,
-0.051667407155036926,
0.1136428713798523,
0.027295811101794243,
-0.0611274391412735,
-0.05555571988224983,
0.028927162289619446,
-0.010696322657167912,
-0.05109470710158348,
-0.04457937180995941,
0.015153552405536175,
-0.04778527095913887,
0.0003873616806231439,
0.04257211834192276,
0.11223535239696503,
-0.006680781487375498,
-0.015214304439723492,
0.0002529376943130046,
-0.014896604232490063,
0.2766081392765045,
-0.09465835988521576,
0.1323338747024536,
0.13416166603565216,
-0.0512828603386879,
0.06031978130340576,
0.1072770208120346,
-0.017900001257658005,
-0.003261325880885124,
0.014202384278178215,
0.01483235601335764,
-0.08687743544578552,
-0.11418762803077698,
-0.08718150109052658,
-0.10609027743339539,
-0.01952163316309452,
0.028543738648295403,
-0.0015770088648423553,
-0.057455580681562424,
0.021288901567459106,
-0.13090158998966217,
0.003397266147658229,
0.062043122947216034,
0.09087840467691422,
0.20873397588729858,
0.02411670796573162,
0.03261284902691841,
-0.06244117394089699,
-0.07158925384283066,
0.0747302994132042,
-0.043635714799165726,
0.11958973109722137,
-0.038366593420505524,
0.13986097276210785,
0.030348729342222214,
0.06103897839784622,
0.021442368626594543,
0.08927237242460251,
-0.04189247265458107,
0.03641520440578461,
-0.014298936352133751,
-0.0903390645980835,
-0.05254008248448372,
0.037132006138563156,
0.07946094125509262,
-0.10871245712041855,
-0.010623722337186337,
0.03408476337790489,
0.09975119680166245,
0.15950699150562286,
0.04082334786653519,
-0.07717098295688629,
-0.08489914983510971,
0.04040514677762985,
-0.038967762142419815,
-0.06532790511846542,
-0.042862217873334885,
0.10761771351099014,
-0.1245342344045639,
0.03178950771689415,
0.03887254744768143,
0.024534475058317184,
-0.10813368111848831,
0.02239733748137951,
-0.013240485452115536,
0.06407782435417175,
-0.005708689801394939,
0.10000810027122498,
-0.18889427185058594,
0.05974029749631882,
0.014367467723786831,
0.09807255119085312,
-0.10473097860813141,
0.028162218630313873,
0.005012800917029381,
-0.12851108610630035,
0.07429259270429611,
0.038413070142269135,
-0.09918799251317978,
-0.03380049765110016,
-0.05213404819369316,
0.010972170159220695,
0.04654264077544212,
-0.04376674443483353,
0.10182467103004456,
-0.04006827622652054,
0.037601228803396225,
-0.050340499728918076,
-0.018730921670794487,
-0.07628827542066574,
-0.1741366982460022,
0.08228034526109695,
-0.040741343051195145,
-0.08425774425268173,
-0.04061923176050186,
-0.03145194798707962,
-0.05434856936335564,
0.10258868336677551,
-0.08784522116184235,
-0.15755107998847961,
-0.08771777898073196,
-0.015353200025856495,
0.19784186780452728,
-0.07160302251577377,
0.01288339402526617,
-0.014085568487644196,
0.19284886121749878,
-0.04489933326840401,
-0.010407773777842522,
-0.004792687017470598,
-0.0640142485499382,
-0.1278938502073288,
0.03028256446123123,
0.16485679149627686,
0.028384201228618622,
0.029688898473978043,
0.03177341818809509,
0.10370286554098129,
0.03325933963060379,
-0.12882083654403687,
0.023232949897646904,
-0.06255367398262024,
-0.0823843777179718,
0.024362212046980858,
-0.047386493533849716,
0.0074980417266488075,
-0.0739532858133316,
-0.05282158777117729,
0.1568620651960373,
0.29805701971054077,
-0.071148581802845,
0.14515355229377747,
0.13843581080436707,
-0.07633539289236069,
-0.18775862455368042,
-0.0766509547829628,
0.058903470635414124,
0.02112235128879547,
-0.049740999937057495,
-0.14035087823867798,
0.04905454441905022,
0.09517159312963486,
-0.013201095163822174,
0.012813768349587917,
-0.1314045786857605,
-0.1056467667222023,
0.056625545024871826,
-0.0002529456978663802,
0.10850397497415543,
-0.07493706047534943,
-0.0619007907807827,
-0.03936689347028732,
-0.04741046950221062,
0.15180259943008423,
-0.0015593337593600154,
0.00834136176854372,
0.09601300209760666,
0.07713844627141953,
0.07903870940208435,
-0.04173260182142258,
0.1673511564731598,
-0.06568017601966858,
-0.02603982947766781,
-0.10121177136898041,
-0.03706948459148407,
0.059442102909088135,
-0.03267892450094223,
0.14029346406459808,
0.03157966956496239,
-0.03526241332292557,
-0.06964940577745438,
-0.07170301675796509,
-0.06336130201816559,
0.05448110029101372,
-0.06269500404596329,
-0.049740198999643326,
-0.01835748739540577,
0.06801094859838486,
0.03183199092745781,
-0.021572764962911606,
-0.10417640954256058,
-0.039346273988485336,
-0.019658805802464485,
0.10296893864870071,
0.13817353546619415,
-0.05864164978265762,
0.02736605703830719,
0.029400503262877464,
-0.01800960674881935,
0.01274553406983614,
0.09740894287824631,
0.08536949008703232,
0.08134424686431885,
-0.010684163309633732,
0.07080215960741043,
-0.012727038934826851,
-0.1384742110967636,
-0.02195950411260128,
0.05935528874397278,
-0.1448446810245514,
-0.13587191700935364,
0.029798662289977074,
0.07085655629634857,
-0.025882622227072716,
-0.08211937546730042,
0.16976457834243774,
-0.045713555067777634,
-0.023588720709085464,
-0.0198073647916317,
0.06900759786367416,
0.03841178119182587,
0.05883096531033516,
0.0480232909321785,
0.030763573944568634,
-0.08107413351535797,
0.018195824697613716,
0.04152180626988411,
-0.034398071467876434,
0.04413396492600441,
0.07805956155061722,
-0.07028559595346451,
-0.04680320993065834,
-0.05607116222381592,
-0.0056667206808924675,
-0.09149852395057678,
-0.06830579042434692,
-0.03330129012465477,
-0.11424421519041061,
0.02360047772526741,
0.07011985778808594,
0.05520674213767052,
0.056259363889694214,
0.02365150675177574,
0.05049464479088783,
-0.06785870343446732,
0.09169787168502808,
0.027835221961140633,
-0.024608341977000237,
-0.031112851575016975,
0.16942301392555237,
-0.039777085185050964,
-0.051438260823488235,
-0.0029682086315006018,
0.0064895316027104855,
-0.07178022712469101,
-0.03404547646641731,
-0.058838941156864166,
0.015640169382095337,
-0.06582871079444885,
0.0024153576232492924,
0.05934293940663338,
-0.04648975655436516,
-0.04407630115747452,
0.02044215239584446,
-0.07061563432216644,
-0.016511742025613785,
-0.06823661923408508,
0.03260595351457596,
-0.10520751774311066,
-0.017316389828920364,
0.1378428190946579,
-0.11196967214345932,
0.09212912619113922,
0.05187356099486351,
0.0017788407858461142,
0.050048597157001495,
-0.05205554515123367,
0.021634120494127274,
-0.020329808816313744,
0.03371204063296318,
0.01653602533042431,
-0.09321136772632599,
0.03603940084576607,
0.08221252262592316,
0.06424221396446228,
0.03122399002313614,
0.03716056048870087,
-0.06366312503814697,
0.06649806350469589,
0.07167227566242218,
-0.11597977578639984,
-0.05132105201482773,
0.05982701852917671,
0.033032942563295364,
0.04955093562602997,
0.13544130325317383,
-0.06183851137757301,
0.02530534565448761,
-0.06940863281488419,
0.025932518765330315,
0.009776623919606209,
0.033140864223241806,
-0.047646794468164444,
-0.026061220094561577,
0.055727701634168625,
0.0037186061963438988,
0.15295936167240143,
0.01934557594358921,
0.07615353167057037,
0.08427540212869644,
0.024357521906495094,
-0.023845726624131203,
0.04724973067641258,
0.051914650946855545,
-0.011731739155948162,
0.012427360750734806,
-0.08693678677082062,
-0.03050854429602623,
-0.04432857036590576,
-0.11512882262468338,
0.1084413155913353,
0.04188258945941925,
0.1858537346124649,
0.05278639867901802,
0.07709472626447678,
-0.022509552538394928,
0.04118845984339714,
0.043692026287317276,
0.007047838997095823,
-0.004097316414117813,
-0.04468706250190735,
0.21427009999752045,
0.18676605820655823,
-0.174837127327919,
0.0799746960401535,
-0.02977127395570278,
-0.05567609891295433,
-0.08880306035280228,
-0.13957464694976807,
-0.029083717614412308,
-0.018901824951171875,
0.014846308156847954,
-0.12840384244918823,
0.035030994564294815,
0.0021109015215188265,
0.021819163113832474,
-0.011464265175163746,
0.014383271336555481,
-0.04068334400653839,
-0.08957107365131378,
0.054357439279556274,
-0.01978449895977974,
0.10294967889785767,
0.08120128512382507,
-0.029455959796905518,
-0.001377455540932715,
0.08881425112485886,
0.06975816935300827,
0.0784011110663414,
0.026148851960897446,
-0.05736227706074715,
-0.06920766085386276,
-0.048720937222242355,
0.002471794141456485,
-0.03485817089676857,
0.0361761637032032,
0.14386528730392456,
0.036250822246074677,
-0.016174424439668655,
-0.020334584638476372,
0.1885293573141098,
0.0054839118383824825,
-0.20346839725971222,
-0.18902286887168884,
-0.0011504775611683726,
0.0017245064955204725,
0.07556197047233582,
-0.015550145879387856,
-0.10689917206764221,
0.018804313614964485,
0.11361272633075714,
0.09662304073572159,
-0.014702357351779938,
-0.030783159658312798,
-0.0516071617603302,
0.00340093276463449,
0.05710689350962639,
0.06365689635276794,
-0.005677381064742804,
0.2506299316883087,
-0.07975345849990845,
0.15506820380687714,
-0.11064445227384567,
0.026109885424375534,
-0.11578987538814545,
0.13251693546772003,
-0.06145961955189705,
0.014330117963254452,
-0.08884350210428238,
0.14038851857185364,
-0.05835558846592903,
-0.26027578115463257,
-0.10367700457572937,
-0.030954701825976372,
-0.085804782807827,
0.08294574171304703,
0.09844984114170074,
0.0243768822401762,
0.09631890058517456,
-0.017694320529699326,
-0.029118919745087624,
0.01094280369579792,
0.054866354912519455,
-0.06388512253761292,
-0.01300013530999422,
0.09378647804260254,
0.07569631189107895,
0.18755872547626495,
0.00807427242398262,
0.1688951551914215,
0.11148223280906677,
-0.033540092408657074,
-0.1524169147014618,
0.009075223468244076,
0.030678123235702515,
-0.130920872092247,
0.0650259330868721,
0.08480386435985565,
0.009254205040633678,
0.01551869884133339,
0.10254398733377457,
-0.07778963446617126,
0.04214008152484894,
0.10160329192876816,
0.018218927085399628,
-0.023739458993077278,
0.1184983178973198,
-0.12060477584600449,
0.06346617639064789,
0.13266654312610626,
-0.0387873612344265,
0.0000585370980843436,
-0.06883808225393295,
-0.005188485141843557,
-0.0179568063467741,
0.014125926420092583,
-0.017353031784296036,
-0.14566382765769958,
0.003972495906054974,
0.03249566629528999,
0.039684172719717026,
-0.07606156170368195,
-0.06689053773880005,
0.03463977947831154,
0.032988209277391434,
-0.03366558253765106,
0.09640510380268097,
0.037118300795555115,
0.007466690614819527,
-0.020223092287778854,
0.01699848659336567,
-0.015250434167683125,
0.07322892546653748,
-0.012073743157088757,
-0.018019983544945717
] |
null | null | transformers |
# Slovak GPT-J-405M
Slovak GPT-J-405M is the second model released in Slovak GPT-J series after its smaller variant [Slovak GPT-J-162M](https://huggingface.co/Milos/slovak-gpt-j-162M). Since then a larger [Slovak GPT-J-1.4B](https://huggingface.co/Milos/slovak-gpt-j-1.4B) was released.
## Model Description
Model is based on [GPT-J](https://github.com/kingoflolz/mesh-transformer-jax/) and has over 405M trainable parameters.
<figure>
| Hyperparameter | Value |
|----------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| \\(n_{parameters}\\) | 405,677,136 |
| \\(n_{layers}\\) | 24 |
| \\(d_{model}\\) | 1024 |
| \\(d_{ff}\\) | 16384 |
| \\(n_{heads}\\) | 16 |
| \\(d_{head}\\) | 256 |
| \\(n_{ctx}\\) | 2048 |
| \\(n_{vocab}\\) | 50256 (same tokenizer as GPT-2/3†) |
| Positional Encoding | [Rotary Position Embedding (RoPE)](https://arxiv.org/abs/2104.09864) |
| RoPE Dimensions | [64](https://github.com/kingoflolz/mesh-transformer-jax/blob/f2aa66e0925de6593dcbb70e72399b97b4130482/mesh_transformer/layers.py#L223) |
<p><strong>†</strong> ByteLevelBPETokenizer was trained on the same Slovak corpus.</p></figure>
## Training data
Slovak GPT-J models were trained on a privately collected dataset consisting of predominantly Slovak text spanning different categories, e.g. web, news articles or even biblical texts - in total, over 40GB of text data was used to train this model.
The dataset was preprocessed and cleaned in a specific way that involves minor but a few caveats, so in order to achieve the expected performance, feel free to refer to [How to use] section. Please, keep in mind that despite the effort to remove inappropriate corpus, the model still might generate sensitive content or leak sensitive information.
## Training procedure
This model was trained for a bit more than 36.5 billion tokens over 69,001 steps on TPU v3-8 pod. The cross-entropy validation loss at the last step was `2.821`.
## Intended Use
Same as the original GPT-J, Slovak GPT-J learns an inner representation of the language that can be used to extract features useful for downstream tasks, however, the intended use is text generation from a prompt.
### How to use
This model along with the tokenizer can be easily loaded using the `AutoModelForCausalLM` functionality:
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("Milos/slovak-gpt-j-405M")
model = AutoModelForCausalLM.from_pretrained("Milos/slovak-gpt-j-405M")
```
When generating a prompt keep in mind these three things, and you should be good to go:
1. Never leave trailing whitespaces. There's a difference between how tokenizer encodes "Mám rád slovenčinu" (no space after `slovenčinu`) and "Mám rád slovenčinu " (trailing space after `slovenčinu`), i.e `[12805, 2872, 46878]` != `[12805, 2872, 46878, 221]`.
2. Always use good ol' US English primary double quotation marks, i.e. `""` instead of `„“`.
3. In case of a new line always enter `\n\n` instead of a single `\n`
To illustrate an example of a basic text generation:
```
>>> prompt = "Tradičné jedlo na Orave sú"
>>> encoded_input = tokenizer(prompt, return_tensors='pt')
>>> output = model.generate(**encoded_input)
>>> tokenizer.decode(output[0])
'Tradičné jedlo na Orave sú bryndzové halušky\n\nNa Orave sa v minulosti varilo viac druhov'
```
### Capabilities, Limitations, and Biases
The capability of this particular model is somewhat decent despite its small size totalling 405M parameters. With relative ease it can manage to generate interesting and grammatically correct content.
For example, you can try few of the following prompts. (For sake of simplicity, I have omitted all the boilerplate code and swapped `\n` for new lines).
Try generating "How to" articles:
```
PROMPT
Ako napísať pôsobivú esej krok za krokom
OUTPUT
Ako napísať pôsobivú esej krok za krokom
V tomto článku sa dozviete, ako napísať esej, ktorá bude mať v sebe niečo, čo zaujme a bude sa vám páčiť.
V prvom rade si musíte uvedomiť, že esej je vlastne písaný text, ktorý má byť napísaný na počítači.'
```
However, relying on the model to produce factually correct information isn't recommended.
Or try to generate chat conversations:
```
PROMPT
Peter: Ako sa mas?
Lucia: Ale celkom dobre. Co si robil?
Peter:
OUTPUT
Peter: Ako sa mas?
Lucia: Ale celkom dobre. Co si robil?
Peter: No, bol som na chate.
Lucia: A co si tam robil?
Peter: No, bol som tam s kamošmi.
Lucia: A co si tam robil?
Peter: No, bol som tam s kamošmi.
```
Apparently either Peters are more likely to act suspiciously in this particular context or there's a problem with the model. Let's assume that the second explanation may hold some merit. In general, GPT models can (and often will) get into a repeating cycle of generating same content. This is a common problem beyond the scope of this README, however, see [generate's documentation](https://huggingface.co/docs/transformers/master/en/main_classes/model#transformers.generation_utils.GenerationMixin.generate) on how to introduce a frequency/repetition penalty.
Since the dataset contains profanity, politically incorrect language, and (unintentionally) even a bits of text in Czech, the model can generate them in some extent too. Here's an example of the model output when prompt is in Czech:
```
>>> prompt = "Věta nesmí být sprostá a musí být zcela"
>>> encoded_input = tokenizer(prompt, return_tensors='pt')
>>> output = model.generate(**encoded_input, max_length=16)
>>> tokenizer.decode(output[0])
'Věta nesmí být sprostá a musí být zcela pravdivá.'
```
## Citation and Related Information
This was done as a moonlighting project during summer of 2021 to better understand transformers. I didn't have much free time to open source it properly, so it all sat on my hard drive until now :)
If you use this model or have any questions about it feel free to hit me up at [twitter](https://twitter.com/miloskondela) or check out my [github](https://github.com/kondela) profile.
### BibTeX entry
To cite this model:
```bibtex
@misc{slovak-gpt-j-405m,
author = {Kondela, Milos},
title = {{Slovak GPT-J-405M}},
howpublished = {\url{https://huggingface.co/Milos/slovak-gpt-j-405M}},
year = 2022,
month = February
}
```
To cite the codebase that trained this model:
```bibtex
@misc{mesh-transformer-jax,
author = {Wang, Ben},
title = {{Mesh-Transformer-JAX: Model-Parallel Implementation of Transformer Language Model with JAX}},
howpublished = {\url{https://github.com/kingoflolz/mesh-transformer-jax}},
year = 2021,
month = May
}
```
## Acknowledgements
This project was generously supported by [TPU Research Cloud (TRC) program](https://sites.research.google/trc/about/). Shoutout also goes to [Ben Wang](https://github.com/kingoflolz) and great [EleutherAI community](https://www.eleuther.ai/). | {"language": ["sk"], "license": "gpl-3.0", "tags": ["Slovak GPT-J", "pytorch", "causal-lm"]} | text-generation | Milos/slovak-gpt-j-405M | [
"transformers",
"pytorch",
"gptj",
"text-generation",
"Slovak GPT-J",
"causal-lm",
"sk",
"arxiv:2104.09864",
"license:gpl-3.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [
"2104.09864"
] | [
"sk"
] | TAGS
#transformers #pytorch #gptj #text-generation #Slovak GPT-J #causal-lm #sk #arxiv-2104.09864 #license-gpl-3.0 #autotrain_compatible #endpoints_compatible #region-us
| Slovak GPT-J-405M
=================
Slovak GPT-J-405M is the second model released in Slovak GPT-J series after its smaller variant Slovak GPT-J-162M. Since then a larger Slovak GPT-J-1.4B was released.
Model Description
-----------------
Model is based on GPT-J and has over 405M trainable parameters.
**†** ByteLevelBPETokenizer was trained on the same Slovak corpus.
Training data
-------------
Slovak GPT-J models were trained on a privately collected dataset consisting of predominantly Slovak text spanning different categories, e.g. web, news articles or even biblical texts - in total, over 40GB of text data was used to train this model.
The dataset was preprocessed and cleaned in a specific way that involves minor but a few caveats, so in order to achieve the expected performance, feel free to refer to [How to use] section. Please, keep in mind that despite the effort to remove inappropriate corpus, the model still might generate sensitive content or leak sensitive information.
Training procedure
------------------
This model was trained for a bit more than 36.5 billion tokens over 69,001 steps on TPU v3-8 pod. The cross-entropy validation loss at the last step was '2.821'.
Intended Use
------------
Same as the original GPT-J, Slovak GPT-J learns an inner representation of the language that can be used to extract features useful for downstream tasks, however, the intended use is text generation from a prompt.
### How to use
This model along with the tokenizer can be easily loaded using the 'AutoModelForCausalLM' functionality:
When generating a prompt keep in mind these three things, and you should be good to go:
1. Never leave trailing whitespaces. There's a difference between how tokenizer encodes "Mám rád slovenčinu" (no space after 'slovenčinu') and "Mám rád slovenčinu " (trailing space after 'slovenčinu'), i.e '[12805, 2872, 46878]' != '[12805, 2872, 46878, 221]'.
2. Always use good ol' US English primary double quotation marks, i.e. '""' instead of '„“'.
3. In case of a new line always enter '\n\n' instead of a single '\n'
To illustrate an example of a basic text generation:
### Capabilities, Limitations, and Biases
The capability of this particular model is somewhat decent despite its small size totalling 405M parameters. With relative ease it can manage to generate interesting and grammatically correct content.
For example, you can try few of the following prompts. (For sake of simplicity, I have omitted all the boilerplate code and swapped '\n' for new lines).
Try generating "How to" articles:
However, relying on the model to produce factually correct information isn't recommended.
Or try to generate chat conversations:
Apparently either Peters are more likely to act suspiciously in this particular context or there's a problem with the model. Let's assume that the second explanation may hold some merit. In general, GPT models can (and often will) get into a repeating cycle of generating same content. This is a common problem beyond the scope of this README, however, see generate's documentation on how to introduce a frequency/repetition penalty.
Since the dataset contains profanity, politically incorrect language, and (unintentionally) even a bits of text in Czech, the model can generate them in some extent too. Here's an example of the model output when prompt is in Czech:
and Related Information
This was done as a moonlighting project during summer of 2021 to better understand transformers. I didn't have much free time to open source it properly, so it all sat on my hard drive until now :)
If you use this model or have any questions about it feel free to hit me up at twitter or check out my github profile.
### BibTeX entry
To cite this model:
To cite the codebase that trained this model:
Acknowledgements
----------------
This project was generously supported by TPU Research Cloud (TRC) program. Shoutout also goes to Ben Wang and great EleutherAI community.
| [
"### How to use\n\n\nThis model along with the tokenizer can be easily loaded using the 'AutoModelForCausalLM' functionality:\n\n\nWhen generating a prompt keep in mind these three things, and you should be good to go:\n\n\n1. Never leave trailing whitespaces. There's a difference between how tokenizer encodes \"Mám rád slovenčinu\" (no space after 'slovenčinu') and \"Mám rád slovenčinu \" (trailing space after 'slovenčinu'), i.e '[12805, 2872, 46878]' != '[12805, 2872, 46878, 221]'.\n2. Always use good ol' US English primary double quotation marks, i.e. '\"\"' instead of '„“'.\n3. In case of a new line always enter '\\n\\n' instead of a single '\\n'\n\n\nTo illustrate an example of a basic text generation:",
"### Capabilities, Limitations, and Biases\n\n\nThe capability of this particular model is somewhat decent despite its small size totalling 405M parameters. With relative ease it can manage to generate interesting and grammatically correct content.\nFor example, you can try few of the following prompts. (For sake of simplicity, I have omitted all the boilerplate code and swapped '\\n' for new lines).\n\n\nTry generating \"How to\" articles:\n\n\nHowever, relying on the model to produce factually correct information isn't recommended.\n\n\nOr try to generate chat conversations:\n\n\nApparently either Peters are more likely to act suspiciously in this particular context or there's a problem with the model. Let's assume that the second explanation may hold some merit. In general, GPT models can (and often will) get into a repeating cycle of generating same content. This is a common problem beyond the scope of this README, however, see generate's documentation on how to introduce a frequency/repetition penalty.\n\n\nSince the dataset contains profanity, politically incorrect language, and (unintentionally) even a bits of text in Czech, the model can generate them in some extent too. Here's an example of the model output when prompt is in Czech:\n\n\nand Related Information\n\n\nThis was done as a moonlighting project during summer of 2021 to better understand transformers. I didn't have much free time to open source it properly, so it all sat on my hard drive until now :)\n\n\nIf you use this model or have any questions about it feel free to hit me up at twitter or check out my github profile.",
"### BibTeX entry\n\n\nTo cite this model:\n\n\nTo cite the codebase that trained this model:\n\n\nAcknowledgements\n----------------\n\n\nThis project was generously supported by TPU Research Cloud (TRC) program. Shoutout also goes to Ben Wang and great EleutherAI community."
] | [
"TAGS\n#transformers #pytorch #gptj #text-generation #Slovak GPT-J #causal-lm #sk #arxiv-2104.09864 #license-gpl-3.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"### How to use\n\n\nThis model along with the tokenizer can be easily loaded using the 'AutoModelForCausalLM' functionality:\n\n\nWhen generating a prompt keep in mind these three things, and you should be good to go:\n\n\n1. Never leave trailing whitespaces. There's a difference between how tokenizer encodes \"Mám rád slovenčinu\" (no space after 'slovenčinu') and \"Mám rád slovenčinu \" (trailing space after 'slovenčinu'), i.e '[12805, 2872, 46878]' != '[12805, 2872, 46878, 221]'.\n2. Always use good ol' US English primary double quotation marks, i.e. '\"\"' instead of '„“'.\n3. In case of a new line always enter '\\n\\n' instead of a single '\\n'\n\n\nTo illustrate an example of a basic text generation:",
"### Capabilities, Limitations, and Biases\n\n\nThe capability of this particular model is somewhat decent despite its small size totalling 405M parameters. With relative ease it can manage to generate interesting and grammatically correct content.\nFor example, you can try few of the following prompts. (For sake of simplicity, I have omitted all the boilerplate code and swapped '\\n' for new lines).\n\n\nTry generating \"How to\" articles:\n\n\nHowever, relying on the model to produce factually correct information isn't recommended.\n\n\nOr try to generate chat conversations:\n\n\nApparently either Peters are more likely to act suspiciously in this particular context or there's a problem with the model. Let's assume that the second explanation may hold some merit. In general, GPT models can (and often will) get into a repeating cycle of generating same content. This is a common problem beyond the scope of this README, however, see generate's documentation on how to introduce a frequency/repetition penalty.\n\n\nSince the dataset contains profanity, politically incorrect language, and (unintentionally) even a bits of text in Czech, the model can generate them in some extent too. Here's an example of the model output when prompt is in Czech:\n\n\nand Related Information\n\n\nThis was done as a moonlighting project during summer of 2021 to better understand transformers. I didn't have much free time to open source it properly, so it all sat on my hard drive until now :)\n\n\nIf you use this model or have any questions about it feel free to hit me up at twitter or check out my github profile.",
"### BibTeX entry\n\n\nTo cite this model:\n\n\nTo cite the codebase that trained this model:\n\n\nAcknowledgements\n----------------\n\n\nThis project was generously supported by TPU Research Cloud (TRC) program. Shoutout also goes to Ben Wang and great EleutherAI community."
] | [
70,
208,
363,
63
] | [
"passage: TAGS\n#transformers #pytorch #gptj #text-generation #Slovak GPT-J #causal-lm #sk #arxiv-2104.09864 #license-gpl-3.0 #autotrain_compatible #endpoints_compatible #region-us \n### How to use\n\n\nThis model along with the tokenizer can be easily loaded using the 'AutoModelForCausalLM' functionality:\n\n\nWhen generating a prompt keep in mind these three things, and you should be good to go:\n\n\n1. Never leave trailing whitespaces. There's a difference between how tokenizer encodes \"Mám rád slovenčinu\" (no space after 'slovenčinu') and \"Mám rád slovenčinu \" (trailing space after 'slovenčinu'), i.e '[12805, 2872, 46878]' != '[12805, 2872, 46878, 221]'.\n2. Always use good ol' US English primary double quotation marks, i.e. '\"\"' instead of '„“'.\n3. In case of a new line always enter '\\n\\n' instead of a single '\\n'\n\n\nTo illustrate an example of a basic text generation:"
] | [
-0.0007844021893106401,
-0.060283876955509186,
-0.007210723124444485,
0.051685791462659836,
0.09602367132902145,
0.013701320625841618,
0.19930201768875122,
0.06612897664308548,
0.06486530601978302,
0.023963427171111107,
0.1812986582517624,
0.09087535738945007,
-0.016706163063645363,
0.06681270152330399,
0.001989691285416484,
-0.26059213280677795,
0.122231125831604,
-0.015568305738270283,
0.10743620246648788,
0.0782245323061943,
0.14591339230537415,
-0.07017529010772705,
0.042630214244127274,
0.0017620635917410254,
-0.1475658416748047,
-0.006208814214915037,
0.022767389193177223,
-0.06269395351409912,
0.08214253932237625,
-0.002872408600524068,
0.0038913374301046133,
0.05537378787994385,
0.011643988080322742,
-0.13297471404075623,
0.011192730627954006,
0.003484030719846487,
0.027516990900039673,
0.017782386392354965,
-0.044794369488954544,
-0.033258210867643356,
0.11622271686792374,
-0.01852131262421608,
0.05035753175616264,
-0.020416302606463432,
-0.11450593173503876,
-0.14522035419940948,
-0.027049001306295395,
-0.002572096884250641,
0.09830622375011444,
-0.0716095045208931,
0.004207654390484095,
0.15404415130615234,
-0.06765659898519516,
0.09203951060771942,
0.1626925766468048,
-0.2942087650299072,
-0.021344605833292007,
0.036144088953733444,
0.05056734383106232,
0.050457123667001724,
-0.027177900075912476,
0.036120593547821045,
-0.006384196225553751,
-0.006897357292473316,
0.04962572827935219,
-0.049327194690704346,
-0.014488069340586662,
0.044784240424633026,
-0.1472620666027069,
-0.06274659931659698,
0.2022818922996521,
-0.022268282249569893,
-0.05014485865831375,
-0.08044005930423737,
-0.0027669528499245644,
-0.07116636633872986,
-0.03949885070323944,
-0.036953095346689224,
-0.015460683964192867,
-0.004882183391600847,
0.008614287711679935,
-0.13234876096248627,
-0.10381202399730682,
-0.0283233392983675,
-0.062609001994133,
0.235946387052536,
0.037052374333143234,
0.05932043120265007,
0.015326437540352345,
0.02886362187564373,
-0.14392563700675964,
-0.0606699176132679,
-0.015583320520818233,
-0.06263090670108795,
0.04417852684855461,
-0.001677948166616261,
-0.056162379682064056,
-0.14684586226940155,
0.06348275393247604,
0.15861110389232635,
-0.010668041184544563,
0.03293638676404953,
-0.0028688395395874977,
0.10511074960231781,
0.015730097889900208,
0.14350225031375885,
0.00189790443982929,
0.10227219015359879,
0.07528552412986755,
-0.020505843684077263,
0.047977279871702194,
-0.07532307505607605,
-0.1889033317565918,
-0.02629651501774788,
0.14636258780956268,
0.06601665169000626,
-0.03877273201942444,
0.04987137019634247,
-0.05438700318336487,
0.015089414082467556,
-0.02530795894563198,
-0.14357620477676392,
0.07322913408279419,
-0.007191221695393324,
0.01359372679144144,
0.002936673117801547,
-0.08370278775691986,
0.06363891810178757,
-0.10617747157812119,
-0.00228832196444273,
-0.01261560246348381,
0.11270233243703842,
-0.11672298610210419,
-0.12586775422096252,
0.036528121680021286,
-0.02369580790400505,
-0.03633981943130493,
-0.07299363613128662,
-0.13625137507915497,
0.020019758492708206,
0.05596374720335007,
-0.011820012703537941,
-0.009370876476168633,
-0.06921306997537613,
-0.013082399033010006,
0.0038975300267338753,
0.003765167435631156,
-0.13143165409564972,
-0.027862682938575745,
0.052434638142585754,
0.036957427859306335,
0.09547124803066254,
-0.1458161622285843,
0.006574410013854504,
-0.10805568844079971,
0.015798041597008705,
-0.3225524127483368,
0.07023429870605469,
-0.000083218386862427,
0.004376872908324003,
-0.02457227185368538,
-0.007036821451038122,
-0.026771286502480507,
0.04935489222407341,
0.0090563939884305,
0.12117249518632889,
-0.15526629984378815,
-0.02161226235330105,
0.078182652592659,
-0.13119521737098694,
-0.027811426669359207,
0.18532343208789825,
-0.0312553308904171,
0.06440243124961853,
0.0768466368317604,
0.19944992661476135,
-0.017457447946071625,
-0.12783630192279816,
0.10119672119617462,
0.00014366241521202028,
-0.11015409976243973,
0.013273676857352257,
0.06631385535001755,
0.007048705127090216,
0.03695175424218178,
0.02307996153831482,
-0.060664597898721695,
-0.010166640393435955,
-0.023226885125041008,
-0.004819134250283241,
-0.008264993317425251,
0.021297071129083633,
0.0628572478890419,
-0.05623210221529007,
-0.004225047770887613,
-0.10631008446216583,
-0.058561790734529495,
0.1620485633611679,
-0.02721039205789566,
-0.051517799496650696,
0.06027443706989288,
-0.14673031866550446,
0.113582544028759,
-0.09271647036075592,
-0.0030208344105631113,
-0.10165878385305405,
-0.03699721023440361,
0.034374743700027466,
0.033931199461221695,
0.03950488567352295,
-0.04147551581263542,
0.027663283050060272,
0.06572265923023224,
-0.009606086649000645,
0.04990111663937569,
0.05737997964024544,
0.02326212450861931,
-0.036342985928058624,
-0.0731850191950798,
-0.01687629148364067,
-0.014383772388100624,
-0.03481779620051384,
0.022706715390086174,
0.05940240994095802,
0.15476448833942413,
0.07147952169179916,
0.01428092923015356,
0.0006171037093736231,
0.0014939268585294485,
0.04869662597775459,
-0.006593299098312855,
0.003108617151156068,
0.037649963051080704,
0.019155897200107574,
-0.07518063485622406,
0.18586790561676025,
-0.20388227701187134,
0.08942792564630508,
0.10040395706892014,
-0.12192681431770325,
-0.06670216470956802,
0.027302535250782967,
-0.027162721380591393,
0.05362389609217644,
-0.02334969863295555,
-0.06727258861064911,
0.1266593039035797,
0.028020448982715607,
0.07120609283447266,
-0.10443497449159622,
-0.07419688999652863,
0.0063150180503726006,
-0.11062825471162796,
-0.060527775436639786,
0.048020947724580765,
0.11440218985080719,
-0.155449777841568,
0.07766227424144745,
0.047873347997665405,
-0.05424493923783302,
0.23337942361831665,
0.007273007649928331,
-0.04577619209885597,
-0.10888369381427765,
0.08581683784723282,
-0.02693294547498226,
0.10450718551874161,
-0.07459740340709686,
-0.02441553771495819,
0.02144276537001133,
0.02287708967924118,
0.023723017424345016,
-0.16669675707817078,
0.025771422311663628,
-0.013085570186376572,
-0.0993911400437355,
0.005228250287473202,
-0.004519417881965637,
0.022782102227211,
0.11042273789644241,
-0.004878271371126175,
-0.0037727458402514458,
0.06128646805882454,
0.03007032535970211,
-0.10440944135189056,
0.09669086337089539,
-0.12627829611301422,
-0.22886233031749725,
-0.18842865526676178,
0.009444021619856358,
-0.02049175649881363,
0.005459961947053671,
0.08441931009292603,
0.0006475457339547575,
-0.03447040915489197,
-0.06502467393875122,
0.06466954946517944,
-0.02018524892628193,
-0.05708133056759834,
-0.028442589566111565,
-0.026699354872107506,
-0.0436004176735878,
-0.09498091787099838,
-0.0907578393816948,
-0.00010844631469808519,
0.05486325919628143,
0.12156376987695694,
0.011417118832468987,
0.06072528660297394,
0.02633173018693924,
-0.09779559075832367,
0.05103731527924538,
-0.01801101118326187,
0.23851093649864197,
-0.034990597516298294,
0.08221685886383057,
0.10826918482780457,
-0.09589745849370956,
0.09333404898643494,
0.12016945332288742,
-0.0011558190453797579,
-0.061794620007276535,
-0.0244187880307436,
-0.039611902087926865,
-0.09549842029809952,
-0.09165085852146149,
0.009456807747483253,
-0.1306070238351822,
-0.024634303525090218,
-0.02377132512629032,
-0.01674828864634037,
-0.04087863862514496,
0.02511909231543541,
-0.03808673471212387,
0.048921745270490646,
0.11130955070257187,
0.14533664286136627,
0.3130863308906555,
0.02333349920809269,
0.09146997332572937,
-0.05065550655126572,
-0.12773394584655762,
0.017159579321742058,
0.009240246377885342,
0.0745411366224289,
0.013423707336187363,
0.05564519762992859,
0.0646897628903389,
0.029439250007271767,
0.09116820245981216,
0.08550476282835007,
-0.061707753688097,
0.03330380469560623,
-0.04579174146056175,
-0.05306515470147133,
-0.053319111466407776,
0.02694307640194893,
0.010833663865923882,
-0.11516362428665161,
-0.0017784906085580587,
0.07441040128469467,
0.11867166310548782,
0.1615053117275238,
0.045091208070516586,
-0.21183553338050842,
-0.04506703466176987,
0.020236244425177574,
-0.009273569099605083,
-0.05098719522356987,
0.016060996800661087,
0.11274067312479019,
-0.08716878294944763,
0.061494551599025726,
0.0021298567298799753,
0.03150459751486778,
-0.056213077157735825,
0.09547248482704163,
-0.05672645568847656,
0.04977116733789444,
-0.01289539597928524,
0.06279459595680237,
-0.3024633824825287,
0.08543628454208374,
0.04274681955575943,
0.0358944907784462,
-0.04337906092405319,
0.021863682195544243,
0.005964952055364847,
-0.044240452349185944,
0.054351743310689926,
0.02291831001639366,
-0.19480955600738525,
-0.09919160604476929,
0.00020357056928332895,
-0.002855876460671425,
0.10944952070713043,
-0.009912123903632164,
0.0694757029414177,
-0.03599199280142784,
0.025303857401013374,
-0.017580093815922737,
-0.06380701065063477,
-0.04030696675181389,
-0.14633360505104065,
0.06267926096916199,
0.02750035934150219,
-0.0635194182395935,
-0.017049089074134827,
0.006736099254339933,
0.026574674993753433,
0.0963345393538475,
-0.045879919081926346,
-0.15368568897247314,
-0.07819367945194244,
-0.01856342703104019,
0.1254933923482895,
-0.04259854555130005,
-0.040718648582696915,
-0.03158237412571907,
0.13420037925243378,
-0.06367059797048569,
-0.02839597687125206,
0.06619488447904587,
-0.011781273409724236,
-0.07721905410289764,
-0.0001398073509335518,
0.15119580924510956,
-0.0514797680079937,
0.029567962512373924,
0.06720680743455887,
0.0991864949464798,
-0.00037016565329395235,
-0.12548786401748657,
0.04003297910094261,
-0.08175807446241379,
-0.04384610056877136,
-0.01307317428290844,
-0.14541327953338623,
0.009250734932720661,
-0.060905877500772476,
-0.019076505675911903,
0.24671313166618347,
0.3400818109512329,
-0.05336138606071472,
0.1636098027229309,
0.11032108217477798,
-0.08152449131011963,
-0.16043931245803833,
-0.11362254619598389,
-0.03587104007601738,
0.03129873424768448,
-0.041696351021528244,
-0.11823242902755737,
0.012481427751481533,
0.08193940669298172,
0.020648134872317314,
0.024228880181908607,
-0.22298979759216309,
-0.10062823444604874,
0.10133460909128189,
0.011508863419294357,
0.2642274498939514,
-0.09022679924964905,
-0.05030326917767525,
-0.03530149906873703,
-0.08958780765533447,
0.1852758526802063,
0.06843732297420502,
0.05115232989192009,
0.03366110473871231,
0.09873310476541519,
0.05434534698724747,
-0.025051860138773918,
0.08990225940942764,
-0.0592675656080246,
0.04391998425126076,
-0.07795848697423935,
-0.12147469073534012,
0.10714534670114517,
-0.04278164356946945,
0.15538272261619568,
-0.04803675413131714,
-0.06408781558275223,
-0.08345522731542587,
-0.07454808056354523,
0.003856909228488803,
0.03253950551152229,
-0.031003201380372047,
-0.05544314160943031,
-0.01720835268497467,
-0.053736612200737,
0.005537502467632294,
-0.018502306193113327,
0.008497895672917366,
-0.061751026660203934,
0.09711353480815887,
0.12053442001342773,
0.10750260949134827,
-0.14818157255649567,
0.07487144321203232,
0.02875402197241783,
-0.019577890634536743,
0.044211044907569885,
0.043191272765398026,
0.0949963852763176,
0.07020942866802216,
-0.02754376269876957,
0.12087485194206238,
0.04952419921755791,
-0.04491092637181282,
0.022784359753131866,
0.058067336678504944,
-0.1737716645002365,
-0.06459657102823257,
0.03527679294347763,
0.03974243998527527,
0.05028145760297775,
-0.026245208457112312,
0.16809117794036865,
-0.0354740172624588,
-0.04925134778022766,
0.004044920206069946,
0.0877106711268425,
0.010941569693386555,
0.007757542654871941,
0.043880537152290344,
0.06696539372205734,
-0.0747029110789299,
-0.050028566271066666,
-0.0039062462747097015,
-0.0399489663541317,
0.05317923426628113,
0.051614876836538315,
-0.073347307741642,
-0.0476987399160862,
-0.05619102343916893,
0.13706126809120178,
-0.09741085022687912,
-0.0485621877014637,
-0.1209651455283165,
-0.13417872786521912,
0.0203000009059906,
0.09265485405921936,
0.06609221547842026,
0.07491203397512436,
0.02885153330862522,
0.04478464275598526,
-0.044358767569065094,
0.06453656405210495,
-0.005882255733013153,
-0.03244977071881294,
-0.05444600060582161,
0.15357835590839386,
-0.03396615758538246,
0.008336939848959446,
-0.032364267855882645,
0.0021898914128541946,
-0.14547297358512878,
-0.015927543863654137,
0.03367080166935921,
0.017084594815969467,
-0.054144542664289474,
0.024419408291578293,
0.08716229349374771,
-0.04109739884734154,
-0.05616359785199165,
0.009011820890009403,
-0.13297618925571442,
-0.00659301970154047,
-0.04801670461893082,
0.026332208886742592,
-0.05752285569906235,
-0.015680160373449326,
0.11214380711317062,
-0.09112586826086044,
0.06835012137889862,
0.04657245799899101,
-0.07949888706207275,
0.01685837097465992,
-0.049033187329769135,
-0.017265887930989265,
0.014712472446262836,
0.007047988940030336,
0.0020316552836447954,
-0.03591243550181389,
0.04763305187225342,
0.10653416067361832,
0.09596497565507889,
0.042007170617580414,
0.12804315984249115,
-0.09585798531770706,
0.06081172451376915,
-0.02070886828005314,
-0.1636698693037033,
-0.049169525504112244,
0.04005883261561394,
0.026809168979525566,
0.06338045001029968,
0.14105309545993805,
-0.08108144253492355,
0.03043421357870102,
-0.024211667478084564,
0.022212127223610878,
0.044662054628133774,
-0.06834641098976135,
-0.07710529863834381,
-0.07127144187688828,
0.01495019905269146,
-0.02148526906967163,
0.2019505649805069,
0.058223310858011246,
-0.03882760554552078,
0.05042383074760437,
0.047024182975292206,
-0.0757966935634613,
0.029061689972877502,
0.04516306146979332,
-0.003974022343754768,
-0.026962915435433388,
-0.09163690358400345,
-0.026095980778336525,
0.030036892741918564,
-0.11046329140663147,
0.10222896188497543,
0.052280403673648834,
0.08301414549350739,
0.09145347028970718,
0.05065276846289635,
0.05899200588464737,
0.004955006763339043,
0.11396066844463348,
0.05026157945394516,
0.053070068359375,
-0.02264382876455784,
0.22066929936408997,
0.23489423096179962,
-0.11274805665016174,
0.07782435417175293,
-0.003805744694545865,
-0.051867470145225525,
-0.14187481999397278,
-0.1282237470149994,
-0.058717746287584305,
-0.12380356341600418,
0.008149447850883007,
-0.11970602720975876,
0.02701880969107151,
-0.004320877604186535,
0.0336664617061615,
0.025056811049580574,
-0.007327303756028414,
-0.039191022515296936,
-0.0424995943903923,
0.026624493300914764,
-0.06475093215703964,
0.029622508212924004,
0.12026071548461914,
-0.08508337289094925,
0.04118165001273155,
0.03562025725841522,
0.10328611731529236,
0.0684543028473854,
0.119753398001194,
-0.06670702993869781,
-0.15881340205669403,
-0.05377475917339325,
-0.018771834671497345,
-0.01587330549955368,
0.06294472515583038,
-0.0212179496884346,
0.00179566559381783,
-0.07752878218889236,
-0.004978696350008249,
0.18191838264465332,
0.01470041275024414,
-0.22165027260780334,
-0.12897983193397522,
0.07072274386882782,
0.075522281229496,
0.09169402718544006,
-0.06423330307006836,
-0.07837926596403122,
-0.025399407371878624,
0.12231563031673431,
0.18434295058250427,
-0.0157209113240242,
-0.030372386798262596,
-0.035610828548669815,
0.02240908145904541,
0.08824755251407623,
0.058741942048072815,
0.062424253672361374,
0.1468125730752945,
-0.04144011065363884,
0.06095942482352257,
-0.13985197246074677,
0.02213456481695175,
-0.15248240530490875,
0.0741339921951294,
-0.0017014278564602137,
-0.019296716898679733,
-0.06122264638543129,
0.10904379189014435,
-0.08100917935371399,
-0.10020612925291061,
-0.10263121873140335,
-0.10204656422138214,
-0.05184583365917206,
0.06775428354740143,
0.14469771087169647,
-0.03696378320455551,
0.07655206322669983,
-0.041131392121315,
-0.07454361766576767,
-0.06314729154109955,
0.04419221729040146,
-0.13857534527778625,
0.04007105529308319,
0.07574110478162766,
0.0365169495344162,
0.07675452530384064,
0.012519476003944874,
0.19639797508716583,
0.0807192474603653,
-0.07258856296539307,
-0.030649395659565926,
0.11597446352243423,
-0.00155172951053828,
-0.015593364834785461,
0.03503086045384407,
0.055722590535879135,
0.006573599297553301,
-0.00506006320938468,
0.060623589903116226,
-0.08086471259593964,
0.008643320761620998,
-0.03981878608465195,
-0.04636360704898834,
0.011943344958126545,
-0.0062062786892056465,
-0.10611704736948013,
0.03280223533511162,
0.0993439331650734,
-0.02739855833351612,
-0.005032224580645561,
-0.047036923468112946,
0.017462335526943207,
-0.008038326166570187,
-0.11458055675029755,
-0.06720224022865295,
-0.1424378603696823,
-0.018136311322450638,
0.04579868167638779,
-0.005722371395677328,
-0.10228309780359268,
-0.06259619444608688,
0.006945442873984575,
0.07974846661090851,
-0.09187763184309006,
0.08456405252218246,
0.13478541374206543,
0.023247981444001198,
-0.043805837631225586,
-0.19164051115512848,
0.011540891602635384,
0.06103873997926712,
0.008400365710258484,
-0.015444112941622734
] |
null | null | transformers |
# RuT5Tox | {"language": ["ru"], "license": ["apache-2.0"], "tags": ["t5"], "inference": {"parameters": {"num_beams": 5, "no_repeat_ngram_size": 4}}, "widget": [{"text": "\u0427\u0442\u043e \u044d\u0442\u043e \u0437\u0430 \u0435\u0440\u0443\u043d\u0434\u0430?"}]} | text2text-generation | IlyaGusev/rut5_tox | [
"transformers",
"pytorch",
"t5",
"text2text-generation",
"ru",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [
"ru"
] | TAGS
#transformers #pytorch #t5 #text2text-generation #ru #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
# RuT5Tox | [
"# RuT5Tox"
] | [
"TAGS\n#transformers #pytorch #t5 #text2text-generation #ru #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"# RuT5Tox"
] | [
58,
6
] | [
"passage: TAGS\n#transformers #pytorch #t5 #text2text-generation #ru #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# RuT5Tox"
] | [
0.010242968797683716,
0.013941626064479351,
-0.005839290097355843,
0.06512144953012466,
0.09821499139070511,
0.018411478027701378,
0.12601850926876068,
0.13955502212047577,
-0.07954487949609756,
-0.02647291123867035,
0.16912057995796204,
0.1324712187051773,
0.03952905163168907,
0.09603920578956604,
-0.0729467123746872,
-0.21971465647220612,
0.06777145713567734,
0.013112136162817478,
0.007399227004498243,
0.11820777505636215,
0.1304296851158142,
0.0001765318593243137,
0.0999840795993805,
-0.019634583964943886,
-0.1351107805967331,
0.07078943401575089,
0.07668527215719223,
-0.11364157497882843,
0.0836876854300499,
0.07879037410020828,
0.06311441957950592,
0.05795811861753464,
0.00957479514181614,
-0.12742695212364197,
0.025545144453644753,
0.051000144332647324,
-0.11171355843544006,
0.058372244238853455,
0.12063764035701752,
-0.03984499350190163,
0.19224846363067627,
0.047103144228458405,
-0.06541421264410019,
0.0850052759051323,
-0.1048494502902031,
-0.05070037394762039,
-0.10197599977254868,
0.17290300130844116,
0.05689186975359917,
0.10712531208992004,
0.0116876270622015,
0.11508400738239288,
-0.08675170689821243,
0.08848098665475845,
0.23976275324821472,
-0.3965630829334259,
-0.03220954164862633,
0.05468335747718811,
0.04479833319783211,
0.08319748193025589,
-0.002172544365748763,
0.024987442418932915,
0.05945924296975136,
0.03360113501548767,
-0.00259667937643826,
-0.07561313360929489,
-0.17089998722076416,
0.009908371604979038,
-0.08788231015205383,
-0.034425489604473114,
0.27136269211769104,
-0.014566068537533283,
0.043553080409765244,
0.041976895183324814,
-0.11452892422676086,
-0.054410070180892944,
0.0047240848653018475,
-0.0073840320110321045,
-0.026985973119735718,
0.09417705982923508,
0.09306956082582474,
-0.044012587517499924,
-0.16136540472507477,
0.008141104131937027,
-0.1646711230278015,
0.01673884317278862,
0.04158008098602295,
0.07291579991579056,
-0.17406852543354034,
0.07699722051620483,
0.019391879439353943,
-0.11730629205703735,
0.00026374944718554616,
-0.12004092335700989,
0.07864736765623093,
0.033600445836782455,
-0.06506428122520447,
-0.09557835757732391,
0.13344967365264893,
0.2061396688222885,
0.013588856905698776,
0.033796172589063644,
-0.06151677668094635,
0.09433142840862274,
-0.06374303251504898,
0.029247337952256203,
-0.03894215077161789,
-0.030936213210225105,
0.0904548168182373,
-0.13277094066143036,
0.03874832019209862,
-0.030200794339179993,
-0.1430138200521469,
-0.07672131061553955,
0.0011742842616513371,
0.08707138150930405,
0.05131366848945618,
0.053271111100912094,
-0.04165535047650337,
-0.006633879616856575,
0.05994022637605667,
-0.055487293750047684,
-0.03797503933310509,
0.006250876467674971,
0.02314959466457367,
0.14665080606937408,
0.05468936637043953,
0.016909578815102577,
-0.13556353747844696,
0.03520527854561806,
-0.042815547436475754,
-0.03214023634791374,
-0.007509551476687193,
-0.05123557895421982,
0.05256448686122894,
-0.1258978396654129,
0.024227144196629524,
-0.19421687722206116,
-0.1058378666639328,
0.026513144373893738,
0.050451405346393585,
-0.0372915081679821,
-0.0442880280315876,
0.029458392411470413,
-0.0693042054772377,
0.04897815361618996,
-0.05089985579252243,
0.00399969145655632,
-0.04080081358551979,
0.05950535833835602,
-0.08843061327934265,
0.05360019952058792,
-0.18614961206912994,
0.05485974997282028,
-0.12824738025665283,
-0.044992342591285706,
0.04263695329427719,
-0.013721384108066559,
-0.031699568033218384,
0.10192130506038666,
-0.09131994843482971,
-0.05005066469311714,
-0.024937167763710022,
-0.01986556686460972,
-0.0075086443684995174,
0.13617458939552307,
-0.12617860734462738,
-0.04420146718621254,
0.2659771740436554,
-0.11352331936359406,
-0.15914925932884216,
0.09949978440999985,
0.04496597498655319,
0.041253991425037384,
0.05886157974600792,
0.14679698646068573,
0.08463231474161148,
-0.04755089804530144,
0.04233972355723381,
0.07944900542497635,
-0.09278711676597595,
-0.11407201737165451,
0.03558668494224548,
-0.012080317363142967,
-0.07757455855607986,
0.051808569580316544,
0.012658610008656979,
0.07076769322156906,
-0.003465115325525403,
-0.05079493671655655,
-0.08488143235445023,
-0.034954410046339035,
0.04719655215740204,
-0.026860129088163376,
0.06395465135574341,
-0.07767856121063232,
-0.05447044223546982,
-0.12065289914608002,
0.025692474097013474,
0.03759731352329254,
0.052232954651117325,
-0.06015583872795105,
0.10946948826313019,
0.06119098514318466,
0.0721135139465332,
-0.12377645075321198,
0.01251119002699852,
-0.023946838453412056,
0.11463950574398041,
0.037249431014060974,
0.12158960103988647,
0.04463260993361473,
-0.05715661495923996,
-0.03563615679740906,
-0.022749265655875206,
0.07297343760728836,
-0.0003866191837005317,
-0.017640599980950356,
-0.11684714257717133,
0.038865264505147934,
-0.03878219053149223,
-0.05633629485964775,
-0.03875821828842163,
0.031317319720983505,
0.037562910467386246,
0.12112517654895782,
-0.018973086029291153,
0.09072601050138474,
-0.04003635048866272,
-0.006016351282596588,
-0.10042925179004669,
-0.009660251438617706,
0.07634209096431732,
0.0200379379093647,
-0.059818170964717865,
0.156058669090271,
-0.056583136320114136,
0.21170111000537872,
0.16858269274234772,
-0.10310810804367065,
0.0029197498224675655,
0.0664302334189415,
-0.0404694639146328,
-0.0071458974853158,
0.046291500329971313,
0.03000250644981861,
0.021627582609653473,
0.00964654516428709,
0.11984407156705856,
-0.048866838216781616,
-0.02216646634042263,
0.03618607297539711,
-0.08078022301197052,
0.010428796522319317,
0.05236818641424179,
0.11879049986600876,
-0.2341124564409256,
0.13263234496116638,
0.31014180183410645,
-0.024346496909856796,
0.0790075808763504,
-0.04061799496412277,
-0.050477106124162674,
0.058236949145793915,
0.03181835263967514,
-0.0054610250517725945,
-0.06604694575071335,
-0.02990884706377983,
0.029959892854094505,
0.07875432819128036,
0.02157777175307274,
0.02876911126077175,
-0.09243761748075485,
-0.03714624047279358,
-0.03530687838792801,
-0.02294783666729927,
-0.04055149853229523,
0.13842220604419708,
-0.010966707952320576,
0.13298077881336212,
-0.04164310172200203,
-0.07538332790136337,
0.10955550521612167,
0.026286741718649864,
-0.09649301320314407,
0.16760388016700745,
-0.1405722051858902,
-0.29302069544792175,
-0.11096540838479996,
-0.12730801105499268,
-0.05580638721585274,
-0.007972359657287598,
0.1716611385345459,
-0.1257810890674591,
-0.0420612208545208,
-0.014001837000250816,
-0.02700282633304596,
-0.03386556729674339,
0.03455141931772232,
-0.05041187256574631,
0.061399299651384354,
0.00894126482307911,
-0.09796500205993652,
-0.03891448676586151,
0.03477846086025238,
-0.07116004824638367,
0.13315929472446442,
-0.10214940458536148,
0.07615631073713303,
0.11114780604839325,
0.003681765403598547,
0.03303093463182449,
-0.0429123118519783,
0.11874740570783615,
-0.006328802090138197,
0.05879119038581848,
0.2729256749153137,
-0.025733888149261475,
0.08270660042762756,
0.15294434130191803,
-0.014730896800756454,
-0.041282910853624344,
0.03710201382637024,
-0.0497603714466095,
-0.058655209839344025,
-0.32484349608421326,
-0.05097505450248718,
-0.12158217281103134,
0.0961565375328064,
0.056253910064697266,
0.08024151623249054,
0.14393062889575958,
0.07649773359298706,
-0.03371819481253624,
0.02885529026389122,
0.028681498020887375,
0.08776898682117462,
0.1819213479757309,
-0.003977367654442787,
0.1296929568052292,
-0.13330231606960297,
-0.020542727783322334,
0.1487368941307068,
0.0271699670702219,
0.14236332476139069,
0.07606169581413269,
0.040658801794052124,
0.0617855004966259,
0.20949405431747437,
0.07378968596458435,
0.13495656847953796,
0.061999768018722534,
-0.00570847699418664,
-0.04622698575258255,
-0.030682483687996864,
-0.010935970582067966,
0.06394331902265549,
-0.07605105638504028,
-0.14122186601161957,
-0.04374171793460846,
-0.01537687424570322,
0.06558667868375778,
0.21711649000644684,
0.06183652952313423,
-0.17924512922763824,
-0.0123422397300601,
0.043279971927404404,
-0.002800840185955167,
-0.07786010205745697,
0.1047094538807869,
-0.05146976560354233,
-0.10416997224092484,
0.1163497045636177,
-0.03178905323147774,
0.12417442351579666,
0.09113780409097672,
0.053264766931533813,
0.005303600337356329,
-0.050906337797641754,
0.055556029081344604,
0.1234048381447792,
-0.3711297810077667,
0.18572215735912323,
-0.03386934846639633,
-0.02863120473921299,
-0.06838351488113403,
0.007628381252288818,
0.02849455177783966,
0.1656857430934906,
0.12131832540035248,
0.013154781423509121,
-0.1268080323934555,
0.0334780290722847,
-0.01114541944116354,
0.057111598551273346,
0.08469873666763306,
0.007746171206235886,
-0.01963476464152336,
-0.09688160568475723,
-0.012315094470977783,
0.012098086066544056,
0.035000018775463104,
-0.12452632933855057,
-0.1337253302335739,
0.08102479577064514,
0.09285903722047806,
0.07354376465082169,
-0.054555103182792664,
-0.028691250830888748,
-0.010294242762029171,
0.1835039108991623,
-0.056515179574489594,
-0.07659248262643814,
-0.1283222883939743,
-0.05508933588862419,
0.051800213754177094,
-0.09685387462377548,
0.0589863546192646,
-0.0907178521156311,
0.002076429082080722,
-0.030069705098867416,
-0.22624000906944275,
0.1070604994893074,
-0.1284080296754837,
-0.09310559928417206,
-0.014829602092504501,
0.12962806224822998,
-0.06796164810657501,
0.01488350797444582,
0.021131206303834915,
0.005520525388419628,
-0.09582656621932983,
-0.09842874854803085,
0.013275763019919395,
-0.03326544165611267,
-0.0023323367349803448,
-0.053944945335388184,
-0.08225809037685394,
-0.13098463416099548,
-0.02582714892923832,
-0.0456371009349823,
0.2468525916337967,
0.1300225555896759,
-0.09463091194629669,
0.2043391615152359,
0.0918380618095398,
-0.08768690377473831,
-0.27963605523109436,
-0.16315041482448578,
-0.08316962420940399,
-0.05043816566467285,
0.017579693347215652,
-0.1451401561498642,
0.04878472909331322,
0.008584232069551945,
-0.04199985787272453,
0.07341271638870239,
-0.27278807759284973,
-0.06994186341762543,
0.15461355447769165,
-0.02312253788113594,
0.2881985902786255,
-0.1138654425740242,
-0.051967132836580276,
-0.07544690370559692,
-0.16596180200576782,
0.08714192360639572,
-0.17305965721607208,
0.0709761530160904,
-0.04932680353522301,
0.04500231891870499,
-0.01862316019833088,
-0.023071633651852608,
0.024080336093902588,
-0.022276246920228004,
-0.013681311160326004,
-0.11998455971479416,
0.05011458322405815,
0.1292123645544052,
-0.005552303045988083,
0.048444196581840515,
-0.14487116038799286,
0.07158185541629791,
-0.036947377026081085,
-0.0022571797017008066,
-0.08436770737171173,
0.08542309701442719,
-0.005329301115125418,
-0.05734339728951454,
-0.028533965349197388,
-0.05961230769753456,
0.060681071132421494,
-0.009776866063475609,
0.17821252346038818,
0.023908210918307304,
0.11675070971250534,
0.15735401213169098,
0.05399319902062416,
-0.05449197068810463,
0.02711593545973301,
-0.10843175649642944,
-0.08284847438335419,
0.03708263859152794,
-0.159768745303154,
0.03322392329573631,
0.09658506512641907,
-0.07920496165752411,
0.04191393032670021,
0.08116484433412552,
-0.012870552018284798,
0.005435783416032791,
0.15097619593143463,
-0.21813055872917175,
-0.016808513551950455,
-0.05517357587814331,
0.0469340980052948,
0.007351474836468697,
0.08016164600849152,
0.17602819204330444,
-0.0477093867957592,
-0.054238270968198776,
0.009790854528546333,
0.052396196871995926,
-0.11140767484903336,
0.05207866430282593,
0.03616904839873314,
-0.02167561464011669,
-0.0955061987042427,
0.10712092369794846,
0.029885021969676018,
-0.0840320885181427,
0.012366300448775291,
0.16823503375053406,
-0.16790880262851715,
-0.12689508497714996,
0.10036906599998474,
-0.009729837067425251,
-0.18431735038757324,
-0.07768683135509491,
-0.05590222775936127,
-0.11198638379573822,
0.07865945994853973,
0.15237365663051605,
0.06196385249495506,
0.03150340914726257,
-0.017384937033057213,
-0.08320113271474838,
0.026031138375401497,
0.01147284172475338,
-0.0009187316172756255,
0.04120486229658127,
-0.1366426944732666,
-0.04689792916178703,
-0.007933119311928749,
0.10525312274694443,
-0.051185328513383865,
0.01897020824253559,
-0.10937777906656265,
-0.00239807297475636,
-0.2080456018447876,
-0.021466564387083054,
-0.032909877598285675,
-0.0353081151843071,
-0.029824305325746536,
-0.0666317269206047,
-0.05674923211336136,
0.022915972396731377,
-0.09112877398729324,
-0.029595300555229187,
-0.05050059035420418,
0.09381130337715149,
-0.11449582129716873,
-0.0012076713610440493,
0.07518408447504044,
-0.0129880765452981,
0.12164993584156036,
0.09047448635101318,
-0.11810296773910522,
0.13258400559425354,
-0.14815892279148102,
-0.07271791249513626,
0.08483505994081497,
0.04288504272699356,
0.015624060295522213,
0.018509086221456528,
0.01418314129114151,
0.08942096680402756,
-0.03751459717750549,
0.01884813979268074,
0.015981663018465042,
-0.11407755315303802,
-0.01472412794828415,
-0.11258167028427124,
-0.09876900911331177,
-0.045225657522678375,
-0.05801577493548393,
0.08896999061107635,
0.0567673034965992,
0.16410456597805023,
-0.06633312255144119,
0.08897772431373596,
-0.054217107594013214,
0.02854732610285282,
0.005585852079093456,
-0.12539398670196533,
-0.17804750800132751,
-0.07512412220239639,
-0.008924501948058605,
-0.03906711935997009,
0.13000240921974182,
-0.02495521679520607,
-0.04248519986867905,
0.057936906814575195,
0.023202553391456604,
-0.05013679713010788,
0.005925697740167379,
0.21135199069976807,
0.034279704093933105,
-0.041696593165397644,
-0.12725628912448883,
-0.02550443448126316,
-0.014159669168293476,
-0.07302887737751007,
0.1801525354385376,
0.07191594690084457,
0.009301084093749523,
0.06287344545125961,
-0.016334600746631622,
-0.004250404890626669,
-0.07524918019771576,
-0.1128481850028038,
0.008837522007524967,
0.07341531664133072,
-0.01633058488368988,
0.14409707486629486,
0.21620489656925201,
-0.009701764211058617,
-0.03920852765440941,
-0.05355953425168991,
-0.018520893529057503,
-0.14761382341384888,
-0.1358177363872528,
-0.09417634457349777,
-0.14935864508152008,
0.00557055976241827,
-0.0743243619799614,
0.09195125848054886,
0.015010585077106953,
0.07004664838314056,
-0.07553131133317947,
0.0363013856112957,
0.033696118742227554,
-0.11884268373250961,
0.052740678191185,
-0.04690418764948845,
0.0035364136565476656,
0.02563764527440071,
-0.0015799306565895677,
-0.07944899797439575,
-0.018583206459879875,
-0.02678127959370613,
0.05135297402739525,
-0.010615603066980839,
0.04571766406297684,
-0.1449255794286728,
-0.07626768946647644,
-0.013101723045110703,
0.06955651193857193,
-0.007465502712875605,
0.14374211430549622,
0.048215556889772415,
-0.0055811782367527485,
0.07235437631607056,
0.16620010137557983,
-0.07784353941679001,
-0.14229071140289307,
-0.06902872771024704,
0.14334990084171295,
0.0576564185321331,
0.041732240468263626,
-0.009075058624148369,
0.007778123952448368,
-0.06513304263353348,
0.3244158923625946,
0.2599896788597107,
-0.01202026754617691,
0.016897089779376984,
-0.009592466056346893,
0.033911872655153275,
0.07910555601119995,
0.14687782526016235,
0.10910733789205551,
0.16456687450408936,
-0.0837995707988739,
0.00307840877212584,
-0.042461786419153214,
0.02544061839580536,
-0.1531565934419632,
0.0995749831199646,
-0.010096953250467777,
-0.11281725019216537,
0.017422031611204147,
0.13214288651943207,
-0.1513529270887375,
0.07205034792423248,
-0.0708080306649208,
-0.07228679955005646,
-0.046783629804849625,
0.001826972234994173,
0.16304008662700653,
0.03804205358028412,
0.06418425589799881,
-0.03989410400390625,
-0.06333794444799423,
0.14807650446891785,
0.0182314645498991,
-0.17813846468925476,
-0.013836429454386234,
0.05886952206492424,
-0.12350832670927048,
0.02795148268342018,
-0.004988443106412888,
0.048338714987039566,
0.09629026800394058,
0.07967247068881989,
-0.10740621387958527,
0.039649467915296555,
0.010995503515005112,
0.01334874052554369,
0.018681339919567108,
-0.049021802842617035,
-0.006487985607236624,
-0.06435056030750275,
0.06542704999446869,
-0.057247210294008255,
0.032859526574611664,
0.024864561855793,
0.014496852643787861,
-0.04144516587257385,
0.07246946543455124,
-0.06124584749341011,
0.06264326721429825,
0.0634494349360466,
-0.057964883744716644,
-0.03214487433433533,
-0.11010286211967468,
-0.031551115214824677,
0.05195428803563118,
-0.129494309425354,
-0.02016434445977211,
-0.028323590755462646,
-0.05695315822958946,
0.09865494072437286,
0.06021309643983841,
-0.11554783582687378,
0.008927919901907444,
-0.12896223366260529,
0.047026168555021286,
-0.2130342274904251,
0.09825776517391205,
0.10022125393152237,
-0.01615842431783676,
0.030783331021666527,
-0.024636002257466316,
0.0048915729857981205,
0.04486583545804024,
-0.09497017413377762,
-0.08335229754447937
] |
null | null | transformers | [DialogLM: Pre-trained Model for Long Dialogue Understanding and Summarization](https://arxiv.org/abs/2109.02492).
