sha
null
last_modified
null
library_name
stringclasses
154 values
text
stringlengths
1
900k
metadata
stringlengths
2
348k
pipeline_tag
stringclasses
45 values
id
stringlengths
5
122
tags
sequencelengths
1
1.84k
created_at
stringlengths
25
25
arxiv
sequencelengths
0
201
languages
sequencelengths
0
1.83k
tags_str
stringlengths
17
9.34k
text_str
stringlengths
0
389k
text_lists
sequencelengths
0
722
processed_texts
sequencelengths
1
723
tokens_length
sequencelengths
1
723
input_texts
sequencelengths
1
61
embeddings
sequencelengths
768
768
null
null
transformers
---- tags: - conversational --- #Peter Parker DialoGPT Model
{}
text-generation
MaiaMaiaMaia/DialoGPT-medium-PeterParkerBot
[ "transformers", "pytorch", "gpt2", "text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
---- tags: - conversational --- #Peter Parker DialoGPT Model
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 47 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.027653997763991356, 0.02414041943848133, -0.0068230400793254375, 0.010564634576439857, 0.18164798617362976, 0.033704131841659546, 0.08821956068277359, 0.13570955395698547, -0.0068973456509411335, -0.013526750728487968, 0.1547490805387497, 0.20799952745437622, -0.0026462990790605545, 0.0791444480419159, -0.0664469450712204, -0.2753458023071289, 0.05913490429520607, 0.0680282786488533, -0.007687992881983519, 0.12075648456811905, 0.07187031954526901, -0.0549883171916008, 0.0886516347527504, -0.02030559629201889, -0.17324471473693848, 0.01953965798020363, 0.04816993698477745, -0.12518654763698578, 0.1176358312368393, 0.05111858248710632, 0.09795232862234116, 0.008365745656192303, -0.06405694782733917, -0.13635118305683136, 0.022147029638290405, 0.03033585101366043, -0.058860234916210175, 0.0636059120297432, 0.1087222546339035, -0.09939044713973999, 0.09311723709106445, 0.08541663736104965, -0.0255570225417614, 0.05364618077874184, -0.15825888514518738, -0.06378549337387085, -0.02499648556113243, 0.007804732769727707, 0.06256697326898575, 0.10073644667863846, -0.017566369846463203, 0.10258800536394119, -0.0975269079208374, 0.10333853214979172, 0.1500675231218338, -0.3112771809101105, 0.009987793862819672, 0.09499151259660721, 0.04119991883635521, 0.03931105509400368, -0.02533094584941864, 0.05045793950557709, 0.025268254801630974, 0.027277586981654167, 0.007437177933752537, -0.0750175341963768, -0.1137726753950119, 0.049895867705345154, -0.09199702739715576, -0.07458660751581192, 0.22324641048908234, -0.07399588078260422, 0.060080595314502716, -0.025852523744106293, -0.11121725291013718, -0.05274823680520058, -0.013890148140490055, 0.018784796819090843, -0.06587869673967361, 0.08765926212072372, 0.024050135165452957, -0.06755640357732773, -0.1323474794626236, -0.04128742218017578, -0.18628640472888947, 0.17943057417869568, 0.015332846902310848, 0.05883103236556053, -0.1924149990081787, 0.11635245382785797, -0.004000017885118723, -0.08559784293174744, 0.024640021845698357, -0.09488005936145782, 0.03717249631881714, -0.005796557758003473, -0.06343648582696915, -0.07624655961990356, 0.078512042760849, 0.13449318706989288, -0.0038929670117795467, 0.031459223479032516, -0.03913462534546852, 0.08946967869997025, 0.023094916716217995, 0.11019261926412582, -0.01329297386109829, -0.00601809611544013, 0.043852973729372025, -0.14449132978916168, -0.008341594599187374, -0.06913956254720688, -0.1527271568775177, -0.05108632892370224, 0.05306483805179596, 0.08953460305929184, 0.008545879274606705, 0.09067165106534958, -0.04840036481618881, -0.026439275592565536, 0.06191498041152954, -0.07166212797164917, -0.0057375445030629635, 0.0005479406099766493, 0.020326290279626846, 0.12346802651882172, -0.006863993126899004, 0.01816580630838871, -0.1344953328371048, 0.07597071677446365, -0.0810447409749031, 0.0016609809827059507, -0.037295255810022354, -0.051307324320077896, 0.016753138974308968, -0.09774310886859894, 0.014272624626755714, -0.15190516412258148, -0.18175770342350006, 0.015764877200126648, 0.0044948384165763855, -0.03198384866118431, -0.035312067717313766, -0.03263629972934723, -0.023609675467014313, 0.04306609928607941, -0.06790579855442047, 0.009302832186222076, -0.05678845942020416, 0.10395034402608871, -0.032171644270420074, 0.06649759411811829, -0.10738259553909302, 0.0829162523150444, -0.12368609756231308, -0.004673504736274481, -0.09571383893489838, 0.07571588456630707, -0.0049130916595458984, 0.11728651076555252, -0.028541911393404007, -0.03454771637916565, -0.07556727528572083, 0.04999465495347977, -0.02550712786614895, 0.18951213359832764, -0.060080599039793015, -0.12557648122310638, 0.2583121061325073, -0.07503679394721985, -0.1294521689414978, 0.09354755282402039, 0.013357079587876797, 0.03000263124704361, 0.08708256483078003, 0.17770351469516754, 0.03385210409760475, 0.011724604293704033, 0.08526027947664261, 0.1101398766040802, -0.11245359480381012, -0.0934135690331459, 0.01582467369735241, -0.04410967230796814, -0.14348545670509338, 0.0551721565425396, 0.06396481394767761, 0.08126390725374222, -0.04889657348394394, -0.02648499235510826, -0.04211905598640442, 0.005280596204102039, 0.08378548920154572, 0.011136471293866634, 0.12981148064136505, -0.04937934875488281, -0.03142275661230087, -0.018193937838077545, -0.012411710806190968, -0.03191297501325607, 0.03591127321124077, -0.019667068496346474, 0.13700194656848907, -0.048340748995542526, 0.053371917456388474, -0.18971459567546844, -0.07922437787055969, 0.0010099048959091306, 0.123023621737957, -0.014106693677604198, 0.08013445883989334, 0.05753817409276962, -0.018720267340540886, -0.004700321704149246, -0.01032867468893528, 0.1544346958398819, -0.021616755053400993, -0.06661882251501083, -0.04162381589412689, 0.0662311464548111, -0.05831345543265343, -0.0033040468115359545, -0.05776660889387131, 0.013589667156338692, 0.05048443749547005, 0.10443682968616486, -0.0023575187660753727, 0.03253777325153351, -0.02123248018324375, 0.018250472843647003, -0.07885172218084335, -0.0028943256475031376, 0.09839999675750732, -0.003195167751982808, -0.06114937365055084, 0.191707044839859, -0.16508106887340546, 0.2123199850320816, 0.18989497423171997, -0.2840019166469574, 0.008855658583343029, -0.07930868119001389, -0.03107025846838951, 0.019292673096060753, 0.04051336646080017, -0.035391807556152344, 0.12321244925260544, 0.0030509934294968843, 0.1893225461244583, -0.05120055004954338, -0.054668959230184555, -0.0003608512051869184, -0.05736381933093071, 0.0013126746052876115, 0.06707432866096497, 0.11558198183774948, -0.12564630806446075, 0.1973772495985031, 0.17830142378807068, 0.02446782775223255, 0.16028088331222534, 0.003589105326682329, -0.02908729389309883, 0.07800903916358948, 0.001039333757944405, -0.03403163328766823, -0.08341804146766663, -0.19453173875808716, -0.01920945756137371, 0.08615871518850327, 0.05208343267440796, 0.11178864538669586, -0.1340440809726715, -0.039688125252723694, -0.016580121591687202, -0.013963420875370502, 0.004052120726555586, 0.08927994221448898, 0.05621529743075371, 0.11766386777162552, -0.008479462936520576, 0.004914911463856697, 0.11690844595432281, 0.024292193353176117, -0.0974007099866867, 0.20369629561901093, -0.12859489023685455, -0.35919657349586487, -0.17192909121513367, -0.16941924393177032, -0.046767693012952805, 0.06603047996759415, 0.10566895455121994, -0.11921820044517517, -0.03283723443746567, 0.01984371617436409, 0.10511579364538193, -0.0874844342470169, 0.025252653285861015, -0.07854585349559784, 0.039858005940914154, -0.08228866755962372, -0.07852846384048462, -0.058627899736166, -0.02397638000547886, -0.06844961643218994, 0.15293799340724945, -0.10580270737409592, 0.04606963321566582, 0.19703397154808044, 0.035209350287914276, 0.05708123743534088, -0.03352535888552666, 0.19375872611999512, -0.09711813181638718, -0.014181635342538357, 0.20692157745361328, -0.04432303458452225, 0.08276087045669556, 0.10658510029315948, -0.0009211950236931443, -0.0905555859208107, 0.023672347888350487, -0.03327333554625511, -0.09995128959417343, -0.2413795441389084, -0.12423769384622574, -0.12672755122184753, 0.07157120853662491, 0.06113129481673241, 0.06719478219747543, 0.1604551076889038, 0.09354656934738159, -0.019843624904751778, 0.04505275562405586, -0.0036725422833114862, 0.07906411588191986, 0.20365294814109802, -0.0204415675252676, 0.13615357875823975, -0.050657231360673904, -0.13334059715270996, 0.09257177263498306, 0.06900633871555328, 0.15225820243358612, 0.054498545825481415, 0.05270633473992348, 0.006767008453607559, 0.06716175377368927, 0.1454283893108368, 0.13071000576019287, 0.014545821584761143, -0.016409022733569145, -0.021825823932886124, -0.011036834679543972, -0.05876464396715164, 0.04085689038038254, 0.02777833305299282, -0.1610528975725174, -0.05520197004079819, -0.12001585215330124, 0.08774644136428833, 0.09219257533550262, 0.06569026410579681, -0.2342914491891861, 0.007060535252094269, 0.08197256177663803, -0.028898365795612335, -0.1258426308631897, 0.08190665394067764, -0.021697908639907837, -0.14926569163799286, 0.0494246669113636, -0.061497997492551804, 0.12161173671483994, -0.07084709405899048, 0.08109014481306076, -0.03937468305230141, -0.062106676399707794, 0.020281726494431496, 0.1271398812532425, -0.29730626940727234, 0.20356124639511108, -0.001819691271521151, -0.05869410187005997, -0.11437822878360748, 0.01959572173655033, 0.01367559190839529, 0.11016108095645905, 0.10386832803487778, 0.005328167695552111, -0.0475030355155468, -0.12364684045314789, -0.022924374788999557, 0.024910306558012962, 0.12441114336252213, -0.05739542469382286, -0.008891535922884941, -0.044362228363752365, -0.0058176638558506966, -0.028876133263111115, -0.053936153650283813, 0.025268638506531715, -0.16888569295406342, 0.08389513194561005, 0.017658868804574013, 0.09978678822517395, 0.01261826977133751, -0.013697084039449692, -0.09944134950637817, 0.23519866168498993, -0.07718266546726227, -0.11035529524087906, -0.1205357164144516, -0.04611735790967941, 0.0686027929186821, -0.0741099938750267, 0.0634869635105133, -0.08208895474672318, 0.024847982451319695, -0.047674816101789474, -0.21411024034023285, 0.1248590424656868, -0.09078147262334824, -0.047217957675457, -0.038028888404369354, 0.1873915195465088, -0.07860055565834045, 0.003835690440610051, 0.01727161929011345, 0.03052649088203907, -0.11501652747392654, -0.10535892844200134, 0.02131424844264984, -0.005508285015821457, 0.06073078140616417, 0.04357268661260605, -0.06716573983430862, 0.01641303487122059, -0.022389056161046028, -0.006917606573551893, 0.32454678416252136, 0.14079391956329346, -0.04770330339670181, 0.17363035678863525, 0.11376409232616425, -0.08209476619958878, -0.31482723355293274, -0.08535979688167572, -0.09984239190816879, -0.03735451400279999, -0.06232178583741188, -0.21656104922294617, 0.09480288624763489, 0.04200942441821098, -0.015409117564558983, 0.1568077802658081, -0.24411429464817047, -0.0795927420258522, 0.15950311720371246, -0.007333407178521156, 0.3560895025730133, -0.12491796165704727, -0.11301901936531067, -0.05532994866371155, -0.1397564709186554, 0.15002089738845825, -0.009417316876351833, 0.11106741428375244, -0.03287123143672943, 0.10856477171182632, 0.048215944319963455, -0.05544896051287651, 0.09160676598548889, 0.026295991614460945, -0.003711326979100704, -0.10597866773605347, -0.01747799478471279, 0.043585844337940216, 0.006319248117506504, 0.031217962503433228, -0.03127649053931236, 0.033463045954704285, -0.12691029906272888, -0.04727448150515556, -0.08006873726844788, 0.05846472829580307, 0.052333541214466095, -0.0737200528383255, -0.0010956452460959554, -0.06611854583024979, -0.016030769795179367, 0.003143493551760912, 0.19045160710811615, -0.03460016846656799, 0.14779594540596008, 0.0818052664399147, 0.09073434770107269, -0.1361592561006546, -0.0061243316158652306, -0.06888517737388611, -0.057741593569517136, 0.08706554025411606, -0.10988334566354752, 0.06429524719715118, 0.11854783445596695, -0.04650293290615082, 0.07134203612804413, 0.11840200424194336, 0.015247469767928123, -0.0033181030303239822, 0.13015136122703552, -0.2568117082118988, 0.019211336970329285, -0.0754370167851448, -0.03775216266512871, 0.08088402450084686, 0.07995659112930298, 0.16486960649490356, 0.036187540739774704, -0.042049095034599304, -0.003924929536879063, 0.009187355637550354, -0.039663419127464294, 0.08243577927350998, 0.012240500189363956, 0.023174172267317772, -0.15248477458953857, 0.071900375187397, 0.015580810606479645, -0.12336304783821106, 0.011253113858401775, 0.1477922946214676, -0.13801799714565277, -0.11707340180873871, -0.03374985232949257, 0.08742405474185944, -0.14541642367839813, -0.0241269338876009, -0.04783749580383301, -0.12825986742973328, 0.09339214116334915, 0.11613135039806366, 0.07497538626194, 0.10595441609621048, -0.0529337078332901, -0.02668607421219349, -0.03682107478380203, -0.022537073120474815, -0.0017330512637272477, 0.032638516277074814, -0.08304216712713242, 0.0579586885869503, -0.020800847560167313, 0.14298540353775024, -0.08964299410581589, -0.07169508188962936, -0.1581236720085144, 0.03564200550317764, -0.12593989074230194, -0.07035141438245773, -0.08840593695640564, -0.05227470397949219, -0.007837125100195408, -0.01494099572300911, -0.0388214997947216, -0.04472146928310394, -0.12364204227924347, 0.01879296824336052, -0.05806630104780197, 0.02100815810263157, -0.07383234053850174, 0.00039667764212936163, 0.08932872861623764, -0.0410015694797039, 0.13851116597652435, 0.13557660579681396, -0.08107975125312805, 0.11907198280096054, -0.13537484407424927, -0.0908876284956932, 0.1157127171754837, 0.013428857550024986, 0.03907458856701851, 0.06849293410778046, 0.037317484617233276, 0.06514574587345123, 0.016511039808392525, 0.05237346887588501, 0.006972990930080414, -0.1299850195646286, 0.03433857858181, -0.042786743491888046, -0.1481933295726776, -0.05744143947958946, -0.05092177540063858, 0.039562974125146866, 0.02438235841691494, 0.10801149904727936, -0.03665049374103546, 0.11085481196641922, -0.058541763573884964, 0.01499281544238329, 0.004919432103633881, -0.18287403881549835, -0.044654008001089096, -0.07792776077985764, 0.02775009535253048, 0.022204352542757988, 0.2720205783843994, 0.0410233810544014, 0.020275471732020378, 0.017097288742661476, 0.11327627301216125, 0.057128578424453735, 0.015525308437645435, 0.214890718460083, 0.11996994912624359, -0.06049320101737976, -0.10806480050086975, 0.0858595222234726, 0.02164783701300621, 0.007426374591886997, 0.14070266485214233, 0.008503482677042484, -0.015597577206790447, 0.0887407436966896, -0.03357330709695816, 0.0031263602431863546, -0.11658911406993866, -0.13779941201210022, -0.028487415984272957, 0.0629650130867958, -0.0040870243683457375, 0.0956285297870636, 0.13609373569488525, -0.026881180703639984, 0.03953414782881737, -0.007877747528254986, -0.054916199296712875, -0.1785028725862503, -0.15742821991443634, -0.0790708139538765, -0.13561099767684937, 0.014744875021278858, -0.10368648171424866, 0.04369770362973213, 0.09560346603393555, 0.055915698409080505, -0.05440305173397064, 0.10839936882257462, 0.060064028948545456, -0.1045473963022232, 0.056569941341876984, -0.032912541180849075, 0.06427399069070816, -0.001812951872125268, -0.02503552846610546, -0.09098561853170395, 0.0020124134607613087, 0.0017788249533623457, 0.0514003150165081, -0.05152478814125061, 0.024474015459418297, -0.15132632851600647, -0.09570280462503433, -0.04949872940778732, 0.07316448539495468, -0.06007300689816475, 0.1162300780415535, -0.001420395914465189, -0.017011309042572975, 0.03990921378135681, 0.2064858227968216, -0.07188161462545395, -0.04990030825138092, -0.047407180070877075, 0.22449158132076263, 0.04847963526844978, 0.10619479417800903, -0.013415440917015076, -0.00436578830704093, -0.07670432329177856, 0.36612021923065186, 0.2802904546260834, -0.06149837002158165, 0.012722660787403584, 0.03524370491504669, 0.030115660279989243, 0.13885097205638885, 0.1454230099916458, 0.09396251291036606, 0.27579233050346375, -0.08266803622245789, -0.052018675953149796, -0.015770163387060165, -0.020211221650242805, -0.09714096784591675, 0.11003416776657104, 0.04697350785136223, -0.06982195377349854, -0.044631510972976685, 0.09750646352767944, -0.24107815325260162, 0.1615772694349289, -0.07760030031204224, -0.15214353799819946, -0.06177033111453056, 0.012448563240468502, 0.10150322318077087, 0.00011545186134753749, 0.08784360438585281, -0.009687529876828194, -0.10291683673858643, 0.05749227851629257, 0.02730483002960682, -0.23568211495876312, -0.007146455347537994, 0.053680915385484695, -0.04540037736296654, 0.013332240283489227, -0.01917567476630211, 0.04910791665315628, 0.06717875599861145, 0.055140718817710876, -0.0426395982503891, 0.03817736729979515, -0.010196289978921413, -0.05020907521247864, 0.029649224132299423, 0.044778332114219666, 0.017814766615629196, -0.13065220415592194, 0.05277646332979202, -0.13968263566493988, 0.041911475360393524, -0.029653942212462425, -0.027413733303546906, -0.004670299123972654, -0.019546283408999443, -0.06313455104827881, 0.057941507548093796, 0.08424945920705795, 0.001472705160267651, -0.007915833964943886, -0.08050897717475891, -0.011023934930562973, -0.012819311581552029, -0.08308050036430359, -0.10086389631032944, -0.1384236365556717, -0.10634621232748032, 0.12701933085918427, -0.017066750675439835, -0.19125573337078094, 0.01284839678555727, -0.09708964824676514, 0.060041818767786026, -0.1797112077474594, 0.0843181237578392, 0.06071038171648979, 0.01623542606830597, -0.004114143084734678, -0.029135411605238914, 0.039420004934072495, 0.08210206776857376, -0.10779064148664474, -0.09044761955738068 ]
null
null
transformers
This model trained on nyanja dataset in Longformer
{}
fill-mask
MalawiUniST/ISO6392.nya.ny
[ "transformers", "pytorch", "longformer", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #longformer #fill-mask #autotrain_compatible #endpoints_compatible #region-us
This model trained on nyanja dataset in Longformer
[]
[ "TAGS\n#transformers #pytorch #longformer #fill-mask #autotrain_compatible #endpoints_compatible #region-us \n" ]
[ 37 ]
[ "passage: TAGS\n#transformers #pytorch #longformer #fill-mask #autotrain_compatible #endpoints_compatible #region-us \n" ]
[ -0.06047710403800011, -0.011150161735713482, -0.007751762866973877, 0.02891532890498638, 0.13516026735305786, 0.02576381340622902, 0.10693541914224625, 0.083266481757164, 0.046926215291023254, 0.00928936991840601, 0.1578814536333084, 0.17655231058597565, -0.02695690095424652, 0.15576724708080292, -0.06706930696964264, -0.30015864968299866, 0.06015637889504433, 0.058775436133146286, -0.045717693865299225, 0.11760500818490982, 0.0707104504108429, -0.09432828426361084, 0.06928328424692154, -0.010497113689780235, -0.13829472661018372, 0.015063049271702766, 0.03834279626607895, -0.1165025532245636, 0.1141524463891983, 0.010159449651837349, 0.19447742402553558, 0.004710424225777388, -0.0730491578578949, -0.06334340572357178, 0.043387215584516525, -0.00472962437197566, -0.05748889595270157, 0.040182340890169144, 0.018374809995293617, -0.06062235310673714, -0.036792512983083725, 0.023140886798501015, 0.027959730476140976, 0.0391402468085289, -0.1375121772289276, -0.11264733225107193, -0.02373242750763893, 0.01848071999847889, 0.0373794324696064, 0.08193851262331009, 0.02950129844248295, 0.19818389415740967, -0.14739786088466644, 0.08498945832252502, 0.1636185348033905, -0.31457164883613586, -0.0034689982421696186, 0.07300329208374023, 0.07882111519575119, -0.051645975559949875, -0.0394112803041935, 0.045149464160203934, 0.0026664165779948235, 0.03350790962576866, 0.05600700154900551, -0.0682767853140831, -0.05044512078166008, 0.015138929709792137, -0.07714521884918213, -0.039534494280815125, 0.13577283918857574, -0.04713895544409752, 0.05779886245727539, -0.021902743726968765, -0.13090047240257263, -0.06849868595600128, -0.02182142250239849, 0.008580225519835949, -0.025424189865589142, 0.03316441550850868, -0.006801316514611244, -0.029209168627858162, -0.12268313020467758, 0.021765289828181267, -0.27074235677719116, 0.25653076171875, 0.024427663534879684, 0.06801513582468033, -0.20120923221111298, 0.03623029962182045, -0.03563860058784485, -0.13826759159564972, 0.03459525108337402, -0.08637212961912155, 0.029697589576244354, -0.004524019546806812, -0.07467833906412125, -0.030947482213377953, 0.07267511636018753, 0.16759543120861053, 0.061375901103019714, 0.015688715502619743, 0.03285081684589386, 0.10296657681465149, -0.011774316430091858, 0.10075502842664719, 0.01633746176958084, -0.05672061815857887, 0.07031824439764023, -0.1185159832239151, 0.03955138847231865, -0.052181024104356766, -0.1254657357931137, -0.06660392135381699, 0.008810245431959629, 0.08021201193332672, 0.04680245742201805, 0.042664092034101486, -0.08508659154176712, -0.011005882173776627, 0.09230960160493851, -0.08580701053142548, 0.014154237695038319, -0.009834655560553074, 0.013379978016018867, 0.11958824843168259, 0.011025617830455303, -0.025327978655695915, -0.04245360195636749, 0.12128336727619171, -0.07155072689056396, -0.010608545504510403, -0.06402555108070374, -0.07732179760932922, 0.03432479873299599, -0.13542552292346954, 0.03724496811628342, -0.1647227257490158, -0.14727675914764404, 0.0512576550245285, 0.032810237258672714, -0.0030434252694249153, -0.030241629108786583, 0.031603410840034485, -0.01501774787902832, 0.009703762829303741, -0.049219969660043716, -0.0535120852291584, -0.045118194073438644, 0.08669105172157288, 0.0209956131875515, 0.1272093653678894, -0.11680000275373459, 0.0533008798956871, -0.09338147193193436, 0.006564096547663212, -0.14634311199188232, -0.04362409561872482, 0.00677740341052413, 0.1602833867073059, -0.0002564795140642673, -0.0775628313422203, -0.0985073447227478, 0.024814547970891, -0.013272702693939209, 0.15216682851314545, -0.0641477033495903, -0.1168714389204979, 0.2332696169614792, -0.09766611456871033, -0.1599230319261551, 0.09089669585227966, 0.020687365904450417, 0.005156905390322208, 0.043850935995578766, 0.07227838784456253, 0.0884472131729126, -0.1261701136827469, 0.09868907928466797, 0.10563665628433228, -0.15625737607479095, -0.14759010076522827, 0.02394798770546913, -0.004185546655207872, -0.05090668052434921, 0.046678576618433, 0.08695121854543686, 0.10841527581214905, -0.06813079118728638, -0.05160035192966461, -0.024486584588885307, -0.03588862717151642, 0.1423971801996231, 0.03408649191260338, 0.11396860331296921, -0.07157224416732788, -0.004668996203690767, -0.018941253423690796, -0.0013612612383440137, 0.07069729268550873, 0.03914744034409523, -0.08329271525144577, 0.13211850821971893, -0.034832701086997986, -0.0032098654191941023, -0.18165971338748932, -0.13999585807323456, -0.008740334771573544, 0.04985004663467407, -0.02820526622235775, 0.12396575510501862, 0.11334753036499023, -0.019070617854595184, 0.013864630833268166, -0.030339360237121582, 0.09733394533395767, 0.008747588843107224, -0.043200138956308365, -0.07398154586553574, 0.020208898931741714, -0.06779101490974426, -0.007564472034573555, 0.015351065434515476, 0.013617569580674171, -0.028390226885676384, 0.11985840648412704, -0.00032747810473665595, 0.05535516515374184, -0.043721117079257965, 0.03385116532444954, -0.034553006291389465, 0.013939517550170422, 0.07604271173477173, 0.009419361129403114, -0.06341195106506348, 0.15462028980255127, -0.17628388106822968, 0.35055410861968994, 0.18992631137371063, -0.28182098269462585, -0.008641380816698074, 0.018518585711717606, -0.016744503751397133, -0.01834077574312687, 0.03882709890604019, 0.01106053963303566, 0.04849771037697792, 0.021561454981565475, 0.1665453016757965, -0.012608958408236504, -0.007038923446089029, 0.017748434096574783, -0.08586497604846954, -0.02760816179215908, 0.02629404328763485, 0.06791050732135773, -0.12392903864383698, 0.17956140637397766, 0.2356831580400467, -0.0246701929718256, 0.150726780295372, 0.01292998157441616, -0.023317504674196243, 0.012326736003160477, -0.029108144342899323, -0.027220310643315315, 0.03384552150964737, -0.19175702333450317, -0.03522166237235069, 0.08605002611875534, -0.01571924425661564, 0.05159325897693634, -0.1223720908164978, -0.03460484370589256, 0.030266959220170975, 0.04346085712313652, -0.06295677274465561, 0.126984104514122, 0.06738722324371338, 0.06706155091524124, 0.008634082973003387, -0.07682029157876968, 0.11090655624866486, 0.005191886331886053, -0.030557794496417046, 0.15733398497104645, -0.13599468767642975, -0.37093859910964966, -0.15177199244499207, -0.16879969835281372, -0.016682093963027, 0.03261375427246094, 0.0715709775686264, -0.0883745551109314, -0.05906270071864128, 0.09021168202161789, 0.03282685577869415, -0.015934867784380913, 0.07966402173042297, -0.07916388660669327, 0.028498250991106033, -0.03371306136250496, -0.06019589304924011, -0.06947574764490128, -0.03835218772292137, -0.02019675448536873, 0.14044824242591858, -0.05328024923801422, 0.06739192456007004, 0.12569957971572876, 0.006026388145983219, 0.05889320373535156, 0.012051481753587723, 0.1568438559770584, -0.0766623318195343, -0.00989019125699997, 0.25308096408843994, -0.027106663212180138, 0.09974801540374756, 0.1500537246465683, 0.02256590500473976, -0.04359947144985199, 0.013929905369877815, -0.06270583719015121, -0.10951963067054749, -0.13280197978019714, -0.12190995365381241, -0.1502438485622406, 0.003919822629541159, 0.05501637980341911, 0.043758608400821686, 0.12165683507919312, 0.09181634336709976, 0.03460398688912392, -0.0218461025506258, -0.08080857992172241, 0.050492916256189346, 0.17669346928596497, -0.02373122237622738, 0.13263925909996033, -0.03846573084592819, -0.1329704225063324, 0.0674642026424408, 0.006836415734142065, 0.14111486077308655, 0.0713629499077797, 0.039340343326330185, 0.037002623081207275, 0.18569734692573547, 0.167226180434227, 0.15202845633029938, 0.04155639186501503, -0.0770898312330246, 0.02039586380124092, -0.0066499849781394005, -0.045485470443964005, 0.023864129558205605, 0.14519189298152924, -0.06265433132648468, -0.05453889071941376, -0.07792126387357712, 0.046339645981788635, 0.12492948770523071, 0.07083883881568909, -0.2506406903266907, -0.014317070133984089, 0.04829077422618866, 0.0006726111751049757, -0.07631637156009674, 0.02472519874572754, -0.018236592411994934, -0.14500272274017334, 0.05979960784316063, -0.057360127568244934, 0.0868178978562355, 0.050109509378671646, 0.08240465074777603, -0.0384967066347599, -0.023523475974798203, 0.048398394137620926, 0.07085054367780685, -0.2571581304073334, 0.2732432186603546, -0.00895555317401886, -0.03720441088080406, -0.10298094898462296, -0.0030530134681612253, 0.053222306072711945, 0.11060094833374023, 0.09012161940336227, 0.015791036188602448, -0.0008321281056851149, -0.09992951899766922, -0.04513276368379593, 0.005803109146654606, 0.11017347127199173, -0.015219872817397118, -0.007040614262223244, -0.030931338667869568, -0.04428337141871452, -0.008200857788324356, 0.03390941768884659, 0.046164512634277344, -0.12277814745903015, 0.07673365622758865, 0.06100720167160034, -0.00869173463433981, -0.0017052169423550367, -0.04804715886712074, -0.09234302490949631, 0.23648227751255035, 0.001300505711697042, -0.061385102570056915, -0.11025205254554749, -0.09156204015016556, 0.1105746179819107, -0.11912990361452103, 0.12255892157554626, -0.0921558290719986, 0.013554300181567669, -0.06075144559144974, -0.17538413405418396, 0.15326493978500366, -0.13239873945713043, -0.0008576701511628926, -0.05951031669974327, 0.1487831026315689, -0.08449778705835342, 0.031195849180221558, -0.0032701219897717237, 0.027783509343862534, -0.1404477059841156, -0.0607643723487854, -0.0055432445369660854, -0.0495414212346077, 0.05081475153565407, 0.06588156521320343, -0.0611673966050148, -0.012110073119401932, 0.04127340018749237, 0.03462079167366028, 0.2677534222602844, 0.21308819949626923, -0.06453640758991241, 0.15587438642978668, 0.1295294165611267, 0.0015624506631866097, -0.34036216139793396, -0.09099853038787842, -0.13440340757369995, 0.012628044933080673, 0.0011629360960796475, -0.11661088466644287, 0.12770496308803558, -0.012505795806646347, -0.03471119701862335, 0.11040418595075607, -0.19882960617542267, -0.09019824117422104, 0.22552619874477386, -0.0020920364186167717, 0.46429890394210815, -0.08222827315330505, -0.05424429103732109, -0.02522457204759121, -0.12976717948913574, 0.03239792585372925, 0.006371511146426201, 0.09488588571548462, -0.04386291280388832, 0.10545294731855392, 0.042882900685071945, -0.09948975592851639, 0.10334910452365875, -0.04726186767220497, 0.017249008640646935, -0.12361686676740646, -0.04132913053035736, 0.09503380954265594, -0.027326449751853943, 0.030711308121681213, 0.01073573436588049, 0.007766444701701403, -0.03806402534246445, -0.0167806688696146, -0.1116207018494606, 0.09541254490613937, 0.036457743495702744, -0.05596509948372841, 0.03472233563661575, -0.018045010045170784, -0.0026234525721520185, 0.0007460580673068762, 0.18843083083629608, 0.018725860863924026, 0.1419803500175476, 0.05541021749377251, 0.04991317540407181, -0.1686394363641739, -0.11578671634197235, -0.05276607722043991, -0.05581795796751976, 0.08139614015817642, 0.014861701056361198, 0.04810406640172005, 0.11344458162784576, -0.00971200130879879, 0.025166362524032593, 0.12232724577188492, 0.043148983269929886, -0.030384261161088943, 0.15434958040714264, -0.21017637848854065, 0.010166623629629612, -0.01795497164130211, -0.02783782221376896, 0.0452975295484066, 0.0463729202747345, 0.08567535877227783, 0.03887768089771271, -0.027747729793190956, -0.010546383447945118, 0.003010093467310071, -0.06426724791526794, 0.05704566836357117, 0.038633234798908234, 0.05614570900797844, -0.1403629034757614, 0.001916771288961172, -0.015193594619631767, -0.18805506825447083, -0.03139788284897804, 0.13313952088356018, -0.11839292198419571, -0.11607649177312851, 0.017767896875739098, 0.04320636764168739, -0.1152888610959053, -0.029413238167762756, -0.07957851141691208, -0.11909478157758713, 0.05205870792269707, 0.20465180277824402, 0.11902444064617157, 0.0699656531214714, -0.020759370177984238, -0.013093661516904831, -0.026506831869482994, -0.0190884992480278, 0.025143824517726898, 0.04129580780863762, -0.0885777696967125, 0.06569129973649979, -0.011436216533184052, 0.1765628606081009, -0.10499792546033859, -0.052758194506168365, -0.14410167932510376, 0.04281150549650192, -0.07977171987295151, -0.10013076663017273, -0.1010281890630722, -0.07308448851108551, 0.013314202427864075, -0.04719829931855202, -0.04145520552992821, -0.03211908042430878, -0.11890608072280884, 0.01691446825861931, 0.018755141645669937, -0.01820027083158493, -0.06615865975618362, -0.039666756987571716, 0.1261463165283203, -0.049903225153684616, 0.08085174113512039, 0.1503903716802597, -0.06912226974964142, 0.05977591499686241, -0.09393063187599182, -0.14633256196975708, 0.11049407720565796, 0.030154066160321236, 0.10596831142902374, 0.06471973657608032, 0.02870829589664936, 0.06329474598169327, 0.02937721088528633, 0.04799990355968475, 0.053421713411808014, -0.11902152001857758, 0.06338749080896378, -0.023434249684214592, -0.14126048982143402, -0.03827537223696709, -0.09975016862154007, 0.048279158771038055, -0.0005803958629257977, 0.13035443425178528, -0.03361410275101662, 0.11306563019752502, -0.03779638558626175, 0.00797046348452568, -0.0464194156229496, -0.15295569598674774, 0.017160991206765175, -0.03964532911777496, 0.02746712602674961, -0.0040857139974832535, 0.21689750254154205, -0.010121148079633713, 0.010670908726751804, 0.042276233434677124, 0.11634185910224915, -0.0045609124936163425, -0.0015833624638617039, 0.13857164978981018, 0.0958813726902008, -0.04964012652635574, -0.032537903636693954, 0.10989415645599365, 0.024732714518904686, -0.04086155444383621, 0.1633850783109665, 0.0738181471824646, 0.04776482284069061, 0.10496527701616287, -0.0044019040651619434, 0.038812749087810516, -0.16818231344223022, -0.20446528494358063, -0.06006486341357231, 0.06516160070896149, 0.022175021469593048, -0.01157640665769577, 0.1345011591911316, -0.010591601021587849, 0.05515620857477188, -0.011107631027698517, -0.02241809479892254, -0.18512870371341705, -0.10224485397338867, -0.08186119049787521, -0.060996998101472855, 0.019985772669315338, -0.031010769307613373, -0.010537956841289997, 0.10313230752944946, 0.039893150329589844, -0.028859004378318787, 0.15377242863178253, 0.003823693608865142, -0.02779725193977356, 0.015675248578190804, -0.010657412000000477, 0.04330180212855339, 0.04190259426832199, -0.01734006404876709, -0.17585386335849762, -0.01819726824760437, -0.03391294926404953, -0.0017195256659761071, -0.07339247316122055, 0.02272338978946209, -0.11203707754611969, -0.13239149749279022, -0.062093596905469894, 0.024991635233163834, -0.03501127287745476, 0.1025606095790863, 0.007221926935017109, 0.04554539546370506, -0.0133190443739295, 0.1577470898628235, -0.08525029569864273, -0.12478522211313248, -0.059130676090717316, 0.17458464205265045, 0.053042057901620865, 0.05989263579249382, -0.027192827314138412, 0.024011975154280663, -0.1252003014087677, 0.3299572765827179, 0.3116563558578491, -0.07164469361305237, 0.0845099538564682, 0.04182190075516701, 0.019601933658123016, 0.06255241483449936, 0.11411125212907791, 0.10105396062135696, 0.313946396112442, -0.08950535953044891, -0.06450916081666946, -0.05212389677762985, -0.03612421080470085, -0.17569959163665771, 0.011635605245828629, 0.021514492109417915, -0.023056065663695335, -0.04762779921293259, 0.05568334087729454, -0.18135598301887512, 0.1661001592874527, 0.0659223198890686, -0.22294674813747406, -0.06820415705442429, -0.027527540922164917, 0.18724602460861206, 0.02933078072965145, 0.1162257045507431, -0.031318165361881256, -0.09183879941701889, 0.048084527254104614, 0.012927783653140068, -0.20229898393154144, -0.058556802570819855, 0.118426613509655, -0.0019040253246203065, 0.055582184344530106, -0.020060671493411064, 0.01571750082075596, 0.08624681830406189, 0.0721609890460968, -0.03249669820070267, 0.028127044439315796, 0.013629384338855743, -0.1280975192785263, -0.03423265740275383, 0.04227425158023834, -0.0033760827500373125, -0.13834832608699799, 0.03522408381104469, -0.18038898706436157, 0.01836211420595646, -0.09589966386556625, -0.01283024251461029, 0.0023010082077234983, 0.03077053092420101, -0.022826872766017914, 0.057540591806173325, 0.08040506392717361, 0.007075437810271978, -0.042876776307821274, -0.04278126731514931, -0.010494278743863106, 0.05120205134153366, -0.10808530449867249, -0.1760338395833969, -0.08769282698631287, -0.07119932025671005, 0.040255382657051086, -0.007920505478978157, -0.14422722160816193, -0.06830867379903793, -0.08943605422973633, 0.020330805331468582, -0.1583983302116394, 0.033309243619441986, 0.06676129996776581, 0.03378627821803093, 0.013480751775205135, -0.022971339523792267, 0.03557096794247627, 0.04015584662556648, -0.16706612706184387, -0.11451464146375656 ]
null
null
null
Ver-Online Malignant PELICULA completa En Espanol Latino HD
{}
null
Malignant/Malignant
[ "region:us" ]
2022-03-02T23:29:04+00:00
[]
[]
TAGS #region-us
Ver-Online Malignant PELICULA completa En Espanol Latino HD
[]
[ "TAGS\n#region-us \n" ]
[ 6 ]
[ "passage: TAGS\n#region-us \n" ]
[ 0.024608636274933815, -0.026205500587821007, -0.009666500613093376, -0.10395516455173492, 0.08638657629489899, 0.059816278517246246, 0.01882290467619896, 0.020661840215325356, 0.23975107073783875, -0.005599027033895254, 0.1219947561621666, 0.0015615287702530622, -0.037353623658418655, 0.03733762726187706, -0.0035912662278860807, -0.17583473026752472, 0.03876631706953049, -0.018274923786520958, 0.01843859627842903, 0.026470553129911423, -0.07776834815740585, -0.07564429938793182, 0.015296397730708122, -0.10247814655303955, -0.083692267537117, 0.11002834886312485, 0.031466204673051834, -0.019670886918902397, 0.10779199749231339, -0.04243955761194229, 0.18699054419994354, -0.011512263678014278, -0.11213519424200058, -0.2536850869655609, 0.021806683391332626, -0.01765260472893715, -0.08747660368680954, 0.01506110467016697, 0.0665089413523674, -0.09014441072940826, -0.0588928684592247, 0.0795099288225174, -0.01132340170443058, 0.04246443510055542, -0.27593839168548584, -0.12684126198291779, -0.05297930911183357, -0.1421966552734375, 0.08651168644428253, 0.04035491496324539, 0.008764253929257393, 0.15506891906261444, -0.20897391438484192, 0.004104613792151213, 0.08255259692668915, -0.2538507878780365, 0.05591634660959244, 0.17671173810958862, 0.03623908758163452, 0.18037272989749908, 0.0060391901060938835, 0.11029672622680664, 0.0716743916273117, -0.024263937026262283, -0.17590197920799255, -0.08127854019403458, -0.04696211963891983, 0.16642488539218903, -0.06727185100317001, -0.14248386025428772, 0.34701237082481384, 0.00015008423360995948, 0.009657775051891804, 0.16921205818653107, -0.059524230659008026, -0.09972117841243744, 0.07259953022003174, 0.016484731808304787, 0.018492350354790688, 0.1471305936574936, 0.16307872533798218, -0.0458691343665123, -0.13837823271751404, -0.018630273640155792, -0.22798998653888702, 0.17510560154914856, -0.03248048573732376, 0.13137903809547424, -0.27447956800460815, 0.01684025302529335, -0.2570667266845703, 0.0032130838371813297, 0.04178816080093384, -0.06004921346902847, -0.0226522795855999, -0.013265985064208508, -0.08018817007541656, 0.004899587947875261, 0.06192673370242119, 0.1266920566558838, -0.06128726154565811, 0.06128238886594772, -0.09319206327199936, 0.141696035861969, 0.07166698575019836, 0.07868369668722153, 0.13037432730197906, 0.041205424815416336, -0.07187089323997498, -0.21872246265411377, -0.0026476888451725245, -0.06275863200426102, -0.09502086788415909, -0.0020165652967989445, -0.11606067419052124, 0.17244569957256317, -0.030802514404058456, -0.09825427830219269, -0.11208184063434601, 0.09148659557104111, -0.032992321997880936, -0.03437839448451996, -0.03552987426519394, -0.020977836102247238, 0.019381176680326462, 0.04704452306032181, -0.1548958420753479, -0.005131472367793322, 0.07039852440357208, 0.11502562463283539, -0.1346137970685959, -0.003783059772104025, -0.07908964157104492, 0.03039063885807991, 0.07654735445976257, -0.16510222852230072, 0.03158547356724739, -0.1124754324555397, -0.07531405985355377, 0.002912673633545637, -0.015710093080997467, -0.016202643513679504, 0.166526660323143, -0.0020451415330171585, 0.0714716836810112, -0.026345307007431984, -0.05890209600329399, -0.11243434250354767, -0.08489254862070084, 0.05390460044145584, 0.03670717030763626, 0.03266148269176483, -0.2193479984998703, 0.014805203303694725, -0.12762966752052307, 0.1360815018415451, -0.10566820204257965, -0.04705966264009476, -0.022842247039079666, 0.20562705397605896, 0.037286072969436646, 0.08762791007757187, -0.22171171009540558, 0.039756543934345245, -0.05404696613550186, 0.18480908870697021, -0.1502426266670227, -0.0799463614821434, 0.20813211798667908, -0.07964949309825897, -0.10115210711956024, 0.021235812455415726, 0.020391687750816345, 0.026287272572517395, 0.0766737088561058, 0.4564172327518463, -0.09766800701618195, -0.09146861732006073, 0.10178250074386597, 0.17055274546146393, -0.12427149713039398, -0.1827561855316162, 0.06446871906518936, -0.16666454076766968, -0.1973118633031845, 0.0018917324487119913, 0.09222044050693512, 0.038269978016614914, -0.07875611633062363, -0.020746968686580658, 0.06325206160545349, -0.0007678253459744155, 0.09095914661884308, 0.03755716234445572, 0.09034032374620438, -0.08716782182455063, 0.11115926504135132, -0.05017651244997978, 0.004037132486701012, 0.1343354731798172, 0.027325427159667015, -0.03223329409956932, 0.08694463223218918, -0.0485352948307991, 0.05295134335756302, -0.1662379503250122, -0.15068690478801727, 0.03398871049284935, 0.06283251196146011, 0.03186952322721481, 0.1280253529548645, 0.08141885697841644, -0.10732853412628174, 0.022690722718834877, -0.004228927195072174, 0.058398615568876266, 0.03891623765230179, 0.006107209715992212, 0.008764320984482765, 0.0961301177740097, -0.10607069730758667, -0.13589619100093842, -0.07336436957120895, -0.014715781435370445, 0.14371353387832642, -0.0302802175283432, 0.07690227776765823, -0.004240254405885935, 0.00013200697139836848, 0.06930823624134064, 0.08137880265712738, 0.016412746161222458, 0.08971183747053146, -0.05237193778157234, -0.05160155147314072, 0.10863113403320312, -0.13533565402030945, 0.17837053537368774, 0.14053137600421906, -0.20532016456127167, 0.029453208670020103, -0.06838275492191315, 0.03670361638069153, -0.008162540383636951, 0.0975119024515152, -0.08272241055965424, -0.02106042578816414, 0.013134466484189034, 0.0052274600602686405, -0.013007243163883686, 0.017682146281003952, -0.07295988500118256, -0.07787393033504486, -0.10233919322490692, 0.08436838537454605, 0.11562882363796234, -0.10282530635595322, 0.14214380085468292, 0.4384984076023102, 0.11495281755924225, 0.21582984924316406, -0.09581480920314789, -0.0412987545132637, 0.007486371789127588, 0.0001535322517156601, -0.04476691037416458, 0.08031861484050751, -0.15973517298698425, -0.038901735097169876, 0.027348900213837624, 0.07128690183162689, 0.11475157737731934, -0.14959022402763367, -0.09639324247837067, -0.00793045200407505, 0.0022841424215584993, -0.1249532699584961, 0.023905446752905846, -0.03974650055170059, 0.04015624523162842, 0.07232289016246796, -0.021535737439990044, 0.13939237594604492, -0.04166141897439957, -0.0639561116695404, 0.07585346698760986, -0.2017085999250412, -0.23179671168327332, -0.12309670448303223, -0.14680525660514832, 0.04366797208786011, 0.05154111236333847, 0.01726446859538555, -0.17635835707187653, -0.015074856579303741, 0.07706750929355621, 0.07820965349674225, -0.20886357128620148, -0.022814949974417686, -0.004290030337870121, 0.0895976573228836, -0.10227091610431671, -0.0017130117630586028, -0.04419664293527603, -0.10150232166051865, 0.0017003051470965147, 0.07279510796070099, -0.137485533952713, 0.13807645440101624, 0.21589438617229462, 0.07225540280342102, 0.07359948754310608, -0.019093448296189308, 0.09936179965734482, -0.10856141895055771, -0.16549113392829895, 0.08348225057125092, -0.06234746053814888, 0.047262318432331085, 0.17534415423870087, 0.03307317942380905, -0.13904969394207, -0.015682822093367577, -0.0402069091796875, -0.15603256225585938, -0.238995760679245, -0.09178274869918823, -0.1182505264878273, 0.16442428529262543, 0.0009358620154671371, 0.06651917099952698, 0.08258313685655594, -0.022042419761419296, 0.16447891294956207, -0.07379321753978729, -0.07578866183757782, -0.006978808436542749, 0.12375060468912125, -0.056660156697034836, -0.03080669604241848, -0.10566964000463486, -0.008295975625514984, 0.1151021271944046, 0.15304014086723328, 0.12214863300323486, 0.2957419455051422, 0.08268889784812927, 0.026645636186003685, 0.08958091586828232, 0.17622539401054382, 0.09495089203119278, 0.07838419824838638, -0.045413073152303696, -0.014814783819019794, 0.014317171648144722, -0.04022889584302902, 0.010141594335436821, 0.14683100581169128, -0.2679629921913147, -0.006678564939647913, -0.2710230350494385, 0.0965198427438736, -0.10913380235433578, 0.11837165057659149, -0.01015760749578476, 0.10194015502929688, 0.11082887649536133, 0.03233652561903, -0.03858073800802231, 0.16613617539405823, 0.08450309932231903, -0.11277695000171661, 0.001758623169735074, 0.03737903758883476, 0.09715615212917328, -0.02818971499800682, 0.12721189856529236, -0.11048974841833115, -0.1464834064245224, 0.013753619976341724, 0.07152791321277618, -0.15373679995536804, 0.3138748109340668, 0.012069208547472954, -0.13481520116329193, -0.01481647603213787, -0.09957809001207352, -0.006440147757530212, 0.1254177987575531, 0.09333524852991104, 0.07935678958892822, -0.2185502052307129, -0.13339371979236603, 0.05872276425361633, -0.00575496768578887, 0.22408108413219452, -0.034034017473459244, -0.11356475204229355, -0.027013886719942093, 0.04241163283586502, -0.06043251231312752, 0.08524788916110992, 0.023536119610071182, -0.08113526552915573, -0.032957352697849274, 0.05323701351881027, 0.012368366122245789, 0.00524376705288887, 0.09360801428556442, 0.020107939839363098, -0.0009265501867048442, 0.01785753294825554, 0.047885000705718994, -0.0675911232829094, -0.1984109878540039, 0.09357594698667526, -0.05215044692158699, 0.0015536568826064467, -0.08013670891523361, -0.15122665464878082, -0.08837161958217621, -0.16009655594825745, 0.12540200352668762, -0.034406669437885284, 0.12700119614601135, -0.06619787961244583, 0.17341409623622894, -0.07871770113706589, 0.04481020197272301, -0.047349292784929276, 0.050332702696323395, -0.007268077693879604, -0.07756082713603973, 0.16585899889469147, -0.15564003586769104, 0.01809087023139, 0.19572502374649048, -0.018915493041276932, 0.07177707552909851, 0.021322092041373253, -0.0636206790804863, 0.23147478699684143, 0.3014698624610901, 0.008138049393892288, 0.1665448248386383, 0.3018903136253357, -0.07466315478086472, -0.2642788887023926, -0.05505012720823288, -0.2841376066207886, -0.05371501296758652, 0.10716094076633453, -0.22523896396160126, 0.06986407935619354, 0.14383509755134583, -0.06471995264291763, 0.30228954553604126, -0.21825523674488068, 0.012589273042976856, 0.15434536337852478, -0.08868814259767532, 0.5515313148498535, -0.1133413165807724, -0.17677772045135498, -0.008122089318931103, -0.08741296827793121, 0.10602109134197235, -0.0340677872300148, 0.06877441704273224, 0.013465235009789467, 0.04797380417585373, 0.048932258039712906, -0.03111894056200981, 0.22701001167297363, 0.008710170164704323, 0.09015397727489471, -0.07378865778446198, -0.18624304234981537, 0.11639340221881866, -0.04359482601284981, -0.08891059458255768, 0.0849778801202774, -0.05942516401410103, -0.11078983545303345, 0.04663389176130295, -0.07950539886951447, -0.024862350896000862, 0.08423490077257156, -0.04678233340382576, -0.042606171220541, -0.008054176345467567, -0.1618063747882843, -0.0002289071271661669, 0.31360217928886414, -0.07096036523580551, 0.16695955395698547, 0.03677211329340935, 0.00038613268407061696, -0.11027684062719345, 0.030288029462099075, -0.05203165486454964, -0.021576624363660812, 0.09578979015350342, -0.11096979677677155, 0.03204701095819473, 0.14160704612731934, -0.04864364117383957, 0.05846960097551346, 0.09256096184253693, -0.0849417969584465, 0.007583672646433115, 0.17753590643405914, -0.17537221312522888, -0.1273445188999176, -0.006135711446404457, -0.09862716495990753, 0.14055661857128143, 0.04394126310944557, 0.05191568285226822, 0.16669964790344238, 0.03967129811644554, -0.029474308714270592, -0.02817419543862343, -0.1153380498290062, -0.0201893113553524, 0.040153320878744125, 0.00045633706031367183, -0.08791285753250122, 0.2262638509273529, 0.06409153342247009, -0.1328488290309906, -0.051157206296920776, 0.2161225974559784, -0.06805316358804703, -0.04911920800805092, -0.223562553524971, 0.10752306133508682, -0.07112517952919006, -0.0965060144662857, 0.05453834682703018, -0.02270081453025341, 0.005106312222778797, 0.181985542178154, 0.03941008821129799, 0.11070270836353302, 0.03738937899470329, -0.02448922023177147, 0.15798696875572205, -0.142850860953331, -0.14191335439682007, -0.025354057550430298, -0.08757315576076508, -0.13844476640224457, -0.026804137974977493, 0.1617041826248169, -0.09177309274673462, -0.14772607386112213, -0.2621181011199951, 0.10968475043773651, -0.16432365775108337, -0.10192688554525375, -0.03469514101743698, -0.08968492597341537, 0.0696166530251503, 0.030301768332719803, -0.03093348816037178, -0.06706760823726654, -0.18593791127204895, 0.0816768929362297, 0.06349513679742813, 0.045533183962106705, -0.017847947776317596, 0.0067379772663116455, 0.1720137596130371, 0.025955144315958023, 0.10040043294429779, 0.16762186586856842, 0.011397695168852806, 0.2246655523777008, -0.1671202927827835, -0.11496317386627197, 0.1336962729692459, -0.026543032377958298, 0.06762003898620605, 0.16792191565036774, -0.0772583931684494, 0.015526676550507545, -0.028136352077126503, 0.07066910713911057, -0.11003983020782471, -0.105624258518219, 0.007937257178127766, 0.02567129209637642, -0.2755882740020752, -0.005599735304713249, -0.19717298448085785, 0.14788752794265747, 0.02579621411859989, 0.03297143429517746, 0.10257530212402344, 0.10404334217309952, 0.08312062919139862, -0.0017710148822516203, 0.03226327523589134, -0.1176818460226059, 0.02753005363047123, -0.059239376336336136, -0.020663779228925705, 0.017624232918024063, 0.36952024698257446, -0.03603357449173927, -0.046802736818790436, 0.003710439894348383, 0.1307835876941681, -0.02139742486178875, 0.017395347356796265, 0.13209912180900574, 0.12607666850090027, -0.08595693111419678, -0.1504845917224884, 0.04888554662466049, -0.04565655067563057, -0.02836887165904045, 0.1464131623506546, 0.05905961990356445, 0.1050296202301979, 0.0908031314611435, -0.014463032595813274, -0.00318976235575974, 0.012856799177825451, -0.15486004948616028, 0.06223496049642563, -0.010558074340224266, 0.012565906159579754, 0.017934376373887062, 0.15238402783870697, -0.005540105979889631, 0.07739730179309845, -0.09889880567789078, 0.004208535887300968, -0.13498884439468384, -0.07913459837436676, 0.03617347031831741, -0.13393273949623108, 0.04141177982091904, -0.01871878281235695, 0.029611799865961075, 0.30386561155319214, 0.02558239921927452, -0.020639164373278618, 0.12512871623039246, -0.1214587539434433, -0.12050267308950424, -0.001594188273884356, -0.029960084706544876, 0.0791488066315651, -0.02633434161543846, -0.0997740775346756, -0.1001306027173996, -0.15166029334068298, -0.09759195148944855, 0.05182836204767227, -0.04993441700935364, -0.059362251311540604, -0.17634081840515137, -0.05707859992980957, -0.05147340148687363, 0.14025864005088806, -0.12263951450586319, 0.15159130096435547, -0.014490418136119843, 0.004084470681846142, 0.04405883327126503, 0.1950942426919937, -0.03644494712352753, 0.08714226633310318, 0.0154351145029068, 0.1522706001996994, -0.05119588226079941, 0.14720745384693146, -0.10931728035211563, -0.04014137014746666, -0.06710435450077057, 0.21513493359088898, 0.25630924105644226, -0.06136954948306084, -0.008937356993556023, -0.012760217301547527, 0.058654606342315674, 0.1073930487036705, 0.16049085557460785, 0.002326392102986574, 0.2802925705909729, -0.03133585304021835, 0.04815128445625305, 0.02901598811149597, 0.013607407920062542, -0.06336209923028946, 0.03397751972079277, 0.07539387792348862, -0.035039983689785004, -0.1412304788827896, 0.15837742388248444, -0.21980468928813934, 0.18157227337360382, 0.11640069633722305, -0.19996967911720276, -0.013728445395827293, -0.04882071167230606, 0.1689416468143463, -0.0856364443898201, 0.1637246012687683, -0.0903693437576294, -0.2108195722103119, -0.2056000679731369, 0.03867346793413162, -0.34623071551322937, -0.254462867975235, 0.10422009229660034, 0.1488201916217804, 0.04015883058309555, -0.018507536500692368, -0.019967829808592796, -0.018367022275924683, 0.04877542704343796, -0.0067357709631323814, 0.06014643982052803, 0.031397558748722076, -0.02988368645310402, -0.24127542972564697, -0.029804671183228493, 0.023964406922459602, -0.07093082368373871, 0.07464958727359772, -0.06874357163906097, -0.022495782002806664, 0.08059766888618469, -0.03066304884850979, 0.03298592567443848, -0.035373736172914505, -0.16326889395713806, 0.027529051527380943, 0.03900543600320816, 0.036012712866067886, 0.00634160777553916, 0.0008072225609794259, -0.03455270454287529, 0.0644603744149208, -0.16716794669628143, -0.16015739738941193, 0.14140215516090393, -0.06745140254497528, 0.2779497504234314, -0.05812826007604599, -0.0809100940823555, 0.04766704887151718, -0.03426874056458473, 0.1807648241519928, -0.07756473124027252, 0.047254521399736404, 0.12766779959201813, 0.011127962730824947, 0.03121316432952881, -0.3092964291572571, 0.11082969605922699, -0.000795336440205574, -0.006093299947679043, -0.07581598311662674 ]
null
null
transformers
# Ælæctra - Finetuned for Named Entity Recognition on the [DaNE dataset](https://danlp.alexandra.dk/304bd159d5de/datasets/ddt.zip) (Hvingelby et al., 2020) by Malte Højmark-Bertelsen. **Ælæctra** is a Danish Transformer-based language model created to enhance the variety of Danish NLP resources with a more efficient model compared to previous state-of-the-art (SOTA) models. Ælæctra was pretrained with the ELECTRA-Small (Clark et al., 2020) pretraining approach by using the Danish Gigaword Corpus (Strømberg-Derczynski et al., 2020) and evaluated on Named Entity Recognition (NER) tasks. Since NER only presents a limited picture of Ælæctra's capabilities I am very interested in further evaluations. Therefore, if you employ it for any task, feel free to hit me up your findings! Ælæctra was, as mentioned, created to enhance the Danish NLP capabilties and please do note how this GitHub still does not support the Danish characters "*Æ, Ø and Å*" as the title of this repository becomes "*-l-ctra*". How ironic.🙂 Here is an example on how to load the finetuned Ælæctra-cased model for Named Entity Recognition in [PyTorch](https://pytorch.org/) using the [🤗Transformers](https://github.com/huggingface/transformers) library: ```python from transformers import AutoTokenizer, AutoModelForTokenClassification tokenizer = AutoTokenizer.from_pretrained("Maltehb/-l-ctra-danish-electra-small-cased-ner-dane") model = AutoModelForTokenClassification.from_pretrained("Maltehb/-l-ctra-danish-electra-small-cased-ner-dane") ``` ### Evaluation of current Danish Language Models Ælæctra, Danish BERT (DaBERT) and multilingual BERT (mBERT) were evaluated: | Model | Layers | Hidden Size | Params | AVG NER micro-f1 (DaNE-testset) | Average Inference Time (Sec/Epoch) | Download | | --- | --- | --- | --- | --- | --- | --- | | Ælæctra Uncased | 12 | 256 | 13.7M | 78.03 (SD = 1.28) | 10.91 | [Link for model](https://www.dropbox.com/s/cag7prs1nvdchqs/%C3%86l%C3%A6ctra.zip?dl=0) | | Ælæctra Cased | 12 | 256 | 14.7M | 80.08 (SD = 0.26) | 10.92 | [Link for model](https://www.dropbox.com/s/cag7prs1nvdchqs/%C3%86l%C3%A6ctra.zip?dl=0) | | DaBERT | 12 | 768 | 110M | 84.89 (SD = 0.64) | 43.03 | [Link for model](https://www.dropbox.com/s/19cjaoqvv2jicq9/danish_bert_uncased_v2.zip?dl=1) | | mBERT Uncased | 12 | 768 | 167M | 80.44 (SD = 0.82) | 72.10 | [Link for model](https://storage.googleapis.com/bert_models/2018_11_03/multilingual_L-12_H-768_A-12.zip) | | mBERT Cased | 12 | 768 | 177M | 83.79 (SD = 0.91) | 70.56 | [Link for model](https://storage.googleapis.com/bert_models/2018_11_23/multi_cased_L-12_H-768_A-12.zip) | On [DaNE](https://danlp.alexandra.dk/304bd159d5de/datasets/ddt.zip) (Hvingelby et al., 2020) without the *MISC-tag*, Ælæctra scores slightly worse than both cased and uncased Multilingual BERT (Devlin et al., 2019) and Danish BERT (Danish BERT, 2019/2020), however, Ælæctra is less than one third the size, and uses significantly fewer computational resources to pretrain and instantiate. ### Pretraining To pretrain Ælæctra it is recommended to build a Docker Container from the [Dockerfile](https://github.com/MalteHB/Ælæctra/tree/master/notebooks/fine-tuning/). Next, simply follow the [pretraining notebooks](https://github.com/MalteHB/Ælæctra/tree/master/infrastructure/Dockerfile/) The pretraining was done by utilizing a single NVIDIA Tesla V100 GPU with 16 GiB, endowed by the Danish data company [KMD](https://www.kmd.dk/). The pretraining took approximately 4 days and 9.5 hours for both the cased and uncased model ### Fine-tuning To fine-tune any Ælæctra model follow the [fine-tuning notebooks](https://github.com/MalteHB/Ælæctra/tree/master/notebooks/fine-tuning/) ### References Clark, K., Luong, M.-T., Le, Q. V., & Manning, C. D. (2020). ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Generators. ArXiv:2003.10555 [Cs]. http://arxiv.org/abs/2003.10555 Danish BERT. (2020). BotXO. https://github.com/botxo/nordic_bert (Original work published 2019) Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. ArXiv:1810.04805 [Cs]. http://arxiv.org/abs/1810.04805 Hvingelby, R., Pauli, A. B., Barrett, M., Rosted, C., Lidegaard, L. M., & Søgaard, A. (2020). DaNE: A Named Entity Resource for Danish. Proceedings of the 12th Language Resources and Evaluation Conference, 4597–4604. https://www.aclweb.org/anthology/2020.lrec-1.565 Strømberg-Derczynski, L., Baglini, R., Christiansen, M. H., Ciosici, M. R., Dalsgaard, J. A., Fusaroli, R., Henrichsen, P. J., Hvingelby, R., Kirkedal, A., Kjeldsen, A. S., Ladefoged, C., Nielsen, F. Å., Petersen, M. L., Rystrøm, J. H., & Varab, D. (2020). The Danish Gigaword Project. ArXiv:2005.03521 [Cs]. http://arxiv.org/abs/2005.03521 #### Acknowledgements As the majority of this repository is build upon [the works](https://github.com/google-research/electra) by the team at Google who created ELECTRA, a HUGE thanks to them is in order. A Giga thanks also goes out to the incredible people who collected The Danish Gigaword Corpus (Strømberg-Derczynski et al., 2020). Furthermore, I would like to thank my supervisor [Riccardo Fusaroli](https://github.com/fusaroli) for the support with the thesis, and a special thanks goes out to [Kenneth Enevoldsen](https://github.com/KennethEnevoldsen) for his continuous feedback. Lastly, i would like to thank KMD, my colleagues from KMD, and my peers and co-students from Cognitive Science for encouriging me to keep on working hard and holding my head up high! #### Contact For help or further information feel free to connect with the author Malte Højmark-Bertelsen on [[email protected]](mailto:[email protected]?subject=[GitHub]%20ÆlæctraCasedNER) or any of the following platforms: [<img align="left" alt="MalteHB | Twitter" width="22px" src="https://cdn.jsdelivr.net/npm/simple-icons@v3/icons/twitter.svg" />][twitter] [<img align="left" alt="MalteHB | LinkedIn" width="22px" src="https://cdn.jsdelivr.net/npm/simple-icons@v3/icons/linkedin.svg" />][linkedin] [<img align="left" alt="MalteHB | Instagram" width="22px" src="https://cdn.jsdelivr.net/npm/simple-icons@v3/icons/instagram.svg" />][instagram] <br /> </details> [twitter]: https://twitter.com/malteH_B [instagram]: https://www.instagram.com/maltemusen/ [linkedin]: https://www.linkedin.com/in/malte-h%C3%B8jmark-bertelsen-9a618017b/
{"language": "da", "license": "mit", "tags": ["\u00e6l\u00e6ctra", "pytorch", "danish", "ELECTRA-Small", "replaced token detection"], "datasets": ["DAGW"], "metrics": ["f1"], "widget": [{"text": "Chili Jensen, som bor p\u00e5 Danmarksgade 12, k\u00f8ber chilifrugter fra Netto."}]}
token-classification
Maltehb/aelaectra-danish-electra-small-cased-ner-dane
[ "transformers", "pytorch", "tf", "electra", "token-classification", "ælæctra", "danish", "ELECTRA-Small", "replaced token detection", "da", "dataset:DAGW", "arxiv:2003.10555", "arxiv:1810.04805", "arxiv:2005.03521", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:04+00:00
[ "2003.10555", "1810.04805", "2005.03521" ]
[ "da" ]
TAGS #transformers #pytorch #tf #electra #token-classification #ælæctra #danish #ELECTRA-Small #replaced token detection #da #dataset-DAGW #arxiv-2003.10555 #arxiv-1810.04805 #arxiv-2005.03521 #license-mit #autotrain_compatible #endpoints_compatible #region-us
Ælæctra - Finetuned for Named Entity Recognition on the DaNE dataset (Hvingelby et al., 2020) by Malte Højmark-Bertelsen. ========================================================================================================================= Ælæctra is a Danish Transformer-based language model created to enhance the variety of Danish NLP resources with a more efficient model compared to previous state-of-the-art (SOTA) models. Ælæctra was pretrained with the ELECTRA-Small (Clark et al., 2020) pretraining approach by using the Danish Gigaword Corpus (Strømberg-Derczynski et al., 2020) and evaluated on Named Entity Recognition (NER) tasks. Since NER only presents a limited picture of Ælæctra's capabilities I am very interested in further evaluations. Therefore, if you employ it for any task, feel free to hit me up your findings! Ælæctra was, as mentioned, created to enhance the Danish NLP capabilties and please do note how this GitHub still does not support the Danish characters "*Æ, Ø and Å*" as the title of this repository becomes "*-l-ctra*". How ironic. Here is an example on how to load the finetuned Ælæctra-cased model for Named Entity Recognition in PyTorch using the Transformers library: ### Evaluation of current Danish Language Models Ælæctra, Danish BERT (DaBERT) and multilingual BERT (mBERT) were evaluated: On DaNE (Hvingelby et al., 2020) without the *MISC-tag*, Ælæctra scores slightly worse than both cased and uncased Multilingual BERT (Devlin et al., 2019) and Danish BERT (Danish BERT, 2019/2020), however, Ælæctra is less than one third the size, and uses significantly fewer computational resources to pretrain and instantiate. ### Pretraining To pretrain Ælæctra it is recommended to build a Docker Container from the Dockerfile. Next, simply follow the pretraining notebooks The pretraining was done by utilizing a single NVIDIA Tesla V100 GPU with 16 GiB, endowed by the Danish data company KMD. The pretraining took approximately 4 days and 9.5 hours for both the cased and uncased model ### Fine-tuning To fine-tune any Ælæctra model follow the fine-tuning notebooks ### References Clark, K., Luong, M.-T., Le, Q. V., & Manning, C. D. (2020). ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Generators. ArXiv:2003.10555 [Cs]. URL Danish BERT. (2020). BotXO. URL (Original work published 2019) Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. ArXiv:1810.04805 [Cs]. URL Hvingelby, R., Pauli, A. B., Barrett, M., Rosted, C., Lidegaard, L. M., & Søgaard, A. (2020). DaNE: A Named Entity Resource for Danish. Proceedings of the 12th Language Resources and Evaluation Conference, 4597–4604. URL Strømberg-Derczynski, L., Baglini, R., Christiansen, M. H., Ciosici, M. R., Dalsgaard, J. A., Fusaroli, R., Henrichsen, P. J., Hvingelby, R., Kirkedal, A., Kjeldsen, A. S., Ladefoged, C., Nielsen, F. Å., Petersen, M. L., Rystrøm, J. H., & Varab, D. (2020). The Danish Gigaword Project. ArXiv:2005.03521 [Cs]. URL #### Acknowledgements As the majority of this repository is build upon the works by the team at Google who created ELECTRA, a HUGE thanks to them is in order. A Giga thanks also goes out to the incredible people who collected The Danish Gigaword Corpus (Strømberg-Derczynski et al., 2020). Furthermore, I would like to thank my supervisor Riccardo Fusaroli for the support with the thesis, and a special thanks goes out to Kenneth Enevoldsen for his continuous feedback. Lastly, i would like to thank KMD, my colleagues from KMD, and my peers and co-students from Cognitive Science for encouriging me to keep on working hard and holding my head up high! #### Contact For help or further information feel free to connect with the author Malte Højmark-Bertelsen on hjb@URL or any of the following platforms: [<img align="left" alt="MalteHB | Twitter" width="22px" src="URL />](URL) [<img align="left" alt="MalteHB | LinkedIn" width="22px" src="URL />](URL) [<img align="left" alt="MalteHB | Instagram" width="22px" src="URL />](URL)
[ "### Evaluation of current Danish Language Models\n\n\nÆlæctra, Danish BERT (DaBERT) and multilingual BERT (mBERT) were evaluated:\n\n\n\nOn DaNE (Hvingelby et al., 2020) without the *MISC-tag*, Ælæctra scores slightly worse than both cased and uncased Multilingual BERT (Devlin et al., 2019) and Danish BERT (Danish BERT, 2019/2020), however, Ælæctra is less than one third the size, and uses significantly fewer computational resources to pretrain and instantiate.", "### Pretraining\n\n\nTo pretrain Ælæctra it is recommended to build a Docker Container from the Dockerfile. Next, simply follow the pretraining notebooks\n\n\nThe pretraining was done by utilizing a single NVIDIA Tesla V100 GPU with 16 GiB, endowed by the Danish data company KMD. The pretraining took approximately 4 days and 9.5 hours for both the cased and uncased model", "### Fine-tuning\n\n\nTo fine-tune any Ælæctra model follow the fine-tuning notebooks", "### References\n\n\nClark, K., Luong, M.-T., Le, Q. V., & Manning, C. D. (2020). ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Generators. ArXiv:2003.10555 [Cs]. URL\n\n\nDanish BERT. (2020). BotXO. URL (Original work published 2019)\n\n\nDevlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. ArXiv:1810.04805 [Cs]. URL\n\n\nHvingelby, R., Pauli, A. B., Barrett, M., Rosted, C., Lidegaard, L. M., & Søgaard, A. (2020). DaNE: A Named Entity Resource for Danish. Proceedings of the 12th Language Resources and Evaluation Conference, 4597–4604. URL\n\n\nStrømberg-Derczynski, L., Baglini, R., Christiansen, M. H., Ciosici, M. R., Dalsgaard, J. A., Fusaroli, R., Henrichsen, P. J., Hvingelby, R., Kirkedal, A., Kjeldsen, A. S., Ladefoged, C., Nielsen, F. Å., Petersen, M. L., Rystrøm, J. H., & Varab, D. (2020). The Danish Gigaword Project. ArXiv:2005.03521 [Cs]. URL", "#### Acknowledgements\n\n\nAs the majority of this repository is build upon the works by the team at Google who created ELECTRA, a HUGE thanks to them is in order.\n\n\nA Giga thanks also goes out to the incredible people who collected The Danish Gigaword Corpus (Strømberg-Derczynski et al., 2020).\n\n\nFurthermore, I would like to thank my supervisor Riccardo Fusaroli for the support with the thesis, and a special thanks goes out to Kenneth Enevoldsen for his continuous feedback.\n\n\nLastly, i would like to thank KMD, my colleagues from KMD, and my peers and co-students from Cognitive Science for encouriging me to keep on working hard and holding my head up high!", "#### Contact\n\n\nFor help or further information feel free to connect with the author Malte Højmark-Bertelsen on hjb@URL or any of the following platforms:\n\n\n[<img align=\"left\" alt=\"MalteHB | Twitter\" width=\"22px\" src=\"URL />](URL)\n[<img align=\"left\" alt=\"MalteHB | LinkedIn\" width=\"22px\" src=\"URL />](URL)\n[<img align=\"left\" alt=\"MalteHB | Instagram\" width=\"22px\" src=\"URL />](URL)" ]
[ "TAGS\n#transformers #pytorch #tf #electra #token-classification #ælæctra #danish #ELECTRA-Small #replaced token detection #da #dataset-DAGW #arxiv-2003.10555 #arxiv-1810.04805 #arxiv-2005.03521 #license-mit #autotrain_compatible #endpoints_compatible #region-us \n", "### Evaluation of current Danish Language Models\n\n\nÆlæctra, Danish BERT (DaBERT) and multilingual BERT (mBERT) were evaluated:\n\n\n\nOn DaNE (Hvingelby et al., 2020) without the *MISC-tag*, Ælæctra scores slightly worse than both cased and uncased Multilingual BERT (Devlin et al., 2019) and Danish BERT (Danish BERT, 2019/2020), however, Ælæctra is less than one third the size, and uses significantly fewer computational resources to pretrain and instantiate.", "### Pretraining\n\n\nTo pretrain Ælæctra it is recommended to build a Docker Container from the Dockerfile. Next, simply follow the pretraining notebooks\n\n\nThe pretraining was done by utilizing a single NVIDIA Tesla V100 GPU with 16 GiB, endowed by the Danish data company KMD. The pretraining took approximately 4 days and 9.5 hours for both the cased and uncased model", "### Fine-tuning\n\n\nTo fine-tune any Ælæctra model follow the fine-tuning notebooks", "### References\n\n\nClark, K., Luong, M.-T., Le, Q. V., & Manning, C. D. (2020). ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Generators. ArXiv:2003.10555 [Cs]. URL\n\n\nDanish BERT. (2020). BotXO. URL (Original work published 2019)\n\n\nDevlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. ArXiv:1810.04805 [Cs]. URL\n\n\nHvingelby, R., Pauli, A. B., Barrett, M., Rosted, C., Lidegaard, L. M., & Søgaard, A. (2020). DaNE: A Named Entity Resource for Danish. Proceedings of the 12th Language Resources and Evaluation Conference, 4597–4604. URL\n\n\nStrømberg-Derczynski, L., Baglini, R., Christiansen, M. H., Ciosici, M. R., Dalsgaard, J. A., Fusaroli, R., Henrichsen, P. J., Hvingelby, R., Kirkedal, A., Kjeldsen, A. S., Ladefoged, C., Nielsen, F. Å., Petersen, M. L., Rystrøm, J. H., & Varab, D. (2020). The Danish Gigaword Project. ArXiv:2005.03521 [Cs]. URL", "#### Acknowledgements\n\n\nAs the majority of this repository is build upon the works by the team at Google who created ELECTRA, a HUGE thanks to them is in order.\n\n\nA Giga thanks also goes out to the incredible people who collected The Danish Gigaword Corpus (Strømberg-Derczynski et al., 2020).\n\n\nFurthermore, I would like to thank my supervisor Riccardo Fusaroli for the support with the thesis, and a special thanks goes out to Kenneth Enevoldsen for his continuous feedback.\n\n\nLastly, i would like to thank KMD, my colleagues from KMD, and my peers and co-students from Cognitive Science for encouriging me to keep on working hard and holding my head up high!", "#### Contact\n\n\nFor help or further information feel free to connect with the author Malte Højmark-Bertelsen on hjb@URL or any of the following platforms:\n\n\n[<img align=\"left\" alt=\"MalteHB | Twitter\" width=\"22px\" src=\"URL />](URL)\n[<img align=\"left\" alt=\"MalteHB | LinkedIn\" width=\"22px\" src=\"URL />](URL)\n[<img align=\"left\" alt=\"MalteHB | Instagram\" width=\"22px\" src=\"URL />](URL)" ]
[ 104, 135, 88, 24, 370, 166, 141 ]
[ "passage: TAGS\n#transformers #pytorch #tf #electra #token-classification #ælæctra #danish #ELECTRA-Small #replaced token detection #da #dataset-DAGW #arxiv-2003.10555 #arxiv-1810.04805 #arxiv-2005.03521 #license-mit #autotrain_compatible #endpoints_compatible #region-us \n### Evaluation of current Danish Language Models\n\n\nÆlæctra, Danish BERT (DaBERT) and multilingual BERT (mBERT) were evaluated:\n\n\n\nOn DaNE (Hvingelby et al., 2020) without the *MISC-tag*, Ælæctra scores slightly worse than both cased and uncased Multilingual BERT (Devlin et al., 2019) and Danish BERT (Danish BERT, 2019/2020), however, Ælæctra is less than one third the size, and uses significantly fewer computational resources to pretrain and instantiate.### Pretraining\n\n\nTo pretrain Ælæctra it is recommended to build a Docker Container from the Dockerfile. Next, simply follow the pretraining notebooks\n\n\nThe pretraining was done by utilizing a single NVIDIA Tesla V100 GPU with 16 GiB, endowed by the Danish data company KMD. The pretraining took approximately 4 days and 9.5 hours for both the cased and uncased model### Fine-tuning\n\n\nTo fine-tune any Ælæctra model follow the fine-tuning notebooks" ]
[ -0.0612727552652359, -0.040690552443265915, -0.0023051772732287645, 0.1008559837937355, 0.019258320331573486, 0.013035831041634083, 0.08609534800052643, 0.09918031096458435, -0.0035701473243534565, 0.1222895085811615, 0.06618358939886093, -0.024715058505535126, 0.09746762365102768, 0.10706969350576401, 0.04830749332904816, -0.2683316767215729, 0.10655777901411057, 0.00528870290145278, 0.04150305315852165, 0.04483414068818092, 0.13090823590755463, -0.12200869619846344, 0.06224216893315315, 0.01588965766131878, -0.06240323930978775, 0.00015905355394352227, -0.050758231431245804, -0.0563824363052845, 0.11137837171554565, 0.08747479319572449, 0.07835189998149872, 0.05380362644791603, 0.10115832835435867, -0.09041143208742142, -0.003203888889402151, 0.02561364881694317, 0.005855947267264128, 0.049732666462659836, 0.04283187538385391, 0.13338352739810944, 0.1399642825126648, -0.04047996550798416, 0.06837379187345505, -0.018894968554377556, -0.07724618911743164, -0.1365932673215866, -0.09044449776411057, 0.017835788428783417, 0.04656851291656494, 0.01703057624399662, -0.050053030252456665, 0.09903697669506073, -0.05878717079758644, 0.024008315056562424, 0.10350067913532257, -0.29790177941322327, -0.08186126500368118, 0.1729268580675125, 0.050251927226781845, -0.02415664680302143, -0.08960004895925522, 0.033063363283872604, 0.024324173107743263, 0.05963709205389023, 0.04232294112443924, 0.005254797637462616, 0.0006637985934503376, -0.017068393528461456, -0.10354720056056976, 0.008909051306545734, 0.16961301863193512, 0.0051999944262206554, -0.042296767234802246, -0.14639510214328766, -0.0827464908361435, -0.0945405513048172, -0.007033524569123983, -0.02031618356704712, 0.0019631327595561743, -0.028753627091646194, 0.06536321341991425, -0.012054854072630405, -0.11097124963998795, -0.003440306754782796, -0.12719009816646576, 0.14052259922027588, 0.07609818875789642, 0.029863255098462105, 0.08395326137542725, 0.10594259202480316, -0.1374722719192505, -0.10351219028234482, -0.07280971854925156, -0.07508198171854019, -0.15244649350643158, -0.014811635948717594, -0.0189571101218462, -0.07678951323032379, -0.04733630642294884, 0.2276826798915863, 0.016750739887356758, 0.03867337480187416, 0.06013473495841026, -0.019110921770334244, 0.04203850030899048, 0.15723395347595215, -0.09608384966850281, -0.07545721530914307, -0.019099999219179153, 0.060334499925374985, 0.06461205333471298, -0.027191167697310448, -0.040478650480508804, -0.09650540351867676, -0.009376995265483856, -0.035841312259435654, -0.06361442059278488, 0.06061377376317978, -0.05849936977028847, -0.05462336167693138, 0.16787615418434143, -0.10374537855386734, 0.0037787535693496466, -0.042533989995718, -0.05289480462670326, 0.031944047659635544, 0.0006485282792709768, -0.015207743272185326, -0.054469477385282516, 0.1254657804965973, -0.04592110961675644, -0.07800713181495667, -0.06526461243629456, -0.10580557584762573, 0.03094969503581524, -0.0034037544392049313, -0.02150484174489975, -0.10759218782186508, -0.1303476244211197, 0.01936723105609417, 0.08574136346578598, -0.0784807950258255, -0.04808346554636955, -0.00006305934948613867, 0.03364596888422966, 0.027970261871814728, -0.05320011451840401, 0.07051966339349747, -0.0046864962205290794, 0.030982598662376404, 0.04245876520872116, 0.09726539254188538, -0.06395001709461212, 0.010612630285322666, -0.08624789863824844, 0.011174939572811127, -0.23046697676181793, 0.02544691599905491, -0.09341897815465927, -0.08730706572532654, -0.08119060844182968, -0.05001194402575493, -0.09624847769737244, 0.02782561257481575, 0.0792398452758789, 0.04252582788467407, -0.14789807796478271, -0.011331203393638134, 0.057827915996313095, -0.09729321300983429, 0.012624881230294704, 0.1717255711555481, -0.014059162698686123, -0.011397196911275387, 0.06842631846666336, 0.11008688062429428, 0.006336639169603586, -0.2110767811536789, -0.11238887906074524, 0.006530409213155508, 0.011543327942490578, 0.07177522778511047, 0.082908995449543, 0.030062731355428696, 0.06838348507881165, 0.04693857580423355, -0.007658002898097038, -0.03506751358509064, -0.017197541892528534, -0.045098744332790375, -0.015457719564437866, -0.019057363271713257, 0.018645983189344406, 0.057746659964323044, 0.015114511363208294, -0.06966347992420197, -0.12897107005119324, -0.027832314372062683, 0.133751779794693, -0.11063926666975021, 0.0038510344456881285, -0.08032471686601639, 0.05151225998997688, -0.09141108393669128, -0.0029050682205706835, -0.059203606098890305, -0.13717037439346313, 0.07470516115427017, -0.08612252026796341, -0.025046277791261673, 0.1303175836801529, 0.04533595219254494, 0.08359303325414658, -0.092287078499794, 0.05837384983897209, -0.05919022485613823, -0.05762764811515808, -0.08260335773229599, -0.046719782054424286, -0.02854369394481182, -0.03832980617880821, -0.007687232457101345, -0.05570993199944496, 0.04150649532675743, 0.10272186249494553, 0.07735683023929596, -0.03333486616611481, -0.038270119577646255, -0.04551362246274948, -0.04424716904759407, -0.03608143702149391, -0.05216765031218529, 0.019170772284269333, -0.00850018858909607, 0.04154038801789284, 0.09303935617208481, -0.1102149486541748, -0.09081023186445236, 0.13382594287395477, 0.16466066241264343, -0.024948865175247192, -0.023605262860655785, -0.04656235873699188, -0.034963835030794144, -0.10904403775930405, -0.07436202466487885, 0.17021676898002625, 0.052636221051216125, 0.09523162990808487, -0.10243165493011475, -0.08514471352100372, 0.036212533712387085, 0.053191229701042175, -0.08488279581069946, 0.0961575135588646, 0.12040060013532639, -0.03418654575943947, 0.052709683775901794, -0.002129598753526807, 0.05422952026128769, 0.129078209400177, 0.008383342996239662, -0.09455294162034988, 0.008553127758204937, -0.027240244671702385, -0.01979965902864933, 0.1806102842092514, 0.0082778949290514, 0.03652133047580719, 0.04871658980846405, 0.0312555693089962, 0.04513004794716835, -0.09736964106559753, 0.015288559719920158, 0.014722872525453568, -0.04368043318390846, 0.03435671702027321, 0.042005110532045364, -0.04076151177287102, 0.07045812904834747, 0.02824663557112217, 0.002717000897973776, -0.03126724809408188, 0.014144429005682468, -0.02074730582535267, 0.149944007396698, -0.053717609494924545, -0.2501147985458374, -0.13722151517868042, -0.018596680834889412, -0.06187533587217331, 0.034986965358257294, 0.015630926936864853, -0.05869585648179054, -0.16531860828399658, -0.06506071239709854, 0.23250629007816315, -0.012398479506373405, 0.010295301675796509, 0.09559480100870132, -0.04177941754460335, -0.0262431800365448, -0.1494521200656891, 0.009972919709980488, -0.007870400324463844, -0.047123122960329056, 0.044620342552661896, -0.04947373643517494, 0.04746929928660393, 0.04916941002011299, -0.04002594202756882, -0.048855870962142944, 0.0014938237145543098, 0.21331819891929626, -0.06749825924634933, 0.11592382937669754, 0.12328638881444931, 0.010289521887898445, 0.013986315578222275, 0.16544988751411438, 0.037763748317956924, -0.1137174665927887, -0.0005053523927927017, 0.06402327120304108, -0.056963443756103516, -0.18005944788455963, -0.053461719304323196, -0.05322527140378952, 0.03164105862379074, 0.16738475859165192, 0.04621075466275215, -0.127876415848732, 0.07794882357120514, -0.07961533218622208, 0.1217239648103714, 0.0741770789027214, 0.06574446707963943, 0.15623652935028076, 0.009737873449921608, 0.13169068098068237, -0.042186714708805084, -0.01539059728384018, 0.132053405046463, 0.0883721336722374, 0.150754913687706, -0.08098459988832474, 0.08904235810041428, 0.008675114251673222, 0.020997852087020874, 0.04626205563545227, 0.1095205768942833, -0.06408330798149109, -0.02048424817621708, -0.03942994773387909, -0.017271384596824646, -0.04955800250172615, -0.016608411446213722, -0.022371551021933556, -0.046871308237314224, -0.03986513614654541, 0.021663598716259003, 0.07675764709711075, 0.1774328052997589, 0.06061489135026932, -0.16945812106132507, -0.1312478929758072, 0.003798576071858406, -0.1024012565612793, -0.10698651522397995, 0.026842404156923294, 0.14862218499183655, -0.05637463182210922, 0.08680032938718796, -0.0708974227309227, 0.0298297218978405, -0.11439240723848343, 0.011170152574777603, 0.06957213580608368, 0.09012120217084885, -0.013271002098917961, 0.07261792570352554, -0.18760406970977783, 0.1041264533996582, 0.04424796998500824, 0.10608066618442535, -0.05502033606171608, 0.04320741072297096, -0.026861965656280518, 0.04842919856309891, 0.11794417351484299, -0.016584929078817368, -0.05070491135120392, -0.049872126430273056, -0.17046791315078735, 0.027300793677568436, 0.011999298818409443, -0.07040175795555115, 0.06748031824827194, -0.020454147830605507, 0.029119055718183517, -0.028774477541446686, -0.029576363041996956, -0.05748402327299118, -0.19108255207538605, 0.07155663520097733, -0.0445222333073616, -0.0535641573369503, -0.07504507154226303, -0.08599676191806793, -0.2217460423707962, 0.17601998150348663, -0.08930791914463043, -0.07402516156435013, -0.12749923765659332, 0.11575528234243393, 0.15148386359214783, -0.05142166092991829, 0.03916095942258835, -0.02680535614490509, 0.1286340057849884, -0.11689235270023346, -0.08963356167078018, 0.015033341944217682, -0.049939725548028946, -0.1388741135597229, -0.01130104623734951, 0.08834490925073624, 0.06285903602838516, 0.04142032563686371, 0.008389754220843315, 0.059044163674116135, -0.038972582668066025, -0.09131135046482086, 0.0034822276793420315, 0.03969383239746094, 0.06195097416639328, -0.08888398110866547, -0.04004319757223129, -0.045684926211833954, 0.010916602797806263, -0.030400678515434265, 0.014885645359754562, 0.26068007946014404, -0.06385035067796707, 0.08988950401544571, 0.16870221495628357, -0.015434917993843555, -0.2586914896965027, 0.0020562775898724794, 0.06668123602867126, 0.08069457113742828, -0.06776843219995499, -0.15745599567890167, 0.0703001618385315, 0.1671803742647171, -0.011606129817664623, -0.028621980920433998, -0.18003594875335693, -0.11458110064268112, 0.02011406607925892, 0.04693964868783951, 0.09614274650812149, -0.018733616918325424, 0.002266204683110118, 0.026727011427283287, -0.1661057323217392, 0.11941977590322495, 0.04889564588665962, 0.12322655320167542, -0.02176407352089882, 0.01742144487798214, 0.045503437519073486, -0.052248816937208176, 0.18649329245090485, -0.008079673163592815, 0.038520995527505875, -0.0391526073217392, 0.042034972459077835, 0.0901225134730339, -0.03448415920138359, 0.14655832946300507, 0.044326286762952805, -0.013519583269953728, -0.024296896532177925, -0.12122311443090439, -0.060434769839048386, 0.05278554558753967, -0.05554482340812683, -0.08048678934574127, -0.09716785699129105, 0.07406319677829742, 0.0008529588230885565, -0.01718100905418396, 0.07732968777418137, -0.014846736565232277, -0.14898699522018433, -0.03398336097598076, 0.12572894990444183, 0.047753822058439255, -0.01344062015414238, -0.0017362161306664348, 0.002389252418652177, 0.05980351194739342, -0.10864744335412979, 0.04742462933063507, 0.13179749250411987, -0.07874477654695511, 0.02892146445810795, 0.011889837682247162, -0.11922852694988251, -0.043917182832956314, 0.07840582728385925, -0.13343524932861328, -0.06902004033327103, 0.034570399671792984, -0.05976879969239235, -0.044555217027664185, -0.03423622250556946, 0.11033649742603302, -0.0329638235270977, -0.0292667243629694, 0.04487365484237671, 0.0440903902053833, 0.04621356725692749, 0.16406908631324768, -0.014350993558764458, 0.03499019891023636, -0.09732381999492645, 0.13276612758636475, 0.07116234302520752, -0.14600300788879395, 0.017823778092861176, 0.07560236752033234, -0.10571565479040146, -0.061895061284303665, -0.09644418954849243, -0.036764420568943024, -0.03154251351952553, -0.007162837777286768, -0.025009240955114365, -0.08675166964530945, 0.03661714866757393, -0.03725419566035271, 0.042002011090517044, 0.03585991635918617, 0.007263267412781715, 0.04997949302196503, -0.09140393137931824, 0.12064700573682785, -0.03706328943371773, 0.0787801742553711, -0.03886062279343605, 0.05763465166091919, -0.031699273735284805, 0.005724908318370581, -0.025555329397320747, 0.060871172696352005, -0.05045466125011444, -0.05058896914124489, -0.01726675219833851, -0.017353251576423645, -0.01856544055044651, 0.0002236158325104043, -0.002889789640903473, -0.021812863647937775, -0.035388290882110596, 0.0046766153536736965, -0.06804779171943665, -0.01067404169589281, -0.0671410784125328, -0.014902682043612003, -0.03059702180325985, -0.011118447408080101, 0.047612715512514114, -0.0814073458313942, 0.11612442135810852, -0.058399125933647156, 0.051179349422454834, 0.03444363549351692, -0.027925588190555573, 0.01950947567820549, -0.021738778799772263, 0.09398305416107178, 0.025096910074353218, -0.03976459056138992, 0.026820020750164986, 0.008126229047775269, 0.0017926744185388088, 0.0034580733627080917, 0.09979573637247086, -0.10930933803319931, -0.004001856315881014, -0.007387417834252119, -0.06371041387319565, -0.04046186804771423, 0.052578773349523544, 0.009504584595561028, 0.049537092447280884, 0.11036723107099533, -0.03547767177224159, -0.024267906323075294, -0.14077724516391754, 0.009740856476128101, 0.02708614431321621, -0.10219300538301468, 0.027270639315247536, -0.04938795790076256, 0.0612589493393898, -0.025681285187602043, 0.16439585387706757, 0.05809618532657623, -0.03926048055291176, 0.03951241075992584, -0.05455983802676201, -0.11111368238925934, 0.0298145841807127, 0.1471172422170639, 0.006342029664665461, 0.03802953660488129, -0.0454055592417717, 0.019763516262173653, 0.04494161903858185, 0.053177572786808014, 0.12866634130477905, 0.04979822412133217, 0.04866842180490494, 0.07206748425960541, -0.022826451808214188, -0.13220928609371185, -0.15831293165683746, 0.12674018740653992, -0.14515092968940735, 0.03603842854499817, 0.004319685511291027, 0.03393760323524475, 0.0708961933851242, -0.17376062273979187, 0.07039349526166916, -0.0441436730325222, -0.07824214547872543, -0.10916276276111603, -0.15025700628757477, -0.04903028905391693, -0.016976231709122658, 0.05536707863211632, -0.13748721778392792, 0.008646353147923946, 0.04937732219696045, 0.07984314113855362, -0.0070716701447963715, 0.12951193749904633, -0.13242927193641663, -0.003994912374764681, 0.04762223735451698, 0.06207990646362305, -0.0031840442679822445, 0.05943508446216583, -0.04396277666091919, -0.0500110499560833, 0.08034637570381165, 0.07622957974672318, -0.018251493573188782, 0.05547850579023361, -0.017120646312832832, 0.0440860278904438, -0.004957506433129311, -0.03837659955024719, -0.03712845221161842, 0.05315710976719856, 0.08032416552305222, 0.010947922244668007, 0.0140635771676898, -0.0181366465985775, 0.15407595038414001, 0.01912863552570343, -0.10368482023477554, -0.1698966920375824, 0.045425329357385635, -0.00023515484645031393, 0.07104136794805527, 0.016709133982658386, -0.08658740669488907, -0.05375976487994194, 0.24526698887348175, 0.06896102428436279, 0.01419244334101677, -0.04610324278473854, 0.04646957665681839, -0.014127698726952076, 0.01596473716199398, 0.08971069008111954, 0.012254268862307072, 0.18719089031219482, -0.06467991322278976, -0.018780913203954697, -0.0073712849989533424, -0.005794702563434839, -0.02003645896911621, 0.1435638666152954, -0.021897608414292336, 0.022469602525234222, -0.1268257200717926, -0.04777998477220535, 0.1458810418844223, -0.19461189210414886, 0.06230345740914345, -0.0730065405368805, -0.11697512865066528, 0.025669114664196968, 0.009492325596511364, -0.08040861785411835, 0.045584626495838165, -0.02673286572098732, 0.02296147122979164, 0.1031116247177124, -0.0009028701460920274, -0.10080011188983917, 0.00964649673551321, 0.09663866460323334, 0.028617912903428078, 0.19786134362220764, -0.0016777996206656098, 0.03938710689544678, 0.08703333139419556, -0.03986474871635437, -0.10931061208248138, 0.0552830696105957, 0.008902241475880146, -0.020068494603037834, 0.05155285447835922, 0.14419271051883698, -0.007074381690472364, 0.07000794261693954, 0.04031631350517273, -0.049514953047037125, 0.0268021821975708, 0.059960395097732544, -0.038642190396785736, -0.04349561035633087, 0.14851756393909454, -0.08114751428365707, 0.14002615213394165, 0.16718345880508423, 0.020675811916589737, -0.061570148915052414, -0.09928162395954132, 0.07278432697057724, -0.015471859835088253, 0.17396239936351776, 0.03338897228240967, -0.15472835302352905, 0.008777288720011711, -0.013878649100661278, 0.01666495017707348, -0.16564080119132996, -0.06136070191860199, -0.02887580543756485, -0.039100535213947296, -0.0703601986169815, 0.13205325603485107, 0.05773886293172836, 0.018457207828760147, -0.05091584473848343, 0.004463918972760439, -0.03149132803082466, 0.005922709126025438, -0.09229761362075806, -0.09133788198232651 ]
null
null
transformers
# Ælæctra - A Step Towards More Efficient Danish Natural Language Processing **Ælæctra** is a Danish Transformer-based language model created to enhance the variety of Danish NLP resources with a more efficient model compared to previous state-of-the-art (SOTA) models. Initially a cased and an uncased model are released. It was created as part of a Cognitive Science bachelor's thesis. Ælæctra was pretrained with the ELECTRA-Small (Clark et al., 2020) pretraining approach by using the Danish Gigaword Corpus (Strømberg-Derczynski et al., 2020) and evaluated on Named Entity Recognition (NER) tasks. Since NER only presents a limited picture of Ælæctra's capabilities I am very interested in further evaluations. Therefore, if you employ it for any task, feel free to hit me up your findings! Ælæctra was, as mentioned, created to enhance the Danish NLP capabilties and please do note how this GitHub still does not support the Danish characters "*Æ, Ø and Å*" as the title of this repository becomes "*-l-ctra*". How ironic.🙂 Here is an example on how to load both the cased and the uncased Ælæctra model in [PyTorch](https://pytorch.org/) using the [🤗Transformers](https://github.com/huggingface/transformers) library: ```python from transformers import AutoTokenizer, AutoModelForPreTraining tokenizer = AutoTokenizer.from_pretrained("Maltehb/-l-ctra-danish-electra-small-cased") model = AutoModelForPreTraining.from_pretrained("Maltehb/-l-ctra-danish-electra-small-cased") ``` ```python from transformers import AutoTokenizer, AutoModelForPreTraining tokenizer = AutoTokenizer.from_pretrained("Maltehb/-l-ctra-danish-electra-small-uncased") model = AutoModelForPreTraining.from_pretrained("Maltehb/-l-ctra-danish-electra-small-uncased") ``` ### Evaluation of current Danish Language Models Ælæctra, Danish BERT (DaBERT) and multilingual BERT (mBERT) were evaluated: | Model | Layers | Hidden Size | Params | AVG NER micro-f1 (DaNE-testset) | Average Inference Time (Sec/Epoch) | Download | | --- | --- | --- | --- | --- | --- | --- | | Ælæctra Uncased | 12 | 256 | 13.7M | 78.03 (SD = 1.28) | 10.91 | [Link for model](https://www.dropbox.com/s/cag7prs1nvdchqs/%C3%86l%C3%A6ctra.zip?dl=0) | | Ælæctra Cased | 12 | 256 | 14.7M | 80.08 (SD = 0.26) | 10.92 | [Link for model](https://www.dropbox.com/s/cag7prs1nvdchqs/%C3%86l%C3%A6ctra.zip?dl=0) | | DaBERT | 12 | 768 | 110M | 84.89 (SD = 0.64) | 43.03 | [Link for model](https://www.dropbox.com/s/19cjaoqvv2jicq9/danish_bert_uncased_v2.zip?dl=1) | | mBERT Uncased | 12 | 768 | 167M | 80.44 (SD = 0.82) | 72.10 | [Link for model](https://storage.googleapis.com/bert_models/2018_11_03/multilingual_L-12_H-768_A-12.zip) | | mBERT Cased | 12 | 768 | 177M | 83.79 (SD = 0.91) | 70.56 | [Link for model](https://storage.googleapis.com/bert_models/2018_11_23/multi_cased_L-12_H-768_A-12.zip) | On [DaNE](https://danlp.alexandra.dk/304bd159d5de/datasets/ddt.zip) (Hvingelby et al., 2020), Ælæctra scores slightly worse than both cased and uncased Multilingual BERT (Devlin et al., 2019) and Danish BERT (Danish BERT, 2019/2020), however, Ælæctra is less than one third the size, and uses significantly fewer computational resources to pretrain and instantiate. For a full description of the evaluation and specification of the model read the thesis: 'Ælæctra - A Step Towards More Efficient Danish Natural Language Processing'. ### Pretraining To pretrain Ælæctra it is recommended to build a Docker Container from the [Dockerfile](https://github.com/MalteHB/-l-ctra/blob/master/infrastructure/Dockerfile). Next, simply follow the [pretraining notebooks](https://github.com/MalteHB/-l-ctra/blob/master/notebooks/pretraining/) The pretraining was done by utilizing a single NVIDIA Tesla V100 GPU with 16 GiB, endowed by the Danish data company [KMD](https://www.kmd.dk/). The pretraining took approximately 4 days and 9.5 hours for both the cased and uncased model ### Fine-tuning To fine-tune any Ælæctra model follow the [fine-tuning notebooks](https://github.com/MalteHB/-l-ctra/blob/master/notebooks/fine-tuning/) ### References Clark, K., Luong, M.-T., Le, Q. V., & Manning, C. D. (2020). ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Generators. ArXiv:2003.10555 [Cs]. http://arxiv.org/abs/2003.10555 Danish BERT. (2020). BotXO. https://github.com/botxo/nordic_bert (Original work published 2019) Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. ArXiv:1810.04805 [Cs]. http://arxiv.org/abs/1810.04805 Hvingelby, R., Pauli, A. B., Barrett, M., Rosted, C., Lidegaard, L. M., & Søgaard, A. (2020). DaNE: A Named Entity Resource for Danish. Proceedings of the 12th Language Resources and Evaluation Conference, 4597–4604. https://www.aclweb.org/anthology/2020.lrec-1.565 Strømberg-Derczynski, L., Baglini, R., Christiansen, M. H., Ciosici, M. R., Dalsgaard, J. A., Fusaroli, R., Henrichsen, P. J., Hvingelby, R., Kirkedal, A., Kjeldsen, A. S., Ladefoged, C., Nielsen, F. Å., Petersen, M. L., Rystrøm, J. H., & Varab, D. (2020). The Danish Gigaword Project. ArXiv:2005.03521 [Cs]. http://arxiv.org/abs/2005.03521 #### Acknowledgements As the majority of this repository is build upon [the works](https://github.com/google-research/electra) by the team at Google who created ELECTRA, a HUGE thanks to them is in order. A Giga thanks also goes out to the incredible people who collected The Danish Gigaword Corpus (Strømberg-Derczynski et al., 2020). Furthermore, I would like to thank my supervisor [Riccardo Fusaroli](https://github.com/fusaroli) for the support with the thesis, and a special thanks goes out to [Kenneth Enevoldsen](https://github.com/KennethEnevoldsen) for his continuous feedback. Lastly, i would like to thank KMD, my colleagues from KMD, and my peers and co-students from Cognitive Science for encouriging me to keep on working hard and holding my head up high! #### Contact For help or further information feel free to connect with the author Malte Højmark-Bertelsen on [[email protected]](mailto:[email protected]?subject=[GitHub]%20Ælæctra) or any of the following platforms: [<img align="left" alt="MalteHB | Twitter" width="22px" src="https://cdn.jsdelivr.net/npm/simple-icons@v3/icons/twitter.svg" />][twitter] [<img align="left" alt="MalteHB | LinkedIn" width="22px" src="https://cdn.jsdelivr.net/npm/simple-icons@v3/icons/linkedin.svg" />][linkedin] [<img align="left" alt="MalteHB | Instagram" width="22px" src="https://cdn.jsdelivr.net/npm/simple-icons@v3/icons/instagram.svg" />][instagram] <br /> </details> [twitter]: https://twitter.com/malteH_B [instagram]: https://www.instagram.com/maltemusen/ [linkedin]: https://www.linkedin.com/in/malte-h%C3%B8jmark-bertelsen-9a618017b/
{"language": "da", "license": "mit", "tags": ["\u00e6l\u00e6ctra", "pytorch", "danish", "ELECTRA-Small", "replaced token detection"], "datasets": ["DAGW"], "metrics": ["f1"], "co2_eq_emissions": 4009.5}
null
Maltehb/aelaectra-danish-electra-small-cased
[ "transformers", "pytorch", "tf", "electra", "pretraining", "ælæctra", "danish", "ELECTRA-Small", "replaced token detection", "da", "dataset:DAGW", "arxiv:2003.10555", "arxiv:1810.04805", "arxiv:2005.03521", "license:mit", "co2_eq_emissions", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:04+00:00
[ "2003.10555", "1810.04805", "2005.03521" ]
[ "da" ]
TAGS #transformers #pytorch #tf #electra #pretraining #ælæctra #danish #ELECTRA-Small #replaced token detection #da #dataset-DAGW #arxiv-2003.10555 #arxiv-1810.04805 #arxiv-2005.03521 #license-mit #co2_eq_emissions #endpoints_compatible #region-us
Ælæctra - A Step Towards More Efficient Danish Natural Language Processing ========================================================================== Ælæctra is a Danish Transformer-based language model created to enhance the variety of Danish NLP resources with a more efficient model compared to previous state-of-the-art (SOTA) models. Initially a cased and an uncased model are released. It was created as part of a Cognitive Science bachelor's thesis. Ælæctra was pretrained with the ELECTRA-Small (Clark et al., 2020) pretraining approach by using the Danish Gigaword Corpus (Strømberg-Derczynski et al., 2020) and evaluated on Named Entity Recognition (NER) tasks. Since NER only presents a limited picture of Ælæctra's capabilities I am very interested in further evaluations. Therefore, if you employ it for any task, feel free to hit me up your findings! Ælæctra was, as mentioned, created to enhance the Danish NLP capabilties and please do note how this GitHub still does not support the Danish characters "*Æ, Ø and Å*" as the title of this repository becomes "*-l-ctra*". How ironic. Here is an example on how to load both the cased and the uncased Ælæctra model in PyTorch using the Transformers library: ### Evaluation of current Danish Language Models Ælæctra, Danish BERT (DaBERT) and multilingual BERT (mBERT) were evaluated: On DaNE (Hvingelby et al., 2020), Ælæctra scores slightly worse than both cased and uncased Multilingual BERT (Devlin et al., 2019) and Danish BERT (Danish BERT, 2019/2020), however, Ælæctra is less than one third the size, and uses significantly fewer computational resources to pretrain and instantiate. For a full description of the evaluation and specification of the model read the thesis: 'Ælæctra - A Step Towards More Efficient Danish Natural Language Processing'. ### Pretraining To pretrain Ælæctra it is recommended to build a Docker Container from the Dockerfile. Next, simply follow the pretraining notebooks The pretraining was done by utilizing a single NVIDIA Tesla V100 GPU with 16 GiB, endowed by the Danish data company KMD. The pretraining took approximately 4 days and 9.5 hours for both the cased and uncased model ### Fine-tuning To fine-tune any Ælæctra model follow the fine-tuning notebooks ### References Clark, K., Luong, M.-T., Le, Q. V., & Manning, C. D. (2020). ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Generators. ArXiv:2003.10555 [Cs]. URL Danish BERT. (2020). BotXO. URL (Original work published 2019) Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. ArXiv:1810.04805 [Cs]. URL Hvingelby, R., Pauli, A. B., Barrett, M., Rosted, C., Lidegaard, L. M., & Søgaard, A. (2020). DaNE: A Named Entity Resource for Danish. Proceedings of the 12th Language Resources and Evaluation Conference, 4597–4604. URL Strømberg-Derczynski, L., Baglini, R., Christiansen, M. H., Ciosici, M. R., Dalsgaard, J. A., Fusaroli, R., Henrichsen, P. J., Hvingelby, R., Kirkedal, A., Kjeldsen, A. S., Ladefoged, C., Nielsen, F. Å., Petersen, M. L., Rystrøm, J. H., & Varab, D. (2020). The Danish Gigaword Project. ArXiv:2005.03521 [Cs]. URL #### Acknowledgements As the majority of this repository is build upon the works by the team at Google who created ELECTRA, a HUGE thanks to them is in order. A Giga thanks also goes out to the incredible people who collected The Danish Gigaword Corpus (Strømberg-Derczynski et al., 2020). Furthermore, I would like to thank my supervisor Riccardo Fusaroli for the support with the thesis, and a special thanks goes out to Kenneth Enevoldsen for his continuous feedback. Lastly, i would like to thank KMD, my colleagues from KMD, and my peers and co-students from Cognitive Science for encouriging me to keep on working hard and holding my head up high! #### Contact For help or further information feel free to connect with the author Malte Højmark-Bertelsen on hjb@URL or any of the following platforms: [<img align="left" alt="MalteHB | Twitter" width="22px" src="URL />](URL) [<img align="left" alt="MalteHB | LinkedIn" width="22px" src="URL />](URL) [<img align="left" alt="MalteHB | Instagram" width="22px" src="URL />](URL)
[ "### Evaluation of current Danish Language Models\n\n\nÆlæctra, Danish BERT (DaBERT) and multilingual BERT (mBERT) were evaluated:\n\n\n\nOn DaNE (Hvingelby et al., 2020), Ælæctra scores slightly worse than both cased and uncased Multilingual BERT (Devlin et al., 2019) and Danish BERT (Danish BERT, 2019/2020), however, Ælæctra is less than one third the size, and uses significantly fewer computational resources to pretrain and instantiate. For a full description of the evaluation and specification of the model read the thesis: 'Ælæctra - A Step Towards More Efficient Danish Natural Language Processing'.", "### Pretraining\n\n\nTo pretrain Ælæctra it is recommended to build a Docker Container from the Dockerfile. Next, simply follow the pretraining notebooks\n\n\nThe pretraining was done by utilizing a single NVIDIA Tesla V100 GPU with 16 GiB, endowed by the Danish data company KMD. The pretraining took approximately 4 days and 9.5 hours for both the cased and uncased model", "### Fine-tuning\n\n\nTo fine-tune any Ælæctra model follow the fine-tuning notebooks", "### References\n\n\nClark, K., Luong, M.-T., Le, Q. V., & Manning, C. D. (2020). ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Generators. ArXiv:2003.10555 [Cs]. URL\n\n\nDanish BERT. (2020). BotXO. URL (Original work published 2019)\n\n\nDevlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. ArXiv:1810.04805 [Cs]. URL\n\n\nHvingelby, R., Pauli, A. B., Barrett, M., Rosted, C., Lidegaard, L. M., & Søgaard, A. (2020). DaNE: A Named Entity Resource for Danish. Proceedings of the 12th Language Resources and Evaluation Conference, 4597–4604. URL\n\n\nStrømberg-Derczynski, L., Baglini, R., Christiansen, M. H., Ciosici, M. R., Dalsgaard, J. A., Fusaroli, R., Henrichsen, P. J., Hvingelby, R., Kirkedal, A., Kjeldsen, A. S., Ladefoged, C., Nielsen, F. Å., Petersen, M. L., Rystrøm, J. H., & Varab, D. (2020). The Danish Gigaword Project. ArXiv:2005.03521 [Cs]. URL", "#### Acknowledgements\n\n\nAs the majority of this repository is build upon the works by the team at Google who created ELECTRA, a HUGE thanks to them is in order.\n\n\nA Giga thanks also goes out to the incredible people who collected The Danish Gigaword Corpus (Strømberg-Derczynski et al., 2020).\n\n\nFurthermore, I would like to thank my supervisor Riccardo Fusaroli for the support with the thesis, and a special thanks goes out to Kenneth Enevoldsen for his continuous feedback.\n\n\nLastly, i would like to thank KMD, my colleagues from KMD, and my peers and co-students from Cognitive Science for encouriging me to keep on working hard and holding my head up high!", "#### Contact\n\n\nFor help or further information feel free to connect with the author Malte Højmark-Bertelsen on hjb@URL or any of the following platforms:\n\n\n[<img align=\"left\" alt=\"MalteHB | Twitter\" width=\"22px\" src=\"URL />](URL)\n[<img align=\"left\" alt=\"MalteHB | LinkedIn\" width=\"22px\" src=\"URL />](URL)\n[<img align=\"left\" alt=\"MalteHB | Instagram\" width=\"22px\" src=\"URL />](URL)" ]
[ "TAGS\n#transformers #pytorch #tf #electra #pretraining #ælæctra #danish #ELECTRA-Small #replaced token detection #da #dataset-DAGW #arxiv-2003.10555 #arxiv-1810.04805 #arxiv-2005.03521 #license-mit #co2_eq_emissions #endpoints_compatible #region-us \n", "### Evaluation of current Danish Language Models\n\n\nÆlæctra, Danish BERT (DaBERT) and multilingual BERT (mBERT) were evaluated:\n\n\n\nOn DaNE (Hvingelby et al., 2020), Ælæctra scores slightly worse than both cased and uncased Multilingual BERT (Devlin et al., 2019) and Danish BERT (Danish BERT, 2019/2020), however, Ælæctra is less than one third the size, and uses significantly fewer computational resources to pretrain and instantiate. For a full description of the evaluation and specification of the model read the thesis: 'Ælæctra - A Step Towards More Efficient Danish Natural Language Processing'.", "### Pretraining\n\n\nTo pretrain Ælæctra it is recommended to build a Docker Container from the Dockerfile. Next, simply follow the pretraining notebooks\n\n\nThe pretraining was done by utilizing a single NVIDIA Tesla V100 GPU with 16 GiB, endowed by the Danish data company KMD. The pretraining took approximately 4 days and 9.5 hours for both the cased and uncased model", "### Fine-tuning\n\n\nTo fine-tune any Ælæctra model follow the fine-tuning notebooks", "### References\n\n\nClark, K., Luong, M.-T., Le, Q. V., & Manning, C. D. (2020). ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Generators. ArXiv:2003.10555 [Cs]. URL\n\n\nDanish BERT. (2020). BotXO. URL (Original work published 2019)\n\n\nDevlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. ArXiv:1810.04805 [Cs]. URL\n\n\nHvingelby, R., Pauli, A. B., Barrett, M., Rosted, C., Lidegaard, L. M., & Søgaard, A. (2020). DaNE: A Named Entity Resource for Danish. Proceedings of the 12th Language Resources and Evaluation Conference, 4597–4604. URL\n\n\nStrømberg-Derczynski, L., Baglini, R., Christiansen, M. H., Ciosici, M. R., Dalsgaard, J. A., Fusaroli, R., Henrichsen, P. J., Hvingelby, R., Kirkedal, A., Kjeldsen, A. S., Ladefoged, C., Nielsen, F. Å., Petersen, M. L., Rystrøm, J. H., & Varab, D. (2020). The Danish Gigaword Project. ArXiv:2005.03521 [Cs]. URL", "#### Acknowledgements\n\n\nAs the majority of this repository is build upon the works by the team at Google who created ELECTRA, a HUGE thanks to them is in order.\n\n\nA Giga thanks also goes out to the incredible people who collected The Danish Gigaword Corpus (Strømberg-Derczynski et al., 2020).\n\n\nFurthermore, I would like to thank my supervisor Riccardo Fusaroli for the support with the thesis, and a special thanks goes out to Kenneth Enevoldsen for his continuous feedback.\n\n\nLastly, i would like to thank KMD, my colleagues from KMD, and my peers and co-students from Cognitive Science for encouriging me to keep on working hard and holding my head up high!", "#### Contact\n\n\nFor help or further information feel free to connect with the author Malte Højmark-Bertelsen on hjb@URL or any of the following platforms:\n\n\n[<img align=\"left\" alt=\"MalteHB | Twitter\" width=\"22px\" src=\"URL />](URL)\n[<img align=\"left\" alt=\"MalteHB | LinkedIn\" width=\"22px\" src=\"URL />](URL)\n[<img align=\"left\" alt=\"MalteHB | Instagram\" width=\"22px\" src=\"URL />](URL)" ]
[ 102, 165, 88, 24, 370, 166, 141 ]
[ "passage: TAGS\n#transformers #pytorch #tf #electra #pretraining #ælæctra #danish #ELECTRA-Small #replaced token detection #da #dataset-DAGW #arxiv-2003.10555 #arxiv-1810.04805 #arxiv-2005.03521 #license-mit #co2_eq_emissions #endpoints_compatible #region-us \n### Evaluation of current Danish Language Models\n\n\nÆlæctra, Danish BERT (DaBERT) and multilingual BERT (mBERT) were evaluated:\n\n\n\nOn DaNE (Hvingelby et al., 2020), Ælæctra scores slightly worse than both cased and uncased Multilingual BERT (Devlin et al., 2019) and Danish BERT (Danish BERT, 2019/2020), however, Ælæctra is less than one third the size, and uses significantly fewer computational resources to pretrain and instantiate. For a full description of the evaluation and specification of the model read the thesis: 'Ælæctra - A Step Towards More Efficient Danish Natural Language Processing'.### Pretraining\n\n\nTo pretrain Ælæctra it is recommended to build a Docker Container from the Dockerfile. Next, simply follow the pretraining notebooks\n\n\nThe pretraining was done by utilizing a single NVIDIA Tesla V100 GPU with 16 GiB, endowed by the Danish data company KMD. The pretraining took approximately 4 days and 9.5 hours for both the cased and uncased model### Fine-tuning\n\n\nTo fine-tune any Ælæctra model follow the fine-tuning notebooks" ]
[ -0.07285591959953308, -0.03590315580368042, -0.0041842409409582615, 0.057696208357810974, 0.006664058193564415, -0.015139183960855007, 0.04638386517763138, 0.04812269285321236, -0.05444138124585152, 0.12119071185588837, 0.039025891572237015, -0.0074974121525883675, 0.0762123316526413, 0.10356322675943375, 0.03660363703966141, -0.27654343843460083, 0.09944335371255875, -0.0128602534532547, 0.03350389748811722, 0.04745142161846161, 0.15119516849517822, -0.13561247289180756, 0.04113752394914627, 0.014498535543680191, -0.04165660962462425, 0.008519233204424381, -0.08688558638095856, -0.045276347547769547, 0.12089993059635162, 0.04250701144337654, 0.098998062312603, 0.08732954412698746, 0.09174152463674545, -0.14800260961055756, 0.0014739905018359423, 0.016868913546204567, 0.02717968262732029, 0.0552121177315712, 0.018106918781995773, 0.12981535494327545, 0.1351073533296585, -0.06881437450647354, 0.1000422015786171, -0.028243402019143105, -0.05302131921052933, -0.05771812051534653, -0.04411916062235832, 0.00048166068154387176, 0.05446730554103851, 0.027191393077373505, -0.03544295206665993, 0.14905722439289093, -0.050264135003089905, 0.03630755841732025, 0.07017714530229568, -0.3076241910457611, -0.07200922071933746, 0.10070611536502838, 0.07968659698963165, 0.019682567566633224, -0.09865659475326538, -0.015451204963028431, 0.011822615750133991, 0.030882712453603745, 0.05317044258117676, 0.013732178136706352, -0.04414147511124611, -0.06999614834785461, -0.12548649311065674, 0.04599304869771004, 0.24969463050365448, 0.00199040025472641, -0.07559052854776382, -0.11299712210893631, -0.07938772439956665, -0.06845815479755402, 0.0057949041947722435, -0.0756198838353157, 0.03709600865840912, -0.03991994634270668, 0.12251538038253784, -0.018344640731811523, -0.1450922191143036, 0.049235690385103226, -0.10766913741827011, 0.16521519422531128, 0.05244826897978783, 0.004856342449784279, 0.10491568595170975, 0.09496147185564041, -0.04011833295226097, -0.09935500472784042, -0.058378398418426514, -0.06711983680725098, -0.13104474544525146, -0.07316124439239502, -0.015718411654233932, -0.1299777328968048, -0.07371259480714798, 0.21669456362724304, 0.022120684385299683, 0.048997923731803894, 0.005858846008777618, 0.007285141386091709, 0.09473175555467606, 0.12218408286571503, -0.03248724341392517, -0.06584685295820236, -0.016972478479146957, 0.06392406672239304, 0.05832501873373985, -0.015702247619628906, -0.021738627925515175, -0.08623693883419037, 0.04767920449376106, -0.024116473272442818, -0.08727937936782837, 0.033784739673137665, -0.05446089059114456, -0.07907860726118088, 0.14871709048748016, -0.12082573771476746, -0.023260321468114853, -0.036299895495176315, -0.06248446926474571, 0.050050243735313416, 0.0197548046708107, 0.027573702856898308, -0.07271011918783188, 0.15130141377449036, -0.03821040317416191, -0.05403133109211922, -0.046708934009075165, -0.09322945773601532, 0.01627412624657154, -0.05432724207639694, -0.01282269973307848, -0.10729534178972244, -0.07349645346403122, -0.01338171772658825, 0.07779355347156525, -0.04474775120615959, -0.09250899404287338, -0.03575589507818222, 0.0056219203397631645, -0.0025273540522903204, -0.06598395109176636, 0.0904773473739624, -0.009546025656163692, 0.015417921356856823, -0.025478029623627663, 0.047985728830099106, -0.05249913036823273, 0.017877893522381783, -0.09897491335868835, -0.01950126700103283, -0.21651920676231384, 0.008840464055538177, -0.11108837276697159, -0.06707827746868134, -0.11260276287794113, -0.053308840841054916, -0.11200515925884247, 0.028706498444080353, 0.04509801045060158, 0.057820986956357956, -0.1801590770483017, 0.024857303127646446, 0.057571880519390106, -0.1208510547876358, 0.0014248854713514447, 0.14215849339962006, -0.047373197972774506, 0.06844624876976013, 0.06315529346466064, 0.1132303848862648, 0.01053939014673233, -0.2343331277370453, -0.05850052088499069, -0.006009985227137804, 0.024784844368696213, 0.07773439586162567, 0.041472673416137695, 0.021334780380129814, 0.066809743642807, 0.019570134580135345, -0.05084797367453575, -0.08430586010217667, -0.010227938182651997, -0.03397753834724426, 0.01450591441243887, -0.03679206967353821, -0.017930403351783752, 0.018177617341279984, 0.009130516089498997, -0.05657759681344032, -0.10421472787857056, 0.04992473125457764, 0.11522310972213745, -0.07210173457860947, 0.009149977006018162, -0.06130068376660347, -0.001924946904182434, -0.0434894859790802, -0.05913533642888069, -0.09999045729637146, -0.12222793698310852, 0.1137845516204834, -0.048046987503767014, 0.03321904316544533, 0.16608799993991852, 0.03655215725302696, 0.08984813839197159, -0.042480990290641785, 0.0181821770966053, -0.052461739629507065, -0.033259496092796326, -0.09899373352527618, -0.07010140269994736, -0.0013335270341485739, -0.048859044909477234, 0.014142204076051712, -0.08032602816820145, 0.03139857202768326, 0.06483124196529388, 0.07477489113807678, -0.00853070616722107, -0.03438103571534157, -0.052148424088954926, -0.03143244609236717, -0.04310862720012665, -0.00990181602537632, 0.01572331041097641, 0.002096959389746189, 0.0026865159161388874, 0.06165102869272232, -0.12506987154483795, -0.07225476950407028, 0.09431681782007217, 0.07811713218688965, -0.03813014551997185, -0.09163874387741089, -0.07186729460954666, -0.03716544806957245, -0.08992418646812439, -0.07847145944833755, 0.24484708905220032, 0.0628090500831604, 0.09908599406480789, -0.10550875216722488, -0.08277780562639236, 0.008551573380827904, 0.053259510546922684, -0.09590025991201401, 0.06441594660282135, 0.08795781433582306, -0.023411985486745834, 0.005540481768548489, 0.015037300065159798, 0.06919441372156143, 0.08796141296625137, -0.004221673589199781, -0.07772186398506165, 0.02497783489525318, -0.0023902100510895252, -0.05143481492996216, 0.13688713312149048, -0.037196286022663116, 0.020795198157429695, 0.03376375138759613, 0.027335312217473984, 0.047752026468515396, -0.07191888988018036, 0.03171466290950775, 0.013970022089779377, -0.0106126694008708, 0.07534180581569672, -0.002663335995748639, -0.023989830166101456, 0.07976929843425751, 0.021198641508817673, -0.0067383586429059505, -0.06141792610287666, -0.0032479469664394855, -0.030731210485100746, 0.14830374717712402, -0.07470470666885376, -0.210788294672966, -0.09987299889326096, 0.05627791956067085, -0.027767153456807137, -0.006163684651255608, 0.007627064827829599, -0.017352165654301643, -0.15856195986270905, -0.12542001903057098, 0.1644831746816635, -0.03171176463365555, -0.020171457901597023, 0.05420612171292305, -0.035490117967128754, -0.008659602142870426, -0.1590094417333603, 0.0003779926337301731, -0.0340130589902401, -0.03960726037621498, 0.03260877728462219, -0.022500066086649895, 0.06656460464000702, 0.03941870108246803, -0.058793988078832626, -0.05501118674874306, 0.01654556207358837, 0.20947377383708954, -0.04175815358757973, 0.13636408746242523, 0.11009732633829117, -0.03942158818244934, 0.024867050349712372, 0.16690368950366974, 0.031280141323804855, -0.10562501102685928, 0.02977118454873562, 0.057732369750738144, 0.006085559725761414, -0.20856139063835144, -0.07112694531679153, -0.03146698698401451, -0.06176336109638214, 0.1564176231622696, 0.05521848425269127, -0.14108368754386902, 0.0672333613038063, -0.06596431881189346, 0.06327475607395172, 0.09077407419681549, 0.06753667443990707, 0.11550034582614899, 0.007043860387057066, 0.1290048509836197, -0.01117282547056675, -0.06866883486509323, 0.10382837802171707, 0.06045015528798103, 0.1524694561958313, -0.06209613382816315, 0.056537847965955734, 0.03567441925406456, 0.011704900301992893, 0.017001217231154442, 0.10554734617471695, -0.04680256173014641, 0.01814299076795578, -0.056827396154403687, -0.03697376698255539, -0.07309970259666443, 0.0046949987299740314, -0.011592566967010498, -0.020324435085058212, -0.03910801559686661, 0.039197102189064026, 0.05329978093504906, 0.20611101388931274, -0.007151399739086628, -0.13922683894634247, -0.111962229013443, 0.013462357223033905, -0.09949575364589691, -0.11180803924798965, 0.030870482325553894, 0.09344411641359329, -0.05088821053504944, 0.08478784561157227, -0.040482066571712494, 0.04321771115064621, -0.11062820255756378, 0.020145859569311142, 0.019855981692671776, 0.057347994297742844, -0.016298066824674606, 0.045995622873306274, -0.18246395885944366, 0.08807507902383804, 0.029520811513066292, 0.12731504440307617, -0.05887993425130844, 0.026568960398435593, -0.05234111100435257, 0.07224859297275543, 0.11501973122358322, -0.0026039930526167154, -0.028086718171834946, -0.0067409793846309185, -0.16461028158664703, 0.036115169525146484, 0.04637649282813072, -0.06066769361495972, 0.06368055194616318, -0.002563132205978036, 0.041112806648015976, -0.017351696267724037, -0.07789592444896698, -0.12798820436000824, -0.1643359214067459, 0.06984727829694748, -0.07674319297075272, -0.03094831295311451, -0.05295153707265854, -0.08403441309928894, -0.15702953934669495, 0.21014095842838287, -0.1414257287979126, -0.0662451684474945, -0.12324652075767517, 0.06551938503980637, 0.15430869162082672, -0.030932091176509857, 0.01434109266847372, -0.01812770962715149, 0.1434188187122345, -0.116947241127491, -0.058731574565172195, 0.018076643347740173, -0.043188150972127914, -0.12559321522712708, -0.04908663406968117, 0.12168479710817337, 0.11655968427658081, 0.04171230271458626, 0.006342501845210791, 0.048737913370132446, -0.04629458487033844, -0.08386316895484924, -0.019770922139286995, 0.03828607499599457, 0.04014258831739426, -0.06694404035806656, -0.13317479193210602, -0.06632480770349503, -0.027604414150118828, -0.03232141211628914, 0.012775109149515629, 0.2705841064453125, -0.053657375276088715, 0.09886950254440308, 0.19322402775287628, -0.03961262106895447, -0.2296011745929718, 0.04502430558204651, 0.11994241178035736, 0.05721808224916458, -0.04633773863315582, -0.16894929111003876, 0.13442866504192352, 0.15420231223106384, -0.00043859067955054343, -0.021454323083162308, -0.13380290567874908, -0.12143492698669434, 0.07344072312116623, 0.04664633795619011, 0.07173122465610504, -0.017610395327210426, 0.001624360796995461, 0.03399581462144852, -0.08394036442041397, 0.16897304356098175, 0.028697654604911804, 0.06366923451423645, 0.016134457662701607, 0.03129296377301216, 0.07286407053470612, -0.056954991072416306, 0.12875160574913025, 0.050946999341249466, 0.05497686192393303, -0.019400231540203094, 0.00148623320274055, 0.047693077474832535, -0.02415427938103676, 0.16453513503074646, 0.11189927160739899, -0.012236314825713634, -0.034684792160987854, -0.09192638099193573, -0.05331752821803093, 0.10600636899471283, -0.07680005580186844, -0.07619468122720718, -0.08099493384361267, 0.08542412519454956, 0.03750000521540642, 0.008475995622575283, 0.09922000765800476, -0.02961404249072075, -0.13198591768741608, 0.027415884658694267, 0.1934717893600464, 0.04492196440696716, 0.0313362218439579, 0.038310933858156204, 0.004744528792798519, 0.04564531520009041, -0.03215980902314186, 0.04664747416973114, 0.15532152354717255, -0.07804850488901138, 0.041599493473768234, -0.00832957774400711, -0.13019320368766785, -0.07312076538801193, 0.03410783037543297, -0.13497528433799744, -0.03789391741156578, 0.03170456737279892, 0.0065144868567585945, -0.05419208109378815, -0.044831063598394394, 0.14085665345191956, -0.060950011014938354, -0.015584797598421574, 0.027272632345557213, 0.042150482535362244, 0.08065671473741531, 0.11788207292556763, 0.009972352534532547, 0.023295538499951363, -0.0445631667971611, 0.1404649168252945, 0.09274589270353317, -0.1629069745540619, 0.013735822401940823, 0.05791601538658142, -0.11335635930299759, -0.06217275187373161, -0.08951879292726517, -0.031322214752435684, -0.04509550333023071, 0.00041480979416519403, 0.009228076785802841, -0.10580558329820633, 0.012489202432334423, -0.019790953025221825, 0.014553147368133068, -0.001997764455154538, -0.005017248447984457, 0.06572464108467102, -0.07082042098045349, 0.10739980638027191, -0.03594294935464859, 0.08306127041578293, 0.021699300035834312, 0.10095605254173279, -0.027051854878664017, -0.018216334283351898, -0.02020011655986309, 0.04243683069944382, -0.004952277056872845, -0.06235412135720253, 0.05056602507829666, 0.00877853762358427, 0.006384063977748156, -0.0025402468163520098, 0.009928446263074875, -0.03435533866286278, -0.020554520189762115, 0.008663821965456009, -0.05426705256104469, 0.013722189702093601, -0.04698227718472481, -0.01093924418091774, -0.0404006764292717, -0.036528173834085464, 0.03908957168459892, -0.09928885847330093, 0.1063573956489563, -0.05527816712856293, 0.02803751453757286, 0.03156810253858566, -0.048433270305395126, 0.04658529907464981, -0.006725005339831114, 0.1283034384250641, 0.00774621544405818, -0.01376672275364399, 0.002325204433873296, 0.012642066925764084, 0.008553286083042622, -0.03270246461033821, 0.12021210789680481, -0.09410867840051651, -0.005322400480508804, 0.014327362179756165, -0.09238848090171814, -0.06338157504796982, 0.03800533711910248, 0.00461878115311265, 0.010309562087059021, 0.11406102031469345, -0.02682262659072876, -0.03369245305657387, -0.1057191789150238, 0.008902941830456257, 0.0500834695994854, -0.07469798624515533, -0.01188063807785511, -0.0658382698893547, 0.06182572618126869, -0.06979097425937653, 0.16415193676948547, 0.009766088798642159, 0.010669510811567307, 0.056224312633275986, -0.10482962429523468, -0.1767573058605194, 0.040015850216150284, 0.11728134751319885, 0.02348344400525093, 0.04641081020236015, -0.05260792747139931, -0.03602065145969391, 0.01390128768980503, -0.0008365729590877891, 0.15036632120609283, 0.08370421081781387, 0.02912227064371109, 0.05772558972239494, -0.017908161506056786, -0.134214848279953, -0.11596719920635223, 0.13823695480823517, -0.05544135719537735, 0.018832264468073845, 0.015800172463059425, 0.10053551197052002, 0.06761088967323303, -0.14410069584846497, 0.06079334020614624, -0.030529074370861053, -0.08994733542203903, -0.11554019153118134, -0.08664018660783768, -0.04275311902165413, 0.07318401336669922, 0.020827913656830788, -0.1592341959476471, -0.006280933041125536, -0.05392180755734444, 0.0662752315402031, -0.01434267871081829, 0.12963999807834625, -0.12921787798404694, -0.04079534485936165, 0.07102815061807632, 0.07187692821025848, 0.030106080695986748, 0.006015196908265352, -0.03321677818894386, -0.04328765720129013, 0.10667050629854202, 0.06023626774549484, -0.003830954432487488, 0.05826409533619881, -0.040190838277339935, 0.06291978061199188, -0.03348099812865257, -0.02949201688170433, -0.06897179037332535, 0.023552371188998222, 0.04676437750458717, 0.03120480850338936, 0.008242134936153889, -0.027709532529115677, 0.14384976029396057, 0.023081516847014427, -0.08381649851799011, -0.10715222358703613, 0.030476931482553482, 0.06523450464010239, 0.08147480338811874, 0.03679205849766731, -0.08013344556093216, -0.044256795197725296, 0.22717750072479248, 0.07243553549051285, -0.026169084012508392, -0.026019321754574776, 0.0635373443365097, 0.00012070676166331396, 0.030152322724461555, 0.08715797960758209, 0.025856828317046165, 0.15150651335716248, -0.060913391411304474, 0.022319398820400238, -0.04014698415994644, 0.020403878763318062, -0.050327494740486145, 0.140864759683609, -0.0038289169315248728, 0.022080762311816216, -0.11757650226354599, -0.03185335919260979, 0.10373091697692871, -0.2852540612220764, 0.008587008342146873, -0.08973267674446106, -0.133645161986351, -0.0034190225414931774, -0.017126351594924927, -0.05951335281133652, 0.02149227447807789, -0.02467162162065506, -0.016014231368899345, 0.16038674116134644, 0.0059140753000974655, -0.059214092791080475, 0.053903695195913315, 0.09381181746721268, 0.0012330699246376753, 0.17372359335422516, 0.019786523655056953, 0.07079238444566727, 0.04766811802983284, -0.01988382078707218, -0.06737552583217621, 0.056735482066869736, 0.028834287077188492, -0.012759615667164326, 0.06520651280879974, 0.1197160929441452, 0.009949713945388794, 0.1096477285027504, 0.06917854398488998, -0.09078752994537354, 0.023445570841431618, 0.10318397730588913, -0.09453804790973663, -0.03082185797393322, 0.1666685938835144, -0.07181563228368759, 0.1377585530281067, 0.1335071623325348, 0.034756772220134735, -0.06426402181386948, -0.12224578857421875, 0.04493571072816849, -0.009378206916153431, 0.21619735658168793, 0.03575406223535538, -0.15592992305755615, 0.013851038180291653, -0.010192623361945152, 0.04999274015426636, -0.17719051241874695, -0.03623776137828827, -0.030895326286554337, -0.018428444862365723, -0.05318402498960495, 0.10200797021389008, -0.015609519556164742, 0.025866182520985603, -0.046317312866449356, 0.04716334491968155, -0.006308546289801598, 0.0424048975110054, -0.1009441465139389, -0.045651983469724655 ]
null
null
transformers
# Ælæctra - Finetuned for Named Entity Recognition on the [DaNE dataset](https://danlp.alexandra.dk/304bd159d5de/datasets/ddt.zip) (Hvingelby et al., 2020) by Malte Højmark-Bertelsen. **Ælæctra** is a Danish Transformer-based language model created to enhance the variety of Danish NLP resources with a more efficient model compared to previous state-of-the-art (SOTA) models. Ælæctra was pretrained with the ELECTRA-Small (Clark et al., 2020) pretraining approach by using the Danish Gigaword Corpus (Strømberg-Derczynski et al., 2020) and evaluated on Named Entity Recognition (NER) tasks. Since NER only presents a limited picture of Ælæctra's capabilities I am very interested in further evaluations. Therefore, if you employ it for any task, feel free to hit me up your findings! Ælæctra was, as mentioned, created to enhance the Danish NLP capabilties and please do note how this GitHub still does not support the Danish characters "*Æ, Ø and Å*" as the title of this repository becomes "*-l-ctra*". How ironic.🙂 Here is an example on how to load the finetuned Ælæctra-uncased model for Named Entity Recognition in [PyTorch](https://pytorch.org/) using the [🤗Transformers](https://github.com/huggingface/transformers) library: ```python from transformers import AutoTokenizer, AutoModelForTokenClassification tokenizer = AutoTokenizer.from_pretrained("Maltehb/-l-ctra-danish-electra-small-uncased-ner-dane") model = AutoModelForTokenClassification.from_pretrained("Maltehb/-l-ctra-danish-electra-small-uncased-ner-dane") ``` ### Evaluation of current Danish Language Models Ælæctra, Danish BERT (DaBERT) and multilingual BERT (mBERT) were evaluated: | Model | Layers | Hidden Size | Params | AVG NER micro-f1 (DaNE-testset) | Average Inference Time (Sec/Epoch) | Download | | --- | --- | --- | --- | --- | --- | --- | | Ælæctra Uncased | 12 | 256 | 13.7M | 78.03 (SD = 1.28) | 10.91 | [Link for model](https://www.dropbox.com/s/cag7prs1nvdchqs/%C3%86l%C3%A6ctra.zip?dl=0) | | Ælæctra Cased | 12 | 256 | 14.7M | 80.08 (SD = 0.26) | 10.92 | [Link for model](https://www.dropbox.com/s/cag7prs1nvdchqs/%C3%86l%C3%A6ctra.zip?dl=0) | | DaBERT | 12 | 768 | 110M | 84.89 (SD = 0.64) | 43.03 | [Link for model](https://www.dropbox.com/s/19cjaoqvv2jicq9/danish_bert_uncased_v2.zip?dl=1) | | mBERT Uncased | 12 | 768 | 167M | 80.44 (SD = 0.82) | 72.10 | [Link for model](https://storage.googleapis.com/bert_models/2018_11_03/multilingual_L-12_H-768_A-12.zip) | | mBERT Cased | 12 | 768 | 177M | 83.79 (SD = 0.91) | 70.56 | [Link for model](https://storage.googleapis.com/bert_models/2018_11_23/multi_cased_L-12_H-768_A-12.zip) | On [DaNE](https://danlp.alexandra.dk/304bd159d5de/datasets/ddt.zip) (Hvingelby et al., 2020) without the *MISC-tag*, Ælæctra scores slightly worse than both cased and uncased Multilingual BERT (Devlin et al., 2019) and Danish BERT (Danish BERT, 2019/2020), however, Ælæctra is less than one third the size, and uses significantly fewer computational resources to pretrain and instantiate. ### Pretraining To pretrain Ælæctra it is recommended to build a Docker Container from the [Dockerfile](https://github.com/MalteHB/Ælæctra/tree/master/notebooks/fine-tuning/). Next, simply follow the [pretraining notebooks](https://github.com/MalteHB/Ælæctra/tree/master/infrastructure/Dockerfile/) The pretraining was done by utilizing a single NVIDIA Tesla V100 GPU with 16 GiB, endowed by the Danish data company [KMD](https://www.kmd.dk/). The pretraining took approximately 4 days and 9.5 hours for both the cased and uncased model ### Fine-tuning To fine-tune any Ælæctra model follow the [fine-tuning notebooks](https://github.com/MalteHB/Ælæctra/tree/master/notebooks/fine-tuning/) ### References Clark, K., Luong, M.-T., Le, Q. V., & Manning, C. D. (2020). ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Generators. ArXiv:2003.10555 [Cs]. http://arxiv.org/abs/2003.10555 Danish BERT. (2020). BotXO. https://github.com/botxo/nordic_bert (Original work published 2019) Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. ArXiv:1810.04805 [Cs]. http://arxiv.org/abs/1810.04805 Hvingelby, R., Pauli, A. B., Barrett, M., Rosted, C., Lidegaard, L. M., & Søgaard, A. (2020). DaNE: A Named Entity Resource for Danish. Proceedings of the 12th Language Resources and Evaluation Conference, 4597–4604. https://www.aclweb.org/anthology/2020.lrec-1.565 Strømberg-Derczynski, L., Baglini, R., Christiansen, M. H., Ciosici, M. R., Dalsgaard, J. A., Fusaroli, R., Henrichsen, P. J., Hvingelby, R., Kirkedal, A., Kjeldsen, A. S., Ladefoged, C., Nielsen, F. Å., Petersen, M. L., Rystrøm, J. H., & Varab, D. (2020). The Danish Gigaword Project. ArXiv:2005.03521 [Cs]. http://arxiv.org/abs/2005.03521 #### Acknowledgements As the majority of this repository is build upon [the works](https://github.com/google-research/electra) by the team at Google who created ELECTRA, a HUGE thanks to them is in order. A Giga thanks also goes out to the incredible people who collected The Danish Gigaword Corpus (Strømberg-Derczynski et al., 2020). Furthermore, I would like to thank my supervisor [Riccardo Fusaroli](https://github.com/fusaroli) for the support with the thesis, and a special thanks goes out to [Kenneth Enevoldsen](https://github.com/KennethEnevoldsen) for his continuous feedback. Lastly, i would like to thank KMD, my colleagues from KMD, and my peers and co-students from Cognitive Science for encouriging me to keep on working hard and holding my head up high! #### Contact For help or further information feel free to connect with the author Malte Højmark-Bertelsen on [[email protected]](mailto:[email protected]?subject=[GitHub]%20ÆlæctraUncasedNER) or any of the following platforms: [<img align="left" alt="MalteHB | Twitter" width="22px" src="https://cdn.jsdelivr.net/npm/simple-icons@v3/icons/twitter.svg" />][twitter] [<img align="left" alt="MalteHB | LinkedIn" width="22px" src="https://cdn.jsdelivr.net/npm/simple-icons@v3/icons/linkedin.svg" />][linkedin] [<img align="left" alt="MalteHB | Instagram" width="22px" src="https://cdn.jsdelivr.net/npm/simple-icons@v3/icons/instagram.svg" />][instagram] <br /> </details> [twitter]: https://twitter.com/malteH_B [instagram]: https://www.instagram.com/maltemusen/ [linkedin]: https://www.linkedin.com/in/malte-h%C3%B8jmark-bertelsen-9a618017b/
{"language": "da", "license": "mit", "tags": ["\u00e6l\u00e6ctra", "pytorch", "danish", "ELECTRA-Small", "replaced token detection"], "datasets": ["DAGW"], "metrics": ["f1"], "widget": [{"text": "Chili Jensen, som bor p\u00e5 Danmarksgade 12, k\u00f8ber chilifrugter fra Netto."}]}
token-classification
Maltehb/aelaectra-danish-electra-small-uncased-ner-dane
[ "transformers", "pytorch", "tf", "electra", "token-classification", "ælæctra", "danish", "ELECTRA-Small", "replaced token detection", "da", "dataset:DAGW", "arxiv:2003.10555", "arxiv:1810.04805", "arxiv:2005.03521", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:04+00:00
[ "2003.10555", "1810.04805", "2005.03521" ]
[ "da" ]
TAGS #transformers #pytorch #tf #electra #token-classification #ælæctra #danish #ELECTRA-Small #replaced token detection #da #dataset-DAGW #arxiv-2003.10555 #arxiv-1810.04805 #arxiv-2005.03521 #license-mit #autotrain_compatible #endpoints_compatible #region-us
Ælæctra - Finetuned for Named Entity Recognition on the DaNE dataset (Hvingelby et al., 2020) by Malte Højmark-Bertelsen. ========================================================================================================================= Ælæctra is a Danish Transformer-based language model created to enhance the variety of Danish NLP resources with a more efficient model compared to previous state-of-the-art (SOTA) models. Ælæctra was pretrained with the ELECTRA-Small (Clark et al., 2020) pretraining approach by using the Danish Gigaword Corpus (Strømberg-Derczynski et al., 2020) and evaluated on Named Entity Recognition (NER) tasks. Since NER only presents a limited picture of Ælæctra's capabilities I am very interested in further evaluations. Therefore, if you employ it for any task, feel free to hit me up your findings! Ælæctra was, as mentioned, created to enhance the Danish NLP capabilties and please do note how this GitHub still does not support the Danish characters "*Æ, Ø and Å*" as the title of this repository becomes "*-l-ctra*". How ironic. Here is an example on how to load the finetuned Ælæctra-uncased model for Named Entity Recognition in PyTorch using the Transformers library: ### Evaluation of current Danish Language Models Ælæctra, Danish BERT (DaBERT) and multilingual BERT (mBERT) were evaluated: On DaNE (Hvingelby et al., 2020) without the *MISC-tag*, Ælæctra scores slightly worse than both cased and uncased Multilingual BERT (Devlin et al., 2019) and Danish BERT (Danish BERT, 2019/2020), however, Ælæctra is less than one third the size, and uses significantly fewer computational resources to pretrain and instantiate. ### Pretraining To pretrain Ælæctra it is recommended to build a Docker Container from the Dockerfile. Next, simply follow the pretraining notebooks The pretraining was done by utilizing a single NVIDIA Tesla V100 GPU with 16 GiB, endowed by the Danish data company KMD. The pretraining took approximately 4 days and 9.5 hours for both the cased and uncased model ### Fine-tuning To fine-tune any Ælæctra model follow the fine-tuning notebooks ### References Clark, K., Luong, M.-T., Le, Q. V., & Manning, C. D. (2020). ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Generators. ArXiv:2003.10555 [Cs]. URL Danish BERT. (2020). BotXO. URL (Original work published 2019) Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. ArXiv:1810.04805 [Cs]. URL Hvingelby, R., Pauli, A. B., Barrett, M., Rosted, C., Lidegaard, L. M., & Søgaard, A. (2020). DaNE: A Named Entity Resource for Danish. Proceedings of the 12th Language Resources and Evaluation Conference, 4597–4604. URL Strømberg-Derczynski, L., Baglini, R., Christiansen, M. H., Ciosici, M. R., Dalsgaard, J. A., Fusaroli, R., Henrichsen, P. J., Hvingelby, R., Kirkedal, A., Kjeldsen, A. S., Ladefoged, C., Nielsen, F. Å., Petersen, M. L., Rystrøm, J. H., & Varab, D. (2020). The Danish Gigaword Project. ArXiv:2005.03521 [Cs]. URL #### Acknowledgements As the majority of this repository is build upon the works by the team at Google who created ELECTRA, a HUGE thanks to them is in order. A Giga thanks also goes out to the incredible people who collected The Danish Gigaword Corpus (Strømberg-Derczynski et al., 2020). Furthermore, I would like to thank my supervisor Riccardo Fusaroli for the support with the thesis, and a special thanks goes out to Kenneth Enevoldsen for his continuous feedback. Lastly, i would like to thank KMD, my colleagues from KMD, and my peers and co-students from Cognitive Science for encouriging me to keep on working hard and holding my head up high! #### Contact For help or further information feel free to connect with the author Malte Højmark-Bertelsen on hjb@URL or any of the following platforms: [<img align="left" alt="MalteHB | Twitter" width="22px" src="URL />](URL) [<img align="left" alt="MalteHB | LinkedIn" width="22px" src="URL />](URL) [<img align="left" alt="MalteHB | Instagram" width="22px" src="URL />](URL)
[ "### Evaluation of current Danish Language Models\n\n\nÆlæctra, Danish BERT (DaBERT) and multilingual BERT (mBERT) were evaluated:\n\n\n\nOn DaNE (Hvingelby et al., 2020) without the *MISC-tag*, Ælæctra scores slightly worse than both cased and uncased Multilingual BERT (Devlin et al., 2019) and Danish BERT (Danish BERT, 2019/2020), however, Ælæctra is less than one third the size, and uses significantly fewer computational resources to pretrain and instantiate.", "### Pretraining\n\n\nTo pretrain Ælæctra it is recommended to build a Docker Container from the Dockerfile. Next, simply follow the pretraining notebooks\n\n\nThe pretraining was done by utilizing a single NVIDIA Tesla V100 GPU with 16 GiB, endowed by the Danish data company KMD. The pretraining took approximately 4 days and 9.5 hours for both the cased and uncased model", "### Fine-tuning\n\n\nTo fine-tune any Ælæctra model follow the fine-tuning notebooks", "### References\n\n\nClark, K., Luong, M.-T., Le, Q. V., & Manning, C. D. (2020). ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Generators. ArXiv:2003.10555 [Cs]. URL\n\n\nDanish BERT. (2020). BotXO. URL (Original work published 2019)\n\n\nDevlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. ArXiv:1810.04805 [Cs]. URL\n\n\nHvingelby, R., Pauli, A. B., Barrett, M., Rosted, C., Lidegaard, L. M., & Søgaard, A. (2020). DaNE: A Named Entity Resource for Danish. Proceedings of the 12th Language Resources and Evaluation Conference, 4597–4604. URL\n\n\nStrømberg-Derczynski, L., Baglini, R., Christiansen, M. H., Ciosici, M. R., Dalsgaard, J. A., Fusaroli, R., Henrichsen, P. J., Hvingelby, R., Kirkedal, A., Kjeldsen, A. S., Ladefoged, C., Nielsen, F. Å., Petersen, M. L., Rystrøm, J. H., & Varab, D. (2020). The Danish Gigaword Project. ArXiv:2005.03521 [Cs]. URL", "#### Acknowledgements\n\n\nAs the majority of this repository is build upon the works by the team at Google who created ELECTRA, a HUGE thanks to them is in order.\n\n\nA Giga thanks also goes out to the incredible people who collected The Danish Gigaword Corpus (Strømberg-Derczynski et al., 2020).\n\n\nFurthermore, I would like to thank my supervisor Riccardo Fusaroli for the support with the thesis, and a special thanks goes out to Kenneth Enevoldsen for his continuous feedback.\n\n\nLastly, i would like to thank KMD, my colleagues from KMD, and my peers and co-students from Cognitive Science for encouriging me to keep on working hard and holding my head up high!", "#### Contact\n\n\nFor help or further information feel free to connect with the author Malte Højmark-Bertelsen on hjb@URL or any of the following platforms:\n\n\n[<img align=\"left\" alt=\"MalteHB | Twitter\" width=\"22px\" src=\"URL />](URL)\n[<img align=\"left\" alt=\"MalteHB | LinkedIn\" width=\"22px\" src=\"URL />](URL)\n[<img align=\"left\" alt=\"MalteHB | Instagram\" width=\"22px\" src=\"URL />](URL)" ]