## Introduction
DialogLED is a pre-trained model for long dialogue understanding and summarization. It builds on the Longformer-Encoder-Decoder (LED) architecture and uses window-based denoising as the pre-training task on a large amount of long dialogue data for further training. Here is a base version of DialogLED, the input length is limited to 16,384 in the pre-training phase.
## Finetuning for Downstream Tasks
Please refer to [our GitHub page](https://github.com/microsoft/DialogLM). | {} | text2text-generation | MingZhong/DialogLED-base-16384 | [
"transformers",
"pytorch",
"led",
"text2text-generation",
"arxiv:2109.02492",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [
"2109.02492"
] | [] | TAGS
#transformers #pytorch #led #text2text-generation #arxiv-2109.02492 #autotrain_compatible #endpoints_compatible #region-us
| DialogLM: Pre-trained Model for Long Dialogue Understanding and Summarization.
## Introduction
DialogLED is a pre-trained model for long dialogue understanding and summarization. It builds on the Longformer-Encoder-Decoder (LED) architecture and uses window-based denoising as the pre-training task on a large amount of long dialogue data for further training. Here is a base version of DialogLED, the input length is limited to 16,384 in the pre-training phase.
## Finetuning for Downstream Tasks
Please refer to our GitHub page. | [
"## Introduction\nDialogLED is a pre-trained model for long dialogue understanding and summarization. It builds on the Longformer-Encoder-Decoder (LED) architecture and uses window-based denoising as the pre-training task on a large amount of long dialogue data for further training. Here is a base version of DialogLED, the input length is limited to 16,384 in the pre-training phase.",
"## Finetuning for Downstream Tasks\nPlease refer to our GitHub page."
] | [
"TAGS\n#transformers #pytorch #led #text2text-generation #arxiv-2109.02492 #autotrain_compatible #endpoints_compatible #region-us \n",
"## Introduction\nDialogLED is a pre-trained model for long dialogue understanding and summarization. It builds on the Longformer-Encoder-Decoder (LED) architecture and uses window-based denoising as the pre-training task on a large amount of long dialogue data for further training. Here is a base version of DialogLED, the input length is limited to 16,384 in the pre-training phase.",
"## Finetuning for Downstream Tasks\nPlease refer to our GitHub page."
] | [
46,
92,
18
] | [
"passage: TAGS\n#transformers #pytorch #led #text2text-generation #arxiv-2109.02492 #autotrain_compatible #endpoints_compatible #region-us \n## Introduction\nDialogLED is a pre-trained model for long dialogue understanding and summarization. It builds on the Longformer-Encoder-Decoder (LED) architecture and uses window-based denoising as the pre-training task on a large amount of long dialogue data for further training. Here is a base version of DialogLED, the input length is limited to 16,384 in the pre-training phase.## Finetuning for Downstream Tasks\nPlease refer to our GitHub page."
] | [
-0.08278501033782959,
-0.07753627747297287,
-0.0011123783187940717,
0.008513441309332848,
0.11035501956939697,
-0.011801265180110931,
0.1631525158882141,
0.07840042561292648,
-0.006308655720204115,
-0.03066447004675865,
0.12315734475851059,
0.058362800627946854,
-0.0038143584970384836,
0.17513954639434814,
-0.06398636102676392,
-0.3169810175895691,
0.0380178801715374,
0.0406322255730629,
0.025548312813043594,
0.08487796783447266,
0.13043434917926788,
-0.10134678333997726,
0.019280599430203438,
-0.014350492507219315,
-0.1770893931388855,
-0.030198710039258003,
-0.02617459185421467,
-0.06412886083126068,
0.1458224207162857,
0.01839119754731655,
0.08823635429143906,
0.05678359791636467,
-0.006255317945033312,
-0.10453656315803528,
0.047154251486063004,
-0.024914821609854698,
0.05458170548081398,
0.0428602397441864,
-0.06024433672428131,
0.1265622228384018,
0.1112121120095253,
-0.011578322388231754,
0.06621595472097397,
0.023634642362594604,
-0.08897470682859421,
-0.0609646774828434,
-0.023503219708800316,
0.07804537564516068,
0.11100129038095474,
0.1206674724817276,
0.0033843342680484056,
0.03305629640817642,
-0.09818419814109802,
0.10449377447366714,
-0.03530023619532585,
-0.19726483523845673,
-0.03460412845015526,
0.16261924803256989,
0.06825368851423264,
0.0178715568035841,
-0.09302742779254913,
-0.0028485290240496397,
0.001854209927842021,
0.051018666476011276,
-0.03218553587794304,
-0.0629395991563797,
-0.10386370867490768,
-0.06660725921392441,
-0.10044557601213455,
0.043078284710645676,
0.2494252324104309,
-0.016318056732416153,
-0.030117861926555634,
-0.14793239533901215,
-0.06600262969732285,
-0.07600820064544678,
-0.051217854022979736,
-0.07242857664823532,
-0.04982670396566391,
0.04324721544981003,
-0.0075950357131659985,
-0.11710058897733688,
-0.14855341613292694,
-0.026240909472107887,
-0.16487249732017517,
0.1774175465106964,
0.011810248717665672,
0.032803505659103394,
-0.1855110228061676,
0.1110287681221962,
0.027898553758859634,
-0.10154353082180023,
-0.02124944142997265,
-0.06707718223333359,
0.012905570678412914,
-0.0234171524643898,
-0.01973937638103962,
-0.07687249779701233,
0.021943479776382446,
0.17754551768302917,
-0.0744292214512825,
0.018931064754724503,
0.0030960103031247854,
0.04207618907094002,
-0.008897725492715836,
0.1600983738899231,
0.10382935404777527,
-0.041432980448007584,
0.10836994647979736,
0.014036620035767555,
0.0171230286359787,
-0.0181773342192173,
-0.17096452414989471,
-0.07639379054307938,
0.031124133616685867,
0.04666772484779358,
0.07726237177848816,
0.11056552827358246,
-0.01081958506256342,
-0.04133237898349762,
0.14404793083667755,
-0.07297723740339279,
0.00930887833237648,
0.008081329986453056,
-0.07694986462593079,
0.002458058763295412,
0.04459700733423233,
0.014711841940879822,
-0.0558544285595417,
0.04266227036714554,
-0.01834332011640072,
-0.0311494879424572,
-0.10578420013189316,
-0.08288557082414627,
0.02205042541027069,
-0.03889010474085808,
0.041917406022548676,
-0.16988646984100342,
-0.15407021343708038,
-0.00788917113095522,
0.015593097545206547,
-0.00723310885950923,
-0.08412330597639084,
-0.09443827718496323,
-0.010881908237934113,
0.03334135189652443,
-0.05327928438782692,
0.023085640743374825,
-0.02202627994120121,
0.06479284912347794,
0.05953618139028549,
0.10997579991817474,
-0.2156009078025818,
0.027026668190956116,
-0.09265407174825668,
-0.016799388453364372,
-0.07178132236003876,
0.09750937670469284,
0.017584361135959625,
0.08586082607507706,
-0.023334726691246033,
-0.06677083671092987,
-0.1181812733411789,
0.04459725320339203,
0.0424627959728241,
0.18596220016479492,
-0.1234164834022522,
-0.01338868960738182,
0.08011241257190704,
-0.108021080493927,
-0.1069561243057251,
0.1139911413192749,
-0.024105418473482132,
0.21300558745861053,
0.11296172440052032,
0.18111304938793182,
0.059303876012563705,
-0.08678356558084488,
0.045023176819086075,
0.11998037993907928,
-0.06638675928115845,
-0.030362768098711967,
-0.02399127371609211,
0.058121901005506516,
0.007193085737526417,
0.043409354984760284,
0.09564930200576782,
0.0689876601099968,
-0.04473692178726196,
-0.039973802864551544,
0.012471936643123627,
0.027053330093622208,
0.0556744746863842,
0.008030525408685207,
0.08835585415363312,
-0.04436999186873436,
-0.04529448226094246,
0.013077379204332829,
0.0750248059630394,
-0.015657644718885422,
0.024362247437238693,
-0.08623217046260834,
-0.05181492492556572,
0.01264121849089861,
0.049769360572099686,
-0.14452192187309265,
-0.12427916377782822,
-0.026066452264785767,
0.2498285323381424,
-0.005001905839890242,
0.18234889209270477,
0.04264107719063759,
-0.04226565733551979,
0.01182202436029911,
-0.0329587459564209,
0.01716795563697815,
-0.03528938442468643,
-0.08060922473669052,
-0.07104809582233429,
0.025536561384797096,
-0.07709470391273499,
0.06022346764802933,
-0.12659688293933868,
0.04662444442510605,
-0.005031914915889502,
0.027185434475541115,
0.05161573365330696,
0.022379405796527863,
0.00755626754835248,
0.04668540880084038,
-0.01258176751434803,
-0.011262844316661358,
0.06608109176158905,
0.06822443753480911,
-0.07680023461580276,
0.09452281147241592,
-0.11417146027088165,
0.07067933678627014,
0.12586373090744019,
-0.08421044051647186,
-0.04018878936767578,
-0.05058124661445618,
-0.0651109367609024,
-0.03701683133840561,
0.03239372372627258,
0.023007050156593323,
0.24899491667747498,
0.004547294229269028,
0.12428279221057892,
-0.006273776758462191,
0.03080003522336483,
-0.0536620169878006,
-0.06396546214818954,
0.030929841101169586,
0.0644543319940567,
0.04376194626092911,
-0.1512089967727661,
0.06166709214448929,
-0.08443542569875717,
0.061970632523298264,
0.17267177999019623,
-0.0032882860396057367,
0.00010451253183418885,
0.03703824803233147,
0.02408447116613388,
-0.06347028911113739,
0.09876172244548798,
-0.22853675484657288,
-0.05621659383177757,
0.03335804119706154,
0.05470221862196922,
0.08522888273000717,
-0.13979209959506989,
0.01634768769145012,
-0.013456404209136963,
-0.012879900634288788,
0.002869246993213892,
0.10567424446344376,
-0.012446177192032337,
0.04858296737074852,
0.08790537714958191,
-0.06040423735976219,
0.07458709925413132,
0.01656692661345005,
-0.08269621431827545,
0.13629992306232452,
-0.09858040511608124,
-0.39031362533569336,
-0.0771433636546135,
-0.10975202918052673,
-0.001607362530194223,
0.027523381635546684,
0.08563164621591568,
-0.0849570780992508,
-0.03402439132332802,
0.025977184996008873,
0.15306976437568665,
-0.12498989701271057,
0.03647755831480026,
0.030988121405243874,
-0.001575350179336965,
-0.07634904980659485,
-0.11118816584348679,
-0.030379094183444977,
-0.04814678430557251,
-0.04173944145441055,
0.06347507238388062,
-0.06259448826313019,
0.03551841527223587,
0.11193422228097916,
-0.019539792090654373,
0.02773633785545826,
-0.04236213490366936,
0.19172348082065582,
-0.0893707200884819,
0.03979746997356415,
0.22336800396442413,
-0.03187282755970955,
-0.023485617712140083,
0.20702610909938812,
-0.019238963723182678,
-0.11570192128419876,
0.06721735000610352,
-0.057924773544073105,
-0.04724720120429993,
-0.11100152879953384,
-0.10350251197814941,
-0.12163086235523224,
0.09556887298822403,
0.009239856153726578,
0.05903716757893562,
0.05997921898961067,
0.005321876145899296,
-0.00868496485054493,
0.05515149608254433,
0.027664275839924812,
0.09854429215192795,
0.2907120883464813,
-0.07369551807641983,
0.09862040728330612,
-0.04400579631328583,
-0.03690751641988754,
0.048890553414821625,
0.008563552051782608,
0.12255337834358215,
-0.016617823392152786,
0.030100475996732712,
0.023367879912257195,
0.04321318864822388,
0.12221910059452057,
0.04771177098155022,
-0.009829144924879074,
-0.0680929496884346,
0.006216719280928373,
0.01949736848473549,
-0.13790667057037354,
0.013091877102851868,
-0.04007062315940857,
-0.06631074845790863,
-0.102232925593853,
0.1532275676727295,
-0.006337224505841732,
0.14328482747077942,
0.057826366275548935,
-0.20802131295204163,
-0.1917950063943863,
-0.02944093383848667,
-0.08447597920894623,
-0.11431197822093964,
0.02757478877902031,
0.1322002112865448,
-0.07761453092098236,
-0.063617043197155,
0.006291477009654045,
0.10742392390966415,
-0.17634081840515137,
0.08912055939435959,
-0.10398591309785843,
0.007996947504580021,
0.013437870889902115,
0.05240562558174133,
-0.2854715585708618,
0.11252328753471375,
-0.0016789520159363747,
0.07991364598274231,
-0.055853694677352905,
-0.04671606048941612,
-0.02812991477549076,
0.170172780752182,
0.01367832813411951,
-0.01566767320036888,
-0.003973905462771654,
-0.00855238363146782,
-0.11147454380989075,
0.05072993412613869,
0.06840679794549942,
0.023150142282247543,
0.01945149526000023,
-0.04395117238163948,
0.026255104690790176,
0.02400156669318676,
-0.11638590693473816,
-0.047795407474040985,
-0.12668195366859436,
0.047846898436546326,
0.12083184719085693,
0.0814603716135025,
-0.031071363016963005,
-0.007830229587852955,
0.17219533026218414,
0.31472986936569214,
0.03680406138300896,
-0.0762919932603836,
-0.10909266769886017,
0.09570615738630295,
0.018893439322710037,
-0.06404243409633636,
0.07641573995351791,
-0.018445365130901337,
0.005348017439246178,
-0.04438004270195961,
-0.08870027959346771,
0.10262489318847656,
-0.12273344397544861,
-0.0015359617536887527,
-0.005500779952853918,
0.08618378639221191,
0.013618377037346363,
0.004122466780245304,
0.028614943847060204,
-0.056124117225408554,
-0.1036752387881279,
-0.048528991639614105,
-0.06232831999659538,
0.052342016249895096,
-0.021228604018688202,
-0.048545289784669876,
-0.05451727658510208,
-0.05797157064080238,
0.019733315333724022,
-0.027575543150305748,
0.2380102127790451,
0.053879186511039734,
-0.055993009358644485,
0.12158097326755524,
0.09555958956480026,
0.014002200216054916,
-0.27912089228630066,
0.018252823501825333,
0.0201350599527359,
0.053565818816423416,
-0.20973916351795197,
-0.1900658756494522,
0.023373790085315704,
-0.09834273904561996,
-0.0077040973119437695,
0.1721199005842209,
-0.26053348183631897,
-0.06895951181650162,
0.09653124958276749,
-0.025960752740502357,
0.4537116587162018,
-0.029291734099388123,
-0.014436067081987858,
0.03905170038342476,
-0.12240801751613617,
0.005454082041978836,
0.10717972368001938,
0.09401816874742508,
-0.04457664489746094,
0.19147172570228577,
0.05625443905591965,
-0.027727805078029633,
0.047759391367435455,
-0.07473058998584747,
0.013061586767435074,
-0.10042038559913635,
-0.03501969948410988,
-0.09257504343986511,
-0.04831424728035927,
0.136307954788208,
0.04094890505075455,
0.05665750801563263,
-0.07381686568260193,
-0.07635059207677841,
-0.04933278635144234,
0.04404611140489578,
-0.005608527455478907,
-0.0850139781832695,
0.0026961443945765495,
-0.012606563046574593,
-0.0526537261903286,
0.046846903860569,
0.11477844417095184,
-0.08371377736330032,
0.010938892140984535,
-0.026830652728676796,
0.1630704700946808,
-0.1472787857055664,
-0.011930094100534916,
0.029861895367503166,
-0.03584957495331764,
0.11972274631261826,
-0.14130982756614685,
0.0023696599528193474,
0.0928884968161583,
-0.023243343457579613,
0.08996522426605225,
0.06816637516021729,
0.0048776729963719845,
0.01280273962765932,
0.08887211978435516,
-0.1626107543706894,
-0.12015567719936371,
-0.01464391965419054,
0.021916823461651802,
-0.023674406111240387,
0.09040606766939163,
0.15630631148815155,
-0.03557699918746948,
-0.0030246947426348925,
-0.017538104206323624,
0.04657404124736786,
-0.050134580582380295,
0.015651140362024307,
-0.024861495941877365,
0.03832308575510979,
-0.06800644099712372,
0.011928060092031956,
0.046717580407857895,
-0.14207036793231964,
0.03767761215567589,
0.19111590087413788,
-0.14693771302700043,
-0.09658468514680862,
-0.10883595794439316,
0.03142223879694939,
0.01243407092988491,
-0.053900860249996185,
-0.053193315863609314,
-0.07780790328979492,
0.045111022889614105,
0.018254566937685013,
0.01987862028181553,
0.037782326340675354,
-0.08105304837226868,
0.05995112657546997,
-0.11480005830526352,
0.029144052416086197,
-0.010341107845306396,
0.017250200733542442,
-0.058544088155031204,
0.05739771947264671,
-0.0027724311221390963,
0.06026224046945572,
-0.05066423863172531,
-0.06886006891727448,
-0.12695682048797607,
0.04035621136426926,
-0.08695725351572037,
-0.06058421730995178,
-0.04029770940542221,
-0.012911944650113583,
0.01713189110159874,
-0.04867074638605118,
-0.012338932603597641,
0.005663881544023752,
-0.06330384314060211,
0.015994485467672348,
-0.05152392014861107,
-0.02705320529639721,
-0.018955308943986893,
-0.010033528320491314,
0.016810383647680283,
-0.05338359624147415,
0.1570146381855011,
0.10224073380231857,
-0.059554923325777054,
0.003702831920236349,
-0.0851474329829216,
-0.021657001227140427,
0.12041736394166946,
0.03756991773843765,
0.04041975736618042,
0.04156748577952385,
-0.009852916933596134,
0.0807499885559082,
0.06628026068210602,
0.030967025086283684,
0.11100903898477554,
-0.11026453226804733,
0.03586613014340401,
-0.06332370638847351,
-0.04803720489144325,
-0.08406692743301392,
0.0074393837712705135,
-0.02209688350558281,
0.15641479194164276,
0.10881024599075317,
-0.07448796927928925,
0.05908938869833946,
-0.027773188427090645,
0.0005084472359158099,
0.003454660065472126,
-0.04328130558133125,
0.0719616487622261,
-0.11238489300012589,
0.07517591863870621,
-0.018762132152915,
0.06608060747385025,
0.03402543067932129,
-0.04428717866539955,
0.018820926547050476,
-0.041476648300886154,
-0.021292617544531822,
-0.03117806278169155,
0.1557549685239792,
0.05750361084938049,
0.008509542793035507,
0.02844073995947838,
0.12182080745697021,
0.05441909283399582,
0.061780981719493866,
0.1719483584165573,
0.05276305601000786,
0.026902083307504654,
0.09829164296388626,
-0.05037891864776611,
-0.03100084885954857,
-0.19001071155071259,
-0.0864981934428215,
-0.0990833044052124,
0.015873176977038383,
-0.07928358763456345,
0.07877260446548462,
0.15517699718475342,
-0.010942130349576473,
0.02604040503501892,
0.028592154383659363,
-0.06242699921131134,
-0.1193818524479866,
-0.10327097773551941,
-0.04451551288366318,
-0.11042304337024689,
-0.004535386338829994,
-0.10102283954620361,
-0.03896657004952431,
-0.09076764434576035,
0.05680900439620018,
-0.030428610742092133,
0.1594991385936737,
0.0615791417658329,
-0.09073278307914734,
0.05112898722290993,
-0.018769724294543266,
0.04683199152350426,
-0.09759967029094696,
0.02150781825184822,
-0.061263393610715866,
0.03320719301700592,
0.07181346416473389,
0.00960999820381403,
-0.03865872696042061,
0.0024320660158991814,
-0.03654874116182327,
-0.02847805619239807,
-0.05831179395318031,
0.083150215446949,
0.05766090750694275,
0.2658400535583496,
0.04005727916955948,
-0.05735921487212181,
0.006774577312171459,
0.3188195824623108,
-0.064692422747612,
-0.24300873279571533,
-0.09446325153112411,
0.19070477783679962,
-0.005248026456683874,
0.007574136834591627,
-0.05847448110580444,
-0.026035794988274574,
-0.06264606863260269,
0.25479456782341003,
0.25564858317375183,
-0.03542640060186386,
0.0077287196181714535,
-0.010881245136260986,
0.014937357977032661,
-0.0241615679115057,
0.12536630034446716,
0.14947478473186493,
0.341548889875412,
-0.0027940066065639257,
-0.07905112206935883,
-0.0337076336145401,
-0.0034174600150436163,
-0.0770670622587204,
-0.036476098001003265,
0.030646104365587234,
0.006362529471516609,
-0.09913463145494461,
0.04371650144457817,
-0.08092805743217468,
-0.11487627774477005,
-0.01244906336069107,
-0.1254289746284485,
-0.042049746960401535,
0.018571387976408005,
0.10979636758565903,
-0.058859873563051224,
0.10314254462718964,
-0.02136201411485672,
0.007205400615930557,
0.11602238565683365,
-0.04738185554742813,
-0.06377114355564117,
0.04200509190559387,
0.09928678721189499,
-0.017538491636514664,
0.03393476828932762,
-0.04969211295247078,
0.10948793590068817,
0.06179453432559967,
0.0853710025548935,
-0.09930945187807083,
0.060711849480867386,
-0.03472919762134552,
-0.03532778471708298,
0.013745722360908985,
0.04062467813491821,
-0.021412478759884834,
0.048785340040922165,
0.08830680698156357,
-0.20113465189933777,
-0.019024990499019623,
-0.023381877690553665,
-0.05983894690871239,
-0.07728558778762817,
0.04459930211305618,
-0.03312574699521065,
0.09839378297328949,
0.0916733667254448,
-0.015916382893919945,
-0.017078764736652374,
-0.03293146193027496,
-0.0017209878424182534,
0.0179368257522583,
-0.03122606687247753,
-0.11199750751256943,
-0.1155330240726471,
-0.06075442582368851,
0.05804290995001793,
-0.015822933986783028,
-0.20548909902572632,
-0.0603347048163414,
-0.05469838157296181,
0.02669438160955906,
-0.06072825565934181,
0.08877035975456238,
0.05705457180738449,
0.005664943717420101,
-0.035603731870651245,
-0.0767093226313591,
0.030966252088546753,
0.057020485401153564,
-0.1401263028383255,
-0.12622034549713135
] |
null | null | transformers | [DialogLM: Pre-trained Model for Long Dialogue Understanding and Summarization](https://arxiv.org/abs/2109.02492).
## Introduction
DialogLED is a pre-trained model for long dialogue understanding and summarization. It builds on the Longformer-Encoder-Decoder (LED) architecture and uses window-based denoising as the pre-training task on a large amount of long dialogue data for further training. Here is a large version of DialogLED, the input length is limited to 5,120 in the pre-training phase.
## Finetuning for Downstream Tasks
Please refer to [our GitHub page](https://github.com/microsoft/DialogLM). | {} | text2text-generation | MingZhong/DialogLED-large-5120 | [
"transformers",
"pytorch",
"led",
"text2text-generation",
"arxiv:2109.02492",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [
"2109.02492"
] | [] | TAGS
#transformers #pytorch #led #text2text-generation #arxiv-2109.02492 #autotrain_compatible #endpoints_compatible #region-us
| DialogLM: Pre-trained Model for Long Dialogue Understanding and Summarization.
## Introduction
DialogLED is a pre-trained model for long dialogue understanding and summarization. It builds on the Longformer-Encoder-Decoder (LED) architecture and uses window-based denoising as the pre-training task on a large amount of long dialogue data for further training. Here is a large version of DialogLED, the input length is limited to 5,120 in the pre-training phase.
## Finetuning for Downstream Tasks
Please refer to our GitHub page. | [
"## Introduction\nDialogLED is a pre-trained model for long dialogue understanding and summarization. It builds on the Longformer-Encoder-Decoder (LED) architecture and uses window-based denoising as the pre-training task on a large amount of long dialogue data for further training. Here is a large version of DialogLED, the input length is limited to 5,120 in the pre-training phase.",
"## Finetuning for Downstream Tasks\nPlease refer to our GitHub page."
] | [
"TAGS\n#transformers #pytorch #led #text2text-generation #arxiv-2109.02492 #autotrain_compatible #endpoints_compatible #region-us \n",
"## Introduction\nDialogLED is a pre-trained model for long dialogue understanding and summarization. It builds on the Longformer-Encoder-Decoder (LED) architecture and uses window-based denoising as the pre-training task on a large amount of long dialogue data for further training. Here is a large version of DialogLED, the input length is limited to 5,120 in the pre-training phase.",
"## Finetuning for Downstream Tasks\nPlease refer to our GitHub page."
] | [
46,
92,
18
] | [
"passage: TAGS\n#transformers #pytorch #led #text2text-generation #arxiv-2109.02492 #autotrain_compatible #endpoints_compatible #region-us \n## Introduction\nDialogLED is a pre-trained model for long dialogue understanding and summarization. It builds on the Longformer-Encoder-Decoder (LED) architecture and uses window-based denoising as the pre-training task on a large amount of long dialogue data for further training. Here is a large version of DialogLED, the input length is limited to 5,120 in the pre-training phase.## Finetuning for Downstream Tasks\nPlease refer to our GitHub page."
] | [
-0.08300551772117615,
-0.0798109918832779,
-0.0011441016104072332,
0.010596897453069687,
0.11309229582548141,
-0.01297505758702755,
0.1622408628463745,
0.07380465418100357,
-0.004900705069303513,
-0.03088943473994732,
0.12482099235057831,
0.06512434035539627,
-0.0074750324711203575,
0.17869414389133453,
-0.06370854377746582,
-0.31903767585754395,
0.038532156497240067,
0.036933764815330505,
0.01773589476943016,
0.0853094607591629,
0.12900465726852417,
-0.10392901301383972,
0.021386126056313515,
-0.014211160130798817,
-0.1767979860305786,
-0.033995214849710464,
-0.026529943570494652,
-0.06832592189311981,
0.14594444632530212,
0.018810616806149483,
0.0843779519200325,
0.05871032178401947,
-0.010498604737222195,
-0.10075001418590546,
0.04717278480529785,
-0.02794436551630497,
0.056421417742967606,
0.040263962000608444,
-0.05942101031541824,
0.1305796056985855,
0.10426872968673706,
-0.014876078814268112,
0.06854123622179031,
0.022073429077863693,
-0.08665752410888672,
-0.06339326500892639,
-0.022940387949347496,
0.07449746876955032,
0.10619998723268509,
0.12159658223390579,
0.005262712948024273,
0.03494611009955406,
-0.10082076489925385,
0.10366805642843246,
-0.029721280559897423,
-0.1975589394569397,
-0.0344587117433548,
0.16039666533470154,
0.06872091442346573,
0.01756458543241024,
-0.09298720210790634,
-0.0012244600802659988,
0.0012125973589718342,
0.04919072985649109,
-0.02755269967019558,
-0.06349008530378342,
-0.11019319295883179,
-0.0670447126030922,
-0.1006317138671875,
0.04379856586456299,
0.2515602707862854,
-0.014853287488222122,
-0.028205284848809242,
-0.1549677848815918,
-0.062154319137334824,
-0.0731830820441246,
-0.04854470491409302,
-0.0739617645740509,
-0.04761979728937149,
0.03780598193407059,
-0.013642004691064358,
-0.1148349791765213,
-0.1506236344575882,
-0.024415913969278336,
-0.17087003588676453,
0.17480650544166565,
0.010537219233810902,
0.03193612024188042,
-0.1939198225736618,
0.10918121039867401,
0.02620845101773739,
-0.09832219034433365,
-0.021551942452788353,
-0.07295601814985275,
0.009032352827489376,
-0.02198825217783451,
-0.01712673157453537,
-0.07998836785554886,
0.02513301372528076,
0.1695404350757599,
-0.07434646040201187,
0.015819378197193146,
0.006647116504609585,
0.039392583072185516,
-0.00698948884382844,
0.162446528673172,
0.10206863284111023,
-0.041619621217250824,
0.10055652260780334,
0.012872510589659214,
0.0132288234308362,
-0.017954207956790924,
-0.17001588642597198,
-0.07911039888858795,
0.02906966395676136,
0.046956032514572144,
0.07413182407617569,
0.11326523125171661,
-0.009039702825248241,
-0.03951883688569069,
0.1362595558166504,
-0.06994974613189697,
0.011447376571595669,
0.009881244972348213,
-0.07598819583654404,
0.00910927914083004,
0.04199511185288429,
0.010400889441370964,
-0.054121941328048706,
0.050095729529857635,
-0.01770741678774357,
-0.02953134849667549,
-0.10431724786758423,
-0.08303702622652054,
0.02455401048064232,
-0.03809763118624687,
0.04159848392009735,
-0.1721300333738327,
-0.14684917032718658,
-0.006293655838817358,
0.01109599880874157,
-0.005721041467040777,
-0.08324413001537323,
-0.09408845752477646,
-0.012465373612940311,
0.03153402730822563,
-0.05500244349241257,
0.02992776222527027,
-0.019956396892666817,
0.06560682505369186,
0.057599131017923355,
0.11171647906303406,
-0.21601831912994385,
0.026754328981041908,
-0.08972395211458206,
-0.017516784369945526,
-0.06569179147481918,
0.09958785772323608,
0.020782627165317535,
0.08484895527362823,
-0.023466259241104126,
-0.06894968450069427,
-0.12080959975719452,
0.04278210550546646,
0.03901609405875206,
0.18529337644577026,
-0.1255970150232315,
-0.012934601865708828,
0.09282268583774567,
-0.10517627745866776,
-0.11314022541046143,
0.11607455462217331,
-0.02518070675432682,
0.2140767127275467,
0.11752048879861832,
0.17475713789463043,
0.05388296768069267,
-0.09174249321222305,
0.03761248663067818,
0.11922667920589447,
-0.07078050822019577,
-0.028474677354097366,
-0.022437678650021553,
0.05873178318142891,
0.010942074470221996,
0.04284136742353439,
0.10083985328674316,
0.06992638856172562,
-0.044794145971536636,
-0.04016680642962456,
0.014288900420069695,
0.02875748835504055,
0.05232086032629013,
0.003890682477504015,
0.08917145431041718,
-0.04411383345723152,
-0.041320864111185074,
0.013320481404662132,
0.07139039784669876,
-0.01657751388847828,
0.02319914661347866,
-0.08777855336666107,
-0.05044200271368027,
0.01250979769974947,
0.05252097174525261,
-0.14713600277900696,
-0.12315930426120758,
-0.025473393499851227,
0.24077188968658447,
-0.006035045254975557,
0.18598352372646332,
0.042449694126844406,
-0.04516918584704399,
0.013818003237247467,
-0.0298716202378273,
0.017430748790502548,
-0.03521718457341194,
-0.07752495259046555,
-0.0693206638097763,
0.03415293991565704,
-0.07813320308923721,
0.0645693764090538,
-0.13007648289203644,
0.04448102414608002,
-0.0023598582483828068,
0.02303270436823368,
0.0550396591424942,
0.02450207807123661,
0.007137944921851158,
0.04661286994814873,
-0.013138381764292717,
-0.00831231102347374,
0.06442175805568695,
0.06551056355237961,
-0.08406850695610046,
0.09478477388620377,
-0.1181277185678482,
0.07475902140140533,
0.1259409785270691,
-0.0853075161576271,
-0.04229424148797989,
-0.05763517692685127,
-0.06571536511182785,
-0.03747072443366051,
0.027982715517282486,
0.0228863637894392,
0.24304114282131195,
0.007124530617147684,
0.1253349483013153,
-0.005052558612078428,
0.03362727910280228,
-0.05056114122271538,
-0.0611317902803421,
0.02997962012887001,
0.06570614129304886,
0.04778147488832474,
-0.1571642905473709,
0.059799276292324066,
-0.07635550945997238,
0.06023816764354706,
0.17682045698165894,
-0.0028131159488111734,
-0.00123565923422575,
0.03413059562444687,
0.022658422589302063,
-0.06338199228048325,
0.09482425451278687,
-0.22613970935344696,
-0.05435401201248169,
0.03701590374112129,
0.056856025010347366,
0.07980851083993912,
-0.1367821842432022,
0.014811445958912373,
-0.01506793312728405,
-0.010928909294307232,
0.0005879610544070601,
0.1125454381108284,
-0.008778342045843601,
0.0495409294962883,
0.08586474508047104,
-0.05885270982980728,
0.07605012506246567,
0.017226606607437134,
-0.07813842594623566,
0.1373775154352188,
-0.09474238753318787,
-0.39857763051986694,
-0.0727669820189476,
-0.11135031282901764,
-0.0005107956822030246,
0.02178782783448696,
0.08786887675523758,
-0.0838097557425499,
-0.03174452856183052,
0.027360539883375168,
0.15879279375076294,
-0.1243932843208313,
0.038658760488033295,
0.028367791324853897,
0.0012409896589815617,
-0.07957988977432251,
-0.10799159109592438,
-0.03057580254971981,
-0.04862423241138458,
-0.040916066616773605,
0.0661267638206482,
-0.06257250159978867,
0.040083520114421844,
0.10607356578111649,
-0.017997298389673233,
0.02856355346739292,
-0.04383785277605057,
0.18724912405014038,
-0.09409443289041519,
0.031326569616794586,
0.22188913822174072,
-0.03182316571474075,
-0.02358206734061241,
0.2086060494184494,
-0.01839546300470829,
-0.11346616595983505,
0.06480404734611511,
-0.05968724191188812,
-0.04678898677229881,
-0.11212674528360367,
-0.10222937166690826,
-0.12178260833024979,
0.10294163227081299,
0.006708886474370956,
0.0571553073823452,
0.056235525757074356,
0.004798530600965023,
-0.0025801321025937796,
0.0510420948266983,
0.03127241134643555,
0.0988367423415184,
0.2975126802921295,
-0.07307455688714981,
0.0971684381365776,
-0.04642556607723236,
-0.04245302081108093,
0.048877522349357605,
0.007422144990414381,
0.13136641681194305,
-0.01755223236978054,
0.0322549007833004,
0.023015759885311127,
0.03328206390142441,
0.12061828374862671,
0.04871012270450592,
-0.003535274649038911,
-0.06862754374742508,
0.0026433002203702927,
0.019813857972621918,
-0.1322024166584015,
0.011442279443144798,
-0.03308214247226715,
-0.06781518459320068,
-0.10364052653312683,
0.15880116820335388,
-0.0030014188960194588,
0.1405303031206131,
0.05461041256785393,
-0.2093103528022766,
-0.1894025206565857,
-0.03147418797016144,
-0.08722981065511703,
-0.11109232157468796,
0.025985771790146828,
0.13843688368797302,
-0.08347082138061523,
-0.05815363675355911,
0.005526534281671047,
0.1058901995420456,
-0.17814786732196808,
0.0911969542503357,
-0.11056549102067947,
0.007446369156241417,
0.014731691218912601,
0.05461721867322922,
-0.2914595305919647,
0.11252929270267487,
-0.0022552788723260164,
0.07654179632663727,
-0.05817246809601784,
-0.05056987330317497,
-0.028050728142261505,
0.16729342937469482,
0.016831528395414352,
-0.01897813007235527,
0.007737133651971817,
0.00012440142745617777,
-0.11423566937446594,
0.05000859498977661,
0.06865549087524414,
0.02523350529372692,
0.01767907291650772,
-0.0447346456348896,
0.024615120142698288,
0.020898986607789993,
-0.1147889792919159,
-0.04034833610057831,
-0.12884755432605743,
0.049618422985076904,
0.12195992469787598,
0.077945277094841,
-0.027674656361341476,
-0.0105848154053092,
0.1662549376487732,
0.30476507544517517,
0.03742971643805504,
-0.07391665130853653,
-0.10466054081916809,
0.10162518173456192,
0.019735896959900856,
-0.06497453153133392,
0.07267200201749802,
-0.02009647712111473,
0.004007365088909864,
-0.0446355938911438,
-0.08140819519758224,
0.10344851016998291,
-0.12198654562234879,
-0.0031899462919682264,
-0.007229078561067581,
0.08196098357439041,
0.011497590690851212,
0.004246916621923447,
0.027448398992419243,
-0.06028670072555542,
-0.10466396808624268,
-0.04929647967219353,
-0.06642912328243256,
0.06212356686592102,
-0.02186482958495617,
-0.044788990169763565,
-0.05351891741156578,
-0.06408645212650299,
0.01930786855518818,
-0.02966044656932354,
0.24494147300720215,
0.05380914732813835,
-0.05877207964658737,
0.12470372021198273,
0.09237568080425262,
0.016279324889183044,
-0.27894774079322815,
0.017559170722961426,
0.021115906536579132,
0.05298401787877083,
-0.20575782656669617,
-0.18317419290542603,
0.02263396605849266,
-0.09546073526144028,
-0.005496470257639885,
0.17143040895462036,
-0.2634449899196625,
-0.06730097532272339,
0.09344369918107986,
-0.03048132359981537,
0.4526600241661072,
-0.02750920131802559,
-0.01093441154807806,
0.037483129650354385,
-0.11708124727010727,
0.011440168134868145,
0.10696180164813995,
0.09583491832017899,
-0.04465009272098541,
0.1932813972234726,
0.05704819783568382,
-0.029137833043932915,
0.04583924636244774,
-0.07616827636957169,
0.010818696580827236,
-0.09887537360191345,
-0.038885023444890976,
-0.0918254405260086,
-0.048167768865823746,
0.13915354013442993,
0.04001470282673836,
0.05256412923336029,
-0.06302332878112793,
-0.0789237841963768,
-0.05171210691332817,
0.044279634952545166,
-0.005983577575534582,
-0.08211079239845276,
0.0032252902165055275,
-0.013538206927478313,
-0.050391290336847305,
0.04778764024376869,
0.11427554488182068,
-0.0822228342294693,
0.0030553436372429132,
-0.038249481469392776,
0.173253133893013,
-0.14006464183330536,
-0.021714532747864723,
0.02739053964614868,
-0.036263126879930496,
0.11937002837657928,
-0.13912898302078247,
0.0042862668633461,
0.09416768699884415,
-0.02539387159049511,
0.0907806009054184,
0.07026667892932892,
0.006487972103059292,
0.014060387387871742,
0.08968054503202438,
-0.16244816780090332,
-0.12699584662914276,
-0.010256420820951462,
0.025784611701965332,
-0.022156011313199997,
0.0930890291929245,
0.1559828668832779,
-0.03327235206961632,
-0.0030821675900369883,
-0.017339132726192474,
0.04692121967673302,
-0.04605934023857117,
0.017942460253834724,
-0.031183885410428047,
0.03633074089884758,
-0.06884089857339859,
0.01052289828658104,
0.04303544759750366,
-0.15545883774757385,
0.036254674196243286,
0.18829619884490967,
-0.1481318324804306,
-0.09478314220905304,
-0.1102694496512413,
0.03154897689819336,
0.011687776073813438,
-0.05710241571068764,
-0.05053916573524475,
-0.07788047194480896,
0.04675453528761864,
0.01782367005944252,
0.02054329589009285,
0.03694355487823486,
-0.07901838421821594,
0.05939686670899391,
-0.11408296227455139,
0.03137849643826485,
-0.011061965487897396,
0.0166153721511364,
-0.0611504428088665,
0.0533953495323658,
-0.003991290461272001,
0.06433826684951782,
-0.048698220402002335,
-0.0696248859167099,
-0.1257159262895584,
0.03793465346097946,
-0.08348348736763,
-0.05870841443538666,
-0.038454487919807434,
-0.013179083354771137,
0.018508678302168846,
-0.04479629173874855,
-0.00955029483884573,
0.0016789669170975685,
-0.06553926318883896,
0.01655733585357666,
-0.051279570907354355,
-0.02095627970993519,
-0.017399726435542107,
-0.011260803788900375,
0.015480333007872105,
-0.05227160453796387,
0.16170728206634521,
0.10351012647151947,
-0.06399603188037872,
-0.00018398264364805073,
-0.08395764976739883,
-0.02531866915524006,
0.12247906625270844,
0.039759330451488495,
0.04262436553835869,
0.04148433357477188,
-0.009014754556119442,
0.08172371238470078,
0.072227843105793,
0.03159358352422714,
0.10627827048301697,
-0.10917528718709946,
0.03905855491757393,
-0.06150922179222107,
-0.04856236279010773,
-0.08524589985609055,
0.00370506988838315,
-0.029332557693123817,
0.15744569897651672,
0.11378065496683121,
-0.07095401734113693,
0.05998367816209793,
-0.02547319233417511,
0.001542455516755581,
0.004232943989336491,
-0.04549660533666611,
0.07598298043012619,
-0.11051240563392639,
0.077889584004879,
-0.021627673879265785,
0.07083287835121155,
0.03625557944178581,
-0.04647829383611679,
0.018014565110206604,
-0.04280471056699753,
-0.024498213082551956,
-0.033425331115722656,
0.14895595610141754,
0.05903828144073486,
0.007851769216358662,
0.029895352199673653,
0.11943395435810089,
0.05526139959692955,
0.07515200227499008,
0.17640851438045502,
0.054699819535017014,
0.021992145106196404,
0.09637395292520523,
-0.048164576292037964,
-0.028530186042189598,
-0.19380219280719757,
-0.09072793275117874,
-0.10025572776794434,
0.019544564187526703,
-0.08128563314676285,
0.08045533299446106,
0.15243127942085266,
-0.007769980002194643,
0.024769458919763565,
0.026344038546085358,
-0.06242121383547783,
-0.11905044317245483,
-0.10187606513500214,
-0.0484875813126564,
-0.10440917313098907,
-0.0011281599290668964,
-0.10181424766778946,
-0.036177411675453186,
-0.08945274353027344,
0.060096289962530136,
-0.030509743839502335,
0.1600986123085022,
0.05999177694320679,
-0.0926346480846405,
0.051574185490608215,
-0.019495820626616478,
0.046737246215343475,
-0.09592694044113159,
0.026746483519673347,
-0.06552135199308395,
0.034555595368146896,
0.07176437973976135,
0.011035989969968796,
-0.038122329860925674,
-0.0010968628339469433,
-0.04042481258511543,
-0.024110985919833183,
-0.06128580495715141,
0.0846729651093483,
0.05608368664979935,
0.2634707987308502,
0.04263627156615257,
-0.061829838901758194,
0.0066634477116167545,
0.3156507611274719,
-0.06737267225980759,
-0.24591903388500214,
-0.09498299658298492,
0.18563997745513916,
-0.007275837007910013,
0.006642914842814207,
-0.06008479371666908,
-0.020976388826966286,
-0.06684146821498871,
0.2571982443332672,
0.2612469494342804,
-0.036058466881513596,
0.008342188782989979,
-0.011826829053461552,
0.01561471726745367,
-0.025482192635536194,
0.1257784366607666,
0.1498929262161255,
0.3520938456058502,
-0.0001996755599975586,
-0.07294496893882751,
-0.033607061952352524,
0.001429612166248262,
-0.07653873413801193,
-0.03389904648065567,
0.028727281838655472,
0.007623771671205759,
-0.09874863177537918,
0.046579841524362564,
-0.0826268196105957,
-0.11609191447496414,
-0.020901693031191826,
-0.12568922340869904,
-0.04471404850482941,
0.020015163347125053,
0.11202941089868546,
-0.05892577022314072,
0.10175958275794983,
-0.022485660389065742,
0.004497146233916283,
0.1117088571190834,
-0.04613715410232544,
-0.06586222350597382,
0.04751063138246536,
0.09976844489574432,
-0.01813722588121891,
0.030689189210534096,
-0.04752058535814285,
0.11492295563220978,
0.06449276208877563,
0.0829126238822937,
-0.09572876989841461,
0.06082429364323616,
-0.0341985858976841,
-0.030275948345661163,
0.015107711777091026,
0.039187461137771606,
-0.022416764870285988,
0.046941131353378296,
0.09007678180932999,
-0.19611139595508575,
-0.018112264573574066,
-0.01814146153628826,
-0.059475578367710114,
-0.08051837980747223,
0.048376601189374924,
-0.03154381737112999,
0.09696025401353836,
0.0951712504029274,
-0.01478549838066101,
-0.015900947153568268,
-0.03426576033234596,
-0.001955112675204873,
0.0167581457644701,
-0.03965425491333008,
-0.11631302535533905,
-0.11206994205713272,
-0.0640796646475792,
0.056435372680425644,
-0.014048570767045021,
-0.20135526359081268,
-0.05968372896313667,
-0.05328696593642235,
0.026827501133084297,
-0.05915588513016701,
0.08485434204339981,
0.05622074753046036,
0.006277131848037243,
-0.03503330051898956,
-0.07568018138408661,
0.0303140040487051,
0.05574629083275795,
-0.14137445390224457,
-0.12567715346813202
] |
null | null | transformers |
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# tmp6tsjsfbf
This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.0178
- Train Sparse Categorical Accuracy: 0.9962
- Epoch: 49
## Model description
This model classifies the title of a content (e.g., YouTube video, article, or podcast episode) into 1 of 8 subjects
0. art
1. personal development
2. world
3. health
4. science
5. business
6. humanities
7. technology.
This model is used to support [Sanderling](https://sanderling.app)
## Intended uses & limitations
More information needed
## Training and evaluation data
We used 1.5k labeled titles to train the model. Majority of the training dataset are English titles. The rest are Chinese titles.
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'learning_rate': 5e-06, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False}
- training_precision: float32
### Training results
| Train Loss | Train Sparse Categorical Accuracy | Epoch |
|:----------:|:---------------------------------:|:-----:|
| 1.8005 | 0.3956 | 0 |
| 1.3302 | 0.5916 | 1 |
| 0.8998 | 0.7575 | 2 |
| 0.6268 | 0.8468 | 3 |
| 0.4239 | 0.9062 | 4 |
| 0.2982 | 0.9414 | 5 |
| 0.2245 | 0.9625 | 6 |
| 0.1678 | 0.9730 | 7 |
| 0.1399 | 0.9745 | 8 |
| 0.1059 | 0.9827 | 9 |
| 0.0822 | 0.9850 | 10 |
| 0.0601 | 0.9902 | 11 |
| 0.0481 | 0.9932 | 12 |
| 0.0386 | 0.9955 | 13 |
| 0.0292 | 0.9977 | 14 |
| 0.0353 | 0.9940 | 15 |
| 0.0336 | 0.9932 | 16 |
| 0.0345 | 0.9910 | 17 |
| 0.0179 | 0.9985 | 18 |
| 0.0150 | 0.9985 | 19 |
| 0.0365 | 0.9895 | 20 |
| 0.0431 | 0.9895 | 21 |
| 0.0243 | 0.9955 | 22 |
| 0.0317 | 0.9925 | 23 |
| 0.0375 | 0.9902 | 24 |
| 0.0138 | 0.9970 | 25 |
| 0.0159 | 0.9977 | 26 |
| 0.0160 | 0.9962 | 27 |
| 0.0151 | 0.9977 | 28 |
| 0.0337 | 0.9902 | 29 |
| 0.0119 | 0.9977 | 30 |
| 0.0165 | 0.9955 | 31 |
| 0.0133 | 0.9977 | 32 |
| 0.0047 | 1.0 | 33 |
| 0.0037 | 1.0 | 34 |
| 0.0033 | 1.0 | 35 |
| 0.0031 | 1.0 | 36 |
| 0.0036 | 1.0 | 37 |
| 0.0343 | 0.9887 | 38 |
| 0.0234 | 0.9962 | 39 |
| 0.0034 | 1.0 | 40 |
| 0.0036 | 1.0 | 41 |
| 0.0261 | 0.9917 | 42 |
| 0.0111 | 0.9970 | 43 |
| 0.0039 | 1.0 | 44 |
| 0.0214 | 0.9932 | 45 |
| 0.0044 | 0.9985 | 46 |
| 0.0122 | 0.9985 | 47 |
| 0.0119 | 0.9962 | 48 |
| 0.0178 | 0.9962 | 49 |
### Framework versions
- Transformers 4.15.0
- TensorFlow 2.7.0
- Tokenizers 0.10.3
| {"license": "apache-2.0", "tags": ["generated_from_keras_callback"], "model-index": [{"name": "tmp6tsjsfbf", "results": []}]} | text-classification | Mingyi/classify_title_subject | [
"transformers",
"tf",
"bert",
"text-classification",
"generated_from_keras_callback",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [] | TAGS
#transformers #tf #bert #text-classification #generated_from_keras_callback #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
| tmp6tsjsfbf
===========
This model is a fine-tuned version of bert-base-multilingual-cased on an unknown dataset.
It achieves the following results on the evaluation set:
* Train Loss: 0.0178
* Train Sparse Categorical Accuracy: 0.9962
* Epoch: 49
Model description
-----------------
This model classifies the title of a content (e.g., YouTube video, article, or podcast episode) into 1 of 8 subjects
0. art
1. personal development
2. world
3. health
4. science
5. business
6. humanities
7. technology.
This model is used to support Sanderling
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
We used 1.5k labeled titles to train the model. Majority of the training dataset are English titles. The rest are Chinese titles.
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* optimizer: {'name': 'Adam', 'learning\_rate': 5e-06, 'decay': 0.0, 'beta\_1': 0.9, 'beta\_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False}
* training\_precision: float32
### Training results
### Framework versions
* Transformers 4.15.0
* TensorFlow 2.7.0
* Tokenizers 0.10.3
| [
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* optimizer: {'name': 'Adam', 'learning\\_rate': 5e-06, 'decay': 0.0, 'beta\\_1': 0.9, 'beta\\_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False}\n* training\\_precision: float32",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* TensorFlow 2.7.0\n* Tokenizers 0.10.3"
] | [
"TAGS\n#transformers #tf #bert #text-classification #generated_from_keras_callback #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* optimizer: {'name': 'Adam', 'learning\\_rate': 5e-06, 'decay': 0.0, 'beta\\_1': 0.9, 'beta\\_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False}\n* training\\_precision: float32",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* TensorFlow 2.7.0\n* Tokenizers 0.10.3"
] | [
54,
99,
4,
25
] | [
"passage: TAGS\n#transformers #tf #bert #text-classification #generated_from_keras_callback #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* optimizer: {'name': 'Adam', 'learning\\_rate': 5e-06, 'decay': 0.0, 'beta\\_1': 0.9, 'beta\\_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False}\n* training\\_precision: float32### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* TensorFlow 2.7.0\n* Tokenizers 0.10.3"
] | [
-0.040892135351896286,
0.015069159679114819,
-0.002589141484349966,
0.0820472314953804,
0.1788872629404068,
0.031541794538497925,
0.130594402551651,
0.10970385372638702,
-0.12195108085870743,
0.03444581851363182,
0.14560551941394806,
0.19947348535060883,
0.03145374730229378,
0.0915801003575325,
-0.11764748394489288,
-0.16990971565246582,
0.0503060407936573,
0.0024401976261287928,
-0.07186846435070038,
0.09407252818346024,
0.09887602925300598,
-0.08494783937931061,
0.11205544322729111,
0.0020442791283130646,
-0.20909853279590607,
0.05862114578485489,
0.11675888299942017,
-0.09175587445497513,
0.13239414989948273,
0.09441588073968887,
0.09341295808553696,
-0.014214105904102325,
0.017633013427257538,
-0.17099739611148834,
0.015919113531708717,
0.10128919780254364,
-0.02101319655776024,
0.06661153584718704,
0.014852894470095634,
-0.007415967993438244,
0.14335639774799347,
-0.07100637257099152,
0.03253068029880524,
0.035158902406692505,
-0.1249636635184288,
-0.21336089074611664,
-0.12058147042989731,
-0.017781255766749382,
0.06197015568614006,
0.0933905616402626,
0.005774956662207842,
0.2169465571641922,
-0.05713510513305664,
0.10241255909204483,
0.16916529834270477,
-0.36680611968040466,
-0.054478954523801804,
0.023039182648062706,
-0.005879248026758432,
0.056927017867565155,
-0.04823709651827812,
0.05647244676947594,
0.07510095089673996,
0.04067461937665939,
0.0637306421995163,
-0.04146159812808037,
-0.14070716500282288,
-0.009666571393609047,
-0.09628838300704956,
-0.0070338137447834015,
0.1391432136297226,
0.0368695892393589,
-0.0653308555483818,
-0.011414144188165665,
-0.04177739471197128,
-0.11652795970439911,
0.0027426539454609156,
-0.0666966363787651,
0.03437943384051323,
0.010279388166964054,
-0.03699455410242081,
-0.050289224833250046,
-0.08878783881664276,
-0.050977062433958054,
-0.12633571028709412,
0.17936787009239197,
0.014043617062270641,
0.057737041264772415,
-0.04916343092918396,
0.05158255994319916,
-0.07221700251102448,
-0.10604601353406906,
0.008521923795342445,
0.008155734278261662,
-0.015872808173298836,
-0.054383400827646255,
-0.11849956214427948,
-0.1403125673532486,
0.053071990609169006,
0.10005082935094833,
-0.018779966980218887,
0.07150381058454514,
-0.07488546520471573,
0.03000008873641491,
-0.12601104378700256,
0.17070633172988892,
-0.011541948653757572,
-0.0030440273694694042,
0.052888061851263046,
-0.008185300044715405,
0.05730614438652992,
-0.03971031308174133,
-0.11067209392786026,
-0.0009968888480216265,
0.07888786494731903,
0.013821154832839966,
-0.08159077167510986,
0.107342429459095,
-0.062487922608852386,
-0.007511947304010391,
-0.04088873416185379,
-0.08551207929849625,
0.030443623661994934,
-0.018509194254875183,
-0.08671321719884872,
-0.0057837944477796555,
0.06974971294403076,
0.025086136534810066,
-0.041270967572927475,
0.05014318972826004,
-0.06174204498529434,
-0.007406086195260286,
-0.09899794310331345,
-0.12881548702716827,
0.015731465071439743,
-0.07897347211837769,
0.013340506702661514,
-0.10377419739961624,
-0.17757491767406464,
-0.009507489390671253,
0.0637216791510582,
-0.02763890102505684,
-0.014408843591809273,
-0.059863392263650894,
-0.13483785092830658,
0.028825072571635246,
-0.01919451914727688,
0.1588534414768219,
-0.055361151695251465,
0.05546147748827934,
0.0060592046938836575,
0.06451446563005447,
-0.15658438205718994,
0.0437048003077507,
-0.057559043169021606,
-0.013846462592482567,
-0.172914519906044,
0.047228265553712845,
-0.04970845580101013,
0.06388342380523682,
-0.12489983439445496,
-0.06238006055355072,
0.028925033286213875,
0.027899177744984627,
0.09220723807811737,
0.07749763876199722,
-0.17110595107078552,
-0.05777338147163391,
0.10271938890218735,
-0.07332821935415268,
-0.10990206897258759,
0.10010628402233124,
-0.06662188470363617,
0.06601327657699585,
0.10307362675666809,
0.11609651893377304,
-0.022288469597697258,
-0.1064319908618927,
0.06459199637174606,
-0.020477546378970146,
-0.04276460036635399,
-0.006263018120080233,
0.004174367990344763,
-0.006173397414386272,
-0.10779134184122086,
0.032144635915756226,
-0.013756705448031425,
0.03157518059015274,
-0.06741097569465637,
-0.07390004396438599,
-0.04424123093485832,
-0.07666808366775513,
0.04062657058238983,
0.02011757530272007,
0.09660565108060837,
-0.11666639894247055,
-0.09884196519851685,
0.0639667883515358,
0.007949662394821644,
-0.019867831841111183,
0.03615244850516319,
-0.08948929607868195,
0.007466447539627552,
0.02075055055320263,
0.014569079503417015,
-0.17658349871635437,
-0.037717655301094055,
0.008896628394722939,
0.0623636469244957,
0.05728466063737869,
0.01290876418352127,
0.06580282002687454,
-0.003059380454942584,
-0.055354975163936615,
0.0474705696105957,
0.026216844096779823,
0.023438720032572746,
-0.11441010981798172,
-0.22321940958499908,
0.029152551665902138,
-0.015127413906157017,
0.07398266345262527,
-0.24881410598754883,
0.010606213472783566,
0.022037731483578682,
0.09247548878192902,
0.027537459507584572,
0.023723620921373367,
-0.06329106539487839,
0.06757228821516037,
-0.036248426884412766,
-0.04476300999522209,
0.04387587681412697,
0.02633180283010006,
-0.13159386813640594,
0.0002854393096640706,
-0.13853120803833008,
0.17248545587062836,
0.16815201938152313,
-0.1479257345199585,
-0.11426138877868652,
0.060772113502025604,
-0.004225005861371756,
-0.013091573491692543,
0.003293476765975356,
0.02594747580587864,
0.1960301399230957,
-0.019448919221758842,
0.14927361905574799,
-0.058963678777217865,
-0.02673708274960518,
0.03197485953569412,
-0.039806436747312546,
-0.010711496695876122,
0.08266211301088333,
0.009708772413432598,
-0.19123204052448273,
0.10678543150424957,
0.15885517001152039,
-0.12395491451025009,
0.09935426712036133,
-0.02643691748380661,
-0.03939657285809517,
-0.04037090390920639,
0.004500807728618383,
0.03512928634881973,
0.06097389757633209,
-0.11068864166736603,
-0.002950778231024742,
0.01764911226928234,
0.023181645199656487,
-0.0025201255921274424,
-0.21014483273029327,
-0.01623752899467945,
0.002193467691540718,
-0.03420178219676018,
0.002998697105795145,
0.016169223934412003,
0.02238248474895954,
0.13634929060935974,
0.03161122649908066,
-0.06105377897620201,
0.098137266933918,
-0.012833372689783573,
-0.08724787831306458,
0.2106763869524002,
-0.149100199341774,
-0.13027334213256836,
-0.12874247133731842,
-0.08483388274908066,
-0.08105779439210892,
0.020848000422120094,
0.02501041255891323,
-0.10703746974468231,
-0.06522853672504425,
-0.058360591530799866,
-0.006241283379495144,
-0.013282591477036476,
0.05678129196166992,
0.04169870913028717,
-0.007702070288360119,
0.11526276916265488,
-0.09779342263936996,
-0.04671335592865944,
-0.0510307252407074,
-0.08228637278079987,
0.038765691220760345,
-0.0008237096481025219,
0.04004495218396187,
0.10964954644441605,
-0.04335306957364082,
0.02042810246348381,
-0.051212552934885025,
0.22501246631145477,
-0.051197994500398636,
-0.0392654612660408,
0.13673947751522064,
-0.04804052412509918,
0.032763537019491196,
0.10653559118509293,
0.03606560826301575,
-0.13726362586021423,
0.05856574699282646,
0.057680223137140274,
-0.037337180227041245,
-0.24719582498073578,
-0.02254120633006096,
-0.037829600274562836,
-0.12375321239233017,
0.02405768446624279,
0.03621289134025574,
0.16553768515586853,
0.03031267784535885,
0.05385182052850723,
0.13190540671348572,
-0.003168745432049036,
0.05108560249209404,
0.20380590856075287,
0.05664050951600075,
0.10712867975234985,
-0.05484028533101082,
-0.03186966851353645,
0.058323461562395096,
-0.04055756703019142,
0.18248552083969116,
0.05641946196556091,
0.03201282396912575,
0.06510891765356064,
0.08797182887792587,
-0.018407156690955162,
0.020319370552897453,
0.018803128972649574,
-0.060938429087400436,
-0.02003621682524681,
-0.05047218129038811,
-0.052151232957839966,
0.06060422584414482,
-0.09396765381097794,
0.06092675402760506,
-0.08331666141748428,
0.008398075588047504,
0.06576130539178848,
0.2492552399635315,
0.032240014523267746,
-0.31846776604652405,
-0.09290570765733719,
0.009557829238474369,
-0.03542123734951019,
-0.030591752380132675,
0.00436699204146862,
0.06946741044521332,
-0.0754583328962326,
0.10578187555074692,
-0.057398248463869095,
0.07317130267620087,
0.01068112626671791,
0.07403083890676498,
0.06651465594768524,
0.10314153879880905,
0.0049456278793513775,
0.02677512727677822,
-0.3640464246273041,
0.2820029854774475,
0.03661465272307396,
0.13851317763328552,
-0.09121793508529663,
0.013993781991302967,
0.05014538764953613,
0.05051989108324051,
0.06782891601324081,
-0.024192215874791145,
-0.12229746580123901,
-0.1500340849161148,
-0.004395669791847467,
0.03346240147948265,
0.14554423093795776,
0.0662078931927681,
0.08507844805717468,
-0.04640822485089302,
0.023045793175697327,
0.09708134084939957,
0.029198085889220238,
-0.12954792380332947,
-0.0630720928311348,
0.002676550066098571,
0.06968420743942261,
-0.048727236688137054,
-0.05346348509192467,
-0.07930222153663635,
-0.11750918626785278,
0.20956631004810333,
-0.051511459052562714,
-0.012572934851050377,
-0.12658946216106415,
0.09983746707439423,
0.032338179647922516,
-0.053260430693626404,
0.04207354411482811,
-0.0016240448458120227,
0.03835900127887726,
0.059608958661556244,
-0.1385989487171173,
0.1588873267173767,
-0.029286960139870644,
-0.1578911393880844,
-0.05869951471686363,
0.05966314673423767,
0.028128115460276604,
0.046440571546554565,
0.01565602980554104,
0.04484345763921738,
0.024352846667170525,
-0.09226202219724655,
0.07815469801425934,
0.003612861968576908,
0.03450474888086319,
0.023741841316223145,
-0.03508652374148369,
-0.036996353417634964,
-0.05181979015469551,
-0.013008968904614449,
0.1721116006374359,
0.2538455128669739,
-0.08449549973011017,
0.02014492079615593,
-0.014523935504257679,
-0.0849921926856041,
-0.23189957439899445,
0.11800721287727356,
0.06691135466098785,
0.007563297636806965,
-0.012931950390338898,
-0.14314067363739014,
0.11349273473024368,
0.08914823085069656,
-0.01333177462220192,
0.09068970382213593,
-0.2547113001346588,
-0.15446443855762482,
0.1181003525853157,
0.14209599792957306,
0.22530381381511688,
-0.14838524162769318,
-0.03311017155647278,
-0.08781314641237259,
-0.054463475942611694,
0.17563322186470032,
-0.14717277884483337,
0.10433413833379745,
0.02257624641060829,
0.06984768062829971,
-0.002768881618976593,
-0.017327625304460526,
0.10506302118301392,
-0.044605836272239685,
0.13157278299331665,
-0.07315029948949814,
-0.05362119525671005,
0.08760259300470352,
-0.033651016652584076,
0.010369725525379181,
-0.0523996464908123,
0.016461025923490524,
-0.0525827519595623,
0.001167725189588964,
-0.07761955261230469,
0.06835281103849411,
-0.027712244540452957,
-0.03360246121883392,
-0.02422146126627922,
0.025099389255046844,
0.0593038946390152,
-0.04171212017536163,
0.15508273243904114,
-0.023770006373524666,
0.1807539314031601,
0.16297820210456848,
0.10422396659851074,
-0.05449880287051201,
0.0815851092338562,
0.07205162197351456,
-0.040161702781915665,
0.0930439904332161,
-0.1502770483493805,
0.04840891435742378,
0.11111092567443848,
-0.017978189513087273,
0.1344071924686432,
0.07318370044231415,
-0.02906736172735691,
0.030026400461792946,
0.07584742456674576,
-0.15523341298103333,
-0.09506624937057495,
0.019951092079281807,
-0.02537650428712368,
-0.037651561200618744,
0.07419939339160919,
0.15204836428165436,
-0.04426894336938858,
0.02065860666334629,
0.003728739218786359,
-0.004445025231689215,
-0.10133115202188492,
0.12483156472444534,
0.023877473548054695,
0.002483336254954338,
-0.09376869350671768,
0.12763822078704834,
0.031663503497838974,
-0.0786745622754097,
0.08673062175512314,
0.01421752292662859,
-0.07661241292953491,
-0.020221881568431854,
0.08015859872102737,
0.15701980888843536,
-0.02964209020137787,
-0.06884708255529404,
-0.11642687022686005,
-0.16823126375675201,
0.060084689408540726,
0.2589253783226013,
0.08602456748485565,
0.028567742556333542,
-0.055112551897764206,
-0.004582315217703581,
-0.07433561235666275,
0.02325037494301796,
0.019112881273031235,
0.045735251158475876,
-0.13899245858192444,
0.16764043271541595,
-0.017834264785051346,
0.018318582326173782,
-0.051282960921525955,
0.027845455333590508,
-0.15933893620967865,
0.0019505548989400268,
-0.1700390875339508,
-0.012972655706107616,
0.018636180087924004,
0.00013521159416995943,
0.04051519185304642,
-0.07823044061660767,
-0.10492876172065735,
0.040097709745168686,
-0.1184341087937355,
-0.020039603114128113,
0.06627295166254044,
0.04341462254524231,
-0.10676391422748566,
-0.07301240414381027,
0.020802190527319908,
-0.053501471877098083,
0.0359295979142189,
0.08829842507839203,
-0.013917618431150913,
0.09454216063022614,
-0.1916753500699997,
-0.002259512897580862,
0.09909701347351074,
0.009477430954575539,
0.08621327579021454,
-0.08041457831859589,
-0.007688627112656832,
0.024126285687088966,
0.08163721859455109,
0.0364210270345211,
0.1342482566833496,
-0.09283127635717392,
-0.05817238613963127,
-0.012113677337765694,
-0.054738666862249374,
-0.04163198918104172,
0.03210968151688576,
0.1425900161266327,
-0.009945860132575035,
0.20250308513641357,
-0.11973682790994644,
-0.01947539858520031,
-0.14985695481300354,
0.019500575959682465,
-0.008157502859830856,
-0.13646547496318817,
-0.13251177966594696,
-0.04064543545246124,
0.08295769989490509,
-0.06665969640016556,
0.14470814168453217,
0.0022008309606462717,
0.07510402798652649,
0.055976007133722305,
-0.03500363975763321,
-0.049473196268081665,
0.049513183534145355,
0.20857806503772736,
0.05286296457052231,
-0.017025992274284363,
0.026072561740875244,
0.011858463287353516,
0.09970630705356598,
0.09072759002447128,
0.24426831305027008,
0.1303248107433319,
-0.0283205509185791,
0.1496196836233139,
0.04517655447125435,
-0.033930204808712006,
-0.0856708511710167,
0.08687378466129303,
-0.093464195728302,
0.15487675368785858,
-0.04931977018713951,
0.09764549136161804,
0.0678534060716629,
-0.1621183454990387,
0.017523709684610367,
-0.09363282471895218,
-0.07731089740991592,
-0.15178947150707245,
-0.08260252326726913,
-0.1105201318860054,
-0.12809796631336212,
0.006952587049454451,
-0.09215497225522995,
0.0553007647395134,
0.056022338569164276,
0.019715512171387672,
-0.029521072283387184,
0.1296108216047287,
-0.07224808633327484,
0.0025513137225061655,
0.10107026994228363,
-0.03180120140314102,
-0.037115179002285004,
-0.09270767867565155,
-0.06703292578458786,
0.02243218757212162,
-0.00950988382101059,
0.019850855693221092,
-0.01421509962528944,
-0.024406161159276962,
0.030096041038632393,
-0.059387341141700745,
-0.0907687321305275,
0.04864049330353737,
0.047045040875673294,
0.024309402331709862,
0.024203339591622353,
0.044817738234996796,
-0.003292370354756713,
-0.0037972547579556704,
0.17192061245441437,
-0.10325680673122406,
-0.05177976191043854,
-0.13868550956249237,
0.3051932454109192,
0.011828532442450523,
0.05788864940404892,
-0.003292829031124711,
-0.0498507022857666,
-0.039963506162166595,
0.23904727399349213,
0.17505010962486267,
-0.112907275557518,
-0.008105386979877949,
0.018097972497344017,
-0.0006499981973320246,
-0.052484992891550064,
0.149323508143425,
0.09281047433614731,
-0.048760320991277695,
-0.06549044698476791,
-0.04042349010705948,
-0.021407265216112137,
0.0021092849783599377,
-0.03517141938209534,
0.07198412716388702,
0.039190925657749176,
-0.018370119854807854,
-0.0135193495079875,
0.05601242929697037,
-0.062477272003889084,
-0.11065230518579483,
0.050078243017196655,
-0.19250600039958954,
-0.15775719285011292,
-0.00017676300194580108,
0.017210809513926506,
-0.010178965516388416,
0.07429414242506027,
-0.029046695679426193,
-0.0006043734611012042,
0.060799490660429,
-0.04339677095413208,
-0.03925222158432007,
-0.09306810051202774,
0.09337004274129868,
-0.11573569476604462,
0.17237207293510437,
-0.019790735095739365,
0.06598813831806183,
0.12101615965366364,
0.05302375927567482,
-0.05538538098335266,
0.06581001728773117,
0.02893674187362194,
-0.10971243679523468,
0.009292793460190296,
0.04892497509717941,
-0.029511483386158943,
0.0991598516702652,
0.06097489967942238,
-0.07752104848623276,
0.06932197511196136,
-0.11796075105667114,
-0.1139262467622757,
-0.025055263191461563,
-0.050689417868852615,
-0.10353764146566391,
0.11422880738973618,
0.23621714115142822,
-0.022561410441994667,
0.0431344248354435,
-0.05452635884284973,
-0.008054062724113464,
0.07274606078863144,
0.00001741196683724411,
-0.08685308694839478,
-0.21459124982357025,
0.04875106364488602,
0.12868788838386536,
0.004231562372297049,
-0.19255250692367554,
-0.07357954233884811,
-0.026082748547196388,
-0.0293571837246418,
-0.09393774718046188,
0.07459858804941177,
0.09189145267009735,
0.037711579352617264,
-0.05397449806332588,
-0.19128498435020447,
-0.03395431861281395,
0.15680131316184998,
-0.0824538916349411,
-0.09092768281698227
] |
null | null | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-ner
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the conll2003 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0596
- Precision: 0.9240
- Recall: 0.9378
- F1: 0.9308
- Accuracy: 0.9838
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.2381 | 1.0 | 878 | 0.0707 | 0.9100 | 0.9240 | 0.9170 | 0.9805 |
| 0.0563 | 2.0 | 1756 | 0.0583 | 0.9246 | 0.9382 | 0.9314 | 0.9835 |
| 0.03 | 3.0 | 2634 | 0.0596 | 0.9240 | 0.9378 | 0.9308 | 0.9838 |
### Framework versions
- Transformers 4.16.2
- Pytorch 1.10.0+cu111
- Datasets 1.18.3
- Tokenizers 0.11.0
| {"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["conll2003"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "distilbert-base-uncased-finetuned-ner", "results": [{"task": {"type": "token-classification", "name": "Token Classification"}, "dataset": {"name": "conll2003", "type": "conll2003", "args": "conll2003"}, "metrics": [{"type": "precision", "value": 0.9239501818582607, "name": "Precision"}, {"type": "recall", "value": 0.9378006488421524, "name": "Recall"}, {"type": "f1", "value": 0.9308238951809905, "name": "F1"}, {"type": "accuracy", "value": 0.9837800054013695, "name": "Accuracy"}]}]}]} | token-classification | Minowa/distilbert-base-uncased-finetuned-ner | [
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"token-classification",
"generated_from_trainer",
"dataset:conll2003",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [] | TAGS
#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #dataset-conll2003 #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us
| distilbert-base-uncased-finetuned-ner
=====================================
This model is a fine-tuned version of distilbert-base-uncased on the conll2003 dataset.
It achieves the following results on the evaluation set:
* Loss: 0.0596
* Precision: 0.9240
* Recall: 0.9378
* F1: 0.9308
* Accuracy: 0.9838
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 16
* eval\_batch\_size: 16
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 3
### Training results
### Framework versions
* Transformers 4.16.2
* Pytorch 1.10.0+cu111
* Datasets 1.18.3
* Tokenizers 0.11.0
| [
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.16.2\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.3\n* Tokenizers 0.11.0"
] | [
"TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #dataset-conll2003 #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.16.2\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.3\n* Tokenizers 0.11.0"
] | [
69,
98,
4,
35
] | [
"passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #dataset-conll2003 #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3### Training results### Framework versions\n\n\n* Transformers 4.16.2\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.3\n* Tokenizers 0.11.0"
] | [
-0.10674282163381577,
0.10102853178977966,
-0.002465517958626151,
0.13086916506290436,
0.15187130868434906,
0.025957146659493446,
0.11255491524934769,
0.11721572279930115,
-0.09562104195356369,
0.0270137470215559,
0.1370638906955719,
0.16641782224178314,
0.013783784583210945,
0.12305346876382828,
-0.05596703663468361,
-0.24812856316566467,
-0.00004839667963096872,
0.046464625746011734,
-0.03727592155337334,
0.1317840814590454,
0.09936363995075226,
-0.13511036336421967,
0.09445904195308685,
0.017068661749362946,
-0.19642263650894165,
0.00028291752096265554,
0.0009192695142701268,
-0.05253244936466217,
0.13723407685756683,
0.014662216417491436,
0.12165889143943787,
-0.008518403396010399,
0.0882231667637825,
-0.17646488547325134,
0.004884419031441212,
0.0443740151822567,
0.009695981629192829,
0.09259212762117386,
0.03925318270921707,
0.006019055377691984,
0.10988382250070572,
-0.0687335878610611,
0.05746150016784668,
0.013257723301649094,
-0.121727854013443,
-0.21955782175064087,
-0.09356819838285446,
0.05253014713525772,
0.08678703755140305,
0.09994229674339294,
0.0014248932711780071,
0.14581012725830078,
-0.08803924173116684,
0.08871152997016907,
0.21807128190994263,
-0.2951975464820862,
-0.06571486592292786,
0.03994613140821457,
0.010211204178631306,
0.03563041239976883,
-0.09827253222465515,
-0.04465358704328537,
0.046999357640743256,
0.05221337080001831,
0.1336880922317505,
-0.028782129287719727,
-0.0979757234454155,
0.010821076110005379,
-0.14144182205200195,
-0.044912077486515045,
0.16239452362060547,
0.05129718407988548,
-0.03871642053127289,
-0.04960737004876137,
-0.05820475146174431,
-0.16618512570858002,
-0.031186511740088463,
-0.014052723534405231,
0.046592827886343,
-0.029446624219417572,
-0.05671209469437599,
0.007384976372122765,
-0.10098742693662643,
-0.061459071934223175,
-0.07898029685020447,
0.1378692239522934,
0.0380202978849411,
0.017170654609799385,
-0.025197463110089302,
0.11008170992136002,
-0.0007584613631479442,
-0.12385369837284088,
0.013307468965649605,
0.022157777100801468,
0.007831222377717495,
-0.04721156135201454,
-0.053048375993967056,
-0.046784933656454086,
0.005354710854589939,
0.14378765225410461,
-0.05120700225234032,
0.038449469953775406,
0.052312400192022324,
0.04207761958241463,
-0.08751679956912994,
0.1827598661184311,
-0.040401481091976166,
-0.01872001215815544,
0.005442928988486528,
0.04769450053572655,
0.026054345071315765,
-0.0006679188227280974,
-0.12291231751441956,
0.013516504317522049,
0.09664712846279144,
0.009179356507956982,
-0.06989584863185883,
0.06822370737791061,
-0.06309515237808228,
-0.025515535846352577,
0.024381037801504135,
-0.08730525523424149,
0.031791117042303085,
-0.012069731019437313,
-0.08048929274082184,
-0.02808321639895439,
0.015679024159908295,
0.022837277501821518,
-0.00988794770091772,
0.11039619147777557,
-0.09297914803028107,
0.022776952013373375,
-0.08954820036888123,
-0.0993276908993721,
0.01845838502049446,
-0.10994039475917816,
0.036175988614559174,
-0.09486308693885803,
-0.18903225660324097,
-0.0038846442475914955,
0.06562262773513794,
-0.024950560182332993,
-0.06624921411275864,
-0.04604743421077728,
-0.06844868510961533,
0.009623613208532333,
-0.010505547747015953,
0.12080568820238113,
-0.06546470522880554,
0.08635265380144119,
0.029610253870487213,
0.06161821633577347,
-0.04670310765504837,
0.04827064275741577,
-0.10792987793684006,
0.025507966056466103,
-0.16176465153694153,
0.030266569927334785,
-0.045471832156181335,
0.07196910679340363,
-0.09100852906703949,
-0.10512590408325195,
0.015515857376158237,
-0.01769314706325531,
0.07060462981462479,
0.08869008719921112,
-0.17287050187587738,
-0.06328638643026352,
0.14490774273872375,
-0.06518428027629852,
-0.12903136014938354,
0.12257422506809235,
-0.06550604850053787,
0.03821851685643196,
0.056645359843969345,
0.15878097712993622,
0.05736479535698891,
-0.08159112185239792,
-0.0012114942073822021,
0.00736780371516943,
0.04426080733537674,
-0.06593077629804611,
0.07466672360897064,
0.010129696689546108,
0.027494868263602257,
0.029349837452173233,
-0.027780141681432724,
0.05252052843570709,
-0.08934454619884491,
-0.09802853316068649,
-0.04370284080505371,
-0.09547458589076996,
0.035864461213350296,
0.06593748182058334,
0.06729681044816971,
-0.09844117611646652,
-0.08040683716535568,
0.046185001730918884,
0.0853930339217186,
-0.046075526624917984,
0.027247508987784386,
-0.07179886847734451,
0.07998564839363098,
-0.04585660248994827,
-0.030455738306045532,
-0.173146590590477,
-0.021135522052645683,
0.011449356563389301,
0.005250225309282541,
0.008500825613737106,
0.015068413689732552,
0.06364927440881729,
0.06626728177070618,
-0.04492207616567612,
-0.019944723695516586,
-0.028954509645700455,
0.00415543420240283,
-0.12995602190494537,
-0.19181965291500092,
-0.04576271027326584,
-0.02194259501993656,
0.13523346185684204,
-0.2007986456155777,
0.03426539525389671,
-0.0173116996884346,
0.08893585205078125,
0.014517122879624367,
-0.015163951553404331,
-0.04120983928442001,
0.06646399945020676,
-0.04824735224246979,
-0.05329236760735512,
0.06536132842302322,
0.014176443219184875,
-0.09443461149930954,
-0.05966218188405037,
-0.08352094143629074,
0.16836236417293549,
0.1288071572780609,
-0.10255037248134613,
-0.07724419981241226,
-0.013089139945805073,
-0.06763476878404617,
-0.03228446841239929,
-0.044649820774793625,
0.03615560755133629,
0.18236829340457916,
-0.006742941681295633,
0.14499835669994354,
-0.07430697977542877,
-0.05101504176855087,
0.026975082233548164,
-0.03516611456871033,
0.014795116148889065,
0.11928204447031021,
0.1253187507390976,
-0.09267465770244598,
0.1501709669828415,
0.15188230574131012,
-0.08425208181142807,
0.11108430474996567,
-0.043191276490688324,
-0.0634067952632904,
-0.026275664567947388,
-0.024664338678121567,
-0.005939875263720751,
0.11116600036621094,
-0.14112092554569244,
0.00290662026964128,
0.034061066806316376,
0.025776922702789307,
0.010538382455706596,
-0.21731895208358765,
-0.04119028523564339,
0.04029413312673569,
-0.033073846250772476,
-0.016511686146259308,
-0.010677571408450603,
0.004849852062761784,
0.09807133674621582,
0.007697263732552528,
-0.10082371532917023,
0.04869714751839638,
0.01059610117226839,
-0.07544916123151779,
0.20647667348384857,
-0.0838761180639267,
-0.14361785352230072,
-0.11599905043840408,
-0.0905027911067009,
-0.05345507338643074,
0.009856254793703556,
0.059931620955467224,
-0.07878634333610535,
-0.0372200682759285,
-0.07558973133563995,
-0.0029136089142411947,
-0.006422283127903938,
0.03108035773038864,
0.02529793605208397,
-0.007471349555999041,
0.06815987080335617,
-0.10210000723600388,
-0.01752580516040325,
-0.05290599167346954,
-0.04062176123261452,
0.03858441486954689,
0.03593001142144203,
0.11251383274793625,
0.14275948703289032,
-0.014959091320633888,
0.014134107157588005,
-0.024766532704234123,
0.25239330530166626,
-0.05814717337489128,
-0.024917688220739365,
0.13630107045173645,
-0.014195050112903118,
0.05360303074121475,
0.11823192238807678,
0.0721510648727417,
-0.08749548345804214,
-0.002848532050848007,
0.028049834072589874,
-0.040592268109321594,
-0.21315468847751617,
-0.04792482405900955,
-0.055354729294776917,
-0.011332789435982704,
0.09793354570865631,
0.024930022656917572,
0.03219345957040787,
0.07930275797843933,
0.038632556796073914,
0.08867747336626053,
-0.051558732986450195,
0.06800032407045364,
0.11710257828235626,
0.047733768820762634,
0.12461777776479721,
-0.03793270140886307,
-0.058964915573596954,
0.0440322607755661,
0.002559319604188204,
0.22588501870632172,
0.012717983685433865,
0.12898562848567963,
0.06364044547080994,
0.17565664649009705,
-0.011989033780992031,
0.07707777619361877,
-0.013251837342977524,
-0.0395975261926651,
-0.018950078636407852,
-0.034655436873435974,
-0.0357043594121933,
0.027804311364889145,
-0.06382867693901062,
0.07202896475791931,
-0.11216448247432709,
0.024230865761637688,
0.0554962120950222,
0.26348328590393066,
0.03910595923662186,
-0.34014397859573364,
-0.1007639467716217,
0.00034686445724219084,
-0.03767513483762741,
-0.0241052508354187,
0.030681224539875984,
0.07496927678585052,
-0.0916021540760994,
0.02920544147491455,
-0.06441991776227951,
0.09343470633029938,
-0.044736020267009735,
0.04377024993300438,
0.07920880615711212,
0.08378970623016357,
0.012969340197741985,
0.08495619893074036,
-0.28017479181289673,
0.2777101397514343,
0.0029753795824944973,
0.0658332034945488,
-0.07982791215181351,
0.008441386744379997,
0.027505360543727875,
0.06389282643795013,
0.08304000645875931,
-0.005217297002673149,
-0.039826568216085434,
-0.19002212584018707,
-0.054978903383016586,
0.021851669996976852,
0.06265510618686676,
-0.029603345319628716,
0.09129036217927933,
-0.026676936075091362,
0.010843174532055855,
0.06695637851953506,
0.012017486616969109,
-0.044859565794467926,
-0.10035078972578049,
-0.009613905102014542,
0.03524918109178543,
-0.056653618812561035,
-0.0620555654168129,
-0.10601742565631866,
-0.12040865421295166,
0.15700536966323853,
-0.024988263845443726,
-0.04100542888045311,
-0.10817570239305496,
0.07568781822919846,
0.07458308339118958,
-0.08317926526069641,
0.04716647416353226,
-0.003054100787267089,
0.07531878352165222,
0.028949754312634468,
-0.06046878919005394,
0.10396163165569305,
-0.0814371183514595,
-0.1629093736410141,
-0.06901572644710541,
0.10507304221391678,
0.035538200289011,
0.0638664960861206,
-0.003054016502574086,
0.01955837942659855,
-0.050755079835653305,
-0.08799341320991516,
0.030556347221136093,
-0.010500391013920307,
0.09959588944911957,
0.0054665314964950085,
-0.0447206124663353,
0.0323449969291687,
-0.05476900190114975,
-0.032835133373737335,
0.18673425912857056,
0.23573119938373566,
-0.10216915607452393,
0.02183579094707966,
0.02417724020779133,
-0.06260868161916733,
-0.17163985967636108,
0.024704085662961006,
0.055032216012477875,
0.003409328870475292,
0.03614190220832825,
-0.17390695214271545,
0.1411168873310089,
0.1134105995297432,
-0.017489926889538765,
0.10005639493465424,
-0.3180955648422241,
-0.11898104846477509,
0.1295904666185379,
0.13270096480846405,
0.11247265338897705,
-0.12470323592424393,
-0.017806313931941986,
-0.017273206263780594,
-0.1503603607416153,
0.10643728077411652,
-0.06807143241167068,
0.1109628975391388,
-0.035119764506816864,
0.09704557061195374,
0.0032560708932578564,
-0.06019850820302963,
0.12085691839456558,
0.03499970585107803,
0.10045310109853745,
-0.05871070921421051,
-0.04046986252069473,
0.03471328690648079,
-0.04558533802628517,
0.02915523387491703,
-0.08303598314523697,
0.03766954317688942,
-0.113989919424057,
-0.0221501924097538,
-0.06576741486787796,
0.04006345942616463,
-0.03517349064350128,
-0.06803809106349945,
-0.04485134407877922,
0.02729581855237484,
0.0612279511988163,
-0.011496484279632568,
0.143491730093956,
0.043676260858774185,
0.13765773177146912,
0.10363790392875671,
0.07146705687046051,
-0.08871149271726608,
-0.08053770661354065,
-0.026951611042022705,
-0.016436947509646416,
0.05504250153899193,
-0.1278722882270813,
0.02687564492225647,
0.14543835818767548,
0.023421823978424072,
0.13306835293769836,
0.08313989639282227,
-0.01810944452881813,
0.007063448429107666,
0.05403922125697136,
-0.16837191581726074,
-0.07124345749616623,
-0.001094398321583867,
-0.03538297861814499,
-0.11630727350711823,
0.0555201917886734,
0.08830641210079193,
-0.07034257054328918,
-0.011280592530965805,
-0.006711053662002087,
0.01500918809324503,
-0.052304212003946304,
0.18425290286540985,
0.05229801684617996,
0.04810124635696411,
-0.10273027420043945,
0.07023852318525314,
0.050831444561481476,
-0.06215246766805649,
0.0038517804350703955,
0.050537750124931335,
-0.08748049288988113,
-0.042676471173763275,
0.05316803231835365,
0.16745227575302124,
-0.06502221524715424,
-0.04683596268296242,
-0.13560546934604645,
-0.11896153539419174,
0.08686268329620361,
0.136448934674263,
0.11606625467538834,
0.01427344512194395,
-0.06237145513296127,
0.0007489633280783892,
-0.11452894657850266,
0.09314202517271042,
0.04565829783678055,
0.07186681777238846,
-0.15841245651245117,
0.13322530686855316,
0.0034389542415738106,
0.04350648820400238,
-0.014787247404456139,
0.03040989860892296,
-0.09584079682826996,
0.011858407407999039,
-0.11450181901454926,
-0.019432533532381058,
-0.04153725877404213,
0.012445530854165554,
-0.004439115524291992,
-0.055704232305288315,
-0.05927538871765137,
0.019824326038360596,
-0.10941969603300095,
-0.01811685971915722,
0.04256252944469452,
0.05963975191116333,
-0.11101070046424866,
-0.037789322435855865,
0.024938523769378662,
-0.061650775372982025,
0.07265954464673996,
0.0489344447851181,
0.022871850058436394,
0.0398770309984684,
-0.11427760124206543,
0.013910734094679356,
0.06993600726127625,
0.023240569978952408,
0.07710328698158264,
-0.10562027990818024,
-0.011992787010967731,
0.004989787936210632,
0.033350568264722824,
0.015847381204366684,
0.07284040749073029,
-0.13886187970638275,
-0.008171064779162407,
-0.00729010533541441,
-0.0787961333990097,
-0.0653151422739029,
0.021642902866005898,
0.1064024418592453,
0.013527140021324158,
0.20946772396564484,
-0.062065597623586655,
0.03913082554936409,
-0.20597189664840698,
0.001969011267647147,
-0.007653293199837208,
-0.1084112823009491,
-0.1260104477405548,
-0.057148925960063934,
0.052404046058654785,
-0.05882440134882927,
0.15651600062847137,
0.02671966701745987,
0.023507723584771156,
0.026373030617833138,
-0.007912973873317242,
0.018484774976968765,
0.010433545336127281,
0.1963111013174057,
0.032430727034807205,
-0.03997042402625084,
0.06263040006160736,
0.03891667351126671,
0.10380959510803223,
0.1113637164235115,
0.18906551599502563,
0.14337694644927979,
0.004050645045936108,
0.09300757199525833,
0.032170411199331284,
-0.05951380729675293,
-0.17797166109085083,
0.030102550983428955,
-0.03811167553067207,
0.10814602673053741,
-0.012081380002200603,
0.21837441623210907,
0.06686980277299881,
-0.17005465924739838,
0.037332724779844284,
-0.05451732501387596,
-0.07969462126493454,
-0.10215689241886139,
-0.07059860974550247,
-0.07879133522510529,
-0.12883445620536804,
0.004674707073718309,
-0.11389997601509094,
0.010397393256425858,
0.11740593612194061,
0.006749420426785946,
-0.02397792786359787,
0.1461671143770218,
0.008625485934317112,
0.04190048947930336,
0.04274088516831398,
0.008663094602525234,
-0.038811590522527695,
-0.10210888832807541,
-0.0673278421163559,
-0.019397543743252754,
-0.023396525532007217,
0.038504183292388916,
-0.06824186444282532,
-0.03711562603712082,
0.02567237615585327,
-0.011723523028194904,
-0.09057211875915527,
0.005746922921389341,
0.010010451078414917,
0.055684708058834076,
0.03810015693306923,
0.004775369074195623,
0.033840011805295944,
-0.011677463538944721,
0.19643491506576538,
-0.07451341301202774,
-0.05845458060503006,
-0.10950228571891785,
0.24114395678043365,
0.03693195804953575,
-0.02210855670273304,
0.03894197568297386,
-0.0664689913392067,
0.00470855413004756,
0.23232252895832062,
0.19555817544460297,
-0.0834326446056366,
-0.012748012319207191,
0.005029243417084217,
-0.011920949444174767,
-0.028262468054890633,
0.09249874949455261,
0.13674820959568024,
0.04225609451532364,
-0.09074192494153976,
-0.042047761380672455,
-0.0727899968624115,
-0.012567151337862015,
-0.037049513310194016,
0.06375797837972641,
0.04465434327721596,
0.005771932192146778,
-0.04135825112462044,
0.04752006754279137,
-0.06755976378917694,
-0.0883558914065361,
0.06430817395448685,
-0.20212537050247192,
-0.16304227709770203,
-0.006964839994907379,
0.09373234212398529,
0.005723511800169945,
0.06281958520412445,
-0.029416315257549286,
-0.0034009122755378485,
0.08030503243207932,
-0.01716633327305317,
-0.0925389900803566,
-0.0801924392580986,
0.10340769588947296,
-0.08788875490427017,
0.22933462262153625,
-0.043892644345760345,
0.07098235934972763,
0.1248423233628273,
0.06573887169361115,
-0.08509965240955353,
0.05806952342391014,
0.04861181601881981,
-0.04972453415393829,
0.022362101823091507,
0.07280808687210083,
-0.02689461037516594,
0.07473395764827728,
0.042557165026664734,
-0.13498808443546295,
0.009949230588972569,
-0.04935310035943985,
-0.05053258687257767,
-0.04572097584605217,
-0.029754679650068283,
-0.054324671626091,
0.13611038029193878,
0.21150311827659607,
-0.03477213904261589,
-0.013347029685974121,
-0.06998419016599655,
0.02596234157681465,
0.06159254536032677,
0.004541901871562004,
-0.06296718865633011,
-0.2194681167602539,
0.020278602838516235,
0.057225458323955536,
-0.02004455402493477,
-0.2154700756072998,
-0.10131493210792542,
0.003165888600051403,
-0.07604747265577316,
-0.0877133160829544,
0.06855418533086777,
0.08297023177146912,
0.0543673038482666,
-0.06316111981868744,
-0.025643769651651382,
-0.08014149218797684,
0.13839265704154968,
-0.12965811789035797,
-0.08774403482675552
] |
null | null | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# t5-small-finetuned-ro-to-en
This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the wmt16 dataset.