[ "TAGS\n#transformers #pytorch #tf #electra #token-classification #ælæctra #danish #ELECTRA-Small #replaced token detection #da #dataset-DAGW #arxiv-2003.10555 #arxiv-1810.04805 #arxiv-2005.03521 #license-mit #autotrain_compatible #endpoints_compatible #region-us \n", "### Evaluation of current Danish Language Models\n\n\nÆlæctra, Danish BERT (DaBERT) and multilingual BERT (mBERT) were evaluated:\n\n\n\nOn DaNE (Hvingelby et al., 2020) without the *MISC-tag*, Ælæctra scores slightly worse than both cased and uncased Multilingual BERT (Devlin et al., 2019) and Danish BERT (Danish BERT, 2019/2020), however, Ælæctra is less than one third the size, and uses significantly fewer computational resources to pretrain and instantiate.", "### Pretraining\n\n\nTo pretrain Ælæctra it is recommended to build a Docker Container from the Dockerfile. Next, simply follow the pretraining notebooks\n\n\nThe pretraining was done by utilizing a single NVIDIA Tesla V100 GPU with 16 GiB, endowed by the Danish data company KMD. The pretraining took approximately 4 days and 9.5 hours for both the cased and uncased model", "### Fine-tuning\n\n\nTo fine-tune any Ælæctra model follow the fine-tuning notebooks", "### References\n\n\nClark, K., Luong, M.-T., Le, Q. V., & Manning, C. D. (2020). ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Generators. ArXiv:2003.10555 [Cs]. URL\n\n\nDanish BERT. (2020). BotXO. URL (Original work published 2019)\n\n\nDevlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. ArXiv:1810.04805 [Cs]. URL\n\n\nHvingelby, R., Pauli, A. B., Barrett, M., Rosted, C., Lidegaard, L. M., & Søgaard, A. (2020). DaNE: A Named Entity Resource for Danish. Proceedings of the 12th Language Resources and Evaluation Conference, 4597–4604. URL\n\n\nStrømberg-Derczynski, L., Baglini, R., Christiansen, M. H., Ciosici, M. R., Dalsgaard, J. A., Fusaroli, R., Henrichsen, P. J., Hvingelby, R., Kirkedal, A., Kjeldsen, A. S., Ladefoged, C., Nielsen, F. Å., Petersen, M. L., Rystrøm, J. H., & Varab, D. (2020). The Danish Gigaword Project. ArXiv:2005.03521 [Cs]. URL", "#### Acknowledgements\n\n\nAs the majority of this repository is build upon the works by the team at Google who created ELECTRA, a HUGE thanks to them is in order.\n\n\nA Giga thanks also goes out to the incredible people who collected The Danish Gigaword Corpus (Strømberg-Derczynski et al., 2020).\n\n\nFurthermore, I would like to thank my supervisor Riccardo Fusaroli for the support with the thesis, and a special thanks goes out to Kenneth Enevoldsen for his continuous feedback.\n\n\nLastly, i would like to thank KMD, my colleagues from KMD, and my peers and co-students from Cognitive Science for encouriging me to keep on working hard and holding my head up high!", "#### Contact\n\n\nFor help or further information feel free to connect with the author Malte Højmark-Bertelsen on hjb@URL or any of the following platforms:\n\n\n[<img align=\"left\" alt=\"MalteHB | Twitter\" width=\"22px\" src=\"URL />](URL)\n[<img align=\"left\" alt=\"MalteHB | LinkedIn\" width=\"22px\" src=\"URL />](URL)\n[<img align=\"left\" alt=\"MalteHB | Instagram\" width=\"22px\" src=\"URL />](URL)" ]
[ 104, 135, 88, 24, 370, 166, 141 ]
[ "passage: TAGS\n#transformers #pytorch #tf #electra #token-classification #ælæctra #danish #ELECTRA-Small #replaced token detection #da #dataset-DAGW #arxiv-2003.10555 #arxiv-1810.04805 #arxiv-2005.03521 #license-mit #autotrain_compatible #endpoints_compatible #region-us \n### Evaluation of current Danish Language Models\n\n\nÆlæctra, Danish BERT (DaBERT) and multilingual BERT (mBERT) were evaluated:\n\n\n\nOn DaNE (Hvingelby et al., 2020) without the *MISC-tag*, Ælæctra scores slightly worse than both cased and uncased Multilingual BERT (Devlin et al., 2019) and Danish BERT (Danish BERT, 2019/2020), however, Ælæctra is less than one third the size, and uses significantly fewer computational resources to pretrain and instantiate.### Pretraining\n\n\nTo pretrain Ælæctra it is recommended to build a Docker Container from the Dockerfile. Next, simply follow the pretraining notebooks\n\n\nThe pretraining was done by utilizing a single NVIDIA Tesla V100 GPU with 16 GiB, endowed by the Danish data company KMD. The pretraining took approximately 4 days and 9.5 hours for both the cased and uncased model### Fine-tuning\n\n\nTo fine-tune any Ælæctra model follow the fine-tuning notebooks" ]
[ -0.0612727552652359, -0.040690552443265915, -0.0023051772732287645, 0.1008559837937355, 0.019258320331573486, 0.013035831041634083, 0.08609534800052643, 0.09918031096458435, -0.0035701473243534565, 0.1222895085811615, 0.06618358939886093, -0.024715058505535126, 0.09746762365102768, 0.10706969350576401, 0.04830749332904816, -0.2683316767215729, 0.10655777901411057, 0.00528870290145278, 0.04150305315852165, 0.04483414068818092, 0.13090823590755463, -0.12200869619846344, 0.06224216893315315, 0.01588965766131878, -0.06240323930978775, 0.00015905355394352227, -0.050758231431245804, -0.0563824363052845, 0.11137837171554565, 0.08747479319572449, 0.07835189998149872, 0.05380362644791603, 0.10115832835435867, -0.09041143208742142, -0.003203888889402151, 0.02561364881694317, 0.005855947267264128, 0.049732666462659836, 0.04283187538385391, 0.13338352739810944, 0.1399642825126648, -0.04047996550798416, 0.06837379187345505, -0.018894968554377556, -0.07724618911743164, -0.1365932673215866, -0.09044449776411057, 0.017835788428783417, 0.04656851291656494, 0.01703057624399662, -0.050053030252456665, 0.09903697669506073, -0.05878717079758644, 0.024008315056562424, 0.10350067913532257, -0.29790177941322327, -0.08186126500368118, 0.1729268580675125, 0.050251927226781845, -0.02415664680302143, -0.08960004895925522, 0.033063363283872604, 0.024324173107743263, 0.05963709205389023, 0.04232294112443924, 0.005254797637462616, 0.0006637985934503376, -0.017068393528461456, -0.10354720056056976, 0.008909051306545734, 0.16961301863193512, 0.0051999944262206554, -0.042296767234802246, -0.14639510214328766, -0.0827464908361435, -0.0945405513048172, -0.007033524569123983, -0.02031618356704712, 0.0019631327595561743, -0.028753627091646194, 0.06536321341991425, -0.012054854072630405, -0.11097124963998795, -0.003440306754782796, -0.12719009816646576, 0.14052259922027588, 0.07609818875789642, 0.029863255098462105, 0.08395326137542725, 0.10594259202480316, -0.1374722719192505, -0.10351219028234482, -0.07280971854925156, -0.07508198171854019, -0.15244649350643158, -0.014811635948717594, -0.0189571101218462, -0.07678951323032379, -0.04733630642294884, 0.2276826798915863, 0.016750739887356758, 0.03867337480187416, 0.06013473495841026, -0.019110921770334244, 0.04203850030899048, 0.15723395347595215, -0.09608384966850281, -0.07545721530914307, -0.019099999219179153, 0.060334499925374985, 0.06461205333471298, -0.027191167697310448, -0.040478650480508804, -0.09650540351867676, -0.009376995265483856, -0.035841312259435654, -0.06361442059278488, 0.06061377376317978, -0.05849936977028847, -0.05462336167693138, 0.16787615418434143, -0.10374537855386734, 0.0037787535693496466, -0.042533989995718, -0.05289480462670326, 0.031944047659635544, 0.0006485282792709768, -0.015207743272185326, -0.054469477385282516, 0.1254657804965973, -0.04592110961675644, -0.07800713181495667, -0.06526461243629456, -0.10580557584762573, 0.03094969503581524, -0.0034037544392049313, -0.02150484174489975, -0.10759218782186508, -0.1303476244211197, 0.01936723105609417, 0.08574136346578598, -0.0784807950258255, -0.04808346554636955, -0.00006305934948613867, 0.03364596888422966, 0.027970261871814728, -0.05320011451840401, 0.07051966339349747, -0.0046864962205290794, 0.030982598662376404, 0.04245876520872116, 0.09726539254188538, -0.06395001709461212, 0.010612630285322666, -0.08624789863824844, 0.011174939572811127, -0.23046697676181793, 0.02544691599905491, -0.09341897815465927, -0.08730706572532654, -0.08119060844182968, -0.05001194402575493, -0.09624847769737244, 0.02782561257481575, 0.0792398452758789, 0.04252582788467407, -0.14789807796478271, -0.011331203393638134, 0.057827915996313095, -0.09729321300983429, 0.012624881230294704, 0.1717255711555481, -0.014059162698686123, -0.011397196911275387, 0.06842631846666336, 0.11008688062429428, 0.006336639169603586, -0.2110767811536789, -0.11238887906074524, 0.006530409213155508, 0.011543327942490578, 0.07177522778511047, 0.082908995449543, 0.030062731355428696, 0.06838348507881165, 0.04693857580423355, -0.007658002898097038, -0.03506751358509064, -0.017197541892528534, -0.045098744332790375, -0.015457719564437866, -0.019057363271713257, 0.018645983189344406, 0.057746659964323044, 0.015114511363208294, -0.06966347992420197, -0.12897107005119324, -0.027832314372062683, 0.133751779794693, -0.11063926666975021, 0.0038510344456881285, -0.08032471686601639, 0.05151225998997688, -0.09141108393669128, -0.0029050682205706835, -0.059203606098890305, -0.13717037439346313, 0.07470516115427017, -0.08612252026796341, -0.025046277791261673, 0.1303175836801529, 0.04533595219254494, 0.08359303325414658, -0.092287078499794, 0.05837384983897209, -0.05919022485613823, -0.05762764811515808, -0.08260335773229599, -0.046719782054424286, -0.02854369394481182, -0.03832980617880821, -0.007687232457101345, -0.05570993199944496, 0.04150649532675743, 0.10272186249494553, 0.07735683023929596, -0.03333486616611481, -0.038270119577646255, -0.04551362246274948, -0.04424716904759407, -0.03608143702149391, -0.05216765031218529, 0.019170772284269333, -0.00850018858909607, 0.04154038801789284, 0.09303935617208481, -0.1102149486541748, -0.09081023186445236, 0.13382594287395477, 0.16466066241264343, -0.024948865175247192, -0.023605262860655785, -0.04656235873699188, -0.034963835030794144, -0.10904403775930405, -0.07436202466487885, 0.17021676898002625, 0.052636221051216125, 0.09523162990808487, -0.10243165493011475, -0.08514471352100372, 0.036212533712387085, 0.053191229701042175, -0.08488279581069946, 0.0961575135588646, 0.12040060013532639, -0.03418654575943947, 0.052709683775901794, -0.002129598753526807, 0.05422952026128769, 0.129078209400177, 0.008383342996239662, -0.09455294162034988, 0.008553127758204937, -0.027240244671702385, -0.01979965902864933, 0.1806102842092514, 0.0082778949290514, 0.03652133047580719, 0.04871658980846405, 0.0312555693089962, 0.04513004794716835, -0.09736964106559753, 0.015288559719920158, 0.014722872525453568, -0.04368043318390846, 0.03435671702027321, 0.042005110532045364, -0.04076151177287102, 0.07045812904834747, 0.02824663557112217, 0.002717000897973776, -0.03126724809408188, 0.014144429005682468, -0.02074730582535267, 0.149944007396698, -0.053717609494924545, -0.2501147985458374, -0.13722151517868042, -0.018596680834889412, -0.06187533587217331, 0.034986965358257294, 0.015630926936864853, -0.05869585648179054, -0.16531860828399658, -0.06506071239709854, 0.23250629007816315, -0.012398479506373405, 0.010295301675796509, 0.09559480100870132, -0.04177941754460335, -0.0262431800365448, -0.1494521200656891, 0.009972919709980488, -0.007870400324463844, -0.047123122960329056, 0.044620342552661896, -0.04947373643517494, 0.04746929928660393, 0.04916941002011299, -0.04002594202756882, -0.048855870962142944, 0.0014938237145543098, 0.21331819891929626, -0.06749825924634933, 0.11592382937669754, 0.12328638881444931, 0.010289521887898445, 0.013986315578222275, 0.16544988751411438, 0.037763748317956924, -0.1137174665927887, -0.0005053523927927017, 0.06402327120304108, -0.056963443756103516, -0.18005944788455963, -0.053461719304323196, -0.05322527140378952, 0.03164105862379074, 0.16738475859165192, 0.04621075466275215, -0.127876415848732, 0.07794882357120514, -0.07961533218622208, 0.1217239648103714, 0.0741770789027214, 0.06574446707963943, 0.15623652935028076, 0.009737873449921608, 0.13169068098068237, -0.042186714708805084, -0.01539059728384018, 0.132053405046463, 0.0883721336722374, 0.150754913687706, -0.08098459988832474, 0.08904235810041428, 0.008675114251673222, 0.020997852087020874, 0.04626205563545227, 0.1095205768942833, -0.06408330798149109, -0.02048424817621708, -0.03942994773387909, -0.017271384596824646, -0.04955800250172615, -0.016608411446213722, -0.022371551021933556, -0.046871308237314224, -0.03986513614654541, 0.021663598716259003, 0.07675764709711075, 0.1774328052997589, 0.06061489135026932, -0.16945812106132507, -0.1312478929758072, 0.003798576071858406, -0.1024012565612793, -0.10698651522397995, 0.026842404156923294, 0.14862218499183655, -0.05637463182210922, 0.08680032938718796, -0.0708974227309227, 0.0298297218978405, -0.11439240723848343, 0.011170152574777603, 0.06957213580608368, 0.09012120217084885, -0.013271002098917961, 0.07261792570352554, -0.18760406970977783, 0.1041264533996582, 0.04424796998500824, 0.10608066618442535, -0.05502033606171608, 0.04320741072297096, -0.026861965656280518, 0.04842919856309891, 0.11794417351484299, -0.016584929078817368, -0.05070491135120392, -0.049872126430273056, -0.17046791315078735, 0.027300793677568436, 0.011999298818409443, -0.07040175795555115, 0.06748031824827194, -0.020454147830605507, 0.029119055718183517, -0.028774477541446686, -0.029576363041996956, -0.05748402327299118, -0.19108255207538605, 0.07155663520097733, -0.0445222333073616, -0.0535641573369503, -0.07504507154226303, -0.08599676191806793, -0.2217460423707962, 0.17601998150348663, -0.08930791914463043, -0.07402516156435013, -0.12749923765659332, 0.11575528234243393, 0.15148386359214783, -0.05142166092991829, 0.03916095942258835, -0.02680535614490509, 0.1286340057849884, -0.11689235270023346, -0.08963356167078018, 0.015033341944217682, -0.049939725548028946, -0.1388741135597229, -0.01130104623734951, 0.08834490925073624, 0.06285903602838516, 0.04142032563686371, 0.008389754220843315, 0.059044163674116135, -0.038972582668066025, -0.09131135046482086, 0.0034822276793420315, 0.03969383239746094, 0.06195097416639328, -0.08888398110866547, -0.04004319757223129, -0.045684926211833954, 0.010916602797806263, -0.030400678515434265, 0.014885645359754562, 0.26068007946014404, -0.06385035067796707, 0.08988950401544571, 0.16870221495628357, -0.015434917993843555, -0.2586914896965027, 0.0020562775898724794, 0.06668123602867126, 0.08069457113742828, -0.06776843219995499, -0.15745599567890167, 0.0703001618385315, 0.1671803742647171, -0.011606129817664623, -0.028621980920433998, -0.18003594875335693, -0.11458110064268112, 0.02011406607925892, 0.04693964868783951, 0.09614274650812149, -0.018733616918325424, 0.002266204683110118, 0.026727011427283287, -0.1661057323217392, 0.11941977590322495, 0.04889564588665962, 0.12322655320167542, -0.02176407352089882, 0.01742144487798214, 0.045503437519073486, -0.052248816937208176, 0.18649329245090485, -0.008079673163592815, 0.038520995527505875, -0.0391526073217392, 0.042034972459077835, 0.0901225134730339, -0.03448415920138359, 0.14655832946300507, 0.044326286762952805, -0.013519583269953728, -0.024296896532177925, -0.12122311443090439, -0.060434769839048386, 0.05278554558753967, -0.05554482340812683, -0.08048678934574127, -0.09716785699129105, 0.07406319677829742, 0.0008529588230885565, -0.01718100905418396, 0.07732968777418137, -0.014846736565232277, -0.14898699522018433, -0.03398336097598076, 0.12572894990444183, 0.047753822058439255, -0.01344062015414238, -0.0017362161306664348, 0.002389252418652177, 0.05980351194739342, -0.10864744335412979, 0.04742462933063507, 0.13179749250411987, -0.07874477654695511, 0.02892146445810795, 0.011889837682247162, -0.11922852694988251, -0.043917182832956314, 0.07840582728385925, -0.13343524932861328, -0.06902004033327103, 0.034570399671792984, -0.05976879969239235, -0.044555217027664185, -0.03423622250556946, 0.11033649742603302, -0.0329638235270977, -0.0292667243629694, 0.04487365484237671, 0.0440903902053833, 0.04621356725692749, 0.16406908631324768, -0.014350993558764458, 0.03499019891023636, -0.09732381999492645, 0.13276612758636475, 0.07116234302520752, -0.14600300788879395, 0.017823778092861176, 0.07560236752033234, -0.10571565479040146, -0.061895061284303665, -0.09644418954849243, -0.036764420568943024, -0.03154251351952553, -0.007162837777286768, -0.025009240955114365, -0.08675166964530945, 0.03661714866757393, -0.03725419566035271, 0.042002011090517044, 0.03585991635918617, 0.007263267412781715, 0.04997949302196503, -0.09140393137931824, 0.12064700573682785, -0.03706328943371773, 0.0787801742553711, -0.03886062279343605, 0.05763465166091919, -0.031699273735284805, 0.005724908318370581, -0.025555329397320747, 0.060871172696352005, -0.05045466125011444, -0.05058896914124489, -0.01726675219833851, -0.017353251576423645, -0.01856544055044651, 0.0002236158325104043, -0.002889789640903473, -0.021812863647937775, -0.035388290882110596, 0.0046766153536736965, -0.06804779171943665, -0.01067404169589281, -0.0671410784125328, -0.014902682043612003, -0.03059702180325985, -0.011118447408080101, 0.047612715512514114, -0.0814073458313942, 0.11612442135810852, -0.058399125933647156, 0.051179349422454834, 0.03444363549351692, -0.027925588190555573, 0.01950947567820549, -0.021738778799772263, 0.09398305416107178, 0.025096910074353218, -0.03976459056138992, 0.026820020750164986, 0.008126229047775269, 0.0017926744185388088, 0.0034580733627080917, 0.09979573637247086, -0.10930933803319931, -0.004001856315881014, -0.007387417834252119, -0.06371041387319565, -0.04046186804771423, 0.052578773349523544, 0.009504584595561028, 0.049537092447280884, 0.11036723107099533, -0.03547767177224159, -0.024267906323075294, -0.14077724516391754, 0.009740856476128101, 0.02708614431321621, -0.10219300538301468, 0.027270639315247536, -0.04938795790076256, 0.0612589493393898, -0.025681285187602043, 0.16439585387706757, 0.05809618532657623, -0.03926048055291176, 0.03951241075992584, -0.05455983802676201, -0.11111368238925934, 0.0298145841807127, 0.1471172422170639, 0.006342029664665461, 0.03802953660488129, -0.0454055592417717, 0.019763516262173653, 0.04494161903858185, 0.053177572786808014, 0.12866634130477905, 0.04979822412133217, 0.04866842180490494, 0.07206748425960541, -0.022826451808214188, -0.13220928609371185, -0.15831293165683746, 0.12674018740653992, -0.14515092968940735, 0.03603842854499817, 0.004319685511291027, 0.03393760323524475, 0.0708961933851242, -0.17376062273979187, 0.07039349526166916, -0.0441436730325222, -0.07824214547872543, -0.10916276276111603, -0.15025700628757477, -0.04903028905391693, -0.016976231709122658, 0.05536707863211632, -0.13748721778392792, 0.008646353147923946, 0.04937732219696045, 0.07984314113855362, -0.0070716701447963715, 0.12951193749904633, -0.13242927193641663, -0.003994912374764681, 0.04762223735451698, 0.06207990646362305, -0.0031840442679822445, 0.05943508446216583, -0.04396277666091919, -0.0500110499560833, 0.08034637570381165, 0.07622957974672318, -0.018251493573188782, 0.05547850579023361, -0.017120646312832832, 0.0440860278904438, -0.004957506433129311, -0.03837659955024719, -0.03712845221161842, 0.05315710976719856, 0.08032416552305222, 0.010947922244668007, 0.0140635771676898, -0.0181366465985775, 0.15407595038414001, 0.01912863552570343, -0.10368482023477554, -0.1698966920375824, 0.045425329357385635, -0.00023515484645031393, 0.07104136794805527, 0.016709133982658386, -0.08658740669488907, -0.05375976487994194, 0.24526698887348175, 0.06896102428436279, 0.01419244334101677, -0.04610324278473854, 0.04646957665681839, -0.014127698726952076, 0.01596473716199398, 0.08971069008111954, 0.012254268862307072, 0.18719089031219482, -0.06467991322278976, -0.018780913203954697, -0.0073712849989533424, -0.005794702563434839, -0.02003645896911621, 0.1435638666152954, -0.021897608414292336, 0.022469602525234222, -0.1268257200717926, -0.04777998477220535, 0.1458810418844223, -0.19461189210414886, 0.06230345740914345, -0.0730065405368805, -0.11697512865066528, 0.025669114664196968, 0.009492325596511364, -0.08040861785411835, 0.045584626495838165, -0.02673286572098732, 0.02296147122979164, 0.1031116247177124, -0.0009028701460920274, -0.10080011188983917, 0.00964649673551321, 0.09663866460323334, 0.028617912903428078, 0.19786134362220764, -0.0016777996206656098, 0.03938710689544678, 0.08703333139419556, -0.03986474871635437, -0.10931061208248138, 0.0552830696105957, 0.008902241475880146, -0.020068494603037834, 0.05155285447835922, 0.14419271051883698, -0.007074381690472364, 0.07000794261693954, 0.04031631350517273, -0.049514953047037125, 0.0268021821975708, 0.059960395097732544, -0.038642190396785736, -0.04349561035633087, 0.14851756393909454, -0.08114751428365707, 0.14002615213394165, 0.16718345880508423, 0.020675811916589737, -0.061570148915052414, -0.09928162395954132, 0.07278432697057724, -0.015471859835088253, 0.17396239936351776, 0.03338897228240967, -0.15472835302352905, 0.008777288720011711, -0.013878649100661278, 0.01666495017707348, -0.16564080119132996, -0.06136070191860199, -0.02887580543756485, -0.039100535213947296, -0.0703601986169815, 0.13205325603485107, 0.05773886293172836, 0.018457207828760147, -0.05091584473848343, 0.004463918972760439, -0.03149132803082466, 0.005922709126025438, -0.09229761362075806, -0.09133788198232651 ]
null
null
transformers
# Ælæctra - A Step Towards More Efficient Danish Natural Language Processing **Ælæctra** is a Danish Transformer-based language model created to enhance the variety of Danish NLP resources with a more efficient model compared to previous state-of-the-art (SOTA) models. Initially a cased and an uncased model are released. It was created as part of a Cognitive Science bachelor's thesis. Ælæctra was pretrained with the ELECTRA-Small (Clark et al., 2020) pretraining approach by using the Danish Gigaword Corpus (Strømberg-Derczynski et al., 2020) and evaluated on Named Entity Recognition (NER) tasks. Since NER only presents a limited picture of Ælæctra's capabilities I am very interested in further evaluations. Therefore, if you employ it for any task, feel free to hit me up your findings! Ælæctra was, as mentioned, created to enhance the Danish NLP capabilties and please do note how this GitHub still does not support the Danish characters "*Æ, Ø and Å*" as the title of this repository becomes "*-l-ctra*". How ironic.🙂 Here is an example on how to load both the cased and the uncased Ælæctra model in [PyTorch](https://pytorch.org/) using the [🤗Transformers](https://github.com/huggingface/transformers) library: ```python from transformers import AutoTokenizer, AutoModelForPreTraining tokenizer = AutoTokenizer.from_pretrained("Maltehb/-l-ctra-cased") model = AutoModelForPreTraining.from_pretrained("Maltehb/-l-ctra-cased") ``` ```python from transformers import AutoTokenizer, AutoModelForPreTraining tokenizer = AutoTokenizer.from_pretrained("Maltehb/-l-ctra-uncased") model = AutoModelForPreTraining.from_pretrained("Maltehb/-l-ctra-uncased") ``` ### Evaluation of current Danish Language Models Ælæctra, Danish BERT (DaBERT) and multilingual BERT (mBERT) were evaluated: | Model | Layers | Hidden Size | Params | AVG NER micro-f1 (DaNE-testset) | Average Inference Time (Sec/Epoch) | Download | | --- | --- | --- | --- | --- | --- | --- | | Ælæctra Uncased | 12 | 256 | 13.7M | 78.03 (SD = 1.28) | 10.91 | [Link for model](https://www.dropbox.com/s/cag7prs1nvdchqs/%C3%86l%C3%A6ctra.zip?dl=0) | | Ælæctra Cased | 12 | 256 | 14.7M | 80.08 (SD = 0.26) | 10.92 | [Link for model](https://www.dropbox.com/s/cag7prs1nvdchqs/%C3%86l%C3%A6ctra.zip?dl=0) | | DaBERT | 12 | 768 | 110M | 84.89 (SD = 0.64) | 43.03 | [Link for model](https://www.dropbox.com/s/19cjaoqvv2jicq9/danish_bert_uncased_v2.zip?dl=1) | | mBERT Uncased | 12 | 768 | 167M | 80.44 (SD = 0.82) | 72.10 | [Link for model](https://storage.googleapis.com/bert_models/2018_11_03/multilingual_L-12_H-768_A-12.zip) | | mBERT Cased | 12 | 768 | 177M | 83.79 (SD = 0.91) | 70.56 | [Link for model](https://storage.googleapis.com/bert_models/2018_11_23/multi_cased_L-12_H-768_A-12.zip) | On [DaNE](https://danlp.alexandra.dk/304bd159d5de/datasets/ddt.zip) (Hvingelby et al., 2020), Ælæctra scores slightly worse than both cased and uncased Multilingual BERT (Devlin et al., 2019) and Danish BERT (Danish BERT, 2019/2020), however, Ælæctra is less than one third the size, and uses significantly fewer computational resources to pretrain and instantiate. For a full description of the evaluation and specification of the model read the thesis: 'Ælæctra - A Step Towards More Efficient Danish Natural Language Processing'. ### Pretraining To pretrain Ælæctra it is recommended to build a Docker Container from the [Dockerfile](https://github.com/MalteHB/Ælæctra/tree/master/notebooks/fine-tuning/). Next, simply follow the [pretraining notebooks](https://github.com/MalteHB/Ælæctra/tree/master/infrastructure/Dockerfile/) The pretraining was done by utilizing a single NVIDIA Tesla V100 GPU with 16 GiB, endowed by the Danish data company [KMD](https://www.kmd.dk/). The pretraining took approximately 4 days and 9.5 hours for both the cased and uncased model ### Fine-tuning To fine-tune any Ælæctra model follow the [fine-tuning notebooks](https://github.com/MalteHB/Ælæctra/tree/master/notebooks/fine-tuning/) ### References Clark, K., Luong, M.-T., Le, Q. V., & Manning, C. D. (2020). ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Generators. ArXiv:2003.10555 [Cs]. http://arxiv.org/abs/2003.10555 Danish BERT. (2020). BotXO. https://github.com/botxo/nordic_bert (Original work published 2019) Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. ArXiv:1810.04805 [Cs]. http://arxiv.org/abs/1810.04805 Hvingelby, R., Pauli, A. B., Barrett, M., Rosted, C., Lidegaard, L. M., & Søgaard, A. (2020). DaNE: A Named Entity Resource for Danish. Proceedings of the 12th Language Resources and Evaluation Conference, 4597–4604. https://www.aclweb.org/anthology/2020.lrec-1.565 Strømberg-Derczynski, L., Baglini, R., Christiansen, M. H., Ciosici, M. R., Dalsgaard, J. A., Fusaroli, R., Henrichsen, P. J., Hvingelby, R., Kirkedal, A., Kjeldsen, A. S., Ladefoged, C., Nielsen, F. Å., Petersen, M. L., Rystrøm, J. H., & Varab, D. (2020). The Danish Gigaword Project. ArXiv:2005.03521 [Cs]. http://arxiv.org/abs/2005.03521 #### Acknowledgements As the majority of this repository is build upon [the works](https://github.com/google-research/electra) by the team at Google who created ELECTRA, a HUGE thanks to them is in order. A Giga thanks also goes out to the incredible people who collected The Danish Gigaword Corpus (Strømberg-Derczynski et al., 2020). Furthermore, I would like to thank my supervisor [Riccardo Fusaroli](https://github.com/fusaroli) for the support with the thesis, and a special thanks goes out to [Kenneth Enevoldsen](https://github.com/KennethEnevoldsen) for his continuous feedback. Lastly, i would like to thank KMD, my colleagues from KMD, and my peers and co-students from Cognitive Science for encouriging me to keep on working hard and holding my head up high! #### Contact For help or further information feel free to connect with the author Malte Højmark-Bertelsen on [[email protected]](mailto:[email protected]?subject=[GitHub]%20Ælæctra) or any of the following platforms: [<img align="left" alt="MalteHB | Twitter" width="22px" src="https://cdn.jsdelivr.net/npm/simple-icons@v3/icons/twitter.svg" />][twitter] [<img align="left" alt="MalteHB | LinkedIn" width="22px" src="https://cdn.jsdelivr.net/npm/simple-icons@v3/icons/linkedin.svg" />][linkedin] [<img align="left" alt="MalteHB | Instagram" width="22px" src="https://cdn.jsdelivr.net/npm/simple-icons@v3/icons/instagram.svg" />][instagram] <br /> </details> [twitter]: https://twitter.com/malteH_B [instagram]: https://www.instagram.com/maltemusen/ [linkedin]: https://www.linkedin.com/in/malte-h%C3%B8jmark-bertelsen-9a618017b/
{"language": "da", "license": "mit", "tags": ["\u00e6l\u00e6ctra", "pytorch", "danish", "ELECTRA-Small", "replaced token detection"], "datasets": ["DAGW"], "metrics": ["f1"], "co2_eq_emissions": 4009.5}
null
Maltehb/aelaectra-danish-electra-small-uncased
[ "transformers", "pytorch", "electra", "pretraining", "ælæctra", "danish", "ELECTRA-Small", "replaced token detection", "da", "dataset:DAGW", "arxiv:2003.10555", "arxiv:1810.04805", "arxiv:2005.03521", "license:mit", "co2_eq_emissions", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:04+00:00
[ "2003.10555", "1810.04805", "2005.03521" ]
[ "da" ]
TAGS #transformers #pytorch #electra #pretraining #ælæctra #danish #ELECTRA-Small #replaced token detection #da #dataset-DAGW #arxiv-2003.10555 #arxiv-1810.04805 #arxiv-2005.03521 #license-mit #co2_eq_emissions #endpoints_compatible #region-us
Ælæctra - A Step Towards More Efficient Danish Natural Language Processing ========================================================================== Ælæctra is a Danish Transformer-based language model created to enhance the variety of Danish NLP resources with a more efficient model compared to previous state-of-the-art (SOTA) models. Initially a cased and an uncased model are released. It was created as part of a Cognitive Science bachelor's thesis. Ælæctra was pretrained with the ELECTRA-Small (Clark et al., 2020) pretraining approach by using the Danish Gigaword Corpus (Strømberg-Derczynski et al., 2020) and evaluated on Named Entity Recognition (NER) tasks. Since NER only presents a limited picture of Ælæctra's capabilities I am very interested in further evaluations. Therefore, if you employ it for any task, feel free to hit me up your findings! Ælæctra was, as mentioned, created to enhance the Danish NLP capabilties and please do note how this GitHub still does not support the Danish characters "*Æ, Ø and Å*" as the title of this repository becomes "*-l-ctra*". How ironic. Here is an example on how to load both the cased and the uncased Ælæctra model in PyTorch using the Transformers library: ### Evaluation of current Danish Language Models Ælæctra, Danish BERT (DaBERT) and multilingual BERT (mBERT) were evaluated: On DaNE (Hvingelby et al., 2020), Ælæctra scores slightly worse than both cased and uncased Multilingual BERT (Devlin et al., 2019) and Danish BERT (Danish BERT, 2019/2020), however, Ælæctra is less than one third the size, and uses significantly fewer computational resources to pretrain and instantiate. For a full description of the evaluation and specification of the model read the thesis: 'Ælæctra - A Step Towards More Efficient Danish Natural Language Processing'. ### Pretraining To pretrain Ælæctra it is recommended to build a Docker Container from the Dockerfile. Next, simply follow the pretraining notebooks The pretraining was done by utilizing a single NVIDIA Tesla V100 GPU with 16 GiB, endowed by the Danish data company KMD. The pretraining took approximately 4 days and 9.5 hours for both the cased and uncased model ### Fine-tuning To fine-tune any Ælæctra model follow the fine-tuning notebooks ### References Clark, K., Luong, M.-T., Le, Q. V., & Manning, C. D. (2020). ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Generators. ArXiv:2003.10555 [Cs]. URL Danish BERT. (2020). BotXO. URL (Original work published 2019) Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. ArXiv:1810.04805 [Cs]. URL Hvingelby, R., Pauli, A. B., Barrett, M., Rosted, C., Lidegaard, L. M., & Søgaard, A. (2020). DaNE: A Named Entity Resource for Danish. Proceedings of the 12th Language Resources and Evaluation Conference, 4597–4604. URL Strømberg-Derczynski, L., Baglini, R., Christiansen, M. H., Ciosici, M. R., Dalsgaard, J. A., Fusaroli, R., Henrichsen, P. J., Hvingelby, R., Kirkedal, A., Kjeldsen, A. S., Ladefoged, C., Nielsen, F. Å., Petersen, M. L., Rystrøm, J. H., & Varab, D. (2020). The Danish Gigaword Project. ArXiv:2005.03521 [Cs]. URL #### Acknowledgements As the majority of this repository is build upon the works by the team at Google who created ELECTRA, a HUGE thanks to them is in order. A Giga thanks also goes out to the incredible people who collected The Danish Gigaword Corpus (Strømberg-Derczynski et al., 2020). Furthermore, I would like to thank my supervisor Riccardo Fusaroli for the support with the thesis, and a special thanks goes out to Kenneth Enevoldsen for his continuous feedback. Lastly, i would like to thank KMD, my colleagues from KMD, and my peers and co-students from Cognitive Science for encouriging me to keep on working hard and holding my head up high! #### Contact For help or further information feel free to connect with the author Malte Højmark-Bertelsen on hjb@URL or any of the following platforms: [<img align="left" alt="MalteHB | Twitter" width="22px" src="URL />](URL) [<img align="left" alt="MalteHB | LinkedIn" width="22px" src="URL />](URL) [<img align="left" alt="MalteHB | Instagram" width="22px" src="URL />](URL)
[ "### Evaluation of current Danish Language Models\n\n\nÆlæctra, Danish BERT (DaBERT) and multilingual BERT (mBERT) were evaluated:\n\n\n\nOn DaNE (Hvingelby et al., 2020), Ælæctra scores slightly worse than both cased and uncased Multilingual BERT (Devlin et al., 2019) and Danish BERT (Danish BERT, 2019/2020), however, Ælæctra is less than one third the size, and uses significantly fewer computational resources to pretrain and instantiate. For a full description of the evaluation and specification of the model read the thesis: 'Ælæctra - A Step Towards More Efficient Danish Natural Language Processing'.", "### Pretraining\n\n\nTo pretrain Ælæctra it is recommended to build a Docker Container from the Dockerfile. Next, simply follow the pretraining notebooks\n\n\nThe pretraining was done by utilizing a single NVIDIA Tesla V100 GPU with 16 GiB, endowed by the Danish data company KMD. The pretraining took approximately 4 days and 9.5 hours for both the cased and uncased model", "### Fine-tuning\n\n\nTo fine-tune any Ælæctra model follow the fine-tuning notebooks", "### References\n\n\nClark, K., Luong, M.-T., Le, Q. V., & Manning, C. D. (2020). ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Generators. ArXiv:2003.10555 [Cs]. URL\n\n\nDanish BERT. (2020). BotXO. URL (Original work published 2019)\n\n\nDevlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. ArXiv:1810.04805 [Cs]. URL\n\n\nHvingelby, R., Pauli, A. B., Barrett, M., Rosted, C., Lidegaard, L. M., & Søgaard, A. (2020). DaNE: A Named Entity Resource for Danish. Proceedings of the 12th Language Resources and Evaluation Conference, 4597–4604. URL\n\n\nStrømberg-Derczynski, L., Baglini, R., Christiansen, M. H., Ciosici, M. R., Dalsgaard, J. A., Fusaroli, R., Henrichsen, P. J., Hvingelby, R., Kirkedal, A., Kjeldsen, A. S., Ladefoged, C., Nielsen, F. Å., Petersen, M. L., Rystrøm, J. H., & Varab, D. (2020). The Danish Gigaword Project. ArXiv:2005.03521 [Cs]. URL", "#### Acknowledgements\n\n\nAs the majority of this repository is build upon the works by the team at Google who created ELECTRA, a HUGE thanks to them is in order.\n\n\nA Giga thanks also goes out to the incredible people who collected The Danish Gigaword Corpus (Strømberg-Derczynski et al., 2020).\n\n\nFurthermore, I would like to thank my supervisor Riccardo Fusaroli for the support with the thesis, and a special thanks goes out to Kenneth Enevoldsen for his continuous feedback.\n\n\nLastly, i would like to thank KMD, my colleagues from KMD, and my peers and co-students from Cognitive Science for encouriging me to keep on working hard and holding my head up high!", "#### Contact\n\n\nFor help or further information feel free to connect with the author Malte Højmark-Bertelsen on hjb@URL or any of the following platforms:\n\n\n[<img align=\"left\" alt=\"MalteHB | Twitter\" width=\"22px\" src=\"URL />](URL)\n[<img align=\"left\" alt=\"MalteHB | LinkedIn\" width=\"22px\" src=\"URL />](URL)\n[<img align=\"left\" alt=\"MalteHB | Instagram\" width=\"22px\" src=\"URL />](URL)" ]
[ "TAGS\n#transformers #pytorch #electra #pretraining #ælæctra #danish #ELECTRA-Small #replaced token detection #da #dataset-DAGW #arxiv-2003.10555 #arxiv-1810.04805 #arxiv-2005.03521 #license-mit #co2_eq_emissions #endpoints_compatible #region-us \n", "### Evaluation of current Danish Language Models\n\n\nÆlæctra, Danish BERT (DaBERT) and multilingual BERT (mBERT) were evaluated:\n\n\n\nOn DaNE (Hvingelby et al., 2020), Ælæctra scores slightly worse than both cased and uncased Multilingual BERT (Devlin et al., 2019) and Danish BERT (Danish BERT, 2019/2020), however, Ælæctra is less than one third the size, and uses significantly fewer computational resources to pretrain and instantiate. For a full description of the evaluation and specification of the model read the thesis: 'Ælæctra - A Step Towards More Efficient Danish Natural Language Processing'.", "### Pretraining\n\n\nTo pretrain Ælæctra it is recommended to build a Docker Container from the Dockerfile. Next, simply follow the pretraining notebooks\n\n\nThe pretraining was done by utilizing a single NVIDIA Tesla V100 GPU with 16 GiB, endowed by the Danish data company KMD. The pretraining took approximately 4 days and 9.5 hours for both the cased and uncased model", "### Fine-tuning\n\n\nTo fine-tune any Ælæctra model follow the fine-tuning notebooks", "### References\n\n\nClark, K., Luong, M.-T., Le, Q. V., & Manning, C. D. (2020). ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Generators. ArXiv:2003.10555 [Cs]. URL\n\n\nDanish BERT. (2020). BotXO. URL (Original work published 2019)\n\n\nDevlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. ArXiv:1810.04805 [Cs]. URL\n\n\nHvingelby, R., Pauli, A. B., Barrett, M., Rosted, C., Lidegaard, L. M., & Søgaard, A. (2020). DaNE: A Named Entity Resource for Danish. Proceedings of the 12th Language Resources and Evaluation Conference, 4597–4604. URL\n\n\nStrømberg-Derczynski, L., Baglini, R., Christiansen, M. H., Ciosici, M. R., Dalsgaard, J. A., Fusaroli, R., Henrichsen, P. J., Hvingelby, R., Kirkedal, A., Kjeldsen, A. S., Ladefoged, C., Nielsen, F. Å., Petersen, M. L., Rystrøm, J. H., & Varab, D. (2020). The Danish Gigaword Project. ArXiv:2005.03521 [Cs]. URL", "#### Acknowledgements\n\n\nAs the majority of this repository is build upon the works by the team at Google who created ELECTRA, a HUGE thanks to them is in order.\n\n\nA Giga thanks also goes out to the incredible people who collected The Danish Gigaword Corpus (Strømberg-Derczynski et al., 2020).\n\n\nFurthermore, I would like to thank my supervisor Riccardo Fusaroli for the support with the thesis, and a special thanks goes out to Kenneth Enevoldsen for his continuous feedback.\n\n\nLastly, i would like to thank KMD, my colleagues from KMD, and my peers and co-students from Cognitive Science for encouriging me to keep on working hard and holding my head up high!", "#### Contact\n\n\nFor help or further information feel free to connect with the author Malte Højmark-Bertelsen on hjb@URL or any of the following platforms:\n\n\n[<img align=\"left\" alt=\"MalteHB | Twitter\" width=\"22px\" src=\"URL />](URL)\n[<img align=\"left\" alt=\"MalteHB | LinkedIn\" width=\"22px\" src=\"URL />](URL)\n[<img align=\"left\" alt=\"MalteHB | Instagram\" width=\"22px\" src=\"URL />](URL)" ]
[ 99, 165, 88, 24, 370, 166, 141 ]
[ "passage: TAGS\n#transformers #pytorch #electra #pretraining #ælæctra #danish #ELECTRA-Small #replaced token detection #da #dataset-DAGW #arxiv-2003.10555 #arxiv-1810.04805 #arxiv-2005.03521 #license-mit #co2_eq_emissions #endpoints_compatible #region-us \n### Evaluation of current Danish Language Models\n\n\nÆlæctra, Danish BERT (DaBERT) and multilingual BERT (mBERT) were evaluated:\n\n\n\nOn DaNE (Hvingelby et al., 2020), Ælæctra scores slightly worse than both cased and uncased Multilingual BERT (Devlin et al., 2019) and Danish BERT (Danish BERT, 2019/2020), however, Ælæctra is less than one third the size, and uses significantly fewer computational resources to pretrain and instantiate. For a full description of the evaluation and specification of the model read the thesis: 'Ælæctra - A Step Towards More Efficient Danish Natural Language Processing'.### Pretraining\n\n\nTo pretrain Ælæctra it is recommended to build a Docker Container from the Dockerfile. Next, simply follow the pretraining notebooks\n\n\nThe pretraining was done by utilizing a single NVIDIA Tesla V100 GPU with 16 GiB, endowed by the Danish data company KMD. The pretraining took approximately 4 days and 9.5 hours for both the cased and uncased model### Fine-tuning\n\n\nTo fine-tune any Ælæctra model follow the fine-tuning notebooks" ]
[ -0.07374950498342514, -0.0695635974407196, -0.003876977600157261, 0.06389807909727097, 0.024023156613111496, -0.01769859716296196, 0.03290501981973648, 0.04649871587753296, -0.03320218622684479, 0.11249804496765137, 0.03056694194674492, 0.0032495581544935703, 0.07541239261627197, 0.11281237751245499, 0.05257757753133774, -0.2600215971469879, 0.08038251101970673, -0.025709612295031548, 0.035557761788368225, 0.046656422317028046, 0.14271783828735352, -0.14195109903812408, 0.0441470630466938, 0.01109673734754324, -0.02777617797255516, 0.0020321591291576624, -0.08712723851203918, -0.045744795352220535, 0.12352695316076279, 0.046066299080848694, 0.09477265924215317, 0.0647185668349266, 0.07697782665491104, -0.1586032658815384, 0.0013684420846402645, 0.014045501127839088, 0.026330912485718727, 0.044502660632133484, 0.01786918006837368, 0.08243070542812347, 0.13201455771923065, -0.057853810489177704, 0.08676489442586899, -0.027794936671853065, -0.05556444823741913, -0.07451875507831573, -0.038281843066215515, 0.012199776247143745, 0.07327087968587875, 0.018270665779709816, -0.03326864540576935, 0.10567902028560638, -0.038937728852033615, 0.04391569271683693, 0.08746837079524994, -0.31377071142196655, -0.06265099346637726, 0.09766821563243866, 0.08428214490413666, 0.031900644302368164, -0.08743421733379364, -0.02312576398253441, 0.007427586242556572, 0.0396437831223011, 0.0618448406457901, 0.010141756385564804, -0.04458557441830635, -0.05919885262846947, -0.13205499947071075, 0.05223560705780983, 0.24566379189491272, -0.011347195133566856, -0.07612697780132294, -0.1018185019493103, -0.07737252116203308, -0.07212980091571808, 0.003928728401660919, -0.07620253413915634, 0.04133705422282219, -0.036025967448949814, 0.1292237937450409, -0.022511761635541916, -0.15176697075366974, 0.05551369488239288, -0.11113551259040833, 0.18566708266735077, 0.0335567407310009, 0.007116129621863365, 0.08202651888132095, 0.10089026391506195, -0.03446975350379944, -0.10110226273536682, -0.0691780298948288, -0.06436789780855179, -0.1300441026687622, -0.08599750697612762, -0.01004763226956129, -0.12693668901920319, -0.07947519421577454, 0.21954312920570374, 0.032214947044849396, 0.051405083388090134, -0.010788763873279095, 0.031574591994285583, 0.09003129601478577, 0.12369967997074127, -0.02329513430595398, -0.05947541072964668, -0.02961266227066517, 0.05698903277516365, 0.08999719470739365, -0.01887516863644123, -0.03673004359006882, -0.0639604926109314, 0.04238990321755409, -0.011715494096279144, -0.07201211154460907, 0.018764901906251907, -0.0773584395647049, -0.06771712005138397, 0.13982558250427246, -0.12744350731372833, -0.014544636011123657, -0.03672933951020241, -0.06982989609241486, 0.0347471609711647, 0.026001736521720886, 0.03807844966650009, -0.05817888677120209, 0.1850295513868332, -0.03372352942824364, -0.04306508228182793, -0.05518659949302673, -0.0775885134935379, 0.024053528904914856, -0.013090703636407852, -0.012016178108751774, -0.11889462918043137, -0.0779714286327362, -0.019976746290922165, 0.07848861068487167, -0.04782005771994591, -0.07858063280582428, -0.03965410590171814, -0.0053490023128688335, 0.0049476283602416515, -0.06445816904306412, 0.08691169321537018, -0.020622044801712036, 0.01248566061258316, -0.015276893973350525, 0.05772550404071808, -0.04202080890536308, 0.022458190098404884, -0.12315665185451508, -0.01543708797544241, -0.23661719262599945, 0.015944145619869232, -0.10621050745248795, -0.052937038242816925, -0.12002387642860413, -0.04994462430477142, -0.12412435561418533, 0.020863737910985947, 0.034002743661403656, 0.05864487588405609, -0.19456641376018524, 0.011183963157236576, 0.06260097771883011, -0.12929977476596832, -0.013965879566967487, 0.12915143370628357, -0.036668725311756134, 0.06626135110855103, 0.057802144438028336, 0.0994754359126091, -0.0036080514546483755, -0.20053893327713013, -0.06777923554182053, 0.0019215161446481943, 0.014602253213524818, 0.08894714713096619, 0.047761786729097366, 0.02495700865983963, 0.06773902475833893, 0.017606230452656746, -0.04088285565376282, -0.0703604519367218, 0.0010923590743914247, -0.04311205819249153, 0.01852509379386902, -0.031613923609256744, -0.0058671641163527966, 0.030099056661128998, 0.006640897132456303, -0.04838966205716133, -0.09995873272418976, 0.05576467886567116, 0.1090010553598404, -0.060129065066576004, 0.014265494421124458, -0.06324004381895065, 0.0369638167321682, -0.04332319274544716, -0.049396902322769165, -0.10935129225254059, -0.13126921653747559, 0.11284421384334564, -0.04560943320393562, 0.02285722643136978, 0.1508268564939499, 0.03400375321507454, 0.09381730109453201, -0.03403887152671814, 0.009531772695481777, -0.04205438122153282, -0.03916099667549133, -0.09076422452926636, -0.09581927955150604, -0.017945686355233192, -0.05429473891854286, 0.02161274291574955, -0.09836561232805252, 0.01364881545305252, 0.07985083758831024, 0.09009017795324326, 0.008581404574215412, -0.03256179764866829, -0.05521302670240402, -0.005685235373675823, -0.049694404006004333, -0.001467913738451898, 0.029804669320583344, -0.0003694340121001005, -0.01941768266260624, 0.0716162696480751, -0.12579834461212158, -0.07421817630529404, 0.09264831244945526, 0.05474457889795303, -0.043623197823762894, -0.0942714661359787, -0.07466936111450195, -0.04371674358844757, -0.08866605162620544, -0.06896274536848068, 0.2443893402814865, 0.05755263939499855, 0.08788208663463593, -0.09638621658086777, -0.09125638008117676, 0.009346096776425838, 0.05408857762813568, -0.08818370848894119, 0.087464839220047, 0.10236063599586487, -0.033931925892829895, 0.004269578028470278, 0.03340756520628929, 0.05988145247101784, 0.09290361404418945, 0.0024710707366466522, -0.07299666106700897, 0.02771446667611599, 0.007408829405903816, -0.04516724497079849, 0.14035286009311676, -0.039539337158203125, 0.00825128797441721, 0.025957990437746048, 0.019605588167905807, 0.03645402565598488, -0.06871344149112701, 0.037265077233314514, 0.00955225806683302, -0.008489459753036499, 0.08556735515594482, -0.0075943078845739365, -0.027368316426873207, 0.07784392684698105, 0.025334246456623077, -0.002798923058435321, -0.05461224541068077, -0.009135644882917404, -0.04453793913125992, 0.15361762046813965, -0.07408860325813293, -0.2083180546760559, -0.11067308485507965, 0.04820039123296738, -0.026745058596134186, -0.0024525425396859646, 0.015740400180220604, -0.012801534496247768, -0.13530442118644714, -0.12668348848819733, 0.1538146436214447, -0.029992539435625076, -0.024183841422200203, 0.02756679058074951, -0.03803641349077225, -0.011963448487222195, -0.15593603253364563, -0.0066339559853076935, -0.03949961066246033, -0.046027641743421555, 0.03337050974369049, 0.007126827258616686, 0.06562506407499313, 0.05539826303720474, -0.051800329238176346, -0.060479629784822464, 0.0020026268903166056, 0.2024839222431183, -0.046544115990400314, 0.13019448518753052, 0.12472666054964066, -0.046533361077308655, 0.035008303821086884, 0.18218816816806793, 0.038409605622291565, -0.10084576159715652, 0.030317170545458794, 0.04346202686429024, -0.004360911436378956, -0.19729791581630707, -0.08880923688411713, -0.03593534231185913, -0.04259062930941582, 0.1514384001493454, 0.06558205187320709, -0.15829075872898102, 0.04858526214957237, -0.05252835154533386, 0.05943966284394264, 0.08572617918252945, 0.08001445233821869, 0.11200855672359467, 0.0099348658695817, 0.14289020001888275, 0.002825790084898472, -0.06570135802030563, 0.09706898778676987, 0.05404791235923767, 0.1510881632566452, -0.07293982803821564, 0.03875027596950531, 0.038861148059368134, 0.0035420903004705906, 0.01628749817609787, 0.0802433043718338, -0.0654212236404419, 0.018660157918930054, -0.052050117403268814, -0.04198918491601944, -0.06942041218280792, 0.030848652124404907, -0.020453372970223427, -0.006304516457021236, -0.04067281261086464, 0.03953663632273674, 0.06474489718675613, 0.21714544296264648, 0.0031435403507202864, -0.15041197836399078, -0.11487789452075958, 0.019807536154985428, -0.09473786503076553, -0.08743979781866074, 0.028891775757074356, 0.08087676763534546, -0.060197293758392334, 0.08414261788129807, -0.04215230420231819, 0.04283294081687927, -0.12582242488861084, 0.0085175521671772, 0.02780384011566639, 0.04193173348903656, -0.0035243043676018715, 0.04962640628218651, -0.1857340782880783, 0.0809982568025589, 0.028143426403403282, 0.12546904385089874, -0.06282926350831985, 0.02103036642074585, -0.04699261859059334, 0.0684739500284195, 0.1168881356716156, 0.005477586295455694, -0.05227675288915634, -0.03765702247619629, -0.1490767002105713, 0.03328632190823555, 0.049830179661512375, -0.06860247254371643, 0.06437116116285324, -0.0037902346812188625, 0.04116404056549072, -0.02772706188261509, -0.08300303667783737, -0.10966409742832184, -0.15111906826496124, 0.0673251748085022, -0.06646665930747986, -0.023016829043626785, -0.053851980715990067, -0.08698084205389023, -0.12089217454195023, 0.2206786572933197, -0.14924831688404083, -0.07009851187467575, -0.1115577444434166, 0.062483493238687515, 0.12636099755764008, -0.03963790833950043, 0.009938586503267288, -0.02363327518105507, 0.15691779553890228, -0.10409659147262573, -0.06967973709106445, 0.018708372488617897, -0.06101929768919945, -0.13277046382427216, -0.06207875907421112, 0.1305239051580429, 0.12184339761734009, 0.033592529594898224, 0.005565116181969643, 0.04776093736290932, -0.032433655112981796, -0.0848466008901596, -0.012101062573492527, 0.05885402858257294, 0.03158598765730858, -0.04339155927300453, -0.12550443410873413, -0.06326809525489807, -0.027489932253956795, -0.04290645197033882, 0.019253291189670563, 0.25070834159851074, -0.06796266883611679, 0.12273275852203369, 0.19526802003383636, -0.05912251025438309, -0.23187489807605743, 0.029590647667646408, 0.11616000533103943, 0.05233432725071907, -0.020155811682343483, -0.1643819808959961, 0.17135711014270782, 0.14351411163806915, -0.01142878644168377, 0.0047810981050133705, -0.16491621732711792, -0.11838027089834213, 0.058079592883586884, 0.03954262286424637, 0.09382101893424988, -0.029775377362966537, -0.011244066059589386, 0.01980696991086006, -0.08792788535356522, 0.1455494463443756, 0.021355224773287773, 0.060471661388874054, 0.008306900039315224, 0.031993187963962555, 0.06391524523496628, -0.04853742942214012, 0.12474651634693146, 0.060278236865997314, 0.035763416439294815, -0.01979142054915428, 0.0164110716432333, 0.021910153329372406, -0.024510936811566353, 0.1428760439157486, 0.09084849059581757, -0.02277127280831337, -0.03158549964427948, -0.08566979318857193, -0.04518071934580803, 0.12720970809459686, -0.07263552397489548, -0.07502111047506332, -0.07145416736602783, 0.0886157974600792, 0.04141831398010254, 0.015859082341194153, 0.06227833032608032, -0.03928448632359505, -0.0983782485127449, 0.031016748398542404, 0.20177467167377472, 0.013441569171845913, 0.02554347552359104, 0.041992589831352234, -0.0034917094744741917, 0.04407172277569771, -0.03162644803524017, 0.05815211310982704, 0.16403360664844513, -0.07001860439777374, 0.04323558136820793, 0.005718151573091745, -0.1335689127445221, -0.04763456806540489, 0.05817773938179016, -0.13137096166610718, -0.040609244257211685, 0.02571260556578636, 0.021913498640060425, -0.04822983220219612, -0.02703346684575081, 0.14759549498558044, -0.05907665193080902, -0.01621015928685665, 0.03217916190624237, 0.04317743331193924, 0.07491752505302429, 0.09534904360771179, -0.004682650789618492, 0.0335853174328804, -0.03450177609920502, 0.14428234100341797, 0.09754306077957153, -0.16357272863388062, 0.008272575214505196, 0.06553342193365097, -0.10774002969264984, -0.059788718819618225, -0.11090715229511261, -0.036730825901031494, -0.04928665608167648, -0.01918981224298477, 0.004681725520640612, -0.09393654018640518, 0.008985663764178753, -0.002217021770775318, 0.03261658921837807, -0.0042783115059137344, -0.002535636769607663, 0.06502892822027206, -0.057499174028635025, 0.11066137999296188, -0.026753723621368408, 0.08553459495306015, 0.010776594281196594, 0.09045365452766418, -0.01747157610952854, -0.001385504030622542, -0.019739925861358643, 0.03262908756732941, -0.020445480942726135, -0.05180630460381508, 0.05301508679986, 0.0056366403587162495, 0.0006388992769643664, -0.0051721143536269665, 0.010798276402056217, -0.02625649981200695, -0.032030120491981506, 0.01569586619734764, -0.05499088019132614, 0.01461820024996996, -0.04941362515091896, -0.000041161736589856446, -0.07064168155193329, -0.04704582318663597, 0.04623879864811897, -0.08523400872945786, 0.110938660800457, -0.056395046412944794, 0.03331970423460007, 0.02951626107096672, -0.05954619497060776, 0.06237397715449333, -0.002001631772145629, 0.10990361124277115, 0.00440706592053175, -0.03391815721988678, 0.005125392694026232, 0.010341438464820385, 0.006678469013422728, -0.027930907905101776, 0.12267366796731949, -0.10476855933666229, -0.006744462996721268, 0.009950588457286358, -0.09190918505191803, -0.07507966458797455, 0.03562416136264801, -0.00934304017573595, 0.032862428575754166, 0.11950208991765976, -0.03774701803922653, -0.023067111149430275, -0.09047799557447433, 0.014713088981807232, 0.041389744728803635, -0.06254848837852478, -0.019576992839574814, -0.05866247043013573, 0.04966993257403374, -0.0796043649315834, 0.16149243712425232, 0.0253645908087492, 0.03947573900222778, 0.05688784271478653, -0.1342453807592392, -0.1687600463628769, 0.03491987660527229, 0.0824451670050621, 0.029358331114053726, 0.0345456525683403, -0.05125494301319122, -0.02644764631986618, 0.01242769043892622, 0.018806874752044678, 0.14240822196006775, 0.07861125469207764, 0.041507817804813385, 0.056940365582704544, -0.01061996165663004, -0.13591887056827545, -0.1472831815481186, 0.10002270340919495, -0.050846125930547714, 0.04143886640667915, 0.01935320720076561, 0.15416762232780457, 0.06592176109552383, -0.1350277066230774, 0.05097799003124237, -0.0453563816845417, -0.07784642279148102, -0.11248234659433365, -0.10573022812604904, -0.03569698706269264, 0.05301786959171295, 0.017640171572566032, -0.14650847017765045, -0.012381687760353088, -0.04103551432490349, 0.05468103289604187, -0.01146342046558857, 0.10940183699131012, -0.13448208570480347, -0.03644457831978798, 0.06654149293899536, 0.059120818972587585, 0.040829453617334366, 0.024275215342640877, -0.029778627678751945, -0.04975970834493637, 0.09646272659301758, 0.046532414853572845, 0.003818701719865203, 0.03851808235049248, -0.036242444068193436, 0.06052509322762489, -0.031939782202243805, -0.023048462346196175, -0.06024068966507912, 0.009063315577805042, 0.05026138573884964, 0.03801104798913002, 0.008272385224699974, -0.024381808936595917, 0.17108768224716187, 0.012155762873589993, -0.07209606468677521, -0.1028129830956459, 0.06762532144784927, 0.07076447457075119, 0.07702471315860748, 0.02019321359694004, -0.09410977363586426, -0.056680597364902496, 0.21785469353199005, 0.07031900435686111, -0.023516859859228134, -0.0176182109862566, 0.06724292039871216, 0.001589242136105895, 0.03703559562563896, 0.06899623572826385, 0.038254477083683014, 0.17985962331295013, -0.07032600045204163, 0.03124355711042881, -0.037243567407131195, 0.027352288365364075, -0.04410577192902565, 0.14796128869056702, -0.007709679659456015, 0.030317312106490135, -0.11859142780303955, -0.031359732151031494, 0.0733347088098526, -0.274953156709671, 0.01104016788303852, -0.09122131019830704, -0.13493865728378296, -0.002608910435810685, -0.0011391184525564313, -0.056236639618873596, 0.031164390966296196, -0.019804807379841805, -0.03634260222315788, 0.14729788899421692, 0.014664564281702042, -0.06767966598272324, 0.048105936497449875, 0.07938523590564728, -0.007892301306128502, 0.19345037639141083, 0.004048253409564495, 0.07175610959529877, 0.05503919720649719, 0.0032330923713743687, -0.06754327565431595, 0.032858118414878845, 0.032912228256464005, -0.02424573339521885, 0.06350012868642807, 0.1263759732246399, 0.011892969720065594, 0.11631858348846436, 0.08363309502601624, -0.08944298326969147, 0.033433545380830765, 0.10253635793924332, -0.08113608509302139, -0.022133801132440567, 0.13771355152130127, -0.06765209138393402, 0.1340746432542801, 0.13858914375305176, 0.04128763824701309, -0.0709039717912674, -0.12453438341617584, 0.037486303597688675, -0.014366934075951576, 0.20734229683876038, 0.03265266492962837, -0.15090733766555786, 0.018586430698633194, 0.012305757962167263, 0.04422486200928688, -0.1831144094467163, -0.05632426589727402, -0.014984631910920143, -0.007168379612267017, -0.05366199091076851, 0.09566272050142288, -0.007584733422845602, 0.011265281587839127, -0.056630175560712814, 0.03677944839000702, -0.004622085485607386, 0.04380103945732117, -0.11009327322244644, -0.058119770139455795 ]
null
null
transformers
# Danish BERT (version 2, uncased) by [Certainly](https://certainly.io/) (previously known as BotXO) finetuned for Named Entity Recognition on the [DaNE dataset](https://danlp.alexandra.dk/304bd159d5de/datasets/ddt.zip) (Hvingelby et al., 2020) by Malte Højmark-Bertelsen. Humongous amounts of credit needs to go to [Certainly](https://certainly.io/) (previously known as BotXO), for pretraining the Danish BERT. For data and training details see their [GitHub repository](https://github.com/certainlyio/nordic_bert) or [this article](https://www.certainly.io/blog/danish-bert-model/). You can also visit their [organization page](https://huggingface.co/Certainly) on Hugging Face. It is both available in TensorFlow and Pytorch format. The original TensorFlow version can be downloaded using [this link](https://www.dropbox.com/s/19cjaoqvv2jicq9/danish_bert_uncased_v2.zip?dl=1). Here is an example on how to load Danish BERT for token classification in PyTorch using the [🤗Transformers](https://github.com/huggingface/transformers) library: ```python from transformers import AutoTokenizer, AutoModelForTokenClassification tokenizer = AutoTokenizer.from_pretrained("Maltehb/danish-bert-botxo-ner-dane") model = AutoModelForTokenClassification.from_pretrained("Maltehb/danish-bert-botxo-ner-dane") ``` ### References Danish BERT. (2020). BotXO. https://github.com/botxo/nordic_bert (Original work published 2019) Hvingelby, R., Pauli, A. B., Barrett, M., Rosted, C., Lidegaard, L. M., & Søgaard, A. (2020). DaNE: A Named Entity Resource for Danish. Proceedings of the 12th Language Resources and Evaluation Conference, 4597–4604. https://www.aclweb.org/anthology/2020.lrec-1.565 #### Contact For help or further information feel free to connect with the author Malte Højmark-Bertelsen on [[email protected]](mailto:[email protected]?subject=[GitHub]%20DanishBERTUncasedNER) or any of the following platforms: [<img align="left" alt="MalteHB | Twitter" width="22px" src="https://cdn.jsdelivr.net/npm/simple-icons@v3/icons/twitter.svg" />][twitter] [<img align="left" alt="MalteHB | LinkedIn" width="22px" src="https://cdn.jsdelivr.net/npm/simple-icons@v3/icons/linkedin.svg" />][linkedin] [<img align="left" alt="MalteHB | Instagram" width="22px" src="https://cdn.jsdelivr.net/npm/simple-icons@v3/icons/instagram.svg" />][instagram] <br /> </details> [twitter]: https://twitter.com/malteH_B [instagram]: https://www.instagram.com/maltemusen/ [linkedin]: https://www.linkedin.com/in/malte-h%C3%B8jmark-bertelsen-9a618017b/
{"language": "da", "license": "cc-by-4.0", "tags": ["danish", "bert", "masked-lm", "botxo"], "datasets": ["common_crawl", "wikipedia", "dindebat.dk", "hestenettet.dk", "danish_OpenSubtitles"], "widget": [{"text": "Chili Jensen, som bor p\u00e5 Danmarksgade 12, k\u00f8ber chilifrugter fra Netto."}]}
token-classification
Maltehb/danish-bert-botxo-ner-dane
[ "transformers", "pytorch", "tf", "jax", "bert", "token-classification", "danish", "masked-lm", "botxo", "da", "dataset:common_crawl", "dataset:wikipedia", "dataset:dindebat.dk", "dataset:hestenettet.dk", "dataset:danish_OpenSubtitles", "license:cc-by-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:04+00:00
[]
[ "da" ]
TAGS #transformers #pytorch #tf #jax #bert #token-classification #danish #masked-lm #botxo #da #dataset-common_crawl #dataset-wikipedia #dataset-dindebat.dk #dataset-hestenettet.dk #dataset-danish_OpenSubtitles #license-cc-by-4.0 #autotrain_compatible #endpoints_compatible #region-us
# Danish BERT (version 2, uncased) by Certainly (previously known as BotXO) finetuned for Named Entity Recognition on the DaNE dataset (Hvingelby et al., 2020) by Malte Højmark-Bertelsen. Humongous amounts of credit needs to go to Certainly (previously known as BotXO), for pretraining the Danish BERT. For data and training details see their GitHub repository or this article. You can also visit their organization page on Hugging Face. It is both available in TensorFlow and Pytorch format. The original TensorFlow version can be downloaded using this link. Here is an example on how to load Danish BERT for token classification in PyTorch using the Transformers library: ### References Danish BERT. (2020). BotXO. URL (Original work published 2019) Hvingelby, R., Pauli, A. B., Barrett, M., Rosted, C., Lidegaard, L. M., & Søgaard, A. (2020). DaNE: A Named Entity Resource for Danish. Proceedings of the 12th Language Resources and Evaluation Conference, 4597–4604. URL #### Contact For help or further information feel free to connect with the author Malte Højmark-Bertelsen on hjb@URL or any of the following platforms: [<img align="left" alt="MalteHB | Twitter" width="22px" src="URL />][twitter] [<img align="left" alt="MalteHB | LinkedIn" width="22px" src="URL />][linkedin] [<img align="left" alt="MalteHB | Instagram" width="22px" src="URL />][instagram] <br /> </details> [twitter]: URL [instagram]: URL [linkedin]: URL
[ "# Danish BERT (version 2, uncased) by Certainly (previously known as BotXO) finetuned for Named Entity Recognition on the DaNE dataset (Hvingelby et al., 2020) by Malte Højmark-Bertelsen.\n\nHumongous amounts of credit needs to go to Certainly (previously known as BotXO), for pretraining the Danish BERT. For data and training details see their GitHub repository or this article. You can also visit their organization page on Hugging Face.\n\nIt is both available in TensorFlow and Pytorch format. \nThe original TensorFlow version can be downloaded using this link.\n\nHere is an example on how to load Danish BERT for token classification in PyTorch using the Transformers library:", "### References\nDanish BERT. (2020). BotXO. URL (Original work published 2019)\n\nHvingelby, R., Pauli, A. B., Barrett, M., Rosted, C., Lidegaard, L. M., & Søgaard, A. (2020). DaNE: A Named Entity Resource for Danish. Proceedings of the 12th Language Resources and Evaluation Conference, 4597–4604. URL", "#### Contact\n\nFor help or further information feel free to connect with the author Malte Højmark-Bertelsen on hjb@URL or any of the following platforms:\n\n[<img align=\"left\" alt=\"MalteHB | Twitter\" width=\"22px\" src=\"URL />][twitter]\n[<img align=\"left\" alt=\"MalteHB | LinkedIn\" width=\"22px\" src=\"URL />][linkedin]\n[<img align=\"left\" alt=\"MalteHB | Instagram\" width=\"22px\" src=\"URL />][instagram]\n\n<br />\n\n</details>\n\n[twitter]: URL\n[instagram]: URL\n[linkedin]: URL" ]
[ "TAGS\n#transformers #pytorch #tf #jax #bert #token-classification #danish #masked-lm #botxo #da #dataset-common_crawl #dataset-wikipedia #dataset-dindebat.dk #dataset-hestenettet.dk #dataset-danish_OpenSubtitles #license-cc-by-4.0 #autotrain_compatible #endpoints_compatible #region-us \n", "# Danish BERT (version 2, uncased) by Certainly (previously known as BotXO) finetuned for Named Entity Recognition on the DaNE dataset (Hvingelby et al., 2020) by Malte Højmark-Bertelsen.\n\nHumongous amounts of credit needs to go to Certainly (previously known as BotXO), for pretraining the Danish BERT. For data and training details see their GitHub repository or this article. You can also visit their organization page on Hugging Face.\n\nIt is both available in TensorFlow and Pytorch format. \nThe original TensorFlow version can be downloaded using this link.\n\nHere is an example on how to load Danish BERT for token classification in PyTorch using the Transformers library:", "### References\nDanish BERT. (2020). BotXO. URL (Original work published 2019)\n\nHvingelby, R., Pauli, A. B., Barrett, M., Rosted, C., Lidegaard, L. M., & Søgaard, A. (2020). DaNE: A Named Entity Resource for Danish. Proceedings of the 12th Language Resources and Evaluation Conference, 4597–4604. URL", "#### Contact\n\nFor help or further information feel free to connect with the author Malte Højmark-Bertelsen on hjb@URL or any of the following platforms:\n\n[<img align=\"left\" alt=\"MalteHB | Twitter\" width=\"22px\" src=\"URL />][twitter]\n[<img align=\"left\" alt=\"MalteHB | LinkedIn\" width=\"22px\" src=\"URL />][linkedin]\n[<img align=\"left\" alt=\"MalteHB | Instagram\" width=\"22px\" src=\"URL />][instagram]\n\n<br />\n\n</details>\n\n[twitter]: URL\n[instagram]: URL\n[linkedin]: URL" ]
[ 107, 181, 99, 165 ]
[ "passage: TAGS\n#transformers #pytorch #tf #jax #bert #token-classification #danish #masked-lm #botxo #da #dataset-common_crawl #dataset-wikipedia #dataset-dindebat.dk #dataset-hestenettet.dk #dataset-danish_OpenSubtitles #license-cc-by-4.0 #autotrain_compatible #endpoints_compatible #region-us \n# Danish BERT (version 2, uncased) by Certainly (previously known as BotXO) finetuned for Named Entity Recognition on the DaNE dataset (Hvingelby et al., 2020) by Malte Højmark-Bertelsen.\n\nHumongous amounts of credit needs to go to Certainly (previously known as BotXO), for pretraining the Danish BERT. For data and training details see their GitHub repository or this article. You can also visit their organization page on Hugging Face.\n\nIt is both available in TensorFlow and Pytorch format. \nThe original TensorFlow version can be downloaded using this link.\n\nHere is an example on how to load Danish BERT for token classification in PyTorch using the Transformers library:### References\nDanish BERT. (2020). BotXO. URL (Original work published 2019)\n\nHvingelby, R., Pauli, A. B., Barrett, M., Rosted, C., Lidegaard, L. M., & Søgaard, A. (2020). DaNE: A Named Entity Resource for Danish. Proceedings of the 12th Language Resources and Evaluation Conference, 4597–4604. URL" ]
[ -0.05858398973941803, 0.18900428712368011, -0.004530533216893673, 0.055875495076179504, 0.028713766485452652, -0.02191775105893612, 0.1759028285741806, 0.07526630163192749, 0.14513064920902252, 0.0663609728217125, -0.07462871074676514, 0.014538559131324291, 0.12317947298288345, 0.11919737607240677, 0.01612538844347, -0.2504898011684418, -0.0010015885345637798, 0.03993641212582588, 0.0014487272128462791, 0.019129328429698944, 0.10245445370674133, -0.08943124115467072, 0.07833798974752426, 0.008797181770205498, -0.07633507251739502, 0.03975054249167442, -0.07811133563518524, -0.08865314722061157, 0.12472786754369736, 0.043053705245256424, 0.13900020718574524, 0.02480951137840748, 0.03437230363488197, 0.0309477299451828, 0.02146795764565468, 0.04057307168841362, -0.07654275000095367, 0.061083193868398666, 0.06269010156393051, -0.005846939515322447, 0.25623321533203125, -0.10933788120746613, 0.0012862143339589238, -0.03265133872628212, -0.005578150507062674, -0.1664772778749466, -0.03576062619686127, 0.1042608916759491, 0.06092970073223114, -0.014636363834142685, 0.009706499986350536, 0.1118818074464798, -0.10282763093709946, 0.07849796861410141, 0.144097700715065, -0.13140244781970978, -0.03706680238246918, 0.133217915892601, -0.036526262760162354, -0.015304342843592167, -0.11772896349430084, 0.02082417532801628, -0.03905801847577095, 0.049221571534872055, 0.10088367015123367, -0.0872267335653305, -0.1374649703502655, -0.04322253540158272, -0.09116147458553314, 0.034301821142435074, 0.16295404732227325, 0.009743033908307552, -0.06761273741722107, -0.09888249635696411, -0.022597333416342735, 0.12417440116405487, 0.039605285972356796, 0.018882298842072487, 0.05470627546310425, -0.09826657921075821, 0.034665994346141815, -0.03488233685493469, -0.08824832737445831, 0.024344973266124725, -0.099500373005867, 0.18713587522506714, 0.01931372843682766, 0.036424051970243454, 0.03455738350749016, 0.0374680832028389, -0.03124285489320755, -0.10069237649440765, -0.034726422280073166, -0.058689240366220474, -0.0929219201207161, -0.017378022894263268, 0.005315057467669249, -0.24252039194107056, -0.005048327147960663, 0.05626639351248741, -0.08913438022136688, -0.018986215814948082, -0.10153789073228836, 0.03287088871002197, 0.1062871664762497, 0.19428914785385132, -0.026382289826869965, -0.008178035728633404, 0.06043233722448349, -0.07959502935409546, 0.06703410297632217, -0.00532766617834568, -0.07022877037525177, -0.08862126618623734, 0.045009125024080276, -0.024754999205470085, 0.008061709813773632, 0.09183216840028763, -0.02735152840614319, -0.059377461671829224, 0.16462984681129456, -0.1098768562078476, 0.02718215435743332, 0.024516534060239792, -0.10319460183382034, 0.008298338390886784, 0.05988376960158348, -0.003259349148720503, -0.14686676859855652, 0.17909477651119232, 0.0016000285977497697, 0.030795127153396606, 0.0071207149885594845, -0.138829305768013, 0.10556735843420029, -0.12748073041439056, -0.03743517026305199, -0.13988853991031647, -0.009058916009962559, -0.020605048164725304, 0.05738580971956253, -0.014989783987402916, 0.0011106586316600442, -0.003669462399557233, 0.023303838446736336, -0.04950476810336113, 0.0022340905852615833, -0.01913115382194519, 0.024011587724089622, 0.01367857027798891, -0.15830734372138977, 0.1043848842382431, -0.08807245641946793, 0.022400621324777603, -0.11452143639326096, -0.07522580027580261, -0.2269013673067093, 0.0229830089956522, -0.11740010231733322, -0.015955891460180283, -0.08054796606302261, -0.026058921590447426, -0.034510288387537, 0.002703475533053279, 0.0011899174423888326, 0.060413919389247894, -0.0705820843577385, -0.10016516596078873, 0.1501660794019699, -0.0973241925239563, -0.009821764193475246, 0.11729999631643295, -0.012381883338093758, -0.040662363171577454, 0.08488119393587112, 0.16674035787582397, 0.04791722074151039, -0.18642973899841309, -0.0719493180513382, 0.006497622933238745, -0.06291086226701736, -0.01490713283419609, 0.033548615872859955, 0.025394493713974953, 0.1289917528629303, 0.025832341983914375, -0.014361083507537842, -0.04837527498602867, 0.06739015877246857, -0.0034638617653399706, 0.04790366068482399, -0.010623877868056297, 0.005950103048235178, 0.06120136007666588, 0.02080962061882019, 0.0021417206153273582, -0.05913982912898064, 0.04544435068964958, 0.020319398492574692, -0.08564985543489456, 0.03139611706137657, 0.01961924508213997, 0.08243901282548904, -0.006740525830537081, 0.0062115974724292755, -0.09446968883275986, -0.11214319616556168, 0.08486293256282806, -0.1302885264158249, 0.06049520894885063, 0.09632110595703125, 0.018007205799221992, 0.10092579573392868, -0.034018900245428085, 0.015116733498871326, -0.03392980620265007, -0.03580939397215843, 0.013477344997227192, -0.08142668753862381, -0.010875471867620945, -0.016866173595190048, 0.022749464958906174, -0.04300812631845474, 0.006633831188082695, 0.11011097580194473, 0.1829058974981308, 0.044450543820858, -0.009896722622215748, 0.04929152876138687, 0.046891145408153534, -0.005603655241429806, -0.0034705130383372307, 0.03557784855365753, -0.003220012877136469, -0.026850245893001556, 0.10605025291442871, 0.03322899341583252, -0.11519074440002441, 0.08569303900003433, 0.009417638182640076, -0.010052458383142948, -0.07198137789964676, -0.06081186980009079, -0.008160348050296307, -0.061846353113651276, -0.03605499491095543, 0.11640267074108124, 0.04473184421658516, 0.06422358006238937, -0.09378346800804138, -0.027670595794916153, 0.004187113139778376, 0.017129121348261833, -0.046877533197402954, 0.10597191751003265, 0.03775262460112572, -0.08409343659877777, 0.06410974264144897, -0.06148558482527733, -0.03200143203139305, 0.2439088076353073, 0.013085869140923023, -0.06369893997907639, 0.03274814411997795, -0.028866175562143326, -0.007622574456036091, 0.10745176672935486, 0.02366483211517334, -0.025894775986671448, 0.04514339193701744, -0.021837759763002396, -0.018666056916117668, -0.07224762439727783, 0.022008458152413368, -0.04761020466685295, -0.0014920360408723354, -0.04050396382808685, 0.10322416573762894, 0.04028642922639847, 0.0858834758400917, 0.024738149717450142, -0.025016112253069878, -0.02872532792389393, -0.05542720854282379, -0.0566435307264328, 0.1440623551607132, -0.07258206605911255, -0.3443590998649597, -0.1251915693283081, -0.03112855553627014, -0.1298232078552246, -0.00538984127342701, 0.03849073126912117, 0.003944686613976955, -0.08316812664270401, -0.05463589355349541, 0.1339433342218399, 0.11792857199907303, -0.058486297726631165, -0.06968934834003448, 0.02065052092075348, -0.05731954425573349, -0.1226368248462677, -0.029736557975411415, -0.06076664477586746, -0.05586589500308037, 0.08795588463544846, -0.03605407476425171, 0.05649638921022415, -0.009110460989177227, -0.05691203102469444, -0.0008345835958607495, -0.021204844117164612, 0.06172019615769386, -0.06500108540058136, 0.14606806635856628, 0.07133080810308456, -0.02199634164571762, 0.06451866030693054, 0.13429276645183563, 0.07478433102369308, 0.016168616712093353, -0.02051484026014805, 0.04814014956355095, -0.06380646675825119, -0.16604316234588623, -0.10996533185243607, -0.036069709807634354, 0.026876190677285194, 0.1164138987660408, 0.04022260010242462, 0.054865527898073196, -0.00010873660357901827, -0.005574926733970642, 0.057112425565719604, 0.07660555094480515, 0.07095295190811157, 0.02112654410302639, 0.05827736482024193, 0.03720688819885254, -0.05291575938463211, -0.009000240825116634, 0.08789027482271194, 0.058774255216121674, 0.09582313150167465, -0.12691658735275269, 0.019807854667305946, 0.01686367206275463, -0.04540415108203888, 0.03732974827289581, 0.11807835102081299, -0.061571840196847916, 0.018314778804779053, -0.0034265373833477497, -0.08400201052427292, -0.05252561345696449, 0.03079834394156933, 0.045176852494478226, -0.046088702976703644, -0.036157164722681046, -0.16090106964111328, 0.04764863848686218, 0.22744105756282806, -0.00112915167119354, -0.10517285019159317, -0.08817856758832932, -0.01679990626871586, -0.03388439118862152, -0.05980096384882927, -0.061235085129737854, 0.09305906295776367, -0.15613122284412384, 0.11362103372812271, -0.021787971258163452, 0.059930842369794846, -0.06739241629838943, -0.03968242183327675, -0.05783454328775406, 0.06360945850610733, -0.004346846137195826, 0.040833424776792526, -0.11079519987106323, 0.1394839882850647, 0.022002367302775383, 0.07489892840385437, -0.128594771027565, -0.020342683419585228, 0.00768827460706234, 0.09809704124927521, 0.11021920293569565, 0.05293513461947441, -0.02167244628071785, -0.04158725216984749, -0.07137537002563477, 0.02596636861562729, -0.03411966562271118, -0.0755777433514595, 0.02926742658019066, 0.044497616589069366, -0.023749975487589836, -0.09533990919589996, -0.03271084278821945, 0.0016568211140111089, -0.04535912349820137, 0.01851959340274334, -0.05169345811009407, 0.00834775809198618, -0.005708625540137291, -0.075827457010746, -0.09864578396081924, 0.12486914545297623, -0.0979185476899147, -0.1176052987575531, -0.11057651042938232, 0.023467233404517174, 0.013176499865949154, -0.09397118538618088, -0.03364598751068115, -0.03941897675395012, 0.17094457149505615, -0.09630702435970306, -0.1372874677181244, -0.044665370136499405, -0.042683929204940796, -0.06246079131960869, -0.00015968237130437046, 0.1550493836402893, 0.11765961349010468, -0.004788161721080542, 0.038369160145521164, 0.05902481451630592, -0.0182125736027956, -0.07596137374639511, 0.01982518658041954, 0.16261236369609833, 0.17233850061893463, 0.07326644659042358, -0.131556898355484, -0.1478627324104309, 0.0009323135600425303, 0.05266578495502472, 0.05686822533607483, 0.10805319994688034, -0.044215861707925797, 0.16268308460712433, 0.19457724690437317, -0.040272701531648636, -0.2848290205001831, 0.017564138397574425, 0.08116818964481354, 0.06120622903108597, -0.03532858565449715, -0.15913666784763336, 0.0989965945482254, 0.0728147104382515, 0.008001432754099369, -0.021761611104011536, -0.046294916421175, -0.08778683841228485, 0.05148553103208542, 0.07749876379966736, -0.08192377537488937, -0.04559215158224106, -0.0027342764660716057, -0.03122515045106411, -0.1620844304561615, 0.22377093136310577, -0.040559232234954834, 0.04650426656007767, -0.027149038389325142, 0.11060893535614014, 0.04139363765716553, -0.03274232894182205, 0.039350371807813644, 0.013466944918036461, -0.028171416372060776, -0.06273873150348663, -0.029310718178749084, 0.09287887066602707, -0.06407008320093155, 0.1481909602880478, -0.006249675527215004, -0.021830251440405846, -0.08558788895606995, -0.02226339466869831, -0.12308784574270248, 0.21940898895263672, -0.04687781631946564, -0.06774888932704926, -0.05418327450752258, 0.13990642130374908, 0.07680130004882812, -0.0011629785876721144, 0.12220079451799393, -0.0429486483335495, 0.05309564620256424, 0.13664540648460388, 0.12752500176429749, 0.011271767318248749, 0.022184794768691063, -0.01602873019874096, -0.03307604789733887, 0.07858853787183762, -0.09232068061828613, 0.06313120573759079, 0.12707534432411194, 0.010064399801194668, 0.038821812719106674, -0.015457188710570335, -0.1267695277929306, -0.06731275469064713, 0.07875299453735352, -0.15539702773094177, 0.08796645700931549, -0.025361714884638786, -0.11017490923404694, 0.02870417945086956, 0.09436608105897903, 0.12405136227607727, -0.04466256499290466, -0.0474872924387455, 0.049245189875364304, 0.044084254652261734, 0.02290278673171997, -0.009589068591594696, 0.05110548436641693, 0.027391979470849037, -0.07095897197723389, 0.09193205088376999, 0.06888295710086823, -0.017064206302165985, 0.003768878523260355, 0.11304258555173874, -0.09302356094121933, -0.0648069903254509, -0.06641402095556259, 0.04262882098555565, -0.02817814238369465, -0.06783058494329453, -0.0005783248925581574, -0.02992786094546318, -0.033424753695726395, 0.128064826130867, 0.020361267030239105, 0.00642411271110177, -0.008610391989350319, -0.01946612447500229, -0.0694572851061821, 0.06794031709432602, -0.0881458967924118, 0.026631588116288185, 0.029060905799269676, 0.09777956455945969, -0.019136909395456314, 0.07334023714065552, -0.04685615003108978, -0.03536464273929596, -0.11380169540643692, -0.058306120336055756, -0.06029577925801277, -0.01557924598455429, -0.04618928208947182, 0.01746651716530323, -0.06406544148921967, -0.07753302901983261, 0.007154681719839573, 0.035910118371248245, -0.05097667872905731, 0.027316870167851448, -0.04080668091773987, 0.04866508021950722, -0.14562828838825226, -0.0772574171423912, 0.022437281906604767, -0.026151491329073906, 0.08116447925567627, -0.008042043074965477, -0.01280505396425724, 0.11151592433452606, -0.0660843625664711, 0.009982479736208916, 0.014120706357061863, 0.023309795185923576, 0.07173135876655579, -0.07804238051176071, -0.010669680312275887, 0.019188888370990753, -0.06610336154699326, -0.009062163531780243, 0.09533949941396713, -0.047118816524744034, 0.05758024379611015, -0.010381823405623436, -0.10638435930013657, -0.08265229314565659, 0.1309395432472229, 0.05736730620265007, 0.09548631310462952, 0.06695140153169632, -0.03321301192045212, 0.04352365806698799, -0.0600786954164505, -0.02708560973405838, 0.03036653622984886, -0.09623178094625473, 0.009703926742076874, -0.01623832806944847, 0.03844495490193367, -0.0165946613997221, 0.13045568764209747, 0.15674802660942078, 0.005014865659177303, 0.020584356039762497, -0.019204216077923775, -0.13799560070037842, 0.015699738636612892, -0.031192773953080177, -0.09129105508327484, 0.005895028356462717, 0.028975768014788628, -0.029101533815264702, -0.07511019706726074, -0.035105474293231964, 0.16369590163230896, 0.05945863574743271, 0.0869290828704834, -0.009143893606960773, 0.13086986541748047, 0.0031593351159244776, -0.1578516662120819, -0.06848498433828354, 0.021431827917695045, 0.05309697985649109, -0.039446860551834106, 0.11002471297979355, 0.021040111780166626, -0.1490165889263153, 0.08887524902820587, 0.05756920948624611, -0.04668514430522919, -0.09385624527931213, -0.20439103245735168, -0.0350850410759449, 0.05217363312840462, 0.003628238569945097, -0.08442143350839615, -0.004390322137624025, -0.06048545986413956, 0.046978265047073364, -0.04874269664287567, 0.08078157901763916, -0.11992758512496948, -0.062149468809366226, 0.0878116711974144, 0.05822347104549408, -0.007514164783060551, 0.018397830426692963, 0.041450731456279755, -0.056496359407901764, 0.15217261016368866, 0.01732964627444744, -0.02101486176252365, 0.06872046738862991, -0.04684830829501152, -0.045717209577560425, -0.048695553094148636, -0.0014364246744662523, -0.012138080783188343, 0.013823727145791054, 0.02339084818959236, 0.0698724091053009, -0.034686967730522156, -0.01023613940924406, 0.13044670224189758, 0.0193426962941885, -0.02119659073650837, -0.09539540857076645, 0.15323296189308167, -0.049821656197309494, -0.011844160966575146, 0.027224179357290268, -0.0858469158411026, -0.061324916779994965, 0.11167801916599274, 0.17674382030963898, 0.09361264854669571, 0.04822227731347084, -0.013513803482055664, 0.0031039658933877945, 0.0277275238186121, 0.07915359735488892, 0.025383181869983673, 0.27197542786598206, 0.012674151919782162, 0.07801571488380432, -0.021489551290869713, 0.03969702124595642, -0.09592494368553162, 0.052695441991090775, -0.03820088133215904, -0.07002247869968414, -0.10333599150180817, 0.031415849924087524, -0.037070803344249725, -0.34315580129623413, 0.0761636272072792, -0.12608051300048828, -0.13190318644046783, -0.021883191540837288, -0.09969272464513779, 0.005462747532874346, 0.04447810724377632, 0.013408251106739044, 0.011714717373251915, 0.11068293452262878, 0.02407907135784626, 0.0054201725870370865, 0.009912646375596523, 0.07210279256105423, -0.13538672029972076, 0.14620694518089294, -0.02205733209848404, 0.07733391225337982, 0.06608699262142181, 0.030749524012207985, -0.01276351697742939, -0.017830388620495796, 0.04166615009307861, -0.11254072934389114, -0.0009357015369459987, 0.14400403201580048, -0.03552621603012085, 0.03228108957409859, 0.07569725811481476, -0.04246147349476814, -0.0009128410601988435, -0.005921375006437302, -0.014379027299582958, -0.04196996986865997, 0.17055779695510864, -0.11916275322437286, 0.0909326821565628, 0.20549121499061584, 0.045549795031547546, -0.05899016931653023, -0.09888843446969986, 0.027896670624613762, 0.026184996590018272, -0.09059274941682816, 0.015513370744884014, -0.043265972286462784, 0.010664270259439945, -0.019747119396924973, 0.028703728690743446, -0.09378466755151749, 0.010077393613755703, -0.056439679116010666, -0.03630523756146431, -0.03753606975078583, 0.034873589873313904, -0.05846429616212845, 0.003981010057032108, -0.016506867483258247, -0.03803597390651703, 0.03695007041096687, 0.024944370612502098, -0.11050114035606384, -0.022171959280967712 ]
null
null
transformers
# Danish BERT (version 2, uncased) by [Certainly](https://certainly.io/) (previously known as BotXO). All credit goes to [Certainly](https://certainly.io/) (previously known as BotXO), who developed Danish BERT. For data and training details see their [GitHub repository](https://github.com/certainlyio/nordic_bert) or [this article](https://www.certainly.io/blog/danish-bert-model/). You can also visit their [organization page](https://huggingface.co/Certainly) on Hugging Face. It is both available in TensorFlow and Pytorch format. The original TensorFlow version can be downloaded using [this link](https://www.dropbox.com/s/19cjaoqvv2jicq9/danish_bert_uncased_v2.zip?dl=1). Here is an example on how to load Danish BERT in PyTorch using the [🤗Transformers](https://github.com/huggingface/transformers) library: ```python from transformers import AutoTokenizer, AutoModelForPreTraining tokenizer = AutoTokenizer.from_pretrained("Maltehb/danish-bert-botxo") model = AutoModelForPreTraining.from_pretrained("Maltehb/danish-bert-botxo") ```
{"language": "da", "license": "cc-by-4.0", "tags": ["danish", "bert", "masked-lm", "Certainly"], "datasets": ["common_crawl", "wikipedia", "dindebat.dk", "hestenettet.dk", "danishOpenSubtitles"], "pipeline_tag": "fill-mask", "widget": [{"text": "K\u00f8benhavn er [MASK] i Danmark."}]}
fill-mask
Maltehb/danish-bert-botxo
[ "transformers", "pytorch", "tf", "jax", "bert", "token-classification", "danish", "masked-lm", "Certainly", "fill-mask", "da", "dataset:common_crawl", "dataset:wikipedia", "dataset:dindebat.dk", "dataset:hestenettet.dk", "dataset:danishOpenSubtitles", "license:cc-by-4.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
2022-03-02T23:29:04+00:00
[]
[ "da" ]
TAGS #transformers #pytorch #tf #jax #bert #token-classification #danish #masked-lm #Certainly #fill-mask #da #dataset-common_crawl #dataset-wikipedia #dataset-dindebat.dk #dataset-hestenettet.dk #dataset-danishOpenSubtitles #license-cc-by-4.0 #autotrain_compatible #endpoints_compatible #has_space #region-us
# Danish BERT (version 2, uncased) by Certainly (previously known as BotXO). All credit goes to Certainly (previously known as BotXO), who developed Danish BERT. For data and training details see their GitHub repository or this article. You can also visit their organization page on Hugging Face. It is both available in TensorFlow and Pytorch format. The original TensorFlow version can be downloaded using this link. Here is an example on how to load Danish BERT in PyTorch using the Transformers library:
[ "# Danish BERT (version 2, uncased) by Certainly (previously known as BotXO).\n\nAll credit goes to Certainly (previously known as BotXO), who developed Danish BERT. For data and training details see their GitHub repository or this article. You can also visit their organization page on Hugging Face.\n\nIt is both available in TensorFlow and Pytorch format. \n\nThe original TensorFlow version can be downloaded using this link.\n\n\nHere is an example on how to load Danish BERT in PyTorch using the Transformers library:" ]
[ "TAGS\n#transformers #pytorch #tf #jax #bert #token-classification #danish #masked-lm #Certainly #fill-mask #da #dataset-common_crawl #dataset-wikipedia #dataset-dindebat.dk #dataset-hestenettet.dk #dataset-danishOpenSubtitles #license-cc-by-4.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n", "# Danish BERT (version 2, uncased) by Certainly (previously known as BotXO).\n\nAll credit goes to Certainly (previously known as BotXO), who developed Danish BERT. For data and training details see their GitHub repository or this article. You can also visit their organization page on Hugging Face.\n\nIt is both available in TensorFlow and Pytorch format. \n\nThe original TensorFlow version can be downloaded using this link.\n\n\nHere is an example on how to load Danish BERT in PyTorch using the Transformers library:" ]
[ 117, 129 ]
[ "passage: TAGS\n#transformers #pytorch #tf #jax #bert #token-classification #danish #masked-lm #Certainly #fill-mask #da #dataset-common_crawl #dataset-wikipedia #dataset-dindebat.dk #dataset-hestenettet.dk #dataset-danishOpenSubtitles #license-cc-by-4.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n# Danish BERT (version 2, uncased) by Certainly (previously known as BotXO).\n\nAll credit goes to Certainly (previously known as BotXO), who developed Danish BERT. For data and training details see their GitHub repository or this article. You can also visit their organization page on Hugging Face.\n\nIt is both available in TensorFlow and Pytorch format. \n\nThe original TensorFlow version can be downloaded using this link.\n\n\nHere is an example on how to load Danish BERT in PyTorch using the Transformers library:" ]
[ -0.0806269571185112, 0.01925341784954071, -0.0013176831416785717, 0.04750874266028404, 0.08933691680431366, -0.0024340106174349785, 0.18154241144657135, 0.10277470201253891, 0.17551155388355255, 0.019673136994242668, -0.003790371585637331, 0.09310489892959595, 0.08958438038825989, 0.12809336185455322, 0.06005340814590454, -0.2952388525009155, -0.007750662509351969, 0.06106173247098923, -0.10481879115104675, 0.03718317672610283, 0.07989151030778885, -0.10339047014713287, 0.0939474031329155, 0.0383589006960392, -0.1400545835494995, 0.030296240001916885, -0.024804025888442993, -0.09958389401435852, 0.05931607633829117, 0.0345810241997242, 0.13370169699192047, 0.07160057872533798, 0.03692013397812843, 0.0444546639919281, 0.024286236613988876, 0.029222849756479263, -0.02582608163356781, 0.08712279051542282, 0.013906724750995636, -0.0326969251036644, 0.13497111201286316, -0.02209167182445526, 0.00733065465465188, 0.004249303601682186, 0.014770574867725372, -0.10774161666631699, 0.022535080090165138, 0.07148245722055435, 0.05934964492917061, 0.08006202429533005, 0.013445192947983742, 0.1338510811328888, -0.0769910216331482, 0.07762461155653, 0.2252638339996338, -0.11926024407148361, -0.10669054090976715, 0.2034827470779419, 0.10889958590269089, 0.05222012847661972, -0.07893067598342896, 0.04298776760697365, -0.005416175350546837, 0.038031384348869324, 0.07049918919801712, -0.1423594057559967, -0.09340467303991318, -0.068122498691082, -0.12969817221164703, 0.12337715178728104, 0.2072211056947708, -0.018465109169483185, -0.1249602735042572, -0.0819934830069542, 0.01657971553504467, 0.10970140993595123, -0.0021094996482133865, -0.00943628791719675, 0.049901872873306274, -0.07300155609846115, -0.040947578847408295, -0.1731427013874054, -0.10274513810873032, -0.0016927403630688787, -0.04569360241293907, 0.26824671030044556, -0.011125904507935047, 0.04436551779508591, -0.017868725582957268, 0.04489799588918686, -0.08719442039728165, -0.057413484901189804, -0.011476894840598106, -0.09465553611516953, 0.015064184553921223, -0.015760090202093124, -0.05302400887012482, -0.33683109283447266, 0.010289762169122696, 0.06266912817955017, 0.03696781396865845, -0.02482607029378414, -0.08258496224880219, 0.06986356526613235, 0.06698686629533768, 0.19500328600406647, -0.04734478145837784, 0.07290972769260406, 0.09267514199018478, -0.082089863717556, 0.01855010911822319, -0.008704187348484993, -0.1623373180627823, -0.018454961478710175, -0.05812815949320793, -0.01474673394113779, 0.0659371018409729, 0.06004669517278671, -0.05116817727684975, -0.11268500238656998, 0.13907772302627563, -0.04576580598950386, 0.06072796881198883, 0.027132252231240273, -0.14881330728530884, 0.02460436336696148, 0.11008142679929733, 0.020966628566384315, -0.14214834570884705, 0.0866413414478302, -0.05198586732149124, 0.06746144592761993, -0.04912356287240982, -0.2054322212934494, 0.08384000509977341, -0.15524017810821533, 0.016134319826960564, -0.1828179657459259, -0.041772421449422836, 0.028825126588344574, 0.09800880402326584, 0.03373126685619354, -0.024573564529418945, -0.0435139536857605, -0.004223092924803495, -0.03764157369732857, 0.018982956185936928, 0.024084480479359627, 0.027947651222348213, 0.006390086375176907, -0.19040635228157043, 0.08581499755382538, -0.14174078404903412, 0.010464505292475224, -0.16165198385715485, -0.09761214256286621, -0.29959991574287415, 0.023948071524500847, -0.06979843229055405, -0.006762702018022537, -0.09749735891819, -0.05663100257515907, -0.060062799602746964, -0.0019125824328511953, 0.024766642600297928, 0.13751620054244995, -0.005962667521089315, -0.09992247074842453, 0.16448721289634705, -0.06885212659835815, -0.01612866297364235, 0.12275772541761398, 0.008797231130301952, 0.06493673473596573, 0.07358241826295853, 0.16411784291267395, 0.032089781016111374, -0.2791256606578827, -0.04234927520155907, 0.06603539735078812, -0.016239890828728676, -0.0694272518157959, 0.054874204099178314, 0.028217637911438942, 0.06931141763925552, 0.015137632377445698, -0.04203500971198082, 0.0915188118815422, -0.012955108657479286, 0.027539245784282684, 0.021379685029387474, -0.04119594022631645, 0.04551902040839195, 0.05507061630487442, 0.04452236741781235, 0.010581305250525475, -0.08476022630929947, 0.07931336015462875, 0.020380016416311264, -0.09990447014570236, 0.04278189688920975, -0.036898430436849594, 0.0638609305024147, -0.1247841939330101, 0.01982196234166622, -0.08941469341516495, -0.14494583010673523, 0.09316941350698471, -0.011080516502261162, 0.032693348824977875, -0.010277590714395046, 0.05118225887417793, 0.07118210941553116, 0.006497627589851618, -0.02206302434206009, 0.00015727752179373056, -0.030149312689900398, -0.024377906695008278, -0.12175709754228592, -0.023326491937041283, -0.03957240283489227, 0.0307327788323164, -0.016968440264463425, 0.05695980042219162, 0.06749854236841202, 0.0926467627286911, 0.05892551317811012, -0.036509547382593155, 0.08358269184827805, 0.08852088451385498, -0.04237550497055054, -0.023574361577630043, 0.013755141757428646, 0.034646593034267426, -0.13132524490356445, 0.19492937624454498, 0.06679816544055939, -0.13976910710334778, 0.16689613461494446, -0.10112389177083969, -0.025271326303482056, 0.07893664389848709, -0.07762184739112854, 0.014775080606341362, -0.06972038000822067, -0.017354760318994522, 0.11922519654035568, 0.027892496436834335, 0.07881859689950943, -0.07087455689907074, 0.030033668503165245, 0.0774943083524704, -0.06933286786079407, -0.01481025293469429, 0.10238955914974213, 0.13531073927879333, -0.025653298944234848, 0.08782393485307693, -0.012639784254133701, -0.024792080745100975, 0.20449960231781006, 0.021517734974622726, -0.047902658581733704, -0.03904781863093376, -0.014958839863538742, -0.0007063334924168885, 0.10306956619024277, -0.035788435488939285, -0.027806896716356277, 0.0015321401879191399, -0.043648041784763336, -0.01111182663589716, -0.1003284677863121, -0.001808128785341978, -0.021886363625526428, 0.007967554032802582, -0.010258753784000874, 0.045614223927259445, -0.051586613059043884, 0.033549677580595016, -0.002556705381721258, -0.035989563912153244, 0.04150531068444252, 0.018707484006881714, -0.07756099849939346, 0.1522216945886612, -0.11171934008598328, -0.3206234276294708, -0.1162097156047821, -0.0461440235376358, -0.08809681981801987, 0.013204858638346195, 0.04760327935218811, -0.001977513311430812, -0.05851304531097412, -0.005024505313485861, 0.15048043429851532, 0.07778194546699524, 0.044042445719242096, -0.11914972215890884, -0.02063220553100109, -0.033722929656505585, -0.08723361045122147, -0.06182960420846939, -0.0595170333981514, -0.13573689758777618, 0.09704837948083878, -0.06057732552289963, 0.08072247356176376, 0.013970324769616127, -0.0042736162431538105, -0.04197182506322861, -0.02420155704021454, 0.049011461436748505, -0.09933629631996155, 0.12274385243654251, 0.08199764788150787, -0.02131267637014389, 0.014028788544237614, 0.006231443490833044, 0.07131866365671158, 0.017169643193483353, -0.013174239546060562, 0.0010990791488438845, -0.09844145178794861, -0.1534234583377838, -0.08582264184951782, -0.07663308084011078, 0.0961361676454544, 0.0939560979604721, 0.03395659103989601, 0.07503864914178848, 0.06424655020236969, 0.023290302604436874, 0.06285108625888824, 0.06609594821929932, 0.08359499275684357, -0.05598309636116028, 0.012208900414407253, 0.041463956236839294, -0.026803867891430855, 0.003527059918269515, 0.10469728708267212, 0.007973556406795979, 0.13617703318595886, -0.06469954550266266, 0.0875425711274147, 0.0007532773888669908, 0.03912123665213585, -0.0022159824147820473, 0.14598354697227478, -0.016204753890633583, -0.016498971730470657, 0.013156537897884846, -0.06622575223445892, -0.003202060703188181, 0.05453323945403099, 0.04717147350311279, -0.032487399876117706, -0.06773336231708527, -0.08946944773197174, 0.05742311850190163, 0.2304830104112625, -0.016615012660622597, -0.16347554326057434, -0.10694430023431778, -0.06702203303575516, 0.010900047607719898, -0.00728889973834157, -0.0310430359095335, 0.15368647873401642, -0.12510401010513306, 0.1090678721666336, -0.06773025542497635, 0.04779035970568657, 0.03421872854232788, -0.05311037227511406, -0.04271755367517471, 0.07574194669723511, -0.029404619708657265, 0.020034905523061752, -0.19135165214538574, 0.05312814190983772, 0.02585388347506523, 0.07152577489614487, -0.11755440384149551, -0.0038034217432141304, 0.03176824748516083, 0.11255660653114319, 0.16697989404201508, 0.021612277254462242, 0.11186780780553818, -0.10357248038053513, -0.17859604954719543, 0.013720125891268253, -0.01557204406708479, -0.10103034973144531, 0.00885266438126564, 0.06225992739200592, -0.02801477164030075, -0.01638825051486492, 0.006602140609174967, -0.0021442847792059183, -0.000588162278290838, 0.026259558275341988, 0.013488339260220528, -0.0499526709318161, -0.008707361295819283, -0.06438571214675903, 0.04008398577570915, 0.17767131328582764, -0.0411326140165329, -0.09929937869310379, -0.110756516456604, 0.0885099247097969, 0.04322453960776329, -0.08429764956235886, -0.0067259036004543304, -0.004817506764084101, 0.11303392052650452, -0.1015944853425026, -0.15698228776454926, 0.06879142671823502, -0.12046681344509125, -0.03616182878613472, 0.003828849643468857, 0.04667403921484947, 0.10095047205686569, 0.013779792003333569, 0.011040220968425274, 0.029079467058181763, -0.007265210617333651, -0.046081915497779846, 0.026165805757045746, 0.10430668294429779, 0.013715297915041447, 0.08391067385673523, -0.10912199318408966, -0.13118937611579895, -0.024112220853567123, 0.04016488417983055, 0.022187411785125732, 0.04751371219754219, -0.034411683678627014, 0.10855278372764587, 0.15545378625392914, -0.08550264686346054, -0.2898581027984619, 0.05201627314090729, 0.088137686252594, 0.05496775358915329, -0.045176729559898376, -0.21149589121341705, 0.1537049114704132, 0.048235081136226654, 0.02158292382955551, 0.06826724112033844, -0.23041237890720367, -0.06303168088197708, 0.06490650773048401, 0.07891371846199036, 0.06913832575082779, -0.09417447447776794, 0.037762124091386795, 0.06490839272737503, -0.013987739570438862, 0.3033759891986847, -0.03427932411432266, 0.06312880665063858, 0.015950271859765053, 0.09133875370025635, 0.06967174261808395, -0.0408569797873497, -0.007578270975500345, -0.08316673338413239, -0.0844961628317833, -0.08188993483781815, -0.05279216915369034, 0.13570278882980347, -0.0036210149992257357, 0.12080365419387817, -0.013011430390179157, -0.0758693590760231, -0.03831062838435173, -0.058741454035043716, -0.1184249147772789, 0.2189425528049469, -0.012599254958331585, -0.10159946978092194, -0.0022847175132483244, 0.09727812558412552, 0.061797864735126495, 0.07832563668489456, 0.10644270479679108, -0.008745615370571613, -0.004439882468432188, 0.14649860560894012, 0.10361605882644653, 0.030983369797468185, -0.05286739766597748, 0.028930578380823135, -0.051177624613046646, 0.12360157072544098, -0.10199210792779922, 0.004401042126119137, 0.10295140743255615, 0.0067118206061422825, 0.07195594161748886, -0.006138058379292488, -0.08739349991083145, 0.0010510776191949844, 0.05860498175024986, -0.1772426962852478, 0.013229046948254108, -0.07302199304103851, -0.11448270827531815, 0.04721005633473396, 0.06794999539852142, 0.173138827085495, -0.11431984603404999, -0.0152241550385952, -0.01166688371449709, 0.06679704040288925, -0.07097063213586807, 0.02417939342558384, 0.021759580820798874, -0.013437320478260517, -0.02508355677127838, 0.054935939610004425, 0.07297936081886292, -0.10423760116100311, 0.0526357926428318, 0.06709375977516174, -0.08540923148393631, -0.06687510013580322, -0.08291241526603699, 0.03380711376667023, -0.12881585955619812, -0.031312499195337296, -0.0962110087275505, -0.013117200694978237, -0.04633462429046631, 0.061569832265377045, 0.023691970854997635, -0.030285900458693504, 0.0018353762570768595, 0.030671751126646996, -0.14498271048069, 0.03357668220996857, -0.061425309628248215, 0.03901522234082222, 0.004116368945688009, 0.11086025089025497, 0.0147824976593256, 0.06252875924110413, -0.06633710116147995, -0.008339240215718746, -0.09719269722700119, -0.04225738346576691, 0.014434448443353176, -0.0031176763586699963, -0.01635279506444931, -0.023632315918803215, -0.05669746920466423, -0.10788650810718536, -0.01609513908624649, 0.050574492663145065, -0.07704909145832062, 0.0032418358605355024, -0.009949220344424248, 0.017339171841740608, -0.10416252911090851, -0.12990887463092804, -0.013966179452836514, -0.015545284375548363, 0.07290512323379517, 0.09269462525844574, -0.013715400360524654, 0.012766586616635323, -0.08986105769872665, 0.04606557637453079, 0.04491487517952919, 0.04284202679991722, 0.062044087797403336, 0.05278434231877327, 0.019282057881355286, 0.033335618674755096, -0.06955618411302567, -0.027254067361354828, 0.10699658840894699, -0.11937233060598373, 0.02926667593419552, 0.038796331733465195, -0.06558099389076233, -0.09327957779169083, 0.12546950578689575, 0.039852652698755264, 0.13677197694778442, 0.06742116063833237, -0.0356731154024601, 0.09385685622692108, -0.052560485899448395, -0.013904580846428871, -0.0004920365172438323, -0.06576226651668549, 0.02764718607068062, -0.016313623636960983, 0.03968224674463272, -0.04386086389422417, 0.04447200149297714, 0.1483107954263687, 0.02357787825167179, 0.0033219740726053715, -0.012610197067260742, -0.010863728821277618, 0.04270026460289955, 0.029903681948781013, -0.05666114389896393, 0.016197940334677696, -0.018611283972859383, 0.07914122939109802, 0.06415858864784241, 0.010608281940221786, 0.1200176402926445, -0.010937823913991451, 0.10220998525619507, 0.04161597788333893, 0.08669815212488174, 0.013589269481599331, -0.14334632456302643, -0.07504819333553314, -0.047487419098615646, 0.15225201845169067, -0.011439196765422821, 0.11372659355401993, -0.013895914889872074, -0.09648284316062927, 0.011197160929441452, 0.08695634454488754, -0.04839174821972847, -0.11822119355201721, -0.22485485672950745, -0.043719612061977386, -0.0412994809448719, -0.027933072298765182, -0.09519917517900467, -0.02261246182024479, -0.13336534798145294, 0.05985927954316139, -0.013349900022149086, 0.17293167114257812, -0.10912115126848221, -0.09130696207284927, 0.11487346142530441, 0.020099876448512077, -0.06483332067728043, -0.04764396324753761, -0.03736511617898941, -0.05762359872460365, 0.12131878733634949, 0.026247387751936913, -0.012370850890874863, 0.042332664132118225, 0.033725157380104065, -0.01723305508494377, -0.047781508415937424, -0.026025474071502686, -0.03434871882200241, 0.028288425877690315, 0.019945351406931877, 0.04752025753259659, -0.03869902715086937, -0.01869826205074787, 0.1780853271484375, 0.0022502723149955273, 0.011837966740131378, -0.09497003257274628, 0.09091547876596451, -0.06986673176288605, -0.03652974218130112, -0.013874211348593235, -0.03778583183884621, -0.08272494375705719, 0.1940612941980362, 0.2762635350227356, 0.06943169981241226, 0.011808338575065136, 0.0036964183673262596, -0.02272242307662964, 0.02697979472577572, 0.12482612580060959, 0.016580885276198387, 0.25027137994766235, -0.036586396396160126, 0.09719743579626083, -0.047448962926864624, 0.035310953855514526, -0.10272309929132462, -0.044957056641578674, -0.0034877171274274588, -0.05127065256237984, -0.07068493962287903, 0.06196578964591026, -0.09084970504045486, -0.26691168546676636, 0.11247076094150543, -0.15397457778453827, -0.055080998688936234, -0.09455471485853195, -0.03960004448890686, 0.04072684049606323, 0.11622758209705353, -0.02545076794922352, 0.004145829938352108, 0.09230555593967438, 0.02023938298225403, -0.064327172935009, -0.03449396416544914, 0.06076531484723091, -0.22064554691314697, 0.20071443915367126, -0.03335136920213699, 0.03814926743507385, 0.050928745418787, 0.004149481188505888, -0.027644990012049675, -0.04799143597483635, 0.01713663525879383, -0.09516499936580658, 0.027748338878154755, 0.07806845009326935, -0.0879320576786995, 0.12798038125038147, 0.012477091513574123, -0.06124141439795494, -0.001464462955482304, -0.07479249686002731, 0.011272283270955086, -0.012517585419118404, 0.12240871787071228, -0.1479640007019043, 0.0886610746383667, 0.1856187880039215, -0.014370796270668507, -0.07374032586812973, -0.09704858809709549, 0.013389471918344498, 0.059089526534080505, -0.1051945835351944, -0.022847333922982216, -0.13240018486976624, -0.025373687967658043, -0.018302036449313164, 0.038454629480838776, -0.11495990306138992, 0.029061293229460716, -0.06923028081655502, -0.055407047271728516, -0.06863655894994736, -0.022391416132450104, 0.006132341921329498, -0.028007512912154198, -0.03576775640249252, 0.10729623585939407, 0.020159225910902023, -0.001837236457504332, -0.08603535592556, -0.07063621282577515 ]
null
null
transformers
hello
{}
text-generation
Mamatha/agri-gpt2
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
hello
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 50 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.02061169408261776, 0.03669698163866997, -0.007248206064105034, 0.012762377969920635, 0.1690322607755661, 0.03350625932216644, 0.09912695735692978, 0.1378507763147354, 0.006931114010512829, -0.02730877511203289, 0.16016589105129242, 0.210490420460701, -0.0018047182820737362, 0.07203522324562073, -0.0626848116517067, -0.27152273058891296, 0.051494795829057693, 0.06287337839603424, -0.006572056096047163, 0.12476035207509995, 0.07706263661384583, -0.058810923248529434, 0.09187597781419754, -0.01914438046514988, -0.17445695400238037, 0.023767365142703056, 0.05130406841635704, -0.12089582532644272, 0.11222874373197556, 0.04935329034924507, 0.09586816281080246, 0.014551094733178616, -0.061403561383485794, -0.14227746427059174, 0.027511093765497208, 0.02571028470993042, -0.06026925519108772, 0.06976787000894547, 0.10209541767835617, -0.09534682333469391, 0.09160638600587845, 0.08213244378566742, -0.02483462356030941, 0.054132550954818726, -0.1637229174375534, -0.08184890449047089, -0.030146123841404915, 0.009252084419131279, 0.06836725026369095, 0.09418372809886932, -0.014005177654325962, 0.11512795090675354, -0.08648983389139175, 0.10137014836072922, 0.15515094995498657, -0.3112814128398895, -0.0025897729210555553, 0.08596665412187576, 0.056812409311532974, 0.05083649232983589, -0.028057346120476723, 0.059737250208854675, 0.02277030050754547, 0.023691991344094276, 0.024889623746275902, -0.08345351368188858, -0.12221888452768326, 0.04607483372092247, -0.08558143675327301, -0.07045682519674301, 0.24011977016925812, -0.06557567417621613, 0.05927315354347229, -0.026034124195575714, -0.09983419626951218, -0.04822950065135956, -0.025522518903017044, 0.0027340995147824287, -0.05865494906902313, 0.08325810730457306, 0.03113705664873123, -0.07104028761386871, -0.12954817712306976, -0.03331276401877403, -0.1671232432126999, 0.16637788712978363, 0.017353568226099014, 0.059134289622306824, -0.19971254467964172, 0.10599949955940247, 0.009768630377948284, -0.09360894560813904, 0.031420230865478516, -0.0966353788971901, 0.04421459138393402, -0.002475510584190488, -0.05345337465405464, -0.07802210748195648, 0.07758434861898422, 0.1328297108411789, 0.005376500077545643, 0.0312935933470726, -0.022861171513795853, 0.09267520904541016, 0.03198305144906044, 0.09125647693872452, 0.003466499038040638, -0.02334674261510372, 0.05431690812110901, -0.128060445189476, -0.007325596176087856, -0.07051635533571243, -0.15026308596134186, -0.0425361804664135, 0.059593502432107925, 0.08932037651538849, 0.019110143184661865, 0.08286140859127045, -0.052690550684928894, -0.031684745103120804, 0.05481104552745819, -0.06541909277439117, -0.0023946587461978197, -0.0066881631501019, 0.028208354488015175, 0.13478249311447144, -0.008862287737429142, 0.024262670427560806, -0.12114688754081726, 0.05839782580733299, -0.08044246584177017, -0.0018729495350271463, -0.04188903048634529, -0.04908997192978859, 0.01962810568511486, -0.08889313787221909, 0.023544808849692345, -0.14767387509346008, -0.17289353907108307, 0.014023632742464542, 0.015207161195576191, -0.02661287784576416, -0.055295780301094055, -0.03635844588279724, -0.02752472460269928, 0.05103516951203346, -0.06349530816078186, 0.0072977435775101185, -0.05553026497364044, 0.10184666514396667, -0.03134933114051819, 0.06921332329511642, -0.10158300399780273, 0.07680372148752213, -0.12065500766038895, -0.010678648948669434, -0.09030061960220337, 0.0667608305811882, -0.005207765847444534, 0.12495583295822144, -0.02772742323577404, -0.023418201133608818, -0.06870874017477036, 0.052683956921100616, -0.03466503322124481, 0.198461651802063, -0.0751492977142334, -0.12632763385772705, 0.2507952153682709, -0.0663582980632782, -0.14219015836715698, 0.09786481410264969, 0.011805753223598003, 0.04386255890130997, 0.09383031725883484, 0.1752246767282486, 0.02929861843585968, -0.002063382649794221, 0.08640838414430618, 0.10012904554605484, -0.10108412057161331, -0.08980478346347809, 0.023798564448952675, -0.02894214354455471, -0.14016631245613098, 0.056434664875268936, 0.06615027785301208, 0.08355093747377396, -0.04800274223089218, -0.031239774078130722, -0.0360761322081089, 0.00971299409866333, 0.055595025420188904, 0.014840207993984222, 0.12724317610263824, -0.054204441606998444, -0.03147004917263985, -0.029795076698064804, -0.010151172988116741, -0.01988917589187622, 0.03365359082818031, -0.021863849833607674, 0.13083113729953766, -0.05663840472698212, 0.058342233300209045, -0.18144778907299042, -0.08069596439599991, 0.0038181261625140905, 0.12040943652391434, -0.007066712249070406, 0.07556058466434479, 0.05802106857299805, -0.03010028414428234, -0.005254245363175869, -0.011689078994095325, 0.1494489461183548, -0.025504015386104584, -0.0695682018995285, -0.06697690486907959, 0.05832945927977562, -0.059016112238168716, -0.011436658911406994, -0.06229717284440994, 0.014011423103511333, 0.032067783176898956, 0.10360895842313766, 0.004289672710001469, 0.028894901275634766, -0.020906507968902588, 0.010454483330249786, -0.08038664609193802, 0.004400757607072592, 0.09865622967481613, -0.010968429036438465, -0.052063871175050735, 0.2027982473373413, -0.15390464663505554, 0.233114555478096, 0.19188177585601807, -0.28178542852401733, 0.013452456332743168, -0.057999882847070694, -0.02458072640001774, 0.014820392243564129, 0.04814935103058815, -0.02250209078192711, 0.11650584638118744, -0.0003065110940951854, 0.18351061642169952, -0.054600246250629425, -0.05317075923085213, 0.003565638791769743, -0.05164698138833046, -0.0039711822755634785, 0.07296860963106155, 0.12584854662418365, -0.14359883964061737, 0.19494381546974182, 0.20664817094802856, 0.03114785999059677, 0.16297315061092377, 0.006141228135675192, -0.025006834417581558, 0.0717167779803276, -0.020189831033349037, -0.03723941743373871, -0.06850926578044891, -0.18136908113956451, -0.028368933126330376, 0.08009158074855804, 0.04700847342610359, 0.0970572903752327, -0.12121459096670151, -0.04919075593352318, -0.017726639285683632, -0.0037948081735521555, -0.001169883762486279, 0.09482266008853912, 0.04720060154795647, 0.11524532735347748, -0.013394813053309917, 0.00007184622518252581, 0.10807308554649353, 0.017171379178762436, -0.09143665432929993, 0.1945890337228775, -0.12493730336427689, -0.3475200831890106, -0.15314428508281708, -0.1694491058588028, -0.03699450567364693, 0.05181937664747238, 0.1012069508433342, -0.11282069236040115, -0.028340332210063934, 0.017789945006370544, 0.09569206833839417, -0.09760142862796783, 0.021629052236676216, -0.08391507714986801, 0.04361793026328087, -0.08041521906852722, -0.07167459279298782, -0.056972403079271317, -0.021237103268504143, -0.05630851536989212, 0.14537808299064636, -0.10566911846399307, 0.04946158453822136, 0.1748725324869156, 0.041469868272542953, 0.052667371928691864, -0.026084311306476593, 0.20342226326465607, -0.10122719407081604, -0.008247622288763523, 0.1996638923883438, -0.03767416626214981, 0.07793038338422775, 0.1047254279255867, 0.008436969481408596, -0.08692540973424911, 0.014031565748155117, -0.03050277940928936, -0.08918496966362, -0.23751021921634674, -0.10732308030128479, -0.1305837780237198, 0.06702837347984314, 0.06369546800851822, 0.06166477128863335, 0.1605178564786911, 0.08636368811130524, -0.02265070751309395, 0.051190104335546494, 0.005209398455917835, 0.08386892825365067, 0.19134031236171722, -0.018688667565584183, 0.13220134377479553, -0.047730229794979095, -0.1284172236919403, 0.08534674346446991, 0.06895700097084045, 0.13253210484981537, 0.07302940636873245, 0.06437722593545914, 0.006450139917433262, 0.09158173203468323, 0.14580334722995758, 0.11763523519039154, 0.013675099238753319, -0.02294873259961605, -0.035648882389068604, -0.014953047037124634, -0.053832754492759705, 0.041831664741039276, 0.03041837364435196, -0.14036796987056732, -0.0522465854883194, -0.11898676306009293, 0.07560022920370102, 0.10437406599521637, 0.06208758428692818, -0.23143552243709564, 0.012645904906094074, 0.0920325219631195, -0.033739786595106125, -0.12553022801876068, 0.08267304301261902, -0.02773478254675865, -0.148908331990242, 0.04800388216972351, -0.0624145083129406, 0.13054151833057404, -0.06850045919418335, 0.08056096732616425, -0.04174954071640968, -0.057825472205877304, 0.02301604673266411, 0.11933999508619308, -0.29898545145988464, 0.19811242818832397, 0.00232495809905231, -0.055925529450178146, -0.1032438725233078, 0.013398502953350544, 0.01214119978249073, 0.1131071001291275, 0.11060462892055511, 0.004075071774423122, -0.054734937846660614, -0.09965869784355164, -0.025381751358509064, 0.032791636884212494, 0.11453904956579208, -0.0661320760846138, -0.008024964481592178, -0.04672384262084961, -0.005813688039779663, -0.03299189358949661, -0.04443271830677986, 0.006998900789767504, -0.17404834926128387, 0.08311133086681366, 0.021644821390509605, 0.09458605200052261, 0.01686358079314232, -0.020177142694592476, -0.0930124819278717, 0.22706744074821472, -0.07374903559684753, -0.10036850720643997, -0.11869792640209198, -0.05789005383849144, 0.06681498885154724, -0.07128075510263443, 0.04802818223834038, -0.08300348371267319, 0.024066224694252014, -0.051810044795274734, -0.2141922116279602, 0.12876592576503754, -0.09854454547166824, -0.0426534079015255, -0.04808230325579643, 0.18427522480487823, -0.07560548186302185, 0.007441832683980465, 0.014283985830843449, 0.03377733752131462, -0.12088590115308762, -0.09571054577827454, 0.03321368247270584, -0.0054462980479002, 0.050365518778562546, 0.02398831397294998, -0.06449484080076218, 0.013354619033634663, -0.027336502447724342, -0.007998697459697723, 0.31066620349884033, 0.16510078310966492, -0.04284334182739258, 0.17947670817375183, 0.11826936155557632, -0.09111739695072174, -0.3014727234840393, -0.09573464840650558, -0.10117041319608688, -0.03300357609987259, -0.04562511295080185, -0.21774791181087494, 0.0805845707654953, 0.02981768362224102, -0.016042208299040794, 0.15843164920806885, -0.24728429317474365, -0.07573903352022171, 0.14059032499790192, -0.0033480850979685783, 0.36902642250061035, -0.1301729530096054, -0.10661002993583679, -0.049214623868465424, -0.14853917062282562, 0.16302582621574402, -0.006122821941971779, 0.09923173487186432, -0.03277380019426346, 0.0951908603310585, 0.04296580329537392, -0.04584183171391487, 0.09171538800001144, 0.006283751223236322, -0.00015285445260815322, -0.09827379137277603, -0.026431895792484283, 0.04596385359764099, 0.006172254215925932, 0.015664206817746162, -0.05151783674955368, 0.024717671796679497, -0.13768158853054047, -0.04218921437859535, -0.08312345296144485, 0.05613607540726662, 0.0378592424094677, -0.06245051324367523, 0.012870991602540016, -0.06329932808876038, -0.015552804805338383, 0.006438991520553827, 0.22675301134586334, -0.033524125814437866, 0.16034509241580963, 0.06924859434366226, 0.0977221205830574, -0.13415151834487915, -0.0030943630263209343, -0.07359358668327332, -0.0585312657058239, 0.0910639688372612, -0.12273677438497543, 0.05962078645825386, 0.11274706572294235, -0.04377524182200432, 0.06500444561243057, 0.11012120544910431, 0.004117070697247982, -0.003137144260108471, 0.12473985552787781, -0.25908008217811584, 0.015647539868950844, -0.07494742423295975, -0.024182267487049103, 0.08232303708791733, 0.07148353010416031, 0.16246774792671204, 0.024140827357769012, -0.05674751475453377, -0.0011056308867409825, 0.012844313867390156, -0.04069126397371292, 0.0659845769405365, 0.010237254202365875, 0.020188752561807632, -0.14966484904289246, 0.07341181486845016, 0.020635386928915977, -0.1390792727470398, 0.00947505235671997, 0.16722126305103302, -0.13189104199409485, -0.11809033155441284, -0.024501128122210503, 0.10207509994506836, -0.12840311229228973, -0.01538072805851698, -0.0530657097697258, -0.12485695630311966, 0.08780299127101898, 0.11384674161672592, 0.07223537564277649, 0.08963492512702942, -0.046553220599889755, -0.03367399424314499, -0.03635541722178459, -0.012573964893817902, -0.005112584214657545, 0.023647962138056755, -0.08710068464279175, 0.020647486671805382, -0.014909865334630013, 0.1446734219789505, -0.08746474981307983, -0.07236666977405548, -0.15646818280220032, 0.03405974432826042, -0.10871405899524689, -0.07473097741603851, -0.08840084820985794, -0.051927600055933, -0.011308991350233555, -0.0237440038472414, -0.04571209102869034, -0.04849827662110329, -0.12665939331054688, 0.012751449830830097, -0.04703500121831894, 0.02897617593407631, -0.06266307830810547, -0.003384709358215332, 0.09275015443563461, -0.04187775403261185, 0.13208845257759094, 0.13593345880508423, -0.07172486186027527, 0.12254272401332855, -0.1241949051618576, -0.08505946397781372, 0.10708841681480408, 0.018022065982222557, 0.039706673473119736, 0.06602154672145844, 0.027937114238739014, 0.06251784414052963, 0.023262426257133484, 0.0474555529654026, -0.0034392299130558968, -0.1278984397649765, 0.026975933462381363, -0.026938216760754585, -0.15527313947677612, -0.05361103639006615, -0.045469336211681366, 0.04235553741455078, 0.01838851533830166, 0.1166498214006424, -0.03758706524968147, 0.11192993074655533, -0.06871756166219711, 0.02620946429669857, -0.0016389728989452124, -0.19030974805355072, -0.06729240715503693, -0.08063044399023056, 0.027664629742503166, 0.01087124552577734, 0.2522471249103546, 0.03634938970208168, 0.018269522115588188, 0.022480595856904984, 0.08995942771434784, 0.03782389685511589, 0.01657526195049286, 0.20189790427684784, 0.1176978051662445, -0.05808348208665848, -0.09545315057039261, 0.08679695427417755, 0.024981701746582985, 0.011926673352718353, 0.12499669194221497, 0.02542710304260254, 0.015265305526554585, 0.09474188834428787, -0.027163418009877205, 0.011014972813427448, -0.09048577398061752, -0.12104497104883194, -0.012157267890870571, 0.06607268750667572, -0.0005205549532547593, 0.09510093182325363, 0.15160807967185974, -0.01614399254322052, 0.03269355744123459, -0.01990874856710434, -0.044518157839775085, -0.17706270515918732, -0.15518343448638916, -0.07865231484174728, -0.12877032160758972, 0.006389371585100889, -0.10272641479969025, 0.0437617301940918, 0.06735121458768845, 0.055535778403282166, -0.061280637979507446, 0.08018633723258972, 0.0908743217587471, -0.10815306007862091, 0.06396238505840302, -0.03378984332084656, 0.05308237299323082, -0.010930529795587063, -0.012166712433099747, -0.0929059311747551, -0.004868659656494856, -0.008535288274288177, 0.04750073328614235, -0.05832274630665779, 0.02753910794854164, -0.15148714184761047, -0.11618328839540482, -0.04823146015405655, 0.06859103590250015, -0.0567200593650341, 0.10416112095117569, 0.0015089651569724083, -0.014318077825009823, 0.03907795622944832, 0.214002326130867, -0.0627247542142868, -0.030963636934757233, -0.03922291100025177, 0.22120635211467743, 0.040702469646930695, 0.10107730329036713, -0.013604391366243362, 0.008694403804838657, -0.07015835493803024, 0.35390228033065796, 0.29603973031044006, -0.070329949259758, 0.010815161280333996, 0.030772194266319275, 0.030525315552949905, 0.12354307621717453, 0.13173502683639526, 0.08878594636917114, 0.26048561930656433, -0.08683076500892639, -0.033120445907115936, -0.024800274521112442, -0.015878379344940186, -0.0880107581615448, 0.10199514776468277, 0.0479244664311409, -0.06818252801895142, -0.0319574736058712, 0.09539607912302017, -0.23561538755893707, 0.1563696265220642, -0.08077402412891388, -0.1598164439201355, -0.06550628691911697, 0.0020895323250442743, 0.11123234033584595, 0.011316700838506222, 0.08370231091976166, -0.011379145085811615, -0.09968001395463943, 0.06325476616621017, 0.023829400539398193, -0.23007269203662872, -0.023487107828259468, 0.06765052676200867, -0.0536172091960907, 0.012333041988313198, -0.020697347819805145, 0.046463679522275925, 0.06474317610263824, 0.044528279453516006, -0.04973433166742325, 0.014270495623350143, -0.008215518668293953, -0.03517768532037735, 0.018696090206503868, 0.04877908155322075, 0.02597798965871334, -0.10980300605297089, 0.06050827354192734, -0.11806613951921463, 0.040548477321863174, -0.06373075395822525, -0.03647841513156891, 0.00396439665928483, 0.0009551440016366541, -0.055222492665052414, 0.0567188560962677, 0.08332794904708862, 0.00017091783229261637, -0.01667456328868866, -0.07881699502468109, -0.009257469326257706, 0.0017395061440765858, -0.06986054033041, -0.10769271850585938, -0.13010230660438538, -0.10757219046354294, 0.11583194881677628, -0.011943322606384754, -0.19320523738861084, 0.014474074356257915, -0.09977549314498901, 0.04724235460162163, -0.17902211844921112, 0.08024095743894577, 0.0743112713098526, 0.016707729548215866, -0.003201504237949848, -0.03637106716632843, 0.050247397273778915, 0.08070636540651321, -0.1089664176106453, -0.08408985286951065 ]
null
null
transformers
#Mikasa Ackermann DialoGPT Model
{"tags": ["conversational"]}
text-generation
Mandy/DialoGPT-small-Mikasa
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
#Mikasa Ackermann DialoGPT Model
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 51 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.009697278961539268, 0.03208012506365776, -0.007204889785498381, 0.004809224978089333, 0.16726240515708923, 0.014898733235895634, 0.09765533357858658, 0.13672804832458496, -0.007841327227652073, -0.031050153076648712, 0.14490588009357452, 0.20411323010921478, -0.006439372431486845, 0.0661218985915184, -0.07572533935308456, -0.2683109939098358, 0.05759621039032936, 0.046649303287267685, 0.016515716910362244, 0.1200079694390297, 0.08573378622531891, -0.05473608896136284, 0.08714032918214798, -0.014583407901227474, -0.150366872549057, 0.017733458429574966, 0.043394338339567184, -0.12260226160287857, 0.11910516023635864, 0.05462685227394104, 0.07063519209623337, 0.014929565601050854, -0.07541623711585999, -0.1631229966878891, 0.03031250834465027, 0.01425902172923088, -0.0594632662832737, 0.04757995903491974, 0.059961482882499695, -0.10165371745824814, 0.10819483548402786, 0.09530027210712433, -0.013078106567263603, 0.06798283755779266, -0.16849711537361145, -0.020869607105851173, -0.01446688175201416, 0.009899779222905636, 0.05550243332982063, 0.09964893013238907, -0.03413357585668564, 0.10497362166643143, -0.09214533120393753, 0.11017382889986038, 0.10932035744190216, -0.32057443261146545, -0.005767723545432091, 0.09167823940515518, 0.039358653128147125, 0.07352814823389053, -0.04467793554067612, 0.06258884817361832, 0.018015462905168533, 0.017986174672842026, -0.014015024527907372, -0.07283061742782593, -0.11612214148044586, 0.04717336222529411, -0.08668071031570435, -0.059868961572647095, 0.2244078367948532, -0.05464440956711769, 0.06881742179393768, -0.05281897634267807, -0.10522868484258652, -0.04308144748210907, -0.029833965003490448, 0.00475557055324316, -0.07660607248544693, 0.08692064881324768, 0.00869679357856512, -0.09547875821590424, -0.1376667022705078, -0.02496783249080181, -0.1776352822780609, 0.16140350699424744, 0.02465328387916088, 0.05232657864689827, -0.2027255892753601, 0.09623090922832489, 0.017906051129102707, -0.08045592904090881, 0.022091427817940712, -0.10046248883008957, 0.029131146147847176, 0.013760408386588097, -0.04754498973488808, -0.061387211084365845, 0.0843690037727356, 0.11199145019054413, -0.01731434464454651, 0.025486016646027565, -0.039331406354904175, 0.08100687712430954, 0.03553595021367073, 0.09077847748994827, 0.007288969587534666, -0.028338588774204254, 0.025842782109975815, -0.13719046115875244, -0.003647835226729512, -0.07116208970546722, -0.16572439670562744, -0.021088803187012672, 0.02994808368384838, 0.08289173990488052, 0.015449047088623047, 0.11682453751564026, -0.03272046521306038, -0.025152435526251793, 0.03602350503206253, -0.047656361013650894, -0.012649794109165668, 0.016648368909955025, 0.013163427822291851, 0.12399329990148544, -0.0022096503525972366, 0.03235051408410072, -0.13653022050857544, 0.031423524022102356, -0.06793295592069626, -0.003740974934771657, -0.03486552834510803, -0.040637075901031494, 0.009043924510478973, -0.06862333416938782, 0.003486064961180091, -0.15030112862586975, -0.15063877403736115, 0.007587034720927477, -0.007836631499230862, -0.04107699543237686, -0.06370922178030014, -0.06952770054340363, -0.013550350442528725, 0.04251532256603241, -0.07093454152345657, -0.011352915316820145, -0.06403283774852753, 0.11004766076803207, -0.03197755664587021, 0.07921615242958069, -0.11953279376029968, 0.08390819281339645, -0.11260783672332764, -0.02386913076043129, -0.060801517218351364, 0.09317506104707718, -0.0006014376995153725, 0.09549830108880997, -0.006563255097717047, -0.017931854352355003, -0.07981178909540176, 0.06445012241601944, -0.042872510850429535, 0.21701598167419434, -0.0615808479487896, -0.11181682348251343, 0.28781595826148987, -0.052628401666879654, -0.1370542049407959, 0.11647392809391022, 0.008682746440172195, 0.05777018144726753, 0.10703510791063309, 0.19733482599258423, -0.015276194550096989, 0.004040541127324104, 0.09471915662288666, 0.11263324320316315, -0.11276852339506149, -0.033160366117954254, 0.013019153848290443, -0.04081077128648758, -0.10867965966463089, 0.04689536616206169, 0.09810488671064377, 0.07090286910533905, -0.04786505550146103, -0.03377414867281914, -0.01366397924721241, 0.0052589005790650845, 0.08885077387094498, -0.007157256826758385, 0.10962837189435959, -0.05819983780384064, -0.03796621412038803, -0.029282379895448685, -0.012126247398555279, -0.03951939567923546, 0.03137664496898651, -0.043376367539167404, 0.10821941494941711, -0.011204327456653118, 0.06364280730485916, -0.16185984015464783, -0.07691477984189987, -0.017002692446112633, 0.1581239402294159, 0.024538565427064896, 0.09859629720449448, 0.0552486926317215, -0.040398042649030685, -0.0012767292791977525, 0.012792680412530899, 0.15581141412258148, -0.022091681137681007, -0.065607450902462, -0.052166227251291275, 0.08642971515655518, -0.05641226842999458, 0.04504093527793884, -0.05937713757157326, 0.012367865070700645, 0.05064384639263153, 0.10342344641685486, -0.00018274025933351368, 0.03323284164071083, -0.008164864964783192, 0.002145637758076191, -0.058205123990774155, 0.007405933458358049, 0.10799351334571838, 0.00036868182360194623, -0.07365862280130386, 0.22074243426322937, -0.17796069383621216, 0.1765957772731781, 0.1893044263124466, -0.299345999956131, 0.017949223518371582, -0.10759581625461578, -0.04561871662735939, 0.014407722279429436, 0.05567655712366104, -0.0454222597181797, 0.1703362911939621, -0.009871348738670349, 0.18874616920948029, -0.04946064203977585, -0.04464937001466751, -0.0200483538210392, -0.05118836089968681, -0.0024189651012420654, 0.07781197130680084, 0.10685696452856064, -0.13992026448249817, 0.1964332014322281, 0.1621224284172058, 0.048237916082143784, 0.19945049285888672, 0.015346456319093704, -0.011589210480451584, 0.0909530371427536, 0.005220826715230942, -0.058739423751831055, -0.07409929484128952, -0.2594851851463318, -0.030033592134714127, 0.07992640137672424, 0.0422382652759552, 0.1212305948138237, -0.11349532753229141, -0.038956157863140106, -0.01763172075152397, -0.023146281018853188, 0.021672505885362625, 0.0914369598031044, 0.06075398623943329, 0.13201528787612915, -0.001710098935291171, -0.007300339173525572, 0.10524573177099228, 0.01783694699406624, -0.09354141354560852, 0.18308524787425995, -0.13652534782886505, -0.37097251415252686, -0.13911493122577667, -0.18057456612586975, -0.05449081212282181, 0.05712554603815079, 0.11679314076900482, -0.12011238187551498, -0.018752124160528183, 0.01578843593597412, 0.10931742936372757, -0.08449502289295197, 0.0021454424131661654, -0.06880278885364532, 0.0321490578353405, -0.10310184955596924, -0.09194442629814148, -0.055416494607925415, -0.031392451375722885, -0.08001253753900528, 0.1423761546611786, -0.10777941346168518, 0.04476889222860336, 0.20262959599494934, 0.04653622955083847, 0.05625178664922714, -0.044105201959609985, 0.19377262890338898, -0.11264272034168243, -0.01661740615963936, 0.19215328991413116, -0.048360925167798996, 0.07476246356964111, 0.1232115849852562, -0.006348740309476852, -0.08765771239995956, 0.03011748194694519, -0.02085109055042267, -0.07988511025905609, -0.23219464719295502, -0.13938382267951965, -0.12429051846265793, 0.09477275609970093, 0.028005298227071762, 0.056365787982940674, 0.17219258844852448, 0.06577219814062119, -0.038416244089603424, 0.006410336587578058, 0.02959546446800232, 0.08237514644861221, 0.23417828977108002, -0.06035616248846054, 0.1364797055721283, -0.03420931473374367, -0.14982740581035614, 0.08169995993375778, 0.0713929831981659, 0.10213395953178406, 0.06678459793329239, 0.0804823637008667, 0.0149586396291852, 0.06188136339187622, 0.1311223804950714, 0.08191446959972382, 0.019586285576224327, -0.02480296604335308, -0.03388110175728798, -0.025523077696561813, -0.05937909707427025, 0.040128443390131, 0.06589099019765854, -0.16763372719287872, -0.039227183908224106, -0.09338314831256866, 0.09657008945941925, 0.0873042419552803, 0.06609832495450974, -0.1842060089111328, -0.008006223477423191, 0.08488986641168594, -0.03854905813932419, -0.13727426528930664, 0.09535189718008041, 0.01523482333868742, -0.15144726634025574, 0.03139317408204079, -0.04061909019947052, 0.12188644707202911, -0.07804752141237259, 0.09809603542089462, -0.08108244836330414, -0.07448557764291763, 0.02123199962079525, 0.1261177361011505, -0.30527687072753906, 0.20240111649036407, -0.0024993624538183212, -0.06486981362104416, -0.1243603527545929, -0.0032166161108762026, 0.002410882618278265, 0.07357452809810638, 0.10519039630889893, -0.007196315098553896, 0.001897757756523788, -0.06300821900367737, -0.01829923689365387, 0.032471053302288055, 0.13080233335494995, -0.0401318334043026, -0.021158374845981598, -0.050194524228572845, -0.001653497340157628, -0.03173094615340233, -0.06934895366430283, 0.02002747356891632, -0.19509181380271912, 0.08751901984214783, 0.04166261479258537, 0.09648149460554123, 0.029994789510965347, 0.004265148192644119, -0.09651939570903778, 0.24698667228221893, -0.07148019969463348, -0.10072879493236542, -0.10919588059186935, -0.046813901513814926, 0.03569883480668068, -0.05628936365246773, 0.04309194162487984, -0.0788632407784462, 0.028997479006648064, -0.06352769583463669, -0.19235502183437347, 0.12410202622413635, -0.09027006477117538, -0.04412810131907463, -0.02371402643620968, 0.2110891044139862, -0.05598580464720726, 0.010335659608244896, 0.02930437959730625, 0.01208863127976656, -0.11645778268575668, -0.09678568691015244, 0.031018631532788277, -0.007351789623498917, 0.050603240728378296, 0.041841957718133926, -0.05915454775094986, -0.017138581722974777, -0.052199993282556534, -0.022926922887563705, 0.3496883809566498, 0.14231905341148376, -0.043836336582899094, 0.19347235560417175, 0.12347975373268127, -0.07452994585037231, -0.3159443140029907, -0.1066238060593605, -0.10937739163637161, -0.04680149629712105, -0.07012093812227249, -0.2002030611038208, 0.06474938243627548, 0.00662544509395957, -0.013415241613984108, 0.12749312818050385, -0.2561831772327423, -0.07571036368608475, 0.15906259417533875, -0.017980827018618584, 0.3745945692062378, -0.1168576180934906, -0.10926306992769241, -0.03950892388820648, -0.14175476133823395, 0.16968177258968353, -0.01989765651524067, 0.11221715062856674, -0.009765521623194218, 0.14388824999332428, 0.05548359826207161, -0.023479344323277473, 0.08544106781482697, 0.004999885335564613, -0.03290518373250961, -0.10304180532693863, -0.05676887184381485, 0.007092386484146118, 0.02477436140179634, 0.018026655539870262, -0.041834570467472076, 0.02227151393890381, -0.11731979995965958, -0.04657655209302902, -0.08982590585947037, 0.04431166127324104, 0.03899754583835602, -0.07325074821710587, -0.002380647463724017, -0.07165111601352692, -0.012272949330508709, 0.022334342822432518, 0.20356793701648712, -0.08029330521821976, 0.16448934376239777, 0.09239562600851059, 0.12419285625219345, -0.14376309514045715, -0.00019283240544609725, -0.0762530043721199, -0.05611240118741989, 0.07737895101308823, -0.09433035552501678, 0.058893077075481415, 0.10901971161365509, -0.04567738622426987, 0.08828683942556381, 0.10377411544322968, 0.008936077356338501, 0.003213887568563223, 0.10916902124881744, -0.2667325437068939, -0.0296600554138422, -0.07532413303852081, 0.000883326749317348, 0.09092561900615692, 0.08562852442264557, 0.18840822577476501, 0.025361526757478714, -0.04293036088347435, -0.002770674182102084, 0.028597986325621605, -0.039021048694849014, 0.051667019724845886, 0.001123449532315135, 0.01947369985282421, -0.1530752182006836, 0.072522833943367, 0.01490565575659275, -0.15215420722961426, 0.021316176280379295, 0.16572684049606323, -0.11656328290700912, -0.1283872276544571, -0.06520111113786697, 0.08313824236392975, -0.11755692958831787, -0.01578943058848381, -0.03279297426342964, -0.13145680725574493, 0.07992171496152878, 0.12629036605358124, 0.05557859688997269, 0.0972496047616005, -0.06061713397502899, -0.020469192415475845, -0.018721895292401314, -0.014099318534135818, -0.012384648434817791, -0.007667020428925753, -0.055978111922740936, 0.0590752474963665, -0.026677248999476433, 0.1425808072090149, -0.09221141785383224, -0.1037059873342514, -0.16142144799232483, 0.0374140702188015, -0.11013076454401016, -0.08825794607400894, -0.08821134269237518, -0.050188567489385605, 0.002360827289521694, -0.019856395199894905, -0.04037635400891304, -0.05829505994915962, -0.12300454825162888, 0.0338277705013752, -0.040771447122097015, 0.024727050215005875, -0.07512269169092178, 0.015856385231018066, 0.08507686108350754, -0.03285100311040878, 0.15655414760112762, 0.1450488418340683, -0.1006515845656395, 0.10741901397705078, -0.14806775748729706, -0.09138492494821548, 0.11116421222686768, 0.015329592861235142, 0.0449691042304039, 0.09723787009716034, 0.013362943194806576, 0.0635865181684494, 0.032776717096567154, 0.05308786407113075, 0.027619892731308937, -0.11959987878799438, 0.06483134627342224, -0.03626115620136261, -0.14700546860694885, -0.049338050186634064, -0.05282869189977646, 0.01647452637553215, 0.013054544106125832, 0.09622690081596375, -0.05301849544048309, 0.10698331147432327, -0.04055701196193695, 0.0346808135509491, 0.017554637044668198, -0.1730053424835205, -0.03816922754049301, -0.08538098633289337, 0.03681723028421402, 0.014741539023816586, 0.25266793370246887, 0.030072299763560295, 0.012416383251547813, 0.032671261578798294, 0.08285367488861084, 0.03899408504366875, 0.010228337720036507, 0.17482228577136993, 0.1162426546216011, -0.06621865928173065, -0.10445023328065872, 0.0729617029428482, 0.016332454979419708, 0.01286179106682539, 0.13617953658103943, 0.008365051820874214, 0.005795429926365614, 0.08649782836437225, -0.016865963116288185, 0.009968153201043606, -0.10052056610584259, -0.13426925241947174, -0.022176474332809448, 0.05151832848787308, -0.04655967652797699, 0.11727844923734665, 0.1406494379043579, -0.01806013658642769, 0.03222079202532768, -0.021771740168333054, -0.05699979141354561, -0.1683429479598999, -0.1429590880870819, -0.06883849948644638, -0.13416796922683716, 0.00897989235818386, -0.11180389672517776, 0.05395037308335304, 0.06001098081469536, 0.06750501692295074, -0.06899319589138031, 0.10220931470394135, 0.04626858979463577, -0.11440542340278625, 0.06264589726924896, -0.0296088308095932, 0.09430401772260666, -0.02759445086121559, -0.019505485892295837, -0.09039592742919922, 0.014574515633285046, 0.011419114656746387, 0.06245238706469536, -0.04707273095846176, 0.007463190704584122, -0.14696238934993744, -0.08972041308879852, -0.0523175448179245, 0.0718572810292244, -0.050409089773893356, 0.14282815158367157, 0.00775480642914772, -0.0170906875282526, 0.039554283022880554, 0.22787313163280487, -0.07476283609867096, -0.04778539761900902, -0.05269690603017807, 0.20717895030975342, 0.02975541539490223, 0.1171872541308403, -0.022938819602131844, -0.006106364540755749, -0.0919521227478981, 0.3764844834804535, 0.30030161142349243, -0.09031439572572708, 0.011794124729931355, 0.02137952297925949, 0.04502861574292183, 0.1316293478012085, 0.1216534823179245, 0.10318691283464432, 0.3006802201271057, -0.07452366501092911, -0.04653361067175865, -0.012629742734134197, -0.023858042433857918, -0.09059546142816544, 0.1021224707365036, 0.04839762672781944, -0.06382183730602264, -0.03313443064689636, 0.0954432487487793, -0.25862133502960205, 0.1277991235256195, -0.12311873584985733, -0.17578600347042084, -0.06654827296733856, 0.009760108776390553, 0.10465722531080246, 0.015642458572983742, 0.0946015790104866, 0.007128213066607714, -0.11252258718013763, 0.06305865943431854, 0.03397420793771744, -0.22762253880500793, 0.0006893770187161863, 0.06642123311758041, -0.07006710022687912, -0.0024247700348496437, -0.026499588042497635, 0.05657242611050606, 0.0656052976846695, 0.054629553109407425, -0.00971333310008049, 0.03816632181406021, 0.0034184439573436975, -0.0585215799510479, 0.016623929142951965, 0.05121519789099693, 0.02472509816288948, -0.09763528406620026, 0.06927435845136642, -0.1574270874261856, 0.04766253009438515, -0.0030655991286039352, -0.04124255105853081, 0.006064958870410919, 0.008823691867291927, -0.06491616368293762, 0.05165379121899605, 0.07916834205389023, -0.0016257909592241049, -0.0062433634884655476, -0.057178743183612823, -0.02632102556526661, -0.027755750343203545, -0.09291748702526093, -0.10495562851428986, -0.14682936668395996, -0.11640441417694092, 0.09368976950645447, -0.01011267676949501, -0.1848134547472, 0.022154374048113823, -0.08606051653623581, 0.08319322764873505, -0.1670055389404297, 0.08040720224380493, 0.07041648775339127, 0.013038921169936657, -0.0031511052511632442, -0.02002427540719509, 0.054132770746946335, 0.086809903383255, -0.10407156497240067, -0.07400695979595184 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - UR dataset. It achieves the following results on the evaluation set: - Loss: 3.8433 - Wer: 0.9852 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 64 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 2000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 1.468 | 166.67 | 500 | 3.0262 | 1.0035 | | 0.0572 | 333.33 | 1000 | 3.5352 | 0.9721 | | 0.0209 | 500.0 | 1500 | 3.7266 | 0.9834 | | 0.0092 | 666.67 | 2000 | 3.8433 | 0.9852 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.11.0