It achieves the following results on the evaluation set:
- Loss: 1.5877
- Bleu: 13.4499
- Gen Len: 17.5073
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len |
|:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|
| 1.6167 | 0.05 | 2000 | 1.8649 | 9.7029 | 17.5753 |
| 1.4551 | 0.1 | 4000 | 1.7810 | 10.6382 | 17.5358 |
| 1.3723 | 0.16 | 6000 | 1.7369 | 11.1285 | 17.5158 |
| 1.3373 | 0.21 | 8000 | 1.7086 | 11.6173 | 17.5013 |
| 1.2935 | 0.26 | 10000 | 1.6890 | 12.0641 | 17.5038 |
| 1.2632 | 0.31 | 12000 | 1.6670 | 12.3012 | 17.5253 |
| 1.2463 | 0.37 | 14000 | 1.6556 | 12.3991 | 17.5153 |
| 1.2272 | 0.42 | 16000 | 1.6442 | 12.7392 | 17.4732 |
| 1.2052 | 0.47 | 18000 | 1.6328 | 12.8446 | 17.5143 |
| 1.1985 | 0.52 | 20000 | 1.6233 | 13.0892 | 17.4807 |
| 1.1821 | 0.58 | 22000 | 1.6153 | 13.1529 | 17.4952 |
| 1.1791 | 0.63 | 24000 | 1.6079 | 13.2964 | 17.5088 |
| 1.1698 | 0.68 | 26000 | 1.6038 | 13.3548 | 17.4842 |
| 1.154 | 0.73 | 28000 | 1.5957 | 13.3012 | 17.5053 |
| 1.1634 | 0.79 | 30000 | 1.5931 | 13.4203 | 17.5083 |
| 1.1487 | 0.84 | 32000 | 1.5893 | 13.3959 | 17.5123 |
| 1.1495 | 0.89 | 34000 | 1.5875 | 13.3745 | 17.4902 |
| 1.1458 | 0.94 | 36000 | 1.5877 | 13.4129 | 17.5043 |
| 1.1465 | 1.0 | 38000 | 1.5877 | 13.4499 | 17.5073 |
### Framework versions
- Transformers 4.12.5
- Pytorch 1.10.0+cu111
- Datasets 1.16.1
- Tokenizers 0.10.3
| {"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["wmt16"], "metrics": ["bleu"], "model-index": [{"name": "t5-small-finetuned-ro-to-en", "results": [{"task": {"type": "text2text-generation", "name": "Sequence-to-sequence Language Modeling"}, "dataset": {"name": "wmt16", "type": "wmt16", "args": "ro-en"}, "metrics": [{"type": "bleu", "value": 13.4499, "name": "Bleu"}]}]}]} | text2text-generation | Mirelle/t5-small-finetuned-ro-to-en | [
"transformers",
"pytorch",
"tensorboard",
"t5",
"text2text-generation",
"generated_from_trainer",
"dataset:wmt16",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [] | TAGS
#transformers #pytorch #tensorboard #t5 #text2text-generation #generated_from_trainer #dataset-wmt16 #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
| t5-small-finetuned-ro-to-en
===========================
This model is a fine-tuned version of t5-small on the wmt16 dataset.
It achieves the following results on the evaluation set:
* Loss: 1.5877
* Bleu: 13.4499
* Gen Len: 17.5073
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 0.0001
* train\_batch\_size: 16
* eval\_batch\_size: 16
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 1
* mixed\_precision\_training: Native AMP
### Training results
### Framework versions
* Transformers 4.12.5
* Pytorch 1.10.0+cu111
* Datasets 1.16.1
* Tokenizers 0.10.3
| [
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 1\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.10.0+cu111\n* Datasets 1.16.1\n* Tokenizers 0.10.3"
] | [
"TAGS\n#transformers #pytorch #tensorboard #t5 #text2text-generation #generated_from_trainer #dataset-wmt16 #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 1\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.10.0+cu111\n* Datasets 1.16.1\n* Tokenizers 0.10.3"
] | [
78,
112,
4,
33
] | [
"passage: TAGS\n#transformers #pytorch #tensorboard #t5 #text2text-generation #generated_from_trainer #dataset-wmt16 #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 1\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.10.0+cu111\n* Datasets 1.16.1\n* Tokenizers 0.10.3"
] | [
-0.10866700857877731,
0.11974101513624191,
-0.0027264354284852743,
0.09600313752889633,
0.10849028825759888,
-0.005148209631443024,
0.1655799001455307,
0.16212397813796997,
-0.11878840625286102,
0.05549045279622078,
0.14491526782512665,
0.12638597190380096,
0.05068835988640785,
0.1555665135383606,
-0.059562601149082184,
-0.24603095650672913,
0.04058774933218956,
0.05931289121508598,
-0.013458222150802612,
0.13255195319652557,
0.08515366166830063,
-0.11952744424343109,
0.09456729143857956,
0.031222909688949585,
-0.18976297974586487,
-0.014935052022337914,
0.0022096431348472834,
-0.07866314798593521,
0.10998022556304932,
0.03290041536092758,
0.08489129692316055,
0.035091839730739594,
0.04520026966929436,
-0.15954338014125824,
0.010978162288665771,
0.061198890209198,
0.003415173152461648,
0.10636013001203537,
0.0570523701608181,
-0.011776912026107311,
0.10281424224376678,
-0.06948225945234299,
0.0648222342133522,
0.025503244251012802,
-0.12688827514648438,
-0.26125219464302063,
-0.1054549589753151,
0.05852954462170601,
0.06681399047374725,
0.09053628891706467,
-0.005392900202423334,
0.18890926241874695,
-0.02292795293033123,
0.11137115210294724,
0.24607761204242706,
-0.2969650328159332,
-0.05548715963959694,
-0.01033320277929306,
0.041037727147340775,
0.07642528414726257,
-0.07791058719158173,
-0.03290880098938942,
0.025947164744138718,
0.04848676547408104,
0.14780046045780182,
-0.013575151562690735,
-0.02849189005792141,
-0.012812397442758083,
-0.1321612000465393,
-0.0789896622300148,
0.16612130403518677,
0.035220302641391754,
-0.04277465492486954,
-0.07158263027667999,
-0.08017382770776749,
-0.18043756484985352,
-0.04656888544559479,
0.016165249049663544,
0.03138282895088196,
-0.0369839109480381,
-0.09753571450710297,
-0.012887257151305676,
-0.0817524641752243,
-0.03981681168079376,
-0.045407265424728394,
0.13005195558071136,
0.04067758470773697,
0.01725415699183941,
-0.06999299675226212,
0.07999175786972046,
-0.023497598245739937,
-0.17274674773216248,
-0.004064799752086401,
0.01812821626663208,
0.013965649530291557,
-0.035708118230104446,
-0.03698365390300751,
-0.13117672502994537,
0.00453955540433526,
0.1486748307943344,
-0.09271598607301712,
0.07638579607009888,
-0.02678397111594677,
0.03715444356203079,
-0.07441927492618561,
0.19234251976013184,
-0.030503110960125923,
0.0189263503998518,
0.0193315539509058,
0.0807543694972992,
0.06018213555216789,
-0.03611305356025696,
-0.11795100569725037,
0.03448091074824333,
0.11648444831371307,
0.022906189784407616,
-0.02410144731402397,
0.0599219910800457,
-0.04276036098599434,
-0.030920539051294327,
0.058645542711019516,
-0.10068733245134354,
0.02567381225526333,
-0.012368631549179554,
-0.055254533886909485,
-0.015112222172319889,
0.02118525840342045,
0.0004879262123722583,
-0.04501795023679733,
0.08463549613952637,
-0.09775000810623169,
0.01630803942680359,
-0.07734888046979904,
-0.13582995533943176,
0.03490374609827995,
-0.08393868803977966,
0.0023283183109015226,
-0.09426839649677277,
-0.1412021517753601,
-0.007352680433541536,
0.055033765733242035,
-0.035639528185129166,
-0.05679557844996452,
-0.04662160202860832,
-0.08992482721805573,
0.05189455673098564,
-0.01436336524784565,
0.08694113045930862,
-0.07071500271558762,
0.09357771277427673,
0.04021649435162544,
0.06725283712148666,
-0.04071002081036568,
0.046626828610897064,
-0.09211000800132751,
0.047080185264348984,
-0.21040406823158264,
0.05945158377289772,
-0.04792136326432228,
0.08952371776103973,
-0.10918068885803223,
-0.09965361654758453,
0.035238806158304214,
-0.027959689497947693,
0.10696958005428314,
0.10182347893714905,
-0.1745527982711792,
-0.07524314522743225,
0.1954677700996399,
-0.08594785630702972,
-0.142621248960495,
0.13908061385154724,
-0.04550836235284805,
0.00993098970502615,
0.051475074142217636,
0.2244628220796585,
0.07005336880683899,
-0.0954434722661972,
-0.019818317145109177,
-0.03790958970785141,
0.06938967853784561,
-0.07434108853340149,
0.07714477181434631,
0.004582762252539396,
0.06112358719110489,
0.004956127610057592,
0.010266289114952087,
0.03882388025522232,
-0.08090750873088837,
-0.08103752881288528,
-0.05551495775580406,
-0.06943173706531525,
0.01079676765948534,
0.04370720684528351,
0.06201643869280815,
-0.12602335214614868,
-0.11203891783952713,
0.04578676074743271,
0.08000804483890533,
-0.08461017906665802,
0.05905115231871605,
-0.09858179837465286,
0.11501814424991608,
-0.07690592855215073,
-0.002010851399973035,
-0.1812252402305603,
-0.023098910227417946,
0.03168207406997681,
0.004416408017277718,
0.021671175956726074,
-0.055010903626680374,
0.06701582670211792,
0.07031814008951187,
-0.03881712630391121,
-0.038826774805784225,
-0.02570129558444023,
0.0006052344106137753,
-0.11861315369606018,
-0.19685916602611542,
-0.0445556566119194,
-0.03748886659741402,
0.09285581856966019,
-0.1481369584798813,
0.04348405823111534,
0.06790435314178467,
0.10726150125265121,
0.04028383642435074,
-0.029190167784690857,
0.00035577936796471477,
0.06954467296600342,
-0.05120937526226044,
-0.07142055779695511,
0.05857802554965019,
0.030069997534155846,
-0.09699447453022003,
0.00973796658217907,
-0.16435348987579346,
0.16047002375125885,
0.13963468372821808,
0.002958780387416482,
-0.055433470755815506,
-0.01585761085152626,
-0.052808962762355804,
-0.028744535520672798,
-0.025589438155293465,
0.01622612774372101,
0.15970148146152496,
0.028403265401721,
0.15852424502372742,
-0.10240904986858368,
-0.05395721271634102,
0.05130675435066223,
-0.029991937801241875,
-0.01288657821714878,
0.11924389004707336,
0.034414444118738174,
-0.11886086314916611,
0.1428578644990921,
0.1370604932308197,
-0.0503230057656765,
0.1348528116941452,
-0.0696236863732338,
-0.07262857258319855,
-0.035876236855983734,
-0.011696822009980679,
0.03632991388440132,
0.10428787022829056,
-0.11863783746957779,
-0.01698855310678482,
0.04105518013238907,
0.028343094512820244,
0.006353895645588636,
-0.18709459900856018,
-0.0024696188047528267,
0.04158126190304756,
-0.04873595014214516,
-0.05945111811161041,
-0.006377115845680237,
0.00473929475992918,
0.09713936597108841,
0.013517108745872974,
-0.05019650608301163,
0.03314216434955597,
0.014101722277700901,
-0.0694495439529419,
0.19128559529781342,
-0.10432656109333038,
-0.16350097954273224,
-0.1325504332780838,
-0.10176653414964676,
-0.06728753447532654,
-0.006397409830242395,
0.0802653357386589,
-0.08463981002569199,
-0.04786578565835953,
-0.10398951172828674,
-0.024874845519661903,
-0.011693255044519901,
0.023199917748570442,
0.03871411085128784,
-0.021184710785746574,
0.06952043622732162,
-0.11508771777153015,
-0.028382498770952225,
-0.010001854971051216,
0.022162796929478645,
0.06630722433328629,
0.00891382247209549,
0.11247055232524872,
0.13204047083854675,
-0.020586185157299042,
0.044254936277866364,
-0.038943301886320114,
0.24222764372825623,
-0.06787753850221634,
-0.015591857023537159,
0.13528749346733093,
-0.012511339038610458,
0.09587235748767853,
0.11808642745018005,
0.05417242273688316,
-0.08667916804552078,
-0.002580764004960656,
0.00324815372005105,
-0.0481097549200058,
-0.21623970568180084,
-0.016020286828279495,
-0.05615103617310524,
0.00809829868376255,
0.10652399063110352,
0.025026310235261917,
0.028301602229475975,
0.05575011670589447,
0.009198513813316822,
0.062431320548057556,
-0.02826153300702572,
0.1137806698679924,
0.12810836732387543,
0.06095733866095543,
0.13640540838241577,
-0.05931391194462776,
-0.02367604337632656,
0.0467793233692646,
0.017342012375593185,
0.20869287848472595,
-0.013759752735495567,
0.21930184960365295,
0.04299984499812126,
0.15713784098625183,
0.031148362904787064,
0.0754070058465004,
-0.02825341932475567,
-0.01116804126650095,
-0.011933855712413788,
-0.05359599366784096,
-0.04524827003479004,
0.016921525821089745,
-0.059459783136844635,
0.03747059777379036,
-0.11678017675876617,
0.0273419339209795,
0.046121593564748764,
0.29992905259132385,
0.04092560335993767,
-0.3742450177669525,
-0.11449802666902542,
0.0067045604810118675,
-0.04631917178630829,
-0.04523775726556778,
0.004511852283030748,
0.09533607959747314,
-0.07637561857700348,
0.06759587675333023,
-0.08326992392539978,
0.1113443672657013,
-0.056659895926713943,
0.03384514898061752,
0.042953163385391235,
0.09068454056978226,
-0.018383128568530083,
0.05674423649907112,
-0.2861432433128357,
0.2733892500400543,
0.029086288064718246,
0.06183129549026489,
-0.07608848810195923,
0.012763865292072296,
0.011651594191789627,
0.046903010457754135,
0.05879383534193039,
-0.005195989273488522,
-0.10097233206033707,
-0.16321608424186707,
-0.10482768714427948,
0.011347864754498005,
0.07749044895172119,
0.013006160035729408,
0.12160924077033997,
-0.012117698788642883,
-0.0028735881205648184,
0.046367350965738297,
-0.010777421295642853,
-0.03257995843887329,
-0.11508738994598389,
0.027481311932206154,
0.04567497968673706,
-0.03117581456899643,
-0.07665251940488815,
-0.10663463175296783,
-0.052301060408353806,
0.15763798356056213,
0.02913348563015461,
-0.07465798407793045,
-0.12720036506652832,
0.04013274982571602,
0.08132364600896835,
-0.09826172143220901,
0.025171514600515366,
-0.020083647221326828,
0.11962208151817322,
-0.008291077800095081,
-0.0789562240242958,
0.11262192577123642,
-0.054138269275426865,
-0.1638936698436737,
-0.04694529250264168,
0.12421095371246338,
0.007663379423320293,
0.06006471440196037,
-0.013747013173997402,
0.03652716055512428,
-0.03558463603258133,
-0.07201714813709259,
0.02456330694258213,
-0.005013322923332453,
0.09330243617296219,
-0.04626652970910072,
-0.0016306295292451978,
0.030149228870868683,
-0.07088245451450348,
-0.027149349451065063,
0.18103505671024323,
0.2511516511440277,
-0.08333971351385117,
0.061647847294807434,
0.050745464861392975,
-0.04744555801153183,
-0.15107327699661255,
0.010368742980062962,
0.05581265315413475,
0.0040060351602733135,
0.000948441622313112,
-0.17624127864837646,
0.03318394348025322,
0.0766080841422081,
-0.009766744449734688,
0.0744151920080185,
-0.31874820590019226,
-0.1252685934305191,
0.09105053544044495,
0.13041937351226807,
0.07985437661409378,
-0.15648320317268372,
-0.049473416060209274,
-0.028246045112609863,
-0.15040841698646545,
0.1392909288406372,
-0.1007954403758049,
0.11530029028654099,
-0.03325217217206955,
0.11239545792341232,
0.01477944478392601,
-0.06521269679069519,
0.11703373491764069,
-0.005114223342388868,
0.07463782280683517,
-0.06674814969301224,
0.02300873212516308,
0.11367549747228622,
-0.08600657433271408,
0.047228142619132996,
-0.10965364426374435,
0.04044399410486221,
-0.12810561060905457,
-0.012071188539266586,
-0.06895031034946442,
0.000612039992120117,
-0.03828904777765274,
-0.03947646915912628,
-0.03927449882030487,
0.005951832979917526,
0.06981673836708069,
-0.02822679467499256,
0.18616291880607605,
0.01842249557375908,
0.1405520737171173,
0.1604970395565033,
0.0977732241153717,
-0.1323254555463791,
-0.0629473328590393,
0.0013128044083714485,
-0.033039648085832596,
0.04878697916865349,
-0.1712261587381363,
0.03373259678483009,
0.1341758817434311,
0.012642978690564632,
0.1188509464263916,
0.06377620995044708,
-0.06856872886419296,
0.021403783932328224,
0.0515725314617157,
-0.17222055792808533,
-0.11115382611751556,
-0.006873825564980507,
0.060349926352500916,
-0.13250763714313507,
0.04005778208374977,
0.12529213726520538,
-0.05902816355228424,
-0.022205373272299767,
0.008855422958731651,
0.013289486058056355,
-0.01692500337958336,
0.17952603101730347,
0.03563894331455231,
0.06894166022539139,
-0.11167515069246292,
0.08210523426532745,
0.059377774596214294,
-0.1129031851887703,
0.05345812812447548,
0.11406157910823822,
-0.0986965224146843,
-0.028439179062843323,
0.03553406149148941,
0.16915298998355865,
-0.06495720893144608,
-0.04598887264728546,
-0.15875200927257538,
-0.12009570002555847,
0.09608550369739532,
0.18049128353595734,
0.06665022671222687,
0.010963128879666328,
-0.04450917989015579,
-0.013024990446865559,
-0.12546944618225098,
0.10184744745492935,
0.05364498868584633,
0.08198170363903046,
-0.12788009643554688,
0.12249177694320679,
-0.012485024519264698,
0.048258695751428604,
-0.005710630211979151,
0.011729307472705841,
-0.11193320155143738,
0.00950953084975481,
-0.14180831611156464,
0.006138843018561602,
-0.05182437226176262,
0.0024547812063246965,
-0.02550593763589859,
-0.0348997600376606,
-0.057841598987579346,
0.01884852908551693,
-0.11297107487916946,
-0.03628145158290863,
0.015429835766553879,
0.02722441963851452,
-0.12016493082046509,
-0.016107460483908653,
0.01371956616640091,
-0.08822425454854965,
0.08550850301980972,
0.04331982135772705,
-0.009080789983272552,
0.02192912995815277,
-0.023002926260232925,
0.0014403110835701227,
0.04420192912220955,
0.008099319413304329,
0.07776298373937607,
-0.11174514889717102,
-0.013346622698009014,
0.003521536709740758,
0.01735743321478367,
0.028993267565965652,
0.12167535722255707,
-0.11734387278556824,
-0.0010121287778019905,
0.0063524008728563786,
-0.05744747817516327,
-0.07514682412147522,
0.07372133433818817,
0.09457672387361526,
0.018154628574848175,
0.18413054943084717,
-0.0730152353644371,
0.03136115521192551,
-0.19986458122730255,
-0.0005307596875354648,
0.010395500808954239,
-0.14734792709350586,
-0.06319671869277954,
-0.04081171005964279,
0.06746014207601547,
-0.07312098145484924,
0.09865323454141617,
-0.002805701456964016,
0.027062255889177322,
0.045748159289360046,
-0.024279914796352386,
-0.022638432681560516,
0.006690753158181906,
0.18408840894699097,
0.01688307709991932,
-0.038608431816101074,
0.08002529293298721,
0.01910341903567314,
0.08403479307889938,
0.14174918830394745,
0.19403868913650513,
0.12100735306739807,
0.05137220397591591,
0.09842599928379059,
0.025709878653287888,
-0.025601578876376152,
-0.187485471367836,
0.04771963134407997,
-0.03482851758599281,
0.14896123111248016,
-0.007270466070622206,
0.1896739900112152,
0.13231787085533142,
-0.15350551903247833,
0.048504676669836044,
-0.037970125675201416,
-0.0852460116147995,
-0.10289658606052399,
-0.11000252515077591,
-0.08408118039369583,
-0.1407899111509323,
-0.007052294909954071,
-0.12312786281108856,
0.04534393548965454,
0.05751875787973404,
0.0170160960406065,
-0.004972342401742935,
0.13067232072353363,
0.034891992807388306,
0.007241397630423307,
0.05949414521455765,
-0.0006526333745568991,
-0.04261959716677666,
-0.04268418997526169,
-0.06742969155311584,
0.022075794637203217,
-0.003819868667051196,
0.048928402364254,
-0.0027316734194755554,
-0.005409324541687965,
0.04761878028512001,
-0.027948632836341858,
-0.11965975910425186,
0.009180259890854359,
0.026601171121001244,
0.06929843127727509,
0.04880054295063019,
0.012541050091385841,
0.004306471440941095,
-0.01561027392745018,
0.19419638812541962,
-0.07684820890426636,
-0.06145111471414566,
-0.11399295926094055,
0.2424170821905136,
0.008176939561963081,
-0.056113116443157196,
0.03478280454874039,
-0.06681754440069199,
-0.008248193189501762,
0.20213201642036438,
0.17219360172748566,
-0.03631921112537384,
-0.011359061114490032,
-0.019371140748262405,
-0.009121040813624859,
-0.02914934791624546,
0.1107148751616478,
0.1232781708240509,
0.02362404391169548,
-0.07642211765050888,
-0.03395913541316986,
-0.06718283146619797,
-0.01891007460653782,
-0.047839436680078506,
0.07849948108196259,
0.020663337782025337,
-0.007238178979605436,
-0.033687785267829895,
0.05125903710722923,
-0.055818088352680206,
-0.050718165934085846,
0.00477880472317338,
-0.20919464528560638,
-0.15942703187465668,
-0.00020172417862340808,
0.07421199977397919,
-0.007061357609927654,
0.057211291044950485,
-0.0028462810441851616,
0.014225666411221027,
0.09002643078565598,
-0.016180938109755516,
-0.08018682897090912,
-0.07583651691675186,
0.10615188628435135,
-0.15706151723861694,
0.18394102156162262,
-0.033284902572631836,
0.029175644740462303,
0.14448875188827515,
0.05305968225002289,
-0.11677127331495285,
0.06303729116916656,
0.04873304069042206,
-0.04517769441008568,
0.0061697885394096375,
0.12411287426948547,
-0.023591894656419754,
0.07289958000183105,
0.033912453800439835,
-0.11308829486370087,
-0.01193294394761324,
-0.08287691324949265,
-0.0076309009455144405,
-0.023730440065264702,
-0.04568516090512276,
-0.04531502351164818,
0.12827132642269135,
0.19314543902873993,
-0.048310812562704086,
-0.01409322489053011,
-0.06435379385948181,
0.009738815948367119,
0.06811542063951492,
-0.020796960219740868,
-0.055744145065546036,
-0.257766991853714,
0.003702053800225258,
0.07272925227880478,
-0.006629191339015961,
-0.2756670415401459,
-0.08777344971895218,
0.002986642997711897,
-0.045677922666072845,
-0.10600236058235168,
0.09534639865159988,
0.08445166051387787,
0.04693363606929779,
-0.06765611469745636,
0.001715286634862423,
-0.07074078172445297,
0.16082027554512024,
-0.13926587998867035,
-0.06493224203586578
] |
null | null | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# test-finetuned
This model is a fine-tuned version of [yhavinga/t5-v1.1-base-dutch-cnn-test](https://huggingface.co/yhavinga/t5-v1.1-base-dutch-cnn-test) on the None dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 3
- eval_batch_size: 3
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:|
| No log | 1.0 | 1 | nan | 33.8462 | 31.746 | 30.7692 | 30.7692 | 86.0 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1
- Datasets 1.15.1
- Tokenizers 0.10.3
| {"license": "apache-2.0", "tags": ["generated_from_trainer"], "model-index": [{"name": "test-finetuned", "results": []}]} | text2text-generation | Mirjam/test-finetuned | [
"transformers",
"pytorch",
"tensorboard",
"t5",
"text2text-generation",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [] | TAGS
#transformers #pytorch #tensorboard #t5 #text2text-generation #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
| test-finetuned
==============
This model is a fine-tuned version of yhavinga/t5-v1.1-base-dutch-cnn-test on the None dataset.
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 3
* eval\_batch\_size: 3
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 1
* mixed\_precision\_training: Native AMP
### Training results
### Framework versions
* Transformers 4.15.0
* Pytorch 1.10.1
* Datasets 1.15.1
* Tokenizers 0.10.3
| [
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 3\n* eval\\_batch\\_size: 3\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 1\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1\n* Datasets 1.15.1\n* Tokenizers 0.10.3"
] | [
"TAGS\n#transformers #pytorch #tensorboard #t5 #text2text-generation #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 3\n* eval\\_batch\\_size: 3\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 1\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1\n* Datasets 1.15.1\n* Tokenizers 0.10.3"
] | [
67,
113,
4,
30
] | [
"passage: TAGS\n#transformers #pytorch #tensorboard #t5 #text2text-generation #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 3\n* eval\\_batch\\_size: 3\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 1\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1\n* Datasets 1.15.1\n* Tokenizers 0.10.3"
] | [
-0.06927420943975449,
0.03864745795726776,
-0.0034429680090397596,
0.09618672728538513,
0.1462920904159546,
0.015077797695994377,
0.13126476109027863,
0.12826426327228546,
-0.10488490760326385,
0.025710003450512886,
0.11671248823404312,
0.14548587799072266,
0.031500980257987976,
0.10968917608261108,
-0.05127629265189171,
-0.27951779961586,
0.0012274534674361348,
0.04470193386077881,
-0.056676555424928665,
0.13806912302970886,
0.0926670953631401,
-0.11239400506019592,
0.07830400764942169,
0.010045676492154598,
-0.16233688592910767,
0.02203819528222084,
-0.0006489616935141385,
-0.0566987469792366,
0.1479494720697403,
0.04148878902196884,
0.11426226049661636,
0.009482411667704582,
0.06961450725793839,
-0.21019068360328674,
0.011227755807340145,
0.06503651291131973,
0.004659661557525396,
0.08444646745920181,
0.07561497390270233,
0.007536452263593674,
0.16205646097660065,
-0.05699726566672325,
0.05433364585042,
0.029408367350697517,
-0.11425352096557617,
-0.22577238082885742,
-0.07630915194749832,
0.04067326337099075,
0.08201165497303009,
0.11180596798658371,
-0.015138750895857811,
0.10725430399179459,
-0.07011612504720688,
0.10729614645242691,
0.24331854283809662,
-0.283370703458786,
-0.062058959156274796,
0.001049215905368328,
0.04354221001267433,
0.07859576493501663,
-0.08308625966310501,
-0.02760353311896324,
0.03341241553425789,
0.05712080001831055,
0.13158731162548065,
-0.02471710927784443,
-0.09392550587654114,
0.0050139958038926125,
-0.14856068789958954,
-0.04947228729724884,
0.1494074910879135,
0.039155252277851105,
-0.023879608139395714,
-0.06303274631500244,
-0.07498223334550858,
-0.1752077341079712,
-0.0344720333814621,
-0.01966974511742592,
0.041574541479349136,
-0.016307881101965904,
-0.0512041300535202,
-0.029410842806100845,
-0.11312589794397354,
-0.06519685685634613,
-0.06937127560377121,
0.11921249330043793,
0.048838332295417786,
-0.0018964095506817102,
-0.04303722083568573,
0.11128037422895432,
-0.00734809460118413,
-0.12353190779685974,
0.018111957237124443,
0.026440342888236046,
0.0036278143525123596,
-0.027330098673701286,
-0.060785867273807526,
-0.09703940898180008,
0.0073484559543430805,
0.13412357866764069,
-0.07196775078773499,
0.055204231292009354,
-0.0001821689074859023,
0.04905993491411209,
-0.10075975209474564,
0.16696873307228088,
-0.03741203248500824,
-0.012030272744596004,
-0.0019952484872192144,
0.04779547080397606,
0.027692344039678574,
-0.01623382605612278,
-0.1139351949095726,
0.0096172159537673,
0.10317020118236542,
0.020435307174921036,
-0.05230236425995827,
0.07064355164766312,
-0.04623034968972206,
-0.023702001199126244,
-0.018389074131846428,
-0.0955490693449974,
0.020176880061626434,
0.0008682992774993181,
-0.06785982847213745,
0.003067274810746312,
0.04355129227042198,
0.013572977855801582,
-0.04752618446946144,
0.10541387647390366,
-0.07393742352724075,
0.027908049523830414,
-0.09513840824365616,
-0.1228175163269043,
0.02764199860394001,
-0.06305328011512756,
0.010674234479665756,
-0.10137690603733063,
-0.17987152934074402,
-0.01284798514097929,
0.05926104262471199,
-0.0347808301448822,
-0.055233024060726166,
-0.04801338538527489,
-0.07203736901283264,
0.026909824460744858,
-0.028018871322274208,
0.14875461161136627,
-0.06261613965034485,
0.0979580357670784,
0.02999952808022499,
0.05256343632936478,
-0.03535458818078041,
0.06361163407564163,
-0.09347525238990784,
0.019036896526813507,
-0.15746872127056122,
0.048372868448495865,
-0.03930080682039261,
0.05767786502838135,
-0.10099707543849945,
-0.10193568468093872,
-0.017075171694159508,
0.003943458199501038,
0.08338106423616409,
0.0885830745100975,
-0.15354596078395844,
-0.08581575006246567,
0.1715553104877472,
-0.07723960280418396,
-0.12026572227478027,
0.13161365687847137,
-0.05010146275162697,
0.03821423277258873,
0.052155137062072754,
0.1716427206993103,
0.06120600923895836,
-0.08965626358985901,
0.022550947964191437,
-0.0020783112850040197,
0.046988844871520996,
-0.037377920001745224,
0.07343198359012604,
-0.006587779149413109,
0.015468595549464226,
0.022648874670267105,
-0.009625363163650036,
0.0694010928273201,
-0.08617173135280609,
-0.0828467458486557,
-0.04751043766736984,
-0.07050064951181412,
0.02431313507258892,
0.05946493148803711,
0.07286642491817474,
-0.10124119371175766,
-0.10330862551927567,
0.05764910206198692,
0.07587550580501556,
-0.08144675195217133,
0.04881588742136955,
-0.056260280311107635,
0.06118539348244667,
-0.03170675411820412,
-0.0006091041141189635,
-0.18375523388385773,
-0.019795842468738556,
0.010423260740935802,
-0.02080710232257843,
0.02918376587331295,
0.011789481155574322,
0.06900111585855484,
0.05845039710402489,
-0.054561831057071686,
-0.028969958424568176,
-0.043584663420915604,
-0.007228055037558079,
-0.12080492824316025,
-0.19636604189872742,
-0.030442144721746445,
-0.013293866999447346,
0.11912253499031067,
-0.21049764752388,
0.04327817261219025,
-0.010791506618261337,
0.0811036080121994,
0.012773151509463787,
-0.0014530121115967631,
-0.04543796181678772,
0.07886189967393875,
-0.05702996999025345,
-0.039596181362867355,
0.07627125829458237,
0.011850732378661633,
-0.09997338801622391,
-0.008202400989830494,
-0.13895994424819946,
0.1411997526884079,
0.12857037782669067,
-0.13393031060695648,
-0.0702342540025711,
-0.012040013447403908,
-0.06450583040714264,
-0.04776124656200409,
-0.03458370640873909,
0.0012897358974441886,
0.18555691838264465,
0.0012792719062417746,
0.16156728565692902,
-0.07552932947874069,
-0.0491349920630455,
0.023251518607139587,
-0.030825505033135414,
0.017278390005230904,
0.1355309784412384,
0.11143007129430771,
-0.0758175477385521,
0.14230884611606598,
0.1579604148864746,
-0.08767904341220856,
0.1513502150774002,
-0.038714151829481125,
-0.09031186997890472,
-0.01436332706362009,
-0.0063594039529562,
-0.0015133001143112779,
0.0671125128865242,
-0.17031440138816833,
0.007054836023598909,
0.027395252138376236,
0.027887888252735138,
0.03521570935845375,
-0.21777226030826569,
-0.01830543391406536,
0.043206412345170975,
-0.05404288321733475,
-0.00479123555123806,
-0.007269660476595163,
0.014435768127441406,
0.10953880101442337,
-0.0006431947113014758,
-0.07587426155805588,
0.03336234390735626,
-0.004354077856987715,
-0.08798623085021973,
0.20591537654399872,
-0.08141813427209854,
-0.18761442601680756,
-0.13003520667552948,
-0.07992840558290482,
-0.04789084941148758,
0.0012768980814144015,
0.07579684257507324,
-0.07994641363620758,
-0.03182588890194893,
-0.08713561296463013,
0.05324127525091171,
-0.023334726691246033,
0.022275837138295174,
-0.0001849438267527148,
0.004140973091125488,
0.07010306417942047,
-0.10662776976823807,
-0.01263984851539135,
-0.04331830143928528,
-0.05519426614046097,
0.04509018361568451,
0.03121352568268776,
0.10637473315000534,
0.16253793239593506,
-0.009491520933806896,
0.013556240126490593,
-0.03511819243431091,
0.197130024433136,
-0.06461352109909058,
-0.020504150539636612,
0.15812508761882782,
-0.009759273380041122,
0.056749772280454636,
0.1172778457403183,
0.05979543551802635,
-0.07350477576255798,
0.019501350820064545,
0.04354698583483696,
-0.03632735833525658,
-0.24159294366836548,
-0.042714767158031464,
-0.06282466650009155,
0.02220963127911091,
0.0951281189918518,
0.02700820378959179,
0.0488891638815403,
0.0543709360063076,
0.02276482805609703,
0.06473185122013092,
-0.008443201892077923,
0.07366826385259628,
0.1580491065979004,
0.03021777980029583,
0.13654276728630066,
-0.0443272665143013,
-0.06087114289402962,
0.046985577791929245,
-0.005122019909322262,
0.2176017165184021,
0.008342322893440723,
0.15598295629024506,
0.06110100820660591,
0.14606888592243195,
-0.002233497565612197,
0.07369118183851242,
-0.002710391767323017,
-0.03330108895897865,
-0.012336676008999348,
-0.04690653458237648,
-0.027559926733374596,
0.031123235821723938,
-0.06705384701490402,
0.04460898041725159,
-0.12497983127832413,
-0.00870009046047926,
0.04425470530986786,
0.27106186747550964,
0.03330160677433014,
-0.31349653005599976,
-0.09204993396997452,
0.0083541888743639,
-0.06655439734458923,
-0.022770149633288383,
0.035490769892930984,
0.09356063604354858,
-0.08801931887865067,
0.04273192211985588,
-0.08141597360372543,
0.10667037963867188,
-0.03554610162973404,
0.046705689281225204,
0.06883663684129715,
0.09079822152853012,
0.010459979064762592,
0.08597394078969955,
-0.31558284163475037,
0.272970050573349,
-0.004522982053458691,
0.054595548659563065,
-0.07250882685184479,
0.017414163798093796,
0.027741942554712296,
0.039135757833719254,
0.06390797346830368,
-0.025544652715325356,
-0.054755810648202896,
-0.16730691492557526,
-0.06106305867433548,
0.018659047782421112,
0.09558877348899841,
-0.02913685142993927,
0.1092069149017334,
-0.04493570327758789,
0.0100143663585186,
0.07587361335754395,
0.005740978289395571,
-0.07648123055696487,
-0.10479165613651276,
0.009617485105991364,
0.03116946667432785,
-0.026564348489046097,
-0.0696939080953598,
-0.11136368662118912,
-0.10389403253793716,
0.16426865756511688,
-0.036159954965114594,
-0.03768233582377434,
-0.10643342137336731,
0.08670622855424881,
0.0744585394859314,
-0.08714727312326431,
0.03789501264691353,
0.0040630437433719635,
0.08020833879709244,
0.024424199014902115,
-0.0821157842874527,
0.11763297766447067,
-0.07325682789087296,
-0.1712581366300583,
-0.05270102620124817,
0.1273568570613861,
0.02171667478978634,
0.06339742988348007,
-0.021428098902106285,
0.006571646314114332,
-0.04856570065021515,
-0.08307919651269913,
0.015134465880692005,
-0.006953757256269455,
0.06560682505369186,
0.023962032049894333,
-0.0664367750287056,
0.014191371388733387,
-0.0584457665681839,
-0.05341145023703575,
0.2027626633644104,
0.22817428410053253,
-0.0836978629231453,
0.033515918999910355,
0.034304384142160416,
-0.07867303490638733,
-0.1863378882408142,
0.010270712897181511,
0.06453471630811691,
-0.0006875229300931096,
0.043934378772974014,
-0.1925022155046463,
0.09194138646125793,
0.10340947657823563,
-0.010509091429412365,
0.09791464358568192,
-0.3534366488456726,
-0.13637734949588776,
0.12456273287534714,
0.137921541929245,
0.0888335183262825,
-0.1545974165201187,
-0.023348389193415642,
-0.028168857097625732,
-0.1181696429848671,
0.12787984311580658,
-0.09219368547201157,
0.12793748080730438,
-0.029133927077054977,
0.09747403115034103,
0.010773804038763046,
-0.05751439556479454,
0.10501465946435928,
-0.016448484733700752,
0.0804864764213562,
-0.06815499812364578,
0.018556473776698112,
0.039466504007577896,
-0.0421554297208786,
0.029416166245937347,
-0.09981783479452133,
0.019645849242806435,
-0.09326620399951935,
-0.033565305173397064,
-0.07252553105354309,
0.03504785895347595,
-0.03633171319961548,
-0.06230124831199646,
-0.03400080278515816,
0.00664475979283452,
0.05818649008870125,
-0.00860078725963831,
0.1591029018163681,
-0.0021159090101718903,
0.15389594435691833,
0.13066138327121735,
0.08644304424524307,
-0.054244134575128555,
-0.0704188272356987,
-0.021411767229437828,
-0.017377803102135658,
0.05018947273492813,
-0.1357422024011612,
0.029722467064857483,
0.148004949092865,
0.007351619657129049,
0.15179955959320068,
0.08444363623857498,
-0.039673738181591034,
0.010060847736895084,
0.06033994257450104,
-0.15945468842983246,
-0.12163376063108444,
-0.02447567693889141,
-0.026639966294169426,
-0.10882827639579773,
0.04405210167169571,
0.11992300301790237,
-0.07289229333400726,
-0.002227066084742546,
0.002706671366468072,
0.01952756755053997,
-0.052584316581487656,
0.1883981078863144,
0.029030943289399147,
0.04548978433012962,
-0.09038019925355911,
0.08668804168701172,
0.047201968729496,
-0.10915245860815048,
0.018530771136283875,
0.11205505579710007,
-0.06658085435628891,
-0.04905271530151367,
0.05198083072900772,
0.15735328197479248,
-0.06578002125024796,
-0.057886891067028046,
-0.1407829374074936,
-0.13562563061714172,
0.09799332916736603,
0.14942875504493713,
0.08277449011802673,
0.011961777694523335,
-0.0620330385863781,
0.018614014610648155,
-0.11144635081291199,
0.10448160767555237,
0.04818432033061981,
0.0601016990840435,
-0.13652655482292175,
0.15353946387767792,
0.015321451239287853,
0.037723563611507416,
-0.020183589309453964,
0.018200870603322983,
-0.09352486580610275,
0.015161979012191296,
-0.142805278301239,
-0.027097221463918686,
-0.021939940750598907,
-0.0024582380428910255,
-0.004401256795972586,
-0.03918638452887535,
-0.06492393463850021,
0.018306298181414604,
-0.11259167641401291,
-0.029740024358034134,
0.013676400296390057,
0.060719870030879974,
-0.1101648211479187,
-0.0289759524166584,
0.02520778588950634,
-0.06851048022508621,
0.08129096776247025,
0.05096236988902092,
0.00880877859890461,
0.05179445073008537,
-0.13665764033794403,
0.025181937962770462,
0.062054283916950226,
0.02357235923409462,
0.038281042128801346,
-0.09556597471237183,
-0.009584148414433002,
0.002404069295153022,
0.038496892899274826,
0.011018600314855576,
0.0566844679415226,
-0.14026658236980438,
-0.007389194332063198,
-0.018862370401620865,
-0.08310900628566742,
-0.06926511973142624,
0.03335842490196228,
0.04457733407616615,
0.03296962380409241,
0.1857730746269226,
-0.08889735490083694,
0.05011232569813728,
-0.22123324871063232,
0.015172787941992283,
0.003875778056681156,
-0.1086902916431427,
-0.08043508976697922,
-0.07244383543729782,
0.05816085636615753,
-0.057637136429548264,
0.13562098145484924,
0.02149592526257038,
0.04426772892475128,
0.0369926355779171,
-0.033500127494335175,
0.02373001165688038,
0.017353856936097145,
0.21615847945213318,
0.027968211099505424,
-0.04099126160144806,
0.04141217842698097,
0.03563665971159935,
0.10867653787136078,
0.13236543536186218,
0.20896568894386292,
0.15321843326091766,
-0.007508388254791498,
0.09983447939157486,
0.03518045321106911,
-0.06323185563087463,
-0.16348658502101898,
0.04544004425406456,
-0.02985011227428913,
0.1342168152332306,
-0.030977480113506317,
0.2387584000825882,
0.09579609334468842,
-0.15519993007183075,
0.0488879419863224,
-0.04615119472146034,
-0.07511060684919357,
-0.11903084814548492,
-0.07508934289216995,
-0.08022022247314453,
-0.15556444227695465,
-0.006774964276701212,
-0.1193113848567009,
0.04175950586795807,
0.09467409551143646,
0.02487688884139061,
-0.025136873126029968,
0.14187142252922058,
0.03178691864013672,
-0.00466029392555356,
0.06528516858816147,
0.0022446648217737675,
-0.015938881784677505,
-0.10470356792211533,
-0.0718233659863472,
0.003883552737534046,
-0.01520009245723486,
0.034146104007959366,
-0.03759452700614929,
-0.05386538803577423,
0.03459317237138748,
-0.026093492284417152,
-0.09520578384399414,
0.010099138133227825,
0.02160218544304371,
0.066110759973526,
0.06915482878684998,
0.004582082387059927,
0.0020923777483403683,
-0.01204050425440073,
0.23136112093925476,
-0.08508983254432678,
-0.07381290197372437,
-0.09145762026309967,
0.24539795517921448,
0.033292535692453384,
-0.014496996067464352,
0.025598041713237762,
-0.05825876444578171,
-0.01469689141958952,
0.24477213621139526,
0.19016258418560028,
-0.0643279030919075,
-0.012820043601095676,
0.014700253494083881,
-0.005872568115592003,
-0.017108868807554245,
0.10697711259126663,
0.1459016054868698,
0.07656826078891754,
-0.08787723630666733,
-0.02718481607735157,
-0.04486604034900665,
-0.0034130695275962353,
-0.047024305909872055,
0.08647604286670685,
0.04158713296055794,
0.0001424141228199005,
-0.022903738543391228,
0.05824052542448044,
-0.0689161941409111,
-0.07838565856218338,
0.00764914695173502,
-0.19969847798347473,
-0.1535222828388214,
-0.016933226957917213,
0.11956728249788284,
-0.005474949721246958,
0.05394163355231285,
-0.02435455098748207,
0.0006512244581244886,
0.08393140137195587,
-0.017363332211971283,
-0.08454500883817673,
-0.07053042948246002,
0.09042404592037201,
-0.11777952313423157,
0.1948850005865097,
-0.04088323190808296,
0.04332616180181503,
0.12839262187480927,
0.06152460351586342,
-0.0704357698559761,
0.07526765018701553,
0.043318863958120346,
-0.06369035691022873,
0.03902381286025047,
0.10621370375156403,
-0.02965736761689186,
0.0673598051071167,
0.04756581038236618,
-0.14009162783622742,
0.018506327643990517,
-0.07204493135213852,
-0.06473089009523392,
-0.027455858886241913,
-0.03532924875617027,
-0.06080121546983719,
0.1260659396648407,
0.21779854595661163,
-0.03734381124377251,
-0.002513354644179344,
-0.08296651393175125,
0.0010419017635285854,
0.04871061444282532,
0.057071536779403687,
-0.03743121773004532,
-0.22818538546562195,
0.009528418071568012,
0.06492479890584946,
-0.009725742042064667,
-0.2674953043460846,
-0.09542685002088547,
0.012965411879122257,
-0.06061020493507385,
-0.11831946671009064,
0.0820804163813591,
0.1015501618385315,
0.048100415617227554,
-0.05043651536107063,
-0.07866650819778442,
-0.06679541617631912,
0.16350555419921875,
-0.1405436098575592,
-0.07565888017416
] |
null | null | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-cola
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7134
- Matthews Correlation: 0.5411
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Matthews Correlation |
|:-------------:|:-----:|:----:|:---------------:|:--------------------:|
| 0.5294 | 1.0 | 535 | 0.5082 | 0.4183 |
| 0.3483 | 2.0 | 1070 | 0.4969 | 0.5259 |
| 0.2355 | 3.0 | 1605 | 0.6260 | 0.5065 |
| 0.1733 | 4.0 | 2140 | 0.7134 | 0.5411 |
| 0.1238 | 5.0 | 2675 | 0.8516 | 0.5291 |
### Framework versions
- Transformers 4.12.3
- Pytorch 1.10.0+cu111
- Datasets 1.15.1
- Tokenizers 0.10.3
| {"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["glue"], "metrics": ["matthews_correlation"], "model-index": [{"name": "distilbert-base-uncased-finetuned-cola", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "glue", "type": "glue", "args": "cola"}, "metrics": [{"type": "matthews_correlation", "value": 0.54109909504615, "name": "Matthews Correlation"}]}]}]} | text-classification | MisbaHF/distilbert-base-uncased-finetuned-cola | [
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"dataset:glue",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [] | TAGS
#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #dataset-glue #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us
| distilbert-base-uncased-finetuned-cola
======================================
This model is a fine-tuned version of distilbert-base-uncased on the glue dataset.