{"language": ["ur"], "license": "apache-2.0", "tags": ["automatic-speech-recognition", "mozilla-foundation/common_voice_7_0", "generated_from_trainer"], "datasets": ["common_voice"], "model-index": [{"name": "", "results": []}]}
automatic-speech-recognition
Maniac/wav2vec2-xls-r-60-urdu
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "mozilla-foundation/common_voice_7_0", "generated_from_trainer", "ur", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:04+00:00
[]
[ "ur" ]
TAGS #transformers #pytorch #wav2vec2 #automatic-speech-recognition #mozilla-foundation/common_voice_7_0 #generated_from_trainer #ur #dataset-common_voice #license-apache-2.0 #endpoints_compatible #region-us
This model is a fine-tuned version of facebook/wav2vec2-large-xlsr-53 on the MOZILLA-FOUNDATION/COMMON\_VOICE\_7\_0 - UR dataset. It achieves the following results on the evaluation set: * Loss: 3.8433 * Wer: 0.9852 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 0.0003 * train\_batch\_size: 64 * eval\_batch\_size: 8 * seed: 42 * gradient\_accumulation\_steps: 2 * total\_train\_batch\_size: 128 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * training\_steps: 2000 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.16.0.dev0 * Pytorch 1.10.1+cu102 * Datasets 1.17.1.dev0 * Tokenizers 0.11.0
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0003\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 128\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* training\\_steps: 2000\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.16.0.dev0\n* Pytorch 1.10.1+cu102\n* Datasets 1.17.1.dev0\n* Tokenizers 0.11.0" ]
[ "TAGS\n#transformers #pytorch #wav2vec2 #automatic-speech-recognition #mozilla-foundation/common_voice_7_0 #generated_from_trainer #ur #dataset-common_voice #license-apache-2.0 #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0003\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 128\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* training\\_steps: 2000\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.16.0.dev0\n* Pytorch 1.10.1+cu102\n* Datasets 1.17.1.dev0\n* Tokenizers 0.11.0" ]
[ 79, 139, 4, 41 ]
[ "passage: TAGS\n#transformers #pytorch #wav2vec2 #automatic-speech-recognition #mozilla-foundation/common_voice_7_0 #generated_from_trainer #ur #dataset-common_voice #license-apache-2.0 #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0003\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 128\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* training\\_steps: 2000\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.16.0.dev0\n* Pytorch 1.10.1+cu102\n* Datasets 1.17.1.dev0\n* Tokenizers 0.11.0" ]
[ -0.1509663164615631, 0.07271314412355423, -0.0024924944154918194, 0.016726970672607422, 0.14452411234378815, -0.02109452337026596, 0.07539517432451248, 0.14826937019824982, -0.10237064957618713, 0.08476688712835312, 0.07185959815979004, 0.07852903008460999, 0.08387110382318497, 0.10362235456705093, -0.007016532588750124, -0.3240821659564972, 0.02959403209388256, 0.008046993985772133, -0.10637421905994415, 0.11942701041698456, 0.12552598118782043, -0.09644533693790436, 0.0070596239529550076, 0.05897426977753639, -0.111720509827137, 0.008551464416086674, 0.0018732999451458454, -0.0823025330901146, 0.11262348294258118, 0.049850184470415115, 0.07122848927974701, 0.02488372102379799, 0.07109390199184418, -0.25799107551574707, 0.01485490147024393, 0.07360231131315231, 0.06641997396945953, 0.06981116533279419, 0.11346740275621414, -0.02668794058263302, 0.10510987788438797, -0.030951136723160744, 0.043060287833213806, 0.09673846513032913, -0.09432069212198257, -0.3517318665981293, -0.11142850667238235, 0.018470631912350655, 0.10646352171897888, 0.09704449027776718, -0.03416299819946289, 0.039976801723241806, -0.06353452056646347, 0.07333684712648392, 0.24119673669338226, -0.2292592078447342, -0.08254443854093552, -0.05006922408938408, 0.055319447070360184, 0.010146803222596645, -0.11564602702856064, -0.013815326616168022, 0.04405945539474487, 0.027598878368735313, 0.09398461133241653, 0.02337482199072838, -0.013770943507552147, -0.008071431890130043, -0.14020952582359314, -0.06301926076412201, 0.15562689304351807, 0.08675634115934372, -0.06240174546837807, -0.06480670720338821, -0.0008101179264485836, -0.17463795840740204, -0.04970051348209381, 0.032506123185157776, 0.019732143729925156, -0.03028726764023304, -0.11971617490053177, -0.005409453064203262, -0.07913240045309067, -0.10234151780605316, 0.019779717549681664, 0.16793353855609894, 0.04119741916656494, -0.02796606719493866, 0.009190753102302551, 0.09523892402648926, 0.027950596064329147, -0.13054196536540985, -0.039453666657209396, 0.03949460759758949, -0.07878109067678452, 0.0017920712707564235, -0.046590954065322876, -0.017318326979875565, 0.008357154205441475, 0.12257684767246246, -0.00854624155908823, 0.06142108887434006, -0.011412075720727444, 0.040702980011701584, -0.10749933868646622, 0.20058125257492065, -0.07847847044467926, -0.01537604071199894, -0.022897634655237198, 0.07959841936826706, -0.016160020604729652, -0.020781802013516426, -0.05753335356712341, 0.02667546272277832, 0.1109004095196724, 0.06344553083181381, -0.007527267560362816, 0.0016898094909265637, -0.05994254723191261, -0.027947356924414635, -0.019298983737826347, -0.11316006630659103, 0.0197946447879076, 0.02857806533575058, -0.09709715843200684, 0.041635386645793915, -0.0015553951961919665, 0.025641685351729393, -0.03394778445363045, 0.07781440019607544, -0.06227041408419609, 0.005110017489641905, -0.10094103217124939, -0.11172898858785629, 0.04401254653930664, -0.013767007738351822, -0.015253609046339989, -0.09373942762613297, -0.1135348379611969, -0.05726418271660805, 0.043872036039829254, -0.03705178201198578, -0.07524236291646957, -0.06194513291120529, -0.07216934859752655, 0.05731789767742157, -0.046756647527217865, 0.1494510918855667, -0.04691767692565918, 0.12009147554636002, 0.04830976203083992, 0.027027493342757225, 0.032862596213817596, 0.08011212199926376, -0.04461219534277916, 0.038017529994249344, -0.1263393759727478, 0.07680412381887436, -0.11010248214006424, 0.07979601621627808, -0.15332277119159698, -0.1274746209383011, -0.015816062688827515, -0.008500456809997559, 0.12164473533630371, 0.09129613637924194, -0.15098315477371216, -0.10772112011909485, 0.16329194605350494, -0.08554340898990631, -0.11644940823316574, 0.13183219730854034, 0.005810278933495283, 0.014185871928930283, 0.050958745181560516, 0.1790824681520462, 0.11106063425540924, -0.08662158995866776, -0.0029457383789122105, -0.07494934648275375, 0.13569656014442444, -0.003514277283102274, 0.12336266040802002, -0.06622909754514694, -0.013463983312249184, 0.011380203999578953, -0.03515297919511795, 0.08519516885280609, -0.10316795855760574, -0.07779467850923538, -0.027197344228625298, -0.08750329911708832, 0.009934931993484497, 0.05887668952345848, 0.0399530827999115, -0.09669019281864166, -0.1252918690443039, 0.029283761978149414, 0.12192577123641968, -0.10348902642726898, 0.043320972472429276, -0.10146936029195786, 0.0726388543844223, -0.04523453861474991, -0.006852293852716684, -0.15800581872463226, -0.0021757646463811398, 0.03580596670508385, -0.07213092595338821, 0.016428060829639435, -0.08356960117816925, 0.057383958250284195, 0.018915601074695587, -0.044000331312417984, -0.07012292742729187, -0.09060971438884735, -0.030161261558532715, -0.043927330523729324, -0.195701003074646, -0.09553637355566025, -0.014444099739193916, 0.14414484798908234, -0.18097805976867676, 0.015742138028144836, 0.038466718047857285, 0.11350122094154358, 0.022754443809390068, -0.049026548862457275, -0.0011708891252055764, 0.0816820040345192, -0.023105857893824577, -0.06089099124073982, 0.03635716810822487, 0.03282884880900383, -0.1165214404463768, 0.0680384635925293, -0.0913291871547699, 0.10021321475505829, 0.09748808294534683, -0.03743039071559906, -0.03808389604091644, -0.0458810068666935, -0.075681671500206, -0.051281366497278214, -0.030227279290556908, -0.03234994783997536, 0.13830488920211792, 0.026827825233340263, 0.12061414122581482, -0.10101623833179474, -0.037458598613739014, 0.04374583438038826, 0.001743794302456081, -0.002524650888517499, 0.10605152696371078, 0.06217760592699051, -0.0025925023946911097, 0.0832897499203682, 0.03735455125570297, -0.08316800743341446, 0.1589156836271286, -0.07440241426229477, -0.1260407716035843, -0.009217843413352966, 0.02115696296095848, 0.04870465770363808, 0.11856978386640549, -0.18294525146484375, -0.01568884402513504, 0.03225449100136757, 0.03689126670360565, 0.03895745053887367, -0.20982646942138672, -0.00046650576405227184, 0.02774246409535408, -0.08757954835891724, -0.07266415655612946, 0.00706704705953598, -0.01867848075926304, 0.08467603474855423, 0.01120817381888628, -0.04650476574897766, -0.016030792146921158, -0.03432188183069229, -0.09777042269706726, 0.17603331804275513, -0.1013137549161911, -0.16552963852882385, -0.15481778979301453, -0.03847356513142586, -0.01833355985581875, -0.007226870860904455, 0.053863730281591415, -0.10558949410915375, -0.025934169068932533, -0.046713147312402725, 0.059463419020175934, -0.08664710819721222, 0.030893750488758087, -0.0006100395694375038, 0.02321567013859749, 0.09891092777252197, -0.1157102882862091, 0.02420234866440296, -0.006327488459646702, -0.058036498725414276, 0.0031134700402617455, 0.012731661088764668, 0.11390538513660431, 0.1861354559659958, 0.05057349056005478, 0.03149174153804779, -0.05823788419365883, 0.1371951848268509, -0.1190652921795845, -0.037112344056367874, 0.1535768210887909, 0.05210014805197716, 0.04445493966341019, 0.1130540668964386, 0.050824329257011414, -0.07916262000799179, 0.038398146629333496, 0.044680558145046234, -0.028094487264752388, -0.26078957319259644, -0.030243514105677605, -0.08401035517454147, -0.017107702791690826, 0.09138316661119461, 0.03075668402016163, 0.036125846207141876, 0.027855779975652695, -0.04011284559965134, -0.013682347722351551, 0.013641498982906342, 0.07682999223470688, 0.10241750627756119, 0.041550494730472565, 0.1323002725839615, -0.020531056448817253, -0.007979008369147778, 0.025358829647302628, -0.0013141701929271221, 0.28270968794822693, 0.014175319112837315, 0.17713317275047302, 0.07030566036701202, 0.16709135472774506, 0.018444037064909935, 0.07793179899454117, 0.018445955589413643, -0.007121005095541477, 0.030493203550577164, -0.06125809997320175, -0.0422494150698185, 0.02850407548248768, 0.09703503549098969, 0.05606728047132492, -0.153147891163826, -0.04839358851313591, 0.00965108908712864, 0.39704325795173645, 0.07755812257528305, -0.28736361861228943, -0.12158653885126114, -0.005598404444754124, -0.10021928697824478, -0.052742719650268555, 0.034573301672935486, 0.0781588926911354, -0.10372525453567505, 0.05258488282561302, -0.06250409036874771, 0.12165841460227966, -0.0340554341673851, -0.020347293466329575, 0.06556670367717743, 0.07959047704935074, 0.002973955124616623, 0.07704269886016846, -0.27602419257164, 0.29751163721084595, -0.02485731616616249, 0.0997360497713089, -0.016164710745215416, 0.037570759654045105, 0.0524100735783577, -0.029567014425992966, 0.05124470591545105, -0.007762306369841099, -0.09345269203186035, -0.17777137458324432, -0.06838338077068329, 0.023374758660793304, 0.1303357034921646, -0.05140843242406845, 0.1169741153717041, -0.046577367931604385, -0.010711207054555416, 0.04710929095745087, -0.06553947180509567, -0.15140677988529205, -0.07949531823396683, 0.032224562019109726, 0.04943126440048218, 0.1400575041770935, -0.1270286738872528, -0.11254589259624481, -0.0319269634783268, 0.14925529062747955, -0.09806572645902634, -0.015155792236328125, -0.12717801332473755, 0.0871744155883789, 0.16442903876304626, -0.06542839109897614, 0.06308848410844803, 0.0052448962815105915, 0.16067056357860565, 0.031189724802970886, 0.0019388347864151, 0.09525526314973831, -0.08874993771314621, -0.19818945229053497, -0.054907094687223434, 0.1838628351688385, 0.011744875460863113, 0.06723589450120926, -0.018781935796141624, 0.012302950024604797, -0.017909927293658257, -0.07903188467025757, 0.055064182728528976, 0.03531365841627121, -0.04025454446673393, 0.06248067319393158, -0.025698328390717506, 0.017693307250738144, -0.0964837297797203, -0.08564493060112, 0.14419840276241302, 0.23798193037509918, -0.06853951513767242, 0.008218853734433651, 0.05622822791337967, -0.047381773591041565, -0.14586931467056274, 0.028194306418299675, 0.15667839348316193, 0.04002887383103371, -0.052039846777915955, -0.23665623366832733, 0.030337518081068993, 0.08530936390161514, -0.043658871203660965, 0.09965243190526962, -0.30720457434654236, -0.1302945613861084, 0.08000510931015015, 0.08016279339790344, -0.00791967660188675, -0.1584583967924118, -0.08654174208641052, -0.03889211639761925, -0.09161823242902756, 0.05074971541762352, -0.006930893752723932, 0.12646164000034332, 0.007178397849202156, 0.06247200071811676, 0.012124724686145782, -0.045615460723638535, 0.1523951143026352, -0.017702540382742882, 0.018297536298632622, 0.00928408745676279, 0.08376714587211609, 0.05477076396346092, -0.05028461292386055, 0.016431087628006935, -0.026372434571385384, 0.0292501263320446, -0.14705531299114227, -0.04087518900632858, -0.1039121076464653, 0.04040459915995598, -0.02288612723350525, -0.02990286983549595, -0.020161090418696404, 0.04674488306045532, 0.05122821033000946, 0.027817746624350548, 0.12554189562797546, -0.08433090150356293, 0.16467660665512085, 0.08202096074819565, 0.09413771331310272, -0.050106219947338104, -0.08964930474758148, -0.006502517964690924, -0.023518940433859825, 0.061113350093364716, -0.13196642696857452, 0.03798792511224747, 0.13722951710224152, 0.06062794104218483, 0.14630143344402313, 0.06339110434055328, -0.09780354797840118, 0.0507766418159008, 0.07716243714094162, -0.02810247428715229, -0.12797172367572784, -0.03431304171681404, 0.12185956537723541, -0.15068280696868896, 0.03868430107831955, 0.10636984556913376, -0.0580253079533577, -0.009319966658949852, 0.010195454582571983, 0.0034856318961828947, -0.06264109909534454, 0.22317926585674286, 0.050262752920389175, 0.08876155316829681, -0.09072422981262207, 0.09002811461687088, 0.05192512646317482, -0.15465222299098969, -0.003980404697358608, 0.0598636157810688, -0.036107137799263, -0.012254992499947548, -0.044186584651470184, 0.016745269298553467, -0.028570614755153656, -0.08253054320812225, -0.12723001837730408, -0.15301261842250824, 0.09692174941301346, 0.09269214421510696, 0.023912839591503143, 0.03535940498113632, -0.039265602827072144, 0.05118981748819351, -0.1018814966082573, 0.07471026480197906, 0.09553754329681396, 0.06751518696546555, -0.13723041117191315, 0.13675153255462646, 0.032711151987314224, 0.02708273008465767, 0.01038578525185585, -0.040953412652015686, -0.0642707347869873, 0.05006101354956627, -0.1256874054670334, -0.03514515608549118, -0.0639994740486145, -0.01607348769903183, 0.011273729614913464, -0.07133209705352783, -0.08782438933849335, 0.041419658809900284, -0.1278819739818573, -0.054338809102773666, -0.01482213381677866, 0.06832370907068253, -0.09014439582824707, -0.006439959164708853, 0.059771034866571426, -0.11817313730716705, 0.0870533287525177, 0.06606943160295486, 0.02863937057554722, 0.045306771993637085, -0.08759644627571106, -0.0020151729695498943, 0.030711205676198006, -0.0032604557927697897, 0.01475883275270462, -0.17074817419052124, 0.010818800888955593, 0.0037865792401134968, 0.03269044682383537, -0.014003206044435501, -0.011380304582417011, -0.14039131999015808, -0.06336841732263565, -0.004483489785343409, -0.03664578124880791, -0.044575851410627365, 0.05481872335076332, 0.050296347588300705, 0.0717560350894928, 0.14044520258903503, -0.07684443145990372, 0.040321942418813705, -0.22386595606803894, 0.03610410541296005, -0.05801558867096901, -0.0711594820022583, -0.06152387708425522, -0.016078481450676918, 0.08123551309108734, -0.052970580756664276, 0.06762626022100449, -0.06149473413825035, 0.09481187164783478, 0.035535115748643875, -0.12405384331941605, 0.04780479520559311, 0.03408784419298172, 0.2568685710430145, 0.07299801707267761, -0.004809154197573662, 0.09849242120981216, -0.010545016266405582, 0.04830741137266159, 0.1658630669116974, 0.12905149161815643, 0.15609301626682281, 0.07994920760393143, 0.11822476238012314, 0.07531262934207916, -0.09531714767217636, -0.12883296608924866, 0.09217150509357452, -0.0002219716552644968, 0.13166697323322296, 0.00234584859572351, 0.24041138589382172, 0.1632123738527298, -0.18026886880397797, 0.06831316649913788, -0.0113367959856987, -0.0670221596956253, -0.09706149995326996, -0.07028511166572571, -0.06977162510156631, -0.22042667865753174, 0.015294445678591728, -0.11792903393507004, 0.0655505433678627, 0.04471827670931816, 0.03391652926802635, 0.022418085485696793, 0.10469551384449005, 0.052928660064935684, -0.03351763263344765, 0.14939357340335846, -0.023292116820812225, -0.014598200097680092, -0.04220925271511078, -0.11830071359872818, 0.06944141536951065, -0.02523624338209629, 0.06965424120426178, -0.030781645327806473, -0.1242673322558403, 0.0642419382929802, 0.01955895498394966, -0.10876471549272537, 0.019056174904108047, -0.003344343276694417, 0.07355168461799622, 0.10002028942108154, 0.030001454055309296, 0.0011356143513694406, -0.002441984135657549, 0.27573004364967346, -0.11051109433174133, -0.04762957990169525, -0.14678215980529785, 0.2506054639816284, 0.03463483974337578, -0.022276995703577995, 0.00854781549423933, -0.08037823438644409, -0.022271115332841873, 0.18039025366306305, 0.10476919263601303, 0.024522336199879646, -0.03989284485578537, 0.00048793823225423694, -0.02399567887187004, -0.06050045043230057, 0.08481402695178986, 0.12471508979797363, 0.06160968542098999, -0.0537555031478405, -0.037171173840761185, -0.05826711282134056, -0.0493626594543457, -0.01296811643987894, 0.09074392169713974, -0.006285232026129961, -0.025543799623847008, -0.029400700703263283, 0.13685470819473267, -0.06896812468767166, -0.0970592126250267, 0.002318226732313633, -0.1413753628730774, -0.18101218342781067, -0.04239523783326149, 0.021593645215034485, 0.05020160600543022, 0.05692163482308388, -0.022248923778533936, -0.008432669565081596, 0.12557852268218994, 0.010338197462260723, -0.034339141100645065, -0.15981490910053253, 0.09845184534788132, -0.0879654586315155, 0.20571540296077728, -0.05534734949469566, 0.0008450518362224102, 0.12394357472658157, 0.08257488161325455, -0.08902443200349808, 0.05556211620569229, 0.0702727809548378, -0.12989471852779388, 0.05613037571310997, 0.22031012177467346, -0.028795912861824036, 0.16169752180576324, 0.020758504047989845, -0.12619593739509583, 0.025846777483820915, -0.07847780734300613, -0.038231413811445236, -0.08442603796720505, -0.005837566219270229, -0.06181885302066803, 0.10126953572034836, 0.19207677245140076, -0.09146498143672943, -0.030724521726369858, -0.07045753300189972, 0.007733259350061417, 0.04534310847520828, 0.1191273033618927, -0.03592316433787346, -0.2938418984413147, 0.013130970299243927, -0.0013931089779362082, -0.003496864577755332, -0.2440464198589325, -0.07032229006290436, 0.044433336704969406, -0.07679648697376251, -0.02829139307141304, 0.11427493393421173, 0.04866747558116913, 0.03175496682524681, -0.052100446075201035, -0.12525907158851624, -0.031592030078172684, 0.20244120061397552, -0.1783490628004074, -0.061297766864299774 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - UR dataset. It achieves the following results on the evaluation set: - Loss: 1.5614 - Wer: 0.6765 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 1000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 1.9115 | 20.83 | 500 | 1.5400 | 0.7280 | | 0.1155 | 41.67 | 1000 | 1.5614 | 0.6765 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.11.0
{"language": ["ur"], "license": "apache-2.0", "tags": ["automatic-speech-recognition", "mozilla-foundation/common_voice_7_0", "generated_from_trainer", "sv", "robust-speech-event", "model_for_talk", "hf-asr-leaderboard"], "datasets": ["mozilla-foundation/common_voice_7_0"], "model-index": [{"name": "", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Common Voice 8.0", "type": "mozilla-foundation/common_voice_8_0", "args": "ur"}, "metrics": [{"type": "wer", "value": 67.48, "name": "Test WER"}]}]}]}
automatic-speech-recognition
Maniac/wav2vec2-xls-r-urdu
[ "transformers", "pytorch", "safetensors", "wav2vec2", "automatic-speech-recognition", "mozilla-foundation/common_voice_7_0", "generated_from_trainer", "sv", "robust-speech-event", "model_for_talk", "hf-asr-leaderboard", "ur", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:04+00:00
[]
[ "ur" ]
TAGS #transformers #pytorch #safetensors #wav2vec2 #automatic-speech-recognition #mozilla-foundation/common_voice_7_0 #generated_from_trainer #sv #robust-speech-event #model_for_talk #hf-asr-leaderboard #ur #dataset-mozilla-foundation/common_voice_7_0 #license-apache-2.0 #endpoints_compatible #region-us
This model is a fine-tuned version of facebook/wav2vec2-large-xlsr-53 on the MOZILLA-FOUNDATION/COMMON\_VOICE\_7\_0 - UR dataset. It achieves the following results on the evaluation set: * Loss: 1.5614 * Wer: 0.6765 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 0.0003 * train\_batch\_size: 16 * eval\_batch\_size: 8 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * training\_steps: 1000 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.16.0.dev0 * Pytorch 1.10.1+cu102 * Datasets 1.17.1.dev0 * Tokenizers 0.11.0
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0003\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* training\\_steps: 1000\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.16.0.dev0\n* Pytorch 1.10.1+cu102\n* Datasets 1.17.1.dev0\n* Tokenizers 0.11.0" ]
[ "TAGS\n#transformers #pytorch #safetensors #wav2vec2 #automatic-speech-recognition #mozilla-foundation/common_voice_7_0 #generated_from_trainer #sv #robust-speech-event #model_for_talk #hf-asr-leaderboard #ur #dataset-mozilla-foundation/common_voice_7_0 #license-apache-2.0 #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0003\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* training\\_steps: 1000\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.16.0.dev0\n* Pytorch 1.10.1+cu102\n* Datasets 1.17.1.dev0\n* Tokenizers 0.11.0" ]
[ 120, 111, 4, 41 ]
[ "passage: TAGS\n#transformers #pytorch #safetensors #wav2vec2 #automatic-speech-recognition #mozilla-foundation/common_voice_7_0 #generated_from_trainer #sv #robust-speech-event #model_for_talk #hf-asr-leaderboard #ur #dataset-mozilla-foundation/common_voice_7_0 #license-apache-2.0 #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0003\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* training\\_steps: 1000\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.16.0.dev0\n* Pytorch 1.10.1+cu102\n* Datasets 1.17.1.dev0\n* Tokenizers 0.11.0" ]
[ -0.11361376941204071, 0.07735990732908249, -0.0050772568210959435, 0.02343389019370079, 0.11962194740772247, -0.004041535314172506, 0.12343203276395798, 0.14082616567611694, -0.12603774666786194, 0.07381953299045563, 0.08460036665201187, 0.08466728776693344, 0.08631094545125961, 0.13231348991394043, -0.02428937517106533, -0.25548508763313293, 0.037472497671842575, -0.016404787078499794, -0.06561391800642014, 0.10432415455579758, 0.10261418670415878, -0.11887259781360626, 0.021476224064826965, 0.033747732639312744, -0.10092861205339432, 0.006492077838629484, -0.016748394817113876, -0.0647394061088562, 0.10903055965900421, 0.03118695132434368, 0.06310224533081055, 0.04673192650079727, 0.09122051298618317, -0.25753259658813477, 0.014788356609642506, 0.07351469993591309, 0.04672464355826378, 0.05032377690076828, 0.08174551278352737, -0.007996723055839539, 0.07189494371414185, -0.04156319424510002, 0.05536409467458725, 0.05822348594665527, -0.09483081847429276, -0.2848206162452698, -0.10225364565849304, 0.04825679957866669, 0.08674783259630203, 0.07825352996587753, -0.028504665940999985, 0.06341808289289474, -0.09101880341768265, 0.08725754171609879, 0.19323211908340454, -0.212204247713089, -0.060952771455049515, -0.03199383243918419, 0.03771072253584862, 0.05942593142390251, -0.10813421756029129, -0.029103506356477737, 0.02733287587761879, 0.02667611464858055, 0.10676515102386475, 0.009143941104412079, -0.024607131257653236, -0.01818583533167839, -0.13404054939746857, -0.05680862441658974, 0.11691588908433914, 0.05577341094613075, -0.012726690620183945, -0.11113619059324265, -0.03337627649307251, -0.13891831040382385, -0.05466889217495918, 0.009754526428878307, 0.014560169540345669, -0.020275935530662537, -0.049906175583601, 0.01617840863764286, -0.058769699186086655, -0.07289031147956848, 0.05260026454925537, 0.12991178035736084, 0.04749659076333046, -0.01812046207487583, -0.02774016745388508, 0.08507247269153595, 0.05163644999265671, -0.15833452343940735, -0.01044307928532362, 0.017462538555264473, -0.06111832335591316, -0.004154163878411055, 0.000040583821828477085, -0.017171744257211685, 0.06747136265039444, 0.09505947679281235, -0.06490202993154526, 0.09500481188297272, -0.011277270503342152, 0.028487959876656532, -0.0919090062379837, 0.1528751105070114, -0.04315763711929321, -0.030325954779982567, -0.012963038869202137, 0.13369439542293549, 0.0011272166157141328, -0.00982049573212862, -0.07357349246740341, 0.03725719451904297, 0.08695357292890549, 0.04984400048851967, -0.02618524245917797, 0.03907190263271332, -0.05064044147729874, -0.010612218640744686, -0.019551794975996017, -0.1310480237007141, 0.03104512393474579, 0.070330411195755, -0.0450199618935585, 0.01735580898821354, -0.021454080939292908, 0.011119541712105274, -0.04863442853093147, 0.05804255232214928, -0.03379172459244728, 0.003466787049546838, -0.0944879949092865, -0.10626780241727829, 0.03703431785106659, -0.040502239018678665, -0.01481609046459198, -0.08528205752372742, -0.10149703919887543, -0.06929734349250793, 0.033661097288131714, -0.0285812821239233, -0.040501613169908524, -0.09431645274162292, -0.08324704319238663, 0.04478258267045021, -0.033834245055913925, 0.1312088817358017, -0.05976153537631035, 0.09075551480054855, 0.006593441590666771, 0.044776760041713715, 0.08572640269994736, 0.06182118132710457, -0.01770876906812191, 0.04029453918337822, -0.12896732985973358, 0.10562875121831894, -0.12093723565340042, 0.05296770855784416, -0.11126313358545303, -0.09762810915708542, -0.024081680923700333, 0.0023363137152045965, 0.1129467710852623, 0.1182919517159462, -0.15265871584415436, -0.09081445634365082, 0.19330640137195587, -0.07202925533056259, -0.051489632576704025, 0.13672398030757904, -0.031251903623342514, -0.028021888807415962, 0.050954170525074005, 0.20304089784622192, 0.1269434690475464, -0.08256670832633972, 0.025969961658120155, -0.04949535056948662, 0.09212375432252884, 0.03539907559752464, 0.05824321508407593, -0.047549955546855927, 0.03953051567077637, 0.012893232516944408, -0.004489323124289513, 0.069804348051548, -0.08103933185338974, -0.07171694189310074, -0.026056604459881783, -0.07276445627212524, 0.016337264329195023, 0.05292637646198273, 0.016788773238658905, -0.08514823019504547, -0.11670440435409546, 0.004122144542634487, 0.11555924266576767, -0.11306671798229218, 0.027906835079193115, -0.10885313153266907, 0.08003457635641098, -0.015416467562317848, 0.011317920871078968, -0.14884985983371735, 0.03270791098475456, 0.029094010591506958, -0.03501284867525101, -0.008620408363640308, -0.003325961297377944, 0.07515913248062134, 0.026791485026478767, -0.03614438325166702, -0.06306113302707672, -0.058738529682159424, 0.004635833203792572, -0.035085901618003845, -0.22837203741073608, -0.042361002415418625, -0.04113088920712471, 0.13520628213882446, -0.1872672289609909, 0.024030715227127075, 0.07564052939414978, 0.13245150446891785, 0.02912607043981552, -0.03849736973643303, 0.012785808183252811, 0.07983314245939255, -0.00999661348760128, -0.07192229479551315, 0.03516309708356857, 0.023064710199832916, -0.0828128308057785, 0.04409538209438324, -0.13671422004699707, 0.08629332482814789, 0.09991691261529922, 0.0009503797627985477, -0.05575535446405411, -0.01705888658761978, -0.05048481002449989, -0.03584975749254227, -0.03266977518796921, 0.006312757730484009, 0.18202251195907593, 0.009889003820717335, 0.12452365458011627, -0.07777035236358643, -0.03633452206850052, 0.038522254675626755, 0.010039784014225006, 0.020858973264694214, 0.14971283078193665, 0.021158382296562195, -0.028016431257128716, 0.10001801699399948, 0.025074996054172516, -0.04629499092698097, 0.17799052596092224, -0.08803902566432953, -0.06972185522317886, -0.006456805858761072, 0.026419444009661674, 0.009951334446668625, 0.10909289866685867, -0.1876811385154724, -0.03629225492477417, 0.01742657646536827, 0.02919347956776619, 0.029703278094530106, -0.19869951903820038, 0.011556093581020832, 0.026188377290964127, -0.08767763525247574, -0.026251086965203285, 0.003422628389671445, 0.008210382424294949, 0.08426937460899353, -0.004613835830241442, -0.08224979788064957, -0.014070309698581696, -0.036902572959661484, -0.0976540595293045, 0.15362496674060822, -0.10188183933496475, -0.150069922208786, -0.09642117470502853, -0.014504041522741318, -0.009535643272101879, -0.01093850377947092, 0.050149861723184586, -0.11744663864374161, -0.02910054475069046, -0.055517345666885376, 0.006690476089715958, -0.021990885958075523, -0.0002109657070832327, 0.06675095111131668, 0.014133632183074951, 0.06541380286216736, -0.11141293495893478, 0.0019116821931675076, -0.021929316222667694, -0.006489075720310211, 0.013960294425487518, 0.028910081833600998, 0.07931358367204666, 0.1702745109796524, 0.027301155030727386, 0.044022902846336365, -0.04138723388314247, 0.16592800617218018, -0.1217259094119072, -0.016159921884536743, 0.13379986584186554, -0.003331422572955489, 0.04983340576291084, 0.14467594027519226, 0.04346989467740059, -0.0672079548239708, -0.00040077284211292863, 0.006370831746608019, -0.018955398350954056, -0.2324577122926712, -0.020949305966496468, -0.07977626472711563, -0.05123457312583923, 0.06583572924137115, 0.03477621451020241, -0.01802598126232624, 0.021204117685556412, -0.027210701256990433, -0.017629306763410568, 0.06293843686580658, 0.04793179780244827, 0.10041224211454391, 0.018904119729995728, 0.11255204677581787, -0.02400444820523262, -0.03410639241337776, 0.017940837889909744, -0.011335683986544609, 0.22945503890514374, 0.0042891004122793674, 0.13540415465831757, 0.06491134315729141, 0.15021905303001404, 0.023089051246643066, 0.029660379514098167, 0.007773893419653177, 0.002401742385700345, 0.019042467698454857, -0.0509549081325531, -0.060358934104442596, 0.017774470150470734, 0.0638783648610115, 0.020876897498965263, -0.09113863110542297, 0.023287666961550713, 0.03900739550590515, 0.3722955584526062, 0.05104883387684822, -0.27479127049446106, -0.08574611693620682, 0.009838503785431385, -0.07675717025995255, -0.03849584609270096, 0.03799336776137352, 0.13587559759616852, -0.07614047825336456, 0.05757760629057884, -0.044370148330926895, 0.08535540103912354, -0.07094506174325943, 0.018064424395561218, 0.033819783478975296, 0.11860773712396622, 0.0030810304451733828, 0.056358322501182556, -0.2884715795516968, 0.2627932131290436, -0.010320071130990982, 0.11366833001375198, -0.041114091873168945, 0.04124896228313446, 0.04972880333662033, 0.007233744952827692, 0.062119897454977036, -0.0055342307314276695, -0.13853010535240173, -0.15013954043388367, -0.0799398347735405, 0.023928014561533928, 0.10914865881204605, 0.0022225051652640104, 0.09669213742017746, -0.042398564517498016, -0.016658635810017586, 0.04201468825340271, -0.0958094373345375, -0.14955268800258636, -0.09685320407152176, 0.02632218971848488, 0.0539737343788147, 0.08178270608186722, -0.1020447388291359, -0.09375535696744919, -0.06502211093902588, 0.1193293035030365, -0.09914518147706985, -0.0249343179166317, -0.12042011320590973, 0.0343593992292881, 0.09952571988105774, -0.052026960998773575, 0.029576892033219337, 0.026521189138293266, 0.14368773996829987, 0.0013951706932857633, -0.014145500026643276, 0.07911855727434158, -0.08705075085163116, -0.21705098450183868, -0.04215517267584801, 0.15848399698734283, 0.046466097235679626, 0.059134840965270996, -0.0004038851475343108, 0.014748292043805122, -0.00225880672223866, -0.07182344794273376, 0.06927008926868439, 0.10376208275556564, 0.001548538450151682, 0.026310425251722336, -0.03031931072473526, -0.053960248827934265, -0.07844431698322296, -0.06063913553953171, 0.12930892407894135, 0.21177780628204346, -0.08081872761249542, 0.07423187047243118, 0.08402601629495621, -0.07010103017091751, -0.17385196685791016, 0.004847419448196888, 0.105437271296978, 0.04702884703874588, -0.04437914490699768, -0.18287287652492523, -0.02780011110007763, 0.03845396265387535, -0.02369471825659275, 0.060900796204805374, -0.32961305975914, -0.12671586871147156, 0.10221462696790695, 0.05937565490603447, 0.02338007651269436, -0.13029849529266357, -0.047069355845451355, -0.033927228301763535, -0.07474397122859955, 0.010596080683171749, -0.05336005613207817, 0.11685405671596527, 0.0016889714170247316, 0.059068694710731506, 0.01724686287343502, -0.0549604557454586, 0.11448372900485992, -0.018648458644747734, 0.04390859603881836, -0.025951137766242027, 0.036949269473552704, 0.028936244547367096, -0.06714840233325958, 0.0005250300746411085, -0.05578447878360748, 0.03138759359717369, -0.12305393069982529, -0.02876865305006504, -0.09898676723241806, 0.012422127649188042, -0.024918001145124435, -0.017449554055929184, -0.022542361170053482, 0.032868653535842896, 0.0893401950597763, 0.012255251407623291, 0.10124822705984116, -0.08127067238092422, 0.14445118606090546, 0.12344095855951309, 0.1310984492301941, -0.051520101726055145, -0.06626272946596146, -0.002737422240898013, -0.011248038150370121, 0.05706038698554039, -0.12574803829193115, 0.05582793802022934, 0.12433741986751556, 0.034178536385297775, 0.1477130502462387, 0.0611693412065506, -0.09670916944742203, 0.03564397618174553, 0.04815518483519554, -0.08927501738071442, -0.16737401485443115, -0.009881646372377872, 0.048331908881664276, -0.10165877640247345, 0.018816670402884483, 0.11994482576847076, -0.055362556129693985, -0.005789692513644695, -0.0013669284526258707, 0.050812847912311554, -0.045118678361177444, 0.21042779088020325, 0.04451081529259682, 0.08244680613279343, -0.09401272237300873, 0.08207030594348907, 0.039320044219493866, -0.10255337506532669, 0.049044232815504074, 0.07702145725488663, -0.06474866718053818, -0.028287775814533234, 0.020503301173448563, 0.11059150099754333, 0.09294282644987106, -0.08510767668485641, -0.136873260140419, -0.1670076847076416, 0.08883678168058395, 0.0871497094631195, 0.0138695752248168, 0.02356794662773609, -0.028790518641471863, 0.027784213423728943, -0.09529518336057663, 0.09434325993061066, 0.0833059549331665, 0.03653886914253235, -0.11883020401000977, 0.1170683279633522, 0.01871565729379654, 0.0007418164750561118, -0.003696374362334609, -0.015341350808739662, -0.10296067595481873, 0.04763306304812431, -0.13575005531311035, 0.00042361512896604836, -0.05784376338124275, 0.010981238447129726, 0.005347223486751318, -0.050019364804029465, -0.05829785019159317, 0.04930141568183899, -0.11379346996545792, -0.017219770699739456, -0.019340751692652702, 0.06586119532585144, -0.0887516438961029, -0.0019846297800540924, 0.011182856746017933, -0.12077981978654861, 0.08337080478668213, 0.04653725028038025, -0.019879529252648354, 0.022057101130485535, -0.11689693480730057, -0.03398463502526283, 0.035484541207551956, 0.009419739246368408, 0.024041105061769485, -0.1632699966430664, 0.0013690008781850338, 0.002129880478605628, -0.00047836266458034515, -0.011024200357496738, 0.02914590574800968, -0.10271114856004715, 0.011959577910602093, -0.01839464157819748, -0.053429581224918365, -0.0477491058409214, 0.0762447938323021, 0.08218501508235931, 0.02633516676723957, 0.15539050102233887, -0.09883227199316025, 0.061441559344530106, -0.21239066123962402, 0.004031291697174311, 0.003570059547200799, -0.08187346160411835, -0.06685458868741989, -0.022095676511526108, 0.10566765069961548, -0.05484024062752724, 0.08475883305072784, -0.018923750147223473, 0.04052086919546127, 0.028355054557323456, -0.1468876600265503, -0.022449102252721786, 0.051606979221105576, 0.14274871349334717, 0.031247921288013458, -0.01882893219590187, 0.0636836364865303, -0.03918346390128136, 0.06335163116455078, 0.11928673833608627, 0.1294378787279129, 0.17069914937019348, 0.09431138634681702, 0.08142275363206863, 0.09338639676570892, -0.09371589869260788, -0.11297287791967392, 0.15074917674064636, -0.06594950705766678, 0.13611871004104614, -0.05276764929294586, 0.18771465122699738, 0.13594892621040344, -0.15965919196605682, 0.07417444884777069, -0.058520104736089706, -0.07541459053754807, -0.10902013629674911, -0.08195477724075317, -0.07674021273851395, -0.19973158836364746, 0.032237935811281204, -0.09992001950740814, 0.05962872505187988, 0.04470447450876236, 0.04342147707939148, 0.02357531152665615, 0.08192327618598938, 0.07250144332647324, -0.0034238360822200775, 0.11642257124185562, -0.012592772021889687, -0.012562272138893604, -0.08997189253568649, -0.11186610907316208, 0.07950817793607712, -0.02957039512693882, 0.07390391826629639, -0.01600617729127407, -0.08475802093744278, 0.036231931298971176, 0.003642483614385128, -0.07959127426147461, 0.04167767986655235, -0.011856931261718273, 0.06846974045038223, 0.08015773445367813, 0.049883417785167694, -0.01309424638748169, 0.0004415149160195142, 0.18546175956726074, -0.07700159400701523, -0.09104851633310318, -0.13665668666362762, 0.18101823329925537, 0.015623710118234158, 0.010110964998602867, 0.02503890171647072, -0.07088503986597061, -0.005901831667870283, 0.19962935149669647, 0.15531742572784424, -0.0007006326341070235, -0.010834611020982265, -0.013929267413914204, -0.01542843971401453, -0.05072524771094322, 0.08292540907859802, 0.13919207453727722, 0.017767155542969704, -0.02771337889134884, -0.015703024342656136, -0.02261202596127987, -0.050826411694288254, -0.023793337866663933, 0.08030235767364502, -0.005247658118605614, -0.0012354946229606867, -0.039042871445417404, 0.09564916044473648, -0.05801116302609444, -0.15965452790260315, 0.01415458507835865, -0.15650895237922668, -0.15246638655662537, -0.027095872908830643, 0.0777105912566185, 0.039507802575826645, 0.04802890494465828, -0.011487149633467197, -0.019496846944093704, 0.12329336255788803, -0.005882401950657368, -0.010134060867130756, -0.09802476316690445, 0.07499145716428757, -0.1383531093597412, 0.15628422796726227, -0.05043233931064606, 0.027155769988894463, 0.11875925213098526, 0.06584639847278595, -0.07891958206892014, 0.04721718281507492, 0.05820653587579727, -0.11475508660078049, 0.013909393921494484, 0.16899465024471283, -0.03832518681883812, 0.12636247277259827, 0.03817695379257202, -0.10302609205245972, 0.03078039363026619, -0.07890887558460236, -0.05335979163646698, -0.04441848024725914, 0.0067005944438278675, -0.03137117996811867, 0.12269313633441925, 0.1742287278175354, -0.05508410930633545, 0.003646921832114458, -0.060667794197797775, 0.01697554998099804, 0.010020912624895573, 0.08340498805046082, -0.039637934416532516, -0.27616244554519653, 0.007956002838909626, 0.025714300572872162, 0.01306600496172905, -0.1895054578781128, -0.08578818291425705, 0.026259226724505424, -0.0541248582303524, -0.06015916168689728, 0.10947975516319275, 0.06595216691493988, 0.06262826919555664, -0.057864271104335785, -0.13633862137794495, -0.015846671536564827, 0.18550902605056763, -0.1445433646440506, -0.04237942397594452 ]
null
null
transformers
Language Detection Model for Nepali, English, Hindi and Spanish Model fine tuned on xlm-roberta-large
{}
text-classification
Manishl7/xlm-roberta-large-language-detection
[ "transformers", "pytorch", "roberta", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #roberta #text-classification #autotrain_compatible #endpoints_compatible #region-us
Language Detection Model for Nepali, English, Hindi and Spanish Model fine tuned on xlm-roberta-large
[]
[ "TAGS\n#transformers #pytorch #roberta #text-classification #autotrain_compatible #endpoints_compatible #region-us \n" ]
[ 37 ]
[ "passage: TAGS\n#transformers #pytorch #roberta #text-classification #autotrain_compatible #endpoints_compatible #region-us \n" ]
[ -0.020008964464068413, 0.044132623821496964, -0.0078112599439918995, 0.02638433128595352, 0.20928440988063812, 0.035342395305633545, 0.06615248322486877, 0.11328862607479095, 0.016332678496837616, -0.028178846463561058, 0.1062050312757492, 0.244922935962677, -0.040547244250774384, 0.11052706092596054, -0.11703961342573166, -0.3019167184829712, 0.0651109591126442, 0.058234453201293945, 0.0004814834101125598, 0.11527911573648453, 0.09698275476694107, -0.07739077508449554, 0.06869864463806152, -0.03217874467372894, -0.131941020488739, 0.042836710810661316, 0.04529296234250069, -0.13870608806610107, 0.09858331084251404, 0.04921972379088402, 0.15171344578266144, 0.01987096667289734, -0.06366993486881256, -0.1485668271780014, 0.03940661624073982, 0.0016886860830709338, -0.08661011606454849, 0.03708817437291145, 0.071238212287426, -0.14339829981327057, 0.04450083151459694, 0.03611757233738899, 0.02662758156657219, 0.05500191077589989, -0.1467411369085312, -0.06837250292301178, -0.015736868605017662, 0.030547795817255974, 0.06831184029579163, 0.06859925389289856, -0.003380601992830634, 0.14116983115673065, -0.1399628221988678, 0.12732058763504028, 0.10533753782510757, -0.2779976427555084, -0.01969316229224205, 0.09297934174537659, 0.03233207389712334, 0.04336971044540405, -0.0469091534614563, 0.05149709805846214, 0.02325548231601715, 0.005723325069993734, -0.013593494892120361, -0.07786429673433304, -0.13017228245735168, 0.029447631910443306, -0.07575114071369171, -0.047911252826452255, 0.18931140005588531, -0.06078016012907028, 0.06419374793767929, -0.02578158490359783, -0.09002748131752014, -0.04515666514635086, -0.02595321089029312, 0.02780180424451828, -0.04802282154560089, 0.06563033908605576, 0.02161816507577896, 0.010254548862576485, -0.10361794382333755, 0.025263015180826187, -0.21374544501304626, 0.22683702409267426, 0.014008278027176857, 0.04628974571824074, -0.17974287271499634, 0.04919026419520378, 0.016432149335741997, -0.09800734370946884, 0.04059531167149544, -0.10359881818294525, 0.019286664202809334, -0.036020707339048386, -0.07521474361419678, -0.04318004101514816, 0.08935294300317764, 0.17481516301631927, 0.060050930827856064, 0.05660588666796684, -0.02891738899052143, 0.08364686369895935, 0.034934286028146744, 0.12381786108016968, 0.029145758599042892, -0.0430731363594532, 0.054288964718580246, -0.13852715492248535, 0.005985075607895851, -0.06892093271017075, -0.15193496644496918, -0.043890099972486496, 0.05996817350387573, 0.08541124314069748, 0.016340363770723343, 0.08751767128705978, -0.05123571678996086, -0.025786807760596275, 0.057079561054706573, -0.07623042166233063, 0.010047397576272488, 0.009102854877710342, 0.021692194044589996, 0.10377813875675201, -0.016680341213941574, 0.0019239634275436401, -0.07883065193891525, 0.13569426536560059, -0.05062291771173477, 0.002834826707839966, -0.028882183134555817, -0.06732304394245148, 0.031353920698165894, -0.1529940962791443, 0.04031229764223099, -0.18075710535049438, -0.10555167496204376, -0.0007299539283849299, 0.01633904129266739, -0.010452449321746826, -0.036828503012657166, -0.029121527448296547, -0.0010542483069002628, 0.0465390607714653, -0.05203495919704437, -0.05372150242328644, -0.0710693895816803, 0.09455125033855438, -0.025662148371338844, 0.07735227048397064, -0.11272741109132767, 0.07412353903055191, -0.09475456178188324, -0.029008569195866585, -0.14016872644424438, 0.04407212883234024, -0.04205916076898575, 0.18818572163581848, 0.013361545279622078, -0.03987136483192444, -0.05454714596271515, 0.06222211569547653, -0.06554840505123138, 0.16502423584461212, -0.055415909737348557, -0.1103559210896492, 0.21572303771972656, -0.08793190866708755, -0.12616907060146332, 0.07853521406650543, -0.01983499526977539, 0.014107154682278633, 0.09935758262872696, 0.18871597945690155, 0.10630406439304352, 0.016910504549741745, 0.0883619412779808, 0.09970127791166306, -0.10351017117500305, -0.1213667243719101, -0.003216387936845422, -0.008271720260381699, -0.12229956686496735, 0.057527974247932434, 0.08477486670017242, 0.06781025230884552, -0.04844829812645912, -0.03921041637659073, -0.016000164672732353, -0.011660793796181679, 0.11266223341226578, 0.0542222298681736, 0.11704793572425842, -0.08393700420856476, -0.0022737428080290556, -0.022228462621569633, -0.005893548019230366, 0.02648397535085678, 0.028688877820968628, -0.05932282656431198, 0.11452367901802063, 0.02017734758555889, 0.029400894418358803, -0.2367136925458908, -0.06601598858833313, -0.020603468641638756, 0.1433582305908203, -0.010105208493769169, 0.10095411539077759, 0.04427468404173851, -0.06928575038909912, -0.01621636003255844, -0.009299000725150108, 0.17815911769866943, 0.01738034375011921, -0.04921546205878258, -0.07032492011785507, 0.07650125026702881, -0.07516951113939285, 0.015835674479603767, -0.07112815976142883, 0.016271501779556274, 0.07571322470903397, 0.11224865168333054, 0.008744978345930576, 0.0727425292134285, -0.02016051858663559, 0.06210291013121605, -0.07318591326475143, 0.022908657789230347, 0.10824329406023026, -0.004980417434126139, -0.06107798591256142, 0.1551254838705063, -0.14208556711673737, 0.27617180347442627, 0.19884657859802246, -0.2908918559551239, -0.02017652988433838, -0.025536252185702324, -0.004497346933931112, 0.02869114652276039, 0.03061705082654953, 0.020218806341290474, 0.08507369458675385, -0.004770483355969191, 0.19971705973148346, -0.023923929780721664, -0.03995136916637421, -0.006853953469544649, -0.05899958312511444, -0.02046085335314274, 0.09736490249633789, 0.06067580729722977, -0.20302586257457733, 0.1880679875612259, 0.18911747634410858, 0.004468548111617565, 0.15545931458473206, 0.0003551404515746981, 0.04150131344795227, 0.0840771347284317, -0.04905596002936363, -0.014827928505837917, -0.08001329749822617, -0.17313796281814575, -0.0473613403737545, 0.07346320897340775, 0.02623208612203598, 0.06899876892566681, -0.10228913277387619, -0.039061445742845535, 0.00035962145193479955, 0.028382880613207817, -0.013808752410113811, 0.09584128856658936, 0.07520584017038345, 0.1137809306383133, 0.0046613202430307865, -0.0636981874704361, 0.10756023973226547, 0.001925493124872446, -0.07367260009050369, 0.1902109980583191, -0.1323123574256897, -0.337295800447464, -0.15708862245082855, -0.2121734917163849, -0.019831912592053413, 0.06118001043796539, 0.10692126303911209, -0.11363879591226578, -0.04476870596408844, 0.04283493384718895, -0.0034252714831382036, -0.06604110449552536, 0.03876585140824318, -0.06533156335353851, 0.08773002028465271, -0.06364738941192627, -0.05990470200777054, -0.06569340825080872, -0.038312867283821106, -0.013243465684354305, 0.15560667216777802, -0.12804582715034485, 0.08351859450340271, 0.1680022031068802, -0.0029614458326250315, 0.06352407485246658, -0.035965193063020706, 0.15339027345180511, -0.10014189779758453, -0.030315415933728218, 0.1889757513999939, -0.068211130797863, 0.0744536817073822, 0.16308091580867767, 0.014739030972123146, -0.0636824518442154, 0.030278878286480904, -0.034673016518354416, -0.10021910816431046, -0.22630487382411957, -0.14426615834236145, -0.12350988388061523, 0.04796411097049713, 0.05659063905477524, 0.07286151498556137, 0.14150547981262207, 0.07591188699007034, 0.016282901167869568, 0.00013132939056959003, 0.0014127136673778296, 0.09078255295753479, 0.2534273564815521, 0.009143847972154617, 0.14892973005771637, -0.07104091346263885, -0.13614638149738312, 0.08464624732732773, 0.01240177545696497, 0.12425845116376877, 0.09204304963350296, 0.004151592496782541, 0.010810011066496372, 0.055354043841362, 0.16762010753154755, 0.10863393545150757, 0.043654248118400574, -0.016212422400712967, -0.020722083747386932, 0.008428140543401241, -0.06790567189455032, 0.01627505198121071, 0.05736133083701134, -0.15321840345859528, -0.07510635256767273, -0.13223819434642792, 0.09712949395179749, 0.09360931813716888, 0.0470423586666584, -0.19960257411003113, 0.005815644282847643, 0.0936809852719307, -0.0333959199488163, -0.09875739365816116, 0.07462789863348007, -0.07721393555402756, -0.15226376056671143, 0.10575620085000992, -0.032381944358348846, 0.13865694403648376, -0.08692946285009384, 0.0790829285979271, -0.055491261184215546, -0.1101168543100357, 0.02726965956389904, 0.11307073384523392, -0.266848623752594, 0.23194316029548645, 0.005795670207589865, -0.06619521975517273, -0.07798527181148529, -0.02415461093187332, 0.04554189369082451, 0.19904311001300812, 0.074777752161026, -0.0025721739511936903, -0.0985921323299408, -0.1604350209236145, -0.0035795620642602444, 0.003904567565768957, 0.12411849945783615, -0.031422633677721024, -0.008662420324981213, -0.048047564923763275, -0.02887197583913803, -0.036892786622047424, -0.058628011494874954, 0.046003229916095734, -0.17000669240951538, 0.05320185050368309, 0.03264983743429184, 0.053446345031261444, 0.021807091310620308, -0.03694950044155121, -0.10292581468820572, 0.20319914817810059, -0.07320132106542587, -0.07115907967090607, -0.11742512881755829, -0.0709628164768219, 0.02500193938612938, -0.09203493595123291, 0.0746789500117302, -0.09320281445980072, 0.01885121501982212, -0.06376928836107254, -0.19728536903858185, 0.12246022373437881, -0.09933560341596603, -0.025960171595215797, -0.05696910247206688, 0.1400504857301712, -0.08192209899425507, 0.008517257869243622, 0.03329753130674362, 0.0311837550252676, -0.101662777364254, -0.07855576276779175, -0.006188572850078344, 0.003921836148947477, 0.04948630556464195, 0.07072073966264725, -0.08801282197237015, -0.08284960687160492, -0.038000740110874176, -0.000636666314676404, 0.2934253215789795, 0.15669852495193481, -0.06931452453136444, 0.1525820940732956, 0.12009288370609283, -0.07215527445077896, -0.3365217447280884, -0.08695725351572037, -0.11067883670330048, -0.03977072983980179, -0.046555936336517334, -0.1571168452501297, 0.11588511615991592, -0.004439007956534624, -0.020042624324560165, 0.07348743081092834, -0.15523993968963623, -0.08477700501680374, 0.19448399543762207, -0.03307865187525749, 0.4068463146686554, -0.11054953187704086, -0.0950624942779541, -0.07110202312469482, -0.11997730284929276, 0.11309017986059189, -0.012477992102503777, 0.09084546566009521, -0.01921740733087063, 0.05707107484340668, 0.04382467269897461, -0.038832247257232666, 0.09420378506183624, 0.010473021306097507, 0.019014105200767517, -0.1254121959209442, -0.10295052826404572, 0.04397515580058098, -0.01995539292693138, -0.017540106549859047, -0.004275078419595957, 0.018242914229631424, -0.16359899938106537, -0.04212464764714241, -0.0764581710100174, 0.05086830258369446, 0.042068950831890106, -0.029563607648015022, -0.007691054604947567, -0.01661510579288006, -0.006875237450003624, -0.00004427770909387618, 0.25804147124290466, -0.058748915791511536, 0.17537914216518402, 0.08201849460601807, 0.1287056803703308, -0.1240130364894867, 0.03093533031642437, -0.0719410628080368, -0.06300289183855057, 0.056417182087898254, -0.08991438895463943, 0.06572704762220383, 0.12093320488929749, -0.05827133730053902, 0.05707010254263878, 0.11047960072755814, 0.05665024742484093, -0.01672348380088806, 0.17151936888694763, -0.21784354746341705, 0.039013735949993134, -0.044656746089458466, -0.028644291684031487, 0.0673145204782486, 0.06059737876057625, 0.13576023280620575, 0.056735020130872726, -0.050879377871751785, 0.0027266712859272957, -0.005394025705754757, -0.006150494329631329, 0.053126439452171326, 0.06565799564123154, 0.03482401371002197, -0.13315033912658691, 0.05063670501112938, 0.0488823726773262, -0.1517987698316574, -0.012782548554241657, 0.14544247090816498, -0.16107147932052612, -0.12472042441368103, -0.008331404998898506, 0.12478770315647125, -0.14226394891738892, -0.04139966145157814, -0.07949703186750412, -0.13279509544372559, 0.07259250432252884, 0.21434538066387177, 0.12083859741687775, 0.07850685715675354, -0.042793743312358856, -0.04786950722336769, -0.0023539469111710787, -0.012482158839702606, 0.01542683970183134, 0.025215521454811096, -0.1102122887969017, 0.020501524209976196, -0.018913518637418747, 0.15162764489650726, -0.09223692864179611, -0.07566172629594803, -0.17453664541244507, 0.05083347484469414, -0.09629858285188675, -0.03000663034617901, -0.07866353541612625, -0.022550096735358238, -0.0028236843645572662, -0.044283416122198105, -0.0488961786031723, -0.06393264979124069, -0.12171278893947601, 0.03886346146464348, -0.029917839914560318, 0.037657231092453, -0.06475012004375458, -0.04363161697983742, 0.10111245512962341, -0.03200976178050041, 0.10144995152950287, 0.11017206311225891, -0.0850227028131485, 0.09229160100221634, -0.14469486474990845, -0.11688804626464844, 0.12373711168766022, 0.01293914020061493, 0.06899435073137283, 0.06232675164937973, 0.043563924729824066, 0.06726560741662979, 0.018487147986888885, 0.07367441058158875, 0.053072553128004074, -0.1265084147453308, 0.06561767309904099, -0.036320216953754425, -0.18026919662952423, -0.048072449862957, -0.03972756490111351, 0.10033562034368515, 0.002716359216719866, 0.1519702523946762, -0.0539398267865181, 0.10532274842262268, -0.027349798008799553, 0.010220712050795555, -0.02422005869448185, -0.21375028789043427, -0.06186143308877945, -0.0875529870390892, 0.020722882822155952, 0.0073815686628222466, 0.252583771944046, 0.05999443680047989, 0.043384622782468796, 0.05349669232964516, 0.09076128900051117, 0.006726719904690981, 0.02686336264014244, 0.16989776492118835, 0.10625749826431274, -0.054806992411613464, -0.05736768618226051, 0.0645746961236, 0.02236839570105076, -0.004619908984750509, 0.13472703099250793, 0.07847650349140167, -0.003241969272494316, 0.07508169859647751, -0.022816574200987816, 0.055117711424827576, -0.09602399915456772, -0.16602522134780884, -0.03789302334189415, 0.06136997044086456, 0.015683189034461975, 0.02769125998020172, 0.11872325092554092, -0.02512430213391781, 0.04980659484863281, -0.05039367452263832, -0.047553956508636475, -0.190480038523674, -0.08713943511247635, -0.1058601662516594, -0.09514910727739334, 0.01605161279439926, -0.07684782892465591, -0.004868034739047289, 0.08577817678451538, 0.04222368076443672, -0.05062175542116165, 0.061918362975120544, 0.013334243558347225, -0.06097227334976196, 0.08177100121974945, -0.04358189180493355, 0.034621722996234894, 0.009182103909552097, -0.021071596071124077, -0.13983911275863647, -0.020003166049718857, -0.04568071663379669, 0.04369695112109184, -0.05934172868728638, 0.01186833344399929, -0.15804150700569153, -0.1167970523238182, -0.02196607179939747, 0.06443385779857635, -0.043019507080316544, 0.130898118019104, 0.007071374449878931, 0.0023405568208545446, 0.051037952303886414, 0.2136451154947281, -0.05474230647087097, -0.0692630410194397, -0.049248065799474716, 0.22245341539382935, 0.08240340650081635, 0.10381010919809341, -0.019030237570405006, -0.010240653529763222, -0.07025635242462158, 0.32316410541534424, 0.29418379068374634, -0.039947621524333954, 0.0507243387401104, 0.01590515859425068, 0.03608250990509987, 0.1671287715435028, 0.1311587393283844, 0.09011198580265045, 0.23601709306240082, -0.06328054517507553, -0.04345982149243355, -0.01966611109673977, -0.020104875788092613, -0.12282752990722656, 0.0899764820933342, 0.055597834289073944, -0.05273459479212761, -0.06209932267665863, 0.11512468755245209, -0.2119985967874527, 0.14972861111164093, 0.014138193801045418, -0.21562917530536652, -0.07939939200878143, -0.029313646256923676, 0.12147574126720428, 0.0022966889664530754, 0.08494418114423752, -0.0009001587750390172, -0.12122118473052979, 0.015007257461547852, 0.024496188387274742, -0.21694234013557434, -0.02909899316728115, 0.06782764196395874, -0.03080557845532894, -0.003602581797167659, -0.033146586269140244, 0.021333782002329826, 0.08633527159690857, 0.06039969623088837, -0.01826026290655136, 0.04458854719996452, -0.0026062342803925276, -0.034958090633153915, 0.02856798656284809, 0.025836622342467308, -0.0018466500332579017, -0.10822580754756927, 0.0704243928194046, -0.1465485692024231, 0.05887974053621292, -0.08138486742973328, -0.04419925808906555, -0.01359280850738287, 0.04496964067220688, -0.06153792887926102, 0.05272408947348595, 0.10471534729003906, -0.0008891951874829829, -0.02254260517656803, -0.05042839050292969, -0.0399518720805645, 0.0006140783079899848, -0.13396838307380676, -0.14770886301994324, -0.08994549512863159, -0.0952795073390007, 0.11147317290306091, 0.0045949253253638744, -0.17804133892059326, -0.0027761408127844334, -0.11016383022069931, 0.054672446101903915, -0.16769617795944214, 0.0989537462592125, 0.04410397261381149, 0.011924069374799728, -0.014897520653903484, -0.04637180641293526, 0.04843989759683609, 0.07801199704408646, -0.12207385152578354, -0.09432519972324371 ]
null
null
transformers
# Harry Potter DialoGPT Model
{"tags": ["conversational"]}
text-generation
Manthan/DialoGPT-small-harrypotter
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# Harry Potter DialoGPT Model
[ "# Harry Potter DialoGPT Model" ]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# Harry Potter DialoGPT Model" ]
[ 51, 8 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# Harry Potter DialoGPT Model" ]
[ -0.0009023238671943545, 0.07815738022327423, -0.006546166725456715, 0.07792752981185913, 0.10655936598777771, 0.048972971737384796, 0.17639793455600739, 0.12185695022344589, 0.016568755730986595, -0.04774167761206627, 0.11647630482912064, 0.2130284160375595, -0.002118367003276944, 0.024608047679066658, -0.05022026598453522, -0.3065771162509918, 0.0474756620824337, 0.014356585219502449, -0.07174845039844513, 0.11724270135164261, 0.09064973145723343, -0.046179238706827164, 0.08330509811639786, -0.009135239757597446, -0.13198648393154144, -0.039482954889535904, 0.019292812794446945, -0.11745545268058777, 0.1662212759256363, 0.05298272892832756, 0.02469746209681034, -0.008447164669632912, -0.06598151475191116, -0.15036040544509888, 0.037190426141023636, -0.027472136542201042, -0.01080626156181097, 0.05462246760725975, 0.023526115342974663, -0.07521048933267593, 0.170567125082016, 0.17678891122341156, 0.0833497866988182, 0.0349111407995224, -0.14917024970054626, -0.045548245310783386, 0.008950977586209774, 0.05421316996216774, -0.017893504351377487, 0.09349167346954346, -0.019903047010302544, 0.11801653355360031, -0.04491448402404785, 0.09210366010665894, 0.15255063772201538, -0.4016275703907013, -0.027563704177737236, 0.08920855820178986, 0.05989706888794899, 0.12076901644468307, -0.10560955852270126, 0.03972794860601425, -0.0039703017100691795, 0.01236654631793499, -0.014540530741214752, -0.08304883539676666, -0.07308239489793777, 0.032504837960004807, -0.1272556483745575, 0.008525865152478218, 0.23756256699562073, -0.10643257945775986, 0.037069112062454224, -0.09791990369558334, -0.07414398342370987, 0.048336777836084366, -0.053761593997478485, -0.081727035343647, -0.054839808493852615, 0.06347949057817459, 0.004366500303149223, -0.06301609426736832, -0.08326146006584167, -0.0006536149303428829, -0.12781435251235962, 0.17595994472503662, 0.061243366450071335, 0.041611745953559875, -0.21322020888328552, 0.08940251916646957, 0.04477722570300102, -0.04711297154426575, 0.007116159424185753, -0.11796226352453232, 0.04023287072777748, 0.005483259446918964, -0.03256071358919144, -0.021854614838957787, 0.0393419973552227, 0.13909944891929626, -0.01777748204767704, 0.03252175822854042, 0.006831915583461523, 0.05811219662427902, 0.08162496984004974, 0.02222144603729248, 0.019291909411549568, -0.0818009302020073, 0.019385190680623055, -0.08128736168146133, -0.0030400939285755157, -0.048940129578113556, -0.17071883380413055, -0.07477642595767975, 0.052610911428928375, 0.020047198981046677, 0.03746970370411873, 0.08054786175489426, -0.0017944995779544115, -0.05560554191470146, 0.03284840285778046, 0.01671096310019493, -0.020622212439775467, -0.010361049324274063, -0.02412462793290615, 0.19123271107673645, 0.019619356840848923, 0.014111656695604324, -0.12379156798124313, 0.10023640841245651, -0.08179095387458801, 0.0037731381598860025, 0.02743307314813137, -0.04204464703798294, -0.004716555587947369, 0.02917117439210415, 0.023101668804883957, -0.1252521574497223, -0.1099385917186737, -0.0030569476075470448, -0.012054097838699818, -0.036421261727809906, -0.10490952432155609, -0.08483029156923294, -0.012153145857155323, 0.0449371263384819, -0.013397793285548687, 0.007936403155326843, -0.05143149942159653, 0.0985720232129097, -0.0514979362487793, 0.09873400628566742, -0.08342572301626205, 0.06359215080738068, -0.09124887734651566, -0.061886150389909744, -0.11452563107013702, 0.05216052383184433, 0.012905281968414783, 0.066250741481781, 0.016998225823044777, -0.044836658984422684, -0.014836243353784084, 0.05253177136182785, -0.07656687498092651, 0.1940697431564331, -0.041674621403217316, -0.12459053844213486, 0.24146439135074615, -0.09138800948858261, -0.1802034229040146, 0.12973085045814514, -0.022254703566432, 0.08523941785097122, 0.12802475690841675, 0.20380465686321259, -0.00019822151807602495, -0.01302915159612894, 0.07281201332807541, 0.07031642645597458, -0.09803894907236099, 0.06239739805459976, 0.029653839766979218, -0.008071083575487137, -0.08906278014183044, 0.05762826278805733, 0.046033453196287155, -0.010650773532688618, -0.035073768347501755, -0.001896020956337452, -0.012895751744508743, -0.022185025736689568, 0.14126582443714142, -0.02006692811846733, 0.1300428807735443, -0.06926563382148743, -0.03515486419200897, -0.009500149637460709, 0.03533667325973511, -0.04091939330101013, 0.08151165395975113, -0.0436173714697361, 0.10586477071046829, 0.09034156054258347, 0.053724925965070724, -0.13120363652706146, 0.00466286763548851, -0.015246815048158169, 0.17014820873737335, 0.08964069187641144, 0.05222717300057411, 0.06265474855899811, -0.0020888058934360743, -0.06708643585443497, 0.045407816767692566, 0.13778303563594818, -0.037020038813352585, -0.12218865007162094, -0.1755627691745758, 0.051157694309949875, -0.045444171875715256, 0.10855234414339066, -0.10010123997926712, 0.022670533508062363, -0.055906031280756, 0.07772238552570343, -0.024998966604471207, 0.020512236282229424, -0.0013405600329861045, -0.021700702607631683, -0.08356887847185135, -0.002377772703766823, 0.08597290515899658, -0.02048647589981556, -0.06707409024238586, 0.16556480526924133, -0.16400809586048126, 0.1631954461336136, 0.2116095870733261, -0.28542569279670715, -0.005696662236005068, -0.15163889527320862, -0.0208092350512743, 0.019645055755972862, 0.07834604382514954, 0.026225795969367027, 0.2044338881969452, -0.012928472831845284, 0.16565458476543427, -0.05699567869305611, -0.07730039209127426, -0.06881127506494522, -0.048101142048835754, 0.013522743247449398, 0.09095205366611481, 0.04542696103453636, -0.11962861567735672, 0.13119758665561676, 0.1054433062672615, 0.06484298408031464, 0.12711186707019806, 0.1030748188495636, -0.008113685995340347, 0.07252490520477295, -0.03624548763036728, -0.03462279960513115, -0.09254947304725647, -0.30446043610572815, -0.04840317741036415, 0.0939924493432045, 0.007963384501636028, 0.09285714477300644, -0.0919896736741066, -0.03311870992183685, 0.006042704917490482, 0.009473444893956184, 0.028337622061371803, 0.09653715789318085, 0.013490920886397362, 0.15320514142513275, -0.008011690340936184, -0.03430786728858948, 0.05891305208206177, 0.017982570454478264, -0.09147711098194122, 0.17280617356300354, -0.17050009965896606, -0.27190929651260376, -0.06990014761686325, -0.21745692193508148, -0.013139115646481514, 0.05258983001112938, 0.0786920040845871, -0.11818131804466248, -0.018352627754211426, -0.006239492911845446, 0.05685517191886902, -0.2425733357667923, 0.0004911290016025305, -0.1354890614748001, 0.0501418262720108, -0.1974833607673645, -0.09718500077724457, -0.02271542325615883, -0.013450481928884983, -0.0464281290769577, 0.13365240395069122, -0.1448695808649063, -0.011572926305234432, 0.2329535037279129, 0.032479673624038696, 0.027794739231467247, -0.05020907148718834, 0.19788463413715363, -0.0958966314792633, -0.023973820731043816, 0.11024576425552368, -0.05038975924253464, 0.04834126681089401, 0.06649978458881378, -0.012981836684048176, -0.08557141572237015, 0.023789849132299423, -0.068336620926857, -0.03150583803653717, -0.27926525473594666, -0.0930178239941597, -0.09319330751895905, 0.11305391043424606, 0.04079577326774597, 0.06421639025211334, 0.16545771062374115, 0.05191578343510628, -0.024325082078576088, -0.03006586618721485, 0.11609793454408646, 0.12905290722846985, 0.2277202159166336, -0.06067761778831482, 0.10221996158361435, 0.009445492178201675, -0.08203992247581482, 0.06062209978699684, 0.056782789528369904, 0.06324724853038788, 0.02584579586982727, 0.03694582358002663, -0.030939655378460884, 0.1121687963604927, 0.12571842968463898, 0.05258069559931755, 0.0481170229613781, 0.0002127334737451747, -0.0561506561934948, -0.008168719708919525, -0.05726633965969086, 0.06774696707725525, 0.061340972781181335, -0.12918008863925934, -0.08061543852090836, 0.0011613310780376196, 0.06660808622837067, -0.016230419278144836, 0.06823775917291641, -0.13560809195041656, -0.03582429885864258, 0.0790911465883255, -0.07693151384592056, -0.14156894385814667, 0.11972879618406296, -0.026570770889520645, -0.19904157519340515, 0.05265914276242256, 0.007704653777182102, 0.0908159390091896, -0.06360849738121033, 0.05343840271234512, -0.13023801147937775, -0.12935101985931396, -0.018437571823596954, 0.07945099472999573, -0.3450873792171478, 0.13536721467971802, -0.013286802917718887, -0.02876877970993519, -0.06474969536066055, -0.02640824392437935, 0.013905409723520279, 0.12719078361988068, 0.08667250722646713, 0.0008821099763736129, 0.0991629809141159, 0.03823768347501755, 0.04188435152173042, -0.002011700300499797, 0.10950417071580887, 0.0050011589191854, 0.004797275178134441, -0.04982118681073189, 0.007274609990417957, -0.05164213851094246, -0.07472953200340271, 0.08393982797861099, -0.20678792893886566, 0.09087453782558441, -0.03378438204526901, 0.08427679538726807, 0.04304937273263931, -0.018965769559144974, -0.1001204177737236, 0.19745583832263947, -0.012206900864839554, -0.11405988782644272, -0.07517550885677338, -0.02810264565050602, 0.09103139489889145, -0.013817726634442806, 0.012886416167020798, -0.045470476150512695, 0.032183047384023666, -0.1263762265443802, -0.1597503274679184, 0.08734500408172607, -0.04441224783658981, -0.10894393920898438, -0.025462759658694267, 0.20382575690746307, -0.007266622502356768, 0.08242089301347733, 0.01605331338942051, 0.010653935372829437, -0.18066231906414032, -0.04018142446875572, 0.02645772136747837, -0.0016437612939625978, 0.005979063920676708, 0.047698814421892166, 0.019091911613941193, 0.06207629665732384, -0.1069745197892189, -0.013920160941779613, 0.3158324360847473, 0.15978319942951202, -0.00912671908736229, 0.14943915605545044, 0.1093616932630539, -0.08669080585241318, -0.17238758504390717, -0.1171615794301033, -0.1210922971367836, -0.08425768464803696, -0.10681738704442978, -0.1525043100118637, 0.09535340964794159, -0.03392014652490616, 0.03498011827468872, 0.14615866541862488, -0.280263751745224, -0.10949636250734329, 0.13820378482341766, 0.010744688101112843, 0.3510635495185852, -0.12303631007671356, -0.044944874942302704, -0.06214528530836105, -0.16933435201644897, 0.08021392673254013, -0.031203703954815865, 0.11581093072891235, -0.0744495838880539, 0.19395925104618073, 0.01719796098768711, 0.014287159778177738, 0.0916559100151062, 0.05038322135806084, -0.05808406323194504, -0.07368700206279755, -0.10248131304979324, 0.010812131687998772, 0.03546109423041344, 0.010252019390463829, -0.008802837692201138, 0.0211968794465065, -0.11341743916273117, -0.050869911909103394, -0.06302189081907272, 0.0072614275850355625, -0.01001308299601078, -0.042155615985393524, -0.05533592775464058, -0.022557416930794716, -0.020093943923711777, 0.02266426384449005, 0.14185629785060883, -0.07527699321508408, 0.18586260080337524, 0.02357078716158867, 0.1586609035730362, -0.11956068128347397, -0.06724818795919418, -0.029193658381700516, -0.05280323326587677, 0.06468886137008667, -0.08884575963020325, -0.027708567678928375, 0.1332162618637085, -0.01903904788196087, 0.04655366763472557, 0.12936700880527496, 0.02046884410083294, 0.015383756719529629, 0.034968774765729904, -0.2578005790710449, -0.07463036477565765, -0.03505445644259453, -0.012416874058544636, 0.05272092670202255, 0.05525677278637886, 0.19735674560070038, -0.03551921248435974, -0.08521962910890579, 0.020131373777985573, 0.02735883742570877, -0.02776256389915943, 0.10749414563179016, 0.019579345360398293, -0.004837906453758478, -0.16151933372020721, 0.08257976174354553, -0.005964108742773533, -0.08297000825405121, 0.028665626421570778, 0.2024049311876297, -0.12141239643096924, -0.10309756547212601, -0.06804922968149185, 0.07315051555633545, -0.09220825880765915, 0.016043387353420258, -0.005091092549264431, -0.1521538347005844, 0.06916408240795135, 0.07598215341567993, 0.04075418785214424, 0.06513199955224991, -0.11743064224720001, -0.015730571001768112, -0.04170290008187294, -0.002195435343310237, 0.03521120920777321, 0.01863143965601921, -0.057492829859256744, 0.15846455097198486, -0.0676199421286583, 0.08538917452096939, -0.0744810476899147, -0.1058846190571785, -0.1395980566740036, 0.04660497233271599, -0.08038312196731567, -0.07247276604175568, -0.12832807004451752, -0.052204377949237823, -0.0067099276930093765, -0.03388519585132599, 0.006552806124091148, -0.06627799570560455, -0.10922821611166, 0.01822470687329769, -0.00743203004822135, -0.009385870769619942, -0.06096754968166351, 0.026706209406256676, 0.06246216222643852, -0.039788868278265, 0.15730851888656616, 0.22509248554706573, -0.13591648638248444, 0.11564400047063828, -0.09797432273626328, -0.105463907122612, 0.046008042991161346, 0.009427277371287346, 0.03594303876161575, 0.0503489226102829, -0.03594081476330757, 0.0044484552927315235, 0.03905477747321129, 0.08074651658535004, 0.08456914126873016, -0.06776505708694458, 0.020801106467843056, -0.05122765153646469, -0.14904099702835083, -0.016655439510941505, -0.0464773029088974, 0.06876829266548157, -0.006725262850522995, 0.11020535975694656, -0.0515950471162796, 0.07739507406949997, -0.07558431476354599, 0.050614211708307266, 0.021146971732378006, -0.14688286185264587, -0.006612539757043123, -0.07093682140111923, 0.042144812643527985, -0.008834975771605968, 0.20241086184978485, -0.03228091076016426, 0.010342049412429333, 0.033811055123806, 0.06203942745923996, -0.01957780309021473, 0.009357001632452011, 0.2014283686876297, 0.12640917301177979, -0.08496357500553131, -0.02679651789367199, 0.06793134659528732, 0.07248228788375854, 0.07093550264835358, 0.10807815194129944, -0.015352966263890266, 0.028434239327907562, 0.07829629629850388, -0.060215238481760025, 0.07576877623796463, -0.08603982627391815, -0.11668483167886734, 0.05793621391057968, 0.012955795042216778, -0.055695828050374985, 0.20305177569389343, 0.19142870604991913, -0.026278704404830933, 0.018410727381706238, -0.0029499190859496593, -0.10117456316947937, -0.15619947016239166, -0.05423750728368759, -0.07170962542295456, -0.1319410353899002, -0.004549739416688681, -0.16646917164325714, 0.022016216069459915, -0.01132756657898426, 0.09506805986166, -0.06855440139770508, -0.01345991250127554, 0.1364889293909073, -0.1055467277765274, 0.0847758799791336, -0.024517204612493515, 0.07877567410469055, -0.03746940940618515, -0.018209461122751236, -0.10342709720134735, 0.007514837197959423, 0.01131442841142416, 0.06840907037258148, -0.10897937417030334, 0.02432350255548954, -0.12208317965269089, -0.08617185056209564, -0.026142612099647522, 0.09279687702655792, -0.0403008833527565, 0.15116846561431885, 0.02645145356655121, -0.06710928678512573, -0.004313822835683823, 0.2646709978580475, -0.08046227693557739, -0.08319197595119476, -0.030799202620983124, 0.2152107208967209, 0.04053696244955063, 0.06396269053220749, 0.019140036776661873, 0.038027774542570114, -0.07184682041406631, 0.2957373559474945, 0.34401440620422363, -0.1318037211894989, -0.007773484103381634, 0.04225075617432594, 0.04406323283910751, 0.14687567949295044, 0.07998795062303543, 0.11360671371221542, 0.2849363386631012, -0.09197647124528885, 0.016657205298542976, -0.04230864346027374, -0.01424806285649538, -0.06908884644508362, 0.045314885675907135, 0.08216670155525208, -0.09241747111082077, -0.022950593382120132, 0.08125471323728561, -0.29741767048835754, 0.10791494697332382, -0.15600289404392242, -0.14948409795761108, -0.05027429759502411, -0.008771711029112339, 0.014683255925774574, 0.019041186198592186, 0.09663030505180359, 0.025651484727859497, -0.07275258749723434, 0.07816889137029648, 0.024486342445015907, -0.23020237684249878, -0.01345184724777937, 0.1456068754196167, -0.06789913028478622, -0.025938833132386208, -0.021313713863492012, 0.051610056310892105, 0.05763651058077812, 0.09027529507875443, -0.03809558227658272, -0.0746568813920021, -0.007141788024455309, -0.022818787023425102, 0.01914946548640728, 0.0597183033823967, 0.06841408461332321, -0.0920223817229271, 0.1167774423956871, -0.07350476831197739, 0.0650370642542839, 0.037623800337314606, -0.022277191281318665, 0.0018526542698964477, 0.013183658011257648, -0.06512464582920074, 0.05533479526638985, 0.1295643299818039, -0.025459708645939827, -0.002524374984204769, -0.028180841356515884, -0.0767761766910553, -0.024015206843614578, -0.04643676429986954, -0.09101243317127228, -0.18130090832710266, -0.12738600373268127, 0.041754670441150665, -0.03240608796477318, -0.2046082615852356, 0.0060346988029778, -0.1128578633069992, 0.03700976446270943, -0.14154092967510223, 0.10004086047410965, 0.07216610759496689, 0.004716616589576006, 0.006774604320526123, 0.0675399899482727, 0.045677728950977325, 0.14796748757362366, -0.16543124616146088, -0.04919974133372307 ]
null
null
null
return im def main(): st.title("Lowlight Enhancement") st.write("This is a simple lowlight enhancement app with great performance and does not require paired images to train.") st.write("The model runs at 1000/11 FPS on single GPU/CPU on images with a size of 1200*900*3") uploaded_file = st.file_uploader("Lowlight Image") if uploaded_file: data_lowlight = Image.open(uploaded_file) col1, col2 = st.columns(2) col1.write("Original (Lowlight)") col1.image(data_lowlight, caption="Lowlight Image", use_column_width=True)
{}
null
Manyman3231/lowlight-enhancement
[ "region:us" ]
2022-03-02T23:29:04+00:00
[]
[]
TAGS #region-us
return im def main(): URL("Lowlight Enhancement") URL("This is a simple lowlight enhancement app with great performance and does not require paired images to train.") URL("The model runs at 1000/11 FPS on single GPU/CPU on images with a size of 1200*900*3") uploaded_file = st.file_uploader("Lowlight Image") if uploaded_file: data_lowlight = URL(uploaded_file) col1, col2 = st.columns(2) URL("Original (Lowlight)") URL(data_lowlight, caption="Lowlight Image", use_column_width=True)
[]
[ "TAGS\n#region-us \n" ]
[ 6 ]
[ "passage: TAGS\n#region-us \n" ]
[ 0.024608636274933815, -0.026205500587821007, -0.009666500613093376, -0.10395516455173492, 0.08638657629489899, 0.059816278517246246, 0.01882290467619896, 0.020661840215325356, 0.23975107073783875, -0.005599027033895254, 0.1219947561621666, 0.0015615287702530622, -0.037353623658418655, 0.03733762726187706, -0.0035912662278860807, -0.17583473026752472, 0.03876631706953049, -0.018274923786520958, 0.01843859627842903, 0.026470553129911423, -0.07776834815740585, -0.07564429938793182, 0.015296397730708122, -0.10247814655303955, -0.083692267537117, 0.11002834886312485, 0.031466204673051834, -0.019670886918902397, 0.10779199749231339, -0.04243955761194229, 0.18699054419994354, -0.011512263678014278, -0.11213519424200058, -0.2536850869655609, 0.021806683391332626, -0.01765260472893715, -0.08747660368680954, 0.01506110467016697, 0.0665089413523674, -0.09014441072940826, -0.0588928684592247, 0.0795099288225174, -0.01132340170443058, 0.04246443510055542, -0.27593839168548584, -0.12684126198291779, -0.05297930911183357, -0.1421966552734375, 0.08651168644428253, 0.04035491496324539, 0.008764253929257393, 0.15506891906261444, -0.20897391438484192, 0.004104613792151213, 0.08255259692668915, -0.2538507878780365, 0.05591634660959244, 0.17671173810958862, 0.03623908758163452, 0.18037272989749908, 0.0060391901060938835, 0.11029672622680664, 0.0716743916273117, -0.024263937026262283, -0.17590197920799255, -0.08127854019403458, -0.04696211963891983, 0.16642488539218903, -0.06727185100317001, -0.14248386025428772, 0.34701237082481384, 0.00015008423360995948, 0.009657775051891804, 0.16921205818653107, -0.059524230659008026, -0.09972117841243744, 0.07259953022003174, 0.016484731808304787, 0.018492350354790688, 0.1471305936574936, 0.16307872533798218, -0.0458691343665123, -0.13837823271751404, -0.018630273640155792, -0.22798998653888702, 0.17510560154914856, -0.03248048573732376, 0.13137903809547424, -0.27447956800460815, 0.01684025302529335, -0.2570667266845703, 0.0032130838371813297, 0.04178816080093384, -0.06004921346902847, -0.0226522795855999, -0.013265985064208508, -0.08018817007541656, 0.004899587947875261, 0.06192673370242119, 0.1266920566558838, -0.06128726154565811, 0.06128238886594772, -0.09319206327199936, 0.141696035861969, 0.07166698575019836, 0.07868369668722153, 0.13037432730197906, 0.041205424815416336, -0.07187089323997498, -0.21872246265411377, -0.0026476888451725245, -0.06275863200426102, -0.09502086788415909, -0.0020165652967989445, -0.11606067419052124, 0.17244569957256317, -0.030802514404058456, -0.09825427830219269, -0.11208184063434601, 0.09148659557104111, -0.032992321997880936, -0.03437839448451996, -0.03552987426519394, -0.020977836102247238, 0.019381176680326462, 0.04704452306032181, -0.1548958420753479, -0.005131472367793322, 0.07039852440357208, 0.11502562463283539, -0.1346137970685959, -0.003783059772104025, -0.07908964157104492, 0.03039063885807991, 0.07654735445976257, -0.16510222852230072, 0.03158547356724739, -0.1124754324555397, -0.07531405985355377, 0.002912673633545637, -0.015710093080997467, -0.016202643513679504, 0.166526660323143, -0.0020451415330171585, 0.0714716836810112, -0.026345307007431984, -0.05890209600329399, -0.11243434250354767, -0.08489254862070084, 0.05390460044145584, 0.03670717030763626, 0.03266148269176483, -0.2193479984998703, 0.014805203303694725, -0.12762966752052307, 0.1360815018415451, -0.10566820204257965, -0.04705966264009476, -0.022842247039079666, 0.20562705397605896, 0.037286072969436646, 0.08762791007757187, -0.22171171009540558, 0.039756543934345245, -0.05404696613550186, 0.18480908870697021, -0.1502426266670227, -0.0799463614821434, 0.20813211798667908, -0.07964949309825897, -0.10115210711956024, 0.021235812455415726, 0.020391687750816345, 0.026287272572517395, 0.0766737088561058, 0.4564172327518463, -0.09766800701618195, -0.09146861732006073, 0.10178250074386597, 0.17055274546146393, -0.12427149713039398, -0.1827561855316162, 0.06446871906518936, -0.16666454076766968, -0.1973118633031845, 0.0018917324487119913, 0.09222044050693512, 0.038269978016614914, -0.07875611633062363, -0.020746968686580658, 0.06325206160545349, -0.0007678253459744155, 0.09095914661884308, 0.03755716234445572, 0.09034032374620438, -0.08716782182455063, 0.11115926504135132, -0.05017651244997978, 0.004037132486701012, 0.1343354731798172, 0.027325427159667015, -0.03223329409956932, 0.08694463223218918, -0.0485352948307991, 0.05295134335756302, -0.1662379503250122, -0.15068690478801727, 0.03398871049284935, 0.06283251196146011, 0.03186952322721481, 0.1280253529548645, 0.08141885697841644, -0.10732853412628174, 0.022690722718834877, -0.004228927195072174, 0.058398615568876266, 0.03891623765230179, 0.006107209715992212, 0.008764320984482765, 0.0961301177740097, -0.10607069730758667, -0.13589619100093842, -0.07336436957120895, -0.014715781435370445, 0.14371353387832642, -0.0302802175283432, 0.07690227776765823, -0.004240254405885935, 0.00013200697139836848, 0.06930823624134064, 0.08137880265712738, 0.016412746161222458, 0.08971183747053146, -0.05237193778157234, -0.05160155147314072, 0.10863113403320312, -0.13533565402030945, 0.17837053537368774, 0.14053137600421906, -0.20532016456127167, 0.029453208670020103, -0.06838275492191315, 0.03670361638069153, -0.008162540383636951, 0.0975119024515152, -0.08272241055965424, -0.02106042578816414, 0.013134466484189034, 0.0052274600602686405, -0.013007243163883686, 0.017682146281003952, -0.07295988500118256, -0.07787393033504486, -0.10233919322490692, 0.08436838537454605, 0.11562882363796234, -0.10282530635595322, 0.14214380085468292, 0.4384984076023102, 0.11495281755924225, 0.21582984924316406, -0.09581480920314789, -0.0412987545132637, 0.007486371789127588, 0.0001535322517156601, -0.04476691037416458, 0.08031861484050751, -0.15973517298698425, -0.038901735097169876, 0.027348900213837624, 0.07128690183162689, 0.11475157737731934, -0.14959022402763367, -0.09639324247837067, -0.00793045200407505, 0.0022841424215584993, -0.1249532699584961, 0.023905446752905846, -0.03974650055170059, 0.04015624523162842, 0.07232289016246796, -0.021535737439990044, 0.13939237594604492, -0.04166141897439957, -0.0639561116695404, 0.07585346698760986, -0.2017085999250412, -0.23179671168327332, -0.12309670448303223, -0.14680525660514832, 0.04366797208786011, 0.05154111236333847, 0.01726446859538555, -0.17635835707187653, -0.015074856579303741, 0.07706750929355621, 0.07820965349674225, -0.20886357128620148, -0.022814949974417686, -0.004290030337870121, 0.0895976573228836, -0.10227091610431671, -0.0017130117630586028, -0.04419664293527603, -0.10150232166051865, 0.0017003051470965147, 0.07279510796070099, -0.137485533952713, 0.13807645440101624, 0.21589438617229462, 0.07225540280342102, 0.07359948754310608, -0.019093448296189308, 0.09936179965734482, -0.10856141895055771, -0.16549113392829895, 0.08348225057125092, -0.06234746053814888, 0.047262318432331085, 0.17534415423870087, 0.03307317942380905, -0.13904969394207, -0.015682822093367577, -0.0402069091796875, -0.15603256225585938, -0.238995760679245, -0.09178274869918823, -0.1182505264878273, 0.16442428529262543, 0.0009358620154671371, 0.06651917099952698, 0.08258313685655594, -0.022042419761419296, 0.16447891294956207, -0.07379321753978729, -0.07578866183757782, -0.006978808436542749, 0.12375060468912125, -0.056660156697034836, -0.03080669604241848, -0.10566964000463486, -0.008295975625514984, 0.1151021271944046, 0.15304014086723328, 0.12214863300323486, 0.2957419455051422, 0.08268889784812927, 0.026645636186003685, 0.08958091586828232, 0.17622539401054382, 0.09495089203119278, 0.07838419824838638, -0.045413073152303696, -0.014814783819019794, 0.014317171648144722, -0.04022889584302902, 0.010141594335436821, 0.14683100581169128, -0.2679629921913147, -0.006678564939647913, -0.2710230350494385, 0.0965198427438736, -0.10913380235433578, 0.11837165057659149, -0.01015760749578476, 0.10194015502929688, 0.11082887649536133, 0.03233652561903, -0.03858073800802231, 0.16613617539405823, 0.08450309932231903, -0.11277695000171661, 0.001758623169735074, 0.03737903758883476, 0.09715615212917328, -0.02818971499800682, 0.12721189856529236, -0.11048974841833115, -0.1464834064245224, 0.013753619976341724, 0.07152791321277618, -0.15373679995536804, 0.3138748109340668, 0.012069208547472954, -0.13481520116329193, -0.01481647603213787, -0.09957809001207352, -0.006440147757530212, 0.1254177987575531, 0.09333524852991104, 0.07935678958892822, -0.2185502052307129, -0.13339371979236603, 0.05872276425361633, -0.00575496768578887, 0.22408108413219452, -0.034034017473459244, -0.11356475204229355, -0.027013886719942093, 0.04241163283586502, -0.06043251231312752, 0.08524788916110992, 0.023536119610071182, -0.08113526552915573, -0.032957352697849274, 0.05323701351881027, 0.012368366122245789, 0.00524376705288887, 0.09360801428556442, 0.020107939839363098, -0.0009265501867048442, 0.01785753294825554, 0.047885000705718994, -0.0675911232829094, -0.1984109878540039, 0.09357594698667526, -0.05215044692158699, 0.0015536568826064467, -0.08013670891523361, -0.15122665464878082, -0.08837161958217621, -0.16009655594825745, 0.12540200352668762, -0.034406669437885284, 0.12700119614601135, -0.06619787961244583, 0.17341409623622894, -0.07871770113706589, 0.04481020197272301, -0.047349292784929276, 0.050332702696323395, -0.007268077693879604, -0.07756082713603973, 0.16585899889469147, -0.15564003586769104, 0.01809087023139, 0.19572502374649048, -0.018915493041276932, 0.07177707552909851, 0.021322092041373253, -0.0636206790804863, 0.23147478699684143, 0.3014698624610901, 0.008138049393892288, 0.1665448248386383, 0.3018903136253357, -0.07466315478086472, -0.2642788887023926, -0.05505012720823288, -0.2841376066207886, -0.05371501296758652, 0.10716094076633453, -0.22523896396160126, 0.06986407935619354, 0.14383509755134583, -0.06471995264291763, 0.30228954553604126, -0.21825523674488068, 0.012589273042976856, 0.15434536337852478, -0.08868814259767532, 0.5515313148498535, -0.1133413165807724, -0.17677772045135498, -0.008122089318931103, -0.08741296827793121, 0.10602109134197235, -0.0340677872300148, 0.06877441704273224, 0.013465235009789467, 0.04797380417585373, 0.048932258039712906, -0.03111894056200981, 0.22701001167297363, 0.008710170164704323, 0.09015397727489471, -0.07378865778446198, -0.18624304234981537, 0.11639340221881866, -0.04359482601284981, -0.08891059458255768, 0.0849778801202774, -0.05942516401410103, -0.11078983545303345, 0.04663389176130295, -0.07950539886951447, -0.024862350896000862, 0.08423490077257156, -0.04678233340382576, -0.042606171220541, -0.008054176345467567, -0.1618063747882843, -0.0002289071271661669, 0.31360217928886414, -0.07096036523580551, 0.16695955395698547, 0.03677211329340935, 0.00038613268407061696, -0.11027684062719345, 0.030288029462099075, -0.05203165486454964, -0.021576624363660812, 0.09578979015350342, -0.11096979677677155, 0.03204701095819473, 0.14160704612731934, -0.04864364117383957, 0.05846960097551346, 0.09256096184253693, -0.0849417969584465, 0.007583672646433115, 0.17753590643405914, -0.17537221312522888, -0.1273445188999176, -0.006135711446404457, -0.09862716495990753, 0.14055661857128143, 0.04394126310944557, 0.05191568285226822, 0.16669964790344238, 0.03967129811644554, -0.029474308714270592, -0.02817419543862343, -0.1153380498290062, -0.0201893113553524, 0.040153320878744125, 0.00045633706031367183, -0.08791285753250122, 0.2262638509273529, 0.06409153342247009, -0.1328488290309906, -0.051157206296920776, 0.2161225974559784, -0.06805316358804703, -0.04911920800805092, -0.223562553524971, 0.10752306133508682, -0.07112517952919006, -0.0965060144662857, 0.05453834682703018, -0.02270081453025341, 0.005106312222778797, 0.181985542178154, 0.03941008821129799, 0.11070270836353302, 0.03738937899470329, -0.02448922023177147, 0.15798696875572205, -0.142850860953331, -0.14191335439682007, -0.025354057550430298, -0.08757315576076508, -0.13844476640224457, -0.026804137974977493, 0.1617041826248169, -0.09177309274673462, -0.14772607386112213, -0.2621181011199951, 0.10968475043773651, -0.16432365775108337, -0.10192688554525375, -0.03469514101743698, -0.08968492597341537, 0.0696166530251503, 0.030301768332719803, -0.03093348816037178, -0.06706760823726654, -0.18593791127204895, 0.0816768929362297, 0.06349513679742813, 0.045533183962106705, -0.017847947776317596, 0.0067379772663116455, 0.1720137596130371, 0.025955144315958023, 0.10040043294429779, 0.16762186586856842, 0.011397695168852806, 0.2246655523777008, -0.1671202927827835, -0.11496317386627197, 0.1336962729692459, -0.026543032377958298, 0.06762003898620605, 0.16792191565036774, -0.0772583931684494, 0.015526676550507545, -0.028136352077126503, 0.07066910713911057, -0.11003983020782471, -0.105624258518219, 0.007937257178127766, 0.02567129209637642, -0.2755882740020752, -0.005599735304713249, -0.19717298448085785, 0.14788752794265747, 0.02579621411859989, 0.03297143429517746, 0.10257530212402344, 0.10404334217309952, 0.08312062919139862, -0.0017710148822516203, 0.03226327523589134, -0.1176818460226059, 0.02753005363047123, -0.059239376336336136, -0.020663779228925705, 0.017624232918024063, 0.36952024698257446, -0.03603357449173927, -0.046802736818790436, 0.003710439894348383, 0.1307835876941681, -0.02139742486178875, 0.017395347356796265, 0.13209912180900574, 0.12607666850090027, -0.08595693111419678, -0.1504845917224884, 0.04888554662466049, -0.04565655067563057, -0.02836887165904045, 0.1464131623506546, 0.05905961990356445, 0.1050296202301979, 0.0908031314611435, -0.014463032595813274, -0.00318976235575974, 0.012856799177825451, -0.15486004948616028, 0.06223496049642563, -0.010558074340224266, 0.012565906159579754, 0.017934376373887062, 0.15238402783870697, -0.005540105979889631, 0.07739730179309845, -0.09889880567789078, 0.004208535887300968, -0.13498884439468384, -0.07913459837436676, 0.03617347031831741, -0.13393273949623108, 0.04141177982091904, -0.01871878281235695, 0.029611799865961075, 0.30386561155319214, 0.02558239921927452, -0.020639164373278618, 0.12512871623039246, -0.1214587539434433, -0.12050267308950424, -0.001594188273884356, -0.029960084706544876, 0.0791488066315651, -0.02633434161543846, -0.0997740775346756, -0.1001306027173996, -0.15166029334068298, -0.09759195148944855, 0.05182836204767227, -0.04993441700935364, -0.059362251311540604, -0.17634081840515137, -0.05707859992980957, -0.05147340148687363, 0.14025864005088806, -0.12263951450586319, 0.15159130096435547, -0.014490418136119843, 0.004084470681846142, 0.04405883327126503, 0.1950942426919937, -0.03644494712352753, 0.08714226633310318, 0.0154351145029068, 0.1522706001996994, -0.05119588226079941, 0.14720745384693146, -0.10931728035211563, -0.04014137014746666, -0.06710435450077057, 0.21513493359088898, 0.25630924105644226, -0.06136954948306084, -0.008937356993556023, -0.012760217301547527, 0.058654606342315674, 0.1073930487036705, 0.16049085557460785, 0.002326392102986574, 0.2802925705909729, -0.03133585304021835, 0.04815128445625305, 0.02901598811149597, 0.013607407920062542, -0.06336209923028946, 0.03397751972079277, 0.07539387792348862, -0.035039983689785004, -0.1412304788827896, 0.15837742388248444, -0.21980468928813934, 0.18157227337360382, 0.11640069633722305, -0.19996967911720276, -0.013728445395827293, -0.04882071167230606, 0.1689416468143463, -0.0856364443898201, 0.1637246012687683, -0.0903693437576294, -0.2108195722103119, -0.2056000679731369, 0.03867346793413162, -0.34623071551322937, -0.254462867975235, 0.10422009229660034, 0.1488201916217804, 0.04015883058309555, -0.018507536500692368, -0.019967829808592796, -0.018367022275924683, 0.04877542704343796, -0.0067357709631323814, 0.06014643982052803, 0.031397558748722076, -0.02988368645310402, -0.24127542972564697, -0.029804671183228493, 0.023964406922459602, -0.07093082368373871, 0.07464958727359772, -0.06874357163906097, -0.022495782002806664, 0.08059766888618469, -0.03066304884850979, 0.03298592567443848, -0.035373736172914505, -0.16326889395713806, 0.027529051527380943, 0.03900543600320816, 0.036012712866067886, 0.00634160777553916, 0.0008072225609794259, -0.03455270454287529, 0.0644603744149208, -0.16716794669628143, -0.16015739738941193, 0.14140215516090393, -0.06745140254497528, 0.2779497504234314, -0.05812826007604599, -0.0809100940823555, 0.04766704887151718, -0.03426874056458473, 0.1807648241519928, -0.07756473124027252, 0.047254521399736404, 0.12766779959201813, 0.011127962730824947, 0.03121316432952881, -0.3092964291572571, 0.11082969605922699, -0.000795336440205574, -0.006093299947679043, -0.07581598311662674 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pegasus-samsum This model is a fine-tuned version of [google/pegasus-cnn_dailymail](https://huggingface.co/google/pegasus-cnn_dailymail) on the samsum dataset. It achieves the following results on the evaluation set: - Loss: 1.4844 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.6936 | 0.54 | 500 | 1.4844 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
{"tags": ["generated_from_trainer"], "datasets": ["samsum"], "model-index": [{"name": "pegasus-samsum", "results": []}]}
text2text-generation
Mapcar/pegasus-samsum
[ "transformers", "pytorch", "tensorboard", "pegasus", "text2text-generation", "generated_from_trainer", "dataset:samsum", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #pegasus #text2text-generation #generated_from_trainer #dataset-samsum #autotrain_compatible #endpoints_compatible #has_space #region-us
pegasus-samsum ============== This model is a fine-tuned version of google/pegasus-cnn\_dailymail on the samsum dataset. It achieves the following results on the evaluation set: * Loss: 1.4844 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 5e-05 * train\_batch\_size: 1 * eval\_batch\_size: 1 * seed: 42 * gradient\_accumulation\_steps: 16 * total\_train\_batch\_size: 16 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * lr\_scheduler\_warmup\_steps: 500 * num\_epochs: 1 ### Training results ### Framework versions * Transformers 4.11.3 * Pytorch 1.10.0+cu111 * Datasets 1.16.1 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 1\n* eval\\_batch\\_size: 1\n* seed: 42\n* gradient\\_accumulation\\_steps: 16\n* total\\_train\\_batch\\_size: 16\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 500\n* num\\_epochs: 1", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.3\n* Pytorch 1.10.0+cu111\n* Datasets 1.16.1\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #pegasus #text2text-generation #generated_from_trainer #dataset-samsum #autotrain_compatible #endpoints_compatible #has_space #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 1\n* eval\\_batch\\_size: 1\n* seed: 42\n* gradient\\_accumulation\\_steps: 16\n* total\\_train\\_batch\\_size: 16\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 500\n* num\\_epochs: 1", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.3\n* Pytorch 1.10.0+cu111\n* Datasets 1.16.1\n* Tokenizers 0.10.3" ]
[ 61, 144, 4, 33 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #pegasus #text2text-generation #generated_from_trainer #dataset-samsum #autotrain_compatible #endpoints_compatible #has_space #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 1\n* eval\\_batch\\_size: 1\n* seed: 42\n* gradient\\_accumulation\\_steps: 16\n* total\\_train\\_batch\\_size: 16\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 500\n* num\\_epochs: 1### Training results### Framework versions\n\n\n* Transformers 4.11.3\n* Pytorch 1.10.0+cu111\n* Datasets 1.16.1\n* Tokenizers 0.10.3" ]
[ -0.12408656626939774, 0.09166134893894196, -0.0027671451680362225, 0.09561838209629059, 0.15314622223377228, 0.026220669969916344, 0.13231635093688965, 0.12437482923269272, -0.10318295657634735, 0.07837358862161636, 0.13671432435512543, 0.10180254280567169, 0.03981492295861244, 0.12916328012943268, -0.03192027285695076, -0.28216418623924255, -0.012161780148744583, 0.028086183592677116, -0.1528310775756836, 0.14130091667175293, 0.06881902366876602, -0.12859173119068146, 0.07147864252328873, 0.004339838400483131, -0.16616083681583405, -0.02218005247414112, -0.016884151846170425, -0.05726410821080208, 0.14277511835098267, 0.017608895897865295, 0.13885189592838287, 0.0342412106692791, 0.10652494430541992, -0.15084563195705414, 0.0030209203250706196, 0.06400211155414581, 0.025759248062968254, 0.10325324535369873, 0.07963886857032776, 0.003845387604087591, 0.1268353909254074, -0.0955602154135704, 0.05924233794212341, 0.0030605567153543234, -0.12665317952632904, -0.22260157763957977, -0.07869083434343338, 0.04663417115807533, 0.07993879914283752, 0.09357426315546036, -0.012867743149399757, 0.10350330173969269, -0.08225440979003906, 0.092058926820755, 0.27045467495918274, -0.26247867941856384, -0.08781429380178452, 0.004147929139435291, 0.040281858295202255, 0.0561603344976902, -0.10906028002500534, -0.022038107737898827, 0.036219749599695206, 0.037425681948661804, 0.13202591240406036, -0.005835769232362509, -0.0105245066806674, 0.01735616847872734, -0.1492491215467453, -0.05435262247920036, 0.08626928180456161, 0.020890286192297935, -0.014170526526868343, -0.0659836158156395, -0.07863447815179825, -0.24354490637779236, -0.02139965444803238, 0.006787653546780348, 0.02552270144224167, -0.07419901341199875, -0.10426605492830276, 0.023763973265886307, -0.09076861292123795, -0.07144958525896072, -0.014214844442903996, 0.14525377750396729, 0.043813418596982956, 0.011810529045760632, -0.013320707716047764, 0.13143517076969147, 0.0690157487988472, -0.16850219666957855, 0.04085293784737587, 0.03218335285782814, -0.06169642135500908, -0.019677624106407166, -0.04805740714073181, -0.024621712043881416, -0.013478374108672142, 0.12114137411117554, -0.06380076706409454, 0.03866579383611679, 0.07370680570602417, 0.025866983458399773, -0.08700206130743027, 0.1952793002128601, -0.09549379348754883, -0.04538540542125702, -0.03695336729288101, 0.11836700886487961, 0.005619644653052092, -0.021602483466267586, -0.07903911173343658, -0.0016146136913448572, 0.11347468942403793, 0.02838960476219654, -0.02961171232163906, 0.04119392856955528, -0.033490248024463654, -0.025248419493436813, 0.03621930629014969, -0.09589538723230362, 0.030606059357523918, 0.008692122995853424, -0.09964063763618469, 0.014086684212088585, 0.0113294068723917, -0.016427572816610336, -0.01915852539241314, 0.16040226817131042, -0.09715559333562851, 0.006831256672739983, -0.0892370268702507, -0.11816342920064926, 0.013940969482064247, -0.10268445312976837, -0.004393207374960184, -0.06716258823871613, -0.12681983411312103, -0.04637955501675606, 0.04677756875753403, -0.06154097244143486, -0.06512042135000229, -0.039832521229982376, -0.0987117663025856, 0.040194071829319, -0.012987587600946426, 0.17226067185401917, -0.04680986702442169, 0.13198639452457428, 0.03597274795174599, 0.08901122212409973, 0.0356360599398613, 0.055224742740392685, -0.07722426950931549, 0.03720277547836304, -0.16859520971775055, 0.05853385105729103, -0.03620989993214607, 0.04396147280931473, -0.09935225546360016, -0.1347990185022354, 0.004092044197022915, -0.015537004917860031, 0.11026220768690109, 0.11247310042381287, -0.16903851926326752, -0.09533487260341644, 0.15743841230869293, -0.06648726761341095, -0.09738347679376602, 0.12665660679340363, -0.025808556005358696, -0.013389327563345432, 0.030106600373983383, 0.12220382690429688, 0.07038486003875732, -0.0821070447564125, -0.02283228002488613, -0.030595483258366585, 0.09385598450899124, -0.029130985960364342, 0.08899202197790146, 0.021350055932998657, 0.0612010657787323, 0.00020631424558814615, -0.041384559124708176, 0.06381429731845856, -0.12051800638437271, -0.08701490610837936, -0.02210022322833538, -0.09210461378097534, 0.07314891368150711, 0.07759498804807663, 0.07313916087150574, -0.077803835272789, -0.11575671285390854, 0.036089975386857986, 0.08577025681734085, -0.08556259423494339, 0.017889970913529396, -0.038975100964307785, 0.07684706896543503, -0.059256695210933685, -0.013404843397438526, -0.20180557668209076, -0.04545873403549194, 0.007838264107704163, 0.00289572193287313, 0.008036788552999496, 0.010453891940414906, 0.08711610734462738, 0.08172197639942169, -0.05367187410593033, -0.04549860209226608, -0.05023021996021271, -0.02179032936692238, -0.12646536529064178, -0.2047937959432602, -0.08512374013662338, -0.010175052098929882, 0.1418866664171219, -0.19896626472473145, 0.02337416261434555, -0.01655224710702896, 0.11276624351739883, 0.016624508425593376, -0.02931514009833336, -0.028224529698491096, 0.09013195335865021, -0.030141467228531837, -0.06622151285409927, 0.05056100711226463, -0.016451669856905937, -0.08530166000127792, -0.01959235407412052, -0.13002532720565796, 0.13984458148479462, 0.11663758009672165, -0.027574364095926285, -0.11117271333932877, 0.007773536257445812, -0.07769156247377396, -0.04908975213766098, -0.042611315846443176, 0.013234693557024002, 0.1662958264350891, 0.03637947514653206, 0.1400221884250641, -0.06980277597904205, -0.06792765855789185, 0.04073234647512436, -0.0002552589576225728, 0.013396051712334156, 0.14909102022647858, 0.09664804488420486, -0.057667750865221024, 0.1301203966140747, 0.11931365728378296, -0.09661737829446793, 0.13015116751194, -0.05140536278486252, -0.10499473661184311, -0.03659280017018318, -0.01797497645020485, 0.022078171372413635, 0.11621427536010742, -0.1003054603934288, -0.02105892263352871, 0.025056354701519012, 0.006544000934809446, 0.013753252103924751, -0.21874548494815826, -0.03278718888759613, 0.04349694773554802, -0.03358152508735657, -0.023302463814616203, -0.010972566902637482, 0.021460633724927902, 0.12060392647981644, 0.0019633430056273937, -0.06793421506881714, -0.010905878618359566, 0.004548783414065838, -0.05600603297352791, 0.20568832755088806, -0.04908854886889458, -0.14746101200580597, -0.12159859389066696, -0.005682552233338356, -0.03158262372016907, -0.008087020367383957, 0.030289188027381897, -0.09289635717868805, -0.015226808376610279, -0.05002851411700249, 0.03829723224043846, -0.010822473093867302, 0.04921328276395798, 0.014236243441700935, -0.010173753835260868, 0.05738446116447449, -0.09723702073097229, 0.017746081575751305, -0.04606418311595917, -0.04221164062619209, 0.05196220800280571, 0.057612475007772446, 0.11128658801317215, 0.15542693436145782, -0.022256944328546524, 0.01018791738897562, -0.022208770737051964, 0.20648029446601868, -0.09511008113622665, -0.018599221482872963, 0.12392321228981018, -0.0009801301639527082, 0.05741049721837044, 0.11684086918830872, 0.06681133061647415, -0.06690745055675507, 0.0023094487842172384, 0.0374072901904583, -0.04318350926041603, -0.21533198654651642, -0.031123843044042587, -0.05023466795682907, 0.010968927294015884, 0.1282748132944107, 0.009336991235613823, -0.014182619750499725, 0.047105275094509125, 0.003839341690763831, 0.06384043395519257, -0.04664371907711029, 0.04507479816675186, 0.07275345921516418, 0.046762898564338684, 0.1356011927127838, -0.023334302008152008, -0.07529538869857788, 0.022092824801802635, -0.02197970636188984, 0.2196759432554245, -0.06627905368804932, 0.14580674469470978, 0.02113153040409088, 0.15865255892276764, 0.007695102132856846, 0.11095449328422546, 0.006077231373637915, -0.03138619661331177, 0.007207335904240608, -0.0421149842441082, -0.04017498344182968, 0.00734162051230669, 0.011860014870762825, 0.04386761784553528, -0.13331952691078186, 0.016112079843878746, 0.02826196514070034, 0.28548863530158997, 0.0725446343421936, -0.3357531428337097, -0.10570724308490753, -0.016645479947328568, -0.029356807470321655, -0.019749386236071587, 0.007380461320281029, 0.15506286919116974, -0.09515036642551422, 0.031439654529094696, -0.08667628467082977, 0.08262069523334503, -0.07113011926412582, 0.020704973489046097, 0.10664152354001999, 0.08308882266283035, -0.005197654012590647, 0.052069682627916336, -0.2382083237171173, 0.2937418520450592, -0.005011849571019411, 0.0490044429898262, -0.07040704041719437, 0.007128060795366764, 0.013023191131651402, -0.010172117501497269, 0.0484609417617321, -0.011007341556251049, -0.03313658386468887, -0.21092166006565094, -0.11082209646701813, 0.011440988630056381, 0.11678360402584076, -0.0697675496339798, 0.12896735966205597, -0.023298313841223717, -0.01993943564593792, 0.045933257788419724, -0.03619072213768959, -0.014645788818597794, -0.09860352426767349, 0.026735620573163033, -0.014410674571990967, -0.025072935968637466, -0.06624452769756317, -0.1429171860218048, -0.09464607387781143, 0.1424788236618042, -0.037155527621507645, -0.041764914989471436, -0.13022129237651825, 0.1129833310842514, 0.16802984476089478, -0.0890888050198555, 0.026030581444501877, 0.01724635250866413, 0.0719006210565567, 0.019828857854008675, -0.048559509217739105, 0.10086185485124588, -0.060158248990774155, -0.21918466687202454, -0.055193204432725906, 0.1348167508840561, 0.031675759702920914, 0.07632999122142792, -0.04713251441717148, 0.035109277814626694, -0.03051324188709259, -0.083926722407341, 0.037169378250837326, -0.023220263421535492, 0.07174854725599289, 0.022993499413132668, -0.01630001701414585, 0.03836579620838165, -0.05063045769929886, -0.022577818483114243, 0.15302778780460358, 0.2575382590293884, -0.10253766179084778, 0.004902213346213102, 0.031627677381038666, -0.03703588992357254, -0.18262363970279694, 0.0075524067506194115, 0.12134236097335815, 0.040106747299432755, 0.01319800317287445, -0.17477507889270782, 0.06866756081581116, 0.10475640743970871, -0.012473407201468945, 0.0993269607424736, -0.3614538013935089, -0.13906437158584595, 0.06962946057319641, 0.11409953981637955, 0.04616560786962509, -0.16829949617385864, -0.025024089962244034, 0.009732535108923912, -0.11372887343168259, 0.10403573513031006, -0.019923733547329903, 0.1280856728553772, -0.03178676217794418, 0.06697256863117218, 0.02191607467830181, -0.07422927767038345, 0.12360287457704544, -0.007519096601754427, 0.06970846652984619, -0.025002088397741318, -0.024998338893055916, 0.04666566848754883, -0.05540723353624344, 0.0014721555635333061, -0.07118804007768631, 0.02701295167207718, -0.08693031966686249, -0.011407073587179184, -0.1099577471613884, 0.017360910773277283, -0.050822146236896515, -0.04459856450557709, -0.020049048587679863, 0.02853151224553585, 0.041710805147886276, -0.021341443061828613, 0.12205075472593307, 0.014812841080129147, 0.16040103137493134, 0.1103287935256958, 0.053347937762737274, -0.02071007527410984, -0.08267700672149658, -0.006886693183332682, 0.010218199342489243, 0.05421648919582367, -0.13440978527069092, 0.007457182742655277, 0.17255687713623047, 0.05925879254937172, 0.11685620993375778, 0.07527659088373184, -0.032527368515729904, 0.004477411042898893, 0.06631368398666382, -0.14722315967082977, -0.09271416068077087, -0.013098087161779404, -0.0489170104265213, -0.15133395791053772, 0.03534277155995369, 0.10734415799379349, -0.06848312169313431, -0.01906326413154602, -0.0018885203171521425, 0.012428928166627884, -0.029725294560194016, 0.25168129801750183, 0.03671017289161682, 0.08604831993579865, -0.10739052295684814, 0.05098193883895874, 0.06682971864938736, -0.13645032048225403, 0.008010326884686947, 0.11199168860912323, -0.06179013103246689, -0.00918450579047203, 0.06443921476602554, 0.09287511557340622, -0.04867281764745712, -0.0077669741585850716, -0.14711697399616241, -0.12214131653308868, 0.08388273417949677, 0.14373280107975006, 0.07014733552932739, 0.038497794419527054, -0.04327564314007759, 0.021658163517713547, -0.14113807678222656, 0.10830266028642654, 0.09395841509103775, 0.08207899332046509, -0.13200309872627258, 0.19009540975093842, -0.005476620979607105, 0.04163733869791031, -0.016692111268639565, 0.030537372455000877, -0.11001493781805038, 0.002236614003777504, -0.09577050060033798, -0.04007216542959213, -0.03286042809486389, -0.01504935510456562, -0.014877097681164742, -0.04899849370121956, -0.045343149453401566, -0.00015007442561909556, -0.1047007367014885, -0.042059846222400665, -0.004454123321920633, 0.019135592505335808, -0.12778328359127045, -0.020099766552448273, 0.033176109194755554, -0.09874369204044342, 0.090799480676651, 0.054466091096401215, 0.03354751318693161, 0.028035523369908333, -0.06334580481052399, 0.003939749673008919, 0.03622587397694588, 0.0002526787284296006, 0.0738021582365036, -0.10324607789516449, 0.0021529451478272676, -0.04064454138278961, 0.04653210565447807, 0.016938604414463043, 0.038279939442873, -0.1321076601743698, 0.021766530349850655, -0.02350858971476555, -0.05102023482322693, -0.06863334029912949, 0.04331931471824646, 0.06906434148550034, 0.027026550844311714, 0.15298017859458923, -0.07438348233699799, 0.07026606798171997, -0.23817406594753265, -0.013430803082883358, -0.01546360645443201, -0.10011346638202667, -0.06207282841205597, -0.03846928849816322, 0.09579013288021088, -0.05854904279112816, 0.07681237906217575, 0.0047606211155653, 0.07747890800237656, 0.02673557586967945, -0.026583625003695488, 0.0006692077731713653, 0.050409846007823944, 0.1538170725107193, 0.03749629855155945, -0.043549880385398865, 0.05312266945838928, 0.05315808206796646, 0.08148935437202454, 0.14659196138381958, 0.21742206811904907, 0.10379514843225479, 0.016898460686206818, 0.07795538753271103, 0.035648174583911896, -0.0996713638305664, -0.18577511608600616, 0.0448395311832428, -0.07727573066949844, 0.11571189761161804, -0.030141768977046013, 0.19590099155902863, 0.06699540466070175, -0.179081991314888, 0.03792104125022888, -0.0534445159137249, -0.09817741811275482, -0.09086295962333679, -0.02843235619366169, -0.05681512877345085, -0.12863178551197052, -0.0008384144166484475, -0.10923254489898682, 0.03086836077272892, 0.10629385709762573, 0.0261665191501379, 0.009618048556149006, 0.15002334117889404, 0.06784184277057648, 0.03159090131521225, 0.07184313237667084, 0.05364292487502098, 0.007934666238725185, -0.05356820672750473, -0.0631384328007698, -0.008961291052401066, -0.019331134855747223, 0.04886593669652939, -0.06758536398410797, -0.0930282399058342, 0.06167655065655708, 0.016649555414915085, -0.11065039783716202, 0.016924291849136353, 0.0010680813575163484, 0.0857158973813057, 0.05623096600174904, 0.0005927578313276172, 0.023466220125555992, -0.05176948755979538, 0.23897163569927216, -0.10055147111415863, -0.05185859277844429, -0.11373956501483917, 0.2651945948600769, 0.00714575219899416, -0.0374605655670166, 0.041670192033052444, -0.07014594972133636, -0.03168914467096329, 0.19834119081497192, 0.19272878766059875, -0.07309382408857346, -0.01643315702676773, 0.02666279673576355, -0.009192517958581448, -0.026811247691512108, 0.09880264103412628, 0.1257464587688446, 0.11428702622652054, -0.10310807824134827, -0.03789173811674118, -0.053807735443115234, -0.03938876837491989, -0.021429333835840225, 0.06044817715883255, 0.033586278557777405, 0.006250021513551474, -0.044585805386304855, 0.05590520426630974, -0.06644688546657562, -0.13325488567352295, 0.0712440088391304, -0.2510375678539276, -0.18719753623008728, -0.020834969356656075, 0.09014230221509933, 0.003194197313860059, 0.08141659200191498, 0.0013110837899148464, -0.020750360563397408, 0.07956269383430481, -0.016034236177802086, -0.06082030385732651, -0.0751328095793724, 0.08002505451440811, -0.08741836994886398, 0.15750443935394287, -0.05066782608628273, 0.04421260580420494, 0.12102679163217545, 0.06611303240060806, -0.096697598695755, 0.008992984890937805, 0.07572955638170242, -0.1097189262509346, 0.025290371850132942, 0.16038788855075836, -0.028622601181268692, 0.05965913459658623, 0.033527128398418427, -0.13429652154445648, 0.01046955119818449, -0.07203420251607895, -0.011816635727882385, -0.03672927990555763, -0.04343295842409134, -0.01752859726548195, 0.1482861489057541, 0.25526857376098633, -0.038954149931669235, 0.003172260010614991, -0.05376926064491272, -0.014002148993313313, 0.04899141192436218, 0.09818132221698761, -0.053560782223939896, -0.2676717936992645, 0.008868519216775894, 0.012303069233894348, 0.00027019341359846294, -0.2252500206232071, -0.07773315906524658, 0.03364180028438568, -0.07470334321260452, -0.09160011261701584, 0.095308817923069, 0.03757042437791824, 0.0623323954641819, -0.04215877875685692, -0.031264714896678925, -0.06910089403390884, 0.16697750985622406, -0.18049117922782898, -0.08023303002119064 ]
null
null
transformers
# Harry Potter DialoGPT Model
{"tags": ["conversational"]}
text-generation
Mara/DialoGPT-medium-harrypotter
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# Harry Potter DialoGPT Model
[ "# Harry Potter DialoGPT Model" ]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# Harry Potter DialoGPT Model" ]
[ 51, 8 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# Harry Potter DialoGPT Model" ]
[ -0.0009023238671943545, 0.07815738022327423, -0.006546166725456715, 0.07792752981185913, 0.10655936598777771, 0.048972971737384796, 0.17639793455600739, 0.12185695022344589, 0.016568755730986595, -0.04774167761206627, 0.11647630482912064, 0.2130284160375595, -0.002118367003276944, 0.024608047679066658, -0.05022026598453522, -0.3065771162509918, 0.0474756620824337, 0.014356585219502449, -0.07174845039844513, 0.11724270135164261, 0.09064973145723343, -0.046179238706827164, 0.08330509811639786, -0.009135239757597446, -0.13198648393154144, -0.039482954889535904, 0.019292812794446945, -0.11745545268058777, 0.1662212759256363, 0.05298272892832756, 0.02469746209681034, -0.008447164669632912, -0.06598151475191116, -0.15036040544509888, 0.037190426141023636, -0.027472136542201042, -0.01080626156181097, 0.05462246760725975, 0.023526115342974663, -0.07521048933267593, 0.170567125082016, 0.17678891122341156, 0.0833497866988182, 0.0349111407995224, -0.14917024970054626, -0.045548245310783386, 0.008950977586209774, 0.05421316996216774, -0.017893504351377487, 0.09349167346954346, -0.019903047010302544, 0.11801653355360031, -0.04491448402404785, 0.09210366010665894, 0.15255063772201538, -0.4016275703907013, -0.027563704177737236, 0.08920855820178986, 0.05989706888794899, 0.12076901644468307, -0.10560955852270126, 0.03972794860601425, -0.0039703017100691795, 0.01236654631793499, -0.014540530741214752, -0.08304883539676666, -0.07308239489793777, 0.032504837960004807, -0.1272556483745575, 0.008525865152478218, 0.23756256699562073, -0.10643257945775986, 0.037069112062454224, -0.09791990369558334, -0.07414398342370987, 0.048336777836084366, -0.053761593997478485, -0.081727035343647, -0.054839808493852615, 0.06347949057817459, 0.004366500303149223, -0.06301609426736832, -0.08326146006584167, -0.0006536149303428829, -0.12781435251235962, 0.17595994472503662, 0.061243366450071335, 0.041611745953559875, -0.21322020888328552, 0.08940251916646957, 0.04477722570300102, -0.04711297154426575, 0.007116159424185753, -0.11796226352453232, 0.04023287072777748, 0.005483259446918964, -0.03256071358919144, -0.021854614838957787, 0.0393419973552227, 0.13909944891929626, -0.01777748204767704, 0.03252175822854042, 0.006831915583461523, 0.05811219662427902, 0.08162496984004974, 0.02222144603729248, 0.019291909411549568, -0.0818009302020073, 0.019385190680623055, -0.08128736168146133, -0.0030400939285755157, -0.048940129578113556, -0.17071883380413055, -0.07477642595767975, 0.052610911428928375, 0.020047198981046677, 0.03746970370411873, 0.08054786175489426, -0.0017944995779544115, -0.05560554191470146, 0.03284840285778046, 0.01671096310019493, -0.020622212439775467, -0.010361049324274063, -0.02412462793290615, 0.19123271107673645, 0.019619356840848923, 0.014111656695604324, -0.12379156798124313, 0.10023640841245651, -0.08179095387458801, 0.0037731381598860025, 0.02743307314813137, -0.04204464703798294, -0.004716555587947369, 0.02917117439210415, 0.023101668804883957, -0.1252521574497223, -0.1099385917186737, -0.0030569476075470448, -0.012054097838699818, -0.036421261727809906, -0.10490952432155609, -0.08483029156923294, -0.012153145857155323, 0.0449371263384819, -0.013397793285548687, 0.007936403155326843, -0.05143149942159653, 0.0985720232129097, -0.0514979362487793, 0.09873400628566742, -0.08342572301626205, 0.06359215080738068, -0.09124887734651566, -0.061886150389909744, -0.11452563107013702, 0.05216052383184433, 0.012905281968414783, 0.066250741481781, 0.016998225823044777, -0.044836658984422684, -0.014836243353784084, 0.05253177136182785, -0.07656687498092651, 0.1940697431564331, -0.041674621403217316, -0.12459053844213486, 0.24146439135074615, -0.09138800948858261, -0.1802034229040146, 0.12973085045814514, -0.022254703566432, 0.08523941785097122, 0.12802475690841675, 0.20380465686321259, -0.00019822151807602495, -0.01302915159612894, 0.07281201332807541, 0.07031642645597458, -0.09803894907236099, 0.06239739805459976, 0.029653839766979218, -0.008071083575487137, -0.08906278014183044, 0.05762826278805733, 0.046033453196287155, -0.010650773532688618, -0.035073768347501755, -0.001896020956337452, -0.012895751744508743, -0.022185025736689568, 0.14126582443714142, -0.02006692811846733, 0.1300428807735443, -0.06926563382148743, -0.03515486419200897, -0.009500149637460709, 0.03533667325973511, -0.04091939330101013, 0.08151165395975113, -0.0436173714697361, 0.10586477071046829, 0.09034156054258347, 0.053724925965070724, -0.13120363652706146, 0.00466286763548851, -0.015246815048158169, 0.17014820873737335, 0.08964069187641144, 0.05222717300057411, 0.06265474855899811, -0.0020888058934360743, -0.06708643585443497, 0.045407816767692566, 0.13778303563594818, -0.037020038813352585, -0.12218865007162094, -0.1755627691745758, 0.051157694309949875, -0.045444171875715256, 0.10855234414339066, -0.10010123997926712, 0.022670533508062363, -0.055906031280756, 0.07772238552570343, -0.024998966604471207, 0.020512236282229424, -0.0013405600329861045, -0.021700702607631683, -0.08356887847185135, -0.002377772703766823, 0.08597290515899658, -0.02048647589981556, -0.06707409024238586, 0.16556480526924133, -0.16400809586048126, 0.1631954461336136, 0.2116095870733261, -0.28542569279670715, -0.005696662236005068, -0.15163889527320862, -0.0208092350512743, 0.019645055755972862, 0.07834604382514954, 0.026225795969367027, 0.2044338881969452, -0.012928472831845284, 0.16565458476543427, -0.05699567869305611, -0.07730039209127426, -0.06881127506494522, -0.048101142048835754, 0.013522743247449398, 0.09095205366611481, 0.04542696103453636, -0.11962861567735672, 0.13119758665561676, 0.1054433062672615, 0.06484298408031464, 0.12711186707019806, 0.1030748188495636, -0.008113685995340347, 0.07252490520477295, -0.03624548763036728, -0.03462279960513115, -0.09254947304725647, -0.30446043610572815, -0.04840317741036415, 0.0939924493432045, 0.007963384501636028, 0.09285714477300644, -0.0919896736741066, -0.03311870992183685, 0.006042704917490482, 0.009473444893956184, 0.028337622061371803, 0.09653715789318085, 0.013490920886397362, 0.15320514142513275, -0.008011690340936184, -0.03430786728858948, 0.05891305208206177, 0.017982570454478264, -0.09147711098194122, 0.17280617356300354, -0.17050009965896606, -0.27190929651260376, -0.06990014761686325, -0.21745692193508148, -0.013139115646481514, 0.05258983001112938, 0.0786920040845871, -0.11818131804466248, -0.018352627754211426, -0.006239492911845446, 0.05685517191886902, -0.2425733357667923, 0.0004911290016025305, -0.1354890614748001, 0.0501418262720108, -0.1974833607673645, -0.09718500077724457, -0.02271542325615883, -0.013450481928884983, -0.0464281290769577, 0.13365240395069122, -0.1448695808649063, -0.011572926305234432, 0.2329535037279129, 0.032479673624038696, 0.027794739231467247, -0.05020907148718834, 0.19788463413715363, -0.0958966314792633, -0.023973820731043816, 0.11024576425552368, -0.05038975924253464, 0.04834126681089401, 0.06649978458881378, -0.012981836684048176, -0.08557141572237015, 0.023789849132299423, -0.068336620926857, -0.03150583803653717, -0.27926525473594666, -0.0930178239941597, -0.09319330751895905, 0.11305391043424606, 0.04079577326774597, 0.06421639025211334, 0.16545771062374115, 0.05191578343510628, -0.024325082078576088, -0.03006586618721485, 0.11609793454408646, 0.12905290722846985, 0.2277202159166336, -0.06067761778831482, 0.10221996158361435, 0.009445492178201675, -0.08203992247581482, 0.06062209978699684, 0.056782789528369904, 0.06324724853038788, 0.02584579586982727, 0.03694582358002663, -0.030939655378460884, 0.1121687963604927, 0.12571842968463898, 0.05258069559931755, 0.0481170229613781, 0.0002127334737451747, -0.0561506561934948, -0.008168719708919525, -0.05726633965969086, 0.06774696707725525, 0.061340972781181335, -0.12918008863925934, -0.08061543852090836, 0.0011613310780376196, 0.06660808622837067, -0.016230419278144836, 0.06823775917291641, -0.13560809195041656, -0.03582429885864258, 0.0790911465883255, -0.07693151384592056, -0.14156894385814667, 0.11972879618406296, -0.026570770889520645, -0.19904157519340515, 0.05265914276242256, 0.007704653777182102, 0.0908159390091896, -0.06360849738121033, 0.05343840271234512, -0.13023801147937775, -0.12935101985931396, -0.018437571823596954, 0.07945099472999573, -0.3450873792171478, 0.13536721467971802, -0.013286802917718887, -0.02876877970993519, -0.06474969536066055, -0.02640824392437935, 0.013905409723520279, 0.12719078361988068, 0.08667250722646713, 0.0008821099763736129, 0.0991629809141159, 0.03823768347501755, 0.04188435152173042, -0.002011700300499797, 0.10950417071580887, 0.0050011589191854, 0.004797275178134441, -0.04982118681073189, 0.007274609990417957, -0.05164213851094246, -0.07472953200340271, 0.08393982797861099, -0.20678792893886566, 0.09087453782558441, -0.03378438204526901, 0.08427679538726807, 0.04304937273263931, -0.018965769559144974, -0.1001204177737236, 0.19745583832263947, -0.012206900864839554, -0.11405988782644272, -0.07517550885677338, -0.02810264565050602, 0.09103139489889145, -0.013817726634442806, 0.012886416167020798, -0.045470476150512695, 0.032183047384023666, -0.1263762265443802, -0.1597503274679184, 0.08734500408172607, -0.04441224783658981, -0.10894393920898438, -0.025462759658694267, 0.20382575690746307, -0.007266622502356768, 0.08242089301347733, 0.01605331338942051, 0.010653935372829437, -0.18066231906414032, -0.04018142446875572, 0.02645772136747837, -0.0016437612939625978, 0.005979063920676708, 0.047698814421892166, 0.019091911613941193, 0.06207629665732384, -0.1069745197892189, -0.013920160941779613, 0.3158324360847473, 0.15978319942951202, -0.00912671908736229, 0.14943915605545044, 0.1093616932630539, -0.08669080585241318, -0.17238758504390717, -0.1171615794301033, -0.1210922971367836, -0.08425768464803696, -0.10681738704442978, -0.1525043100118637, 0.09535340964794159, -0.03392014652490616, 0.03498011827468872, 0.14615866541862488, -0.280263751745224, -0.10949636250734329, 0.13820378482341766, 0.010744688101112843, 0.3510635495185852, -0.12303631007671356, -0.044944874942302704, -0.06214528530836105, -0.16933435201644897, 0.08021392673254013, -0.031203703954815865, 0.11581093072891235, -0.0744495838880539, 0.19395925104618073, 0.01719796098768711, 0.014287159778177738, 0.0916559100151062, 0.05038322135806084, -0.05808406323194504, -0.07368700206279755, -0.10248131304979324, 0.010812131687998772, 0.03546109423041344, 0.010252019390463829, -0.008802837692201138, 0.0211968794465065, -0.11341743916273117, -0.050869911909103394, -0.06302189081907272, 0.0072614275850355625, -0.01001308299601078, -0.042155615985393524, -0.05533592775464058, -0.022557416930794716, -0.020093943923711777, 0.02266426384449005, 0.14185629785060883, -0.07527699321508408, 0.18586260080337524, 0.02357078716158867, 0.1586609035730362, -0.11956068128347397, -0.06724818795919418, -0.029193658381700516, -0.05280323326587677, 0.06468886137008667, -0.08884575963020325, -0.027708567678928375, 0.1332162618637085, -0.01903904788196087, 0.04655366763472557, 0.12936700880527496, 0.02046884410083294, 0.015383756719529629, 0.034968774765729904, -0.2578005790710449, -0.07463036477565765, -0.03505445644259453, -0.012416874058544636, 0.05272092670202255, 0.05525677278637886, 0.19735674560070038, -0.03551921248435974, -0.08521962910890579, 0.020131373777985573, 0.02735883742570877, -0.02776256389915943, 0.10749414563179016, 0.019579345360398293, -0.004837906453758478, -0.16151933372020721, 0.08257976174354553, -0.005964108742773533, -0.08297000825405121, 0.028665626421570778, 0.2024049311876297, -0.12141239643096924, -0.10309756547212601, -0.06804922968149185, 0.07315051555633545, -0.09220825880765915, 0.016043387353420258, -0.005091092549264431, -0.1521538347005844, 0.06916408240795135, 0.07598215341567993, 0.04075418785214424, 0.06513199955224991, -0.11743064224720001, -0.015730571001768112, -0.04170290008187294, -0.002195435343310237, 0.03521120920777321, 0.01863143965601921, -0.057492829859256744, 0.15846455097198486, -0.0676199421286583, 0.08538917452096939, -0.0744810476899147, -0.1058846190571785, -0.1395980566740036, 0.04660497233271599, -0.08038312196731567, -0.07247276604175568, -0.12832807004451752, -0.052204377949237823, -0.0067099276930093765, -0.03388519585132599, 0.006552806124091148, -0.06627799570560455, -0.10922821611166, 0.01822470687329769, -0.00743203004822135, -0.009385870769619942, -0.06096754968166351, 0.026706209406256676, 0.06246216222643852, -0.039788868278265, 0.15730851888656616, 0.22509248554706573, -0.13591648638248444, 0.11564400047063828, -0.09797432273626328, -0.105463907122612, 0.046008042991161346, 0.009427277371287346, 0.03594303876161575, 0.0503489226102829, -0.03594081476330757, 0.0044484552927315235, 0.03905477747321129, 0.08074651658535004, 0.08456914126873016, -0.06776505708694458, 0.020801106467843056, -0.05122765153646469, -0.14904099702835083, -0.016655439510941505, -0.0464773029088974, 0.06876829266548157, -0.006725262850522995, 0.11020535975694656, -0.0515950471162796, 0.07739507406949997, -0.07558431476354599, 0.050614211708307266, 0.021146971732378006, -0.14688286185264587, -0.006612539757043123, -0.07093682140111923, 0.042144812643527985, -0.008834975771605968, 0.20241086184978485, -0.03228091076016426, 0.010342049412429333, 0.033811055123806, 0.06203942745923996, -0.01957780309021473, 0.009357001632452011, 0.2014283686876297, 0.12640917301177979, -0.08496357500553131, -0.02679651789367199, 0.06793134659528732, 0.07248228788375854, 0.07093550264835358, 0.10807815194129944, -0.015352966263890266, 0.028434239327907562, 0.07829629629850388, -0.060215238481760025, 0.07576877623796463, -0.08603982627391815, -0.11668483167886734, 0.05793621391057968, 0.012955795042216778, -0.055695828050374985, 0.20305177569389343, 0.19142870604991913, -0.026278704404830933, 0.018410727381706238, -0.0029499190859496593, -0.10117456316947937, -0.15619947016239166, -0.05423750728368759, -0.07170962542295456, -0.1319410353899002, -0.004549739416688681, -0.16646917164325714, 0.022016216069459915, -0.01132756657898426, 0.09506805986166, -0.06855440139770508, -0.01345991250127554, 0.1364889293909073, -0.1055467277765274, 0.0847758799791336, -0.024517204612493515, 0.07877567410469055, -0.03746940940618515, -0.018209461122751236, -0.10342709720134735, 0.007514837197959423, 0.01131442841142416, 0.06840907037258148, -0.10897937417030334, 0.02432350255548954, -0.12208317965269089, -0.08617185056209564, -0.026142612099647522, 0.09279687702655792, -0.0403008833527565, 0.15116846561431885, 0.02645145356655121, -0.06710928678512573, -0.004313822835683823, 0.2646709978580475, -0.08046227693557739, -0.08319197595119476, -0.030799202620983124, 0.2152107208967209, 0.04053696244955063, 0.06396269053220749, 0.019140036776661873, 0.038027774542570114, -0.07184682041406631, 0.2957373559474945, 0.34401440620422363, -0.1318037211894989, -0.007773484103381634, 0.04225075617432594, 0.04406323283910751, 0.14687567949295044, 0.07998795062303543, 0.11360671371221542, 0.2849363386631012, -0.09197647124528885, 0.016657205298542976, -0.04230864346027374, -0.01424806285649538, -0.06908884644508362, 0.045314885675907135, 0.08216670155525208, -0.09241747111082077, -0.022950593382120132, 0.08125471323728561, -0.29741767048835754, 0.10791494697332382, -0.15600289404392242, -0.14948409795761108, -0.05027429759502411, -0.008771711029112339, 0.014683255925774574, 0.019041186198592186, 0.09663030505180359, 0.025651484727859497, -0.07275258749723434, 0.07816889137029648, 0.024486342445015907, -0.23020237684249878, -0.01345184724777937, 0.1456068754196167, -0.06789913028478622, -0.025938833132386208, -0.021313713863492012, 0.051610056310892105, 0.05763651058077812, 0.09027529507875443, -0.03809558227658272, -0.0746568813920021, -0.007141788024455309, -0.022818787023425102, 0.01914946548640728, 0.0597183033823967, 0.06841408461332321, -0.0920223817229271, 0.1167774423956871, -0.07350476831197739, 0.0650370642542839, 0.037623800337314606, -0.022277191281318665, 0.0018526542698964477, 0.013183658011257648, -0.06512464582920074, 0.05533479526638985, 0.1295643299818039, -0.025459708645939827, -0.002524374984204769, -0.028180841356515884, -0.0767761766910553, -0.024015206843614578, -0.04643676429986954, -0.09101243317127228, -0.18130090832710266, -0.12738600373268127, 0.041754670441150665, -0.03240608796477318, -0.2046082615852356, 0.0060346988029778, -0.1128578633069992, 0.03700976446270943, -0.14154092967510223, 0.10004086047410965, 0.07216610759496689, 0.004716616589576006, 0.006774604320526123, 0.0675399899482727, 0.045677728950977325, 0.14796748757362366, -0.16543124616146088, -0.04919974133372307 ]
null
null
transformers
# Pegasus XSUM Gigaword ## Model description Pegasus XSUM model finetuned to Gigaword Summarization task, significantly better performance than pegasus gigaword, but still doesn't match model paper performance. ## Intended uses & limitations Produces short summaries with the coherence of the XSUM Model #### How to use ```python # You can include sample code which will be formatted ``` #### Limitations and bias Still has all the biases of any of the abstractive models, but seems a little less prone to hallucination. ## Training data Initialized with pegasus-XSUM ## Training procedure Trained for 11500 iterations on Gigaword corpus using OOB seq2seq (from hugging face using the default parameters) ## Eval results Evaluated on Gigaword test set (from hugging face using the default parameters) run_summarization.py --model_name_or_path pegasus-xsum/checkpoint-11500/ --do_predict --dataset_name gigaword --dataset_config "3.0.0" --source_prefix "summarize: " --output_dir pegasus-xsum --per_device_train_batch_size=8 --per_device_eval_batch_size=8 --overwrite_output_dir --predict_with_generate | Metric | Score | | ----------- | ----------- | | eval_rouge1 | 34.1958 | | eval_rouge2 | 15.4033 | | eval_rougeL | 31.4488 | run_summarization.py --model_name_or_path google/pegasus-gigaword --do_predict --dataset_name gigaword --dataset_config "3.0.0" --source_prefix "summarize: " --output_dir pegasus-xsum --per_device_train_batch_size=8 --per_device_eval_batch_size=8 --overwrite_output_dir --predict_with_generate | Metric | Score | | ----------- | ----------- | | eval_rouge1 | 20.8111 | | eval_rouge2 | 8.766 | | eval_rougeL | 18.4431 | ### BibTeX entry and citation info ```bibtex @inproceedings{..., year={2020} } ```
{"language": ["English"], "tags": [], "datasets": ["XSUM", "Gigaword"], "metrics": ["Rouge"]}
text2text-generation
Marc/pegasus_xsum_gigaword
[ "transformers", "pytorch", "pegasus", "text2text-generation", "dataset:XSUM", "dataset:Gigaword", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:04+00:00
[]
[ "English" ]
TAGS #transformers #pytorch #pegasus #text2text-generation #dataset-XSUM #dataset-Gigaword #autotrain_compatible #endpoints_compatible #region-us
Pegasus XSUM Gigaword ===================== Model description ----------------- Pegasus XSUM model finetuned to Gigaword Summarization task, significantly better performance than pegasus gigaword, but still doesn't match model paper performance. Intended uses & limitations --------------------------- Produces short summaries with the coherence of the XSUM Model #### How to use #### Limitations and bias Still has all the biases of any of the abstractive models, but seems a little less prone to hallucination. Training data ------------- Initialized with pegasus-XSUM Training procedure ------------------ Trained for 11500 iterations on Gigaword corpus using OOB seq2seq (from hugging face using the default parameters) Eval results ------------ Evaluated on Gigaword test set (from hugging face using the default parameters) run\_summarization.py --model\_name\_or\_path pegasus-xsum/checkpoint-11500/ --do\_predict --dataset\_name gigaword --dataset\_config "3.0.0" --source\_prefix "summarize: " --output\_dir pegasus-xsum --per\_device\_train\_batch\_size=8 --per\_device\_eval\_batch\_size=8 --overwrite\_output\_dir --predict\_with\_generate run\_summarization.py --model\_name\_or\_path google/pegasus-gigaword --do\_predict --dataset\_name gigaword --dataset\_config "3.0.0" --source\_prefix "summarize: " --output\_dir pegasus-xsum --per\_device\_train\_batch\_size=8 --per\_device\_eval\_batch\_size=8 --overwrite\_output\_dir --predict\_with\_generate ### BibTeX entry and citation info
[ "#### How to use", "#### Limitations and bias\n\n\nStill has all the biases of any of the abstractive models, but seems a little less prone to hallucination.\n\n\nTraining data\n-------------\n\n\nInitialized with pegasus-XSUM\n\n\nTraining procedure\n------------------\n\n\nTrained for 11500 iterations on Gigaword corpus using OOB seq2seq (from hugging face using the default parameters)\n\n\nEval results\n------------\n\n\nEvaluated on Gigaword test set (from hugging face using the default parameters)\nrun\\_summarization.py --model\\_name\\_or\\_path pegasus-xsum/checkpoint-11500/ --do\\_predict --dataset\\_name gigaword --dataset\\_config \"3.0.0\" --source\\_prefix \"summarize: \" --output\\_dir pegasus-xsum --per\\_device\\_train\\_batch\\_size=8 --per\\_device\\_eval\\_batch\\_size=8 --overwrite\\_output\\_dir --predict\\_with\\_generate\n\n\n\nrun\\_summarization.py --model\\_name\\_or\\_path google/pegasus-gigaword --do\\_predict --dataset\\_name gigaword --dataset\\_config \"3.0.0\" --source\\_prefix \"summarize: \" --output\\_dir pegasus-xsum --per\\_device\\_train\\_batch\\_size=8 --per\\_device\\_eval\\_batch\\_size=8 --overwrite\\_output\\_dir --predict\\_with\\_generate", "### BibTeX entry and citation info" ]
[ "TAGS\n#transformers #pytorch #pegasus #text2text-generation #dataset-XSUM #dataset-Gigaword #autotrain_compatible #endpoints_compatible #region-us \n", "#### How to use", "#### Limitations and bias\n\n\nStill has all the biases of any of the abstractive models, but seems a little less prone to hallucination.\n\n\nTraining data\n-------------\n\n\nInitialized with pegasus-XSUM\n\n\nTraining procedure\n------------------\n\n\nTrained for 11500 iterations on Gigaword corpus using OOB seq2seq (from hugging face using the default parameters)\n\n\nEval results\n------------\n\n\nEvaluated on Gigaword test set (from hugging face using the default parameters)\nrun\\_summarization.py --model\\_name\\_or\\_path pegasus-xsum/checkpoint-11500/ --do\\_predict --dataset\\_name gigaword --dataset\\_config \"3.0.0\" --source\\_prefix \"summarize: \" --output\\_dir pegasus-xsum --per\\_device\\_train\\_batch\\_size=8 --per\\_device\\_eval\\_batch\\_size=8 --overwrite\\_output\\_dir --predict\\_with\\_generate\n\n\n\nrun\\_summarization.py --model\\_name\\_or\\_path google/pegasus-gigaword --do\\_predict --dataset\\_name gigaword --dataset\\_config \"3.0.0\" --source\\_prefix \"summarize: \" --output\\_dir pegasus-xsum --per\\_device\\_train\\_batch\\_size=8 --per\\_device\\_eval\\_batch\\_size=8 --overwrite\\_output\\_dir --predict\\_with\\_generate", "### BibTeX entry and citation info" ]
[ 53, 5, 384, 11 ]
[ "passage: TAGS\n#transformers #pytorch #pegasus #text2text-generation #dataset-XSUM #dataset-Gigaword #autotrain_compatible #endpoints_compatible #region-us \n#### How to use#### Limitations and bias\n\n\nStill has all the biases of any of the abstractive models, but seems a little less prone to hallucination.\n\n\nTraining data\n-------------\n\n\nInitialized with pegasus-XSUM\n\n\nTraining procedure\n------------------\n\n\nTrained for 11500 iterations on Gigaword corpus using OOB seq2seq (from hugging face using the default parameters)\n\n\nEval results\n------------\n\n\nEvaluated on Gigaword test set (from hugging face using the default parameters)\nrun\\_summarization.py --model\\_name\\_or\\_path pegasus-xsum/checkpoint-11500/ --do\\_predict --dataset\\_name gigaword --dataset\\_config \"3.0.0\" --source\\_prefix \"summarize: \" --output\\_dir pegasus-xsum --per\\_device\\_train\\_batch\\_size=8 --per\\_device\\_eval\\_batch\\_size=8 --overwrite\\_output\\_dir --predict\\_with\\_generate\n\n\n\nrun\\_summarization.py --model\\_name\\_or\\_path google/pegasus-gigaword --do\\_predict --dataset\\_name gigaword --dataset\\_config \"3.0.0\" --source\\_prefix \"summarize: \" --output\\_dir pegasus-xsum --per\\_device\\_train\\_batch\\_size=8 --per\\_device\\_eval\\_batch\\_size=8 --overwrite\\_output\\_dir --predict\\_with\\_generate### BibTeX entry and citation info" ]
[ -0.07973603159189224, 0.1642620861530304, -0.005785426124930382, 0.06615269929170609, 0.07417911291122437, 0.056719452142715454, 0.0449507012963295, 0.15384946763515472, -0.039701998233795166, 0.15402036905288696, 0.10567544400691986, 0.062450651079416275, 0.11754218488931656, 0.17424550652503967, -0.000761908246204257, -0.2090185135602951, 0.016838477924466133, -0.09123434871435165, -0.0013171666068956256, 0.11461932212114334, 0.0905444324016571, -0.07232176512479782, 0.04365592822432518, -0.022130019962787628, -0.03147116303443909, -0.03132879361510277, -0.03387584164738655, -0.04233196750283241, -0.009630330838263035, 0.05215205252170563, 0.02033212035894394, 0.004497924353927374, 0.02139122784137726, -0.2656458914279938, 0.0027842570561915636, 0.059749387204647064, 0.015761079266667366, 0.08020025491714478, 0.1486658900976181, -0.0391131266951561, 0.06837078928947449, -0.12099619209766388, 0.02063906565308571, 0.05921168997883797, -0.12405576556921005, -0.21282045543193817, -0.08206938207149506, 0.0968390628695488, 0.08115287125110626, 0.06865525990724564, -0.0854242742061615, 0.07081620395183563, -0.049864012748003006, 0.06856357306241989, 0.1648699939250946, -0.12882858514785767, -0.06859365105628967, -0.04326960816979408, 0.02883394993841648, -0.04335777834057808, -0.08567516505718231, -0.06897993385791779, -0.034326065331697464, 0.04109520837664604, 0.003205395070835948, -0.005981950554996729, 0.0645485445857048, 0.0015563627239316702, -0.09092561900615692, -0.04675934463739395, 0.0886024683713913, 0.07667568325996399, -0.0369916632771492, -0.17796586453914642, -0.02261289767920971, -0.14324533939361572, -0.01741557940840721, 0.012293771840631962, 0.016542557626962662, -0.02189895510673523, 0.05619955062866211, 0.0239336509257555, -0.05494791641831398, -0.0383991040289402, -0.013600769452750683, 0.03051070123910904, 0.04928479343652725, -0.033631280064582825, 0.056736454367637634, 0.10394144058227539, -0.026253297924995422, -0.18255053460597992, -0.04455103725194931, -0.04581571742892265, -0.11627867817878723, 0.002376841614022851, 0.026654159650206566, 0.05789387971162796, 0.10478375852108002, 0.2070753574371338, -0.032451365143060684, 0.08760862052440643, 0.018705638125538826, -0.006258351728320122, 0.04276004061102867, 0.11051258444786072, -0.1369650512933731, -0.11550626903772354, -0.0069899726659059525, 0.08772061765193939, 0.001558098359964788, 0.004853569436818361, 0.005242485087364912, 0.0051382058300077915, 0.09060323983430862, 0.026279391720891, 0.11474402248859406, 0.054467473179101944, -0.12511920928955078, -0.04653498902916908, 0.08724655210971832, -0.1601797342300415, 0.061192627996206284, 0.04836626350879669, -0.06122558191418648, 0.006481809541583061, 0.049845874309539795, -0.043582331389188766, -0.11119938641786575, 0.08577468991279602, -0.07191621512174606, 0.005548268556594849, -0.10061468929052353, -0.08637449890375137, 0.005940534174442291, -0.015162593685090542, -0.03887328505516052, -0.03321351483464241, -0.047063566744327545, -0.10866494476795197, 0.0822136178612709, -0.13206170499324799, -0.04658142849802971, -0.057698823511600494, -0.11490530520677567, 0.05599347874522209, -0.02727293223142624, 0.09247314184904099, -0.05880098044872284, 0.06441888958215714, 0.08954077959060669, 0.047793447971343994, 0.10894348472356796, 0.02792118676006794, -0.07824968546628952, 0.084649957716465, -0.1875707358121872, 0.1430589109659195, -0.08158200234174728, 0.029537808150053024, -0.1562645584344864, -0.06385069340467453, 0.04237993806600571, 0.008249972015619278, 0.10315908491611481, 0.1625850945711136, -0.14903108775615692, -0.005627912003546953, 0.2555024027824402, -0.03351842984557152, -0.11591222882270813, 0.10066484659910202, -0.029123984277248383, -0.010865823365747929, 0.022848190739750862, 0.06353534758090973, 0.07018246501684189, -0.09594199061393738, -0.07840728014707565, -0.06212987005710602, 0.058636777102947235, 0.15824076533317566, 0.08697285503149033, -0.06075167655944824, 0.09902391582727432, 0.03379235416650772, -0.02253606729209423, -0.005886479280889034, -0.03235224261879921, -0.054761309176683426, 0.00014231837121769786, -0.008133135735988617, -0.026168284937739372, 0.010074907913804054, -0.037857573479413986, -0.06248285993933678, -0.20304515957832336, -0.07953309267759323, 0.04739129915833473, -0.0310734324157238, -0.01639404147863388, -0.10893455147743225, 0.047753699123859406, -0.00305537274107337, 0.020959053188562393, -0.14892388880252838, -0.042759209871292114, 0.013485226780176163, -0.018841058015823364, 0.05801939591765404, -0.11277394741773605, 0.04653814062476158, 0.02993437461555004, -0.027905359864234924, -0.03414769843220711, 0.04707812890410423, -0.01709853857755661, 0.005843316204845905, -0.1770889163017273, -0.005891451612114906, 0.003340145107358694, 0.14512155950069427, -0.1623658835887909, 0.029162323102355003, 0.06932676583528519, 0.11618741601705551, -0.03029385209083557, -0.06441742181777954, 0.026580287143588066, -0.02007525973021984, -0.03560233861207962, -0.06125717982649803, -0.008312249556183815, -0.021117711439728737, -0.06567841023206711, -0.01076305191963911, -0.1606268584728241, -0.02847672812640667, 0.11977344751358032, 0.01716069132089615, -0.1589968502521515, -0.0853780135512352, -0.04229968413710594, -0.06555834412574768, -0.01785312034189701, -0.05096299201250076, 0.15947405993938446, 0.05684814602136612, 0.05309626832604408, -0.041689831763505936, -0.041976429522037506, 0.002803329611197114, -0.025454051792621613, -0.006053992547094822, 0.12443754822015762, 0.011537782847881317, -0.10247134417295456, 0.10996013879776001, 0.002110883826389909, -0.014588807709515095, 0.051217976957559586, -0.03748835250735283, -0.08443554490804672, -0.10103512555360794, 0.06521334499120712, 0.045373305678367615, 0.025906171649694443, -0.09548322856426239, 0.038705889135599136, 0.05141688138246536, -0.0005809722351841629, 0.009849845431745052, -0.08670566231012344, 0.03620884567499161, 0.02774718403816223, -0.040577150881290436, -0.022381402552127838, -0.030031763017177582, 0.014337669126689434, 0.04527374729514122, 0.025743769481778145, 0.06942486017942429, 0.019093213602900505, -0.058636121451854706, -0.08645722270011902, 0.1435403972864151, -0.09448754042387009, -0.1910802572965622, -0.13081389665603638, -0.04367472976446152, -0.019351787865161896, -0.013222874142229557, 0.02361069619655609, -0.022279400378465652, -0.07122531533241272, -0.0633438229560852, 0.05483702942728996, 0.047066885977983475, -0.03008907288312912, -0.08913677930831909, 0.028494251891970634, 0.10088631510734558, -0.06063316762447357, -0.007510623428970575, 0.047337163239717484, -0.052462201565504074, 0.03132051229476929, 0.06609757989645004, 0.08723506331443787, 0.037080563604831696, 0.05771937593817711, 0.006907230708748102, 0.029143057763576508, 0.23377881944179535, -0.10564401745796204, 0.05047382414340973, 0.09956386685371399, -0.04230978339910507, 0.06649693846702576, 0.20585572719573975, 0.010848787613213062, -0.07829228043556213, 0.022740226238965988, 0.06188753992319107, 0.005889808759093285, -0.21760377287864685, -0.002513350686058402, -0.0603937953710556, -0.023182079195976257, 0.13273200392723083, 0.03783143311738968, -0.03762887790799141, 0.07432129979133606, -0.071358323097229, -0.013677556999027729, 0.028374571353197098, 0.06270021200180054, 0.06837920844554901, 0.04343348369002342, 0.09777029603719711, 0.0038123575504869223, 0.0004866823728661984, 0.05163291096687317, 0.02276707999408245, 0.15103085339069366, -0.08022727817296982, 0.2163132131099701, 0.07527296245098114, 0.11173111200332642, -0.03252562880516052, -0.0007777778664603829, 0.009874101728200912, 0.045856401324272156, 0.012162644416093826, -0.057856298983097076, -0.06351230293512344, 0.04742193967103958, 0.10651493072509766, 0.030671197921037674, -0.00415465421974659, -0.00397940818220377, 0.09620576351881027, 0.18395669758319855, 0.03206843510270119, -0.25575172901153564, -0.0293258186429739, 0.03474888205528259, -0.07651907950639725, -0.08816909790039062, -0.02021902985870838, 0.07086645066738129, -0.09657080471515656, 0.09586209058761597, -0.05502273142337799, 0.08880369365215302, -0.12535594403743744, -0.002941057551652193, 0.0899306982755661, 0.1248149573802948, 0.040237829089164734, 0.07928013056516647, -0.21238572895526886, 0.14946284890174866, 0.0008258652524091303, 0.061341580003499985, -0.052416760474443436, 0.1046857014298439, 0.004038207698613405, -0.14016979932785034, 0.14919385313987732, -0.035358186811208725, -0.015753161162137985, -0.07667925953865051, -0.11916540563106537, -0.006476537324488163, 0.0747763141989708, -0.09671932458877563, 0.12566369771957397, -0.03431941196322441, -0.04777343571186066, -0.01295711100101471, -0.006747253704816103, -0.10355638712644577, -0.1548481583595276, 0.03816650062799454, -0.09358851611614227, 0.05129014328122139, -0.0411275215446949, -0.017148621380329132, -0.0989064872264862, 0.23812471330165863, -0.21726861596107483, -0.0886242687702179, -0.12413927912712097, 0.12339863181114197, 0.17750756442546844, -0.08823421597480774, 0.020146969705820084, -0.030460497364401817, 0.07166648656129837, 0.07083271443843842, 0.010034877806901932, 0.13822214305400848, -0.04695773869752884, -0.16740715503692627, -0.046186573803424835, 0.1249619796872139, 0.04631692171096802, 0.040710918605327606, -0.05534326657652855, 0.05730080232024193, -0.02548310160636902, -0.1201711967587471, 0.06587211042642593, 0.08127737790346146, 0.09154791384935379, 0.06080220639705658, -0.012835820205509663, -0.07383263111114502, -0.09353967010974884, -0.01738067902624607, 0.06535752862691879, 0.2744797468185425, -0.06390315294265747, 0.0314200185239315, 0.02843543328344822, -0.0637766420841217, -0.19885441660881042, -0.020707082003355026, 0.11768921464681625, 0.03734783083200455, 0.008892246522009373, -0.1889413297176361, 0.06890897452831268, 0.10722798109054565, 0.002252220408990979, 0.13539834320545197, -0.1790459305047989, -0.13693132996559143, 0.07332027703523636, 0.03460419550538063, -0.2667540907859802, -0.19215761125087738, -0.09221529215574265, -0.03320973366498947, -0.06165128946304321, 0.08674288541078568, 0.05571293085813522, 0.06916593760251999, 0.022796958684921265, -0.01716022752225399, 0.05279187858104706, -0.07129396498203278, 0.2074236124753952, -0.019113510847091675, 0.0197561327368021, -0.10217032581567764, -0.023172156885266304, 0.027125436812639236, -0.048972103744745255, 0.06323990970849991, -0.04017968475818634, 0.020435091108083725, -0.04598567634820938, -0.048293501138687134, -0.06219727173447609, -0.026302697136998177, -0.05993705987930298, -0.021747088059782982, -0.025857724249362946, 0.06534557044506073, 0.10909299552440643, -0.006096272263675928, 0.04887672886252403, -0.08815553784370422, 0.004562087822705507, 0.15580303966999054, 0.08538622409105301, 0.07054049521684647, -0.16202569007873535, 0.012902173213660717, 0.039077047258615494, -0.0013186805881559849, -0.11076655983924866, 0.05126424878835678, 0.1196354478597641, 0.008996284566819668, 0.14429885149002075, 0.013650068081915379, -0.1237514540553093, -0.021561769768595695, 0.07463545352220535, -0.0806213840842247, -0.11653067171573639, -0.003936715889722109, -0.03754815831780434, -0.1943608969449997, -0.13120684027671814, 0.07137233018875122, 0.033083777874708176, -0.026574186980724335, 0.06452570110559464, 0.11416337639093399, -0.03351759910583496, 0.2027781903743744, 0.012033048085868359, 0.07655565440654755, -0.0990341454744339, 0.03400363773107529, 0.09771863371133804, -0.08442378789186478, 0.04424012824892998, 0.16106446087360382, -0.03281745687127113, -0.021444646641612053, -0.009146240539848804, 0.015035186894237995, 0.11212792247533798, -0.018047725781798363, -0.054080989211797714, -0.059910599142313004, 0.07000059634447098, -0.04834848642349243, 0.02767852693796158, 0.02513713948428631, 0.04912513867020607, 0.007331072818487883, -0.0636310800909996, 0.14553695917129517, 0.10608480870723724, 0.05781199783086777, -0.07967199385166168, 0.016082044690847397, -0.011148739606142044, -0.02724600024521351, 0.01589299365878105, 0.020253954455256462, -0.12378442287445068, 0.008709593676030636, -0.09001509845256805, 0.0821814239025116, -0.11816983669996262, -0.019322173669934273, 0.037918657064437866, -0.019249599426984787, -0.00858769379556179, -0.012668272480368614, -0.060416463762521744, -0.11970110237598419, -0.0314798504114151, 0.08187098056077957, -0.1332407295703888, -0.014519849792122841, 0.06738187372684479, -0.11991792172193527, 0.09237165004014969, 0.014426279813051224, -0.01611199416220188, -0.05786586180329323, -0.11663391441106796, -0.03435666486620903, 0.0026021553203463554, 0.018804647028446198, 0.01853286847472191, -0.22727133333683014, 0.041048794984817505, -0.015080876648426056, -0.058091212064027786, -0.0014532757923007011, 0.012892170809209347, -0.16296620666980743, -0.0017630113288760185, -0.00812565628439188, -0.025435179471969604, -0.07317712903022766, 0.03974524885416031, 0.09795528650283813, -0.015162058174610138, 0.14969360828399658, -0.05607488751411438, 0.08496152609586716, -0.19066213071346283, -0.000883301894646138, -0.0038106830324977636, -0.004897669423371553, 0.05833479017019272, -0.014465948566794395, 0.12061025947332382, -0.036860715597867966, 0.12195705622434616, -0.005929138045758009, -0.010252111591398716, 0.0427357517182827, -0.03272576630115509, 0.003050924278795719, 0.06940659135580063, 0.06296979635953903, 0.0003001961740665138, -0.043561968952417374, 0.03244774416089058, 0.0007331878296099603, -0.0072954874485731125, 0.033788781613111496, 0.1210399940609932, 0.1267460584640503, 0.07274923473596573, 0.02237810008227825, 0.051604654639959335, -0.12096654623746872, -0.04528461769223213, 0.2124391794204712, -0.0828617662191391, 0.08326232433319092, -0.0632094070315361, 0.025354711338877678, 0.04107280820608139, -0.15880200266838074, 0.0731486976146698, -0.06897314637899399, -0.1051286980509758, -0.06853870302438736, -0.16063818335533142, -0.08570405095815659, -0.03427405282855034, 0.0030825952999293804, -0.09989370405673981, 0.041783977299928665, 0.09963392466306686, 0.023160194978117943, -0.0220646895468235, 0.13460731506347656, 0.02086244709789753, -0.07528641819953918, 0.06466025859117508, 0.03833899646997452, -0.04069468751549721, -0.008452218025922775, -0.03687048703432083, 0.008912922814488411, 0.08586394786834717, 0.09799369424581528, 0.041651658713817596, -0.04041631892323494, 0.028912149369716644, -0.07042326778173447, -0.10015632957220078, -0.013718552887439728, 0.01136268675327301, -0.0063766553066670895, 0.1777007132768631, 0.029802020639181137, 0.015127593651413918, -0.022161949425935745, 0.16155295073986053, -0.06770182400941849, -0.09443657845258713, -0.17549462616443634, 0.07520665973424911, -0.011145700700581074, -0.0019281556596979499, 0.01208194624632597, -0.1264093965291977, -0.005764946807175875, 0.14280623197555542, 0.19729195535182953, -0.0267036035656929, -0.009735260158777237, 0.06267307698726654, 0.0027842416893690825, -0.013682622462511063, 0.04539239779114723, 0.05685269087553024, 0.14428648352622986, -0.034597691148519516, 0.04935732111334801, 0.015139492228627205, -0.09075095504522324, -0.008840376511216164, 0.061885107308626175, 0.02673988975584507, 0.07705701142549515, -0.047264259308576584, 0.10589013993740082, -0.10365211963653564, -0.17616546154022217, 0.07475380599498749, -0.10502925515174866, -0.1813618540763855, -0.030112380161881447, 0.032866381108760834, 0.03236422687768936, 0.05102158710360527, 0.02839762531220913, -0.027548279613256454, 0.160149484872818, 0.0025068861432373524, -0.05884276703000069, -0.01806609332561493, 0.03647041693329811, -0.07871732860803604, 0.2383531928062439, 0.0007578513468615711, 0.07878243923187256, 0.1522808074951172, -0.01729583740234375, -0.1330290138721466, 0.004667516332119703, 0.07266898453235626, -0.09514164179563522, 0.095669686794281, 0.1479506939649582, -0.009118658490478992, 0.07270113378763199, 0.08182317018508911, -0.05047842860221863, -0.0082594258710742, -0.08413517475128174, -0.024966353550553322, -0.148677796125412, 0.050786469131708145, -0.09852682054042816, 0.12515366077423096, 0.21022042632102966, -0.06538618355989456, -0.008864488452672958, -0.04629720002412796, 0.043002814054489136, -0.020413966849446297, 0.16911259293556213, -0.011599933728575706, -0.2053099274635315, 0.04694793000817299, 0.04489334300160408, 0.10031048953533173, -0.1863771378993988, -0.047223541885614395, 0.0631033182144165, -0.025374792516231537, -0.07928316295146942, 0.11011965572834015, 0.020867949351668358, 0.060798678547143936, -0.05772347375750542, -0.05890750139951706, -0.02836960181593895, 0.12217302620410919, -0.1340963989496231, -0.06395070254802704 ]
null
null
transformers
# ixambert-base-cased finetuned for QA This is a basic implementation of the multilingual model ["ixambert-base-cased"](https://huggingface.co/ixa-ehu/ixambert-base-cased), fine-tuned on SQuAD v1.1 and an experimental version of SQuAD1.1 in Basque (1/3 size of original SQuAD1.1), that is able to answer basic factual questions in English, Spanish and Basque. ## Overview * **Language model:** ixambert-base-cased * **Languages:** English, Spanish and Basque * **Downstream task:** Extractive QA * **Training data:** SQuAD v1.1 + experimental SQuAD1.1 in Basque * **Eval data:** SQuAD v1.1 + experimental SQuAD1.1 in Basque * **Infrastructure:** 1x GeForce RTX 2080 ## Outputs The model outputs the answer to the question, the start and end positions of the answer in the original context, and a score for the probability for that span of text to be the correct answer. For example: ```python {'score': 0.9667195081710815, 'start': 101, 'end': 105, 'answer': '1820'} ``` ## How to use ```python from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline model_name = "MarcBrun/ixambert-finetuned-squad-eu-en" # To get predictions context = "Florence Nightingale, known for being the founder of modern nursing, was born in Florence, Italy, in 1820" question = "When was Florence Nightingale born?" qa = pipeline("question-answering", model=model_name, tokenizer=model_name) pred = qa(question=question,context=context) # To load the model and tokenizer model = AutoModelForQuestionAnswering.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) ``` ## Hyperparameters ``` batch_size = 8 n_epochs = 3 learning_rate = 2e-5 optimizer = AdamW lr_schedule = linear max_seq_len = 384 doc_stride = 128 ```
{"language": ["en", "es", "eu"], "datasets": ["squad"], "widget": [{"text": "When was Florence Nightingale born?", "context": "Florence Nightingale, known for being the founder of modern nursing, was born in Florence, Italy, in 1820.", "example_title": "English"}, {"text": "\u00bfPor qu\u00e9 provincias pasa el Tajo?", "context": "El Tajo es el r\u00edo m\u00e1s largo de la pen\u00ednsula ib\u00e9rica, a la que atraviesa en su parte central, siguiendo un rumbo este-oeste, con una leve inclinaci\u00f3n hacia el suroeste, que se acent\u00faa cuando llega a Portugal, donde recibe el nombre de Tejo.\nNace en los montes Universales, en la sierra de Albarrac\u00edn, sobre la rama occidental del sistema Ib\u00e9rico y, despu\u00e9s de recorrer 1007 km, llega al oc\u00e9ano Atl\u00e1ntico en la ciudad de Lisboa. En su desembocadura forma el estuario del mar de la Paja, en el que vierte un caudal medio de 456 m\u00b3/s. En sus primeros 816 km atraviesa Espa\u00f1a, donde discurre por cuatro comunidades aut\u00f3nomas (Arag\u00f3n, Castilla-La Mancha, Madrid y Extremadura) y un total de seis provincias (Teruel, Guadalajara, Cuenca, Madrid, Toledo y C\u00e1ceres).", "example_title": "Espa\u00f1ol"}, {"text": "Zer beste izenak ditu Tartalo?", "context": "Tartalo euskal mitologiako izaki begibakar artzain erraldoia da. Tartalo izena zenbait euskal hizkeratan herskari-bustidurarekin ahoskatu ohi denez, horrelaxe ere idazten da batzuetan: Ttarttalo. Euskal Herriko zenbait tokitan, Torto edo Anxo ere esaten diote.", "example_title": "Euskara"}]}
question-answering
MarcBrun/ixambert-finetuned-squad-eu-en
[ "transformers", "pytorch", "bert", "question-answering", "en", "es", "eu", "dataset:squad", "endpoints_compatible", "has_space", "region:us" ]
2022-03-02T23:29:04+00:00
[]
[ "en", "es", "eu" ]
TAGS #transformers #pytorch #bert #question-answering #en #es #eu #dataset-squad #endpoints_compatible #has_space #region-us
# ixambert-base-cased finetuned for QA This is a basic implementation of the multilingual model "ixambert-base-cased", fine-tuned on SQuAD v1.1 and an experimental version of SQuAD1.1 in Basque (1/3 size of original SQuAD1.1), that is able to answer basic factual questions in English, Spanish and Basque. ## Overview * Language model: ixambert-base-cased * Languages: English, Spanish and Basque * Downstream task: Extractive QA * Training data: SQuAD v1.1 + experimental SQuAD1.1 in Basque * Eval data: SQuAD v1.1 + experimental SQuAD1.1 in Basque * Infrastructure: 1x GeForce RTX 2080 ## Outputs The model outputs the answer to the question, the start and end positions of the answer in the original context, and a score for the probability for that span of text to be the correct answer. For example: ## How to use ## Hyperparameters
[ "# ixambert-base-cased finetuned for QA\n\nThis is a basic implementation of the multilingual model \"ixambert-base-cased\", fine-tuned on SQuAD v1.1 and an experimental version of SQuAD1.1 in Basque (1/3 size of original SQuAD1.1), that is able to answer basic factual questions in English, Spanish and Basque.", "## Overview\n\n* Language model: ixambert-base-cased\n* Languages: English, Spanish and Basque\n* Downstream task: Extractive QA\n* Training data: SQuAD v1.1 + experimental SQuAD1.1 in Basque\n* Eval data: SQuAD v1.1 + experimental SQuAD1.1 in Basque\n* Infrastructure: 1x GeForce RTX 2080", "## Outputs\n\nThe model outputs the answer to the question, the start and end positions of the answer in the original context, and a score for the probability for that span of text to be the correct answer. For example:", "## How to use", "## Hyperparameters" ]
[ "TAGS\n#transformers #pytorch #bert #question-answering #en #es #eu #dataset-squad #endpoints_compatible #has_space #region-us \n", "# ixambert-base-cased finetuned for QA\n\nThis is a basic implementation of the multilingual model \"ixambert-base-cased\", fine-tuned on SQuAD v1.1 and an experimental version of SQuAD1.1 in Basque (1/3 size of original SQuAD1.1), that is able to answer basic factual questions in English, Spanish and Basque.", "## Overview\n\n* Language model: ixambert-base-cased\n* Languages: English, Spanish and Basque\n* Downstream task: Extractive QA\n* Training data: SQuAD v1.1 + experimental SQuAD1.1 in Basque\n* Eval data: SQuAD v1.1 + experimental SQuAD1.1 in Basque\n* Infrastructure: 1x GeForce RTX 2080", "## Outputs\n\nThe model outputs the answer to the question, the start and end positions of the answer in the original context, and a score for the probability for that span of text to be the correct answer. For example:", "## How to use", "## Hyperparameters" ]
[ 45, 86, 84, 49, 4, 5 ]
[ "passage: TAGS\n#transformers #pytorch #bert #question-answering #en #es #eu #dataset-squad #endpoints_compatible #has_space #region-us \n# ixambert-base-cased finetuned for QA\n\nThis is a basic implementation of the multilingual model \"ixambert-base-cased\", fine-tuned on SQuAD v1.1 and an experimental version of SQuAD1.1 in Basque (1/3 size of original SQuAD1.1), that is able to answer basic factual questions in English, Spanish and Basque.## Overview\n\n* Language model: ixambert-base-cased\n* Languages: English, Spanish and Basque\n* Downstream task: Extractive QA\n* Training data: SQuAD v1.1 + experimental SQuAD1.1 in Basque\n* Eval data: SQuAD v1.1 + experimental SQuAD1.1 in Basque\n* Infrastructure: 1x GeForce RTX 2080## Outputs\n\nThe model outputs the answer to the question, the start and end positions of the answer in the original context, and a score for the probability for that span of text to be the correct answer. For example:## How to use## Hyperparameters" ]
[ -0.12817084789276123, 0.07148495316505432, -0.002365934196859598, 0.09651566296815872, 0.12111712992191315, -0.0012515303678810596, 0.04134560376405716, 0.11070530116558075, -0.0008977825636975467, 0.11515410244464874, 0.08981481939554214, 0.10337763279676437, 0.054378680884838104, 0.083892323076725, -0.061838265508413315, -0.12480650842189789, -0.030403776094317436, -0.07366394996643066, -0.04256877303123474, 0.07149451225996017, 0.08920169621706009, -0.07159121334552765, 0.0772259384393692, 0.006651758681982756, -0.03778355196118355, 0.06756186485290527, 0.017217565327882767, -0.05157989636063576, 0.0922216922044754, 0.11720424890518188, 0.047327976673841476, -0.03682412952184677, 0.08548619598150253, -0.15613895654678345, 0.007184948306530714, 0.02347160130739212, -0.046943943947553635, 0.07175983488559723, 0.11652200669050217, -0.00397038459777832, 0.010718530975282192, -0.05385402962565422, 0.006433362606912851, 0.05507843941450119, -0.08456780016422272, -0.038529351353645325, -0.07878589630126953, -0.02144608087837696, 0.0886259526014328, 0.07616101950407028, -0.040910422801971436, 0.07677561789751053, -0.06624117493629456, 0.03530893474817276, 0.1388688087463379, -0.1398938000202179, -0.0847967118024826, -0.03256355971097946, 0.06445503234863281, 0.11456663906574249, -0.022573400288820267, 0.007534456439316273, 0.05405601114034653, 0.052990563213825226, -0.03894671052694321, -0.05565522611141205, -0.006525689736008644, 0.021206293255090714, -0.11880216002464294, -0.028376152738928795, 0.026146763935685158, -0.021757373586297035, -0.030924338847398758, -0.10794869810342789, -0.0988130196928978, 0.04379027336835861, -0.012160084210336208, -0.05577560514211655, -0.0010858485475182533, -0.02781648002564907, 0.08835984766483307, -0.0781414806842804, -0.07057105004787445, -0.06955206394195557, -0.09804534167051315, 0.1090383529663086, 0.041884321719408035, 0.02330130524933338, -0.05714673176407814, 0.0942007452249527, -0.14214420318603516, -0.11650120466947556, -0.022051027044653893, -0.04317177087068558, -0.07526959478855133, 0.023356715217232704, 0.006062047090381384, -0.08967866003513336, 0.03974570333957672, 0.14370635151863098, -0.1414949595928192, 0.04064417630434036, -0.009157788008451462, 0.00980580784380436, 0.06605441868305206, 0.18374566733837128, -0.021161045879125595, -0.10433544963598251, -0.01212615892291069, 0.007306214421987534, -0.06512636691331863, -0.0057907747104763985, -0.1196378767490387, -0.070029616355896, -0.012878690846264362, 0.09153186529874802, 0.10259494930505753, -0.042075905948877335, -0.016168057918548584, -0.09019466489553452, 0.10992761701345444, -0.12474589794874191, 0.010588075034320354, -0.00590645894408226, -0.08200997859239578, 0.03265651315450668, -0.06098422035574913, -0.04587925970554352, -0.08782178163528442, -0.06153789535164833, -0.06136544048786163, 0.007304850034415722, -0.10048525035381317, -0.10146193206310272, 0.01149004977196455, -0.04482618346810341, -0.03920053318142891, -0.10225452482700348, -0.03931739553809166, -0.10978490859270096, 0.04692874103784561, -0.12188679724931717, 0.01353823859244585, -0.10873882472515106, -0.00012669657007791102, 0.059532906860113144, -0.042172353714704514, 0.04288103058934212, -0.01696973480284214, 0.026806022971868515, 0.0426541306078434, 0.03246036171913147, -0.012964943423867226, 0.0459776371717453, -0.04303453862667084, 0.009864975698292255, -0.2041875422000885, 0.12797477841377258, -0.06959039717912674, -0.08933081477880478, -0.15390907227993011, -0.01888277381658554, 0.0875270888209343, 0.06577014178037643, 0.08013653755187988, 0.13876673579216003, -0.24045631289482117, 0.027908161282539368, 0.16144979000091553, -0.016622217372059822, -0.08791293948888779, 0.13066275417804718, -0.04298928380012512, 0.09266535192728043, 0.03574509918689728, 0.1163133755326271, 0.05316797271370888, -0.1785271167755127, -0.06182871386408806, 0.05199555680155754, 0.007986190728843212, -0.004728412255644798, 0.10889186710119247, -0.07610742002725601, 0.04958321899175644, -0.008437522687017918, -0.11288075894117355, -0.02446819096803665, -0.030089382082223892, -0.05676558241248131, 0.023694219067692757, -0.002795999636873603, 0.0070532504469156265, 0.010536633431911469, 0.03171871230006218, 0.010999196209013462, -0.12218326330184937, -0.040710825473070145, 0.04115068539977074, -0.020066477358341217, 0.026185188442468643, -0.07451831549406052, 0.0920330211520195, -0.1276521384716034, -0.01274892222136259, -0.19855768978595734, -0.0639711245894432, -0.003656716551631689, 0.011880641803145409, 0.08877704292535782, -0.026233481243252754, 0.03903330862522125, 0.028226526454091072, -0.016573665663599968, 0.01287554856389761, -0.0045351264998316765, -0.04919595643877983, -0.08823013305664062, -0.11853650212287903, 0.017229603603482246, -0.07257293909788132, -0.09256776422262192, -0.10021607577800751, -0.015494786202907562, -0.036467649042606354, -0.048935417085886, -0.034749094396829605, 0.014043062925338745, -0.09306041896343231, 0.02750432677567005, -0.06033369153738022, -0.03431619703769684, 0.034202493727207184, -0.05336913466453552, 0.011699297465384007, 0.06331205368041992, -0.11074580252170563, -0.030509039759635925, 0.08633124828338623, -0.0008931762422434986, -0.11426535993814468, -0.06794190406799316, 0.010576769709587097, 0.022152872756123543, -0.057144396007061005, -0.04751542955636978, 0.25894591212272644, 0.02422824129462242, 0.1222536489367485, -0.1250104010105133, -0.030736535787582397, 0.02183249592781067, -0.03251253068447113, 0.011607269756495953, 0.14784184098243713, 0.14489851891994476, -0.10879359394311905, 0.09092800319194794, 0.0361480675637722, 0.007313826587051153, 0.14792035520076752, -0.02427837811410427, -0.08541034907102585, -0.05030640587210655, 0.052303992211818695, 0.03278617560863495, 0.10160785913467407, -0.0180025864392519, 0.005777852144092321, 0.028753511607646942, 0.06114308163523674, 0.07059512287378311, -0.10366341471672058, 0.02431967481970787, -0.020314225926995277, -0.05112949013710022, -0.021274270489811897, 0.031995758414268494, 0.02622641995549202, 0.0877009779214859, 0.06992878019809723, -0.007488305680453777, -0.0099845165386796, -0.028489872813224792, -0.08080928772687912, 0.19834665954113007, -0.11745703965425491, -0.17094150185585022, -0.14977556467056274, -0.06567028909921646, -0.04129358381032944, 0.03780752047896385, 0.03839993476867676, -0.1203937903046608, -0.03160298988223076, -0.004072053357958794, 0.19242322444915771, -0.048455704003572464, -0.08074850589036942, -0.06549210846424103, 0.008909272961318493, -0.027930259704589844, -0.1564704179763794, 0.005674111191183329, -0.030157824978232384, -0.10244758427143097, -0.02801293320953846, -0.029662977904081345, 0.0873345136642456, 0.11549773812294006, -0.009486406110227108, -0.00992101151496172, 0.009590313769876957, 0.2953774034976959, -0.08681797981262207, 0.03785502910614014, 0.13274426758289337, 0.036289338022470474, 0.07162650674581528, 0.1199350357055664, 0.04873937740921974, -0.05501815676689148, -0.007098672445863485, 0.019425563514232635, -0.08763626217842102, -0.25444790720939636, -0.09503146260976791, -0.042572423815727234, -0.029972918331623077, 0.07214254885911942, 0.023354869335889816, -0.0702933743596077, 0.0953340008854866, -0.005501194391399622, -0.015942616388201714, -0.0601983405649662, 0.06644140183925629, 0.09313034266233444, 0.014319080859422684, 0.08822149783372879, -0.014315126463770866, -0.019252892583608627, 0.13991335034370422, 0.05415886268019676, 0.1517128050327301, -0.042623359709978104, 0.04129695147275925, 0.06592054665088654, 0.13223084807395935, -0.023132948204874992, 0.07206583023071289, -0.022581445053219795, 0.03199557960033417, -0.07552746683359146, -0.04030346870422363, -0.024262113496661186, 0.0344775952398777, 0.044429711997509, -0.059882838279008865, -0.08832091093063354, -0.05371207743883133, 0.03424421325325966, 0.05151171609759331, -0.007056333124637604, -0.12343768775463104, -0.04246305301785469, 0.013477989472448826, -0.07747678458690643, -0.09411739557981491, 0.038925036787986755, 0.098094642162323, -0.14840659499168396, -0.057878319174051285, -0.05393661931157112, 0.1286327987909317, 0.013932633213698864, 0.018314743414521217, 0.0011114318622276187, 0.083064004778862, 0.001541353645734489, 0.09665233641862869, -0.153763085603714, 0.17185808718204498, 0.06084716320037842, 0.03397202491760254, -0.05016936734318733, 0.07261621206998825, 0.022178051993250847, -0.0580168291926384, 0.16887116432189941, -0.01234849076718092, -0.05100265145301819, -0.10692375898361206, -0.04364786297082901, 0.01905733533203602, 0.0815449208021164, -0.0626591295003891, 0.11248598247766495, 0.01269620843231678, 0.025819726288318634, -0.03272700682282448, 0.054788488894701004, -0.0418865866959095, -0.20914870500564575, -0.05328930914402008, -0.08831486850976944, -0.07009843736886978, 0.010124806314706802, -0.044878039509058, -0.07733386754989624, 0.050103649497032166, -0.09382513165473938, -0.04686237499117851, -0.12273671478033066, -0.03756652772426605, 0.1439846307039261, -0.13704133033752441, 0.03254123032093048, -0.01710311509668827, 0.020418602973222733, -0.029574831947684288, -0.08689898252487183, 0.11175479739904404, -0.13600783050060272, -0.07587884366512299, -0.0530550517141819, 0.07867169380187988, 0.12426313757896423, 0.019653044641017914, 0.026757674291729927, 0.021236324682831764, -0.08898340910673141, -0.13695552945137024, -0.05570809915661812, 0.026432611048221588, 0.09466411173343658, 0.06750121712684631, -0.03390594944357872, -0.14934641122817993, -0.044342756271362305, 0.03148088604211807, 0.11278712749481201, 0.13178904354572296, -0.05881211906671524, 0.11681953817605972, 0.11880367994308472, -0.09291815757751465, -0.22386705875396729, -0.01999773271381855, 0.14608407020568848, 0.02587791346013546, 0.10716448724269867, -0.15425869822502136, 0.05073358118534088, 0.0011490440228953958, -0.03912108391523361, 0.02504420280456543, -0.2076815664768219, -0.07753219455480576, 0.04770151898264885, 0.01857885904610157, 0.10504115372896194, -0.06762860715389252, -0.05268694832921028, 0.011371197178959846, -0.014376427978277206, 0.13429512083530426, 0.018801767379045486, 0.07440661638975143, 0.0008544547599740326, 0.08345974236726761, 0.04104040190577507, -0.019104517996311188, 0.1351078897714615, -0.004854908213019371, -0.00005972029975964688, -0.018894318491220474, -0.05933025851845741, 0.0053213550709187984, -0.04556073248386383, 0.024273939430713654, -0.020233821123838425, 0.03574652224779129, -0.17293095588684082, -0.06463927030563354, -0.046053219586610794, 0.02138485200703144, -0.05812336876988411, -0.04703943058848381, -0.03789627552032471, 0.03184911608695984, 0.08715527504682541, 0.0027422497514635324, 0.03834185376763344, -0.04340476542711258, 0.013971695676445961, 0.25786688923835754, 0.09385369718074799, 0.07307551056146622, -0.1429448127746582, 0.027739332988858223, 0.04618028551340103, 0.061034899204969406, -0.12050661444664001, 0.0637541115283966, 0.1024690568447113, -0.0018541248282417655, 0.025973578914999962, 0.021776298061013222, -0.10433201491832733, 0.05519789829850197, 0.03745558112859726, 0.00921214371919632, -0.1140657439827919, -0.03378703445196152, -0.08728781342506409, -0.07105854153633118, -0.018093740567564964, 0.1272021234035492, 0.057372625917196274, -0.05911727249622345, -0.021432433277368546, 0.03208373859524727, 0.01209671888500452, 0.1779528111219406, 0.07340661436319351, 0.03261271491646767, -0.07256711274385452, -0.026417165994644165, 0.044899631291627884, -0.05056688189506531, 0.06338176876306534, 0.15682536363601685, -0.010906214825809002, -0.02815946377813816, 0.10070399194955826, 0.12289834767580032, -0.23573645949363708, -0.048615485429763794, -0.05375455692410469, -0.013046192936599255, 0.04583684355020523, 0.0880783423781395, 0.060908980667591095, -0.09408962726593018, -0.016605403274297714, 0.0013432282721623778, 0.0025177947245538235, 0.0906837061047554, 0.06221845746040344, -0.017426881939172745, -0.011378881521522999, -0.06717510521411896, -0.018619060516357422, 0.0866599828004837, -0.03435443341732025, 0.003463388653472066, -0.15932871401309967, 0.01928158663213253, -0.20997147262096405, 0.11035199463367462, -0.018478604033589363, -0.0006673558964394033, -0.03807232528924942, -0.007074378896504641, -0.0065646399743855, 0.011427017860114574, -0.06041925773024559, -0.003979453817009926, -0.05489624664187431, 0.053950466215610504, -0.07916069775819778, 0.06078651547431946, 0.029201803728938103, -0.011414285749197006, 0.033645838499069214, -0.01855957694351673, -0.045102253556251526, 0.09412689507007599, -0.14602331817150116, 0.006603782065212727, -0.0707152932882309, 0.07631424069404602, 0.11634324491024017, -0.03857351467013359, 0.03935464471578598, -0.0006034378311596811, 0.06138138473033905, -0.016468845307826996, 0.040552861988544464, -0.0910237729549408, 0.1118226870894432, 0.0005879936506971717, -0.10599901527166367, -0.047652605921030045, 0.12380529195070267, 0.0232241228222847, 0.043255701661109924, 0.07722192257642746, -0.08350692689418793, 0.09798947721719742, -0.10885389894247055, -0.015212345868349075, 0.04734869301319122, 0.05611138045787811, 0.02288169041275978, -0.07643082737922668, 0.06569309532642365, -0.013160700909793377, 0.15086527168750763, 0.1561088114976883, 0.12463641911745071, 0.010275311768054962, -0.0506192222237587, -0.004269416444003582, -0.01915225386619568, 0.07143950462341309, -0.008461616933345795, 0.04162178188562393, -0.05661501735448837, 0.10461834073066711, 0.004422495141625404, 0.05365520715713501, 0.10997918993234634, 0.06410593539476395, 0.07713333517313004, 0.039068520069122314, 0.0312504880130291, -0.050298213958740234, -0.08032328635454178, 0.039544302970170975, -0.010369724594056606, -0.04297464340925217, -0.04221005737781525, 0.06299320608377457, 0.019262734800577164, -0.11359924077987671, 0.13032963871955872, -0.03301060572266579, -0.054743748158216476, -0.1462700515985489, -0.08774318546056747, -0.07002488523721695, -0.10519703477621078, 0.00852623488754034, -0.09533212333917618, 0.09730919450521469, 0.128346785902977, 0.038755010813474655, -0.025857659056782722, 0.09375515580177307, -0.06991467624902725, -0.10243389010429382, 0.025994738563895226, 0.057900235056877136, 0.13232627511024475, 0.021682901307940483, 0.0772421658039093, -0.011625975370407104, 0.022325977683067322, 0.0855475589632988, 0.05912129953503609, -0.03297114744782448, 0.0055340733379125595, -0.06504984200000763, -0.018239786848425865, -0.02904548868536949, 0.04863531142473221, 0.03850517049431801, 0.29169726371765137, 0.005853593815118074, -0.041923075914382935, -0.024366270750761032, 0.22751931846141815, -0.06205456331372261, -0.08403049409389496, -0.13292014598846436, 0.1822100430727005, 0.008017806336283684, 0.07183685898780823, -0.008300508372485638, -0.09471195191144943, -0.02815338596701622, 0.18680426478385925, 0.1842545121908188, -0.0662476047873497, -0.02937690168619156, 0.03654561564326286, 0.011776728555560112, 0.011952130123972893, 0.09093870967626572, 0.057718418538570404, 0.37005746364593506, -0.06771158427000046, 0.007104602642357349, -0.017018772661685944, 0.010120367631316185, -0.03353459760546684, 0.13269159197807312, 0.002809785772114992, 0.009138844907283783, -0.04502638801932335, 0.10787925869226456, -0.030319692566990852, -0.2763798236846924, 0.01136812474578619, -0.08352555334568024, -0.10840930044651031, -0.03086525946855545, 0.09730587899684906, 0.020034685730934143, 0.08334793895483017, 0.011165552772581577, -0.012988141737878323, 0.053784169256687164, -0.0025613217148929834, -0.06422668695449829, -0.014284812845289707, 0.11253377050161362, -0.17779091000556946, 0.25060954689979553, 0.015471120364964008, 0.0746513232588768, 0.11608655750751495, -0.020433323457837105, -0.0497635193169117, 0.03725575655698776, 0.04706166684627533, -0.06351971626281738, 0.07579473406076431, 0.0519431047141552, -0.004270651843398809, 0.008005953393876553, 0.02550034411251545, -0.11562260240316391, 0.04771335422992706, 0.02675485424697399, -0.03223901987075806, -0.15760566294193268, 0.0803866758942604, -0.14997845888137817, 0.14368292689323425, 0.11372364312410355, 0.018917609006166458, 0.04305325821042061, -0.06961295008659363, 0.06608857214450836, -0.0553852841258049, 0.194322869181633, -0.04230864346027374, -0.1734192669391632, 0.008983932435512543, 0.08959896862506866, 0.002339843427762389, -0.28203994035720825, -0.00617998605594039, -0.0036476990208029747, 0.016467846930027008, -0.027510646730661392, 0.0575416125357151, 0.0642419084906578, 0.005631617270410061, -0.023806584998965263, -0.06027498096227646, -0.08643078058958054, 0.069181427359581, -0.018316084519028664, -0.03891050070524216 ]
null
null
transformers
# ixambert-base-cased finetuned for QA This is a basic implementation of the multilingual model ["ixambert-base-cased"](https://huggingface.co/ixa-ehu/ixambert-base-cased), fine-tuned on an experimental version of SQuAD1.1 in Basque (1/3 size of original SQuAD1.1), that is able to answer basic factual questions. ## Overview * **Language model:** ixambert-base-cased * **Languages:** English, Spanish and Basque * **Downstream task:** Extractive QA * **Training data:** Experimental SQuAD1.1 in Basque * **Eval data:** Experimental SQuAD1.1 in Basque * **Infrastructure:** 1x GeForce RTX 2080 ## Outputs The model outputs the answer to the question, the start and end positions of the answer in the original context, and a score for the probability for that span of text to be the correct answer. For example: ```python {'score': 0.9667195081710815, 'start': 101, 'end': 105, 'answer': '1820'} ``` ## How to use ```python from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline model_name = "MarcBrun/ixambert-finetuned-squad-eu" # To get predictions context = "Florence Nightingale, known for being the founder of modern nursing, was born in Florence, Italy, in 1820" question = "When was Florence Nightingale born?" qa = pipeline("question-answering", model=model_name, tokenizer=model_name) pred = qa(question=question,context=context) # To load the model and tokenizer model = AutoModelForQuestionAnswering.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) ``` ## Hyperparameters ``` batch_size = 8 n_epochs = 3 learning_rate = 2e-5 optimizer = AdamW lr_schedule = linear max_seq_len = 384 doc_stride = 128 ```
{"language": ["en", "es", "eu"], "widget": [{"text": "When was Florence Nightingale born?", "context": "Florence Nightingale, known for being the founder of modern nursing, was born in Florence, Italy, in 1820.", "example_title": "English"}, {"text": "\u00bfPor qu\u00e9 provincias pasa el Tajo?", "context": "El Tajo es el r\u00edo m\u00e1s largo de la pen\u00ednsula ib\u00e9rica, a la que atraviesa en su parte central, siguiendo un rumbo este-oeste, con una leve inclinaci\u00f3n hacia el suroeste, que se acent\u00faa cuando llega a Portugal, donde recibe el nombre de Tejo.\nNace en los montes Universales, en la sierra de Albarrac\u00edn, sobre la rama occidental del sistema Ib\u00e9rico y, despu\u00e9s de recorrer 1007 km, llega al oc\u00e9ano Atl\u00e1ntico en la ciudad de Lisboa. En su desembocadura forma el estuario del mar de la Paja, en el que vierte un caudal medio de 456 m\u00b3/s. En sus primeros 816 km atraviesa Espa\u00f1a, donde discurre por cuatro comunidades aut\u00f3nomas (Arag\u00f3n, Castilla-La Mancha, Madrid y Extremadura) y un total de seis provincias (Teruel, Guadalajara, Cuenca, Madrid, Toledo y C\u00e1ceres).", "example_title": "Espa\u00f1ol"}, {"text": "Zer beste izenak ditu Tartalo?", "context": "Tartalo euskal mitologiako izaki begibakar artzain erraldoia da. Tartalo izena zenbait euskal hizkeratan herskari-bustidurarekin ahoskatu ohi denez, horrelaxe ere idazten da batzuetan: Ttarttalo. Euskal Herriko zenbait tokitan, Torto edo Anxo ere esaten diote.", "example_title": "Euskara"}]}
question-answering
MarcBrun/ixambert-finetuned-squad-eu
[ "transformers", "pytorch", "bert", "question-answering", "en", "es", "eu", "endpoints_compatible", "has_space", "region:us" ]
2022-03-02T23:29:04+00:00
[]
[ "en", "es", "eu" ]
TAGS #transformers #pytorch #bert #question-answering #en #es #eu #endpoints_compatible #has_space #region-us
# ixambert-base-cased finetuned for QA This is a basic implementation of the multilingual model "ixambert-base-cased", fine-tuned on an experimental version of SQuAD1.1 in Basque (1/3 size of original SQuAD1.1), that is able to answer basic factual questions. ## Overview * Language model: ixambert-base-cased * Languages: English, Spanish and Basque * Downstream task: Extractive QA * Training data: Experimental SQuAD1.1 in Basque * Eval data: Experimental SQuAD1.1 in Basque * Infrastructure: 1x GeForce RTX 2080 ## Outputs The model outputs the answer to the question, the start and end positions of the answer in the original context, and a score for the probability for that span of text to be the correct answer. For example: ## How to use ## Hyperparameters
[ "# ixambert-base-cased finetuned for QA\n\nThis is a basic implementation of the multilingual model \"ixambert-base-cased\", fine-tuned on an experimental version of SQuAD1.1 in Basque (1/3 size of original SQuAD1.1), that is able to answer basic factual questions.", "## Overview\n\n* Language model: ixambert-base-cased\n* Languages: English, Spanish and Basque\n* Downstream task: Extractive QA\n* Training data: Experimental SQuAD1.1 in Basque\n* Eval data: Experimental SQuAD1.1 in Basque\n* Infrastructure: 1x GeForce RTX 2080", "## Outputs\n\nThe model outputs the answer to the question, the start and end positions of the answer in the original context, and a score for the probability for that span of text to be the correct answer. For example:", "## How to use", "## Hyperparameters" ]
[ "TAGS\n#transformers #pytorch #bert #question-answering #en #es #eu #endpoints_compatible #has_space #region-us \n", "# ixambert-base-cased finetuned for QA\n\nThis is a basic implementation of the multilingual model \"ixambert-base-cased\", fine-tuned on an experimental version of SQuAD1.1 in Basque (1/3 size of original SQuAD1.1), that is able to answer basic factual questions.", "## Overview\n\n* Language model: ixambert-base-cased\n* Languages: English, Spanish and Basque\n* Downstream task: Extractive QA\n* Training data: Experimental SQuAD1.1 in Basque\n* Eval data: Experimental SQuAD1.1 in Basque\n* Infrastructure: 1x GeForce RTX 2080", "## Outputs\n\nThe model outputs the answer to the question, the start and end positions of the answer in the original context, and a score for the probability for that span of text to be the correct answer. For example:", "## How to use", "## Hyperparameters" ]
[ 39, 73, 74, 49, 4, 5 ]
[ "passage: TAGS\n#transformers #pytorch #bert #question-answering #en #es #eu #endpoints_compatible #has_space #region-us \n# ixambert-base-cased finetuned for QA\n\nThis is a basic implementation of the multilingual model \"ixambert-base-cased\", fine-tuned on an experimental version of SQuAD1.1 in Basque (1/3 size of original SQuAD1.1), that is able to answer basic factual questions.## Overview\n\n* Language model: ixambert-base-cased\n* Languages: English, Spanish and Basque\n* Downstream task: Extractive QA\n* Training data: Experimental SQuAD1.1 in Basque\n* Eval data: Experimental SQuAD1.1 in Basque\n* Infrastructure: 1x GeForce RTX 2080## Outputs\n\nThe model outputs the answer to the question, the start and end positions of the answer in the original context, and a score for the probability for that span of text to be the correct answer. For example:## How to use## Hyperparameters" ]
[ -0.14969980716705322, -0.04447893425822258, -0.002374237636104226, 0.0902450829744339, 0.08321414887905121, -0.03225121274590492, -0.030638601630926132, 0.09403098374605179, 0.01586044766008854, 0.14645709097385406, 0.10363586992025375, 0.07728130370378494, 0.06946656107902527, 0.09735620021820068, -0.10719619691371918, -0.099639892578125, -0.040643028914928436, -0.012764804065227509, 0.011151968501508236, 0.09591133892536163, 0.06966400146484375, -0.0841575339436531, 0.05665687844157219, 0.0022526057437062263, -0.007641632575541735, 0.07899575680494308, 0.047842562198638916, -0.08037766814231873, 0.10436012595891953, 0.09724235534667969, 0.06344376504421234, 0.01977767050266266, 0.024397816509008408, -0.2029210776090622, 0.01630510948598385, -0.009569486603140831, -0.03854997083544731, 0.05158764496445656, 0.1062229722738266, -0.07766233384609222, -0.060708075761795044, -0.018185434862971306, -0.014137374237179756, 0.043637070804834366, -0.10810132324695587, -0.0018046482000499964, -0.04434755817055702, -0.0413440503180027, 0.07145002484321594, 0.03829188644886017, -0.06736195087432861, 0.06306540966033936, -0.11832879483699799, 0.031711943447589874, 0.19402055442333221, -0.22581858932971954, -0.06179381161928177, 0.044848840683698654, 0.034019824117422104, 0.12836486101150513, -0.02219483256340027, 0.011143242940306664, 0.14249350130558014, 0.04411764815449715, -0.034431248903274536, -0.06041437014937401, 0.02689529024064541, 0.026509327813982964, -0.13102728128433228, -0.07202186435461044, 0.09792298078536987, -0.0004968936555087566, -0.0806603878736496, -0.10462027788162231, -0.07544026523828506, -0.019390197470784187, -0.006066278554499149, -0.06444597244262695, -0.044968824833631516, -0.040329962968826294, 0.06046443060040474, 0.02204947918653488, -0.08622616529464722, -0.09702371805906296, -0.12785017490386963, 0.1858266144990921, 0.044143497943878174, 0.014100984670221806, -0.06049351021647453, 0.13797856867313385, -0.11513694375753403, -0.11012017726898193, -0.02949647791683674, -0.0331372506916523, -0.06463757902383804, 0.04050968959927559, -0.0006267137359827757, -0.055401988327503204, 0.033390067517757416, 0.16131339967250824, -0.157659649848938, -0.011183077469468117, -0.036108631640672684, 0.02959016151726246, 0.06727521866559982, 0.13207417726516724, 0.0012926360359415412, -0.15172718465328217, -0.02339819446206093, 0.01583840325474739, -0.04226115718483925, -0.009095792658627033, -0.08835387974977493, -0.13643094897270203, 0.028628874570131302, 0.123727947473526, 0.09208625555038452, -0.03245266154408455, -0.07526496797800064, -0.09223290532827377, 0.09014613181352615, -0.10223864018917084, -0.05188840255141258, 0.004834209568798542, -0.11092252284288406, -0.0013003235217183828, -0.08611106127500534, -0.012883496470749378, -0.07610081881284714, -0.06047630310058594, -0.042246896773576736, -0.015606696717441082, -0.05206771939992905, -0.12197843939065933, 0.017852453514933586, -0.010816422291100025, -0.026281248778104782, -0.1294546276330948, -0.004267009440809488, -0.10526508837938309, -0.0114607447758317, -0.0894738957285881, -0.005523771978914738, -0.0952288806438446, 0.009470028802752495, 0.008194816298782825, -0.07044268399477005, 0.050040751695632935, -0.03492322936654091, 0.09013038128614426, 0.05845402553677559, 0.06392224133014679, 0.028212154284119606, 0.025914976373314857, -0.10207530111074448, 0.019405435770750046, -0.18444178998470306, 0.10807044804096222, -0.06869509816169739, -0.08408951014280319, -0.13954530656337738, -0.06580163538455963, 0.010717321187257767, 0.07791625708341599, 0.08786650002002716, 0.1536124050617218, -0.1676516979932785, -0.006477886810898781, 0.16801629960536957, -0.05319186672568321, -0.12969271838665009, 0.13580365478992462, -0.041989557445049286, 0.11023999005556107, 0.042422834783792496, 0.18559230864048004, 0.017960909754037857, -0.16480955481529236, -0.07747077196836472, 0.012928505428135395, -0.003358728252351284, 0.0013574445620179176, 0.12139640003442764, -0.05581281706690788, -0.039410192519426346, 0.01962721347808838, -0.07941155880689621, -0.025716977193951607, -0.04671286419034004, -0.06275718659162521, 0.029117632657289505, 0.009830526076257229, 0.01881781779229641, 0.03133511170744896, 0.04064313322305679, -0.01729414239525795, -0.09204435348510742, -0.1478598415851593, 0.005994104780256748, -0.03316333889961243, 0.03572167828679085, -0.08361414074897766, 0.13938800990581512, -0.15887735784053802, -0.015217277221381664, -0.18347565829753876, 0.018524201586842537, 0.014823547564446926, 0.04250627011060715, 0.029288843274116516, 0.03571922704577446, 0.027310291305184364, -0.013015213422477245, -0.022132601588964462, -0.023647092282772064, 0.008393111638724804, -0.06976848095655441, -0.09750673919916153, -0.08404531329870224, 0.01926225796341896, -0.06476648896932602, -0.07925592362880707, -0.11065886914730072, -0.012039490975439548, 0.02569187991321087, -0.05965137109160423, -0.011039997451007366, 0.02105657197535038, -0.06481362879276276, 0.07915200293064117, -0.08633561432361603, 0.018881311640143394, 0.0478593073785305, -0.054250750690698624, -0.02703818865120411, 0.05868601053953171, -0.12291864305734634, 0.02876741997897625, 0.09057890623807907, -0.004809912294149399, -0.10605175793170929, -0.14444899559020996, -0.04565531015396118, 0.035590097308158875, -0.05338366702198982, -0.027529584243893623, 0.2120875120162964, 0.019145537167787552, 0.1285087913274765, -0.15204280614852905, 0.01380931492894888, 0.03287912905216217, -0.033282723277807236, 0.034346889704465866, 0.1963428258895874, 0.08086904883384705, -0.0513041689991951, 0.06884907931089401, 0.03128959983587265, 0.03479722887277603, 0.12107645720243454, -0.027444081380963326, -0.10215462744235992, -0.013416367582976818, 0.09894163906574249, 0.03641512617468834, 0.14064207673072815, -0.05366385355591774, 0.006866829004138708, 0.04100148007273674, 0.07340287417173386, 0.06331656128168106, -0.10736274719238281, -0.021712487563490868, -0.023119650781154633, -0.06073453649878502, -0.042494043707847595, 0.0657443180680275, 0.039532531052827835, 0.11229514330625534, 0.03896564617753029, -0.05583876371383667, -0.004434199072420597, -0.04490361362695694, -0.07972489297389984, 0.21882592141628265, -0.0170290544629097, -0.19786188006401062, -0.11189392954111099, -0.018896952271461487, -0.05313008651137352, 0.03399871289730072, 0.06888066232204437, -0.09501545131206512, 0.0020718679297715425, -0.012130116112530231, 0.27582117915153503, -0.05547086149454117, -0.05122465640306473, -0.09917781502008438, -0.0018370852340012789, -0.03139256313443184, -0.13381899893283844, -0.0014888449804857373, -0.08540366590023041, -0.12569448351860046, 0.01929807849228382, -0.10292606800794601, 0.14191344380378723, 0.13005881011486053, -0.002982432721182704, -0.002014337107539177, -0.03683260455727577, 0.26083117723464966, -0.09225289523601532, -0.006618835963308811, 0.13988010585308075, 0.07818477600812912, 0.03651311248540878, 0.1869800090789795, 0.013718671165406704, -0.06475035846233368, 0.02705485001206398, 0.024185555055737495, -0.08609434962272644, -0.2549840807914734, -0.11152403801679611, -0.028074095025658607, 0.04497804492712021, 0.0869082361459732, 0.003597781527787447, -0.041898008435964584, 0.1174330785870552, -0.0374680794775486, -0.03109227865934372, -0.06360473483800888, 0.06680028885602951, 0.08352231234312057, -0.010441811755299568, 0.13332071900367737, -0.01259690523147583, -0.059935037046670914, 0.13830935955047607, 0.10457471758127213, 0.13791424036026, -0.0714099109172821, 0.021795613691210747, 0.09817230701446533, 0.19519121944904327, 0.00642169127240777, 0.06390946358442307, -0.01669398695230484, 0.011698628775775433, -0.0709424838423729, -0.03263721615076065, -0.03098224475979805, 0.027759823948144913, 0.04047369584441185, -0.009276286698877811, -0.14082978665828705, -0.12109899520874023, 0.026724286377429962, 0.05699126794934273, 0.025894789025187492, -0.07951872050762177, -0.05833159387111664, 0.02295706607401371, -0.06551992148160934, -0.05801663175225258, 0.09961742162704468, 0.10711192339658737, -0.1440434753894806, -0.06481248885393143, -0.05361392721533775, 0.13395066559314728, 0.06096003204584122, 0.022886307910084724, -0.09399369359016418, -0.0023974161595106125, -0.024235494434833527, 0.11727198958396912, -0.22148820757865906, 0.1986956149339676, 0.046533308923244476, 0.0199950709939003, -0.05263342335820198, 0.016332095488905907, -0.010226856917142868, -0.03866257891058922, 0.2052706778049469, -0.04333364591002464, 0.01760094054043293, -0.19990922510623932, -0.011664063669741154, 0.03321268782019615, 0.060048822313547134, -0.08762681484222412, 0.12642790377140045, 0.052091632038354874, 0.07495863735675812, -0.031787335872650146, 0.07390455156564713, -0.04586273804306984, -0.13389022648334503, -0.07699504494667053, -0.04246028512716293, -0.03086269460618496, -0.022469183430075645, -0.06726190447807312, -0.08591654896736145, 0.031103655695915222, -0.14988268911838531, -0.03659813478589058, -0.07565759867429733, -0.00539413234218955, 0.09018822014331818, -0.1346096247434616, -0.0134276133030653, -0.03064063750207424, 0.037748292088508606, -0.059291619807481766, -0.06361159682273865, 0.0950763151049614, -0.1010344848036766, -0.08533214032649994, -0.02762003242969513, 0.12708671391010284, 0.07052040845155716, 0.034050483256578445, 0.03347671777009964, -0.002749538281932473, -0.078090600669384, -0.14597971737384796, -0.049685969948768616, -0.08900908380746841, 0.09146992862224579, 0.08514907211065292, -0.02506251074373722, -0.17232581973075867, -0.07524055987596512, 0.01874190755188465, 0.14612805843353271, 0.16118644177913666, -0.08713968843221664, 0.09312155097723007, 0.09667454659938812, -0.05948310345411301, -0.25579139590263367, -0.008838807232677937, 0.0993521437048912, 0.04196268692612648, 0.09451671689748764, -0.09718530625104904, 0.02590463124215603, 0.006135269068181515, -0.0318906269967556, 0.006582561880350113, -0.2754157483577728, -0.06767499446868896, 0.038264546543359756, 0.05810412019491196, 0.2209581583738327, -0.07916894555091858, -0.04795543849468231, 0.036526765674352646, -0.052954740822315216, 0.09776008129119873, 0.008634699508547783, 0.09070001542568207, -0.05653172358870506, 0.11222221702337265, 0.04168395698070526, -0.014877187088131905, 0.14782045781612396, 0.005727470852434635, 0.010302109643816948, 0.009649324230849743, -0.03629933297634125, -0.0001341096794931218, -0.022456856444478035, 0.02737635187804699, 0.004772226791828871, 0.03565351665019989, -0.20131105184555054, -0.08302466571331024, -0.05475655198097229, 0.04684056341648102, -0.06735125184059143, -0.05218537896871567, -0.083711639046669, 0.005284987855702639, 0.07757493853569031, 0.012931705452501774, 0.049499232321977615, -0.07767433673143387, 0.06839267909526825, 0.17308205366134644, 0.10020443052053452, 0.05410521477460861, -0.12505735456943512, 0.05343211814761162, 0.03329462185502052, 0.11222711205482483, -0.14943717420101166, 0.06606822460889816, 0.14654886722564697, 0.026160135865211487, 0.016467882320284843, 0.037749119102954865, -0.1191922277212143, 0.07454338669776917, 0.03754521906375885, -0.02188827469944954, -0.11373896151781082, -0.03739425539970398, -0.04803352430462837, -0.07574029266834259, 0.02154173143208027, 0.08665046095848083, 0.043412208557128906, -0.03601310774683952, -0.034955792129039764, -0.009523614309728146, 0.01952817663550377, 0.1419525444507599, 0.0762244462966919, 0.03925927355885506, -0.07613003998994827, -0.01958470791578293, 0.0433773472905159, -0.1224752739071846, 0.0486198253929615, 0.02561980113387108, -0.022579150274395943, -0.015517857857048512, 0.043126050382852554, 0.09991668909788132, -0.21792620420455933, -0.06669145077466965, -0.0886078029870987, -0.06383557617664337, 0.030546192079782486, 0.11409879475831985, 0.09128700941801071, -0.06909745186567307, 0.021980520337820053, -0.03110172040760517, 0.006209868006408215, 0.07441157847642899, 0.09291002154350281, -0.036953531205654144, 0.013983700424432755, -0.040752019733190536, 0.005276061594486237, 0.07848040014505386, -0.038298144936561584, -0.04007740691304207, -0.13644687831401825, 0.0611979141831398, -0.17333738505840302, 0.10559947043657303, -0.03524046763777733, 0.01035932544618845, -0.056978244334459305, -0.02915903925895691, -0.04211314395070076, 0.0017423873068764806, -0.061916597187519073, 0.042824968695640564, -0.043449804186820984, 0.06207912787795067, -0.08648958057165146, 0.029365094378590584, 0.038461510092020035, -0.02044333890080452, 0.019062047824263573, -0.031091678887605667, -0.049245886504650116, 0.09046418964862823, -0.16246336698532104, 0.06235714256763458, -0.04550841450691223, 0.07125511020421982, 0.06184707209467888, 0.0022043869830667973, 0.046705350279808044, 0.03184806555509567, 0.03151102364063263, 0.018119582906365395, 0.00841763336211443, -0.11536998301744461, 0.07188213616609573, 0.000757272879127413, -0.08117184787988663, -0.0687193050980568, 0.12163233011960983, -0.008723446168005466, 0.07287324219942093, 0.04305632784962654, -0.08717412501573563, 0.08118461817502975, -0.1238243356347084, -0.025051305070519447, 0.025282438844442368, 0.05656556040048599, -0.0074609750881791115, -0.04324521869421005, 0.04987499117851257, 0.01838093064725399, 0.1817261129617691, 0.13097026944160461, 0.10226183384656906, 0.013142863288521767, -0.0810069590806961, 0.10341494530439377, -0.037105824798345566, 0.10771618783473969, 0.017827382311224937, 0.039556123316287994, -0.04618581011891365, 0.12232472747564316, 0.03075319156050682, 0.127334862947464, 0.08884359896183014, 0.10254427790641785, 0.06320623308420181, 0.012440950609743595, -0.07097071409225464, -0.05772728845477104, 0.00671871704980731, -0.014064906165003777, 0.004883692599833012, -0.08659203350543976, 0.015576399862766266, 0.07911685109138489, 0.05999882519245148, -0.07724454998970032, 0.10040298104286194, -0.013721148483455181, -0.05394210293889046, -0.13909615576267242, -0.07549594342708588, -0.061061568558216095, -0.10153274983167648, 0.020293615758419037, -0.1014723926782608, 0.037340063601732254, 0.153506800532341, 0.04209504649043083, -0.0193910114467144, 0.120204858481884, -0.05107404664158821, -0.11394533514976501, 0.04997417703270912, 0.022257070988416672, 0.14042094349861145, 0.047611068934202194, 0.09008381515741348, 0.04007728770375252, -0.02989877201616764, 0.06769929826259613, 0.0708339661359787, -0.028363440185785294, -0.015133506618440151, -0.051245592534542084, -0.01604399085044861, -0.05030301585793495, 0.046377409249544144, 0.08743307739496231, 0.3817775249481201, 0.038484107702970505, -0.010572551749646664, -0.019821176305413246, 0.24517008662223816, -0.019951267167925835, -0.032961636781692505, -0.11210925132036209, 0.19863419234752655, 0.037033561617136, 0.07091304659843445, -0.00770830363035202, -0.0780639499425888, -0.0194072388112545, 0.2141234278678894, 0.10389110445976257, -0.03440266102552414, -0.02944784052670002, 0.031999457627534866, 0.01626157946884632, 0.06494730710983276, 0.06959180533885956, 0.05187828093767166, 0.38116511702537537, -0.08872315287590027, -0.02020685002207756, -0.0386253222823143, 0.018893977627158165, -0.0023014284670352936, 0.15644992887973785, 0.0028704069554805756, -0.010031750425696373, -0.1093156710267067, 0.10079158842563629, -0.03743273764848709, -0.2187143862247467, 0.05424829572439194, -0.1333865076303482, -0.09311169385910034, -0.045188743621110916, 0.09359002858400345, 0.013806539587676525, 0.08546368032693863, -0.006580046843737364, 0.019595127552747726, -0.01610572077333927, 0.004745101556181908, -0.06120523437857628, -0.006053917109966278, 0.09355073422193527, -0.11851155757904053, 0.20668862760066986, 0.0043533979915082455, 0.13936126232147217, 0.10454773157835007, -0.0010926421964541078, -0.01564732752740383, 0.048574358224868774, 0.05316910147666931, 0.0005191486561670899, 0.047381408512592316, 0.025230051949620247, 0.039224401116371155, 0.025228748098015785, 0.053968943655490875, -0.11231846362352371, 0.05625071004033089, 0.027844103053212166, -0.05761265754699707, -0.1877279132604599, 0.08044636994600296, -0.0947345420718193, 0.09661707282066345, 0.0631449893116951, -0.003329274943098426, 0.038863830268383026, -0.07337668538093567, 0.049765653908252716, -0.04276440292596817, 0.19214265048503876, 0.00841594859957695, -0.15527431666851044, 0.02282930351793766, 0.06923256814479828, -0.019262248650193214, -0.3360387682914734, 0.017127571627497673, 0.018715213984251022, 0.037813667207956314, -0.006742259953171015, 0.05803409591317177, 0.021463271230459213, 0.019140372052788734, -0.01891615055501461, -0.06999374181032181, -0.060135725885629654, 0.09534580260515213, -0.0025378530845046043, -0.08162282407283783 ]
null
null
transformers
# ixambert-base-cased finetuned for QA This is a basic implementation of the multilingual model ["ixambert-base-cased"](https://huggingface.co/ixa-ehu/ixambert-base-cased), fine-tuned on SQuAD v1.1, that is able to answer basic factual questions in English, Spanish and Basque. ## Overview * **Language model:** ixambert-base-cased * **Languages:** English, Spanish and Basque * **Downstream task:** Extractive QA * **Training data:** SQuAD v1.1 * **Eval data:** SQuAD v1.1 * **Infrastructure:** 1x GeForce RTX 2080 ## Outputs The model outputs the answer to the question, the start and end positions of the answer in the original context, and a score for the probability for that span of text to be the correct answer. For example: ```python {'score': 0.9667195081710815, 'start': 101, 'end': 105, 'answer': '1820'} ``` ## How to use ```python from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline model_name = "MarcBrun/ixambert-finetuned-squad" # To get predictions context = "Florence Nightingale, known for being the founder of modern nursing, was born in Florence, Italy, in 1820" question = "When was Florence Nightingale born?" qa = pipeline("question-answering", model=model_name, tokenizer=model_name) pred = qa(question=question,context=context) # To load the model and tokenizer model = AutoModelForQuestionAnswering.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) ``` ## Hyperparameters ``` batch_size = 8 n_epochs = 3 learning_rate = 2e-5 optimizer = AdamW lr_schedule = linear max_seq_len = 384 doc_stride = 128 ```
{"language": ["en", "es", "eu"], "datasets": ["squad"], "widget": [{"text": "When was Florence Nightingale born?", "context": "Florence Nightingale, known for being the founder of modern nursing, was born in Florence, Italy, in 1820.", "example_title": "English"}, {"text": "\u00bfPor qu\u00e9 provincias pasa el Tajo?", "context": "El Tajo es el r\u00edo m\u00e1s largo de la pen\u00ednsula ib\u00e9rica, a la que atraviesa en su parte central, siguiendo un rumbo este-oeste, con una leve inclinaci\u00f3n hacia el suroeste, que se acent\u00faa cuando llega a Portugal, donde recibe el nombre de Tejo.\nNace en los montes Universales, en la sierra de Albarrac\u00edn, sobre la rama occidental del sistema Ib\u00e9rico y, despu\u00e9s de recorrer 1007 km, llega al oc\u00e9ano Atl\u00e1ntico en la ciudad de Lisboa. En su desembocadura forma el estuario del mar de la Paja, en el que vierte un caudal medio de 456 m\u00b3/s. En sus primeros 816 km atraviesa Espa\u00f1a, donde discurre por cuatro comunidades aut\u00f3nomas (Arag\u00f3n, Castilla-La Mancha, Madrid y Extremadura) y un total de seis provincias (Teruel, Guadalajara, Cuenca, Madrid, Toledo y C\u00e1ceres).", "example_title": "Espa\u00f1ol"}, {"text": "Zer beste izenak ditu Tartalo?", "context": "Tartalo euskal mitologiako izaki begibakar artzain erraldoia da. Tartalo izena zenbait euskal hizkeratan herskari-bustidurarekin ahoskatu ohi denez, horrelaxe ere idazten da batzuetan: Ttarttalo. Euskal Herriko zenbait tokitan, Torto edo Anxo ere esaten diote.", "example_title": "Euskara"}]}
question-answering
MarcBrun/ixambert-finetuned-squad
[ "transformers", "pytorch", "bert", "question-answering", "en", "es", "eu", "dataset:squad", "endpoints_compatible", "has_space", "region:us" ]
2022-03-02T23:29:04+00:00
[]
[ "en", "es", "eu" ]
TAGS #transformers #pytorch #bert #question-answering #en #es #eu #dataset-squad #endpoints_compatible #has_space #region-us
# ixambert-base-cased finetuned for QA This is a basic implementation of the multilingual model "ixambert-base-cased", fine-tuned on SQuAD v1.1, that is able to answer basic factual questions in English, Spanish and Basque. ## Overview * Language model: ixambert-base-cased * Languages: English, Spanish and Basque * Downstream task: Extractive QA * Training data: SQuAD v1.1 * Eval data: SQuAD v1.1 * Infrastructure: 1x GeForce RTX 2080 ## Outputs The model outputs the answer to the question, the start and end positions of the answer in the original context, and a score for the probability for that span of text to be the correct answer. For example: ## How to use ## Hyperparameters
[ "# ixambert-base-cased finetuned for QA\n\nThis is a basic implementation of the multilingual model \"ixambert-base-cased\", fine-tuned on SQuAD v1.1, that is able to answer basic factual questions in English, Spanish and Basque.", "## Overview\n\n* Language model: ixambert-base-cased\n* Languages: English, Spanish and Basque\n* Downstream task: Extractive QA\n* Training data: SQuAD v1.1\n* Eval data: SQuAD v1.1\n* Infrastructure: 1x GeForce RTX 2080", "## Outputs\n\nThe model outputs the answer to the question, the start and end positions of the answer in the original context, and a score for the probability for that span of text to be the correct answer. For example:", "## How to use", "## Hyperparameters" ]
[ "TAGS\n#transformers #pytorch #bert #question-answering #en #es #eu #dataset-squad #endpoints_compatible #has_space #region-us \n", "# ixambert-base-cased finetuned for QA\n\nThis is a basic implementation of the multilingual model \"ixambert-base-cased\", fine-tuned on SQuAD v1.1, that is able to answer basic factual questions in English, Spanish and Basque.", "## Overview\n\n* Language model: ixambert-base-cased\n* Languages: English, Spanish and Basque\n* Downstream task: Extractive QA\n* Training data: SQuAD v1.1\n* Eval data: SQuAD v1.1\n* Infrastructure: 1x GeForce RTX 2080", "## Outputs\n\nThe model outputs the answer to the question, the start and end positions of the answer in the original context, and a score for the probability for that span of text to be the correct answer. For example:", "## How to use", "## Hyperparameters" ]
[ 45, 65, 66, 49, 4, 5 ]
[ "passage: TAGS\n#transformers #pytorch #bert #question-answering #en #es #eu #dataset-squad #endpoints_compatible #has_space #region-us \n# ixambert-base-cased finetuned for QA\n\nThis is a basic implementation of the multilingual model \"ixambert-base-cased\", fine-tuned on SQuAD v1.1, that is able to answer basic factual questions in English, Spanish and Basque.## Overview\n\n* Language model: ixambert-base-cased\n* Languages: English, Spanish and Basque\n* Downstream task: Extractive QA\n* Training data: SQuAD v1.1\n* Eval data: SQuAD v1.1\n* Infrastructure: 1x GeForce RTX 2080## Outputs\n\nThe model outputs the answer to the question, the start and end positions of the answer in the original context, and a score for the probability for that span of text to be the correct answer. For example:## How to use## Hyperparameters" ]
[ -0.13896293938159943, -0.0610334575176239, -0.00045225289068184793, 0.06793801486492157, 0.10136546194553375, -0.03282221779227257, -0.04504483565688133, 0.0997559055685997, 0.015438095666468143, 0.10554587095975876, 0.08895520120859146, 0.04880846291780472, 0.06399481743574142, 0.05424046888947487, -0.07682564109563828, -0.13765516877174377, -0.02940010093152523, -0.04418225213885307, -0.024181602522730827, 0.08838152140378952, 0.0806371420621872, -0.0959467664361, 0.060174934566020966, 0.01164915319532156, -0.00872775074094534, 0.050474632531404495, 0.022945186123251915, -0.07789270579814911, 0.11905715614557266, 0.13373558223247528, 0.08301763981580734, 0.011422746814787388, 0.032965704798698425, -0.24873560667037964, 0.02157311886548996, -0.007029951084405184, -0.044266410171985626, 0.04424402117729187, 0.04691855609416962, -0.039880119264125824, -0.08103451132774353, -0.0493580587208271, 0.0016438070451840758, 0.06655529886484146, -0.10546334832906723, -0.039801813662052155, -0.007836819626390934, -0.0007796706049703062, 0.11467774212360382, 0.07224255800247192, -0.05245256423950195, 0.0535803884267807, -0.10817492753267288, 0.05953802540898323, 0.09917197376489639, -0.2965227961540222, -0.06471146643161774, 0.040391724556684494, 0.06817486882209778, 0.16817526519298553, -0.0683295726776123, 0.034929387271404266, 0.06091247498989105, 0.030893871560692787, -0.009942169301211834, -0.0812002494931221, -0.024359028786420822, 0.05054990574717522, -0.12817078828811646, -0.03218286484479904, 0.12968222796916962, -0.012569703161716461, -0.044529277831315994, -0.10255620628595352, -0.09386666119098663, 0.012041137553751469, -0.018938811495900154, -0.051625289022922516, -0.024296849966049194, 0.0006172961439006031, 0.04398299753665924, -0.07732360810041428, -0.09694156050682068, -0.08573848754167557, -0.10246551036834717, 0.1732686311006546, 0.04316186532378197, 0.01120055466890335, -0.10067757219076157, 0.11565855145454407, -0.10112426429986954, -0.09741944819688797, -0.03385300189256668, -0.04555767774581909, -0.12898515164852142, 0.028160497546195984, -0.02402513287961483, -0.04754366725683212, 0.01275174506008625, 0.15080413222312927, -0.11521343141794205, 0.010477966628968716, -0.03115634247660637, 0.035211142152547836, 0.04375850409269333, 0.20515970885753632, -0.050100311636924744, -0.13028378784656525, -0.015293377451598644, -0.03695306181907654, -0.03811794891953468, -0.034792616963386536, -0.11328497529029846, -0.1040172353386879, -0.005753046367317438, 0.12651866674423218, 0.08357878029346466, -0.02092842198908329, -0.048942681401968, -0.09361033886671066, 0.05351991206407547, -0.07795874774456024, -0.024311786517500877, 0.008412855677306652, -0.08087854087352753, 0.009658043272793293, -0.05830990523099899, 0.0029696847777813673, -0.06603968888521194, -0.03900669515132904, -0.05522288382053375, -0.01184332650154829, -0.05068540200591087, -0.14642366766929626, 0.011408794671297073, -0.04171745106577873, -0.011284809559583664, -0.1030488982796669, -0.04834849014878273, -0.07190179079771042, -0.010490563698112965, -0.07629425078630447, 0.02338414266705513, -0.07795693725347519, 0.011825778521597385, 0.026367314159870148, -0.04297768324613571, 0.049801528453826904, -0.03446058928966522, 0.07525214552879333, 0.029515990987420082, 0.07688089460134506, -0.03344080224633217, 0.03958600386977196, -0.08067213743925095, 0.002090018941089511, -0.15347075462341309, 0.10155802220106125, -0.06049271300435066, -0.053366731852293015, -0.10368406027555466, -0.04846478998661041, 0.01529387291520834, 0.07427169382572174, 0.06358632445335388, 0.11030127853155136, -0.16317406296730042, -0.0032938187941908836, 0.17000378668308258, -0.03890856355428696, -0.09854248911142349, 0.11687708646059036, -0.007363516837358475, 0.10323076695203781, 0.05338500067591667, 0.19301648437976837, 0.01420548278838396, -0.15699118375778198, -0.04493765905499458, 0.019999314099550247, -0.02425723895430565, -0.007505334448069334, 0.10072042793035507, -0.03826650604605675, -0.018851062282919884, 0.03228721022605896, -0.09029834717512131, 0.018629156053066254, -0.03470182046294212, -0.04659485071897507, 0.007881552912294865, -0.018961189314723015, -0.01144640613347292, 0.01712023839354515, 0.05040266737341881, 0.012664434500038624, -0.07656431943178177, -0.04141407087445259, -0.00527047086507082, -0.02981719560921192, 0.019924357533454895, -0.09110944718122482, 0.1242106482386589, -0.11580763757228851, 0.01402417290955782, -0.18882541358470917, -0.07150458544492722, -0.006836710963398218, 0.09953606128692627, 0.022747036069631577, 0.025215553119778633, 0.03575022518634796, -0.001859094831161201, -0.04525159299373627, -0.033972177654504776, 0.03669316694140434, -0.03871118277311325, -0.09429118782281876, -0.09177445620298386, 0.022994257509708405, -0.06204960122704506, -0.0043839276768267155, -0.12013457715511322, 0.009692264720797539, 0.004306669346988201, -0.03883755952119827, 0.0105647724121809, 0.04535696655511856, -0.03454088792204857, 0.07100102305412292, -0.06656069308519363, 0.017249993979930878, 0.04438145086169243, -0.0435110442340374, -0.07198688387870789, 0.0816754475235939, -0.13398127257823944, 0.02421852946281433, 0.0954219326376915, -0.05881039798259735, -0.05173735320568085, -0.08108914643526077, -0.039944157004356384, 0.017396189272403717, -0.022519338876008987, -0.04992162808775902, 0.1546056568622589, 0.030407125130295753, 0.13291755318641663, -0.1152137815952301, -0.013197614811360836, 0.023906832560896873, -0.025247234851121902, 0.048117633908987045, 0.1562448889017105, 0.06320620328187943, -0.08357468992471695, 0.055721644312143326, 0.07386260479688644, 0.054758235812187195, 0.19418758153915405, -0.00520302215591073, -0.09983251988887787, 0.008102730847895145, 0.10890060663223267, 0.016835132613778114, 0.14404107630252838, -0.06535601615905762, -0.014582762494683266, 0.03159227594733238, 0.07022937387228012, 0.031097186729311943, -0.11576303094625473, -0.008368128910660744, 0.002249701414257288, -0.05497864633798599, -0.09654005616903305, 0.03293449804186821, 0.009639037773013115, 0.09898345172405243, 0.01779547892510891, -0.02333325706422329, -0.025043562054634094, -0.034847185015678406, -0.08433272689580917, 0.22139468789100647, -0.07423575222492218, -0.23390313982963562, -0.1008189469575882, -0.0754745602607727, -0.03989705443382263, 0.028781039640307426, 0.09157253056764603, -0.11935082823038101, -0.005913349334150553, 0.010880556888878345, 0.18422234058380127, -0.06091681495308876, -0.06295284628868103, -0.1317659616470337, 0.01015140675008297, -0.03197664022445679, -0.14542359113693237, -0.0006693457253277302, -0.08636486530303955, -0.12547892332077026, 0.048732612282037735, -0.09405981004238129, 0.15199759602546692, 0.13396497070789337, -0.0033139227889478207, -0.007529571186751127, -0.05343114212155342, 0.2208935022354126, -0.08467593789100647, 0.04918483644723892, 0.11750227212905884, 0.011738622561097145, 0.05187198147177696, 0.18728028237819672, 0.003977818880230188, -0.07088210433721542, 0.024127241224050522, 0.03534331172704697, -0.06881824135780334, -0.2571425139904022, -0.10936988145112991, -0.07251973450183868, 0.0029150478076189756, 0.026732804253697395, 0.04566432163119316, -0.0359979085624218, 0.07716482877731323, -0.045453112572431564, -0.031095916405320168, -0.01827169582247734, 0.08615110069513321, 0.1440925896167755, -0.03523261100053787, 0.1618572175502777, 0.000311997311655432, -0.04031846299767494, 0.1229202076792717, 0.11559230834245682, 0.1675748974084854, -0.01985940709710121, 0.08682993054389954, 0.06695187091827393, 0.13814929127693176, 0.044688787311315536, 0.061872467398643494, -0.033603306859731674, -0.008180429227650166, -0.059610091149806976, -0.0228410717099905, -0.0006364957080222666, 0.045895908027887344, 0.06653805077075958, -0.037452347576618195, -0.09530779719352722, -0.04255183786153793, 0.035877525806427, 0.12408771365880966, 0.020038805902004242, -0.06458304077386856, -0.07583525776863098, 0.021253006532788277, -0.052802566438913345, -0.09709960967302322, 0.0703650712966919, 0.13817822933197021, -0.1152956634759903, -0.09150230884552002, -0.003906954545527697, 0.15342019498348236, 0.04418933391571045, 0.03439241275191307, -0.08195973187685013, -0.058689966797828674, -0.01960369572043419, 0.12045614421367645, -0.21627622842788696, 0.1793404072523117, 0.06958556175231934, 0.030633816495537758, -0.02084527350962162, 0.019002094864845276, -0.01651635393500328, 0.04823661968111992, 0.20076681673526764, 0.009296619333326817, 0.012276891618967056, -0.24084264039993286, -0.020228585228323936, 0.05099347233772278, 0.07963039726018906, -0.04419909790158272, 0.09951336681842804, 0.039151281118392944, 0.04171563684940338, -0.0011718501336872578, 0.02716687135398388, -0.06893511861562729, -0.13922512531280518, -0.0600433386862278, -0.01026140060275793, 0.010490096174180508, -0.01702556014060974, -0.02500254288315773, -0.0505702942609787, 0.07875961065292358, -0.16864338517189026, -0.06042478233575821, -0.1107516661286354, -0.00324156298302114, 0.07580803334712982, -0.13014613091945648, 0.008100390434265137, -0.026870304718613625, 0.024821851402521133, -0.04108886048197746, -0.044848304241895676, 0.14683198928833008, -0.11358485370874405, -0.05921187996864319, -0.059045031666755676, 0.11546099931001663, 0.0443984754383564, 0.058574289083480835, 0.036059655249118805, 0.021926339715719223, -0.1251637041568756, -0.15938638150691986, -0.03369252756237984, -0.026285499334335327, 0.05161173641681671, 0.04577218368649483, -0.09587391465902328, -0.11074274033308029, -0.04750589281320572, 0.02246524952352047, 0.22362120449543, 0.16202960908412933, -0.09556955844163895, 0.08914814889431, 0.16491596400737762, -0.06135653704404831, -0.248472660779953, -0.03268676996231079, 0.049434538930654526, 0.06611193716526031, 0.06378594785928726, -0.15179623663425446, 0.04258616641163826, 0.014070479199290276, -0.021316833794116974, 0.009008052758872509, -0.21765269339084625, -0.06931091099977493, 0.06076754629611969, 0.05628181993961334, 0.21849842369556427, -0.09395354241132736, -0.05687656253576279, 0.03187296912074089, -0.06418966501951218, 0.0885864794254303, -0.09510663151741028, 0.08478032052516937, -0.03676827996969223, 0.0669257864356041, 0.008416584692895412, -0.013814165256917477, 0.12024760991334915, 0.0015653445152565837, -0.01592021808028221, 0.02895851619541645, 0.010900725610554218, 0.07114648073911667, -0.01963755302131176, 0.03039553388953209, -0.012246831320226192, 0.031113386154174805, -0.21166138350963593, -0.0818084105849266, -0.04919639229774475, 0.045321274548769, -0.050841838121414185, -0.07545821368694305, -0.014950842596590519, -0.0010479985503479838, 0.04461504891514778, -0.0014728100504726171, 0.015008346177637577, -0.11250793188810349, 0.05963647738099098, 0.12054182589054108, 0.07965252548456192, -0.007506254594773054, -0.08053100854158401, 0.029644202440977097, 0.028125358745455742, 0.11502597481012344, -0.14776736497879028, 0.07221680134534836, 0.14096514880657196, 0.03338208794593811, 0.04609262943267822, 0.0535067617893219, -0.047136131674051285, 0.06746610254049301, 0.01319969817996025, -0.04931635782122612, -0.11238719522953033, -0.045804593712091446, -0.06240975856781006, -0.026419667527079582, -0.0025429073721170425, 0.09321215748786926, 0.0423906147480011, -0.03475739434361458, -0.010202640667557716, -0.014796704053878784, 0.036888670176267624, 0.12404331564903259, 0.08143885433673859, 0.03487260267138481, -0.0861060693860054, -0.023754986003041267, 0.05905057489871979, -0.09817135334014893, 0.04716853052377701, 0.05319538339972496, -0.08353712409734726, -0.04332124441862106, -0.016914406791329384, 0.08213360607624054, -0.18234296143054962, -0.07595916092395782, -0.06079789996147156, -0.06039327010512352, 0.02845783904194832, 0.08869587630033493, 0.042162321507930756, -0.0661935955286026, -0.02019825205206871, -0.03326982632279396, 0.013665193691849709, 0.09978555887937546, 0.013730669394135475, -0.027567602694034576, 0.003205970162525773, -0.08571586012840271, 0.019128352403640747, 0.07967585325241089, -0.031796518713235855, -0.08399208635091782, -0.14678694307804108, 0.06011513993144035, -0.21453221142292023, 0.055947478860616684, -0.023086067289114, -0.01279553584754467, -0.062850221991539, -0.06551223993301392, -0.03297395631670952, 0.00584098557010293, -0.06197304651141167, 0.012915701605379581, -0.03648868575692177, 0.05020404979586601, -0.13935458660125732, -0.0008142549195326865, 0.03237415477633476, -0.01666952110826969, 0.07405327260494232, 0.0066046458669006824, -0.03778434917330742, 0.08795984089374542, -0.11008026450872421, -0.0071937753818929195, -0.030939923599362373, 0.05953284353017807, 0.11577118188142776, 0.011712195351719856, 0.04957953467965126, 0.015567041002213955, 0.008415710180997849, 0.009924092330038548, 0.02343713492155075, -0.10410904139280319, 0.04477732628583908, -0.040182337164878845, -0.09428063035011292, -0.05515092611312866, 0.0947161316871643, -0.0077397204004228115, 0.07609082013368607, 0.047134388238191605, -0.06017493084073067, 0.07984741777181625, -0.12695609033107758, -0.01690005511045456, 0.02842654101550579, 0.05127346143126488, -0.031374432146549225, -0.08757902681827545, 0.037987466901540756, -0.03368532285094261, 0.16915369033813477, 0.059718865901231766, 0.1777838170528412, 0.011861485429108143, -0.03839116543531418, 0.05515717342495918, -0.04646097123622894, 0.15934032201766968, 0.05131489410996437, 0.0350642129778862, -0.015502658672630787, 0.0912298783659935, 0.01987253688275814, 0.12009740620851517, 0.0863201767206192, 0.09530682116746902, 0.1047166958451271, 0.04747293144464493, -0.02945929951965809, -0.04647770896553993, -0.08051757514476776, -0.034873440861701965, -0.01199032086879015, -0.05278012901544571, -0.01069521252065897, 0.056069664657115936, 0.10491636395454407, -0.09494626522064209, 0.04834410548210144, -0.03203713893890381, -0.06880109012126923, -0.1385846883058548, -0.04571518674492836, -0.054635874927043915, -0.0788392424583435, 0.0052550057880580425, -0.11724787205457687, 0.0034185145050287247, 0.0676632672548294, 0.06365795433521271, 0.00695544620975852, 0.13413937389850616, -0.007569330278784037, -0.10725639760494232, 0.028738468885421753, 0.03370536491274834, 0.17418035864830017, 0.032359763979911804, 0.07826218008995056, 0.027287272736430168, -0.03442968428134918, 0.042893361300230026, 0.07102886587381363, -0.03057434782385826, -0.0039623798802495, -0.08463756740093231, -0.027674943208694458, -0.06421982496976852, 0.08811789005994797, 0.01811504177749157, 0.3239823877811432, 0.024382727220654488, -0.00878894329071045, -0.0026851119473576546, 0.2947554886341095, -0.051421985030174255, -0.07209126651287079, -0.08931126445531845, 0.19425587356090546, 0.048282697796821594, 0.07476095855236053, -0.035127002745866776, -0.09825513511896133, -0.00787138007581234, 0.22589540481567383, 0.13656364381313324, -0.07439257204532623, -0.007938683032989502, 0.06011412665247917, 0.01097867265343666, 0.06086474284529686, 0.05827592685818672, 0.09001695364713669, 0.3710328936576843, -0.09090527892112732, -0.012733450159430504, -0.04074202850461006, -0.02299298346042633, -0.03039710596203804, 0.1430005431175232, 0.03585869073867798, -0.027968425303697586, -0.08364101499319077, 0.10765903443098068, -0.02714168280363083, -0.13414299488067627, 0.016144050285220146, -0.12864048779010773, -0.08669393509626389, -0.040352415293455124, 0.09455011785030365, 0.007700074464082718, 0.05926721915602684, -0.01953766867518425, -0.002960522659122944, 0.06078958883881569, 0.007906140759587288, -0.06353883445262909, -0.015900274738669395, 0.10517872124910355, -0.06027299538254738, 0.12561699748039246, -0.0009255569893866777, 0.10329713672399521, 0.09409750252962112, 0.04143725335597992, -0.03390585258603096, 0.05775246024131775, 0.038750145584344864, -0.03573179617524147, 0.0011767599498853087, 0.05343251675367355, 0.027674101293087006, 0.04975024610757828, 0.06300824880599976, -0.11372087895870209, 0.08752540498971939, -0.05074729025363922, -0.0557149238884449, -0.15640254318714142, 0.07319700717926025, -0.06980074942111969, 0.11733318865299225, 0.07937904447317123, 0.005520051810890436, 0.031081276014447212, -0.06682053953409195, 0.026560986414551735, -0.022918103262782097, 0.1622111201286316, -0.018904268741607666, -0.11080224812030792, 0.017956119030714035, 0.1083747074007988, 0.0118248937651515, -0.2774594724178314, -0.00861341878771782, -0.00017444284458179027, 0.042156461626291275, -0.002062298357486725, 0.06282563507556915, 0.09273397922515869, 0.02675802819430828, -0.03303663805127144, -0.08002262562513351, -0.018111957237124443, 0.08191657066345215, -0.049236271530389786, -0.07556463032960892 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-legal_data This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 6.9101 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 26 | 5.3529 | | No log | 2.0 | 52 | 5.4226 | | No log | 3.0 | 78 | 5.2550 | | No log | 4.0 | 104 | 5.1011 | | No log | 5.0 | 130 | 5.1857 | | No log | 6.0 | 156 | 5.5119 | | No log | 7.0 | 182 | 5.4480 | | No log | 8.0 | 208 | 5.6993 | | No log | 9.0 | 234 | 5.9614 | | No log | 10.0 | 260 | 5.6987 | | No log | 11.0 | 286 | 5.6679 | | No log | 12.0 | 312 | 5.9850 | | No log | 13.0 | 338 | 5.6065 | | No log | 14.0 | 364 | 5.3162 | | No log | 15.0 | 390 | 5.7856 | | No log | 16.0 | 416 | 5.5786 | | No log | 17.0 | 442 | 5.6028 | | No log | 18.0 | 468 | 5.7649 | | No log | 19.0 | 494 | 5.5382 | | 1.8345 | 20.0 | 520 | 6.3654 | | 1.8345 | 21.0 | 546 | 5.3575 | | 1.8345 | 22.0 | 572 | 5.3808 | | 1.8345 | 23.0 | 598 | 5.9340 | | 1.8345 | 24.0 | 624 | 6.1475 | | 1.8345 | 25.0 | 650 | 6.2188 | | 1.8345 | 26.0 | 676 | 5.7651 | | 1.8345 | 27.0 | 702 | 6.2629 | | 1.8345 | 28.0 | 728 | 6.1356 | | 1.8345 | 29.0 | 754 | 5.9255 | | 1.8345 | 30.0 | 780 | 6.4252 | | 1.8345 | 31.0 | 806 | 5.6967 | | 1.8345 | 32.0 | 832 | 6.4324 | | 1.8345 | 33.0 | 858 | 6.5087 | | 1.8345 | 34.0 | 884 | 6.1113 | | 1.8345 | 35.0 | 910 | 6.7443 | | 1.8345 | 36.0 | 936 | 6.6970 | | 1.8345 | 37.0 | 962 | 6.5578 | | 1.8345 | 38.0 | 988 | 6.1963 | | 0.2251 | 39.0 | 1014 | 6.4893 | | 0.2251 | 40.0 | 1040 | 6.6347 | | 0.2251 | 41.0 | 1066 | 6.7106 | | 0.2251 | 42.0 | 1092 | 6.8129 | | 0.2251 | 43.0 | 1118 | 6.6386 | | 0.2251 | 44.0 | 1144 | 6.4134 | | 0.2251 | 45.0 | 1170 | 6.6883 | | 0.2251 | 46.0 | 1196 | 6.6406 | | 0.2251 | 47.0 | 1222 | 6.3065 | | 0.2251 | 48.0 | 1248 | 7.0281 | | 0.2251 | 49.0 | 1274 | 7.3646 | | 0.2251 | 50.0 | 1300 | 7.1086 | | 0.2251 | 51.0 | 1326 | 6.4749 | | 0.2251 | 52.0 | 1352 | 6.3303 | | 0.2251 | 53.0 | 1378 | 6.2919 | | 0.2251 | 54.0 | 1404 | 6.3855 | | 0.2251 | 55.0 | 1430 | 6.9501 | | 0.2251 | 56.0 | 1456 | 6.8714 | | 0.2251 | 57.0 | 1482 | 6.9856 | | 0.0891 | 58.0 | 1508 | 6.9910 | | 0.0891 | 59.0 | 1534 | 6.9293 | | 0.0891 | 60.0 | 1560 | 7.3493 | | 0.0891 | 61.0 | 1586 | 7.1834 | | 0.0891 | 62.0 | 1612 | 7.0479 | | 0.0891 | 63.0 | 1638 | 6.7674 | | 0.0891 | 64.0 | 1664 | 6.7553 | | 0.0891 | 65.0 | 1690 | 7.3074 | | 0.0891 | 66.0 | 1716 | 6.8071 | | 0.0891 | 67.0 | 1742 | 7.6622 | | 0.0891 | 68.0 | 1768 | 6.9555 | | 0.0891 | 69.0 | 1794 | 7.0153 | | 0.0891 | 70.0 | 1820 | 7.2085 | | 0.0891 | 71.0 | 1846 | 6.7582 | | 0.0891 | 72.0 | 1872 | 6.7989 | | 0.0891 | 73.0 | 1898 | 6.7012 | | 0.0891 | 74.0 | 1924 | 7.0088 | | 0.0891 | 75.0 | 1950 | 7.1024 | | 0.0891 | 76.0 | 1976 | 6.6968 | | 0.058 | 77.0 | 2002 | 7.5249 | | 0.058 | 78.0 | 2028 | 6.9199 | | 0.058 | 79.0 | 2054 | 7.1995 | | 0.058 | 80.0 | 2080 | 6.9349 | | 0.058 | 81.0 | 2106 | 7.4025 | | 0.058 | 82.0 | 2132 | 7.4199 | | 0.058 | 83.0 | 2158 | 6.8081 | | 0.058 | 84.0 | 2184 | 7.4777 | | 0.058 | 85.0 | 2210 | 7.1990 | | 0.058 | 86.0 | 2236 | 7.0062 | | 0.058 | 87.0 | 2262 | 7.5724 | | 0.058 | 88.0 | 2288 | 6.9362 | | 0.058 | 89.0 | 2314 | 7.1368 | | 0.058 | 90.0 | 2340 | 7.2183 | | 0.058 | 91.0 | 2366 | 6.8684 | | 0.058 | 92.0 | 2392 | 7.1433 | | 0.058 | 93.0 | 2418 | 7.2161 | | 0.058 | 94.0 | 2444 | 7.1442 | | 0.058 | 95.0 | 2470 | 7.3098 | | 0.058 | 96.0 | 2496 | 7.1264 | | 0.0512 | 97.0 | 2522 | 6.9424 | | 0.0512 | 98.0 | 2548 | 6.9155 | | 0.0512 | 99.0 | 2574 | 6.9038 | | 0.0512 | 100.0 | 2600 | 6.9101 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.0+cu102 - Datasets 1.12.1 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "model-index": [{"name": "distilbert-base-uncased-finetuned-legal_data", "results": []}]}
question-answering
MariamD/distilbert-base-uncased-finetuned-legal_data
[ "transformers", "pytorch", "tensorboard", "distilbert", "question-answering", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #distilbert #question-answering #generated_from_trainer #license-apache-2.0 #endpoints_compatible #region-us
distilbert-base-uncased-finetuned-legal\_data ============================================= This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set: * Loss: 6.9101 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 16 * eval\_batch\_size: 16 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 100 ### Training results ### Framework versions * Transformers 4.11.3 * Pytorch 1.9.0+cu102 * Datasets 1.12.1 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 100", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.3\n* Pytorch 1.9.0+cu102\n* Datasets 1.12.1\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #distilbert #question-answering #generated_from_trainer #license-apache-2.0 #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 100", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.3\n* Pytorch 1.9.0+cu102\n* Datasets 1.12.1\n* Tokenizers 0.10.3" ]
[ 50, 98, 4, 34 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #question-answering #generated_from_trainer #license-apache-2.0 #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 100### Training results### Framework versions\n\n\n* Transformers 4.11.3\n* Pytorch 1.9.0+cu102\n* Datasets 1.12.1\n* Tokenizers 0.10.3" ]
[ -0.10118985921144485, 0.05233021825551987, -0.001779892947524786, 0.11760102957487106, 0.17029547691345215, 0.0252293162047863, 0.10521848499774933, 0.10494036227464676, -0.09852024167776108, 0.03293890133500099, 0.12591692805290222, 0.16819517314434052, -0.002352971350774169, 0.051273513585329056, -0.05220281332731247, -0.22269558906555176, -0.02521630749106407, 0.04345906153321266, -0.09350401163101196, 0.1401282548904419, 0.07888881862163544, -0.15515658259391785, 0.06562098860740662, -0.00298601808026433, -0.2309214472770691, 0.012646005488932133, 0.008447980508208275, -0.035077448934316635, 0.15227636694908142, -0.006488285027444363, 0.14182785153388977, -0.003937585279345512, 0.0938115045428276, -0.17974728345870972, 0.014908012002706528, 0.05536855012178421, 0.010164523497223854, 0.07959939539432526, 0.04713653400540352, 0.003413149854168296, 0.10388348996639252, -0.0877770334482193, 0.05170898139476776, 0.019687507301568985, -0.12769055366516113, -0.2383863627910614, -0.10712753236293793, 0.008406125009059906, 0.06592586636543274, 0.11870136857032776, -0.003141321474686265, 0.16847911477088928, -0.11404464393854141, 0.09154406934976578, 0.24928326904773712, -0.29456955194473267, -0.08070158213376999, 0.049944400787353516, 0.023592401295900345, 0.08204431086778641, -0.10916373133659363, -0.027696503326296806, 0.05792975798249245, 0.05392219126224518, 0.11055346578359604, -0.044830381870269775, -0.13069863617420197, 0.03847600519657135, -0.1521112024784088, -0.026946956291794777, 0.09149951487779617, 0.048088159412145615, -0.028275979682803154, -0.007299698423594236, -0.06732388585805893, -0.13359929621219635, -0.030110521242022514, -0.025192443281412125, 0.053861647844314575, -0.05096400901675224, -0.09026362746953964, -0.0025843537878245115, -0.10393135249614716, -0.08664495497941971, -0.07376307994127274, 0.14858880639076233, 0.03893756493926048, 0.02941143698990345, -0.040159761905670166, 0.10515471547842026, -0.0028606881387531757, -0.13973882794380188, 0.026277659460902214, 0.03750140592455864, -0.031054511666297913, -0.044641464948654175, -0.06807051599025726, -0.06728317588567734, 0.02228309027850628, 0.11740101873874664, -0.06423276662826538, 0.040400125086307526, 0.054461847990751266, 0.04276351258158684, -0.10458258539438248, 0.1858654022216797, -0.0488743782043457, -0.02188178151845932, -0.006563910748809576, 0.045598819851875305, -0.0017287576338276267, -0.0041325995698571205, -0.10006456822156906, 0.0016670620534569025, 0.09233534336090088, 0.017042582854628563, -0.048745378851890564, 0.04579069837927818, -0.04089954122900963, -0.010709310881793499, -0.036891523748636246, -0.08838875591754913, 0.04013215750455856, -0.004053955432027578, -0.08634202182292938, -0.00207566493190825, 0.005679875146597624, 0.018123621121048927, -0.007717358414083719, 0.13541755080223083, -0.08876261115074158, 0.047769010066986084, -0.11190523952245712, -0.09901580214500427, 0.021236145868897438, -0.07884809374809265, 0.02149982377886772, -0.0825829952955246, -0.1515466570854187, -0.02003300003707409, 0.06525442749261856, -0.02921106293797493, -0.03629378601908684, -0.03217390179634094, -0.09775445610284805, -0.011176266707479954, -0.01879158988595009, 0.1812696009874344, -0.05713597685098648, 0.12244103103876114, 0.040886566042900085, 0.0635422021150589, -0.04729802533984184, 0.04674962908029556, -0.0914655327796936, 0.01345369778573513, -0.18866576254367828, 0.026382578536868095, -0.06198423355817795, 0.07854700833559036, -0.08947654813528061, -0.1218867227435112, 0.01894230954349041, -0.017825672402977943, 0.0946500226855278, 0.08656338602304459, -0.18494819104671478, -0.05976877361536026, 0.14080409705638885, -0.04707411676645279, -0.1359616369009018, 0.12466274201869965, -0.06349251419305801, 0.03276366740465164, 0.07259786874055862, 0.1648574024438858, 0.03686138615012169, -0.10917447507381439, 0.02385779470205307, -0.012128312140703201, 0.04755091667175293, -0.06698735803365707, 0.05122804269194603, -0.0054914988577365875, 0.021170321851968765, 0.021346036344766617, -0.06207497417926788, 0.05304209142923355, -0.11611606925725937, -0.09522995352745056, -0.05534355714917183, -0.10585980862379074, 0.03007444180548191, 0.08689458668231964, 0.07199131697416306, -0.10493636876344681, -0.06938663125038147, 0.07780611515045166, 0.06321942061185837, -0.05139412358403206, 0.030196906998753548, -0.05799506604671478, 0.06745271384716034, -0.055929187685251236, -0.030042005702853203, -0.19820536673069, -0.0162259079515934, -0.0018562623299658298, 0.009891237132251263, 0.02898736484348774, 0.04062109440565109, 0.08210881799459457, 0.045640815049409866, -0.05688073858618736, -0.01153542660176754, -0.055596012622117996, -0.0031104895751923323, -0.1407410055398941, -0.20000097155570984, -0.031812380999326706, -0.011519785970449448, 0.08505968004465103, -0.18356327712535858, 0.022361984476447105, -0.03438239544630051, 0.06655775010585785, -0.007982457987964153, -0.009553118608891964, -0.06210988014936447, 0.09120842814445496, -0.008944977074861526, -0.0462687686085701, 0.06588739901781082, -0.007437008898705244, -0.08791492134332657, -0.0836310014128685, -0.06983725726604462, 0.1659897267818451, 0.1373530477285385, -0.1428956538438797, -0.07432994246482849, 0.01995084434747696, -0.0669913962483406, -0.029123473912477493, -0.04618963971734047, 0.049243099987506866, 0.18529100716114044, 0.001328050740994513, 0.12277982383966446, -0.07658183574676514, -0.049349501729011536, 0.005565852392464876, -0.03039771132171154, 0.0652477815747261, 0.11987753212451935, 0.13797739148139954, -0.06398417055606842, 0.12858566641807556, 0.16642451286315918, -0.12209608405828476, 0.08428259938955307, -0.06316538900136948, -0.08681179583072662, -0.031179029494524002, -0.0027097074780613184, -0.001645280048251152, 0.13161873817443848, -0.13194333016872406, 0.008282211609184742, 0.015591972507536411, 0.020732766017317772, 0.019723568111658096, -0.2408733367919922, -0.06096946448087692, 0.017662320286035538, -0.03795887157320976, -0.0304239634424448, -0.01762690395116806, 0.017911013215780258, 0.10280496627092361, -0.00918422732502222, -0.07215742766857147, 0.02412266656756401, -0.006631302181631327, -0.06083239987492561, 0.21767140924930573, -0.06427447497844696, -0.07429388910531998, -0.0835903063416481, -0.05368509516119957, -0.03546937555074692, -0.0035698027350008488, 0.055483199656009674, -0.10161885619163513, -0.01764592155814171, -0.040514394640922546, 0.015666821971535683, -0.0015246369875967503, 0.03350824862718582, 0.011453757993876934, -0.007341933436691761, 0.07814662158489227, -0.11996988207101822, 0.0049605295062065125, -0.0665108785033226, -0.07864708453416824, 0.05094661936163902, 0.06735661625862122, 0.13147102296352386, 0.1556459367275238, -0.016226312145590782, -0.0005780069041065872, -0.016488198190927505, 0.26185256242752075, -0.07741940021514893, -0.040982361882925034, 0.1250801980495453, -0.0034915583673864603, 0.06187184154987335, 0.10284732282161713, 0.08876443654298782, -0.10460355132818222, 0.009385421872138977, 0.039740439504384995, -0.03604297339916229, -0.2352835088968277, -0.023670407012104988, -0.05948776751756668, -0.048658255487680435, 0.0658659115433693, 0.024039722979068756, 0.03207743167877197, 0.06683111190795898, 0.051214348524808884, 0.05781184509396553, -0.06507767736911774, 0.04108361899852753, 0.09800498187541962, 0.04761723428964615, 0.11670971661806107, -0.0444490872323513, -0.07260748744010925, 0.021458737552165985, -0.014638989232480526, 0.2504311501979828, 0.0034340498968958855, 0.12235698103904724, 0.07862506061792374, 0.2101980745792389, -0.017248893156647682, 0.08356239646673203, -0.009352825582027435, -0.059253718703985214, -0.006893289741128683, -0.038960494101047516, -0.01916802115738392, 0.0066804285161197186, -0.044756144285202026, 0.07183773815631866, -0.08880285173654556, -0.024245254695415497, 0.06349889189004898, 0.26339566707611084, 0.016315219923853874, -0.286734938621521, -0.07317113131284714, -0.00598297081887722, -0.03735388442873955, 0.005008066538721323, 0.011174951680004597, 0.11531610786914825, -0.08886188268661499, 0.005797418300062418, -0.06618013232946396, 0.10713861137628555, 0.006680641323328018, 0.043227873742580414, 0.06307240575551987, 0.0952252522110939, 0.009837314486503601, 0.07592038065195084, -0.3270915746688843, 0.2837319076061249, 0.003270119195804, 0.09625338762998581, -0.07301531732082367, -0.01442931778728962, 0.024177074432373047, 0.024809284135699272, 0.06494215875864029, -0.014676935970783234, 0.00959497969597578, -0.1744479089975357, -0.029630709439516068, 0.042221587151288986, 0.10570941865444183, -0.00876634381711483, 0.09837642312049866, -0.011827003210783005, 0.00974829401820898, 0.08185891062021255, 0.0035443741362541914, -0.06111994758248329, -0.06619779020547867, -0.026650920510292053, 0.00043670294689945877, -0.06624014675617218, -0.06580276042222977, -0.10584182292222977, -0.1407988965511322, 0.11025809496641159, -0.00275468360632658, -0.018743323162198067, -0.10776713490486145, 0.09267356246709824, 0.10461550205945969, -0.07709428668022156, 0.036097586154937744, 0.022524762898683548, 0.02238612435758114, 0.037922970950603485, -0.05507756769657135, 0.09899307042360306, -0.061824195086956024, -0.15821503102779388, -0.050539933145046234, 0.1043335422873497, 0.053920019418001175, 0.07233444601297379, -0.013354838825762272, 0.01979362964630127, -0.05442887172102928, -0.11132750660181046, 0.027127457782626152, -0.0444517657160759, 0.08818855881690979, 0.015992118045687675, -0.02722083032131195, 0.04682033509016037, -0.06121767312288284, -0.016435427591204643, 0.17545022070407867, 0.24327190220355988, -0.09538815170526505, -0.0029217898845672607, 0.03508235514163971, -0.04707039147615433, -0.17751851677894592, 0.07296758890151978, 0.07613738626241684, -0.009519901126623154, 0.057246722280979156, -0.1433800607919693, 0.1636565923690796, 0.11235514283180237, -0.010309675708413124, 0.11544922739267349, -0.3624133765697479, -0.12202953547239304, 0.08621375262737274, 0.17498263716697693, 0.12934841215610504, -0.16246652603149414, -0.019825872033834457, -0.009594076313078403, -0.16547046601772308, 0.09649672359228134, -0.10675051063299179, 0.10979355871677399, -0.02547604776918888, 0.10809032618999481, -0.0019018471939489245, -0.07509669661521912, 0.12709550559520721, 0.029850350692868233, 0.11441287398338318, -0.05210579186677933, -0.0298851877450943, 0.06829775869846344, -0.018805641680955887, 0.0037000058218836784, -0.06359762698411942, 0.034265775233507156, -0.0730377584695816, -0.011659001000225544, -0.10114233195781708, 0.03848310559988022, -0.04478318616747856, -0.05750962346792221, -0.03400341421365738, 0.01891374960541725, 0.04631378874182701, -0.017717745155096054, 0.1072232574224472, 0.027173442766070366, 0.15694528818130493, 0.0711241140961647, 0.07028122246265411, -0.07776142656803131, -0.10129718482494354, -0.0023170525673776865, -0.006826329510658979, 0.05999871343374252, -0.1363353282213211, 0.017946720123291016, 0.15705421566963196, 0.049919918179512024, 0.11342824995517731, 0.08407416939735413, -0.028404567390680313, 0.00891796313226223, 0.045437004417181015, -0.1574908047914505, -0.12385248392820358, 0.02692423015832901, -0.067118339240551, -0.1047663614153862, 0.0595477931201458, 0.060444340109825134, -0.05638013407588005, -0.0064001744613051414, -0.00029317167354747653, -0.013677969574928284, -0.0745139867067337, 0.21688248217105865, 0.08310022950172424, 0.05117664858698845, -0.10905150324106216, 0.06705235689878464, 0.04853447899222374, -0.09808043390512466, -0.015699107199907303, 0.06463153660297394, -0.06866280734539032, -0.031088246032595634, 0.11710958927869797, 0.17448997497558594, -0.05396975949406624, -0.024049311876296997, -0.13462893664836884, -0.11356659978628159, 0.07028540968894958, 0.1692679524421692, 0.11688953638076782, -0.004189207684248686, -0.05078570917248726, 0.030923942103981972, -0.121973916888237, 0.0772629827260971, 0.0427512563765049, 0.069203220307827, -0.12408797442913055, 0.15653058886528015, 0.007501969113945961, 0.04974711686372757, -0.020711209625005722, 0.04649914428591728, -0.10266093909740448, 0.03817932680249214, -0.1455223560333252, -0.044650573283433914, -0.016258852556347847, -0.00947277806699276, -0.007048649247735739, -0.08998914808034897, -0.06683868914842606, 0.020252320915460587, -0.13111263513565063, -0.02237766794860363, 0.05361538752913475, 0.028734344989061356, -0.13985271751880646, -0.04339948669075966, 0.04023296386003494, -0.05306369811296463, 0.05031849071383476, 0.06386246532201767, 0.009961600415408611, 0.07327494770288467, -0.16901183128356934, -0.02559254691004753, 0.05393321439623833, 0.016514625400304794, 0.08653727918863297, -0.07375559210777283, -0.02238551340997219, 0.003009914420545101, 0.09595455229282379, 0.018222028389573097, 0.04687827080488205, -0.13708312809467316, -0.012634155340492725, -0.031237278133630753, -0.09511662274599075, -0.06491655111312866, 0.0024407252203673124, 0.09156235307455063, 0.028589587658643723, 0.19664350152015686, -0.0639127641916275, 0.05957242101430893, -0.22308547794818878, -0.008583043701946735, -0.011515811085700989, -0.09087877720594406, -0.11964101344347, -0.055925771594047546, 0.07384704798460007, -0.0633869543671608, 0.12035136669874191, -0.006796516012400389, 0.06502373516559601, 0.027968399226665497, -0.013228297233581543, 0.01966414973139763, 0.01815059967339039, 0.24467012286186218, 0.029618816450238228, -0.02572713792324066, 0.06868603825569153, 0.05909769982099533, 0.0773298367857933, 0.09670750796794891, 0.22333112359046936, 0.1830052137374878, 0.00835902988910675, 0.07347789406776428, 0.03831297159194946, -0.049628857523202896, -0.13216155767440796, 0.03706586733460426, -0.03918064385652542, 0.07585562020540237, -0.026606911793351173, 0.24325454235076904, 0.058007534593343735, -0.17320628464221954, 0.053358037024736404, -0.06733952462673187, -0.09414951503276825, -0.08759260177612305, -0.005266540218144655, -0.07023220509290695, -0.15096625685691833, 0.020991211757063866, -0.10996389389038086, 0.02464282512664795, 0.13735683262348175, 0.014548102393746376, -0.026092849671840668, 0.1894812285900116, 0.04776924103498459, 0.040881067514419556, 0.04345688596367836, 0.001746008638292551, -0.02442570962011814, -0.07885368168354034, -0.04994508996605873, -0.017762543633580208, -0.027861272916197777, 0.043679844588041306, -0.058517441153526306, -0.09811563789844513, 0.027638161554932594, -0.024747656658291817, -0.09300282597541809, 0.016744710505008698, 0.030785037204623222, 0.07914286106824875, 0.055645912885665894, 0.008993216790258884, 0.034285176545381546, -0.02674197591841221, 0.22716307640075684, -0.08762993663549423, -0.10609348863363266, -0.0876171737909317, 0.23988617956638336, 0.029440347105264664, -0.017522824928164482, 0.03231864422559738, -0.06811459362506866, 0.01155624259263277, 0.24184906482696533, 0.17494118213653564, -0.12733890116214752, -0.012268297374248505, 0.009616545401513577, -0.011438717134296894, -0.04885854572057724, 0.10071061551570892, 0.14768671989440918, 0.05756784975528717, -0.11472785472869873, -0.0416363961994648, -0.07069338113069534, -0.015555489808321, -0.04369240999221802, 0.04700396955013275, 0.04745739698410034, -0.005844363942742348, -0.0431765541434288, 0.07858811318874359, -0.06497862190008163, -0.13982611894607544, 0.08063102513551712, -0.19897057116031647, -0.16379523277282715, -0.013956161215901375, 0.1358906626701355, -0.001609604456461966, 0.059261925518512726, -0.036742158234119415, 0.0071790749207139015, 0.05942163243889809, -0.02555685304105282, -0.07437305152416229, -0.0914667546749115, 0.11944282054901123, -0.12000614404678345, 0.1861048936843872, -0.037701524794101715, 0.09805497527122498, 0.12641221284866333, 0.06528959423303604, -0.06396475434303284, 0.07042395323514938, 0.06559574604034424, -0.12862296402454376, 0.01331583596765995, 0.08754867315292358, -0.016877098008990288, 0.03333337604999542, 0.042359646409749985, -0.12265844643115997, 0.02174731343984604, -0.03694983199238777, -0.031345970928668976, -0.07035455852746964, -0.04233730956912041, -0.06492289900779724, 0.12014253437519073, 0.21555377542972565, -0.029643431305885315, 0.03294222429394722, -0.08061158657073975, 0.012595733627676964, 0.05352437123656273, 0.03601107373833656, -0.09247925877571106, -0.22904127836227417, 0.029899153858423233, 0.057438526302576065, -0.037856172770261765, -0.18831896781921387, -0.09788963943719864, 0.028457198292016983, -0.07978110760450363, -0.07505746930837631, 0.06293994933366776, 0.08352844417095184, 0.05882389470934868, -0.042776741087436676, -0.10815131664276123, -0.08973848819732666, 0.16147038340568542, -0.15545912086963654, -0.07916396111249924 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # bert-model-english This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.1408 - Train Sparse Categorical Accuracy: 0.9512 - Validation Loss: nan - Validation Sparse Categorical Accuracy: 0.0 - Epoch: 4 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': 5e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train Sparse Categorical Accuracy | Validation Loss | Validation Sparse Categorical Accuracy | Epoch | |:----------:|:---------------------------------:|:---------------:|:--------------------------------------:|:-----:| | 0.2775 | 0.8887 | nan | 0.0 | 0 | | 0.1702 | 0.9390 | nan | 0.0 | 1 | | 0.1300 | 0.9555 | nan | 0.0 | 2 | | 0.1346 | 0.9544 | nan | 0.0 | 3 | | 0.1408 | 0.9512 | nan | 0.0 | 4 | ### Framework versions - Transformers 4.16.2 - TensorFlow 2.7.0 - Datasets 1.18.3 - Tokenizers 0.11.0
{"license": "apache-2.0", "tags": ["generated_from_keras_callback"], "model-index": [{"name": "bert-model-english", "results": []}]}
text-classification
MarioPenguin/bert-model-english
[ "transformers", "tf", "bert", "text-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #tf #bert #text-classification #generated_from_keras_callback #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
bert-model-english ================== This model is a fine-tuned version of bert-base-cased on an unknown dataset. It achieves the following results on the evaluation set: * Train Loss: 0.1408 * Train Sparse Categorical Accuracy: 0.9512 * Validation Loss: nan * Validation Sparse Categorical Accuracy: 0.0 * Epoch: 4 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * optimizer: {'name': 'Adam', 'learning\_rate': 5e-05, 'decay': 0.0, 'beta\_1': 0.9, 'beta\_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False} * training\_precision: float32 ### Training results ### Framework versions * Transformers 4.16.2 * TensorFlow 2.7.0 * Datasets 1.18.3 * Tokenizers 0.11.0
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* optimizer: {'name': 'Adam', 'learning\\_rate': 5e-05, 'decay': 0.0, 'beta\\_1': 0.9, 'beta\\_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False}\n* training\\_precision: float32", "### Training results", "### Framework versions\n\n\n* Transformers 4.16.2\n* TensorFlow 2.7.0\n* Datasets 1.18.3\n* Tokenizers 0.11.0" ]
[ "TAGS\n#transformers #tf #bert #text-classification #generated_from_keras_callback #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* optimizer: {'name': 'Adam', 'learning\\_rate': 5e-05, 'decay': 0.0, 'beta\\_1': 0.9, 'beta\\_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False}\n* training\\_precision: float32", "### Training results", "### Framework versions\n\n\n* Transformers 4.16.2\n* TensorFlow 2.7.0\n* Datasets 1.18.3\n* Tokenizers 0.11.0" ]
[ 54, 99, 4, 33 ]
[ "passage: TAGS\n#transformers #tf #bert #text-classification #generated_from_keras_callback #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* optimizer: {'name': 'Adam', 'learning\\_rate': 5e-05, 'decay': 0.0, 'beta\\_1': 0.9, 'beta\\_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False}\n* training\\_precision: float32### Training results### Framework versions\n\n\n* Transformers 4.16.2\n* TensorFlow 2.7.0\n* Datasets 1.18.3\n* Tokenizers 0.11.0" ]
[ -0.04901175573468208, 0.02745315246284008, -0.0025872548576444387, 0.08225959539413452, 0.1745181530714035, 0.030297739431262016, 0.12480733543634415, 0.10991672426462173, -0.12708044052124023, 0.03801697492599487, 0.14511485397815704, 0.19501258432865143, 0.03331105783581734, 0.10570385307073593, -0.11893036961555481, -0.16545255482196808, 0.05463438108563423, 0.002582367043942213, -0.07062859833240509, 0.09185533970594406, 0.09974172711372375, -0.0849916860461235, 0.11357242614030838, 0.0020819955971091986, -0.20304562151432037, 0.05364583060145378, 0.10921644419431686, -0.08735370635986328, 0.12550030648708344, 0.09310760349035263, 0.08997875452041626, -0.013274396769702435, 0.016065724194049835, -0.1703680008649826, 0.01515729259699583, 0.09990102052688599, -0.025118067860603333, 0.06839240342378616, 0.016063837334513664, -0.014820094220340252, 0.13982772827148438, -0.08044611662626266, 0.03169332817196846, 0.03839157521724701, -0.1254069060087204, -0.2199523001909256, -0.1289873570203781, -0.016896916553378105, 0.06618306785821915, 0.09367823600769043, 0.007523954380303621, 0.21314717829227448, -0.051953867077827454, 0.10329433530569077, 0.17056886851787567, -0.3640322983264923, -0.052556321024894714, 0.021489478647708893, -0.008538532070815563, 0.054946910589933395, -0.04269362986087799, 0.05353635177016258, 0.07515176385641098, 0.044048208743333817, 0.06391484290361404, -0.04087500274181366, -0.14468638598918915, -0.011062582023441792, -0.0947866216301918, -0.013451915234327316, 0.14828698337078094, 0.035384051501750946, -0.06638022512197495, -0.01812644489109516, -0.04166990518569946, -0.1158546432852745, 0.00321171130053699, -0.05679014325141907, 0.036379288882017136, 0.004751625005155802, -0.033638227730989456, -0.04964056611061096, -0.08808603882789612, -0.048662614077329636, -0.12714166939258575, 0.16411025822162628, 0.013128542341291904, 0.061224471777677536, -0.046906519681215286, 0.04950224235653877, -0.06387428194284439, -0.11063871532678604, -0.0017187874764204025, 0.005060885567218065, -0.0179204773157835, -0.052898820489645004, -0.1164516881108284, -0.1414899080991745, 0.05321502313017845, 0.1038479134440422, -0.03356010094285011, 0.07299339026212692, -0.08194729685783386, 0.03180614113807678, -0.11552751809358597, 0.16342155635356903, -0.015929417684674263, 0.006571526173502207, 0.05221232399344444, -0.013958104886114597, 0.061128418892621994, -0.03694987669587135, -0.11059356480836868, 0.004496137145906687, 0.07472439110279083, 0.020877733826637268, -0.07814536243677139, 0.10244186967611313, -0.06344766169786453, -0.008138841018080711, -0.02942032366991043, -0.09014523774385452, 0.029462577775120735, -0.01628621481359005, -0.08462673425674438, -0.013321581296622753, 0.07352853566408157, 0.024208588525652885, -0.04301981255412102, 0.043142300099134445, -0.061602190136909485, -0.005555696785449982, -0.0927978977560997, -0.1282929629087448, 0.022984759882092476, -0.08919816464185715, 0.01180710643529892, -0.10511928796768188, -0.18383455276489258, -0.01147241797298193, 0.06653452664613724, -0.03250608220696449, -0.013806351460516453, -0.0577358715236187, -0.13657093048095703, 0.03106154501438141, -0.018921969458460808, 0.15943288803100586, -0.05817423388361931, 0.05093877390027046, 0.004562774207442999, 0.06380362808704376, -0.14931271970272064, 0.04108723625540733, -0.056114595383405685, -0.008997000753879547, -0.1783103197813034, 0.05184965208172798, -0.05390843749046326, 0.06342161446809769, -0.12939198315143585, -0.06367812305688858, 0.03735603764653206, 0.023554475978016853, 0.09404603391885757, 0.08009392023086548, -0.1739039570093155, -0.05128386244177818, 0.10333413630723953, -0.07868801057338715, -0.1194583997130394, 0.09649551659822464, -0.0654146745800972, 0.060558024793863297, 0.09901268035173416, 0.11997916549444199, -0.01842948980629444, -0.10490318387746811, 0.055958185344934464, -0.02002042718231678, -0.033128004521131516, -0.013926227577030659, 0.010534253902733326, -0.007494052406400442, -0.09495320916175842, 0.031064361333847046, -0.010332961566746235, 0.03232346102595329, -0.06799846142530441, -0.07472042739391327, -0.047087956219911575, -0.08041208237409592, 0.030821530148386955, 0.020835503935813904, 0.09210420399904251, -0.11364889144897461, -0.0969739556312561, 0.05990883335471153, 0.012957364320755005, -0.024776838719844818, 0.03848390653729439, -0.08842717856168747, 0.013258267194032669, 0.011468215845525265, 0.011771188117563725, -0.17929017543792725, -0.04128795117139816, 0.008185542188584805, 0.0630863606929779, 0.046651244163513184, 0.001721053384244442, 0.06563100963830948, -0.00241970201022923, -0.05922828987240791, 0.04655594006180763, 0.026716137304902077, 0.025551922619342804, -0.10913962870836258, -0.22491325438022614, 0.02261977456510067, -0.020862428471446037, 0.07187602669000626, -0.2466614693403244, 0.00814083218574524, 0.025759480893611908, 0.09915385395288467, 0.029668182134628296, 0.018957721069455147, -0.05493049696087837, 0.0609750896692276, -0.03773759305477142, -0.04958901181817055, 0.04120682552456856, 0.030627788975834846, -0.1316501945257187, 0.011401393450796604, -0.13190874457359314, 0.15989950299263, 0.1623707264661789, -0.13603876531124115, -0.11102641373872757, 0.06171301379799843, -0.010381117463111877, -0.013202707283198833, 0.0005296726594679058, 0.0269762072712183, 0.18549717962741852, -0.015559437684714794, 0.15127363801002502, -0.06187090650200844, -0.03020443581044674, 0.038248706609010696, -0.038066621869802475, -0.01609322614967823, 0.09198442846536636, 0.005601327866315842, -0.18834124505519867, 0.10844602435827255, 0.15056754648685455, -0.1148342415690422, 0.09311691671609879, -0.03539364039897919, -0.04224838316440582, -0.04133286699652672, 0.005458755884319544, 0.03869721665978432, 0.06804228574037552, -0.10101905465126038, 0.0015163073549047112, 0.021528543904423714, 0.027098655700683594, -0.0009289272129535675, -0.20301373302936554, -0.014791354537010193, 0.00125076191034168, -0.03731166571378708, 0.0031847774516791105, 0.014876940287649632, 0.02200639806687832, 0.13596175611019135, 0.029314130544662476, -0.05318160727620125, 0.09823846817016602, -0.013222802430391312, -0.0913047194480896, 0.21821530163288116, -0.1513272076845169, -0.134630486369133, -0.12111195921897888, -0.08680877089500427, -0.08039072901010513, 0.01610165275633335, 0.02584945596754551, -0.10667667537927628, -0.06892215460538864, -0.06805917620658875, -0.010706792585551739, -0.016033267602324486, 0.052576687186956406, 0.045583855360746384, -0.00852146279066801, 0.11478880047798157, -0.10005753487348557, -0.045817021280527115, -0.04930931702256203, -0.07501569390296936, 0.037926483899354935, -0.002339736558496952, 0.042006272822618484, 0.10684775561094284, -0.03681501746177673, 0.02435602806508541, -0.0519530363380909, 0.22411389648914337, -0.046676501631736755, -0.03977913036942482, 0.13415981829166412, -0.04829166829586029, 0.03296910598874092, 0.10796710103750229, 0.036279212683439255, -0.1380796581506729, 0.05400758981704712, 0.05654730275273323, -0.039002612233161926, -0.2579987049102783, -0.03139936178922653, -0.040261466056108475, -0.11413484811782837, 0.0251943226903677, 0.03696989640593529, 0.15570800006389618, 0.029136015102267265, 0.04938700795173645, 0.125013068318367, -0.0036318933125585318, 0.05329976603388786, 0.19839225709438324, 0.0573771707713604, 0.10446498543024063, -0.06090988591313362, -0.01858566701412201, 0.060008078813552856, -0.03629952296614647, 0.19207872450351715, 0.04746794328093529, 0.03843206539750099, 0.06841891258955002, 0.08004679530858994, -0.022536607459187508, 0.022323010489344597, 0.01653795875608921, -0.05606620013713837, -0.01574987731873989, -0.052721038460731506, -0.04685452952980995, 0.058440301567316055, -0.10108575969934464, 0.06212674453854561, -0.08930906653404236, 0.012562480755150318, 0.06707677990198135, 0.2486828714609146, 0.03946784511208534, -0.31771594285964966, -0.09838372468948364, 0.009848260320723057, -0.03141576051712036, -0.03381281718611717, 0.00287546101026237, 0.07245928794145584, -0.07170560210943222, 0.10923952609300613, -0.06045147404074669, 0.07451165467500687, 0.009976341389119625, 0.06398644298315048, 0.06889951229095459, 0.09943574666976929, 0.00632862513884902, 0.02923378348350525, -0.361287921667099, 0.28696468472480774, 0.040360137820243835, 0.1356642097234726, -0.0946536734700203, 0.014920574612915516, 0.04174584150314331, 0.04700268432497978, 0.08061375468969345, -0.017911015078425407, -0.13355864584445953, -0.14372624456882477, -0.01225393358618021, 0.030654869973659515, 0.1360412836074829, 0.06988904625177383, 0.08416087180376053, -0.03882039710879326, 0.022535771131515503, 0.09216385334730148, 0.02689400315284729, -0.1295316219329834, -0.06882759183645248, 0.005853656679391861, 0.06771419942378998, -0.057719048112630844, -0.05377623438835144, -0.08039123564958572, -0.11606179922819138, 0.21449436247348785, -0.05129079893231392, -0.02163168042898178, -0.12790848314762115, 0.10047778487205505, 0.04030710086226463, -0.053850650787353516, 0.045435529202222824, -0.003091854741796851, 0.04100381210446358, 0.05650131031870842, -0.14093641936779022, 0.1538510024547577, -0.0337924063205719, -0.1607404202222824, -0.056364092975854874, 0.0675518661737442, 0.033584751188755035, 0.04679933562874794, 0.015996426343917847, 0.051384344696998596, 0.02459602802991867, -0.09178715199232101, 0.07705577462911606, 0.01115631964057684, 0.052060816437006, 0.028730658814311028, -0.03405190631747246, -0.0344231016933918, -0.04517976939678192, -0.016257861629128456, 0.17800839245319366, 0.25332269072532654, -0.09017441421747208, 0.03176574781537056, -0.01963082328438759, -0.08815162628889084, -0.23047620058059692, 0.11824961751699448, 0.06917297095060349, 0.007516396697610617, -0.011387082748115063, -0.14876481890678406, 0.11683209985494614, 0.08635421842336655, -0.015000586397945881, 0.09260011464357376, -0.2545721232891083, -0.15203171968460083, 0.11717637628316879, 0.13642777502536774, 0.22579152882099152, -0.15020060539245605, -0.033779896795749664, -0.08698437362909317, -0.06523950397968292, 0.18081755936145782, -0.1510946899652481, 0.10201290249824524, 0.02028719149529934, 0.06684209406375885, -0.00211875862441957, -0.021536558866500854, 0.1080550029873848, -0.0364379920065403, 0.12770144641399384, -0.07196851074695587, -0.042979683727025986, 0.09674596041440964, -0.0406607910990715, 0.01805739663541317, -0.05369853600859642, 0.022753247991204262, -0.06111707165837288, 0.0010981386294588447, -0.07528100162744522, 0.06535454839468002, -0.028740758076310158, -0.028464829549193382, -0.025406742468476295, 0.026927689090371132, 0.07008600980043411, -0.04219839349389076, 0.16492952406406403, -0.018427036702632904, 0.1788695901632309, 0.16203497350215912, 0.10756539553403854, -0.055547937750816345, 0.08116119354963303, 0.0692737028002739, -0.04344644770026207, 0.0856003388762474, -0.16091623902320862, 0.05201667174696922, 0.113648921251297, -0.016272656619548798, 0.12906956672668457, 0.07165151834487915, -0.0352293998003006, 0.025521792471408844, 0.07123889029026031, -0.1564285308122635, -0.09711182117462158, 0.020695261657238007, -0.024248966947197914, -0.046193595975637436, 0.07791221886873245, 0.1527089774608612, -0.04132932797074318, 0.019001798704266548, 0.003386293537914753, 0.004791943822056055, -0.09571626037359238, 0.12656699120998383, 0.02456449158489704, 0.0075157638639211655, -0.09868013113737106, 0.13181331753730774, 0.03126685321331024, -0.080368272960186, 0.09291678667068481, 0.01641760766506195, -0.07760918885469437, -0.02341216802597046, 0.07977256923913956, 0.15127702057361603, -0.024081023409962654, -0.07034788280725479, -0.1153961792588234, -0.16996781527996063, 0.06310876458883286, 0.26654210686683655, 0.08433198183774948, 0.03336014971137047, -0.0475839227437973, -0.010669191367924213, -0.07716499269008636, 0.03144798055291176, 0.021257394924759865, 0.046182576566934586, -0.13848383724689484, 0.16068333387374878, -0.020145133137702942, 0.024864472448825836, -0.04801381751894951, 0.02947874926030636, -0.15853723883628845, 0.0024302350357174873, -0.17505024373531342, -0.003983801230788231, 0.012797079049050808, -0.0011664811754599214, 0.03407665714621544, -0.07411547750234604, -0.101542167365551, 0.04466255381703377, -0.11463874578475952, -0.02061060443520546, 0.06221301853656769, 0.04250573739409447, -0.1115979477763176, -0.07536187767982483, 0.012894604355096817, -0.054839838296175, 0.04012797400355339, 0.08700519055128098, -0.014455434866249561, 0.08905179053544998, -0.184647336602211, -0.006092569325119257, 0.09732687473297119, 0.008474708534777164, 0.08684337139129639, -0.09297844022512436, -0.011378579773008823, 0.028873013332486153, 0.07066660374403, 0.036239299923181534, 0.13473151624202728, -0.09146221727132797, -0.05891020968556404, -0.011498995125293732, -0.04574068263173103, -0.04223558306694031, 0.03584326058626175, 0.14010821282863617, -0.005055386107414961, 0.19712309539318085, -0.11592303961515427, -0.018272263929247856, -0.15166614949703217, 0.014266402460634708, -0.010132555849850178, -0.1326577514410019, -0.1310599446296692, -0.033808473497629166, 0.0841188058257103, -0.07092658430337906, 0.1537475436925888, 0.001183310174383223, 0.07400863617658615, 0.056283097714185715, -0.02957710437476635, -0.04948782920837402, 0.051313649863004684, 0.2081059217453003, 0.044742923229932785, -0.017993459478020668, 0.031145380809903145, 0.010585907846689224, 0.09635499864816666, 0.09764397889375687, 0.2481483817100525, 0.12863920629024506, -0.015790347009897232, 0.1466313749551773, 0.04406033828854561, -0.0421239472925663, -0.07756981253623962, 0.08183027803897858, -0.09048101305961609, 0.15743090212345123, -0.04381836578249931, 0.09164205193519592, 0.06251531094312668, -0.16294732689857483, 0.01775679737329483, -0.09297413378953934, -0.078140988945961, -0.1510990560054779, -0.08672375231981277, -0.10893511772155762, -0.12361165136098862, 0.00538185378536582, -0.09967875480651855, 0.05379953607916832, 0.057235777378082275, 0.019599733874201775, -0.02413812279701233, 0.12457367032766342, -0.0697370171546936, 0.0053750756196677685, 0.09800391644239426, -0.02695462293922901, -0.03357237949967384, -0.0797058716416359, -0.06225944682955742, 0.028100185096263885, -0.008141297847032547, 0.02130749076604843, -0.010393613018095493, -0.01049644872546196, 0.04026930406689644, -0.0592447929084301, -0.09255599975585938, 0.04562481865286827, 0.050287049263715744, 0.026864642277359962, 0.029667096212506294, 0.046771179884672165, -0.0008451913599856198, -0.0025317827239632607, 0.16978003084659576, -0.10228859633207321, -0.04665751755237579, -0.1425289362668991, 0.30051133036613464, 0.013157960027456284, 0.047335777431726456, 0.000204687166842632, -0.05366593971848488, -0.036413054913282394, 0.23358702659606934, 0.18073834478855133, -0.10179535299539566, -0.010279118083417416, 0.017910059541463852, -0.0013166760327294469, -0.04734185338020325, 0.1457449346780777, 0.09454449266195297, -0.037952352315187454, -0.06522435694932938, -0.050806790590286255, -0.024650104343891144, 0.0015835148515179753, -0.03547529876232147, 0.07100701332092285, 0.0353722907602787, -0.020269038155674934, -0.008846654556691647, 0.055835504084825516, -0.06967044621706009, -0.10782789438962936, 0.051659565418958664, -0.1980852484703064, -0.15681196749210358, -0.002909080358222127, 0.013950888998806477, -0.006705255713313818, 0.06720219552516937, -0.02625296451151371, 0.00008949203038355336, 0.07698067277669907, -0.0430416576564312, -0.04196861758828163, -0.09396734833717346, 0.08805274218320847, -0.12242814153432846, 0.17570281028747559, -0.01798068918287754, 0.06535795331001282, 0.12232023477554321, 0.052203837782144547, -0.06530623883008957, 0.05887340381741524, 0.03056909888982773, -0.09968618303537369, 0.01159647572785616, 0.05131980776786804, -0.03200342133641243, 0.09577947109937668, 0.05833815410733223, -0.07930616289377213, 0.06081950291991234, -0.11075250059366226, -0.11066529154777527, -0.023174606263637543, -0.05031008645892143, -0.10136237740516663, 0.11568313837051392, 0.23205846548080444, -0.02715272270143032, 0.0410478450357914, -0.05423690378665924, -0.006793866399675608, 0.06922764331102371, -0.0002929661422967911, -0.08048940449953079, -0.21773411333560944, 0.05222195386886597, 0.13097290694713593, 0.00948537141084671, -0.19270353019237518, -0.07259530574083328, -0.022559382021427155, -0.03337143734097481, -0.09302869439125061, 0.07376997917890549, 0.09341081976890564, 0.037405937910079956, -0.059948474168777466, -0.16764777898788452, -0.0317390076816082, 0.15597565472126007, -0.0814352035522461, -0.09136306494474411 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # bert-model-english1 This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0274 - Train Accuracy: 0.9914 - Validation Loss: 0.3493 - Validation Accuracy: 0.9303 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': 5e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch | |:----------:|:--------------:|:---------------:|:-------------------:|:-----:| | 0.0366 | 0.9885 | 0.3013 | 0.9299 | 0 | | 0.0261 | 0.9912 | 0.3445 | 0.9351 | 1 | | 0.0274 | 0.9914 | 0.3493 | 0.9303 | 2 | ### Framework versions - Transformers 4.16.2 - TensorFlow 2.7.0 - Datasets 1.18.3 - Tokenizers 0.11.0
{"license": "apache-2.0", "tags": ["generated_from_keras_callback"], "model-index": [{"name": "bert-model-english1", "results": []}]}
text-classification
MarioPenguin/bert-model-english1
[ "transformers", "tf", "bert", "text-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #tf #bert #text-classification #generated_from_keras_callback #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
bert-model-english1 =================== This model is a fine-tuned version of bert-base-cased on an unknown dataset. It achieves the following results on the evaluation set: * Train Loss: 0.0274 * Train Accuracy: 0.9914 * Validation Loss: 0.3493 * Validation Accuracy: 0.9303 * Epoch: 2 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * optimizer: {'name': 'Adam', 'learning\_rate': 5e-05, 'decay': 0.0, 'beta\_1': 0.9, 'beta\_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False} * training\_precision: float32 ### Training results ### Framework versions * Transformers 4.16.2 * TensorFlow 2.7.0 * Datasets 1.18.3 * Tokenizers 0.11.0
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* optimizer: {'name': 'Adam', 'learning\\_rate': 5e-05, 'decay': 0.0, 'beta\\_1': 0.9, 'beta\\_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False}\n* training\\_precision: float32", "### Training results", "### Framework versions\n\n\n* Transformers 4.16.2\n* TensorFlow 2.7.0\n* Datasets 1.18.3\n* Tokenizers 0.11.0" ]
[ "TAGS\n#transformers #tf #bert #text-classification #generated_from_keras_callback #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* optimizer: {'name': 'Adam', 'learning\\_rate': 5e-05, 'decay': 0.0, 'beta\\_1': 0.9, 'beta\\_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False}\n* training\\_precision: float32", "### Training results", "### Framework versions\n\n\n* Transformers 4.16.2\n* TensorFlow 2.7.0\n* Datasets 1.18.3\n* Tokenizers 0.11.0" ]
[ 54, 99, 4, 33 ]
[ "passage: TAGS\n#transformers #tf #bert #text-classification #generated_from_keras_callback #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* optimizer: {'name': 'Adam', 'learning\\_rate': 5e-05, 'decay': 0.0, 'beta\\_1': 0.9, 'beta\\_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False}\n* training\\_precision: float32### Training results### Framework versions\n\n\n* Transformers 4.16.2\n* TensorFlow 2.7.0\n* Datasets 1.18.3\n* Tokenizers 0.11.0" ]