It achieves the following results on the evaluation set:
* Loss: 0.7134
* Matthews Correlation: 0.5411
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 16
* eval\_batch\_size: 16
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 5
### Training results
### Framework versions
* Transformers 4.12.3
* Pytorch 1.10.0+cu111
* Datasets 1.15.1
* Tokenizers 0.10.3
| [
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.12.3\n* Pytorch 1.10.0+cu111\n* Datasets 1.15.1\n* Tokenizers 0.10.3"
] | [
"TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #dataset-glue #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.12.3\n* Pytorch 1.10.0+cu111\n* Datasets 1.15.1\n* Tokenizers 0.10.3"
] | [
67,
98,
4,
33
] | [
"passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #dataset-glue #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.12.3\n* Pytorch 1.10.0+cu111\n* Datasets 1.15.1\n* Tokenizers 0.10.3"
] | [
-0.09953347593545914,
0.09874087572097778,
-0.002511604456230998,
0.12091247737407684,
0.16499070823192596,
0.034331291913986206,
0.1324433982372284,
0.12642896175384521,
-0.08521388471126556,
0.021414093673229218,
0.12043958902359009,
0.1608530431985855,
0.02341119386255741,
0.11020602285861969,
-0.04826747626066208,
-0.26533666253089905,
-0.01393829844892025,
0.04971835017204285,
-0.05632239580154419,
0.1354067325592041,
0.09114500880241394,
-0.12023554742336273,
0.09020212292671204,
0.0099337138235569,
-0.19124649465084076,
0.0011048978194594383,
-0.0010920170461758971,
-0.05103665590286255,
0.14910998940467834,
0.02660513110458851,
0.12270399183034897,
0.005109584890305996,
0.08301815390586853,
-0.20412342250347137,
0.010900583118200302,
0.046728942543268204,
0.0031716071534901857,
0.09235342592000961,
0.045432198792696,
0.0016819247975945473,
0.11801120638847351,
-0.07893169671297073,
0.05534156784415245,
0.024939799681305885,
-0.11975694447755814,
-0.2128710299730301,
-0.0778748020529747,
0.036783378571271896,
0.07661557197570801,
0.10431034117937088,
-0.008242898620665073,
0.1184171512722969,
-0.08168778568506241,
0.09322264790534973,
0.2265443205833435,
-0.28452247381210327,
-0.06619590520858765,
0.04379666596651077,
0.015058509074151516,
0.04781145974993706,
-0.1015576496720314,
-0.035203490406274796,
0.04749462753534317,
0.0519600510597229,
0.12782640755176544,
-0.027968812733888626,
-0.11474987864494324,
0.006442997604608536,
-0.14108677208423615,
-0.03252919390797615,
0.16779018938541412,
0.04112625494599342,
-0.027329619973897934,
-0.05655708163976669,
-0.0565880686044693,
-0.15023289620876312,
-0.035420678555965424,
-0.016137896105647087,
0.049116719514131546,
-0.02263779006898403,
-0.04222801327705383,
-0.0091459471732378,
-0.1084260642528534,
-0.0649506226181984,
-0.07226604968309402,
0.11088686436414719,
0.038162484765052795,
0.0058541507460176945,
-0.030373068526387215,
0.1126675009727478,
-0.005879268515855074,
-0.12169726938009262,
0.02592085860669613,
0.022252557799220085,
0.012412738986313343,
-0.039657268673181534,
-0.052843380719423294,
-0.06314884126186371,
0.01163672935217619,
0.13044480979442596,
-0.05523933470249176,
0.04299374297261238,
0.051151104271411896,
0.0497078113257885,
-0.09264211356639862,
0.18815849721431732,
-0.03412971273064613,
-0.0246804878115654,
-0.0013784491457045078,
0.05078420042991638,
0.015825295820832253,
-0.012068700976669788,
-0.12227529287338257,
0.007106361445039511,
0.08839566260576248,
0.009266041219234467,
-0.0627312883734703,
0.07418110966682434,
-0.060031548142433167,
-0.024304281920194626,
-0.000583169050514698,
-0.09094366431236267,
0.021768907085061073,
0.0020300941541790962,
-0.07044500857591629,
-0.021747708320617676,
0.03545186296105385,
0.016193050891160965,
-0.01973368413746357,
0.10824801027774811,
-0.08700212091207504,
0.02766178362071514,
-0.09214701503515244,
-0.11091382056474686,
0.016382884234189987,
-0.10616400837898254,
0.02209707722067833,
-0.09194151312112808,
-0.17804844677448273,
-0.016779260709881783,
0.06123820319771767,
-0.0249736700206995,
-0.057835739105939865,
-0.059264104813337326,
-0.0670977234840393,
0.010518141090869904,
-0.007938647642731667,
0.11550603061914444,
-0.06454900652170181,
0.09306663274765015,
0.02486114203929901,
0.06328190118074417,
-0.03969729691743851,
0.060109253972768784,
-0.10152862221002579,
0.014346135780215263,
-0.15077118575572968,
0.04044334962964058,
-0.051775697618722916,
0.06826219707727432,
-0.0828319564461708,
-0.10620411485433578,
0.004799502901732922,
-0.002012147568166256,
0.06199968606233597,
0.09603439271450043,
-0.18445594608783722,
-0.08309091627597809,
0.1646650731563568,
-0.07347718626260757,
-0.12144056707620621,
0.12104693800210953,
-0.05849684029817581,
0.06013638526201248,
0.05822913348674774,
0.18045574426651,
0.08632402122020721,
-0.07972324639558792,
0.0034902701154351234,
0.023290645331144333,
0.0507633276283741,
-0.0611066073179245,
0.06806862354278564,
0.0016729767667129636,
0.021276770159602165,
0.035037096589803696,
-0.028808169066905975,
0.06409851461648941,
-0.0885707437992096,
-0.0994555801153183,
-0.03766985982656479,
-0.08175698667764664,
0.047097474336624146,
0.07800299674272537,
0.0673503428697586,
-0.09371918439865112,
-0.07792548090219498,
0.05101942643523216,
0.08089784532785416,
-0.05952814593911171,
0.02505442686378956,
-0.05018920451402664,
0.07249259203672409,
-0.023010022938251495,
-0.021495360881090164,
-0.17935718595981598,
-0.03304700180888176,
0.007671220228075981,
0.0016373213147744536,
0.018306195735931396,
0.03491630405187607,
0.06346556544303894,
0.06125207617878914,
-0.04979454353451729,
-0.019516687840223312,
-0.034941304475069046,
0.00024957084679044783,
-0.12484022974967957,
-0.1978163868188858,
-0.029437387362122536,
-0.022979283705353737,
0.15926769375801086,
-0.20804807543754578,
0.05219445005059242,
-0.012930957600474358,
0.06893651932477951,
0.01259586587548256,
-0.006784488912671804,
-0.037707116454839706,
0.07587210088968277,
-0.04283028841018677,
-0.05062086880207062,
0.08230898529291153,
0.014233949594199657,
-0.09096012264490128,
-0.04920530319213867,
-0.09941975027322769,
0.1581258773803711,
0.12762826681137085,
-0.11041786521673203,
-0.07833212614059448,
-0.023729141801595688,
-0.06755886971950531,
-0.03483648970723152,
-0.046310633420944214,
0.025552386417984962,
0.18936489522457123,
-0.004262363072484732,
0.14987918734550476,
-0.0682009607553482,
-0.04397238418459892,
0.017608368769288063,
-0.037649307399988174,
0.015210999175906181,
0.13444697856903076,
0.1345853954553604,
-0.05895493924617767,
0.15505675971508026,
0.14793606102466583,
-0.08454471826553345,
0.15085500478744507,
-0.04173930361866951,
-0.06567565351724625,
-0.017701338976621628,
-0.02857152186334133,
-0.010895025916397572,
0.09964711219072342,
-0.15596097707748413,
-0.0019119561184197664,
0.03000222146511078,
0.015877656638622284,
0.02510448545217514,
-0.22794215381145477,
-0.04155518114566803,
0.0389273501932621,
-0.0450444333255291,
-0.006036035716533661,
-0.007226346060633659,
0.005228179506957531,
0.10049860179424286,
-0.00018409325275570154,
-0.08764992654323578,
0.03679626062512398,
0.0018983642803505063,
-0.08439407497644424,
0.21584919095039368,
-0.08084686845541,
-0.17281745374202728,
-0.13095782697200775,
-0.07243042439222336,
-0.04566062614321709,
-0.0010706400498747826,
0.0691693052649498,
-0.0967247262597084,
-0.026842236518859863,
-0.07250673323869705,
0.02798851579427719,
0.007345893885940313,
0.022695617750287056,
0.004121406003832817,
0.007244843058288097,
0.06366469711065292,
-0.11213372647762299,
-0.015016691759228706,
-0.0575074627995491,
-0.044975247234106064,
0.04634639620780945,
0.027689194306731224,
0.11020880937576294,
0.15379390120506287,
-0.012518510222434998,
0.012555653229355812,
-0.03148170933127403,
0.2373463362455368,
-0.05985097959637642,
-0.020610256120562553,
0.14333312213420868,
-0.009508912451565266,
0.052515190094709396,
0.11528576165437698,
0.0747729167342186,
-0.07828541100025177,
0.0047271978110075,
0.03834423050284386,
-0.034632548689842224,
-0.23223504424095154,
-0.05309094488620758,
-0.05468036234378815,
0.012766015715897083,
0.09088542312383652,
0.023131858557462692,
0.029285304248332977,
0.06966236978769302,
0.04191255196928978,
0.07321835309267044,
-0.03509543091058731,
0.05163390561938286,
0.12911584973335266,
0.02997245267033577,
0.12461114674806595,
-0.0458318330347538,
-0.06507453322410583,
0.04078632593154907,
-0.008546932600438595,
0.2244189828634262,
0.01144444476813078,
0.13197962939739227,
0.0672767236828804,
0.16255813837051392,
-0.009635847993195057,
0.07562866061925888,
-0.009486976079642773,
-0.037601273506879807,
-0.01691015623509884,
-0.03981604427099228,
-0.038888368755578995,
0.024911319836974144,
-0.06262046843767166,
0.06230686232447624,
-0.1238240972161293,
0.014674068428575993,
0.05898761749267578,
0.2494848221540451,
0.03398442640900612,
-0.317575603723526,
-0.09669401496648788,
0.001925171003676951,
-0.03102806955575943,
-0.01730147935450077,
0.027163192629814148,
0.09546197950839996,
-0.09838628023862839,
0.028661495074629784,
-0.07474260032176971,
0.09572183340787888,
-0.056389112025499344,
0.0516512431204319,
0.08281200379133224,
0.08809110522270203,
0.011251848191022873,
0.09231287240982056,
-0.2882535457611084,
0.2763582170009613,
-0.0006312874611467123,
0.0553419403731823,
-0.07551172375679016,
0.008627848699688911,
0.04104002192616463,
0.06337206810712814,
0.08036306500434875,
-0.012492210604250431,
-0.019014839082956314,
-0.1881796270608902,
-0.06654578447341919,
0.026966385543346405,
0.06983157992362976,
-0.042700767517089844,
0.08395274728536606,
-0.032174501568078995,
0.00960498582571745,
0.07390110939741135,
0.0026269557420164347,
-0.05285651981830597,
-0.10823807865381241,
-0.00419450830668211,
0.019751714542508125,
-0.0604015551507473,
-0.06156456097960472,
-0.12159401923418045,
-0.12967482209205627,
0.1563071310520172,
-0.03687328100204468,
-0.03934948891401291,
-0.10622747987508774,
0.08209172636270523,
0.05936790630221367,
-0.08948037028312683,
0.042552195489406586,
0.0031793885864317417,
0.07605233788490295,
0.020437801256775856,
-0.07035695016384125,
0.10311683267354965,
-0.07421185821294785,
-0.15605419874191284,
-0.06501059234142303,
0.10722552239894867,
0.03453879803419113,
0.06701719015836716,
-0.014527936466038227,
0.0036785739939659834,
-0.04561163857579231,
-0.08830267190933228,
0.021457381546497345,
0.0034411305096000433,
0.07714685052633286,
0.01873295195400715,
-0.07657564431428909,
0.012000871822237968,
-0.0651417076587677,
-0.033748023211956024,
0.2058180272579193,
0.22602058947086334,
-0.0996016338467598,
0.02484969235956669,
0.025279255583882332,
-0.07408372312784195,
-0.19799210131168365,
0.03336464613676071,
0.054752811789512634,
0.008055822923779488,
0.0453217551112175,
-0.18585991859436035,
0.12986215949058533,
0.10611351579427719,
-0.011682478711009026,
0.10396619141101837,
-0.3257942497730255,
-0.1207713782787323,
0.13650722801685333,
0.13745655119419098,
0.09705239534378052,
-0.13265833258628845,
-0.02269246056675911,
-0.017406022176146507,
-0.13992424309253693,
0.11496812850236893,
-0.090373694896698,
0.1212964728474617,
-0.03681858256459236,
0.07597478479146957,
0.0026575999800115824,
-0.05805017799139023,
0.12036504596471786,
0.02447415143251419,
0.09468253701925278,
-0.05885415896773338,
-0.0346006378531456,
0.03072948008775711,
-0.04217635840177536,
0.03359675034880638,
-0.09899406880140305,
0.028582602739334106,
-0.10210000723600388,
-0.02577287144958973,
-0.06836604326963425,
0.04421823471784592,
-0.046214211732149124,
-0.06974469125270844,
-0.03741461783647537,
0.026357466354966164,
0.048025988042354584,
-0.007492511998862028,
0.12165822833776474,
0.023274313658475876,
0.14792604744434357,
0.09826693683862686,
0.07475673407316208,
-0.06614682078361511,
-0.08220246434211731,
-0.02739529311656952,
-0.010869084857404232,
0.04992781952023506,
-0.1360960453748703,
0.020313922315835953,
0.15213249623775482,
0.019550077617168427,
0.15458178520202637,
0.08367957174777985,
-0.021696390584111214,
-0.0013909009285271168,
0.05894676223397255,
-0.16482074558734894,
-0.095497265458107,
-0.01692536473274231,
-0.0687151551246643,
-0.12071292847394943,
0.04411275312304497,
0.09410307556390762,
-0.06731542944908142,
-0.0070029981434345245,
-0.004590475466102362,
0.014873005449771881,
-0.05009814724326134,
0.1844250112771988,
0.06193801015615463,
0.04888257756829262,
-0.09574009478092194,
0.07230930775403976,
0.04460417479276657,
-0.07260123640298843,
0.003555342322215438,
0.0730445459485054,
-0.08470243215560913,
-0.054818421602249146,
0.06414514034986496,
0.19110994040966034,
-0.04363720491528511,
-0.0468888059258461,
-0.14587534964084625,
-0.12429648637771606,
0.07791906595230103,
0.14010050892829895,
0.11792059242725372,
0.011102552525699139,
-0.06639044731855392,
0.003767638234421611,
-0.10668066143989563,
0.10225244611501694,
0.04751317575573921,
0.061346109956502914,
-0.14212389290332794,
0.14342623949050903,
0.019682904705405235,
0.0481918640434742,
-0.01839926466345787,
0.0225361417979002,
-0.1020636260509491,
0.008319245651364326,
-0.09447463601827621,
-0.019602062180638313,
-0.0297740139067173,
0.011695586144924164,
-0.005361055489629507,
-0.04652413725852966,
-0.05381449684500694,
0.010594788007438183,
-0.10772327333688736,
-0.023150067776441574,
0.029049210250377655,
0.07299237698316574,
-0.1094348207116127,
-0.03556108847260475,
0.030979042872786522,
-0.06228852644562721,
0.07504276186227798,
0.042609747499227524,
0.014938700012862682,
0.05030939728021622,
-0.1388765275478363,
0.020099302753806114,
0.07358679920434952,
0.028721114620566368,
0.060426343232393265,
-0.10016195476055145,
-0.00950651615858078,
-0.009530103765428066,
0.039311885833740234,
0.02166745252907276,
0.07522766292095184,
-0.1405515968799591,
0.004839055240154266,
-0.023800915107131004,
-0.08430628478527069,
-0.06710097193717957,
0.027594968676567078,
0.08822209388017654,
0.018141360953450203,
0.19948069751262665,
-0.07641546428203583,
0.05125359818339348,
-0.21803437173366547,
0.006752499379217625,
-0.0058495057746768,
-0.10863523185253143,
-0.09944412857294083,
-0.07315931469202042,
0.05366877093911171,
-0.06116030365228653,
0.15022185444831848,
0.04569690302014351,
0.01782877743244171,
0.024864260107278824,
-0.01193123310804367,
0.01258366834372282,
0.01141111645847559,
0.18875959515571594,
0.030172210186719894,
-0.03526976332068443,
0.05705257132649422,
0.044683922082185745,
0.10286445170640945,
0.11252806335687637,
0.20122970640659332,
0.14473356306552887,
-0.009614331647753716,
0.09224250167608261,
0.043594636023044586,
-0.0571451298892498,
-0.15734533965587616,
0.0523236021399498,
-0.03337396681308746,
0.10859769582748413,
-0.020434541627764702,
0.22116538882255554,
0.06473782658576965,
-0.1704503446817398,
0.051612015813589096,
-0.05156480893492699,
-0.08757349848747253,
-0.11537886410951614,
-0.049788981676101685,
-0.07638025283813477,
-0.13064563274383545,
-0.004418745171278715,
-0.11596781760454178,
-0.0030279008205980062,
0.1252775639295578,
0.004495105240494013,
-0.026288362219929695,
0.1577172875404358,
0.013742298819124699,
0.022418297827243805,
0.05891863629221916,
0.008379055187106133,
-0.03827941045165062,
-0.1397867351770401,
-0.058738671243190765,
-0.013102419674396515,
-0.008189517073333263,
0.0301776472479105,
-0.061405882239341736,
-0.04409507289528847,
0.03033839538693428,
-0.02161327563226223,
-0.0961952656507492,
0.0058813439682126045,
0.0114591708406806,
0.05236304923892021,
0.04504939168691635,
0.009300000965595245,
0.017563441768288612,
-0.0029333671554923058,
0.19917263090610504,
-0.07183873653411865,
-0.0666523203253746,
-0.10286440700292587,
0.2338429093360901,
0.034976303577423096,
-0.017381610348820686,
0.03417123854160309,
-0.06636831164360046,
0.0040776897221803665,
0.24897538125514984,
0.21798938512802124,
-0.08088204264640808,
-0.005363496020436287,
0.017881739884614944,
-0.007192263379693031,
-0.020721865817904472,
0.09718649834394455,
0.14278611540794373,
0.04755014181137085,
-0.09300366789102554,
-0.04347268119454384,
-0.05805261433124542,
-0.01779104396700859,
-0.03378866985440254,
0.0696251168847084,
0.052194997668266296,
0.010079930536448956,
-0.03599933162331581,
0.05708372965455055,
-0.06848310679197311,
-0.08963042497634888,
0.05697747692465782,
-0.21786916255950928,
-0.16666465997695923,
-0.016561424359679222,
0.10220707952976227,
0.0009916772833094,
0.062436070293188095,
-0.02936011739075184,
-0.004481164738535881,
0.0916908010840416,
-0.01840386539697647,
-0.09784910827875137,
-0.0714891329407692,
0.08569670468568802,
-0.11273930966854095,
0.21685214340686798,
-0.04774317145347595,
0.05394842475652695,
0.12543116509914398,
0.0677146464586258,
-0.06339026987552643,
0.06550512462854385,
0.04276767000555992,
-0.04071614146232605,
0.02216651663184166,
0.06880888342857361,
-0.03338196873664856,
0.06525374948978424,
0.04850692301988602,
-0.13922524452209473,
0.023588009178638458,
-0.04621881991624832,
-0.06968139857053757,
-0.04311145469546318,
-0.022173874080181122,
-0.05998322367668152,
0.1285596489906311,
0.21853448450565338,
-0.02487208880484104,
-0.009410974569618702,
-0.07095746695995331,
0.00939994491636753,
0.055758699774742126,
0.023770613595843315,
-0.0571277029812336,
-0.21143896877765656,
0.01634996384382248,
0.044792741537094116,
-0.017037682235240936,
-0.25224122405052185,
-0.10219690948724747,
0.0042416369542479515,
-0.07179052382707596,
-0.09612056612968445,
0.07293257117271423,
0.08916149288415909,
0.05552821233868599,
-0.056204959750175476,
-0.04866582155227661,
-0.07454274594783783,
0.14954450726509094,
-0.1451619565486908,
-0.09071090817451477
] |
null | null | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilroberta-base-testingSB-testingSB
This model is a fine-tuned version of [MistahCase/distilroberta-base-testingSB](https://huggingface.co/MistahCase/distilroberta-base-testingSB) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9870
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 1.1463 | 1.0 | 1461 | 1.1171 |
| 1.0188 | 2.0 | 2922 | 1.0221 |
| 1.0016 | 3.0 | 4383 | 0.9870 |
### Framework versions
- Transformers 4.20.0
- Pytorch 1.11.0+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1
| {"license": "apache-2.0", "tags": ["generated_from_trainer"], "model-index": [{"name": "distilroberta-base-testingSB-testingSB", "results": []}]} | fill-mask | MistahCase/distilroberta-base-testingSB-testingSB | [
"transformers",
"pytorch",
"tensorboard",
"roberta",
"fill-mask",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [] | TAGS
#transformers #pytorch #tensorboard #roberta #fill-mask #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
| distilroberta-base-testingSB-testingSB
======================================
This model is a fine-tuned version of MistahCase/distilroberta-base-testingSB on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 0.9870
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 8
* eval\_batch\_size: 8
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 3.0
### Training results
### Framework versions
* Transformers 4.20.0
* Pytorch 1.11.0+cu113
* Datasets 2.3.2
* Tokenizers 0.12.1
| [
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3.0",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.20.0\n* Pytorch 1.11.0+cu113\n* Datasets 2.3.2\n* Tokenizers 0.12.1"
] | [
"TAGS\n#transformers #pytorch #tensorboard #roberta #fill-mask #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3.0",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.20.0\n* Pytorch 1.11.0+cu113\n* Datasets 2.3.2\n* Tokenizers 0.12.1"
] | [
56,
98,
4,
33
] | [
"passage: TAGS\n#transformers #pytorch #tensorboard #roberta #fill-mask #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3.0### Training results### Framework versions\n\n\n* Transformers 4.20.0\n* Pytorch 1.11.0+cu113\n* Datasets 2.3.2\n* Tokenizers 0.12.1"
] | [
-0.10813123732805252,
0.06192031502723694,
-0.0023941928520798683,
0.12369661033153534,
0.16542890667915344,
0.026288365945219994,
0.12292338162660599,
0.11755134165287018,
-0.10071606189012527,
0.020171090960502625,
0.13119588792324066,
0.17196129262447357,
0.012070291675627232,
0.13376851379871368,
-0.02451334334909916,
-0.23995299637317657,
-0.008124047890305519,
0.038217488676309586,
-0.1153402104973793,
0.13970790803432465,
0.09082803130149841,
-0.12993989884853363,
0.07338913530111313,
0.01375524140894413,
-0.21642623841762543,
0.011008622124791145,
0.02499743178486824,
-0.06671535968780518,
0.15116293728351593,
0.006503337528556585,
0.1392025500535965,
-0.0032129257451742887,
0.08367625623941422,
-0.15997442603111267,
0.01646750047802925,
0.055290378630161285,
0.004274697508662939,
0.0857204794883728,
0.04185977578163147,
0.003916923422366381,
0.09680601954460144,
-0.0882469117641449,
0.05428231135010719,
0.021313203498721123,
-0.1260918378829956,
-0.24457058310508728,
-0.08264598995447159,
0.015518750995397568,
0.05814192071557045,
0.10785380750894547,
0.007771150209009647,
0.14908188581466675,
-0.09044020622968674,
0.08617255836725235,
0.24897699058055878,
-0.27884674072265625,
-0.06955065578222275,
0.021929258480668068,
0.021994702517986298,
0.04596710577607155,
-0.09982199966907501,
-0.01562384981662035,
0.04316044971346855,
0.050005730241537094,
0.14527809619903564,
-0.03684965521097183,
-0.10833985358476639,
0.010528112761676311,
-0.13934293389320374,
-0.03618074208498001,
0.10029289871454239,
0.025949809700250626,
-0.03415977209806442,
-0.02902979589998722,
-0.0719524472951889,
-0.15919256210327148,
-0.044361412525177,
-0.010649302043020725,
0.046263184398412704,
-0.0432136207818985,
-0.08628983795642853,
-0.005541750695556402,
-0.1033654659986496,
-0.07513569295406342,
-0.07510989159345627,
0.1733601987361908,
0.04014572128653526,
0.028255434706807137,
-0.036074087023735046,
0.10423297435045242,
-0.006207908503711224,
-0.14107553660869598,
0.03161824494600296,
0.035794369876384735,
-0.007713021244853735,
-0.023772459477186203,
-0.0702507272362709,
-0.07892672717571259,
0.023145001381635666,
0.1281769871711731,
-0.04909802973270416,
0.03862302750349045,
0.04957463592290878,
0.055001139640808105,
-0.11721256375312805,
0.18832099437713623,
-0.04951590672135353,
-0.01692829839885235,
0.014805939979851246,
0.04507972672581673,
0.02892317809164524,
-0.005199163220822811,
-0.10674145817756653,
-0.0014356030151247978,
0.08911313861608505,
0.01981969363987446,
-0.04746095463633537,
0.05724012479186058,
-0.05806022509932518,
-0.01439809799194336,
0.00842785183340311,
-0.09975678473711014,
0.021215708926320076,
-0.01770479790866375,
-0.07549398392438889,
-0.026790210977196693,
0.04560514912009239,
0.010274110361933708,
-0.006613573059439659,
0.11593084037303925,
-0.08856981247663498,
0.034948188811540604,
-0.10817183554172516,
-0.10466190427541733,
0.007607146166265011,
-0.08216089755296707,
0.021405167877674103,
-0.10205373913049698,
-0.1636306345462799,
0.002370377304032445,
0.0712774321436882,
-0.023073231801390648,
-0.05152348056435585,
-0.017902255058288574,
-0.07154019176959991,
0.006072877440601587,
-0.01256642583757639,
0.16722780466079712,
-0.05758459493517876,
0.1159009113907814,
0.05341252312064171,
0.086018405854702,
-0.04770912230014801,
0.05172540619969368,
-0.09580136090517044,
0.00801147986203432,
-0.1952635794878006,
0.014737416990101337,
-0.04568331688642502,
0.061235461384058,
-0.08849447220563889,
-0.11206676065921783,
0.00025842859758995473,
-0.006391454022377729,
0.08429448306560516,
0.09335144609212875,
-0.16299548745155334,
-0.0779196172952652,
0.16992568969726562,
-0.06845900416374207,
-0.1047574058175087,
0.1175009086728096,
-0.047726646065711975,
0.04340372607111931,
0.05210309103131294,
0.12598149478435516,
0.06693005561828613,
-0.10218565911054611,
0.038612499833106995,
-0.004033498000353575,
0.03725897893309593,
-0.07859915494918823,
0.0721883475780487,
-0.008043861947953701,
-0.0013031201669946313,
0.033045705407857895,
-0.03479478880763054,
0.07253869622945786,
-0.09600330889225006,
-0.10460618138313293,
-0.04368885979056358,
-0.11071855574846268,
0.07149724662303925,
0.06990581750869751,
0.07709678262472153,
-0.0961921364068985,
-0.08556868135929108,
0.03818752244114876,
0.07848875224590302,
-0.04677443951368332,
0.0325591079890728,
-0.06007353216409683,
0.06480921804904938,
-0.0613020583987236,
-0.028236020356416702,
-0.18879638612270355,
-0.021678369492292404,
-0.0008327814284712076,
-0.02755872532725334,
0.018009183928370476,
0.011559252627193928,
0.08511785417795181,
0.06619782745838165,
-0.056833747774362564,
-0.016139987856149673,
-0.05035145580768585,
-0.010500511154532433,
-0.12245692312717438,
-0.19568519294261932,
-0.037686269730329514,
-0.019636929035186768,
0.12705855071544647,
-0.15631535649299622,
0.028421487659215927,
-0.06115227937698364,
0.0684947595000267,
0.006763670593500137,
-0.010826046578586102,
-0.046506367623806,
0.08628655225038528,
-0.018359597772359848,
-0.05488540604710579,
0.07049024850130081,
-0.0035162456333637238,
-0.08688265830278397,
-0.042591165751218796,
-0.08918548375368118,
0.18535013496875763,
0.13762858510017395,
-0.11173974722623825,
-0.08263111859560013,
0.040658723562955856,
-0.07080156356096268,
-0.035209108144044876,
-0.04361249506473541,
0.04278329387307167,
0.16112056374549866,
-0.004989321809262037,
0.1392255425453186,
-0.06151653453707695,
-0.03812876716256142,
0.03365465998649597,
-0.04083796218037605,
0.031345516443252563,
0.09197024255990982,
0.1341475248336792,
-0.03987932950258255,
0.13572528958320618,
0.1665673702955246,
-0.11616215854883194,
0.12300963699817657,
-0.02997003123164177,
-0.07626461237668991,
-0.019047820940613747,
-0.02442266047000885,
0.011212144047021866,
0.1213841438293457,
-0.12416912615299225,
0.0035822014324367046,
0.026334594935178757,
0.0006894701509736478,
0.022438611835241318,
-0.236656054854393,
-0.049690667539834976,
0.026749635115265846,
-0.04162320867180824,
-0.012882069684565067,
-0.0012409238843247294,
0.004298592451959848,
0.10104387998580933,
0.005372070707380772,
-0.08728443086147308,
0.044399190694093704,
0.007987492717802525,
-0.06489136815071106,
0.21388639509677887,
-0.08211972564458847,
-0.1669406145811081,
-0.12566567957401276,
-0.07890991121530533,
-0.03783981874585152,
0.010696282610297203,
0.058527179062366486,
-0.09558053314685822,
-0.03517504781484604,
-0.040170248597860336,
0.019427800551056862,
0.012002158910036087,
0.05372367799282074,
0.009345967322587967,
-0.003161186585202813,
0.09334222227334976,
-0.11067916452884674,
-0.007318022195249796,
-0.04821018874645233,
-0.0674373060464859,
0.05647304654121399,
0.06237233430147171,
0.12455741316080093,
0.15127629041671753,
-0.017646729946136475,
0.0023436143528670073,
-0.017204128205776215,
0.22114507853984833,
-0.07265575975179672,
-0.033265337347984314,
0.1504909098148346,
-0.00011763650400098413,
0.061658091843128204,
0.10070927441120148,
0.07425299286842346,
-0.08420660346746445,
0.009469041600823402,
0.027460386976599693,
-0.0485495962202549,
-0.210409477353096,
-0.03943127393722534,
-0.06135907024145126,
-0.04572640731930733,
0.09071923047304153,
0.029849357903003693,
0.04718365520238876,
0.07346175611019135,
0.04787631705403328,
0.07461107522249222,
-0.06236197054386139,
0.0449608713388443,
0.07712144404649734,
0.04974444955587387,
0.1253378838300705,
-0.04171127453446388,
-0.07502791285514832,
0.02584957517683506,
-0.012795398011803627,
0.2253190279006958,
0.001223063562065363,
0.11147768795490265,
0.07243005931377411,
0.20745690166950226,
-0.0032296397257596254,
0.09610127657651901,
0.006638945546001196,
-0.052693914622068405,
-0.007940535433590412,
-0.047879721969366074,
-0.036193616688251495,
0.011164139024913311,
-0.04176235571503639,
0.0669177696108818,
-0.10363619029521942,
-0.007923544384539127,
0.04357964172959328,
0.269864559173584,
0.03303473815321922,
-0.32765328884124756,
-0.08555412292480469,
-0.012168311513960361,
-0.016836468130350113,
-0.014869017526507378,
0.00328956451267004,
0.08221973478794098,
-0.0955495610833168,
0.02980576828122139,
-0.08273402601480484,
0.08295447379350662,
0.0005119811394251883,
0.040965400636196136,
0.07395949214696884,
0.11314336955547333,
0.019340911880135536,
0.06969897449016571,
-0.3073621094226837,
0.2872801721096039,
-0.0015770383179187775,
0.0791645273566246,
-0.08241550624370575,
0.007221917621791363,
0.044086605310440063,
0.03078320063650608,
0.06995570659637451,
-0.01463546883314848,
-0.013403700664639473,
-0.19094134867191315,
-0.05957872420549393,
0.03126096725463867,
0.08620504289865494,
-0.020358091220259666,
0.08857143670320511,
-0.02246031165122986,
-0.006092217285186052,
0.07381772249937057,
0.00815993919968605,
-0.06086070463061333,
-0.08410029113292694,
0.0008143357699736953,
0.017305471003055573,
-0.06875825673341751,
-0.07309045642614365,
-0.12116360664367676,
-0.12265689671039581,
0.15866424143314362,
0.005708341021090746,
-0.030441932380199432,
-0.11468378454446793,
0.07847146689891815,
0.09826979041099548,
-0.08932711184024811,
0.06626905500888824,
0.0006296047940850258,
0.06189645826816559,
0.022733058780431747,
-0.0773530825972557,
0.10739733278751373,
-0.07264881581068039,
-0.14871886372566223,
-0.06310176104307175,
0.09609878808259964,
0.02782938815653324,
0.07018335163593292,
-0.020554695278406143,
0.02029637061059475,
-0.03758077323436737,
-0.08051425963640213,
0.035146892070770264,
-0.03176361322402954,
0.06539569795131683,
0.029114853590726852,
-0.04359481856226921,
0.006211916916072369,
-0.05724969506263733,
-0.027963804081082344,
0.1763727068901062,
0.23629342019557953,
-0.101325623691082,
0.02579057216644287,
0.036692894995212555,
-0.049336474388837814,
-0.21220523118972778,
0.0336453914642334,
0.06091569364070892,
0.013321274891495705,
0.060640834271907806,
-0.16871899366378784,
0.1281038075685501,
0.09714377671480179,
-0.01804751344025135,
0.13089314103126526,
-0.3418874740600586,
-0.12843108177185059,
0.12571537494659424,
0.15955212712287903,
0.14476317167282104,
-0.1443520486354828,
-0.01680317521095276,
-0.025327280163764954,
-0.1245204284787178,
0.07248682528734207,
-0.08976215869188309,
0.12939521670341492,
-0.03923969715833664,
0.08642438799142838,
-0.001368788885883987,
-0.07539025694131851,
0.1277303546667099,
-0.005965877790004015,
0.08871659636497498,
-0.058880262076854706,
-0.015394105575978756,
0.05966389179229736,
-0.02977079153060913,
0.0038564507849514484,
-0.07014890015125275,
0.02678091451525688,
-0.04452287033200264,
-0.01245957612991333,
-0.08995025604963303,
0.057868294417858124,
-0.02867966517806053,
-0.05860557779669762,
-0.028653891757130623,
0.026970328763127327,
0.03923589736223221,
-0.019183384254574776,
0.11636608839035034,
0.036050040274858475,
0.15645363926887512,
0.09530403465032578,
0.030160989612340927,
-0.049925483763217926,
-0.1035168319940567,
-0.016072500497102737,
-0.020076878368854523,
0.06213269382715225,
-0.12914763391017914,
0.01951722614467144,
0.12445330619812012,
0.028097309172153473,
0.11730217933654785,
0.08195924758911133,
-0.031545136123895645,
0.01845819130539894,
0.07965989410877228,
-0.16214635968208313,
-0.06664539128541946,
0.008667001500725746,
-0.07366335391998291,
-0.11399991810321808,
0.04149728640913963,
0.08105858415365219,
-0.06778707355260849,
-0.00897426437586546,
-0.010229364037513733,
0.006777905393391848,
-0.0798036977648735,
0.21658143401145935,
0.06339942663908005,
0.051697347313165665,
-0.10089901834726334,
0.06094424054026604,
0.041948940604925156,
-0.07045690715312958,
-0.010798385366797447,
0.06668180972337723,
-0.07047370076179504,
-0.03644074499607086,
0.11611023545265198,
0.1564667522907257,
-0.05139933153986931,
-0.04090951755642891,
-0.15320253372192383,
-0.108662448823452,
0.06539342552423477,
0.15621265769004822,
0.10923424363136292,
0.003502006409689784,
-0.04679906740784645,
0.01630772463977337,
-0.11389962583780289,
0.06955549865961075,
0.046580877155065536,
0.06978067010641098,
-0.12537862360477448,
0.16512152552604675,
0.017188536003232002,
0.06515271961688995,
-0.02496061660349369,
0.033254340291023254,
-0.09032431989908218,
0.0197515357285738,
-0.11506086587905884,
-0.036311183124780655,
-0.016223622485995293,
-0.01138891838490963,
-0.007995984517037868,
-0.059627022594213486,
-0.0644913986325264,
0.024686066433787346,
-0.12212074548006058,
-0.036252979189157486,
0.03671353682875633,
0.027763130143284798,
-0.11627855151891708,
-0.04311889782547951,
0.035911768674850464,
-0.06018103286623955,
0.05419453978538513,
0.057709526270627975,
0.014736933633685112,
0.06514506042003632,
-0.14653395116329193,
-0.0188650693744421,
0.06997746974229813,
0.008260803297162056,
0.06950832158327103,
-0.08623672276735306,
-0.014708041213452816,
-0.008203336037695408,
0.07090861350297928,
0.010637778788805008,
0.08185118436813354,
-0.1509493738412857,
0.00016078930639196187,
-0.030516337603330612,
-0.08245060592889786,
-0.06066332384943962,
0.011194862425327301,
0.0858750194311142,
0.014340021647512913,
0.19492138922214508,
-0.08800514787435532,
0.05480609089136124,
-0.20574147999286652,
0.0009039221913553774,
-0.03009256348013878,
-0.09588105231523514,
-0.11263550072908401,
-0.044659487903118134,
0.06637188047170639,
-0.05312567204236984,
0.12959085404872894,
0.015626106411218643,
0.05673816800117493,
0.023642411455512047,
-0.021045539528131485,
0.017503784969449043,
0.013194465078413486,
0.20728199183940887,
0.03287766873836517,
-0.029170764610171318,
0.07498958706855774,
0.06602838635444641,
0.09501317888498306,
0.10381083190441132,
0.2080826312303543,
0.15395371615886688,
0.03079076111316681,
0.10189151018857956,
0.02167772687971592,
-0.04786510765552521,
-0.14776243269443512,
0.021503794938325882,
-0.04937819764018059,
0.09303077310323715,
-0.010695286095142365,
0.19141043722629547,
0.07405327260494232,
-0.16252559423446655,
0.056620992720127106,
-0.04486018791794777,
-0.08256347477436066,
-0.10594362020492554,
-0.03324979171156883,
-0.07666632533073425,
-0.12574350833892822,
0.007164893206208944,
-0.08522273600101471,
0.012853192165493965,
0.1270178109407425,
-0.0024044199381023645,
-0.020601119846105576,
0.18934935331344604,
0.03209647536277771,
0.029921242967247963,
0.03664378076791763,
0.011803733184933662,
-0.025447623804211617,
-0.0786726325750351,
-0.06464298814535141,
-0.026188593357801437,
-0.006109050940722227,
0.04033733904361725,
-0.0672285184264183,
-0.08440374583005905,
0.05587857961654663,
-0.019930284470319748,
-0.10449614375829697,
0.014294975437223911,
0.015741318464279175,
0.06887851655483246,
0.044823795557022095,
0.012784655205905437,
0.02743658795952797,
-0.022221757099032402,
0.19972606003284454,
-0.08330486714839935,
-0.09982962161302567,
-0.09543364495038986,
0.25733116269111633,
0.037117548286914825,
-0.02176758088171482,
0.023844636976718903,
-0.06116658076643944,
-0.010838985443115234,
0.2625541388988495,
0.21939080953598022,
-0.08820115029811859,
-0.0012562505435198545,
0.01159367524087429,
-0.014109069481492043,
-0.04017776623368263,
0.1218043714761734,
0.1416471153497696,
0.06191858649253845,
-0.10352752357721329,
-0.05060608685016632,
-0.06383351236581802,
-0.012082170695066452,
-0.06680309027433395,
0.03743917867541313,
0.03419441357254982,
0.005075778346508741,
-0.03861188888549805,
0.05428176373243332,
-0.05308292433619499,
-0.11273647099733353,
0.09009690582752228,
-0.20147819817066193,
-0.1684468686580658,
-0.011379220522940159,
0.1155339851975441,
0.0066735404543578625,
0.06914401799440384,
-0.029960716143250465,
0.008254365995526314,
0.06357748806476593,
-0.013053232803940773,
-0.08354456722736359,
-0.09742332249879837,
0.09910187870264053,
-0.10100872814655304,
0.2135719209909439,
-0.03994517773389816,
0.06711073219776154,
0.12402764707803726,
0.07302813231945038,
-0.0716155469417572,
0.06554361432790756,
0.04031723365187645,
-0.09105554223060608,
0.02580035850405693,
0.1028556302189827,
-0.03303554281592369,
0.021581491455435753,
0.030502064153552055,
-0.10303667932748795,
0.02212897315621376,
-0.07652607560157776,
-0.029596563428640366,
-0.0328046940267086,
-0.03796745836734772,
-0.06204088404774666,
0.11737148463726044,
0.21340550482273102,
-0.02154078707098961,
0.009755998849868774,
-0.08250804990530014,
0.01660541631281376,
0.06365121155977249,
0.019655752927064896,
-0.10068373382091522,
-0.21923811733722687,
0.01547295693308115,
0.03005087561905384,
-0.03054196760058403,
-0.23522047698497772,
-0.1015770360827446,
0.002723539946600795,
-0.08616941422224045,
-0.08995182812213898,
0.06932666897773743,
0.06965496391057968,
0.0566946379840374,
-0.04282943904399872,
-0.077698715031147,
-0.0796448290348053,
0.14917369186878204,
-0.17427250742912292,
-0.09407766908407211
] |
null | null | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilroberta-base-testingSB
This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on a company specific, Danish dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0403
## Model description
Customer-specific model used to embed asset management work orders in Danish
## Intended uses & limitations
Customer-specific and trained for unsupervised categorization tasks
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
### Training results
Epoch Training Loss Validation Loss
1 0.988500 1.056376
2 0.996300 1.027803
3 0.990300 1.040270
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.98850 | 1.0 | 1461 | 1.5211 |
| 1.3179 | 2.0 | 2922 | 1.3314 |
| 1.1931 | 3.0 | 4383 | 1.2530 |
### Framework versions
- Transformers 4.12.5
- Pytorch 1.10.0+cu111
- Datasets 1.15.1
- Tokenizers 0.10.3
| {"license": "apache-2.0", "tags": ["generated_from_trainer"], "model-index": [{"name": "distilroberta-base-testingSB", "results": []}]} | fill-mask | MistahCase/distilroberta-base-testingSB | [
"transformers",
"pytorch",
"tensorboard",
"roberta",
"fill-mask",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [] | TAGS
#transformers #pytorch #tensorboard #roberta #fill-mask #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
| distilroberta-base-testingSB
============================
This model is a fine-tuned version of distilroberta-base on a company specific, Danish dataset.
It achieves the following results on the evaluation set:
* Loss: 1.0403
Model description
-----------------
Customer-specific model used to embed asset management work orders in Danish
Intended uses & limitations
---------------------------
Customer-specific and trained for unsupervised categorization tasks
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 8
* eval\_batch\_size: 8
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 3.0
### Training results
Epoch Training Loss Validation Loss
1 0.988500 1.056376
2 0.996300 1.027803
3 0.990300 1.040270
### Framework versions
* Transformers 4.12.5
* Pytorch 1.10.0+cu111
* Datasets 1.15.1
* Tokenizers 0.10.3
| [
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3.0",
"### Training results\n\n\nEpoch Training Loss Validation Loss\n1 0.988500 1.056376\n2 0.996300 1.027803\n3 0.990300 1.040270",
"### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.10.0+cu111\n* Datasets 1.15.1\n* Tokenizers 0.10.3"
] | [
"TAGS\n#transformers #pytorch #tensorboard #roberta #fill-mask #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3.0",
"### Training results\n\n\nEpoch Training Loss Validation Loss\n1 0.988500 1.056376\n2 0.996300 1.027803\n3 0.990300 1.040270",
"### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.10.0+cu111\n* Datasets 1.15.1\n* Tokenizers 0.10.3"
] | [
56,
98,
39,
33
] | [
"passage: TAGS\n#transformers #pytorch #tensorboard #roberta #fill-mask #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3.0### Training results\n\n\nEpoch Training Loss Validation Loss\n1 0.988500 1.056376\n2 0.996300 1.027803\n3 0.990300 1.040270### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.10.0+cu111\n* Datasets 1.15.1\n* Tokenizers 0.10.3"
] | [
-0.13752877712249756,
0.12989236414432526,
-0.0034601837396621704,
0.10844044387340546,
0.1279502958059311,
0.005237409844994545,
0.12876667082309723,
0.1509983390569687,
-0.14039452373981476,
0.06251870840787888,
0.1454060822725296,
0.15618062019348145,
0.04624820873141289,
0.18135665357112885,
-0.057823702692985535,
-0.22928433120250702,
0.04380159080028534,
0.04718059301376343,
-0.051975950598716736,
0.1255083531141281,
0.07848452776670456,
-0.1250438541173935,
0.07251352071762085,
0.034012582153081894,
-0.196950763463974,
-0.002322869375348091,
0.028547026216983795,
-0.08400397002696991,
0.10919327288866043,
0.006846084259450436,
0.10688018053770065,
0.033497732132673264,
0.06343605369329453,
-0.14967124164104462,
0.008196935057640076,
0.061721790581941605,
-0.00996048841625452,
0.09569422155618668,
0.045613132417201996,
-0.020016880705952644,
0.09252570569515228,
-0.07774513959884644,
0.06954571604728699,
0.028921453282237053,
-0.13737967610359192,
-0.2629183232784271,
-0.13246886432170868,
0.07300600409507751,
0.047991082072257996,
0.10231868922710419,
0.007750765420496464,
0.2040911614894867,
-0.050521671772003174,
0.10102556645870209,
0.29066064953804016,
-0.3263718783855438,
-0.04686066508293152,
0.0017450266750529408,
0.020994380116462708,
0.01168964896351099,
-0.09607016295194626,
-0.01814776100218296,
0.04685807600617409,
0.04087381437420845,
0.14003151655197144,
-0.013071530498564243,
-0.03821246698498726,
-0.015786850824952126,
-0.13164326548576355,
-0.07572631537914276,
0.09889189153909683,
0.02698303945362568,
-0.05653783306479454,
-0.03957108408212662,
-0.06202574074268341,
-0.22927941381931305,
-0.042937882244586945,
0.002412394154816866,
0.03915552794933319,
-0.04870546981692314,
-0.1054331362247467,
0.02030726708471775,
-0.07208374887704849,
-0.0548718124628067,
-0.06638019531965256,
0.15051525831222534,
0.05971687287092209,
0.04296349361538887,
-0.04104318469762802,
0.08026798069477081,
-0.04400305077433586,
-0.15657231211662292,
-0.011666649021208286,
0.027537543326616287,
-0.020466439425945282,
-0.033592864871025085,
-0.045118652284145355,
-0.0956520065665245,
-0.0031906680669635534,
0.16210824251174927,
-0.12248767167329788,
0.06465620547533035,
0.009379363618791103,
0.050156109035015106,
-0.10169637203216553,
0.17649413645267487,
-0.044981203973293304,
0.02538762055337429,
0.023542167618870735,
0.07435627281665802,
0.05758562311530113,
-0.016642220318317413,
-0.08578100800514221,
0.018738023936748505,
0.12802882492542267,
0.03398934006690979,
-0.026812052354216576,
0.05169786140322685,
-0.0653889924287796,
-0.004587143659591675,
0.05696617439389229,
-0.09693942219018936,
0.03000066615641117,
-0.018586935475468636,
-0.08649486303329468,
-0.030350735411047935,
0.05310763046145439,
-0.024213187396526337,
-0.03861887380480766,
0.09570933133363724,
-0.10094759613275528,
0.029176361858844757,
-0.08528104424476624,
-0.13015513122081757,
0.033510588109493256,
-0.11428350955247879,
-0.005473646335303783,
-0.10357818007469177,
-0.14702384173870087,
-0.008580605499446392,
0.043252311646938324,
-0.04088268429040909,
-0.03964982554316521,
-0.03398009017109871,
-0.11421940475702286,
0.02303490787744522,
-0.005055092740803957,
0.08114412426948547,
-0.0573684386909008,
0.10346902161836624,
0.05922491475939751,
0.09979851543903351,
-0.036569152027368546,
0.03805858641862869,
-0.07722749561071396,
0.031419530510902405,
-0.22585724294185638,
0.026673872023820877,
-0.07321105897426605,
0.06266793608665466,
-0.09416788816452026,
-0.12042117863893509,
0.024428196251392365,
-0.02916002832353115,
0.12161130458116531,
0.10943837463855743,
-0.1644124686717987,
-0.07025544345378876,
0.20169489085674286,
-0.09624660760164261,
-0.09852255135774612,
0.11735140532255173,
-0.03782627731561661,
-0.01435168832540512,
0.04079250991344452,
0.1608954817056656,
0.047512996941804886,
-0.11531715095043182,
-0.0353892557322979,
-0.06125766411423683,
0.01540530938655138,
-0.08436977118253708,
0.043553903698921204,
-0.014450890012085438,
0.06105221062898636,
0.01529266219586134,
0.002567286603152752,
0.02851530723273754,
-0.11117581278085709,
-0.08611506968736649,
-0.053020574152469635,
-0.08729007840156555,
0.052082039415836334,
0.05527715012431145,
0.07723195850849152,
-0.1193472146987915,
-0.1072482243180275,
0.04494328424334526,
0.08960233628749847,
-0.05550721287727356,
0.059122201055288315,
-0.10445362329483032,
0.12039557844400406,
-0.08527716249227524,
-0.020177170634269714,
-0.20734430849552155,
-0.006442910525947809,
0.02899978868663311,
-0.0426630936563015,
-0.0026424976531416178,
-0.057249587029218674,
0.08511880040168762,
0.0696558803319931,
-0.05410284921526909,
-0.03608056902885437,
-0.05888816714286804,
-0.0009453793172724545,
-0.10774604976177216,
-0.20979495346546173,
-0.05561188980937004,
-0.032447777688503265,
0.07978107035160065,
-0.13259567320346832,
0.03994340822100639,
0.02954900823533535,
0.10886009782552719,
0.03037894144654274,
-0.04302550479769707,
-0.014973876997828484,
0.08617497980594635,
-0.01764455810189247,
-0.07809178531169891,
0.05045007914304733,
0.019285131245851517,
-0.0790712907910347,
-0.014583000913262367,
-0.13920758664608002,
0.16598275303840637,
0.14672206342220306,
-0.01088344119489193,
-0.09725455194711685,
0.04452597722411156,
-0.060115136206150055,
-0.03398444503545761,
-0.029772985726594925,
0.055517468601465225,
0.14240069687366486,
0.02108791656792164,
0.14757560193538666,
-0.08510971069335938,
-0.04276660084724426,
0.058423180133104324,
-0.029850982129573822,
0.0014553596265614033,
0.09923838078975677,
0.06461935490369797,
-0.09328235685825348,
0.13908885419368744,
0.10137659311294556,
-0.094390369951725,
0.10933085530996323,
-0.06487218290567398,
-0.07636722177267075,
-0.044245555996894836,
-0.015550045296549797,
0.05163779482245445,
0.140824094414711,
-0.06902983784675598,
-0.010689550079405308,
0.03068711794912815,
0.0216322410851717,
0.016692429780960083,
-0.2062053382396698,
-0.018257521092891693,
0.019420763477683067,
-0.05734970420598984,
-0.05750473588705063,
0.0021728938445448875,
0.019572289660573006,
0.10084031522274017,