[ -0.04901175573468208, 0.02745315246284008, -0.0025872548576444387, 0.08225959539413452, 0.1745181530714035, 0.030297739431262016, 0.12480733543634415, 0.10991672426462173, -0.12708044052124023, 0.03801697492599487, 0.14511485397815704, 0.19501258432865143, 0.03331105783581734, 0.10570385307073593, -0.11893036961555481, -0.16545255482196808, 0.05463438108563423, 0.002582367043942213, -0.07062859833240509, 0.09185533970594406, 0.09974172711372375, -0.0849916860461235, 0.11357242614030838, 0.0020819955971091986, -0.20304562151432037, 0.05364583060145378, 0.10921644419431686, -0.08735370635986328, 0.12550030648708344, 0.09310760349035263, 0.08997875452041626, -0.013274396769702435, 0.016065724194049835, -0.1703680008649826, 0.01515729259699583, 0.09990102052688599, -0.025118067860603333, 0.06839240342378616, 0.016063837334513664, -0.014820094220340252, 0.13982772827148438, -0.08044611662626266, 0.03169332817196846, 0.03839157521724701, -0.1254069060087204, -0.2199523001909256, -0.1289873570203781, -0.016896916553378105, 0.06618306785821915, 0.09367823600769043, 0.007523954380303621, 0.21314717829227448, -0.051953867077827454, 0.10329433530569077, 0.17056886851787567, -0.3640322983264923, -0.052556321024894714, 0.021489478647708893, -0.008538532070815563, 0.054946910589933395, -0.04269362986087799, 0.05353635177016258, 0.07515176385641098, 0.044048208743333817, 0.06391484290361404, -0.04087500274181366, -0.14468638598918915, -0.011062582023441792, -0.0947866216301918, -0.013451915234327316, 0.14828698337078094, 0.035384051501750946, -0.06638022512197495, -0.01812644489109516, -0.04166990518569946, -0.1158546432852745, 0.00321171130053699, -0.05679014325141907, 0.036379288882017136, 0.004751625005155802, -0.033638227730989456, -0.04964056611061096, -0.08808603882789612, -0.048662614077329636, -0.12714166939258575, 0.16411025822162628, 0.013128542341291904, 0.061224471777677536, -0.046906519681215286, 0.04950224235653877, -0.06387428194284439, -0.11063871532678604, -0.0017187874764204025, 0.005060885567218065, -0.0179204773157835, -0.052898820489645004, -0.1164516881108284, -0.1414899080991745, 0.05321502313017845, 0.1038479134440422, -0.03356010094285011, 0.07299339026212692, -0.08194729685783386, 0.03180614113807678, -0.11552751809358597, 0.16342155635356903, -0.015929417684674263, 0.006571526173502207, 0.05221232399344444, -0.013958104886114597, 0.061128418892621994, -0.03694987669587135, -0.11059356480836868, 0.004496137145906687, 0.07472439110279083, 0.020877733826637268, -0.07814536243677139, 0.10244186967611313, -0.06344766169786453, -0.008138841018080711, -0.02942032366991043, -0.09014523774385452, 0.029462577775120735, -0.01628621481359005, -0.08462673425674438, -0.013321581296622753, 0.07352853566408157, 0.024208588525652885, -0.04301981255412102, 0.043142300099134445, -0.061602190136909485, -0.005555696785449982, -0.0927978977560997, -0.1282929629087448, 0.022984759882092476, -0.08919816464185715, 0.01180710643529892, -0.10511928796768188, -0.18383455276489258, -0.01147241797298193, 0.06653452664613724, -0.03250608220696449, -0.013806351460516453, -0.0577358715236187, -0.13657093048095703, 0.03106154501438141, -0.018921969458460808, 0.15943288803100586, -0.05817423388361931, 0.05093877390027046, 0.004562774207442999, 0.06380362808704376, -0.14931271970272064, 0.04108723625540733, -0.056114595383405685, -0.008997000753879547, -0.1783103197813034, 0.05184965208172798, -0.05390843749046326, 0.06342161446809769, -0.12939198315143585, -0.06367812305688858, 0.03735603764653206, 0.023554475978016853, 0.09404603391885757, 0.08009392023086548, -0.1739039570093155, -0.05128386244177818, 0.10333413630723953, -0.07868801057338715, -0.1194583997130394, 0.09649551659822464, -0.0654146745800972, 0.060558024793863297, 0.09901268035173416, 0.11997916549444199, -0.01842948980629444, -0.10490318387746811, 0.055958185344934464, -0.02002042718231678, -0.033128004521131516, -0.013926227577030659, 0.010534253902733326, -0.007494052406400442, -0.09495320916175842, 0.031064361333847046, -0.010332961566746235, 0.03232346102595329, -0.06799846142530441, -0.07472042739391327, -0.047087956219911575, -0.08041208237409592, 0.030821530148386955, 0.020835503935813904, 0.09210420399904251, -0.11364889144897461, -0.0969739556312561, 0.05990883335471153, 0.012957364320755005, -0.024776838719844818, 0.03848390653729439, -0.08842717856168747, 0.013258267194032669, 0.011468215845525265, 0.011771188117563725, -0.17929017543792725, -0.04128795117139816, 0.008185542188584805, 0.0630863606929779, 0.046651244163513184, 0.001721053384244442, 0.06563100963830948, -0.00241970201022923, -0.05922828987240791, 0.04655594006180763, 0.026716137304902077, 0.025551922619342804, -0.10913962870836258, -0.22491325438022614, 0.02261977456510067, -0.020862428471446037, 0.07187602669000626, -0.2466614693403244, 0.00814083218574524, 0.025759480893611908, 0.09915385395288467, 0.029668182134628296, 0.018957721069455147, -0.05493049696087837, 0.0609750896692276, -0.03773759305477142, -0.04958901181817055, 0.04120682552456856, 0.030627788975834846, -0.1316501945257187, 0.011401393450796604, -0.13190874457359314, 0.15989950299263, 0.1623707264661789, -0.13603876531124115, -0.11102641373872757, 0.06171301379799843, -0.010381117463111877, -0.013202707283198833, 0.0005296726594679058, 0.0269762072712183, 0.18549717962741852, -0.015559437684714794, 0.15127363801002502, -0.06187090650200844, -0.03020443581044674, 0.038248706609010696, -0.038066621869802475, -0.01609322614967823, 0.09198442846536636, 0.005601327866315842, -0.18834124505519867, 0.10844602435827255, 0.15056754648685455, -0.1148342415690422, 0.09311691671609879, -0.03539364039897919, -0.04224838316440582, -0.04133286699652672, 0.005458755884319544, 0.03869721665978432, 0.06804228574037552, -0.10101905465126038, 0.0015163073549047112, 0.021528543904423714, 0.027098655700683594, -0.0009289272129535675, -0.20301373302936554, -0.014791354537010193, 0.00125076191034168, -0.03731166571378708, 0.0031847774516791105, 0.014876940287649632, 0.02200639806687832, 0.13596175611019135, 0.029314130544662476, -0.05318160727620125, 0.09823846817016602, -0.013222802430391312, -0.0913047194480896, 0.21821530163288116, -0.1513272076845169, -0.134630486369133, -0.12111195921897888, -0.08680877089500427, -0.08039072901010513, 0.01610165275633335, 0.02584945596754551, -0.10667667537927628, -0.06892215460538864, -0.06805917620658875, -0.010706792585551739, -0.016033267602324486, 0.052576687186956406, 0.045583855360746384, -0.00852146279066801, 0.11478880047798157, -0.10005753487348557, -0.045817021280527115, -0.04930931702256203, -0.07501569390296936, 0.037926483899354935, -0.002339736558496952, 0.042006272822618484, 0.10684775561094284, -0.03681501746177673, 0.02435602806508541, -0.0519530363380909, 0.22411389648914337, -0.046676501631736755, -0.03977913036942482, 0.13415981829166412, -0.04829166829586029, 0.03296910598874092, 0.10796710103750229, 0.036279212683439255, -0.1380796581506729, 0.05400758981704712, 0.05654730275273323, -0.039002612233161926, -0.2579987049102783, -0.03139936178922653, -0.040261466056108475, -0.11413484811782837, 0.0251943226903677, 0.03696989640593529, 0.15570800006389618, 0.029136015102267265, 0.04938700795173645, 0.125013068318367, -0.0036318933125585318, 0.05329976603388786, 0.19839225709438324, 0.0573771707713604, 0.10446498543024063, -0.06090988591313362, -0.01858566701412201, 0.060008078813552856, -0.03629952296614647, 0.19207872450351715, 0.04746794328093529, 0.03843206539750099, 0.06841891258955002, 0.08004679530858994, -0.022536607459187508, 0.022323010489344597, 0.01653795875608921, -0.05606620013713837, -0.01574987731873989, -0.052721038460731506, -0.04685452952980995, 0.058440301567316055, -0.10108575969934464, 0.06212674453854561, -0.08930906653404236, 0.012562480755150318, 0.06707677990198135, 0.2486828714609146, 0.03946784511208534, -0.31771594285964966, -0.09838372468948364, 0.009848260320723057, -0.03141576051712036, -0.03381281718611717, 0.00287546101026237, 0.07245928794145584, -0.07170560210943222, 0.10923952609300613, -0.06045147404074669, 0.07451165467500687, 0.009976341389119625, 0.06398644298315048, 0.06889951229095459, 0.09943574666976929, 0.00632862513884902, 0.02923378348350525, -0.361287921667099, 0.28696468472480774, 0.040360137820243835, 0.1356642097234726, -0.0946536734700203, 0.014920574612915516, 0.04174584150314331, 0.04700268432497978, 0.08061375468969345, -0.017911015078425407, -0.13355864584445953, -0.14372624456882477, -0.01225393358618021, 0.030654869973659515, 0.1360412836074829, 0.06988904625177383, 0.08416087180376053, -0.03882039710879326, 0.022535771131515503, 0.09216385334730148, 0.02689400315284729, -0.1295316219329834, -0.06882759183645248, 0.005853656679391861, 0.06771419942378998, -0.057719048112630844, -0.05377623438835144, -0.08039123564958572, -0.11606179922819138, 0.21449436247348785, -0.05129079893231392, -0.02163168042898178, -0.12790848314762115, 0.10047778487205505, 0.04030710086226463, -0.053850650787353516, 0.045435529202222824, -0.003091854741796851, 0.04100381210446358, 0.05650131031870842, -0.14093641936779022, 0.1538510024547577, -0.0337924063205719, -0.1607404202222824, -0.056364092975854874, 0.0675518661737442, 0.033584751188755035, 0.04679933562874794, 0.015996426343917847, 0.051384344696998596, 0.02459602802991867, -0.09178715199232101, 0.07705577462911606, 0.01115631964057684, 0.052060816437006, 0.028730658814311028, -0.03405190631747246, -0.0344231016933918, -0.04517976939678192, -0.016257861629128456, 0.17800839245319366, 0.25332269072532654, -0.09017441421747208, 0.03176574781537056, -0.01963082328438759, -0.08815162628889084, -0.23047620058059692, 0.11824961751699448, 0.06917297095060349, 0.007516396697610617, -0.011387082748115063, -0.14876481890678406, 0.11683209985494614, 0.08635421842336655, -0.015000586397945881, 0.09260011464357376, -0.2545721232891083, -0.15203171968460083, 0.11717637628316879, 0.13642777502536774, 0.22579152882099152, -0.15020060539245605, -0.033779896795749664, -0.08698437362909317, -0.06523950397968292, 0.18081755936145782, -0.1510946899652481, 0.10201290249824524, 0.02028719149529934, 0.06684209406375885, -0.00211875862441957, -0.021536558866500854, 0.1080550029873848, -0.0364379920065403, 0.12770144641399384, -0.07196851074695587, -0.042979683727025986, 0.09674596041440964, -0.0406607910990715, 0.01805739663541317, -0.05369853600859642, 0.022753247991204262, -0.06111707165837288, 0.0010981386294588447, -0.07528100162744522, 0.06535454839468002, -0.028740758076310158, -0.028464829549193382, -0.025406742468476295, 0.026927689090371132, 0.07008600980043411, -0.04219839349389076, 0.16492952406406403, -0.018427036702632904, 0.1788695901632309, 0.16203497350215912, 0.10756539553403854, -0.055547937750816345, 0.08116119354963303, 0.0692737028002739, -0.04344644770026207, 0.0856003388762474, -0.16091623902320862, 0.05201667174696922, 0.113648921251297, -0.016272656619548798, 0.12906956672668457, 0.07165151834487915, -0.0352293998003006, 0.025521792471408844, 0.07123889029026031, -0.1564285308122635, -0.09711182117462158, 0.020695261657238007, -0.024248966947197914, -0.046193595975637436, 0.07791221886873245, 0.1527089774608612, -0.04132932797074318, 0.019001798704266548, 0.003386293537914753, 0.004791943822056055, -0.09571626037359238, 0.12656699120998383, 0.02456449158489704, 0.0075157638639211655, -0.09868013113737106, 0.13181331753730774, 0.03126685321331024, -0.080368272960186, 0.09291678667068481, 0.01641760766506195, -0.07760918885469437, -0.02341216802597046, 0.07977256923913956, 0.15127702057361603, -0.024081023409962654, -0.07034788280725479, -0.1153961792588234, -0.16996781527996063, 0.06310876458883286, 0.26654210686683655, 0.08433198183774948, 0.03336014971137047, -0.0475839227437973, -0.010669191367924213, -0.07716499269008636, 0.03144798055291176, 0.021257394924759865, 0.046182576566934586, -0.13848383724689484, 0.16068333387374878, -0.020145133137702942, 0.024864472448825836, -0.04801381751894951, 0.02947874926030636, -0.15853723883628845, 0.0024302350357174873, -0.17505024373531342, -0.003983801230788231, 0.012797079049050808, -0.0011664811754599214, 0.03407665714621544, -0.07411547750234604, -0.101542167365551, 0.04466255381703377, -0.11463874578475952, -0.02061060443520546, 0.06221301853656769, 0.04250573739409447, -0.1115979477763176, -0.07536187767982483, 0.012894604355096817, -0.054839838296175, 0.04012797400355339, 0.08700519055128098, -0.014455434866249561, 0.08905179053544998, -0.184647336602211, -0.006092569325119257, 0.09732687473297119, 0.008474708534777164, 0.08684337139129639, -0.09297844022512436, -0.011378579773008823, 0.028873013332486153, 0.07066660374403, 0.036239299923181534, 0.13473151624202728, -0.09146221727132797, -0.05891020968556404, -0.011498995125293732, -0.04574068263173103, -0.04223558306694031, 0.03584326058626175, 0.14010821282863617, -0.005055386107414961, 0.19712309539318085, -0.11592303961515427, -0.018272263929247856, -0.15166614949703217, 0.014266402460634708, -0.010132555849850178, -0.1326577514410019, -0.1310599446296692, -0.033808473497629166, 0.0841188058257103, -0.07092658430337906, 0.1537475436925888, 0.001183310174383223, 0.07400863617658615, 0.056283097714185715, -0.02957710437476635, -0.04948782920837402, 0.051313649863004684, 0.2081059217453003, 0.044742923229932785, -0.017993459478020668, 0.031145380809903145, 0.010585907846689224, 0.09635499864816666, 0.09764397889375687, 0.2481483817100525, 0.12863920629024506, -0.015790347009897232, 0.1466313749551773, 0.04406033828854561, -0.0421239472925663, -0.07756981253623962, 0.08183027803897858, -0.09048101305961609, 0.15743090212345123, -0.04381836578249931, 0.09164205193519592, 0.06251531094312668, -0.16294732689857483, 0.01775679737329483, -0.09297413378953934, -0.078140988945961, -0.1510990560054779, -0.08672375231981277, -0.10893511772155762, -0.12361165136098862, 0.00538185378536582, -0.09967875480651855, 0.05379953607916832, 0.057235777378082275, 0.019599733874201775, -0.02413812279701233, 0.12457367032766342, -0.0697370171546936, 0.0053750756196677685, 0.09800391644239426, -0.02695462293922901, -0.03357237949967384, -0.0797058716416359, -0.06225944682955742, 0.028100185096263885, -0.008141297847032547, 0.02130749076604843, -0.010393613018095493, -0.01049644872546196, 0.04026930406689644, -0.0592447929084301, -0.09255599975585938, 0.04562481865286827, 0.050287049263715744, 0.026864642277359962, 0.029667096212506294, 0.046771179884672165, -0.0008451913599856198, -0.0025317827239632607, 0.16978003084659576, -0.10228859633207321, -0.04665751755237579, -0.1425289362668991, 0.30051133036613464, 0.013157960027456284, 0.047335777431726456, 0.000204687166842632, -0.05366593971848488, -0.036413054913282394, 0.23358702659606934, 0.18073834478855133, -0.10179535299539566, -0.010279118083417416, 0.017910059541463852, -0.0013166760327294469, -0.04734185338020325, 0.1457449346780777, 0.09454449266195297, -0.037952352315187454, -0.06522435694932938, -0.050806790590286255, -0.024650104343891144, 0.0015835148515179753, -0.03547529876232147, 0.07100701332092285, 0.0353722907602787, -0.020269038155674934, -0.008846654556691647, 0.055835504084825516, -0.06967044621706009, -0.10782789438962936, 0.051659565418958664, -0.1980852484703064, -0.15681196749210358, -0.002909080358222127, 0.013950888998806477, -0.006705255713313818, 0.06720219552516937, -0.02625296451151371, 0.00008949203038355336, 0.07698067277669907, -0.0430416576564312, -0.04196861758828163, -0.09396734833717346, 0.08805274218320847, -0.12242814153432846, 0.17570281028747559, -0.01798068918287754, 0.06535795331001282, 0.12232023477554321, 0.052203837782144547, -0.06530623883008957, 0.05887340381741524, 0.03056909888982773, -0.09968618303537369, 0.01159647572785616, 0.05131980776786804, -0.03200342133641243, 0.09577947109937668, 0.05833815410733223, -0.07930616289377213, 0.06081950291991234, -0.11075250059366226, -0.11066529154777527, -0.023174606263637543, -0.05031008645892143, -0.10136237740516663, 0.11568313837051392, 0.23205846548080444, -0.02715272270143032, 0.0410478450357914, -0.05423690378665924, -0.006793866399675608, 0.06922764331102371, -0.0002929661422967911, -0.08048940449953079, -0.21773411333560944, 0.05222195386886597, 0.13097290694713593, 0.00948537141084671, -0.19270353019237518, -0.07259530574083328, -0.022559382021427155, -0.03337143734097481, -0.09302869439125061, 0.07376997917890549, 0.09341081976890564, 0.037405937910079956, -0.059948474168777466, -0.16764777898788452, -0.0317390076816082, 0.15597565472126007, -0.0814352035522461, -0.09136306494474411 ]
null
null
transformers
{}
text-classification
MarioPenguin/beto_amazon
[ "transformers", "tf", "bert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #tf #bert #text-classification #autotrain_compatible #endpoints_compatible #region-us
[]
[ "TAGS\n#transformers #tf #bert #text-classification #autotrain_compatible #endpoints_compatible #region-us \n" ]
[ 35 ]
[ "passage: TAGS\n#transformers #tf #bert #text-classification #autotrain_compatible #endpoints_compatible #region-us \n" ]
[ -0.007682218216359615, 0.0038787848316133022, -0.005975706502795219, 0.034181639552116394, 0.1910032480955124, 0.052485160529613495, 0.062034495174884796, 0.10767170041799545, 0.04927787557244301, -0.04722719267010689, 0.09624633938074112, 0.1873200684785843, -0.0312579944729805, 0.1625693142414093, -0.14169614017009735, -0.28020691871643066, 0.052912406623363495, 0.058359868824481964, -0.05832754075527191, 0.0837068259716034, 0.09839992970228195, -0.03932494670152664, 0.09732595086097717, -0.06702917814254761, -0.16229605674743652, 0.07229955494403839, 0.08365137130022049, -0.14053654670715332, 0.10313338786363602, 0.12522952258586884, 0.1338677704334259, 0.04249821975827217, -0.07539541274309158, -0.13644996285438538, 0.031102795153856277, 0.02129104733467102, -0.11532096564769745, 0.023487988859415054, 0.0695737823843956, -0.08492818474769592, 0.018574906513094902, 0.044760145246982574, 0.02063159830868244, 0.08935524523258209, -0.1693524420261383, -0.06540939211845398, -0.008474390022456646, 0.01164185255765915, 0.05486560985445976, 0.03160027414560318, 0.007587605621665716, 0.1384633332490921, -0.0979144498705864, 0.14691133797168732, 0.057144153863191605, -0.3187352120876312, -0.019307829439640045, 0.10146553069353104, 0.0008892631158232689, 0.06133967638015747, -0.046099938452243805, 0.07471824437379837, 0.05858945846557617, 0.0029871768783777952, 0.01937151327729225, -0.08668757230043411, -0.13161717355251312, 0.05186657980084419, -0.0793096274137497, -0.011504742316901684, 0.2351655662059784, -0.013221440836787224, 0.04121120646595955, 0.006789222825318575, -0.10000324249267578, -0.04734532907605171, -0.02739899978041649, -0.018853910267353058, -0.044796258211135864, 0.09848320484161377, 0.016573844477534294, -0.006800465285778046, -0.09490421414375305, 0.023709731176495552, -0.24611148238182068, 0.196328803896904, -0.01906437613070011, 0.04973015934228897, -0.1920398622751236, 0.017569851130247116, -0.05967544764280319, -0.08792628347873688, 0.03582397475838661, -0.10235054790973663, -0.04917808994650841, -0.07779575139284134, -0.059327490627765656, -0.0738186314702034, 0.0822942927479744, 0.1480715125799179, 0.06552936881780624, 0.07403569668531418, -0.11630598455667496, 0.054651957005262375, 0.000151517684571445, 0.12925982475280762, 0.013730842620134354, -0.0721868947148323, 0.04122239351272583, -0.18713919818401337, -0.058099210262298584, -0.07817716151475906, -0.1686052680015564, -0.033078085631132126, 0.045280635356903076, 0.07209645211696625, -0.02182338945567608, 0.12365572154521942, -0.03176022693514824, -0.021083150058984756, 0.08276517689228058, -0.07782317698001862, 0.011604457162320614, 0.0006017468986101449, 0.04614758491516113, 0.07925837486982346, 0.005434455815702677, -0.0070703593082726, -0.053034458309412, 0.09750285744667053, -0.05856543406844139, -0.04182656109333038, -0.008486633189022541, -0.1003652811050415, 0.032523009926080704, -0.11347824335098267, 0.038037873804569244, -0.21495835483074188, -0.08655887842178345, 0.031793564558029175, 0.0217912457883358, -0.02106429636478424, 0.0056282044388353825, -0.015797363594174385, -0.015360396355390549, 0.06509068608283997, -0.04538113623857498, -0.05496658384799957, -0.0739331841468811, 0.06534647196531296, -0.026118572801351547, 0.07990292459726334, -0.1770438700914383, 0.06386034935712814, -0.04979304224252701, -0.023914970457553864, -0.15774433314800262, 0.06906582415103912, -0.05167454481124878, 0.19156791269779205, -0.014261176809668541, -0.009513656608760357, -0.09356600791215897, 0.0680704116821289, -0.08429785817861557, 0.1614186018705368, -0.12944625318050385, -0.0899486392736435, 0.22829774022102356, -0.082901231944561, -0.1778285950422287, 0.08693589270114899, -0.0065559339709579945, 0.05081598088145256, 0.1045181080698967, 0.19725146889686584, 0.12210048735141754, -0.003643403062596917, 0.13454468548297882, 0.1512315720319748, -0.11042714864015579, -0.06709342449903488, -0.017968010157346725, 0.0008504868601448834, -0.18091148138046265, 0.03298468515276909, 0.10788232833147049, 0.10351551324129105, -0.040200281888246536, -0.020354878157377243, -0.02031582221388817, -0.017664678394794464, 0.10965369641780853, 0.014433441683650017, 0.1114705502986908, -0.09431081265211105, 0.018721846863627434, 0.011547623202204704, -0.04681650921702385, 0.027438292279839516, 0.01808897592127323, -0.09214218705892563, 0.05535050109028816, 0.01956806518137455, 0.047046564519405365, -0.1984105408191681, -0.13684338331222534, 0.00343071180395782, 0.19317549467086792, 0.0004603473062161356, 0.16151908040046692, 0.05996144190430641, -0.07416366040706635, -0.03356442227959633, 0.006443080957978964, 0.21388275921344757, 0.05591195821762085, -0.04486599192023277, -0.08003786951303482, 0.10134537518024445, -0.07744071632623672, -0.03297646343708038, -0.10154759883880615, -0.00003884083344019018, 0.15006113052368164, 0.12349878251552582, 0.06366821378469467, 0.08146965503692627, -0.03396974503993988, 0.0365988090634346, -0.07086682319641113, -0.014253541827201843, 0.07649186998605728, 0.0007130251615308225, -0.09646587818861008, 0.1955868899822235, -0.1442902833223343, 0.3307698667049408, 0.1960933655500412, -0.25422006845474243, -0.061261169612407684, -0.010867156088352203, 0.004248871933668852, 0.029401026666164398, 0.06574146449565887, -0.04249000549316406, 0.05097103863954544, -0.0332120917737484, 0.20114141702651978, -0.030590316280722618, -0.05059673264622688, 0.005698704160749912, -0.028661468997597694, -0.05288081243634224, 0.057918597012758255, 0.021896129474043846, -0.3038007915019989, 0.18937404453754425, 0.21948032081127167, 0.07702749967575073, 0.19870148599147797, -0.023096363991498947, 0.02831456996500492, 0.0755075141787529, -0.012235562317073345, 0.01003218162804842, -0.06738275289535522, -0.18045653402805328, -0.04260340332984924, 0.06833972781896591, 0.047712378203868866, 0.05538570135831833, -0.08050794154405594, -0.024881307035684586, 0.0369037427008152, -0.0038899320643395185, -0.006401600781828165, 0.10016728192567825, 0.05299735814332962, 0.13139095902442932, 0.017811346799135208, -0.07895925641059875, 0.13475348055362701, 0.002171494299545884, -0.1298082023859024, 0.16977225244045258, -0.17429740726947784, -0.3209591507911682, -0.155587300658226, -0.222377210855484, -0.01646307297050953, 0.07202164828777313, 0.09765283018350601, -0.11476045101881027, -0.0675334557890892, 0.018252475187182426, -0.002048582537099719, -0.06063336506485939, 0.0779765322804451, -0.04676571115851402, 0.0696447566151619, -0.027734223753213882, -0.0660211518406868, -0.07355525344610214, 0.0176727045327425, 0.0043039810843765736, 0.13775186240673065, -0.18015128374099731, 0.10156560689210892, 0.17757779359817505, -0.033408839255571365, 0.0787455216050148, -0.06266289949417114, 0.2009001076221466, -0.11338981240987778, 0.020361945033073425, 0.1357584297657013, -0.0964922085404396, 0.038364168256521225, 0.16474206745624542, 0.0028366828337311745, -0.09929792582988739, 0.05411883071064949, -0.023940838873386383, -0.10391901433467865, -0.211782768368721, -0.11221042275428772, -0.13884353637695312, 0.07367473840713501, 0.040147196501493454, 0.08070040494203568, 0.1712932586669922, 0.04121379181742668, 0.037271566689014435, 0.060932453721761703, 0.018537597730755806, 0.07141771912574768, 0.22378632426261902, 0.011270533315837383, 0.1231507733464241, -0.08287119120359421, -0.10907331854104996, 0.12181998789310455, 0.00007833579002181068, 0.08109596371650696, 0.12841036915779114, 0.04391181468963623, -0.005339629482477903, 0.01055885385721922, 0.15543901920318604, 0.14084555208683014, 0.03860121965408325, -0.042371876537799835, -0.023905573412775993, -0.002485324162989855, -0.025646673515439034, 0.03820865601301193, 0.029629329219460487, -0.17870423197746277, -0.05944649875164032, -0.13372766971588135, 0.09864687919616699, 0.07962667942047119, 0.06369712948799133, -0.20515486598014832, 0.0062643252313137054, 0.08482378721237183, -0.040844954550266266, -0.11114560812711716, 0.07585527747869492, 0.014482708647847176, -0.10985256731510162, 0.13877616822719574, -0.01813129335641861, 0.12694650888442993, -0.013588692992925644, 0.08165057748556137, 0.01206996850669384, -0.13100707530975342, -0.00379561772570014, 0.08993750065565109, -0.3261062502861023, 0.2235204428434372, 0.032622192054986954, -0.08055290579795837, -0.07235835492610931, -0.025041135028004646, 0.03847424313426018, 0.25661736726760864, 0.08402815461158752, 0.001171580865047872, -0.08427431434392929, -0.17146004736423492, 0.039998188614845276, 0.002071059076115489, 0.15716847777366638, -0.02510126121342182, -0.022935155779123306, -0.0528748594224453, -0.03718072921037674, 0.014948870986700058, 0.01704525202512741, -0.005933990236371756, -0.16725224256515503, 0.05503912642598152, 0.039481982588768005, 0.07050784677267075, 0.012257714755833149, 0.005878876429051161, -0.12653428316116333, 0.19392868876457214, -0.05260061100125313, -0.04140030965209007, -0.16529110074043274, -0.06699344515800476, 0.007152048405259848, -0.06908176094293594, 0.06667108088731766, -0.06830465793609619, 0.0362887866795063, -0.04322492331266403, -0.24518641829490662, 0.16001459956169128, -0.10329513251781464, -0.0026748646050691605, -0.06790231168270111, 0.11052768677473068, -0.09570518136024475, 0.00939872208982706, 0.047927338629961014, -0.009961238130927086, 0.00030366884311661124, -0.06851742416620255, -0.005623307079076767, -0.04046874865889549, 0.0023432327434420586, 0.02844351902604103, -0.09754598140716553, -0.05000358819961548, -0.01693626306951046, 0.003182005835697055, 0.2751912474632263, 0.14228565990924835, -0.0787443220615387, 0.13809195160865784, 0.07701027393341064, -0.06032278761267662, -0.32800939679145813, -0.02496417611837387, -0.11573995649814606, -0.04128408804535866, -0.03867466747760773, -0.12468180060386658, 0.10094781219959259, -0.043207913637161255, 0.011203410103917122, 0.10141348093748093, -0.07941872626543045, -0.09624257683753967, 0.18690821528434753, -0.02573898807168007, 0.35803574323654175, -0.12138967961072922, -0.10232691466808319, -0.0727536603808403, -0.1236531212925911, 0.15403865277767181, -0.05277246609330177, 0.06512869149446487, 0.03604789450764656, 0.021731792017817497, 0.04025082662701607, -0.0035518466029316187, 0.07636675983667374, 0.010912792757153511, 0.040782053023576736, -0.12477067857980728, -0.08580932021141052, 0.03142734616994858, -0.019552791491150856, -0.0001776818244252354, 0.02430383674800396, 0.013926686719059944, -0.13783644139766693, -0.0355382077395916, -0.05310047045350075, 0.042590733617544174, 0.04454857110977173, -0.06246953830122948, -0.005455792881548405, -0.012655189260840416, 0.01819605939090252, -0.039903439581394196, 0.22679145634174347, -0.08040498197078705, 0.18110810220241547, 0.12310359627008438, 0.17033667862415314, -0.18251127004623413, 0.08327928930521011, -0.040081560611724854, -0.07318291813135147, 0.06263797730207443, -0.1216415986418724, 0.10660795122385025, 0.09881109744310379, -0.07267750054597855, 0.10171403735876083, 0.11677110940217972, 0.04912104830145836, -0.05505317449569702, 0.17877577245235443, -0.20565353333950043, 0.008491935208439827, -0.09470361471176147, -0.08106058835983276, 0.08482996374368668, 0.035445068031549454, 0.1583741456270218, 0.048901282250881195, 0.003160064108669758, 0.008926613256335258, -0.046287138015031815, -0.03597432002425194, 0.054885510355234146, 0.07926662266254425, 0.028560537844896317, -0.12265067547559738, 0.046384360641241074, 0.030201414600014687, -0.15196697413921356, 0.00995650514960289, 0.12304452806711197, -0.17315573990345, -0.11293930560350418, 0.019299928098917007, 0.1795276403427124, -0.1315912902355194, -0.05087616667151451, -0.036751773208379745, -0.13482250273227692, 0.0808851420879364, 0.31696584820747375, 0.0797569751739502, 0.11232538521289825, -0.03271229937672615, -0.03509609028697014, 0.026098741218447685, -0.016851838678121567, -0.024033652618527412, 0.03982267528772354, -0.1450318694114685, 0.06303390115499496, -0.07186777889728546, 0.14857928454875946, -0.11431299149990082, -0.04200006648898125, -0.20148178935050964, 0.012436420656740665, -0.11737697571516037, -0.03379854932427406, -0.0371939018368721, -0.009188315831124783, 0.029775075614452362, -0.05582037940621376, -0.04971301183104515, -0.06816498935222626, -0.13102009892463684, 0.04147928208112717, -0.003914068918675184, 0.052404310554265976, -0.04095814377069473, -0.05120187625288963, 0.07444154471158981, -0.033469315618276596, 0.09348277747631073, 0.0838104858994484, -0.09536493569612503, 0.1182318851351738, -0.15515698492527008, -0.1089569479227066, 0.13165564835071564, 0.015522382222115993, 0.10583247989416122, 0.09575434774160385, 0.03746357187628746, 0.049800604581832886, 0.002232691738754511, 0.07221534848213196, 0.048163335770368576, -0.09374690800905228, 0.03937949612736702, -0.06880848854780197, -0.15709608793258667, -0.0403272807598114, -0.02843220718204975, 0.12554843723773956, -0.006119688507169485, 0.10553105920553207, -0.06314564496278763, 0.060970745980739594, -0.03682230785489082, -0.00915525108575821, -0.00439941231161356, -0.1954977661371231, -0.025812586769461632, -0.07978001981973648, 0.022433174774050713, -0.0027464991435408592, 0.22783634066581726, 0.04763968661427498, 0.0585150308907032, 0.07220594584941864, 0.010156395845115185, 0.013834589160978794, 0.018763961270451546, 0.21372105181217194, 0.09516315907239914, -0.05187347158789635, -0.11128444224596024, 0.06115167587995529, 0.023144735023379326, -0.013785007409751415, 0.1320430189371109, 0.0354725681245327, -0.14570367336273193, 0.08777736127376556, -0.02288212440907955, 0.008186436258256435, -0.0695580318570137, -0.15927284955978394, -0.053969066590070724, 0.08536968380212784, 0.0043737092055380344, -0.0184926874935627, 0.11888610571622849, -0.06490989774465561, 0.05536169186234474, -0.04952618479728699, -0.05092779919505119, -0.19241909682750702, -0.08599468320608139, -0.1126316487789154, -0.1263105869293213, 0.012282845564186573, -0.09361377358436584, 0.027656830847263336, 0.03494826704263687, 0.07110757380723953, -0.020906126126646996, 0.10860517621040344, -0.06930091977119446, -0.07374097406864166, 0.10440616309642792, -0.035434789955616, 0.02960202656686306, -0.006869228091090918, -0.03794443979859352, -0.1304340809583664, -0.013612366281449795, -0.08791664987802505, 0.03290080651640892, -0.013201460242271423, 0.011651632376015186, -0.1448524296283722, -0.09862814098596573, -0.0182539951056242, 0.05306394770741463, -0.08822126686573029, 0.10697609186172485, 0.014284401200711727, -0.0047340402379632, 0.058735255151987076, 0.1897999495267868, -0.07786031067371368, -0.054187510162591934, -0.10793209075927734, 0.21548976004123688, 0.05843821540474892, 0.1531309187412262, -0.037292663007974625, -0.023729966953396797, -0.0859614834189415, 0.337110310792923, 0.2539695203304291, -0.05588002875447273, 0.05213034525513649, 0.01492015365511179, 0.040168602019548416, 0.15800245106220245, 0.18416272103786469, 0.055252693593502045, 0.17536915838718414, -0.02599436230957508, -0.0648268610239029, 0.002611056435853243, -0.010855400934815407, -0.08034034818410873, 0.14156970381736755, 0.08433333784341812, -0.039272092282772064, -0.04892202094197273, 0.12192035466432571, -0.16404539346694946, 0.10528238862752914, -0.004983209539204836, -0.18782161176204681, -0.05704792961478233, -0.055843621492385864, 0.04898233339190483, -0.0226138886064291, 0.07559655606746674, -0.011649719439446926, -0.10512552410364151, 0.007015509530901909, 0.030570754781365395, -0.22647079825401306, -0.008486876264214516, 0.0519220270216465, -0.06752125173807144, -0.011480859480798244, -0.02583279088139534, -0.010131046175956726, 0.08225277066230774, 0.06346189975738525, -0.0016588129801675677, 0.058372125029563904, -0.005403785966336727, -0.015009436756372452, 0.0012990979012101889, 0.03319864347577095, -0.011102895252406597, -0.05529601126909256, 0.06735115498304367, -0.20489701628684998, 0.05028533563017845, -0.03643433377146721, -0.07872317731380463, -0.01580553874373436, 0.02342059463262558, -0.08382149040699005, 0.07768598198890686, 0.12616553902626038, 0.007369253784418106, 0.009193342179059982, -0.05063098669052124, -0.025857020169496536, 0.027431169524788857, -0.13401789963245392, -0.13641676306724548, -0.06333229690790176, -0.10425595939159393, 0.09925343096256256, -0.01295515988022089, -0.15633416175842285, -0.004082367289811373, -0.10463190078735352, 0.08692757040262222, -0.15779589116573334, 0.14175443351268768, 0.08074064552783966, 0.023524774238467216, -0.020282384008169174, -0.1100965291261673, 0.06211749091744423, 0.08012773096561432, -0.10711760073900223, -0.07972251623868942 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # beto_amazon_posneu This model is a fine-tuned version of [dccuchile/bert-base-spanish-wwm-uncased](https://huggingface.co/dccuchile/bert-base-spanish-wwm-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.1277 - Train Accuracy: 0.9550 - Validation Loss: 0.3439 - Validation Accuracy: 0.8905 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': 5e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch | |:----------:|:--------------:|:---------------:|:-------------------:|:-----:| | 0.3195 | 0.8712 | 0.3454 | 0.8580 | 0 | | 0.1774 | 0.9358 | 0.3258 | 0.8802 | 1 | | 0.1277 | 0.9550 | 0.3439 | 0.8905 | 2 | ### Framework versions - Transformers 4.16.2 - TensorFlow 2.7.0 - Datasets 1.18.3 - Tokenizers 0.11.0
{"tags": ["generated_from_keras_callback"], "model-index": [{"name": "beto_amazon_posneu", "results": []}]}
text-classification
MarioPenguin/beto_amazon_posneu
[ "transformers", "tf", "bert", "text-classification", "generated_from_keras_callback", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #tf #bert #text-classification #generated_from_keras_callback #autotrain_compatible #endpoints_compatible #region-us
beto\_amazon\_posneu ==================== This model is a fine-tuned version of dccuchile/bert-base-spanish-wwm-uncased on an unknown dataset. It achieves the following results on the evaluation set: * Train Loss: 0.1277 * Train Accuracy: 0.9550 * Validation Loss: 0.3439 * Validation Accuracy: 0.8905 * Epoch: 2 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * optimizer: {'name': 'Adam', 'learning\_rate': 5e-05, 'decay': 0.0, 'beta\_1': 0.9, 'beta\_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False} * training\_precision: float32 ### Training results ### Framework versions * Transformers 4.16.2 * TensorFlow 2.7.0 * Datasets 1.18.3 * Tokenizers 0.11.0
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* optimizer: {'name': 'Adam', 'learning\\_rate': 5e-05, 'decay': 0.0, 'beta\\_1': 0.9, 'beta\\_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False}\n* training\\_precision: float32", "### Training results", "### Framework versions\n\n\n* Transformers 4.16.2\n* TensorFlow 2.7.0\n* Datasets 1.18.3\n* Tokenizers 0.11.0" ]
[ "TAGS\n#transformers #tf #bert #text-classification #generated_from_keras_callback #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* optimizer: {'name': 'Adam', 'learning\\_rate': 5e-05, 'decay': 0.0, 'beta\\_1': 0.9, 'beta\\_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False}\n* training\\_precision: float32", "### Training results", "### Framework versions\n\n\n* Transformers 4.16.2\n* TensorFlow 2.7.0\n* Datasets 1.18.3\n* Tokenizers 0.11.0" ]
[ 46, 99, 4, 33 ]
[ "passage: TAGS\n#transformers #tf #bert #text-classification #generated_from_keras_callback #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* optimizer: {'name': 'Adam', 'learning\\_rate': 5e-05, 'decay': 0.0, 'beta\\_1': 0.9, 'beta\\_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False}\n* training\\_precision: float32### Training results### Framework versions\n\n\n* Transformers 4.16.2\n* TensorFlow 2.7.0\n* Datasets 1.18.3\n* Tokenizers 0.11.0" ]
[ -0.05135169252753258, -0.03144019469618797, -0.0017367660766467452, 0.07483674585819244, 0.2096972018480301, 0.037676695734262466, 0.11273030936717987, 0.09472861140966415, -0.14861777424812317, 0.04509395733475685, 0.13425098359584808, 0.19195295870304108, 0.009122922085225582, 0.10003367811441422, -0.12885543704032898, -0.2208518385887146, 0.01956433802843094, 0.012741907499730587, -0.09840915352106094, 0.10176756978034973, 0.08855398744344711, -0.11559120565652847, 0.11450643092393875, -0.009514852426946163, -0.23908181488513947, 0.053048186004161835, 0.1076420396566391, -0.08782044798135757, 0.132754385471344, 0.08619175106287003, 0.12889038026332855, -0.0021751425229012966, 0.04656380042433739, -0.1372874677181244, 0.021001135930418968, 0.1075059026479721, -0.014549696817994118, 0.06965763121843338, 0.02990097552537918, -0.015405645594000816, 0.17133590579032898, -0.10718889534473419, 0.05258674547076225, 0.023766273632645607, -0.1451525241136551, -0.18033789098262787, -0.09060782194137573, -0.05136223882436752, 0.061654478311538696, 0.08415072411298752, 0.0033959909342229366, 0.24103324115276337, -0.06202583760023117, 0.12132713943719864, 0.1708316057920456, -0.34893742203712463, -0.07531557977199554, 0.011080059222877026, 0.005204548127949238, 0.06547697633504868, -0.07269538193941116, 0.06372206658124924, 0.08124223351478577, 0.04394492879509926, 0.0663878470659256, -0.0386282242834568, -0.1448546200990677, -0.002304762601852417, -0.1108192652463913, 0.01579083502292633, 0.09624036401510239, 0.02241428755223751, -0.055227480828762054, -0.004006987437605858, -0.06343691051006317, -0.13929902017116547, -0.01155017502605915, -0.07093490660190582, 0.03505873307585716, -0.034337446093559265, -0.07999739795923233, -0.04239795356988907, -0.08909638226032257, -0.059697870165109634, -0.1253676563501358, 0.23433668911457062, 0.007942900992929935, 0.0560227632522583, -0.05657653883099556, 0.062110066413879395, -0.05292743816971779, -0.11705504357814789, 0.02221633493900299, 0.012774249538779259, -0.05110408365726471, -0.08079006522893906, -0.12207949906587601, -0.19107404351234436, 0.01701122336089611, 0.07562863081693649, -0.025692131370306015, 0.07517317682504654, -0.06538919359445572, 0.012226739898324013, -0.09863291680812836, 0.18500307202339172, -0.017334187403321266, 0.011552578769624233, 0.045302122831344604, -0.01487358845770359, 0.032316841185092926, -0.038894835859537125, -0.09765484929084778, 0.006937169469892979, 0.08079743385314941, -0.00025409532827325165, -0.09583606570959091, 0.10935290157794952, -0.038421787321567535, -0.012215495109558105, -0.026194479316473007, -0.08450264483690262, 0.04643741250038147, -0.014345632866024971, -0.08646659553050995, -0.00021616021695081145, 0.0499478317797184, 0.004389598965644836, -0.036884669214487076, 0.10390014946460724, -0.07152895629405975, 0.008493241854012012, -0.09701675921678543, -0.15328921377658844, 0.004290582146495581, -0.08631153404712677, 0.011851173825562, -0.10167194157838821, -0.14502529799938202, -0.012828811071813107, 0.051741886883974075, -0.04302254319190979, 0.011328315362334251, -0.05428462475538254, -0.12267107516527176, 0.033693037927150726, -0.01211212296038866, 0.17179878056049347, -0.05390623211860657, 0.06276271492242813, 0.03775308281183243, 0.07418374717235565, -0.14061732590198517, 0.03367168828845024, -0.058943189680576324, -0.02293786220252514, -0.2042081654071808, 0.05948415398597717, -0.034411318600177765, 0.06203159689903259, -0.09021453559398651, -0.08994365483522415, 0.0173007994890213, 0.021353527903556824, 0.10372800379991531, 0.08241517096757889, -0.16539731621742249, -0.06957634538412094, 0.0996241346001625, -0.0697317123413086, -0.0979989543557167, 0.09318706393241882, -0.06941984593868256, 0.03735741600394249, 0.10502421110868454, 0.11628510802984238, -0.019913513213396072, -0.11339280754327774, 0.05450979620218277, -0.03973478451371193, -0.04051089659333229, -0.009836689569056034, -0.00631922110915184, 0.029671888798475266, -0.06131419911980629, 0.020739104598760605, 0.011767186224460602, 0.028450271114706993, -0.10345663875341415, -0.06482360512018204, -0.042631909251213074, -0.0776553675532341, 0.042165763676166534, 0.037515848875045776, 0.11131143569946289, -0.12943458557128906, -0.09153790026903152, 0.09247255325317383, -0.008417556993663311, -0.031464580446481705, 0.038513898849487305, -0.08182897418737411, 0.005528773181140423, -0.017523696646094322, -0.0007496665930375457, -0.19913971424102783, -0.061085328459739685, 0.0015433796215802431, 0.11867886036634445, 0.044852904975414276, 0.010500414296984673, 0.08853766322135925, 0.02338038571178913, -0.06865572184324265, 0.04740350693464279, 0.017984937876462936, 0.016191165894269943, -0.13063040375709534, -0.2222878783941269, 0.015392797067761421, -0.0303129144012928, 0.036136265844106674, -0.2466539889574051, -0.003638671478256583, 0.02389564737677574, 0.1151449903845787, 0.04576927796006203, 0.0028427820652723312, -0.06294219195842743, 0.0804416686296463, -0.031059224158525467, -0.047282420098781586, 0.04041505604982376, 0.012243049219250679, -0.11372476071119308, -0.019312705844640732, -0.13871006667613983, 0.18994209170341492, 0.15969064831733704, -0.16456899046897888, -0.12978386878967285, 0.07155699282884598, -0.0226654764264822, -0.005164258647710085, -0.015833856537938118, 0.04244065284729004, 0.20814456045627594, -0.007665751967579126, 0.15669167041778564, -0.04407297447323799, -0.03459779545664787, 0.03335873782634735, -0.024027971550822258, 0.002473248401656747, 0.08516476303339005, 0.010222331620752811, -0.18779882788658142, 0.08539222925901413, 0.10554364323616028, -0.11391859501600266, 0.1233874186873436, -0.01816396415233612, -0.05776357278227806, -0.029890837147831917, -0.017560793086886406, 0.03402204066514969, 0.07075633853673935, -0.10521497577428818, -0.018300849944353104, 0.0019220184767618775, 0.022424614056944847, -0.0022205174900591373, -0.21270233392715454, -0.016861332580447197, 0.012227602303028107, -0.02094307914376259, -0.007764440029859543, 0.01664292812347412, 0.03590945154428482, 0.14589838683605194, 0.028113245964050293, -0.03566910699009895, 0.0642322227358818, -0.011093019507825375, -0.08172781765460968, 0.22126875817775726, -0.12029299885034561, -0.10380061715841293, -0.1084914430975914, -0.08607175201177597, -0.07991128414869308, 0.02227848209440708, 0.016626419499516487, -0.12717555463314056, -0.06021623685956001, -0.05187699571251869, 0.011259804479777813, -0.001381728332489729, 0.07369459420442581, 0.030960295349359512, -0.01053392793983221, 0.09659945219755173, -0.09722523391246796, -0.03624237701296806, -0.07619793713092804, -0.0737680122256279, 0.05134712532162666, 0.03210875019431114, 0.07085222005844116, 0.12284756451845169, -0.06669721752405167, 0.028289197012782097, -0.04671895131468773, 0.2350151687860489, -0.06834284961223602, -0.04467063769698143, 0.10222101211547852, -0.05414827540516853, 0.019528210163116455, 0.08879722654819489, 0.04904327169060707, -0.14033980667591095, 0.05527585372328758, 0.06252914667129517, -0.04536369442939758, -0.23098236322402954, -0.03530723229050636, -0.03914156183600426, -0.13422130048274994, 0.02800782024860382, 0.031020672991871834, 0.0997328981757164, 0.01947508379817009, 0.06638520210981369, 0.12033853679895401, -0.0335366427898407, 0.048356927931308746, 0.18095703423023224, 0.059595588594675064, 0.11761405318975449, -0.05604511871933937, -0.06520650535821915, 0.05322274565696716, -0.08164509385824203, 0.18507720530033112, 0.03392331302165985, 0.024368926882743835, 0.04157200828194618, 0.052536074072122574, -0.009400824084877968, 0.05788206681609154, 0.02593560516834259, -0.08168289065361023, -0.0010734251700341702, -0.04415333643555641, -0.041968733072280884, 0.04414622113108635, -0.0798240602016449, 0.05210978165268898, -0.10677210241556168, 0.007430690340697765, 0.06741037219762802, 0.23466157913208008, 0.04651986062526703, -0.34746047854423523, -0.0958515852689743, -0.004176631104201078, -0.03172103315591812, -0.030861061066389084, -0.012487733736634254, 0.10075526684522629, -0.06932010501623154, 0.1050388365983963, -0.07171039283275604, 0.07931182533502579, -0.0013257537502795458, 0.06181461736559868, 0.06297501921653748, 0.10769586265087128, -0.021073566749691963, 0.015332440845668316, -0.33213692903518677, 0.29801589250564575, 0.03629680350422859, 0.13920320570468903, -0.08433519303798676, -0.0067292070016264915, 0.038418691605329514, 0.06762852519750595, 0.04703482985496521, -0.02794649638235569, -0.10258658230304718, -0.18766038119792938, -0.005655274260789156, 0.04316568747162819, 0.1684497892856598, 0.07950063794851303, 0.10205000638961792, -0.029424576088786125, 0.010572520084679127, 0.09778561443090439, -0.013339937664568424, -0.11719982326030731, -0.042321719229221344, -0.013625148683786392, 0.040478553622961044, -0.06478078663349152, -0.038726724684238434, -0.10527351498603821, -0.08689769357442856, 0.20423273742198944, 0.00763954920694232, -0.003170447191223502, -0.1447325497865677, 0.1345570981502533, 0.042205337435007095, -0.054841190576553345, 0.0319635309278965, 0.018533091992139816, 0.046073067933321, 0.06953124701976776, -0.12932345271110535, 0.15628045797348022, -0.02992895618081093, -0.15343907475471497, -0.05991130322217941, 0.06280555576086044, 0.03404882550239563, 0.04798554256558418, 0.0029135621152818203, 0.04981165751814842, 0.03641903027892113, -0.08533668518066406, 0.08252883702516556, -0.03240123391151428, 0.036552734673023224, 0.02849806845188141, -0.029098236933350563, -0.008619233034551144, -0.04044541344046593, 0.015470786020159721, 0.17559945583343506, 0.2340206652879715, -0.07307076454162598, 0.0004673333023674786, -0.027707265689969063, -0.0722394734621048, -0.22168245911598206, 0.15051522850990295, 0.08736412227153778, 0.020571941509842873, -0.010891325771808624, -0.1377747505903244, 0.12617120146751404, 0.07146098464727402, 0.002712809946388006, 0.1064230352640152, -0.2334543913602829, -0.1597890406847, 0.10614488273859024, 0.15664517879486084, 0.22815555334091187, -0.14878679811954498, -0.021457470953464508, -0.08344220370054245, -0.055763375014066696, 0.16634555160999298, -0.12905052304267883, 0.11039433628320694, 0.016476774588227272, 0.07230231165885925, 0.008919418789446354, -0.024448217824101448, 0.08238391578197479, -0.04597951099276543, 0.134269580245018, -0.07149440795183182, -0.05598049610853195, 0.10135062038898468, -0.030628066509962082, -0.009059266187250614, -0.021241318434476852, 0.01680825836956501, -0.06358478218317032, -0.004595143720507622, -0.08661261945962906, 0.0600704662501812, -0.015533878467977047, -0.03862139582633972, -0.015263983979821205, 0.012967092916369438, 0.04852906987071037, -0.050638359040021896, 0.1468864381313324, -0.024767670780420303, 0.18646922707557678, 0.13282549381256104, 0.11840944737195969, -0.07231304794549942, 0.08169860392808914, 0.07842332124710083, -0.026886675506830215, 0.08337248116731644, -0.145641028881073, 0.040654655545949936, 0.1258634626865387, -0.0007763508474454284, 0.12257830053567886, 0.09293712675571442, -0.012018025852739811, 0.032405346632003784, 0.08503850549459457, -0.16708818078041077, -0.07279181480407715, 0.014615500345826149, -0.09523258358240128, -0.04587236046791077, 0.08280210196971893, 0.15190105140209198, -0.04724269360303879, 0.02584419772028923, -0.007069534156471491, -0.025141989812254906, -0.0911790058016777, 0.1639992594718933, 0.03432168811559677, 0.014357446692883968, -0.09762061387300491, 0.09308966249227524, 0.021066611632704735, -0.09414052218198776, 0.07543274760246277, 0.05163268372416496, -0.07046151161193848, -0.005447540432214737, 0.10546811670064926, 0.1903083622455597, -0.03419795632362366, -0.030859515070915222, -0.1351453810930252, -0.14537660777568817, 0.06528759747743607, 0.2870536148548126, 0.08159324526786804, 0.010076308622956276, -0.07508940994739532, 0.019294006749987602, -0.11541752517223358, 0.02724721096456051, 0.03277275711297989, 0.06418941169977188, -0.13732527196407318, 0.20559930801391602, -0.03271424025297165, 0.028259554877877235, -0.06472984701395035, 0.02633146569132805, -0.15758590400218964, 0.007412791717797518, -0.15458765625953674, -0.036313947290182114, 0.028632834553718567, -0.011265730485320091, 0.029777584597468376, -0.07827319949865341, -0.11135835200548172, 0.026453837752342224, -0.11610560864210129, -0.013522191904485226, 0.06571537256240845, 0.011357273906469345, -0.11847052723169327, -0.0686335414648056, 0.005104190204292536, -0.05770011991262436, 0.03587940335273743, 0.091158926486969, -0.01148480735719204, 0.09526022523641586, -0.18715418875217438, -0.021994328126311302, 0.1101389229297638, -0.008339212276041508, 0.11043869704008102, -0.045637477189302444, 0.0013802805915474892, 0.01701459102332592, 0.11627191305160522, 0.0420677624642849, 0.1367870271205902, -0.08528754115104675, -0.03437342494726181, -0.025073517113924026, -0.069412462413311, -0.037744466215372086, 0.029823018237948418, 0.11533696949481964, 0.0025436647702008486, 0.18409521877765656, -0.12390473484992981, 0.0017917380901053548, -0.1732725352048874, 0.0028346688486635685, -0.00016928893455769867, -0.13468031585216522, -0.11054625362157822, -0.03562445566058159, 0.1076560989022255, -0.07031752169132233, 0.14000697433948517, 0.032995402812957764, 0.10127482563257217, 0.06272075325250626, -0.02079862542450428, -0.05742518976330757, 0.05736679211258888, 0.20174388587474823, 0.0685473382472992, -0.033834993839263916, 0.033763326704502106, 0.042080141603946686, 0.11387321352958679, 0.10086601972579956, 0.2754085063934326, 0.11808590590953827, -0.04387006536126137, 0.14198528230190277, 0.0419609360396862, -0.0404190868139267, -0.09538774937391281, 0.048730283975601196, -0.11014983057975769, 0.15485501289367676, -0.04258778691291809, 0.07459673285484314, 0.047391731292009354, -0.15085828304290771, 0.015280467458069324, -0.09496766328811646, -0.08765024691820145, -0.14679570496082306, -0.03267892450094223, -0.11517183482646942, -0.14443665742874146, 0.02422231249511242, -0.10726121068000793, 0.055295225232839584, 0.051572371274232864, 0.028548406437039375, -0.015205008909106255, 0.1767616719007492, -0.03884990140795708, 0.025020863860845566, 0.11314895749092102, -0.021551981568336487, -0.022529905661940575, -0.06465665251016617, -0.055230189114809036, 0.007735779043287039, -0.021460210904479027, 0.01707247458398342, -0.026051122695207596, -0.057095952332019806, 0.039378274232149124, -0.04165790230035782, -0.1145770326256752, 0.04894391819834709, 0.0616830438375473, 0.031705211848020554, 0.01345242653042078, 0.034200187772512436, 0.003976456355303526, -0.02450912445783615, 0.19157780706882477, -0.1016511470079422, -0.03603129833936691, -0.13420617580413818, 0.3111758530139923, 0.03155650570988655, 0.05417441204190254, -0.0009213930461555719, -0.06492085754871368, -0.04146460071206093, 0.2218620479106903, 0.18145570158958435, -0.11367190629243851, -0.0047128028236329556, 0.010950416326522827, 0.0015311695169657469, -0.03172646090388298, 0.16598990559577942, 0.08818130195140839, -0.03226854279637337, -0.07354137301445007, -0.06628062576055527, -0.02694833278656006, -0.010188973508775234, -0.006648811511695385, 0.058645911514759064, 0.06929130852222443, -0.006143301259726286, -0.02878461964428425, 0.06254454702138901, -0.057818930596113205, -0.12094755470752716, 0.0750422552227974, -0.22032664716243744, -0.16147653758525848, -0.004401748068630695, 0.010633471421897411, -0.014711366966366768, 0.09065718203783035, -0.02191600389778614, -0.019319608807563782, 0.05638677626848221, -0.03548822179436684, -0.04787664860486984, -0.09488008171319962, 0.09138011932373047, -0.16288435459136963, 0.15252533555030823, -0.03112596832215786, 0.06649359315633774, 0.11419535428285599, 0.055594950914382935, -0.03940402716398239, 0.06178771331906319, 0.019469188526272774, -0.1323578804731369, 0.015319601632654667, 0.10477513819932938, -0.039393432438373566, 0.06805434077978134, 0.051742397248744965, -0.1303831934928894, 0.05421163886785507, -0.12282609939575195, -0.09017747640609741, -0.03271923586726189, -0.059359580278396606, -0.09451426565647125, 0.11688484996557236, 0.2643152177333832, -0.0018989571835845709, 0.06609207391738892, -0.06300133466720581, -0.005050096195191145, 0.0761096328496933, 0.02920222468674183, -0.09538276493549347, -0.2595881521701813, 0.03621864691376686, 0.1455666422843933, -0.017291154712438583, -0.22698074579238892, -0.0708642229437828, -0.009896726347506046, -0.03900226205587387, -0.07640261948108673, 0.08575168251991272, 0.08320490270853043, 0.04143497347831726, -0.05762654170393944, -0.17671838402748108, -0.025870805606245995, 0.1635822355747223, -0.11621202528476715, -0.09005975723266602 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned-model This model is a fine-tuned version of [cardiffnlp/twitter-roberta-base-sentiment](https://huggingface.co/cardiffnlp/twitter-roberta-base-sentiment) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.8601 - Accuracy: 0.6117 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 84 | 0.8663 | 0.5914 | | No log | 2.0 | 168 | 0.8601 | 0.6117 | ### Framework versions - Transformers 4.16.1 - Pytorch 1.10.0+cu111 - Datasets 1.18.2 - Tokenizers 0.11.0
{"tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "finetuned-model", "results": []}]}
text-classification
MarioPenguin/finetuned-model
[ "transformers", "pytorch", "tensorboard", "roberta", "text-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #roberta #text-classification #generated_from_trainer #autotrain_compatible #endpoints_compatible #region-us
finetuned-model =============== This model is a fine-tuned version of cardiffnlp/twitter-roberta-base-sentiment on an unknown dataset. It achieves the following results on the evaluation set: * Loss: 0.8601 * Accuracy: 0.6117 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 64 * eval\_batch\_size: 64 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 2 ### Training results ### Framework versions * Transformers 4.16.1 * Pytorch 1.10.0+cu111 * Datasets 1.18.2 * Tokenizers 0.11.0
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 2", "### Training results", "### Framework versions\n\n\n* Transformers 4.16.1\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.2\n* Tokenizers 0.11.0" ]
[ "TAGS\n#transformers #pytorch #tensorboard #roberta #text-classification #generated_from_trainer #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 2", "### Training results", "### Framework versions\n\n\n* Transformers 4.16.1\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.2\n* Tokenizers 0.11.0" ]
[ 48, 98, 4, 33 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #roberta #text-classification #generated_from_trainer #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 2### Training results### Framework versions\n\n\n* Transformers 4.16.1\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.2\n* Tokenizers 0.11.0" ]
[ -0.0859682634472847, 0.05082647129893303, -0.0018241266952827573, 0.11690497398376465, 0.2111092209815979, 0.032820623368024826, 0.11159129440784454, 0.1100233718752861, -0.11884991079568863, 0.029960550367832184, 0.11807063221931458, 0.17272628843784332, 0.006508568301796913, 0.09269849210977554, -0.06058186665177345, -0.2772543132305145, -0.03580969572067261, 0.039356328547000885, -0.08840974420309067, 0.1290034055709839, 0.07953405380249023, -0.1536536067724228, 0.07675665616989136, -0.015207251533865929, -0.2548350989818573, 0.021517446264624596, 0.02871624380350113, -0.05864103138446808, 0.14881019294261932, 0.014562681317329407, 0.16517551243305206, 0.0007550412556156516, 0.09829157590866089, -0.16381970047950745, 0.014114629477262497, 0.0609845407307148, 0.013732949271798134, 0.086069755256176, 0.060282424092292786, -0.014066903851926327, 0.10754939913749695, -0.09760227054357529, 0.06261271983385086, 0.0032080328091979027, -0.13073337078094482, -0.19363538920879364, -0.06954386085271835, -0.008277231827378273, 0.047640398144721985, 0.09944606572389603, -0.010614207945764065, 0.1516515463590622, -0.10673171281814575, 0.100946344435215, 0.21227532625198364, -0.26512008905410767, -0.08556824177503586, 0.04859770089387894, -0.005550928879529238, 0.09450327605009079, -0.12255913764238358, -0.013603737577795982, 0.057053085416555405, 0.054114703088998795, 0.11680404096841812, -0.030618298798799515, -0.1260453760623932, 0.024317458271980286, -0.14596712589263916, -0.00009727931319503114, 0.06521686166524887, 0.014194749295711517, -0.013697502203285694, -0.015923455357551575, -0.06549553573131561, -0.16371411085128784, -0.040865007787942886, -0.022961247712373734, 0.04577292501926422, -0.053612373769283295, -0.10398079454898834, 0.003227399429306388, -0.10231669992208481, -0.0621282123029232, -0.07909054309129715, 0.15712356567382812, 0.03713474050164223, 0.014211336150765419, -0.039126668125391006, 0.10569562017917633, -0.0065282853320240974, -0.1316235512495041, 0.05421392619609833, 0.027591878548264503, -0.030069908127188683, -0.06536794453859329, -0.07141639292240143, -0.10576044768095016, -0.0007703427691012621, 0.07978835701942444, -0.05572611466050148, 0.056246668100357056, 0.023210665211081505, 0.04042452573776245, -0.09148775786161423, 0.19912223517894745, -0.04300512373447418, -0.025734994560480118, -0.0008626230410300195, 0.049395304173231125, -0.007103046402335167, -0.014826223254203796, -0.11303731799125671, 0.0015603075735270977, 0.11236320436000824, 0.003874442307278514, -0.07699549198150635, 0.06894435733556747, -0.04060487076640129, -0.0201166570186615, -0.04151102900505066, -0.09656927734613419, 0.048189032822847366, -0.010141409002244473, -0.09483382105827332, -0.002458928618580103, 0.013104680925607681, 0.015050418674945831, -0.01693587750196457, 0.1623256504535675, -0.09155236184597015, 0.051048532128334045, -0.1197962611913681, -0.12384685128927231, 0.0065915267914533615, -0.0810641497373581, 0.01964731328189373, -0.09571263194084167, -0.14202608168125153, -0.02774427831172943, 0.053785454481840134, -0.041257478296756744, -0.032407648861408234, -0.05572569742798805, -0.07405486702919006, 0.010946778580546379, -0.011541422456502914, 0.17296937108039856, -0.05033152177929878, 0.11678697913885117, 0.04873919486999512, 0.08081365376710892, -0.05339190363883972, 0.052643440663814545, -0.08892080932855606, -0.006432153284549713, -0.20824481546878815, 0.05466679111123085, -0.051280710846185684, 0.07079708576202393, -0.06375157833099365, -0.11231210827827454, -0.003181099658831954, 0.001967939082533121, 0.09073733538389206, 0.0814325213432312, -0.17915670573711395, -0.0862484723329544, 0.16255158185958862, -0.059170451015233994, -0.07848021388053894, 0.1158057451248169, -0.07190463691949844, 0.04063667356967926, 0.08190463483333588, 0.16856269538402557, 0.05882018432021141, -0.0692833736538887, 0.02350294031202793, -0.02998209185898304, 0.04883065074682236, -0.05476677417755127, 0.035567186772823334, 0.020609548315405846, 0.011465626768767834, 0.030791498720645905, -0.00795811228454113, 0.06611806899309158, -0.11848484724760056, -0.08761142939329147, -0.035513412207365036, -0.10788103938102722, 0.06331364810466766, 0.09080296754837036, 0.10784469544887543, -0.10168400406837463, -0.06486256420612335, 0.0929812639951706, 0.055827558040618896, -0.05394231528043747, 0.022416571155190468, -0.05193505808711052, 0.054506462067365646, -0.049347180873155594, -0.025692980736494064, -0.21083901822566986, -0.02887490950524807, 0.0010107833659276366, 0.04800574854016304, 0.03926566615700722, 0.03357763588428497, 0.08709974586963654, 0.05956311151385307, -0.06761215627193451, 0.001916601206175983, -0.019152112305164337, -0.010564977303147316, -0.1527133733034134, -0.19959896802902222, -0.01073170080780983, -0.017710966989398003, 0.10914818942546844, -0.22070805728435516, 0.02678309753537178, -0.02862265519797802, 0.08305292576551437, 0.017698150128126144, -0.009148295037448406, -0.056723929941654205, 0.11311087012290955, -0.02462138421833515, -0.04660623520612717, 0.07418747246265411, -0.014849314466118813, -0.07251112163066864, -0.07518485933542252, -0.10999926179647446, 0.17766813933849335, 0.1427621692419052, -0.1578001081943512, -0.10362769663333893, 0.015951454639434814, -0.05546572431921959, -0.0219670869410038, -0.058467987924814224, 0.04748492315411568, 0.194159135222435, -0.012340045534074306, 0.15481212735176086, -0.055555716156959534, -0.039893124252557755, 0.01739726960659027, -0.03392989560961723, 0.043571837246418, 0.1195826455950737, 0.1285342276096344, -0.07684259861707687, 0.13466309010982513, 0.12278417497873306, -0.12918463349342346, 0.15756581723690033, -0.02077661082148552, -0.07309600710868835, -0.009947343729436398, -0.030364230275154114, 0.006890125572681427, 0.09193557500839233, -0.11887778341770172, -0.021299974992871284, 0.0009787578601390123, 0.017095137387514114, 0.03333964943885803, -0.23280775547027588, -0.04817357286810875, 0.025748714804649353, -0.012436256743967533, 0.007425177842378616, -0.025359604507684708, 0.026477355509996414, 0.12545070052146912, 0.0034207901917397976, -0.06661805510520935, 0.024107126519083977, 0.0012280975934118032, -0.06827495992183685, 0.21270033717155457, -0.07296951860189438, -0.13191188871860504, -0.10473254323005676, -0.07686470448970795, -0.03829572722315788, 0.015950223430991173, 0.035850830376148224, -0.12789955735206604, -0.011126494035124779, -0.03448255732655525, 0.03397522121667862, 0.00598449120298028, 0.05007445812225342, 0.0027530090883374214, 0.009899472817778587, 0.06180591136217117, -0.09927544742822647, -0.0032866913825273514, -0.0771811455488205, -0.07811006903648376, 0.0627410039305687, 0.05275418609380722, 0.11976632475852966, 0.17638720571994781, -0.0494031086564064, 0.004865413065999746, -0.028698936104774475, 0.2222827672958374, -0.07752624899148941, -0.03445443883538246, 0.10349231213331223, -0.023003147915005684, 0.049613967537879944, 0.10133901983499527, 0.07808481901884079, -0.09568428993225098, 0.019630057737231255, 0.04380716755986214, -0.0477670356631279, -0.21565094590187073, -0.037143364548683167, -0.05210788920521736, -0.036895908415317535, 0.08645781129598618, 0.017068443819880486, 0.029302341863512993, 0.07016949355602264, 0.06827641278505325, 0.09308017790317535, -0.056898314505815506, 0.042039625346660614, 0.0948873981833458, 0.04624093696475029, 0.13188186287879944, -0.04326577112078667, -0.09652302414178848, 0.02714678831398487, -0.028295543044805527, 0.2196127027273178, -0.006628365255892277, 0.08168075978755951, 0.040188029408454895, 0.1702422946691513, 0.010686598718166351, 0.07661284506320953, 0.0038762150797992945, -0.06496772915124893, -0.0023273364640772343, -0.03105100989341736, -0.04869818687438965, 0.009961962699890137, -0.03099968098104, 0.049112383276224136, -0.11712069064378738, -0.009467501193284988, 0.05804780498147011, 0.2215108573436737, 0.023874247446656227, -0.31552228331565857, -0.07058253139257431, 0.0017422988312318921, -0.029930397868156433, -0.009041713550686836, 0.007222847081720829, 0.11985784769058228, -0.0990094542503357, 0.023600155487656593, -0.07451608031988144, 0.09087121486663818, -0.049022138118743896, 0.04601982235908508, 0.05499954894185066, 0.11144337803125381, -0.006279531866312027, 0.0682801604270935, -0.3136518597602844, 0.26665952801704407, 0.008625825867056847, 0.08149708807468414, -0.07988811284303665, -0.012246716767549515, 0.03595590218901634, 0.0350535549223423, 0.02953936532139778, -0.02004300244152546, -0.03463727980852127, -0.21116386353969574, -0.02861138992011547, 0.029365980997681618, 0.12937119603157043, -0.010181289166212082, 0.10029381513595581, -0.018705526366829872, 0.004876016639173031, 0.0764605700969696, -0.04430694505572319, -0.045356493443250656, -0.08486861735582352, -0.0272678192704916, 0.008947804570198059, -0.07246062904596329, -0.04835694283246994, -0.1216084361076355, -0.13111251592636108, 0.15258266031742096, 0.002985048573464155, -0.014214343391358852, -0.11895065009593964, 0.13348205387592316, 0.07142633199691772, -0.08086240291595459, 0.03359861299395561, 0.016422687098383904, 0.056576795876026154, 0.025965340435504913, -0.06649737060070038, 0.11312893778085709, -0.05129917338490486, -0.15759111940860748, -0.06627136468887329, 0.08401843160390854, 0.040791820734739304, 0.06910862028598785, -0.021331727504730225, 0.019946621730923653, -0.020664993673563004, -0.08728302270174026, 0.04229927062988281, -0.02737860567867756, 0.06479846686124802, 0.039573363959789276, -0.05717043951153755, -0.010747789405286312, -0.0568864569067955, -0.01701553538441658, 0.20088224112987518, 0.21994373202323914, -0.09316587448120117, -0.005563270300626755, 0.02943820133805275, -0.06643444299697876, -0.20893923938274384, 0.09968101978302002, 0.08626273274421692, 0.01171655673533678, 0.04634819179773331, -0.17483405768871307, 0.1414383053779602, 0.10445856302976608, -0.00027244104421697557, 0.11803723126649857, -0.3150157332420349, -0.13016250729560852, 0.09210910648107529, 0.16714616119861603, 0.13971932232379913, -0.14846813678741455, -0.012367506511509418, -0.025622813031077385, -0.09312178194522858, 0.10488412529230118, -0.08792658895254135, 0.127672478556633, -0.018998315557837486, 0.10290704667568207, 0.013424578122794628, -0.06570039689540863, 0.09755362570285797, 0.003134952625259757, 0.10843473672866821, -0.07160672545433044, -0.05848705768585205, 0.045539166778326035, -0.02762107364833355, -0.0190365519374609, -0.035024307668209076, 0.014871066436171532, -0.07483165711164474, -0.020487062633037567, -0.09426093101501465, 0.03337042033672333, -0.030028250068426132, -0.06371131539344788, -0.03131577745079994, 0.030898774042725563, 0.035125862807035446, -0.017604708671569824, 0.1127505823969841, -0.0012589809484779835, 0.17446470260620117, 0.09799409657716751, 0.07788136601448059, -0.04453760012984276, -0.024842092767357826, 0.004715724848210812, -0.009864166378974915, 0.054526664316654205, -0.1374632716178894, 0.020085429772734642, 0.1548582911491394, 0.023319417610764503, 0.12348084151744843, 0.09507596492767334, -0.01723017729818821, 0.024972686544060707, 0.08079218119382858, -0.16274559497833252, -0.06862544268369675, 0.0019638321828097105, -0.08684127032756805, -0.09587784856557846, 0.04592309519648552, 0.08611880242824554, -0.06591448187828064, -0.007954633794724941, -0.00980810821056366, -0.014821839518845081, -0.0651264414191246, 0.21869149804115295, 0.0782688558101654, 0.0425725020468235, -0.09866417199373245, 0.06479119509458542, 0.06099577620625496, -0.08638003468513489, 0.005379973445087671, 0.09373880177736282, -0.07257397472858429, -0.02469784766435623, 0.10706640779972076, 0.2074829488992691, -0.06218982860445976, -0.01636095903813839, -0.14796103537082672, -0.10854419320821762, 0.06518238037824631, 0.18976521492004395, 0.10753326117992401, -0.004888572730123997, -0.06248646229505539, 0.031790588051080704, -0.1503819078207016, 0.0731688141822815, 0.04376377537846565, 0.07859297096729279, -0.1333346664905548, 0.1981058120727539, 0.0037088897079229355, 0.04040103405714035, -0.034258220344781876, 0.03238177299499512, -0.12361779063940048, 0.023346634581685066, -0.11423031240701675, -0.04961889609694481, 0.003456501057371497, -0.010150483809411526, -0.004685401916503906, -0.06507682055234909, -0.06081974878907204, -0.0021434430964291096, -0.12643934786319733, -0.016837485134601593, 0.034822072833776474, 0.023161988705396652, -0.1106332540512085, -0.0393000990152359, 0.019494853913784027, -0.04702001065015793, 0.05151434615254402, 0.048797741532325745, 0.01801784336566925, 0.07686785608530045, -0.1642313152551651, -0.01275003794580698, 0.06871316581964493, -0.005060923285782337, 0.0874607264995575, -0.04361778125166893, -0.0032933184411376715, -0.012048691511154175, 0.10934325307607651, 0.03355654329061508, 0.08351842314004898, -0.13511411845684052, 0.02506805956363678, -0.03478599339723587, -0.1043679416179657, -0.06489232182502747, 0.038196247071027756, 0.07510646432638168, 0.013619005680084229, 0.17596259713172913, -0.09051185846328735, 0.0557200163602829, -0.21415303647518158, -0.008182364515960217, -0.01393993478268385, -0.10973546653985977, -0.09514188766479492, -0.06163562461733818, 0.0794481709599495, -0.05553806945681572, 0.12361273169517517, 0.05151599645614624, 0.05819491669535637, 0.029746077954769135, -0.029408462345600128, -0.006363752763718367, 0.0374426394701004, 0.1935625672340393, 0.04791928827762604, -0.048354607075452805, 0.05861129239201546, 0.07806684821844101, 0.10358289629220963, 0.1198505163192749, 0.2205008864402771, 0.14786982536315918, -0.026647018268704414, 0.0870291218161583, 0.02859818935394287, -0.04722294583916664, -0.14470480382442474, 0.04166286066174507, -0.07702736556529999, 0.08283567428588867, -0.036966849118471146, 0.19309648871421814, 0.05780279263854027, -0.15707416832447052, 0.046032533049583435, -0.07196273654699326, -0.10502205789089203, -0.10430409014225006, -0.005175375379621983, -0.08876705914735794, -0.13525651395320892, 0.015083346515893936, -0.11020471900701523, 0.021457761526107788, 0.12471945583820343, 0.012887601740658283, -0.02410123683512211, 0.1866346150636673, 0.03763843700289726, 0.03513125702738762, 0.07247605919837952, 0.010880609042942524, -0.01335669495165348, -0.0971001610159874, -0.06461411714553833, -0.037321384996175766, -0.0043892101384699345, 0.03531057387590408, -0.06405244022607803, -0.09086434543132782, 0.02917718142271042, -0.018217844888567924, -0.1041661873459816, 0.026568841189146042, 0.028481993824243546, 0.07462972402572632, 0.030633900314569473, -0.003765503875911236, 0.010658897459506989, -0.030448369681835175, 0.23448584973812103, -0.08670602738857269, -0.07682967931032181, -0.09743005037307739, 0.27260464429855347, 0.0409395769238472, 0.010040956549346447, 0.01255710143595934, -0.07378135621547699, 0.009423934854567051, 0.24640221893787384, 0.20622536540031433, -0.12502653896808624, -0.006808481179177761, 0.007241059560328722, -0.008851466700434685, -0.022683581337332726, 0.13678167760372162, 0.12816865742206573, 0.04880519211292267, -0.11308325827121735, -0.03902004659175873, -0.051020022481679916, -0.015154356136918068, -0.03431950882077217, 0.061304498463869095, 0.06234733387827873, 0.022269610315561295, -0.061881739646196365, 0.06536837667226791, -0.07765643298625946, -0.1126163899898529, 0.0745522603392601, -0.2376910299062729, -0.17592257261276245, -0.009621424600481987, 0.10960785299539566, -0.014915725216269493, 0.07354050129652023, -0.028144098818302155, -0.003253109287470579, 0.025596674531698227, -0.02764372155070305, -0.06953022629022598, -0.08114773780107498, 0.08729349076747894, -0.11750690639019012, 0.16796046495437622, -0.055248238146305084, 0.06313586980104446, 0.12672047317028046, 0.06344017386436462, -0.044703882187604904, 0.05827503278851509, 0.037671301513910294, -0.09857659041881561, 0.02299664169549942, 0.12748438119888306, -0.03749452531337738, 0.04789663851261139, 0.048084013164043427, -0.1386193186044693, 0.03773171082139015, -0.09676460921764374, -0.0450170636177063, -0.04244304448366165, -0.046183034777641296, -0.05889482796192169, 0.12221644818782806, 0.24352651834487915, -0.00745278550311923, 0.036553021520376205, -0.07934849709272385, 0.0005460588727146387, 0.045886244624853134, 0.06227343901991844, -0.10433541238307953, -0.2536514401435852, 0.004547190852463245, 0.0835038498044014, -0.03397481143474579, -0.24853841960430145, -0.08368612825870514, 0.0028429804369807243, -0.07076550275087357, -0.09288156777620316, 0.09110137075185776, 0.07829339057207108, 0.05725576728582382, -0.048868577927351, -0.11882370710372925, -0.07250835746526718, 0.16464321315288544, -0.15324999392032623, -0.08823169767856598 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-model-english This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.1140 - Train Accuracy: 0.9596 - Validation Loss: 0.2166 - Validation Accuracy: 0.9301 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': 5e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch | |:----------:|:--------------:|:---------------:|:-------------------:|:-----:| | 0.2922 | 0.8804 | 0.2054 | 0.9162 | 0 | | 0.1710 | 0.9352 | 0.1879 | 0.9353 | 1 | | 0.1140 | 0.9596 | 0.2166 | 0.9301 | 2 | ### Framework versions - Transformers 4.16.2 - TensorFlow 2.7.0 - Tokenizers 0.11.0
{"license": "mit", "tags": ["generated_from_keras_callback"], "model-index": [{"name": "roberta-model-english", "results": []}]}
text-classification
MarioPenguin/roberta-model-english
[ "transformers", "tf", "roberta", "text-classification", "generated_from_keras_callback", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #tf #roberta #text-classification #generated_from_keras_callback #license-mit #autotrain_compatible #endpoints_compatible #region-us
roberta-model-english ===================== This model is a fine-tuned version of roberta-base on an unknown dataset. It achieves the following results on the evaluation set: * Train Loss: 0.1140 * Train Accuracy: 0.9596 * Validation Loss: 0.2166 * Validation Accuracy: 0.9301 * Epoch: 2 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * optimizer: {'name': 'Adam', 'learning\_rate': 5e-05, 'decay': 0.0, 'beta\_1': 0.9, 'beta\_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False} * training\_precision: float32 ### Training results ### Framework versions * Transformers 4.16.2 * TensorFlow 2.7.0 * Tokenizers 0.11.0
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* optimizer: {'name': 'Adam', 'learning\\_rate': 5e-05, 'decay': 0.0, 'beta\\_1': 0.9, 'beta\\_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False}\n* training\\_precision: float32", "### Training results", "### Framework versions\n\n\n* Transformers 4.16.2\n* TensorFlow 2.7.0\n* Tokenizers 0.11.0" ]
[ "TAGS\n#transformers #tf #roberta #text-classification #generated_from_keras_callback #license-mit #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* optimizer: {'name': 'Adam', 'learning\\_rate': 5e-05, 'decay': 0.0, 'beta\\_1': 0.9, 'beta\\_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False}\n* training\\_precision: float32", "### Training results", "### Framework versions\n\n\n* Transformers 4.16.2\n* TensorFlow 2.7.0\n* Tokenizers 0.11.0" ]
[ 52, 99, 4, 25 ]
[ "passage: TAGS\n#transformers #tf #roberta #text-classification #generated_from_keras_callback #license-mit #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* optimizer: {'name': 'Adam', 'learning\\_rate': 5e-05, 'decay': 0.0, 'beta\\_1': 0.9, 'beta\\_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False}\n* training\\_precision: float32### Training results### Framework versions\n\n\n* Transformers 4.16.2\n* TensorFlow 2.7.0\n* Tokenizers 0.11.0" ]
[ -0.029028531163930893, -0.0030179207678884268, -0.0026484879199415445, 0.08085248619318008, 0.19047802686691284, 0.03697159141302109, 0.14093299210071564, 0.10953880101442337, -0.1224326491355896, 0.034259527921676636, 0.14338909089565277, 0.21744976937770844, 0.0282436516135931, 0.09403664618730545, -0.12449827045202255, -0.18679015338420868, 0.03541825711727142, 0.005472628399729729, -0.06338178366422653, 0.09832417964935303, 0.10009905695915222, -0.08893545717000961, 0.11349165439605713, 0.011702917516231537, -0.2398795634508133, 0.05468243733048439, 0.12848293781280518, -0.09391151368618011, 0.13280893862247467, 0.09342551976442337, 0.10801558196544647, -0.005167078692466021, 0.019689876586198807, -0.1525866538286209, 0.021250713616609573, 0.0877465158700943, -0.02428225614130497, 0.06753890961408615, 0.01662839762866497, -0.023129554465413094, 0.16051174700260162, -0.06533845514059067, 0.041052766144275665, 0.03941754624247551, -0.13646508753299713, -0.1921563595533371, -0.11512964963912964, -0.02097962610423565, 0.047286976128816605, 0.09515362232923508, -0.0021204848308116198, 0.23292434215545654, -0.06192678585648537, 0.10476791113615036, 0.151272252202034, -0.35294458270072937, -0.05883651226758957, 0.025633588433265686, 0.006943847518414259, 0.05013037845492363, -0.0567035935819149, 0.06110105291008949, 0.08004432916641235, 0.03759336844086647, 0.048880089074373245, -0.04575168713927269, -0.12955498695373535, -0.016728315502405167, -0.09381347894668579, -0.0026426096446812153, 0.12697309255599976, 0.024203337728977203, -0.06669352948665619, -0.0234000813215971, -0.035464026033878326, -0.12352178245782852, 0.004992946982383728, -0.07066695392131805, 0.02651083841919899, -0.0003949199162889272, -0.0692657008767128, -0.05178838223218918, -0.09487618505954742, -0.0505487434566021, -0.13076737523078918, 0.21245646476745605, 0.013710198923945427, 0.05463479086756706, -0.054476700723171234, 0.05287307873368263, -0.07479825615882874, -0.10409354418516159, 0.009196699596941471, 0.0004465849488042295, -0.015814846381545067, -0.0692019835114479, -0.11735478043556213, -0.1700286865234375, 0.04343165457248688, 0.10057392716407776, -0.027675718069076538, 0.06634370982646942, -0.07238152623176575, 0.031150145456194878, -0.10963581502437592, 0.17045553028583527, 0.0006506511708721519, 0.014837970957159996, 0.046335618942976, -0.010515833273530006, 0.05206581950187683, -0.040695518255233765, -0.1139085590839386, -0.010582818649709225, 0.07206721603870392, 0.009192712604999542, -0.07888379693031311, 0.11455584317445755, -0.06538600474596024, -0.00867773313075304, -0.04873373731970787, -0.07662401348352432, 0.03344357758760452, -0.022633709013462067, -0.09350752830505371, -0.012419816106557846, 0.06452827900648117, 0.02290697954595089, -0.02746507339179516, 0.058278147131204605, -0.07027937471866608, 0.0026627788320183754, -0.1020648330450058, -0.13825128972530365, 0.012026776559650898, -0.09079134464263916, 0.0173027366399765, -0.11077059060335159, -0.16807051002979279, -0.01884390041232109, 0.05060971528291702, -0.0332791768014431, 0.003291022963821888, -0.06624776124954224, -0.13161033391952515, 0.029645031318068504, -0.012559822760522366, 0.13689850270748138, -0.04827636107802391, 0.06798438727855682, 0.014683040790259838, 0.06503342092037201, -0.1587314009666443, 0.040555939078330994, -0.06907372176647186, -0.017900455743074417, -0.17944110929965973, 0.05945654213428497, -0.038872577250003815, 0.06970978528261185, -0.1094755306839943, -0.06858839094638824, 0.009762817993760109, 0.033266425132751465, 0.09181566536426544, 0.07724768668413162, -0.16554898023605347, -0.06493185460567474, 0.10049685090780258, -0.07992304116487503, -0.10947678983211517, 0.10165872424840927, -0.07997491955757141, 0.09271028637886047, 0.1023755669593811, 0.1353245973587036, -0.018194591626524925, -0.1019919142127037, 0.05732015520334244, -0.0485885813832283, -0.07091137766838074, 0.0045798360370099545, -0.010010059922933578, -0.0044068386778235435, -0.0880899503827095, 0.027415776625275612, 0.00677151745185256, 0.02843957394361496, -0.079134501516819, -0.07193166762590408, -0.03923887386918068, -0.06726576387882233, 0.051247548311948776, 0.0294698104262352, 0.10388940572738647, -0.12547606229782104, -0.09486651420593262, 0.06666892021894455, -0.0008324964437633753, -0.020105279982089996, 0.025218164548277855, -0.09350858628749847, 0.00994864758104086, 0.015822311863303185, 0.0022111632861196995, -0.17915993928909302, -0.04405059292912483, 0.004878643900156021, 0.07552868127822876, 0.07453145831823349, 0.015217000618577003, 0.06692537665367126, -0.002590796211734414, -0.051119595766067505, 0.05215567350387573, 0.02713540568947792, 0.023630252107977867, -0.10744424164295197, -0.21571719646453857, 0.037210725247859955, -0.015537464059889317, 0.07597368210554123, -0.2572516202926636, 0.015334265306591988, 0.020465979352593422, 0.0962856113910675, 0.030591892078518867, 0.018656456843018532, -0.05954444408416748, 0.07430890202522278, -0.039810653775930405, -0.03759260103106499, 0.044974662363529205, 0.01874314807355404, -0.13238754868507385, -0.0020158078987151384, -0.15574491024017334, 0.16141052544116974, 0.16823844611644745, -0.16110996901988983, -0.14046427607536316, 0.054895851761102676, -0.005516162142157555, -0.008222121745347977, 0.001571637112647295, 0.03333739936351776, 0.19445157051086426, -0.027853798121213913, 0.14566092193126678, -0.0527457669377327, -0.020852165296673775, 0.036104533821344376, -0.05122356489300728, -0.010228133760392666, 0.08242952078580856, 0.01410812046378851, -0.21931029856204987, 0.10568703711032867, 0.12943024933338165, -0.11006886512041092, 0.12625886499881744, -0.011715266853570938, -0.03183668106794357, -0.052660901099443436, 0.0015991119435057044, 0.0386916920542717, 0.05258863419294357, -0.10199771076440811, -0.008566530421376228, 0.012803731486201286, 0.01041133888065815, -0.000540914770681411, -0.21457913517951965, -0.02579834684729576, 0.0011870823800563812, -0.02223646268248558, -0.006839824840426445, 0.03175037354230881, 0.03219872713088989, 0.13681355118751526, 0.033252742141485214, -0.046055302023887634, 0.09822031110525131, -0.011590753681957722, -0.08750005066394806, 0.20968632400035858, -0.1337469518184662, -0.12581470608711243, -0.13786868751049042, -0.08513116836547852, -0.08062954246997833, 0.028871826827526093, 0.021820256486535072, -0.09817676991224289, -0.05912652984261513, -0.046936217695474625, 0.010496166534721851, -0.018661711364984512, 0.04746575281023979, 0.023309387266635895, 0.005953249521553516, 0.09575866162776947, -0.09700305759906769, -0.048281230032444, -0.0599333681166172, -0.0840722993016243, 0.06223849952220917, -0.003940373193472624, 0.05258980765938759, 0.10862182825803757, -0.05822310596704483, 0.015922414138913155, -0.06257111579179764, 0.22089776396751404, -0.06976958364248276, -0.048264775425195694, 0.12598660588264465, -0.04729428142309189, 0.03222745656967163, 0.11841639876365662, 0.04135528579354286, -0.13391928374767303, 0.05888133496046066, 0.045859500765800476, -0.043607473373413086, -0.23882077634334564, -0.02377595566213131, -0.03497037664055824, -0.1239413395524025, 0.026643065735697746, 0.034626320004463196, 0.1751030832529068, 0.044335395097732544, 0.05570796877145767, 0.11993645131587982, -0.0008645365596748888, 0.05960370600223541, 0.21655108034610748, 0.059889428317546844, 0.11810518801212311, -0.055610157549381256, -0.049466535449028015, 0.04747871309518814, -0.05466851219534874, 0.19341613352298737, 0.05862702801823616, 0.026925183832645416, 0.07055684179067612, 0.07306287437677383, 0.0014721355400979519, 0.011268068104982376, 0.03898546099662781, -0.06783211976289749, -0.011907984502613544, -0.044002413749694824, -0.05806252360343933, 0.059741951525211334, -0.07333460450172424, 0.05158159136772156, -0.08439487963914871, 0.003958034794777632, 0.06752721220254898, 0.2149391770362854, 0.03384120762348175, -0.3329595625400543, -0.09712675958871841, 0.0019249847391620278, -0.030381610617041588, -0.028319401666522026, -0.007565021514892578, 0.06393493711948395, -0.08494129031896591, 0.10666802525520325, -0.06443733721971512, 0.06555622816085815, 0.006018381100147963, 0.07163112610578537, 0.048294223845005035, 0.10419652611017227, -0.008787075988948345, 0.025837352499365807, -0.35785889625549316, 0.2902922034263611, 0.03734707459807396, 0.14634215831756592, -0.0864190086722374, 0.001538009149953723, 0.04161335527896881, 0.04075102135539055, 0.06633688509464264, -0.033207967877388, -0.1271045058965683, -0.17599375545978546, 0.012240438722074032, 0.02605869434773922, 0.1709875762462616, 0.07148530334234238, 0.09947111457586288, -0.04451842978596687, 0.03077986277639866, 0.09279345721006393, 0.00603602547198534, -0.12435130029916763, -0.062386542558670044, 0.0062944297678768635, 0.053287506103515625, -0.048178695142269135, -0.042050011456012726, -0.07997503131628036, -0.1049235537648201, 0.20515957474708557, -0.040903240442276, -0.015999292954802513, -0.12787386775016785, 0.10687255859375, 0.03358883038163185, -0.057587865740060806, 0.04250657185912132, 0.002927442779764533, 0.03068697825074196, 0.049074601382017136, -0.1323365867137909, 0.15931780636310577, -0.014818243682384491, -0.16013126075267792, -0.05585729330778122, 0.05935312807559967, 0.02911127358675003, 0.04846910759806633, 0.019956696778535843, 0.05611422657966614, 0.02002197690308094, -0.09070808440446854, 0.08305716514587402, -0.002811393467709422, 0.024748995900154114, 0.03747882321476936, -0.024296114221215248, -0.04396966099739075, -0.05841778591275215, -0.007682740222662687, 0.17575012147426605, 0.26429852843284607, -0.08146753162145615, 0.017063330858945847, -0.025264805182814598, -0.08369141817092896, -0.22580374777317047, 0.1338944137096405, 0.06712894886732101, 0.012175051495432854, -0.0005931063205935061, -0.12661436200141907, 0.08333864063024521, 0.09400267899036407, -0.005383952055126429, 0.09791471809148788, -0.25603750348091125, -0.15890082716941833, 0.09919651597738266, 0.14341391623020172, 0.22300471365451813, -0.14601324498653412, -0.03555403649806976, -0.0783107802271843, -0.05874542146921158, 0.175447478890419, -0.11281231790781021, 0.12041883170604706, 0.0179948378354311, 0.08455418050289154, 0.001716003636829555, -0.019572298973798752, 0.09414239227771759, -0.049794651567935944, 0.1377483308315277, -0.07904763519763947, -0.07601252943277359, 0.10610008239746094, -0.02356129139661789, 0.008114569820463657, -0.01867554523050785, 0.00670961756259203, -0.04875872656702995, -0.004431942477822304, -0.0818362906575203, 0.07565580308437347, -0.025400221347808838, -0.03670860454440117, -0.03235972672700882, 0.026102498173713684, 0.04138639569282532, -0.04872523248195648, 0.14966797828674316, -0.03927979990839958, 0.20192012190818787, 0.15603592991828918, 0.11077302694320679, -0.03928385302424431, 0.09200632572174072, 0.07404334843158722, -0.04390686750411987, 0.08206016570329666, -0.14205238223075867, 0.037173543125391006, 0.11365555226802826, -0.008212799206376076, 0.13840287923812866, 0.08056826889514923, -0.026039935648441315, 0.057375796139240265, 0.08394750952720642, -0.14886942505836487, -0.10310860723257065, 0.01923382841050625, -0.06434604525566101, -0.032816000282764435, 0.07234320789575577, 0.15610231459140778, -0.04816074296832085, 0.019373677670955658, -0.0008899084641598165, -0.013279767706990242, -0.09166863560676575, 0.12246691435575485, 0.031161148101091385, -0.0030451463535428047, -0.09077338129281998, 0.11644494533538818, 0.03328796103596687, -0.07222260534763336, 0.0881114974617958, 0.016960332170128822, -0.06861092150211334, -0.018361428752541542, 0.05182972177863121, 0.1571197360754013, -0.059852179139852524, -0.05056675150990486, -0.12438368797302246, -0.16422170400619507, 0.044005054980516434, 0.26748916506767273, 0.08086086809635162, 0.029932087287306786, -0.05313171073794365, 0.000503861578181386, -0.09865789860486984, 0.02015688456594944, 0.026064958423376083, 0.05218391492962837, -0.1348339319229126, 0.20077411830425262, -0.02170119248330593, 0.012683103792369366, -0.056085847318172455, 0.020388446748256683, -0.16622214019298553, 0.003131004748865962, -0.14499962329864502, -0.020543145015835762, 0.007613937836140394, -0.004947570618242025, 0.03984375670552254, -0.07535375654697418, -0.10685992985963821, 0.028051236644387245, -0.11685466021299362, -0.015723589807748795, 0.0746854916214943, 0.03459455072879791, -0.10790446400642395, -0.07059355080127716, 0.017935214564204216, -0.0456593781709671, 0.027426667511463165, 0.09693699330091476, -0.015502449125051498, 0.08939915150403976, -0.19584757089614868, -0.0010057284962385893, 0.10238165408372879, -0.007822355255484581, 0.08440649509429932, -0.06777697056531906, -0.004253996070474386, 0.02097753994166851, 0.08974841237068176, 0.04842445254325867, 0.12286817282438278, -0.09352060407400131, -0.04812785983085632, -0.007440732792019844, -0.06285092234611511, -0.04581201821565628, 0.039430998265743256, 0.12523247301578522, -0.009784645400941372, 0.2042033076286316, -0.12353706359863281, -0.009676914662122726, -0.1501370221376419, 0.013502828776836395, -0.0061774346977472305, -0.13529090583324432, -0.12080389261245728, -0.045752525329589844, 0.08696206659078598, -0.062444496899843216, 0.14690180122852325, 0.017751634120941162, 0.07455241680145264, 0.05555165931582451, -0.016607554629445076, -0.05467544123530388, 0.04387390613555908, 0.20169803500175476, 0.053720809519290924, -0.02541694976389408, 0.019364235922694206, 0.028341742232441902, 0.09387423098087311, 0.06075755134224892, 0.24087494611740112, 0.12544824182987213, -0.04813471436500549, 0.13486619293689728, 0.0585424080491066, -0.01956530660390854, -0.08119983226060867, 0.08493274450302124, -0.08542721718549728, 0.1342165619134903, -0.053283046931028366, 0.07043634355068207, 0.08326675742864609, -0.15407004952430725, 0.014187476597726345, -0.09000981599092484, -0.08057789504528046, -0.14781688153743744, -0.08347224444150925, -0.11806818842887878, -0.12204425036907196, 0.02164604142308235, -0.08912109583616257, 0.05750204622745514, 0.05279573053121567, 0.018261510878801346, -0.03753386065363884, 0.13739383220672607, -0.07166037708520889, -0.001203032094053924, 0.0991411805152893, -0.03282354027032852, -0.02621104195713997, -0.1003495305776596, -0.056914713233709335, 0.02133355103433132, -0.014179181307554245, 0.0219106562435627, -0.012440858408808708, -0.031194405630230904, 0.017272917553782463, -0.07264332473278046, -0.0990588515996933, 0.048631928861141205, 0.06870293617248535, 0.02830205112695694, 0.003728175535798073, 0.0418209582567215, -0.008062809705734253, -0.009416316635906696, 0.18230710923671722, -0.09087251126766205, -0.04702968895435333, -0.12998497486114502, 0.31074583530426025, 0.02001577988266945, 0.05716199055314064, -0.0051968595944345, -0.060508765280246735, -0.020129229873418808, 0.2224436104297638, 0.19352169334888458, -0.10438302904367447, 0.0013808353105559945, 0.01197972521185875, 0.001131954719312489, -0.03878767043352127, 0.1495257019996643, 0.07059504091739655, -0.04396885633468628, -0.06327121704816818, -0.03377419710159302, -0.02417287789285183, 0.007392798084765673, -0.023552358150482178, 0.06611976027488708, 0.0445278100669384, -0.016231710091233253, -0.02317056618630886, 0.06993253529071808, -0.0754295140504837, -0.09721854329109192, 0.06220673397183418, -0.20764687657356262, -0.1498207449913025, 0.001696418970823288, 0.01226746290922165, -0.012048090808093548, 0.0863041803240776, -0.03127380833029747, -0.008565999567508698, 0.0360279306769371, -0.03390803188085556, -0.04959423467516899, -0.0786886140704155, 0.08916398882865906, -0.10826742649078369, 0.15264664590358734, -0.02814236655831337, 0.07101450860500336, 0.11944054812192917, 0.055974144488573074, -0.04819406941533089, 0.07593371719121933, 0.02580955997109413, -0.10366068035364151, 0.019007038325071335, 0.06655188649892807, -0.021158013492822647, 0.09078136086463928, 0.06954474747180939, -0.09718716889619827, 0.0833054780960083, -0.13364297151565552, -0.10321330279111862, -0.03357652574777603, -0.04100583493709564, -0.09548410773277283, 0.11892484128475189, 0.24770407378673553, -0.015110637992620468, 0.04972105845808983, -0.04887150600552559, -0.015650080516934395, 0.09042064100503922, 0.009198692627251148, -0.09026096761226654, -0.23217056691646576, 0.036978766322135925, 0.1467331051826477, -0.002176503650844097, -0.2198186218738556, -0.07080261409282684, -0.032548632472753525, -0.03434441238641739, -0.08480463922023773, 0.07779353857040405, 0.09253749996423721, 0.03939499333500862, -0.05091972276568413, -0.1893271952867508, -0.029156895354390144, 0.1654871255159378, -0.08576446771621704, -0.08887572586536407 ]
null
null
null
# albertZero albertZero is a PyTorch model with a prediction head fine-tuned for SQuAD 2.0. Based on Hugging Face's albert-base-v2, albertZero employs a novel method to speed up fine-tuning. It re-initializes weights of final linear layer in the shared albert transformer block, resulting in a 2% point improvement during the early epochs of fine-tuning. ## Usage albertZero can be loaded like this: ```python tokenizer = AutoTokenizer.from_pretrained('MarshallHo/albertZero-squad2-base-v2') model = AutoModel.from_pretrained('MarshallHo/albertZero-squad2-base-v2') ``` or ```python from transformers import AlbertModel, AlbertTokenizer, AlbertForQuestionAnswering, AlbertPreTrainedModel mytokenizer = AlbertTokenizer.from_pretrained('albert-base-v2') model = AlbertForQuestionAnsweringAVPool.from_pretrained('albert-base-v2') model.load_state_dict(torch.load('albertZero-squad2-base-v2.bin')) ``` ## References The goal of [ALBERT](https://arxiv.org/abs/1909.11942) is to reduce the memory requirement of the groundbreaking language model [BERT](https://arxiv.org/abs/1810.04805), while providing a similar level of performance. ALBERT mainly uses 2 methods to reduce the number of parameters – parameter sharing and factorized embedding. The field of NLP has undergone major improvements in recent years. The replacement of recurrent architectures by attention-based models has allowed NLP tasks such as question-answering to approach human level performance. In order to push the limits further, the [SQuAD2.0](https://arxiv.org/abs/1806.03822) dataset was created in 2018 with 50,000 additional unanswerable questions, addressing a major weakness of the original version of the dataset. At the time of writing, near the top of the [SQuAD2.0 leaderboard](https://rajpurkar.github.io/SQuAD-explorer/) is Shanghai Jiao Tong University’s [Retro-Reader](http://arxiv.org/abs/2001.09694). We have re-implemented their non-ensemble ALBERT model with the SQUAD2.0 prediction head. ## Acknowledgments Thanks to the generosity of the team at Hugging Face and all the groups referenced above !
{}
null
MarshallHo/albertZero-squad2-base-v2
[ "arxiv:1909.11942", "arxiv:1810.04805", "arxiv:1806.03822", "arxiv:2001.09694", "region:us" ]
2022-03-02T23:29:04+00:00
[ "1909.11942", "1810.04805", "1806.03822", "2001.09694" ]
[]
TAGS #arxiv-1909.11942 #arxiv-1810.04805 #arxiv-1806.03822 #arxiv-2001.09694 #region-us
# albertZero albertZero is a PyTorch model with a prediction head fine-tuned for SQuAD 2.0. Based on Hugging Face's albert-base-v2, albertZero employs a novel method to speed up fine-tuning. It re-initializes weights of final linear layer in the shared albert transformer block, resulting in a 2% point improvement during the early epochs of fine-tuning. ## Usage albertZero can be loaded like this: or ## References The goal of ALBERT is to reduce the memory requirement of the groundbreaking language model BERT, while providing a similar level of performance. ALBERT mainly uses 2 methods to reduce the number of parameters – parameter sharing and factorized embedding. The field of NLP has undergone major improvements in recent years. The replacement of recurrent architectures by attention-based models has allowed NLP tasks such as question-answering to approach human level performance. In order to push the limits further, the SQuAD2.0 dataset was created in 2018 with 50,000 additional unanswerable questions, addressing a major weakness of the original version of the dataset. At the time of writing, near the top of the SQuAD2.0 leaderboard is Shanghai Jiao Tong University’s Retro-Reader. We have re-implemented their non-ensemble ALBERT model with the SQUAD2.0 prediction head. ## Acknowledgments Thanks to the generosity of the team at Hugging Face and all the groups referenced above !
[ "# albertZero\n\nalbertZero is a PyTorch model with a prediction head fine-tuned for SQuAD 2.0. \n\nBased on Hugging Face's albert-base-v2, albertZero employs a novel method to speed up fine-tuning. It re-initializes weights of final linear layer in the shared albert transformer block, resulting in a 2% point improvement during the early epochs of fine-tuning.", "## Usage\n\nalbertZero can be loaded like this:\n\n\n\nor", "## References\n\nThe goal of ALBERT is to reduce the memory requirement of the groundbreaking\nlanguage model BERT, while providing a similar level of performance. ALBERT mainly uses 2 methods to reduce the number of parameters – parameter sharing and factorized embedding. \n\nThe field of NLP has undergone major improvements in recent years. The\nreplacement of recurrent architectures by attention-based models has allowed NLP tasks such as\nquestion-answering to approach human level performance. In order to push the limits further, the\nSQuAD2.0 dataset was created in 2018 with 50,000 additional unanswerable questions, addressing a major weakness of the original version of the dataset.\n\nAt the time of writing, near the top of the SQuAD2.0 leaderboard is Shanghai Jiao Tong University’s Retro-Reader.\nWe have re-implemented their non-ensemble ALBERT model with the SQUAD2.0 prediction head.", "## Acknowledgments\n\nThanks to the generosity of the team at Hugging Face and all the groups referenced above !" ]
[ "TAGS\n#arxiv-1909.11942 #arxiv-1810.04805 #arxiv-1806.03822 #arxiv-2001.09694 #region-us \n", "# albertZero\n\nalbertZero is a PyTorch model with a prediction head fine-tuned for SQuAD 2.0. \n\nBased on Hugging Face's albert-base-v2, albertZero employs a novel method to speed up fine-tuning. It re-initializes weights of final linear layer in the shared albert transformer block, resulting in a 2% point improvement during the early epochs of fine-tuning.", "## Usage\n\nalbertZero can be loaded like this:\n\n\n\nor", "## References\n\nThe goal of ALBERT is to reduce the memory requirement of the groundbreaking\nlanguage model BERT, while providing a similar level of performance. ALBERT mainly uses 2 methods to reduce the number of parameters – parameter sharing and factorized embedding. \n\nThe field of NLP has undergone major improvements in recent years. The\nreplacement of recurrent architectures by attention-based models has allowed NLP tasks such as\nquestion-answering to approach human level performance. In order to push the limits further, the\nSQuAD2.0 dataset was created in 2018 with 50,000 additional unanswerable questions, addressing a major weakness of the original version of the dataset.\n\nAt the time of writing, near the top of the SQuAD2.0 leaderboard is Shanghai Jiao Tong University’s Retro-Reader.\nWe have re-implemented their non-ensemble ALBERT model with the SQUAD2.0 prediction head.", "## Acknowledgments\n\nThanks to the generosity of the team at Hugging Face and all the groups referenced above !" ]
[ 40, 105, 15, 209, 26 ]
[ "passage: TAGS\n#arxiv-1909.11942 #arxiv-1810.04805 #arxiv-1806.03822 #arxiv-2001.09694 #region-us \n# albertZero\n\nalbertZero is a PyTorch model with a prediction head fine-tuned for SQuAD 2.0. \n\nBased on Hugging Face's albert-base-v2, albertZero employs a novel method to speed up fine-tuning. It re-initializes weights of final linear layer in the shared albert transformer block, resulting in a 2% point improvement during the early epochs of fine-tuning.## Usage\n\nalbertZero can be loaded like this:\n\n\n\nor## References\n\nThe goal of ALBERT is to reduce the memory requirement of the groundbreaking\nlanguage model BERT, while providing a similar level of performance. ALBERT mainly uses 2 methods to reduce the number of parameters – parameter sharing and factorized embedding. \n\nThe field of NLP has undergone major improvements in recent years. The\nreplacement of recurrent architectures by attention-based models has allowed NLP tasks such as\nquestion-answering to approach human level performance. In order to push the limits further, the\nSQuAD2.0 dataset was created in 2018 with 50,000 additional unanswerable questions, addressing a major weakness of the original version of the dataset.\n\nAt the time of writing, near the top of the SQuAD2.0 leaderboard is Shanghai Jiao Tong University’s Retro-Reader.\nWe have re-implemented their non-ensemble ALBERT model with the SQUAD2.0 prediction head.## Acknowledgments\n\nThanks to the generosity of the team at Hugging Face and all the groups referenced above !" ]
[ -0.05428960546851158, 0.13214652240276337, -0.00042825803393498063, 0.052075598388910294, 0.06920265406370163, 0.012851923704147339, 0.06094880402088165, 0.09619113802909851, 0.0656733587384224, 0.1214369609951973, 0.05895921587944031, -0.012435736134648323, 0.05470265448093414, 0.15370304882526398, 0.009751108475029469, -0.15877588093280792, 0.05847273766994476, -0.0711996927857399, -0.0635257288813591, 0.01898684725165367, 0.03180011734366417, -0.13082505762577057, 0.09153715521097183, -0.01950235478579998, -0.028018811717629433, 0.02558455988764763, -0.048647440969944, -0.017324373126029968, 0.09959578514099121, 0.08057606965303421, 0.015535152517259121, 0.006756751798093319, 0.04297005012631416, -0.12404865771532059, 0.0008319290354847908, 0.08850385993719101, 0.04333537071943283, 0.07754366844892502, 0.041639022529125214, 0.08178240060806274, 0.056907474994659424, -0.09357819706201553, 0.019045354798436165, 0.048343535512685776, -0.09778096526861191, -0.13238361477851868, -0.1282709836959839, 0.10851675271987915, 0.0849214643239975, -0.008020659908652306, -0.015129409730434418, 0.07806815952062607, 0.06832478195428848, 0.0017381070647388697, 0.21393972635269165, -0.3554821014404297, -0.017783908173441887, 0.04650963470339775, 0.04259532690048218, 0.125111386179924, -0.05582704022526741, 0.013758305460214615, 0.08830278366804123, -0.04011126607656479, 0.07952790707349777, -0.02503908984363079, 0.0021890008356422186, -0.012515775859355927, -0.11855583637952805, -0.022939037531614304, 0.13457250595092773, -0.004439860116690397, -0.0964386984705925, -0.12096851319074631, -0.0863221287727356, 0.0020400932990014553, 0.019263623282313347, -0.13691706955432892, 0.06338990479707718, -0.022725678980350494, 0.0950000062584877, -0.11298176646232605, -0.06205916032195091, 0.010823975317180157, -0.010428939014673233, 0.18432597815990448, 0.056451473385095596, 0.013002217747271061, -0.01404440589249134, 0.05901803448796272, -0.0827086940407753, -0.07444706559181213, -0.04872540012001991, -0.07969529926776886, -0.0889153778553009, 0.036323029547929764, -0.018442334607243538, -0.008827128447592258, -0.03340645506978035, 0.17900757491588593, -0.06656760722398758, 0.07452305406332016, -0.02183220349252224, 0.027365712448954582, 0.04876123368740082, 0.11450444161891937, -0.08445914089679718, -0.10572472214698792, 0.04151352867484093, 0.035558946430683136, 0.027842771261930466, -0.07378900051116943, -0.03911978378891945, -0.021858353167772293, 0.0005053706699982285, 0.04017049819231033, -0.016583655029535294, 0.012847095727920532, -0.024452470242977142, -0.07141721993684769, 0.14098651707172394, -0.1115611270070076, -0.03616145998239517, -0.053580619394779205, -0.021964862942695618, 0.04620349779725075, 0.031041307374835014, -0.008678268641233444, -0.013223729096353054, 0.10497445613145828, -0.1095983237028122, -0.112202487885952, -0.05498330667614937, -0.07002278417348862, 0.008530565537512302, -0.13466329872608185, -0.03354274854063988, -0.07307437807321548, -0.09930358827114105, -0.0016335675027221441, 0.028618814423680305, -0.0012418002588674426, -0.04974929988384247, 0.01734398491680622, -0.033647917211055756, -0.034873075783252716, -0.04115338996052742, 0.01676875539124012, -0.01806168258190155, 0.026421276852488518, -0.007757627405226231, 0.09908479452133179, -0.09328128397464752, 0.0075215562246739864, -0.06246265396475792, 0.07046148180961609, -0.12493114918470383, -0.0097054373472929, -0.051677778363227844, -0.02706199139356613, -0.055479761213064194, 0.00003690372614073567, -0.04397786036133766, -0.0024674120359122753, 0.06454142183065414, 0.12989023327827454, -0.1838715821504593, -0.07392275333404541, 0.07682052999734879, -0.08687202632427216, -0.08154120296239853, 0.08422292023897171, -0.0009822131833061576, 0.0062178452499210835, 0.04785323143005371, 0.07995091378688812, 0.06072322279214859, -0.02145727351307869, -0.11397156864404678, -0.06962443888187408, -0.03494339808821678, 0.029685452580451965, 0.04074535518884659, 0.029211033135652542, 0.036513227969408035, 0.05744078755378723, 0.01940316893160343, -0.030524980276823044, -0.048354391008615494, -0.06784799695014954, 0.01609445922076702, -0.06304015219211578, 0.03807318955659866, -0.03593515604734421, -0.003490499686449766, 0.018526092171669006, -0.07208847254514694, -0.10447921603918076, 0.08086200803518295, -0.035500023514032364, 0.03445063903927803, -0.0889696329832077, 0.04767005518078804, -0.03555213287472725, 0.04435425251722336, -0.1614653617143631, -0.07503718882799149, 0.06460532546043396, -0.12708215415477753, 0.03680844604969025, 0.15266788005828857, 0.032722536474466324, 0.039924245327711105, -0.03770725429058075, 0.031121598556637764, -0.01627224311232567, -0.08528674393892288, -0.07704164832830429, -0.12022513896226883, -0.04985234886407852, -0.05527443811297417, 0.10599774122238159, -0.08265271037817001, -0.01998962089419365, -0.11926400661468506, 0.07331575453281403, 0.046148061752319336, -0.08078467100858688, -0.026672501116991043, 0.014365251176059246, -0.03808837756514549, -0.07821540534496307, 0.01919124647974968, -0.018576640635728836, -0.04541845992207527, 0.09316655993461609, -0.18870510160923004, -0.025080466642975807, 0.06210590526461601, 0.11973977833986282, -0.014667434617877007, -0.02440536394715309, -0.06439255177974701, -0.03717394173145294, -0.007500519044697285, 0.030119573697447777, 0.1866050511598587, 0.04858407750725746, 0.07503286004066467, -0.08787015080451965, -0.048922099173069, 0.04426756501197815, 0.005987284239381552, -0.0011972921201959252, 0.00006707865395583212, 0.05847204849123955, -0.11099721491336823, 0.020709911361336708, 0.09583713114261627, 0.06815765053033829, 0.11593248695135117, 0.043422408401966095, -0.08577172458171844, -0.0038378487806767225, -0.028819875791668892, 0.02107461728155613, 0.1113683208823204, 0.02304096333682537, -0.009580609388649464, 0.04890691116452217, 0.006552469450980425, 0.04881461337208748, -0.043611422181129456, 0.060048364102840424, -0.00123778625857085, -0.013919709250330925, -0.004673924762755632, 0.02954361028969288, -0.03369499742984772, 0.10801267623901367, 0.03499632701277733, 0.10258468985557556, -0.03758929669857025, -0.00007990536687429994, -0.05545835196971893, 0.1149866059422493, -0.026991326361894608, -0.19721797108650208, -0.10838349908590317, -0.00874178297817707, -0.11854051053524017, 0.01055068802088499, 0.0026468068826943636, -0.06253819167613983, -0.080329030752182, -0.06677383929491043, 0.03559929504990578, -0.04657983407378197, 0.017608407884836197, 0.005792522337287664, -0.024915331974625587, 0.09753397852182388, -0.09907975047826767, -0.0028882124461233616, -0.05756596475839615, -0.07662992179393768, 0.03605563938617706, 0.0918101817369461, 0.10459593683481216, 0.04548799991607666, -0.026935655623674393, -0.047366753220558167, -0.018499888479709625, 0.10188410431146622, -0.02850944548845291, 0.005465071182698011, 0.11971112340688705, -0.06256403028964996, 0.06458573043346405, 0.033484771847724915, -0.04387269169092178, -0.12763503193855286, 0.014337856322526932, 0.09730519354343414, -0.06293244659900665, -0.23367083072662354, -0.0749266967177391, -0.07779406756162643, -0.0012773661874234676, 0.08938219398260117, 0.025479022413492203, -0.06147296726703644, 0.03587866947054863, -0.07903013378381729, 0.10815208405256271, -0.11654830724000931, 0.08731074631214142, 0.06537675112485886, -0.023001477122306824, 0.08639072626829147, -0.041320864111185074, 0.0037969450931996107, 0.11997593939304352, 0.00015841829008422792, 0.32531556487083435, -0.011350440792739391, 0.02601979859173298, 0.034648507833480835, 0.1249338909983635, 0.008724600076675415, 0.07884369790554047, 0.005765724461525679, -0.022937005385756493, -0.09552250802516937, -0.027575243264436722, -0.14613690972328186, 0.08677805215120316, 0.006718797609210014, -0.0663171112537384, -0.042856063693761826, 0.11381451040506363, 0.002202734351158142, 0.22050487995147705, 0.010342663154006004, -0.1658485233783722, -0.020245831459760666, 0.041957467794418335, -0.011025970801711082, -0.10127688944339752, 0.03338496387004852, 0.11860775202512741, -0.00861363671720028, 0.061930954456329346, -0.060169052332639694, 0.07055462151765823, -0.11414705961942673, 0.039152842015028, -0.09593981504440308, 0.09376109391450882, 0.01961911842226982, 0.05948454514145851, -0.0775112509727478, 0.1583574414253235, 0.03969758003950119, 0.007583221420645714, -0.08521804958581924, 0.008352571167051792, 0.007115625776350498, -0.12570589780807495, 0.14952251315116882, 0.010024677030742168, -0.042787857353687286, -0.056267108768224716, -0.10616800934076309, 0.07912001758813858, 0.13892211019992828, -0.03932750225067139, 0.10461314022541046, -0.023944975808262825, 0.04207201302051544, -0.022558562457561493, 0.13368576765060425, -0.10462063550949097, -0.1575479656457901, 0.05039360746741295, 0.002345676301047206, -0.12095784395933151, -0.03918970003724098, -0.021013401448726654, -0.0018395938677713275, 0.20373693108558655, 0.023627907037734985, 0.003665453754365444, -0.1244971975684166, 0.029785243794322014, 0.13807569444179535, -0.06938532739877701, 0.009454354643821716, 0.01318337582051754, 0.13607676327228546, -0.0458228699862957, -0.12072105705738068, 0.026962213218212128, -0.05879915878176689, -0.11832435429096222, -0.03688879311084747, 0.07296042889356613, 0.06228823587298393, 0.016738811507821083, -0.046707477420568466, 0.0009055544505827129, 0.0734531581401825, -0.10607597231864929, 0.06526115536689758, 0.1878657042980194, -0.019528504461050034, -0.0038433705922216177, -0.08931543678045273, 0.091985784471035, -0.046202294528484344, 0.04416265711188316, 0.04041964188218117, 0.3418426215648651, -0.05624326691031456, 0.16534659266471863, 0.16111429035663605, -0.09792767465114594, -0.20498572289943695, -0.07180570811033249, 0.031145652756094933, 0.027540380135178566, 0.0746692419052124, -0.18820072710514069, 0.045027296990156174, 0.045684970915317535, -0.02269178070127964, 0.09324150532484055, -0.08529926836490631, -0.11501741409301758, 0.06068366393446922, 0.001409623771905899, 0.3676837980747223, -0.08068489283323288, -0.0015831637429073453, -0.044154200702905655, -0.057771988213062286, 0.04396336153149605, 0.0059576076455414295, 0.09431643784046173, -0.05475595220923424, -0.020773964002728462, 0.05489837005734444, -0.03050542250275612, 0.11940380185842514, -0.01147383637726307, 0.052441179752349854, -0.030534768477082253, 0.036452434957027435, 0.06336194276809692, -0.06951113790273666, 0.06751219183206558, 0.007565243169665337, 0.052896175533533096, -0.10934433341026306, -0.042496953159570694, 0.039068978279829025, 0.01799275353550911, 0.004482003394514322, -0.05876835435628891, -0.09510540962219238, 0.09642055630683899, 0.044179461896419525, 0.033580780029296875, 0.040571216493844986, -0.012236148118972778, 0.011870146729052067, 0.0815313458442688, 0.12667077779769897, -0.15566064417362213, 0.07106268405914307, -0.0033315725158900023, 0.0009336477378383279, 0.07451491802930832, -0.19224373996257782, 0.050006844103336334, 0.1164330467581749, -0.0007323622703552246, 0.013398834504187107, 0.03832681477069855, -0.13025714457035065, 0.02861061878502369, 0.06220415234565735, -0.21182706952095032, -0.11229120939970016, 0.01727602630853653, 0.02435944601893425, -0.11447791010141373, 0.01805853843688965, 0.1359662264585495, -0.054270438849925995, -0.010896912775933743, -0.015923740342259407, 0.03169708326458931, 0.02227647230029106, 0.049270063638687134, -0.02739889919757843, 0.012223144993185997, -0.08040335774421692, 0.19078923761844635, 0.06198820844292641, -0.03599104657769203, 0.0688854530453682, -0.008353602141141891, -0.03177914395928383, -0.007069243583828211, -0.07402507960796356, 0.11336485296487808, -0.0360635444521904, -0.05275910720229149, -0.024267882108688354, 0.021214326843619347, 0.01655726693570614, -0.04316718131303787, -0.006849278695881367, 0.024424614384770393, -0.036464642733335495, 0.012154913507401943, -0.09053974598646164, 0.01315704733133316, 0.01878621056675911, 0.06030657887458801, -0.12191876769065857, -0.0015031900256872177, -0.008282077498733997, 0.013521013781428337, -0.033902622759342194, -0.010664025321602821, -0.06841802597045898, -0.04586669057607651, -0.08208594471216202, -0.052771735936403275, -0.00029274020926095545, -0.0412212535738945, -0.015523386187851429, -0.02454213984310627, -0.08050620555877686, -0.0045360964722931385, -0.06267572194337845, -0.04710439592599869, -0.031011609360575676, 0.05836009606719017, -0.1008320152759552, 0.015484524890780449, 0.01553360465914011, -0.07149694859981537, 0.10867761075496674, -0.024433406069874763, -0.01491699367761612, 0.062430158257484436, 0.006464899983257055, -0.022414591163396835, 0.025032751262187958, 0.06453851610422134, 0.048584140837192535, -0.054606352001428604, -0.021477295085787773, 0.024279123172163963, -0.0006000275025144219, -0.035850100219249725, -0.05525980889797211, -0.066988505423069, 0.0059671178460121155, -0.02944905497133732, -0.03399629890918732, -0.054887931793928146, -0.054121311753988266, 0.11638347059488297, 0.09411594271659851, 0.08450739830732346, -0.009887135587632656, -0.019334128126502037, -0.17555734515190125, -0.024425920099020004, 0.03411797434091568, 0.00031354030943475664, 0.08298859000205994, -0.06537497788667679, 0.040915075689554214, -0.002212945371866226, 0.1837938278913498, -0.06096801906824112, 0.0046262843534350395, 0.010793901048600674, -0.08864245563745499, -0.12219671905040741, -0.030578047037124634, 0.07521278411149979, 0.08705325424671173, -0.01962386816740036, -0.011609692126512527, 0.04949645698070526, 0.021952344104647636, 0.05733032152056694, 0.26316288113594055, 0.02335604652762413, 0.05981137976050377, 0.06700371950864792, 0.0027290196157991886, -0.13264617323875427, -0.07034891843795776, 0.205027237534523, -0.06936822831630707, 0.07784846425056458, 0.024448316544294357, 0.03500766307115555, 0.15366105735301971, -0.11764953285455704, 0.0807255357503891, -0.028694631531834602, -0.0051467022858560085, -0.10846138745546341, -0.01530425250530243, -0.06698663532733917, -0.09077780693769455, 0.02473933808505535, -0.10462822020053864, 0.041366588324308395, 0.08668423444032669, -0.021877456456422806, -0.013999267481267452, 0.03064299188554287, -0.09701269865036011, -0.045563165098428726, 0.01738320104777813, 0.01848359778523445, 0.0022987867705523968, 0.025015924125909805, -0.04839874058961868, 0.04036475718021393, 0.06820318847894669, 0.06142958253622055, 0.03919607773423195, 0.07495356351137161, 0.08403080701828003, 0.00022753153461962938, -0.06010967120528221, -0.03438090905547142, -0.01909090206027031, 0.03133312240242958, 0.09989478439092636, 0.013497310690581799, -0.017132656648755074, -0.039169393479824066, 0.1380581110715866, -0.03795917332172394, 0.05337611585855484, -0.10143351554870605, 0.17771923542022705, 0.07852832973003387, 0.018805382773280144, -0.0012990067480131984, -0.07822547852993011, -0.031217407435178757, 0.10609722882509232, 0.10091113299131393, -0.057650960981845856, -0.030972884967923164, -0.008232430554926395, 0.008497324772179127, -0.08507512509822845, 0.15687260031700134, 0.06705863028764725, 0.21980994939804077, 0.001074435655027628, -0.02230904996395111, -0.022090597078204155, 0.03924107924103737, -0.0028394863475114107, 0.1972731053829193, 0.00018874018860515207, 0.013314396142959595, -0.07590005546808243, -0.02414453960955143, -0.011243229731917381, -0.22812731564044952, -0.006583462934941053, -0.12552641332149506, -0.1045651063323021, -0.000528488599229604, 0.0017528565367683768, -0.027567142620682716, 0.10077740252017975, -0.029430607333779335, 0.011846288107335567, 0.1568877249956131, -0.0091547267511487, -0.05512198805809021, -0.05981258675456047, 0.04028491675853729, 0.03450808301568031, 0.22886839509010315, 0.04533129930496216, 0.0010110388975590467, 0.03286084160208702, -0.010794327594339848, -0.15561769902706146, -0.024397816509008408, -0.04372737556695938, -0.07460427284240723, -0.017487971112132072, 0.14950792491436005, -0.027781393378973007, 0.0170137919485569, 0.08194567263126373, 0.008515717461705208, -0.006333168596029282, -0.012328074313700199, -0.0016986677655950189, -0.03783705085515976, 0.05369139835238457, -0.09217255562543869, 0.1415928304195404, 0.0792655199766159, -0.0014981881249696016, 0.007810067385435104, -0.046157561242580414, 0.062546506524086, -0.003946286626160145, 0.09725295752286911, -0.014355001039803028, -0.09385617822408676, 0.002955774078145623, -0.058495134115219116, -0.043065473437309265, -0.18632176518440247, -0.02291296049952507, 0.022257007658481598, -0.009739669039845467, -0.03133373335003853, 0.07759031653404236, -0.000818437896668911, 0.007534082978963852, -0.050017550587654114, -0.12032760679721832, 0.021311882883310318, 0.06257545202970505, -0.0721890777349472, -0.06798392534255981 ]
null
null
transformers
# Neo-GPT-Title-Generation-Electric-Car Title generator based on Neo-GPT 125M fine-tuned on a dataset of 39k url's title. All urls are selected on the TOP 10 google on a list of Keywords about "Electric car" - "Electric car for sale". # Pipeline example ```python import pandas as pd from transformers import AutoModelForMaskedLM from transformers import GPT2Tokenizer, TrainingArguments, AutoModelForCausalLM, AutoConfig model = AutoModelForCausalLM.from_pretrained('Martian/Neo-GPT-Title-Generation-Electric-Car') tokenizer = GPT2Tokenizer.from_pretrained('Martian/Neo-GPT-Title-Generation-Electric-Car', bos_token='<|startoftext|>', eos_token='<|endoftext|>', pad_token='<|pad|>') prompt = "<|startoftext|> Electric car" input_ids = tokenizer(prompt, return_tensors="pt").input_ids gen_tokens = model.generate(input_ids, do_sample=True, top_k=100, min_length = 30, max_length=150, top_p=0.90, num_return_sequences=20, skip_special_tokens=True) list_title_gen = [] for i, sample_output in enumerate(gen_tokens): title = tokenizer.decode(sample_output, skip_special_tokens=True) list_title_gen.append(title) for i in list_title_gen: try: list_title_gen[list_title_gen.index(i)] = i.split(' | ')[0] except: continue try: list_title_gen[list_title_gen.index(i)] = i.split(' - ')[0] except: continue try: list_title_gen[list_title_gen.index(i)] = i.split(' — ')[0] except: continue list_title_gen = [sub.replace('�', ' ').replace('\\r',' ').replace('\ ',' ').replace('\\t', ' ').replace('\\xa0', '') for sub in list_title_gen] list_title_gen = [sub if sub != '<|startoftext|> Electric car' else '' for sub in list_title_gen] for i in list_title_gen: print(i) ``` # Todo - Improve the quality of the training sample - Add more data
{"language": ["en"], "widget": [{"text": "Tesla range"}, {"text": "Nissan Leaf is"}, {"text": "Tesla is"}, {"text": "The best electric car"}]}
text-generation
Martian/Neo-GPT-Title-Generation-Electric-Car
[ "transformers", "pytorch", "gpt_neo", "text-generation", "en", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:04+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt_neo #text-generation #en #autotrain_compatible #endpoints_compatible #region-us
# Neo-GPT-Title-Generation-Electric-Car Title generator based on Neo-GPT 125M fine-tuned on a dataset of 39k url's title. All urls are selected on the TOP 10 google on a list of Keywords about "Electric car" - "Electric car for sale". # Pipeline example # Todo - Improve the quality of the training sample - Add more data
[ "# Neo-GPT-Title-Generation-Electric-Car\n\nTitle generator based on Neo-GPT 125M fine-tuned on a dataset of 39k url's title. All urls are selected on the TOP 10 google on a list of Keywords about \"Electric car\" - \"Electric car for sale\".", "# Pipeline example", "# Todo\n- Improve the quality of the training sample\n- Add more data" ]
[ "TAGS\n#transformers #pytorch #gpt_neo #text-generation #en #autotrain_compatible #endpoints_compatible #region-us \n", "# Neo-GPT-Title-Generation-Electric-Car\n\nTitle generator based on Neo-GPT 125M fine-tuned on a dataset of 39k url's title. All urls are selected on the TOP 10 google on a list of Keywords about \"Electric car\" - \"Electric car for sale\".", "# Pipeline example", "# Todo\n- Improve the quality of the training sample\n- Add more data" ]
[ 41, 77, 4, 15 ]
[ "passage: TAGS\n#transformers #pytorch #gpt_neo #text-generation #en #autotrain_compatible #endpoints_compatible #region-us \n# Neo-GPT-Title-Generation-Electric-Car\n\nTitle generator based on Neo-GPT 125M fine-tuned on a dataset of 39k url's title. All urls are selected on the TOP 10 google on a list of Keywords about \"Electric car\" - \"Electric car for sale\".# Pipeline example# Todo\n- Improve the quality of the training sample\n- Add more data" ]
[ -0.06901252269744873, 0.08912335336208344, -0.0023944813292473555, 0.11872541904449463, 0.20904654264450073, 0.04310451075434685, 0.027528805658221245, 0.06801655888557434, -0.043198008090257645, -0.028434807434678078, 0.12891574203968048, 0.18742768466472626, 0.009032800793647766, 0.12069293856620789, 0.07739022374153137, -0.32594355940818787, 0.029738930985331535, 0.044158197939395905, 0.07496221363544464, 0.14145329594612122, 0.07013104856014252, -0.06527236849069595, 0.09333860874176025, 0.03081401251256466, -0.17480796575546265, 0.05866899713873863, 0.0914553701877594, -0.16643789410591125, 0.12437684834003448, -0.011306136846542358, 0.10365239530801773, 0.024730471894145012, 0.04002043977379799, -0.0095241479575634, 0.024408066645264626, 0.02376437559723854, -0.06676740944385529, 0.07854272425174713, 0.020088713616132736, -0.0797659158706665, 0.12606778740882874, 0.09179136157035828, 0.05765650421380997, 0.05195987969636917, -0.13159404695034027, -0.1889125406742096, -0.0074866157956421375, 0.04149319604039192, 0.043556228280067444, 0.12394020706415176, -0.02365546114742756, 0.21059805154800415, -0.09515919536352158, 0.07013368606567383, 0.24092446267604828, -0.2631528675556183, -0.018041124567389488, 0.14882560074329376, 0.04227268323302269, -0.0541762076318264, -0.06230296194553375, 0.08619397133588791, 0.01189995277673006, 0.016174908727407455, 0.06912790238857269, -0.011893515475094318, -0.15033671259880066, 0.05966922268271446, -0.12008266896009445, 0.042392220348119736, 0.1673785001039505, 0.016329508274793625, -0.001102763693779707, -0.012088541872799397, -0.08418264240026474, -0.13140174746513367, -0.06497293710708618, -0.07657420635223389, -0.04551592096686363, 0.01604766771197319, -0.09269250929355621, -0.005634404253214598, -0.09014316648244858, -0.11374302953481674, -0.155269056558609, 0.22814905643463135, 0.03210335597395897, 0.05884012207388878, -0.022896813228726387, 0.1351771205663681, -0.01925581507384777, -0.05698751285672188, -0.035565271973609924, -0.12370377033948898, -0.006136266048997641, -0.040080610662698746, -0.019665054976940155, 0.04668598994612694, 0.0022974833846092224, 0.08841963857412338, 0.1569509506225586, -0.002153479028493166, 0.1062670350074768, 0.021561607718467712, 0.004299248103052378, 0.09262430667877197, -0.04133015125989914, -0.04650147631764412, 0.09258638322353363, -0.0700983926653862, 0.02288592979311943, -0.027002278715372086, -0.1198582872748375, -0.027138864621520042, 0.006607493385672569, 0.03982611000537872, -0.031058846041560173, 0.1360929310321808, -0.1248505488038063, -0.010889527387917042, -0.014223341830074787, -0.08563866466283798, 0.044610582292079926, -0.08011758327484131, -0.008448298089206219, 0.014968459494411945, 0.03930915147066116, 0.0017539713298901916, -0.04045309126377106, 0.0033007939346134663, -0.1334989368915558, -0.0735698714852333, -0.098107248544693, -0.013286885805428028, 0.0079574566334486, -0.03469744697213173, 0.010800116695463657, -0.18407908082008362, -0.2623272240161896, 0.0648861676454544, 0.026030823588371277, 0.012107094749808311, -0.09767808020114899, -0.003175239311531186, 0.003376404754817486, 0.0011117463000118732, -0.032252322882413864, 0.021390777081251144, -0.0616697333753109, 0.0864153802394867, 0.04875917732715607, 0.0733003243803978, -0.08868405967950821, 0.02688564360141754, -0.14314430952072144, -0.08292265981435776, -0.1902967244386673, 0.08287178725004196, -0.053432583808898926, 0.07353319972753525, -0.061851054430007935, -0.036596715450286865, -0.0839957669377327, 0.02888636849820614, 0.016380732879042625, 0.16980203986167908, -0.022579770535230637, -0.1592710018157959, 0.2047826051712036, -0.08641401678323746, -0.06075416877865791, 0.06844843178987503, -0.011777447536587715, 0.0710277110338211, 0.1997765451669693, 0.015382864512503147, 0.09786488860845566, -0.05876003950834274, -0.08440599590539932, -0.0013829304371029139, -0.1887778788805008, -0.12001959979534149, 0.030828392133116722, 0.028511445969343185, -0.21203464269638062, 0.0682421326637268, 0.06905845552682877, 0.02965029887855053, -0.06547016650438309, -0.05445162579417229, -0.03126828372478485, 0.057832617312669754, 0.0936746597290039, 0.025712719187140465, 0.017102299258112907, -0.04232492670416832, -0.17510929703712463, 0.000300256913760677, 0.03768721967935562, 0.04077313840389252, 0.0003014614339917898, -0.12278911471366882, 0.09423118829727173, -0.0263377632945776, 0.04046377167105675, -0.08541391044855118, -0.23800218105316162, 0.007048351224511862, 0.013598524034023285, 0.06723219901323318, -0.04816519469022751, 0.0225785244256258, 0.018447674810886383, -0.040897712111473083, 0.028663460165262222, -0.05857134237885475, -0.03091622143983841, -0.03559251129627228, -0.13777200877666473, 0.02375979721546173, 0.030101904645562172, -0.03887129947543144, -0.05459525063633919, 0.015757810324430466, 0.17008885741233826, 0.10922081023454666, -0.00582717452198267, -0.01908397488296032, -0.03866817429661751, -0.014899556525051594, -0.033361442387104034, -0.029315045103430748, 0.03514350950717926, 0.014228926971554756, -0.08489000797271729, 0.06628973037004471, -0.06695771217346191, 0.17685440182685852, 0.20005865395069122, -0.16796502470970154, -0.08632520586252213, 0.052261970937252045, -0.04163660109043121, 0.004689274355769157, -0.07995424419641495, -0.07299728691577911, 0.11894615739583969, -0.014417925849556923, 0.0599726140499115, -0.022258542478084564, -0.029248889535665512, 0.05277111008763313, 0.052064474672079086, 0.03516595810651779, 0.053850576281547546, 0.3024563193321228, -0.0841263085603714, 0.12000755220651627, -0.03675846382975578, -0.037094831466674805, 0.16214320063591003, 0.049020860344171524, -0.0451357364654541, -0.005031972657889128, -0.13979054987430573, -0.012147336266934872, 0.07001641392707825, -0.10533641278743744, -0.026899583637714386, 0.04086245223879814, -0.008386733941733837, 0.024741156026721, -0.13373194634914398, -0.038997162133455276, -0.03285640850663185, -0.012707311660051346, -0.01818288303911686, 0.09140047430992126, -0.053901154547929764, 0.033897191286087036, 0.02567475102841854, -0.04067728668451309, 0.1172918751835823, 0.05313068628311157, -0.059851132333278656, 0.17121003568172455, -0.028104351833462715, -0.23643195629119873, -0.21962366998195648, -0.10048004239797592, -0.031066041439771652, 0.05039796978235245, 0.08279280364513397, -0.09437786787748337, -0.0853089913725853, 0.07469816505908966, 0.16094593703746796, 0.014525079168379307, 0.10457339137792587, -0.10996032506227493, -0.019989408552646637, -0.06505802273750305, -0.12286322563886642, -0.01568017527461052, -0.024654779583215714, -0.17405582964420319, 0.09297212958335876, -0.06483106315135956, 0.07075699418783188, 0.1271418035030365, 0.01356195192784071, 0.027002640068531036, -0.07263480871915817, 0.19213348627090454, -0.12276558578014374, -0.008553010411560535, 0.11794014275074005, 0.10179606080055237, 0.06071797385811806, 0.10634969174861908, 0.017009027302265167, -0.09599517285823822, 0.07349850982427597, 0.047922588884830475, -0.07645002007484436, -0.22635763883590698, -0.063763827085495, -0.06445574015378952, 0.03824321925640106, 0.021229639649391174, 0.047697681933641434, 0.06705046445131302, 0.14619895815849304, -0.010709061287343502, 0.11435853689908981, -0.054368067532777786, 0.11139914393424988, 0.2157401740550995, 0.027295101433992386, 0.14915762841701508, -0.046328138560056686, -0.12978817522525787, 0.09683860093355179, -0.025469491258263588, 0.22781555354595184, 0.0693381130695343, 0.10772805660963058, 0.04455575346946716, 0.0851462334394455, 0.14168468117713928, 0.07007484138011932, 0.09701541811227798, -0.03227771818637848, 0.030261915177106857, -0.02551330253481865, -0.022059138864278793, 0.014974619261920452, -0.0047178929671645164, -0.04233170300722122, 0.01426636055111885, -0.02256455458700657, 0.07096786797046661, 0.12051272392272949, -0.00943515170365572, -0.37463098764419556, 0.003437483450397849, -0.03361055999994278, -0.11172453314065933, -0.06635388731956482, 0.02563636377453804, -0.1584537923336029, -0.14511355757713318, 0.09381246566772461, -0.030644305050373077, 0.07190699130296707, -0.020105943083763123, 0.026293888688087463, 0.01495360117405653, 0.06148282811045647, -0.05335412919521332, 0.11393492668867111, -0.17596755921840668, 0.1732555478811264, 0.020155414938926697, 0.05350428447127342, -0.025662638247013092, 0.0018421458080410957, 0.024059457704424858, 0.07828985899686813, 0.06985656917095184, -0.04475070908665657, -0.036047037690877914, -0.08903339505195618, -0.11330617219209671, 0.08362477272748947, 0.04365577548742294, -0.13796375691890717, 0.04210873320698738, -0.04925670847296715, -0.0038935926277190447, 0.00027784862322732806, 0.03013237565755844, -0.11044799536466599, -0.1237003356218338, 0.03729000315070152, 0.0877569392323494, 0.1491689532995224, -0.013810547068715096, -0.1357499361038208, -0.0500735379755497, 0.15263663232326508, -0.11621390283107758, -0.1089865118265152, -0.15511590242385864, 0.07441296428442001, 0.029460785910487175, -0.06004192307591438, 0.10431978106498718, -0.0018615730805322528, 0.117140032351017, 0.06982474774122238, -0.1149371787905693, 0.16620256006717682, -0.05153804272413254, -0.07120304554700851, -0.051173463463783264, 0.19945916533470154, 0.017234526574611664, 0.01611803099513054, -0.02510060742497444, 0.05560906231403351, -0.03012130968272686, -0.1254357248544693, 0.0705314576625824, -0.017984122037887573, 0.07271424680948257, 0.003322198987007141, -0.06681857258081436, -0.0029895256739109755, -0.021131739020347595, -0.0395531952381134, 0.13254600763320923, 0.08910459280014038, -0.055667173117399216, 0.0620419941842556, 0.12827938795089722, -0.03800570219755173, -0.2682926654815674, -0.003951784688979387, 0.04630003497004509, 0.012731682509183884, -0.03891392797231674, -0.2499760240316391, 0.1997077316045761, 0.09874389320611954, -0.052427612245082855, 0.13960547745227814, -0.08419398963451385, -0.11979614198207855, 0.06888042390346527, 0.0393967404961586, 0.23231792449951172, -0.08524228632450104, -0.031090566888451576, -0.09541665017604828, -0.15952414274215698, 0.23105959594249725, -0.03823917731642723, 0.0958324447274208, -0.0013281957944855094, 0.1399918645620346, -0.016429957002401352, 0.010451707057654858, 0.02385541796684265, -0.010394959710538387, 0.0064036548137664795, -0.023843077942728996, 0.011969097889959812, 0.18521855771541595, 0.04503234848380089, 0.04091231897473335, 0.06347876042127609, -0.010683435946702957, 0.012021046131849289, -0.11849001795053482, -0.017833415418863297, 0.13598760962486267, 0.03422108292579651, -0.12147999554872513, -0.03376561030745506, -0.0220870990306139, -0.06532827764749527, -0.052111655473709106, 0.042227983474731445, 0.013526702299714088, 0.0691027119755745, -0.13640812039375305, 0.10191763192415237, -0.10258617997169495, -0.14448128640651703, -0.05009911581873894, -0.08964414894580841, 0.14831610023975372, -0.07909652590751648, 0.05331793427467346, 0.07119319587945938, -0.0052457996644079685, 0.03036893717944622, 0.11523118615150452, -0.03843988850712776, -0.04177643358707428, 0.15025725960731506, -0.1743527352809906, -0.0021011224016547203, -0.10471279174089432, -0.04155295714735985, -0.0020268154330551624, 0.1436823606491089, 0.0848553404211998, -0.020159726962447166, -0.07892163097858429, 0.06437887251377106, -0.04583693668246269, -0.0228806734085083, 0.04178497940301895, 0.030384114012122154, 0.03509396314620972, -0.14878565073013306, 0.012756293639540672, 0.05903872475028038, -0.02448475919663906, -0.04221661761403084, 0.09337934851646423, -0.12571105360984802, -0.05374019220471382, -0.08474710583686829, 0.13122400641441345, -0.1716652810573578, -0.04373185336589813, -0.06274333596229553, -0.06438834220170975, 0.08815818279981613, 0.0803263708949089, 0.0979921966791153, 0.10934429615736008, 0.010061497800052166, 0.0833544060587883, -0.1163063570857048, -0.011448909528553486, -0.0667419508099556, 0.04894415661692619, -0.2229214459657669, 0.05593039467930794, 0.02433479204773903, 0.03140008822083473, -0.0997692123055458, -0.0019298447296023369, -0.0828043594956398, 0.04055027291178703, 0.1496598869562149, -0.05139319226145744, -0.015755735337734222, 0.005236712750047445, 0.024097269400954247, -0.03398995101451874, -0.10933709889650345, 0.03193165361881256, -0.08384981006383896, 0.009069102816283703, 0.027127617970108986, 0.019004156813025475, -0.06684673577547073, 0.04522252455353737, 0.0876629501581192, -0.02442276105284691, 0.1116829365491867, 0.04650937765836716, 0.06419792026281357, 0.14497382938861847, -0.09517059475183487, 0.07184366881847382, 0.08569420874118805, 0.037538401782512665, 0.008534939959645271, 0.04541303589940071, 0.04897729307413101, 0.0026597436517477036, 0.0941016897559166, 0.031916577368974686, -0.09417818486690521, -0.18196624517440796, 0.006562850438058376, -0.03731343522667885, -0.09475671499967575, -0.025561489164829254, -0.04261060804128647, 0.027812562882900238, 0.0197742972522974, 0.22267569601535797, -0.06803678721189499, -0.02479514665901661, -0.10538270324468613, 0.07011820375919342, -0.04318782314658165, -0.07993709295988083, -0.09494458138942719, -0.03292069211602211, 0.02579409070312977, -0.008101086132228374, 0.2763316333293915, 0.09336548298597336, -0.04823843762278557, 0.039905574172735214, 0.09631205350160599, 0.08665748685598373, -0.032026492059230804, 0.1547211855649948, 0.1886056661605835, 0.02966398186981678, 0.04406221956014633, 0.078435979783535, 0.07706630975008011, -0.0923086628317833, 0.09963379055261612, -0.07872810959815979, 0.054106734693050385, 0.03735502436757088, 0.02320578694343567, -0.01762267015874386, -0.16240307688713074, -0.04517846927046776, -0.07878299802541733, 0.010650440119206905, 0.01576297916471958, 0.05199352279305458, 0.12678304314613342, 0.02402961440384388, 0.037198297679424286, 0.03386584669351578, -0.025623993948101997, -0.2063046395778656, -0.1864680051803589, -0.10631483793258667, -0.22380460798740387, 0.07211536914110184, -0.038255732506513596, -0.09930400550365448, 0.0642557367682457, 0.020521346479654312, -0.044625673443078995, 0.10653108358383179, -0.027052363380789757, -0.05578020587563515, 0.022490929812192917, -0.050278786569833755, -0.08116850256919861, -0.040236566215753555, -0.03768949583172798, -0.07489756494760513, 0.04700563848018646, -0.025798223912715912, -0.030222423374652863, -0.09807655960321426, 0.03889765962958336, -0.07821182161569595, -0.02124122343957424, -0.05417376011610031, 0.0024485005997121334, -0.03983926400542259, -0.10317403823137283, -0.0063096750527620316, -0.020049890503287315, 0.048965997993946075, 0.20782272517681122, -0.02120339125394821, -0.016985652968287468, -0.08593475073575974, 0.10030319541692734, 0.033056847751140594, 0.08240503817796707, -0.002586380345746875, -0.11317591369152069, -0.022311894223093987, 0.18992666900157928, 0.17719188332557678, 0.06952613592147827, -0.023588716983795166, 0.041647933423519135, -0.013251302763819695, 0.03126802667975426, 0.09811648726463318, 0.010376637801527977, 0.22778761386871338, -0.04868578910827637, -0.10117723047733307, -0.04124750569462776, -0.006688836496323347, -0.032398924231529236, 0.021626096218824387, 0.022201115265488625, -0.009937244467437267, -0.055343370884656906, 0.07677699625492096, -0.18173176050186157, -0.023740701377391815, -0.004171345382928848, -0.07813144475221634, -0.11475390940904617, -0.029080858454108238, 0.04516534507274628, 0.048593949526548386, 0.09986822307109833, 0.010579575784504414, -0.025200964882969856, -0.04596159607172012, 0.058735791593790054, -0.29689961671829224, -0.12299726903438568, 0.11688044667243958, 0.09481939673423767, 0.2089482545852661, -0.0769243910908699, 0.14899080991744995, 0.06258394569158554, -0.032844893634319305, -0.05803511291742325, 0.06998123973608017, -0.027672206982970238, -0.13507044315338135, 0.06641543656587601, -0.02229614183306694, 0.0399479903280735, -0.015032405965030193, -0.04277260601520538, -0.0312577560544014, -0.021370360627770424, -0.05532357469201088, -0.015273620374500751, -0.10676208138465881, 0.042173441499471664, -0.10226555913686752, 0.07453953474760056, 0.11555793136358261, -0.028165368363261223, -0.031478408724069595, -0.08304992318153381, 0.08941338211297989, 0.09161927551031113, -0.049390312284231186, -0.012345082126557827, -0.1722513735294342, -0.06277596950531006, 0.11893655359745026, -0.019896171987056732, -0.10787814110517502, -0.024028832092881203, -0.042192552238702774, -0.014448132365942001, -0.17038339376449585, 0.046058159321546555, 0.07712478935718536, 0.03548251837491989, 0.004158631898462772, -0.06695546209812164, 0.0041531287133693695, 0.01784268580377102, -0.21580801904201508, -0.11257001757621765 ]
null
null
transformers
# wav2vec2-large-xlsr-53-breton The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor lang = "br" test_dataset = load_dataset("common_voice", lang, split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("Marxav/wav2vec2-large-xlsr-53-breton") model = Wav2Vec2ForCTC.from_pretrained("Marxav/wav2vec2-large-xlsr-53-breton") resampler = torchaudio.transforms.Resample(48_000, 16_000) chars_to_ignore_regex = '[\\,\,\?\.\!\;\:\"\“\%\”\�\(\)\/\«\»\½\…]' # Preprocessing the datasets. # We need to read the audio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() + " " batch["sentence"] = re.sub("ʼ", "'", batch["sentence"]) batch["sentence"] = re.sub("’", "'", batch["sentence"]) batch["sentence"] = re.sub('‘', "'", batch["sentence"]) return batch nb_samples = 2 test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:nb_samples], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:nb_samples]) ``` The above code leads to the following prediction for the first two samples: * Prediction: ["neller ket dont a-benn eus netra la vez ser merc'hed evel sich", 'an eil hag egile'] * Reference: ["N'haller ket dont a-benn eus netra pa vezer nec'het evel-se.", 'An eil hag egile.'] The model can be evaluated as follows on the {language} test data of Common Voice. ```python import re import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor lang = 'br' test_dataset = load_dataset("common_voice", lang, split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained('Marxav/wav2vec2-large-xlsr-53-breton') model = Wav2Vec2ForCTC.from_pretrained('Marxav/wav2vec2-large-xlsr-53-breton') model.to("cuda") chars_to_ignore_regex = '[\\,\,\?\.\!\;\:\"\“\%\”\�\(\)\/\«\»\½\…]' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() + " " batch["sentence"] = re.sub("ʼ", "'", batch["sentence"]) batch["sentence"] = re.sub("’", "'", batch["sentence"]) batch["sentence"] = re.sub('‘', "'", batch["sentence"]) speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(remove_special_characters) test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the audio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 43.43% ## Training The Common Voice `train`, `validation` datasets were used for training.
{"language": "br", "license": "apache-2.0", "tags": ["audio", "automatic-speech-recognition", "speech", "xlsr-fine-tuning-week"], "datasets": ["common_voice"], "model-index": [{"name": "XLSR Wav2Vec2 Breton by Marxav", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice br", "type": "common_voice", "args": "br"}, "metrics": [{"type": "wer", "value": 43.43, "name": "Test WER"}]}]}]}
automatic-speech-recognition
Marxav/wav2vec2-large-xlsr-53-breton
[ "transformers", "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "audio", "speech", "xlsr-fine-tuning-week", "br", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:04+00:00
[]
[ "br" ]
TAGS #transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #br #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us
# wav2vec2-large-xlsr-53-breton The model can be used directly (without a language model) as follows: The above code leads to the following prediction for the first two samples: * Prediction: ["neller ket dont a-benn eus netra la vez ser merc'hed evel sich", 'an eil hag egile'] * Reference: ["N'haller ket dont a-benn eus netra pa vezer nec'het evel-se.", 'An eil hag egile.'] The model can be evaluated as follows on the {language} test data of Common Voice. Test Result: 43.43% ## Training The Common Voice 'train', 'validation' datasets were used for training.