0.012143571861088276,
-0.067693330347538,
0.0418521910905838,
0.020671822130680084,
-0.054338738322257996,
0.20341850817203522,
-0.11359526962041855,
-0.15599702298641205,
-0.12654542922973633,
-0.04455970227718353,
-0.04825001582503319,
-0.012818737886846066,
0.07155738025903702,
-0.08356418460607529,
-0.05554880574345589,
-0.07163557410240173,
-0.0379440076649189,
0.0087536396458745,
0.045556578785181046,
0.062122032046318054,
-0.01945328153669834,
0.09477561712265015,
-0.11634501069784164,
-0.030072681605815887,
-0.03507428616285324,
-0.02398638054728508,
0.06899509578943253,
0.03737841919064522,
0.11915739625692368,
0.11771044135093689,
-0.03441280871629715,
0.039214350283145905,
-0.02712520956993103,
0.20187236368656158,
-0.05528897047042847,
-0.036077409982681274,
0.11795681715011597,
0.012954331934452057,
0.09452304989099503,
0.08532019704580307,
0.051175639033317566,
-0.08822090923786163,
-0.009257777594029903,
0.015304026193916798,
-0.042403023689985275,
-0.20868068933486938,
-0.014542629010975361,
-0.041184186935424805,
-0.01977260783314705,
0.09098273515701294,
0.03254422917962074,
0.06458903849124908,
0.043044187128543854,
0.03064807318150997,
0.03559782728552818,
-0.04862595722079277,
0.10393092781305313,
0.0749817043542862,
0.06258325278759003,
0.13079892098903656,
-0.062185946851968765,
-0.005582358688116074,
0.042135465890169144,
-0.024912498891353607,
0.26394781470298767,
-0.009748210199177265,
0.15964865684509277,
0.06897201389074326,
0.19974641501903534,
0.019223378971219063,
0.07999885827302933,
0.003712605917826295,
-0.028401976451277733,
0.010331436060369015,
-0.04125529155135155,
-0.035799454897642136,
-0.002160011325031519,
-0.03993307799100876,
0.06814505159854889,
-0.1361686736345291,
0.027506472542881966,
0.048151895403862,
0.3122890293598175,
0.04211372137069702,
-0.3660248816013336,
-0.11596677452325821,
-0.027576124295592308,
-0.033434681594371796,
-0.02951578050851822,
-0.011395166628062725,
0.06989314407110214,
-0.09305039793252945,
0.06323299556970596,
-0.08409670740365982,
0.08958756178617477,
-0.03399619832634926,
0.019176574423909187,
0.02915896102786064,
0.10080254077911377,
-0.005140355322510004,
0.02853677235543728,
-0.284026175737381,
0.2952103912830353,
0.014060137793421745,
0.09731465578079224,
-0.06001824513077736,
0.005515623837709427,
0.03479793667793274,
0.0447070337831974,
0.06629986315965652,
-0.010767717845737934,
-0.08593056350946426,
-0.17746952176094055,
-0.0840226411819458,
-0.00702889496460557,
0.07554789632558823,
0.03994393348693848,
0.11241298913955688,
-0.004214833490550518,
-0.007001162972301245,
0.04535234346985817,
-0.029618265107274055,
-0.05747188255190849,
-0.07505770027637482,
0.02767016366124153,
0.021265607327222824,
-0.03904115781188011,
-0.09294462949037552,
-0.1202508807182312,
-0.07446391135454178,
0.1756916046142578,
0.007857188582420349,
-0.04814065992832184,
-0.1259671449661255,
0.06230950728058815,
0.10999876260757446,
-0.0960850790143013,
0.0658564567565918,
-0.002253927756100893,
0.0791691392660141,
-0.008645686320960522,
-0.07009416818618774,
0.10270348191261292,
-0.052542347460985184,
-0.18106824159622192,
-0.04136975109577179,
0.09943581372499466,
0.033343199640512466,
0.06572554260492325,
-0.008046244271099567,
0.032880570739507675,
-0.0044538588263094425,
-0.08271896094083786,
0.04374342039227486,
-0.00043220556108281016,
0.1089434027671814,
-0.011578449048101902,
0.006038036197423935,
0.005404732655733824,
-0.06471564620733261,
-0.005246018059551716,
0.1478075087070465,
0.3007764220237732,
-0.10355311632156372,
0.05793630704283714,
0.022143783047795296,
-0.04116392880678177,
-0.16333021223545074,
0.031621214002370834,
0.05489538609981537,
0.005462955683469772,
0.0038328624796122313,
-0.1362076997756958,
0.021674109622836113,
0.0987473875284195,
-0.022617259994149208,
0.09622172266244888,
-0.3232667148113251,
-0.11856596171855927,
0.10332593321800232,
0.1447768360376358,
0.13441044092178345,
-0.16596660017967224,
-0.0320940837264061,
-0.002216813387349248,
-0.16229300200939178,
0.08623015135526657,
-0.07363463938236237,
0.1259048581123352,
-0.05178525298833847,
0.06855712831020355,
0.004631220828741789,
-0.07723920047283173,
0.12887002527713776,
-0.012272056192159653,
0.1023818850517273,
-0.05247098580002785,
0.012143026106059551,
0.12508271634578705,
-0.0729604959487915,
0.040639154613018036,
-0.05714085325598717,
0.04541659355163574,
-0.07079501450061798,
-0.0036871328484266996,
-0.092345230281353,
0.03449825569987297,
-0.04014407843351364,
-0.012562035582959652,
-0.03229083493351936,
0.028973765671253204,
0.04732278361916542,
-0.028399450704455376,
0.1414920687675476,
0.03672010079026222,
0.14804227650165558,
0.15205609798431396,
0.043865591287612915,
-0.07004248350858688,
-0.08484894037246704,
0.011708115227520466,
-0.04020154848694801,
0.055818378925323486,
-0.13956646621227264,
0.028429189696907997,
0.1287350356578827,
0.02155892923474312,
0.10833418369293213,
0.07059259712696075,
-0.07507360726594925,
0.02719324640929699,
0.06980545073747635,
-0.15639278292655945,
-0.06020127981901169,
0.033454105257987976,
-0.011951287277042866,
-0.09957856684923172,
0.06147076189517975,
0.08601727336645126,
-0.06046608090400696,
-0.024640493094921112,
-0.002265334827825427,
0.0180398877710104,
-0.03434019908308983,
0.2052329033613205,
0.034721389412879944,
0.06563642621040344,
-0.1087096780538559,
0.0979992225766182,
0.029902338981628418,
-0.10320170968770981,
0.04153916984796524,
0.08710763603448868,
-0.09099874645471573,
-0.015431108884513378,
0.07887683808803558,
0.15584412217140198,
-0.04640575498342514,
-0.048486433923244476,
-0.17872501909732819,
-0.10758066177368164,
0.09365151077508926,
0.21971836686134338,
0.0758664458990097,
0.014964557252824306,
-0.018463965505361557,
0.0002370786532992497,
-0.13502825796604156,
0.055275678634643555,
0.09702016413211823,
0.07268219441175461,
-0.11602377146482468,
0.16914886236190796,
-0.005140225403010845,
0.047361671924591064,
-0.006193709094077349,
0.03331479802727699,
-0.12049799412488937,
0.006304371170699596,
-0.12322086840867996,
-0.0039190188981592655,
-0.04813389107584953,
-0.01583878882229328,
-0.016716696321964264,
-0.04124408960342407,
-0.058017902076244354,
0.04612082242965698,
-0.11821535974740982,
-0.044805943965911865,
0.03691290691494942,
-0.004168936517089605,
-0.12541210651397705,
-0.03030380606651306,
0.021171165630221367,
-0.08102873712778091,
0.06881867349147797,
0.07610956579446793,
0.01656966283917427,
0.04590670391917229,
-0.030480284243822098,
-0.02078661508858204,
0.06806132942438126,
-0.022884543985128403,
0.07326948642730713,
-0.12185104191303253,
-0.013425610959529877,
-0.008695580065250397,
0.030474096536636353,
0.02327611856162548,
0.10363493114709854,
-0.1319771409034729,
-0.01233722548931837,
-0.010675203986465931,
-0.04840918257832527,
-0.06970638036727905,
0.045472241938114166,
0.13020378351211548,
0.006777707953006029,
0.17512211203575134,
-0.09252764284610748,
0.032461296766996384,
-0.1892666220664978,
-0.0004934339667670429,
-0.018934348598122597,
-0.12092404812574387,
-0.058535005897283554,
-0.014500738121569157,
0.08205721527338028,
-0.06621622294187546,
0.08236300200223923,
-0.036938998848199844,
0.024714317172765732,
0.0417938195168972,
-0.04895882308483124,
-0.05019467696547508,
0.015732549130916595,
0.1639232039451599,
0.01865408383309841,
-0.039505910128355026,
0.08053474873304367,
0.04774154722690582,
0.0767490565776825,
0.07664366066455841,
0.21105457842350006,
0.1342204362154007,
0.036775700747966766,
0.1214016005396843,
0.012919208034873009,
-0.05075910687446594,
-0.14988923072814941,
0.05974221229553223,
-0.059471599757671356,
0.11300145834684372,
0.00022712389181833714,
0.14381232857704163,
0.12590046226978302,
-0.14875862002372742,
0.07705722004175186,
-0.020275505259633064,
-0.08695029467344284,
-0.10809392482042313,
-0.06332992762327194,
-0.07691559940576553,
-0.1335235834121704,
0.021115558221936226,
-0.09547287970781326,
0.053897079080343246,
0.07080014795064926,
0.011774525046348572,
-0.005929920822381973,
0.14557865262031555,
0.012383238412439823,
0.0365997739136219,
0.051321644335985184,
0.0006632255972363055,
-0.051890864968299866,
-0.03405272215604782,
-0.0645097866654396,
0.010607130825519562,
-0.014414445497095585,
0.05906223878264427,
-0.015245807357132435,
-0.035087551921606064,
0.06784024089574814,
-0.002295990940183401,
-0.11297854781150818,
0.024493776261806488,
0.020344706252217293,
0.07772276550531387,
0.06927035748958588,
0.0229646023362875,
0.023022806271910667,
-0.024073956534266472,
0.18822647631168365,
-0.08578713238239288,
-0.0762091651558876,
-0.1255883425474167,
0.268290638923645,
0.05296475812792778,
-0.046169791370630264,
0.033966973423957825,
-0.07407929003238678,
-0.0059983436949551105,
0.19187067449092865,
0.17061391472816467,
-0.0024462572764605284,
-0.0010332553647458553,
-0.01601170375943184,
-0.024298109114170074,
-0.03151432424783707,
0.08004068583250046,
0.12698717415332794,
0.028119686990976334,
-0.07865221798419952,
-0.04036542773246765,
-0.06593291461467743,
-0.015620706602931023,
-0.05840594694018364,
0.0557757131755352,
0.01182536594569683,
-0.003964056260883808,
-0.04726219177246094,
0.0322449766099453,
-0.04143068939447403,
-0.10251335799694061,
0.09444314241409302,
-0.2036656141281128,
-0.16378837823867798,
0.012464810162782669,
0.06821948289871216,
-0.006239474751055241,
0.07363255321979523,
0.0014887450961396098,
0.008423922583460808,
0.10532572865486145,
-0.008663604967296124,
-0.08692027628421783,
-0.1076611876487732,
0.07629311084747314,
-0.1343335509300232,
0.17873302102088928,
-0.031763747334480286,
0.04310406371951103,
0.14322379231452942,
0.06692559272050858,
-0.110024094581604,
0.0650673359632492,
0.0284880418330431,
-0.09145832061767578,
0.0037912451662123203,
0.14107000827789307,
-0.0220202524214983,
0.0374886728823185,
0.013634930364787579,
-0.11154184490442276,
-0.010454662144184113,
-0.1125691831111908,
-0.018856434151530266,
-0.025549469515681267,
-0.02643374167382717,
-0.03527442365884781,
0.1171715036034584,
0.19945403933525085,
-0.028669873252511024,
0.015940696001052856,
-0.06650803983211517,
0.022535327821969986,
0.07362819463014603,
-0.029614297673106194,
-0.07874896377325058,
-0.23230767250061035,
0.038990579545497894,
0.03634994849562645,
-0.007720442488789558,
-0.23884893953800201,
-0.09578792005777359,
0.010213904082775116,
-0.08190613240003586,
-0.0967445820569992,
0.0758160725235939,
0.06320802122354507,
0.06725618243217468,
-0.05164487659931183,
-0.008010455407202244,
-0.06948230415582657,
0.16410107910633087,
-0.16263076663017273,
-0.08195357769727707
] |
null | null | transformers |
# Model Description
This model is fine-tuning bert-base model on Cola dataset
| {"language": "en", "license": "mit", "tags": ["sequence classification"], "datasets": ["cola"]} | text-classification | Modfiededition/bert-fine-tuned-cola | [
"transformers",
"tf",
"bert",
"text-classification",
"sequence classification",
"en",
"dataset:cola",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [
"en"
] | TAGS
#transformers #tf #bert #text-classification #sequence classification #en #dataset-cola #license-mit #autotrain_compatible #endpoints_compatible #region-us
|
# Model Description
This model is fine-tuning bert-base model on Cola dataset
| [
"# Model Description\nThis model is fine-tuning bert-base model on Cola dataset"
] | [
"TAGS\n#transformers #tf #bert #text-classification #sequence classification #en #dataset-cola #license-mit #autotrain_compatible #endpoints_compatible #region-us \n",
"# Model Description\nThis model is fine-tuning bert-base model on Cola dataset"
] | [
53,
19
] | [
"passage: TAGS\n#transformers #tf #bert #text-classification #sequence classification #en #dataset-cola #license-mit #autotrain_compatible #endpoints_compatible #region-us \n# Model Description\nThis model is fine-tuning bert-base model on Cola dataset"
] | [
-0.020902639254927635,
0.09949765354394913,
-0.0006071748794056475,
0.049601539969444275,
0.16614103317260742,
0.04374587535858154,
0.05646221339702606,
0.04001956060528755,
0.048046909272670746,
-0.039872873574495316,
0.0878416895866394,
0.12651711702346802,
-0.013201550580561161,
0.22097569704055786,
-0.12503153085708618,
-0.28381142020225525,
0.039324961602687836,
0.07205486297607422,
-0.021390601992607117,
0.11029283702373505,
0.11628878861665726,
-0.06642197072505951,
0.13159288465976715,
-0.023702114820480347,
-0.1699482798576355,
0.013934403657913208,
0.036283835768699646,
-0.12682011723518372,
0.09599759429693222,
0.0989515408873558,
0.1330612152814865,
0.11306280642747879,
0.03407221660017967,
-0.06162811443209648,
0.037529122084379196,
-0.05275379866361618,
-0.0505223348736763,
0.085921511054039,
0.027949616312980652,
-0.07212791591882706,
0.010619152337312698,
0.10699532926082611,
0.11730705946683884,
0.06010487303137779,
-0.13261918723583221,
0.041055578738451004,
-0.026673054322600365,
0.04455458000302315,
0.1353854387998581,
0.0062768831849098206,
0.014727266505360603,
0.03884505480527878,
-0.15402303636074066,
0.03177745267748833,
0.08664659410715103,
-0.3226955533027649,
-0.0034872654359787703,
0.1497429609298706,
-0.0011295407311990857,
-0.04227621480822563,
0.011651619337499142,
0.067410409450531,
0.06164955347776413,
-0.01211787760257721,
0.0010661279084160924,
-0.049751315265893936,
-0.03078356944024563,
-0.0006206294638104737,
-0.04959818720817566,
0.00468283100053668,
0.24250933527946472,
0.025274604558944702,
-0.03374810144305229,
-0.0064557334408164024,
-0.01719604805111885,
0.0019237265223637223,
-0.07226758450269699,
-0.05283305421471596,
-0.023661283776164055,
0.05131091549992561,
0.013560150749981403,
0.04671499878168106,
-0.05463910847902298,
-0.06127076968550682,
-0.19435566663742065,
0.2044239491224289,
-0.03984112665057182,
0.01569255441427231,
-0.06788119673728943,
0.06814635545015335,
-0.07614414393901825,
-0.07713454961776733,
-0.019450422376394272,
-0.10909412056207657,
-0.06746380031108856,
-0.14903897047042847,
-0.04982574284076691,
0.08281216025352478,
0.038844458758831024,
0.1473161280155182,
0.11025584489107132,
0.011659475974738598,
-0.058975640684366226,
-0.028627602383494377,
-0.008904621936380863,
0.15407848358154297,
-0.014373845420777798,
-0.13552415370941162,
0.012205191887915134,
-0.09873423725366592,
-0.09201238304376602,
-0.00748662743717432,
-0.22509993612766266,
-0.01811457984149456,
-0.04486720636487007,
0.04065683111548424,
-0.04365377500653267,
0.1404389888048172,
-0.09747081249952316,
-0.07845522463321686,
0.15612168610095978,
-0.025883030146360397,
0.02847338281571865,
0.008886211551725864,
-0.011609488166868687,
0.04113812372088432,
0.0060610417276620865,
0.022982371971011162,
0.0028128609992563725,
0.09869246184825897,
-0.10438591241836548,
-0.0840488001704216,
-0.02677035890519619,
-0.03425893560051918,
0.008534415625035763,
-0.04870239272713661,
0.04363001883029938,
-0.14723901450634003,
-0.17098885774612427,
0.0479809045791626,
0.02800723724067211,
-0.088345006108284,
-0.07089588046073914,
-0.015436956658959389,
0.05623552203178406,
0.03720903396606445,
-0.00424329424276948,
-0.005091499071568251,
-0.051067057996988297,
0.018599733710289,
-0.04152342304587364,
0.06854161620140076,
-0.12161572277545929,
0.09232565015554428,
-0.12143050879240036,
-0.005223809275776148,
-0.24055443704128265,
0.059770986437797546,
-0.029449205845594406,
0.16379810869693756,
-0.12625373899936676,
-0.0444885790348053,
-0.09606605768203735,
-0.002430182881653309,
-0.1048756018280983,
0.20159472525119781,
-0.14233767986297607,
-0.0894312933087349,
0.02919739857316017,
-0.08060449361801147,
-0.09994503110647202,
0.006179054733365774,
-0.012504391372203827,
0.08609777688980103,
0.15201318264007568,
0.09282726794481277,
0.058606378734111786,
-0.03147760033607483,
0.08062109351158142,
0.06574416160583496,
-0.0771695226430893,
-0.031120924279093742,
0.0671640932559967,
-0.04141606390476227,
-0.17158931493759155,
0.03349750488996506,
0.0354137122631073,
0.047199562191963196,
-0.047330666333436966,
-0.021225715056061745,
0.005183266010135412,
-0.018576720729470253,
0.09011390805244446,
-0.024393081665039062,
0.06300248950719833,
-0.004238490480929613,
-0.029158789664506912,
0.1184685006737709,
0.029261598363518715,
0.044264066964387894,
-0.04714585840702057,
-0.13599121570587158,
0.1743384152650833,
0.018249711021780968,
-0.011045513674616814,
-0.1427772492170334,
-0.08511704951524734,
0.000655340903904289,
0.1568097472190857,
0.0037673511542379856,
0.008418875746428967,
-0.0007711721700616181,
-0.03216436877846718,
-0.023885808885097504,
0.04114648699760437,
0.1278129667043686,
0.10065758228302002,
-0.034174542874097824,
-0.20563489198684692,
0.022661704570055008,
-0.02278323471546173,
0.12397562712430954,
-0.10168154537677765,
-0.04719085991382599,
0.187895268201828,
0.15718193352222443,
0.04934246838092804,
0.05018547177314758,
-0.0022723206784576178,
0.03860022872686386,
-0.03233863040804863,
-0.04597840830683708,
0.07443902641534805,
-0.03151357173919678,
-0.014119469560682774,
0.11925361305475235,
-0.016882626339793205,
0.18019087612628937,
0.17813828587532043,
-0.015394866466522217,
-0.09982643276453018,
-0.11146359890699387,
0.017946818843483925,
0.03339146450161934,
0.02813711203634739,
-0.013238486833870411,
0.06315627694129944,
-0.06283686310052872,
0.1482730358839035,
-0.05785076692700386,
-0.0022248681634664536,
0.024202214553952217,
0.0035207299515604973,
-0.09487387537956238,
0.02526364102959633,
0.12859748303890228,
-0.3641788959503174,
0.11302783340215683,
0.15002523362636566,
0.17355239391326904,
0.12854857742786407,
0.01675141043961048,
-0.0052557517774403095,
0.00351659650914371,
-0.0902523398399353,
-0.008099822327494621,
0.09229698032140732,
-0.11382898688316345,
0.014377548359334469,
0.06970331817865372,
-0.019049935042858124,
0.04411973059177399,
-0.015034751035273075,
-0.00013068866974208504,
0.05168362334370613,
0.013341037556529045,
0.024079445749521255,
0.01682131737470627,
0.04161496087908745,
0.1292712688446045,
0.09280049800872803,
-0.21290521323680878,
0.1153317466378212,
0.039207760244607925,
-0.08866811543703079,
0.19815129041671753,
-0.12769067287445068,
-0.24137958884239197,
-0.13519734144210815,
-0.2324419468641281,
0.0329456701874733,
0.06103317439556122,
0.036104392260313034,
-0.014924179762601852,
-0.07800187915563583,
0.010496856644749641,
0.10584669560194016,
-0.001445944420993328,
0.08091545104980469,
-0.05170334503054619,
0.02079678140580654,
-0.0459168441593647,
-0.05883200466632843,
-0.04767945036292076,
0.007192071992903948,
-0.019931700080633163,
0.07867029309272766,
-0.24650749564170837,
0.0783790573477745,
0.2365039736032486,
-0.058246687054634094,
0.05664224922657013,
-0.06238535791635513,
0.20779280364513397,
-0.08501710742712021,
0.0837348997592926,
0.02836167812347412,
-0.024888282641768456,
-0.021233022212982178,
0.19962279498577118,
0.009819930419325829,
-0.13326077163219452,
0.06104347109794617,
-0.0417540967464447,
-0.07015642523765564,
-0.15169285237789154,
-0.1453450322151184,
-0.05033811926841736,
-0.006537167821079493,
0.10406768321990967,
0.034170255064964294,
0.11360937356948853,
0.06324713677167892,
0.02383972890675068,
0.07963080704212189,
-0.014087727293372154,
0.05067116767168045,
0.20396338403224945,
0.018846552819013596,
0.09586013853549957,
-0.04292448237538338,
-0.07025709003210068,
0.12688882648944855,
-0.026161788031458855,
0.08627337217330933,
0.10884422808885574,
0.07652924954891205,
0.022325456142425537,
0.009108062833547592,
0.175345316529274,
0.1385793536901474,
0.017840391024947166,
-0.04295772686600685,
-0.025200791656970978,
-0.04032439738512039,
0.001464893575757742,
0.022845638915896416,
0.010723963379859924,
-0.12467288970947266,
-0.05988895148038864,
-0.08714353293180466,
0.008860049769282341,
0.1342526227235794,
0.06427666544914246,
-0.3231762945652008,
-0.017610931769013405,
0.02449391596019268,
-0.010174845345318317,
-0.09663394838571548,
0.037959977984428406,
-0.05719652399420738,
-0.07521020621061325,
0.09956047683954239,
0.0035752523690462112,
0.12825031578540802,
0.05887791886925697,
0.03222525864839554,
0.10165166854858398,
-0.10127939283847809,
-0.041886720806360245,
0.08837921172380447,
-0.23689457774162292,
0.19164495170116425,
0.0399446077644825,
-0.037737634032964706,
-0.06744999438524246,
-0.021164758130908012,
-0.006511556450277567,
0.2972172796726227,
0.10079903900623322,
0.0096189109608531,
0.049497440457344055,
-0.19227994978427887,
-0.10570122301578522,
-0.007177093997597694,
0.021311210468411446,
-0.08891423046588898,
0.03642625734210014,
-0.03800971433520317,
-0.01008959487080574,
0.04182879999279976,
0.06984583288431168,
-0.06018754094839096,
-0.16112743318080902,
0.03946207836270332,
-0.10396132618188858,
0.12657304108142853,
-0.017770539969205856,
-0.06895367801189423,
-0.02772187627851963,
0.1325557380914688,
-0.028979796916246414,
-0.02467941679060459,
-0.1650385707616806,
-0.054685574024915695,
0.04710284620523453,
-0.04587124288082123,
0.06399150937795639,
-0.051175862550735474,
0.05062386393547058,
0.010466708801686764,
-0.23786529898643494,
0.14264127612113953,
-0.05001398175954819,
-0.07041577249765396,
-0.07939521223306656,
0.10354680567979813,
-0.04062061384320259,
0.01810614764690399,
0.15028069913387299,
0.011256991885602474,
0.02124246396124363,
-0.07087921351194382,
-0.07854820787906647,
-0.07403447479009628,
0.12443356961011887,
0.017725294455885887,
-0.0714452788233757,
-0.035805169492959976,
0.01694917306303978,
0.07368995994329453,
0.07975798845291138,
0.055663302540779114,
-0.1005946546792984,
0.13618215918540955,
0.03261992707848549,
-0.0472441203892231,
-0.20046673715114594,
-0.007809446193277836,
-0.0912303701043129,
0.0047746277414262295,
-0.028761034831404686,
-0.16693980991840363,
0.14630313217639923,
0.00827447697520256,
-0.04635852947831154,
0.0014565967721864581,
-0.0980672687292099,
-0.11058523505926132,
0.23619471490383148,
0.006167158484458923,
0.2762322425842285,
-0.06666228920221329,
-0.09570334851741791,
-0.0681631788611412,
-0.14786528050899506,
0.2723599374294281,
0.017695488408207893,
0.08287946879863739,
-0.018862584605813026,
0.00574971130117774,
0.03612222522497177,
0.02150888554751873,
0.09801094979047775,
0.020609861239790916,
-0.007378470618277788,
-0.07322593033313751,
-0.1182599663734436,
0.0054223379120230675,
0.006700506433844566,
0.0236456710845232,
0.063387431204319,
0.055990785360336304,
-0.17696596682071686,
-0.07903627306222916,
0.00471789576113224,
0.11909937858581543,
-0.02707907371222973,
-0.06864316016435623,
-0.033975809812545776,
0.03977099433541298,
-0.033289238810539246,
-0.06362634897232056,
0.09392883628606796,
-0.061314426362514496,
0.07455912977457047,
0.07339348644018173,
0.16819895803928375,
-0.13128721714019775,
0.02300920896232128,
0.01237399596720934,
-0.06691223382949829,
0.06934551149606705,
-0.102549247443676,
0.0666898712515831,
0.11174213141202927,
-0.02119913138449192,
0.10919834673404694,
0.08873582631349564,
0.044130727648735046,
-0.10947848856449127,
0.18800906836986542,
-0.16877047717571259,
0.02395721897482872,
-0.09086562693119049,
-0.09061720222234726,
0.041673336178064346,
-0.019712595269083977,
0.12365412712097168,
0.010504054836928844,
-0.050685103982686996,
0.028214886784553528,
-0.033134616911411285,
-0.044543344527482986,
0.11154602468013763,
0.06918103992938995,
0.04984988644719124,
-0.15528516471385956,
0.037387117743492126,
0.10311316698789597,
0.005583344493061304,
-0.06740768253803253,
0.004759109113365412,
-0.17322997748851776,
-0.07226324081420898,
0.0007725651958025992,
0.16424591839313507,
-0.13856694102287292,
-0.0321027971804142,
-0.07744935899972916,
-0.17446546256542206,
0.088719941675663,
0.23993311822414398,
0.10928744822740555,
0.18475541472434998,
-0.026914888992905617,
-0.09642001241445541,
0.00815021712332964,
0.0216801930218935,
-0.07148180156946182,
0.010077554732561111,
-0.12418359518051147,
0.05208966135978699,
-0.06970681995153427,
0.06050851568579674,
-0.1031758114695549,
-0.038380254060029984,
-0.16438539326190948,
-0.06276319175958633,
-0.14920592308044434,
0.00901883840560913,
-0.05977059155702591,
0.0043838368728756905,
-0.019825367256999016,
-0.024103818461298943,
-0.01842324063181877,
-0.03835214674472809,
-0.10256496071815491,
0.04521292820572853,
-0.021872038021683693,
0.13115449249744415,
-0.06737866252660751,
0.02164188213646412,
0.06704942882061005,
-0.03603735193610191,
0.09774038195610046,
0.04390464723110199,
-0.018750015646219254,
0.0019957423210144043,
-0.07613667100667953,
-0.03502735495567322,
0.058069322258234024,
0.04063836485147476,
0.10812962800264359,
-0.0531231090426445,
0.03798342123627663,
0.04908519983291626,
0.0023845722898840904,
0.06020382046699524,
0.030590608716011047,
-0.12154112011194229,
-0.023561686277389526,
-0.06099078059196472,
-0.09498678892850876,
0.027517221868038177,
-0.020051751285791397,
0.1508830189704895,
-0.008794736117124557,
0.11492414027452469,
-0.021428387612104416,
-0.041305672377347946,
-0.0552683062851429,
-0.026885895058512688,
-0.05212505906820297,
-0.0949413999915123,
-0.12898771464824677,
-0.03720710799098015,
-0.0358736589550972,
0.05236819386482239,
0.20771093666553497,
0.11079991608858109,
0.01261376217007637,
0.08060171455144882,
0.08601810783147812,
0.15954524278640747,
0.062007371336221695,
0.17842282354831696,
0.06630130857229233,
0.02239290438592434,
-0.013591092079877853,
0.07982976734638214,
-0.0209646075963974,
0.03413872793316841,
0.07568910717964172,
0.09781930595636368,
-0.040694333612918854,
-0.007507741451263428,
0.03944704309105873,
-0.02387962117791176,
-0.09731925278902054,
-0.015107707120478153,
-0.05276962369680405,
0.0385279655456543,
0.013412395492196083,
-0.04060211405158043,
0.04378684237599373,
-0.15659861266613007,
0.03372987359762192,
-0.01552897971123457,
-0.05626961961388588,
-0.12678253650665283,
-0.1016782894730568,
-0.10933484882116318,
-0.15194396674633026,
0.006387942470610142,
-0.12145858258008957,
-0.055489134043455124,
0.12744629383087158,
0.0051698628813028336,
-0.016374163329601288,
0.06650286167860031,
-0.15252266824245453,
-0.05264747887849808,
0.1087050661444664,
0.00757161108776927,
-0.016421997919678688,
-0.12290230393409729,
-0.019124792888760567,
-0.08422781527042389,
0.007977570407092571,
-0.0846753641963005,
-0.0032240834552794695,
0.048488251864910126,
-0.0067584156058728695,
-0.050347018986940384,
-0.030826114118099213,
0.004552020691335201,
0.024704718962311745,
-0.0302042867988348,
0.04696843773126602,
-0.00117775599937886,
-0.0005310724955052137,
0.062376122921705246,
0.2552677094936371,
-0.012401667423546314,
-0.07962445169687271,
-0.12080568075180054,
0.17207403481006622,
0.03935389593243599,
0.14928503334522247,
0.0357213094830513,
0.00391156692057848,
-0.015234355814754963,
0.24101649224758148,
0.15182039141654968,
-0.04776865988969803,
-0.006842534989118576,
-0.025473851710557938,
0.00804982054978609,
0.13783080875873566,
0.12014277279376984,
0.033672817051410675,
0.10415925830602646,
-0.021109217777848244,
-0.0940559133887291,
-0.02369094081223011,
-0.004443606827408075,
-0.027362383902072906,
0.06831413507461548,
0.10218757390975952,
-0.07036854326725006,
-0.07659439742565155,
0.15257634222507477,
-0.10117698460817337,
-0.03941173478960991,
0.010426980443298817,
-0.1859918087720871,
-0.11979180574417114,
-0.08591429889202118,
-0.031280845403671265,
-0.024983668699860573,
0.06152300909161568,
-0.052669379860162735,
-0.039996981620788574,
-0.029855307191610336,
0.0375419557094574,
-0.23616474866867065,
-0.07390859723091125,
0.11544618755578995,
-0.05856171250343323,
0.0924311950802803,
-0.013009164482355118,
0.009489258751273155,
0.0890965536236763,
0.08267011493444443,
-0.07174794375896454,
-0.02162177488207817,
-0.02934221923351288,
-0.04432745277881622,
0.08062060177326202,
-0.05325866490602493,
0.019026219844818115,
0.025689179077744484,
0.011699088849127293,
-0.17254017293453217,
0.06732162833213806,
-0.0011490603210404515,
-0.09222718328237534,
-0.053939249366521835,
0.014479080215096474,
-0.08542024344205856,
0.10454320162534714,
0.17067374289035797,
-0.05712180957198143,
0.014040786772966385,
-0.009570452384650707,
0.0713408961892128,
0.049421049654483795,
-0.11973608285188675,
-0.06928703188896179,
-0.09605333209037781,
-0.08265906572341919,
-0.005878808908164501,
-0.04116401448845863,
-0.15699462592601776,
-0.014966550283133984,
-0.13424283266067505,
0.059326108545064926,
-0.13382267951965332,
0.16928422451019287,
0.07850196212530136,
0.03653924539685249,
-0.018023978918790817,
-0.06191530451178551,
-0.0032088179141283035,
0.07813720405101776,
-0.1257685422897339,
-0.09688671678304672
] |
null | null | transformers | ## t5-base-fine-tuned-on-jfleg
T5-base model fine-tuned on the [**JFLEG dataset**](https://huggingface.co/datasets/jfleg) with the objective of **text2text-generation**.
# Model Description:
T5 is an encoder-decoder model pre-trained with a multi-task mixture of unsupervised and supervised tasks and for which each task is converted into a text-to-text format.
.T5 works well on a variety of tasks out-of-the-box by prepending a different prefix to the input corresponding to each task, e.g., for translation: translate English to German: …, for summarization: summarize: ….
The T5 model was presented in [**Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer**](https://arxiv.org/pdf/1910.10683.pdf) by Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, Peter J. Liu.
## Pre-Processing:
For this task of grammar correction, we’ll use the prefix “grammar: “ to each of the input sentences.
```
Grammar: Your Sentence
```
## How to use :
You can use this model directly with the pipeline for detecting and correcting grammatical mistakes.
```
from transformers import pipeline
model_checkpoint = "Modfiededition/t5-base-fine-tuned-on-jfleg"
model = pipeline("text2text-generation", model=model_checkpoint)
text = "I am write on AI"
output = model(text)
```
Result(s)
```
I am writing on AI.
```
| {} | text2text-generation | Modfiededition/t5-base-fine-tuned-on-jfleg | [
"transformers",
"tf",
"t5",
"text2text-generation",
"arxiv:1910.10683",
"autotrain_compatible",
"endpoints_compatible",
"has_space",
"text-generation-inference",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [
"1910.10683"
] | [] | TAGS
#transformers #tf #t5 #text2text-generation #arxiv-1910.10683 #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us
| ## t5-base-fine-tuned-on-jfleg
T5-base model fine-tuned on the JFLEG dataset with the objective of text2text-generation.
# Model Description:
T5 is an encoder-decoder model pre-trained with a multi-task mixture of unsupervised and supervised tasks and for which each task is converted into a text-to-text format.
.T5 works well on a variety of tasks out-of-the-box by prepending a different prefix to the input corresponding to each task, e.g., for translation: translate English to German: …, for summarization: summarize: ….
The T5 model was presented in Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer by Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, Peter J. Liu.
## Pre-Processing:
For this task of grammar correction, we’ll use the prefix “grammar: “ to each of the input sentences.
## How to use :
You can use this model directly with the pipeline for detecting and correcting grammatical mistakes.
Result(s)
| [
"## t5-base-fine-tuned-on-jfleg\nT5-base model fine-tuned on the JFLEG dataset with the objective of text2text-generation.",
"# Model Description:\nT5 is an encoder-decoder model pre-trained with a multi-task mixture of unsupervised and supervised tasks and for which each task is converted into a text-to-text format.\n.T5 works well on a variety of tasks out-of-the-box by prepending a different prefix to the input corresponding to each task, e.g., for translation: translate English to German: …, for summarization: summarize: ….\n\nThe T5 model was presented in Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer by Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, Peter J. Liu.",
"## Pre-Processing:\nFor this task of grammar correction, we’ll use the prefix “grammar: “ to each of the input sentences.",
"## How to use :\nYou can use this model directly with the pipeline for detecting and correcting grammatical mistakes.\n\n\nResult(s)"
] | [
"TAGS\n#transformers #tf #t5 #text2text-generation #arxiv-1910.10683 #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us \n",
"## t5-base-fine-tuned-on-jfleg\nT5-base model fine-tuned on the JFLEG dataset with the objective of text2text-generation.",
"# Model Description:\nT5 is an encoder-decoder model pre-trained with a multi-task mixture of unsupervised and supervised tasks and for which each task is converted into a text-to-text format.\n.T5 works well on a variety of tasks out-of-the-box by prepending a different prefix to the input corresponding to each task, e.g., for translation: translate English to German: …, for summarization: summarize: ….\n\nThe T5 model was presented in Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer by Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, Peter J. Liu.",
"## Pre-Processing:\nFor this task of grammar correction, we’ll use the prefix “grammar: “ to each of the input sentences.",
"## How to use :\nYou can use this model directly with the pipeline for detecting and correcting grammatical mistakes.\n\n\nResult(s)"
] | [
60,
40,
183,
35,
31
] | [
"passage: TAGS\n#transformers #tf #t5 #text2text-generation #arxiv-1910.10683 #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us \n## t5-base-fine-tuned-on-jfleg\nT5-base model fine-tuned on the JFLEG dataset with the objective of text2text-generation.# Model Description:\nT5 is an encoder-decoder model pre-trained with a multi-task mixture of unsupervised and supervised tasks and for which each task is converted into a text-to-text format.\n.T5 works well on a variety of tasks out-of-the-box by prepending a different prefix to the input corresponding to each task, e.g., for translation: translate English to German: …, for summarization: summarize: ….\n\nThe T5 model was presented in Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer by Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, Peter J. Liu.## Pre-Processing:\nFor this task of grammar correction, we’ll use the prefix “grammar: “ to each of the input sentences.## How to use :\nYou can use this model directly with the pipeline for detecting and correcting grammatical mistakes.\n\n\nResult(s)"
] | [
-0.00710787158459425,
-0.022959625348448753,
-0.003797292010858655,
0.02243938483297825,
0.06120988726615906,
-0.017601236701011658,
0.14418572187423706,
0.05428808555006981,
-0.016459735110402107,
0.04039566218852997,
0.0007140975794754922,
-0.008786925114691257,
0.06283082067966461,
0.0910925418138504,
0.01786111854016781,
-0.2437487095594406,
0.048370469361543655,
-0.06296490132808685,
-0.05684102699160576,
0.0786670595407486,
0.1271989345550537,
-0.04821500554680824,
0.06888823956251144,
0.049647849053144455,
-0.04713987559080124,
0.022984517738223076,
-0.013759598135948181,
-0.018781032413244247,
0.10959333926439285,
0.11568499356508255,
0.09231815487146378,
0.04713674634695053,
0.022142013534903526,
-0.13775859773159027,
0.010002903640270233,
0.029069427400827408,
-0.04008116200566292,
0.0024656415916979313,
0.05548057705163956,
0.04535911604762077,
0.16108228266239166,
-0.108280710875988,
-0.01083887368440628,
0.06714939326047897,
-0.08518192172050476,
0.07160459458827972,
-0.0810275748372078,
0.10599751025438309,
0.0508304163813591,
0.09912008047103882,
-0.06348250806331635,
0.1558048278093338,
-0.06888218969106674,
0.09427788853645325,
0.10509093105792999,
-0.41371598839759827,
-0.05667378008365631,
0.0591149628162384,
0.04401732608675957,
0.05628013610839844,
-0.05099620670080185,
0.02114238403737545,
0.041652049869298935,
-0.022824184969067574,
-0.01154499314725399,
-0.08851929754018784,
0.14297214150428772,
0.025304248556494713,
-0.18295210599899292,
-0.010152386501431465,
0.24597600102424622,
0.04840025678277016,
-0.07898683845996857,
-0.09738519042730331,
-0.06512697041034698,
0.11070062220096588,
-0.015879793092608452,
-0.1123526468873024,
-0.042877428233623505,
0.038606006652116776,
0.07277586311101913,
-0.13586944341659546,
-0.08577363193035126,
-0.057811275124549866,
-0.06054112687706947,
0.103550985455513,
0.058074720203876495,
-0.03479473292827606,
-0.08174138516187668,
0.034304287284612656,
-0.0551505871117115,
-0.06358537077903748,
-0.00728395814076066,
-0.07190489023923874,
-0.16099479794502258,
-0.01030085887759924,
-0.04074198752641678,
-0.15929384529590607,
0.018176697194576263,
0.10561233013868332,
0.10956167429685593,
0.04367993399500847,
-0.008177811279892921,
0.01716585084795952,
0.04596443846821785,
0.14145208895206451,
-0.0707012340426445,
-0.0464724525809288,
0.029418032616376877,
0.009748307056725025,
-0.024984201416373253,
-0.02542467787861824,
-0.06811142712831497,
-0.008388257585465908,
0.030681809410452843,
0.05782920494675636,
0.01644659973680973,
0.05864930525422096,
-0.027913155034184456,
-0.05734848231077194,
0.0303273294121027,
-0.14415694773197174,
-0.06913959234952927,
-0.008630373515188694,
-0.053035736083984375,
0.01653968170285225,
0.03960516303777695,
0.0055498224683105946,
-0.11403211206197739,
-0.014050410129129887,
-0.08454127609729767,
-0.086725153028965,
-0.00530993053689599,
-0.1092616468667984,
-0.04622691497206688,
-0.019939379766583443,
-0.039576854556798935,
-0.15427958965301514,
-0.06547737121582031,
-0.03423074632883072,
-0.028188420459628105,
-0.017841337248682976,
-0.03754572197794914,
-0.04291307553648949,
-0.07862433046102524,
-0.05203278735280037,
0.005808812100440264,
-0.0479154996573925,
0.0023119046818464994,
0.03808622807264328,
0.011491179466247559,
-0.0031308347824960947,
0.015829870477318764,
0.007774430327117443,
-0.0785953477025032,
0.021657411009073257,
-0.15032704174518585,
0.16557514667510986,
-0.07022293657064438,
-0.0262251365929842,
-0.13825823366641998,
-0.013649462722241879,
-0.0163218155503273,
0.029787549749016762,
0.033850714564323425,
0.12990505993366241,
-0.1745164692401886,
-0.05992607772350311,
0.14930790662765503,
-0.12777401506900787,
-0.06247950717806816,
0.15250343084335327,
0.014343088492751122,
0.11415693163871765,
0.10095248371362686,
0.21783219277858734,
0.07687126845121384,
-0.07357195019721985,
-0.027182796970009804,
-0.003759618615731597,
-0.025915054604411125,
0.19096700847148895,
0.0667317807674408,
-0.011347882449626923,
-0.02768673375248909,
-0.02956339903175831,
-0.09179313480854034,
0.03778548911213875,
-0.015616446733474731,
-0.08486376702785492,
0.005684735253453255,
-0.010541044175624847,
0.07286558300256729,
-0.053703516721725464,
0.05101568251848221,
0.012108717113733292,
-0.09686196595430374,
0.03414386883378029,
0.07214754074811935,
-0.02859136089682579,
0.05000472813844681,
-0.14359691739082336,
0.04727276414632797,
0.08952882885932922,
0.04401521384716034,
-0.13850970566272736,
-0.0712682455778122,
0.042637068778276443,
-0.004146867897361517,
0.1472926288843155,
0.1310489922761917,
-0.0013325947802513838,
0.0465688481926918,
-0.04020416736602783,
-0.004983291961252689,
-0.08878394961357117,
0.012301918119192123,
-0.03076994977891445,
-0.15097284317016602,
-0.035010967403650284,
-0.0006491709500551224,
0.11340723931789398,
-0.17880822718143463,
0.016942055895924568,
0.022016288712620735,
0.059328172355890274,
0.012748961336910725,
-0.01281801424920559,
-0.020690057426691055,
0.04045373201370239,
-0.01978899911046028,
-0.010119796730577946,
0.030586030334234238,
0.038124702870845795,
-0.13366106152534485,
0.14840435981750488,
-0.1556902378797531,
-0.13953867554664612,
0.09065302461385727,
-0.049641113728284836,
-0.10314156860113144,
0.08550233393907547,
-0.05544034391641617,
-0.03408566117286682,
0.017808467149734497,
-0.03223762661218643,
0.14908906817436218,
-0.007634338922798634,
0.0919799879193306,
-0.10441110283136368,
-0.018121879547834396,
-0.006882421672344208,
-0.02263634093105793,
-0.0041260612197220325,
0.12429627031087875,
-0.03524750843644142,
-0.2402561604976654,
0.04172958433628082,
-0.025488609448075294,
-0.027042431756854057,
0.15374356508255005,
-0.0028031866531819105,
-0.06455007195472717,
-0.0668974295258522,
0.1256342977285385,
0.047041937708854675,
0.0792548879981041,
-0.1032409593462944,
-0.03381356969475746,
0.013852559961378574,
0.0416385792195797,
0.04667370393872261,
-0.09659183025360107,
0.025221332907676697,
0.025965102016925812,
-0.04572879523038864,
0.0639687106013298,
0.037621259689331055,
-0.041823092848062515,
0.07729337364435196,
0.026570193469524384,
0.056309282779693604,
-0.03965897858142853,
-0.03744491562247276,
-0.1823798567056656,
0.11732176691293716,
-0.07853595912456512,
-0.20305180549621582,
-0.026973316445946693,
0.052791349589824677,
-0.09120221436023712,
-0.009432878345251083,
0.05479661002755165,
-0.0679360181093216,
-0.06025759130716324,
-0.07629921287298203,
0.04938287287950516,
-0.06430759280920029,
-0.02420661225914955,
-0.030631229281425476,
0.010732728987932205,
0.0020796628668904305,
-0.07865504175424576,
0.0011295315343886614,
-0.02659708447754383,
-0.09204830229282379,
0.006658777128905058,
-0.12029771506786346,
0.10383977741003036,
0.09189459681510925,
0.0282677561044693,
0.0005540431593544781,
-0.07660119235515594,
0.25960564613342285,
-0.07783875614404678,
0.10073218494653702,
0.13206017017364502,
-0.04837194085121155,
0.027415597811341286,
0.04763854295015335,
-0.036584965884685516,
-0.04536048322916031,
0.06827464699745178,
0.08781074732542038,
-0.01626291126012802,
-0.24706050753593445,
-0.11946582794189453,
-0.12710128724575043,
0.030897527933120728,
0.016995051875710487,
0.06007767096161842,
0.08164244145154953,
-0.009979805909097195,
-0.07142838090658188,
0.07728756964206696,
0.11411164700984955,
0.10360244661569595,
0.12749934196472168,
0.0013080710778012872,
0.08315196633338928,
-0.05457790568470955,
-0.04834897816181183,
0.08192286640405655,
-0.02459687553346157,
0.1904996633529663,
0.03836170211434364,
0.17215880751609802,
0.08828619867563248,
0.16289860010147095,
0.05598641559481621,
0.00014401556109078228,
-0.04249269887804985,
0.007957661524415016,
-0.03945770859718323,
-0.09700755774974823,
-0.030335383489727974,
0.07888361066579819,
0.08336842805147171,
-0.05347883328795433,
-0.020116863772273064,
0.10490720719099045,
0.09060142189264297,
0.17582066357135773,
0.10036551207304001,
-0.040413279086351395,
-0.05372784659266472,
-0.013009046204388142,
-0.06096729636192322,
0.003837038530036807,
0.05024553835391998,
0.11357533931732178,
-0.12301108986139297,
0.018791435286402702,
-0.00504268566146493,
0.09573002904653549,
0.0041913860477507114,
0.0034891129471361637,
-0.08909278362989426,
0.03208160772919655,
-0.00647003436461091,
0.10357838124036789,
-0.2727016508579254,
0.20487573742866516,
0.018841305747628212,
0.05521582067012787,
-0.053882140666246414,
0.005352234933525324,
0.04041310399770737,
-0.015803147107362747,
0.18207302689552307,
0.03208228945732117,
0.03749924898147583,
-0.04595109075307846,
-0.04974078759551048,
0.029684090986847878,
0.12345905601978302,
-0.03157605603337288,
0.061424557119607925,
-0.07807926833629608,
0.024223145097494125,
0.0064397165551781654,
0.24172678589820862,
-0.1851913183927536,
-0.12901929020881653,
0.04413558170199394,
-0.048223983496427536,
-0.042380236089229584,
-0.03143928572535515,
-0.019477451220154762,
0.008235116489231586,
0.16933895647525787,
-0.07563861459493637,
-0.05208808556199074,
-0.1073683649301529,
0.008039009757339954,
0.09395008534193039,
-0.07431915402412415,
-0.03354377672076225,
-0.005483439192175865,
0.041763607412576675,
-0.07730083912611008,
-0.08481607586145401,
0.04782600328326225,
-0.03150554746389389,
-0.09715104103088379,
0.013394452631473541,
0.15789099037647247,
0.09942920506000519,
0.07117723673582077,
0.016275539994239807,
0.000800256326328963,
0.036937691271305084,
-0.1299576610326767,
-0.06626968830823898,
-0.020751120522618294,
0.00914022233337164,
0.10310857743024826,
-0.10882733762264252,
-0.05139944702386856,
-0.1815672069787979,
-0.03357855603098869,
0.1334662139415741,
0.17711900174617767,
-0.05773494765162468,
0.06414055824279785,
0.06465403735637665,
-0.07470867782831192,
-0.18727344274520874,
-0.09580561518669128,
0.0545431524515152,
0.02850736491382122,
-0.019893739372491837,
-0.10803790390491486,
0.00827121827751398,
0.024688126519322395,
0.02096741646528244,
-0.06830962002277374,
-0.2201545387506485,
-0.14887095987796783,
0.060074906796216965,
0.015385336242616177,
0.10056615620851517,
-0.1344527155160904,
-0.059868644922971725,
0.03153344243764877,
-0.022531980648636818,
0.09833139926195145,
-0.03365505486726761,
0.09361815452575684,
0.08070168644189835,
-0.04324398562312126,
0.016846325248479843,
0.021763084456324577,
0.1023232489824295,
0.0342395044863224,
-0.016463788226246834,
-0.04706700146198273,
-0.07465039938688278,
0.047249410301446915,
-0.0023327271919697523,
0.10678482055664062,
-0.01072636991739273,
0.0823402926325798,
-0.10827045887708664,
-0.034129705280065536,
-0.05718528851866722,
0.032683927565813065,
-0.05873112380504608,
-0.0791231319308281,
-0.10817499458789825,
0.11348413676023483,
0.07833593338727951,
0.022516367956995964,
0.09974361956119537,
-0.06829510629177094,
-0.0007946658879518509,
0.05407720059156418,
0.10700369626283646,
0.04728907719254494,
-0.06125415116548538,
-0.012530125677585602,
0.0273569505661726,
0.08438372611999512,
-0.09997986257076263,
0.05760442093014717,
0.09344390034675598,
0.037196606397628784,
0.1676238626241684,
0.025846049189567566,
-0.12963886559009552,
0.0050546652637422085,
-0.009951145388185978,
-0.17446407675743103,
-0.21553254127502441,
-0.10167315602302551,
-0.06576939672231674,
0.004662204068154097,
-0.02041006088256836,
0.15066370368003845,
-0.09600547701120377,
0.003022979712113738,
0.020692866295576096,
-0.0033790708985179663,
-0.07581936568021774,
0.10480071604251862,
0.03414199873805046,
0.03425652161240578,
-0.051376279443502426,
0.06571223586797714,
0.08695551007986069,
-0.01613386906683445,
0.056283578276634216,
0.14148209989070892,
-0.12205791473388672,
-0.03630830720067024,
-0.06943429261445999,
0.0879710242152214,
-0.04139241948723793,
-0.020858168601989746,
-0.03999984264373779,
-0.07370934635400772,
-0.00005046385194873437,
0.14524400234222412,
0.03452496975660324,
0.05358681455254555,
-0.061636969447135925,
-0.0016464941436424851,
-0.07237809896469116,
0.04838844761252403,
0.04131504148244858,
-0.0210436824709177,
-0.0814274251461029,
0.14295445382595062,
0.05109249800443649,
0.09093693643808365,
-0.04233386367559433,
-0.07814428955316544,
-0.16737021505832672,
0.001492224633693695,
-0.10114190727472305,
0.06056009232997894,
-0.11265269666910172,
-0.027917947620153427,
-0.03223618492484093,
-0.06133072078227997,
-0.018791966140270233,
0.0397096611559391,
-0.021566815674304962,
-0.04406515881419182,
-0.025451187044382095,
0.07721193879842758,
-0.0995820164680481,
0.029569657519459724,
0.015324288979172707,
-0.08972302079200745,
0.07297103852033615,
0.04681955277919769,
-0.03628632426261902,
0.08257368206977844,
0.0793331116437912,
-0.027414165437221527,
-0.04222600534558296,
0.05087871104478836,
0.05319350212812424,
-0.10623817145824432,
-0.023008503019809723,
0.002783751580864191,
0.018372029066085815,
0.00039004909922368824,
0.09231598675251007,
-0.05236068367958069,
-0.004506207071244717,
-0.07881934195756912,
-0.04675024747848511,
-0.06328372657299042,
0.04303229600191116,
0.03638507053256035,
0.0396767184138298,
0.07776141911745071,
-0.07917378097772598,
0.0724322572350502,
-0.17992568016052246,
-0.021437305957078934,
0.02386431396007538,
0.0074453637935221195,
0.0374162383377552,
-0.08523024618625641,
0.044151097536087036,
-0.07815558463335037,
0.02529633790254593,
-0.06543175131082535,
0.05111876502633095,
0.06677917391061783,
-0.03355571627616882,
-0.009012485854327679,
0.010098690167069435,
0.15251100063323975,
0.04110102728009224,
0.013910666108131409,
-0.030912844464182854,
-0.01378204207867384,
-0.058795586228370667,
0.028078977018594742,
0.21433113515377045,
0.08658885955810547,
0.018044564872980118,
0.08235972374677658,
0.03760930895805359,
-0.06136303395032883,
-0.09401999413967133,
0.04084906727075577,
-0.056448545306921005,
0.03106164000928402,
0.0016049982514232397,
0.0074974060989916325,
0.19234976172447205,
-0.17657965421676636,
0.12505584955215454,
0.01576017215847969,
-0.10070069879293442,
-0.09731215238571167,
-0.1838240772485733,
-0.057556699961423874,
-0.050887394696474075,
-0.0031563963275402784,
-0.14051370322704315,
-0.027031084522604942,
-0.022543486207723618,
0.05462402477860451,
-0.026975609362125397,
0.08298766613006592,
-0.12721729278564453,
-0.1144389808177948,
0.04442071542143822,
-0.011153968051075935,
0.05543571710586548,
0.01417695451527834,
-0.0009878268465399742,
0.021354425698518753,
0.03954331949353218,
0.01820516772568226,
0.041963979601860046,
0.0757858082652092,
0.07868453860282898,
-0.0439545176923275,
-0.03364557772874832,
0.01813267543911934,
0.016088739037513733,
0.07023649662733078,
0.13192692399024963,
0.04540030658245087,
-0.09473195672035217,
-0.00839231163263321,
0.16718968749046326,
0.004397279117256403,
-0.12342671304941177,
-0.1921522617340088,
0.22357885539531708,
-0.0055085294879972935,
0.0021526177879422903,
0.015006222762167454,
-0.08228907734155655,
-0.010061371140182018,
0.3140229284763336,
0.19235262274742126,
-0.08165579289197922,
0.001771719311363995,
0.019264688715338707,
0.019187409430742264,
0.04164554551243782,
0.07857056707143784,
0.04451450705528259,
0.29435408115386963,
-0.013743172399699688,
0.010527361184358597,
-0.09242603182792664,
-0.0001534508919576183,
-0.034700360149145126,
0.1872021108865738,
0.07405605167150497,
-0.05983957275748253,
-0.028555018827319145,
0.10176300257444382,
-0.052447862923145294,
-0.15102800726890564,
-0.02233564667403698,
-0.09852082282304764,
-0.0891427993774414,
-0.008703812956809998,
-0.01253592036664486,
0.024102747440338135,
0.060692526400089264,
0.005842240992933512,
0.04347378388047218,
-0.0034440841991454363,
0.060495100915431976,
-0.03761041909456253,
-0.04191377013921738,
0.1237623542547226,
0.023529082536697388,
0.0986025333404541,
-0.007374727167189121,
0.05742596834897995,
0.0901137962937355,
0.07077911496162415,
-0.04024716466665268,
0.06989230215549469,
0.020234232768416405,
-0.07046832144260406,
-0.012480353936553001,
0.05499826371669769,
-0.007892334833741188,
0.09903128445148468,
0.07571501284837723,
-0.10964394360780716,
0.045338261872529984,
0.09348692744970322,
0.01089897844940424,
-0.08463317155838013,
0.10579095035791397,
-0.1701459437608719,
0.1261904090642929,
0.17466256022453308,
-0.03244971111416817,
0.034797798842191696,
-0.054648999124765396,
-0.000790495949331671,
-0.003595412243157625,
0.10629618167877197,
-0.04425432160496712,
-0.12874406576156616,
-0.0033630062825977802,
-0.11363421380519867,
-0.006379659287631512,
-0.19000433385372162,
-0.062347568571567535,
0.012991598807275295,
-0.01426349114626646,
-0.06229868158698082,
0.12542100250720978,
0.09757193177938461,
0.013798910193145275,
-0.019977601245045662,
-0.2616630494594574,
0.006418558768928051,
0.09336741268634796,
-0.08999698609113693,
-0.0834103673696518
] |
null | null | transformers |
# Okabe Rintaro DialoGPT Model | {"tags": ["conversational"]} | text-generation | ModzabazeR/small-okaberintaro | [
"transformers",
"pytorch",
"gpt2",
"text-generation",
"conversational",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [] | TAGS
#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
# Okabe Rintaro DialoGPT Model | [
"# Okabe Rintaro DialoGPT Model"
] | [
"TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"# Okabe Rintaro DialoGPT Model"
] | [
51,
10
] | [
"passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# Okabe Rintaro DialoGPT Model"
] | [
-0.016011958941817284,
0.06112118437886238,
-0.005886291153728962,
0.009617472067475319,
0.15664976835250854,
0.008790962398052216,
0.1458677351474762,
0.10999497026205063,
-0.006357854697853327,
-0.004074499476701021,
0.07007542252540588,
0.1486656665802002,
0.03816981613636017,
0.12755778431892395,
-0.08138715475797653,
-0.29993343353271484,
0.06936482340097427,
0.06614777445793152,
0.11718286573886871,
0.11826520413160324,
0.08035343140363693,
-0.04097331315279007,
0.05892736092209816,
0.026809247210621834,
-0.12275394797325134,
0.007838040590286255,
-0.019930582493543625,
-0.15411899983882904,
0.07413887977600098,
0.05858388915657997,
0.03080046735703945,
0.028059128671884537,
-0.050313178449869156,
-0.15512706339359283,
0.04005163535475731,
-0.032347746193408966,
-0.06763067841529846,
0.032350312918424606,
0.03625302389264107,
-0.09020745009183884,
0.13413965702056885,
0.1232609674334526,
-0.04274963587522507,
0.03485685586929321,
-0.16614161431789398,
0.07755309343338013,
0.011642561294138432,
0.08715075999498367,
0.07312214374542236,
0.1183004379272461,
-0.05266910418868065,
0.09768205881118774,
-0.08700154721736908,
0.07748179882764816,
0.07705612480640411,
-0.26560384035110474,
-0.03352012112736702,
0.08793572336435318,
0.05458670109510422,
0.06986448913812637,
-0.070207379758358,
0.043994393199682236,
0.022077640518546104,
-0.014123708009719849,
-0.08282825350761414,
-0.08299341797828674,
-0.07772228866815567,
-0.020796071738004684,
-0.07716861367225647,
0.007007468491792679,
0.24451884627342224,
-0.014549609273672104,
0.03295600414276123,
-0.05354250967502594,
-0.0889497771859169,
-0.019376371055841446,
-0.049667101353406906,
-0.012805070728063583,
-0.08428514748811722,
0.06818318367004395,
0.010394991375505924,
-0.07089229673147202,
-0.12721723318099976,
0.0023039928637444973,
-0.18162618577480316,
0.2350238561630249,
0.03198671340942383,
-0.004378674551844597,
-0.18107502162456512,
0.09183382242918015,
-0.049278050661087036,
-0.11200974881649017,
-0.0015436663525179029,
-0.07346503436565399,
0.049649231135845184,
0.01651459001004696,
-0.0011614763643592596,
-0.014109594747424126,
0.09439471364021301,
0.1080196276307106,
0.012507757171988487,
0.011631792411208153,
-0.021955864503979683,
0.04962790757417679,
0.06770496815443039,
0.07843302190303802,
0.006251786835491657,
-0.05322497338056564,
0.006413978058844805,
-0.08716605603694916,
-0.010432668961584568,
-0.058748263865709305,
-0.15802307426929474,
-0.028231311589479446,
0.042662493884563446,
0.03052527643740177,
0.04424199089407921,
0.10694794356822968,
-0.027472376823425293,
-0.05937276780605316,
-0.0033634367864578962,
-0.03327828273177147,
-0.01578197255730629,
0.005183621775358915,
-0.035082194954156876,
0.09097051620483398,
0.0022346600890159607,
0.052352264523506165,
-0.13699971139431,
0.031185202300548553,
-0.058365993201732635,
0.00373996514827013,
-0.01763901859521866,
-0.015742242336273193,
-0.01143667008727789,
-0.09558127820491791,
0.015393389388918877,
-0.16554053127765656,
-0.14702023565769196,
-0.041150618344545364,
-0.02690482884645462,
-0.060783762484788895,
-0.1153663918375969,
-0.10658210515975952,
0.010195636190474033,
0.04621408134698868,
-0.07693414390087128,
-0.042787909507751465,
-0.07196204364299774,
0.08346918970346451,
-0.0016225293511524796,
0.07438196986913681,
-0.07616674154996872,
0.07587116956710815,
-0.11073984950780869,
-0.03390735387802124,
-0.04426954314112663,
0.09627249836921692,
0.018123703077435493,
0.036129191517829895,
-0.04406314343214035,
0.018905656412243843,
-0.1274818331003189,
0.07464327663183212,
-0.016282737255096436,
0.24878740310668945,
-0.036926619708538055,
-0.1105855330824852,
0.26632481813430786,
-0.0600181445479393,
-0.12660036981105804,
0.11237766593694687,
0.01653308980166912,
0.1433795690536499,
0.09706605970859528,
0.21887558698654175,
-0.02645905315876007,
-0.010634728707373142,
0.0394783653318882,
0.04566812515258789,
-0.05546312406659126,
-0.031619954854249954,
0.022796425968408585,
-0.020218003541231155,
-0.03141351789236069,
0.035415492951869965,
0.0955495834350586,
0.059685174375772476,
-0.05739990621805191,
-0.019587615504860878,
0.0028331619687378407,
0.0003979186585638672,
0.03617418557405472,
-0.013816315680742264,
0.12144732475280762,
-0.019171005114912987,
-0.06460292637348175,
-0.0788300409913063,
0.030998505651950836,
-0.04839841648936272,
0.025943251326680183,
-0.0891076847910881,
0.11845892667770386,
-0.04865102842450142,
0.06165246292948723,
-0.09980043768882751,
-0.021135535091161728,
-0.04299337789416313,
0.15723665058612823,
0.070703886449337,
0.09535964578390121,
0.036179207265377045,
-0.026452627032995224,
-0.019595706835389137,
-0.021093126386404037,
0.1587742418050766,
-0.020307401195168495,
-0.07754722982645035,
-0.0708078071475029,
0.12411962449550629,
-0.05545707419514656,
0.09304767847061157,
-0.04907269775867462,
0.02863602340221405,
-0.0302046537399292,
0.12642814218997955,
-0.041662875562906265,
0.0487990565598011,
0.01238865777850151,
-0.004372960887849331,
-0.08061158657073975,
0.019818367436528206,
0.08795899897813797,
0.00291278213262558,
-0.1083439290523529,
0.23319199681282043,
-0.1816374659538269,
0.13760699331760406,
0.1789635568857193,
-0.16193009912967682,
0.04726414754986763,
-0.13960206508636475,
-0.035680606961250305,
0.016195207834243774,
0.08966705948114395,
0.044314417988061905,
0.1835012137889862,
-0.016687102615833282,
0.16729094088077545,
-0.042387060821056366,
0.018570471554994583,
-0.007758413907140493,
-0.09757310897111893,
-0.004409226588904858,
0.09898663312196732,
0.12348055094480515,
-0.15008364617824554,
0.17557041347026825,
0.09251681715250015,
0.055025119334459305,
0.2291024923324585,
0.020320868119597435,
-0.009706351906061172,
0.04632352665066719,
0.011205947026610374,
-0.04611912742257118,
-0.08931710571050644,
-0.28038260340690613,
-0.010159830562770367,
0.06665390729904175,
0.04520747810602188,
0.12291441112756729,
-0.08559180796146393,
-0.03207144886255264,
-0.012834468856453896,
0.015436560846865177,
0.05735629424452782,
0.10442402958869934,
0.007226564921438694,
0.10583928227424622,
-0.03162309154868126,
-0.09043658524751663,
0.07306662201881409,
0.0380520336329937,
-0.04994674772024155,
0.18786312639713287,
-0.09036117792129517,
-0.3318084478378296,
-0.1061156839132309,
-0.23868022859096527,
-0.08879214525222778,
0.07265859097242355,
0.11283908039331436,
-0.1270574927330017,
-0.007543372455984354,
-0.00252523273229599,
0.1103520467877388,
-0.047241903841495514,
-0.0021788161247968674,
-0.02818400226533413,
0.004801597911864519,
-0.14500851929187775,
-0.08244186639785767,
-0.06464030593633652,
-0.0527644045650959,
-0.11880913376808167,
0.1711985319852829,
-0.16459321975708008,
0.0655132457613945,
0.22255849838256836,
0.06271164119243622,
0.035984162241220474,
-0.0019631609320640564,
0.13665537536144257,
-0.13462337851524353,
-0.005970413330942392,
0.2062111347913742,
-0.028919978067278862,
0.06364994496107101,
0.14836131036281586,
-0.030702784657478333,
-0.06002393737435341,
0.04010957479476929,
-0.016637055203318596,
-0.04596179723739624,
-0.23774027824401855,
-0.12560349702835083,
-0.11334634572267532,
0.0777054876089096,
-0.0019532106816768646,
0.052704934030771255,
0.23077291250228882,
0.11434094607830048,
-0.03794632852077484,
-0.041206955909729004,
0.05590594559907913,
0.10511458665132523,
0.1931697428226471,
-0.06079242378473282,
0.1430487334728241,
0.01224248856306076,
-0.16390997171401978,
0.06666850298643112,
0.05829222500324249,
0.09125716984272003,
0.06343694031238556,
0.06339995563030243,
0.019246235489845276,
0.04267914965748787,
0.12106040120124817,
0.06518302112817764,
0.042841777205467224,
-0.046474143862724304,
-0.05267423391342163,
-0.02105122059583664,
-0.034224845468997955,
0.05103044584393501,
0.07743927091360092,
-0.1581830084323883,
-0.04687998443841934,
-0.0008040178217925131,
0.057180847972631454,
0.025705929845571518,
0.06447762995958328,
-0.16372282803058624,
-0.0037339869886636734,
0.07829663157463074,
-0.035304922610521317,
-0.1487821340560913,
0.05772551894187927,
0.010218370705842972,
-0.1330385059118271,
0.026207802817225456,
0.026433540508151054,
0.12665951251983643,
-0.06866578757762909,
0.06904110312461853,
-0.15188761055469513,
-0.05877871811389923,
-0.024943679571151733,
0.10707712173461914,
-0.2714843153953552,
0.17382121086120605,
-0.010321934707462788,
-0.005260367412120104,
-0.10904033482074738,
-0.027408378198742867,
0.0010023948270827532,
0.09166242182254791,
0.11074419319629669,
-0.03194880858063698,
0.046258099377155304,
0.008224819786846638,
-0.05502474680542946,
0.028959227725863457,
0.09628848731517792,
-0.06792595982551575,
0.00077249068999663,
-0.006042557302862406,
0.022722726687788963,
-0.03977564722299576,
-0.029123691841959953,
-0.02863646298646927,
-0.1640923023223877,
0.08790386468172073,
0.06399375945329666,
0.13083592057228088,
0.025374166667461395,
-0.028881162405014038,
-0.048887260258197784,
0.2483125478029251,
0.02127821557223797,
-0.06144001707434654,
-0.0965331420302391,
-0.04957948252558708,
0.06441345810890198,
-0.08042588829994202,
0.00481959106400609,
-0.07808521389961243,
0.028512079268693924,
-0.08032441139221191,
-0.13318535685539246,
0.10216634720563889,
-0.09090542048215866,
-0.055812373757362366,
-0.03999822214245796,
0.18915700912475586,
0.0034211897291243076,
0.009370754472911358,
0.04010391607880592,
-0.013474574312567711,
-0.0968465507030487,
-0.0647306814789772,
-0.0027987167704850435,
0.02449660189449787,
0.03497746214270592,
0.0503169447183609,
-0.04549236223101616,
-0.10457391291856766,
-0.10019988566637039,
-0.05267223343253136,
0.26728954911231995,
0.1586330235004425,
0.02772345021367073,
0.13176514208316803,
0.1656360775232315,
-0.08273191750049591,
-0.26072564721107483,
-0.13025206327438354,
-0.07251144200563431,
-0.006302247755229473,
-0.12587037682533264,
-0.16045379638671875,
0.06908994168043137,
-0.004940293729305267,
-0.015525978989899158,
0.10367880761623383,
-0.2497374564409256,
-0.11128980666399002,
0.18761463463306427,
-0.040097955614328384,
0.43956705927848816,
-0.10567043721675873,
-0.06212061271071434,
-0.056079454720020294,
-0.16467566788196564,
0.13277983665466309,
-0.0030292465817183256,
0.14163804054260254,
-0.0396101251244545,
0.131836399435997,
0.057278867810964584,
0.001040771952830255,
0.10316559672355652,
0.04332935810089111,
-0.08054976165294647,
-0.13457278907299042,
-0.062288474291563034,
-0.005008203908801079,
0.022579193115234375,
0.011016671545803547,
-0.0382629930973053,
-0.0007965523400343955,
-0.17238706350326538,
-0.07768655568361282,
-0.08307186514139175,
0.06867854297161102,
0.030651388689875603,
-0.0657728835940361,
0.005620358046144247,
-0.018298504874110222,
-0.00007345458288909867,
0.04903508722782135,
0.18656794726848602,
-0.1051303967833519,
0.14628922939300537,
0.10186867415904999,
0.10842349380254745,
-0.0977662056684494,
0.01684609055519104,
-0.08395680785179138,
-0.04411423206329346,
0.05127784609794617,
-0.05212322995066643,
0.002424054779112339,
0.11977076530456543,
-0.052850186824798584,
0.10030972957611084,
0.07898271083831787,
-0.017178311944007874,
0.021305866539478302,
0.1177547350525856,
-0.20173101127147675,
-0.0664365291595459,
-0.07070888578891754,
0.006991098169237375,
0.06649206578731537,
0.08334559202194214,
0.18803554773330688,
0.0013368435902521014,
-0.04851031303405762,
-0.0171238724142313,
0.053431134670972824,
-0.05289679393172264,
0.08016402274370193,
-0.010250226594507694,
0.0016820497112348676,
-0.13062429428100586,
0.07518437504768372,
0.019330834969878197,
-0.10456915944814682,
0.008135747164487839,
0.12360718101263046,
-0.08308112621307373,
-0.12244502454996109,
-0.007459809072315693,
0.1425476372241974,
-0.11587749421596527,
-0.02815450169146061,
-0.03178272768855095,
-0.1342000663280487,
0.05458557605743408,
0.0598197840154171,
0.016028162091970444,
0.022787999361753464,
-0.06912354379892349,
-0.032480765134096146,
-0.05087672546505928,
-0.027936358004808426,
0.11503928154706955,
-0.0049423580057919025,
-0.04371004179120064,
0.023088332265615463,
-0.03314436599612236,
0.1123540848493576,
-0.08067860454320908,
-0.11860751360654831,
-0.14636576175689697,
0.029360299929976463,
-0.10681641846895218,
-0.07304779440164566,
-0.12452556937932968,
-0.05588376149535179,
-0.017079045996069908,
-0.06903076171875,
-0.06339343637228012,
-0.06518354266881943,
-0.11622418463230133,
0.040799643844366074,
-0.03661048412322998,
0.030823616310954094,
-0.03252709284424782,
0.022536834701895714,
0.05914638563990593,
-0.045244839042425156,
0.14285412430763245,
0.1647096574306488,
-0.09672670066356659,
0.08939624577760696,
-0.17497354745864868,
-0.03205270320177078,
0.11164379119873047,
0.003010794520378113,
0.02842162922024727,
0.0700906440615654,
0.02662634290754795,
0.0740218237042427,
0.038981206715106964,
0.02150711417198181,
0.007812135852873325,
-0.10953433811664581,
0.02832682617008686,
-0.07269103080034256,
-0.17149090766906738,
-0.05385939031839371,
0.002023214241489768,
0.048396699130535126,
0.043074727058410645,
0.1084907054901123,
-0.045064155012369156,
0.10245931148529053,
-0.05039939284324646,
0.04121745750308037,
0.023168697953224182,
-0.15684252977371216,
0.06180034205317497,
-0.12152980268001556,
0.03587774932384491,
0.013882934115827084,
0.13161443173885345,
0.0468115396797657,
-0.031255561858415604,
-0.013097735121846199,
0.03552883118391037,
0.034916702657938004,
-0.007331711705774069,
0.21042470633983612,
0.13221578299999237,
-0.03258120268583298,
-0.09598378837108612,
0.061952780932188034,
0.03073003888130188,
0.02577613852918148,
0.07724916189908981,
0.0017040630336850882,
0.010347255505621433,
0.13093341886997223,
-0.007164962589740753,
-0.004348232410848141,
-0.10286041349172592,
-0.11743025481700897,
-0.06268275529146194,
0.03826538473367691,
-0.041194334626197815,
0.107975073158741,
0.15461674332618713,
-0.02003426104784012,
0.0013360579032450914,
-0.010301798582077026,
-0.07732363045215607,
-0.15918684005737305,
-0.18502190709114075,
-0.09495522826910019,
-0.12070488184690475,
0.05244554951786995,
-0.13343331217765808,
0.05099314823746681,
0.04039422795176506,
0.07261575013399124,
-0.07561163604259491,
0.08468987792730331,
0.09629257023334503,
-0.14389902353286743,
0.08421742916107178,
-0.03932281211018562,
0.09270581603050232,
-0.07290638238191605,
-0.004924508277326822,
-0.10191014409065247,
0.0651446208357811,
0.02635553665459156,
0.06355176866054535,
-0.017553431913256645,
0.03181542828679085,
-0.12616847455501556,
-0.08433361351490021,
-0.054015371948480606,
0.0552167184650898,
0.023738600313663483,
0.18226446211338043,
-0.006727518513798714,
-0.0487973690032959,
0.03355270251631737,
0.2373686283826828,
-0.02824047952890396,
-0.10382484644651413,
-0.04834527522325516,
0.18683363497257233,
0.0343504399061203,
0.08765650540590286,
-0.03324156254529953,
-0.016987204551696777,
-0.08248510211706161,
0.3045847415924072,
0.23218537867069244,
-0.07261962443590164,
-0.012283663265407085,
0.029321594163775444,
0.04044979438185692,
0.10506242513656616,
0.07243094593286514,
0.09260943531990051,
0.30039310455322266,
-0.07169128209352493,
0.05415438860654831,
-0.020413806661963463,
-0.014419854618608952,
-0.04540439695119858,
0.07605868577957153,
0.04548350349068642,
-0.060597971081733704,
-0.055807095021009445,
0.07777039706707001,
-0.2767772078514099,
0.08300065249204636,
-0.10405994206666946,
-0.15795157849788666,
-0.09829749912023544,
-0.01597643829882145,
0.10172217339277267,
0.05415763333439827,
0.1146097183227539,
-0.00868072360754013,
-0.09380710870027542,
0.014215354807674885,
0.031090281903743744,
-0.15866494178771973,
0.009272022172808647,
0.057916246354579926,
-0.07198188453912735,
-0.005658880807459354,
-0.026923229917883873,
0.0762024074792862,
0.0736948773264885,
0.0498754158616066,
0.0038596661761403084,
0.059789013117551804,
-0.02149530127644539,
-0.025949429720640182,
0.06728973984718323,
0.03463399410247803,
0.011850944720208645,
-0.12163642793893814,
0.10188489407300949,
-0.1653476357460022,
0.054192494601011276,
0.017055677250027657,
-0.020060304552316666,
-0.027453957125544548,
0.07935615628957748,
-0.09931802749633789,
0.07518744468688965,
0.06930691748857498,
-0.01775876246392727,
-0.010905047878623009,
-0.04659072682261467,
0.024317974224686623,
-0.032440103590488434,
-0.04687825217843056,
-0.06253378093242645,
-0.1752179116010666,
-0.11584415286779404,
0.08362042158842087,
0.020025992766022682,
-0.1985606998205185,
0.02391696348786354,
-0.14183345437049866,
0.038395605981349945,
-0.14785467088222504,
0.09002568572759628,
0.09284002333879471,
0.020337188616394997,
-0.0030761579982936382,
-0.030486129224300385,
0.030159901827573776,
0.06525030732154846,
-0.0967361256480217,
-0.07099789381027222
] |
null | null | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
#
This model is a fine-tuned version of [hf-test/xls-r-dummy](https://huggingface.co/hf-test/xls-r-dummy) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - AB dataset.
It achieves the following results on the evaluation set:
- Loss: 207.6065
- Wer: 1.5484
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 2
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 10
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.17.0.dev0
- Pytorch 1.10.2+cu113
- Datasets 1.18.4.dev0
- Tokenizers 0.11.0
| {"language": ["ab"], "tags": ["automatic-speech-recognition", "mozilla-foundation/common_voice_7_0", "generated_from_trainer"], "datasets": ["common_voice"], "model-index": [{"name": "", "results": []}]} | automatic-speech-recognition | Mofe/speech-sprint-test | [
"transformers",
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"mozilla-foundation/common_voice_7_0",
"generated_from_trainer",
"ab",
"dataset:common_voice",
"endpoints_compatible",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [
"ab"
] | TAGS
#transformers #pytorch #wav2vec2 #automatic-speech-recognition #mozilla-foundation/common_voice_7_0 #generated_from_trainer #ab #dataset-common_voice #endpoints_compatible #region-us
|
#
This model is a fine-tuned version of hf-test/xls-r-dummy on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - AB dataset.
It achieves the following results on the evaluation set:
- Loss: 207.6065
- Wer: 1.5484
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 2
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 10
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.17.0.dev0
- Pytorch 1.10.2+cu113
- Datasets 1.18.4.dev0
- Tokenizers 0.11.0
| [
"# \n\nThis model is a fine-tuned version of hf-test/xls-r-dummy on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - AB dataset.\nIt achieves the following results on the evaluation set:\n- Loss: 207.6065\n- Wer: 1.5484",
"## Model description\n\nMore information needed",
"## Intended uses & limitations\n\nMore information needed",
"## Training and evaluation data\n\nMore information needed",
"## Training procedure",
"### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 0.0003\n- train_batch_size: 2\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- training_steps: 10\n- mixed_precision_training: Native AMP",
"### Training results",
"### Framework versions\n\n- Transformers 4.17.0.dev0\n- Pytorch 1.10.2+cu113\n- Datasets 1.18.4.dev0\n- Tokenizers 0.11.0"
] | [
"TAGS\n#transformers #pytorch #wav2vec2 #automatic-speech-recognition #mozilla-foundation/common_voice_7_0 #generated_from_trainer #ab #dataset-common_voice #endpoints_compatible #region-us \n",
"# \n\nThis model is a fine-tuned version of hf-test/xls-r-dummy on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - AB dataset.\nIt achieves the following results on the evaluation set:\n- Loss: 207.6065\n- Wer: 1.5484",
"## Model description\n\nMore information needed",
"## Intended uses & limitations\n\nMore information needed",
"## Training and evaluation data\n\nMore information needed",
"## Training procedure",
"### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 0.0003\n- train_batch_size: 2\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- training_steps: 10\n- mixed_precision_training: Native AMP",
"### Training results",
"### Framework versions\n\n- Transformers 4.17.0.dev0\n- Pytorch 1.10.2+cu113\n- Datasets 1.18.4.dev0\n- Tokenizers 0.11.0"
] | [
71,
71,
6,
12,
8,
3,
101,
4,
39
] | [
"passage: TAGS\n#transformers #pytorch #wav2vec2 #automatic-speech-recognition #mozilla-foundation/common_voice_7_0 #generated_from_trainer #ab #dataset-common_voice #endpoints_compatible #region-us \n# \n\nThis model is a fine-tuned version of hf-test/xls-r-dummy on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - AB dataset.\nIt achieves the following results on the evaluation set:\n- Loss: 207.6065\n- Wer: 1.5484## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 0.0003\n- train_batch_size: 2\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- training_steps: 10\n- mixed_precision_training: Native AMP### Training results### Framework versions\n\n- Transformers 4.17.0.dev0\n- Pytorch 1.10.2+cu113\n- Datasets 1.18.4.dev0\n- Tokenizers 0.11.0"
] | [
-0.11369607597589493,
0.11757971346378326,
-0.003984853625297546,
0.025437284260988235,
0.1395273208618164,
0.014353722333908081,
0.06646880507469177,
0.157508984208107,
-0.09123051166534424,
0.08846329152584076,
0.06530880928039551,
0.02677779458463192,
0.09448324888944626,
0.0770578384399414,
-0.0055977534502744675,
-0.26797550916671753,
0.019208766520023346,
-0.011063794605433941,
-0.03838376700878143,
0.08922117948532104,
0.13432423770427704,
-0.08294118940830231,
0.022897114977240562,
0.04808732122182846,
-0.14287012815475464,
0.012461824342608452,
-0.028323452919721603,
-0.056813858449459076,
0.08876059204339981,
0.018580332398414612,
0.062441252171993256,
0.006479434669017792,
0.069768026471138,
-0.2511826157569885,
0.0027465589810162783,
0.06823167204856873,
0.0734206885099411,
0.07881693542003632,
0.06754466891288757,
0.018199317157268524,
0.0716460794210434,
-0.12571492791175842,
0.04282800108194351,
0.07932838052511215,
-0.07507197558879852,
-0.2281668484210968,
-0.09354521334171295,
0.04664319008588791,
0.0769914984703064,
0.10422160476446152,
-0.020996522158384323,
0.12122329324483871,
-0.038202930241823196,
0.06362627446651459,
0.19354869425296783,
-0.2322794497013092,
-0.04206664487719536,
-0.011210879310965538,
0.07736383378505707,
0.07252125442028046,
-0.10427232086658478,
0.006991776637732983,
0.06030583381652832,
0.0169074684381485,
0.04637832194566727,
0.01602637767791748,
-0.01511798333376646,
-0.026915287598967552,
-0.11478815972805023,
-0.07609099894762039,
0.23129133880138397,
0.0724535882472992,
-0.06696844846010208,
-0.11037798970937729,
-0.006688052322715521,
-0.12351997196674347,
-0.03077077306807041,
-0.004493142478168011,
0.002810040256008506,
-0.0243240799754858,
-0.024580594152212143,
-0.061980605125427246,
-0.08776576817035675,
-0.06485514342784882,
0.06164281815290451,
0.13454768061637878,
0.04372294619679451,
-0.007718467619270086,
-0.016283074393868446,
0.09065283834934235,
-0.024022702127695084,
-0.14087238907814026,
-0.047272659838199615,
-0.00817741546779871,
-0.06557565927505493,
-0.02509390376508236,
-0.05187505483627319,
-0.036596156656742096,
0.03365478292107582,
0.0851047933101654,
-0.03899860382080078,
0.07507480680942535,
-0.004884639289230108,
0.013960565440356731,
-0.009412302635610104,
0.17717836797237396,
-0.01429557241499424,
-0.035383787006139755,
0.0025303089059889317,
0.11398353427648544,
-0.0029480098746716976,
-0.025881778448820114,
-0.06315494328737259,
-0.02949410118162632,
0.12761755287647247,
0.08570803701877594,
-0.013176609762012959,
0.0058140321634709835,
-0.08405905216932297,
-0.03498461842536926,
0.0014062105910852551,
-0.13943028450012207,
0.02967393770813942,
0.009474480524659157,
-0.05864178016781807,
0.02500765584409237,
0.013920292258262634,
0.010382776148617268,
-0.07360966503620148,
-0.001459208084270358,
-0.049052245914936066,
-0.01952555775642395,
-0.0728726014494896,
-0.06850521266460419,
0.015956569463014603,
-0.014041118323802948,
0.009464317932724953,
-0.06696086376905441,
-0.12942352890968323,
-0.048177145421504974,
0.018483152613043785,
-0.06850987672805786,
-0.08731355518102646,
-0.019269175827503204,
-0.0606679692864418,
0.021665042266249657,
-0.023599160835146904,
0.11495178937911987,
-0.023968279361724854,
0.07999461889266968,
0.05649835988879204,
0.012095353566110134,
0.04925623908638954,
0.07108376920223236,
-0.032530833035707474,
0.050178658217191696,
-0.08718523383140564,
0.1250888854265213,
-0.12455239146947861,
0.0343342088162899,
-0.14075610041618347,
-0.10443593561649323,
-0.01215645857155323,
-0.02581517957150936,
0.10144738852977753,
0.1276293247938156,
-0.14412552118301392,
-0.04978332668542862,
0.13255521655082703,
-0.06067118048667908,
-0.061128951609134674,
0.12262062728404999,
-0.009563324972987175,
0.014322733506560326,
0.051921773701906204,
0.18243299424648285,
0.1482151299715042,
-0.11800359189510345,
0.002422876190394163,
0.005249993409961462,
0.08150675147771835,
0.041189126670360565,
0.07822605222463608,
-0.06823723018169403,
-0.02373000606894493,
0.018535371869802475,
-0.05739534646272659,
0.017775971442461014,
-0.07965513318777084,
-0.07540490478277206,
-0.04128894582390785,
-0.06503437459468842,
0.04074438288807869,
0.0206826813519001,
0.0076767392456531525,
-0.08116049319505692,
-0.12083496898412704,
0.04521157220005989,
0.1359538733959198,
-0.0771041065454483,
0.024611713364720345,
-0.08809413015842438,
0.05011695623397827,
-0.05373679846525192,
-0.007278891745954752,
-0.19002613425254822,
-0.04485183209180832,
0.07201071083545685,
-0.09245488792657852,
0.03669069707393646,
0.0037605431862175465,
0.04697328805923462,
0.03746486082673073,
-0.006253366824239492,
-0.0462898425757885,
-0.10218556970357895,
0.00013559246144723147,
-0.07157687097787857,
-0.1609165370464325,
-0.07759074121713638,
-0.027985423803329468,
0.18200570344924927,
-0.21045926213264465,
-0.004420020151883364,
0.02788754366338253,
0.10915267467498779,
-0.010793738067150116,
-0.058863602578639984,
0.028281787410378456,
0.035223495215177536,
0.006241480819880962,
-0.08940333127975464,
0.02311864122748375,
0.024076808243989944,
-0.11792919784784317,
0.005253572482615709,
-0.14217475056648254,
-0.011436083354055882,
0.0729350671172142,
0.052424151450395584,
-0.04276967793703079,
-0.036358676850795746,
-0.05197570472955704,
-0.05050661042332649,
-0.037318311631679535,
-0.06110910698771477,
0.20435646176338196,
0.020714664831757545,
0.12210202217102051,
-0.0724341943860054,
-0.04224570840597153,
0.02207699976861477,
-0.008165402337908745,
-0.0210312157869339,
0.0673845186829567,
-0.03280950337648392,
-0.10087473690509796,
0.055785249918699265,
0.047561898827552795,
-0.03392123430967331,
0.16069552302360535,
-0.07869423925876617,
-0.10678210109472275,
-0.018054336309432983,
0.02329404279589653,
0.011027684435248375,
0.10505636781454086,
-0.16550837457180023,
-0.006292612291872501,
0.05189887434244156,
0.022004391998052597,
0.04363276809453964,
-0.16990336775779724,
0.03171763941645622,
0.04607198014855385,
-0.05722609907388687,
-0.01644282415509224,
-0.006000415422022343,
0.0043579647317528725,
0.06468651443719864,
0.015868928283452988,
-0.01582389324903488,
0.014121231622993946,
-0.037872157990932465,
-0.0884845033288002,
0.14396706223487854,
-0.12360956519842148,
-0.1719183623790741,
-0.15871934592723846,
0.03252675011754036,
-0.0290803425014019,
-0.021585781127214432,
0.0254179947078228,
-0.08871196210384369,
-0.06625443696975708,
-0.060207150876522064,
0.00377454562112689,
-0.08962206542491913,
-0.01280655525624752,
0.0924178883433342,
-0.017462024465203285,
0.12135789543390274,
-0.13751764595508575,
0.0014287270605564117,
0.01176697388291359,
-0.048613011837005615,
-0.022472592070698738,
0.01174052245914936,
0.0802587941288948,
0.12118230015039444,
0.0047327675856649876,
0.024110088124871254,
-0.02315407060086727,
0.24059104919433594,
-0.11065509170293808,
-0.00862528569996357,
0.14762577414512634,
0.012926647439599037,
0.06348742544651031,
0.09366140514612198,
0.02139248326420784,
-0.0744120180606842,
0.02456752024590969,
0.0176067054271698,
-0.0013632266782224178,
-0.2781451642513275,
-0.03999224677681923,
-0.06506627798080444,
-0.09126202762126923,
0.07945338636636734,
0.04368727654218674,
0.05859876796603203,
0.03349297121167183,
-0.052937936037778854,
0.030466517433524132,
-0.005830668844282627,
0.0912867933511734,
0.12934812903404236,
0.021398715674877167,
0.07846479117870331,
-0.030910158529877663,
-0.013016624376177788,
0.04276859015226364,
0.02544499561190605,
0.2604075074195862,
0.02976979874074459,
0.21476531028747559,
0.03688172250986099,
0.14964435994625092,
0.012698590755462646,
0.03613407164812088,
0.019595753401517868,
0.014821266755461693,
0.019320255145430565,
-0.06007852405309677,
-0.05406473949551582,
0.012464063242077827,
0.08461998403072357,
0.029195789247751236,
-0.09378830343484879,
0.013039911165833473,
-0.00913967378437519,
0.29668039083480835,
0.05605961009860039,
-0.26405173540115356,
-0.07594548165798187,
0.014380278997123241,
-0.04778384417295456,
-0.1071261316537857,
-0.002299326239153743,
0.09218502789735794,
-0.14490291476249695,
0.04956559091806412,
-0.046610258519649506,
0.10226106643676758,
-0.04706614464521408,
0.019960962235927582,
0.023318227380514145,
0.1250268965959549,
0.002974687609821558,
0.10060693323612213,
-0.20809277892112732,
0.19907060265541077,
0.012006500735878944,
0.10556048154830933,
-0.05797905847430229,
0.05561857670545578,
0.01577688194811344,
0.022989962249994278,
0.08926814794540405,
0.014376526698470116,
-0.04325666278600693,
-0.1553621143102646,
-0.0877142921090126,
0.021551255136728287,
0.1268603503704071,
-0.024088803678750992,
0.08701838552951813,
-0.06579464673995972,
0.0029058533255010843,
0.0300246961414814,
-0.044608306139707565,
-0.18033558130264282,
-0.13043305277824402,
0.05120500177145004,
0.0515630841255188,
0.08731342852115631,
-0.09351613372564316,
-0.08373944461345673,
-0.022814054042100906,
0.1798192858695984,
-0.04567217081785202,
-0.06734030693769455,
-0.13894787430763245,
0.08357010036706924,
0.15670059621334076,
-0.04680321365594864,
0.029082220047712326,
0.011592155322432518,
0.1745101511478424,
0.018892623484134674,
-0.03545263409614563,
0.036807529628276825,
-0.06554250419139862,
-0.16620436310768127,
-0.03105184994637966,
0.1877758800983429,
0.0033934093080461025,
0.06578771024942398,
0.0135872233659029,
-0.00428725453093648,
-0.006808998994529247,
-0.0818672925233841,
0.03317355364561081,
0.07269784063100815,
0.009037895128130913,
0.06030542775988579,
-0.024041688069701195,
0.013964742422103882,
-0.10051914304494858,
-0.040889136493206024,
0.14736829698085785,
0.21869754791259766,
-0.060365449637174606,
0.053640831261873245,
0.05733178183436394,
-0.07926751673221588,
-0.14370949566364288,
0.0070283496752381325,
0.1488322764635086,
0.05511321499943733,
0.017158769071102142,
-0.1886681318283081,
0.02536414936184883,
0.07275184243917465,
-0.033042311668395996,
0.03385458141565323,
-0.27934888005256653,
-0.11529646813869476,
0.08712731301784515,
0.059004198759794235,
0.017964160069823265,
-0.13187973201274872,
-0.07935819774866104,
-0.045394908636808395,
-0.09520860761404037,
0.026083970442414284,
-0.004086018539965153,
0.13090349733829498,
0.0030808772426098585,
0.08995576202869415,
0.04770051687955856,
-0.03299472853541374,
0.18126121163368225,
0.015406320802867413,
0.034579116851091385,
-0.02016572654247284,
0.07245874404907227,
0.07582714408636093,
-0.06351886689662933,
0.07686863094568253,
-0.040944904088974,
0.0577305443584919,
-0.16555486619472504,
-0.024463985115289688,
-0.07390906661748886,
0.04943738132715225,
-0.04678458720445633,
-0.026532793417572975,
-0.014896661043167114,
0.034432314336299896,
0.0447784960269928,
0.006790931336581707,
0.05558915063738823,
-0.02072134241461754,
0.055707644671201706,
0.12828373908996582,
0.12488414347171783,
0.038282327353954315,
-0.1394985169172287,
-0.011390076950192451,
-0.0097719831392169,
0.07959675043821335,
-0.11117710918188095,
0.03134950250387192,
0.09608767926692963,
0.03923449665307999,
0.13764336705207825,
0.010355147533118725,
-0.1340346336364746,
0.009916242212057114,
0.03114774450659752,
-0.041621290147304535,
-0.18637944757938385,
-0.059434425085783005,
0.07344555109739304,
-0.13893163204193115,
-0.0013870957773178816,
0.10639381408691406,
-0.056288979947566986,
-0.022840145975351334,
-0.019702419638633728,
0.0072742849588394165,
-0.047930628061294556,
0.19078367948532104,
0.04336152225732803,
0.10377391427755356,
-0.08164603263139725,
0.10398565232753754,
0.0835350975394249,
-0.0569288432598114,
0.07358507066965103,
0.03460804373025894,
-0.0547950342297554,
-0.018646936863660812,
0.017306607216596603,
0.060423344373703,
0.017954129725694656,
-0.06692302972078323,
-0.04636120796203613,
-0.11591706424951553,
0.02908005379140377,
0.0088484026491642,
0.01781836710870266,
0.013196209445595741,
-0.03288443014025688,
0.005772240925580263,
-0.1511349380016327,
0.08461720496416092,
0.05188163369894028,
0.05987894535064697,
-0.14527066051959991,
0.04205115884542465,
0.012860806658864021,
0.0462714359164238,
-0.0013177028158679605,
-0.04048708453774452,
-0.054094113409519196,
0.00779169425368309,
-0.13924117386341095,
-0.0013770957011729479,
-0.019702870398759842,
-0.011806556023657322,
-0.005047064274549484,
-0.056145451962947845,
-0.02020568773150444,
0.086764857172966,
-0.07332394272089005,
-0.08870191872119904,
-0.0030698063783347607,
0.06946025788784027,
-0.08185476809740067,
0.002025218214839697,
0.04915152117609978,
-0.12510916590690613,
0.07739962637424469,
0.0628964751958847,
0.018275244161486626,
0.02689240500330925,
-0.05270599573850632,
-0.032851845026016235,
0.03326140716671944,
0.03749184310436249,
0.03835781663656235,
-0.12504111230373383,
-0.014758427627384663,
-0.009505169466137886,
0.026144281029701233,
-0.022427331656217575,
0.016361668705940247,
-0.12447600066661835,
-0.06590297818183899,
-0.044376641511917114,
-0.016256043687462807,
-0.06325290352106094,
0.04349815100431442,
0.0645970031619072,
0.036053530871868134,
0.14039738476276398,
-0.06410403549671173,
0.05949006602168083,
-0.19515183568000793,
-0.004718287382274866,
-0.03796934336423874,
-0.033512845635414124,
-0.04289243742823601,
-0.03864140063524246,
0.0845208689570427,
-0.053972773253917694,
0.09438042342662811,
-0.041928730905056,
0.10213875770568848,
0.028021518141031265,
-0.042584292590618134,
-0.004800321534276009,
0.003294884692877531,
0.21330401301383972,
0.08304480463266373,
-0.00048546469770371914,
0.095232293009758,
-0.04046228155493736,
0.05412484332919121,
0.09871689975261688,
0.08189843595027924,
0.17579643428325653,
0.01955668441951275,
0.06843986362218857,
0.07485417276620865,
-0.09511104971170425,
-0.1442558765411377,
0.09901279211044312,
-0.0030749994330108166,
0.1268739104270935,
-0.02507118321955204,
0.12675821781158447,
0.14588361978530884,
-0.162186399102211,
0.0732741728425026,
-0.053017061203718185,
-0.11358612775802612,
-0.09436991810798645,
-0.10876502841711044,
-0.07051463425159454,
-0.1337665319442749,
0.024635236710309982,
-0.11194976419210434,
0.04714395850896835,
0.06714078038930893,
0.008444690145552158,
-0.01664721593260765,
0.1509198695421219,
0.028206150978803635,
-0.04564676061272621,
0.10504100471735,
-0.02792167104780674,
0.006653729826211929,
-0.03738902509212494,
-0.06571166217327118,
0.10038212686777115,
0.028159523382782936,
0.1050105094909668,
-0.010804081335663795,
-0.031147878617048264,
0.04993758723139763,
-0.008226203732192516,
-0.11638364940881729,
0.023524198681116104,
-0.008741721510887146,
0.029815221205353737,
0.0754174217581749,
0.052339740097522736,
-0.01221577636897564,
-0.033085234463214874,
0.22218351066112518,
-0.05770573765039444,
-0.08499816805124283,
-0.12479724735021591,
0.17275471985340118,
0.03732991963624954,
-0.02064439281821251,
0.0487980954349041,
-0.11133472621440887,
0.005432900507003069,
0.1458243578672409,
0.11216311156749725,
-0.014243334531784058,
-0.02236674353480339,
-0.022841911762952805,
-0.02530759945511818,
-0.07478084415197372,
0.11180462688207626,
0.10292617231607437,
-0.020367011427879333,
-0.030327042564749718,
0.05992388725280762,
-0.017884286120533943,
-0.05994910001754761,
-0.09558645635843277,
0.08641884475946426,
0.01627354696393013,
-0.013460621237754822,
-0.005862428806722164,
0.09871747344732285,
-0.004543042276054621,
-0.1576649248600006,
-0.020259950309991837,
-0.10595840215682983,
-0.17535296082496643,
-0.03702922910451889,
0.07110472768545151,
0.041568804532289505,
0.05305590108036995,
-0.027049800381064415,
0.003172983881086111,
0.15651145577430725,
-0.01209518127143383,
-0.023408789187669754,
-0.06658302247524261,
0.08566773682832718,
-0.10886408388614655,
0.17093610763549805,
0.01455630175769329,
0.0774538516998291,
0.0884651467204094,
0.022608235478401184,
-0.14631296694278717,
0.054699502885341644,
0.06087811663746834,
-0.0823156088590622,
0.05983544513583183,
0.2211541384458542,
-0.009895803406834602,
0.09056790173053741,
0.027872521430253983,
-0.12410479784011841,
-0.03872663527727127,
-0.04443952813744545,
0.013220205903053284,
-0.07062018662691116,
-0.014180404134094715,
-0.06241565942764282,
0.1450931280851364,
0.16822484135627747,
-0.08147382736206055,
-0.031171685084700584,
-0.07012912631034851,
0.006243774201720953,
0.06102060154080391,
0.12981894612312317,
-0.03817593306303024,
-0.20439413189888,
-0.003926546312868595,
0.005615175701677799,
0.028446460142731667,
-0.21571436524391174,
-0.07983539253473282,
0.026365935802459717,
-0.05211733654141426,
-0.03551732748746872,
0.10090593993663788,
0.058577992022037506,
0.01769876852631569,
-0.033273059874773026,
-0.10981247574090958,
-0.04740552231669426,
0.15368057787418365,
-0.16656990349292755,
-0.04375142604112625
] |
null | null | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
#
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - HA dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4998
- Wer: 0.5153
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 9.6e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 2000
- num_epochs: 80.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 3.0021 | 8.33 | 500 | 2.9059 | 1.0 |
| 2.6604 | 16.66 | 1000 | 2.6402 | 0.9892 |
| 1.2216 | 24.99 | 1500 | 0.6051 | 0.6851 |
| 1.0754 | 33.33 | 2000 | 0.5408 | 0.6464 |
| 0.9582 | 41.66 | 2500 | 0.5521 | 0.5935 |
| 0.8653 | 49.99 | 3000 | 0.5156 | 0.5550 |
| 0.7867 | 58.33 | 3500 | 0.5439 | 0.5606 |
| 0.7265 | 66.66 | 4000 | 0.4863 | 0.5255 |
| 0.6699 | 74.99 | 4500 | 0.5050 | 0.5169 |
### Framework versions
- Transformers 4.17.0.dev0
- Pytorch 1.10.2+cu113
- Datasets 1.18.4.dev0
- Tokenizers 0.11.0
| {"language": ["ha"], "license": "apache-2.0", "tags": ["automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "robust-speech-event", "hf-asr-leaderboard"], "datasets": ["mozilla-foundation/common_voice_8_0"], "model-index": [{"name": "", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Common Voice 8.0", "type": "mozilla-foundation/common_voice_8_0", "args": "ha"}, "metrics": [{"type": "wer", "value": 51.31, "name": "Test WER"}]}]}]} | automatic-speech-recognition | Mofe/xls-r-hausa-40 | [
"transformers",
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"mozilla-foundation/common_voice_8_0",
"generated_from_trainer",
"robust-speech-event",
"hf-asr-leaderboard",
"ha",
"dataset:mozilla-foundation/common_voice_8_0",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [
"ha"
] | TAGS
#transformers #pytorch #wav2vec2 #automatic-speech-recognition #mozilla-foundation/common_voice_8_0 #generated_from_trainer #robust-speech-event #hf-asr-leaderboard #ha #dataset-mozilla-foundation/common_voice_8_0 #license-apache-2.0 #endpoints_compatible #region-us
|
This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the MOZILLA-FOUNDATION/COMMON\_VOICE\_8\_0 - HA dataset.