[ "# wav2vec2-large-xlsr-53-breton\nThe model can be used directly (without a language model) as follows:\n\nThe above code leads to the following prediction for the first two samples:\n* Prediction: [\"neller ket dont a-benn eus netra la vez ser merc'hed evel sich\", 'an eil hag egile']\n* Reference: [\"N'haller ket dont a-benn eus netra pa vezer nec'het evel-se.\", 'An eil hag egile.']\n\nThe model can be evaluated as follows on the {language} test data of Common Voice.\n\n\nTest Result: 43.43%", "## Training\nThe Common Voice 'train', 'validation' datasets were used for training." ]
[ "TAGS\n#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #br #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us \n", "# wav2vec2-large-xlsr-53-breton\nThe model can be used directly (without a language model) as follows:\n\nThe above code leads to the following prediction for the first two samples:\n* Prediction: [\"neller ket dont a-benn eus netra la vez ser merc'hed evel sich\", 'an eil hag egile']\n* Reference: [\"N'haller ket dont a-benn eus netra pa vezer nec'het evel-se.\", 'An eil hag egile.']\n\nThe model can be evaluated as follows on the {language} test data of Common Voice.\n\n\nTest Result: 43.43%", "## Training\nThe Common Voice 'train', 'validation' datasets were used for training." ]
[ 80, 151, 23 ]
[ "passage: TAGS\n#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #br #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us \n# wav2vec2-large-xlsr-53-breton\nThe model can be used directly (without a language model) as follows:\n\nThe above code leads to the following prediction for the first two samples:\n* Prediction: [\"neller ket dont a-benn eus netra la vez ser merc'hed evel sich\", 'an eil hag egile']\n* Reference: [\"N'haller ket dont a-benn eus netra pa vezer nec'het evel-se.\", 'An eil hag egile.']\n\nThe model can be evaluated as follows on the {language} test data of Common Voice.\n\n\nTest Result: 43.43%## Training\nThe Common Voice 'train', 'validation' datasets were used for training." ]
[ -0.10910305380821228, -0.01729993149638176, -0.005371724255383015, -0.015491025522351265, -0.01352361124008894, 0.005412390921264887, 0.1339590847492218, 0.10580920428037643, 0.06889654695987701, 0.06038525700569153, 0.03515494614839554, 0.07264222949743271, 0.017700374126434326, 0.10355383902788162, -0.004759523551911116, -0.08814942091703415, 0.05038066580891609, 0.005783121567219496, 0.0929737240076065, 0.06739811599254608, 0.1332639455795288, -0.05291212722659111, 0.028501151129603386, 0.09511622041463852, -0.04466966539621353, 0.05341130867600441, 0.003502424107864499, -0.08033358305692673, 0.13383705914020538, 0.02452271431684494, 0.05418861657381058, 0.01152240764349699, 0.011638576164841652, -0.28231510519981384, -0.0009535890421830118, -0.012351750396192074, 0.0384691096842289, -0.015322938561439514, 0.023265842348337173, -0.06964980810880661, -0.030619390308856964, 0.06207750365138054, -0.0037790716160088778, 0.039408933371305466, -0.01605234108865261, -0.1269710808992386, -0.04199756309390068, 0.00855826772749424, 0.07966471463441849, 0.08503534644842148, -0.06838575750589371, 0.09424141049385071, -0.13483893871307373, 0.07977253943681717, 0.17038951814174652, -0.2239120900630951, 0.029741555452346802, 0.035220466554164886, 0.00339418719522655, -0.03374296799302101, -0.05182531476020813, 0.0085702920332551, 0.1021886095404625, 0.02191673219203949, -0.08157817274332047, -0.015225245617330074, -0.11498241871595383, -0.0027706255204975605, -0.14227603375911713, -0.004062903579324484, 0.2989823818206787, 0.024922527372837067, -0.07687969505786896, -0.05205566808581352, 0.007828815840184689, 0.012607734650373459, 0.05019224062561989, -0.08384349197149277, 0.0107569620013237, -0.027024375274777412, 0.05775554105639458, 0.006293861195445061, -0.12559546530246735, -0.08754324913024902, -0.08023157715797424, 0.11503187566995621, 0.07386483997106552, -0.03054332174360752, -0.053714312613010406, 0.05253114178776741, -0.14904169738292694, -0.058141078799963, -0.08008532971143723, 0.04412127658724785, -0.043279070407152176, -0.029966359958052635, -0.06784224510192871, -0.15694734454154968, 0.1288193315267563, 0.11605335026979446, 0.050259724259376526, 0.03266886621713638, -0.05753791332244873, 0.051727455109357834, 0.057939525693655014, 0.10290201753377914, 0.003537258133292198, -0.028468474745750427, -0.0275670625269413, 0.03128262981772423, -0.001196760917082429, -0.011242523789405823, -0.03826248645782471, -0.052162207663059235, 0.08122692257165909, 0.02037898078560829, -0.04388803988695145, -0.022248204797506332, -0.09409332275390625, 0.0028563477098941803, -0.05854816734790802, -0.1306375414133072, -0.0363452173769474, 0.04999949038028717, -0.019201334565877914, 0.07070861011743546, 0.039070285856723785, 0.05042754486203194, -0.04781871289014816, 0.0010172418551519513, -0.01708146743476391, 0.004868438467383385, 0.02003055438399315, -0.04925419017672539, 0.03818714991211891, -0.028736459091305733, -0.0008053554920479655, -0.1053897887468338, -0.10273528099060059, -0.08689479529857635, -0.009400689043104649, 0.025416182354092598, -0.03207786753773689, -0.12574462592601776, -0.025239942595362663, -0.012476509436964989, -0.06210188567638397, -0.05784904956817627, -0.0693168193101883, 0.030300404876470566, 0.0533137172460556, 0.029937997460365295, 0.08156116306781769, 0.052592407912015915, -0.08404100686311722, -0.016465431079268456, -0.056070927530527115, 0.0985938087105751, -0.11494050174951553, -0.08426030725240707, -0.11332152038812637, -0.043450213968753815, -0.03871634230017662, 0.0696486085653305, 0.05681340768933296, 0.1092514917254448, -0.2184605896472931, -0.09244954586029053, 0.07601425051689148, -0.13116206228733063, -0.10159793496131897, 0.19649538397789001, 0.00014123768778517842, 0.08026517182588577, 0.10349275916814804, 0.3310226798057556, 0.07850934565067291, -0.17876172065734863, -0.05607898533344269, 0.046051956713199615, 0.07141680270433426, 0.060491591691970825, 0.060283489525318146, -0.09981101006269455, -0.0471452921628952, 0.0004331276868470013, -0.08369141817092896, 0.0055237701162695885, -0.044384073466062546, -0.03996972367167473, 0.0010499813361093402, -0.07576382160186768, 0.09435703605413437, -0.020948803052306175, -0.0067202430218458176, -0.06289875507354736, -0.04700798913836479, 0.09617006033658981, 0.14237762987613678, -0.08685871213674545, 0.05860801786184311, -0.1159972995519638, 0.13912621140480042, -0.058207686990499496, -0.04683301970362663, -0.06771115958690643, 0.05173957720398903, 0.016357161104679108, -0.06830182671546936, 0.09241298586130142, 0.1566527634859085, 0.01181287132203579, -0.007773305289447308, -0.01735195890069008, -0.04245321825146675, -0.01527003850787878, 0.009962293319404125, -0.04677608236670494, -0.19131365418434143, 0.02969156578183174, -0.033267486840486526, 0.1155846118927002, -0.1245049312710762, -0.021002091467380524, 0.018385790288448334, 0.08610901981592178, -0.019787399098277092, 0.02059340290725231, 0.022888753563165665, 0.035918813198804855, -0.0522649846971035, 0.05625138059258461, -0.030872102826833725, -0.009237435646355152, -0.0990234762430191, 0.11978085339069366, -0.07255996018648148, -0.011669239960610867, 0.07465917617082596, -0.06697864830493927, -0.032172370702028275, 0.08154239505529404, -0.03579412400722504, -0.049397893249988556, -0.08946756273508072, -0.05525444820523262, 0.23228701949119568, -0.006300292443484068, 0.07072945684194565, -0.07633606344461441, -0.07364346832036972, -0.014189043082296848, -0.1296917051076889, -0.014099312014877796, 0.10102880001068115, -0.06899487972259521, 0.0383392758667469, 0.03696952387690544, 0.010065215639770031, -0.16772568225860596, 0.2193889617919922, -0.03540146350860596, -0.07679669559001923, -0.005643532611429691, 0.033005811274051666, -0.03555825725197792, 0.079131580889225, -0.21303784847259521, -0.01838613487780094, 0.02786250226199627, 0.08796463906764984, 0.06598048657178879, -0.12105211615562439, 0.021158870309591293, 0.0023478169459849596, -0.11260763555765152, -0.058673471212387085, 0.08726295828819275, -0.04070863872766495, 0.047079671174287796, -0.06411052495241165, -0.09962543100118637, -0.00767030892893672, -0.047956109046936035, -0.16517344117164612, 0.1316649466753006, -0.0922793298959732, -0.12197767943143845, -0.11357583105564117, 0.05198453366756439, -0.08435434103012085, 0.010128313675522804, 0.11378318816423416, -0.1223234012722969, -0.04059703275561333, -0.06574643403291702, 0.11614276468753815, -0.045645806938409805, -0.002604176290333271, -0.011269854381680489, -0.07046308368444443, 0.05912339314818382, -0.1695288121700287, -0.006578334141522646, -0.05250478908419609, -0.04054175689816475, -0.010770217515528202, -0.04342060163617134, 0.030192306265234947, 0.17005644738674164, 0.04650145769119263, -0.01831592060625553, -0.031233249232172966, 0.227427676320076, -0.07697819173336029, -0.0497187003493309, 0.09731734544038773, -0.04239172115921974, -0.0036484766751527786, 0.10658451914787292, -0.003115396946668625, -0.0647832527756691, -0.0026626235339790583, 0.06384897977113724, 0.028146417811512947, -0.343814879655838, -0.08293573558330536, -0.03107777237892151, -0.005461688153445721, -0.06819020211696625, 0.02814546413719654, 0.07851438969373703, 0.0007994199986569583, 0.000007590731911477633, -0.04360589385032654, 0.05388703569769859, 0.017313560470938683, 0.22285708785057068, -0.023061497136950493, 0.06003066152334213, -0.015928085893392563, -0.0418468602001667, 0.036517221480607986, 0.10361091792583466, 0.07447726279497147, 0.02415522187948227, 0.10281679034233093, 0.13357652723789215, 0.09211328625679016, 0.0002688964013941586, -0.008200662210583687, -0.0784606859087944, 0.030401377007365227, 0.016687409952282906, -0.03832278028130531, 0.041947465389966965, 0.0625169649720192, 0.09715477377176285, -0.007938290014863014, -0.0385824516415596, 0.0158933587372303, 0.09900128096342087, 0.12895311415195465, 0.15579545497894287, -0.11561745405197144, -0.07071931660175323, 0.0128144146874547, -0.08793332427740097, -0.015291950665414333, 0.06195748969912529, 0.07900238782167435, -0.06547997891902924, 0.11168677359819412, 0.07915210723876953, 0.029375402256846428, -0.049775607883930206, 0.023722372949123383, -0.09505008161067963, 0.019073080271482468, 0.002414490794762969, 0.10368288308382034, -0.30402377247810364, 0.18604135513305664, 0.00525137223303318, 0.09347034245729446, -0.004794052802026272, -0.0024276641197502613, -0.02597089484333992, 0.0526060126721859, 0.13068728148937225, 0.017167219892144203, 0.05698995292186737, -0.06085467338562012, -0.02638757973909378, 0.047110460698604584, 0.020645666867494583, -0.019187716767191887, 0.02726360224187374, 0.016934605315327644, 0.014613776467740536, 0.01409574132412672, -0.018570972606539726, -0.17937126755714417, -0.01699594408273697, 0.056555479764938354, 0.11535954475402832, 0.04108395054936409, -0.02729976736009121, -0.11071107536554337, -0.174581378698349, 0.08497647196054459, -0.18921196460723877, -0.0313003808259964, -0.021948067471385002, -0.071103036403656, 0.13357006013393402, -0.06950993835926056, -0.01787332445383072, 0.056508176028728485, 0.10236837714910507, -0.04319934919476509, 0.010476256720721722, 0.03635231778025627, -0.09680217504501343, -0.12889115512371063, -0.044190797954797745, 0.16561834514141083, 0.08816554397344589, 0.09405627101659775, 0.04914873093366623, 0.00519970990717411, -0.018894623965024948, -0.02575276978313923, 0.03754401579499245, 0.1267612725496292, -0.1381218582391739, 0.07225757837295532, -0.00889621488749981, -0.13125592470169067, -0.1440712958574295, -0.08969303965568542, 0.11843590438365936, 0.17612725496292114, -0.015026763081550598, 0.09949193149805069, 0.21766714751720428, -0.13380661606788635, -0.1813332736492157, -0.021467464044690132, 0.09628833830356598, 0.07492061704397202, -0.04856804013252258, -0.1216411367058754, 0.15552861988544464, 0.051530320197343826, -0.03592091426253319, -0.07259536534547806, -0.26010751724243164, -0.15853281319141388, 0.19131417572498322, -0.07386841624975204, 0.1425033062696457, -0.021350158378481865, -0.033505167812108994, -0.028387831524014473, -0.0007235467783175409, -0.04855513945221901, -0.09597936272621155, 0.08005469292402267, 0.0385703518986702, 0.10828156769275665, 0.021665047854185104, 0.006011284422129393, 0.14171387255191803, 0.20852215588092804, 0.0012289881706237793, 0.00426142755895853, 0.0672878623008728, -0.09335441887378693, -0.018394554033875465, 0.19722865521907806, -0.04440987482666969, 0.02771521545946598, -0.08586974442005157, -0.06461160629987717, -0.0535007044672966, 0.13822650909423828, 0.011073606088757515, -0.03517506644129753, -0.03427568078041077, -0.04717914015054703, 0.024485621601343155, 0.0017528684111312032, 0.07509016245603561, -0.08080940693616867, 0.07698044925928116, 0.02295110933482647, 0.18112479150295258, -0.017817068845033646, -0.11740793287754059, 0.03342382609844208, -0.04502740874886513, 0.0742153599858284, -0.04544032737612724, 0.03840426728129387, 0.11938607692718506, 0.03659394755959511, 0.14218735694885254, 0.020060833543539047, -0.18177491426467896, 0.045121390372514725, 0.03850363567471504, -0.06839918345212936, -0.12123118340969086, 0.005887453444302082, -0.09875445812940598, -0.052803609520196915, 0.07621137797832489, 0.1556822508573532, -0.06538761407136917, -0.004310609307140112, -0.012612921185791492, 0.019419660791754723, -0.10463597625494003, 0.22818413376808167, 0.0498524084687233, 0.060434143990278244, -0.0748787671327591, 0.06615351140499115, 0.0022187447175383568, 0.00438993563875556, 0.1013953909277916, -0.06327340751886368, -0.028542710468173027, -0.0745624303817749, -0.05152422934770584, 0.2195225954055786, -0.03593350574374199, -0.11691554635763168, -0.07504507154226303, -0.09511715173721313, 0.0033893354702740908, 0.2061455249786377, 0.07820843160152435, 0.07015672326087952, 0.001981614623218775, -0.015891509130597115, -0.03840375319123268, 0.09886682778596878, 0.13222317397594452, 0.060831453651189804, -0.12232561409473419, 0.0932922437787056, 0.032719578593969345, 0.06987524032592773, -0.015876777470111847, -0.04245138168334961, -0.05630379542708397, 0.06823969632387161, -0.08083297312259674, 0.05318676307797432, -0.03589348867535591, 0.023266494274139404, 0.07033403217792511, -0.09522918611764908, -0.017464732751250267, 0.061299920082092285, -0.0797828882932663, 0.05914603918790817, 0.026852557435631752, 0.1388038694858551, -0.1281198263168335, 0.011564134620130062, 0.04400404542684555, -0.08739025890827179, 0.09830548614263535, 0.06615174561738968, -0.049765944480895996, 0.1302611380815506, -0.2172795683145523, -0.02000029943883419, 0.050363630056381226, 0.07300441712141037, -0.009534265846014023, -0.16710694134235382, -0.03006083145737648, 0.05748768523335457, 0.057855334132909775, -0.004363004583865404, 0.04126733914017677, -0.05805962160229683, -0.05872717499732971, -0.08151132613420486, -0.07781205326318741, -0.032229214906692505, -0.004300987347960472, 0.10250041633844376, 0.09429838508367538, 0.1589595228433609, -0.09149904549121857, 0.05628214031457901, -0.06755538284778595, 0.0331147238612175, -0.014792879112064838, -0.019549395889043808, -0.12851794064044952, -0.03336923196911812, 0.04327559843659401, -0.10414882749319077, 0.09908968210220337, -0.029631178826093674, 0.05002536252140999, -0.012423550710082054, -0.12487934529781342, -0.06415929645299911, 0.02039237506687641, 0.11695994436740875, 0.01831059716641903, 0.022209303453564644, -0.11872079968452454, -0.06285025924444199, 0.029918113723397255, 0.09417913109064102, -0.009253473952412605, 0.08359622955322266, -0.013010330498218536, 0.11236805468797684, 0.10463045537471771, -0.10951238870620728, -0.07784152030944824, 0.006305675487965345, -0.08647782355546951, 0.05390920862555504, 0.022961657494306564, 0.18190349638462067, 0.13137857615947723, -0.10321427881717682, 0.05119270458817482, -0.042031414806842804, -0.08368503302335739, -0.15789788961410522, -0.11484609544277191, -0.09990701824426651, -0.12203115224838257, 0.05359261482954025, -0.0988004133105278, 0.025303762406110764, 0.07900074124336243, 0.08619076758623123, 0.012180797755718231, 0.14656415581703186, -0.016843507066369057, -0.06390035897493362, 0.05293350666761398, -0.0704365000128746, -0.023744547739624977, -0.06157755106687546, -0.0005242702318355441, 0.1275893747806549, 0.025214409455657005, 0.019996631890535355, -0.011867108754813671, 0.008495950140058994, 0.016005391255021095, -0.08186029642820358, -0.07342875748872757, 0.0025344628375023603, -0.028718112036585808, 0.05898221954703331, 0.07006087154150009, 0.11303962022066116, -0.05015674605965614, 0.03688111528754234, 0.08198267221450806, -0.024703480303287506, -0.14856621623039246, -0.16160397231578827, 0.1262837052345276, 0.04463967680931091, 0.06265608221292496, -0.010946085676550865, -0.10114838182926178, -0.028615282848477364, 0.17866578698158264, 0.11175068467855453, 0.08102113753557205, 0.010450972244143486, 0.004496575798839331, -0.0031546344980597496, -0.009540952742099762, -0.06805470585823059, 0.05096909776329994, 0.21552635729312897, 0.00755232572555542, 0.02110311947762966, -0.07211484760046005, -0.021174216642975807, 0.04094648361206055, 0.06199992820620537, -0.031769927591085434, -0.07894761115312576, -0.03342840448021889, 0.08553667366504669, -0.07923512160778046, -0.17957863211631775, -0.07694777846336365, -0.07401169091463089, -0.0816669836640358, -0.012223856523633003, 0.11450265347957611, 0.04769544303417206, 0.014276623725891113, -0.05686415731906891, -0.05131874606013298, 0.12953145802021027, -0.017053108662366867, -0.06997397541999817, -0.054857704788446426, 0.04129888489842415, 0.023645363748073578, 0.08311167359352112, 0.022190427407622337, 0.22256045043468475, 0.030491217970848083, 0.07462360709905624, -0.00928795337677002, 0.13192066550254822, 0.02943006344139576, -0.013591166585683823, 0.017844298854470253, 0.12406261265277863, 0.0016494103474542499, 0.16911138594150543, 0.09359727054834366, -0.12308621406555176, 0.023529142141342163, -0.015480619855225086, -0.06468934565782547, -0.12416627258062363, 0.04699062928557396, -0.08483721315860748, 0.09669134765863419, 0.07733766734600067, -0.04411027580499649, -0.04805593565106392, -0.04999374970793724, 0.033288802951574326, -0.004405916202813387, 0.0013211816549301147, 0.002726740902289748, -0.2299966663122177, 0.05409735441207886, -0.08169221878051758, 0.004575603175908327, -0.16160042583942413, -0.04395075887441635, 0.03108825534582138, -0.02134445495903492, -0.0008678811136633158, 0.05664505064487457, 0.12250855565071106, 0.029701590538024902, -0.048584260046482086, -0.0033423854038119316, 0.017442235723137856, 0.09104278683662415, -0.0898565724492073, -0.1289825141429901 ]
null
null
transformers
# GPT2 - RUS
{"language": "ru", "tags": ["text-generation"]}
text-generation
Mary222/GPT2_RU_GAME
[ "transformers", "pytorch", "gpt2", "text-generation", "ru", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:04+00:00
[]
[ "ru" ]
TAGS #transformers #pytorch #gpt2 #text-generation #ru #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# GPT2 - RUS
[ "# GPT2 - RUS" ]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #ru #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# GPT2 - RUS" ]
[ 49, 7 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #ru #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# GPT2 - RUS" ]
[ -0.00519120367243886, -0.022561686113476753, -0.007596803829073906, 0.027643540874123573, 0.14348329603672028, 0.04741635173559189, 0.14076685905456543, 0.09847523272037506, 0.04966764897108078, -0.005836662836372852, 0.198514923453331, 0.09829526394605637, -0.004303532186895609, 0.10892949253320694, -0.0027985076885670424, -0.2793978750705719, 0.07184869796037674, 0.019321255385875702, -0.060192033648490906, 0.12074270099401474, 0.0961117073893547, -0.029754001647233963, 0.08361269533634186, -0.01682775467634201, -0.1632949411869049, 0.0341312475502491, 0.07704346626996994, -0.1302386224269867, 0.1239718422293663, 0.08251646161079407, 0.072904571890831, 0.025236627086997032, -0.05518567934632301, -0.10075037181377411, 0.009497102349996567, 0.004437679890543222, -0.1123058870434761, 0.056387972086668015, 0.11674775183200836, -0.1007215827703476, 0.20335617661476135, 0.027923746034502983, -0.05529777333140373, 0.03563017025589943, -0.14591549336910248, -0.08964543044567108, -0.06596796214580536, 0.0983213260769844, 0.03364867344498634, 0.11994517594575882, -0.02552942745387554, 0.1203906238079071, -0.06840329617261887, 0.08543050289154053, 0.1765928864479065, -0.4095193147659302, -0.005889644380658865, 0.0986812561750412, -0.03486963361501694, 0.07076051831245422, 0.03715027868747711, 0.11200957745313644, 0.006362952291965485, -0.0003543096245266497, -0.012845480814576149, -0.04848652333021164, -0.0650225430727005, 0.052013836801052094, -0.11208679527044296, -0.05733760446310043, 0.21742506325244904, -0.066304512321949, 0.0868762880563736, -0.004740026779472828, -0.08081080764532089, -0.10855792462825775, -0.0017332464922219515, -0.02209903486073017, -0.08728388696908951, 0.06542260944843292, 0.0341460257768631, -0.09173055738210678, -0.15695609152317047, -0.04900094121694565, -0.18389128148555756, 0.24891093373298645, 0.03905206546187401, 0.10308823734521866, -0.11186890304088593, 0.09539317339658737, -0.089888796210289, -0.05539141595363617, 0.022401239722967148, -0.11104321479797363, 0.010741172358393669, 0.02736402302980423, -0.07505236566066742, -0.01127445325255394, 0.06780096143484116, 0.15706253051757812, -0.03470384329557419, 0.026490727439522743, 0.07502985745668411, 0.10447301715612411, -0.018300287425518036, 0.09376778453588486, -0.027486193925142288, -0.005222867708653212, 0.03973152115941048, -0.19838517904281616, -0.009530077688395977, -0.053296755999326706, -0.18631292879581451, -0.10477590560913086, 0.0456717349588871, 0.057599909603595734, -0.01877403073012829, 0.08547791838645935, -0.035883091390132904, 0.010756579227745533, 0.07048287987709045, -0.052363377064466476, -0.016928385943174362, -0.0304990466684103, 0.0074049439281225204, 0.11161167919635773, -0.03255738317966461, 0.014723153784871101, -0.1164662167429924, 0.07279697805643082, -0.026630504056811333, 0.02216721512377262, -0.02847258187830448, -0.0688541904091835, 0.00745548028498888, -0.12372330576181412, 0.016804594546556473, -0.1884877234697342, -0.11289388686418533, 0.02126743085682392, 0.02584683895111084, -0.06701408326625824, 0.009575954638421535, -0.003423164365813136, -0.04119002819061279, 0.049313075840473175, -0.05525838956236839, -0.02618766948580742, -0.05418155714869499, 0.068247489631176, -0.06317905336618423, 0.10326189547777176, -0.09348790347576141, 0.04264058172702789, -0.1140684112906456, -0.0472157746553421, -0.07631133496761322, 0.09178325533866882, -0.06535642594099045, 0.04058269038796425, -0.029999466612935066, -0.03346605598926544, -0.04870269075036049, 0.0353795550763607, -0.009134500287473202, 0.17550894618034363, -0.06976275891065598, -0.12215150147676468, 0.2883366048336029, -0.11185971647500992, -0.10266436636447906, 0.11114346235990524, 0.034966468811035156, -0.0006472945096902549, 0.10328071564435959, 0.1523466855287552, 0.03204374015331268, 0.002161991549655795, 0.016751106828451157, 0.04840453341603279, -0.13615290820598602, -0.05462343245744705, 0.046298518776893616, 0.016959529370069504, -0.09577107429504395, 0.053224172443151474, 0.026152903214097023, 0.07113932073116302, -0.061856020241975784, -0.039583779871463776, -0.027904439717531204, 0.010653670877218246, 0.09327615797519684, -0.02227655053138733, 0.13995669782161713, -0.09247077256441116, -0.09181821346282959, -0.08848944306373596, -0.0010482951765879989, 0.012761733494699001, 0.04498634114861488, -0.05229385942220688, 0.13260242342948914, -0.01821913942694664, 0.07034073024988174, -0.1485065519809723, -0.055063627660274506, -0.023937691003084183, 0.16988593339920044, 0.028110960498452187, 0.09872053563594818, 0.07742587476968765, -0.027512291446328163, -0.04278356954455376, 0.015549616888165474, 0.07416310906410217, -0.028525015339255333, -0.04443417116999626, -0.09187308698892593, 0.07801498472690582, -0.03368033468723297, -0.019928712397813797, -0.02911118045449257, 0.006951558403670788, 0.09761559218168259, 0.116020567715168, -0.02663186751306057, 0.06291935592889786, -0.07983815670013428, 0.025157928466796875, -0.08561909943819046, 0.01416774746030569, 0.08601009100675583, -0.0392509363591671, -0.07502767443656921, 0.18443027138710022, -0.07129527628421783, 0.2153051793575287, 0.20847631990909576, -0.19172872602939606, -0.05014968290925026, -0.02890695445239544, -0.02840232662856579, 0.027700316160917282, 0.08712387084960938, 0.01163731049746275, 0.11272633820772171, 0.005472314078360796, 0.11562862247228622, -0.036445703357458115, -0.03517407551407814, 0.035502299666404724, -0.0815090462565422, -0.028022054582834244, 0.09614474326372147, 0.12585046887397766, -0.1413647085428238, 0.18403039872646332, 0.14631721377372742, 0.019295459613204002, 0.20308993756771088, 0.04354993626475334, -0.04456297308206558, 0.04614871367812157, -0.0379689522087574, -0.02292882837355137, -0.006439560558646917, -0.11195341497659683, -0.03965071961283684, 0.08531364053487778, 0.04369021952152252, 0.08143656700849533, -0.142377570271492, -0.053883083164691925, -0.028403403237462044, -0.04806026443839073, 0.015093657188117504, 0.10987960547208786, -0.004104293417185545, 0.14222551882266998, 0.009352394379675388, 0.01595114916563034, 0.08323033154010773, 0.0347614511847496, -0.09818832576274872, 0.16831594705581665, -0.12591134011745453, -0.3511248230934143, -0.13585862517356873, -0.1085810512304306, -0.049174241721630096, 0.0775022879242897, 0.08819086849689484, -0.1811864972114563, -0.019076121971011162, 0.051065947860479355, 0.16033922135829926, -0.07886572182178497, 0.05885257199406624, -0.0765986517071724, 0.07674093544483185, -0.1044590026140213, -0.019643036648631096, -0.07982489466667175, -0.03953874111175537, -0.08496953547000885, 0.19434140622615814, -0.09419350326061249, 0.04393523558974266, 0.12437108159065247, -0.00038096841308288276, 0.05136902257800102, -0.06097157299518585, 0.15674743056297302, -0.12310485541820526, 0.018993917852640152, 0.1667124480009079, -0.004246945027261972, 0.0669950470328331, 0.08517224341630936, -0.013836698606610298, -0.07112683355808258, 0.025424329563975334, -0.049945950508117676, -0.11008879542350769, -0.24109619855880737, -0.15374526381492615, -0.08857115358114243, 0.0758315846323967, 0.020834339782595634, 0.032242611050605774, 0.10633662343025208, 0.11721894890069962, -0.04571712762117386, -0.0049785771407186985, 0.007819629274308681, 0.07580848038196564, 0.20252640545368195, -0.01759745553135872, 0.17274019122123718, -0.08897963911294937, -0.07996093481779099, 0.13773952424526215, 0.022577647119760513, 0.18951615691184998, 0.06821835786104202, -0.008998917415738106, 0.012852254323661327, 0.11875007301568985, 0.13023439049720764, 0.08709557354450226, 0.08397001773118973, -0.03424258157610893, 0.0050217341631650925, -0.024817999452352524, -0.04086340218782425, 0.08868751674890518, -0.0031366944313049316, -0.19159100949764252, -0.022702399641275406, -0.03767591342329979, 0.10761044919490814, 0.10373180359601974, 0.07179735600948334, -0.20028802752494812, -0.09428752213716507, 0.04882422462105751, 0.014072543941438198, -0.09291555732488632, 0.07089973986148834, -0.0326450951397419, -0.15618498623371124, 0.08063150942325592, -0.041242074221372604, 0.08893740922212601, 0.0035328820813447237, 0.060901571065187454, -0.017356816679239273, -0.058621276170015335, 0.012702519074082375, 0.1428079903125763, -0.29986289143562317, 0.2704389691352844, -0.015128734521567822, -0.07436765730381012, -0.11909312754869461, -0.010110479779541492, -0.006520570255815983, 0.10350827127695084, 0.11976656317710876, 0.026198940351605415, -0.11238360404968262, -0.10766193270683289, -0.04011615365743637, 0.04173329845070839, 0.13942962884902954, -0.06802435219287872, 0.015177031978964806, -0.048272933810949326, 0.014602857641875744, -0.04075997322797775, -0.03404338285326958, -0.026555517688393593, -0.1700630933046341, 0.0897892639040947, 0.021975822746753693, 0.05526049807667732, 0.012803187593817711, -0.06215991452336311, -0.12163092941045761, 0.251228928565979, -0.06896017491817474, -0.13125079870224, -0.09457172453403473, -0.011311057955026627, 0.0861591324210167, -0.10809862613677979, 0.0771496444940567, -0.05317673832178116, 0.03274738788604736, -0.06060529872775078, -0.18794065713882446, 0.1164025142788887, -0.09336268156766891, -0.0896056592464447, 0.00702724140137434, 0.20249038934707642, -0.019737618044018745, 0.02691558562219143, -0.010482072830200195, 0.07152271270751953, -0.09326455742120743, -0.10842575877904892, 0.07280036062002182, -0.017197929322719574, 0.029423264786601067, 0.03122415393590927, -0.041023071855306625, -0.021327802911400795, -0.06293324381113052, -0.07433201372623444, 0.28550416231155396, 0.20905084908008575, -0.1192186176776886, 0.22877267003059387, 0.016970401629805565, -0.031448204070329666, -0.3072665333747864, -0.07600454986095428, -0.05398881807923317, -0.007495982106775045, -0.07086603343486786, -0.21144096553325653, 0.01586381159722805, 0.03537650778889656, -0.03064013086259365, 0.14149095118045807, -0.1877063363790512, -0.10374026000499725, 0.11702574044466019, -0.04068421572446823, 0.3484555780887604, -0.08420868217945099, -0.05398135259747505, -0.07658395171165466, -0.11385632306337357, 0.14465481042861938, 0.04235391691327095, 0.09920773655176163, -0.04462888464331627, 0.12066660076379776, 0.037657905369997025, -0.024542583152651787, 0.10228535532951355, -0.01942659541964531, -0.043122548609972, -0.11213424056768417, 0.006484381388872862, 0.09858887642621994, 0.02853485383093357, 0.0018806983716785908, 0.023951755836606026, 0.022045297548174858, -0.09549256414175034, -0.0640660747885704, -0.05024585500359535, 0.04309944808483124, 0.04029225558042526, -0.09098721295595169, -0.040400631725788116, -0.03137608617544174, -0.033688951283693314, -0.026805611327290535, 0.17671696841716766, -0.020284494385123253, 0.08619103580713272, 0.011738714762032032, 0.03947613760828972, -0.10257971286773682, 0.04923676326870918, -0.0350431390106678, -0.07207231968641281, 0.07917714864015579, -0.14587847888469696, 0.024566074833273888, 0.1269679218530655, -0.08175761252641678, -0.00024164517526514828, 0.0823817029595375, -0.025545787066221237, -0.0037747130263596773, 0.14738668501377106, -0.2935028374195099, -0.004882785491645336, -0.06808697432279587, -0.05097676441073418, 0.15992814302444458, 0.07275637984275818, 0.17011143267154694, -0.04788241535425186, -0.05173734948039055, -0.0043240259401500225, -0.00978078506886959, -0.058515314012765884, 0.07612501829862595, -0.010563144460320473, 0.0003878603456541896, -0.11652088910341263, 0.07664105296134949, -0.00825208518654108, -0.113229900598526, 0.040316544473171234, 0.09566423296928406, -0.16966168582439423, -0.11991573125123978, -0.009519456885755062, -0.0009145696531049907, -0.19694532454013824, -0.05190664902329445, -0.02647521160542965, -0.11473048478364944, 0.09796653687953949, 0.062155526131391525, 0.09758760780096054, 0.05007784813642502, -0.018189048394560814, -0.01324757281690836, -0.0007007569074630737, -0.02566269226372242, 0.02713002823293209, -0.006355366203933954, -0.11265388876199722, 0.05079786852002144, -0.023018697276711464, 0.12623780965805054, -0.09687568247318268, -0.02739151194691658, -0.12124472111463547, 0.031705692410469055, -0.1180330142378807, -0.0936349555850029, -0.08479095250368118, -0.06998373568058014, -0.045688532292842865, -0.06787417083978653, -0.05667262151837349, -0.030390173196792603, -0.12331137806177139, 0.03577907755970955, -0.0776144415140152, 0.01848294399678707, -0.05970693379640579, 0.0035443648230284452, 0.07966407388448715, -0.014737637713551521, 0.15271447598934174, 0.20272324979305267, -0.027234770357608795, 0.15279342234134674, -0.08757445216178894, 0.008667189627885818, 0.09146038442850113, 0.02275177650153637, 0.0450158454477787, 0.05972801521420479, 0.0376192070543766, 0.03809267655014992, 0.028731945902109146, 0.09055627137422562, 0.028605526313185692, -0.08576657623052597, 0.04556817188858986, -0.0870363861322403, -0.11186524480581284, -0.027882346883416176, -0.015452067367732525, 0.047567788511514664, 0.052215635776519775, 0.12534917891025543, -0.07553751766681671, 0.10929334908723831, -0.049347519874572754, 0.04499796777963638, -0.010365575551986694, -0.1562078893184662, -0.06496333330869675, -0.07467414438724518, 0.03865973651409149, 0.0017359870253130794, 0.3000047504901886, 0.05921085923910141, 0.021968724206089973, 0.03906083106994629, 0.07445045560598373, 0.02321729063987732, 0.022480005398392677, 0.16167977452278137, 0.11307728290557861, -0.049774330109357834, -0.13643227517604828, 0.08651677519083023, 0.00762055953964591, -0.07864683121442795, 0.13707956671714783, 0.0023910412564873695, 0.026268567889928818, 0.06612762063741684, -0.03144792094826698, -0.01613612100481987, -0.07558297365903854, -0.13202553987503052, -0.0882168784737587, 0.013550793752074242, -0.018958214670419693, 0.12053561955690384, 0.1891884207725525, -0.05972902476787567, 0.031988997012376785, -0.02138056606054306, -0.03792290762066841, -0.15498016774654388, -0.1899077594280243, -0.08889482915401459, -0.17039532959461212, 0.027672911062836647, -0.09153621643781662, 0.029011420905590057, 0.05290227755904198, 0.08202246576547623, -0.06344082951545715, 0.0843324214220047, -0.0006311364704743028, -0.10708785057067871, 0.0651942789554596, -0.013030018657445908, 0.030832646414637566, 0.03327479213476181, -0.06127848103642464, -0.08008011430501938, -0.010837111622095108, -0.017868977040052414, 0.052778713405132294, -0.07910353690385818, -0.002709437860175967, -0.1154392883181572, -0.08145441114902496, -0.05465381219983101, 0.09585380554199219, -0.0053924331441521645, 0.06257390230894089, -0.007567782420665026, -0.012384425848722458, 0.014871181920170784, 0.23703797161579132, -0.035661254078149796, -0.07072491943836212, -0.027216872200369835, 0.17774757742881775, 0.028308192268013954, 0.1394246369600296, -0.013006206601858139, 0.00848494004458189, -0.09533438086509705, 0.32067787647247314, 0.3611678183078766, -0.008747594431042671, 0.023053182289004326, 0.018670478835701942, 0.0432121604681015, 0.12489161640405655, 0.12103206664323807, 0.07798358798027039, 0.20593641698360443, -0.08681364357471466, -0.07394202798604965, -0.07854756712913513, 0.039015427231788635, -0.0948939323425293, 0.088411346077919, 0.039219003170728683, -0.09157268702983856, -0.041301093995571136, 0.11202089488506317, -0.18278713524341583, 0.11190932244062424, -0.04797517508268356, -0.18040750920772552, -0.07652703672647476, 0.07516365498304367, 0.11116619408130646, 0.026428479701280594, 0.111236572265625, -0.00877019390463829, -0.08994001895189285, 0.027819480746984482, 0.06537636369466782, -0.2319709211587906, 0.0030535943806171417, 0.058334168046712875, 0.008839166723191738, 0.0059003750793635845, -0.030807750299572945, 0.14118048548698425, 0.07783588767051697, 0.05920041352510452, -0.04532857984304428, 0.01572507992386818, 0.013397041708230972, -0.04266754165291786, 0.009504995308816433, 0.013521409593522549, 0.013094091787934303, -0.15622618794441223, 0.10832898318767548, -0.11877212673425674, 0.034322261810302734, -0.024428626522421837, 0.0007000694167800248, 0.014384700916707516, 0.0920504704117775, -0.10812021046876907, 0.04419047012925148, 0.1158340647816658, -0.02336135506629944, -0.02184082195162773, -0.08356833457946777, 0.006430305074900389, 0.024883467704057693, -0.0357026644051075, -0.07502789795398712, -0.13811956346035004, -0.09216780960559845, 0.11389663815498352, 0.010668559931218624, -0.12509509921073914, 0.009104388765990734, -0.11479770392179489, 0.0715905949473381, -0.15780329704284668, 0.11409778147935867, 0.037931155413389206, 0.006893477868288755, 0.004124908242374659, -0.04883918911218643, 0.055743973702192307, 0.05387866124510765, -0.10421633720397949, -0.09506364166736603 ]
null
null
transformers
# GPT2 - RUS
{"language": "ru", "tags": ["text-generation"]}
text-generation
Mary222/GPT2_standard
[ "transformers", "pytorch", "gpt2", "feature-extraction", "text-generation", "ru", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:04+00:00
[]
[ "ru" ]
TAGS #transformers #pytorch #gpt2 #feature-extraction #text-generation #ru #endpoints_compatible #text-generation-inference #region-us
# GPT2 - RUS
[ "# GPT2 - RUS" ]
[ "TAGS\n#transformers #pytorch #gpt2 #feature-extraction #text-generation #ru #endpoints_compatible #text-generation-inference #region-us \n", "# GPT2 - RUS" ]
[ 47, 7 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #feature-extraction #text-generation #ru #endpoints_compatible #text-generation-inference #region-us \n# GPT2 - RUS" ]
[ -0.013653847388923168, -0.038437217473983765, -0.008177190087735653, 0.03573990240693092, 0.13849709928035736, 0.057603344321250916, 0.078948974609375, 0.1162635013461113, 0.02695523388683796, 0.005248039960861206, 0.16822874546051025, 0.09192246198654175, 0.014333253726363182, 0.05938269942998886, 0.00502702547237277, -0.28659212589263916, 0.08893578499555588, 0.028443176299333572, -0.075626440346241, 0.12239111959934235, 0.08668506890535355, -0.02160092443227768, 0.08312132209539413, -0.006231684237718582, -0.14840446412563324, 0.0367303192615509, 0.07143544405698776, -0.10995160788297653, 0.1121344268321991, 0.07276605814695358, 0.05524280294775963, 0.008865403942763805, -0.08159871399402618, -0.13288119435310364, 0.013924974948167801, 0.013698033057153225, -0.12023992091417313, 0.049223463982343674, 0.1110016256570816, -0.12664665281772614, 0.24283911287784576, 0.01196399424225092, -0.0682506114244461, 0.031621113419532776, -0.15550002455711365, -0.11809937655925751, -0.08344325423240662, 0.1424681693315506, 0.0037863352335989475, 0.13724219799041748, -0.03537639230489731, 0.057249534875154495, -0.08164815604686737, 0.07923305779695511, 0.25096508860588074, -0.38760268688201904, -0.005701514892280102, 0.08212745934724808, 0.023865144699811935, 0.06939675658941269, 0.030819235369563103, 0.10088697820901871, -0.016158176586031914, -0.005709037184715271, -0.026998288929462433, -0.0508248545229435, -0.052236173301935196, 0.06564188003540039, -0.11792491376399994, -0.08294104039669037, 0.1875486522912979, -0.03666377812623978, 0.08477118611335754, -0.010591632686555386, -0.07925944030284882, -0.1135643944144249, -0.014442823827266693, 0.0013209334574639797, -0.07894492149353027, 0.07162720710039139, 0.04373261705040932, -0.11426488310098648, -0.14912253618240356, -0.0711178258061409, -0.15665659308433533, 0.2215804010629654, 0.038180261850357056, 0.11297862231731415, -0.12580271065235138, 0.08526120334863663, -0.13985948264598846, -0.05339577794075012, 0.0009207561379298568, -0.10788960009813309, 0.0246108565479517, 0.060569535940885544, -0.06979487091302872, -0.034523263573646545, 0.0727229192852974, 0.10649292916059494, -0.12017195671796799, 0.02736811712384224, 0.05902516096830368, 0.12185695022344589, -0.019862474873661995, 0.09481889009475708, -0.04577355459332466, 0.020472003147006035, 0.01621026173233986, -0.19723853468894958, -0.02466646395623684, -0.051813364028930664, -0.16481465101242065, -0.1070706769824028, 0.02871958538889885, 0.06018712371587753, -0.006256294436752796, 0.06964272260665894, -0.03709498792886734, 0.005646685138344765, 0.06269501149654388, -0.05447620898485184, -0.022394422441720963, -0.009332042187452316, 0.014031556434929371, 0.11577986180782318, -0.031508639454841614, -0.014227071776986122, -0.1390729397535324, 0.030812880024313927, -0.03874935954809189, 0.0517599955201149, -0.022608404979109764, -0.07212495803833008, 0.007785741239786148, -0.16116490960121155, -0.004446033854037523, -0.16154836118221283, -0.1286318600177765, 0.030687933787703514, 0.026417192071676254, -0.05853325501084328, 0.0425412654876709, -0.006562237162142992, -0.059209469705820084, 0.03868886083364487, -0.04665766656398773, -0.05257400870323181, -0.05872627720236778, 0.07726594805717468, -0.08407026529312134, 0.09407681971788406, -0.09386913478374481, 0.05362316220998764, -0.10594119876623154, -0.013918210752308369, -0.11792321503162384, 0.1162930354475975, -0.0593012198805809, 0.03954263776540756, -0.05217716097831726, -0.06772279739379883, -0.074760302901268, 0.03121027909219265, -0.024045679718255997, 0.17892161011695862, -0.07365234941244125, -0.13289064168930054, 0.3221948444843292, -0.12695731222629547, -0.10504788905382156, 0.09183964133262634, 0.023215483874082565, -0.03207898885011673, 0.09549233317375183, 0.2305888831615448, 0.052783284336328506, 0.02744441106915474, -0.004816864151507616, 0.08150661736726761, -0.14464983344078064, -0.03633565828204155, 0.06609947979450226, -0.013404607772827148, -0.03150530159473419, 0.029092207551002502, -0.011999929323792458, 0.07227770984172821, -0.04812072589993477, -0.043781355023384094, -0.03293651342391968, 0.02392939105629921, 0.10683125257492065, -0.028102831915020943, 0.1280067265033722, -0.059184495359659195, -0.0960383340716362, -0.08251960575580597, -0.006609180010855198, -0.029727796092629433, 0.07190890610218048, -0.05315016210079193, 0.17163775861263275, -0.01463409699499607, 0.06861032545566559, -0.1837356984615326, -0.03608355671167374, -0.03367205709218979, 0.1344604790210724, 0.011762318201363087, 0.07115253061056137, 0.07761527597904205, -0.042646631598472595, -0.04295484721660614, 0.016214191913604736, 0.012589321471750736, -0.03850013390183449, -0.0147636029869318, -0.0864371806383133, 0.04370773956179619, -0.03241585195064545, -0.06712976843118668, -0.024099064990878105, 0.013905290514230728, 0.14016404747962952, 0.08491529524326324, -0.017830820754170418, 0.030677037313580513, -0.07302333414554596, 0.017620423808693886, -0.055053602904081345, -0.008168812841176987, 0.07806418836116791, -0.04713606834411621, -0.09314568340778351, 0.18223237991333008, -0.03371831402182579, 0.17622128129005432, 0.19095157086849213, -0.1770058572292328, -0.03709590062499046, -0.026729241013526917, -0.03367956727743149, 0.05573814734816551, 0.0916532352566719, -0.01478375680744648, 0.1598939597606659, 0.018863780423998833, 0.09913606196641922, -0.05455728620290756, -0.03501490131020546, 0.027478979900479317, -0.04786594212055206, -0.01973881945014, 0.10003495961427689, 0.10651207715272903, -0.13228483498096466, 0.1635352075099945, 0.1381702870130539, 0.035076502710580826, 0.2048998326063156, 0.006729344371706247, -0.07022348046302795, 0.04415081813931465, 0.006188046652823687, -0.027491338551044464, 0.0008390109287574887, -0.18122893571853638, -0.04196680337190628, 0.07285669445991516, 0.06441560387611389, 0.11126143485307693, -0.13552162051200867, -0.057720646262168884, -0.018100634217262268, -0.08706419914960861, -0.05725904181599617, 0.08604898303747177, 0.006860825698822737, 0.12558069825172424, 0.024793898686766624, 0.05984564870595932, 0.07412838190793991, 0.027434250339865685, -0.09284275025129318, 0.19398406147956848, -0.11085698008537292, -0.3351868689060211, -0.11965103447437286, -0.06338029354810715, -0.03510012850165367, 0.06398499757051468, 0.1010398268699646, -0.1822834461927414, 0.010846327058970928, 0.023871755227446556, 0.18660524487495422, -0.11287981271743774, 0.04386649280786514, -0.07726753503084183, 0.07314090430736542, -0.10715833306312561, -0.043520864099264145, -0.07085257768630981, -0.04576790705323219, -0.07813408970832825, 0.16219136118888855, -0.09992742538452148, 0.04884245619177818, 0.12794393301010132, 0.014769518747925758, 0.07102144509553909, -0.06615687161684036, 0.15230056643486023, -0.1239120215177536, -0.01181054674088955, 0.18876829743385315, 0.00021864011068828404, 0.07505734264850616, 0.04096445068717003, -0.010009258054196835, -0.05871671810746193, -0.011257762089371681, -0.04011781886219978, -0.11443331092596054, -0.25970175862312317, -0.12739920616149902, -0.10229954123497009, 0.08311162143945694, 0.00007199007814051583, 0.03995092958211899, 0.06986932456493378, 0.09722325950860977, -0.03443101793527603, -0.02221616730093956, 0.028440043330192566, 0.05447058007121086, 0.16020087897777557, -0.018114658072590828, 0.13092251121997833, -0.08443773537874222, -0.055158209055662155, 0.12391958385705948, 0.010994323529303074, 0.2703767418861389, 0.039360854774713516, 0.03861652687191963, 0.03774363547563553, 0.12365072965621948, 0.10545089095830917, 0.08947213739156723, 0.047742441296577454, -0.020632298663258553, 0.008615680038928986, -0.027105769142508507, -0.029263418167829514, 0.06683021038770676, 0.030797535553574562, -0.18296176195144653, -0.044478025287389755, -0.062218960374593735, 0.13530275225639343, 0.10548415780067444, 0.049636948853731155, -0.18052609264850616, -0.09525450319051743, 0.05244695767760277, 0.01507909968495369, -0.08532688766717911, 0.07538183033466339, -0.006200571544468403, -0.14885492622852325, 0.07609250396490097, -0.047328513115644455, 0.09997080266475677, 0.005401963833719492, 0.04885797202587128, -0.026218509301543236, -0.09061417728662491, 0.017837947234511375, 0.13866347074508667, -0.22478637099266052, 0.2836660146713257, -0.015583568252623081, -0.05680818110704422, -0.09732665866613388, -0.0016854939749464393, -0.009915631264448166, 0.09881487488746643, 0.1727137416601181, 0.034546054899692535, -0.08818662911653519, -0.07585151493549347, -0.0237390398979187, 0.04416085034608841, 0.1560671031475067, -0.08847282826900482, 0.00859595276415348, -0.031339216977357864, 0.02898593805730343, -0.04759228974580765, 0.005282330326735973, 0.005317416973412037, -0.1688690036535263, 0.07442371547222137, -0.029182011261582375, 0.0668206438422203, -0.0034104487858712673, -0.03076949529349804, -0.06451112031936646, 0.24695587158203125, -0.10023383796215057, -0.13967399299144745, -0.09058810770511627, -0.005151455290615559, 0.09615666419267654, -0.09690398722887039, 0.07690935581922531, -0.025028668344020844, 0.03526131436228752, -0.06217502802610397, -0.19210979342460632, 0.10948015004396439, -0.07322178781032562, -0.058286380022764206, 0.035807494074106216, 0.23071616888046265, -0.0048685441724956036, 0.022782884538173676, 0.006408436689525843, 0.058057114481925964, -0.08271130174398422, -0.12808653712272644, 0.05652469024062157, -0.0027489960193634033, 0.029665088281035423, 0.07769950479269028, -0.02483215183019638, 0.00317930756136775, -0.06537598371505737, -0.02873946540057659, 0.29834944009780884, 0.14615489542484283, -0.10800356417894363, 0.2342672049999237, -0.006890355609357357, -0.027644004672765732, -0.2792365252971649, -0.04406896233558655, -0.044842999428510666, -0.018762750551104546, -0.06546921283006668, -0.21255378425121307, 0.01661214791238308, 0.04911127686500549, -0.007811078801751137, 0.15203538537025452, -0.251028448343277, -0.08465316146612167, 0.06780008971691132, -0.03581000491976738, 0.3070976138114929, -0.09957291930913925, -0.06608729809522629, -0.06044342741370201, -0.168035089969635, 0.14624691009521484, -0.029109932482242584, 0.10689650475978851, -0.039436422288417816, 0.09705039858818054, 0.03258632868528366, -0.030365101993083954, 0.11367765069007874, 0.018255431205034256, -0.024881636723876, -0.0893508791923523, -0.013716504909098148, 0.15922750532627106, 0.02862529270350933, 0.01078152284026146, 0.010599219240248203, 0.03128278627991676, -0.12228353321552277, -0.05594635754823685, -0.08345888555049896, 0.03661764785647392, 0.04098809137940407, -0.07477841526269913, -0.05936681106686592, -0.03652577102184296, -0.0021861528512090445, 0.0023499522358179092, 0.20283539593219757, -0.028898676857352257, 0.07619284838438034, -0.024706460535526276, 0.017902500927448273, -0.09618231654167175, -0.07160960137844086, -0.03126049414277077, -0.04589291289448738, 0.09429048001766205, -0.18827788531780243, 0.03022906556725502, 0.11706812679767609, -0.062160294502973557, 0.013903903774917126, 0.09935350716114044, -0.02880963310599327, 0.02378946915268898, 0.13585375249385834, -0.25912752747535706, -0.05923518165946007, -0.06989365816116333, -0.09872731566429138, 0.12809228897094727, 0.07544171065092087, 0.16663046181201935, -0.03159044310450554, -0.040198493748903275, -0.015557033941149712, -0.0036185244098305702, -0.09152498841285706, 0.06283412873744965, -0.023207688704133034, 0.010157207027077675, -0.12759263813495636, 0.07996669411659241, -0.02258414402604103, -0.1490643471479416, 0.024165550246834755, 0.09420516341924667, -0.1616593599319458, -0.11343007534742355, -0.05789065361022949, -0.0072162337601184845, -0.17006874084472656, -0.03973912447690964, -0.02027761936187744, -0.11122886091470718, 0.09534680098295212, 0.07008877396583557, 0.0741536021232605, 0.07013846188783646, -0.019590897485613823, -0.009936021640896797, 0.014665293507277966, -0.05774057283997536, 0.018777858465909958, -0.03834966942667961, -0.10508903861045837, 0.06261572241783142, -0.02103114128112793, 0.13239338994026184, -0.0800267904996872, -0.015348291024565697, -0.10347294062376022, 0.0439021997153759, -0.0908503532409668, -0.06213243305683136, -0.10628184676170349, -0.07076101750135422, -0.05282513424754143, -0.0311020128428936, -0.060933034867048264, -0.011360859498381615, -0.12488184869289398, 0.01612665131688118, -0.09290017932653427, 0.008895942941308022, -0.07804303616285324, 0.01455756090581417, 0.0711679682135582, -0.027405017986893654, 0.16421295702457428, 0.22938573360443115, -0.03625509515404701, 0.1694207340478897, -0.12288064509630203, -0.020577790215611458, 0.09273500740528107, 0.01236572302877903, 0.009300578385591507, 0.06809569895267487, 0.05107280611991882, 0.01873824931681156, -0.009966131299734116, 0.07684151828289032, -0.03296401724219322, -0.09996303170919418, 0.0200614295899868, -0.09374377876520157, -0.08401082456111908, -0.032005149871110916, -0.005481871776282787, 0.0649680495262146, 0.06975030899047852, 0.10433218628168106, -0.05201897770166397, 0.11414434760808945, -0.0542738102376461, 0.03909182921051979, 0.008521193638443947, -0.13369038701057434, -0.022059541195631027, -0.07453737407922745, 0.04098450019955635, -0.010462363250553608, 0.3015943467617035, 0.05197666957974434, 0.008055823855102062, 0.02664904110133648, 0.05562997981905937, 0.05189797282218933, 0.0247673187404871, 0.21230380237102509, 0.10572443157434464, -0.06611649692058563, -0.12168817967176437, 0.07007601112127304, 0.004400744568556547, -0.04624902829527855, 0.16468195617198944, 0.05452927201986313, 0.04270900413393974, 0.06987635046243668, -0.012421375140547752, -0.0010303073795512319, -0.06682665646076202, -0.11944693326950073, -0.05427384376525879, 0.024409787729382515, 0.002338881604373455, 0.1259717047214508, 0.1987272948026657, -0.0750652328133583, 0.06674382090568542, 0.02056337520480156, -0.05297331139445305, -0.12484429776668549, -0.15166281163692474, -0.06608299165964127, -0.1876640021800995, 0.03282760828733444, -0.11610926687717438, 0.03344924747943878, 0.07774302363395691, 0.0668969377875328, -0.042389266192913055, 0.12070195376873016, 0.011495080776512623, -0.12323162704706192, 0.10107070952653885, -0.015828855335712433, 0.026270117610692978, 0.0814862921833992, -0.044516514986753464, -0.02064884826540947, -0.06206110864877701, 0.0001755726698320359, 0.06662959605455399, -0.07934445142745972, 0.011180542409420013, -0.130119189620018, -0.07882861793041229, -0.04731293022632599, 0.10340309143066406, -0.018071336671710014, 0.08607117831707001, 0.006805250886827707, -0.042754270136356354, 0.013537270948290825, 0.24465961754322052, -0.0328952893614769, -0.031249014660716057, -0.024433519691228867, 0.12958547472953796, 0.07990063726902008, 0.12122677266597748, -0.011888633482158184, -0.01622295379638672, -0.06907670199871063, 0.27518150210380554, 0.35228589177131653, 0.013748112134635448, 0.025380922481417656, 0.03426594287157059, 0.046970583498477936, 0.13979949057102203, 0.08294203132390976, 0.08111587166786194, 0.22656665742397308, -0.08043400943279266, -0.08286180347204208, -0.06746269017457962, 0.03316692262887955, -0.09728147089481354, 0.08483370393514633, 0.05417816713452339, -0.10455353558063507, -0.034175511449575424, 0.13605853915214539, -0.20685456693172455, 0.061945244669914246, -0.0025277878157794476, -0.19121205806732178, -0.06699123233556747, 0.03786635771393776, 0.10135568678379059, 0.050227560102939606, 0.12461667507886887, -0.0009629253763705492, -0.11601509153842926, 0.026466356590390205, 0.09065813571214676, -0.2640240490436554, -0.016659261658787727, 0.0580575205385685, 0.008240976370871067, 0.003622213378548622, -0.03978293389081955, 0.10862795263528824, 0.07242219150066376, 0.06330561637878418, -0.018605507910251617, 0.029144596308469772, 0.010605283081531525, -0.030047504231333733, -0.012862092815339565, 0.03565852716565132, 0.0016649509780108929, -0.17495299875736237, 0.10622379183769226, -0.11933699995279312, 0.02054949663579464, -0.00001870712367235683, -0.0016186381690204144, -0.0026567894965410233, 0.038568202406167984, -0.11437772959470749, 0.018909096717834473, 0.14048252999782562, -0.018183128908276558, -0.018781302496790886, -0.09104400128126144, 0.000006620226031373022, 0.03367113322019577, -0.022507470101118088, -0.08375583589076996, -0.11745503544807434, -0.09062197804450989, 0.12242603302001953, -0.001395892002619803, -0.11454512923955917, 0.0023224856704473495, -0.08496171981096268, 0.08302993327379227, -0.13849718868732452, 0.10733605921268463, 0.0412423200905323, 0.010356543585658073, 0.014985873363912106, -0.05352570861577988, 0.07270950824022293, 0.07316204905509949, -0.09495986998081207, -0.08700298517942429 ]
null
null
transformers
# GPT2 - RUS
{"language": "ru", "tags": ["text-generation"]}
text-generation
Mary222/MADE_AI_Dungeon_model_RUS
[ "transformers", "pytorch", "gpt2", "text-generation", "ru", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:04+00:00
[]
[ "ru" ]
TAGS #transformers #pytorch #gpt2 #text-generation #ru #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# GPT2 - RUS
[ "# GPT2 - RUS" ]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #ru #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# GPT2 - RUS" ]
[ 49, 7 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #ru #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# GPT2 - RUS" ]
[ -0.00519120367243886, -0.022561686113476753, -0.007596803829073906, 0.027643540874123573, 0.14348329603672028, 0.04741635173559189, 0.14076685905456543, 0.09847523272037506, 0.04966764897108078, -0.005836662836372852, 0.198514923453331, 0.09829526394605637, -0.004303532186895609, 0.10892949253320694, -0.0027985076885670424, -0.2793978750705719, 0.07184869796037674, 0.019321255385875702, -0.060192033648490906, 0.12074270099401474, 0.0961117073893547, -0.029754001647233963, 0.08361269533634186, -0.01682775467634201, -0.1632949411869049, 0.0341312475502491, 0.07704346626996994, -0.1302386224269867, 0.1239718422293663, 0.08251646161079407, 0.072904571890831, 0.025236627086997032, -0.05518567934632301, -0.10075037181377411, 0.009497102349996567, 0.004437679890543222, -0.1123058870434761, 0.056387972086668015, 0.11674775183200836, -0.1007215827703476, 0.20335617661476135, 0.027923746034502983, -0.05529777333140373, 0.03563017025589943, -0.14591549336910248, -0.08964543044567108, -0.06596796214580536, 0.0983213260769844, 0.03364867344498634, 0.11994517594575882, -0.02552942745387554, 0.1203906238079071, -0.06840329617261887, 0.08543050289154053, 0.1765928864479065, -0.4095193147659302, -0.005889644380658865, 0.0986812561750412, -0.03486963361501694, 0.07076051831245422, 0.03715027868747711, 0.11200957745313644, 0.006362952291965485, -0.0003543096245266497, -0.012845480814576149, -0.04848652333021164, -0.0650225430727005, 0.052013836801052094, -0.11208679527044296, -0.05733760446310043, 0.21742506325244904, -0.066304512321949, 0.0868762880563736, -0.004740026779472828, -0.08081080764532089, -0.10855792462825775, -0.0017332464922219515, -0.02209903486073017, -0.08728388696908951, 0.06542260944843292, 0.0341460257768631, -0.09173055738210678, -0.15695609152317047, -0.04900094121694565, -0.18389128148555756, 0.24891093373298645, 0.03905206546187401, 0.10308823734521866, -0.11186890304088593, 0.09539317339658737, -0.089888796210289, -0.05539141595363617, 0.022401239722967148, -0.11104321479797363, 0.010741172358393669, 0.02736402302980423, -0.07505236566066742, -0.01127445325255394, 0.06780096143484116, 0.15706253051757812, -0.03470384329557419, 0.026490727439522743, 0.07502985745668411, 0.10447301715612411, -0.018300287425518036, 0.09376778453588486, -0.027486193925142288, -0.005222867708653212, 0.03973152115941048, -0.19838517904281616, -0.009530077688395977, -0.053296755999326706, -0.18631292879581451, -0.10477590560913086, 0.0456717349588871, 0.057599909603595734, -0.01877403073012829, 0.08547791838645935, -0.035883091390132904, 0.010756579227745533, 0.07048287987709045, -0.052363377064466476, -0.016928385943174362, -0.0304990466684103, 0.0074049439281225204, 0.11161167919635773, -0.03255738317966461, 0.014723153784871101, -0.1164662167429924, 0.07279697805643082, -0.026630504056811333, 0.02216721512377262, -0.02847258187830448, -0.0688541904091835, 0.00745548028498888, -0.12372330576181412, 0.016804594546556473, -0.1884877234697342, -0.11289388686418533, 0.02126743085682392, 0.02584683895111084, -0.06701408326625824, 0.009575954638421535, -0.003423164365813136, -0.04119002819061279, 0.049313075840473175, -0.05525838956236839, -0.02618766948580742, -0.05418155714869499, 0.068247489631176, -0.06317905336618423, 0.10326189547777176, -0.09348790347576141, 0.04264058172702789, -0.1140684112906456, -0.0472157746553421, -0.07631133496761322, 0.09178325533866882, -0.06535642594099045, 0.04058269038796425, -0.029999466612935066, -0.03346605598926544, -0.04870269075036049, 0.0353795550763607, -0.009134500287473202, 0.17550894618034363, -0.06976275891065598, -0.12215150147676468, 0.2883366048336029, -0.11185971647500992, -0.10266436636447906, 0.11114346235990524, 0.034966468811035156, -0.0006472945096902549, 0.10328071564435959, 0.1523466855287552, 0.03204374015331268, 0.002161991549655795, 0.016751106828451157, 0.04840453341603279, -0.13615290820598602, -0.05462343245744705, 0.046298518776893616, 0.016959529370069504, -0.09577107429504395, 0.053224172443151474, 0.026152903214097023, 0.07113932073116302, -0.061856020241975784, -0.039583779871463776, -0.027904439717531204, 0.010653670877218246, 0.09327615797519684, -0.02227655053138733, 0.13995669782161713, -0.09247077256441116, -0.09181821346282959, -0.08848944306373596, -0.0010482951765879989, 0.012761733494699001, 0.04498634114861488, -0.05229385942220688, 0.13260242342948914, -0.01821913942694664, 0.07034073024988174, -0.1485065519809723, -0.055063627660274506, -0.023937691003084183, 0.16988593339920044, 0.028110960498452187, 0.09872053563594818, 0.07742587476968765, -0.027512291446328163, -0.04278356954455376, 0.015549616888165474, 0.07416310906410217, -0.028525015339255333, -0.04443417116999626, -0.09187308698892593, 0.07801498472690582, -0.03368033468723297, -0.019928712397813797, -0.02911118045449257, 0.006951558403670788, 0.09761559218168259, 0.116020567715168, -0.02663186751306057, 0.06291935592889786, -0.07983815670013428, 0.025157928466796875, -0.08561909943819046, 0.01416774746030569, 0.08601009100675583, -0.0392509363591671, -0.07502767443656921, 0.18443027138710022, -0.07129527628421783, 0.2153051793575287, 0.20847631990909576, -0.19172872602939606, -0.05014968290925026, -0.02890695445239544, -0.02840232662856579, 0.027700316160917282, 0.08712387084960938, 0.01163731049746275, 0.11272633820772171, 0.005472314078360796, 0.11562862247228622, -0.036445703357458115, -0.03517407551407814, 0.035502299666404724, -0.0815090462565422, -0.028022054582834244, 0.09614474326372147, 0.12585046887397766, -0.1413647085428238, 0.18403039872646332, 0.14631721377372742, 0.019295459613204002, 0.20308993756771088, 0.04354993626475334, -0.04456297308206558, 0.04614871367812157, -0.0379689522087574, -0.02292882837355137, -0.006439560558646917, -0.11195341497659683, -0.03965071961283684, 0.08531364053487778, 0.04369021952152252, 0.08143656700849533, -0.142377570271492, -0.053883083164691925, -0.028403403237462044, -0.04806026443839073, 0.015093657188117504, 0.10987960547208786, -0.004104293417185545, 0.14222551882266998, 0.009352394379675388, 0.01595114916563034, 0.08323033154010773, 0.0347614511847496, -0.09818832576274872, 0.16831594705581665, -0.12591134011745453, -0.3511248230934143, -0.13585862517356873, -0.1085810512304306, -0.049174241721630096, 0.0775022879242897, 0.08819086849689484, -0.1811864972114563, -0.019076121971011162, 0.051065947860479355, 0.16033922135829926, -0.07886572182178497, 0.05885257199406624, -0.0765986517071724, 0.07674093544483185, -0.1044590026140213, -0.019643036648631096, -0.07982489466667175, -0.03953874111175537, -0.08496953547000885, 0.19434140622615814, -0.09419350326061249, 0.04393523558974266, 0.12437108159065247, -0.00038096841308288276, 0.05136902257800102, -0.06097157299518585, 0.15674743056297302, -0.12310485541820526, 0.018993917852640152, 0.1667124480009079, -0.004246945027261972, 0.0669950470328331, 0.08517224341630936, -0.013836698606610298, -0.07112683355808258, 0.025424329563975334, -0.049945950508117676, -0.11008879542350769, -0.24109619855880737, -0.15374526381492615, -0.08857115358114243, 0.0758315846323967, 0.020834339782595634, 0.032242611050605774, 0.10633662343025208, 0.11721894890069962, -0.04571712762117386, -0.0049785771407186985, 0.007819629274308681, 0.07580848038196564, 0.20252640545368195, -0.01759745553135872, 0.17274019122123718, -0.08897963911294937, -0.07996093481779099, 0.13773952424526215, 0.022577647119760513, 0.18951615691184998, 0.06821835786104202, -0.008998917415738106, 0.012852254323661327, 0.11875007301568985, 0.13023439049720764, 0.08709557354450226, 0.08397001773118973, -0.03424258157610893, 0.0050217341631650925, -0.024817999452352524, -0.04086340218782425, 0.08868751674890518, -0.0031366944313049316, -0.19159100949764252, -0.022702399641275406, -0.03767591342329979, 0.10761044919490814, 0.10373180359601974, 0.07179735600948334, -0.20028802752494812, -0.09428752213716507, 0.04882422462105751, 0.014072543941438198, -0.09291555732488632, 0.07089973986148834, -0.0326450951397419, -0.15618498623371124, 0.08063150942325592, -0.041242074221372604, 0.08893740922212601, 0.0035328820813447237, 0.060901571065187454, -0.017356816679239273, -0.058621276170015335, 0.012702519074082375, 0.1428079903125763, -0.29986289143562317, 0.2704389691352844, -0.015128734521567822, -0.07436765730381012, -0.11909312754869461, -0.010110479779541492, -0.006520570255815983, 0.10350827127695084, 0.11976656317710876, 0.026198940351605415, -0.11238360404968262, -0.10766193270683289, -0.04011615365743637, 0.04173329845070839, 0.13942962884902954, -0.06802435219287872, 0.015177031978964806, -0.048272933810949326, 0.014602857641875744, -0.04075997322797775, -0.03404338285326958, -0.026555517688393593, -0.1700630933046341, 0.0897892639040947, 0.021975822746753693, 0.05526049807667732, 0.012803187593817711, -0.06215991452336311, -0.12163092941045761, 0.251228928565979, -0.06896017491817474, -0.13125079870224, -0.09457172453403473, -0.011311057955026627, 0.0861591324210167, -0.10809862613677979, 0.0771496444940567, -0.05317673832178116, 0.03274738788604736, -0.06060529872775078, -0.18794065713882446, 0.1164025142788887, -0.09336268156766891, -0.0896056592464447, 0.00702724140137434, 0.20249038934707642, -0.019737618044018745, 0.02691558562219143, -0.010482072830200195, 0.07152271270751953, -0.09326455742120743, -0.10842575877904892, 0.07280036062002182, -0.017197929322719574, 0.029423264786601067, 0.03122415393590927, -0.041023071855306625, -0.021327802911400795, -0.06293324381113052, -0.07433201372623444, 0.28550416231155396, 0.20905084908008575, -0.1192186176776886, 0.22877267003059387, 0.016970401629805565, -0.031448204070329666, -0.3072665333747864, -0.07600454986095428, -0.05398881807923317, -0.007495982106775045, -0.07086603343486786, -0.21144096553325653, 0.01586381159722805, 0.03537650778889656, -0.03064013086259365, 0.14149095118045807, -0.1877063363790512, -0.10374026000499725, 0.11702574044466019, -0.04068421572446823, 0.3484555780887604, -0.08420868217945099, -0.05398135259747505, -0.07658395171165466, -0.11385632306337357, 0.14465481042861938, 0.04235391691327095, 0.09920773655176163, -0.04462888464331627, 0.12066660076379776, 0.037657905369997025, -0.024542583152651787, 0.10228535532951355, -0.01942659541964531, -0.043122548609972, -0.11213424056768417, 0.006484381388872862, 0.09858887642621994, 0.02853485383093357, 0.0018806983716785908, 0.023951755836606026, 0.022045297548174858, -0.09549256414175034, -0.0640660747885704, -0.05024585500359535, 0.04309944808483124, 0.04029225558042526, -0.09098721295595169, -0.040400631725788116, -0.03137608617544174, -0.033688951283693314, -0.026805611327290535, 0.17671696841716766, -0.020284494385123253, 0.08619103580713272, 0.011738714762032032, 0.03947613760828972, -0.10257971286773682, 0.04923676326870918, -0.0350431390106678, -0.07207231968641281, 0.07917714864015579, -0.14587847888469696, 0.024566074833273888, 0.1269679218530655, -0.08175761252641678, -0.00024164517526514828, 0.0823817029595375, -0.025545787066221237, -0.0037747130263596773, 0.14738668501377106, -0.2935028374195099, -0.004882785491645336, -0.06808697432279587, -0.05097676441073418, 0.15992814302444458, 0.07275637984275818, 0.17011143267154694, -0.04788241535425186, -0.05173734948039055, -0.0043240259401500225, -0.00978078506886959, -0.058515314012765884, 0.07612501829862595, -0.010563144460320473, 0.0003878603456541896, -0.11652088910341263, 0.07664105296134949, -0.00825208518654108, -0.113229900598526, 0.040316544473171234, 0.09566423296928406, -0.16966168582439423, -0.11991573125123978, -0.009519456885755062, -0.0009145696531049907, -0.19694532454013824, -0.05190664902329445, -0.02647521160542965, -0.11473048478364944, 0.09796653687953949, 0.062155526131391525, 0.09758760780096054, 0.05007784813642502, -0.018189048394560814, -0.01324757281690836, -0.0007007569074630737, -0.02566269226372242, 0.02713002823293209, -0.006355366203933954, -0.11265388876199722, 0.05079786852002144, -0.023018697276711464, 0.12623780965805054, -0.09687568247318268, -0.02739151194691658, -0.12124472111463547, 0.031705692410469055, -0.1180330142378807, -0.0936349555850029, -0.08479095250368118, -0.06998373568058014, -0.045688532292842865, -0.06787417083978653, -0.05667262151837349, -0.030390173196792603, -0.12331137806177139, 0.03577907755970955, -0.0776144415140152, 0.01848294399678707, -0.05970693379640579, 0.0035443648230284452, 0.07966407388448715, -0.014737637713551521, 0.15271447598934174, 0.20272324979305267, -0.027234770357608795, 0.15279342234134674, -0.08757445216178894, 0.008667189627885818, 0.09146038442850113, 0.02275177650153637, 0.0450158454477787, 0.05972801521420479, 0.0376192070543766, 0.03809267655014992, 0.028731945902109146, 0.09055627137422562, 0.028605526313185692, -0.08576657623052597, 0.04556817188858986, -0.0870363861322403, -0.11186524480581284, -0.027882346883416176, -0.015452067367732525, 0.047567788511514664, 0.052215635776519775, 0.12534917891025543, -0.07553751766681671, 0.10929334908723831, -0.049347519874572754, 0.04499796777963638, -0.010365575551986694, -0.1562078893184662, -0.06496333330869675, -0.07467414438724518, 0.03865973651409149, 0.0017359870253130794, 0.3000047504901886, 0.05921085923910141, 0.021968724206089973, 0.03906083106994629, 0.07445045560598373, 0.02321729063987732, 0.022480005398392677, 0.16167977452278137, 0.11307728290557861, -0.049774330109357834, -0.13643227517604828, 0.08651677519083023, 0.00762055953964591, -0.07864683121442795, 0.13707956671714783, 0.0023910412564873695, 0.026268567889928818, 0.06612762063741684, -0.03144792094826698, -0.01613612100481987, -0.07558297365903854, -0.13202553987503052, -0.0882168784737587, 0.013550793752074242, -0.018958214670419693, 0.12053561955690384, 0.1891884207725525, -0.05972902476787567, 0.031988997012376785, -0.02138056606054306, -0.03792290762066841, -0.15498016774654388, -0.1899077594280243, -0.08889482915401459, -0.17039532959461212, 0.027672911062836647, -0.09153621643781662, 0.029011420905590057, 0.05290227755904198, 0.08202246576547623, -0.06344082951545715, 0.0843324214220047, -0.0006311364704743028, -0.10708785057067871, 0.0651942789554596, -0.013030018657445908, 0.030832646414637566, 0.03327479213476181, -0.06127848103642464, -0.08008011430501938, -0.010837111622095108, -0.017868977040052414, 0.052778713405132294, -0.07910353690385818, -0.002709437860175967, -0.1154392883181572, -0.08145441114902496, -0.05465381219983101, 0.09585380554199219, -0.0053924331441521645, 0.06257390230894089, -0.007567782420665026, -0.012384425848722458, 0.014871181920170784, 0.23703797161579132, -0.035661254078149796, -0.07072491943836212, -0.027216872200369835, 0.17774757742881775, 0.028308192268013954, 0.1394246369600296, -0.013006206601858139, 0.00848494004458189, -0.09533438086509705, 0.32067787647247314, 0.3611678183078766, -0.008747594431042671, 0.023053182289004326, 0.018670478835701942, 0.0432121604681015, 0.12489161640405655, 0.12103206664323807, 0.07798358798027039, 0.20593641698360443, -0.08681364357471466, -0.07394202798604965, -0.07854756712913513, 0.039015427231788635, -0.0948939323425293, 0.088411346077919, 0.039219003170728683, -0.09157268702983856, -0.041301093995571136, 0.11202089488506317, -0.18278713524341583, 0.11190932244062424, -0.04797517508268356, -0.18040750920772552, -0.07652703672647476, 0.07516365498304367, 0.11116619408130646, 0.026428479701280594, 0.111236572265625, -0.00877019390463829, -0.08994001895189285, 0.027819480746984482, 0.06537636369466782, -0.2319709211587906, 0.0030535943806171417, 0.058334168046712875, 0.008839166723191738, 0.0059003750793635845, -0.030807750299572945, 0.14118048548698425, 0.07783588767051697, 0.05920041352510452, -0.04532857984304428, 0.01572507992386818, 0.013397041708230972, -0.04266754165291786, 0.009504995308816433, 0.013521409593522549, 0.013094091787934303, -0.15622618794441223, 0.10832898318767548, -0.11877212673425674, 0.034322261810302734, -0.024428626522421837, 0.0007000694167800248, 0.014384700916707516, 0.0920504704117775, -0.10812021046876907, 0.04419047012925148, 0.1158340647816658, -0.02336135506629944, -0.02184082195162773, -0.08356833457946777, 0.006430305074900389, 0.024883467704057693, -0.0357026644051075, -0.07502789795398712, -0.13811956346035004, -0.09216780960559845, 0.11389663815498352, 0.010668559931218624, -0.12509509921073914, 0.009104388765990734, -0.11479770392179489, 0.0715905949473381, -0.15780329704284668, 0.11409778147935867, 0.037931155413389206, 0.006893477868288755, 0.004124908242374659, -0.04883918911218643, 0.055743973702192307, 0.05387866124510765, -0.10421633720397949, -0.09506364166736603 ]
null
null
transformers
# GPT2 - RUS
{"language": "ru", "tags": ["text-generation"]}
text-generation
Mary222/SBERBANK_RUS
[ "transformers", "pytorch", "gpt2", "text-generation", "ru", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:04+00:00
[]
[ "ru" ]
TAGS #transformers #pytorch #gpt2 #text-generation #ru #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# GPT2 - RUS
[ "# GPT2 - RUS" ]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #ru #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# GPT2 - RUS" ]
[ 49, 7 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #ru #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# GPT2 - RUS" ]
[ -0.00519120367243886, -0.022561686113476753, -0.007596803829073906, 0.027643540874123573, 0.14348329603672028, 0.04741635173559189, 0.14076685905456543, 0.09847523272037506, 0.04966764897108078, -0.005836662836372852, 0.198514923453331, 0.09829526394605637, -0.004303532186895609, 0.10892949253320694, -0.0027985076885670424, -0.2793978750705719, 0.07184869796037674, 0.019321255385875702, -0.060192033648490906, 0.12074270099401474, 0.0961117073893547, -0.029754001647233963, 0.08361269533634186, -0.01682775467634201, -0.1632949411869049, 0.0341312475502491, 0.07704346626996994, -0.1302386224269867, 0.1239718422293663, 0.08251646161079407, 0.072904571890831, 0.025236627086997032, -0.05518567934632301, -0.10075037181377411, 0.009497102349996567, 0.004437679890543222, -0.1123058870434761, 0.056387972086668015, 0.11674775183200836, -0.1007215827703476, 0.20335617661476135, 0.027923746034502983, -0.05529777333140373, 0.03563017025589943, -0.14591549336910248, -0.08964543044567108, -0.06596796214580536, 0.0983213260769844, 0.03364867344498634, 0.11994517594575882, -0.02552942745387554, 0.1203906238079071, -0.06840329617261887, 0.08543050289154053, 0.1765928864479065, -0.4095193147659302, -0.005889644380658865, 0.0986812561750412, -0.03486963361501694, 0.07076051831245422, 0.03715027868747711, 0.11200957745313644, 0.006362952291965485, -0.0003543096245266497, -0.012845480814576149, -0.04848652333021164, -0.0650225430727005, 0.052013836801052094, -0.11208679527044296, -0.05733760446310043, 0.21742506325244904, -0.066304512321949, 0.0868762880563736, -0.004740026779472828, -0.08081080764532089, -0.10855792462825775, -0.0017332464922219515, -0.02209903486073017, -0.08728388696908951, 0.06542260944843292, 0.0341460257768631, -0.09173055738210678, -0.15695609152317047, -0.04900094121694565, -0.18389128148555756, 0.24891093373298645, 0.03905206546187401, 0.10308823734521866, -0.11186890304088593, 0.09539317339658737, -0.089888796210289, -0.05539141595363617, 0.022401239722967148, -0.11104321479797363, 0.010741172358393669, 0.02736402302980423, -0.07505236566066742, -0.01127445325255394, 0.06780096143484116, 0.15706253051757812, -0.03470384329557419, 0.026490727439522743, 0.07502985745668411, 0.10447301715612411, -0.018300287425518036, 0.09376778453588486, -0.027486193925142288, -0.005222867708653212, 0.03973152115941048, -0.19838517904281616, -0.009530077688395977, -0.053296755999326706, -0.18631292879581451, -0.10477590560913086, 0.0456717349588871, 0.057599909603595734, -0.01877403073012829, 0.08547791838645935, -0.035883091390132904, 0.010756579227745533, 0.07048287987709045, -0.052363377064466476, -0.016928385943174362, -0.0304990466684103, 0.0074049439281225204, 0.11161167919635773, -0.03255738317966461, 0.014723153784871101, -0.1164662167429924, 0.07279697805643082, -0.026630504056811333, 0.02216721512377262, -0.02847258187830448, -0.0688541904091835, 0.00745548028498888, -0.12372330576181412, 0.016804594546556473, -0.1884877234697342, -0.11289388686418533, 0.02126743085682392, 0.02584683895111084, -0.06701408326625824, 0.009575954638421535, -0.003423164365813136, -0.04119002819061279, 0.049313075840473175, -0.05525838956236839, -0.02618766948580742, -0.05418155714869499, 0.068247489631176, -0.06317905336618423, 0.10326189547777176, -0.09348790347576141, 0.04264058172702789, -0.1140684112906456, -0.0472157746553421, -0.07631133496761322, 0.09178325533866882, -0.06535642594099045, 0.04058269038796425, -0.029999466612935066, -0.03346605598926544, -0.04870269075036049, 0.0353795550763607, -0.009134500287473202, 0.17550894618034363, -0.06976275891065598, -0.12215150147676468, 0.2883366048336029, -0.11185971647500992, -0.10266436636447906, 0.11114346235990524, 0.034966468811035156, -0.0006472945096902549, 0.10328071564435959, 0.1523466855287552, 0.03204374015331268, 0.002161991549655795, 0.016751106828451157, 0.04840453341603279, -0.13615290820598602, -0.05462343245744705, 0.046298518776893616, 0.016959529370069504, -0.09577107429504395, 0.053224172443151474, 0.026152903214097023, 0.07113932073116302, -0.061856020241975784, -0.039583779871463776, -0.027904439717531204, 0.010653670877218246, 0.09327615797519684, -0.02227655053138733, 0.13995669782161713, -0.09247077256441116, -0.09181821346282959, -0.08848944306373596, -0.0010482951765879989, 0.012761733494699001, 0.04498634114861488, -0.05229385942220688, 0.13260242342948914, -0.01821913942694664, 0.07034073024988174, -0.1485065519809723, -0.055063627660274506, -0.023937691003084183, 0.16988593339920044, 0.028110960498452187, 0.09872053563594818, 0.07742587476968765, -0.027512291446328163, -0.04278356954455376, 0.015549616888165474, 0.07416310906410217, -0.028525015339255333, -0.04443417116999626, -0.09187308698892593, 0.07801498472690582, -0.03368033468723297, -0.019928712397813797, -0.02911118045449257, 0.006951558403670788, 0.09761559218168259, 0.116020567715168, -0.02663186751306057, 0.06291935592889786, -0.07983815670013428, 0.025157928466796875, -0.08561909943819046, 0.01416774746030569, 0.08601009100675583, -0.0392509363591671, -0.07502767443656921, 0.18443027138710022, -0.07129527628421783, 0.2153051793575287, 0.20847631990909576, -0.19172872602939606, -0.05014968290925026, -0.02890695445239544, -0.02840232662856579, 0.027700316160917282, 0.08712387084960938, 0.01163731049746275, 0.11272633820772171, 0.005472314078360796, 0.11562862247228622, -0.036445703357458115, -0.03517407551407814, 0.035502299666404724, -0.0815090462565422, -0.028022054582834244, 0.09614474326372147, 0.12585046887397766, -0.1413647085428238, 0.18403039872646332, 0.14631721377372742, 0.019295459613204002, 0.20308993756771088, 0.04354993626475334, -0.04456297308206558, 0.04614871367812157, -0.0379689522087574, -0.02292882837355137, -0.006439560558646917, -0.11195341497659683, -0.03965071961283684, 0.08531364053487778, 0.04369021952152252, 0.08143656700849533, -0.142377570271492, -0.053883083164691925, -0.028403403237462044, -0.04806026443839073, 0.015093657188117504, 0.10987960547208786, -0.004104293417185545, 0.14222551882266998, 0.009352394379675388, 0.01595114916563034, 0.08323033154010773, 0.0347614511847496, -0.09818832576274872, 0.16831594705581665, -0.12591134011745453, -0.3511248230934143, -0.13585862517356873, -0.1085810512304306, -0.049174241721630096, 0.0775022879242897, 0.08819086849689484, -0.1811864972114563, -0.019076121971011162, 0.051065947860479355, 0.16033922135829926, -0.07886572182178497, 0.05885257199406624, -0.0765986517071724, 0.07674093544483185, -0.1044590026140213, -0.019643036648631096, -0.07982489466667175, -0.03953874111175537, -0.08496953547000885, 0.19434140622615814, -0.09419350326061249, 0.04393523558974266, 0.12437108159065247, -0.00038096841308288276, 0.05136902257800102, -0.06097157299518585, 0.15674743056297302, -0.12310485541820526, 0.018993917852640152, 0.1667124480009079, -0.004246945027261972, 0.0669950470328331, 0.08517224341630936, -0.013836698606610298, -0.07112683355808258, 0.025424329563975334, -0.049945950508117676, -0.11008879542350769, -0.24109619855880737, -0.15374526381492615, -0.08857115358114243, 0.0758315846323967, 0.020834339782595634, 0.032242611050605774, 0.10633662343025208, 0.11721894890069962, -0.04571712762117386, -0.0049785771407186985, 0.007819629274308681, 0.07580848038196564, 0.20252640545368195, -0.01759745553135872, 0.17274019122123718, -0.08897963911294937, -0.07996093481779099, 0.13773952424526215, 0.022577647119760513, 0.18951615691184998, 0.06821835786104202, -0.008998917415738106, 0.012852254323661327, 0.11875007301568985, 0.13023439049720764, 0.08709557354450226, 0.08397001773118973, -0.03424258157610893, 0.0050217341631650925, -0.024817999452352524, -0.04086340218782425, 0.08868751674890518, -0.0031366944313049316, -0.19159100949764252, -0.022702399641275406, -0.03767591342329979, 0.10761044919490814, 0.10373180359601974, 0.07179735600948334, -0.20028802752494812, -0.09428752213716507, 0.04882422462105751, 0.014072543941438198, -0.09291555732488632, 0.07089973986148834, -0.0326450951397419, -0.15618498623371124, 0.08063150942325592, -0.041242074221372604, 0.08893740922212601, 0.0035328820813447237, 0.060901571065187454, -0.017356816679239273, -0.058621276170015335, 0.012702519074082375, 0.1428079903125763, -0.29986289143562317, 0.2704389691352844, -0.015128734521567822, -0.07436765730381012, -0.11909312754869461, -0.010110479779541492, -0.006520570255815983, 0.10350827127695084, 0.11976656317710876, 0.026198940351605415, -0.11238360404968262, -0.10766193270683289, -0.04011615365743637, 0.04173329845070839, 0.13942962884902954, -0.06802435219287872, 0.015177031978964806, -0.048272933810949326, 0.014602857641875744, -0.04075997322797775, -0.03404338285326958, -0.026555517688393593, -0.1700630933046341, 0.0897892639040947, 0.021975822746753693, 0.05526049807667732, 0.012803187593817711, -0.06215991452336311, -0.12163092941045761, 0.251228928565979, -0.06896017491817474, -0.13125079870224, -0.09457172453403473, -0.011311057955026627, 0.0861591324210167, -0.10809862613677979, 0.0771496444940567, -0.05317673832178116, 0.03274738788604736, -0.06060529872775078, -0.18794065713882446, 0.1164025142788887, -0.09336268156766891, -0.0896056592464447, 0.00702724140137434, 0.20249038934707642, -0.019737618044018745, 0.02691558562219143, -0.010482072830200195, 0.07152271270751953, -0.09326455742120743, -0.10842575877904892, 0.07280036062002182, -0.017197929322719574, 0.029423264786601067, 0.03122415393590927, -0.041023071855306625, -0.021327802911400795, -0.06293324381113052, -0.07433201372623444, 0.28550416231155396, 0.20905084908008575, -0.1192186176776886, 0.22877267003059387, 0.016970401629805565, -0.031448204070329666, -0.3072665333747864, -0.07600454986095428, -0.05398881807923317, -0.007495982106775045, -0.07086603343486786, -0.21144096553325653, 0.01586381159722805, 0.03537650778889656, -0.03064013086259365, 0.14149095118045807, -0.1877063363790512, -0.10374026000499725, 0.11702574044466019, -0.04068421572446823, 0.3484555780887604, -0.08420868217945099, -0.05398135259747505, -0.07658395171165466, -0.11385632306337357, 0.14465481042861938, 0.04235391691327095, 0.09920773655176163, -0.04462888464331627, 0.12066660076379776, 0.037657905369997025, -0.024542583152651787, 0.10228535532951355, -0.01942659541964531, -0.043122548609972, -0.11213424056768417, 0.006484381388872862, 0.09858887642621994, 0.02853485383093357, 0.0018806983716785908, 0.023951755836606026, 0.022045297548174858, -0.09549256414175034, -0.0640660747885704, -0.05024585500359535, 0.04309944808483124, 0.04029225558042526, -0.09098721295595169, -0.040400631725788116, -0.03137608617544174, -0.033688951283693314, -0.026805611327290535, 0.17671696841716766, -0.020284494385123253, 0.08619103580713272, 0.011738714762032032, 0.03947613760828972, -0.10257971286773682, 0.04923676326870918, -0.0350431390106678, -0.07207231968641281, 0.07917714864015579, -0.14587847888469696, 0.024566074833273888, 0.1269679218530655, -0.08175761252641678, -0.00024164517526514828, 0.0823817029595375, -0.025545787066221237, -0.0037747130263596773, 0.14738668501377106, -0.2935028374195099, -0.004882785491645336, -0.06808697432279587, -0.05097676441073418, 0.15992814302444458, 0.07275637984275818, 0.17011143267154694, -0.04788241535425186, -0.05173734948039055, -0.0043240259401500225, -0.00978078506886959, -0.058515314012765884, 0.07612501829862595, -0.010563144460320473, 0.0003878603456541896, -0.11652088910341263, 0.07664105296134949, -0.00825208518654108, -0.113229900598526, 0.040316544473171234, 0.09566423296928406, -0.16966168582439423, -0.11991573125123978, -0.009519456885755062, -0.0009145696531049907, -0.19694532454013824, -0.05190664902329445, -0.02647521160542965, -0.11473048478364944, 0.09796653687953949, 0.062155526131391525, 0.09758760780096054, 0.05007784813642502, -0.018189048394560814, -0.01324757281690836, -0.0007007569074630737, -0.02566269226372242, 0.02713002823293209, -0.006355366203933954, -0.11265388876199722, 0.05079786852002144, -0.023018697276711464, 0.12623780965805054, -0.09687568247318268, -0.02739151194691658, -0.12124472111463547, 0.031705692410469055, -0.1180330142378807, -0.0936349555850029, -0.08479095250368118, -0.06998373568058014, -0.045688532292842865, -0.06787417083978653, -0.05667262151837349, -0.030390173196792603, -0.12331137806177139, 0.03577907755970955, -0.0776144415140152, 0.01848294399678707, -0.05970693379640579, 0.0035443648230284452, 0.07966407388448715, -0.014737637713551521, 0.15271447598934174, 0.20272324979305267, -0.027234770357608795, 0.15279342234134674, -0.08757445216178894, 0.008667189627885818, 0.09146038442850113, 0.02275177650153637, 0.0450158454477787, 0.05972801521420479, 0.0376192070543766, 0.03809267655014992, 0.028731945902109146, 0.09055627137422562, 0.028605526313185692, -0.08576657623052597, 0.04556817188858986, -0.0870363861322403, -0.11186524480581284, -0.027882346883416176, -0.015452067367732525, 0.047567788511514664, 0.052215635776519775, 0.12534917891025543, -0.07553751766681671, 0.10929334908723831, -0.049347519874572754, 0.04499796777963638, -0.010365575551986694, -0.1562078893184662, -0.06496333330869675, -0.07467414438724518, 0.03865973651409149, 0.0017359870253130794, 0.3000047504901886, 0.05921085923910141, 0.021968724206089973, 0.03906083106994629, 0.07445045560598373, 0.02321729063987732, 0.022480005398392677, 0.16167977452278137, 0.11307728290557861, -0.049774330109357834, -0.13643227517604828, 0.08651677519083023, 0.00762055953964591, -0.07864683121442795, 0.13707956671714783, 0.0023910412564873695, 0.026268567889928818, 0.06612762063741684, -0.03144792094826698, -0.01613612100481987, -0.07558297365903854, -0.13202553987503052, -0.0882168784737587, 0.013550793752074242, -0.018958214670419693, 0.12053561955690384, 0.1891884207725525, -0.05972902476787567, 0.031988997012376785, -0.02138056606054306, -0.03792290762066841, -0.15498016774654388, -0.1899077594280243, -0.08889482915401459, -0.17039532959461212, 0.027672911062836647, -0.09153621643781662, 0.029011420905590057, 0.05290227755904198, 0.08202246576547623, -0.06344082951545715, 0.0843324214220047, -0.0006311364704743028, -0.10708785057067871, 0.0651942789554596, -0.013030018657445908, 0.030832646414637566, 0.03327479213476181, -0.06127848103642464, -0.08008011430501938, -0.010837111622095108, -0.017868977040052414, 0.052778713405132294, -0.07910353690385818, -0.002709437860175967, -0.1154392883181572, -0.08145441114902496, -0.05465381219983101, 0.09585380554199219, -0.0053924331441521645, 0.06257390230894089, -0.007567782420665026, -0.012384425848722458, 0.014871181920170784, 0.23703797161579132, -0.035661254078149796, -0.07072491943836212, -0.027216872200369835, 0.17774757742881775, 0.028308192268013954, 0.1394246369600296, -0.013006206601858139, 0.00848494004458189, -0.09533438086509705, 0.32067787647247314, 0.3611678183078766, -0.008747594431042671, 0.023053182289004326, 0.018670478835701942, 0.0432121604681015, 0.12489161640405655, 0.12103206664323807, 0.07798358798027039, 0.20593641698360443, -0.08681364357471466, -0.07394202798604965, -0.07854756712913513, 0.039015427231788635, -0.0948939323425293, 0.088411346077919, 0.039219003170728683, -0.09157268702983856, -0.041301093995571136, 0.11202089488506317, -0.18278713524341583, 0.11190932244062424, -0.04797517508268356, -0.18040750920772552, -0.07652703672647476, 0.07516365498304367, 0.11116619408130646, 0.026428479701280594, 0.111236572265625, -0.00877019390463829, -0.08994001895189285, 0.027819480746984482, 0.06537636369466782, -0.2319709211587906, 0.0030535943806171417, 0.058334168046712875, 0.008839166723191738, 0.0059003750793635845, -0.030807750299572945, 0.14118048548698425, 0.07783588767051697, 0.05920041352510452, -0.04532857984304428, 0.01572507992386818, 0.013397041708230972, -0.04266754165291786, 0.009504995308816433, 0.013521409593522549, 0.013094091787934303, -0.15622618794441223, 0.10832898318767548, -0.11877212673425674, 0.034322261810302734, -0.024428626522421837, 0.0007000694167800248, 0.014384700916707516, 0.0920504704117775, -0.10812021046876907, 0.04419047012925148, 0.1158340647816658, -0.02336135506629944, -0.02184082195162773, -0.08356833457946777, 0.006430305074900389, 0.024883467704057693, -0.0357026644051075, -0.07502789795398712, -0.13811956346035004, -0.09216780960559845, 0.11389663815498352, 0.010668559931218624, -0.12509509921073914, 0.009104388765990734, -0.11479770392179489, 0.0715905949473381, -0.15780329704284668, 0.11409778147935867, 0.037931155413389206, 0.006893477868288755, 0.004124908242374659, -0.04883918911218643, 0.055743973702192307, 0.05387866124510765, -0.10421633720397949, -0.09506364166736603 ]
null
null
transformers
# LSTM
{"language": "ru", "license": "apache-2.0", "tags": ["text-generation"], "datasets": ["bookcorpus", "wikipedia"]}
text-generation
Mary222/made-ai-dungeon
[ "transformers", "text-generation", "ru", "dataset:bookcorpus", "dataset:wikipedia", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:04+00:00
[]
[ "ru" ]
TAGS #transformers #text-generation #ru #dataset-bookcorpus #dataset-wikipedia #license-apache-2.0 #endpoints_compatible #region-us
# LSTM
[ "# LSTM" ]
[ "TAGS\n#transformers #text-generation #ru #dataset-bookcorpus #dataset-wikipedia #license-apache-2.0 #endpoints_compatible #region-us \n", "# LSTM" ]
[ 44, 4 ]
[ "passage: TAGS\n#transformers #text-generation #ru #dataset-bookcorpus #dataset-wikipedia #license-apache-2.0 #endpoints_compatible #region-us \n# LSTM" ]
[ -0.022557221353054047, 0.0747034102678299, -0.00462769391015172, 0.015634942799806595, 0.06235891953110695, 0.04703342542052269, 0.14569181203842163, 0.1323525309562683, 0.022929145023226738, -0.09405959397554398, 0.1299658566713333, 0.15661461651325226, -0.012100541964173317, 0.057456307113170624, -0.06997484713792801, -0.1979249119758606, 0.10754106938838959, 0.01677621714770794, -0.14999625086784363, 0.05633717402815819, 0.1217494010925293, -0.0021582981571555138, 0.0949288159608841, -0.0670672282576561, -0.04535772651433945, 0.030368603765964508, 0.03253818303346634, -0.09855513274669647, 0.09254520386457443, 0.07267658412456512, 0.037027012556791306, 0.048513248562812805, 0.010287984274327755, -0.2047697752714157, 0.01696753315627575, -0.011974265798926353, -0.10122434794902802, 0.022191843017935753, -0.03659602627158165, -0.045314591377973557, 0.18240267038345337, -0.0618334598839283, -0.04665512591600418, 0.04066634550690651, -0.08303950726985931, -0.079610675573349, -0.1331588178873062, 0.04934112727642059, 0.034035574644804, 0.06543754786252975, 0.04569045081734657, 0.06415890157222748, -0.06598523259162903, 0.0706973522901535, 0.19411222636699677, -0.34987926483154297, -0.009622493758797646, 0.14012816548347473, 0.047889284789562225, 0.05160287395119667, -0.006649421527981758, 0.11815222352743149, 0.05004934221506119, -0.0038982839323580265, 0.030693156644701958, -0.07741986960172653, -0.03390044346451759, 0.11883951723575592, -0.03994341939687729, -0.03980473428964615, 0.3688454329967499, -0.020754991099238396, 0.056770168244838715, -0.006825661286711693, -0.05638180300593376, 0.0715833380818367, -0.023225825279951096, 0.0646970272064209, 0.022409196943044662, 0.0944174975156784, 0.048581261187791824, -0.11683420836925507, -0.09261078387498856, -0.0038513478357344866, -0.18033361434936523, 0.056472890079021454, -0.002841261448338628, 0.0883839949965477, -0.11457552015781403, 0.005994245409965515, -0.049068331718444824, -0.0733511745929718, -0.04827835410833359, -0.11381487548351288, 0.053852830082178116, 0.04978135600686073, -0.06959576159715652, -0.016100037842988968, 0.15167216956615448, 0.1468832790851593, 0.013934535905718803, -0.03694762662053108, -0.018842333927750587, 0.11787538975477219, -0.027690328657627106, -0.0004074698081240058, -0.025735769420862198, -0.0864403173327446, 0.0979728251695633, -0.12481426447629929, 0.07515086233615875, -0.02337743528187275, -0.10593630373477936, -0.06850211322307587, -0.09277287125587463, 0.06235337257385254, 0.0706753209233284, 0.06060124188661575, -0.002670733956620097, 0.019319606944918633, 0.0931193083524704, -0.05170341208577156, -0.03453674912452698, -0.034689661115407944, -0.0169561505317688, 0.08464004099369049, 0.09887880831956863, 0.006511439103633165, -0.042347609996795654, -0.0035637819673866034, -0.03107595071196556, -0.03196755424141884, -0.036208923906087875, -0.011310156434774399, 0.08136396110057831, -0.08179347962141037, 0.06671591103076935, -0.09747803956270218, -0.2890494763851166, 0.011900560930371284, 0.09153509140014648, -0.021319545805454254, -0.0321599580347538, 0.02257564663887024, -0.051806073635816574, 0.06506244093179703, -0.06020868569612503, -0.03147682175040245, -0.09451230615377426, 0.03471904620528221, -0.1408635973930359, 0.06260630488395691, -0.23134534060955048, 0.052068356424570084, -0.07707344740629196, -0.010502957738935947, -0.06271971762180328, 0.04775061458349228, -0.11633295565843582, 0.14941838383674622, -0.034034863114356995, 0.00022635552159044892, -0.035737983882427216, 0.028472712263464928, -0.047045208513736725, 0.14882291853427887, -0.1777220517396927, -0.027460316196084023, 0.17950628697872162, -0.09812366217374802, -0.21130269765853882, 0.04548348858952522, -0.01976281777024269, 0.07835829257965088, 0.09591950476169586, 0.1907401978969574, 0.10270106792449951, 0.02070588245987892, -0.0007409533718600869, 0.13985632359981537, -0.03125637397170067, -0.17266248166561127, 0.04065427929162979, 0.008958125486969948, -0.03998388722538948, 0.06149822473526001, -0.020461244508624077, 0.03431778401136398, 0.018997807055711746, -0.0831063985824585, -0.10021434724330902, -0.074099101126194, 0.005973605439066887, -0.007245327811688185, 0.057442668825387955, -0.06710472702980042, 0.0007940017967484891, 0.06806828081607819, 0.044991280883550644, 0.010233930312097073, 0.07254426926374435, -0.011662840843200684, 0.02623886801302433, 0.05685657635331154, 0.07255498319864273, -0.1349487602710724, -0.03848160803318024, -0.05676078051328659, 0.0962432473897934, 0.040978558361530304, 0.07810913771390915, 0.043311990797519684, -0.10549125075340271, -0.0788709968328476, 0.06317989528179169, 0.07600590586662292, 0.03867931663990021, 0.013453856110572815, -0.15367501974105835, 0.06744181364774704, -0.03155714273452759, -0.07348914444446564, -0.053392451256513596, 0.04033821076154709, 0.029635727405548096, 0.08372027426958084, -0.0249934159219265, 0.08192440867424011, -0.009956048801541328, -0.036302581429481506, -0.0770348384976387, -0.010114382952451706, 0.08770187199115753, 0.016182107850909233, -0.12528859078884125, 0.14549872279167175, 0.03565990552306175, 0.20157374441623688, 0.18414823710918427, -0.09207628667354584, 0.07841527462005615, 0.024655280634760857, -0.00950551126152277, 0.01693221740424633, 0.010603031143546104, 0.00625190231949091, -0.036907121539115906, 0.013743771240115166, 0.07255195826292038, -0.05885649099946022, -0.0364176481962204, -0.041724011301994324, -0.05549939349293709, -0.010093826800584793, 0.06887473165988922, 0.1273329108953476, -0.15665918588638306, 0.1647694706916809, 0.26518356800079346, -0.00795937143266201, 0.11644112318754196, -0.0676434338092804, -0.006470873951911926, 0.05124858394265175, -0.04159824550151825, -0.029904168099164963, 0.06688369810581207, -0.10408596694469452, -0.006077829282730818, 0.0910024493932724, 0.03895387798547745, 0.05263322964310646, -0.11008935421705246, -0.07578971236944199, -0.011760324239730835, -0.06985842436552048, -0.09713904559612274, 0.07757596671581268, -0.035288531333208084, 0.13649600744247437, -0.05248875916004181, -0.0077682617120444775, 0.08452163636684418, -0.019654184579849243, -0.06646616011857986, 0.1695515513420105, -0.17106595635414124, -0.21238639950752258, -0.12072782218456268, -0.06279785931110382, -0.09109299629926682, 0.008399957790970802, 0.11203613877296448, -0.051595546305179596, -0.047790057957172394, -0.02242632955312729, 0.01808946020901203, -0.0010515130124986172, -0.0020685147028416395, 0.023265104740858078, 0.10854339599609375, -0.05557236447930336, -0.12873485684394836, -0.045315660536289215, 0.04176860675215721, 0.009521386586129665, 0.06108427047729492, -0.1303737461566925, 0.09209709614515305, 0.02902066707611084, 0.04236692190170288, -0.0043273973278701305, -0.026102028787136078, 0.13371993601322174, -0.04048211872577667, 0.04834926873445511, 0.1785528063774109, 0.008393882773816586, 0.020724143832921982, 0.1652553826570511, 0.030293874442577362, -0.07774849236011505, 0.018295954912900925, -0.04571405425667763, -0.11350114643573761, -0.33351895213127136, -0.10507658869028091, -0.12329085171222687, 0.07015709578990936, -0.030396878719329834, 0.05128176882863045, 0.030698833987116814, 0.07838544249534607, -0.022596852853894234, 0.03734192997217178, 0.07786086201667786, 0.030322711914777756, 0.20371192693710327, -0.010069280862808228, 0.10010309517383575, -0.17854046821594238, 0.03700636327266693, 0.1516442596912384, 0.11823517829179764, 0.21834692358970642, 0.05260699987411499, 0.11176065355539322, 0.09818731248378754, 0.08993086218833923, 0.038293175399303436, 0.1339220106601715, 0.029424767941236496, 0.00436768215149641, -0.03832444176077843, -0.008490131236612797, -0.025027943775057793, 0.08606701344251633, -0.10874496400356293, -0.12631945312023163, -0.0018807220039889216, -0.0535769984126091, 0.10986527055501938, 0.17581899464130402, 0.03390870243310928, -0.13401684165000916, -0.012049741111695766, 0.1402260661125183, 0.022428302094340324, -0.03724480792880058, 0.1199379488825798, -0.04409733787178993, -0.07153181731700897, 0.16812704503536224, 0.01913372427225113, 0.12165461480617523, 0.014966091141104698, 0.0005064188153482974, -0.030879974365234375, -0.15256060659885406, 0.048307981342077255, 0.12365485727787018, -0.2744472324848175, 0.25674471259117126, -0.00830644741654396, -0.02893642894923687, -0.05297878757119179, -0.0057311514392495155, 0.05897204577922821, 0.28658682107925415, 0.15336859226226807, 0.0353950597345829, -0.2033836543560028, 0.09329063445329666, -0.00993034802377224, 0.045020606368780136, 0.006273063365370035, 0.007744619622826576, -0.017773481085896492, -0.05721293017268181, -0.00314663490280509, 0.010984315536916256, 0.055615443736314774, -0.05854256451129913, -0.1985110193490982, 0.03324747830629349, 0.07575768977403641, -0.007893385365605354, -0.060211677104234695, 0.015456652268767357, -0.024470210075378418, 0.23631952702999115, -0.022369464859366417, -0.09659290313720703, -0.11653729528188705, -0.10228455066680908, 0.09171470999717712, -0.03070651739835739, 0.03503309190273285, -0.0163270290941, 0.009785490110516548, -0.05055737867951393, -0.23230227828025818, 0.05809938535094261, -0.128046452999115, 0.0020962702110409737, -0.006210487801581621, 0.09755133092403412, -0.06850208342075348, 0.03691631928086281, 0.0312587134540081, 0.01741684041917324, -0.07964269816875458, -0.1112520694732666, -0.017972338944673538, 0.11348803341388702, 0.03907666727900505, 0.02115607261657715, -0.1609942764043808, -0.07255540788173676, 0.035651419311761856, -0.08415640145540237, 0.20781104266643524, 0.14982713758945465, -0.08891678601503372, 0.22298701107501984, 0.10065123438835144, -0.13827405869960785, -0.32528311014175415, -0.0996975228190422, -0.1823742538690567, -0.04443987458944321, -0.023438671603798866, -0.14023417234420776, 0.13516665995121002, 0.037588462233543396, -0.04209643229842186, 0.03654075041413307, -0.22929565608501434, -0.09579157829284668, 0.13038751482963562, -0.06154012680053711, 0.3294489085674286, -0.14653633534908295, -0.051966242492198944, -0.16519750654697418, -0.15458470582962036, 0.16511353850364685, -0.18035918474197388, 0.05291620269417763, -0.0001958442444447428, 0.0753474235534668, -0.0362359844148159, -0.010002205148339272, 0.1328272819519043, 0.014108016155660152, 0.022548731416463852, -0.09434140473604202, 0.0625142902135849, 0.10244062542915344, -0.044872913509607315, 0.06781058758497238, -0.0902906209230423, 0.04267794266343117, -0.1460191160440445, -0.013312037102878094, -0.035057131201028824, 0.06539694964885712, -0.00030071803485043347, -0.032952770590782166, -0.1075589656829834, -0.009442390874028206, 0.05980651080608368, -0.025366945192217827, 0.2791617512702942, 0.027835020795464516, 0.05570248141884804, 0.03120042011141777, 0.11575441807508469, -0.11169262230396271, 0.036897461861371994, -0.040135160088539124, -0.05382166802883148, 0.008183230645954609, -0.28356993198394775, 0.018969593569636345, 0.10051953792572021, -0.058269206434488297, 0.0306033156812191, 0.07152505964040756, 0.01883729360997677, -0.023930925875902176, 0.1320337951183319, -0.150153249502182, -0.04104103147983551, -0.012498188763856888, 0.02500373125076294, 0.03773144260048866, 0.07107288390398026, 0.15270696580410004, -0.02841164544224739, -0.01930472068488598, 0.004104673862457275, 0.07274077087640762, -0.0807550847530365, 0.05503110587596893, 0.04401719570159912, -0.016883783042430878, -0.12300212681293488, 0.16352330148220062, -0.025884369388222694, -0.10635353624820709, -0.009843598119914532, 0.07816606014966965, -0.16708382964134216, -0.11504555493593216, 0.06754962354898453, 0.008097887970507145, -0.1717032790184021, -0.07583106309175491, -0.04035715013742447, -0.13783830404281616, 0.06677724421024323, 0.1828298419713974, 0.09519707411527634, 0.04845351353287697, 0.009607295505702496, -0.07530895620584488, 0.06899838149547577, 0.021518686786293983, -0.03244302049279213, 0.016895446926355362, -0.07559030503034592, -0.158064067363739, -0.06043420359492302, 0.09280566871166229, -0.0520317479968071, 0.06666894257068634, -0.12070058286190033, 0.03651941940188408, -0.1947128027677536, 0.00010305958130629733, -0.12385726720094681, -0.01832849532365799, -0.027727734297513962, -0.10424007475376129, -0.0840805396437645, -0.02556779235601425, -0.12211780250072479, -0.011066974140703678, -0.05846122279763222, 0.10376951098442078, -0.11949104815721512, -0.047536954283714294, 0.10157129168510437, -0.015370666980743408, 0.0762988030910492, 0.09564810246229172, -0.07436062395572662, 0.14265874028205872, -0.12326952069997787, -0.06511443108320236, 0.06341566890478134, 0.05977817624807358, 0.03084498643875122, -0.02263614721596241, -0.016826152801513672, 0.11173171550035477, -0.012346855364739895, 0.06366022676229477, -0.07688194513320923, -0.07258832454681396, -0.04308093339204788, -0.09764818847179413, -0.0593302920460701, 0.014084032736718655, -0.05859724432229996, 0.20836155116558075, 0.061651043593883514, 0.1635417938232422, -0.028367726132273674, 0.013924890197813511, -0.04147420451045036, 0.04957062751054764, 0.0011867043795064092, -0.17641685903072357, -0.08429345488548279, -0.0627831295132637, -0.005033938214182854, -0.021794216707348824, 0.3318692743778229, -0.021909939125180244, -0.05682467669248581, 0.07257996499538422, 0.040235377848148346, -0.017350438982248306, 0.037503428757190704, 0.2912200391292572, 0.0579880066215992, -0.0028516107704490423, -0.07624971121549606, 0.026417162269353867, 0.026891715824604034, -0.01449657417833805, 0.11450603604316711, 0.13973449170589447, 0.08706431090831757, 0.09566490352153778, 0.00968620739877224, 0.014455960132181644, 0.014551772736012936, -0.08223818242549896, 0.010859434492886066, 0.06442008912563324, -0.006493926513940096, 0.10787452757358551, 0.14210376143455505, -0.1124521866440773, 0.06924889981746674, -0.04812353849411011, -0.05565909668803215, -0.1677502691745758, -0.09776489436626434, -0.0792243629693985, -0.15140901505947113, 0.002289552241563797, -0.14061075448989868, 0.029641907662153244, 0.09595382958650589, 0.07261188328266144, -0.027796190232038498, -0.036388594657182693, -0.10182057321071625, -0.05629771947860718, 0.039766885340213776, -0.02082422375679016, -0.04762251675128937, -0.01852571591734886, -0.027106119319796562, -0.05962264537811279, -0.03212782368063927, -0.07842987030744553, 0.07255130261182785, 0.00027776509523391724, 0.05164884775876999, -0.11386894434690475, -0.02813788875937462, -0.06182132288813591, 0.056749384850263596, -0.0017399260541424155, 0.10910217463970184, 0.047091640532016754, -0.0326913520693779, 0.11191076785326004, 0.23545148968696594, -0.06744997203350067, -0.1508282721042633, -0.11181758344173431, -0.021037371829152107, 0.020736942067742348, 0.04825223982334137, -0.02488059550523758, -0.0017760886112228036, -0.04790861904621124, 0.2969662845134735, 0.33035677671432495, -0.0410786047577858, 0.011117473244667053, -0.03742217272520065, 0.03449364751577377, 0.05352385714650154, 0.09725786000490189, 0.1283855140209198, 0.1590336114168167, -0.05263006314635277, -0.09284456074237823, -0.05710885301232338, 0.003049054415896535, -0.14317011833190918, 0.10281379520893097, -0.0007660919218324125, -0.11275991052389145, 0.006763168144971132, 0.15877534449100494, -0.14741995930671692, -0.006631904281675816, -0.028604287654161453, -0.12569983303546906, -0.04543992504477501, -0.03182890638709068, 0.1075429767370224, -0.0157884880900383, 0.0057239290326833725, -0.03424042463302612, -0.059619322419166565, 0.1243957132101059, 0.011660028249025345, -0.25692903995513916, -0.016379935666918755, 0.09621594846248627, 0.028907014057040215, 0.06812722980976105, -0.02080710418522358, 0.007793764118105173, 0.07008771598339081, 0.006498853210359812, -0.09571550786495209, 0.04923386126756668, 0.031686410307884216, 0.011210122145712376, -0.00013400700117927045, -0.03975353762507439, -0.07607359439134598, -0.02485048957169056, 0.11820106953382492, 0.004504109732806683, 0.035936422646045685, 0.07297863811254501, -0.076556496322155, -0.026846924796700478, 0.04490840435028076, -0.1308741271495819, 0.07025765627622604, 0.057641804218292236, -0.038789160549640656, 0.004338855855166912, -0.06546679884195328, -0.005295716226100922, 0.014103137888014317, -0.11535953730344772, -0.0285939984023571, -0.018437664955854416, -0.07874229550361633, 0.07980930060148239, 0.04445015639066696, -0.1182335913181305, -0.025834934785962105, -0.07790908217430115, 0.04453520476818085, -0.1382681280374527, 0.10346034914255142, 0.12349171191453934, -0.034184303134679794, -0.025043806061148643, -0.06170465052127838, 0.049228351563215256, 0.02440238744020462, -0.052079781889915466, -0.12055642902851105 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # opus-mt-ar-en-finetuned-ar-to-en This model is a fine-tuned version of [Helsinki-NLP/opus-mt-ar-en](https://huggingface.co/Helsinki-NLP/opus-mt-ar-en) on the opus_wikipedia dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.10.0 - Pytorch 1.9.0+cu102 - Datasets 1.11.0 - Tokenizers 0.10.3
{"tags": ["generated_from_trainer"], "datasets": ["opus_wikipedia"]}
text2text-generation
MaryaAI/opus-mt-ar-en-finetuned-ar-to-en
[ "transformers", "pytorch", "tensorboard", "marian", "text2text-generation", "generated_from_trainer", "dataset:opus_wikipedia", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #marian #text2text-generation #generated_from_trainer #dataset-opus_wikipedia #autotrain_compatible #endpoints_compatible #region-us
# opus-mt-ar-en-finetuned-ar-to-en This model is a fine-tuned version of Helsinki-NLP/opus-mt-ar-en on the opus_wikipedia dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.10.0 - Pytorch 1.9.0+cu102 - Datasets 1.11.0 - Tokenizers 0.10.3
[ "# opus-mt-ar-en-finetuned-ar-to-en\n\nThis model is a fine-tuned version of Helsinki-NLP/opus-mt-ar-en on the opus_wikipedia dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 16\n- eval_batch_size: 16\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 1\n- mixed_precision_training: Native AMP", "### Framework versions\n\n- Transformers 4.10.0\n- Pytorch 1.9.0+cu102\n- Datasets 1.11.0\n- Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #marian #text2text-generation #generated_from_trainer #dataset-opus_wikipedia #autotrain_compatible #endpoints_compatible #region-us \n", "# opus-mt-ar-en-finetuned-ar-to-en\n\nThis model is a fine-tuned version of Helsinki-NLP/opus-mt-ar-en on the opus_wikipedia dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 16\n- eval_batch_size: 16\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 1\n- mixed_precision_training: Native AMP", "### Framework versions\n\n- Transformers 4.10.0\n- Pytorch 1.9.0+cu102\n- Datasets 1.11.0\n- Tokenizers 0.10.3" ]
[ 58, 51, 6, 12, 8, 3, 103, 34 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #marian #text2text-generation #generated_from_trainer #dataset-opus_wikipedia #autotrain_compatible #endpoints_compatible #region-us \n# opus-mt-ar-en-finetuned-ar-to-en\n\nThis model is a fine-tuned version of Helsinki-NLP/opus-mt-ar-en on the opus_wikipedia dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 16\n- eval_batch_size: 16\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 1\n- mixed_precision_training: Native AMP### Framework versions\n\n- Transformers 4.10.0\n- Pytorch 1.9.0+cu102\n- Datasets 1.11.0\n- Tokenizers 0.10.3" ]
[ -0.08919649571180344, 0.13888287544250488, -0.0012570926919579506, 0.08638964593410492, 0.12987464666366577, 0.01766481250524521, 0.1112273633480072, 0.11983855068683624, -0.06459484249353409, 0.055676449090242386, 0.06228046491742134, 0.03532174974679947, 0.06490291655063629, 0.11039702594280243, -0.0374501496553421, -0.27226242423057556, 0.02080688439309597, 0.019928084686398506, -0.08856280893087387, 0.08875831961631775, 0.10253065079450607, -0.08260055631399155, 0.056734152138233185, -0.0004443550715222955, -0.12732718884944916, 0.04029661417007446, -0.04610564559698105, -0.06718253344297409, 0.1067262813448906, 0.011340628378093243, 0.10069426149129868, 0.0026418466586619616, 0.1406150758266449, -0.21904481947422028, 0.00256655877456069, 0.060154497623443604, 0.04349324479699135, 0.06679066270589828, 0.06863369792699814, 0.039638765156269073, 0.1318664401769638, -0.17260687053203583, 0.1063588410615921, -0.011180277913808823, -0.0307282917201519, -0.09150382876396179, -0.04801525920629501, 0.03402196243405342, 0.1057068258523941, 0.1182955950498581, 0.009166128933429718, 0.1469910591840744, -0.07903013378381729, 0.0873001217842102, 0.16854621469974518, -0.21041223406791687, -0.0697251707315445, 0.043041180819272995, 0.052676133811473846, 0.0887049213051796, -0.09573657810688019, 0.007101483643054962, 0.031892865896224976, 0.04864736646413803, 0.06394772231578827, -0.030822522938251495, -0.11804769188165665, -0.011566977947950363, -0.12412651628255844, 0.003243914805352688, 0.19712527096271515, 0.041189853101968765, -0.00564211793243885, -0.08943589776754379, -0.033099088817834854, -0.0672990158200264, -0.019503412768244743, -0.06994657218456268, 0.024341022595763206, -0.055791426450014114, -0.015898611396551132, -0.08668667078018188, -0.08642454445362091, -0.044777605682611465, 0.006011886987835169, 0.07575106620788574, 0.04308261722326279, 0.005455248989164829, -0.027687184512615204, 0.07795944809913635, -0.03039468638598919, -0.10338938236236572, -0.00004359910235507414, 0.005880453623831272, -0.07699872553348541, -0.08274290710687637, -0.02514558658003807, -0.08730366826057434, -0.004536889493465424, 0.0786215141415596, -0.05599677935242653, 0.05680827796459198, 0.00840581301599741, 0.0043655321933329105, 0.0016771841328591108, 0.1141108050942421, -0.05463710054755211, -0.07175096124410629, 0.008273310028016567, 0.06007072329521179, -0.007070412393659353, -0.014755913987755775, -0.08595508337020874, -0.06345266848802567, 0.10605388134717941, 0.05876852199435234, -0.046453602612018585, 0.023471727967262268, -0.005292002111673355, -0.049374692142009735, -0.010060329921543598, -0.14779448509216309, 0.06075802072882652, -0.03093089535832405, -0.0783616229891777, 0.011103156954050064, 0.01994694396853447, 0.007553480565547943, -0.0837087631225586, 0.08935036510229111, -0.06053517386317253, 0.026710160076618195, -0.06616757810115814, -0.07837130129337311, 0.040521278977394104, -0.08841770142316818, 0.0021208273246884346, -0.07451877743005753, -0.15867765247821808, -0.034948550164699554, 0.06332630664110184, -0.058239880949258804, -0.04062950983643532, -0.06778664886951447, -0.04333002492785454, -0.000013176232641853858, -0.013748430646955967, 0.10636993497610092, -0.05352772772312164, 0.037476200610399246, -0.043969377875328064, 0.018678342923521996, 0.009594584815204144, 0.049275752156972885, -0.07734354585409164, 0.0027237744070589542, -0.1353977918624878, 0.06481647491455078, -0.09660026431083679, 0.019523514434695244, -0.11528444290161133, -0.10982532054185867, 0.0004861725901719183, -0.017589567229151726, 0.06337492913007736, 0.1402701437473297, -0.1753045916557312, -0.019480742514133453, 0.11313055455684662, -0.08255548775196075, -0.05162698030471802, 0.12499948590993881, -0.04436821490526199, 0.03852088004350662, 0.07300199568271637, 0.17991961538791656, 0.09276152402162552, -0.14766369760036469, -0.011657512746751308, -0.010425461456179619, 0.063199982047081, -0.02553541213274002, 0.048366729170084, 0.015491124242544174, 0.040999773889780045, 0.020237019285559654, -0.027956606820225716, -0.015685373917222023, -0.05597696453332901, -0.10109677910804749, -0.04689988121390343, -0.07277730107307434, -0.018746275454759598, 0.04732995852828026, 0.054075293242931366, -0.08378882706165314, -0.08473453670740128, 0.12287455052137375, 0.1184825450181961, -0.07677649706602097, 0.03679269552230835, -0.048837434500455856, 0.022884180769324303, -0.051671627908945084, -0.03509967774152756, -0.18293282389640808, -0.09802654385566711, 0.026776092126965523, -0.07336781173944473, 0.05686333775520325, 0.03732707351446152, 0.07103730738162994, 0.07434726506471634, -0.056645117700099945, 0.007018344476819038, -0.08653979748487473, 0.013970855623483658, -0.10077112168073654, -0.17663206160068512, -0.019298993051052094, -0.02599547803401947, 0.13739652931690216, -0.24816752970218658, -0.006370751187205315, -0.011696328409016132, 0.1500115990638733, 0.01691017486155033, -0.04456064850091934, -0.004874624311923981, 0.06319399923086166, -0.015817193314433098, -0.09231105446815491, 0.027900803834199905, -0.01894856058061123, -0.06847120821475983, -0.05011458694934845, -0.10345906019210815, 0.037727370858192444, 0.07431704550981522, 0.01787716895341873, -0.0951937586069107, -0.029847826808691025, -0.05425013229250908, -0.05243159085512161, -0.09593746811151505, 0.03739207983016968, 0.1967046558856964, 0.001674781204201281, 0.10152698308229446, -0.05325758084654808, -0.04093446582555771, 0.016781074926257133, -0.001387975993566215, -0.05299429967999458, 0.10934742540121078, 0.12609504163265228, -0.13586828112602234, 0.07297053933143616, 0.04969838634133339, -0.08736895769834518, 0.18377795815467834, -0.016798110678792, -0.11061748117208481, -0.007552766241133213, -0.012369150295853615, -0.015325065702199936, 0.14802023768424988, -0.13477157056331635, -0.0004364670894574374, 0.02688242681324482, 0.03616144135594368, 0.05995388701558113, -0.15838994085788727, -0.008861424401402473, 0.018073439598083496, -0.04119031876325607, 0.011166250333189964, -0.02728598564863205, 0.034136589616537094, 0.09598734974861145, 0.004462552722543478, -0.03779716417193413, 0.0010931629221886396, -0.006793685723096132, -0.08178462833166122, 0.1653280407190323, -0.11075258255004883, -0.22035716474056244, -0.1327761709690094, 0.07048700004816055, -0.07962857186794281, -0.03732149302959442, 0.01919763907790184, -0.09213916957378387, -0.06287214159965515, -0.10726563632488251, 0.011209387332201004, -0.04803371801972389, -0.02152192033827305, 0.015663262456655502, 0.050823844969272614, 0.038666628301143646, -0.10988087207078934, 0.010366014204919338, -0.01647009328007698, -0.07000594586133957, -0.013103382661938667, 0.014767657034099102, 0.11218824237585068, 0.11123230308294296, -0.042601969093084335, 0.032409150153398514, -0.00859471783041954, 0.18230527639389038, -0.09131091088056564, 0.033115558326244354, 0.08245346695184708, 0.022203898057341576, 0.024364802986383438, 0.13563843071460724, 0.024541527032852173, -0.08062267303466797, 0.015669552609324455, 0.06934709846973419, -0.007983868941664696, -0.2409578412771225, -0.07261994481086731, -0.043463703244924545, -0.05621621757745743, 0.12044443935155869, 0.05884760990738869, -0.0026002514641731977, 0.051372017711400986, 0.00764789804816246, 0.03311454877257347, -0.0016671434277668595, 0.0697350949048996, 0.09595514088869095, 0.042787667363882065, 0.07004042714834213, -0.040407732129096985, -0.05155111476778984, 0.07740336656570435, 0.03214941546320915, 0.2605999708175659, -0.026311438530683517, 0.08216218650341034, 0.008168070577085018, 0.13297156989574432, -0.013889065012335777, 0.04920528456568718, 0.047442223876714706, -0.0039529697969555855, 0.02552683837711811, -0.05774254351854324, -0.01724473387002945, 0.03911492973566055, 0.01344132237136364, -0.0066754077561199665, -0.08275102823972702, 0.022829674184322357, 0.011316743679344654, 0.2355954647064209, 0.038251977413892746, -0.25984135270118713, -0.07271708548069, 0.011814258061349392, -0.042582880705595016, -0.07767674326896667, 0.016744034364819527, 0.13859766721725464, -0.12830503284931183, 0.0591401606798172, -0.06552667915821075, 0.10486521571874619, -0.05396955832839012, -0.025238633155822754, 0.05001962557435036, 0.11095649749040604, -0.000889884599018842, 0.11044570803642273, -0.1892097145318985, 0.2417610138654709, 0.02053418941795826, 0.1319226622581482, -0.0910005047917366, 0.015342908911406994, 0.006550283636897802, 0.10468803346157074, 0.11720632761716843, 0.017120247706770897, -0.10265758633613586, -0.15757907927036285, -0.12235862761735916, 0.04818253591656685, 0.08519788831472397, -0.0015596995363011956, 0.06717117130756378, -0.03150232136249542, 0.00876213051378727, 0.040668703615665436, -0.09920187294483185, -0.17658354341983795, -0.15724609792232513, 0.024270974099636078, 0.039202675223350525, -0.072043776512146, -0.047296326607465744, -0.12962116301059723, -0.012589960359036922, 0.21228648722171783, 0.0852196216583252, -0.03154420852661133, -0.15018349885940552, 0.05372251942753792, 0.1404677927494049, -0.06426522135734558, -0.011475691571831703, 0.02915751002728939, 0.13682487607002258, 0.0035649724304676056, -0.06918506324291229, 0.042088307440280914, -0.05774318799376488, -0.0867263525724411, -0.027729352936148643, 0.115195631980896, 0.07574965804815292, 0.05195236951112747, 0.027019603177905083, 0.025062665343284607, 0.010813998058438301, -0.08248007297515869, -0.0042240978218615055, 0.06782744824886322, 0.10314624756574631, 0.054750245064496994, -0.11977652460336685, 0.016164420172572136, -0.054474469274282455, -0.04010552912950516, 0.15683551132678986, 0.16312776505947113, -0.07268373668193817, 0.08185217529535294, 0.09464634209871292, -0.11281077563762665, -0.19214320182800293, 0.09063086658716202, 0.08409764617681503, 0.03770739212632179, 0.038511570543050766, -0.18512894213199615, 0.11609212309122086, 0.11741712689399719, -0.0038942801766097546, 0.05950010195374489, -0.3017745018005371, -0.12563179433345795, 0.09248444437980652, 0.13523165881633759, -0.003832257119938731, -0.10219090431928635, -0.003626761492341757, -0.03725693002343178, -0.1366329789161682, 0.12107007205486298, -0.04610651731491089, 0.11658351868391037, 0.0024460116401314735, 0.12555336952209473, 0.026896996423602104, -0.047844793647527695, 0.14555984735488892, 0.03184695169329643, 0.05482339859008789, -0.06585358083248138, 0.05471543222665787, 0.0459728017449379, -0.0703602209687233, 0.09809031337499619, -0.0011482432018965483, 0.021663732826709747, -0.14985434710979462, -0.05100021883845329, -0.049736138433218, 0.10983607918024063, -0.04310760647058487, -0.06567452102899551, -0.04238765314221382, 0.0843370109796524, 0.08258283138275146, -0.04235067963600159, 0.08512518554925919, 0.007746867835521698, 0.08210030943155289, 0.04847337678074837, 0.12319882214069366, -0.03749702125787735, -0.06894806027412415, 0.019872520118951797, -0.016459690406918526, 0.04345720261335373, -0.05332597345113754, 0.019769949838519096, 0.15593555569648743, 0.014990191906690598, 0.13799725472927094, 0.0052766939625144005, -0.04190397262573242, -0.015357738360762596, 0.031429026275873184, -0.1323881596326828, -0.1302827000617981, -0.02526753768324852, -0.06877162307500839, -0.08180081099271774, 0.004015068057924509, 0.1118728369474411, -0.10246379673480988, -0.004820710048079491, -0.022109361365437508, 0.03982776403427124, -0.032433174550533295, 0.19051215052604675, 0.02242572046816349, 0.04355192184448242, -0.07328113913536072, 0.13688179850578308, 0.07444838434457779, -0.13035783171653748, 0.08177103847265244, 0.11171845346689224, -0.08002770692110062, -0.03848494216799736, 0.0977986678481102, 0.173519566655159, -0.026127927005290985, -0.06574468314647675, -0.09979898482561111, -0.08103577792644501, 0.03995281830430031, 0.07712564617395401, 0.0429629385471344, -0.04304133728146553, -0.04394663870334625, -0.0018818556563928723, -0.18873794376850128, 0.09195340424776077, 0.06189841777086258, 0.04065777361392975, -0.12204176187515259, 0.11117788404226303, 0.001421967870555818, 0.04419133812189102, -0.024214064702391624, 0.024344485253095627, -0.0745522752404213, -0.019092421978712082, -0.11553303152322769, -0.010001949034631252, -0.04477791115641594, 0.020050760358572006, -0.030408618971705437, -0.049456626176834106, -0.06621383130550385, 0.03009338304400444, -0.06677388399839401, -0.03455090522766113, -0.018696045503020287, 0.03488428518176079, -0.116118423640728, -0.017856799066066742, 0.02325231023132801, -0.07726909965276718, 0.042291104793548584, 0.05521009489893913, -0.005128293763846159, 0.040447335690259933, -0.07046624273061752, 0.000439035939052701, 0.020549502223730087, 0.04586101323366165, 0.08610714972019196, -0.11445918679237366, -0.014445624314248562, 0.026963384822010994, 0.08310580253601074, 0.027103692293167114, 0.04940240457653999, -0.10036984831094742, -0.04613497853279114, -0.1012982428073883, -0.0988372415304184, -0.057827550917863846, 0.07377109676599503, 0.12390098720788956, 0.0241533275693655, 0.15046724677085876, -0.08312081545591354, 0.07648435235023499, -0.17629364132881165, -0.03164910525083542, 0.012279854156076908, -0.03577931597828865, -0.0021212687715888023, -0.030443666502833366, 0.08641853928565979, -0.05983284115791321, 0.1362806111574173, 0.037902992218732834, 0.07591557502746582, 0.05030057206749916, -0.10020603984594345, -0.04295618087053299, 0.004283687565475702, 0.15183374285697937, 0.058890435844659805, -0.01920699141919613, 0.09811009466648102, -0.010755219496786594, 0.07252798974514008, 0.12675389647483826, 0.18618476390838623, 0.1598994880914688, -0.010502129793167114, 0.08009422570466995, 0.07217497378587723, -0.09172369539737701, -0.12261965870857239, 0.10483267158269882, -0.019510148093104362, 0.11740393191576004, -0.028752682730555534, 0.1645224392414093, 0.09278436005115509, -0.18328414857387543, 0.05661734938621521, -0.059940025210380554, -0.14968840777873993, -0.12892693281173706, -0.09887547791004181, -0.1103009581565857, -0.07794857025146484, 0.01719067059457302, -0.14087267220020294, 0.032946474850177765, 0.06794290244579315, 0.04829908534884453, -0.007133896462619305, 0.1514996588230133, -0.03823436424136162, 0.012715821154415607, 0.08825495094060898, 0.017935870215296745, 0.008299336768686771, -0.07830363512039185, -0.0488722026348114, 0.025489777326583862, 0.014836618676781654, 0.062126532196998596, -0.04294760525226593, -0.008715788833796978, 0.028560146689414978, -0.007814213633537292, -0.05973898619413376, 0.0075032650493085384, 0.013576533645391464, 0.04916747659444809, 0.0539693683385849, 0.063873790204525, -0.03221864253282547, -0.039976656436920166, 0.25622594356536865, -0.0403490774333477, -0.09974193572998047, -0.13962697982788086, 0.13408663868904114, 0.027626462280750275, -0.012336734682321548, 0.07263335585594177, -0.10113437473773956, 0.001622857991605997, 0.1846805065870285, 0.17645561695098877, -0.036987897008657455, -0.030275026336312294, -0.02102404087781906, -0.01345768291503191, -0.04512099176645279, 0.10338037461042404, 0.08771923929452896, 0.03328290954232216, -0.0699457973241806, -0.043473608791828156, -0.03495563194155693, -0.0256497822701931, -0.1150280013680458, 0.06117095798254013, 0.040707964450120926, 0.010404804721474648, -0.04488905146718025, 0.10188084095716476, -0.0073146759532392025, -0.17618905007839203, 0.022042065858840942, -0.17083881795406342, -0.20003020763397217, -0.023028414696455002, 0.10573150217533112, -0.0573560893535614, 0.04391706362366676, -0.020732291042804718, 0.0011479489039629698, 0.10339635610580444, 0.002844090573489666, -0.06581785529851913, -0.10155919939279556, 0.08147907257080078, -0.045723069459199905, 0.2106831818819046, 0.01651461236178875, 0.05688052251935005, 0.0910390317440033, 0.013868361711502075, -0.10726984590291977, 0.03932986035943031, 0.07552575320005417, -0.026560431346297264, 0.03531879559159279, 0.1781655251979828, -0.07445807009935379, 0.0702027976512909, 0.046756528317928314, -0.10506825894117355, -0.019999707117676735, -0.08921527117490768, -0.020192448049783707, -0.04845988377928734, 0.012006526812911034, -0.08508026599884033, 0.1534145027399063, 0.2074817270040512, -0.012707451358437538, 0.00574613967910409, -0.10472899675369263, 0.0477440170943737, 0.041054241359233856, 0.06696390360593796, -0.011926336213946342, -0.21750271320343018, -0.028647737577557564, -0.017101364210247993, 0.026063712313771248, -0.21801826357841492, -0.09954889863729477, 0.03365336358547211, -0.06897979229688644, -0.06739085912704468, 0.10853460431098938, 0.06306536495685577, 0.028141377493739128, -0.045309729874134064, -0.12013062834739685, -0.0094464011490345, 0.12615564465522766, -0.1448812633752823, -0.050837259739637375 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # opus-mt-ar-en-finetunedTanzil-v5-ar-to-en This model is a fine-tuned version of [Helsinki-NLP/opus-mt-ar-en](https://huggingface.co/Helsinki-NLP/opus-mt-ar-en) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.8101 - Validation Loss: 0.9477 - Train Bleu: 9.3241 - Train Gen Len: 88.73 - Train Rouge1: 56.4906 - Train Rouge2: 34.2668 - Train Rougel: 53.2279 - Train Rougelsum: 53.7836 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train Bleu | Train Gen Len | Train Rouge1 | Train Rouge2 | Train Rougel | Train Rougelsum | Epoch | |:----------:|:---------------:|:----------:|:-------------:|:------------:|:------------:|:------------:|:---------------:|:-----:| | 0.8735 | 0.9809 | 11.0863 | 78.68 | 56.4557 | 33.3673 | 53.4828 | 54.1197 | 0 | | 0.8408 | 0.9647 | 9.8543 | 88.955 | 57.3797 | 34.3539 | 53.8783 | 54.3714 | 1 | | 0.8101 | 0.9477 | 9.3241 | 88.73 | 56.4906 | 34.2668 | 53.2279 | 53.7836 | 2 | ### Framework versions - Transformers 4.17.0.dev0 - TensorFlow 2.7.0 - Datasets 1.18.4.dev0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_keras_callback"], "model-index": [{"name": "opus-mt-ar-en-finetunedTanzil-v5-ar-to-en", "results": []}]}
text2text-generation
MaryaAI/opus-mt-ar-en-finetunedTanzil-v5-ar-to-en
[ "transformers", "tf", "marian", "text2text-generation", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #tf #marian #text2text-generation #generated_from_keras_callback #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
opus-mt-ar-en-finetunedTanzil-v5-ar-to-en ========================================= This model is a fine-tuned version of Helsinki-NLP/opus-mt-ar-en on an unknown dataset. It achieves the following results on the evaluation set: * Train Loss: 0.8101 * Validation Loss: 0.9477 * Train Bleu: 9.3241 * Train Gen Len: 88.73 * Train Rouge1: 56.4906 * Train Rouge2: 34.2668 * Train Rougel: 53.2279 * Train Rougelsum: 53.7836 * Epoch: 2 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * optimizer: {'name': 'AdamWeightDecay', 'learning\_rate': 2e-05, 'decay': 0.0, 'beta\_1': 0.9, 'beta\_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight\_decay\_rate': 0.01} * training\_precision: float32 ### Training results ### Framework versions * Transformers 4.17.0.dev0 * TensorFlow 2.7.0 * Datasets 1.18.4.dev0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* optimizer: {'name': 'AdamWeightDecay', 'learning\\_rate': 2e-05, 'decay': 0.0, 'beta\\_1': 0.9, 'beta\\_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight\\_decay\\_rate': 0.01}\n* training\\_precision: float32", "### Training results", "### Framework versions\n\n\n* Transformers 4.17.0.dev0\n* TensorFlow 2.7.0\n* Datasets 1.18.4.dev0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #tf #marian #text2text-generation #generated_from_keras_callback #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* optimizer: {'name': 'AdamWeightDecay', 'learning\\_rate': 2e-05, 'decay': 0.0, 'beta\\_1': 0.9, 'beta\\_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight\\_decay\\_rate': 0.01}\n* training\\_precision: float32", "### Training results", "### Framework versions\n\n\n* Transformers 4.17.0.dev0\n* TensorFlow 2.7.0\n* Datasets 1.18.4.dev0\n* Tokenizers 0.10.3" ]
[ 57, 118, 4, 37 ]
[ "passage: TAGS\n#transformers #tf #marian #text2text-generation #generated_from_keras_callback #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* optimizer: {'name': 'AdamWeightDecay', 'learning\\_rate': 2e-05, 'decay': 0.0, 'beta\\_1': 0.9, 'beta\\_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight\\_decay\\_rate': 0.01}\n* training\\_precision: float32### Training results### Framework versions\n\n\n* Transformers 4.17.0.dev0\n* TensorFlow 2.7.0\n* Datasets 1.18.4.dev0\n* Tokenizers 0.10.3" ]
[ -0.04904639348387718, 0.045330960303545, -0.0035664911847561598, 0.09131387621164322, 0.15027594566345215, 0.035660602152347565, 0.13357941806316376, 0.1530332863330841, -0.14441990852355957, 0.059266768395900726, 0.13843998312950134, 0.1656283140182495, 0.03616275638341904, 0.13867239654064178, -0.11458512395620346, -0.16943126916885376, 0.043305668979883194, 0.002127292100340128, -0.05751219764351845, 0.09213709831237793, 0.09452261030673981, -0.07473650574684143, 0.11893197149038315, -0.005812353454530239, -0.18115629255771637, 0.04768723249435425, 0.09911426156759262, -0.08745510131120682, 0.11914427578449249, 0.07662025094032288, 0.07378342002630234, 0.0011026511201635003, 0.02204171195626259, -0.16219376027584076, 0.010115633718669415, 0.10191309452056885, -0.013358807191252708, 0.07685444504022598, 0.02366514876484871, -0.0005910744657739997, 0.15661396086215973, -0.1217181384563446, 0.022892741486430168, 0.03603729233145714, -0.12381067126989365, -0.1947350949048996, -0.12319920212030411, -0.010749801993370056, 0.030296526849269867, 0.08925517648458481, 0.005392125342041254, 0.20922985672950745, -0.021816590800881386, 0.10773435980081558, 0.16972297430038452, -0.33101189136505127, -0.05437590926885605, 0.04346386343240738, 0.010952766984701157, 0.06183868646621704, -0.040536828339099884, 0.062555231153965, 0.07295291870832443, 0.04782399907708168, 0.07063360512256622, -0.035944659262895584, -0.1020459234714508, -0.01030200906097889, -0.09529295563697815, -0.03548748046159744, 0.16787157952785492, 0.0331643708050251, -0.06317315995693207, -0.03101176582276821, -0.07373110949993134, -0.12338827550411224, 0.00044191547203809023, -0.07094131410121918, 0.026290226727724075, 0.0221170112490654, -0.07212845981121063, -0.06417586654424667, -0.08268477022647858, -0.05688975378870964, -0.1084599643945694, 0.12652099132537842, 0.0033092652447521687, 0.05061570182442665, -0.03980356082320213, 0.06246123090386391, -0.07747998088598251, -0.12915559113025665, -0.011236793361604214, 0.008607301861047745, -0.013583395630121231, -0.04703742265701294, -0.09633198380470276, -0.1273036152124405, 0.0674094706773758, 0.11117593944072723, -0.07071337103843689, 0.06639673560857773, -0.11852581053972244, 0.016198329627513885, -0.11220014840364456, 0.13540644943714142, -0.022641655057668686, -0.044308487325906754, 0.06195516139268875, 0.021162383258342743, 0.06916419416666031, -0.03983303904533386, -0.07946798205375671, -0.032721035182476044, 0.1142558604478836, 0.013845693320035934, -0.04124952107667923, 0.10159040242433548, -0.048376016318798065, -0.007956192828714848, -0.007382474839687347, -0.08881938457489014, 0.027235297486186028, -0.02254404127597809, -0.08361320942640305, 0.027721667662262917, 0.0843326523900032, 0.014417929574847221, -0.05147567018866539, 0.03784418851137161, -0.07174016535282135, -0.026707924902439117, -0.09236131608486176, -0.12278660386800766, 0.04419035464525223, -0.05992365628480911, -0.016859831288456917, -0.09702268987894058, -0.2191953957080841, -0.015280748717486858, 0.05020054057240486, -0.051329437643289566, -0.01465744711458683, -0.05889071896672249, -0.1496942788362503, 0.052091456949710846, -0.015959566459059715, 0.1424170285463333, -0.05049792677164078, 0.07889949530363083, 0.020800894126296043, 0.061071354895830154, -0.12148989737033844, 0.04018522799015045, -0.05672648921608925, -0.017400899901986122, -0.19707582890987396, 0.07688771933317184, -0.03625376150012016, 0.03799090534448624, -0.13556182384490967, -0.06097092479467392, -0.020919375121593475, 0.017500465735793114, 0.10941855609416962, 0.11658511310815811, -0.1864512860774994, -0.04129021242260933, 0.11538002640008926, -0.09894029051065445, -0.1145038902759552, 0.1171877458691597, -0.046396877616643906, 0.062030766159296036, 0.10091852396726608, 0.10182199627161026, -0.027181847020983696, -0.0882328450679779, 0.028481367975473404, -0.030483447015285492, -0.027392376214265823, -0.006983451545238495, 0.016757655888795853, -0.0211031474173069, -0.05367228016257286, 0.01275607943534851, -0.00900899339467287, 0.020061161369085312, -0.06379701942205429, -0.0604630745947361, -0.07290775328874588, -0.0606856532394886, 0.036602411419153214, 0.013864987529814243, 0.06943108886480331, -0.10051936656236649, -0.11940724402666092, 0.06133255735039711, 0.039862457662820816, -0.037651918828487396, 0.0506487712264061, -0.07656217366456985, 0.032537125051021576, -0.014872674830257893, 0.009675228968262672, -0.18254156410694122, -0.02642911672592163, 0.024685824289917946, 0.05677960440516472, 0.041595637798309326, 0.013996572233736515, 0.07794278115034103, -0.000003150023530906765, -0.07476120442152023, 0.030269896611571312, 0.002394112991169095, 0.013292131014168262, -0.08538004755973816, -0.23499871790409088, 0.03497791662812233, -0.022580239921808243, 0.07479722797870636, -0.2214825302362442, 0.008468207903206348, 0.0659172534942627, 0.1099502369761467, 0.03673236817121506, 0.005099073518067598, -0.050745006650686264, 0.04499896988272667, -0.03706164285540581, -0.06256861984729767, 0.03667297214269638, 0.041139669716358185, -0.12614022195339203, 0.021137429401278496, -0.15876998007297516, 0.11422900855541229, 0.16252541542053223, -0.10704627633094788, -0.10230065137147903, 0.044156260788440704, -0.0072133601643145084, -0.033353377133607864, -0.00957581214606762, -0.011618892662227154, 0.1346598118543625, 0.004211622290313244, 0.1395680159330368, -0.06686301529407501, -0.027989737689495087, 0.028998402878642082, -0.010978471487760544, -0.020534714683890343, 0.057669248431921005, -0.0013347349595278502, -0.16271916031837463, 0.10088976472616196, 0.12550868093967438, -0.10754407942295074, 0.12205632776021957, -0.03885067626833916, -0.06681031733751297, -0.042863521724939346, 0.01854642666876316, 0.03569656237959862, 0.05882468447089195, -0.09803134948015213, 0.014241104945540428, 0.02581854909658432, 0.037682533264160156, -3.00757392324158e-7, -0.17903143167495728, 0.006414277479052544, -0.00965898111462593, -0.06507296860218048, 0.014446992427110672, 0.03858290985226631, 0.019386645406484604, 0.1324244886636734, 0.03023788519203663, -0.0323718823492527, 0.09382808208465576, -0.010060063563287258, -0.0859009176492691, 0.1966368705034256, -0.13280180096626282, -0.13102386891841888, -0.13824313879013062, -0.06376900523900986, -0.08117862790822983, 0.014659450389444828, 0.03802495449781418, -0.08213909715414047, -0.05997372046113014, -0.06623910367488861, 0.010693833231925964, -0.008372305892407894, 0.0520896352827549, 0.049313049763441086, -0.013487625867128372, 0.11602757126092911, -0.1124093309044838, -0.04619928076863289, -0.024121979251503944, -0.05637183412909508, 0.0329391248524189, 0.005959340371191502, 0.05186937004327774, 0.0902298167347908, -0.039462823420763016, 0.028638070449233055, -0.0597546212375164, 0.2137170135974884, -0.05095019191503525, 0.002936314092949033, 0.17215706408023834, -0.01950889825820923, 0.05119190737605095, 0.10986007750034332, 0.0282998476177454, -0.11348573118448257, 0.0514906607568264, 0.0617787167429924, -0.02496097981929779, -0.2513529062271118, -0.027915460988879204, -0.03687259554862976, -0.08386675268411636, 0.027003251016139984, 0.03872181847691536, 0.16903719305992126, 0.021892651915550232, 0.019273219630122185, 0.12094596028327942, 0.013046052306890488, 0.06823884695768356, 0.21515171229839325, 0.05834968015551567, 0.118646539747715, -0.050986289978027344, -0.012163206934928894, 0.08138611167669296, -0.024126769974827766, 0.18208818137645721, 0.014034047722816467, 0.07180057466030121, 0.0662870779633522, 0.052222419530153275, -0.019993983209133148, 0.030605604872107506, 0.01542320940643549, -0.02411462925374508, -0.024266093969345093, -0.0716119259595871, -0.04849231243133545, 0.05087706819176674, -0.11363083869218826, 0.07133342325687408, -0.09212972223758698, 0.060618676245212555, 0.07009521871805191, 0.24446387588977814, 0.05231240764260292, -0.328052282333374, -0.08425377309322357, 0.0049433051608502865, -0.0253254733979702, -0.039586614817380905, -0.010828357189893723, 0.07399704307317734, -0.06983307003974915, 0.11219790577888489, -0.07840724289417267, 0.06855244189500809, -0.008603202179074287, 0.05962555855512619, 0.06051111966371536, 0.12231915444135666, -0.004231984261423349, 0.023146778345108032, -0.3764221966266632, 0.26775941252708435, 0.043759413063526154, 0.1393848955631256, -0.08702564239501953, 0.02953333780169487, 0.05102717876434326, 0.044571805745363235, 0.07201366126537323, -0.033874768763780594, -0.12285321205854416, -0.09667719155550003, -0.04322175681591034, 0.020698538050055504, 0.11909711360931396, 0.0839388519525528, 0.08827049285173416, -0.061520013958215714, 0.021565185859799385, 0.09553258121013641, 0.007649282459169626, -0.15685392916202545, -0.05073866620659828, 0.030135177075862885, 0.07954440265893936, -0.03723379969596863, -0.059182897210121155, -0.08716806024312973, -0.06085675209760666, 0.19137443602085114, -0.025656741112470627, -0.025484295561909676, -0.13116541504859924, 0.12381435185670853, 0.08235599100589752, -0.060697346925735474, 0.047711532562971115, -0.0024514764081686735, 0.05055532231926918, 0.06402906030416489, -0.12312699109315872, 0.12099085003137589, -0.026874857023358345, -0.1684717983007431, -0.04030159115791321, 0.06618902087211609, 0.01473816204816103, 0.04426386579871178, 0.0068793874233961105, 0.05440777912735939, 0.021766046062111855, -0.08939801901578903, 0.05487016960978508, 0.01684737019240856, 0.05357775837182999, 0.021051835268735886, -0.03388088941574097, -0.040896665304899216, -0.04101837798953056, -0.01989002153277397, 0.14972659945487976, 0.23797594010829926, -0.07319218665361404, 0.024268312379717827, 0.015048953704535961, -0.08277605473995209, -0.21520566940307617, 0.08738820999860764, 0.05441834405064583, 0.009066568687558174, -0.02171768993139267, -0.13228091597557068, 0.07559836655855179, 0.0801914632320404, -0.007201130036264658, 0.07078707218170166, -0.2765161097049713, -0.1514875888824463, 0.07549963891506195, 0.11373413354158401, 0.1891791671514511, -0.16023682057857513, -0.04694681987166405, -0.07401572167873383, -0.06215856969356537, 0.14290712773799896, -0.15423336625099182, 0.09904152154922485, 0.0071997325867414474, 0.06668835878372192, 0.003532098140567541, -0.028091993182897568, 0.0912473127245903, -0.03433623164892197, 0.10293471813201904, -0.0728248879313469, -0.01669691503047943, 0.1167047843337059, -0.06362758576869965, 0.044480349868535995, -0.07529421150684357, 0.03664296120405197, -0.08073774725198746, 0.009559821337461472, -0.07676487416028976, 0.05964120477437973, -0.03393701836466789, -0.03612196817994118, -0.008263872005045414, 0.024098072201013565, 0.06112730875611305, -0.042623139917850494, 0.12945067882537842, -0.011062083765864372, 0.14636899530887604, 0.17299407720565796, 0.10558963567018509, -0.055744923651218414, 0.09191670268774033, 0.07382708787918091, -0.04818347468972206, 0.06516046822071075, -0.17689481377601624, 0.049210771918296814, 0.10301658511161804, -0.01643826812505722, 0.1356808841228485, 0.062356799840927124, -0.050324440002441406, 0.018552076071500778, 0.07997272908687592, -0.16314584016799927, -0.0764647051692009, 0.011732143349945545, -0.06080366298556328, -0.06889301538467407, 0.04855245351791382, 0.16741187870502472, -0.032015882432460785, 0.0291143711656332, 0.016357753425836563, 0.007659717928618193, -0.08805590867996216, 0.14431367814540863, 0.011056170798838139, 0.009506919421255589, -0.0909518152475357, 0.1312885880470276, 0.025199415162205696, -0.07528533041477203, 0.09859845042228699, 0.04913727566599846, -0.07932601869106293, -0.024699727073311806, 0.06481503695249557, 0.1498890072107315, -0.050765033811330795, -0.06368249654769897, -0.12232482433319092, -0.12146127223968506, 0.05830371379852295, 0.24365828931331635, 0.06683224439620972, 0.05013180524110794, -0.05352628231048584, -0.004086621571332216, -0.09450341761112213, 0.06623025983572006, 0.05343477800488472, 0.05714389309287071, -0.14478299021720886, 0.17845419049263, -0.02390250936150551, 0.001101456000469625, -0.041734479367733, 0.047034263610839844, -0.13238689303398132, -0.013770909048616886, -0.15544813871383667, -0.0007866088999435306, 0.007786465808749199, -0.01666259579360485, 0.018611567094922066, -0.07428707927465439, -0.09242422133684158, 0.04123343154788017, -0.08343079686164856, -0.03346022218465805, 0.04935947433114052, 0.037726759910583496, -0.12696242332458496, -0.06801746785640717, 0.002916856436058879, -0.0694364681839943, 0.0529545433819294, 0.06716351211071014, -0.006179646588861942, 0.06216970458626747, -0.12517283856868744, 0.008051090873777866, 0.09065308421850204, -0.002112428192049265, 0.06016458198428154, -0.098455511033535, 0.012016684748232365, 0.01743311993777752, 0.07203352451324463, 0.03517501801252365, 0.1321551352739334, -0.08837961405515671, -0.03135102987289429, -0.03853955864906311, -0.04235775023698807, -0.04437713325023651, 0.05273834615945816, 0.15936630964279175, 0.002802088391035795, 0.18746855854988098, -0.11306291073560715, -0.019962912425398827, -0.17396071553230286, 0.03361597657203674, -0.0033533808309584856, -0.11933881789445877, -0.14180989563465118, -0.027087057009339333, 0.09505578130483627, -0.06973111629486084, 0.1090271919965744, -0.009061828255653381, 0.0810062438249588, 0.06166103854775429, -0.0475664921104908, -0.0631226971745491, 0.022343343123793602, 0.20277820527553558, 0.042232561856508255, -0.018525490537285805, 0.0332343764603138, 0.007968730293214321, 0.09833748638629913, 0.0729949101805687, 0.2302912324666977, 0.13212235271930695, -0.010243483819067478, 0.1498207449913025, 0.06488540768623352, -0.027786485850811005, -0.1068875789642334, 0.10778659582138062, -0.07400940358638763, 0.138126939535141, -0.05309570953249931, 0.09346450865268707, 0.08357597142457962, -0.1601627916097641, 0.013278613798320293, -0.06706611067056656, -0.06952625513076782, -0.1487642526626587, -0.07392585277557373, -0.11299584805965424, -0.1384686380624771, 0.004105339292436838, -0.11586175858974457, 0.07011169195175171, 0.03822629526257515, 0.02195497788488865, -0.043445006012916565, 0.11227738112211227, -0.06000637635588646, -0.007723081391304731, 0.09093495458364487, -0.014767576940357685, -0.008193999528884888, -0.045003537088632584, -0.07407339662313461, 0.03268749266862869, 0.028834693133831024, 0.029377691447734833, 0.003295107278972864, 0.0048955935053527355, 0.04370541125535965, -0.06322018802165985, -0.09528245776891708, 0.04067511856555939, 0.054246269166469574, 0.027257923036813736, 0.07180937379598618, 0.05037609115242958, -0.010306751355528831, -0.0040511260740458965, 0.17484186589717865, -0.10027053207159042, -0.07366346567869186, -0.15886665880680084, 0.24732095003128052, 0.02091294713318348, 0.0368584580719471, -0.002426102291792631, -0.07887519896030426, -0.04503587260842323, 0.2102050930261612, 0.15317843854427338, -0.07402703166007996, -0.019948506727814674, 0.044009532779455185, -0.002885136753320694, -0.042513225227594376, 0.1249222457408905, 0.08496358245611191, -0.04212877154350281, -0.0505087785422802, -0.05400213226675987, -0.029684731736779213, -0.0038262903690338135, -0.032493915408849716, 0.07002709060907364, 0.009732470847666264, -0.022451302036643028, 0.006082413252443075, 0.05525767058134079, -0.022304097190499306, -0.10011487454175949, 0.011012553237378597, -0.2144887000322342, -0.14370672404766083, 0.0033617292065173388, 0.006184935104101896, -0.013633295893669128, 0.05377788096666336, -0.030775032937526703, 0.010007964447140694, 0.08803100883960724, -0.04135887697339058, -0.0498412549495697, -0.07641255110502243, 0.06372033804655075, -0.08933784812688828, 0.15470470488071442, -0.015834370627999306, 0.04503560811281204, 0.13172155618667603, 0.04241355508565903, -0.09555196017026901, 0.058940690010786057, 0.026982981711626053, -0.08203572779893875, 0.022097071632742882, 0.08023280650377274, -0.03547925129532814, 0.10240896046161652, 0.0718991756439209, -0.07562365382909775, 0.03200351074337959, -0.07003065943717957, -0.0924178883433342, -0.039811935275793076, -0.04416511952877045, -0.0989743322134018, 0.1284208744764328, 0.22408130764961243, -0.023089846596121788, 0.05303638428449631, -0.06437473744153976, 0.0003981411282438785, 0.06136803701519966, 0.0022962361108511686, -0.06613943725824356, -0.2149352729320526, 0.04308526590466499, 0.10040981322526932, 0.012801164761185646, -0.2190680354833603, -0.07732374966144562, -0.01610873080790043, -0.027661295607686043, -0.12200842052698135, 0.09825930744409561, 0.06941170990467072, 0.030319305136799812, -0.04047611728310585, -0.13815119862556458, -0.028582308441400528, 0.15958920121192932, -0.12031034380197525, -0.08077874034643173 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # opus-mt-en-ar-finetuned-Math-13-10-en-to-ar This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-ar](https://huggingface.co/Helsinki-NLP/opus-mt-en-ar) on the syssr_en_ar dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.0+cu111 - Datasets 1.13.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["syssr_en_ar"], "model-index": [{"name": "opus-mt-en-ar-finetuned-Math-13-10-en-to-ar", "results": []}]}
text2text-generation
MaryaAI/opus-mt-en-ar-finetuned-Math-13-10-en-to-ar
[ "transformers", "pytorch", "tensorboard", "marian", "text2text-generation", "generated_from_trainer", "dataset:syssr_en_ar", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #marian #text2text-generation #generated_from_trainer #dataset-syssr_en_ar #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
# opus-mt-en-ar-finetuned-Math-13-10-en-to-ar This model is a fine-tuned version of Helsinki-NLP/opus-mt-en-ar on the syssr_en_ar dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.0+cu111 - Datasets 1.13.0 - Tokenizers 0.10.3
[ "# opus-mt-en-ar-finetuned-Math-13-10-en-to-ar\n\nThis model is a fine-tuned version of Helsinki-NLP/opus-mt-en-ar on the syssr_en_ar dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 16\n- eval_batch_size: 16\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 5\n- mixed_precision_training: Native AMP", "### Framework versions\n\n- Transformers 4.11.3\n- Pytorch 1.9.0+cu111\n- Datasets 1.13.0\n- Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #marian #text2text-generation #generated_from_trainer #dataset-syssr_en_ar #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "# opus-mt-en-ar-finetuned-Math-13-10-en-to-ar\n\nThis model is a fine-tuned version of Helsinki-NLP/opus-mt-en-ar on the syssr_en_ar dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 16\n- eval_batch_size: 16\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 5\n- mixed_precision_training: Native AMP", "### Framework versions\n\n- Transformers 4.11.3\n- Pytorch 1.9.0+cu111\n- Datasets 1.13.0\n- Tokenizers 0.10.3" ]
[ 69, 59, 6, 12, 8, 3, 103, 34 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #marian #text2text-generation #generated_from_trainer #dataset-syssr_en_ar #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n# opus-mt-en-ar-finetuned-Math-13-10-en-to-ar\n\nThis model is a fine-tuned version of Helsinki-NLP/opus-mt-en-ar on the syssr_en_ar dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 16\n- eval_batch_size: 16\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 5\n- mixed_precision_training: Native AMP### Framework versions\n\n- Transformers 4.11.3\n- Pytorch 1.9.0+cu111\n- Datasets 1.13.0\n- Tokenizers 0.10.3" ]
[ -0.10865006595849991, 0.16133344173431396, -0.003730455180630088, 0.07503841072320938, 0.11379797756671906, 0.002961324527859688, 0.12180937081575394, 0.14012347161769867, -0.05303336679935455, 0.08180106431245804, 0.07842157036066055, 0.031654492020606995, 0.07534228265285492, 0.12441941350698471, -0.04552571102976799, -0.24809235334396362, 0.03311082720756531, 0.009182223118841648, -0.07184121012687683, 0.09330521523952484, 0.11953172087669373, -0.06492313742637634, 0.07239625602960587, 0.021105332300066948, -0.10230819135904312, 0.016458293423056602, -0.04227152094244957, -0.08283219486474991, 0.08891541510820389, 0.0164807066321373, 0.08597366511821747, 0.02015869878232479, 0.10046930611133575, -0.19218985736370087, -0.0022792029194533825, 0.05315209552645683, 0.03360775485634804, 0.09304944425821304, 0.07527358084917068, 0.03924759104847908, 0.07744007557630539, -0.13938267529010773, 0.10002820938825607, 0.005156118888407946, -0.06545324623584747, -0.10514520108699799, -0.08437526971101761, 0.04550861194729805, 0.10070347785949707, 0.10462461411952972, 0.010689407587051392, 0.15487386286258698, -0.022563334554433823, 0.0729738101363182, 0.16844388842582703, -0.24077099561691284, -0.06838817149400711, 0.024320831522345543, 0.07422955334186554, 0.0690317451953888, -0.07799436897039413, -0.005889226216822863, 0.029863491654396057, 0.03632750362157822, 0.06864166259765625, -0.020647065714001656, -0.05120663717389107, -0.02277868241071701, -0.13457849621772766, -0.03203282877802849, 0.20539075136184692, 0.04257918521761894, -0.03660717234015465, -0.08693442493677139, -0.051194336265325546, -0.08963453024625778, -0.01562076061964035, -0.06798234581947327, 0.015170693397521973, -0.04386761784553528, -0.03044453263282776, -0.08672970533370972, -0.08890220522880554, -0.029166094958782196, 0.011877627111971378, 0.09326587617397308, 0.029656514525413513, 0.017112087458372116, -0.029623225331306458, 0.07422388345003128, -0.0415542833507061, -0.14550906419754028, -0.0010482994839549065, -0.014322328381240368, -0.05541780963540077, -0.0678098201751709, -0.03700163587927818, -0.10827958583831787, -0.01052120327949524, 0.11992506682872772, -0.02255200408399105, 0.05340917035937309, -0.0030313439201563597, 0.005826145876199007, -0.010910400189459324, 0.14969803392887115, -0.048548623919487, -0.06918016076087952, 0.017373133450746536, 0.11106665432453156, 0.024144180119037628, -0.032311998307704926, -0.09684667736291885, -0.048568759113550186, 0.09415420889854431, 0.05678648501634598, -0.006778292823582888, 0.012959256768226624, -0.027581462636590004, -0.06152229383587837, 0.07042868435382843, -0.141733780503273, 0.03624501824378967, -0.04018285870552063, -0.08393604308366776, -0.017263948917388916, 0.018778318539261818, 0.02006690204143524, -0.06571639329195023, 0.08255801349878311, -0.06834594160318375, -0.004910570569336414, -0.0631406158208847, -0.05975893512368202, 0.04320027306675911, -0.06752319633960724, 0.004067568574100733, -0.07735524326562881, -0.16875791549682617, -0.022451194003224373, 0.06501494348049164, -0.06483244150876999, -0.06648139655590057, -0.02310863509774208, -0.05886707827448845, 0.022387748584151268, -0.024494601413607597, 0.08460980653762817, -0.03681924566626549, 0.046012911945581436, 0.0013321018777787685, 0.004228371195495129, 0.007430019322782755, 0.04755892604589462, -0.08824899792671204, 0.02982024848461151, -0.1114409863948822, 0.06288139522075653, -0.09599282592535019, 0.01680455170571804, -0.12472208589315414, -0.10285124182701111, 0.003165000583976507, -0.0381726436316967, 0.09446622431278229, 0.11671848595142365, -0.14927659928798676, -0.01257553044706583, 0.10327362269163132, -0.09064830839633942, -0.10634483397006989, 0.12084349244832993, -0.02230057679116726, 0.02729492448270321, 0.04563596099615097, 0.1667150855064392, 0.11670207977294922, -0.14575207233428955, -0.03155824542045593, 0.008890625089406967, 0.08740965276956558, -0.020194848999381065, 0.0904390811920166, 0.0132053904235363, 0.056810736656188965, 0.020234346389770508, -0.048162851482629776, -0.024118823930621147, -0.04379148408770561, -0.10740037262439728, -0.05073748901486397, -0.058091819286346436, 0.010302833281457424, 0.04271559417247772, 0.030521441251039505, -0.0803905799984932, -0.10502578318119049, 0.09902003407478333, 0.12087903171777725, -0.04807029664516449, 0.030274970456957817, -0.071096271276474, 0.0555981770157814, -0.06724455207586288, -0.030824346467852592, -0.18720529973506927, -0.08715177327394485, 0.042713314294815063, -0.06839767098426819, 0.049196723848581314, 0.01873069442808628, 0.05970970168709755, 0.07300344854593277, -0.04061910882592201, -0.017465149983763695, -0.10222028195858002, -0.0005437415093183517, -0.10438951104879379, -0.1468200385570526, -0.046258024871349335, -0.03930364549160004, 0.15137717127799988, -0.18200945854187012, 0.012365058995783329, 0.019625168293714523, 0.14253473281860352, 0.022771097719669342, -0.04299767315387726, 0.0007454598089680076, 0.04462070018053055, -0.012790707871317863, -0.08753479272127151, 0.026453182101249695, 0.0069520543329417706, -0.08682961761951447, -0.025422364473342896, -0.15262427926063538, 0.07998354732990265, 0.08240997046232224, 0.03996468335390091, -0.057018838822841644, -0.015613347291946411, -0.054479002952575684, -0.04839634522795677, -0.050527822226285934, -0.007812644354999065, 0.1794193536043167, 0.025499772280454636, 0.11396085470914841, -0.07542259991168976, -0.04732519015669823, 0.024865953251719475, -0.013932868838310242, -0.061146609485149384, 0.07767334580421448, 0.047161635011434555, -0.15025533735752106, 0.08846312016248703, 0.11010918021202087, -0.05692248046398163, 0.13796716928482056, -0.03299260884523392, -0.11001691222190857, -0.039481282234191895, -0.007530068513005972, 0.007021473255008459, 0.12849165499210358, -0.09985215216875076, 0.0002939804398920387, 0.044282764196395874, 0.03268521651625633, 0.04389568790793419, -0.15133249759674072, -0.0021668151021003723, 0.03000674583017826, -0.03492654114961624, 0.006499923765659332, -0.008466002531349659, 0.007834307849407196, 0.07563931494951248, 0.026488129049539566, -0.038352467119693756, 0.00979231670498848, -0.019339531660079956, -0.06927222013473511, 0.14990116655826569, -0.11364047974348068, -0.21538417041301727, -0.17050565779209137, 0.02597636729478836, -0.07931731641292572, -0.023372387513518333, 0.023211844265460968, -0.05363038554787636, -0.06986090540885925, -0.10536295920610428, -0.01815471053123474, -0.07188665121793747, -0.026909109205007553, 0.05042523145675659, 0.03178325667977333, 0.07592891156673431, -0.11632626503705978, 0.008516569621860981, 0.004929262213408947, -0.04110082611441612, -0.024146506562829018, 0.02703176438808441, 0.10203792154788971, 0.09098317474126816, -0.0347670242190361, 0.02242504432797432, -0.025793589651584625, 0.21897822618484497, -0.08199536800384521, 0.010636337101459503, 0.14871905744075775, -0.009195367805659771, 0.06437481194734573, 0.13588392734527588, 0.029651615768671036, -0.06819458305835724, 0.007915941067039967, 0.036052193492650986, -0.010329601354897022, -0.25766006112098694, -0.04926040396094322, -0.042760640382766724, -0.024312591180205345, 0.11358552426099777, 0.05182401090860367, 0.019102074205875397, 0.06589991599321365, -0.02759649232029915, 0.046465110033750534, -0.006270916201174259, 0.09986525774002075, 0.12281792610883713, 0.05075637996196747, 0.08790568262338638, -0.030298763886094093, -0.028966616839170456, 0.07783831655979156, 0.05593718960881233, 0.2114761918783188, -0.01865597814321518, 0.14319615066051483, 0.0027649381663650274, 0.14426928758621216, -0.024692833423614502, 0.037950336933135986, 0.02072708122432232, 0.02086014859378338, 0.0014149443013593554, -0.07267476618289948, -0.042147401720285416, 0.03983059152960777, -0.016766341403126717, 0.014433050528168678, -0.0640760287642479, 0.03674517199397087, 0.004369829315692186, 0.22158248722553253, 0.042076580226421356, -0.2733786404132843, -0.07845299690961838, 0.023820051923394203, -0.02296207845211029, -0.06932047009468079, 0.0036156384740024805, 0.09481705725193024, -0.11092113703489304, 0.0697493627667427, -0.08591630309820175, 0.10920748114585876, -0.030130913481116295, -0.010126182809472084, 0.05367623642086983, 0.11075899749994278, 0.01903720758855343, 0.10600241273641586, -0.18685811758041382, 0.2240593433380127, 0.032520320266485214, 0.10868362337350845, -0.072553351521492, 0.051049407571554184, 0.008478503674268723, 0.0872245654463768, 0.10520005226135254, 0.0076109012588858604, -0.09383219480514526, -0.13888491690158844, -0.1387508362531662, 0.02226870134472847, 0.09052278846502304, -0.028100185096263885, 0.06746521592140198, -0.042707283049821854, 0.0035966967698186636, 0.034336380660533905, -0.03172686696052551, -0.13136859238147736, -0.15889090299606323, 0.07781387865543365, 0.01177817303687334, -0.058327943086624146, -0.06379814445972443, -0.11188042908906937, -0.03315718472003937, 0.20019502937793732, 0.06428290158510208, -0.04613379016518593, -0.14549139142036438, 0.03615518659353256, 0.16501262784004211, -0.07676878571510315, 0.0011823932873085141, 0.007806925568729639, 0.1384187489748001, 0.003056545974686742, -0.07956679165363312, 0.05001396685838699, -0.06001526489853859, -0.12220270931720734, -0.03215382248163223, 0.1365119367837906, 0.007149500772356987, 0.05210718885064125, 0.010578670538961887, 0.036823999136686325, -0.01181634608656168, -0.07546590268611908, 0.0005955644883215427, 0.027882283553481102, 0.08810069411993027, 0.018566973507404327, -0.06344190984964371, 0.014596779830753803, -0.06011011078953743, -0.022385645657777786, 0.12207367271184921, 0.20734862983226776, -0.06535407900810242, 0.06890779733657837, 0.09847530722618103, -0.08697481453418732, -0.1689739227294922, 0.03711025416851044, 0.09671900421380997, 0.0251704603433609, 0.050135720521211624, -0.1619739979505539, 0.06371760368347168, 0.1092538833618164, -0.03131505474448204, 0.04599691554903984, -0.2964931130409241, -0.12729781866073608, 0.06524190306663513, 0.10817564278841019, 0.015528572723269463, -0.12457475066184998, -0.04357389733195305, -0.027757177129387856, -0.14731840789318085, 0.10613124817609787, -0.043917275965213776, 0.09465578943490982, 0.0010758473072201014, 0.0958307683467865, 0.030386358499526978, -0.048097677528858185, 0.16746091842651367, 0.00549500435590744, 0.03898525983095169, -0.06232636794447899, 0.058428917080163956, 0.10688094049692154, -0.0821719765663147, 0.1036592572927475, -0.025983663275837898, 0.04444481432437897, -0.1509246677160263, -0.029621506109833717, -0.03319697827100754, 0.07978316396474838, -0.0545375682413578, -0.057974014431238174, -0.03078172355890274, 0.060209255665540695, 0.07082659751176834, -0.04165591672062874, 0.13175445795059204, 0.02789749763906002, 0.0699058398604393, 0.1322232335805893, 0.11577937006950378, -0.017017284408211708, -0.08701429516077042, 0.013764588162302971, -0.027105597779154778, 0.0480436272919178, -0.08228668570518494, 0.020331749692559242, 0.1310233324766159, 0.004620303399860859, 0.11808845400810242, -0.0012745984131470323, -0.06425249576568604, -0.009662572294473648, 0.029326964169740677, -0.1250472515821457, -0.11511466652154922, -0.04353814944624901, 0.03734474256634712, -0.1327066421508789, 0.011452347040176392, 0.1400667130947113, -0.0703069344162941, -0.01934499479830265, 0.0005134349339641631, 0.03301535174250603, -0.008301272056996822, 0.17517468333244324, 0.029132938012480736, 0.05452928692102432, -0.06511875241994858, 0.1291929930448532, 0.09496547281742096, -0.12573306262493134, 0.06876921653747559, 0.0831560418009758, -0.08635657280683517, -0.03229780122637749, 0.03873516246676445, 0.11243413388729095, -0.02810709923505783, -0.05454390123486519, -0.09217268228530884, -0.05692204833030701, 0.029012661427259445, 0.07767225056886673, 0.04645039141178131, -0.026608729735016823, -0.03399540111422539, 0.005846835672855377, -0.14309225976467133, 0.11902064085006714, 0.05289395898580551, 0.07702196389436722, -0.13221785426139832, 0.06788163632154465, -0.005450504831969738, 0.04384097456932068, -0.017350321635603905, 0.021629296243190765, -0.04545794054865837, -0.03531678766012192, -0.10518228262662888, 0.009290436282753944, -0.04247928783297539, 0.006207266356796026, -0.03880222141742706, -0.0633215457201004, -0.05706876143813133, 0.03613923490047455, -0.061136964708566666, -0.052331969141960144, -0.023124562576413155, 0.03047671914100647, -0.12416452914476395, -0.020956018939614296, 0.031142815947532654, -0.09286841750144958, 0.06116589903831482, 0.05042644590139389, 0.0072287400253117085, 0.02046145498752594, -0.017461998388171196, 0.016498057171702385, 0.006292222999036312, 0.06107185408473015, 0.0687437430024147, -0.10379503667354584, -0.012666894122958183, 0.00998936127871275, 0.041757889091968536, 0.012799768708646297, 0.08272197842597961, -0.12086270749568939, -0.04771517962217331, -0.05312294140458107, -0.07543741911649704, -0.05319672450423241, 0.06537189334630966, 0.11114451289176941, 0.024461589753627777, 0.15530207753181458, -0.062133368104696274, 0.06617503613233566, -0.1897919774055481, -0.01734810136258602, 0.014560764655470848, -0.04894019290804863, -0.03454401716589928, -0.03764411807060242, 0.07378081232309341, -0.06739117205142975, 0.11643773317337036, 0.011787155643105507, 0.1186080053448677, 0.05339520052075386, -0.05967934802174568, 0.007779349572956562, 0.003272122936323285, 0.14866088330745697, 0.06315530091524124, -0.006217554211616516, 0.07903701812028885, -0.03479604795575142, 0.04737948253750801, 0.05520990490913391, 0.12298008054494858, 0.1400996893644333, 0.02792820893228054, 0.07812707126140594, 0.07442198693752289, -0.059080734848976135, -0.1587802916765213, 0.04084533080458641, -0.0138670289888978, 0.10882293432950974, -0.017686353996396065, 0.15348930656909943, 0.1023174375295639, -0.16687263548374176, 0.05774321407079697, -0.05885031446814537, -0.1169281154870987, -0.10848763585090637, -0.11410052329301834, -0.09293651580810547, -0.07470111548900604, 0.011178209446370602, -0.13567571341991425, 0.03555946424603462, 0.07553207129240036, 0.013417631387710571, -0.009266608394682407, 0.1320633888244629, -0.04295513778924942, 0.00030091727967374027, 0.06404722481966019, 0.019020885229110718, 0.01972452737390995, -0.03596609830856323, -0.05195235088467598, 0.03606650233268738, 0.04388788715004921, 0.07563145458698273, -0.034709230065345764, 0.0246354378759861, 0.01923459954559803, -0.004807129967957735, -0.08224966377019882, 0.00869639590382576, 0.020395535975694656, 0.04411182925105095, 0.05578381195664406, 0.03966842591762543, 0.0000754724969738163, -0.03786897659301758, 0.2492118626832962, -0.058375339955091476, -0.07478978484869003, -0.13786941766738892, 0.12225156277418137, 0.020440930500626564, -0.019716447219252586, 0.06698712706565857, -0.09962569922208786, -0.0059866271913051605, 0.14456845819950104, 0.15788403153419495, -0.05130346119403839, -0.03593132644891739, 0.0034497082233428955, -0.008174093440175056, -0.054118067026138306, 0.09320341050624847, 0.07903415709733963, 0.026325715705752373, -0.06496328860521317, -0.02325669303536415, -0.029217595234513283, -0.01702873781323433, -0.09485170990228653, 0.07104164361953735, 0.0027771135792136192, -0.006190329324454069, -0.025687919929623604, 0.08476369827985764, 0.018636099994182587, -0.16059303283691406, -0.013227981515228748, -0.18745002150535583, -0.20429503917694092, -0.011688893660902977, 0.12480118125677109, -0.03578796610236168, 0.05270562693476677, -0.0013931005960330367, 0.0033225163351744413, 0.09834647178649902, -0.0026024342514574528, -0.049237169325351715, -0.07661288976669312, 0.08794049918651581, -0.07233956456184387, 0.20660224556922913, 0.016090476885437965, 0.064995676279068, 0.09458795934915543, 0.016001233831048012, -0.1243983581662178, 0.01865268684923649, 0.09627833217382431, -0.026043333113193512, 0.04130704700946808, 0.1724858283996582, -0.05404309555888176, 0.08721339702606201, 0.053311556577682495, -0.10121822357177734, -0.04716518893837929, -0.045961908996105194, -0.0006532764527946711, -0.03954117372632027, 0.0021781977266073227, -0.07894115149974823, 0.16726233065128326, 0.1849474012851715, -0.03410351276397705, -0.021281462162733078, -0.08144881576299667, 0.03249216824769974, 0.042539700865745544, 0.06511573493480682, -0.01551185641437769, -0.19587287306785583, -0.03144044056534767, 0.03220660611987114, 0.04559905454516411, -0.22739370167255402, -0.09469106793403625, 0.04481644183397293, -0.04995979741215706, -0.07371887564659119, 0.1050330325961113, 0.04072405397891998, 0.009743332862854004, -0.03736904636025429, -0.0617559552192688, -0.038231901824474335, 0.11718615144491196, -0.15364894270896912, -0.05038454756140709 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # opus-mt-en-ar-finetuned-dummyData-10-10-ar-to-en This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-ar](https://huggingface.co/Helsinki-NLP/opus-mt-en-ar) on the syssr_en_ar dataset. It achieves the following results on the evaluation set: - Loss: 1.2046 - Bleu: 7.9946 - Gen Len: 20.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:| | No log | 1.0 | 1 | 1.2038 | 7.9946 | 20.0 | | No log | 2.0 | 2 | 1.2038 | 7.9946 | 20.0 | | No log | 3.0 | 3 | 1.2038 | 7.9946 | 20.0 | | No log | 4.0 | 4 | 1.2036 | 7.9946 | 20.0 | | No log | 5.0 | 5 | 1.2046 | 7.9946 | 20.0 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.0+cu111 - Datasets 1.12.1 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["syssr_en_ar"], "metrics": ["bleu"], "model-index": [{"name": "opus-mt-en-ar-finetuned-dummyData-10-10-ar-to-en", "results": [{"task": {"type": "text2text-generation", "name": "Sequence-to-sequence Language Modeling"}, "dataset": {"name": "syssr_en_ar", "type": "syssr_en_ar", "args": "default"}, "metrics": [{"type": "bleu", "value": 7.9946, "name": "Bleu"}]}]}]}
text2text-generation
MaryaAI/opus-mt-en-ar-finetuned-dummyData-10-10-ar-to-en
[ "transformers", "pytorch", "tensorboard", "marian", "text2text-generation", "generated_from_trainer", "dataset:syssr_en_ar", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #marian #text2text-generation #generated_from_trainer #dataset-syssr_en_ar #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us
opus-mt-en-ar-finetuned-dummyData-10-10-ar-to-en ================================================ This model is a fine-tuned version of Helsinki-NLP/opus-mt-en-ar on the syssr\_en\_ar dataset. It achieves the following results on the evaluation set: * Loss: 1.2046 * Bleu: 7.9946 * Gen Len: 20.0 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 16 * eval\_batch\_size: 16 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 5 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.11.3 * Pytorch 1.9.0+cu111 * Datasets 1.12.1 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.3\n* Pytorch 1.9.0+cu111\n* Datasets 1.12.1\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #marian #text2text-generation #generated_from_trainer #dataset-syssr_en_ar #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.3\n* Pytorch 1.9.0+cu111\n* Datasets 1.12.1\n* Tokenizers 0.10.3" ]
[ 73, 113, 4, 34 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #marian #text2text-generation #generated_from_trainer #dataset-syssr_en_ar #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.11.3\n* Pytorch 1.9.0+cu111\n* Datasets 1.12.1\n* Tokenizers 0.10.3" ]
[ -0.09375159442424774, 0.10942485183477402, -0.0044633978977799416, 0.09109717607498169, 0.10743865370750427, -0.005463361274451017, 0.16972556710243225, 0.15088696777820587, -0.11289101839065552, 0.053437490016222, 0.13465183973312378, 0.14067858457565308, 0.04392137750983238, 0.16345198452472687, -0.06282783299684525, -0.2634718418121338, 0.051373858004808426, 0.04652039706707001, -0.03613734617829323, 0.12174921482801437, 0.09131980687379837, -0.12254341691732407, 0.09326839447021484, 0.03932325541973114, -0.17130085825920105, -0.010055875405669212, -0.000045363289245869964, -0.0847453698515892, 0.11084160208702087, 0.026009077206254005, 0.09652930498123169, 0.04187069460749626, 0.06372220069169998, -0.15929782390594482, 0.008894769474864006, 0.05328063294291496, 0.012436888180673122, 0.10753192007541656, 0.06291018426418304, -0.01396656222641468, 0.10644455999135971, -0.07210934162139893, 0.07052342593669891, 0.01974601484835148, -0.12769779562950134, -0.2719414532184601, -0.11451955884695053, 0.03746598958969116, 0.06664109975099564, 0.08053422719240189, 0.000004099566467630211, 0.17901140451431274, -0.024307183921337128, 0.10622983425855637, 0.25847163796424866, -0.2887501120567322, -0.05782323703169823, -0.009972047992050648, 0.05364391580224037, 0.07019610702991486, -0.06718964874744415, -0.027484402060508728, 0.022777941077947617, 0.03848481923341751, 0.14499002695083618, -0.015168794430792332, -0.0254618301987648, -0.016604909673333168, -0.14044272899627686, -0.06952566653490067, 0.15975336730480194, 0.03256307914853096, -0.03979124501347542, -0.05133870989084244, -0.075528085231781, -0.16114690899848938, -0.05136938765645027, -0.012381712906062603, 0.0534285344183445, -0.030578281730413437, -0.08944424986839294, -0.030238648876547813, -0.07632946223020554, -0.03891991451382637, -0.06295755505561829, 0.14079804718494415, 0.052855297923088074, 0.024600256234407425, -0.06810999661684036, 0.06348467618227005, -0.04171575978398323, -0.15852494537830353, -0.006396218668669462, 0.01405172236263752, 0.01717032492160797, -0.03658520430326462, -0.035377249121665955, -0.12094849348068237, 0.012919769622385502, 0.1598149687051773, -0.10365816950798035, 0.07307528704404831, -0.026583733037114143, 0.04325345158576965, -0.07676535844802856, 0.19178427755832672, -0.02311619557440281, 0.019525492563843727, 0.01020900160074234, 0.06010768562555313, 0.04855359345674515, -0.03227471560239792, -0.11185594648122787, 0.04864272102713585, 0.10700313001871109, 0.020003415644168854, -0.029593881219625473, 0.062218211591243744, -0.04163184389472008, -0.028952302411198616, 0.043404120951890945, -0.10015552490949631, 0.040133535861968994, -0.009722712449729443, -0.07065969705581665, -0.00178111984860152, 0.015593663789331913, 0.013352805748581886, -0.03504990413784981, 0.0921814814209938, -0.07892034947872162, 0.024197468534111977, -0.08227569609880447, -0.14201253652572632, 0.03499675169587135, -0.10049755871295929, 0.008389212191104889, -0.09241286665201187, -0.1471576690673828, -0.005212337244302034, 0.07195911556482315, -0.048090413212776184, -0.04771708324551582, -0.03876417875289917, -0.09201882034540176, 0.04150526598095894, -0.02281467616558075, 0.064686119556427, -0.06991229951381683, 0.0768735408782959, 0.034004781395196915, 0.07431155443191528, -0.04276345297694206, 0.04738103225827217, -0.09284750372171402, 0.035185664892196655, -0.2150946855545044, 0.05343940854072571, -0.05700645223259926, 0.0836351290345192, -0.11056260019540787, -0.10059082508087158, 0.024372512474656105, -0.021210890263319016, 0.10010109841823578, 0.08503817766904831, -0.1682189404964447, -0.0759732648730278, 0.19081231951713562, -0.09140962362289429, -0.12813900411128998, 0.12869687378406525, -0.04907264560461044, 0.022627219557762146, 0.05598641559481621, 0.2204400599002838, 0.04271046817302704, -0.09709960967302322, 0.009961248375475407, -0.045186858624219894, 0.04843231290578842, -0.04975786432623863, 0.07610633969306946, -0.0010860420297831297, 0.08241350203752518, 0.00776754692196846, 0.006607651710510254, 0.027691448107361794, -0.09005706757307053, -0.08108251541852951, -0.05214206129312515, -0.06493214517831802, 0.016485439613461494, 0.03936915099620819, 0.06870677322149277, -0.12459798902273178, -0.10511469095945358, 0.06345069408416748, 0.07346211373806, -0.0739511027932167, 0.05658842623233795, -0.10974196344614029, 0.09866678714752197, -0.04809710755944252, -0.0013988978462293744, -0.1809995472431183, -0.004426086787134409, 0.033046040683984756, -0.03272448107600212, 0.03466777876019478, -0.03109726309776306, 0.07092121243476868, 0.06502149254083633, -0.024729594588279724, -0.02108331210911274, -0.022196820005774498, 0.008939679712057114, -0.11060274392366409, -0.21399348974227905, -0.03209556266665459, -0.03744049742817879, 0.07863406836986542, -0.14537222683429718, 0.04677940532565117, 0.05909734219312668, 0.11289273202419281, 0.03901616111397743, -0.015223139896988869, -0.023065442219376564, 0.0685615986585617, -0.04671448841691017, -0.06994497776031494, 0.05704329162836075, 0.027344979345798492, -0.08418040722608566, 0.006767292972654104, -0.15450480580329895, 0.15046535432338715, 0.14157477021217346, -0.0334906280040741, -0.04206601530313492, 0.008421224541962147, -0.04703173413872719, -0.02458920143544674, -0.011745586059987545, 0.030848167836666107, 0.16152112185955048, 0.01982293650507927, 0.15815557539463043, -0.09507597982883453, -0.04171955585479736, 0.04970988631248474, -0.04387218505144119, -0.00779949314892292, 0.10442144423723221, 0.044607680290937424, -0.10966624319553375, 0.1343851387500763, 0.15214040875434875, -0.05940769985318184, 0.11916989833116531, -0.06532149016857147, -0.06702698022127151, -0.03852280229330063, -0.021673256531357765, 0.026421193033456802, 0.09386894851922989, -0.12401487678289413, -0.019644616171717644, 0.036970317363739014, 0.03933842480182648, 0.007271945476531982, -0.19452214241027832, 0.010439183562994003, 0.04486078768968582, -0.05367889255285263, -0.039631422609090805, -0.012348850257694721, 0.014117619954049587, 0.09718140214681625, 0.01569414883852005, -0.08018189668655396, 0.025290070101618767, 0.010442719794809818, -0.061173707246780396, 0.1754930019378662, -0.10243566334247589, -0.16654740273952484, -0.12198955565690994, -0.10864196717739105, -0.05552302300930023, 0.00022305530728772283, 0.08900004625320435, -0.07650656998157501, -0.05466553196310997, -0.09774661809206009, -0.0090541522949934, -0.015117074362933636, 0.018525827676057816, 0.05821441113948822, -0.011329155415296555, 0.07395240664482117, -0.11527080833911896, -0.027351750060915947, -0.02498641051352024, -0.0006051012896932662, 0.062207795679569244, 0.020401347428560257, 0.11462800949811935, 0.12318634241819382, -0.03522258996963501, 0.036856915801763535, -0.031876400113105774, 0.23003743588924408, -0.06924072653055191, -0.015135219320654869, 0.1392102986574173, -0.013129075057804585, 0.08334094285964966, 0.12280222028493881, 0.05454108864068985, -0.08969317376613617, -0.011657140217721462, 0.011262286454439163, -0.045693811029195786, -0.22847828269004822, -0.02237689681351185, -0.046117205172777176, 0.006357975769788027, 0.09892230480909348, 0.032907165586948395, 0.043072666972875595, 0.04943437501788139, 0.01799343340098858, 0.05474420264363289, -0.0027817306108772755, 0.11306514590978622, 0.1348329335451126, 0.054632823914289474, 0.14693790674209595, -0.05273350328207016, -0.03382781893014908, 0.056384678930044174, 0.009272255934774876, 0.22637683153152466, 0.020832013338804245, 0.2010733038187027, 0.05731523036956787, 0.15024949610233307, 0.02264038845896721, 0.05503210797905922, -0.00653443718329072, -0.005055386107414961, -0.02448084205389023, -0.04170411452651024, -0.0302280243486166, 0.02135210484266281, -0.07517880946397781, 0.024117134511470795, -0.11066964268684387, 0.03392675146460533, 0.05229222774505615, 0.2901695668697357, 0.023402854800224304, -0.35700565576553345, -0.10034943372011185, 0.012478331103920937, -0.04996147006750107, -0.03107784315943718, 0.014739958569407463, 0.0642104297876358, -0.06987573951482773, 0.06799595057964325, -0.08255133777856827, 0.1150670200586319, -0.05490913242101669, 0.04343036189675331, 0.045166779309511185, 0.10462907701730728, 0.001495250267907977, 0.05124269053339958, -0.2899142801761627, 0.283613383769989, 0.02047242596745491, 0.06748175621032715, -0.06550988554954529, 0.021772539243102074, 0.0162514541298151, 0.05938075855374336, 0.05070900544524193, -0.015707476064562798, -0.13459531962871552, -0.15563753247261047, -0.09157920628786087, 0.014480514451861382, 0.09184396266937256, 0.021090639755129814, 0.11338600516319275, -0.023155832663178444, 0.004800396505743265, 0.050483062863349915, -0.019652776420116425, -0.05885174870491028, -0.10121846199035645, 0.02872309461236, 0.03997299447655678, -0.023136010393500328, -0.07211213558912277, -0.09942308068275452, -0.0793963223695755, 0.16859565675258636, 0.02573494240641594, -0.05419835075736046, -0.12345356494188309, 0.03680598363280296, 0.09020104259252548, -0.08956678211688995, 0.03256111592054367, -0.014818153344094753, 0.11432303488254547, 0.008124614134430885, -0.07699253410100937, 0.1207154393196106, -0.0567457489669323, -0.16913385689258575, -0.04622780904173851, 0.09556479007005692, 0.016516268253326416, 0.063683420419693, -0.007183571346104145, 0.04391691833734512, -0.03778165951371193, -0.07203923910856247, 0.02707517333328724, -0.0017118852119892836, 0.06564754992723465, -0.0446564145386219, -0.01694001629948616, 0.021615589037537575, -0.07078200578689575, -0.026570096611976624, 0.16933682560920715, 0.26887834072113037, -0.08865801990032196, 0.06899009644985199, 0.057022251188755035, -0.06137259304523468, -0.15488994121551514, 0.010690130293369293, 0.04551137983798981, -0.005741444416344166, 0.005639602430164814, -0.18046952784061432, 0.030921965837478638, 0.10092487186193466, -0.02368440479040146, 0.05007292330265045, -0.3168068528175354, -0.1271669566631317, 0.10842487961053848, 0.12293362617492676, 0.08655763417482376, -0.17024552822113037, -0.04378865286707878, -0.03170233964920044, -0.13935816287994385, 0.12125731259584427, -0.12021657824516296, 0.1090615838766098, -0.02526029199361801, 0.0979142114520073, 0.007848070003092289, -0.053707022219896317, 0.12422648817300797, -0.010132892057299614, 0.08802971243858337, -0.06979664415121078, 0.03491102531552315, 0.11664529889822006, -0.07676434516906738, 0.04990069568157196, -0.08776066452264786, 0.034108966588974, -0.0905415266752243, -0.01661430485546589, -0.059056539088487625, 0.0036478901747614145, -0.02859410084784031, -0.03592910245060921, -0.05134283006191254, 0.003931256942451, 0.07160665094852448, -0.02121579274535179, 0.21516606211662292, 0.02716223895549774, 0.13131818175315857, 0.15811984241008759, 0.09329747408628464, -0.1325647085905075, -0.04443051293492317, 0.005050887353718281, -0.026806024834513664, 0.046895671635866165, -0.16201288998126984, 0.0434851236641407, 0.13651424646377563, -0.0034249499440193176, 0.12317036837339401, 0.06299308687448502, -0.06215602904558182, 0.024734539911150932, 0.04883527755737305, -0.1545780450105667, -0.1218765527009964, 0.015089091844856739, 0.04475279897451401, -0.10335920751094818, 0.061951540410518646, 0.13483698666095734, -0.05596527084708214, -0.02154754474759102, 0.004810451064258814, 0.020133990794420242, -0.017645670101046562, 0.17800147831439972, 0.024562662467360497, 0.056082870811223984, -0.1093914732336998, 0.08680848032236099, 0.06047958508133888, -0.10514198243618011, 0.04954836145043373, 0.1107732355594635, -0.09319248795509338, -0.029401058331131935, 0.0457925908267498, 0.167343869805336, -0.06959554553031921, -0.057132795453071594, -0.16481421887874603, -0.12323619425296783, 0.0910789892077446, 0.1746433973312378, 0.06871981173753738, -0.0014101802371442318, -0.03707573935389519, 0.002612330485135317, -0.11669164150953293, 0.09125711023807526, 0.05541284382343292, 0.0775623545050621, -0.13257570564746857, 0.12391480803489685, -0.0056710438802838326, 0.03203980624675751, -0.014894873835146427, 0.015997493639588356, -0.10337519645690918, 0.006204368080943823, -0.15228338539600372, 0.004714193753898144, -0.054291579872369766, -0.006538794841617346, -0.010672043077647686, -0.0501524917781353, -0.0626043751835823, 0.020846180617809296, -0.1153324693441391, -0.02966662123799324, 0.011720746755599976, 0.03509892523288727, -0.12007787823677063, -0.021542571485042572, 0.014286184683442116, -0.07782591134309769, 0.07299870252609253, 0.04799706116318703, -0.0077672675251960754, 0.027326812967658043, -0.055668290704488754, -0.0041893888264894485, 0.06084286421537399, 0.010348716750741005, 0.07779483497142792, -0.11813674867153168, -0.025315871462225914, 0.018633127212524414, 0.02901611477136612, 0.017276864498853683, 0.09801346063613892, -0.11526718735694885, 0.000420541618950665, -0.007217004429548979, -0.0724264532327652, -0.05629883334040642, 0.05843735113739967, 0.10432694107294083, 0.018852651119232178, 0.19160336256027222, -0.07220788300037384, 0.03088531643152237, -0.19422146677970886, 0.0064307344146072865, 0.010998042300343513, -0.14109104871749878, -0.0760573297739029, -0.05247299745678902, 0.05924462154507637, -0.07436913251876831, 0.133108988404274, 0.02007642202079296, 0.023999996483325958, 0.05110521614551544, -0.04192429035902023, -0.030164450407028198, 0.018108230084180832, 0.1621984839439392, 0.03569469600915909, -0.035424716770648956, 0.07122141867876053, 0.020361995324492455, 0.08590966463088989, 0.10468202829360962, 0.19308680295944214, 0.1475420594215393, 0.05833802744746208, 0.10036370903253555, 0.0473301038146019, -0.02890315279364586, -0.17950193583965302, 0.055615730583667755, -0.027081523090600967, 0.1374731808900833, -0.00474534509703517, 0.19406166672706604, 0.12972836196422577, -0.14476296305656433, 0.05370808020234108, -0.03980909287929535, -0.08216453343629837, -0.119732566177845, -0.0819026306271553, -0.09777779132127762, -0.15058384835720062, -0.011255486868321896, -0.11957500874996185, 0.052442342042922974, 0.05622435733675957, 0.013959089294075966, -0.006993801333010197, 0.09962259978055954, 0.018420260399580002, 0.010015198960900307, 0.04804985225200653, -0.0029420938808470964, -0.044404249638319016, -0.05563773959875107, -0.08189152926206589, 0.00804270338267088, 0.01434284821152687, 0.04942372441291809, -0.00023106949811335653, -0.01207653433084488, 0.04148366302251816, -0.036689601838588715, -0.11797158420085907, 0.014630729332566261, 0.02850985899567604, 0.058018170297145844, 0.029735134914517403, 0.010210958309471607, -0.005516607314348221, -0.0036383431870490313, 0.1987968534231186, -0.07211757451295853, -0.06721314787864685, -0.11139068007469177, 0.23084357380867004, 0.016435660421848297, -0.0364764928817749, 0.029427891597151756, -0.06238062307238579, -0.02236262708902359, 0.19728928804397583, 0.19649624824523926, -0.03374228626489639, -0.013803118839859962, -0.018209276720881462, -0.008995023556053638, -0.02891678549349308, 0.09014404565095901, 0.12227661907672882, 0.0207954254001379, -0.07201404869556427, -0.028658417984843254, -0.06504998356103897, -0.006749430205672979, -0.0658823773264885, 0.06486248970031738, 0.020808231085538864, -0.007444420363754034, -0.03253791853785515, 0.053916651755571365, -0.054753974080085754, -0.06637602299451828, 0.012047084979712963, -0.20070983469486237, -0.155317485332489, 0.0037713623605668545, 0.09179383516311646, -0.0036609016824513674, 0.05972224473953247, -0.003171430202201009, -0.002014381345361471, 0.08734001964330673, -0.017064638435840607, -0.07902432233095169, -0.07307085394859314, 0.10405541956424713, -0.16636961698532104, 0.19103661179542542, -0.030917534604668617, 0.03236738219857216, 0.1374414712190628, 0.05108274146914482, -0.10591188818216324, 0.05371857434511185, 0.04309898614883423, -0.05253094807267189, 0.009150935336947441, 0.11333851516246796, -0.02862376905977726, 0.07637353241443634, 0.057130005210638046, -0.12466304749250412, -0.01666691154241562, -0.08104794472455978, -0.03984644263982773, -0.014575611799955368, -0.04884210228919983, -0.052809301763772964, 0.10873976349830627, 0.19059345126152039, -0.03712743520736694, 0.0002574656973592937, -0.06195792183279991, 0.01833181269466877, 0.06667295843362808, -0.013868427835404873, -0.06102250516414642, -0.2545025646686554, 0.0016263104043900967, 0.08085769414901733, -0.0015879785642027855, -0.25157907605171204, -0.09404341876506805, -0.0060934340581297874, -0.043532922863960266, -0.0999755933880806, 0.08730117231607437, 0.08989910781383514, 0.044693924486637115, -0.06487496197223663, -0.021771855652332306, -0.0704817920923233, 0.1670045703649521, -0.1401941180229187, -0.05981787294149399 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # MaryaAI/opus-mt-en-ar-finetunedSTEM-v4-en-to-ar This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-ar](https://huggingface.co/Helsinki-NLP/opus-mt-en-ar) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 2.0589 - Validation Loss: 5.3227 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 2.0589 | 5.3227 | 0 | ### Framework versions - Transformers 4.17.0.dev0 - TensorFlow 2.7.0 - Datasets 1.18.3.dev0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_keras_callback"], "model-index": [{"name": "MaryaAI/opus-mt-en-ar-finetunedSTEM-v4-en-to-ar", "results": []}]}
text2text-generation
MaryaAI/opus-mt-en-ar-finetunedSTEM-v4-en-to-ar
[ "transformers", "tf", "tensorboard", "marian", "text2text-generation", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #tf #tensorboard #marian #text2text-generation #generated_from_keras_callback #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
MaryaAI/opus-mt-en-ar-finetunedSTEM-v4-en-to-ar =============================================== This model is a fine-tuned version of Helsinki-NLP/opus-mt-en-ar on an unknown dataset. It achieves the following results on the evaluation set: * Train Loss: 2.0589 * Validation Loss: 5.3227 * Epoch: 0 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * optimizer: {'name': 'AdamWeightDecay', 'learning\_rate': 2e-05, 'decay': 0.0, 'beta\_1': 0.9, 'beta\_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight\_decay\_rate': 0.01} * training\_precision: float32 ### Training results ### Framework versions * Transformers 4.17.0.dev0 * TensorFlow 2.7.0 * Datasets 1.18.3.dev0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* optimizer: {'name': 'AdamWeightDecay', 'learning\\_rate': 2e-05, 'decay': 0.0, 'beta\\_1': 0.9, 'beta\\_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight\\_decay\\_rate': 0.01}\n* training\\_precision: float32", "### Training results", "### Framework versions\n\n\n* Transformers 4.17.0.dev0\n* TensorFlow 2.7.0\n* Datasets 1.18.3.dev0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #tf #tensorboard #marian #text2text-generation #generated_from_keras_callback #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* optimizer: {'name': 'AdamWeightDecay', 'learning\\_rate': 2e-05, 'decay': 0.0, 'beta\\_1': 0.9, 'beta\\_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight\\_decay\\_rate': 0.01}\n* training\\_precision: float32", "### Training results", "### Framework versions\n\n\n* Transformers 4.17.0.dev0\n* TensorFlow 2.7.0\n* Datasets 1.18.3.dev0\n* Tokenizers 0.10.3" ]
[ 61, 118, 4, 37 ]
[ "passage: TAGS\n#transformers #tf #tensorboard #marian #text2text-generation #generated_from_keras_callback #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* optimizer: {'name': 'AdamWeightDecay', 'learning\\_rate': 2e-05, 'decay': 0.0, 'beta\\_1': 0.9, 'beta\\_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight\\_decay\\_rate': 0.01}\n* training\\_precision: float32### Training results### Framework versions\n\n\n* Transformers 4.17.0.dev0\n* TensorFlow 2.7.0\n* Datasets 1.18.3.dev0\n* Tokenizers 0.10.3" ]
[ -0.06070037931203842, 0.061158452183008194, -0.004456176422536373, 0.0751156434416771, 0.12015561014413834, 0.0127524109557271, 0.15327678620815277, 0.1536697894334793, -0.1268380880355835, 0.08234427124261856, 0.14475397765636444, 0.1678203046321869, 0.0357394814491272, 0.14706265926361084, -0.11233256012201309, -0.17277267575263977, 0.04525655880570412, 0.020200056955218315, -0.06189984083175659, 0.08769997954368591, 0.0800870805978775, -0.08768251538276672, 0.1027391254901886, 0.00528719462454319, -0.1740889847278595, 0.04596219211816788, 0.10031870752573013, -0.08795486390590668, 0.10580583661794662, 0.08412681519985199, 0.07928735017776489, 0.033716604113578796, 0.012616877444088459, -0.1653427928686142, 0.013681397773325443, 0.11472342908382416, -0.013981412164866924, 0.08504234999418259, 0.028122704476118088, -0.007953783497214317, 0.14491084218025208, -0.10199485719203949, 0.03171949461102486, 0.04059389606118202, -0.11453147232532501, -0.21964001655578613, -0.12553773820400238, 0.011523924767971039, 0.0350445955991745, 0.07519985735416412, 0.004349736496806145, 0.21276873350143433, 0.007617682684212923, 0.11004115641117096, 0.20641058683395386, -0.33918631076812744, -0.05418549105525017, 0.036068350076675415, 0.02007250115275383, 0.059343121945858, -0.04363005608320236, 0.06692709028720856, 0.06666888296604156, 0.03487785533070564, 0.0922934040427208, -0.03106655552983284, -0.05324151739478111, -0.02738720364868641, -0.0983937531709671, -0.029150672256946564, 0.14105503261089325, 0.01907915063202381, -0.06006820499897003, -0.05397484451532364, -0.08385077118873596, -0.15759924054145813, -0.01370177324861288, -0.06693097949028015, 0.027531396597623825, 0.013667216524481773, -0.07604425400495529, -0.06974149495363235, -0.0776376947760582, -0.04184545949101448, -0.09200047701597214, 0.13745632767677307, 0.01764995977282524, 0.05187712609767914, -0.05011595040559769, 0.042663201689720154, -0.0842055082321167, -0.13422125577926636, -0.006441332399845123, 0.002564195077866316, -0.008281495422124863, -0.03941289335489273, -0.0757720023393631, -0.17155924439430237, 0.07144763320684433, 0.12615779042243958, -0.10744655132293701, 0.09089310467243195, -0.122255340218544, 0.03089269995689392, -0.11745617538690567, 0.12721769511699677, -0.007593574933707714, -0.019116641953587532, 0.057386256754398346, 0.026955390349030495, 0.08386500924825668, -0.050932228565216064, -0.08601131290197372, 0.006599343381822109, 0.08986292034387589, 0.016557004302740097, -0.028423888608813286, 0.09009423106908798, -0.039447885006666183, -0.005413376726210117, -0.003154107602313161, -0.09489557147026062, 0.031862977892160416, -0.014259674586355686, -0.06282015889883041, 0.02965310402214527, 0.06350207328796387, -0.0016765417531132698, -0.06416794657707214, 0.035933490842580795, -0.06270120292901993, -0.028005218133330345, -0.08513785898685455, -0.1321732997894287, 0.04546148702502251, -0.10860607773065567, -0.028632475063204765, -0.0904584601521492, -0.16138139367103577, -0.013369767926633358, 0.05858859792351723, -0.049206677824258804, -0.006762179546058178, -0.03949006274342537, -0.14177840948104858, 0.059763889759778976, -0.018386410549283028, 0.10946249961853027, -0.047861937433481216, 0.06249357759952545, 0.02037409134209156, 0.0780521109700203, -0.11010795086622238, 0.034753140062093735, -0.04370923340320587, 0.006232423707842827, -0.21417035162448883, 0.06616060435771942, -0.05690337345004082, 0.02631409838795662, -0.13538014888763428, -0.05091005936264992, -0.012795188464224339, 0.01191619597375393, 0.11849083006381989, 0.10706179589033127, -0.18519915640354156, -0.062406428158283234, 0.14388826489448547, -0.106814906001091, -0.09650790691375732, 0.12103932350873947, -0.03892093151807785, 0.015522877685725689, 0.08394292742013931, 0.13397656381130219, -0.006558764260262251, -0.09775467962026596, 0.009743991307914257, -0.028440309688448906, -0.013732776045799255, -0.01806531473994255, 0.005945815704762936, -0.03520485386252403, 0.002387397922575474, 0.009809472598135471, 0.008236924186348915, 0.010186798870563507, -0.05744720995426178, -0.059290360659360886, -0.06945443153381348, -0.054758232086896896, 0.04598131775856018, 0.02301851287484169, 0.06634834408760071, -0.10989060997962952, -0.12735319137573242, 0.0629367008805275, 0.02478698082268238, -0.062192998826503754, 0.06277721375226974, -0.09570199251174927, 0.060476530343294144, -0.027597984299063683, 0.021854793652892113, -0.18741294741630554, -0.043497953563928604, 0.025068705901503563, 0.04399627447128296, 0.028417382389307022, 0.006822786759585142, 0.0808941200375557, 0.0112913828343153, -0.06619240343570709, 0.03021344542503357, 0.007461102679371834, 0.007747131399810314, -0.09284333884716034, -0.2462417185306549, 0.021982114762067795, -0.038391727954149246, 0.03876283019781113, -0.20855268836021423, 0.027391444891691208, 0.09703130275011063, 0.1223025694489479, 0.05404415726661682, -0.013689596205949783, -0.04357924684882164, 0.050902992486953735, -0.046830929815769196, -0.06608240306377411, 0.04166577383875847, 0.03318759426474571, -0.12738589942455292, 0.04841937497258186, -0.1787610799074173, 0.13515834510326385, 0.16479799151420593, -0.06856947392225266, -0.0865066722035408, 0.040927644819021225, -0.017641425132751465, -0.023979967460036278, -0.010125568136572838, 0.009832781739532948, 0.1409318596124649, 0.017015188932418823, 0.14868560433387756, -0.07327785342931747, -0.04390307515859604, 0.044067829847335815, -0.0181108508259058, -0.03208581730723381, 0.05508960783481598, 0.003058751579374075, -0.12902189791202545, 0.10937280207872391, 0.12566670775413513, -0.10461403429508209, 0.13471107184886932, -0.05508711189031601, -0.06305256485939026, -0.0374935157597065, 0.025602366775274277, 0.05020792409777641, 0.07208740711212158, -0.10830716043710709, -0.001615127781406045, 0.019798006862401962, 0.024634510278701782, 0.0037849457003176212, -0.17568199336528778, 0.0206934604793787, 0.0013542873784899712, -0.07145343720912933, 0.030824802815914154, 0.027834385633468628, 0.009357606060802937, 0.1275644302368164, 0.022547733038663864, -0.024756040424108505, 0.07397980988025665, -0.002097139833495021, -0.08099927753210068, 0.1871766448020935, -0.1250385195016861, -0.13224951922893524, -0.12494200468063354, -0.07387430965900421, -0.08922093361616135, 0.009613169357180595, 0.03727863356471062, -0.10069918632507324, -0.06635339558124542, -0.0813298299908638, -0.006625290494412184, -0.003190798917785287, 0.0597354955971241, 0.06439443677663803, -0.014293921180069447, 0.12157826125621796, -0.11117378622293472, -0.04352204129099846, -0.03230446204543114, -0.0365816093981266, 0.028443122282624245, 0.02430761232972145, 0.052509672939777374, 0.10497798025608063, -0.04607308283448219, 0.038105309009552, -0.055489588528871536, 0.18139447271823883, -0.056883491575717926, 0.014128751121461391, 0.16239401698112488, -0.02805701456964016, 0.06114408001303673, 0.10373081266880035, 0.03557028993964195, -0.11058373004198074, 0.027472244575619698, 0.07967094331979752, -0.0472482405602932, -0.25669151544570923, -0.013910564593970776, -0.04118892922997475, -0.05749407410621643, 0.040857430547475815, 0.048914600163698196, 0.1505439281463623, 0.027085445821285248, 0.015333125367760658, 0.1127723902463913, 0.015242889523506165, 0.07880596071481705, 0.20468087494373322, 0.05697300285100937, 0.13268239796161652, -0.06329577416181564, -0.0015090948436409235, 0.0769701674580574, -0.011625480838119984, 0.19745078682899475, 0.017949605360627174, 0.12076675146818161, 0.07660165429115295, 0.0593876950442791, -0.00021941852173767984, 0.01649831235408783, 0.005539420526474714, -0.0280506182461977, -0.006695519667118788, -0.07328999042510986, -0.032258156687021255, 0.03440922871232033, -0.09785357117652893, 0.04484977945685387, -0.08074244856834412, 0.0900779440999031, 0.0665976032614708, 0.2666766941547394, 0.04953596368432045, -0.32685020565986633, -0.090544693171978, 0.010696430690586567, -0.02667842246592045, -0.031047921627759933, -0.003330807900056243, 0.10385939478874207, -0.04468756169080734, 0.11897508800029755, -0.08566635847091675, 0.07291435450315475, -0.0287823174148798, 0.05383109673857689, 0.04678700119256973, 0.12428013235330582, -0.004462537355720997, 0.000268005853286013, -0.3551347553730011, 0.26320719718933105, 0.04780290648341179, 0.12762852013111115, -0.07981927692890167, 0.037975013256073, 0.04457797482609749, 0.045196011662483215, 0.07607528567314148, -0.03640452399849892, -0.1429131180047989, -0.07843118160963058, -0.050461944192647934, 0.010903333313763142, 0.12089026719331741, 0.08906762301921844, 0.0866192877292633, -0.050537873059511185, 0.0119329784065485, 0.08537604659795761, -0.013544414192438126, -0.1356002241373062, -0.07139768451452255, 0.024483125656843185, 0.08430130779743195, -0.07874131947755814, -0.06508312374353409, -0.087003692984581, -0.07175944745540619, 0.2252531498670578, -0.056325022131204605, -0.042024437338113785, -0.13852064311504364, 0.10693584382534027, 0.059810571372509, -0.05924364551901817, 0.043799612671136856, -0.0068463827483356, 0.08133811503648758, 0.03327763080596924, -0.13157296180725098, 0.1264551728963852, -0.035230398178100586, -0.1749436855316162, -0.047815706580877304, 0.0825548842549324, 0.009070915170013905, 0.04473312944173813, 0.003674520645290613, 0.05182809755206108, 0.043527696281671524, -0.08731061220169067, 0.07276859879493713, 0.020107394084334373, 0.05083657056093216, -0.030577978119254112, -0.016538769006729126, -0.04476923123002052, -0.034060146659612656, 0.0002864022389985621, 0.14728331565856934, 0.24319280683994293, -0.08476060628890991, 0.051032330840826035, 0.024516195058822632, -0.08228301256895065, -0.2197219878435135, 0.0868685245513916, 0.053749412298202515, -0.0031819138675928116, -0.038060709834098816, -0.14605900645256042, 0.062377817928791046, 0.08190815150737762, -0.01055074017494917, 0.08248402178287506, -0.27812567353248596, -0.1591847836971283, 0.07971492409706116, 0.12686587870121002, 0.16644874215126038, -0.1647394895553589, -0.06062733754515648, -0.066921167075634, -0.060609906911849976, 0.13874736428260803, -0.17773205041885376, 0.08914800733327866, 0.006664982996881008, 0.03507956117391586, 0.004206065554171801, -0.043874431401491165, 0.08572067320346832, -0.046440884470939636, 0.09598776698112488, -0.07082223147153854, 0.014208106324076653, 0.14518284797668457, -0.0690360739827156, 0.04033802077174187, -0.09081243723630905, 0.01989029161632061, -0.06184135377407074, 0.00006537757144542411, -0.06799860298633575, 0.05799349024891853, -0.034564536064863205, -0.03377771005034447, -0.022517703473567963, 0.005638294853270054, 0.06008308008313179, -0.038793761283159256, 0.1717928946018219, -0.016966579481959343, 0.1691121906042099, 0.20636792480945587, 0.11296702921390533, -0.07959619909524918, 0.0537002757191658, 0.07657694071531296, -0.052593015134334564, 0.06981735676527023, -0.19343386590480804, 0.0511636920273304, 0.09855787456035614, -0.013000178150832653, 0.11567181348800659, 0.061841126531362534, -0.06115414574742317, 0.03495871275663376, 0.07723477482795715, -0.15560327470302582, -0.1126142218708992, 0.021583762019872665, -0.04639720544219017, -0.06575185060501099, 0.07727095484733582, 0.16784773766994476, -0.03153105080127716, 0.03223942965269089, 0.020109448581933975, 0.006947566755115986, -0.06405480951070786, 0.1415451467037201, 0.015381278470158577, 0.02545832470059395, -0.09025417268276215, 0.1270751953125, 0.01790083386003971, -0.1095116138458252, 0.11229028552770615, 0.07185599952936172, -0.07959064841270447, -0.020230716094374657, 0.05568312853574753, 0.13950388133525848, -0.02724088542163372, -0.06602226197719574, -0.14183197915554047, -0.13035228848457336, 0.07714051753282547, 0.26536810398101807, 0.05020495876669884, 0.033304110169410706, -0.05020379647612572, -0.0024988935329020023, -0.10756576061248779, 0.06388965994119644, 0.029714887961745262, 0.06067033112049103, -0.13809923827648163, 0.15280845761299133, -0.011514020152390003, -0.004555569030344486, -0.039137065410614014, 0.04137098044157028, -0.1387707144021988, -0.012160783633589745, -0.1633603870868683, 0.0015465907054021955, -0.010579143650829792, -0.025712544098496437, 0.009930322878062725, -0.058375678956508636, -0.09544231742620468, 0.04819018021225929, -0.0862315222620964, -0.032278481870889664, 0.03831526264548302, 0.021196220070123672, -0.1383451521396637, -0.03520824760198593, -0.013895710930228233, -0.07540719956159592, 0.06049509719014168, 0.04139648377895355, -0.011789163574576378, 0.051732007414102554, -0.09965828061103821, 0.008905836381018162, 0.09050609171390533, -0.007519842125475407, 0.06050853431224823, -0.07926332950592041, 0.005875745788216591, 0.01445066649466753, 0.05623077601194382, 0.03408520668745041, 0.13637925684452057, -0.0811580941081047, -0.012761102989315987, -0.036926575005054474, -0.03538299351930618, -0.04955979809165001, 0.0719265416264534, 0.15776121616363525, 0.0031642497051507235, 0.1763617992401123, -0.11488934606313705, -0.020944057032465935, -0.16935011744499207, 0.028352266177535057, 0.014114352874457836, -0.12305566668510437, -0.0919525995850563, -0.01047652866691351, 0.08706722408533096, -0.08484093099832535, 0.10746826976537704, -0.01757732778787613, 0.053816717118024826, 0.07367777079343796, -0.06520240008831024, -0.08089267462491989, 0.03539756312966347, 0.18765248358249664, 0.039540573954582214, -0.02661222405731678, 0.022233905270695686, 0.0034563776571303606, 0.10049881041049957, 0.08276163786649704, 0.23940235376358032, 0.12086741626262665, -0.005616902839392424, 0.15084543824195862, 0.060874804854393005, -0.02989480271935463, -0.139573872089386, 0.13122542202472687, -0.09988699108362198, 0.16378648579120636, -0.04203303903341293, 0.09112705290317535, 0.12511633336544037, -0.15253235399723053, 0.025470919907093048, -0.04484774172306061, -0.07217678427696228, -0.15978281199932098, -0.10539107769727707, -0.10611690580844879, -0.1339293271303177, 0.005665993317961693, -0.11250197142362595, 0.06600706279277802, 0.017471104860305786, 0.030608803033828735, -0.024853644892573357, 0.1253286600112915, -0.03153066709637642, -0.004065752495080233, 0.09385529160499573, -0.006885821931064129, -0.02790972962975502, -0.04343093931674957, -0.07341668754816055, 0.029503466561436653, 0.009341062977910042, 0.028145821765065193, 0.02123294025659561, 0.012796862050890923, 0.054518599063158035, -0.04904374107718468, -0.09994018077850342, 0.04442330822348595, 0.05332189053297043, 0.03888171166181564, 0.06923804432153702, 0.03777359053492546, -0.01950138993561268, -0.016916368156671524, 0.15220807492733002, -0.0965166836977005, -0.051148369908332825, -0.15630890429019928, 0.23901644349098206, 0.022308001294732094, 0.025020847097039223, -0.0038670708891004324, -0.07662048935890198, -0.044830091297626495, 0.19596916437149048, 0.16981442272663116, -0.033716462552547455, -0.007061294745653868, 0.03161868825554848, -0.004353469703346491, -0.04789094254374504, 0.13791222870349884, 0.08331748098134995, -0.009839886799454689, -0.03762265667319298, -0.06601960211992264, -0.018952101469039917, -0.010864386335015297, -0.05278732627630234, 0.09166796505451202, 0.017245758324861526, -0.018829217180609703, 0.002558856038376689, 0.041004426777362823, -0.030825283378362656, -0.08944044262170792, 0.03553049638867378, -0.2119281142950058, -0.13810761272907257, 0.008463422767817974, 0.01362769678235054, -0.03184139356017113, 0.04609926789999008, -0.0077844648621976376, 0.004452938213944435, 0.08581830561161041, -0.037353504449129105, -0.06123840808868408, -0.059167325496673584, 0.05574207007884979, -0.11775559931993484, 0.1573960930109024, -0.019631054252386093, 0.027484580874443054, 0.13818958401679993, 0.03630997985601425, -0.09341289848089218, 0.057674773037433624, 0.028921792283654213, -0.09570124000310898, -0.003719382919371128, 0.09282200038433075, -0.030471716076135635, 0.11074072122573853, 0.07217935472726822, -0.07387185841798782, 0.020124388858675957, -0.10383020341396332, -0.0871717557311058, -0.0349394828081131, -0.040992431342601776, -0.09925498813390732, 0.11625830084085464, 0.20733653008937836, -0.012492598034441471, 0.03664594143629074, -0.05800032988190651, 0.0023533471394330263, 0.06640983372926712, 0.00486998725682497, -0.058866724371910095, -0.23171398043632507, 0.051812369376420975, 0.10604822635650635, 0.01022416539490223, -0.24496512115001678, -0.07597032934427261, -0.01356835663318634, -0.01766197755932808, -0.12527768313884735, 0.07901881635189056, 0.0899980440735817, 0.04220769926905632, -0.04869357496500015, -0.12405466288328171, -0.021513264626264572, 0.14898738265037537, -0.11918462812900543, -0.06310315430164337 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # opus-mt-en-ro-finetuned-en-to-ro This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-ro](https://huggingface.co/Helsinki-NLP/opus-mt-en-ro) on the wmt16 dataset. It achieves the following results on the evaluation set: - Loss: 1.2886 - Bleu: 28.1599 - Gen Len: 34.1236 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:| | 0.7437 | 1.0 | 38145 | 1.2886 | 28.1599 | 34.1236 | ### Framework versions - Transformers 4.10.0 - Pytorch 1.9.0+cu102 - Datasets 1.11.0 - Tokenizers 0.10.3
{"tags": ["generated_from_trainer"], "datasets": ["wmt16"], "metrics": ["bleu"], "model-index": [{"name": "opus-mt-en-ro-finetuned-en-to-ro", "results": [{"task": {"type": "text2text-generation", "name": "Sequence-to-sequence Language Modeling"}, "dataset": {"name": "wmt16", "type": "wmt16", "args": "ro-en"}, "metrics": [{"type": "bleu", "value": 28.1599, "name": "Bleu"}]}]}]}
text2text-generation
MaryaAI/opus-mt-en-ro-finetuned-en-to-ro
[ "transformers", "pytorch", "tensorboard", "marian", "text2text-generation", "generated_from_trainer", "dataset:wmt16", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #marian #text2text-generation #generated_from_trainer #dataset-wmt16 #model-index #autotrain_compatible #endpoints_compatible #region-us
opus-mt-en-ro-finetuned-en-to-ro ================================ This model is a fine-tuned version of Helsinki-NLP/opus-mt-en-ro on the wmt16 dataset. It achieves the following results on the evaluation set: * Loss: 1.2886 * Bleu: 28.1599 * Gen Len: 34.1236 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 16 * eval\_batch\_size: 16 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 1 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.10.0 * Pytorch 1.9.0+cu102 * Datasets 1.11.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 1\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.10.0\n* Pytorch 1.9.0+cu102\n* Datasets 1.11.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #marian #text2text-generation #generated_from_trainer #dataset-wmt16 #model-index #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 1\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.10.0\n* Pytorch 1.9.0+cu102\n* Datasets 1.11.0\n* Tokenizers 0.10.3" ]
[ 61, 113, 4, 34 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #marian #text2text-generation #generated_from_trainer #dataset-wmt16 #model-index #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 1\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.10.0\n* Pytorch 1.9.0+cu102\n* Datasets 1.11.0\n* Tokenizers 0.10.3" ]
[ -0.10694894939661026, 0.048792969435453415, -0.002790086204186082, 0.11178869754076004, 0.16573579609394073, 0.025855736806988716, 0.1288929283618927, 0.12266480922698975, -0.1116282269358635, 0.023251350969076157, 0.12242414057254791, 0.144574373960495, 0.013426206074655056, 0.09704633802175522, -0.04361829161643982, -0.2809930443763733, -0.015639865770936012, 0.04371869936585426, -0.07936213910579681, 0.13602827489376068, 0.07992104440927505, -0.14486603438854218, 0.08315518498420715, 0.014346594922244549, -0.19771385192871094, 0.01816929318010807, 0.011567064560949802, -0.05044018104672432, 0.15052931010723114, 0.03240957111120224, 0.14147165417671204, 0.018742818385362625, 0.09605638682842255, -0.17514589428901672, 0.018416129052639008, 0.052791204303503036, 0.016324544325470924, 0.0954740047454834, 0.08149068802595139, -0.023590095341205597, 0.13886944949626923, -0.08830520510673523, 0.05164487659931183, 0.020209548994898796, -0.13714349269866943, -0.20546723902225494, -0.0660155713558197, 0.008112269453704357, 0.050606869161129, 0.1062740907073021, -0.016574392095208168, 0.13554206490516663, -0.08615300059318542, 0.10029897838830948, 0.22699172794818878, -0.25006479024887085, -0.07323779165744781, 0.01255999319255352, 0.026666849851608276, 0.08037911355495453, -0.09518270939588547, -0.007210368290543556, 0.04100916162133217, 0.051388029009103775, 0.12801869213581085, -0.029331866651773453, -0.08835230022668839, 0.025572938844561577, -0.1433047503232956, -0.01499395351856947, 0.1159430593252182, 0.035508353263139725, -0.01955139823257923, -0.027992047369480133, -0.06788643449544907, -0.1353958696126938, -0.03773680701851845, -0.018886903300881386, 0.035697851330041885, -0.03613092005252838, -0.11525940150022507, -0.02389642968773842, -0.0999218299984932, -0.062398433685302734, -0.06790037453174591, 0.13650673627853394, 0.03311125934123993, 0.0049827080219984055, -0.052314165979623795, 0.10053828358650208, -0.003219478763639927, -0.1370304673910141, 0.029895292595028877, 0.025099467486143112, -0.01859498955309391, -0.053042568266391754, -0.07018301635980606, -0.1064935252070427, 0.00011358472693245858, 0.07549838721752167, -0.07070931047201157, 0.04933852329850197, 0.02916497364640236, 0.029900353401899338, -0.08134818822145462, 0.1782740354537964, -0.06111939996480942, -0.02290029078722, -0.00632605841383338, 0.059714220464229584, -0.00897751934826374, -0.024078989401459694, -0.1076594814658165, -0.00011409032595111057, 0.09879758208990097, 0.00045652902917936444, -0.06140159070491791, 0.0717785507440567, -0.043315589427948, -0.03900573030114174, -0.02958311140537262, -0.08885051310062408, 0.04183217138051987, 0.006912080105394125, -0.09067416936159134, 0.010262948460876942, 0.022410279139876366, 0.024214796721935272, -0.01760883629322052, 0.11045020073652267, -0.09436303377151489, 0.042744848877191544, -0.10363337397575378, -0.14183557033538818, 0.007622275967150927, -0.06387384980916977, 0.013474997133016586, -0.08267856389284134, -0.1745734065771103, -0.02103320322930813, 0.042234305292367935, -0.03088977187871933, -0.03116919845342636, -0.06793846935033798, -0.061151180416345596, 0.01830609329044819, 0.0020478456281125546, 0.1534125655889511, -0.05352383479475975, 0.10450789332389832, 0.037691883742809296, 0.06128036975860596, -0.027092264965176582, 0.05623069033026695, -0.09444255381822586, 0.011851447634398937, -0.17122653126716614, 0.07464044541120529, -0.03007192723453045, 0.06090477108955383, -0.08477339893579483, -0.10253880172967911, -0.007164976093918085, 0.007315788418054581, 0.09727027267217636, 0.10495991259813309, -0.18866482377052307, -0.0938577800989151, 0.17301252484321594, -0.053057245910167694, -0.08668404072523117, 0.12327547371387482, -0.08184365183115005, 0.0460403710603714, 0.0747564509510994, 0.17286263406276703, 0.04934366047382355, -0.0562814362347126, 0.03689990192651749, -0.032532285898923874, 0.05717899650335312, -0.024444544687867165, 0.055027976632118225, 0.004833775106817484, 0.0029726391658186913, 0.013341877609491348, -0.006172177381813526, 0.0560496486723423, -0.12053035199642181, -0.08840518444776535, -0.0361567959189415, -0.0974767729640007, 0.06431390345096588, 0.06510378420352936, 0.076154924929142, -0.10946150869131088, -0.09079554677009583, 0.08213484287261963, 0.07983621209859848, -0.06989768892526627, 0.030077317729592323, -0.069059357047081, 0.053795840591192245, -0.0482192263007164, -0.019655941054224968, -0.18755929172039032, -0.01976277306675911, -0.00021672958973795176, 0.022410141304135323, 0.03977096080780029, 0.02539892867207527, 0.08700074255466461, 0.08104118704795837, -0.049351539462804794, -0.015814580023288727, -0.037883348762989044, -0.0013308541383594275, -0.13227829337120056, -0.22189702093601227, -0.03371009975671768, -0.02041027322411537, 0.13499747216701508, -0.23507529497146606, 0.03514304384589195, -0.014751264825463295, 0.08001154661178589, 0.0153891546651721, -0.018340330570936203, -0.03358825668692589, 0.08929876238107681, -0.03745889291167259, -0.042068272829055786, 0.07481563091278076, -0.005761567037552595, -0.10695712268352509, -0.03788764029741287, -0.14379431307315826, 0.13267524540424347, 0.12353669852018356, -0.14860424399375916, -0.08068394660949707, -0.008627803064882755, -0.05256453529000282, -0.031915098428726196, -0.058816585689783096, 0.02812332473695278, 0.20046669244766235, 0.0012543813791126013, 0.14996463060379028, -0.06633296608924866, -0.03686882182955742, 0.019028756767511368, -0.02937125228345394, 0.03096602112054825, 0.13815732300281525, 0.10086896270513535, -0.08950472623109818, 0.11429859697818756, 0.13307130336761475, -0.08676139265298843, 0.1569412499666214, -0.019770942628383636, -0.08282365649938583, -0.02570967748761177, -0.043666206300258636, -0.0017302915221080184, 0.08805399388074875, -0.1490209400653839, -0.009672414511442184, 0.013976852409541607, 0.022210940718650818, 0.02062201499938965, -0.2221003770828247, -0.041826795786619186, 0.05575255677103996, -0.031681228429079056, -0.03590768575668335, -0.023491675034165382, 0.02051115781068802, 0.11494060605764389, -0.0013926040846854448, -0.0633813813328743, 0.01702822558581829, 0.0008544152951799333, -0.07961942255496979, 0.2091781049966812, -0.07559600472450256, -0.13961023092269897, -0.10503547638654709, -0.08615940064191818, -0.04707825556397438, 0.012076769955456257, 0.05267319828271866, -0.10375439375638962, -0.01535924430936575, -0.06322609633207321, 0.06583265215158463, -0.018968747928738594, 0.02630159631371498, 0.0011905241990461946, -0.010475045070052147, 0.06712181121110916, -0.10938134789466858, -0.00004232904757373035, -0.05624876916408539, -0.07039100676774979, 0.05523444712162018, 0.03822503983974457, 0.13442690670490265, 0.16342489421367645, -0.030652865767478943, 0.01699921488761902, -0.02527019754052162, 0.2427036464214325, -0.06892339140176773, -0.018896490335464478, 0.12498848140239716, -0.01476375199854374, 0.04944517835974693, 0.09754829108715057, 0.07937346398830414, -0.0790199488401413, 0.0040877521969377995, 0.050234753638505936, -0.0400298610329628, -0.2172156572341919, -0.03575459495186806, -0.046441636979579926, -0.01825897768139839, 0.0836474597454071, 0.008549201302230358, 0.04826594889163971, 0.07288409769535065, 0.03949173539876938, 0.06030017137527466, -0.03541494905948639, 0.051283761858940125, 0.10975464433431625, 0.04898194596171379, 0.14172910153865814, -0.034792546182870865, -0.0799107626080513, 0.03666917607188225, -0.02826891653239727, 0.21958276629447937, -0.0007593432674184442, 0.1360091120004654, 0.056046511977910995, 0.1513132005929947, 0.008422287181019783, 0.066748708486557, 0.005974397528916597, -0.04659159854054451, -0.01831495575606823, -0.04375552758574486, -0.020795494318008423, 0.01262502372264862, -0.046333763748407364, 0.06205061450600624, -0.14067231118679047, 0.014277231879532337, 0.049198590219020844, 0.23067082464694977, 0.03973601758480072, -0.32916828989982605, -0.09289860725402832, 0.0018225625390186906, -0.031205609440803528, -0.01011478342115879, 0.010456482879817486, 0.10572495311498642, -0.09654612839221954, 0.032747458666563034, -0.07242158055305481, 0.1111411526799202, -0.05187908187508583, 0.05904395505785942, 0.0433998741209507, 0.1365816742181778, -0.019535837695002556, 0.07714942842721939, -0.30323970317840576, 0.28953856229782104, 0.016859492287039757, 0.06929269433021545, -0.07369166612625122, -0.01973344199359417, 0.03845273703336716, 0.056231312453746796, 0.03668476641178131, -0.015965020284056664, -0.039174534380435944, -0.2034686952829361, -0.04748492315411568, 0.03401903435587883, 0.1058647632598877, -0.019264303147792816, 0.1203852966427803, -0.020677905529737473, 0.013242448680102825, 0.07749474048614502, 0.01048422884196043, -0.08796239644289017, -0.08953332155942917, -0.017009146511554718, 0.017892606556415558, -0.043340932577848434, -0.05745042487978935, -0.1193782389163971, -0.11190260201692581, 0.14007578790187836, 0.027874428778886795, -0.019584666937589645, -0.12169092893600464, 0.10772459954023361, 0.07921986281871796, -0.09110105782747269, 0.009247480891644955, 0.021911771968007088, 0.0805264338850975, 0.022484809160232544, -0.0648416057229042, 0.12046527862548828, -0.05939435586333275, -0.16248345375061035, -0.06326931715011597, 0.09196949750185013, 0.06097270920872688, 0.07651949673891068, -0.017725935205817223, 0.018068958073854446, -0.034446462988853455, -0.07717160135507584, 0.03578384965658188, -0.012223465368151665, 0.04165071249008179, 0.024790260940790176, -0.04705756530165672, 0.04002489894628525, -0.07177809625864029, -0.02864108979701996, 0.19210490584373474, 0.22962753474712372, -0.08984348177909851, 0.013414278626441956, 0.03737253323197365, -0.07476802170276642, -0.1840505301952362, 0.07428209483623505, 0.062465205788612366, 0.018046990036964417, 0.057173553854227066, -0.19580210745334625, 0.10640574991703033, 0.10088711977005005, 0.007146789692342281, 0.08920960873365402, -0.3434582054615021, -0.13185985386371613, 0.10140368342399597, 0.15528886020183563, 0.10518549382686615, -0.1416020542383194, -0.014265774749219418, -0.01869671232998371, -0.1088748648762703, 0.10956329107284546, -0.12515902519226074, 0.1223660409450531, -0.013347581960260868, 0.11690730601549149, 0.018064072355628014, -0.05257781967520714, 0.1082037165760994, 0.00686259800568223, 0.09821128845214844, -0.060445595532655716, -0.007637964095920324, 0.05411297455430031, -0.03395094722509384, -0.014405284076929092, -0.07113759964704514, 0.02175237610936165, -0.0947398990392685, -0.027255935594439507, -0.08838067948818207, 0.033925969153642654, -0.038814887404441833, -0.06951263546943665, -0.01762976124882698, 0.017138948664069176, 0.051431551575660706, -0.011161336675286293, 0.11058362573385239, -0.01615878753364086, 0.16194362938404083, 0.08722317218780518, 0.10233920067548752, -0.06812163442373276, -0.03164725750684738, -0.005191689822822809, -0.009365729987621307, 0.05014100298285484, -0.13272212445735931, 0.028034111484885216, 0.1423814594745636, 0.026593424379825592, 0.13966257870197296, 0.08662838488817215, -0.035737935453653336, 0.019118139520287514, 0.05294618010520935, -0.15366102755069733, -0.11030051112174988, -0.022052353248000145, -0.055972203612327576, -0.10205932706594467, 0.03997904434800148, 0.11085823178291321, -0.06127987056970596, -0.012658881954848766, -0.011706339195370674, -0.008247379213571548, -0.05586332082748413, 0.209926575422287, 0.05886492505669594, 0.04683186486363411, -0.10123831033706665, 0.05793618783354759, 0.04775988683104515, -0.08198419958353043, 0.018013419583439827, 0.11028298735618591, -0.06545738130807877, -0.03970271721482277, 0.06925110518932343, 0.23897014558315277, -0.08859915286302567, -0.031757134944200516, -0.15190109610557556, -0.12177938222885132, 0.0815325379371643, 0.17316199839115143, 0.09189572930335999, -0.002216153545305133, -0.06582489609718323, 0.016170933842658997, -0.13796211779117584, 0.09008077532052994, 0.07425764948129654, 0.06328366696834564, -0.12195198237895966, 0.20526371896266937, 0.0017505792202427983, 0.04026666656136513, -0.024999024346470833, 0.012577297165989876, -0.09782573580741882, 0.018315231427550316, -0.1684359610080719, -0.041559454053640366, -0.029159583151340485, -0.0020295921713113785, -0.018127137795090675, -0.06304881721735, -0.05872315913438797, 0.0012240156065672636, -0.11469550430774689, -0.024740949273109436, 0.02876153402030468, 0.033039506524801254, -0.10906796902418137, -0.03283536806702614, 0.017587849870324135, -0.05705373361706734, 0.06180526688694954, 0.046181820333004, 0.010696503333747387, 0.05040065199136734, -0.14763525128364563, 0.014784167520701885, 0.03870115056633949, 0.003264808561652899, 0.0698641985654831, -0.06874242424964905, -0.007360030896961689, -0.02004767768085003, 0.0763125792145729, 0.014457088895142078, 0.06749141216278076, -0.11519233882427216, 0.012605356052517891, -0.016596654430031776, -0.08665349334478378, -0.06735050678253174, 0.046717703342437744, 0.058282747864723206, 0.024199288338422775, 0.18044500052928925, -0.08774545788764954, 0.06468677520751953, -0.23242922127246857, 0.0004172914777882397, -0.003420609747990966, -0.10391148924827576, -0.1093013808131218, -0.07768376916646957, 0.08458466082811356, -0.07038512080907822, 0.11701253801584244, 0.026423873379826546, 0.06319983303546906, 0.02879505045711994, -0.025151345878839493, 0.012103159911930561, 0.014439023099839687, 0.20628175139427185, 0.039734501391649246, -0.04406951367855072, 0.06365540623664856, 0.0673435628414154, 0.11058097332715988, 0.15964432060718536, 0.2160026729106903, 0.1442095935344696, 0.00664078164845705, 0.07899003475904465, 0.047113917768001556, -0.04659601300954819, -0.14605706930160522, 0.03661895543336868, -0.02809658832848072, 0.08806711435317993, -0.030829625204205513, 0.2004094272851944, 0.0837770476937294, -0.15755844116210938, 0.05174877122044563, -0.05337771773338318, -0.09519543498754501, -0.11865457147359848, -0.06004166975617409, -0.08806879818439484, -0.13747087121009827, -0.005576504394412041, -0.12430163472890854, 0.033703457564115524, 0.0827329158782959, 0.01702370122075081, -0.02602509967982769, 0.1560538411140442, 0.048202019184827805, 0.02059660665690899, 0.05673948675394058, 0.0004565258277580142, -0.005013763904571533, -0.08347959071397781, -0.07301824539899826, 0.0017005446134135127, -0.005254649557173252, 0.028629986569285393, -0.05777451768517494, -0.0686500072479248, 0.029584191739559174, -0.02974606677889824, -0.11894380301237106, 0.012704036198556423, 0.015112104825675488, 0.07291179150342941, 0.04133160784840584, 0.013322904706001282, -0.0015546145150437951, -0.02378178760409355, 0.23698610067367554, -0.07218176871538162, -0.07532879710197449, -0.09819440543651581, 0.26586994528770447, 0.03142999857664108, -0.005226845853030682, 0.027732376009225845, -0.06885024160146713, 0.015036963857710361, 0.2511301040649414, 0.21760053932666779, -0.11488956958055496, -0.006825556047260761, -0.0011385499965399504, -0.007443624082952738, -0.013979543000459671, 0.10310970991849899, 0.10845239460468292, 0.03462192788720131, -0.1043379008769989, -0.0349031500518322, -0.0635479986667633, -0.010838418267667294, -0.03693486005067825, 0.08301406353712082, 0.06545372307300568, 0.010230978019535542, -0.03582517430186272, 0.06091444939374924, -0.07931294292211533, -0.0806032046675682, 0.020295102149248123, -0.2097596377134323, -0.15973910689353943, -0.03216949850320816, 0.0879947692155838, 0.021856725215911865, 0.07981565594673157, -0.030083734542131424, 0.0034721449483186007, 0.059439610689878464, -0.014995012432336807, -0.08068810403347015, -0.07779760658740997, 0.10202565044164658, -0.12319197505712509, 0.16945502161979675, -0.04807980731129646, 0.03524726256728172, 0.13182470202445984, 0.06372413039207458, -0.06489839404821396, 0.06748200207948685, 0.043755777180194855, -0.061258938163518906, 0.022940469905734062, 0.12014190107584, -0.03271432965993881, 0.05477708578109741, 0.05266854912042618, -0.16089476644992828, 0.03488043695688248, -0.08567921817302704, -0.052016716450452805, -0.01625927723944187, -0.044712550938129425, -0.04488392919301987, 0.12813499569892883, 0.23760277032852173, -0.02262459136545658, 0.01847737841308117, -0.07588745653629303, 0.0022036328446120024, 0.05901602283120155, 0.056871671229600906, -0.0793352946639061, -0.24563837051391602, -0.003046188037842512, 0.06650310754776001, -0.019004564732313156, -0.27310001850128174, -0.09750928729772568, 0.0037679264787584543, -0.07500232011079788, -0.08158683031797409, 0.09470707178115845, 0.10146239399909973, 0.06116018444299698, -0.04911862313747406, -0.051682986319065094, -0.06554578989744186, 0.1756150722503662, -0.1429760903120041, -0.07604160159826279 ]
null
null
transformers
# Rick and Morty DialoGPT Model
{"tags": ["conversational"]}
text-generation
MathiasVS/DialoGPT-small-RickAndMorty
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "has_space", "text-generation-inference", "region:us" ]
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us
# Rick and Morty DialoGPT Model
[ "# Rick and Morty DialoGPT Model" ]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us \n", "# Rick and Morty DialoGPT Model" ]
[ 55, 10 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us \n# Rick and Morty DialoGPT Model" ]
[ -0.012218646705150604, 0.11012493818998337, -0.004753046669065952, 0.011482016183435917, 0.10922618210315704, -0.0047217002138495445, 0.12140238285064697, 0.14385409653186798, -0.033700358122587204, -0.005461092572659254, 0.1498766839504242, 0.16388873755931854, -0.017840679734945297, 0.03737715259194374, -0.07334701716899872, -0.332166850566864, 0.04987460374832153, 0.04450993239879608, -0.06203129515051842, 0.10582305490970612, 0.09896685928106308, -0.056205522269010544, 0.0691862553358078, 0.01474919356405735, -0.12783841788768768, 0.02392154186964035, 0.004734853748232126, -0.10009226202964783, 0.1134977787733078, 0.061018288135528564, 0.05055106803774834, 0.03925260901451111, -0.05042177438735962, -0.1095414012670517, 0.04784393683075905, 0.01097696553915739, -0.04420171678066254, 0.08085455745458603, 0.00014393268793355674, -0.08086337149143219, 0.13265959918498993, 0.08881499618291855, -0.007158554159104824, 0.016123462468385696, -0.15919001400470734, -0.057408858090639114, -0.021580029278993607, 0.03589293733239174, 0.02664569392800331, 0.10619866102933884, -0.04480103775858879, 0.11487600952386856, -0.06978332251310349, 0.1035069152712822, 0.15333200991153717, -0.28518885374069214, -0.013032075949013233, 0.17740067839622498, 0.07751460373401642, 0.040202945470809937, -0.052221156656742096, 0.09576261043548584, 0.015396954491734505, -0.008652553893625736, -0.020643865689635277, -0.0671873390674591, -0.09115112572908401, 0.058298420161008835, -0.09837064146995544, -0.01150621846318245, 0.23724694550037384, -0.03203151747584343, 0.10251042991876602, -0.06725548207759857, -0.09915158897638321, -0.023112693801522255, -0.029263202100992203, -0.02246464230120182, -0.08582388609647751, 0.07749481499195099, -0.04366397112607956, -0.08723761141300201, -0.12174798548221588, -0.012956912629306316, -0.16618022322654724, 0.15775366127490997, 0.02010263316333294, 0.03544476255774498, -0.1991093009710312, 0.08241117000579834, -0.05823136866092682, -0.11188595741987228, 0.03772247955203056, -0.07637869566679001, 0.0029892544262111187, 0.02183089777827263, -0.06241137161850929, -0.0022938859183341265, 0.08324437588453293, 0.1131434291601181, -0.015470205806195736, 0.008973938412964344, -0.008262830786406994, 0.056631892919540405, 0.05512380599975586, 0.05365004763007164, -0.05228153243660927, -0.01717258244752884, 0.005149588454514742, -0.06776009500026703, 0.00042614113772287965, -0.08021619915962219, -0.20395980775356293, -0.00033033519866876304, 0.06519175320863724, 0.032887548208236694, 0.04662671312689781, 0.13030782341957092, 0.012295486405491829, -0.025766756385564804, 0.04171516001224518, -0.02293097786605358, 0.009424208663403988, 0.02369236946105957, 0.003333800472319126, 0.11852909624576569, 0.021129941567778587, 0.052842266857624054, -0.09135326743125916, 0.0007817943696863949, -0.054163239896297455, -0.006869629491120577, -0.04118172824382782, -0.09413933753967285, 0.008149567060172558, -0.013766219839453697, 0.011715522967278957, -0.13694879412651062, -0.10854427516460419, -0.003291090251877904, 0.0077230422757565975, -0.05694065988063812, -0.10586941242218018, -0.06722350418567657, -0.05322066694498062, 0.07519298791885376, -0.05841159075498581, 0.04727711156010628, -0.040322814136743546, 0.08301231265068054, -0.043912578374147415, 0.09309874475002289, -0.10421597957611084, 0.09537427127361298, -0.05474236235022545, -0.035369567573070526, -0.06667336076498032, 0.09703993052244186, 0.004938039928674698, 0.03012920543551445, -0.028695788234472275, -0.019777672365307808, -0.12707214057445526, 0.07411713153123856, -0.024865278974175453, 0.20175084471702576, -0.1175624430179596, -0.08428037166595459, 0.195933997631073, -0.036187078803777695, -0.11221350729465485, 0.11850284039974213, -0.034433513879776, 0.07956098765134811, 0.07631631195545197, 0.20461463928222656, 0.0456840842962265, -0.01447229366749525, 0.07750944048166275, 0.12406671047210693, -0.059202443808317184, 0.005968018434941769, 0.03479514643549919, -0.020509440451860428, -0.05282074585556984, 0.011437281966209412, 0.07413996756076813, 0.046558450907468796, -0.04991724714636803, -0.01914825290441513, -0.0028027433436363935, -0.005267610773444176, 0.08600891381502151, -0.011277053505182266, 0.12943553924560547, -0.0506862998008728, -0.09365876764059067, -0.00046975177247077227, 0.02800757810473442, -0.05369880050420761, 0.03701617196202278, -0.054775066673755646, 0.06473396718502045, -0.029554475098848343, 0.05495204031467438, -0.17402800917625427, -0.09573996812105179, -0.06227206438779831, 0.2228136509656906, 0.06703254580497742, 0.18085640668869019, 0.06418802589178085, -0.06290026009082794, 0.0017827488481998444, 0.03255745396018028, 0.17981252074241638, 0.011287098750472069, -0.09191068261861801, -0.10232570767402649, 0.07886247336864471, -0.0861150473356247, 0.04752413555979729, -0.04444890096783638, 0.01979980058968067, 0.04476524889469147, 0.11862452328205109, -0.04610857740044594, 0.045951515436172485, 0.009189451113343239, -0.02856285870075226, -0.08320672065019608, 0.0009596613235771656, 0.08382067084312439, -0.003199358470737934, -0.08130531758069992, 0.24891994893550873, -0.23623178899288177, 0.153076171875, 0.1966366022825241, -0.2159213274717331, 0.01106012612581253, -0.07936467975378036, -0.020178573206067085, 0.025083690881729126, 0.023675402626395226, -0.060432951897382736, 0.18205280601978302, -0.03726755827665329, 0.15941797196865082, -0.04482710361480713, -0.040100984275341034, -0.04896273463964462, -0.0528116300702095, -0.01935844123363495, 0.11587438732385635, 0.0710352212190628, -0.14709706604480743, 0.19301056861877441, 0.11971332877874374, 0.015831535682082176, 0.16973356902599335, 0.03128601238131523, 0.016762668266892433, 0.03722488880157471, -0.026876214891672134, -0.050153519958257675, -0.05230281502008438, -0.2162250578403473, -0.029209492728114128, 0.08457400649785995, 0.048620980232954025, 0.10029098391532898, -0.10787690430879593, -0.03266194090247154, 0.009652347303926945, -0.010189203545451164, 0.023171480745077133, 0.14738181233406067, 0.02628150023519993, 0.12186894565820694, -0.012614430859684944, -0.07239700108766556, 0.06798876821994781, 0.019905291497707367, -0.07110528647899628, 0.1627788096666336, -0.12356211990118027, -0.335827112197876, -0.09290789067745209, -0.17033925652503967, -0.03312322124838829, 0.04219771921634674, 0.11544229835271835, -0.1366877555847168, -0.023385655134916306, -0.03243091329932213, 0.06822797656059265, -0.15098528563976288, 0.016452116891741753, -0.03628353402018547, -0.016072381287813187, -0.12770487368106842, -0.10255394876003265, -0.04531848430633545, -0.053061291575431824, -0.031990405172109604, 0.10671509057283401, -0.11151551455259323, 0.0225993525236845, 0.23934872448444366, 0.03426564112305641, 0.06444922089576721, -0.03182615339756012, 0.1914939135313034, -0.0815715417265892, 0.030268952250480652, 0.24109086394309998, -0.020047757774591446, 0.075269915163517, 0.12724578380584717, -0.004251571837812662, -0.028848933055996895, 0.029905395582318306, 0.011566306464374065, -0.09435271471738815, -0.17544791102409363, -0.1079186499118805, -0.12937824428081512, 0.03190944716334343, 0.05089709907770157, 0.050149962306022644, 0.14604482054710388, 0.05739360675215721, -0.04004984721541405, -0.017391424626111984, 0.04632885381579399, 0.07423043251037598, 0.24528054893016815, -0.07364977151155472, 0.1699962019920349, -0.026640791445970535, -0.16184844076633453, 0.07685229182243347, 0.0713675320148468, 0.07251301407814026, 0.05551409721374512, 0.08822687715291977, 0.008602067828178406, 0.05132231116294861, 0.1340877264738083, 0.0400245301425457, -0.0059121958911418915, -0.03432786464691162, -0.05192223936319351, -0.042481303215026855, 0.011579175479710102, 0.06195932999253273, 0.08696066588163376, -0.17674238979816437, -0.02326575480401516, -0.021112021058797836, 0.05548238381743431, -0.027054203674197197, 0.11771775782108307, -0.18322211503982544, -0.007067214231938124, 0.08023366332054138, -0.002482927870005369, -0.09127768874168396, 0.07148055732250214, 0.041099466383457184, -0.07787910103797913, 0.01865149475634098, -0.017955100163817406, 0.11862432956695557, -0.029611462727189064, 0.08224835991859436, -0.12292031198740005, -0.04354511573910713, -0.01248886901885271, 0.1075858622789383, -0.2785758674144745, 0.1828591227531433, -0.013090763241052628, -0.08001775294542313, -0.10483518242835999, -0.013524075970053673, 0.04555179923772812, 0.09504275023937225, 0.08134100586175919, -0.019947415217757225, -0.10311457514762878, 0.06597237288951874, -0.028156066313385963, 0.021372759714722633, 0.09670042246580124, -0.046957049518823624, -0.010767786763608456, -0.054798588156700134, 0.013736957684159279, 0.04480377957224846, -0.021829959005117416, 0.019118469208478928, -0.20386254787445068, 0.09320717304944992, 0.10382501035928726, 0.04251823201775551, 0.02958032675087452, -0.04045441746711731, -0.17101678252220154, 0.2496311366558075, 0.040494516491889954, -0.07847777009010315, -0.11097639799118042, 0.03422516584396362, 0.07182013243436813, -0.0642123818397522, -0.01737581193447113, -0.07690639793872833, 0.05867185443639755, -0.07960430532693863, -0.18540871143341064, 0.11835198849439621, -0.09305805712938309, -0.046374984085559845, -0.039032164961099625, 0.20235586166381836, -0.056063249707221985, 0.032259125262498856, 0.03116656094789505, 0.03293946757912636, -0.15852391719818115, -0.10003209859132767, 0.01328912191092968, -0.027433177456259727, 0.04352038726210594, 0.015240713953971863, -0.030426841229200363, -0.005021065007895231, -0.021273335441946983, 0.004980319645255804, 0.31233376264572144, 0.11940956115722656, -0.08215507864952087, 0.15040408074855804, 0.07467055320739746, -0.04740764573216438, -0.31339386105537415, -0.09857800602912903, -0.09486257284879684, -0.03605431318283081, -0.04077092930674553, -0.15517041087150574, 0.06135208159685135, -0.04712679609656334, -0.03210299089550972, 0.03685130923986435, -0.25471121072769165, -0.09904111921787262, 0.1810643970966339, -0.04778202623128891, 0.4020058512687683, -0.1264181137084961, -0.05942745506763458, -0.03732571750879288, -0.123879574239254, 0.1846875250339508, -0.05952780321240425, 0.10438606142997742, 0.0079113794490695, 0.2011347860097885, 0.06326252222061157, -0.013393725268542767, 0.1029089093208313, -0.007607713807374239, -0.035274721682071686, -0.10309294611215591, -0.12516112625598907, 0.01550751831382513, -0.021001260727643967, 0.03289220109581947, -0.10830216109752655, 0.04805075749754906, -0.1252545416355133, -0.03316681459546089, -0.08329370617866516, 0.03710799291729927, 0.013009095564484596, -0.06882811337709427, -0.04382598400115967, -0.03590834140777588, -0.00022135479957796633, 0.005606753285974264, 0.23031598329544067, -0.10849209874868393, 0.14889879524707794, 0.10015694051980972, 0.10427137464284897, -0.10026383399963379, -0.03282963111996651, -0.014998306520283222, -0.05415785685181618, 0.07145287096500397, -0.1603166162967682, 0.03857867792248726, 0.08671217411756516, -0.02994510345160961, 0.08135352283716202, 0.1130911260843277, -0.025253240019083023, 0.003640346694737673, 0.09211555868387222, -0.2308700680732727, -0.10609045624732971, -0.07332441210746765, 0.04659111052751541, 0.04589630290865898, 0.07624836266040802, 0.20930127799510956, 0.00994920078665018, -0.01765989325940609, 0.023016734048724174, 0.02678052708506584, -0.018018024042248726, 0.041066206991672516, 0.029354475438594818, 0.04627835005521774, -0.13320408761501312, 0.027173595502972603, 0.015610959380865097, -0.07568158954381943, 0.0393478199839592, 0.155035138130188, -0.08632202446460724, -0.139873206615448, -0.07125963270664215, 0.1352655440568924, -0.11377639323472977, -0.0029083637055009604, -0.04039428010582924, -0.1223168596625328, 0.07590333372354507, 0.10091501474380493, 0.05935794860124588, 0.04039563983678818, -0.08539655059576035, -0.03333237022161484, -0.040140677243471146, 0.021143397316336632, 0.009158425964415073, -0.0160903912037611, -0.05494164302945137, 0.05901705101132393, -0.047254934906959534, 0.11421241611242294, -0.09339733421802521, -0.08775284886360168, -0.17206984758377075, 0.013082131743431091, -0.05250086262822151, -0.10140258818864822, -0.09359116107225418, -0.04809267446398735, 0.015034623444080353, -0.05208507552742958, -0.032174061983823776, -0.024229442700743675, -0.10669471323490143, 0.027302535250782967, -0.05821286141872406, 0.010891321115195751, -0.09129294008016586, 0.013517657294869423, 0.04709210619330406, -0.01816634088754654, 0.13488203287124634, 0.09328237920999527, -0.10860666632652283, 0.08222270756959915, -0.1275918036699295, -0.08663585782051086, 0.08263832330703735, 0.02598871849477291, 0.052909210324287415, 0.029351165518164635, -0.001967761432752013, 0.03233477100729942, 0.07720455527305603, 0.036914974451065063, 0.026035640388727188, -0.06493114680051804, 0.06172209978103638, -0.07344797253608704, -0.11875847727060318, -0.03685721009969711, 0.0016848579980432987, 0.012210341170430183, 0.06813150644302368, 0.10401184856891632, -0.036284398287534714, 0.0797373354434967, -0.06413599848747253, 0.04609992355108261, 0.005328513216227293, -0.1761081963777542, 0.017667630687355995, -0.07821190357208252, 0.04759660363197327, 0.0013359118020161986, 0.18325933814048767, 0.06537643820047379, -0.06563906371593475, 0.03382967785000801, 0.06659752130508423, 0.0692150741815567, -0.004840361885726452, 0.18621408939361572, 0.09515473246574402, -0.05180959403514862, -0.0991080179810524, 0.08834358304738998, 0.06080566719174385, 0.06490278244018555, 0.12913915514945984, -0.004319360945373774, 0.024174606427550316, 0.09009172022342682, 0.008883362635970116, -0.019551433622837067, -0.10096284002065659, -0.08965059369802475, -0.017464246600866318, 0.04193853214383125, -0.06086575612425804, 0.07477369159460068, 0.17939254641532898, -0.010411374270915985, 0.027555258944630623, -0.03863650560379028, -0.049980755895376205, -0.1887718141078949, -0.18753060698509216, -0.09181099385023117, -0.14645187556743622, -0.026917489245533943, -0.13105370104312897, 0.05882837995886803, 0.07557003945112228, 0.08097314834594727, -0.025671232491731644, 0.03245893120765686, 0.022749824449419975, -0.08981189876794815, 0.033361487090587616, -0.04490199685096741, 0.09997344017028809, -0.019153926521539688, 0.005541270133107901, -0.05083920806646347, 0.028848018497228622, 0.010309427045285702, 0.03471552953124046, -0.015809834003448486, 0.015370560809969902, -0.11875561624765396, -0.09567588567733765, -0.07066967338323593, 0.04834204539656639, 0.017820095643401146, 0.18648305535316467, 0.022740043699741364, -0.03320728614926338, 0.01894662342965603, 0.22614111006259918, -0.08711639791727066, -0.07992389798164368, -0.06876909732818604, 0.18698930740356445, -0.013011614792048931, 0.08948864787817001, -0.05047110095620155, -0.009447460994124413, -0.09300197660923004, 0.30840179324150085, 0.32665160298347473, -0.11393766105175018, 0.028592459857463837, 0.006367724854499102, 0.03157983720302582, 0.1162729561328888, 0.0662447139620781, 0.11710161715745926, 0.25293272733688354, -0.06943412125110626, -0.056422509253025055, -0.013059494085609913, -0.023740272969007492, -0.07368054240942001, 0.05777493864297867, 0.04966603219509125, -0.07878328859806061, -0.013024105690419674, 0.09112410247325897, -0.2193899154663086, 0.04796459898352623, -0.12035499513149261, -0.18683460354804993, -0.07477088272571564, 0.02901797741651535, 0.13748018443584442, -0.010265263728797436, 0.09652490168809891, -0.024320406839251518, -0.058806080371141434, 0.019178340211510658, 0.011379591189324856, -0.18605555593967438, 0.026796914637088776, 0.0880991593003273, -0.034956082701683044, -0.06579610705375671, -0.026363074779510498, 0.057398490607738495, 0.11714854091405869, 0.03320639207959175, -0.01693088375031948, 0.056243494153022766, 0.009067581966519356, -0.08278308063745499, 0.018437519669532776, 0.014612287282943726, 0.00718457018956542, -0.061997897922992706, 0.09208301454782486, -0.18906261026859283, 0.028080590069293976, -0.042155101895332336, -0.051557283848524094, -0.011992783285677433, 0.005786213558167219, -0.05619044974446297, 0.08810251206159592, 0.07742270082235336, -0.021407412365078926, -0.031588420271873474, -0.008431199938058853, -0.030191102996468544, -0.026962406933307648, -0.059987667948007584, -0.10277266055345535, -0.148870587348938, -0.10393854230642319, 0.07793137431144714, -0.006471366621553898, -0.20544004440307617, -0.0010582678951323032, -0.10599945485591888, 0.055369794368743896, -0.0936850979924202, 0.09149867296218872, 0.10205436497926712, 0.004885011352598667, -0.011032676324248314, 0.0047231316566467285, 0.03212355449795723, 0.07310797274112701, -0.13553965091705322, -0.07092496752738953 ]
null
null
transformers
# German BERT for News Classification This a bert-base-german-cased model finetuned for text classification on german news articles ## Training data Used the training set from the 10KGNAD dataset (gnad10 on HuggingFace Datasets).
{"language": ["de"], "tags": ["text-classification", "german-news-classification"], "datasets": ["gnad10"], "metrics": ["accuracy", "precision", "recall", "f1"], "model-index": [{"name": "Mathking/bert-base-german-cased-gnad10", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "gnad10", "type": "gnad10", "config": "default", "split": "train"}, "metrics": [{"type": "accuracy", "value": 0.9557598702001082, "name": "Accuracy", "verified": true, "verifyToken": "eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNTkxNjAwNTYzYjRjZmQ0M2UxMWQzYzk0YWFjZjRmYzcwNGEyYmRiNDIwNTlmNDNhYjAzNzBmNzU5MTg3MTM1ZSIsInZlcnNpb24iOjF9.1KfABx9YVvR2QiSXwtCBV8ijYGqwiQD3N3i7c1KV2Ke9tQvWA4_HnN7wvCKokESR-zEwIHWfALSveWIgoiSNBg"}, {"type": "f1", "value": 0.9550736462647613, "name": "F1 Macro", "verified": true, "verifyToken": "eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZDNkYjU0NzAxNjBlOGQ1MWU2OGE5NWFkOGFlNTYwZGFkNTRiMDcwNDRlYmNiMTUxMzViM2Q4MmUyMjU2ZTQwYyIsInZlcnNpb24iOjF9.E9ysIc4ZYrpOpQTJsmLRN1q8Pg-5pWLlvs8WbTeJy2JYNmpBNblaGyeiHckZ8g8gD3Rqv7W9inpivmHRcI4-BQ"}, {"type": "f1", "value": 0.9557598702001082, "name": "F1 Micro", "verified": true, "verifyToken": "eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNWMxNmVjMjYyNTAxYmYwN2YxNjAzOWQ2MDY3OGRhYzE4NWYwYTUyNjRhNmU2M2Y3MzFiYzI2ZTk4YWQ3NGNkNSIsInZlcnNpb24iOjF9.csdfLvORGZJY11TbWzylKfhz53BAncrjNgCDIGtWzK1AtJutkJj-SQo8rEd9o3Z5BKlH3Ta28O3Y7wKoc4PuDQ"}, {"type": "f1", "value": 0.9556789875763837, "name": "F1 Weighted", "verified": true, "verifyToken": "eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiY2I1ZmNjMzViMDY1YWMyNzRkNDY0OTY1YTFkZWViN2JiMDlkMjJjNTZmZDFjZDIxZjA0YzI1NThiODUwMDlhZiIsInZlcnNpb24iOjF9.83yH-SfIAeB9Y3XNPcnn8N3g9puooZRgcBfNMeAKNqNM93U1qEE6JjFvhZBO_UU05cgfqnPp7Pt6h-JQcmdwBA"}, {"type": "precision", "value": 0.953834169384936, "name": "Precision Macro", "verified": true, "verifyToken": "eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYjQ4YjA2MTZlMmYxMTA4ZTM5MDU1NjI3ZWE4YTBiZDBhMDUwN2FiODZkNjM5OWNiNGU2NjU5ZDE0OTUyODZmNyIsInZlcnNpb24iOjF9.sWcghxM9DeaaldnXR5sLz8KUHVhdjJ8GY_c4f-kZ0-0BDzf4CYURUVziWnlrRTjlUH-hVyfdKd1ufHvLotRgCg"}, {"type": "precision", "value": 0.9557598702001082, "name": "Precision Micro", "verified": true, "verifyToken": "eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiOWIzZmNlZTcxNzhhMzZhNWQ1ZWI4YzZjMDYyOTMwY2Q5N2EwMzFhMzE4OTFkZjg1NTIyYjVkMGNjZDYwZmQ2YSIsInZlcnNpb24iOjF9.rQ7ZIKeP25hLfHaYdPqX-VZCHoL-YohqGV9NZ-TAIHvNQbj0lPpX_nS89cJ1C0tSoHCeP14lIOWNncRJzQOOCA"}, {"type": "precision", "value": 0.9558822798145145, "name": "Precision Weighted", "verified": true, "verifyToken": "eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZDQzOTMxMGQ4YTI5MDUzNjdhNzdjY2QzNGVlNzUyODE4ZTI1MTY4NTkxZDVhMTBjZjhhMjlmNzRiNjEyOTk3NiIsInZlcnNpb24iOjF9.DWBZXL1mP7oNYQJKCORItDvkZm-l7TcIETNjdeVyS0BnxoEbqEE22OOJwnGLAk-wHtfx7jEKAA7ijQ1qF7cfAg"}, {"type": "recall", "value": 0.956651983810566, "name": "Recall Macro", "verified": true, "verifyToken": "eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNTFhYTUyZWQ0N2VhOWQxMjY0MGM1ZjExOGE4NDQ5ODMzMmQ5YThkZTYzZjg0YmUwMDhlZDllMDk3MzY2ZWUzZSIsInZlcnNpb24iOjF9.H7UhmKtJ_5FZOQmZP-wPTrHHde-XxtMAj3kluHz6-8P1KOwJkxk24Lu7vTwHf3564XtnJC8eW2C5uyWDTpcgBg"}, {"type": "recall", "value": 0.9557598702001082, "name": "Recall Micro", "verified": true, "verifyToken": "eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZGY1MWZkOWYzNjg1NGU5YmFmODY2MDNjYWQ3OTUwNTgzMWRlZGUwNzU5NDY2NzFjZTMxOTBiMWVhZWIyNDYzMCIsInZlcnNpb24iOjF9.oKQ0zRYEs-sloah-BJvBKX5SFqWt8UX-0jCi3ldaLwNVJjM-rcdvsERyoYQ-QTLPKsZp4nko3-ic-BDCwGp9Bw"}, {"type": "recall", "value": 0.9557598702001082, "name": "Recall Weighted", "verified": true, "verifyToken": "eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNDlhMmIwOTBkOTIzOTlkZjNiMzlkMmE5NzQ3MzY5NTUxODQyMzY1OTJjNWY4NjI0N2NjYmY5NjkwZjU0MTA1YyIsInZlcnNpb24iOjF9.4FExU6skNNcvIrToS3MR04Q7ho7_PITTqPk8WMdOggaVvnwj8ujxcXyJMSRioQ1ttVlpg_oGismsSD9zttYkBg"}, {"type": "loss", "value": 0.17337004840373993, "name": "loss", "verified": true, "verifyToken": "eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMzVmMmQ5OGE0OTU3MTg0NDg4YzhlODU1NWUyODM0NzFjODM3MTY5MWI2OTAyMzU5OTQ2YTljZTJkN2JkYTcyNSIsInZlcnNpb24iOjF9.jeYTrX35vtswkWi8ROqynY_W4rHfxonic74PviTNAKJzTF7tUCI2a9IBavXvSQhMfGv0NEkZzX8N8o4hQTvWDw"}]}]}]}
text-classification
laiking/bert-base-german-cased-gnad10
[ "transformers", "pytorch", "safetensors", "bert", "text-classification", "german-news-classification", "de", "dataset:gnad10", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:04+00:00
[]
[ "de" ]
TAGS #transformers #pytorch #safetensors #bert #text-classification #german-news-classification #de #dataset-gnad10 #model-index #autotrain_compatible #endpoints_compatible #region-us
# German BERT for News Classification This a bert-base-german-cased model finetuned for text classification on german news articles ## Training data Used the training set from the 10KGNAD dataset (gnad10 on HuggingFace Datasets).
[ "# German BERT for News Classification\n\nThis a bert-base-german-cased model finetuned for text classification on german news articles", "## Training data\nUsed the training set from the 10KGNAD dataset (gnad10 on HuggingFace Datasets)." ]
[ "TAGS\n#transformers #pytorch #safetensors #bert #text-classification #german-news-classification #de #dataset-gnad10 #model-index #autotrain_compatible #endpoints_compatible #region-us \n", "# German BERT for News Classification\n\nThis a bert-base-german-cased model finetuned for text classification on german news articles", "## Training data\nUsed the training set from the 10KGNAD dataset (gnad10 on HuggingFace Datasets)." ]
[ 62, 32, 28 ]
[ "passage: TAGS\n#transformers #pytorch #safetensors #bert #text-classification #german-news-classification #de #dataset-gnad10 #model-index #autotrain_compatible #endpoints_compatible #region-us \n# German BERT for News Classification\n\nThis a bert-base-german-cased model finetuned for text classification on german news articles## Training data\nUsed the training set from the 10KGNAD dataset (gnad10 on HuggingFace Datasets)." ]
[ -0.06213722005486488, 0.022069638594985008, -0.0009046680643223226, 0.026518603786826134, 0.13352467119693756, 0.022403521463274956, 0.16298842430114746, 0.04628043249249458, 0.014892169274389744, -0.04098941385746002, 0.09113049507141113, 0.0316605269908905, -0.05253340303897858, 0.15357737243175507, -0.08105015754699707, -0.2593071758747101, 0.12298869341611862, 0.011083435267210007, 0.08890202641487122, 0.09645815193653107, 0.12439388036727905, -0.06090851128101349, 0.045733481645584106, -0.03691203147172928, -0.11440280079841614, 0.05245678499341011, 0.04593106359243393, -0.096638023853302, 0.13487102091312408, 0.017278069630265236, 0.08756374567747116, 0.017842687666416168, 0.0380757711827755, -0.07356111705303192, 0.03444558382034302, 0.011870739050209522, -0.08910541236400604, 0.06154331937432289, 0.02536184899508953, -0.12311720103025436, 0.05013960599899292, -0.1359991878271103, -0.02326939068734646, 0.012617984786629677, -0.1391957551240921, -0.073003388941288, -0.02579892985522747, 0.0984150841832161, 0.10408192873001099, 0.10780442506074905, -0.05012796074151993, 0.05904706194996834, -0.1297861784696579, 0.06691975146532059, 0.03744939714670181, -0.28448620438575745, -0.04488104581832886, 0.12796397507190704, -0.025442739948630333, -0.001607363810762763, -0.09136277437210083, 0.11691983044147491, 0.07746241241693497, -0.0018980727763846517, -0.03406902030110359, -0.034821901470422745, -0.0098401615396142, -0.044437017291784286, -0.0968618392944336, -0.026370465755462646, 0.10171633213758469, 0.015651987865567207, -0.023645145818591118, -0.1696518361568451, 0.012385471723973751, 0.061557505279779434, -0.046358898282051086, 0.03276081010699272, -0.10635823756456375, -0.006909392774105072, 0.0030647777020931244, 0.0040450808592140675, -0.0836435854434967, -0.01772911846637726, -0.11952461302280426, 0.32935893535614014, -0.0018407341558486223, 0.02985251508653164, -0.0418216846883297, 0.11446408927440643, -0.060997284948825836, -0.10934273898601532, 0.0401977002620697, -0.09983517974615097, -0.006078556180000305, -0.02081175334751606, -0.08139637857675552, -0.05041809752583504, 0.029690450057387352, 0.0460066981613636, -0.10269767045974731, -0.007580799050629139, -0.007736061699688435, 0.03327128663659096, 0.051640890538692474, 0.062097497284412384, -0.09184889495372772, -0.0675821453332901, -0.02643698640167713, -0.039703432470560074, 0.027163518592715263, 0.0037852139212191105, -0.10120920836925507, -0.022498449310660362, 0.05697720870375633, -0.0135481096804142, -0.060561396181583405, 0.18039104342460632, -0.04606249928474426, -0.01919393427670002, 0.05607281252741814, -0.06582444906234741, -0.023806480690836906, -0.0030392215121537447, -0.03809612616896629, 0.0040449053049087524, -0.05855162814259529, 0.050444647669792175, -0.011780076660215855, 0.16900387406349182, -0.05152060464024544, -0.05054087191820145, -0.0017277688020840287, -0.08693411201238632, 0.009012040682137012, -0.1804015338420868, 0.005561781115829945, -0.11460590362548828, -0.19577574729919434, -0.01680440828204155, 0.02135690487921238, 0.0055876681581139565, 0.021163173019886017, -0.13433313369750977, -0.04450114443898201, 0.08551350235939026, -0.004174650646746159, -0.02703028731048107, -0.07573264092206955, 0.043912988156080246, -0.10982026159763336, 0.05289652943611145, -0.16361363232135773, 0.026208456605672836, -0.1423868089914322, -0.028078176081180573, -0.09871095418930054, 0.16267883777618408, -0.1126793771982193, 0.08596844971179962, -0.023594390600919724, -0.019458604976534843, -0.012850104831159115, 0.061135128140449524, -0.0035203299485147, 0.21695977449417114, -0.15210366249084473, -0.10128134489059448, 0.1270132213830948, -0.09809437394142151, 0.05108106508851051, 0.0797654464840889, -0.1201505959033966, 0.028756069019436836, 0.19390815496444702, 0.20838388800621033, 0.06760793179273605, -0.00971954595297575, -0.10258494317531586, -0.006078963167965412, -0.06076895445585251, 0.08029355853796005, 0.06581881642341614, 0.09134827554225922, -0.21146175265312195, 0.04812350869178772, -0.06483615189790726, 0.05103933811187744, -0.04053535312414169, -0.041913896799087524, 0.03413533791899681, 0.011291836388409138, 0.24761761724948883, 0.021096302196383476, 0.06182714179158211, -0.10445461422204971, -0.09557230025529861, 0.08319306373596191, 0.05236824229359627, -0.0390666127204895, -0.008157104253768921, -0.0888804942369461, 0.03732846677303314, -0.045888036489486694, 0.04741329699754715, -0.07347360253334045, -0.0910276472568512, -0.0273020938038826, 0.13261891901493073, 0.020396672189235687, 0.06437529623508453, 0.06251359730958939, -0.04216846078634262, -0.09697234630584717, -0.03715737909078598, 0.02670205570757389, 0.003521233331412077, -0.03366030752658844, -0.14404812455177307, 0.06827069073915482, -0.07292769849300385, 0.1564411073923111, -0.1777350753545761, 0.004162765573710203, 0.06038608402013779, 0.0971241146326065, 0.00750591978430748, 0.032916244119405746, 0.012622043490409851, 0.02266082353889942, -0.015201850794255733, 0.02504710480570793, 0.10191334038972855, -0.008287125267088413, -0.10635874420404434, 0.12231095135211945, 0.004996313713490963, 0.104670949280262, 0.10373220592737198, -0.058494724333286285, -0.063862144947052, -0.03530806303024292, -0.0713537186384201, 0.04507992044091225, -0.0869130864739418, -0.07017475366592407, 0.18198303878307343, -0.08844827860593796, 0.09687881916761398, -0.051496751606464386, -0.07624956965446472, 0.013388513587415218, 0.008163942955434322, -0.08613242954015732, 0.14702896773815155, -0.1439058482646942, -0.14184321463108063, 0.11860772967338562, 0.14780768752098083, 0.03169237822294235, 0.2524065375328064, 0.016469681635499, 0.03513549268245697, 0.04808283597230911, -0.08376165479421616, -0.038448821753263474, 0.05144406855106354, -0.11937043815851212, 0.002852463396266103, 0.04340009018778801, 0.03762025758624077, 0.036526959389448166, -0.032887764275074005, -0.08833850920200348, -0.048719123005867004, -0.028731852769851685, -0.06618262827396393, 0.053832076489925385, -0.01232246495783329, 0.11950021237134933, 0.03622929006814957, -0.09920904785394669, 0.10096431523561478, -0.02209809608757496, -0.07899250835180283, 0.16851073503494263, -0.044100068509578705, -0.3141084611415863, -0.10636917501688004, -0.09693556278944016, -0.12222962081432343, 0.04934712126851082, 0.029466835781931877, -0.13449406623840332, -0.022016990929841995, -0.03877156972885132, 0.005817544646561146, 0.09392490983009338, 0.04999329149723053, 0.008219275623559952, -0.020226508378982544, 0.011993246152997017, -0.08806484937667847, -0.04947223141789436, -0.11193767935037613, -0.06386420875787735, 0.04794485494494438, -0.07031957060098648, 0.06191222369670868, 0.07638651877641678, -0.006533233914524317, 0.051704041659832, -0.060436248779296875, 0.18173806369304657, -0.1522795557975769, 0.022432668134570122, 0.022173186764121056, -0.09654122591018677, 0.013338856399059296, 0.19035960733890533, 0.05369928851723671, -0.043140605092048645, 0.05026847869157791, 0.030986493453383446, -0.02613147534430027, -0.16818277537822723, -0.1868608593940735, 0.009308000095188618, 0.05737308785319328, 0.03167326748371124, 0.04064485430717468, 0.08714330941438675, 0.058243922889232635, -0.04344293475151062, -0.010836351662874222, 0.0733354464173317, 0.03491980582475662, 0.05126374214887619, -0.0014237789437174797, 0.11006851494312286, -0.0152654480189085, -0.14104795455932617, 0.09464047104120255, -0.07164031267166138, 0.0705961212515831, 0.025767570361495018, -0.08272664994001389, 0.030848421156406403, -0.06732885539531708, 0.1286454051733017, 0.09939486533403397, -0.0024431657511740923, -0.09914548695087433, 0.0038669623900204897, -0.05116184055805206, 0.051262736320495605, 0.016525255516171455, -0.107937753200531, -0.013816125690937042, -0.05855068564414978, -0.17238272726535797, 0.1509801745414734, 0.12448104470968246, 0.1761145144701004, -0.21695266664028168, -0.07443148642778397, 0.03374271094799042, -0.06043325737118721, -0.09045138955116272, 0.02215065062046051, 0.0401311069726944, -0.1253550946712494, 0.16280493140220642, 0.012478015385568142, 0.09786804020404816, -0.09192349016666412, 0.04412580654025078, -0.10254168510437012, -0.11916613578796387, -0.08058608323335648, 0.16391324996948242, -0.27205583453178406, 0.2531929612159729, 0.015471944585442543, 0.06368718296289444, -0.08562100678682327, -0.08671516180038452, 0.04483480006456375, 0.13593056797981262, 0.18376143276691437, 0.028229856863617897, 0.08607016503810883, -0.08316002786159515, -0.17798282206058502, 0.03669453784823418, 0.03421172872185707, -0.11760574579238892, 0.04935488849878311, 0.02020227536559105, -0.0035171699710190296, 0.02557423710823059, -0.028486141934990883, -0.14294004440307617, -0.06675411015748978, -0.019530098885297775, 0.1363345980644226, 0.09651756286621094, -0.0028598702047020197, -0.1473713517189026, -0.14473263919353485, 0.14449229836463928, -0.036911491304636, -0.07006227225065231, -0.13979041576385498, 0.06209767237305641, -0.08785323053598404, -0.04442654550075531, -0.01979978382587433, 0.04990902543067932, 0.12605595588684082, -0.03335724025964737, -0.15187841653823853, 0.08762481063604355, -0.07617827504873276, -0.10057471692562103, -0.029432576149702072, 0.15344396233558655, 0.1651412397623062, 0.01171377394348383, 0.07662755250930786, 0.024437377229332924, 0.0648001953959465, -0.09624955803155899, 0.04839303344488144, 0.010370106436312199, 0.03703402727842331, 0.13649620115756989, -0.09223050624132156, -0.2959495782852173, -0.05845479667186737, 0.0490666888654232, 0.18635742366313934, 0.14308765530586243, -0.08124101907014847, 0.10109546035528183, 0.17001548409461975, -0.003002493642270565, -0.4022214710712433, 0.05000689998269081, 0.06445068120956421, 0.017768679186701775, -0.10510268807411194, -0.1109970435500145, 0.1836211085319519, 0.07308691740036011, -0.03467024862766266, 0.0017576569225639105, -0.11436242610216141, -0.10873652994632721, 0.15936166048049927, -0.06364475190639496, 0.4223891794681549, -0.00853421725332737, -0.05160096660256386, -0.09258999675512314, -0.030725203454494476, 0.22434915602207184, -0.1565648317337036, 0.06508727371692657, -0.027885861694812775, -0.011973029933869839, 0.019116677343845367, -0.0085035664960742, 0.10132919251918793, 0.16843117773532867, 0.0506792813539505, -0.12549549341201782, -0.13086284697055817, 0.10530972480773926, 0.0009440358262509108, 0.06862741708755493, -0.08768246322870255, 0.01469207089394331, -0.22533398866653442, -0.054215025156736374, -0.08935365080833435, 0.11012324690818787, 0.002241923473775387, -0.06529547274112701, -0.02423727698624134, 0.07490449398756027, -0.00936584547162056, 0.02490636147558689, 0.21098461747169495, -0.0890655666589737, 0.0829598531126976, -0.09336353093385696, 0.13988268375396729, -0.027455367147922516, 0.07866736501455307, -0.04052586108446121, -0.07974620908498764, 0.05321560055017471, -0.10823150724172592, 0.02101307362318039, 0.10614698380231857, -0.007044925354421139, 0.11573565006256104, 0.09441482275724411, 0.013412377797067165, 0.024208370596170425, 0.12209907919168472, -0.26551926136016846, -0.039266496896743774, -0.11225888878107071, -0.0994483232498169, 0.025790195912122726, 0.14713425934314728, 0.16222348809242249, -0.010735779069364071, 0.004228697624057531, 0.029236387461423874, -0.036536552011966705, -0.055894117802381516, 0.08314075320959091, 0.03863026201725006, 0.029701801016926765, -0.1291656792163849, 0.10793770104646683, 0.04346909746527672, -0.028566814959049225, 0.05753476545214653, 0.059995293617248535, -0.17595654726028442, -0.06550927460193634, -0.07768688350915909, 0.2504444420337677, -0.05970145761966705, -0.08313345909118652, -0.03425165265798569, -0.1003955528140068, 0.07779359072446823, 0.15132930874824524, 0.12405365705490112, 0.040450528264045715, -0.037396278232336044, -0.04968450218439102, 0.00022291256755124778, 0.08910629898309708, 0.07545965164899826, 0.03151138871908188, -0.046909213066101074, 0.0071792276576161385, -0.05374086648225784, 0.13438467681407928, -0.11996104568243027, -0.05008169636130333, -0.12177367508411407, 0.012425092048943043, -0.10936278849840164, -0.012529097497463226, 0.005902906879782677, -0.02342481166124344, -0.06566290557384491, -0.10169761627912521, -0.0008838926441967487, -0.03236781805753708, -0.0562201589345932, 0.041819509118795395, 0.03261663019657135, 0.031313251703977585, -0.10078496485948563, -0.03420070558786392, -0.012451613321900368, -0.022179167717695236, 0.1463981568813324, 0.1030145063996315, -0.023031575605273247, 0.11992450058460236, -0.20135417580604553, -0.03155496343970299, 0.07366091758012772, -0.07912348955869675, 0.016147760674357414, 0.06899119168519974, 0.036452870815992355, 0.07055801153182983, 0.00493780430406332, 0.13172094523906708, 0.06491455435752869, -0.06596583873033524, 0.14544598758220673, 0.007916493341326714, -0.06002171337604523, -0.03744212165474892, 0.025330694392323494, 0.07313928008079529, 0.037841640412807465, 0.22078080475330353, -0.10066375136375427, -0.00048072473146021366, -0.029423870146274567, 0.04528455808758736, -0.0024668367113918066, -0.22627322375774384, -0.08862049132585526, 0.004945684690028429, 0.02110251784324646, -0.02426670864224434, 0.19076673686504364, 0.047410059720277786, -0.10097852349281311, 0.025960484519600868, 0.0735233798623085, 0.026043307036161423, 0.014805588871240616, 0.2010577917098999, 0.07585077732801437, -0.03843281418085098, -0.1286940574645996, 0.03805818781256676, 0.04667432978749275, 0.06280876696109772, 0.08094954490661621, 0.0839584693312645, -0.014229361899197102, 0.06613517552614212, 0.03650563210248947, 0.03315765783190727, -0.07627292722463608, -0.05146394297480583, -0.13188335299491882, 0.060276009142398834, -0.018667539581656456, 0.12781119346618652, 0.08121699839830399, -0.10075126588344574, 0.02062448114156723, 0.03896135464310646, -0.02561279758810997, -0.05234947428107262, -0.16988186538219452, -0.0823226049542427, -0.09290661662817001, 0.019989753141999245, -0.08503933995962143, -0.06682352721691132, 0.13509739935398102, 0.09488028287887573, -0.04234747588634491, 0.18660153448581696, -0.10875886678695679, -0.0021671680733561516, 0.25885894894599915, -0.05208408460021019, 0.013527394272387028, -0.03879217430949211, -0.01790446974337101, -0.01251517329365015, 0.06672227382659912, 0.01921292208135128, 0.005207084119319916, 0.04794635251164436, -0.011528211645781994, -0.07227214425802231, -0.09225532412528992, -0.02321864664554596, 0.05353531241416931, 0.048875004053115845, 0.04209214821457863, 0.05790138989686966, 0.01719203218817711, 0.017081622034311295, 0.195646733045578, 0.005006013438105583, -0.07075101882219315, -0.08386196941137314, 0.10597876459360123, 0.021769065409898758, 0.1278809905052185, -0.021000072360038757, -0.11615951359272003, -0.0004724329337477684, 0.21609848737716675, 0.2789384424686432, -0.020639212802052498, 0.04852409288287163, -0.036739908158779144, 0.035298556089401245, 0.13603265583515167, 0.08617778867483139, -0.027397396042943, 0.20898693799972534, -0.05509330332279205, -0.0710020437836647, 0.009582891128957272, -0.04457231983542442, -0.007410392165184021, 0.08360616862773895, 0.034942321479320526, -0.0905473381280899, -0.13376614451408386, 0.14049866795539856, -0.11149069666862488, -0.027033239603042603, -0.11283035576343536, -0.10346396267414093, -0.13038742542266846, -0.0753847286105156, -0.013474913313984871, 0.0332845076918602, 0.0855657160282135, 0.0291160698980093, 0.038423921912908554, -0.055764369666576385, -0.0010224860161542892, -0.030802538618445396, -0.11084738373756409, 0.03248570114374161, 0.035032324492931366, 0.16769255697727203, -0.03589673712849617, 0.0629367083311081, 0.08447892218828201, -0.04122130200266838, -0.018086450174450874, 0.05503588169813156, -0.04764854535460472, 0.03191575035452843, 0.025487665086984634, 0.07728055119514465, -0.016723107546567917, -0.06720560789108276, 0.08598168194293976, -0.15433461964130402, 0.09198477864265442, -0.05112779140472412, -0.16000555455684662, -0.11626780778169632, 0.15128503739833832, -0.011230881325900555, 0.09215293079614639, 0.18637609481811523, -0.01423051580786705, 0.006720860954374075, -0.06704150140285492, 0.0502982996404171, 0.02456711418926716, -0.1072065457701683, -0.00018717125931289047, -0.1650654524564743, -0.015395459719002247, 0.031624045222997665, -0.01801241561770439, -0.2583999037742615, 0.04458342492580414, -0.13546228408813477, 0.0301450677216053, -0.03950035199522972, 0.04018291085958481, 0.08516556769609451, -0.011918315663933754, 0.010480767115950584, -0.07270538061857224, 0.041632600128650665, 0.017402367666363716, -0.04794705659151077, -0.10041531175374985 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-common_voice-nl-demo This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the COMMON_VOICE - NL dataset. It achieves the following results on the evaluation set: - Loss: 0.3523 - Wer: 0.2046 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 15.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.0536 | 1.12 | 500 | 0.5349 | 0.4338 | | 0.2543 | 2.24 | 1000 | 0.3859 | 0.3029 | | 0.1472 | 3.36 | 1500 | 0.3471 | 0.2818 | | 0.1088 | 4.47 | 2000 | 0.3489 | 0.2731 | | 0.0855 | 5.59 | 2500 | 0.3582 | 0.2558 | | 0.0721 | 6.71 | 3000 | 0.3457 | 0.2471 | | 0.0653 | 7.83 | 3500 | 0.3299 | 0.2357 | | 0.0527 | 8.95 | 4000 | 0.3440 | 0.2334 | | 0.0444 | 10.07 | 4500 | 0.3417 | 0.2289 | | 0.0404 | 11.19 | 5000 | 0.3691 | 0.2204 | | 0.0345 | 12.3 | 5500 | 0.3453 | 0.2102 | | 0.0288 | 13.42 | 6000 | 0.3634 | 0.2089 | | 0.027 | 14.54 | 6500 | 0.3532 | 0.2044 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.3 - Tokenizers 0.11.0
{"language": ["nl"], "license": "apache-2.0", "tags": ["automatic-speech-recognition", "common_voice", "generated_from_trainer"], "datasets": ["common_voice"], "model-index": [{"name": "wav2vec2-common_voice-nl-demo", "results": []}]}
automatic-speech-recognition
MatsUy/wav2vec2-common_voice-nl-demo
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "common_voice", "generated_from_trainer", "nl", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:04+00:00
[]
[ "nl" ]
TAGS #transformers #pytorch #wav2vec2 #automatic-speech-recognition #common_voice #generated_from_trainer #nl #dataset-common_voice #license-apache-2.0 #endpoints_compatible #region-us
wav2vec2-common\_voice-nl-demo ============================== This model is a fine-tuned version of facebook/wav2vec2-large-xlsr-53 on the COMMON\_VOICE - NL dataset. It achieves the following results on the evaluation set: * Loss: 0.3523 * Wer: 0.2046 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 0.0003 * train\_batch\_size: 4 * eval\_batch\_size: 4 * seed: 42 * gradient\_accumulation\_steps: 8 * total\_train\_batch\_size: 32 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * lr\_scheduler\_warmup\_steps: 500 * num\_epochs: 15.0 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.17.0.dev0 * Pytorch 1.10.2+cu102 * Datasets 1.18.3 * Tokenizers 0.11.0
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0003\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* gradient\\_accumulation\\_steps: 8\n* total\\_train\\_batch\\_size: 32\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 500\n* num\\_epochs: 15.0\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.17.0.dev0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.3\n* Tokenizers 0.11.0" ]
[ "TAGS\n#transformers #pytorch #wav2vec2 #automatic-speech-recognition #common_voice #generated_from_trainer #nl #dataset-common_voice #license-apache-2.0 #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0003\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* gradient\\_accumulation\\_steps: 8\n* total\\_train\\_batch\\_size: 32\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 500\n* num\\_epochs: 15.0\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.17.0.dev0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.3\n* Tokenizers 0.11.0" ]
[ 69, 159, 4, 38 ]
[ "passage: TAGS\n#transformers #pytorch #wav2vec2 #automatic-speech-recognition #common_voice #generated_from_trainer #nl #dataset-common_voice #license-apache-2.0 #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0003\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* gradient\\_accumulation\\_steps: 8\n* total\\_train\\_batch\\_size: 32\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 500\n* num\\_epochs: 15.0\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.17.0.dev0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.3\n* Tokenizers 0.11.0" ]
[ -0.10756727308034897, 0.06999841332435608, -0.0032505535054951906, 0.03637571260333061, 0.11965026706457138, 0.014105553738772869, 0.09411390125751495, 0.14216744899749756, -0.09537716954946518, 0.08211805671453476, 0.08220984041690826, 0.06156215816736221, 0.06138889864087105, 0.09368403255939484, -0.015443120151758194, -0.3107786774635315, 0.0164127629250288, -0.004192084539681673, -0.09227937459945679, 0.0999525710940361, 0.09797687828540802, -0.1009332686662674, 0.005417183041572571, 0.016847247257828712, -0.11223013699054718, 0.0042153000831604, -0.023678015917539597, -0.051820848137140274, 0.1282193809747696, 0.06230468675494194, 0.08122054487466812, 0.0221969336271286, 0.09052777290344238, -0.29089248180389404, 0.01622219756245613, 0.0492636077105999, 0.03909459337592125, 0.06246574595570564, 0.09681213647127151, -0.006730732508003712, 0.14255249500274658, -0.06740696728229523, 0.06478802114725113, 0.05050137639045715, -0.09636509418487549, -0.3120996356010437, -0.08211136609315872, 0.023295395076274872, 0.13681606948375702, 0.09763754159212112, -0.042337872087955475, 0.05481228977441788, -0.08390608429908752, 0.10237160325050354, 0.22329536080360413, -0.2391151487827301, -0.07251647114753723, -0.02291453629732132, 0.058441001921892166, 0.03431526944041252, -0.10832574218511581, -0.01945819891989231, 0.028553571552038193, 0.045500919222831726, 0.07785169035196304, 0.006201796233654022, -0.04039500653743744, 0.008967258967459202, -0.139084592461586, -0.03958914428949356, 0.10864308476448059, 0.08333832025527954, -0.023986095562577248, -0.10271590948104858, -0.01017947681248188, -0.2073913961648941, -0.05174244940280914, 0.0016868812963366508, 0.026117220520973206, -0.02550361305475235, -0.09618037939071655, 0.02320074662566185, -0.07883661240339279, -0.08584991097450256, 0.012954151257872581, 0.1352626085281372, 0.04038609564304352, -0.050787318497896194, 0.013628875836730003, 0.09264110028743744, 0.037148889154195786, -0.13338865339756012, 0.010741260834038258, 0.060124579817056656, -0.10954518616199493, -0.02409452572464943, -0.04094364494085312, -0.0628802552819252, 0.018536588177084923, 0.10527320951223373, -0.01470813900232315, 0.08706817030906677, -0.006995829287916422, 0.021661439910531044, -0.06745705753564835, 0.15534651279449463, -0.05345785245299339, -0.07003507018089294, -0.04392658919095993, 0.08691854774951935, -0.004434540402144194, -0.014084646478295326, -0.07641718536615372, 0.014885060489177704, 0.10437380522489548, 0.05092586576938629, -0.013963557779788971, 0.0077630747109651566, -0.07219704985618591, -0.010970276780426502, -0.015191467478871346, -0.10166145861148834, 0.041075028479099274, 0.036593515425920486, -0.04079638049006462, 0.007227280177175999, 0.0077222175896167755, 0.03630703315138817, -0.0160447359085083, 0.12962472438812256, -0.044528573751449585, 0.007217674981802702, -0.05442100018262863, -0.11253181099891663, 0.041071247309446335, -0.004230049438774586, -0.0006317404331639409, -0.06382517516613007, -0.07619252055883408, -0.06210217624902725, 0.047451019287109375, -0.046216074377298355, -0.07727039605379105, -0.08471544831991196, -0.06227279454469681, 0.05416756495833397, -0.02627180516719818, 0.17926330864429474, -0.06440901756286621, 0.11073118448257446, 0.018776364624500275, 0.03126280754804611, 0.04124664515256882, 0.07970920950174332, -0.0324523001909256, 0.03310469910502434, -0.13339878618717194, 0.08795619755983353, -0.08527383953332901, 0.03496749326586723, -0.14380759000778198, -0.12063080072402954, -0.007778272032737732, 0.006123454309999943, 0.10286100953817368, 0.09487846493721008, -0.20941272377967834, -0.10362192243337631, 0.16304336488246918, -0.07370635867118835, -0.07572406530380249, 0.16421133279800415, -0.02909739688038826, -0.01768733188509941, 0.05053257569670677, 0.17338109016418457, 0.1065998524427414, -0.09990843385457993, 0.020307132974267006, -0.05907700955867767, 0.1379324495792389, 0.05532968044281006, 0.08737000077962875, -0.05166255310177803, 0.016539394855499268, -0.005521636456251144, -0.002680407138541341, 0.08468083292245865, -0.08816131949424744, -0.08121857047080994, -0.013214259408414364, -0.07276441901922226, 0.023003337904810905, 0.051930949091911316, 0.013178196735680103, -0.10037636011838913, -0.12173682451248169, 0.036664530634880066, 0.11355951428413391, -0.10558139532804489, 0.04419749230146408, -0.06577975302934647, 0.035506654530763626, -0.013404288329184055, -0.015037347562611103, -0.16221940517425537, 0.02079118974506855, 0.029591426253318787, -0.04871687293052673, 0.045424845069646835, 0.002762961434200406, 0.06902839988470078, 0.04680551588535309, -0.06822279840707779, -0.05823668837547302, -0.04929516091942787, 0.009536178782582283, -0.07780350744724274, -0.24855366349220276, -0.06537459790706635, -0.03399542719125748, 0.16263096034526825, -0.21561504900455475, -0.003304385347291827, 0.02147182635962963, 0.12223540991544724, 0.03137096017599106, -0.047346848994493484, 0.00014103390276432037, 0.10416978597640991, -0.01282061729580164, -0.05370519310235977, 0.029503118246793747, 0.004556840751320124, -0.14600886404514313, 0.00885193794965744, -0.13135027885437012, 0.06220405176281929, 0.09505708515644073, -0.019136693328619003, -0.09824355691671371, -0.06794866174459457, -0.053719356656074524, -0.06681745499372482, -0.029693908989429474, -0.0021693382877856493, 0.2142743021249771, 0.03360232338309288, 0.10641435533761978, -0.058390893042087555, -0.035867512226104736, 0.033092740923166275, 0.013892294839024544, -0.011029294691979885, 0.13450361788272858, 0.059350062161684036, -0.0637468695640564, 0.08535364270210266, 0.06785386800765991, -0.07416851073503494, 0.15841948986053467, -0.07184155285358429, -0.10064829140901566, -0.03818107396364212, 0.018867984414100647, 0.020175470039248466, 0.09526798129081726, -0.16698500514030457, -0.007621035911142826, 0.013802891597151756, 0.02767551876604557, 0.022570157423615456, -0.20074927806854248, -0.006120797246694565, 0.049868009984493256, -0.07242942601442337, -0.03476260229945183, -0.01034314464777708, -0.007459735032171011, 0.08239320665597916, 0.0064954254776239395, -0.06567379832267761, -0.015115227550268173, -0.03388654440641403, -0.09114867448806763, 0.17152468860149384, -0.1168869137763977, -0.13548721373081207, -0.1256496012210846, -0.0553775392472744, 0.0015219494234770536, -0.014845949597656727, 0.0688696801662445, -0.12033648788928986, -0.028748178854584694, -0.05506974086165428, 0.0550852045416832, -0.07470309734344482, 0.030270056799054146, -0.026519088074564934, 0.004577919840812683, 0.06640235334634781, -0.10778579115867615, 0.021738246083259583, -0.01010121125727892, -0.019241034984588623, 0.01036364771425724, 0.03643188998103142, 0.08394743502140045, 0.1754588633775711, 0.051739178597927094, 0.003409421071410179, -0.05514884367585182, 0.16611042618751526, -0.11942838132381439, -0.027586130425333977, 0.09751057624816895, -0.007987110875546932, 0.027561374008655548, 0.15683084726333618, 0.05784190818667412, -0.0793260931968689, 0.01911802589893341, 0.032146163284778595, -0.008157323114573956, -0.24898989498615265, -0.05036679655313492, -0.07608847320079803, -0.01655127853155136, 0.08772185444831848, 0.028973756358027458, -0.022597840055823326, 0.003795973025262356, -0.027580268681049347, 0.00525842048227787, 0.015744391828775406, 0.058627430349588394, 0.11335565149784088, 0.02871653437614441, 0.11210274696350098, -0.013686265796422958, -0.028164716437458992, 0.03275011479854584, -0.011870872229337692, 0.22521261870861053, 0.02311856485903263, 0.17004694044589996, 0.048722296953201294, 0.15051627159118652, 0.011634664610028267, 0.037574272602796555, 0.024512087926268578, -0.018232550472021103, 0.01657811738550663, -0.05383329838514328, -0.03401678428053856, 0.0336608923971653, 0.132389098405838, 0.01936311274766922, -0.11943739652633667, -0.0328591912984848, 0.00758671760559082, 0.35182586312294006, 0.0735122412443161, -0.2533891201019287, -0.09491720050573349, 0.011147437617182732, -0.09579417109489441, -0.03142915666103363, 0.02919340878725052, 0.11568424850702286, -0.09277916699647903, 0.07232169806957245, -0.051029279828071594, 0.0918877124786377, -0.05990740656852722, 0.011384877376258373, 0.060424789786338806, 0.06862731277942657, -0.006115990225225687, 0.06338819861412048, -0.26190686225891113, 0.30337491631507874, -0.010713142342865467, 0.07242744415998459, -0.028722502291202545, 0.03772394359111786, 0.0265774205327034, -0.04394889250397682, 0.05614273622632027, -0.012429249472916126, -0.12869612872600555, -0.17801688611507416, -0.06453333050012589, 0.02153756283223629, 0.1188720092177391, -0.040249522775411606, 0.11339762061834335, -0.028206268325448036, -0.019156668335199356, 0.06206013262271881, -0.04861757904291153, -0.1061631292104721, -0.10975390672683716, 0.011571037583053112, 0.052753183990716934, 0.09732890129089355, -0.09133321046829224, -0.10763402283191681, -0.08850237727165222, 0.16753198206424713, -0.0772009864449501, 0.0028968218248337507, -0.11343128979206085, 0.09537144005298615, 0.16783128678798676, -0.06797164678573608, 0.052411895245313644, 0.031348902732133865, 0.10456688702106476, 0.008785218931734562, 0.0039021908305585384, 0.11841403692960739, -0.07578758150339127, -0.19260600209236145, -0.06821385771036148, 0.1881592571735382, 0.04586997628211975, 0.09076420217752457, -0.028891121968626976, 0.032195016741752625, -0.01058869156986475, -0.059712283313274384, 0.05989202857017517, 0.04040984436869621, -0.00645814323797822, 0.07486188411712646, -0.03756269812583923, -0.039298489689826965, -0.07855340093374252, -0.09933155030012131, 0.17129433155059814, 0.31125500798225403, -0.08560281246900558, 0.06119798123836517, 0.049210306257009506, -0.05319812893867493, -0.12232418358325958, 0.008569009602069855, 0.13707448542118073, 0.04937577247619629, 0.027034323662519455, -0.22118762135505676, 0.02950354479253292, 0.07961498945951462, -0.016736004501581192, 0.05023070424795151, -0.32715585827827454, -0.1373116374015808, 0.115488201379776, 0.07314754277467728, -0.017991147935390472, -0.13929970562458038, -0.055511973798274994, -0.02667810581624508, -0.10174967348575592, 0.034799184650182724, -0.01613791286945343, 0.1354082077741623, 0.016376683488488197, 0.059200119227170944, 0.03031521663069725, -0.0382530614733696, 0.1384456604719162, -0.020591553300619125, 0.04562126100063324, -0.0070566278882324696, 0.038427628576755524, -0.05269494652748108, -0.03502187132835388, -0.009217395447194576, -0.09357296675443649, 0.006403930019587278, -0.11170113831758499, -0.03714219108223915, -0.07792185246944427, 0.014075757004320621, -0.04199414327740669, -0.044041771441698074, -0.025466790422797203, 0.03406103327870369, 0.07263462990522385, -0.0007531246519647539, 0.10744880139827728, -0.07371653616428375, 0.168046772480011, 0.08287595212459564, 0.10689587891101837, 0.012523608282208443, -0.09132856875658035, -0.011734750121831894, -0.028867041692137718, 0.044071514159440994, -0.09734854102134705, 0.029462512582540512, 0.13780759274959564, 0.04920678213238716, 0.16095851361751556, 0.045376911759376526, -0.08051475882530212, 0.021734129637479782, 0.057680100202560425, -0.06599684059619904, -0.14943349361419678, -0.014352671802043915, 0.05022618547081947, -0.13602522015571594, -0.022082848474383354, 0.11940744519233704, -0.0485353097319603, -0.017784541472792625, 0.021267807111144066, 0.026549343019723892, -0.06667439639568329, 0.23397201299667358, -0.002865217160433531, 0.074697345495224, -0.09339335560798645, 0.056323856115341187, 0.07239900529384613, -0.17464496195316315, 0.03966234251856804, 0.08083976060152054, -0.031253665685653687, -0.022501904517412186, 0.03464889153838158, 0.08808401226997375, 0.0278818067163229, -0.04753831773996353, -0.09446641057729721, -0.1572491079568863, 0.0811091959476471, 0.0910976231098175, 0.02707754075527191, 0.026899250224232674, -0.04676450416445732, 0.04506895691156387, -0.0983964204788208, 0.09633844345808029, 0.10440509766340256, 0.06414986401796341, -0.122585229575634, 0.16932517290115356, 0.011055469512939453, -0.01019454188644886, 0.008657577447593212, -0.009667440317571163, -0.08640816807746887, 0.03344570845365524, -0.13419656455516815, -0.030407320708036423, -0.04756087064743042, 0.006591057404875755, 0.0135685745626688, -0.05378229543566704, -0.04094986990094185, 0.016587430611252785, -0.117094986140728, -0.04171028733253479, -0.020555511116981506, 0.0797344446182251, -0.09236141294240952, -0.02466750331223011, 0.04180585965514183, -0.10025524348020554, 0.09092668443918228, 0.06029673293232918, 0.014015455730259418, 0.03962526470422745, -0.13251693546772003, -0.004252489190548658, 0.048401840031147, 0.00045265749213285744, 0.010583627037703991, -0.19082874059677124, -0.02616114541888237, -0.01456235907971859, 0.03292223438620567, -0.0012611841084435582, 0.026135455816984177, -0.12643352150917053, -0.046699270606040955, -0.03872499614953995, -0.07309352606534958, -0.0556483268737793, 0.03534708172082901, 0.06336621195077896, 0.0453067272901535, 0.1594540923833847, -0.10457194596529007, 0.07244807481765747, -0.21378186345100403, 0.00822349451482296, -0.049971550703048706, -0.06122039258480072, -0.09216950088739395, -0.03874865919351578, 0.08622771501541138, -0.054924458265304565, 0.07246334850788116, -0.06301771849393845, 0.056754741817712784, 0.028151744976639748, -0.12410016357898712, 0.013652153313159943, 0.035405728965997696, 0.22365020215511322, 0.05609816685318947, -0.036412499845027924, 0.05503357946872711, -0.0002666967047844082, 0.05524984002113342, 0.20196880400180817, 0.1200200691819191, 0.1576547920703888, 0.06741084903478622, 0.07760489732027054, 0.07108290493488312, -0.12466844171285629, -0.11554065346717834, 0.12044307589530945, -0.025583390146493912, 0.13594631850719452, -0.021415580064058304, 0.2573535442352295, 0.08968376368284225, -0.19770050048828125, 0.07090883702039719, -0.044271789491176605, -0.08304613083600998, -0.09303496778011322, -0.04639115929603577, -0.07698648422956467, -0.18284232914447784, 0.005801440216600895, -0.10401169210672379, 0.06255845725536346, 0.02623993717133999, 0.04171789065003395, 0.0274769626557827, 0.107989601790905, 0.03130365535616875, -0.013726633042097092, 0.10944762080907822, 0.012266155332326889, -0.01132322009652853, -0.06876922398805618, -0.08830016851425171, 0.06733668595552444, -0.041777536273002625, 0.04372027516365051, -0.03242009878158569, -0.10492173582315445, 0.06285283714532852, 0.005123951006680727, -0.11328285932540894, 0.028900139033794403, -0.013252749107778072, 0.07950612902641296, 0.13150842487812042, 0.0462072528898716, -0.006537354085594416, -0.01128651387989521, 0.2328115701675415, -0.10395738482475281, -0.07798409461975098, -0.12633223831653595, 0.25042837858200073, 0.005362663418054581, -0.015082885511219501, 0.011766080744564533, -0.06778876483440399, -0.0006416183896362782, 0.13238070905208588, 0.1578540951013565, -0.0018270360305905342, -0.010330656543374062, 0.02304152213037014, -0.013594028539955616, -0.04653971642255783, 0.05892625451087952, 0.13046766817569733, 0.0631403848528862, -0.054512299597263336, -0.015082068741321564, -0.0578843392431736, -0.05244281888008118, -0.010787824168801308, 0.06726401299238205, 0.027988893911242485, -0.022979600355029106, -0.010515404865145683, 0.1295800805091858, -0.05893680453300476, -0.1571144163608551, 0.0015497540589421988, -0.18824495375156403, -0.17713463306427002, -0.03172629699110985, 0.0762147307395935, 0.06224245950579643, 0.044414252042770386, -0.017581000924110413, -0.01747855544090271, 0.12070056796073914, -0.0028839868027716875, -0.03571632504463196, -0.1195923462510109, 0.08631793409585953, -0.07390118390321732, 0.14651301503181458, -0.031687069684267044, 0.05182294175028801, 0.11274412274360657, 0.09795206785202026, -0.04889559745788574, 0.05989524722099304, 0.07917173951864243, -0.13972435891628265, 0.059502195566892624, 0.2016313225030899, -0.050284117460250854, 0.16809043288230896, 0.0517059862613678, -0.10917156934738159, 0.04154808819293976, -0.106988325715065, -0.06585055589675903, -0.050028372555971146, 0.0061493185348808765, -0.044224902987480164, 0.1351577490568161, 0.20628225803375244, -0.06778517365455627, -0.024763980880379677, -0.053602054715156555, -0.004217497073113918, 0.04562269151210785, 0.14436063170433044, -0.05254947021603584, -0.27372851967811584, 0.023920956999063492, 0.014190482906997204, 0.024304524064064026, -0.23526321351528168, -0.10872513800859451, 0.03897613286972046, -0.057198427617549896, -0.0642932876944542, 0.11891830712556839, 0.0613565668463707, 0.030444232746958733, -0.05541813001036644, -0.1255967915058136, -0.016153518110513687, 0.1829606294631958, -0.1668493151664734, -0.059446606785058975 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # 4 This model is a fine-tuned version of [GroNLP/bert-base-dutch-cased](https://huggingface.co/GroNLP/bert-base-dutch-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1243 - Precision: 0.5220 - Recall: 0.6137 - F1: 0.5641 - Accuracy: 0.9630 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 134 | 0.1357 | 0.4549 | 0.5521 | 0.4988 | 0.9574 | | No log | 2.0 | 268 | 0.1243 | 0.5220 | 0.6137 | 0.5641 | 0.9630 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu111 - Tokenizers 0.10.3
{"tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "4", "results": []}]}
token-classification
Matthijsvanhof/4
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #bert #token-classification #generated_from_trainer #autotrain_compatible #endpoints_compatible #region-us
4 = This model is a fine-tuned version of GroNLP/bert-base-dutch-cased on an unknown dataset. It achieves the following results on the evaluation set: * Loss: 0.1243 * Precision: 0.5220 * Recall: 0.6137 * F1: 0.5641 * Accuracy: 0.9630 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 8 * eval\_batch\_size: 8 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 2 ### Training results ### Framework versions * Transformers 4.12.5 * Pytorch 1.10.0+cu111 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 2", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.10.0+cu111\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #bert #token-classification #generated_from_trainer #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 2", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.10.0+cu111\n* Tokenizers 0.10.3" ]
[ 48, 98, 4, 27 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #bert #token-classification #generated_from_trainer #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 2### Training results### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.10.0+cu111\n* Tokenizers 0.10.3" ]
[ -0.0840420126914978, 0.04261359944939613, -0.0020071929320693016, 0.11544931679964066, 0.20555393397808075, 0.029834287241101265, 0.1112898588180542, 0.09681394696235657, -0.10904907435178757, 0.029770059511065483, 0.11901722103357315, 0.17363950610160828, -0.005376716144382954, 0.07480715960264206, -0.05086766555905342, -0.2810041904449463, -0.03184477239847183, 0.05338646098971367, -0.09317264705896378, 0.12012439966201782, 0.07781132310628891, -0.16532842814922333, 0.07577169686555862, 0.0002435580681776628, -0.2733789384365082, 0.024721022695302963, 0.03771154209971428, -0.06354810297489166, 0.149102583527565, 0.006285145413130522, 0.1727495938539505, -0.0007260650163516402, 0.10318679362535477, -0.1495095044374466, 0.009957179427146912, 0.05685993283987045, 0.02237006649374962, 0.08827631920576096, 0.06734936684370041, 0.003878881921991706, 0.08898992091417313, -0.08532184362411499, 0.0663376897573471, 0.0005903851706534624, -0.12619712948799133, -0.21016845107078552, -0.06367193162441254, 0.003252126043662429, 0.04756230488419533, 0.08717656135559082, -0.004333882126957178, 0.16621635854244232, -0.11075103282928467, 0.09457581490278244, 0.2266925424337387, -0.28010421991348267, -0.08611316978931427, 0.04426407441496849, -0.0023129202891141176, 0.08294679969549179, -0.1274728775024414, -0.019128525629639626, 0.060434915125370026, 0.05395689606666565, 0.12949565052986145, -0.03722525015473366, -0.09971147775650024, 0.027140984311699867, -0.15469813346862793, 0.008668665774166584, 0.04093854874372482, 0.015594398602843285, -0.01957654394209385, -0.004066381603479385, -0.06337999552488327, -0.16590213775634766, -0.04653079807758331, -0.04522252082824707, 0.04802070930600166, -0.056603848934173584, -0.10629074275493622, 0.0066316076554358006, -0.10052638500928879, -0.06436876952648163, -0.06646212190389633, 0.1918909102678299, 0.04363429918885231, 0.010252422653138638, -0.041850410401821136, 0.10814280807971954, -0.016075721010565758, -0.1304357796907425, 0.06261336803436279, 0.03386295214295387, -0.024544714018702507, -0.07550894469022751, -0.0680621936917305, -0.09782733768224716, -0.0034173273015767336, 0.08255401998758316, -0.05359950289130211, 0.05156842619180679, 0.04011853039264679, 0.03945678845047951, -0.09908245503902435, 0.21723362803459167, -0.04017980396747589, -0.015286893583834171, -0.005400411318987608, 0.0507725328207016, -0.021254058927297592, -0.009545118547976017, -0.11333668231964111, 0.006597628816962242, 0.12741954624652863, -0.002929954556748271, -0.08701685070991516, 0.06764403730630875, -0.03732796013355255, -0.02017197385430336, -0.037846606224775314, -0.09472750127315521, 0.06042473390698433, -0.01190366130322218, -0.08911041915416718, 0.011569480411708355, 0.0002855307830031961, 0.016132285818457603, -0.009502975270152092, 0.17956700921058655, -0.10400760173797607, 0.05629875138401985, -0.12086637318134308, -0.12032020092010498, -0.0030161284375935793, -0.06707541644573212, 0.02393006719648838, -0.09547946602106094, -0.09747371077537537, -0.013877682387828827, 0.058239325881004333, -0.03261774033308029, -0.02992146834731102, -0.04007561132311821, -0.07186689972877502, 0.003911884035915136, -0.010794715955853462, 0.1524079442024231, -0.04287217929959297, 0.11221551895141602, 0.05790798366069794, 0.07476581633090973, -0.05454368516802788, 0.05271846055984497, -0.09412248432636261, 0.004374476615339518, -0.2311929315328598, 0.026309365406632423, -0.05740717798471451, 0.07895522564649582, -0.06627349555492401, -0.11599523574113846, 0.011019406840205193, -0.0031207010615617037, 0.09178727120161057, 0.07144835591316223, -0.16026833653450012, -0.09429407119750977, 0.14997531473636627, -0.057239655405282974, -0.07324033975601196, 0.11797363311052322, -0.06488410383462906, 0.03263453394174576, 0.07750300318002701, 0.16035893559455872, 0.05569439008831978, -0.08246117830276489, 0.02863619476556778, -0.026746198534965515, 0.044473979622125626, -0.05012764036655426, 0.02752911113202572, 0.019620591774582863, 0.0023663854226469994, 0.031779997050762177, -0.019790375605225563, 0.05950296297669411, -0.11896676570177078, -0.08257840573787689, -0.0332314595580101, -0.10425270348787308, 0.0742444172501564, 0.08491086959838867, 0.10929860919713974, -0.09822642803192139, -0.06875106692314148, 0.12137875705957413, 0.045077040791511536, -0.045165322721004486, 0.02377038635313511, -0.06109766289591789, 0.05880478024482727, -0.0634201169013977, -0.03098933771252632, -0.20076504349708557, -0.037353746592998505, 0.010194297879934311, 0.026173878461122513, 0.04402967169880867, 0.0356636680662632, 0.08867082744836807, 0.06693605333566666, -0.06019886955618858, -0.0065440344624221325, -0.023907363414764404, -0.004634051118046045, -0.16466130316257477, -0.19623126089572906, -0.026237746700644493, -0.01211916096508503, 0.07675383239984512, -0.21159660816192627, 0.025399543344974518, -0.023200243711471558, 0.09021367132663727, 0.017663558945059776, -0.00612120795994997, -0.07214893400669098, 0.11705373972654343, -0.017810624092817307, -0.04350167140364647, 0.07128988951444626, -0.02158472314476967, -0.07125181704759598, -0.08705190569162369, -0.11050967127084732, 0.20067884027957916, 0.13858099281787872, -0.16719964146614075, -0.10317329317331314, 0.0071180458180606365, -0.05586177855730057, -0.019433364272117615, -0.04768594726920128, 0.04955177381634712, 0.19735409319400787, -0.012832000851631165, 0.14868170022964478, -0.05321231111884117, -0.04590274766087532, 0.018455782905220985, -0.03606904670596123, 0.037571825087070465, 0.09970000386238098, 0.13751377165317535, -0.07650076597929001, 0.12961848080158234, 0.1492171436548233, -0.1323949247598648, 0.1395094245672226, -0.01871124468743801, -0.07458733767271042, -0.017674118280410767, -0.030365347862243652, 0.00822202954441309, 0.09852047264575958, -0.12085453420877457, -0.028419870883226395, -0.002548281801864505, 0.01939678005874157, 0.026390397921204567, -0.24053938686847687, -0.04403804615139961, 0.029730672016739845, -0.0008587019983679056, 0.01662295311689377, -0.027393119409680367, 0.023962220177054405, 0.11785931140184402, 0.006295247469097376, -0.08497674018144608, 0.024290110915899277, 0.008288359269499779, -0.0622161366045475, 0.20505915582180023, -0.06790110468864441, -0.10537586361169815, -0.10559044778347015, -0.08448535948991776, -0.040354881435632706, 0.014873092994093895, 0.037474725395441055, -0.12369263172149658, -0.012427609413862228, -0.01934937573969364, 0.028635382652282715, 0.005534392315894365, 0.06461244821548462, -0.00025528203696012497, -0.0036678817123174667, 0.07281368970870972, -0.09865178167819977, -0.007093334104865789, -0.07360224425792694, -0.07682046294212341, 0.054955050349235535, 0.066659115254879, 0.1176348626613617, 0.18105752766132355, -0.055579643696546555, 0.0031381777953356504, -0.022744541987776756, 0.23771671950817108, -0.0727086290717125, -0.04122520238161087, 0.09696699678897858, -0.03374394029378891, 0.055532000958919525, 0.09645677357912064, 0.08764483034610748, -0.09449274837970734, 0.012015126645565033, 0.044890932738780975, -0.039097100496292114, -0.19376492500305176, -0.025838548317551613, -0.04263724386692047, -0.04711822420358658, 0.09247718751430511, 0.020164912566542625, 0.03372177854180336, 0.06911566853523254, 0.07496101409196854, 0.10460466891527176, -0.07144539803266525, 0.04831640049815178, 0.08679958432912827, 0.04848488047719002, 0.12885285913944244, -0.030377380549907684, -0.11140377074480057, 0.014413876459002495, -0.027338454499840736, 0.20903776586055756, 0.013878519646823406, 0.07502048462629318, 0.04181460663676262, 0.18629984557628632, 0.014243893325328827, 0.08157418668270111, -0.0016143531538546085, -0.07501858472824097, -0.0005647114012390375, -0.034768279641866684, -0.03223291411995888, 0.012816507369279861, -0.01999717578291893, 0.05627317726612091, -0.11858086287975311, -0.01538686640560627, 0.056595925241708755, 0.23300136625766754, 0.01641322672367096, -0.3155488073825836, -0.06610511988401413, -0.009368885308504105, -0.0374547615647316, -0.00350537640042603, 0.008039431646466255, 0.11693677306175232, -0.09059923142194748, 0.009810349904000759, -0.07515725493431091, 0.08546765893697739, -0.03213994950056076, 0.05487099289894104, 0.07024941593408585, 0.11923205107450485, -0.00252224481664598, 0.05846184492111206, -0.30598053336143494, 0.264079213142395, 0.011550947092473507, 0.0798463374376297, -0.06803179532289505, -0.00767961610108614, 0.03380211815237999, 0.055718034505844116, 0.01937752217054367, -0.021401232108473778, -0.029920678585767746, -0.2342730313539505, -0.020742807537317276, 0.0286919716745615, 0.1379217803478241, -0.01396975014358759, 0.10308840870857239, -0.021310051903128624, 0.001031732652336359, 0.08242862671613693, -0.028952134773135185, -0.04884140193462372, -0.06684011965990067, -0.024169594049453735, 0.003943475428968668, -0.06669948995113373, -0.0529407262802124, -0.1195906400680542, -0.1426238864660263, 0.15615962445735931, 0.014536774717271328, -0.0020497601944953203, -0.12299925833940506, 0.11428443342447281, 0.06724785268306732, -0.07910911738872528, 0.03679336979985237, 0.01614517532289028, 0.060745809227228165, 0.03000914491713047, -0.06199559196829796, 0.12335412949323654, -0.05226468667387962, -0.15160012245178223, -0.0695401281118393, 0.07980254292488098, 0.039802297949790955, 0.0658223107457161, -0.018430029973387718, 0.01573498360812664, -0.010686763562262058, -0.08731483668088913, 0.04630429297685623, -0.037564583122730255, 0.04953279346227646, 0.004381418693810701, -0.05791304633021355, 0.010682511143386364, -0.060935020446777344, -0.004061616491526365, 0.1862952560186386, 0.2320711612701416, -0.09403432160615921, -0.023111961781978607, 0.03907373175024986, -0.060445014387369156, -0.1949305236339569, 0.09917697310447693, 0.08250989019870758, 0.0011596481781452894, 0.05045656859874725, -0.1603122055530548, 0.1588989794254303, 0.10681984573602676, 0.0006194855668582022, 0.11322284489870071, -0.3093012571334839, -0.13109268248081207, 0.10209189355373383, 0.17640434205532074, 0.12128683924674988, -0.13820336759090424, -0.011618707329034805, -0.013709436170756817, -0.09626730531454086, 0.09406619518995285, -0.0691813975572586, 0.11657882481813431, -0.016362838447093964, 0.10725350677967072, 0.011670802719891071, -0.06673138588666916, 0.09056103229522705, 0.006396562792360783, 0.11380428820848465, -0.06096317619085312, -0.08276715874671936, 0.031015973538160324, -0.026148630306124687, -0.02519115060567856, -0.022709647193551064, 0.007633684203028679, -0.05271986126899719, -0.019564149901270866, -0.09193814545869827, 0.04159408062696457, -0.029972851276397705, -0.07050029933452606, -0.028541984036564827, 0.027641309425234795, 0.024300623685121536, -0.02283172495663166, 0.11394555866718292, 0.008802716620266438, 0.17887094616889954, 0.0995686799287796, 0.06984294205904007, -0.07159283757209778, -0.046411555260419846, 0.0045993574894964695, -0.010512434877455235, 0.07397361099720001, -0.11115363240242004, 0.021708115935325623, 0.1568807065486908, 0.022736232727766037, 0.11754149943590164, 0.09605789184570312, -0.018400592729449272, 0.016144046559929848, 0.07521332800388336, -0.1639162302017212, -0.06436678022146225, 0.0014884289121255279, -0.07272683084011078, -0.09254413843154907, 0.058461807668209076, 0.08160951733589172, -0.07375737279653549, -0.011024920269846916, -0.006099667400121689, -0.03426551818847656, -0.07522948831319809, 0.21819870173931122, 0.0769779235124588, 0.042939867824316025, -0.09217695891857147, 0.04851880297064781, 0.06337407976388931, -0.09087855368852615, -0.01072675921022892, 0.0847926065325737, -0.07204408198595047, -0.017481405287981033, 0.10906274616718292, 0.20991109311580658, -0.06538613140583038, -0.011040724813938141, -0.14901508390903473, -0.10673918575048447, 0.06248451769351959, 0.1884346604347229, 0.11060268431901932, -0.008466558530926704, -0.06426701694726944, 0.04741179198026657, -0.14478150010108948, 0.06726544350385666, 0.031322792172431946, 0.09226970374584198, -0.1523682028055191, 0.21758504211902618, 0.0030328130815178156, 0.0444013774394989, -0.033891770988702774, 0.03357879817485809, -0.13030637800693512, 0.020925922319293022, -0.11001250147819519, -0.06480077654123306, 0.0018732225289568305, -0.010160451754927635, 0.0029359180480241776, -0.0756167471408844, -0.06110154464840889, -0.0003206281107850373, -0.13360178470611572, -0.01617903634905815, 0.05034199357032776, 0.021909093484282494, -0.10633256286382675, -0.033543411642313004, 0.023148389533162117, -0.04792702943086624, 0.046210967004299164, 0.042598217725753784, 0.02227427251636982, 0.08087455481290817, -0.15176904201507568, -0.017876243218779564, 0.07273238152265549, -0.006656805984675884, 0.10124558955430984, -0.038427937775850296, -0.008286903612315655, -0.018105771392583847, 0.11497584730386734, 0.02603840082883835, 0.07972617447376251, -0.1411970853805542, 0.005221700761467218, -0.030276188626885414, -0.11468024551868439, -0.06631562858819962, 0.017549116164445877, 0.07764139026403427, 0.0024295817129313946, 0.18021973967552185, -0.0892210304737091, 0.05487443134188652, -0.20736971497535706, -0.010774482041597366, -0.0137983039021492, -0.10767757892608643, -0.09370157867670059, -0.06144638732075691, 0.06967983394861221, -0.05703946202993393, 0.10968776047229767, 0.04559992253780365, 0.05802791565656662, 0.03571692481637001, -0.04332812875509262, -0.008916006423532963, 0.03869295492768288, 0.19332872331142426, 0.0519656166434288, -0.04474812373518944, 0.05272302031517029, 0.08130039274692535, 0.10182657837867737, 0.11656654626131058, 0.21648621559143066, 0.14465221762657166, -0.04072889685630798, 0.08769554644823074, 0.03277074173092842, -0.04286443069577217, -0.18076364696025848, 0.028160007670521736, -0.07516001909971237, 0.08626087754964828, -0.03620827943086624, 0.2104455977678299, 0.06861673295497894, -0.15453417599201202, 0.0442390963435173, -0.06555831432342529, -0.10202807188034058, -0.10089346766471863, -0.00664041843265295, -0.08091472834348679, -0.14110593497753143, 0.01460194867104292, -0.09676997363567352, 0.018199782818555832, 0.1137675940990448, 0.011127638630568981, -0.02362450771033764, 0.20800930261611938, 0.03720421344041824, 0.04714706540107727, 0.060560375452041626, 0.008806823752820492, -0.021449465304613113, -0.10073228925466537, -0.06221544370055199, -0.04983535036444664, -0.01034380029886961, 0.027808815240859985, -0.07699929922819138, -0.10167466104030609, 0.022114232182502747, -0.00820721872150898, -0.1043737381696701, 0.02884618751704693, 0.01675838604569435, 0.06627605855464935, 0.0013941560173407197, -0.011125230230391026, 0.011921131052076817, -0.03808652609586716, 0.21367621421813965, -0.09384988248348236, -0.07488860934972763, -0.0912991613149643, 0.30339038372039795, 0.037610650062561035, 0.021403061226010323, 0.011188182979822159, -0.06895127892494202, 0.006932435557246208, 0.2421272248029709, 0.18686234951019287, -0.12495047599077225, -0.0013817610451951623, 0.004764997866004705, -0.014018393121659756, -0.04282337427139282, 0.1376502513885498, 0.12442661076784134, 0.04293671250343323, -0.10927839577198029, -0.03434314578771591, -0.06061926484107971, -0.013459264300763607, -0.04370017722249031, 0.05453437939286232, 0.07581470161676407, 0.030295968055725098, -0.06717517971992493, 0.052256274968385696, -0.06088004261255264, -0.101857990026474, 0.07873282581567764, -0.21413150429725647, -0.16744017601013184, -0.005523195955902338, 0.11618854850530624, -0.020987877622246742, 0.08173190802335739, -0.030140627175569534, -0.013012372888624668, 0.028457915410399437, -0.02489747665822506, -0.06371988356113434, -0.08638444542884827, 0.10367618501186371, -0.11282755434513092, 0.1832052320241928, -0.050010956823825836, 0.06724435091018677, 0.12228748202323914, 0.0693725049495697, -0.042186640202999115, 0.04575281962752342, 0.04236259683966637, -0.1265534609556198, 0.00923228356987238, 0.12326259911060333, -0.029922975227236748, 0.059333864599466324, 0.03730571269989014, -0.15304702520370483, 0.038959380239248276, -0.1017410010099411, -0.0404384471476078, -0.03811763972043991, -0.055994145572185516, -0.05422530323266983, 0.11658920347690582, 0.23783427476882935, -0.0013179871020838618, 0.029009712859988213, -0.07932284474372864, 0.00791741069406271, 0.05744652822613716, 0.05565614998340607, -0.11056166887283325, -0.25311142206192017, 0.012500982731580734, 0.07478528469800949, -0.046830881386995316, -0.22016067802906036, -0.09524655342102051, 0.013004951179027557, -0.06702233850955963, -0.09318116307258606, 0.08210106194019318, 0.07795745879411697, 0.06148122623562813, -0.04947616904973984, -0.13646504282951355, -0.0812315121293068, 0.1582939177751541, -0.1538688987493515, -0.08322550356388092 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-dutch-cased-finetuned-NER This model is a fine-tuned version of [GroNLP/bert-base-dutch-cased](https://huggingface.co/GroNLP/bert-base-dutch-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1078 - Precision: 0.6129 - Recall: 0.6639 - F1: 0.6374 - Accuracy: 0.9688 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 267 | 0.1131 | 0.6090 | 0.6264 | 0.6176 | 0.9678 | | 0.1495 | 2.0 | 534 | 0.1078 | 0.6129 | 0.6639 | 0.6374 | 0.9688 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
{"tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "bert-base-dutch-cased-finetuned-NER", "results": []}]}
token-classification
Matthijsvanhof/bert-base-dutch-cased-finetuned-NER
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #bert #token-classification #generated_from_trainer #autotrain_compatible #endpoints_compatible #region-us
bert-base-dutch-cased-finetuned-NER =================================== This model is a fine-tuned version of GroNLP/bert-base-dutch-cased on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.1078 * Precision: 0.6129 * Recall: 0.6639 * F1: 0.6374 * Accuracy: 0.9688 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 8 * eval\_batch\_size: 8 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 2 ### Training results ### Framework versions * Transformers 4.12.5 * Pytorch 1.10.0+cu111 * Datasets 1.16.1 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 2", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.10.0+cu111\n* Datasets 1.16.1\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #bert #token-classification #generated_from_trainer #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 2", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.10.0+cu111\n* Datasets 1.16.1\n* Tokenizers 0.10.3" ]
[ 48, 98, 4, 33 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #bert #token-classification #generated_from_trainer #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 2### Training results### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.10.0+cu111\n* Datasets 1.16.1\n* Tokenizers 0.10.3" ]
[ -0.09285590052604675, 0.05547519028186798, -0.0017910010647028685, 0.11759438365697861, 0.2070489227771759, 0.03477310389280319, 0.10734681040048599, 0.10185577720403671, -0.10707367211580276, 0.031222539022564888, 0.11585471034049988, 0.1700478047132492, 0.00042939477134495974, 0.08542431145906448, -0.05264434218406677, -0.2771449089050293, -0.03202180936932564, 0.047382500022649765, -0.09696836769580841, 0.12188269942998886, 0.07674074918031693, -0.16407537460327148, 0.07589925080537796, -0.006619374733418226, -0.2595929503440857, 0.021265776827931404, 0.0337686724960804, -0.05775703862309456, 0.14816202223300934, 0.00825378019362688, 0.16777200996875763, -0.0020439799409359694, 0.10706976056098938, -0.15548357367515564, 0.009572392329573631, 0.06145712733268738, 0.021079890429973602, 0.08902739733457565, 0.06725387275218964, 0.002488073892891407, 0.08509980142116547, -0.08905236423015594, 0.06601230800151825, 0.0035526819992810488, -0.12616316974163055, -0.21138738095760345, -0.06912972778081894, -0.002056887373328209, 0.05227966979146004, 0.08849871903657913, -0.0058598145842552185, 0.15840785205364227, -0.10990817099809647, 0.09262509644031525, 0.22578708827495575, -0.2748124301433563, -0.08480727672576904, 0.05272851511836052, -0.007258376106619835, 0.08563560992479324, -0.12746261060237885, -0.017461806535720825, 0.05917546898126602, 0.05298718065023422, 0.12562882900238037, -0.0329827144742012, -0.10751237720251083, 0.028257116675376892, -0.15137426555156708, 0.006432792171835899, 0.0519995354115963, 0.018265677616000175, -0.01794995181262493, -0.01057299505919218, -0.06432978063821793, -0.16672664880752563, -0.041986677795648575, -0.036305539309978485, 0.047065529972314835, -0.05991153046488762, -0.10199844837188721, 0.013331823982298374, -0.10012289881706238, -0.06701428443193436, -0.06926684081554413, 0.17037269473075867, 0.04199720174074173, 0.012431543320417404, -0.03624051809310913, 0.11109362542629242, -0.00985457468777895, -0.13118265569210052, 0.05664941295981407, 0.03057447075843811, -0.03310079872608185, -0.07118505984544754, -0.0670071467757225, -0.0921948179602623, -0.0023980126716196537, 0.08161977678537369, -0.04706142470240593, 0.0519973449409008, 0.03557279706001282, 0.03622700273990631, -0.09194374084472656, 0.20155386626720428, -0.04810691624879837, -0.025352854281663895, -0.00936063751578331, 0.05043438449501991, -0.020926186814904213, -0.008801528252661228, -0.10757061839103699, 0.007329138461500406, 0.12204466015100479, 0.0007645657169632614, -0.08250230550765991, 0.06561702489852905, -0.04087166488170624, -0.023508215323090553, -0.036101412028074265, -0.09448710083961487, 0.058115918189287186, -0.008657136932015419, -0.09391465038061142, 0.0053291963413357735, 0.00244680093601346, 0.01515385415405035, -0.007011778187006712, 0.1748531311750412, -0.10275924205780029, 0.05001014098525047, -0.11842867732048035, -0.1217704638838768, 0.002404817147180438, -0.07460381090641022, 0.023100893944501877, -0.09187041968107224, -0.11528877168893814, -0.01743260771036148, 0.058274444192647934, -0.03818143531680107, -0.029406897723674774, -0.0440874807536602, -0.07033798843622208, 0.005521632730960846, -0.01252874918282032, 0.16438493132591248, -0.046657104045152664, 0.11279554665088654, 0.04843825846910477, 0.07747451961040497, -0.049454230815172195, 0.05367434397339821, -0.09155789762735367, 0.0018150836694985628, -0.21881848573684692, 0.0320998840034008, -0.06099537014961243, 0.06883793324232101, -0.07069621980190277, -0.11457226425409317, 0.011809060350060463, -0.005679155234247446, 0.09123057126998901, 0.07807290554046631, -0.1730845421552658, -0.08776173740625381, 0.14775314927101135, -0.058161430060863495, -0.07819393277168274, 0.11485965549945831, -0.06656257063150406, 0.030900802463293076, 0.07734786719083786, 0.15748156607151031, 0.0607125423848629, -0.0803673043847084, 0.020446883514523506, -0.027691587805747986, 0.05641511082649231, -0.053723957389593124, 0.03457682952284813, 0.019986361265182495, 0.006615658290684223, 0.03097061812877655, -0.019025731831789017, 0.06187748163938522, -0.12231581658124924, -0.08431175351142883, -0.029486682265996933, -0.10787241905927658, 0.07194004207849503, 0.08780351281166077, 0.10400541871786118, -0.0942409336566925, -0.06667691469192505, 0.11510170251131058, 0.05420802906155586, -0.049351613968610764, 0.019884470850229263, -0.05474909767508507, 0.05788537114858627, -0.06654452532529831, -0.031906042248010635, -0.2015811949968338, -0.04507672041654587, 0.007588733918964863, 0.027228232473134995, 0.033913977444171906, 0.03830482065677643, 0.08883833885192871, 0.06897661089897156, -0.06546374410390854, -0.0047378200106322765, -0.02389688976109028, -0.0032999885734170675, -0.16215774416923523, -0.20206435024738312, -0.03021937981247902, -0.01369275152683258, 0.08840945363044739, -0.2163134664297104, 0.021701160818338394, -0.02658388577401638, 0.09430374205112457, 0.019115107133984566, -0.012589794583618641, -0.06683584302663803, 0.11059989035129547, -0.020756803452968597, -0.04652731120586395, 0.0690353512763977, -0.022564075887203217, -0.06933604925870895, -0.08518271148204803, -0.10418278723955154, 0.19242744147777557, 0.1367066204547882, -0.15709125995635986, -0.10062351822853088, 0.008110624738037586, -0.05798870697617531, -0.023871153593063354, -0.05816126987338066, 0.04796570539474487, 0.1827106922864914, -0.010435276664793491, 0.14807875454425812, -0.05299009382724762, -0.044238146394491196, 0.020875228568911552, -0.03151596710085869, 0.038031529635190964, 0.10868126899003983, 0.1398444026708603, -0.07276847213506699, 0.1334460973739624, 0.14055326581001282, -0.12381571531295776, 0.139939546585083, -0.020288096740841866, -0.07918987423181534, -0.01663549244403839, -0.0342058502137661, 0.006761251483112574, 0.10790269076824188, -0.11851514130830765, -0.020308807492256165, 0.002277292078360915, 0.023912381380796432, 0.02676544152200222, -0.23525892198085785, -0.04651153087615967, 0.02793976478278637, -0.004996097180992365, 0.010764298029243946, -0.028613632544875145, 0.02400076761841774, 0.12154409289360046, 0.0013120427029207349, -0.07808082550764084, 0.02280448190867901, 0.004843716509640217, -0.06452950090169907, 0.2092103660106659, -0.07072750478982925, -0.10917187482118607, -0.09939078986644745, -0.08329186588525772, -0.043176647275686264, 0.011756758205592632, 0.03617468476295471, -0.12359081208705902, -0.01375562697649002, -0.025351284071803093, 0.032053835690021515, 0.006439971271902323, 0.06130146235227585, -0.0016737364931032062, -0.0033917701803147793, 0.07003766298294067, -0.0993000939488411, -0.002445781836286187, -0.0754627138376236, -0.07717600464820862, 0.05440441891551018, 0.06464970856904984, 0.11858437955379486, 0.17815400660037994, -0.04841703921556473, 0.004855696577578783, -0.02393198013305664, 0.23496946692466736, -0.07104246318340302, -0.03768187388777733, 0.094778873026371, -0.02937045693397522, 0.051129572093486786, 0.10044962912797928, 0.08711203187704086, -0.09528915584087372, 0.011042959988117218, 0.05047781765460968, -0.04078220948576927, -0.20094601809978485, -0.03257348760962486, -0.04527423903346062, -0.04166414216160774, 0.09397299587726593, 0.01777462661266327, 0.02829291857779026, 0.06978325545787811, 0.07081788778305054, 0.09820311516523361, -0.06904161721467972, 0.04386373609304428, 0.08314322680234909, 0.04570819064974785, 0.12725424766540527, -0.031611066311597824, -0.0990574061870575, 0.019972866401076317, -0.02369767241179943, 0.22003132104873657, 0.002532443730160594, 0.07448933273553848, 0.042119309306144714, 0.18659608066082, 0.008251206949353218, 0.08425378799438477, -0.0006992974667809904, -0.06905941665172577, -0.0008401985978707671, -0.03462629020214081, -0.03415072336792946, 0.011683182790875435, -0.022162148728966713, 0.056126728653907776, -0.12119623273611069, -0.014638977125287056, 0.05467769503593445, 0.22708241641521454, 0.029114043340086937, -0.314663827419281, -0.06868349760770798, -0.0072565521113574505, -0.032652899622917175, -0.007554381154477596, 0.007952867075800896, 0.12213499844074249, -0.09167896956205368, 0.013780101202428341, -0.07656256854534149, 0.08517523854970932, -0.03851465880870819, 0.04590468108654022, 0.07626226544380188, 0.11427336931228638, -0.0047081233933568, 0.06386376917362213, -0.30492228269577026, 0.2683887481689453, 0.010799435898661613, 0.07716656476259232, -0.0759778693318367, -0.010459773242473602, 0.031032904982566833, 0.04188065603375435, 0.02773263491690159, -0.018362781032919884, -0.025048764422535896, -0.23387891054153442, -0.02833210676908493, 0.029097119346261024, 0.12965473532676697, -0.020106373354792595, 0.10307186096906662, -0.018555069342255592, -0.00021346849098335952, 0.08037078380584717, -0.03148414567112923, -0.052490103989839554, -0.07157008349895477, -0.023565173149108887, 0.006481066811829805, -0.06961163878440857, -0.05107380449771881, -0.12360583245754242, -0.14220596849918365, 0.14979597926139832, 0.009279104880988598, -0.007804419379681349, -0.12384037673473358, 0.12615610659122467, 0.07806360721588135, -0.07921911031007767, 0.03777530416846275, 0.019367726519703865, 0.057379692792892456, 0.03426850587129593, -0.06360746175050735, 0.12013518065214157, -0.055179450660943985, -0.1585499346256256, -0.07162302732467651, 0.08285672962665558, 0.04749147966504097, 0.0687093660235405, -0.019135158509016037, 0.018632367253303528, -0.009625113569200039, -0.08734685182571411, 0.045342739671468735, -0.029929228127002716, 0.05861419439315796, 0.020432449877262115, -0.055702630430459976, 0.006915058940649033, -0.055605243891477585, -0.007693065330386162, 0.1859358698129654, 0.22950045764446259, -0.09559202194213867, -0.016815554350614548, 0.03520001471042633, -0.06388045847415924, -0.1975422352552414, 0.10052631795406342, 0.08491124212741852, 0.003827430075034499, 0.05589628964662552, -0.167247012257576, 0.16182316839694977, 0.1078021302819252, -0.0010922843357548118, 0.11716202646493912, -0.3118874728679657, -0.12903185188770294, 0.10147883743047714, 0.17386260628700256, 0.12376576662063599, -0.1403326839208603, -0.012014106847345829, -0.012753372080624104, -0.10513300448656082, 0.10250510275363922, -0.07290910929441452, 0.11854247748851776, -0.018666386604309082, 0.10139425098896027, 0.013444636017084122, -0.0676945224404335, 0.09505441784858704, 0.013198685832321644, 0.11092276871204376, -0.061110902577638626, -0.07399599254131317, 0.03431353718042374, -0.02650049328804016, -0.023221028968691826, -0.023219989612698555, 0.010381166823208332, -0.06492210924625397, -0.018532775342464447, -0.0936364158987999, 0.036584846675395966, -0.030462512746453285, -0.07161948084831238, -0.028721340000629425, 0.03481986001133919, 0.03288692608475685, -0.021530387923121452, 0.11153686046600342, 0.011634998954832554, 0.17645463347434998, 0.0956215187907219, 0.0685853511095047, -0.060005057603120804, -0.04666389897465706, 0.0006476972484961152, -0.00988059677183628, 0.06665751338005066, -0.11694096028804779, 0.023665260523557663, 0.16035398840904236, 0.025791866704821587, 0.11862628906965256, 0.09518825262784958, -0.020702248439192772, 0.016871638596057892, 0.07450242340564728, -0.16320928931236267, -0.06673015654087067, 0.0027672788128256798, -0.08154207468032837, -0.10111946612596512, 0.058791469782590866, 0.08254949748516083, -0.0719781219959259, -0.008165067993104458, -0.007702894974499941, -0.023071788251399994, -0.06999777257442474, 0.22958792746067047, 0.07493606209754944, 0.044920772314071655, -0.09778877347707748, 0.054612066596746445, 0.06053825095295906, -0.08841589838266373, -0.00904297549277544, 0.08039867132902145, -0.07169679552316666, -0.01876278966665268, 0.10727933049201965, 0.2022484838962555, -0.06153208762407303, -0.011241408064961433, -0.14539207518100739, -0.10640936344861984, 0.06321551650762558, 0.18338435888290405, 0.10954209417104721, -0.0034401947632431984, -0.061190661042928696, 0.041135024279356, -0.14588332176208496, 0.07393525540828705, 0.0399988628923893, 0.08880911022424698, -0.15074142813682556, 0.20669597387313843, 0.002009654650464654, 0.04242996498942375, -0.033344876021146774, 0.034856196492910385, -0.1264728307723999, 0.019943634048104286, -0.11422925442457199, -0.06088702753186226, 0.0006103203049860895, -0.00997733511030674, -0.00019174757471773773, -0.07519659399986267, -0.05829152464866638, -0.00014311066479422152, -0.13064491748809814, -0.016717541962862015, 0.046490561217069626, 0.023904409259557724, -0.11230722069740295, -0.036284659057855606, 0.0202691238373518, -0.047425512224435806, 0.050261568278074265, 0.04287732020020485, 0.025623859837651253, 0.07839711010456085, -0.15393231809139252, -0.017055746167898178, 0.0694972351193428, -0.004329255316406488, 0.10261763632297516, -0.043645311146974564, -0.008735156618058681, -0.016085203737020493, 0.10851338505744934, 0.026262693107128143, 0.07715686410665512, -0.13883718848228455, 0.005977387074381113, -0.03616149351000786, -0.10524242371320724, -0.06353116780519485, 0.02134709805250168, 0.07814273983240128, 0.008400246500968933, 0.17894460260868073, -0.08539139479398727, 0.057675473392009735, -0.21555010974407196, -0.011868860572576523, -0.014352967031300068, -0.10414563864469528, -0.09546390175819397, -0.056162647902965546, 0.07567043602466583, -0.05512027069926262, 0.11460793763399124, 0.04544566571712494, 0.06170305237174034, 0.03138125315308571, -0.038094282150268555, -0.005459904205054045, 0.0391363725066185, 0.19573815166950226, 0.04928140342235565, -0.043671391904354095, 0.054701924324035645, 0.08209595829248428, 0.10162424296140671, 0.12158393859863281, 0.22151346504688263, 0.14299270510673523, -0.03347478806972504, 0.08226313441991806, 0.03179097920656204, -0.05480459704995155, -0.17275603115558624, 0.032438866794109344, -0.0777682289481163, 0.08799513429403305, -0.034320149570703506, 0.20568537712097168, 0.0528939925134182, -0.1600714772939682, 0.04279683902859688, -0.06888255476951599, -0.10218961536884308, -0.10266958922147751, -0.00736586470156908, -0.0818006694316864, -0.141337051987648, 0.012041613459587097, -0.10408825427293777, 0.01940935291349888, 0.12715566158294678, 0.0150423813611269, -0.018519464880228043, 0.20093342661857605, 0.036803945899009705, 0.047989003360271454, 0.0592186339199543, 0.014439849182963371, -0.018242312595248222, -0.09856734424829483, -0.06227618455886841, -0.04439853876829147, -0.007438117638230324, 0.02961552143096924, -0.07716383785009384, -0.09782490134239197, 0.02903519757091999, -0.005232313182204962, -0.10581126809120178, 0.026113303378224373, 0.01587546616792679, 0.06799943000078201, 0.015468616969883442, -0.006626189220696688, 0.01804344542324543, -0.03805774077773094, 0.21786443889141083, -0.09213799983263016, -0.06839686632156372, -0.09495909512042999, 0.2909861207008362, 0.037878166884183884, 0.015795873478055, 0.017899498343467712, -0.0727870911359787, 0.008256981149315834, 0.23857764899730682, 0.19304531812667847, -0.12344972044229507, -0.0056903609074652195, 0.009217921644449234, -0.01400474738329649, -0.03821796551346779, 0.13672186434268951, 0.12340336292982101, 0.05049782246351242, -0.1101711243391037, -0.03740382194519043, -0.05654587596654892, -0.016340207308530807, -0.035615772008895874, 0.05481698364019394, 0.07095516473054886, 0.028264977037906647, -0.06528075784444809, 0.05828000232577324, -0.06388252228498459, -0.11330712586641312, 0.08139625936746597, -0.22052006423473358, -0.17398113012313843, -0.01110211480408907, 0.11365847289562225, -0.015836600214242935, 0.07507943361997604, -0.031173955649137497, -0.005915098357945681, 0.03751664236187935, -0.024062035605311394, -0.06609302014112473, -0.09433630108833313, 0.10060609132051468, -0.10866019874811172, 0.1884114295244217, -0.05099736899137497, 0.06678619235754013, 0.12268085032701492, 0.06459131836891174, -0.04988139867782593, 0.041718631982803345, 0.0445842482149601, -0.11967068910598755, 0.012224885635077953, 0.12445589154958725, -0.03262379765510559, 0.06274852901697159, 0.03708285465836525, -0.1508985012769699, 0.03501647338271141, -0.09687066078186035, -0.04171009734272957, -0.0392993800342083, -0.05113304406404495, -0.05171959847211838, 0.12111785262823105, 0.23658479750156403, -0.007037523668259382, 0.0301068015396595, -0.07992327213287354, 0.007524800952523947, 0.05047842115163803, 0.061232611536979675, -0.10374376177787781, -0.2542645335197449, 0.012372694909572601, 0.0707496628165245, -0.04063798114657402, -0.21937844157218933, -0.09106651693582535, 0.01531634759157896, -0.07301643490791321, -0.09225396066904068, 0.08415721356868744, 0.07737716287374496, 0.06053701415657997, -0.052287064492702484, -0.12617290019989014, -0.07888391613960266, 0.1580546647310257, -0.15493451058864594, -0.08579690009355545 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-dutch-cased-finetuned-NER8 This model is a fine-tuned version of [GroNLP/bert-base-dutch-cased](https://huggingface.co/GroNLP/bert-base-dutch-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1482 - Precision: 0.4716 - Recall: 0.4359 - F1: 0.4530 - Accuracy: 0.9569 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 68 | 0.1705 | 0.3582 | 0.3488 | 0.3535 | 0.9475 | | No log | 2.0 | 136 | 0.1482 | 0.4716 | 0.4359 | 0.4530 | 0.9569 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu111 - Tokenizers 0.10.3