It achieves the following results on the evaluation set:
* Loss: 0.4998
* Wer: 0.5153
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 9.6e-05
* train\_batch\_size: 8
* eval\_batch\_size: 8
* seed: 42
* gradient\_accumulation\_steps: 4
* total\_train\_batch\_size: 32
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* lr\_scheduler\_warmup\_steps: 2000
* num\_epochs: 80.0
* mixed\_precision\_training: Native AMP
### Training results
### Framework versions
* Transformers 4.17.0.dev0
* Pytorch 1.10.2+cu113
* Datasets 1.18.4.dev0
* Tokenizers 0.11.0
| [
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 9.6e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 32\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 2000\n* num\\_epochs: 80.0\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.17.0.dev0\n* Pytorch 1.10.2+cu113\n* Datasets 1.18.4.dev0\n* Tokenizers 0.11.0"
] | [
"TAGS\n#transformers #pytorch #wav2vec2 #automatic-speech-recognition #mozilla-foundation/common_voice_8_0 #generated_from_trainer #robust-speech-event #hf-asr-leaderboard #ha #dataset-mozilla-foundation/common_voice_8_0 #license-apache-2.0 #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 9.6e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 32\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 2000\n* num\\_epochs: 80.0\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.17.0.dev0\n* Pytorch 1.10.2+cu113\n* Datasets 1.18.4.dev0\n* Tokenizers 0.11.0"
] | [
107,
161,
4,
39
] | [
"passage: TAGS\n#transformers #pytorch #wav2vec2 #automatic-speech-recognition #mozilla-foundation/common_voice_8_0 #generated_from_trainer #robust-speech-event #hf-asr-leaderboard #ha #dataset-mozilla-foundation/common_voice_8_0 #license-apache-2.0 #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 9.6e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 32\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 2000\n* num\\_epochs: 80.0\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.17.0.dev0\n* Pytorch 1.10.2+cu113\n* Datasets 1.18.4.dev0\n* Tokenizers 0.11.0"
] | [
-0.13802620768547058,
0.12079241126775742,
-0.004752619192004204,
0.040297601372003555,
0.10502050817012787,
0.00562854902818799,
0.08607729524374008,
0.14852099120616913,
-0.08985696732997894,
0.11225176602602005,
0.0852745920419693,
0.06944966316223145,
0.08992873132228851,
0.11179018020629883,
-0.01812770962715149,
-0.2926039397716522,
0.02274646982550621,
-0.04114290699362755,
-0.12828190624713898,
0.0946141704916954,
0.10047130286693573,
-0.09612782299518585,
0.035192932933568954,
0.023109499365091324,
-0.08785925060510635,
-0.0020540037658065557,
-0.050281062722206116,
-0.03822080418467522,
0.07918041944503784,
0.05542326718568802,
0.0380033403635025,
0.027415890246629715,
0.0927732065320015,
-0.2608248293399811,
0.006799866445362568,
0.06639379262924194,
0.041807375848293304,
0.054763853549957275,
0.11063655465841293,
-0.005900414660573006,
0.11100099980831146,
-0.0665329098701477,
0.026932332664728165,
0.07149472087621689,
-0.09495669603347778,
-0.23621594905853271,
-0.0846574530005455,
0.037360694259405136,
0.12998564541339874,
0.08234953135251999,
-0.039251748472452164,
0.01886901631951332,
-0.0683601126074791,
0.09325561672449112,
0.21178914606571198,
-0.21059271693229675,
-0.07625504583120346,
-0.021863456815481186,
0.038144852966070175,
0.04025708884000778,
-0.11071125417947769,
-0.015007194131612778,
0.022104434669017792,
0.007380171678960323,
0.06542962789535522,
0.007922116667032242,
0.009566446766257286,
0.006363449152559042,
-0.1396452635526657,
-0.047075361013412476,
0.14590516686439514,
0.09353064000606537,
-0.013107791543006897,
-0.10073741525411606,
-0.01941586099565029,
-0.18488895893096924,
-0.04840826615691185,
0.03681916743516922,
0.029139893129467964,
-0.033517781645059586,
-0.05240394547581673,
0.02662731520831585,
-0.043118786066770554,
-0.07761819660663605,
0.06469329446554184,
0.10985912382602692,
0.03310036659240723,
-0.033005740493535995,
0.010823538526892662,
0.0903884619474411,
0.05717086046934128,
-0.172427698969841,
-0.03728164732456207,
0.04014276713132858,
-0.11070674657821655,
-0.0037535950541496277,
-0.013328703120350838,
0.046500757336616516,
0.05704674497246742,
0.10795190185308456,
-0.009229523129761219,
0.09447907656431198,
0.013922694139182568,
0.009222852997481823,
-0.08485347032546997,
0.1735912263393402,
-0.07174047082662582,
-0.09856012463569641,
-0.04809780418872833,
0.1333475112915039,
-0.013180775567889214,
-0.004287321120500565,
-0.06546507030725479,
0.031906720250844955,
0.08477499336004257,
0.05724862590432167,
-0.00949498824775219,
0.03022993728518486,
-0.04966585710644722,
-0.021460730582475662,
0.0036257875617593527,
-0.12599757313728333,
0.03340128809213638,
0.06322226673364639,
-0.09224706888198853,
0.000979508040472865,
-0.01619231328368187,
0.01031001191586256,
-0.043084003031253815,
0.06710437685251236,
-0.053682077676057816,
-0.004672082606703043,
-0.08021219074726105,
-0.08805771917104721,
0.038029592484235764,
-0.03170977905392647,
-0.010581613518297672,
-0.04989813640713692,
-0.09838780015707016,
-0.0775558352470398,
0.04539453983306885,
-0.06055464968085289,
-0.06969695538282394,
-0.09388534724712372,
-0.10025225579738617,
0.054937854409217834,
-0.02123352512717247,
0.1664811372756958,
-0.05497685819864273,
0.07965949177742004,
0.032915640622377396,
0.042333297431468964,
0.09936845302581787,
0.06678279489278793,
-0.008592722937464714,
0.06083998084068298,
-0.11684034764766693,
0.10815378278493881,
-0.11779505759477615,
0.07904854416847229,
-0.12974727153778076,
-0.10024741291999817,
-0.01746613346040249,
0.008565508760511875,
0.09304050356149673,
0.12976446747779846,
-0.17191153764724731,
-0.0894557535648346,
0.1589372605085373,
-0.04091461002826691,
-0.09730842709541321,
0.12040309607982635,
-0.0049919383600354195,
-0.03796238824725151,
0.026341155171394348,
0.17160719633102417,
0.14661237597465515,
-0.08423524349927902,
-0.002390580717474222,
-0.04804087057709694,
0.1272851973772049,
0.049477752298116684,
0.08734805881977081,
-0.05639181658625603,
0.04999035224318504,
0.004192687105387449,
-0.029545405879616737,
0.04971212148666382,
-0.07887808233499527,
-0.08313006907701492,
-0.011199165135622025,
-0.08495858311653137,
-0.01923515647649765,
0.053806547075510025,
0.014024321921169758,
-0.07031810283660889,
-0.12666264176368713,
-0.011606717482209206,
0.11643655598163605,
-0.10827841609716415,
0.008599731139838696,
-0.08315825462341309,
0.052343934774398804,
0.0012368484167382121,
0.0037472948897629976,
-0.14076276123523712,
-0.01141383033245802,
0.034111443907022476,
-0.06539046764373779,
0.012243887409567833,
-0.021552370861172676,
0.0704815685749054,
0.03617370128631592,
-0.02833602763712406,
-0.057866185903549194,
-0.024372341111302376,
-0.013844398781657219,
-0.04117709770798683,
-0.23034565150737762,
-0.07649925351142883,
-0.008348203264176846,
0.1957702934741974,
-0.21352937817573547,
0.006729497574269772,
0.059869471937417984,
0.12426046282052994,
0.016434377059340477,
-0.0517701581120491,
0.018906181678175926,
0.05062106251716614,
-0.020582031458616257,
-0.08093740046024323,
0.02223467081785202,
0.007910646498203278,
-0.09265902638435364,
0.0148067157715559,
-0.13830308616161346,
0.0684622973203659,
0.08421710878610611,
0.018481668084859848,
-0.057390328496694565,
-0.04243171960115433,
-0.058215174823999405,
-0.05252305418252945,
-0.005262875463813543,
-0.018551373854279518,
0.15490907430648804,
0.006180057767778635,
0.10887967795133591,
-0.07998751103878021,
-0.054680369794368744,
0.03561604395508766,
0.023107174783945084,
0.002107804175466299,
0.15136206150054932,
0.05458417907357216,
-0.04043501242995262,
0.08473791927099228,
-0.004180957097560167,
-0.05817098915576935,
0.16146358847618103,
-0.0826856791973114,
-0.08904743939638138,
-0.03278909996151924,
0.03604064881801605,
0.030008181929588318,
0.10996558517217636,
-0.19483840465545654,
-0.03558859974145889,
0.021197404712438583,
0.027768781408667564,
0.0314185693860054,
-0.17658931016921997,
0.007838287390768528,
0.0332026332616806,
-0.09843187779188156,
-0.012822664342820644,
0.0022098899353295565,
-0.022184664383530617,
0.07901696860790253,
0.007569054141640663,
-0.07982107251882553,
-0.046282727271318436,
-0.054584722965955734,
-0.0989123210310936,
0.16320516169071198,
-0.0886414423584938,
-0.12938173115253448,
-0.13131900131702423,
-0.025084830820560455,
-0.02908218279480934,
-0.011805363930761814,
0.02938954532146454,
-0.10022561252117157,
-0.03762107715010643,
-0.07353395968675613,
0.024550188332796097,
-0.04023341089487076,
0.019200477749109268,
0.04471324011683464,
0.013277020305395126,
0.07585266977548599,
-0.1011664941906929,
0.019628629088401794,
-0.010216344147920609,
-0.027649927884340286,
-0.01838357374072075,
0.006968457251787186,
0.10457541793584824,
0.16912570595741272,
0.0741916298866272,
0.05285144969820976,
-0.022973505780100822,
0.1832229495048523,
-0.1402151882648468,
0.007801125757396221,
0.10213524848222733,
0.009269570000469685,
0.039982788264751434,
0.15028703212738037,
0.038355980068445206,
-0.07983005046844482,
0.01271399948745966,
0.03736986964941025,
-0.015470868907868862,
-0.2190602421760559,
-0.026540132239460945,
-0.08564694225788116,
-0.02491340972483158,
0.09832952916622162,
0.027286510914564133,
0.01116130780428648,
0.012367418967187405,
-0.02660898119211197,
-0.0098221180960536,
0.056686997413635254,
0.04185919091105461,
0.06812478601932526,
0.04664739593863487,
0.11138886958360672,
-0.0200898889452219,
-0.029094278812408447,
0.020843153819441795,
-0.016319258138537407,
0.24876384437084198,
0.000010755496077763382,
0.20386941730976105,
0.04994398355484009,
0.12911270558834076,
-0.006524037104099989,
0.04649464413523674,
0.003262793179601431,
-0.0038545855786651373,
0.03543819487094879,
-0.06041095405817032,
-0.020727893337607384,
0.03397419676184654,
0.11383551359176636,
0.023902541026473045,
-0.10054657608270645,
0.018520435318350792,
0.02757776901125908,
0.36631664633750916,
0.08860663324594498,
-0.2900457978248596,
-0.07446654886007309,
0.01567402482032776,
-0.07340461015701294,
-0.03636469691991806,
0.035799261182546616,
0.11954224109649658,
-0.06507790088653564,
0.08627860993146896,
-0.04395385831594467,
0.09252914786338806,
-0.060240551829338074,
0.006196077447384596,
0.09230049699544907,
0.09868176281452179,
0.009855109266936779,
0.06378944963216782,
-0.2405979037284851,
0.2683066129684448,
-0.009603718295693398,
0.07986325025558472,
-0.04093664884567261,
0.051926858723163605,
0.042380932718515396,
-0.01765206828713417,
0.06977123767137527,
-0.0059356652200222015,
-0.1013638824224472,
-0.14926986396312714,
-0.08773072808980942,
0.020518040284514427,
0.1320342719554901,
-0.057462166994810104,
0.12754014134407043,
-0.04344428703188896,
-0.053751662373542786,
0.03952297568321228,
-0.07353979349136353,
-0.10861853510141373,
-0.10659809410572052,
0.045494869351387024,
0.020723868161439896,
0.08504948019981384,
-0.08453237265348434,
-0.0760362297296524,
-0.06233663111925125,
0.14537911117076874,
-0.13052327930927277,
-0.01703137904405594,
-0.12642927467823029,
0.05118822678923607,
0.16363109648227692,
-0.057970814406871796,
0.03277411311864853,
0.01792491041123867,
0.1448911726474762,
0.047752056270837784,
-0.006874124053865671,
0.09589287638664246,
-0.08101949095726013,
-0.1993463784456253,
-0.044258467853069305,
0.18317222595214844,
0.025556650012731552,
0.06426418572664261,
-0.02298368327319622,
0.021220464259386063,
-0.012747022323310375,
-0.07883576303720474,
0.06600487232208252,
0.05120363458991051,
-0.010271020233631134,
0.046779122203588486,
-0.027098502963781357,
0.016804497689008713,
-0.083457812666893,
-0.049542058259248734,
0.09434659034013748,
0.24340026080608368,
-0.07519771158695221,
0.02315419726073742,
0.02395627833902836,
-0.06207855045795441,
-0.15055280923843384,
0.0017337347380816936,
0.13875211775302887,
0.04712686315178871,
-0.05719554051756859,
-0.1980983167886734,
0.011454763822257519,
0.07071377336978912,
-0.021248813718557358,
0.10219397395849228,
-0.3283931612968445,
-0.1348319798707962,
0.08054350316524506,
0.03952772915363312,
-0.05289682373404503,
-0.16904740035533905,
-0.07238781452178955,
-0.03228549659252167,
-0.07903216779232025,
0.026161491870880127,
-0.00789833627641201,
0.11811715364456177,
0.010880698449909687,
0.027578549459576607,
0.013727434910833836,
-0.04469822347164154,
0.1541123241186142,
0.027046063914895058,
0.03169538080692291,
-0.009373770095407963,
0.021448591724038124,
-0.0002257366868434474,
-0.07925046980381012,
0.018283722922205925,
-0.07136885076761246,
0.025124454870820045,
-0.15431056916713715,
-0.025029392912983894,
-0.08846224844455719,
0.010600595735013485,
-0.042765676975250244,
-0.0015528143849223852,
-0.019605688750743866,
0.03913696110248566,
0.0887361615896225,
0.028941893950104713,
0.09763926267623901,
-0.08101075142621994,
0.11813417822122574,
0.121698297560215,
0.11323192715644836,
-0.005920664872974157,
-0.08855117857456207,
-0.004729102831333876,
0.016652965918183327,
0.02806161716580391,
-0.12174087017774582,
0.03813779354095459,
0.1453736126422882,
0.04552647843956947,
0.15075527131557465,
0.048397574573755264,
-0.07920584827661514,
-0.0012616018066182733,
0.059893898665905,
-0.06170836463570595,
-0.12829290330410004,
-0.02775912918150425,
0.012341370806097984,
-0.13677702844142914,
-0.012611305341124535,
0.10680732876062393,
-0.03238215297460556,
0.015909310430288315,
0.012618517503142357,
0.050561364740133286,
-0.0386868380010128,
0.22517651319503784,
0.035139359533786774,
0.10443023592233658,
-0.09703477472066879,
0.06328995525836945,
0.04042189195752144,
-0.08018945157527924,
0.026999853551387787,
0.1038803979754448,
-0.045666616410017014,
-0.017337461933493614,
-0.010603397153317928,
0.08079242706298828,
0.0505240336060524,
-0.0630512684583664,
-0.11908294260501862,
-0.1586403101682663,
0.09866099804639816,
0.08446846157312393,
0.018151642754673958,
0.032391294836997986,
-0.017808329313993454,
0.03340580314397812,
-0.09090156853199005,
0.10102959722280502,
0.0907374918460846,
0.06004071980714798,
-0.12367008626461029,
0.11427228897809982,
0.0006761369877494872,
-0.0016290880739688873,
0.009142417460680008,
-0.00912567600607872,
-0.09954153746366501,
0.030741389840841293,
-0.12964825332164764,
-0.005523279309272766,
-0.04955333098769188,
-0.0023042766842991114,
0.018362995237112045,
-0.05793678015470505,
-0.07396260648965836,
0.02234862931072712,
-0.11675722151994705,
-0.047506362199783325,
-0.0354444682598114,
0.06922245025634766,
-0.09277208149433136,
-0.004427534993737936,
0.02938697673380375,
-0.1369263082742691,
0.0848456472158432,
0.04404187947511673,
0.008371630683541298,
0.019526012241840363,
-0.0666997954249382,
-0.013689604587852955,
0.03143761307001114,
0.012604908086359501,
0.03968757763504982,
-0.16494323313236237,
-0.0028508345130831003,
-0.02066880650818348,
0.01943526230752468,
-0.018080081790685654,
-0.01017448864877224,
-0.10701500624418259,
-0.004288588184863329,
-0.03975577652454376,
-0.03455111011862755,
-0.04151352494955063,
0.07045964896678925,
0.07414163649082184,
0.020173205062747,
0.14508971571922302,
-0.0683731883764267,
0.052274808287620544,
-0.23503941297531128,
0.006859556771814823,
-0.003519302699714899,
-0.0670994445681572,
-0.029332837089896202,
-0.02343667484819889,
0.1102394238114357,
-0.06456871330738068,
0.08054661005735397,
-0.032158441841602325,
0.049397096037864685,
0.02602260932326317,
-0.11248369514942169,
0.024957172572612762,
0.065286785364151,
0.15052779018878937,
0.05920148640871048,
-0.010504902340471745,
0.08734504878520966,
-0.024971164762973785,
0.060163673013448715,
0.10938067734241486,
0.15482789278030396,
0.12491000443696976,
0.057098645716905594,
0.09596233814954758,
0.10808856785297394,
-0.15036970376968384,
-0.10808638483285904,
0.16085025668144226,
-0.08295020461082458,
0.15302003920078278,
-0.032362084835767746,
0.1847897320985794,
0.11010672897100449,
-0.19828198850154877,
0.0625380426645279,
-0.04550665244460106,
-0.0947193056344986,
-0.10064368695020676,
-0.06748839467763901,
-0.08215765655040741,
-0.17514309287071228,
0.018298080191016197,
-0.10985860228538513,
0.07618824392557144,
0.05186423286795616,
0.04947223141789436,
0.0378434844315052,
0.10185080766677856,
0.05501992627978325,
-0.006024356000125408,
0.12726910412311554,
-0.0032062598038464785,
-0.018375081941485405,
-0.05080448091030121,
-0.10155034810304642,
0.06175874173641205,
-0.03440563380718231,
0.07281695306301117,
-0.035383228212594986,
-0.10415239632129669,
0.058894045650959015,
0.014245610684156418,
-0.0940384492278099,
0.02953561581671238,
-0.020647751167416573,
0.055330418050289154,
0.07159723341464996,
0.04133978858590126,
-0.013594834133982658,
-0.006350104697048664,
0.1945602148771286,
-0.09534236043691635,
-0.061115559190511703,
-0.135755255818367,
0.1694939285516739,
-0.0005963749717921019,
0.0045345439575612545,
0.017487412318587303,
-0.07007697224617004,
-0.021830366924405098,
0.18420551717281342,
0.14209231734275818,
-0.0333874337375164,
-0.02849225141108036,
0.012041832320392132,
-0.005105121526867151,
-0.030988559126853943,
0.07664112001657486,
0.1206425279378891,
0.06493381410837173,
-0.023779872804880142,
-0.03330007195472717,
-0.012654870748519897,
-0.0706159770488739,
-0.021100427955389023,
0.09168500453233719,
0.014156432822346687,
-0.002280307002365589,
-0.01631830260157585,
0.11330906301736832,
-0.08695334196090698,
-0.15082043409347534,
0.022032318636775017,
-0.17581424117088318,
-0.1898622065782547,
-0.03944331780076027,
0.0457533523440361,
0.04690604656934738,
0.056747082620859146,
-0.011341473087668419,
-0.04997410625219345,
0.12018861621618271,
0.004227910190820694,
-0.035726070404052734,
-0.11648400127887726,
0.06579582393169403,
-0.14424674212932587,
0.1744966059923172,
-0.047895561903715134,
0.013636467047035694,
0.12003746628761292,
0.0418705940246582,
-0.08380958437919617,
0.024243269115686417,
0.08690223097801208,
-0.1374327689409256,
0.04352300241589546,
0.19867637753486633,
-0.04729362949728966,
0.14159348607063293,
0.038428355008363724,
-0.07698022574186325,
0.013207921758294106,
-0.06081521511077881,
-0.03306189179420471,
-0.06998255848884583,
-0.017155641689896584,
-0.04278796538710594,
0.13403406739234924,
0.21419037878513336,
-0.0756555050611496,
-0.008972160518169403,
-0.04020514339208603,
0.014670563861727715,
0.010732284747064114,
0.1322213113307953,
-0.04699048399925232,
-0.2758679986000061,
0.011384688317775726,
-0.025562910363078117,
0.0172622948884964,
-0.1941647231578827,
-0.0724835991859436,
0.029250169172883034,
-0.05662219598889351,
-0.04534631967544556,
0.12726014852523804,
0.06355445086956024,
0.04677312448620796,
-0.05716840177774429,
-0.08487062901258469,
-0.020956747233867645,
0.1872701495885849,
-0.17788389325141907,
-0.06539879739284515
] |
null | null | spacy | | Feature | Description |
| --- | --- |
| **Name** | `en_pipeline` |
| **Version** | `0.0.0` |
| **spaCy** | `>=3.1.0,<3.2.0` |
| **Default Pipeline** | `tok2vec`, `tagger`, `parser`, `ner`, `attribute_ruler`, `lemmatizer` |
| **Components** | `tok2vec`, `tagger`, `parser`, `ner`, `attribute_ruler`, `lemmatizer` |
| **Vectors** | 0 keys, 0 unique vectors (0 dimensions) |
| **Sources** | n/a |
| **License** | n/a |
| **Author** | [n/a]() |
### Label Scheme
<details>
<summary>View label scheme (114 labels for 3 components)</summary>
| Component | Labels |
| --- | --- |
| **`tagger`** | `$`, `''`, `,`, `-LRB-`, `-RRB-`, `.`, `:`, `ADD`, `AFX`, `CC`, `CD`, `DT`, `EX`, `FW`, `HYPH`, `IN`, `JJ`, `JJR`, `JJS`, `LS`, `MD`, `NFP`, `NN`, `NNP`, `NNPS`, `NNS`, `PDT`, `POS`, `PRP`, `PRP$`, `RB`, `RBR`, `RBS`, `RP`, `SYM`, `TO`, `UH`, `VB`, `VBD`, `VBG`, `VBN`, `VBP`, `VBZ`, `WDT`, `WP`, `WP$`, `WRB`, `XX`, ```` |
| **`parser`** | `ROOT`, `acl`, `acomp`, `advcl`, `advmod`, `agent`, `amod`, `appos`, `attr`, `aux`, `auxpass`, `case`, `cc`, `ccomp`, `compound`, `conj`, `csubj`, `csubjpass`, `dative`, `dep`, `det`, `dobj`, `expl`, `intj`, `mark`, `meta`, `neg`, `nmod`, `npadvmod`, `nsubj`, `nsubjpass`, `nummod`, `oprd`, `parataxis`, `pcomp`, `pobj`, `poss`, `preconj`, `predet`, `prep`, `prt`, `punct`, `quantmod`, `relcl`, `xcomp` |
| **`ner`** | `ARC`, `AST`, `BOOK`, `CAUSAL`, `COMPARISON`, `DATE`, `HEM`, `HOUR`, `HYPO`, `INSTRUMENT`, `JUDGEMENT`, `LAWS`, `MODEL`, `NAME`, `Observation`, `PAR`, `PLACE`, `QUANTITY`, `REASON`, `ZOD` |
</details>
### Accuracy
| Type | Score |
| --- | --- |
| `TAG_ACC` | 0.00 |
| `DEP_UAS` | 0.00 |
| `DEP_LAS` | 0.00 |
| `DEP_LAS_PER_TYPE` | 0.00 |
| `SENTS_P` | 100.00 |
| `SENTS_R` | 100.00 |
| `SENTS_F` | 100.00 |
| `ENTS_F` | 99.32 |
| `ENTS_P` | 99.47 |
| `ENTS_R` | 99.17 |
| `LEMMA_ACC` | 0.00 |
| `NER_LOSS` | 7790.09 |
| {"language": ["en"], "tags": ["spacy", "token-classification"]} | token-classification | MohaAM/en_pipeline | [
"spacy",
"token-classification",
"en",
"model-index",
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [
"en"
] | TAGS
#spacy #token-classification #en #model-index #region-us
|
### Label Scheme
View label scheme (114 labels for 3 components)
### Accuracy
| [
"### Label Scheme\n\n\n\nView label scheme (114 labels for 3 components)",
"### Accuracy"
] | [
"TAGS\n#spacy #token-classification #en #model-index #region-us \n",
"### Label Scheme\n\n\n\nView label scheme (114 labels for 3 components)",
"### Accuracy"
] | [
21,
17,
5
] | [
"passage: TAGS\n#spacy #token-classification #en #model-index #region-us \n### Label Scheme\n\n\n\nView label scheme (114 labels for 3 components)### Accuracy"
] | [
-0.05873693525791168,
0.11019489169120789,
-0.002881773514673114,
0.03051782213151455,
0.11072378605604172,
0.06305928528308868,
0.2088172882795334,
0.06126440688967705,
0.2045586258172989,
0.056800249963998795,
0.02497333288192749,
0.0959811806678772,
0.05375315994024277,
0.2770455777645111,
-0.11474063992500305,
-0.2576470971107483,
0.09192781150341034,
-0.010729488916695118,
0.09952762722969055,
0.14008870720863342,
0.0546424500644207,
-0.13183753192424774,
0.06585344672203064,
-0.08325116336345673,
-0.21996650099754333,
0.032243434339761734,
0.0154957827180624,
-0.09998788684606552,
0.07325625419616699,
-0.06313622742891312,
0.2311459183692932,
0.015820663422346115,
0.054683614522218704,
-0.19288381934165955,
0.003222938859835267,
-0.025926711037755013,
-0.03804320469498634,
0.08200550824403763,
0.04036218300461769,
0.00738347414880991,
-0.07621888816356659,
-0.07651196420192719,
0.07137680798768997,
0.021564042195677757,
-0.14009535312652588,
-0.1130857765674591,
-0.05160500854253769,
0.1272234320640564,
0.12242279946804047,
-0.07112347334623337,
-0.017926324158906937,
0.09852010011672974,
-0.07778148353099823,
0.0613485723733902,
0.19187572598457336,
-0.3040100932121277,
-0.012343612499535084,
0.236003115773201,
-0.04803028330206871,
0.10472278296947479,
-0.02301803044974804,
0.12978576123714447,
0.11993538588285446,
-0.007049894426018,
-0.031377747654914856,
-0.006463416386395693,
0.041924554854631424,
0.009535593912005424,
-0.13654321432113647,
-0.05607856810092926,
0.5062087178230286,
0.09162726253271103,
-0.029549341648817062,
-0.10229390859603882,
-0.07600969076156616,
-0.15576523542404175,
-0.08851125836372375,
-0.06839694827795029,
0.057179804891347885,
-0.01377574261277914,
0.13330282270908356,
0.10301046073436737,
-0.08453252911567688,
-0.05878896266222,
-0.1677810698747635,
0.24570004642009735,
0.00942547433078289,
0.07360991835594177,
-0.17754437029361725,
0.022923653945326805,
-0.11596528440713882,
-0.07409031689167023,
0.025019340217113495,
-0.10719351470470428,
-0.09945758432149887,
-0.05692543089389801,
0.049543846398591995,
0.11689557135105133,
0.04985459893941879,
0.04046554118394852,
-0.038025882095098495,
0.05869293212890625,
-0.026613833382725716,
0.056603480130434036,
0.12033902108669281,
0.1762871891260147,
-0.050856441259384155,
-0.027073901146650314,
-0.06836874783039093,
-0.062420234084129333,
0.046951841562986374,
-0.03754032030701637,
-0.1279633641242981,
-0.0008560675196349621,
0.09825430810451508,
0.10535099357366562,
-0.0820368081331253,
-0.029385937377810478,
-0.1302652209997177,
-0.056917399168014526,
0.08631569147109985,
-0.12866343557834625,
0.017757490277290344,
-0.012852244079113007,
-0.01339131873100996,
0.11378251016139984,
-0.13775634765625,
-0.017902512103319168,
0.041050024330616,
0.014304015785455704,
-0.09883522242307663,
-0.006230506114661694,
-0.02314017340540886,
-0.11343307048082352,
0.0063850777223706245,
-0.12161211669445038,
0.015359359793365002,
-0.04270382598042488,
-0.09819412231445312,
-0.012465129606425762,
-0.01695690117776394,
-0.07449278980493546,
0.031278159469366074,
-0.020577356219291687,
-0.0706276148557663,
-0.016942009329795837,
0.015953773632645607,
-0.03827693313360214,
-0.07772684842348099,
-0.006648161914199591,
-0.017160234972834587,
0.10707741230726242,
-0.0656999796628952,
0.027955520898103714,
-0.05783316493034363,
0.07676693052053452,
-0.20423898100852966,
0.02502504177391529,
-0.06655709445476532,
0.0732959732413292,
-0.07109804451465607,
-0.08589103817939758,
0.02723599039018154,
0.002626200905069709,
-0.09538616985082626,
0.1655968427658081,
-0.22086992859840393,
-0.05106411874294281,
0.20817433297634125,
-0.18262135982513428,
-0.12002053111791611,
0.02619342878460884,
-0.0021024378947913647,
0.06361886113882065,
0.09107896685600281,
0.14760908484458923,
-0.007682568393647671,
-0.11313790082931519,
-0.01893119141459465,
0.07910557091236115,
-0.05358706787228584,
-0.039228543639183044,
0.09420983493328094,
0.02344467304646969,
-0.014603814110159874,
0.02509158104658127,
0.03977230191230774,
-0.12806516885757446,
-0.0530381053686142,
-0.052848827093839645,
-0.0031809986103326082,
0.02599349059164524,
0.08322345465421677,
0.03719186410307884,
0.02176259458065033,
-0.05421450734138489,
0.023295404389500618,
0.03061685897409916,
0.04429490491747856,
0.022926371544599533,
-0.059566471725702286,
-0.04024721682071686,
0.14017616212368011,
-0.12772159278392792,
-0.07803144305944443,
-0.16709300875663757,
-0.17728359997272491,
0.053679756820201874,
0.03390062600374222,
-0.0027312368620187044,
0.14138802886009216,
0.021228911355137825,
0.0003173001459799707,
-0.003808526322245598,
-0.023167015984654427,
0.00045479252003133297,
0.0827377662062645,
-0.06075775995850563,
-0.16343754529953003,
-0.04702894762158394,
-0.10631582140922546,
0.011822832748293877,
-0.02657737210392952,
0.008283356204628944,
0.15802623331546783,
0.07613150775432587,
0.04760625213384628,
0.05515633523464203,
0.05705847591161728,
0.02594243921339512,
-0.028630029410123825,
-0.055068809539079666,
0.07994403690099716,
-0.10538074374198914,
-0.038876309990882874,
-0.05815127491950989,
-0.12870027124881744,
0.09924814105033875,
0.14281074702739716,
-0.08381474763154984,
-0.06289579719305038,
-0.08166218549013138,
-0.00176724954508245,
0.0020649922080338,
-0.10044601559638977,
-0.0056135025806725025,
-0.06341277062892914,
-0.022654905915260315,
0.015661338344216347,
-0.08345051109790802,
-0.0357682965695858,
0.027854073792696,
-0.0263302531093359,
-0.17055892944335938,
0.11623112857341766,
-0.011960827745497227,
-0.23795588314533234,
0.14773660898208618,
0.26804444193840027,
0.17667575180530548,
0.08782783895730972,
-0.02891644649207592,
-0.03705631196498871,
-0.023244783282279968,
-0.01140848733484745,
-0.08426359295845032,
0.1710602045059204,
-0.1609293669462204,
-0.045213669538497925,
0.047621458768844604,
0.053233545273542404,
0.007036644034087658,
-0.1790272742509842,
-0.0063420250080525875,
-0.019219957292079926,
-0.027758318930864334,
-0.06427337974309921,
-0.03240380436182022,
0.02417680434882641,
0.14881356060504913,
0.06588593870401382,
-0.2009160816669464,
0.06250356137752533,
-0.055530425161123276,
-0.05889517441391945,
0.17121078073978424,
-0.0855877473950386,
-0.23387834429740906,
-0.11159557849168777,
-0.1220347061753273,
-0.06467811018228531,
0.043227359652519226,
-0.03576232120394707,
-0.13658802211284637,
-0.04101105406880379,
0.022228891029953957,
-0.025656718760728836,
-0.15199831128120422,
-0.03078480064868927,
-0.02770496904850006,
0.06733720004558563,
-0.15654033422470093,
-0.03584891930222511,
-0.1018548309803009,
-0.0935208722949028,
0.09773148596286774,
0.09586381912231445,
-0.20515641570091248,
0.07970065623521805,
0.2968319058418274,
-0.03798466548323631,
0.09075693786144257,
-0.013728148303925991,
0.08839704841375351,
-0.0830325037240982,
0.04757140949368477,
0.10837936401367188,
0.05299841985106468,
0.04722531884908676,
0.2726903557777405,
0.061888936907052994,
-0.16171729564666748,
-0.028556160628795624,
-0.052893176674842834,
-0.11344103515148163,
-0.1549910455942154,
-0.11676830053329468,
-0.04941488802433014,
-0.027032887563109398,
0.03920255973935127,
0.013241621665656567,
-0.0003952902334276587,
0.06687907874584198,
0.032103173434734344,
-0.01571829244494438,
0.032632388174533844,
0.0490955151617527,
0.08200178295373917,
-0.06470811367034912,
0.0779266357421875,
-0.040939200669527054,
-0.07802585512399673,
0.08915027230978012,
0.10875894874334335,
0.19461190700531006,
0.1773233413696289,
-0.002784307347610593,
0.07625328004360199,
-0.012107951566576958,
0.13051967322826385,
0.1021900400519371,
0.1391221433877945,
-0.016759371384978294,
-0.03480345755815506,
-0.06701599806547165,
0.010558491572737694,
0.04293738678097725,
-0.022821135818958282,
-0.058986030519008636,
-0.06769312173128128,
-0.07781995087862015,
0.071751669049263,
-0.0020766828674823046,
0.27927476167678833,
-0.24330607056617737,
0.025561559945344925,
0.12444194406270981,
0.09871648997068405,
-0.0998169407248497,
0.09174620360136032,
0.03331476077437401,
-0.1032247543334961,
0.0766758844256401,
-0.016224296763539314,
0.10303743928670883,
-0.11891055852174759,
-0.007020336110144854,
-0.06703075021505356,
-0.046427663415670395,
-0.024100037291646004,
0.0838402658700943,
-0.05684126541018486,
0.3572731912136078,
0.035003870725631714,
-0.04889493063092232,
-0.05723907798528671,
-0.008935889229178429,
0.026246998459100723,
0.21472081542015076,
0.22912216186523438,
0.03977038338780403,
-0.19546668231487274,
-0.2195528894662857,
-0.03909355774521828,
-0.022910885512828827,
0.16465957462787628,
-0.049246110022068024,
0.03393569216132164,
0.024923967197537422,
0.007044041994959116,
-0.026721524074673653,
0.022432491183280945,
-0.030455542728304863,
-0.009385323151946068,
0.029783809557557106,
0.0796050950884819,
-0.0971861332654953,
0.0025264171417802572,
-0.0950435996055603,
-0.132487490773201,
0.1495160460472107,
0.007114808075129986,
-0.12139378488063812,
-0.09294839203357697,
-0.030149439349770546,
0.11023235321044922,
-0.021597953513264656,
-0.026906238868832588,
-0.04977524280548096,
0.14894349873065948,
0.01069355383515358,
-0.09523167461156845,
0.13542406260967255,
-0.027332060039043427,
-0.028078114613890648,
-0.06266233325004578,
0.16183722019195557,
-0.009224018082022667,
-0.01505583431571722,
0.0666312724351883,
0.08577129989862442,
-0.003578498959541321,
-0.10825265944004059,
0.11403019726276398,
0.0037282004486769438,
0.06277751922607422,
0.31362244486808777,
-0.09730387479066849,
-0.15772973001003265,
-0.05579530820250511,
0.09843603521585464,
0.10333765298128128,
0.22107292711734772,
-0.0778246745467186,
0.05064311623573303,
0.08940909057855606,
-0.03135242313146591,
-0.1809159368276596,
-0.01624881476163864,
-0.15444985032081604,
0.021807413548231125,
-0.02210354059934616,
-0.05716335400938988,
0.1525048166513443,
0.0276979748159647,
-0.06036398559808731,
0.05678572878241539,
-0.21017444133758545,
-0.050350598990917206,
0.2124476283788681,
0.09072977304458618,
0.18869125843048096,
-0.055419739335775375,
-0.10085775703191757,
-0.06210455298423767,
-0.17009110748767853,
0.14573942124843597,
0.0009171363199129701,
0.09706390649080276,
-0.06149256229400635,
0.03404134884476662,
0.030316440388560295,
-0.017664076760411263,
0.21621254086494446,
0.12014272809028625,
0.09054771810770035,
0.010018565692007542,
-0.21152810752391815,
0.1910766363143921,
-0.022391822189092636,
0.02395143173635006,
0.21361587941646576,
0.019455311819911003,
-0.13478849828243256,
-0.01363779790699482,
-0.012618583627045155,
-0.006228008773177862,
-0.05000802129507065,
-0.0775517001748085,
-0.08823426067829132,
0.02310766838490963,
-0.06556377559900284,
-0.052347611635923386,
0.24884749948978424,
-0.044465478509664536,
0.13779422640800476,
0.08472949266433716,
0.024078885093331337,
-0.08966238796710968,
-0.02583329752087593,
-0.07066991925239563,
-0.05825459957122803,
0.05075599253177643,
-0.1634436398744583,
0.046996332705020905,
0.1357024610042572,
0.04128016531467438,
0.11339418590068817,
0.13426178693771362,
-0.028886735439300537,
-0.04454214125871658,
0.12145058065652847,
-0.12430677562952042,
-0.1375601440668106,
0.001421947730705142,
-0.20548035204410553,
-0.011672536842525005,
0.09311477094888687,
0.057984404265880585,
0.04718690365552902,
-0.020899534225463867,
0.007398487534373999,
0.0496341772377491,
-0.051991697400808334,
0.11322620511054993,
0.02190064638853073,
0.07214392721652985,
-0.14895331859588623,
0.11383891850709915,
0.06264650076627731,
0.013418183661997318,
-0.05911218747496605,
-0.028006210923194885,
-0.1382589191198349,
-0.03939284756779671,
0.007156173698604107,
0.13040708005428314,
-0.0905921533703804,
-0.10251913964748383,
-0.07666323333978653,
-0.16608239710330963,
0.023253943771123886,
0.10539466142654419,
0.1509973704814911,
0.10240001976490021,
-0.007406312506645918,
-0.12537892162799835,
0.03536490350961685,
0.04090863838791847,
-0.050954051315784454,
0.032887350767850876,
-0.246215358376503,
-0.00691100163385272,
-0.03911595046520233,
0.13564936816692352,
-0.11075594276189804,
-0.08774102479219437,
-0.13570937514305115,
0.012462129816412926,
-0.03959936276078224,
0.05428437516093254,
-0.029200071468949318,
-0.0017068554880097508,
-0.018084490671753883,
0.0017335000447928905,
-0.06452954560518265,
-0.02544957585632801,
-0.10826709866523743,
0.06952255219221115,
0.0055446443147957325,
0.13580872118473053,
-0.07635547965765,
-0.02101031132042408,
0.07881936430931091,
-0.039927009493112564,
0.06704983860254288,
0.03774590417742729,
0.021956000477075577,
0.07401999086141586,
-0.17660319805145264,
-0.014180495403707027,
0.10287535935640335,
0.02248154580593109,
0.10903551429510117,
-0.13615821301937103,
-0.010285211727023125,
0.011727177537977695,
-0.04274822771549225,
0.1013636365532875,
-0.05427801236510277,
-0.1010257676243782,
-0.11995106190443039,
-0.14925739169120789,
-0.14416828751564026,
-0.03090284951031208,
0.040017321705818176,
0.21138958632946014,
0.04444756731390953,
-0.008212876506149769,
0.045859869569540024,
0.019706523045897484,
-0.04234306141734123,
-0.017536181956529617,
-0.05072026699781418,
-0.11229946464300156,
0.038281120359897614,
-0.0031799988355487585,
0.006602850276976824,
-0.026580480858683586,
0.3422297239303589,
0.049701131880283356,
0.055504072457551956,
0.044566746801137924,
0.174846813082695,
-0.031466949731111526,
0.04692148044705391,
0.2042260617017746,
0.06154349446296692,
-0.07498588413000107,
0.07383860647678375,
0.053350210189819336,
0.013955775648355484,
0.09087999910116196,
0.1910114735364914,
0.08516138792037964,
-0.13361525535583496,
0.07070380449295044,
0.03234931081533432,
0.019743207842111588,
-0.05163450911641121,
0.03547145053744316,
0.036514151841402054,
0.02721494436264038,
0.06121571734547615,
-0.0960426926612854,
0.1085628867149353,
-0.1678735315799713,
0.1251760721206665,
-0.03130948916077614,
-0.10420306026935577,
-0.18375469744205475,
-0.05695338174700737,
-0.0908234640955925,
-0.023742815479636192,
-0.004846683703362942,
-0.1287398636341095,
-0.06728068739175797,
0.21769914031028748,
0.04367898777127266,
0.01774527318775654,
0.06851755827665329,
-0.21213674545288086,
0.0045302072539925575,
0.13517926633358002,
0.018326908349990845,
0.005896731745451689,
-0.04499160125851631,
-0.008495486341416836,
0.018700076267123222,
-0.05556993931531906,
-0.042278021574020386,
-0.036091167479753494,
0.027248255908489227,
-0.05139470100402832,
-0.15298330783843994,
-0.07479147613048553,
-0.061279296875,
-0.009973788633942604,
-0.018491623923182487,
-0.10213358700275421,
0.03338981792330742,
-0.032993465662002563,
0.015874745324254036,
0.2444322407245636,
-0.06603974103927612,
0.06259281188249588,
-0.0772942379117012,
0.24170361459255219,
-0.0669189989566803,
0.08927816152572632,
0.049574386328458786,
-0.05338221415877342,
-0.04817880690097809,
0.08547690510749817,
0.15668104588985443,
0.017993520945310593,
-0.014819771982729435,
0.014021668583154678,
0.023370597511529922,
0.058242931962013245,
0.027835102751851082,
-0.03302228823304176,
0.13712921738624573,
-0.05083293095231056,
0.08638335019350052,
-0.06816946715116501,
-0.04222041741013527,
-0.038416098803281784,
-0.04604949802160263,
0.174753338098526,
-0.0385897271335125,
-0.14063067734241486,
0.2196972668170929,
-0.03531193733215332,
0.009985765442252159,
0.22970855236053467,
-0.1548478603363037,
-0.14126870036125183,
-0.008658885024487972,
0.003652147715911269,
-0.016225289553403854,
0.07480822503566742,
-0.11651859432458878,
0.004356971476227045,
-0.005266281776130199,
0.04633764177560806,
-0.20020395517349243,
-0.09602513164281845,
0.0421636737883091,
-0.03945542499423027,
0.07389471679925919,
-0.00015755515778437257,
0.13633880019187927,
0.09215516597032547,
-0.05881647393107414,
-0.04833662882447243,
0.0708017572760582,
0.0018871239153668284,
0.06086873635649681,
-0.0027480365242809057,
0.10511957854032516,
-0.021981777623295784,
-0.12522457540035248,
0.10724057257175446,
-0.11917069554328918,
-0.026973342522978783,
-0.010769075714051723,
-0.0838431790471077,
-0.059355881065130234,
0.05169236287474632,
-0.11087781190872192,
0.10708562284708023,
0.12185043096542358,
-0.006826302502304316,
0.00556368799880147,
0.005132436752319336,
0.08191318064928055,
0.059678301215171814,
-0.0959353968501091,
0.000359495694283396,
0.0030251871794462204,
-0.04803250730037689,
0.07644454389810562,
-0.037376247346401215,
-0.20194821059703827,
-0.005830476526170969,
-0.07958851009607315,
0.03642258048057556,
-0.07039114832878113,
0.0991675853729248,
0.11057879775762558,
0.05312042310833931,
-0.045310329645872116,
-0.18922223150730133,
0.0494253933429718,
0.09842003881931305,
-0.09043125808238983,
-0.06497542560100555
] |
null | null | null | utyuiue6 | {} | null | MohamedH/object | [
"region:us"
] | 2022-03-02T23:29:04+00:00 | [] | [] | TAGS
#region-us
| utyuiue6 | [] | [
"TAGS\n#region-us \n"
] | [
6
] | [
"passage: TAGS\n#region-us \n"
] | [
0.024608636274933815,
-0.026205500587821007,
-0.009666500613093376,
-0.10395516455173492,
0.08638657629489899,
0.059816278517246246,
0.01882290467619896,
0.020661840215325356,
0.23975107073783875,
-0.005599027033895254,
0.1219947561621666,
0.0015615287702530622,
-0.037353623658418655,
0.03733762726187706,
-0.0035912662278860807,
-0.17583473026752472,
0.03876631706953049,
-0.018274923786520958,
0.01843859627842903,
0.026470553129911423,
-0.07776834815740585,
-0.07564429938793182,
0.015296397730708122,
-0.10247814655303955,
-0.083692267537117,
0.11002834886312485,
0.031466204673051834,
-0.019670886918902397,
0.10779199749231339,
-0.04243955761194229,
0.18699054419994354,
-0.011512263678014278,
-0.11213519424200058,
-0.2536850869655609,
0.021806683391332626,
-0.01765260472893715,
-0.08747660368680954,
0.01506110467016697,
0.0665089413523674,
-0.09014441072940826,
-0.0588928684592247,
0.0795099288225174,
-0.01132340170443058,
0.04246443510055542,
-0.27593839168548584,
-0.12684126198291779,
-0.05297930911183357,
-0.1421966552734375,
0.08651168644428253,
0.04035491496324539,
0.008764253929257393,
0.15506891906261444,
-0.20897391438484192,
0.004104613792151213,
0.08255259692668915,
-0.2538507878780365,
0.05591634660959244,
0.17671173810958862,
0.03623908758163452,
0.18037272989749908,
0.0060391901060938835,
0.11029672622680664,
0.0716743916273117,
-0.024263937026262283,
-0.17590197920799255,
-0.08127854019403458,
-0.04696211963891983,
0.16642488539218903,
-0.06727185100317001,
-0.14248386025428772,
0.34701237082481384,
0.00015008423360995948,
0.009657775051891804,
0.16921205818653107,
-0.059524230659008026,
-0.09972117841243744,
0.07259953022003174,
0.016484731808304787,
0.018492350354790688,
0.1471305936574936,
0.16307872533798218,
-0.0458691343665123,
-0.13837823271751404,
-0.018630273640155792,
-0.22798998653888702,
0.17510560154914856,
-0.03248048573732376,
0.13137903809547424,
-0.27447956800460815,
0.01684025302529335,
-0.2570667266845703,
0.0032130838371813297,
0.04178816080093384,
-0.06004921346902847,
-0.0226522795855999,
-0.013265985064208508,
-0.08018817007541656,
0.004899587947875261,
0.06192673370242119,
0.1266920566558838,
-0.06128726154565811,
0.06128238886594772,
-0.09319206327199936,
0.141696035861969,
0.07166698575019836,
0.07868369668722153,
0.13037432730197906,
0.041205424815416336,
-0.07187089323997498,
-0.21872246265411377,
-0.0026476888451725245,
-0.06275863200426102,
-0.09502086788415909,
-0.0020165652967989445,
-0.11606067419052124,
0.17244569957256317,
-0.030802514404058456,
-0.09825427830219269,
-0.11208184063434601,
0.09148659557104111,
-0.032992321997880936,
-0.03437839448451996,
-0.03552987426519394,
-0.020977836102247238,
0.019381176680326462,
0.04704452306032181,
-0.1548958420753479,
-0.005131472367793322,
0.07039852440357208,
0.11502562463283539,
-0.1346137970685959,
-0.003783059772104025,
-0.07908964157104492,
0.03039063885807991,
0.07654735445976257,
-0.16510222852230072,
0.03158547356724739,
-0.1124754324555397,
-0.07531405985355377,
0.002912673633545637,
-0.015710093080997467,
-0.016202643513679504,
0.166526660323143,
-0.0020451415330171585,
0.0714716836810112,
-0.026345307007431984,
-0.05890209600329399,
-0.11243434250354767,
-0.08489254862070084,
0.05390460044145584,
0.03670717030763626,
0.03266148269176483,
-0.2193479984998703,
0.014805203303694725,
-0.12762966752052307,
0.1360815018415451,
-0.10566820204257965,
-0.04705966264009476,
-0.022842247039079666,
0.20562705397605896,
0.037286072969436646,
0.08762791007757187,
-0.22171171009540558,
0.039756543934345245,
-0.05404696613550186,
0.18480908870697021,
-0.1502426266670227,
-0.0799463614821434,
0.20813211798667908,
-0.07964949309825897,
-0.10115210711956024,
0.021235812455415726,
0.020391687750816345,
0.026287272572517395,
0.0766737088561058,
0.4564172327518463,
-0.09766800701618195,
-0.09146861732006073,
0.10178250074386597,
0.17055274546146393,
-0.12427149713039398,
-0.1827561855316162,
0.06446871906518936,
-0.16666454076766968,
-0.1973118633031845,
0.0018917324487119913,
0.09222044050693512,
0.038269978016614914,
-0.07875611633062363,
-0.020746968686580658,
0.06325206160545349,
-0.0007678253459744155,
0.09095914661884308,
0.03755716234445572,
0.09034032374620438,
-0.08716782182455063,
0.11115926504135132,
-0.05017651244997978,
0.004037132486701012,
0.1343354731798172,
0.027325427159667015,
-0.03223329409956932,
0.08694463223218918,
-0.0485352948307991,
0.05295134335756302,
-0.1662379503250122,
-0.15068690478801727,
0.03398871049284935,
0.06283251196146011,
0.03186952322721481,
0.1280253529548645,
0.08141885697841644,
-0.10732853412628174,
0.022690722718834877,
-0.004228927195072174,
0.058398615568876266,
0.03891623765230179,
0.006107209715992212,
0.008764320984482765,
0.0961301177740097,
-0.10607069730758667,
-0.13589619100093842,
-0.07336436957120895,
-0.014715781435370445,
0.14371353387832642,
-0.0302802175283432,
0.07690227776765823,
-0.004240254405885935,
0.00013200697139836848,
0.06930823624134064,
0.08137880265712738,
0.016412746161222458,
0.08971183747053146,
-0.05237193778157234,
-0.05160155147314072,
0.10863113403320312,
-0.13533565402030945,
0.17837053537368774,
0.14053137600421906,
-0.20532016456127167,
0.029453208670020103,
-0.06838275492191315,
0.03670361638069153,
-0.008162540383636951,
0.0975119024515152,
-0.08272241055965424,
-0.02106042578816414,
0.013134466484189034,
0.0052274600602686405,
-0.013007243163883686,
0.017682146281003952,
-0.07295988500118256,
-0.07787393033504486,
-0.10233919322490692,
0.08436838537454605,
0.11562882363796234,
-0.10282530635595322,
0.14214380085468292,
0.4384984076023102,
0.11495281755924225,
0.21582984924316406,
-0.09581480920314789,
-0.0412987545132637,
0.007486371789127588,
0.0001535322517156601,
-0.04476691037416458,
0.08031861484050751,
-0.15973517298698425,
-0.038901735097169876,
0.027348900213837624,
0.07128690183162689,
0.11475157737731934,
-0.14959022402763367,
-0.09639324247837067,
-0.00793045200407505,
0.0022841424215584993,
-0.1249532699584961,
0.023905446752905846,
-0.03974650055170059,
0.04015624523162842,
0.07232289016246796,
-0.021535737439990044,
0.13939237594604492,
-0.04166141897439957,
-0.0639561116695404,
0.07585346698760986,
-0.2017085999250412,
-0.23179671168327332,
-0.12309670448303223,
-0.14680525660514832,
0.04366797208786011,
0.05154111236333847,
0.01726446859538555,
-0.17635835707187653,
-0.015074856579303741,
0.07706750929355621,
0.07820965349674225,
-0.20886357128620148,
-0.022814949974417686,
-0.004290030337870121,
0.0895976573228836,
-0.10227091610431671,
-0.0017130117630586028,
-0.04419664293527603,
-0.10150232166051865,
0.0017003051470965147,
0.07279510796070099,
-0.137485533952713,
0.13807645440101624,
0.21589438617229462,
0.07225540280342102,
0.07359948754310608,
-0.019093448296189308,
0.09936179965734482,
-0.10856141895055771,
-0.16549113392829895,
0.08348225057125092,
-0.06234746053814888,
0.047262318432331085,
0.17534415423870087,
0.03307317942380905,
-0.13904969394207,
-0.015682822093367577,
-0.0402069091796875,
-0.15603256225585938,
-0.238995760679245,
-0.09178274869918823,
-0.1182505264878273,
0.16442428529262543,
0.0009358620154671371,
0.06651917099952698,
0.08258313685655594,
-0.022042419761419296,
0.16447891294956207,
-0.07379321753978729,
-0.07578866183757782,
-0.006978808436542749,
0.12375060468912125,
-0.056660156697034836,
-0.03080669604241848,
-0.10566964000463486,
-0.008295975625514984,
0.1151021271944046,
0.15304014086723328,
0.12214863300323486,
0.2957419455051422,
0.08268889784812927,
0.026645636186003685,
0.08958091586828232,
0.17622539401054382,
0.09495089203119278,
0.07838419824838638,
-0.045413073152303696,
-0.014814783819019794,
0.014317171648144722,
-0.04022889584302902,
0.010141594335436821,
0.14683100581169128,
-0.2679629921913147,
-0.006678564939647913,
-0.2710230350494385,
0.0965198427438736,
-0.10913380235433578,
0.11837165057659149,
-0.01015760749578476,
0.10194015502929688,
0.11082887649536133,
0.03233652561903,
-0.03858073800802231,
0.16613617539405823,
0.08450309932231903,
-0.11277695000171661,
0.001758623169735074,
0.03737903758883476,
0.09715615212917328,
-0.02818971499800682,
0.12721189856529236,
-0.11048974841833115,
-0.1464834064245224,
0.013753619976341724,
0.07152791321277618,
-0.15373679995536804,
0.3138748109340668,
0.012069208547472954,
-0.13481520116329193,
-0.01481647603213787,
-0.09957809001207352,
-0.006440147757530212,
0.1254177987575531,
0.09333524852991104,
0.07935678958892822,
-0.2185502052307129,
-0.13339371979236603,
0.05872276425361633,
-0.00575496768578887,
0.22408108413219452,
-0.034034017473459244,
-0.11356475204229355,
-0.027013886719942093,
0.04241163283586502,
-0.06043251231312752,
0.08524788916110992,
0.023536119610071182,
-0.08113526552915573,
-0.032957352697849274,
0.05323701351881027,
0.012368366122245789,
0.00524376705288887,
0.09360801428556442,
0.020107939839363098,
-0.0009265501867048442,
0.01785753294825554,
0.047885000705718994,
-0.0675911232829094,
-0.1984109878540039,
0.09357594698667526,
-0.05215044692158699,
0.0015536568826064467,
-0.08013670891523361,
-0.15122665464878082,
-0.08837161958217621,
-0.16009655594825745,
0.12540200352668762,
-0.034406669437885284,
0.12700119614601135,
-0.06619787961244583,
0.17341409623622894,
-0.07871770113706589,
0.04481020197272301,
-0.047349292784929276,
0.050332702696323395,
-0.007268077693879604,
-0.07756082713603973,
0.16585899889469147,
-0.15564003586769104,
0.01809087023139,
0.19572502374649048,
-0.018915493041276932,
0.07177707552909851,
0.021322092041373253,
-0.0636206790804863,
0.23147478699684143,
0.3014698624610901,
0.008138049393892288,
0.1665448248386383,
0.3018903136253357,
-0.07466315478086472,
-0.2642788887023926,
-0.05505012720823288,
-0.2841376066207886,
-0.05371501296758652,
0.10716094076633453,
-0.22523896396160126,
0.06986407935619354,
0.14383509755134583,
-0.06471995264291763,
0.30228954553604126,
-0.21825523674488068,
0.012589273042976856,
0.15434536337852478,
-0.08868814259767532,
0.5515313148498535,
-0.1133413165807724,
-0.17677772045135498,
-0.008122089318931103,
-0.08741296827793121,
0.10602109134197235,
-0.0340677872300148,
0.06877441704273224,
0.013465235009789467,
0.04797380417585373,
0.048932258039712906,
-0.03111894056200981,
0.22701001167297363,
0.008710170164704323,
0.09015397727489471,
-0.07378865778446198,
-0.18624304234981537,
0.11639340221881866,
-0.04359482601284981,
-0.08891059458255768,
0.0849778801202774,
-0.05942516401410103,
-0.11078983545303345,
0.04663389176130295,
-0.07950539886951447,
-0.024862350896000862,
0.08423490077257156,
-0.04678233340382576,
-0.042606171220541,
-0.008054176345467567,
-0.1618063747882843,
-0.0002289071271661669,
0.31360217928886414,
-0.07096036523580551,
0.16695955395698547,
0.03677211329340935,
0.00038613268407061696,
-0.11027684062719345,
0.030288029462099075,
-0.05203165486454964,
-0.021576624363660812,
0.09578979015350342,
-0.11096979677677155,
0.03204701095819473,
0.14160704612731934,
-0.04864364117383957,
0.05846960097551346,
0.09256096184253693,
-0.0849417969584465,
0.007583672646433115,
0.17753590643405914,
-0.17537221312522888,
-0.1273445188999176,
-0.006135711446404457,
-0.09862716495990753,
0.14055661857128143,
0.04394126310944557,
0.05191568285226822,
0.16669964790344238,
0.03967129811644554,
-0.029474308714270592,
-0.02817419543862343,
-0.1153380498290062,
-0.0201893113553524,
0.040153320878744125,
0.00045633706031367183,
-0.08791285753250122,
0.2262638509273529,
0.06409153342247009,
-0.1328488290309906,
-0.051157206296920776,
0.2161225974559784,
-0.06805316358804703,
-0.04911920800805092,
-0.223562553524971,
0.10752306133508682,
-0.07112517952919006,
-0.0965060144662857,
0.05453834682703018,
-0.02270081453025341,
0.005106312222778797,
0.181985542178154,
0.03941008821129799,
0.11070270836353302,
0.03738937899470329,
-0.02448922023177147,
0.15798696875572205,
-0.142850860953331,
-0.14191335439682007,
-0.025354057550430298,
-0.08757315576076508,
-0.13844476640224457,
-0.026804137974977493,
0.1617041826248169,
-0.09177309274673462,
-0.14772607386112213,
-0.2621181011199951,
0.10968475043773651,
-0.16432365775108337,
-0.10192688554525375,
-0.03469514101743698,
-0.08968492597341537,
0.0696166530251503,
0.030301768332719803,
-0.03093348816037178,
-0.06706760823726654,
-0.18593791127204895,
0.0816768929362297,
0.06349513679742813,
0.045533183962106705,
-0.017847947776317596,
0.0067379772663116455,
0.1720137596130371,
0.025955144315958023,
0.10040043294429779,
0.16762186586856842,
0.011397695168852806,
0.2246655523777008,
-0.1671202927827835,
-0.11496317386627197,
0.1336962729692459,
-0.026543032377958298,
0.06762003898620605,
0.16792191565036774,
-0.0772583931684494,
0.015526676550507545,
-0.028136352077126503,
0.07066910713911057,
-0.11003983020782471,
-0.105624258518219,
0.007937257178127766,
0.02567129209637642,
-0.2755882740020752,
-0.005599735304713249,
-0.19717298448085785,
0.14788752794265747,
0.02579621411859989,
0.03297143429517746,
0.10257530212402344,
0.10404334217309952,
0.08312062919139862,
-0.0017710148822516203,
0.03226327523589134,
-0.1176818460226059,
0.02753005363047123,
-0.059239376336336136,
-0.020663779228925705,
0.017624232918024063,
0.36952024698257446,
-0.03603357449173927,
-0.046802736818790436,
0.003710439894348383,
0.1307835876941681,
-0.02139742486178875,
0.017395347356796265,
0.13209912180900574,
0.12607666850090027,
-0.08595693111419678,
-0.1504845917224884,
0.04888554662466049,
-0.04565655067563057,
-0.02836887165904045,
0.1464131623506546,
0.05905961990356445,
0.1050296202301979,
0.0908031314611435,
-0.014463032595813274,
-0.00318976235575974,
0.012856799177825451,
-0.15486004948616028,
0.06223496049642563,
-0.010558074340224266,
0.012565906159579754,
0.017934376373887062,
0.15238402783870697,
-0.005540105979889631,
0.07739730179309845,
-0.09889880567789078,
0.004208535887300968,
-0.13498884439468384,
-0.07913459837436676,
0.03617347031831741,
-0.13393273949623108,
0.04141177982091904,
-0.01871878281235695,
0.029611799865961075,
0.30386561155319214,
0.02558239921927452,
-0.020639164373278618,
0.12512871623039246,
-0.1214587539434433,
-0.12050267308950424,
-0.001594188273884356,
-0.029960084706544876,
0.0791488066315651,
-0.02633434161543846,
-0.0997740775346756,
-0.1001306027173996,
-0.15166029334068298,
-0.09759195148944855,
0.05182836204767227,
-0.04993441700935364,
-0.059362251311540604,
-0.17634081840515137,
-0.05707859992980957,
-0.05147340148687363,
0.14025864005088806,
-0.12263951450586319,
0.15159130096435547,
-0.014490418136119843,
0.004084470681846142,
0.04405883327126503,
0.1950942426919937,
-0.03644494712352753,
0.08714226633310318,
0.0154351145029068,
0.1522706001996994,
-0.05119588226079941,
0.14720745384693146,
-0.10931728035211563,
-0.04014137014746666,
-0.06710435450077057,
0.21513493359088898,
0.25630924105644226,
-0.06136954948306084,
-0.008937356993556023,
-0.012760217301547527,
0.058654606342315674,
0.1073930487036705,
0.16049085557460785,
0.002326392102986574,
0.2802925705909729,
-0.03133585304021835,
0.04815128445625305,
0.02901598811149597,
0.013607407920062542,
-0.06336209923028946,
0.03397751972079277,
0.07539387792348862,
-0.035039983689785004,
-0.1412304788827896,
0.15837742388248444,
-0.21980468928813934,
0.18157227337360382,
0.11640069633722305,
-0.19996967911720276,
-0.013728445395827293,
-0.04882071167230606,
0.1689416468143463,
-0.0856364443898201,
0.1637246012687683,
-0.0903693437576294,
-0.2108195722103119,
-0.2056000679731369,
0.03867346793413162,
-0.34623071551322937,
-0.254462867975235,
0.10422009229660034,
0.1488201916217804,
0.04015883058309555,
-0.018507536500692368,
-0.019967829808592796,
-0.018367022275924683,
0.04877542704343796,
-0.0067357709631323814,
0.06014643982052803,
0.031397558748722076,
-0.02988368645310402,
-0.24127542972564697,
-0.029804671183228493,
0.023964406922459602,
-0.07093082368373871,
0.07464958727359772,
-0.06874357163906097,
-0.022495782002806664,
0.08059766888618469,
-0.03066304884850979,
0.03298592567443848,
-0.035373736172914505,
-0.16326889395713806,
0.027529051527380943,
0.03900543600320816,
0.036012712866067886,
0.00634160777553916,
0.0008072225609794259,
-0.03455270454287529,
0.0644603744149208,
-0.16716794669628143,
-0.16015739738941193,
0.14140215516090393,
-0.06745140254497528,
0.2779497504234314,
-0.05812826007604599,
-0.0809100940823555,
0.04766704887151718,
-0.03426874056458473,
0.1807648241519928,
-0.07756473124027252,
0.047254521399736404,
0.12766779959201813,
0.011127962730824947,
0.03121316432952881,
-0.3092964291572571,
0.11082969605922699,
-0.000795336440205574,
-0.006093299947679043,
-0.07581598311662674
] |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.