{"tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "bert-base-dutch-cased-finetuned-NER8", "results": []}]}
token-classification
Matthijsvanhof/bert-base-dutch-cased-finetuned-NER8
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #bert #token-classification #generated_from_trainer #autotrain_compatible #endpoints_compatible #region-us
bert-base-dutch-cased-finetuned-NER8 ==================================== This model is a fine-tuned version of GroNLP/bert-base-dutch-cased on an unknown dataset. It achieves the following results on the evaluation set: * Loss: 0.1482 * Precision: 0.4716 * Recall: 0.4359 * F1: 0.4530 * Accuracy: 0.9569 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 8 * eval\_batch\_size: 8 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 2 ### Training results ### Framework versions * Transformers 4.12.5 * Pytorch 1.10.0+cu111 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 2", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.10.0+cu111\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #bert #token-classification #generated_from_trainer #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 2", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.10.0+cu111\n* Tokenizers 0.10.3" ]
[ 48, 98, 4, 27 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #bert #token-classification #generated_from_trainer #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 2### Training results### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.10.0+cu111\n* Tokenizers 0.10.3" ]
[ -0.0840420126914978, 0.04261359944939613, -0.0020071929320693016, 0.11544931679964066, 0.20555393397808075, 0.029834287241101265, 0.1112898588180542, 0.09681394696235657, -0.10904907435178757, 0.029770059511065483, 0.11901722103357315, 0.17363950610160828, -0.005376716144382954, 0.07480715960264206, -0.05086766555905342, -0.2810041904449463, -0.03184477239847183, 0.05338646098971367, -0.09317264705896378, 0.12012439966201782, 0.07781132310628891, -0.16532842814922333, 0.07577169686555862, 0.0002435580681776628, -0.2733789384365082, 0.024721022695302963, 0.03771154209971428, -0.06354810297489166, 0.149102583527565, 0.006285145413130522, 0.1727495938539505, -0.0007260650163516402, 0.10318679362535477, -0.1495095044374466, 0.009957179427146912, 0.05685993283987045, 0.02237006649374962, 0.08827631920576096, 0.06734936684370041, 0.003878881921991706, 0.08898992091417313, -0.08532184362411499, 0.0663376897573471, 0.0005903851706534624, -0.12619712948799133, -0.21016845107078552, -0.06367193162441254, 0.003252126043662429, 0.04756230488419533, 0.08717656135559082, -0.004333882126957178, 0.16621635854244232, -0.11075103282928467, 0.09457581490278244, 0.2266925424337387, -0.28010421991348267, -0.08611316978931427, 0.04426407441496849, -0.0023129202891141176, 0.08294679969549179, -0.1274728775024414, -0.019128525629639626, 0.060434915125370026, 0.05395689606666565, 0.12949565052986145, -0.03722525015473366, -0.09971147775650024, 0.027140984311699867, -0.15469813346862793, 0.008668665774166584, 0.04093854874372482, 0.015594398602843285, -0.01957654394209385, -0.004066381603479385, -0.06337999552488327, -0.16590213775634766, -0.04653079807758331, -0.04522252082824707, 0.04802070930600166, -0.056603848934173584, -0.10629074275493622, 0.0066316076554358006, -0.10052638500928879, -0.06436876952648163, -0.06646212190389633, 0.1918909102678299, 0.04363429918885231, 0.010252422653138638, -0.041850410401821136, 0.10814280807971954, -0.016075721010565758, -0.1304357796907425, 0.06261336803436279, 0.03386295214295387, -0.024544714018702507, -0.07550894469022751, -0.0680621936917305, -0.09782733768224716, -0.0034173273015767336, 0.08255401998758316, -0.05359950289130211, 0.05156842619180679, 0.04011853039264679, 0.03945678845047951, -0.09908245503902435, 0.21723362803459167, -0.04017980396747589, -0.015286893583834171, -0.005400411318987608, 0.0507725328207016, -0.021254058927297592, -0.009545118547976017, -0.11333668231964111, 0.006597628816962242, 0.12741954624652863, -0.002929954556748271, -0.08701685070991516, 0.06764403730630875, -0.03732796013355255, -0.02017197385430336, -0.037846606224775314, -0.09472750127315521, 0.06042473390698433, -0.01190366130322218, -0.08911041915416718, 0.011569480411708355, 0.0002855307830031961, 0.016132285818457603, -0.009502975270152092, 0.17956700921058655, -0.10400760173797607, 0.05629875138401985, -0.12086637318134308, -0.12032020092010498, -0.0030161284375935793, -0.06707541644573212, 0.02393006719648838, -0.09547946602106094, -0.09747371077537537, -0.013877682387828827, 0.058239325881004333, -0.03261774033308029, -0.02992146834731102, -0.04007561132311821, -0.07186689972877502, 0.003911884035915136, -0.010794715955853462, 0.1524079442024231, -0.04287217929959297, 0.11221551895141602, 0.05790798366069794, 0.07476581633090973, -0.05454368516802788, 0.05271846055984497, -0.09412248432636261, 0.004374476615339518, -0.2311929315328598, 0.026309365406632423, -0.05740717798471451, 0.07895522564649582, -0.06627349555492401, -0.11599523574113846, 0.011019406840205193, -0.0031207010615617037, 0.09178727120161057, 0.07144835591316223, -0.16026833653450012, -0.09429407119750977, 0.14997531473636627, -0.057239655405282974, -0.07324033975601196, 0.11797363311052322, -0.06488410383462906, 0.03263453394174576, 0.07750300318002701, 0.16035893559455872, 0.05569439008831978, -0.08246117830276489, 0.02863619476556778, -0.026746198534965515, 0.044473979622125626, -0.05012764036655426, 0.02752911113202572, 0.019620591774582863, 0.0023663854226469994, 0.031779997050762177, -0.019790375605225563, 0.05950296297669411, -0.11896676570177078, -0.08257840573787689, -0.0332314595580101, -0.10425270348787308, 0.0742444172501564, 0.08491086959838867, 0.10929860919713974, -0.09822642803192139, -0.06875106692314148, 0.12137875705957413, 0.045077040791511536, -0.045165322721004486, 0.02377038635313511, -0.06109766289591789, 0.05880478024482727, -0.0634201169013977, -0.03098933771252632, -0.20076504349708557, -0.037353746592998505, 0.010194297879934311, 0.026173878461122513, 0.04402967169880867, 0.0356636680662632, 0.08867082744836807, 0.06693605333566666, -0.06019886955618858, -0.0065440344624221325, -0.023907363414764404, -0.004634051118046045, -0.16466130316257477, -0.19623126089572906, -0.026237746700644493, -0.01211916096508503, 0.07675383239984512, -0.21159660816192627, 0.025399543344974518, -0.023200243711471558, 0.09021367132663727, 0.017663558945059776, -0.00612120795994997, -0.07214893400669098, 0.11705373972654343, -0.017810624092817307, -0.04350167140364647, 0.07128988951444626, -0.02158472314476967, -0.07125181704759598, -0.08705190569162369, -0.11050967127084732, 0.20067884027957916, 0.13858099281787872, -0.16719964146614075, -0.10317329317331314, 0.0071180458180606365, -0.05586177855730057, -0.019433364272117615, -0.04768594726920128, 0.04955177381634712, 0.19735409319400787, -0.012832000851631165, 0.14868170022964478, -0.05321231111884117, -0.04590274766087532, 0.018455782905220985, -0.03606904670596123, 0.037571825087070465, 0.09970000386238098, 0.13751377165317535, -0.07650076597929001, 0.12961848080158234, 0.1492171436548233, -0.1323949247598648, 0.1395094245672226, -0.01871124468743801, -0.07458733767271042, -0.017674118280410767, -0.030365347862243652, 0.00822202954441309, 0.09852047264575958, -0.12085453420877457, -0.028419870883226395, -0.002548281801864505, 0.01939678005874157, 0.026390397921204567, -0.24053938686847687, -0.04403804615139961, 0.029730672016739845, -0.0008587019983679056, 0.01662295311689377, -0.027393119409680367, 0.023962220177054405, 0.11785931140184402, 0.006295247469097376, -0.08497674018144608, 0.024290110915899277, 0.008288359269499779, -0.0622161366045475, 0.20505915582180023, -0.06790110468864441, -0.10537586361169815, -0.10559044778347015, -0.08448535948991776, -0.040354881435632706, 0.014873092994093895, 0.037474725395441055, -0.12369263172149658, -0.012427609413862228, -0.01934937573969364, 0.028635382652282715, 0.005534392315894365, 0.06461244821548462, -0.00025528203696012497, -0.0036678817123174667, 0.07281368970870972, -0.09865178167819977, -0.007093334104865789, -0.07360224425792694, -0.07682046294212341, 0.054955050349235535, 0.066659115254879, 0.1176348626613617, 0.18105752766132355, -0.055579643696546555, 0.0031381777953356504, -0.022744541987776756, 0.23771671950817108, -0.0727086290717125, -0.04122520238161087, 0.09696699678897858, -0.03374394029378891, 0.055532000958919525, 0.09645677357912064, 0.08764483034610748, -0.09449274837970734, 0.012015126645565033, 0.044890932738780975, -0.039097100496292114, -0.19376492500305176, -0.025838548317551613, -0.04263724386692047, -0.04711822420358658, 0.09247718751430511, 0.020164912566542625, 0.03372177854180336, 0.06911566853523254, 0.07496101409196854, 0.10460466891527176, -0.07144539803266525, 0.04831640049815178, 0.08679958432912827, 0.04848488047719002, 0.12885285913944244, -0.030377380549907684, -0.11140377074480057, 0.014413876459002495, -0.027338454499840736, 0.20903776586055756, 0.013878519646823406, 0.07502048462629318, 0.04181460663676262, 0.18629984557628632, 0.014243893325328827, 0.08157418668270111, -0.0016143531538546085, -0.07501858472824097, -0.0005647114012390375, -0.034768279641866684, -0.03223291411995888, 0.012816507369279861, -0.01999717578291893, 0.05627317726612091, -0.11858086287975311, -0.01538686640560627, 0.056595925241708755, 0.23300136625766754, 0.01641322672367096, -0.3155488073825836, -0.06610511988401413, -0.009368885308504105, -0.0374547615647316, -0.00350537640042603, 0.008039431646466255, 0.11693677306175232, -0.09059923142194748, 0.009810349904000759, -0.07515725493431091, 0.08546765893697739, -0.03213994950056076, 0.05487099289894104, 0.07024941593408585, 0.11923205107450485, -0.00252224481664598, 0.05846184492111206, -0.30598053336143494, 0.264079213142395, 0.011550947092473507, 0.0798463374376297, -0.06803179532289505, -0.00767961610108614, 0.03380211815237999, 0.055718034505844116, 0.01937752217054367, -0.021401232108473778, -0.029920678585767746, -0.2342730313539505, -0.020742807537317276, 0.0286919716745615, 0.1379217803478241, -0.01396975014358759, 0.10308840870857239, -0.021310051903128624, 0.001031732652336359, 0.08242862671613693, -0.028952134773135185, -0.04884140193462372, -0.06684011965990067, -0.024169594049453735, 0.003943475428968668, -0.06669948995113373, -0.0529407262802124, -0.1195906400680542, -0.1426238864660263, 0.15615962445735931, 0.014536774717271328, -0.0020497601944953203, -0.12299925833940506, 0.11428443342447281, 0.06724785268306732, -0.07910911738872528, 0.03679336979985237, 0.01614517532289028, 0.060745809227228165, 0.03000914491713047, -0.06199559196829796, 0.12335412949323654, -0.05226468667387962, -0.15160012245178223, -0.0695401281118393, 0.07980254292488098, 0.039802297949790955, 0.0658223107457161, -0.018430029973387718, 0.01573498360812664, -0.010686763562262058, -0.08731483668088913, 0.04630429297685623, -0.037564583122730255, 0.04953279346227646, 0.004381418693810701, -0.05791304633021355, 0.010682511143386364, -0.060935020446777344, -0.004061616491526365, 0.1862952560186386, 0.2320711612701416, -0.09403432160615921, -0.023111961781978607, 0.03907373175024986, -0.060445014387369156, -0.1949305236339569, 0.09917697310447693, 0.08250989019870758, 0.0011596481781452894, 0.05045656859874725, -0.1603122055530548, 0.1588989794254303, 0.10681984573602676, 0.0006194855668582022, 0.11322284489870071, -0.3093012571334839, -0.13109268248081207, 0.10209189355373383, 0.17640434205532074, 0.12128683924674988, -0.13820336759090424, -0.011618707329034805, -0.013709436170756817, -0.09626730531454086, 0.09406619518995285, -0.0691813975572586, 0.11657882481813431, -0.016362838447093964, 0.10725350677967072, 0.011670802719891071, -0.06673138588666916, 0.09056103229522705, 0.006396562792360783, 0.11380428820848465, -0.06096317619085312, -0.08276715874671936, 0.031015973538160324, -0.026148630306124687, -0.02519115060567856, -0.022709647193551064, 0.007633684203028679, -0.05271986126899719, -0.019564149901270866, -0.09193814545869827, 0.04159408062696457, -0.029972851276397705, -0.07050029933452606, -0.028541984036564827, 0.027641309425234795, 0.024300623685121536, -0.02283172495663166, 0.11394555866718292, 0.008802716620266438, 0.17887094616889954, 0.0995686799287796, 0.06984294205904007, -0.07159283757209778, -0.046411555260419846, 0.0045993574894964695, -0.010512434877455235, 0.07397361099720001, -0.11115363240242004, 0.021708115935325623, 0.1568807065486908, 0.022736232727766037, 0.11754149943590164, 0.09605789184570312, -0.018400592729449272, 0.016144046559929848, 0.07521332800388336, -0.1639162302017212, -0.06436678022146225, 0.0014884289121255279, -0.07272683084011078, -0.09254413843154907, 0.058461807668209076, 0.08160951733589172, -0.07375737279653549, -0.011024920269846916, -0.006099667400121689, -0.03426551818847656, -0.07522948831319809, 0.21819870173931122, 0.0769779235124588, 0.042939867824316025, -0.09217695891857147, 0.04851880297064781, 0.06337407976388931, -0.09087855368852615, -0.01072675921022892, 0.0847926065325737, -0.07204408198595047, -0.017481405287981033, 0.10906274616718292, 0.20991109311580658, -0.06538613140583038, -0.011040724813938141, -0.14901508390903473, -0.10673918575048447, 0.06248451769351959, 0.1884346604347229, 0.11060268431901932, -0.008466558530926704, -0.06426701694726944, 0.04741179198026657, -0.14478150010108948, 0.06726544350385666, 0.031322792172431946, 0.09226970374584198, -0.1523682028055191, 0.21758504211902618, 0.0030328130815178156, 0.0444013774394989, -0.033891770988702774, 0.03357879817485809, -0.13030637800693512, 0.020925922319293022, -0.11001250147819519, -0.06480077654123306, 0.0018732225289568305, -0.010160451754927635, 0.0029359180480241776, -0.0756167471408844, -0.06110154464840889, -0.0003206281107850373, -0.13360178470611572, -0.01617903634905815, 0.05034199357032776, 0.021909093484282494, -0.10633256286382675, -0.033543411642313004, 0.023148389533162117, -0.04792702943086624, 0.046210967004299164, 0.042598217725753784, 0.02227427251636982, 0.08087455481290817, -0.15176904201507568, -0.017876243218779564, 0.07273238152265549, -0.006656805984675884, 0.10124558955430984, -0.038427937775850296, -0.008286903612315655, -0.018105771392583847, 0.11497584730386734, 0.02603840082883835, 0.07972617447376251, -0.1411970853805542, 0.005221700761467218, -0.030276188626885414, -0.11468024551868439, -0.06631562858819962, 0.017549116164445877, 0.07764139026403427, 0.0024295817129313946, 0.18021973967552185, -0.0892210304737091, 0.05487443134188652, -0.20736971497535706, -0.010774482041597366, -0.0137983039021492, -0.10767757892608643, -0.09370157867670059, -0.06144638732075691, 0.06967983394861221, -0.05703946202993393, 0.10968776047229767, 0.04559992253780365, 0.05802791565656662, 0.03571692481637001, -0.04332812875509262, -0.008916006423532963, 0.03869295492768288, 0.19332872331142426, 0.0519656166434288, -0.04474812373518944, 0.05272302031517029, 0.08130039274692535, 0.10182657837867737, 0.11656654626131058, 0.21648621559143066, 0.14465221762657166, -0.04072889685630798, 0.08769554644823074, 0.03277074173092842, -0.04286443069577217, -0.18076364696025848, 0.028160007670521736, -0.07516001909971237, 0.08626087754964828, -0.03620827943086624, 0.2104455977678299, 0.06861673295497894, -0.15453417599201202, 0.0442390963435173, -0.06555831432342529, -0.10202807188034058, -0.10089346766471863, -0.00664041843265295, -0.08091472834348679, -0.14110593497753143, 0.01460194867104292, -0.09676997363567352, 0.018199782818555832, 0.1137675940990448, 0.011127638630568981, -0.02362450771033764, 0.20800930261611938, 0.03720421344041824, 0.04714706540107727, 0.060560375452041626, 0.008806823752820492, -0.021449465304613113, -0.10073228925466537, -0.06221544370055199, -0.04983535036444664, -0.01034380029886961, 0.027808815240859985, -0.07699929922819138, -0.10167466104030609, 0.022114232182502747, -0.00820721872150898, -0.1043737381696701, 0.02884618751704693, 0.01675838604569435, 0.06627605855464935, 0.0013941560173407197, -0.011125230230391026, 0.011921131052076817, -0.03808652609586716, 0.21367621421813965, -0.09384988248348236, -0.07488860934972763, -0.0912991613149643, 0.30339038372039795, 0.037610650062561035, 0.021403061226010323, 0.011188182979822159, -0.06895127892494202, 0.006932435557246208, 0.2421272248029709, 0.18686234951019287, -0.12495047599077225, -0.0013817610451951623, 0.004764997866004705, -0.014018393121659756, -0.04282337427139282, 0.1376502513885498, 0.12442661076784134, 0.04293671250343323, -0.10927839577198029, -0.03434314578771591, -0.06061926484107971, -0.013459264300763607, -0.04370017722249031, 0.05453437939286232, 0.07581470161676407, 0.030295968055725098, -0.06717517971992493, 0.052256274968385696, -0.06088004261255264, -0.101857990026474, 0.07873282581567764, -0.21413150429725647, -0.16744017601013184, -0.005523195955902338, 0.11618854850530624, -0.020987877622246742, 0.08173190802335739, -0.030140627175569534, -0.013012372888624668, 0.028457915410399437, -0.02489747665822506, -0.06371988356113434, -0.08638444542884827, 0.10367618501186371, -0.11282755434513092, 0.1832052320241928, -0.050010956823825836, 0.06724435091018677, 0.12228748202323914, 0.0693725049495697, -0.042186640202999115, 0.04575281962752342, 0.04236259683966637, -0.1265534609556198, 0.00923228356987238, 0.12326259911060333, -0.029922975227236748, 0.059333864599466324, 0.03730571269989014, -0.15304702520370483, 0.038959380239248276, -0.1017410010099411, -0.0404384471476078, -0.03811763972043991, -0.055994145572185516, -0.05422530323266983, 0.11658920347690582, 0.23783427476882935, -0.0013179871020838618, 0.029009712859988213, -0.07932284474372864, 0.00791741069406271, 0.05744652822613716, 0.05565614998340607, -0.11056166887283325, -0.25311142206192017, 0.012500982731580734, 0.07478528469800949, -0.046830881386995316, -0.22016067802906036, -0.09524655342102051, 0.013004951179027557, -0.06702233850955963, -0.09318116307258606, 0.08210106194019318, 0.07795745879411697, 0.06148122623562813, -0.04947616904973984, -0.13646504282951355, -0.0812315121293068, 0.1582939177751541, -0.1538688987493515, -0.08322550356388092 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-dutch-cased-finetuned-mBERT This model is a fine-tuned version of [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0898 - Precision: 0.7255 - Recall: 0.7255 - F1: 0.7255 - Accuracy: 0.9758 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.1603 | 1.0 | 533 | 0.0928 | 0.6896 | 0.6962 | 0.6929 | 0.9742 | | 0.0832 | 2.0 | 1066 | 0.0898 | 0.7255 | 0.7255 | 0.7255 | 0.9758 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu111 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "bert-base-dutch-cased-finetuned-mBERT", "results": []}]}
token-classification
Matthijsvanhof/bert-base-dutch-cased-finetuned-mBERT
[ "transformers", "pytorch", "tensorboard", "distilbert", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
bert-base-dutch-cased-finetuned-mBERT ===================================== This model is a fine-tuned version of distilbert-base-multilingual-cased on an unknown dataset. It achieves the following results on the evaluation set: * Loss: 0.0898 * Precision: 0.7255 * Recall: 0.7255 * F1: 0.7255 * Accuracy: 0.9758 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 8 * eval\_batch\_size: 8 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 2 ### Training results ### Framework versions * Transformers 4.12.5 * Pytorch 1.10.0+cu111 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 2", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.10.0+cu111\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 2", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.10.0+cu111\n* Tokenizers 0.10.3" ]
[ 58, 98, 4, 27 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 2### Training results### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.10.0+cu111\n* Tokenizers 0.10.3" ]
[ -0.09884530305862427, 0.07721500098705292, -0.0023392837028950453, 0.1253724992275238, 0.17603006958961487, 0.016729822382330894, 0.11381437629461288, 0.11215329170227051, -0.1023252084851265, 0.017338071018457413, 0.12361551821231842, 0.19151751697063446, -0.004841072950512171, 0.10535307973623276, -0.050290949642658234, -0.2598187029361725, -0.011502109467983246, 0.06142164766788483, -0.09048078209161758, 0.13435450196266174, 0.09898769110441208, -0.1412809044122696, 0.08310554921627045, 0.015745367854833603, -0.24539737403392792, 0.010788504965603352, 0.020893266424536705, -0.06912189722061157, 0.15264327824115753, 0.011740133166313171, 0.13609591126441956, -0.002004872774705291, 0.0875534787774086, -0.16038823127746582, 0.004955650307238102, 0.04320495203137398, 0.019893644377589226, 0.09083577990531921, 0.058513566851615906, 0.010255654342472553, 0.10225431621074677, -0.06878736615180969, 0.05298592150211334, 0.01741882972419262, -0.11738128215074539, -0.23511554300785065, -0.07750692963600159, 0.036975614726543427, 0.06512465327978134, 0.0991341844201088, 0.007974985055625439, 0.14047440886497498, -0.09470915049314499, 0.0912761464715004, 0.23338226974010468, -0.2775112986564636, -0.06628171354532242, 0.03709159418940544, 0.0035714409314095974, 0.05316486582159996, -0.11333112418651581, -0.038905419409275055, 0.05912678316235542, 0.0458301417529583, 0.14126436412334442, -0.041643962264060974, -0.1091141477227211, 0.013529827818274498, -0.14969485998153687, -0.027721276506781578, 0.11701406538486481, 0.030709881335496902, -0.035317495465278625, -0.02623046562075615, -0.05910755321383476, -0.16407929360866547, -0.04055549576878548, -0.021427148953080177, 0.04492301493883133, -0.03795638307929039, -0.06595862656831741, 0.014354420825839043, -0.10720870643854141, -0.07014463096857071, -0.0729333907365799, 0.1688256412744522, 0.04725762456655502, 0.009043760597705841, -0.023305337876081467, 0.11477040499448776, 0.013165120966732502, -0.1262955367565155, 0.033238060772418976, 0.03388238325715065, 0.0036739297211170197, -0.05725743621587753, -0.06620784848928452, -0.02782445028424263, 0.004432244226336479, 0.1278456300497055, -0.06094365566968918, 0.04118519276380539, 0.05625540763139725, 0.04464820399880409, -0.11000091582536697, 0.2105429321527481, -0.03001450002193451, 0.005338490940630436, 0.0040887794457376, 0.0446087047457695, -0.0078016952611505985, 0.005402993876487017, -0.1170075461268425, -0.01128310989588499, 0.12886746227741241, 0.01230272650718689, -0.0788680911064148, 0.0688021257519722, -0.05297132954001427, -0.03051767684519291, 0.013255314901471138, -0.0965411439538002, 0.03636287897825241, -0.01039927452802658, -0.08532746881246567, -0.0008206284837797284, 0.021230367943644524, 0.012578615918755531, -0.015818022191524506, 0.12683935463428497, -0.08817054331302643, 0.04389122128486633, -0.10163836926221848, -0.09567049890756607, 0.007377649657428265, -0.07535230368375778, 0.03512512892484665, -0.10936888307332993, -0.14057929813861847, -0.008620661683380604, 0.05832380801439285, -0.014042550697922707, -0.06260999292135239, -0.033860061317682266, -0.0704394280910492, -0.005660366732627153, -0.01448756828904152, 0.13536027073860168, -0.05016224831342697, 0.11185642331838608, 0.04753992706537247, 0.06493658572435379, -0.04511026293039322, 0.06114600971341133, -0.10577555745840073, 0.010100786574184895, -0.2015456110239029, 0.02391330525279045, -0.047608472406864166, 0.08270357549190521, -0.09385385364294052, -0.12142958492040634, 0.023527897894382477, -0.011291969567537308, 0.06483335047960281, 0.07597104460000992, -0.14417290687561035, -0.08282136917114258, 0.13697107136249542, -0.0657205879688263, -0.10376030951738358, 0.11370100826025009, -0.056365471333265305, 0.0551656149327755, 0.06874579936265945, 0.14556589722633362, 0.08493554592132568, -0.06966003775596619, 0.028851494193077087, -0.0011399820214137435, 0.03772763907909393, -0.07402250915765762, 0.055282510817050934, 0.006904337089508772, -0.018094317987561226, 0.03823506459593773, -0.04284694790840149, 0.06997032463550568, -0.09723720699548721, -0.09234240651130676, -0.04246040806174278, -0.09934452921152115, 0.05902469530701637, 0.07660441845655441, 0.09752264618873596, -0.08619660884141922, -0.06006241962313652, 0.09329497814178467, 0.07905410975217819, -0.051164012402296066, 0.02698271907866001, -0.05590444803237915, 0.05893183872103691, -0.043730881065130234, -0.029022954404354095, -0.19295896589756012, 0.00199214369058609, 0.015083971433341503, -0.024849293753504753, 0.026206456124782562, 0.026214992627501488, 0.06882078945636749, 0.06107378751039505, -0.048883166164159775, -0.02657543495297432, -0.02518162876367569, -0.003010459477081895, -0.1406359225511551, -0.1813787817955017, -0.03110119141638279, -0.011115835048258305, 0.10627447813749313, -0.19190892577171326, 0.03444846346974373, -0.025375431403517723, 0.07464052736759186, 0.002978432457894087, 0.0008195373811759055, -0.05954479053616524, 0.09526295214891434, -0.03177659213542938, -0.04900893568992615, 0.0742054209113121, -0.001068166340701282, -0.08031877130270004, -0.060834869742393494, -0.087845079600811, 0.19582007825374603, 0.13796517252922058, -0.13907477259635925, -0.08811169862747192, -0.007949733175337315, -0.06377658247947693, -0.035294145345687866, -0.034700751304626465, 0.04782392457127571, 0.1799912452697754, -0.018589477986097336, 0.1520368605852127, -0.06524695456027985, -0.05207310616970062, 0.023091381415724754, -0.03867024555802345, 0.0337580069899559, 0.10807745903730392, 0.12400837242603302, -0.08079840987920761, 0.1414090245962143, 0.17413106560707092, -0.10933578014373779, 0.11133778095245361, -0.04595266655087471, -0.06770332902669907, -0.015475151129066944, -0.014116774313151836, 0.0014451144961640239, 0.08574975281953812, -0.1256031095981598, -0.005996575579047203, 0.018635716289281845, 0.022446822375059128, 0.018327075988054276, -0.23439930379390717, -0.03640325367450714, 0.030505187809467316, -0.026699533686041832, 0.015537404455244541, -0.012815341353416443, 0.01097860187292099, 0.1002357006072998, 0.005780440755188465, -0.10586073249578476, 0.04534328728914261, 0.01389218121767044, -0.07214172929525375, 0.21338722109794617, -0.08222413063049316, -0.14103282988071442, -0.12779833376407623, -0.07859828323125839, -0.03821183368563652, 0.01647508144378662, 0.0600404292345047, -0.09121992439031601, -0.025101028382778168, -0.03566987067461014, 0.020015042275190353, -0.005625206511467695, 0.05247165635228157, 0.009782551787793636, 0.010380050167441368, 0.08399388939142227, -0.10264553874731064, -0.008795531466603279, -0.04973645135760307, -0.07122725248336792, 0.05202535539865494, 0.04013870656490326, 0.10334262251853943, 0.16276432573795319, -0.02900766022503376, 0.0021068633068352938, -0.024286171421408653, 0.2303594946861267, -0.05995498225092888, -0.034188635647296906, 0.14506012201309204, -0.00750366598367691, 0.059664949774742126, 0.10240588337182999, 0.07654472440481186, -0.08552870899438858, 0.011982472613453865, 0.023281924426555634, -0.03157892823219299, -0.2064584195613861, -0.04401173070073128, -0.0501595102250576, -0.028391381725668907, 0.11138702929019928, 0.028897760435938835, 0.05943018198013306, 0.07708709686994553, 0.05013411492109299, 0.10482596606016159, -0.054090745747089386, 0.05868794023990631, 0.12189706414937973, 0.05033443495631218, 0.11982838064432144, -0.037665653973817825, -0.08731651306152344, 0.02591673843562603, -0.009105861186981201, 0.2255030870437622, 0.014837936498224735, 0.11522535979747772, 0.05522453412413597, 0.1988133043050766, 0.004783586598932743, 0.08775031566619873, -0.00022823186009190977, -0.04711975157260895, -0.01165111642330885, -0.03606146201491356, -0.03668481856584549, 0.01867508701980114, -0.056349609047174454, 0.06145177409052849, -0.11678747087717056, -0.013330784626305103, 0.04668824002146721, 0.26335135102272034, 0.014220381155610085, -0.324791818857193, -0.08862689882516861, -0.01053616777062416, -0.038459498435258865, -0.017648236826062202, 0.02063615992665291, 0.07496947050094604, -0.09929237514734268, 0.011820344254374504, -0.07218458503484726, 0.08850540965795517, -0.038931433111429214, 0.052294377237558365, 0.07981719821691513, 0.08787310868501663, 0.02329847775399685, 0.08076845109462738, -0.3175118863582611, 0.26702484488487244, -0.0029659580904990435, 0.06868932396173477, -0.07124969363212585, 0.003005817998200655, 0.03797565773129463, 0.0672493502497673, 0.047967493534088135, -0.014366510324180126, -0.03281951695680618, -0.22526192665100098, -0.04178168624639511, 0.022755850106477737, 0.09136644750833511, -0.03128442540764809, 0.08619334548711777, -0.03694162517786026, 0.005387756507843733, 0.07829882949590683, -0.03609403222799301, -0.0455210842192173, -0.07751347869634628, -0.00777564337477088, 0.014631688594818115, -0.033508770167827606, -0.06680329889059067, -0.11055487394332886, -0.13479869067668915, 0.1494331806898117, -0.019516797736287117, -0.02786882407963276, -0.11452777683734894, 0.07408469915390015, 0.08697880804538727, -0.09176892787218094, 0.0611148364841938, 0.003445874433964491, 0.062011491507291794, 0.038051802664995193, -0.07204379886388779, 0.1091696098446846, -0.06276810169219971, -0.16366763412952423, -0.05348731949925423, 0.09403222799301147, 0.029414666816592216, 0.05750194936990738, -0.011619685217738152, 0.009293019771575928, -0.04276765137910843, -0.09443621337413788, 0.0167151540517807, -0.02102200873196125, 0.06866835802793503, 0.012557211332023144, -0.06169097125530243, 0.019375933334231377, -0.06627495586872101, -0.029450058937072754, 0.1748996078968048, 0.23205453157424927, -0.10111956298351288, -0.000005321054686646676, 0.0404253825545311, -0.060062892735004425, -0.18978722393512726, 0.03925955668091774, 0.067021943628788, -0.004227983299642801, 0.037729885429143906, -0.1687871515750885, 0.14467880129814148, 0.10828356444835663, -0.013515898957848549, 0.10532288998365402, -0.3279811441898346, -0.12650513648986816, 0.13165494799613953, 0.1514614075422287, 0.12047892808914185, -0.1317773312330246, -0.017228059470653534, -0.012558731250464916, -0.12047971785068512, 0.08591757714748383, -0.04929807037115097, 0.11864717304706573, -0.04094136133790016, 0.09053876250982285, 0.0026404992677271366, -0.06010451167821884, 0.11305277049541473, 0.03238476812839508, 0.10301481932401657, -0.05373493582010269, -0.053400635719299316, 0.01707538403570652, -0.03508869931101799, 0.007416553795337677, -0.05299745872616768, 0.0321219302713871, -0.07459908723831177, -0.016491051763296127, -0.08216613531112671, 0.055759016424417496, -0.030225304886698723, -0.06384894251823425, -0.039329685270786285, 0.025245727971196175, 0.032882437109947205, -0.015876591205596924, 0.12463712692260742, 0.038519565016031265, 0.14225386083126068, 0.11760745942592621, 0.047906264662742615, -0.06428299844264984, -0.08082646876573563, -0.021404577419161797, -0.01364515908062458, 0.06989046931266785, -0.12174942344427109, 0.03130032494664192, 0.14832483232021332, 0.02188251167535782, 0.12586529552936554, 0.08661911636590958, -0.009590945206582546, 0.0033982633613049984, 0.06036176532506943, -0.1599458009004593, -0.05879103019833565, -0.006327712442725897, -0.05224548652768135, -0.09419486671686172, 0.06075388938188553, 0.08110921084880829, -0.077493816614151, -0.013884617947041988, -0.004789114464074373, -0.01260737981647253, -0.06983332335948944, 0.20779648423194885, 0.0650876834988594, 0.04727542772889137, -0.10141501575708389, 0.06348832696676254, 0.061934128403663635, -0.06787022203207016, -0.020123952999711037, 0.06217757612466812, -0.0874384418129921, -0.039554473012685776, 0.10376665741205215, 0.15913806855678558, -0.08536847680807114, -0.03823382779955864, -0.14152443408966064, -0.12061716616153717, 0.07929400354623795, 0.1496073454618454, 0.12951970100402832, 0.020497051998972893, -0.060900233685970306, 0.017589332535862923, -0.12351229041814804, 0.07197985053062439, 0.04119373857975006, 0.08554315567016602, -0.160957470536232, 0.17883078753948212, 0.008943404071033001, 0.05600552260875702, -0.021504338830709457, 0.02611178532242775, -0.10382863134145737, 0.017093131318688393, -0.10583208501338959, -0.03594961389899254, -0.02210938185453415, 0.006891137920320034, 0.0024190153926610947, -0.0649232342839241, -0.047015756368637085, 0.02050067111849785, -0.12413923442363739, -0.020271625369787216, 0.03802817314863205, 0.059404339641332626, -0.103200264275074, -0.04320090264081955, 0.031106755137443542, -0.059186242520809174, 0.05944555625319481, 0.04740717634558678, 0.019290318712592125, 0.06081967055797577, -0.12579654157161713, -0.005263908766210079, 0.08537884056568146, 0.013855962082743645, 0.07195091247558594, -0.08896591514348984, -0.0071077048778533936, 0.0009375354857183993, 0.07425004243850708, 0.01272085402160883, 0.0678543820977211, -0.15547025203704834, -0.013429445214569569, -0.03562936931848526, -0.08957555890083313, -0.07321419566869736, 0.011735218577086926, 0.08960700780153275, 0.006129848770797253, 0.19604001939296722, -0.07414235174655914, 0.039900556206703186, -0.20424363017082214, -0.0015233958838507533, -0.021870985627174377, -0.11642260104417801, -0.12847386300563812, -0.06678122282028198, 0.0533086322247982, -0.046600524336099625, 0.1200457513332367, 0.0185680128633976, 0.04116186872124672, 0.028262702748179436, -0.03275347501039505, 0.007956513203680515, 0.02495264820754528, 0.2177906334400177, 0.0397101566195488, -0.03035151958465576, 0.06724758446216583, 0.05850975215435028, 0.0951497033238411, 0.10447317361831665, 0.17792129516601562, 0.1587165892124176, -0.03875594213604927, 0.08515028655529022, 0.02359727770090103, -0.04038262739777565, -0.18069078028202057, 0.03843924030661583, -0.04984680190682411, 0.08882493525743484, -0.019676536321640015, 0.22090372443199158, 0.06327353417873383, -0.16807779669761658, 0.04519291967153549, -0.045667652040719986, -0.08509553223848343, -0.095257468521595, -0.0272982157766819, -0.08125054836273193, -0.14199024438858032, 0.0013369788648560643, -0.09239358454942703, 0.010294511914253235, 0.10613612830638885, 0.0038874000310897827, -0.02910066768527031, 0.1687508523464203, 0.02989346906542778, 0.02784968912601471, 0.052087146788835526, -0.00013965241669211537, -0.03366798907518387, -0.10772170126438141, -0.06557479500770569, -0.03247452899813652, -0.010456554591655731, 0.03460812568664551, -0.07159668952226639, -0.0798889696598053, 0.02726348303258419, -0.019679099321365356, -0.092136450111866, 0.020767483860254288, 0.013813331723213196, 0.05600517988204956, 0.024877920746803284, 0.000053386916988529265, 0.01584704779088497, -0.019621890038251877, 0.20670375227928162, -0.08389980345964432, -0.08835592865943909, -0.08671971410512924, 0.29153621196746826, 0.049396902322769165, -0.0031374378595501184, 0.032365985214710236, -0.05397234112024307, -0.0018630673876032233, 0.25531524419784546, 0.17076195776462555, -0.0866449847817421, -0.006429145112633705, 0.007549578323960304, -0.016353901475667953, -0.029844770208001137, 0.11937536299228668, 0.14270929992198944, 0.042119767516851425, -0.10129948705434799, -0.03999510407447815, -0.06142522767186165, -0.008968321606516838, -0.06041301414370537, 0.049162350594997406, 0.039351873099803925, 0.0072821942158043385, -0.04590361565351486, 0.04842231795191765, -0.05712883546948433, -0.08920558542013168, 0.07511505484580994, -0.18498371541500092, -0.1593657284975052, -0.007941915653645992, 0.1157008558511734, -0.004628821276128292, 0.06171318516135216, -0.036407358944416046, -0.0024933575186878443, 0.06041533872485161, -0.02258281409740448, -0.08156514912843704, -0.07620467245578766, 0.1011154055595398, -0.08711683005094528, 0.18876731395721436, -0.042333364486694336, 0.07632902264595032, 0.11941348016262054, 0.07423323392868042, -0.0716588944196701, 0.05599497631192207, 0.03686254844069481, -0.09012624621391296, 0.03137329965829849, 0.0867215245962143, -0.021984156221151352, 0.0521804578602314, 0.028444459661841393, -0.13253289461135864, 0.02254958637058735, -0.06693883240222931, -0.04106460139155388, -0.044411417096853256, -0.05387861281633377, -0.04941897466778755, 0.12260805070400238, 0.21520712971687317, -0.024115346372127533, 0.0038165601436048746, -0.07730536162853241, 0.015821760520339012, 0.06238030642271042, 0.008970515802502632, -0.08729168027639389, -0.22032511234283447, 0.011134445667266846, 0.04807185009121895, -0.030975570902228355, -0.18978311121463776, -0.10370513051748276, 0.0026513568591326475, -0.08110257238149643, -0.09796346724033356, 0.08072397112846375, 0.06011049449443817, 0.05630812421441078, -0.048433028161525726, -0.08357886224985123, -0.09722467511892319, 0.14950701594352722, -0.15659840404987335, -0.09315504133701324 ]
null
null
transformers
This repository shares smaller version of bert-base-multilingual-uncased that keeps only Ukrainian, English, and Russian tokens in the vocabulary. | Model | Num parameters | Size | | ----------------------------------------- | -------------- | --------- | | bert-base-multilingual-uncased | 167 million | ~650 MB | | MaxVortman/bert-base-ukr-eng-rus-uncased | 110 million | ~423 MB |
{}
feature-extraction
mshamrai/bert-base-ukr-eng-rus-uncased
[ "transformers", "pytorch", "bert", "feature-extraction", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #bert #feature-extraction #endpoints_compatible #region-us
This repository shares smaller version of bert-base-multilingual-uncased that keeps only Ukrainian, English, and Russian tokens in the vocabulary. Model: bert-base-multilingual-uncased, Num parameters: 167 million, Size: ~650 MB Model: MaxVortman/bert-base-ukr-eng-rus-uncased, Num parameters: 110 million, Size: ~423 MB
[]
[ "TAGS\n#transformers #pytorch #bert #feature-extraction #endpoints_compatible #region-us \n" ]
[ 29 ]
[ "passage: TAGS\n#transformers #pytorch #bert #feature-extraction #endpoints_compatible #region-us \n" ]
[ -0.0680389553308487, -0.01353863999247551, -0.009260591119527817, 0.003671469632536173, 0.13468711078166962, 0.03987877443432808, -0.0037161505315452814, 0.08307137340307236, 0.06908576935529709, -0.009869525209069252, 0.10839105397462845, 0.22950756549835205, -0.03434249758720398, 0.027836797758936882, -0.06780551373958588, -0.2686935067176819, 0.08416040241718292, 0.1071663498878479, -0.04096720367670059, 0.08816211670637131, 0.04718845710158348, -0.10185960680246353, 0.059242263436317444, -0.017401615157723427, -0.13960762321949005, 0.0563788041472435, 0.027032675221562386, -0.08215486258268356, 0.11170924454927444, 0.02429274097084999, 0.171868696808815, 0.00669759139418602, -0.10259579122066498, -0.1729365438222885, 0.024251695722341537, -0.016173768788576126, -0.06165656819939613, 0.030105262994766235, 0.07771246135234833, -0.10020971298217773, 0.020183663815259933, 0.09852731972932816, 0.01621491089463234, 0.024930456653237343, -0.16311487555503845, -0.17609833180904388, -0.05667632818222046, 0.04488549754023552, 0.011052189394831657, 0.0923970639705658, 0.017688613384962082, 0.13918437063694, -0.16459354758262634, 0.0862865000963211, 0.20043151080608368, -0.2896837890148163, 0.005618520081043243, 0.0522591732442379, 0.113655686378479, 0.001720004715025425, -0.01478634774684906, 0.03469560667872429, -0.004047111142426729, 0.02000080794095993, -0.006694010924547911, -0.09492320567369461, -0.04227415472269058, 0.06858084350824356, -0.10082858055830002, -0.0836600661277771, 0.20075856149196625, -0.01962403394281864, 0.051189083606004715, 0.03468365967273712, -0.10027022659778595, -0.05228475481271744, -0.027127007022500038, -0.0054167937487363815, -0.017817793413996696, 0.05698308348655701, 0.01829976961016655, -0.01984529010951519, -0.10944897681474686, 0.021823197603225708, -0.20916391909122467, 0.2347520887851715, 0.014309053309261799, 0.08769264817237854, -0.20601022243499756, 0.05224275588989258, -0.09036950021982193, -0.09105360507965088, 0.021519731730222702, -0.08566883206367493, 0.041528768837451935, 0.002083035884425044, -0.07495059072971344, 0.017543062567710876, 0.047651853412389755, 0.14729511737823486, -0.014067264273762703, 0.025938095524907112, 0.0008498468669131398, 0.1009284183382988, 0.030102098360657692, 0.13388332724571228, 0.011944600380957127, -0.02840438298881054, 0.01732935756444931, -0.1329825222492218, -0.036133281886577606, -0.051770441234111786, -0.12022732943296432, -0.047808099538087845, 0.045948151499032974, 0.08258914202451706, 0.022342177107930183, 0.005320239346474409, -0.08945681154727936, -0.015853654593229294, 0.059366438537836075, -0.07202005386352539, 0.0043303403072059155, -0.000528825621586293, 0.03741177171468735, 0.18082594871520996, -0.029030190780758858, -0.03096860460937023, -0.04084136709570885, 0.09087810665369034, -0.08448517322540283, 0.014714745804667473, -0.05083002150058746, -0.062201209366321564, 0.03654183819890022, -0.16100244224071503, 0.057043030858039856, -0.14560800790786743, -0.09376321732997894, 0.039873939007520676, 0.05335168540477753, -0.002770928665995598, 0.03388800472021103, 0.0009603195358067751, -0.018828926607966423, -0.007003897335380316, -0.06842755526304245, -0.08064226061105728, -0.06478630751371384, 0.09923757612705231, 0.00029352123965509236, 0.04672098159790039, -0.12116226553916931, 0.08672743290662766, -0.09672944992780685, 0.03750492259860039, -0.16180843114852905, -0.008461673744022846, -0.02150292508304119, 0.16466088593006134, -0.005621116608381271, -0.07621955871582031, -0.11902043223381042, 0.047062430530786514, -0.035698723047971725, 0.14959093928337097, -0.05622879043221474, -0.13087990880012512, 0.20922459661960602, -0.11588329821825027, -0.1731778234243393, 0.05696214735507965, -0.008520878851413727, -0.015484592877328396, 0.06328354775905609, 0.20762446522712708, 0.0946868285536766, -0.044678352773189545, 0.08127391338348389, 0.1397486925125122, -0.11663860827684402, -0.14153334498405457, 0.027016308158636093, -0.042085859924554825, -0.07503706961870193, 0.041700031608343124, 0.011108353734016418, 0.09523002058267593, -0.0771002322435379, -0.030855905264616013, -0.01680048368871212, -0.01671411283314228, 0.08776957541704178, 0.055555809289216995, 0.10667075961828232, -0.03498975560069084, 0.011802191846072674, 0.03473251312971115, -0.014134183526039124, 0.0038637330289930105, 0.04732990637421608, -0.060643456876277924, 0.1918257176876068, -0.07546142488718033, 0.003813444171100855, -0.2566893398761749, -0.06994711607694626, 0.00528657017275691, 0.06658254563808441, -0.04811577871441841, 0.15633022785186768, 0.09267178922891617, -0.07167497277259827, 0.016395436599850655, -0.03712666034698486, 0.08581963181495667, 0.02451246976852417, -0.033985935151576996, -0.04179177060723305, -0.011763811111450195, -0.07896506786346436, -0.09305226802825928, -0.010189443826675415, -0.01599530130624771, 0.09464821219444275, 0.10299675166606903, 0.01377725787460804, 0.03143538534641266, -0.06555043905973434, 0.06333392858505249, -0.022575706243515015, 0.018025120720267296, 0.09356045722961426, -0.021321585401892662, -0.06097353622317314, 0.13765394687652588, -0.094614177942276, 0.3545747399330139, 0.19013811647891998, -0.3164325952529907, 0.018932169303297997, -0.04782366380095482, -0.00977459829300642, 0.036739129573106766, 0.09889727830886841, -0.029969865456223488, 0.09724640101194382, 0.027196763083338737, 0.13298392295837402, -0.030379584059119225, -0.03850182890892029, 0.0005746455863118172, -0.02981492318212986, -0.05865705385804176, 0.07086624205112457, 0.07261653989553452, -0.15486454963684082, 0.16527150571346283, 0.26989927887916565, 0.03292781859636307, 0.12406831979751587, -0.0661960020661354, -0.0376574881374836, 0.019656166434288025, 0.009992681443691254, -0.040347639471292496, 0.046730417758226395, -0.2736447751522064, -0.052413634955883026, 0.0692915990948677, 0.02405851148068905, 0.0952937975525856, -0.12900009751319885, -0.04021916538476944, 0.03706459701061249, 0.014877407811582088, -0.08638262748718262, 0.0609026663005352, 0.05720122531056404, 0.05891529843211174, 0.019035693258047104, -0.06259000301361084, 0.10445338487625122, 0.00871498417109251, -0.04073162376880646, 0.17662526667118073, -0.123042032122612, -0.2620071768760681, -0.12311730533838272, -0.15138909220695496, 0.015030097216367722, 0.01922003924846649, 0.08840186893939972, -0.06919815391302109, -0.031516414135694504, 0.06873156130313873, 0.03529629856348038, -0.14966927468776703, 0.029128234833478928, -0.07160747051239014, 0.03280840069055557, -0.07802597433328629, -0.0789455845952034, -0.06994608044624329, -0.06953756511211395, -0.009727881290018559, 0.09203583002090454, -0.1189604178071022, 0.10165828466415405, 0.13272233307361603, 0.0363771878182888, 0.08464014530181885, -0.008833634667098522, 0.1828852891921997, -0.05849464610219002, -0.0809895321726799, 0.21144624054431915, -0.04404043033719063, 0.0901838093996048, 0.09279557317495346, 0.039735835045576096, -0.06724223494529724, -0.04217485338449478, -0.06174955144524574, -0.10350338369607925, -0.18064221739768982, -0.09564316272735596, -0.14665037393569946, 0.014125813730061054, 0.01768936589360237, 0.03677418455481529, 0.08474641293287277, 0.06241949275135994, 0.0594039149582386, -0.04961218684911728, -0.04142293706536293, 0.02869315631687641, 0.21291007101535797, -0.022173935547471046, 0.09922134131193161, -0.0371907539665699, -0.0987340658903122, 0.07145325094461441, 0.03712000325322151, 0.24907712638378143, 0.10089749097824097, 0.035659585148096085, 0.0526948980987072, 0.17874057590961456, 0.13417154550552368, 0.17221486568450928, -0.020648453384637833, -0.02667684480547905, -0.01199409831315279, 0.002160619245842099, -0.05968237295746803, 0.013288183137774467, 0.17365947365760803, -0.1238851547241211, -0.08988935500383377, -0.2173749804496765, 0.07477087527513504, 0.06237781420350075, 0.031422216445207596, -0.18417076766490936, 0.003690242301672697, 0.0649406686425209, -0.00521667068824172, -0.04713871702551842, 0.07263871282339096, -0.017426704987883568, -0.11952719837427139, 0.034282006323337555, -0.05946141108870506, 0.10967221111059189, -0.012345034629106522, 0.07638204097747803, -0.026442036032676697, -0.12944473326206207, 0.06673547625541687, 0.07164321839809418, -0.19538965821266174, 0.2909071147441864, -0.012455099262297153, -0.06202757731080055, -0.04829925298690796, 0.005193088203668594, 0.012985559180378914, 0.160504549741745, 0.1260947436094284, 0.022533811628818512, -0.0578787624835968, -0.1674206554889679, 0.04693714529275894, 0.028735041618347168, 0.13825884461402893, -0.05239944905042648, -0.014248479157686234, -0.02063719928264618, -0.011673306114971638, -0.020329756662249565, 0.05532294511795044, 0.08330490440130234, -0.14671963453292847, 0.052545733749866486, -0.06558147072792053, 0.0409327894449234, -0.012272844091057777, -0.00765871349722147, -0.047818366438150406, 0.14944994449615479, -0.0652761161327362, -0.048871852457523346, -0.1053028553724289, -0.10936398059129715, 0.12579044699668884, -0.0932580903172493, 0.09765078127384186, -0.06662343442440033, -0.03391622006893158, -0.06140284985303879, -0.20473268628120422, 0.1305530071258545, -0.09915255755186081, 0.04976314306259155, -0.038567788898944855, 0.181097149848938, -0.060539573431015015, 0.005303262732923031, 0.026644282042980194, 0.01667754538357258, -0.11381230503320694, -0.08549114316701889, -0.015935804694890976, -0.016310077160596848, 0.0518048033118248, 0.06849704682826996, -0.062081992626190186, 0.04358658939599991, 0.00031327479518949986, 0.06365568935871124, 0.24294216930866241, 0.14630047976970673, -0.051170576363801956, 0.11532986164093018, 0.14450006186962128, -0.031972140073776245, -0.27944883704185486, -0.06474616378545761, -0.13329371809959412, -0.03996938094496727, -0.0014406027039512992, -0.13789600133895874, 0.14261819422245026, 0.044858112931251526, -0.006724648643285036, 0.11656755954027176, -0.24167363345623016, -0.05383818969130516, 0.16473250091075897, 0.01709013618528843, 0.44809144735336304, -0.11115505546331406, -0.09658455848693848, 0.012760866433382034, -0.2474503070116043, 0.10122992098331451, 0.014938225969672203, 0.0646388828754425, -0.02196873165667057, 0.05254409834742546, 0.0362543947994709, -0.0707058236002922, 0.1153612732887268, 0.036213282495737076, 0.044825151562690735, -0.05749816447496414, -0.12735342979431152, 0.05762515589594841, -0.0197214987128973, -0.0027702997904270887, 0.06281710416078568, 0.01907024346292019, -0.15264934301376343, -0.028649672865867615, -0.1261925846338272, 0.07312501221895218, 0.036964092403650284, -0.035512425005435944, 0.003519417019560933, -0.027797704562544823, -0.003173819277435541, 0.024623822420835495, 0.2571793794631958, -0.02694554440677166, 0.12917625904083252, 0.020508399233222008, 0.05970452353358269, -0.2093375027179718, -0.1727571189403534, -0.06916570663452148, -0.04265722632408142, 0.09737759083509445, -0.03340640291571617, 0.05482974648475647, 0.14861060678958893, -0.01582632027566433, 0.028938481584191322, 0.1354859471321106, 0.012413929216563702, -0.017079832032322884, 0.12271753698587418, -0.1915288269519806, -0.02804369106888771, -0.03969001770019531, -0.08020538836717606, 0.08018501847982407, 0.07493545114994049, 0.09324722737073898, 0.06881885975599289, -0.012770483270287514, -0.0276129599660635, -0.03462065011262894, -0.07952789962291718, 0.0472898855805397, 0.03613487631082535, 0.03859974071383476, -0.13946987688541412, 0.03557739406824112, -0.016765620559453964, -0.2670823633670807, -0.05293544381856918, 0.07872454822063446, -0.11887070536613464, -0.10548925399780273, -0.08829343318939209, 0.11399594694375992, -0.1680411845445633, -0.027427881956100464, -0.03792887181043625, -0.12483807653188705, 0.07226365804672241, 0.21823963522911072, 0.10136004537343979, 0.1148689016699791, -0.045093145221471786, 0.0007684463635087013, 0.024442041292786598, -0.0601712167263031, 0.01604810729622841, 0.016433462500572205, -0.0998239740729332, -0.0008209992665797472, -0.020151354372501373, 0.15397760272026062, -0.0796075239777565, -0.06533236801624298, -0.15189164876937866, 0.07058283686637878, -0.0721585750579834, -0.08680808544158936, -0.1218729019165039, -0.05743737146258354, 0.024261746555566788, -0.05391566827893257, -0.03601766377687454, -0.021656449884176254, -0.14623980224132538, 0.04485916718840599, 0.010332317091524601, -0.005168382078409195, -0.06595148891210556, -0.030757123604416847, 0.11516020447015762, -0.06426966190338135, 0.07983355224132538, 0.19698777794837952, -0.06767240911722183, 0.13421446084976196, -0.12187573313713074, -0.17356571555137634, 0.10550028830766678, 0.028678571805357933, 0.08807408809661865, 0.07333525270223618, 0.031008796766400337, 0.07151902467012405, -0.0006563866045325994, 0.03527871519327164, -0.026205046102404594, -0.13518503308296204, -0.022110003978013992, 0.008841688744723797, -0.18046444654464722, -0.03447321802377701, -0.07454892992973328, 0.15258778631687164, 0.02735028602182865, 0.11539342999458313, 0.016432136297225952, 0.10955704003572464, -0.04023033380508423, -0.0037069369573146105, 0.006354177836328745, -0.1867031753063202, 0.027574164792895317, -0.07603352516889572, 0.009099473245441914, 0.004562267567962408, 0.26294976472854614, -0.016851287335157394, 0.06874511390924454, 0.019947905093431473, 0.0317598320543766, 0.06296208500862122, 0.029733985662460327, 0.2593200206756592, 0.1191045418381691, -0.04764638841152191, -0.09192530065774918, 0.09628601372241974, 0.0015705273253843188, 0.0005639182054437697, 0.12658140063285828, 0.12427230179309845, 0.03164798021316528, 0.10732870548963547, 0.03856581449508667, 0.04636436328291893, -0.1138598844408989, -0.24980735778808594, 0.006955720484256744, 0.07651596516370773, 0.030513912439346313, 0.09611864387989044, 0.11702555418014526, -0.040339987725019455, 0.09750796854496002, -0.006009524688124657, -0.03278311714529991, -0.1306307315826416, -0.048490166664123535, -0.05248153209686279, -0.1226581484079361, 0.010182006284594536, -0.07812222838401794, 0.0005351413274183869, 0.15948551893234253, 0.02424205094575882, -0.019147196784615517, 0.14117267727851868, 0.03290129452943802, -0.05950130149722099, 0.0636630430817604, -0.017126450315117836, 0.0027530856896191835, 0.04465898126363754, -0.016934748739004135, -0.11656554788351059, -0.08354712277650833, -0.050883643329143524, 0.024923330172896385, -0.09700026363134384, 0.004247597418725491, -0.11320921033620834, -0.11535467207431793, -0.04546694457530975, 0.048496924340724945, -0.07876671850681305, 0.1265949159860611, -0.016160227358341217, 0.0028664041310548782, 0.009360520169138908, 0.15711569786071777, -0.07741065323352814, -0.012710070237517357, -0.020163269713521004, 0.21036958694458008, 0.0989537462592125, 0.10912171006202698, -0.0009331207838840783, 0.015002057887613773, -0.05219440162181854, 0.29989543557167053, 0.2444397360086441, -0.028167791664600372, 0.04460100829601288, 0.0873914435505867, 0.038083989173173904, 0.0968138724565506, 0.09690817445516586, 0.10102183371782303, 0.3200364112854004, -0.07682528346776962, -0.045907747000455856, -0.03448496013879776, -0.00849792081862688, -0.09551121294498444, 0.035898253321647644, 0.07948186993598938, -0.06152723729610443, -0.07321841269731522, 0.10746033489704132, -0.16515599191188812, 0.11578583717346191, 0.11013679206371307, -0.20921821892261505, -0.049416057765483856, -0.07384659349918365, 0.17109091579914093, -0.0024887267500162125, 0.1266387403011322, -0.04354546591639519, -0.13439299166202545, 0.06285285204648972, 0.048469748347997665, -0.2756679356098175, -0.0980004072189331, 0.11060073226690292, 0.024665147066116333, 0.007802571170032024, -0.02169145829975605, -0.004367694724351168, 0.06355959177017212, 0.09860705584287643, -0.0003893781395163387, 0.02548590861260891, 0.03634477034211159, -0.10912884771823883, -0.08365445584058762, 0.008976423181593418, 0.008719995617866516, -0.08448972553014755, 0.023103585466742516, -0.19627802073955536, 0.044169794768095016, -0.0157186109572649, -0.044235143810510635, 0.003991053905338049, -0.029606744647026062, -0.059212785214185715, 0.03327903896570206, 0.08572027087211609, 0.023666096851229668, -0.03819211944937706, -0.05403012037277222, 0.0019490038976073265, 0.07524687796831131, -0.06805311143398285, -0.173606276512146, -0.04840735346078873, -0.08657971769571304, 0.0992082953453064, -0.05511601269245148, -0.0752784013748169, -0.04562166705727577, -0.03257971256971359, 0.06480588763952255, -0.12087775766849518, 0.04490482062101364, 0.03911556303501129, 0.041156258434057236, 0.0160878524184227, -0.035335659980773926, 0.044597625732421875, 0.07137373089790344, -0.11931539326906204, -0.07447930425405502 ]
null
null
transformers
#Rick and Morty DialoGPT Model
{"tags": ["conversational"]}
text-generation
MaxW0748/DialoGPT-small-Rick
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
#Rick and Morty DialoGPT Model
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 51 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.009697278961539268, 0.03208012506365776, -0.007204889785498381, 0.004809224978089333, 0.16726240515708923, 0.014898733235895634, 0.09765533357858658, 0.13672804832458496, -0.007841327227652073, -0.031050153076648712, 0.14490588009357452, 0.20411323010921478, -0.006439372431486845, 0.0661218985915184, -0.07572533935308456, -0.2683109939098358, 0.05759621039032936, 0.046649303287267685, 0.016515716910362244, 0.1200079694390297, 0.08573378622531891, -0.05473608896136284, 0.08714032918214798, -0.014583407901227474, -0.150366872549057, 0.017733458429574966, 0.043394338339567184, -0.12260226160287857, 0.11910516023635864, 0.05462685227394104, 0.07063519209623337, 0.014929565601050854, -0.07541623711585999, -0.1631229966878891, 0.03031250834465027, 0.01425902172923088, -0.0594632662832737, 0.04757995903491974, 0.059961482882499695, -0.10165371745824814, 0.10819483548402786, 0.09530027210712433, -0.013078106567263603, 0.06798283755779266, -0.16849711537361145, -0.020869607105851173, -0.01446688175201416, 0.009899779222905636, 0.05550243332982063, 0.09964893013238907, -0.03413357585668564, 0.10497362166643143, -0.09214533120393753, 0.11017382889986038, 0.10932035744190216, -0.32057443261146545, -0.005767723545432091, 0.09167823940515518, 0.039358653128147125, 0.07352814823389053, -0.04467793554067612, 0.06258884817361832, 0.018015462905168533, 0.017986174672842026, -0.014015024527907372, -0.07283061742782593, -0.11612214148044586, 0.04717336222529411, -0.08668071031570435, -0.059868961572647095, 0.2244078367948532, -0.05464440956711769, 0.06881742179393768, -0.05281897634267807, -0.10522868484258652, -0.04308144748210907, -0.029833965003490448, 0.00475557055324316, -0.07660607248544693, 0.08692064881324768, 0.00869679357856512, -0.09547875821590424, -0.1376667022705078, -0.02496783249080181, -0.1776352822780609, 0.16140350699424744, 0.02465328387916088, 0.05232657864689827, -0.2027255892753601, 0.09623090922832489, 0.017906051129102707, -0.08045592904090881, 0.022091427817940712, -0.10046248883008957, 0.029131146147847176, 0.013760408386588097, -0.04754498973488808, -0.061387211084365845, 0.0843690037727356, 0.11199145019054413, -0.01731434464454651, 0.025486016646027565, -0.039331406354904175, 0.08100687712430954, 0.03553595021367073, 0.09077847748994827, 0.007288969587534666, -0.028338588774204254, 0.025842782109975815, -0.13719046115875244, -0.003647835226729512, -0.07116208970546722, -0.16572439670562744, -0.021088803187012672, 0.02994808368384838, 0.08289173990488052, 0.015449047088623047, 0.11682453751564026, -0.03272046521306038, -0.025152435526251793, 0.03602350503206253, -0.047656361013650894, -0.012649794109165668, 0.016648368909955025, 0.013163427822291851, 0.12399329990148544, -0.0022096503525972366, 0.03235051408410072, -0.13653022050857544, 0.031423524022102356, -0.06793295592069626, -0.003740974934771657, -0.03486552834510803, -0.040637075901031494, 0.009043924510478973, -0.06862333416938782, 0.003486064961180091, -0.15030112862586975, -0.15063877403736115, 0.007587034720927477, -0.007836631499230862, -0.04107699543237686, -0.06370922178030014, -0.06952770054340363, -0.013550350442528725, 0.04251532256603241, -0.07093454152345657, -0.011352915316820145, -0.06403283774852753, 0.11004766076803207, -0.03197755664587021, 0.07921615242958069, -0.11953279376029968, 0.08390819281339645, -0.11260783672332764, -0.02386913076043129, -0.060801517218351364, 0.09317506104707718, -0.0006014376995153725, 0.09549830108880997, -0.006563255097717047, -0.017931854352355003, -0.07981178909540176, 0.06445012241601944, -0.042872510850429535, 0.21701598167419434, -0.0615808479487896, -0.11181682348251343, 0.28781595826148987, -0.052628401666879654, -0.1370542049407959, 0.11647392809391022, 0.008682746440172195, 0.05777018144726753, 0.10703510791063309, 0.19733482599258423, -0.015276194550096989, 0.004040541127324104, 0.09471915662288666, 0.11263324320316315, -0.11276852339506149, -0.033160366117954254, 0.013019153848290443, -0.04081077128648758, -0.10867965966463089, 0.04689536616206169, 0.09810488671064377, 0.07090286910533905, -0.04786505550146103, -0.03377414867281914, -0.01366397924721241, 0.0052589005790650845, 0.08885077387094498, -0.007157256826758385, 0.10962837189435959, -0.05819983780384064, -0.03796621412038803, -0.029282379895448685, -0.012126247398555279, -0.03951939567923546, 0.03137664496898651, -0.043376367539167404, 0.10821941494941711, -0.011204327456653118, 0.06364280730485916, -0.16185984015464783, -0.07691477984189987, -0.017002692446112633, 0.1581239402294159, 0.024538565427064896, 0.09859629720449448, 0.0552486926317215, -0.040398042649030685, -0.0012767292791977525, 0.012792680412530899, 0.15581141412258148, -0.022091681137681007, -0.065607450902462, -0.052166227251291275, 0.08642971515655518, -0.05641226842999458, 0.04504093527793884, -0.05937713757157326, 0.012367865070700645, 0.05064384639263153, 0.10342344641685486, -0.00018274025933351368, 0.03323284164071083, -0.008164864964783192, 0.002145637758076191, -0.058205123990774155, 0.007405933458358049, 0.10799351334571838, 0.00036868182360194623, -0.07365862280130386, 0.22074243426322937, -0.17796069383621216, 0.1765957772731781, 0.1893044263124466, -0.299345999956131, 0.017949223518371582, -0.10759581625461578, -0.04561871662735939, 0.014407722279429436, 0.05567655712366104, -0.0454222597181797, 0.1703362911939621, -0.009871348738670349, 0.18874616920948029, -0.04946064203977585, -0.04464937001466751, -0.0200483538210392, -0.05118836089968681, -0.0024189651012420654, 0.07781197130680084, 0.10685696452856064, -0.13992026448249817, 0.1964332014322281, 0.1621224284172058, 0.048237916082143784, 0.19945049285888672, 0.015346456319093704, -0.011589210480451584, 0.0909530371427536, 0.005220826715230942, -0.058739423751831055, -0.07409929484128952, -0.2594851851463318, -0.030033592134714127, 0.07992640137672424, 0.0422382652759552, 0.1212305948138237, -0.11349532753229141, -0.038956157863140106, -0.01763172075152397, -0.023146281018853188, 0.021672505885362625, 0.0914369598031044, 0.06075398623943329, 0.13201528787612915, -0.001710098935291171, -0.007300339173525572, 0.10524573177099228, 0.01783694699406624, -0.09354141354560852, 0.18308524787425995, -0.13652534782886505, -0.37097251415252686, -0.13911493122577667, -0.18057456612586975, -0.05449081212282181, 0.05712554603815079, 0.11679314076900482, -0.12011238187551498, -0.018752124160528183, 0.01578843593597412, 0.10931742936372757, -0.08449502289295197, 0.0021454424131661654, -0.06880278885364532, 0.0321490578353405, -0.10310184955596924, -0.09194442629814148, -0.055416494607925415, -0.031392451375722885, -0.08001253753900528, 0.1423761546611786, -0.10777941346168518, 0.04476889222860336, 0.20262959599494934, 0.04653622955083847, 0.05625178664922714, -0.044105201959609985, 0.19377262890338898, -0.11264272034168243, -0.01661740615963936, 0.19215328991413116, -0.048360925167798996, 0.07476246356964111, 0.1232115849852562, -0.006348740309476852, -0.08765771239995956, 0.03011748194694519, -0.02085109055042267, -0.07988511025905609, -0.23219464719295502, -0.13938382267951965, -0.12429051846265793, 0.09477275609970093, 0.028005298227071762, 0.056365787982940674, 0.17219258844852448, 0.06577219814062119, -0.038416244089603424, 0.006410336587578058, 0.02959546446800232, 0.08237514644861221, 0.23417828977108002, -0.06035616248846054, 0.1364797055721283, -0.03420931473374367, -0.14982740581035614, 0.08169995993375778, 0.0713929831981659, 0.10213395953178406, 0.06678459793329239, 0.0804823637008667, 0.0149586396291852, 0.06188136339187622, 0.1311223804950714, 0.08191446959972382, 0.019586285576224327, -0.02480296604335308, -0.03388110175728798, -0.025523077696561813, -0.05937909707427025, 0.040128443390131, 0.06589099019765854, -0.16763372719287872, -0.039227183908224106, -0.09338314831256866, 0.09657008945941925, 0.0873042419552803, 0.06609832495450974, -0.1842060089111328, -0.008006223477423191, 0.08488986641168594, -0.03854905813932419, -0.13727426528930664, 0.09535189718008041, 0.01523482333868742, -0.15144726634025574, 0.03139317408204079, -0.04061909019947052, 0.12188644707202911, -0.07804752141237259, 0.09809603542089462, -0.08108244836330414, -0.07448557764291763, 0.02123199962079525, 0.1261177361011505, -0.30527687072753906, 0.20240111649036407, -0.0024993624538183212, -0.06486981362104416, -0.1243603527545929, -0.0032166161108762026, 0.002410882618278265, 0.07357452809810638, 0.10519039630889893, -0.007196315098553896, 0.001897757756523788, -0.06300821900367737, -0.01829923689365387, 0.032471053302288055, 0.13080233335494995, -0.0401318334043026, -0.021158374845981598, -0.050194524228572845, -0.001653497340157628, -0.03173094615340233, -0.06934895366430283, 0.02002747356891632, -0.19509181380271912, 0.08751901984214783, 0.04166261479258537, 0.09648149460554123, 0.029994789510965347, 0.004265148192644119, -0.09651939570903778, 0.24698667228221893, -0.07148019969463348, -0.10072879493236542, -0.10919588059186935, -0.046813901513814926, 0.03569883480668068, -0.05628936365246773, 0.04309194162487984, -0.0788632407784462, 0.028997479006648064, -0.06352769583463669, -0.19235502183437347, 0.12410202622413635, -0.09027006477117538, -0.04412810131907463, -0.02371402643620968, 0.2110891044139862, -0.05598580464720726, 0.010335659608244896, 0.02930437959730625, 0.01208863127976656, -0.11645778268575668, -0.09678568691015244, 0.031018631532788277, -0.007351789623498917, 0.050603240728378296, 0.041841957718133926, -0.05915454775094986, -0.017138581722974777, -0.052199993282556534, -0.022926922887563705, 0.3496883809566498, 0.14231905341148376, -0.043836336582899094, 0.19347235560417175, 0.12347975373268127, -0.07452994585037231, -0.3159443140029907, -0.1066238060593605, -0.10937739163637161, -0.04680149629712105, -0.07012093812227249, -0.2002030611038208, 0.06474938243627548, 0.00662544509395957, -0.013415241613984108, 0.12749312818050385, -0.2561831772327423, -0.07571036368608475, 0.15906259417533875, -0.017980827018618584, 0.3745945692062378, -0.1168576180934906, -0.10926306992769241, -0.03950892388820648, -0.14175476133823395, 0.16968177258968353, -0.01989765651524067, 0.11221715062856674, -0.009765521623194218, 0.14388824999332428, 0.05548359826207161, -0.023479344323277473, 0.08544106781482697, 0.004999885335564613, -0.03290518373250961, -0.10304180532693863, -0.05676887184381485, 0.007092386484146118, 0.02477436140179634, 0.018026655539870262, -0.041834570467472076, 0.02227151393890381, -0.11731979995965958, -0.04657655209302902, -0.08982590585947037, 0.04431166127324104, 0.03899754583835602, -0.07325074821710587, -0.002380647463724017, -0.07165111601352692, -0.012272949330508709, 0.022334342822432518, 0.20356793701648712, -0.08029330521821976, 0.16448934376239777, 0.09239562600851059, 0.12419285625219345, -0.14376309514045715, -0.00019283240544609725, -0.0762530043721199, -0.05611240118741989, 0.07737895101308823, -0.09433035552501678, 0.058893077075481415, 0.10901971161365509, -0.04567738622426987, 0.08828683942556381, 0.10377411544322968, 0.008936077356338501, 0.003213887568563223, 0.10916902124881744, -0.2667325437068939, -0.0296600554138422, -0.07532413303852081, 0.000883326749317348, 0.09092561900615692, 0.08562852442264557, 0.18840822577476501, 0.025361526757478714, -0.04293036088347435, -0.002770674182102084, 0.028597986325621605, -0.039021048694849014, 0.051667019724845886, 0.001123449532315135, 0.01947369985282421, -0.1530752182006836, 0.072522833943367, 0.01490565575659275, -0.15215420722961426, 0.021316176280379295, 0.16572684049606323, -0.11656328290700912, -0.1283872276544571, -0.06520111113786697, 0.08313824236392975, -0.11755692958831787, -0.01578943058848381, -0.03279297426342964, -0.13145680725574493, 0.07992171496152878, 0.12629036605358124, 0.05557859688997269, 0.0972496047616005, -0.06061713397502899, -0.020469192415475845, -0.018721895292401314, -0.014099318534135818, -0.012384648434817791, -0.007667020428925753, -0.055978111922740936, 0.0590752474963665, -0.026677248999476433, 0.1425808072090149, -0.09221141785383224, -0.1037059873342514, -0.16142144799232483, 0.0374140702188015, -0.11013076454401016, -0.08825794607400894, -0.08821134269237518, -0.050188567489385605, 0.002360827289521694, -0.019856395199894905, -0.04037635400891304, -0.05829505994915962, -0.12300454825162888, 0.0338277705013752, -0.040771447122097015, 0.024727050215005875, -0.07512269169092178, 0.015856385231018066, 0.08507686108350754, -0.03285100311040878, 0.15655414760112762, 0.1450488418340683, -0.1006515845656395, 0.10741901397705078, -0.14806775748729706, -0.09138492494821548, 0.11116421222686768, 0.015329592861235142, 0.0449691042304039, 0.09723787009716034, 0.013362943194806576, 0.0635865181684494, 0.032776717096567154, 0.05308786407113075, 0.027619892731308937, -0.11959987878799438, 0.06483134627342224, -0.03626115620136261, -0.14700546860694885, -0.049338050186634064, -0.05282869189977646, 0.01647452637553215, 0.013054544106125832, 0.09622690081596375, -0.05301849544048309, 0.10698331147432327, -0.04055701196193695, 0.0346808135509491, 0.017554637044668198, -0.1730053424835205, -0.03816922754049301, -0.08538098633289337, 0.03681723028421402, 0.014741539023816586, 0.25266793370246887, 0.030072299763560295, 0.012416383251547813, 0.032671261578798294, 0.08285367488861084, 0.03899408504366875, 0.010228337720036507, 0.17482228577136993, 0.1162426546216011, -0.06621865928173065, -0.10445023328065872, 0.0729617029428482, 0.016332454979419708, 0.01286179106682539, 0.13617953658103943, 0.008365051820874214, 0.005795429926365614, 0.08649782836437225, -0.016865963116288185, 0.009968153201043606, -0.10052056610584259, -0.13426925241947174, -0.022176474332809448, 0.05151832848787308, -0.04655967652797699, 0.11727844923734665, 0.1406494379043579, -0.01806013658642769, 0.03222079202532768, -0.021771740168333054, -0.05699979141354561, -0.1683429479598999, -0.1429590880870819, -0.06883849948644638, -0.13416796922683716, 0.00897989235818386, -0.11180389672517776, 0.05395037308335304, 0.06001098081469536, 0.06750501692295074, -0.06899319589138031, 0.10220931470394135, 0.04626858979463577, -0.11440542340278625, 0.06264589726924896, -0.0296088308095932, 0.09430401772260666, -0.02759445086121559, -0.019505485892295837, -0.09039592742919922, 0.014574515633285046, 0.011419114656746387, 0.06245238706469536, -0.04707273095846176, 0.007463190704584122, -0.14696238934993744, -0.08972041308879852, -0.0523175448179245, 0.0718572810292244, -0.050409089773893356, 0.14282815158367157, 0.00775480642914772, -0.0170906875282526, 0.039554283022880554, 0.22787313163280487, -0.07476283609867096, -0.04778539761900902, -0.05269690603017807, 0.20717895030975342, 0.02975541539490223, 0.1171872541308403, -0.022938819602131844, -0.006106364540755749, -0.0919521227478981, 0.3764844834804535, 0.30030161142349243, -0.09031439572572708, 0.011794124729931355, 0.02137952297925949, 0.04502861574292183, 0.1316293478012085, 0.1216534823179245, 0.10318691283464432, 0.3006802201271057, -0.07452366501092911, -0.04653361067175865, -0.012629742734134197, -0.023858042433857918, -0.09059546142816544, 0.1021224707365036, 0.04839762672781944, -0.06382183730602264, -0.03313443064689636, 0.0954432487487793, -0.25862133502960205, 0.1277991235256195, -0.12311873584985733, -0.17578600347042084, -0.06654827296733856, 0.009760108776390553, 0.10465722531080246, 0.015642458572983742, 0.0946015790104866, 0.007128213066607714, -0.11252258718013763, 0.06305865943431854, 0.03397420793771744, -0.22762253880500793, 0.0006893770187161863, 0.06642123311758041, -0.07006710022687912, -0.0024247700348496437, -0.026499588042497635, 0.05657242611050606, 0.0656052976846695, 0.054629553109407425, -0.00971333310008049, 0.03816632181406021, 0.0034184439573436975, -0.0585215799510479, 0.016623929142951965, 0.05121519789099693, 0.02472509816288948, -0.09763528406620026, 0.06927435845136642, -0.1574270874261856, 0.04766253009438515, -0.0030655991286039352, -0.04124255105853081, 0.006064958870410919, 0.008823691867291927, -0.06491616368293762, 0.05165379121899605, 0.07916834205389023, -0.0016257909592241049, -0.0062433634884655476, -0.057178743183612823, -0.02632102556526661, -0.027755750343203545, -0.09291748702526093, -0.10495562851428986, -0.14682936668395996, -0.11640441417694092, 0.09368976950645447, -0.01011267676949501, -0.1848134547472, 0.022154374048113823, -0.08606051653623581, 0.08319322764873505, -0.1670055389404297, 0.08040720224380493, 0.07041648775339127, 0.013038921169936657, -0.0031511052511632442, -0.02002427540719509, 0.054132770746946335, 0.086809903383255, -0.10407156497240067, -0.07400695979595184 ]
null
null
transformers
hello
{}
text2text-generation
Maya/essai1
[ "transformers", "pytorch", "marian", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #marian #text2text-generation #autotrain_compatible #endpoints_compatible #region-us
hello
[]
[ "TAGS\n#transformers #pytorch #marian #text2text-generation #autotrain_compatible #endpoints_compatible #region-us \n" ]
[ 39 ]
[ "passage: TAGS\n#transformers #pytorch #marian #text2text-generation #autotrain_compatible #endpoints_compatible #region-us \n" ]
[ -0.04299061745405197, 0.02048153057694435, -0.007905861362814903, 0.017341529950499535, 0.1674833744764328, 0.015022140927612782, 0.11233320832252502, 0.11863136291503906, -0.021540861576795578, -0.02743752859532833, 0.13554878532886505, 0.21845582127571106, -0.029172958806157112, 0.13169614970684052, -0.09187182039022446, -0.27409499883651733, 0.05041339620947838, 0.07612357288599014, -0.0032400432974100113, 0.11484647542238235, 0.08262503147125244, -0.06914720684289932, 0.09544219821691513, -0.020474469289183617, -0.1502380520105362, 0.04810585081577301, 0.03681797534227371, -0.12365291267633438, 0.10355763882398605, 0.05624402314424515, 0.14675100147724152, 0.049946922808885574, -0.045320477336645126, -0.12796320021152496, 0.03590502589941025, -0.014642681926488876, -0.05720677599310875, 0.043614622205495834, 0.11117127537727356, -0.10207130759954453, 0.07960233837366104, 0.05127398297190666, -0.014023883268237114, 0.050975557416677475, -0.141337588429451, -0.003813988296315074, -0.027397429570555687, 0.014237596653401852, 0.05422891676425934, 0.08352058380842209, 0.003295850707218051, 0.1273125261068344, -0.09657827764749527, 0.12222390621900558, 0.14130061864852905, -0.2732044458389282, -0.01754593662917614, 0.05375663563609123, 0.0771917775273323, 0.048981767147779465, 0.031092284247279167, 0.07454943656921387, 0.024584133177995682, 0.015090471133589745, -0.03814702853560448, -0.08287479728460312, -0.12807047367095947, 0.019125670194625854, -0.06934678554534912, -0.04385405406355858, 0.22815698385238647, -0.0767071545124054, 0.0690799281001091, -0.016879798844456673, -0.099354088306427, -0.013246859423816204, -0.023963650688529015, -0.013139755465090275, -0.057544030249118805, 0.06476068496704102, -0.009456291794776917, -0.06398481875658035, -0.14808781445026398, 0.023103661835193634, -0.21015530824661255, 0.14179550111293793, 0.009386908262968063, 0.06023368611931801, -0.228738471865654, 0.054586537182331085, 0.01987987570464611, -0.11919516324996948, 0.05574571341276169, -0.10007449984550476, 0.0717792734503746, -0.021906660869717598, -0.07584639638662338, -0.12714429199695587, 0.07903710007667542, 0.07602258026599884, 0.037012938410043716, 0.03882657736539841, -0.033536311239004135, 0.09232339262962341, 0.03188752755522728, 0.08195699751377106, 0.024470625445246696, -0.0647776648402214, 0.060782309621572495, -0.13799309730529785, 0.02048647031188011, -0.07564643770456314, -0.15782196819782257, -0.05491308867931366, 0.031704291701316833, 0.08069360256195068, 0.057991672307252884, 0.060139670968055725, -0.04872484505176544, -0.029799729585647583, 0.046476855874061584, -0.06872976571321487, 0.01670474000275135, 0.005320677068084478, 0.002851170254871249, 0.15805108845233917, 0.012711133807897568, 0.022864853963255882, -0.10496573150157928, 0.09458412975072861, -0.045503005385398865, -0.007045185659080744, -0.04345158115029335, -0.053234852850437164, 0.04123325273394585, -0.08231240510940552, 0.02657659351825714, -0.17579737305641174, -0.13871575891971588, -0.0033533284440636635, 0.02681393176317215, -0.026966731995344162, -0.04719308391213417, -0.0374324657022953, -0.0006928038201294839, 0.05385119467973709, -0.06815992295742035, -0.0218440480530262, -0.04221982881426811, 0.09645102918148041, -0.0016841458855196834, 0.08042199909687042, -0.12622402608394623, 0.06601319462060928, -0.09750280529260635, -0.04340378940105438, -0.07671932876110077, 0.05399606004357338, 0.017877332866191864, 0.15430141985416412, 0.006661383900791407, -0.022485187277197838, -0.09846191853284836, 0.06375280767679214, -0.01495822612196207, 0.20534983277320862, -0.0825159028172493, -0.10552165657281876, 0.2378932535648346, -0.08819123357534409, -0.14648401737213135, 0.07553689181804657, 0.01727413944900036, 0.05550779774785042, 0.09919747710227966, 0.1461925357580185, 0.04413070157170296, -0.00670899823307991, 0.1254817545413971, 0.08491205424070358, -0.0924982875585556, -0.12882496416568756, -0.0065908655524253845, -0.010184240527451038, -0.0816330686211586, 0.05123698338866234, 0.10150077939033508, 0.0642603188753128, -0.0642881691455841, -0.04207714647054672, -0.026692917570471764, -0.02559005469083786, 0.07829973101615906, 0.04078594967722893, 0.1291339248418808, -0.08218748867511749, -0.004508859943598509, -0.0162180308252573, -0.021929264068603516, 0.00031268474413082004, 0.04560203477740288, -0.038137562572956085, 0.11537297070026398, 0.0003460479201748967, 0.040071357041597366, -0.1963561326265335, -0.0669654831290245, -0.030218396335840225, 0.12512415647506714, 0.01280762255191803, 0.12980711460113525, 0.06155146658420563, -0.02653590776026249, -0.005620982032269239, 0.005061175674200058, 0.16329088807106018, -0.003611072665080428, -0.06227447837591171, -0.058005526661872864, 0.07050231099128723, -0.06391232460737228, 0.0014707182999700308, -0.05851858854293823, 0.018081603571772575, 0.05657599866390228, 0.11686942726373672, 0.006235404871404171, 0.05059210583567619, -0.03281655162572861, 0.05868515744805336, -0.07990337163209915, 0.033982351422309875, 0.11531098932027817, 0.013983803801238537, -0.05219278857111931, 0.21131712198257446, -0.1730288416147232, 0.24487535655498505, 0.2030440866947174, -0.3098523020744324, 0.020243411883711815, -0.028711896389722824, -0.0019101056968793273, 0.012591271661221981, 0.04111480712890625, 0.007718425709754229, 0.06537321954965591, 0.007046302314847708, 0.20473767817020416, -0.03254414349794388, -0.024662215262651443, -0.003334959503263235, -0.08041892945766449, -0.04062888026237488, 0.057202987372875214, 0.056970417499542236, -0.1706417202949524, 0.16712318360805511, 0.18781808018684387, 0.017499972134828568, 0.17266418039798737, 0.027212493121623993, -0.0024560363963246346, 0.07444459199905396, -0.03142827749252319, -0.020354298874735832, -0.09067501127719879, -0.17760434746742249, -0.04715265333652496, 0.07095266878604889, 0.025686541572213173, 0.09793822467327118, -0.11643775552511215, -0.03148027881979942, 0.015634452924132347, 0.023734090849757195, -0.023727159947156906, 0.08984461426734924, 0.06073128804564476, 0.10227663815021515, -0.01795670948922634, -0.009011562913656235, 0.0951899066567421, 0.00913733895868063, -0.09033115208148956, 0.16307540237903595, -0.1156284287571907, -0.3414801359176636, -0.1955106407403946, -0.18287046253681183, -0.017893711104989052, 0.0682854950428009, 0.1315252184867859, -0.08807973563671112, -0.028667084872722626, 0.031128734350204468, 0.04127572104334831, -0.05830530822277069, 0.008623732253909111, -0.04858684539794922, 0.07686641812324524, -0.06063120812177658, -0.07079384475946426, -0.05323566496372223, -0.014693448320031166, -0.0284489206969738, 0.1524364948272705, -0.13626033067703247, 0.09583679586648941, 0.1495550572872162, -0.0020007521379739046, 0.06398148089647293, -0.009028874337673187, 0.14812515676021576, -0.07848699390888214, -0.01206242199987173, 0.2486046850681305, -0.04657157137989998, 0.08149297535419464, 0.1367443948984146, 0.0025138952769339085, -0.059553518891334534, 0.019570626318454742, -0.0630117803812027, -0.09560505300760269, -0.24417749047279358, -0.13568075001239777, -0.11484216898679733, 0.0681128054857254, 0.047187793999910355, 0.03988029807806015, 0.13521023094654083, 0.09607231616973877, -0.0001227980392286554, -0.0033515607938170433, 0.01273164339363575, 0.08158101886510849, 0.2223200649023056, -0.01257301215082407, 0.15658165514469147, -0.07011901587247849, -0.12720638513565063, 0.10131079703569412, 0.035994891077280045, 0.10225390642881393, 0.07982201874256134, 0.0289271492511034, 0.01613372191786766, 0.06630086153745651, 0.14775989949703217, 0.1287880390882492, 0.06477569788694382, -0.013175779022276402, -0.0175136998295784, -0.013162681832909584, -0.06131197139620781, 0.03171708807349205, 0.03364803269505501, -0.1597762107849121, -0.09001649916172028, -0.07121691852807999, 0.06106407567858696, 0.08874298632144928, 0.057280994951725006, -0.2049395591020584, 0.011022829450666904, 0.0898711085319519, -0.0051645138300955296, -0.10405737906694412, 0.06230935826897621, -0.012797035276889801, -0.14642885327339172, 0.07699785381555557, -0.027821077033877373, 0.13798080384731293, -0.07486100494861603, 0.09081243723630905, -0.0625600665807724, -0.10658513754606247, 0.053014565259218216, 0.11629796773195267, -0.2935488522052765, 0.2306448072195053, 0.0015548415249213576, -0.05370503291487694, -0.09260941296815872, -0.013419636525213718, 0.008512570522725582, 0.15787667036056519, 0.0617530457675457, -0.006749313790351152, -0.11403001844882965, -0.12846586108207703, -0.014507225714623928, 0.014660573564469814, 0.13391952216625214, 0.009631086140871048, -0.0021186741068959236, -0.05211269110441208, -0.029446175321936607, -0.043693408370018005, 0.02216339111328125, -0.0074485247023403645, -0.18409088253974915, 0.07339759916067123, 0.04796046391129494, 0.06374679505825043, 0.010967900976538658, -0.037419240921735764, -0.05600299313664436, 0.23117002844810486, -0.00013388590014073998, -0.07219067215919495, -0.1117376983165741, -0.08211655914783478, 0.0395544059574604, -0.09906407445669174, 0.05440325662493706, -0.08005988597869873, 0.03445890173316002, -0.07213284820318222, -0.19736075401306152, 0.10885751247406006, -0.10853913426399231, -0.013232833705842495, -0.064916230738163, 0.15073467791080475, -0.07490371912717819, 0.002539788605645299, 0.03872012719511986, 0.01829460635781288, -0.11934516578912735, -0.05433674901723862, -0.019406097009778023, -0.006658364087343216, 0.05636902153491974, 0.003106872783973813, -0.08958917111158371, -0.04990943521261215, -0.03218717873096466, -0.04087665304541588, 0.3075355589389801, 0.13574372231960297, -0.0509394034743309, 0.14766451716423035, 0.15299543738365173, -0.08086417615413666, -0.34205305576324463, -0.10624293237924576, -0.09502538293600082, -0.015809468924999237, -0.028031986206769943, -0.15890590846538544, 0.06893202662467957, -0.0036390922032296658, -0.02516348659992218, 0.07824387401342392, -0.2260613590478897, -0.0932803824543953, 0.15164196491241455, 0.0031410434748977423, 0.4007178843021393, -0.1305827498435974, -0.10434527695178986, -0.08334421366453171, -0.17126847803592682, 0.10898662358522415, -0.03472001105546951, 0.08341675251722336, -0.010372959077358246, 0.11236749589443207, 0.050838321447372437, -0.046796172857284546, 0.07660232484340668, -0.032566867768764496, -0.01883353479206562, -0.13308294117450714, -0.04369310289621353, 0.04934908449649811, -0.019299130886793137, 0.007747740019112825, -0.02157778851687908, 0.01757979951798916, -0.12226363271474838, -0.037290897220373154, -0.09323853999376297, 0.044794321060180664, 0.03138329088687897, -0.02825717255473137, 0.037724025547504425, -0.07414238899946213, -0.00342162256129086, 0.012787532061338425, 0.20721963047981262, -0.0655430406332016, 0.15269140899181366, 0.12722060084342957, 0.1264062076807022, -0.1627533882856369, 0.08155987411737442, -0.07648200541734695, -0.07901176065206528, 0.04528261721134186, -0.06982895731925964, 0.06675053387880325, 0.10491432994604111, -0.060568585991859436, 0.031514640897512436, 0.091362863779068, 0.027571387588977814, -0.006481664255261421, 0.17226465046405792, -0.23351766169071198, 0.04647950083017349, -0.07963868230581284, 0.02197170816361904, 0.09241434931755066, 0.052847329527139664, 0.16631457209587097, 0.05967506021261215, -0.05149567872285843, -0.024492185562849045, -0.005394491832703352, -0.04156287759542465, 0.0750511884689331, 0.024763744324445724, 0.0158255435526371, -0.1270609200000763, 0.0523785762488842, 0.031796205788850784, -0.16357141733169556, -0.0011661364696919918, 0.18556055426597595, -0.12480738013982773, -0.13375388085842133, 0.015180382877588272, 0.10570671409368515, -0.16854673624038696, -0.04942295327782631, -0.08239348977804184, -0.10880345851182938, 0.057304609566926956, 0.17863355576992035, 0.08606170117855072, 0.0685911625623703, -0.03129398077726364, -0.043353281915187836, -0.02763701230287552, -0.018010815605521202, 0.0442383773624897, 0.03391417860984802, -0.09182736277580261, 0.0633029118180275, -0.03580569848418236, 0.14381025731563568, -0.08834642916917801, -0.05989225581288338, -0.13664287328720093, 0.03878789767622948, -0.12538208067417145, -0.06774391978979111, -0.08578793704509735, -0.06782272458076477, -0.016752982512116432, -0.04422794654965401, -0.048288654536008835, -0.04628721997141838, -0.10784115642309189, 0.025905270129442215, -0.06126409396529198, 0.011331952176988125, -0.06999265402555466, -0.020312244072556496, 0.09850413352251053, -0.02986273728311062, 0.07308445125818253, 0.12061475217342377, -0.09346423298120499, 0.08610998094081879, -0.1392049938440323, -0.11474160104990005, 0.10761674493551254, 0.03155124932527542, 0.0682273656129837, 0.07208913564682007, 0.027042746543884277, 0.0981433317065239, 0.04269345477223396, 0.042179495096206665, 0.06902097165584564, -0.10794679820537567, 0.043616700917482376, -0.024819204583764076, -0.19041629135608673, -0.04457239806652069, -0.033969517797231674, 0.08259707689285278, -0.0037075330037623644, 0.13251449167728424, -0.0540972538292408, 0.12107058614492416, -0.020021691918373108, 0.028577350080013275, 0.005630511790513992, -0.17849789559841156, -0.06580901890993118, -0.10294023901224136, 0.026797788217663765, 0.009268869645893574, 0.21024295687675476, 0.025697320699691772, 0.0597645528614521, 0.04227485880255699, 0.06787262856960297, 0.013013933785259724, 0.01267758198082447, 0.174071803689003, 0.09769612550735474, -0.04406432807445526, -0.0932300016283989, 0.10335561633110046, 0.014320858754217625, 0.02409134991466999, 0.14235436916351318, 0.04014018923044205, 0.0036647701635956764, 0.10213232785463333, -0.009030764922499657, 0.08382683247327805, -0.1266191601753235, -0.2274506539106369, -0.022525982931256294, 0.041287753731012344, -0.012803369201719761, 0.05264750123023987, 0.13920360803604126, -0.02137114480137825, 0.032893016934394836, -0.05882564187049866, -0.044891707599163055, -0.19973844289779663, -0.14420555531978607, -0.10311590135097504, -0.08990249037742615, -0.003088045632466674, -0.08031830936670303, 0.038761697709560394, 0.040031105279922485, 0.03910589963197708, -0.08056802302598953, 0.07794651389122009, 0.04336871951818466, -0.08620623499155045, 0.04332820698618889, -0.03473949432373047, 0.07457458972930908, 0.02453869953751564, -0.005967691075056791, -0.1418898105621338, 0.01601162925362587, -0.024762874469161034, 0.07055077701807022, -0.07933557033538818, 0.007714618928730488, -0.13823053240776062, -0.122284896671772, -0.052567221224308014, 0.055203650146722794, -0.008796542882919312, 0.13311398029327393, -0.0024743087124079466, -0.00567902997136116, 0.03733786940574646, 0.21181456744670868, -0.058807943016290665, -0.09642048925161362, -0.027134407311677933, 0.18608734011650085, 0.07207795977592468, 0.11108003556728363, -0.030897395685315132, 0.007248620502650738, -0.1000303253531456, 0.3825521171092987, 0.2976725399494171, -0.06469554454088211, 0.030960671603679657, 0.04575015604496002, 0.045002516359090805, 0.12673750519752502, 0.12283819913864136, 0.08872202038764954, 0.27414456009864807, -0.07373438775539398, -0.024872684851288795, -0.023745300248265266, -0.007948637939989567, -0.14204570651054382, 0.11966346204280853, 0.013534849509596825, -0.05650477483868599, -0.03049476258456707, 0.1064809188246727, -0.18916231393814087, 0.18861334025859833, -0.04982715845108032, -0.2128181904554367, -0.049833230674266815, -0.005969609599560499, 0.1756497472524643, 0.004541318863630295, 0.10552745312452316, -0.006347697228193283, -0.09114768356084824, 0.050759460777044296, 0.021664757281541824, -0.22677843272686005, -0.0009350212058052421, 0.04139188677072525, -0.12457043677568436, -0.009278549812734127, -0.019557451829314232, 0.027379240840673447, 0.07250100374221802, 0.05971713364124298, -0.035408277064561844, 0.04279978945851326, -0.00047318186261691153, -0.041961487382650375, 0.02999037317931652, 0.04254591837525368, -0.016281021758913994, -0.11165463924407959, 0.07316602021455765, -0.16087889671325684, 0.05424763262271881, -0.0382453128695488, -0.007213514763861895, 0.022402485832571983, 0.03653740510344505, -0.05188937485218048, 0.047886721789836884, 0.07912388443946838, 0.005198287777602673, -0.013419111259281635, -0.05353429540991783, -0.023539287969470024, 0.012619944289326668, -0.09138869494199753, -0.12206486612558365, -0.11797627806663513, -0.12547236680984497, 0.09077771753072739, 0.0268833227455616, -0.19153618812561035, 0.006989588495343924, -0.1110205128788948, 0.033293891698122025, -0.1836315542459488, 0.09644508361816406, 0.07820475846529007, -0.005009776912629604, 0.0044454168528318405, -0.03407707437872887, 0.060695067048072815, 0.08839738368988037, -0.12326908111572266, -0.10574152320623398 ]
null
null
transformers
# Harry Potter DialoGPT Model
{"tags": ["conversational"]}
text-generation
MayankGupta/DialoGPT-small-harrypotter
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# Harry Potter DialoGPT Model
[ "# Harry Potter DialoGPT Model" ]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# Harry Potter DialoGPT Model" ]
[ 51, 8 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# Harry Potter DialoGPT Model" ]
[ -0.0009023238671943545, 0.07815738022327423, -0.006546166725456715, 0.07792752981185913, 0.10655936598777771, 0.048972971737384796, 0.17639793455600739, 0.12185695022344589, 0.016568755730986595, -0.04774167761206627, 0.11647630482912064, 0.2130284160375595, -0.002118367003276944, 0.024608047679066658, -0.05022026598453522, -0.3065771162509918, 0.0474756620824337, 0.014356585219502449, -0.07174845039844513, 0.11724270135164261, 0.09064973145723343, -0.046179238706827164, 0.08330509811639786, -0.009135239757597446, -0.13198648393154144, -0.039482954889535904, 0.019292812794446945, -0.11745545268058777, 0.1662212759256363, 0.05298272892832756, 0.02469746209681034, -0.008447164669632912, -0.06598151475191116, -0.15036040544509888, 0.037190426141023636, -0.027472136542201042, -0.01080626156181097, 0.05462246760725975, 0.023526115342974663, -0.07521048933267593, 0.170567125082016, 0.17678891122341156, 0.0833497866988182, 0.0349111407995224, -0.14917024970054626, -0.045548245310783386, 0.008950977586209774, 0.05421316996216774, -0.017893504351377487, 0.09349167346954346, -0.019903047010302544, 0.11801653355360031, -0.04491448402404785, 0.09210366010665894, 0.15255063772201538, -0.4016275703907013, -0.027563704177737236, 0.08920855820178986, 0.05989706888794899, 0.12076901644468307, -0.10560955852270126, 0.03972794860601425, -0.0039703017100691795, 0.01236654631793499, -0.014540530741214752, -0.08304883539676666, -0.07308239489793777, 0.032504837960004807, -0.1272556483745575, 0.008525865152478218, 0.23756256699562073, -0.10643257945775986, 0.037069112062454224, -0.09791990369558334, -0.07414398342370987, 0.048336777836084366, -0.053761593997478485, -0.081727035343647, -0.054839808493852615, 0.06347949057817459, 0.004366500303149223, -0.06301609426736832, -0.08326146006584167, -0.0006536149303428829, -0.12781435251235962, 0.17595994472503662, 0.061243366450071335, 0.041611745953559875, -0.21322020888328552, 0.08940251916646957, 0.04477722570300102, -0.04711297154426575, 0.007116159424185753, -0.11796226352453232, 0.04023287072777748, 0.005483259446918964, -0.03256071358919144, -0.021854614838957787, 0.0393419973552227, 0.13909944891929626, -0.01777748204767704, 0.03252175822854042, 0.006831915583461523, 0.05811219662427902, 0.08162496984004974, 0.02222144603729248, 0.019291909411549568, -0.0818009302020073, 0.019385190680623055, -0.08128736168146133, -0.0030400939285755157, -0.048940129578113556, -0.17071883380413055, -0.07477642595767975, 0.052610911428928375, 0.020047198981046677, 0.03746970370411873, 0.08054786175489426, -0.0017944995779544115, -0.05560554191470146, 0.03284840285778046, 0.01671096310019493, -0.020622212439775467, -0.010361049324274063, -0.02412462793290615, 0.19123271107673645, 0.019619356840848923, 0.014111656695604324, -0.12379156798124313, 0.10023640841245651, -0.08179095387458801, 0.0037731381598860025, 0.02743307314813137, -0.04204464703798294, -0.004716555587947369, 0.02917117439210415, 0.023101668804883957, -0.1252521574497223, -0.1099385917186737, -0.0030569476075470448, -0.012054097838699818, -0.036421261727809906, -0.10490952432155609, -0.08483029156923294, -0.012153145857155323, 0.0449371263384819, -0.013397793285548687, 0.007936403155326843, -0.05143149942159653, 0.0985720232129097, -0.0514979362487793, 0.09873400628566742, -0.08342572301626205, 0.06359215080738068, -0.09124887734651566, -0.061886150389909744, -0.11452563107013702, 0.05216052383184433, 0.012905281968414783, 0.066250741481781, 0.016998225823044777, -0.044836658984422684, -0.014836243353784084, 0.05253177136182785, -0.07656687498092651, 0.1940697431564331, -0.041674621403217316, -0.12459053844213486, 0.24146439135074615, -0.09138800948858261, -0.1802034229040146, 0.12973085045814514, -0.022254703566432, 0.08523941785097122, 0.12802475690841675, 0.20380465686321259, -0.00019822151807602495, -0.01302915159612894, 0.07281201332807541, 0.07031642645597458, -0.09803894907236099, 0.06239739805459976, 0.029653839766979218, -0.008071083575487137, -0.08906278014183044, 0.05762826278805733, 0.046033453196287155, -0.010650773532688618, -0.035073768347501755, -0.001896020956337452, -0.012895751744508743, -0.022185025736689568, 0.14126582443714142, -0.02006692811846733, 0.1300428807735443, -0.06926563382148743, -0.03515486419200897, -0.009500149637460709, 0.03533667325973511, -0.04091939330101013, 0.08151165395975113, -0.0436173714697361, 0.10586477071046829, 0.09034156054258347, 0.053724925965070724, -0.13120363652706146, 0.00466286763548851, -0.015246815048158169, 0.17014820873737335, 0.08964069187641144, 0.05222717300057411, 0.06265474855899811, -0.0020888058934360743, -0.06708643585443497, 0.045407816767692566, 0.13778303563594818, -0.037020038813352585, -0.12218865007162094, -0.1755627691745758, 0.051157694309949875, -0.045444171875715256, 0.10855234414339066, -0.10010123997926712, 0.022670533508062363, -0.055906031280756, 0.07772238552570343, -0.024998966604471207, 0.020512236282229424, -0.0013405600329861045, -0.021700702607631683, -0.08356887847185135, -0.002377772703766823, 0.08597290515899658, -0.02048647589981556, -0.06707409024238586, 0.16556480526924133, -0.16400809586048126, 0.1631954461336136, 0.2116095870733261, -0.28542569279670715, -0.005696662236005068, -0.15163889527320862, -0.0208092350512743, 0.019645055755972862, 0.07834604382514954, 0.026225795969367027, 0.2044338881969452, -0.012928472831845284, 0.16565458476543427, -0.05699567869305611, -0.07730039209127426, -0.06881127506494522, -0.048101142048835754, 0.013522743247449398, 0.09095205366611481, 0.04542696103453636, -0.11962861567735672, 0.13119758665561676, 0.1054433062672615, 0.06484298408031464, 0.12711186707019806, 0.1030748188495636, -0.008113685995340347, 0.07252490520477295, -0.03624548763036728, -0.03462279960513115, -0.09254947304725647, -0.30446043610572815, -0.04840317741036415, 0.0939924493432045, 0.007963384501636028, 0.09285714477300644, -0.0919896736741066, -0.03311870992183685, 0.006042704917490482, 0.009473444893956184, 0.028337622061371803, 0.09653715789318085, 0.013490920886397362, 0.15320514142513275, -0.008011690340936184, -0.03430786728858948, 0.05891305208206177, 0.017982570454478264, -0.09147711098194122, 0.17280617356300354, -0.17050009965896606, -0.27190929651260376, -0.06990014761686325, -0.21745692193508148, -0.013139115646481514, 0.05258983001112938, 0.0786920040845871, -0.11818131804466248, -0.018352627754211426, -0.006239492911845446, 0.05685517191886902, -0.2425733357667923, 0.0004911290016025305, -0.1354890614748001, 0.0501418262720108, -0.1974833607673645, -0.09718500077724457, -0.02271542325615883, -0.013450481928884983, -0.0464281290769577, 0.13365240395069122, -0.1448695808649063, -0.011572926305234432, 0.2329535037279129, 0.032479673624038696, 0.027794739231467247, -0.05020907148718834, 0.19788463413715363, -0.0958966314792633, -0.023973820731043816, 0.11024576425552368, -0.05038975924253464, 0.04834126681089401, 0.06649978458881378, -0.012981836684048176, -0.08557141572237015, 0.023789849132299423, -0.068336620926857, -0.03150583803653717, -0.27926525473594666, -0.0930178239941597, -0.09319330751895905, 0.11305391043424606, 0.04079577326774597, 0.06421639025211334, 0.16545771062374115, 0.05191578343510628, -0.024325082078576088, -0.03006586618721485, 0.11609793454408646, 0.12905290722846985, 0.2277202159166336, -0.06067761778831482, 0.10221996158361435, 0.009445492178201675, -0.08203992247581482, 0.06062209978699684, 0.056782789528369904, 0.06324724853038788, 0.02584579586982727, 0.03694582358002663, -0.030939655378460884, 0.1121687963604927, 0.12571842968463898, 0.05258069559931755, 0.0481170229613781, 0.0002127334737451747, -0.0561506561934948, -0.008168719708919525, -0.05726633965969086, 0.06774696707725525, 0.061340972781181335, -0.12918008863925934, -0.08061543852090836, 0.0011613310780376196, 0.06660808622837067, -0.016230419278144836, 0.06823775917291641, -0.13560809195041656, -0.03582429885864258, 0.0790911465883255, -0.07693151384592056, -0.14156894385814667, 0.11972879618406296, -0.026570770889520645, -0.19904157519340515, 0.05265914276242256, 0.007704653777182102, 0.0908159390091896, -0.06360849738121033, 0.05343840271234512, -0.13023801147937775, -0.12935101985931396, -0.018437571823596954, 0.07945099472999573, -0.3450873792171478, 0.13536721467971802, -0.013286802917718887, -0.02876877970993519, -0.06474969536066055, -0.02640824392437935, 0.013905409723520279, 0.12719078361988068, 0.08667250722646713, 0.0008821099763736129, 0.0991629809141159, 0.03823768347501755, 0.04188435152173042, -0.002011700300499797, 0.10950417071580887, 0.0050011589191854, 0.004797275178134441, -0.04982118681073189, 0.007274609990417957, -0.05164213851094246, -0.07472953200340271, 0.08393982797861099, -0.20678792893886566, 0.09087453782558441, -0.03378438204526901, 0.08427679538726807, 0.04304937273263931, -0.018965769559144974, -0.1001204177737236, 0.19745583832263947, -0.012206900864839554, -0.11405988782644272, -0.07517550885677338, -0.02810264565050602, 0.09103139489889145, -0.013817726634442806, 0.012886416167020798, -0.045470476150512695, 0.032183047384023666, -0.1263762265443802, -0.1597503274679184, 0.08734500408172607, -0.04441224783658981, -0.10894393920898438, -0.025462759658694267, 0.20382575690746307, -0.007266622502356768, 0.08242089301347733, 0.01605331338942051, 0.010653935372829437, -0.18066231906414032, -0.04018142446875572, 0.02645772136747837, -0.0016437612939625978, 0.005979063920676708, 0.047698814421892166, 0.019091911613941193, 0.06207629665732384, -0.1069745197892189, -0.013920160941779613, 0.3158324360847473, 0.15978319942951202, -0.00912671908736229, 0.14943915605545044, 0.1093616932630539, -0.08669080585241318, -0.17238758504390717, -0.1171615794301033, -0.1210922971367836, -0.08425768464803696, -0.10681738704442978, -0.1525043100118637, 0.09535340964794159, -0.03392014652490616, 0.03498011827468872, 0.14615866541862488, -0.280263751745224, -0.10949636250734329, 0.13820378482341766, 0.010744688101112843, 0.3510635495185852, -0.12303631007671356, -0.044944874942302704, -0.06214528530836105, -0.16933435201644897, 0.08021392673254013, -0.031203703954815865, 0.11581093072891235, -0.0744495838880539, 0.19395925104618073, 0.01719796098768711, 0.014287159778177738, 0.0916559100151062, 0.05038322135806084, -0.05808406323194504, -0.07368700206279755, -0.10248131304979324, 0.010812131687998772, 0.03546109423041344, 0.010252019390463829, -0.008802837692201138, 0.0211968794465065, -0.11341743916273117, -0.050869911909103394, -0.06302189081907272, 0.0072614275850355625, -0.01001308299601078, -0.042155615985393524, -0.05533592775464058, -0.022557416930794716, -0.020093943923711777, 0.02266426384449005, 0.14185629785060883, -0.07527699321508408, 0.18586260080337524, 0.02357078716158867, 0.1586609035730362, -0.11956068128347397, -0.06724818795919418, -0.029193658381700516, -0.05280323326587677, 0.06468886137008667, -0.08884575963020325, -0.027708567678928375, 0.1332162618637085, -0.01903904788196087, 0.04655366763472557, 0.12936700880527496, 0.02046884410083294, 0.015383756719529629, 0.034968774765729904, -0.2578005790710449, -0.07463036477565765, -0.03505445644259453, -0.012416874058544636, 0.05272092670202255, 0.05525677278637886, 0.19735674560070038, -0.03551921248435974, -0.08521962910890579, 0.020131373777985573, 0.02735883742570877, -0.02776256389915943, 0.10749414563179016, 0.019579345360398293, -0.004837906453758478, -0.16151933372020721, 0.08257976174354553, -0.005964108742773533, -0.08297000825405121, 0.028665626421570778, 0.2024049311876297, -0.12141239643096924, -0.10309756547212601, -0.06804922968149185, 0.07315051555633545, -0.09220825880765915, 0.016043387353420258, -0.005091092549264431, -0.1521538347005844, 0.06916408240795135, 0.07598215341567993, 0.04075418785214424, 0.06513199955224991, -0.11743064224720001, -0.015730571001768112, -0.04170290008187294, -0.002195435343310237, 0.03521120920777321, 0.01863143965601921, -0.057492829859256744, 0.15846455097198486, -0.0676199421286583, 0.08538917452096939, -0.0744810476899147, -0.1058846190571785, -0.1395980566740036, 0.04660497233271599, -0.08038312196731567, -0.07247276604175568, -0.12832807004451752, -0.052204377949237823, -0.0067099276930093765, -0.03388519585132599, 0.006552806124091148, -0.06627799570560455, -0.10922821611166, 0.01822470687329769, -0.00743203004822135, -0.009385870769619942, -0.06096754968166351, 0.026706209406256676, 0.06246216222643852, -0.039788868278265, 0.15730851888656616, 0.22509248554706573, -0.13591648638248444, 0.11564400047063828, -0.09797432273626328, -0.105463907122612, 0.046008042991161346, 0.009427277371287346, 0.03594303876161575, 0.0503489226102829, -0.03594081476330757, 0.0044484552927315235, 0.03905477747321129, 0.08074651658535004, 0.08456914126873016, -0.06776505708694458, 0.020801106467843056, -0.05122765153646469, -0.14904099702835083, -0.016655439510941505, -0.0464773029088974, 0.06876829266548157, -0.006725262850522995, 0.11020535975694656, -0.0515950471162796, 0.07739507406949997, -0.07558431476354599, 0.050614211708307266, 0.021146971732378006, -0.14688286185264587, -0.006612539757043123, -0.07093682140111923, 0.042144812643527985, -0.008834975771605968, 0.20241086184978485, -0.03228091076016426, 0.010342049412429333, 0.033811055123806, 0.06203942745923996, -0.01957780309021473, 0.009357001632452011, 0.2014283686876297, 0.12640917301177979, -0.08496357500553131, -0.02679651789367199, 0.06793134659528732, 0.07248228788375854, 0.07093550264835358, 0.10807815194129944, -0.015352966263890266, 0.028434239327907562, 0.07829629629850388, -0.060215238481760025, 0.07576877623796463, -0.08603982627391815, -0.11668483167886734, 0.05793621391057968, 0.012955795042216778, -0.055695828050374985, 0.20305177569389343, 0.19142870604991913, -0.026278704404830933, 0.018410727381706238, -0.0029499190859496593, -0.10117456316947937, -0.15619947016239166, -0.05423750728368759, -0.07170962542295456, -0.1319410353899002, -0.004549739416688681, -0.16646917164325714, 0.022016216069459915, -0.01132756657898426, 0.09506805986166, -0.06855440139770508, -0.01345991250127554, 0.1364889293909073, -0.1055467277765274, 0.0847758799791336, -0.024517204612493515, 0.07877567410469055, -0.03746940940618515, -0.018209461122751236, -0.10342709720134735, 0.007514837197959423, 0.01131442841142416, 0.06840907037258148, -0.10897937417030334, 0.02432350255548954, -0.12208317965269089, -0.08617185056209564, -0.026142612099647522, 0.09279687702655792, -0.0403008833527565, 0.15116846561431885, 0.02645145356655121, -0.06710928678512573, -0.004313822835683823, 0.2646709978580475, -0.08046227693557739, -0.08319197595119476, -0.030799202620983124, 0.2152107208967209, 0.04053696244955063, 0.06396269053220749, 0.019140036776661873, 0.038027774542570114, -0.07184682041406631, 0.2957373559474945, 0.34401440620422363, -0.1318037211894989, -0.007773484103381634, 0.04225075617432594, 0.04406323283910751, 0.14687567949295044, 0.07998795062303543, 0.11360671371221542, 0.2849363386631012, -0.09197647124528885, 0.016657205298542976, -0.04230864346027374, -0.01424806285649538, -0.06908884644508362, 0.045314885675907135, 0.08216670155525208, -0.09241747111082077, -0.022950593382120132, 0.08125471323728561, -0.29741767048835754, 0.10791494697332382, -0.15600289404392242, -0.14948409795761108, -0.05027429759502411, -0.008771711029112339, 0.014683255925774574, 0.019041186198592186, 0.09663030505180359, 0.025651484727859497, -0.07275258749723434, 0.07816889137029648, 0.024486342445015907, -0.23020237684249878, -0.01345184724777937, 0.1456068754196167, -0.06789913028478622, -0.025938833132386208, -0.021313713863492012, 0.051610056310892105, 0.05763651058077812, 0.09027529507875443, -0.03809558227658272, -0.0746568813920021, -0.007141788024455309, -0.022818787023425102, 0.01914946548640728, 0.0597183033823967, 0.06841408461332321, -0.0920223817229271, 0.1167774423956871, -0.07350476831197739, 0.0650370642542839, 0.037623800337314606, -0.022277191281318665, 0.0018526542698964477, 0.013183658011257648, -0.06512464582920074, 0.05533479526638985, 0.1295643299818039, -0.025459708645939827, -0.002524374984204769, -0.028180841356515884, -0.0767761766910553, -0.024015206843614578, -0.04643676429986954, -0.09101243317127228, -0.18130090832710266, -0.12738600373268127, 0.041754670441150665, -0.03240608796477318, -0.2046082615852356, 0.0060346988029778, -0.1128578633069992, 0.03700976446270943, -0.14154092967510223, 0.10004086047410965, 0.07216610759496689, 0.004716616589576006, 0.006774604320526123, 0.0675399899482727, 0.045677728950977325, 0.14796748757362366, -0.16543124616146088, -0.04919974133372307 ]
null
null
transformers
# wav2vec2-large-xlsr-53-Czech Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) in Czech using the [Common Voice](https://huggingface.co/datasets/common_voice) When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "cs", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("MehdiHosseiniMoghadam/wav2vec2-large-xlsr-53-Czech") model = Wav2Vec2ForCTC.from_pretrained("MehdiHosseiniMoghadam/wav2vec2-large-xlsr-53-Czech") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Czech test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "cs", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("MehdiHosseiniMoghadam/wav2vec2-large-xlsr-53-Czech") model = Wav2Vec2ForCTC.from_pretrained("MehdiHosseiniMoghadam/wav2vec2-large-xlsr-53-Czech") model.to("cuda") chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\%\‘\”\�]' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 27.047806 % ## Training The Common Voice `train`, `validation` datasets were used for training.
{"language": "cs", "license": "apache-2.0", "tags": ["audio", "automatic-speech-recognition", "speech", "xlsr-fine-tuning-week"], "datasets": ["common_voice"], "model-index": [{"name": "wav2vec2-large-xlsr-53-Czech by Mehdi Hosseini Moghadam", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice cs", "type": "common_voice", "args": "cs"}, "metrics": [{"type": "wer", "value": 27.047806, "name": "Test WER"}]}]}]}
automatic-speech-recognition
MehdiHosseiniMoghadam/wav2vec2-large-xlsr-53-Czech
[ "transformers", "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "audio", "speech", "xlsr-fine-tuning-week", "cs", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:04+00:00
[]
[ "cs" ]
TAGS #transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #cs #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us
# wav2vec2-large-xlsr-53-Czech Fine-tuned facebook/wav2vec2-large-xlsr-53 in Czech using the Common Voice When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ## Evaluation The model can be evaluated as follows on the Czech test data of Common Voice. Test Result: 27.047806 % ## Training The Common Voice 'train', 'validation' datasets were used for training.
[ "# wav2vec2-large-xlsr-53-Czech\n\nFine-tuned facebook/wav2vec2-large-xlsr-53 in Czech using the Common Voice\n\nWhen using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\n\nThe model can be used directly (without a language model) as follows:", "## Evaluation\n\nThe model can be evaluated as follows on the Czech test data of Common Voice.\n\n\n\nTest Result: 27.047806 %", "## Training\n\nThe Common Voice 'train', 'validation' datasets were used for training." ]
[ "TAGS\n#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #cs #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us \n", "# wav2vec2-large-xlsr-53-Czech\n\nFine-tuned facebook/wav2vec2-large-xlsr-53 in Czech using the Common Voice\n\nWhen using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\n\nThe model can be used directly (without a language model) as follows:", "## Evaluation\n\nThe model can be evaluated as follows on the Czech test data of Common Voice.\n\n\n\nTest Result: 27.047806 %", "## Training\n\nThe Common Voice 'train', 'validation' datasets were used for training." ]
[ 80, 62, 20, 29, 23 ]
[ "passage: TAGS\n#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #cs #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us \n# wav2vec2-large-xlsr-53-Czech\n\nFine-tuned facebook/wav2vec2-large-xlsr-53 in Czech using the Common Voice\n\nWhen using this model, make sure that your speech input is sampled at 16kHz.## Usage\n\nThe model can be used directly (without a language model) as follows:## Evaluation\n\nThe model can be evaluated as follows on the Czech test data of Common Voice.\n\n\n\nTest Result: 27.047806 %## Training\n\nThe Common Voice 'train', 'validation' datasets were used for training." ]
[ -0.16852886974811554, 0.015503785572946072, -0.002406261395663023, -0.005567652639001608, 0.09871050715446472, -0.03764338418841362, 0.16003742814064026, 0.0876755341887474, 0.031217176467180252, 0.005021300166845322, 0.04356770217418671, 0.04409610852599144, 0.02193625643849373, 0.08105894178152084, 0.027791328728199005, -0.2131883203983307, 0.05883003771305084, 0.011795686557888985, 0.061937279999256134, 0.1102779284119606, 0.10448101907968521, -0.07586314529180527, -0.049388255923986435, 0.11179859191179276, -0.1431998759508133, 0.016914786770939827, 0.04391184449195862, -0.10626204311847687, 0.15942412614822388, 0.051886118948459625, 0.050174832344055176, 0.0436578243970871, 0.08484763652086258, -0.1652155965566635, 0.009824521839618683, 0.0010799558367580175, -0.0024765522684901953, 0.01777123473584652, 0.05775459483265877, -0.020726097747683525, 0.16640615463256836, 0.014304549433290958, -0.024370737373828888, 0.04878045991063118, -0.03770358860492706, -0.25197339057922363, -0.0014571762876585126, 0.0006471591768786311, 0.10568566620349884, 0.14946779608726501, -0.06803299486637115, 0.13985177874565125, -0.1544109731912613, 0.1084815040230751, 0.049318429082632065, -0.22906829416751862, 0.0003483002947177738, 0.08676876127719879, 0.03620127588510513, 0.09921221435070038, -0.060856521129608154, 0.045934125781059265, 0.022258155047893524, 0.02221156656742096, 0.03886399045586586, -0.02721392922103405, -0.14919660985469818, -0.01523699052631855, -0.16967196762561798, -0.0488874651491642, 0.1725025475025177, -0.02185382880270481, -0.046126894652843475, -0.14491814374923706, 0.0004261158173903823, -0.010802950710058212, -0.006693921983242035, -0.042748697102069855, -0.012470751069486141, 0.0012450406793504953, 0.0073603736236691475, -0.032852187752723694, -0.10471265763044357, -0.14035473763942719, 0.02870921790599823, 0.11755979806184769, 0.015571696683764458, 0.012003406882286072, -0.05527573451399803, 0.0688696950674057, -0.03708868846297264, -0.053541164845228195, -0.008081511594355106, 0.04531552270054817, -0.10708856582641602, 0.017992133274674416, -0.11404255032539368, -0.11258966475725174, 0.03460792079567909, -0.04628860577940941, 0.05482220649719238, 0.01913658156991005, 0.021861618384718895, 0.05698542296886444, 0.020061563700437546, 0.14455777406692505, -0.08691715449094772, 0.017462197691202164, -0.016630059108138084, -0.029545770958065987, -0.03872650861740112, -0.026381224393844604, -0.12795935571193695, -0.11358200758695602, 0.05980243533849716, 0.07249566167593002, -0.06940784305334091, 0.030646642670035362, -0.0021228736732155085, -0.03231397643685341, -0.00408810144290328, -0.0798376277089119, -0.031618405133485794, 0.0745464414358139, -0.0031611670274287462, 0.13650140166282654, -0.0024392269551753998, 0.030944399535655975, -0.10562484711408615, 0.007589315064251423, 0.017647620290517807, 0.05899070203304291, -0.04633935168385506, -0.13192230463027954, 0.021481448784470558, -0.045768748968839645, -0.001901464187540114, -0.08276144415140152, -0.024572743102908134, -0.06859873980283737, -0.009360343217849731, 0.04077877104282379, -0.01878390647470951, -0.13331781327724457, -0.03865915536880493, -0.007910015992820263, -0.05726053938269615, 0.03447367250919342, -0.045600857585668564, 0.061028894037008286, -0.030293043702840805, 0.0439387708902359, -0.0020861546508967876, 0.053773269057273865, -0.09214114397764206, -0.06947482377290726, 0.0000833189333206974, 0.10867668688297272, -0.08243990689516068, -0.08079013228416443, -0.05615086108446121, -0.08102159947156906, 0.026840541511774063, 0.07443252205848694, 0.05116891488432884, 0.08134198933839798, -0.22968065738677979, -0.09625136852264404, 0.20419606566429138, -0.12015028297901154, -0.008766292594373226, 0.20842109620571136, 0.0018983607878908515, 0.06407299637794495, 0.14084970951080322, 0.2333490252494812, 0.1674194633960724, -0.19722361862659454, 0.02398061566054821, 0.018190570175647736, -0.011337204836308956, -0.07523475587368011, 0.06853563338518143, -0.04039949178695679, 0.0005215403507463634, 0.04634527489542961, -0.12837842106819153, 0.07966859638690948, -0.03073829971253872, -0.05822385847568512, -0.009432890452444553, -0.08586785942316055, 0.08848382532596588, 0.03159083425998688, 0.02377711981534958, -0.04434552416205406, -0.07294298708438873, 0.074898861348629, 0.12802082300186157, -0.13578781485557556, 0.05287519097328186, -0.10957887023687363, 0.06977406144142151, -0.1064525619149208, -0.017460118979215622, -0.143218532204628, 0.15482273697853088, -0.004778621252626181, 0.007752591278403997, 0.048002373427152634, 0.20172013342380524, 0.0169709250330925, 0.006801800336688757, -0.045953936874866486, -0.016361303627490997, -0.01979070156812668, -0.0024971235543489456, -0.027540575712919235, -0.10943702608346939, -0.03312937542796135, -0.05831001326441765, 0.12045034021139145, -0.07968977838754654, -0.01753825508058071, 0.05019402131438255, 0.003274640068411827, -0.037496376782655716, 0.00009871257498161867, 0.025518856942653656, 0.11657509207725525, 0.0368829071521759, 0.02764376811683178, 0.06558693945407867, 0.020076042041182518, -0.06235934793949127, 0.12509284913539886, -0.14869703352451324, -0.0293106772005558, 0.11494428664445877, -0.044572822749614716, -0.0014174004318192601, 0.02739531546831131, -0.016107724979519844, 0.0047306097112596035, -0.038944002240896225, -0.03357632830739021, 0.2917839586734772, -0.013470618054270744, 0.07329677045345306, -0.07770074158906937, 0.0028586136177182198, 0.046564627438783646, -0.07449672371149063, 0.033763863146305084, 0.07564768940210342, 0.0442376434803009, 0.018321359530091286, 0.04083351790904999, -0.0635877251625061, -0.124315045773983, 0.2450629025697708, -0.024635320529341698, -0.11166824400424957, 0.01835850439965725, -0.035015497356653214, -0.015732860192656517, 0.13617190718650818, -0.19777128100395203, -0.05251312255859375, 0.03693842887878418, 0.05533847585320473, 0.0844581201672554, -0.12486124038696289, 0.029510771855711937, -0.0022310279309749603, -0.1442001760005951, -0.1565394401550293, 0.06832290440797806, -0.05799229070544243, 0.046922821551561356, -0.09157512336969376, -0.05896643549203873, 0.011750138364732265, -0.04065346717834473, -0.1685606688261032, 0.1111462414264679, -0.10427643358707428, -0.24174152314662933, -0.1592089682817459, 0.05006520450115204, 0.00005617764691123739, 0.021684378385543823, 0.08912409842014313, -0.1183241754770279, -0.01966855116188526, 0.01223418302834034, 0.11393830925226212, -0.005356358364224434, -0.04199106618762016, -0.0896567553281784, 0.01615975610911846, 0.05107230320572853, -0.13839539885520935, 0.0070707364939153194, -0.04603953659534454, -0.0498693473637104, 0.004725855775177479, -0.01810034178197384, 0.037697188556194305, 0.1649637520313263, 0.024610500782728195, 0.02277296967804432, -0.029207607731223106, 0.15471428632736206, -0.11114946752786636, -0.041627220809459686, 0.1482764482498169, -0.015449460595846176, -0.04692421481013298, 0.06317322701215744, 0.019443415105342865, -0.04279796779155731, -0.02004398964345455, -0.029169823974370956, -0.08026999980211258, -0.1938772052526474, -0.18468478322029114, -0.08033276349306107, -0.05294972285628319, -0.031015576794743538, -0.01847907155752182, 0.06018237769603729, 0.006437686271965504, -0.03588533028960228, -0.14450162649154663, 0.021214401349425316, -0.00593179976567626, 0.163561150431633, -0.0034211359452456236, 0.09103105217218399, -0.0450986884534359, -0.029600465670228004, -0.0058066220954060555, 0.00512358546257019, 0.13747473061084747, 0.04123085364699364, 0.11889517307281494, 0.06321791559457779, 0.1522524505853653, 0.09669868648052216, 0.11358337104320526, -0.03031606785953045, 0.011329032480716705, 0.030773520469665527, -0.05696086212992668, -0.05602370947599411, 0.009060020558536053, 0.14937809109687805, -0.06096632406115532, -0.08751361817121506, -0.05153573676943779, 0.03815019503235817, 0.1897660195827484, 0.06435859203338623, -0.16591469943523407, -0.1057918518781662, -0.06526156514883041, -0.04601883515715599, -0.00747195677831769, 0.03157806023955345, 0.1482444852590561, -0.14122389256954193, -0.0038509743753820658, -0.0008317948086187243, 0.07217741012573242, 0.006662553641945124, 0.04295416921377182, -0.08364998549222946, 0.03431841731071472, 0.013540184125304222, 0.12349877506494522, -0.29272595047950745, 0.22780798375606537, 0.0051685115322470665, 0.13199064135551453, -0.08548911660909653, -0.016283070668578148, 0.0006346391164697707, 0.06588827818632126, 0.10310675948858261, 0.028221262618899345, 0.030466509982943535, -0.06428415328264236, -0.08439735323190689, 0.06459279358386993, -0.00986872985959053, 0.020761221647262573, 0.04684370383620262, 0.008495173417031765, -0.0031761613208800554, 0.011385715566575527, -0.053066082298755646, -0.06856396794319153, -0.07982876151800156, 0.015146949328482151, 0.146884024143219, 0.06316321343183517, -0.002042570849880576, -0.11278444528579712, -0.1334153711795807, 0.044255275279283524, -0.0707177221775055, -0.05301640182733536, -0.07220698148012161, -0.0505254752933979, 0.12492935359477997, -0.0700763389468193, 0.021015478298068047, 0.09622172266244888, 0.13208214938640594, -0.04441770166158676, -0.019987039268016815, 0.04946127161383629, -0.10337052494287491, -0.09428047388792038, 0.030482010915875435, 0.17767228186130524, 0.11590547114610672, 0.08925939351320267, 0.058610349893569946, 0.03196960687637329, 0.002375711454078555, -0.04610946401953697, -0.012435365468263626, 0.0981578677892685, -0.13304124772548676, -0.0036157493013888597, 0.008696820586919785, -0.14667542278766632, -0.11829136312007904, -0.03561495617032051, 0.16993139684200287, 0.08000949770212173, -0.088688425719738, 0.19750124216079712, 0.19229145348072052, -0.07260533422231674, -0.21520723402500153, -0.0025722295977175236, 0.10513000190258026, 0.143657848238945, -0.03735905513167381, -0.1735527068376541, 0.05487356707453728, -0.011632760986685753, -0.03810901194810867, -0.07634125649929047, -0.22974146902561188, -0.12834769487380981, 0.1570175141096115, -0.017973484471440315, 0.1203688308596611, 0.05045853555202484, -0.0005692595732398331, -0.008300838060677052, -0.006604557856917381, 0.021107958629727364, -0.08748571574687958, 0.10189615935087204, 0.04826594144105911, 0.0840802863240242, 0.07288134843111038, -0.03082670085132122, 0.11175696551799774, 0.09229764342308044, -0.04120159521698952, -0.0017760962946340442, 0.07951752096414566, 0.036028552800416946, 0.026237543672323227, 0.13578951358795166, -0.12144774198532104, 0.042593926191329956, -0.08124017715454102, -0.10337597131729126, -0.09502848982810974, 0.08835548162460327, 0.0005807169945910573, -0.051684267818927765, 0.024198459461331367, -0.022858301177620888, 0.02143814042210579, -0.00695212185382843, -0.0701942890882492, -0.1419236958026886, 0.011112678796052933, 0.11112052947282791, 0.19990061223506927, -0.05998971685767174, -0.060027267783880234, 0.0003389650082681328, -0.031825046986341476, 0.13546836376190186, -0.003955402877181768, 0.040323540568351746, 0.08721444010734558, 0.03921780362725258, 0.08627574890851974, 0.013346401043236256, -0.10113321989774704, 0.05036619305610657, 0.012976867146790028, -0.08641356229782104, -0.09434939175844193, -0.006579906214028597, -0.03300126641988754, 0.008173095993697643, 0.04588022828102112, 0.11984817683696747, -0.09506893903017044, -0.01447352860122919, -0.034397125244140625, -0.014111105352640152, -0.12128201127052307, 0.2097637951374054, 0.009321792982518673, 0.07571291923522949, -0.11318673938512802, -0.00953320600092411, -0.03628992289304733, -0.10218604654073715, 0.04131672531366348, -0.06041302904486656, -0.10550611466169357, -0.06996903568506241, 0.030394304543733597, 0.08473717421293259, -0.0121512021869421, -0.13997240364551544, -0.0738108828663826, -0.11668172478675842, -0.0024809299502521753, 0.10933113843202591, 0.0949067622423172, 0.014896394684910774, -0.12825234234333038, -0.041512664407491684, -0.13452202081680298, 0.05777958407998085, 0.04971318319439888, -0.03835101053118706, -0.09139629453420639, 0.23316824436187744, 0.04820925369858742, 0.014161837287247181, -0.05162937194108963, -0.050824135541915894, -0.011514955200254917, 0.08158090710639954, -0.10535477846860886, -0.034278787672519684, -0.03873151168227196, 0.006407571490854025, -0.0017494530184194446, -0.06693607568740845, 0.007037702947854996, 0.07903823256492615, -0.10415605455636978, 0.0641149953007698, -0.015070106834173203, 0.03943149372935295, -0.04993129149079323, 0.04012191295623779, 0.006370559334754944, -0.060351308435201645, 0.10083580017089844, 0.16685700416564941, -0.08567694574594498, 0.17177626490592957, -0.18286776542663574, -0.009278408251702785, 0.04312928766012192, 0.08030831068754196, 0.0017473878106102347, -0.08159271627664566, 0.033471934497356415, 0.10306476056575775, 0.06603048741817474, 0.011855699121952057, 0.06974591314792633, -0.03801502287387848, 0.0165773443877697, -0.02963782474398613, -0.018691718578338623, -0.032864440232515335, 0.05419592186808586, 0.05958418920636177, 0.1418270766735077, 0.18580490350723267, -0.10290856659412384, 0.09938187897205353, -0.0672074556350708, 0.013093712739646435, -0.0606967955827713, -0.0021719823125749826, -0.13379037380218506, -0.08533384650945663, 0.07586772739887238, -0.04349793493747711, 0.12008443474769592, 0.019091127440333366, 0.09219501167535782, -0.029839012771844864, -0.09311903268098831, 0.04838994890451431, -0.00038168145692907274, 0.27672311663627625, 0.03320954367518425, 0.04127749428153038, -0.03140019252896309, 0.015488891862332821, -0.025369226932525635, 0.10295117646455765, -0.013439206406474113, 0.14238578081130981, 0.039102498441934586, 0.0801941528916359, 0.1333295851945877, -0.04927672818303108, -0.048378024250268936, -0.0671628788113594, -0.10049796104431152, 0.018872970715165138, -0.059494391083717346, 0.20508527755737305, 0.11462117731571198, -0.10142651200294495, 0.10039527714252472, 0.009661342948675156, -0.08805573731660843, -0.12492075562477112, -0.09109251201152802, -0.049551207572221756, -0.17066887021064758, 0.020240608602762222, -0.09415426850318909, 0.0008965565939433873, 0.02661369927227497, 0.05402741953730583, -0.04604951664805412, 0.17258726060390472, -0.011394424363970757, -0.08123450726270676, 0.079947330057621, -0.07333768159151077, 0.0016893562860786915, -0.09688067436218262, 0.012766905128955841, 0.1353086531162262, 0.028097085654735565, 0.0650373324751854, -0.010290388949215412, -0.08262649178504944, -0.024551065638661385, -0.06026556342840195, -0.050675708800554276, 0.000013785394912702031, -0.035606302320957184, 0.09982606023550034, 0.1620158553123474, 0.10344082117080688, -0.08665310591459274, -0.030674297362565994, 0.12704193592071533, -0.04134460538625717, -0.1797332465648651, -0.14637449383735657, 0.1593952775001526, 0.017343558371067047, 0.04899321123957634, -0.0006282341782934964, -0.017435986548662186, -0.008040961809456348, 0.22094127535820007, 0.21884410083293915, 0.05900922790169716, 0.024377822875976562, -0.03970862925052643, -0.009505687281489372, -0.009167756885290146, 0.08166547864675522, 0.044951438903808594, 0.23415614664554596, -0.015678195282816887, 0.017144132405519485, -0.11507872492074966, -0.040929924696683884, 0.00951408687978983, 0.03323318064212799, -0.06431858986616135, -0.1332119107246399, -0.012748902663588524, 0.1427905410528183, -0.0592799074947834, -0.06673786044120789, -0.12048276513814926, -0.05944625660777092, -0.09480951726436615, 0.013326847925782204, 0.06467342376708984, 0.10505612194538116, 0.053867824375629425, -0.08264902234077454, 0.03204656019806862, 0.12956656515598297, 0.00622926652431488, -0.04243204742670059, -0.08008314669132233, 0.05553460493683815, -0.0903339833021164, 0.023542502894997597, -0.000009828023394220509, 0.1771988868713379, 0.03987623378634453, 0.11261305958032608, -0.009770351462066174, 0.14758911728858948, -0.01629914529621601, -0.1224614754319191, 0.06598168611526489, 0.11402326822280884, -0.040699657052755356, 0.10031851381063461, 0.011232330463826656, -0.17622613906860352, 0.07713394612073898, -0.09748348593711853, -0.003687103046104312, -0.04823732003569603, 0.09232974797487259, -0.03915686160326004, 0.07065209001302719, 0.11064963042736053, -0.06684287637472153, -0.05666732415556908, -0.05523741617798805, 0.06449950486421585, 0.029532896354794502, -0.05389237776398659, -0.0410032719373703, -0.2567853331565857, -0.01457400806248188, -0.1147901862859726, -0.06482835114002228, -0.17296262085437775, -0.03119669482111931, -0.00593831529840827, -0.08593680709600449, 0.009416060522198677, 0.013055462390184402, 0.039597976952791214, 0.00811033509671688, 0.01054175104945898, 0.0640302523970604, 0.04439037665724754, 0.13248929381370544, -0.16543307900428772, -0.11593929678201675 ]
null
null
transformers
# wav2vec2-large-xlsr-53-Dutch Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) in Dutch using the [Common Voice](https://huggingface.co/datasets/common_voice) When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "nl", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("MehdiHosseiniMoghadam/wav2vec2-large-xlsr-53-Dutch") model = Wav2Vec2ForCTC.from_pretrained("MehdiHosseiniMoghadam/wav2vec2-large-xlsr-53-Dutch") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Dutch test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "nl", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("MehdiHosseiniMoghadam/wav2vec2-large-xlsr-53-Dutch") model = Wav2Vec2ForCTC.from_pretrained("MehdiHosseiniMoghadam/wav2vec2-large-xlsr-53-Dutch") model.to("cuda") chars_to_ignore_regex = '[\\\\,\\\\?\\\\.\\\\!\\\\-\\\\;\\\\:\\\\"\\\\“]' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 26.494162 % ## Training The Common Voice `train`, `validation` datasets were used for training.
{"language": "nl", "license": "apache-2.0", "tags": ["audio", "automatic-speech-recognition", "speech", "xlsr-fine-tuning-week"], "datasets": ["common_voice"], "model-index": [{"name": "wav2vec2-large-xlsr-53-Dutch by Mehdi Hosseini Moghadam", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice nl", "type": "common_voice", "args": "nl"}, "metrics": [{"type": "wer", "value": 26.494162, "name": "Test WER"}]}]}]}
automatic-speech-recognition
MehdiHosseiniMoghadam/wav2vec2-large-xlsr-53-Dutch
[ "transformers", "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "audio", "speech", "xlsr-fine-tuning-week", "nl", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:04+00:00
[]
[ "nl" ]
TAGS #transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #nl #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us
# wav2vec2-large-xlsr-53-Dutch Fine-tuned facebook/wav2vec2-large-xlsr-53 in Dutch using the Common Voice When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ## Evaluation The model can be evaluated as follows on the Dutch test data of Common Voice. Test Result: 26.494162 % ## Training The Common Voice 'train', 'validation' datasets were used for training.
[ "# wav2vec2-large-xlsr-53-Dutch\n\nFine-tuned facebook/wav2vec2-large-xlsr-53 in Dutch using the Common Voice\n\nWhen using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\n\nThe model can be used directly (without a language model) as follows:", "## Evaluation\n\nThe model can be evaluated as follows on the Dutch test data of Common Voice.\n\n\n\nTest Result: 26.494162 %", "## Training\n\nThe Common Voice 'train', 'validation' datasets were used for training." ]
[ "TAGS\n#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #nl #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us \n", "# wav2vec2-large-xlsr-53-Dutch\n\nFine-tuned facebook/wav2vec2-large-xlsr-53 in Dutch using the Common Voice\n\nWhen using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\n\nThe model can be used directly (without a language model) as follows:", "## Evaluation\n\nThe model can be evaluated as follows on the Dutch test data of Common Voice.\n\n\n\nTest Result: 26.494162 %", "## Training\n\nThe Common Voice 'train', 'validation' datasets were used for training." ]
[ 80, 62, 20, 29, 23 ]
[ "passage: TAGS\n#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #nl #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us \n# wav2vec2-large-xlsr-53-Dutch\n\nFine-tuned facebook/wav2vec2-large-xlsr-53 in Dutch using the Common Voice\n\nWhen using this model, make sure that your speech input is sampled at 16kHz.## Usage\n\nThe model can be used directly (without a language model) as follows:## Evaluation\n\nThe model can be evaluated as follows on the Dutch test data of Common Voice.\n\n\n\nTest Result: 26.494162 %## Training\n\nThe Common Voice 'train', 'validation' datasets were used for training." ]
[ -0.142166405916214, -0.0007103766547515988, -0.002958789234980941, -0.015164967626333237, 0.05883505195379257, -0.07614739239215851, 0.1497906595468521, 0.07574015855789185, 0.03369339928030968, -0.021932879462838173, 0.01669103465974331, 0.056231673806905746, 0.03014451265335083, 0.05676192790269852, 0.02154962159693241, -0.22965107858181, 0.048349134624004364, 0.012020116671919823, 0.06704165786504745, 0.12107979506254196, 0.11572974175214767, -0.07715557515621185, -0.013603451661765575, 0.11115127056837082, -0.13153907656669617, 0.03969177231192589, 0.02842528745532036, -0.11455950140953064, 0.1616656631231308, 0.058054618537425995, 0.06939996033906937, 0.06712222099304199, 0.07862597703933716, -0.18367426097393036, 0.009591986425220966, 0.016075219959020615, 0.03654241934418678, 0.017639650031924248, 0.04912423714995384, 0.011548463255167007, 0.0936276987195015, 0.08001301437616348, -0.03062053583562374, 0.05589757487177849, -0.05125359445810318, -0.2411857694387436, -0.009154727682471275, -0.004723967518657446, 0.10047245770692825, 0.13205349445343018, -0.05928129702806473, 0.11148800700902939, -0.14508448541164398, 0.09296197444200516, 0.11369670182466507, -0.21989870071411133, -0.003373183775693178, 0.07913615554571152, 0.0664195641875267, 0.05979150906205177, -0.08667357265949249, 0.02611859142780304, 0.014621824957430363, 0.05306091904640198, 0.03087765723466873, -0.057013947516679764, -0.14826038479804993, -0.021883906796574593, -0.13999579846858978, -0.032150622457265854, 0.18036459386348724, -0.0025536955799907446, -0.07272642105817795, -0.1333664208650589, 0.0008765389793552458, 0.027006076648831367, -0.01970059610903263, -0.10253562033176422, 0.009592825546860695, 0.016113562509417534, -0.03155219554901123, -0.0411505252122879, -0.0893164873123169, -0.1211012676358223, -0.019461913034319878, 0.12293803691864014, 0.021808624267578125, 0.0002348207199247554, -0.07208327203989029, 0.07693766802549362, -0.0764046236872673, -0.05233743414282799, -0.036165542900562286, 0.02137407846748829, -0.05778692290186882, 0.03225807845592499, -0.06447131931781769, -0.13660527765750885, 0.023398520424962044, -0.05141960084438324, 0.04055764898657799, 0.009254954755306244, -0.04458225145936012, 0.0794372409582138, 0.018589520826935768, 0.11557546257972717, -0.08965367823839188, -0.010385444387793541, 0.006971393246203661, -0.01472996361553669, -0.055602457374334335, -0.00044285200419835746, -0.08151819556951523, -0.05818746238946915, 0.04892535135149956, 0.047601815313100815, -0.06316851824522018, 0.0035135045181959867, -0.025782855227589607, -0.05342787131667137, 0.02569734863936901, -0.08472360670566559, -0.025468675419688225, 0.04387621209025383, 0.008113392628729343, 0.12444280087947845, 0.042672816663980484, 0.045505911111831665, -0.09178822487592697, -0.016035957261919975, 0.019303711131215096, 0.04219748079776764, -0.03680775314569473, -0.11912858486175537, 0.0020353083964437246, 0.023556150496006012, -0.034843809902668, -0.09283262491226196, -0.10011646896600723, -0.06764691323041916, -0.01010430883616209, 0.027842054143548012, -0.01949765346944332, -0.12177882343530655, -0.03490317985415459, -0.034284912049770355, -0.0644306018948555, 0.03708862140774727, -0.027469703927636147, 0.06057850643992424, 0.006391065660864115, 0.05818413570523262, 0.005137844942510128, 0.08084776252508163, -0.09965609759092331, -0.05281047895550728, -0.028328318148851395, 0.13063377141952515, -0.06760287284851074, -0.11549059301614761, -0.08367536962032318, -0.11877268552780151, -0.045758023858070374, 0.08421874791383743, 0.05860145762562752, 0.06861119717359543, -0.22292934358119965, -0.10277823358774185, 0.21729245781898499, -0.12023337185382843, -0.0029038803186267614, 0.1949211210012436, -0.011346062645316124, 0.0951991081237793, 0.12538161873817444, 0.21799059212207794, 0.12277473509311676, -0.18670512735843658, 0.05258939042687416, 0.04536985233426094, 0.0051321531645953655, -0.055943701416254044, 0.05378022789955139, -0.039957452565431595, -0.04592176154255867, 0.04939334839582443, -0.09211105853319168, 0.0793725922703743, -0.04794103652238846, -0.04522226005792618, -0.005679658614099026, -0.08141805231571198, 0.10376787930727005, 0.04183583706617355, 0.0056930663995444775, -0.02574673481285572, -0.05872875452041626, 0.12045019119977951, 0.11496948450803757, -0.141764298081398, 0.033688366413116455, -0.1085432693362236, 0.008482334204018116, -0.08276722580194473, -0.026260223239660263, -0.13627471029758453, 0.14879772067070007, -0.010534053668379784, 0.02837214805185795, 0.05643625929951668, 0.2283785343170166, 0.018253030255436897, 0.015824686735868454, -0.060038138180971146, -0.021697361022233963, -0.018945753574371338, -0.009675770998001099, -0.018824806436896324, -0.0836162343621254, -0.036249641329050064, -0.04561896622180939, 0.045180436223745346, -0.11068514734506607, -0.029041916131973267, 0.014528017491102219, 0.0117723997682333, -0.0031361610163003206, -0.0029916800558567047, 0.054061420261859894, 0.11512751877307892, 0.03454872965812683, 0.026898672804236412, 0.04511437192559242, 0.013436955399811268, -0.026069801300764084, 0.15713723003864288, -0.11181987076997757, 0.02554367110133171, 0.0907842144370079, -0.0880914032459259, 0.011133049614727497, 0.08738099783658981, -0.03843765705823898, -0.0194837749004364, -0.08890298753976822, -0.05169206112623215, 0.2920354902744293, 0.0028209700249135494, 0.09403513371944427, -0.0936083123087883, -0.016894562169909477, 0.028682643547654152, -0.0732739120721817, 0.06108943372964859, 0.07037349045276642, -0.03226011246442795, 0.05888606607913971, 0.021436305716633797, -0.04178764298558235, -0.10333935171365738, 0.2060716599225998, -0.012752129696309566, -0.06190866976976395, 0.006663138046860695, -0.0300455279648304, -0.03779514506459236, 0.08110568672418594, -0.19343061745166779, -0.04109520465135574, 0.05146040394902229, 0.07475777715444565, 0.06065504625439644, -0.13267448544502258, 0.019943077117204666, 0.004022460896521807, -0.1354113519191742, -0.09675022214651108, 0.06810460239648819, -0.03113142028450966, 0.03586583584547043, -0.10534685105085373, -0.10214193910360336, 0.006068204529583454, -0.05507817491889, -0.153968945145607, 0.13561692833900452, -0.07056982815265656, -0.2933350205421448, -0.1403796523809433, 0.020037749782204628, -0.02251771278679371, 0.006616291590034962, 0.0926484614610672, -0.08648835867643356, -0.024214133620262146, -0.01815818063914776, 0.0915956199169159, 0.006545490585267544, -0.04313123971223831, -0.08463917672634125, 0.00032448783167637885, 0.0689288005232811, -0.17945846915245056, -0.010986975394189358, -0.05389386788010597, -0.07658931612968445, 0.004103981889784336, -0.006273338105529547, 0.004506447818130255, 0.18083155155181885, 0.026050863787531853, 0.017020180821418762, -0.016738004982471466, 0.1796335130929947, -0.08254797011613846, -0.026752198114991188, 0.17132337391376495, 0.022113019600510597, -0.016447437927126884, 0.070217564702034, 0.03902096301317215, -0.06731575727462769, -0.013514428399503231, 0.004704070743173361, -0.06817204505205154, -0.21582238376140594, -0.14658354222774506, -0.06976749002933502, -0.06556728482246399, -0.042401064187288284, -0.003943553194403648, 0.09283408522605896, -0.005254107993096113, 0.012833904474973679, -0.06664474308490753, 0.035932138562202454, -0.007697470020502806, 0.15603384375572205, -0.016331158578395844, 0.11581015586853027, -0.03601556271314621, -0.06433255225419998, 0.011225163005292416, 0.018223244696855545, 0.13513846695423126, 0.05642075836658478, 0.054317817091941833, 0.10361942648887634, 0.11434948444366455, 0.09945662319660187, 0.10451442003250122, -0.062953419983387, -0.012321692891418934, 0.006826027296483517, -0.06622658669948578, -0.03488120436668396, 0.002011145232245326, 0.09728708863258362, -0.025864481925964355, -0.054662805050611496, -0.06481549888849258, 0.025014137849211693, 0.17603477835655212, 0.08703421801328659, -0.1650543212890625, -0.08021340519189835, -0.04709634184837341, -0.09413135051727295, -0.007235224358737469, 0.06964732706546783, 0.1657201498746872, -0.14932559430599213, -0.01189135666936636, -0.0036737823393195868, 0.08986178040504456, -0.035649511963129044, 0.05301468446850777, -0.08590416610240936, 0.053246140480041504, 0.018737997859716415, 0.10223877429962158, -0.27514082193374634, 0.24398870766162872, -0.018684186041355133, 0.12068607658147812, -0.048140451312065125, -0.02544316090643406, -0.005146871320903301, 0.06719651073217392, 0.13763485848903656, 0.047311123460531235, 0.03712420538067818, -0.05681462958455086, -0.058269038796424866, 0.05865759402513504, -0.020779801532626152, 0.03971857950091362, 0.017240146175026894, 0.022920291870832443, -0.013945544138550758, 0.016530264168977737, -0.028449323028326035, -0.13781659305095673, -0.02353842556476593, 0.016680749133229256, 0.1503783017396927, 0.10448934137821198, -0.027879254892468452, -0.09172874689102173, -0.11687639355659485, 0.09437833726406097, -0.0950569286942482, -0.04635610058903694, -0.06247431039810181, -0.04494909569621086, 0.09960898011922836, -0.051065199077129364, -0.016084114089608192, 0.10303720086812973, 0.12209988385438919, -0.03997296467423439, -0.019492384046316147, 0.06946064531803131, -0.11596805602312088, -0.08684492856264114, -0.000688698492012918, 0.17254211008548737, 0.11462277173995972, 0.08011903613805771, 0.07248369604349136, -0.004526067525148392, 0.008566087111830711, -0.07929328829050064, -0.0072602625004947186, 0.08204624056816101, -0.14621050655841827, -0.005743850953876972, 0.016774313524365425, -0.08826722949743271, -0.09310436993837357, -0.018884368240833282, 0.1676030158996582, 0.053563956171274185, -0.057425644248723984, 0.17413552105426788, 0.2257048636674881, -0.08990217745304108, -0.2342272698879242, -0.03331909328699112, 0.10188335180282593, 0.11470992863178253, -0.03049001656472683, -0.17269152402877808, 0.11211450397968292, 0.023572225123643875, -0.03659733384847641, -0.11603373289108276, -0.28903332352638245, -0.14502377808094025, 0.18693958222866058, -0.02864600345492363, 0.1690922975540161, 0.0456707589328289, -0.01642860285937786, -0.01843840442597866, -0.06800489872694016, 0.023595504462718964, -0.09723597764968872, 0.09758277982473373, 0.026148425415158272, 0.10250582545995712, 0.04749660938978195, -0.009240620769560337, 0.08089960366487503, 0.13971969485282898, 0.00922465231269598, 0.019306102767586708, 0.08165726810693741, 0.03768642991781235, 0.044119227677583694, 0.15527409315109253, -0.06648026406764984, 0.031013859435915947, -0.10369764268398285, -0.08917012810707092, -0.12320634722709656, 0.09229514002799988, 0.02341369353234768, -0.060454100370407104, 0.035703860223293304, -0.015652375295758247, 0.023122340440750122, 0.022760553285479546, -0.05041912943124771, -0.12817440927028656, 0.029898229986429214, 0.17345009744167328, 0.21016693115234375, -0.0639171227812767, -0.12654948234558105, -0.012363381683826447, -0.022784722968935966, 0.12105395644903183, -0.013230813667178154, 0.0418548583984375, 0.06939271837472916, 0.04800180718302727, 0.11836785823106766, 0.022155173122882843, -0.09524174779653549, 0.042965758591890335, 0.01801265776157379, -0.05806591361761093, -0.14399836957454681, -0.030383959412574768, 0.03574547916650772, 0.0016260667471215129, 0.03920391574501991, 0.11628971993923187, -0.10048377513885498, -0.018476292490959167, -0.016463899984955788, 0.005833838135004044, -0.14674648642539978, 0.20656141638755798, 0.03133971989154816, 0.09241054207086563, -0.10782835632562637, 0.0029988924507051706, -0.013413828797638416, -0.05036434158682823, 0.019664956256747246, -0.03520794212818146, -0.07377760857343674, -0.06256429851055145, 0.0023226370103657246, 0.10012354701757431, 0.017019545659422874, -0.128785640001297, -0.05170557275414467, -0.11811316013336182, -0.010287687182426453, 0.06321548670530319, 0.07240726798772812, 0.03309227153658867, -0.11381194740533829, -0.052444204688072205, -0.09288961440324783, 0.06391406804323196, 0.0672079399228096, -0.008037734776735306, -0.07314921170473099, 0.1904647797346115, 0.044561922550201416, 0.06219205632805824, -0.061921585351228714, -0.07982073724269867, -0.016854094341397285, 0.07600311189889908, -0.11444250494241714, -0.023601796478033066, -0.04826030135154724, -0.006757999304682016, 0.00014017391367815435, -0.07123222947120667, 0.005333754699677229, 0.08262281864881516, -0.10479554533958435, 0.06612065434455872, 0.016561834141612053, 0.05751008540391922, -0.06702633947134018, 0.023334698751568794, 0.03557788208127022, -0.05168838053941727, 0.07948435842990875, 0.11728371679782867, -0.10264024138450623, 0.1320178210735321, -0.1849803328514099, -0.03536529839038849, 0.05752963200211525, 0.07192299515008926, 0.0061961286701262, -0.10449402034282684, 0.029516879469156265, 0.10818389803171158, 0.07800710946321487, -0.01063649170100689, 0.05278642475605011, -0.07862713187932968, 0.026281509548425674, -0.049211904406547546, -0.028790587559342384, -0.03097100928425789, 0.04247042536735535, 0.05032265931367874, 0.13333763182163239, 0.14483650028705597, -0.11313097178936005, 0.07911501824855804, -0.11634168028831482, 0.009709401056170464, -0.037695884704589844, -0.023627102375030518, -0.081351138651371, -0.08996964246034622, 0.05457870289683342, -0.04016541317105293, 0.1418006867170334, 0.04792655259370804, 0.04818924888968468, -0.03721914067864418, -0.12995314598083496, 0.003866836428642273, -0.0026049285661429167, 0.21909640729427338, 0.029600175097584724, 0.02732698805630207, -0.035887740552425385, -0.01953296549618244, -0.020252835005521774, 0.1347760558128357, 0.025337032973766327, 0.1764317750930786, 0.05309077352285385, 0.06909789890050888, 0.12781710922718048, -0.018322020769119263, -0.09381428360939026, -0.046556826680898666, -0.05350467190146446, 0.04987422749400139, -0.07007663697004318, 0.17089104652404785, 0.08168531954288483, -0.10440148413181305, 0.1296645998954773, 0.03523042052984238, -0.07978679984807968, -0.14410720765590668, -0.11680427193641663, -0.05436345934867859, -0.1841890662908554, 0.012044718489050865, -0.11233725398778915, 0.02121099829673767, 0.023609403520822525, 0.06234852969646454, -0.03430997207760811, 0.15218719840049744, -0.04235469922423363, -0.0757373794913292, 0.09693825989961624, -0.09313443303108215, 0.005924997851252556, -0.11831524223089218, 0.058678507804870605, 0.13114410638809204, 0.05512657016515732, 0.06815997511148453, 0.00867060199379921, -0.0592210479080677, -0.02256699465215206, -0.06646888703107834, -0.06723684817552567, -0.014500816352665424, -0.04055672511458397, 0.07752548158168793, 0.11159760504961014, 0.11709699779748917, -0.08942262828350067, -0.007114795967936516, 0.1111198291182518, -0.062365587800741196, -0.20330296456813812, -0.12284868210554123, 0.20442605018615723, 0.03405042737722397, 0.04980626329779625, 0.0021375189535319805, -0.020995546132326126, -0.013904465362429619, 0.2292657345533371, 0.2090977281332016, 0.054863691329956055, 0.023896122351288795, -0.01348874345421791, -0.01621604524552822, -0.02111494541168213, 0.04934319481253624, 0.07097111642360687, 0.27916157245635986, -0.021960975602269173, 0.010422416031360626, -0.08297349512577057, -0.07944809645414352, 0.008291647769510746, 0.02850732021033764, -0.050665177404880524, -0.11558551341295242, -0.02865961752831936, 0.13509130477905273, -0.08298793435096741, -0.09379991888999939, -0.09735741466283798, -0.03896410018205643, -0.08502373844385147, -0.01266495417803526, 0.009992658160626888, 0.11540103703737259, 0.03030015341937542, -0.07389345020055771, 0.023051714524626732, 0.1826670616865158, -0.003916359972208738, -0.03602847456932068, -0.059383291751146317, 0.04652641341090202, -0.055027712136507034, 0.001975221559405327, 0.00744818476960063, 0.18017414212226868, 0.029459858313202858, 0.09405486285686493, -0.005264162085950375, 0.14569392800331116, -0.02118782140314579, -0.06956856697797775, 0.029088446870446205, 0.15258480608463287, -0.01164951827377081, 0.0998920351266861, -0.00953281857073307, -0.17846731841564178, 0.034496985375881195, -0.09945898503065109, -0.03204519674181938, -0.08176448196172714, 0.04798128828406334, -0.015204126015305519, 0.06590593606233597, 0.0990554466843605, -0.05871961638331413, -0.04250818490982056, -0.05989839881658554, 0.06413941085338593, 0.003252304857596755, -0.051636017858982086, -0.040410105139017105, -0.22132565081119537, -0.004956743214279413, -0.06567364186048508, -0.03286535292863846, -0.21477258205413818, -0.03763583302497864, 0.01988108456134796, -0.07866977900266647, 0.029559990391135216, 0.03197494521737099, 0.06625361740589142, 0.020653236657381058, 0.010062208399176598, 0.031516145914793015, 0.03075988031923771, 0.12268126010894775, -0.13569527864456177, -0.10254229605197906 ]
null
null
transformers
# wav2vec2-large-xlsr-53-French Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) in French using the [Common Voice](https://huggingface.co/datasets/common_voice) When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "fr", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("MehdiHosseiniMoghadam/wav2vec2-large-xlsr-53-French") model = Wav2Vec2ForCTC.from_pretrained("MehdiHosseiniMoghadam/wav2vec2-large-xlsr-53-French") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the French test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "fr", split="test[:10%]") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("MehdiHosseiniMoghadam/wav2vec2-large-xlsr-53-French") model = Wav2Vec2ForCTC.from_pretrained("MehdiHosseiniMoghadam/wav2vec2-large-xlsr-53-French") model.to("cuda") chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\%\‘\”\�]' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 34.856015 % ## Training 10% of the Common Voice `train`, `validation` datasets were used for training. ## Testing 10% of the Common Voice `Test` dataset were used for training.
{"language": "fr", "license": "apache-2.0", "tags": ["audio", "automatic-speech-recognition", "speech", "xlsr-fine-tuning-week"], "datasets": ["common_voice"], "model-index": [{"name": "wav2vec2-large-xlsr-53-French by Mehdi Hosseini Moghadam", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice fr", "type": "common_voice", "args": "fr"}, "metrics": [{"type": "wer", "value": 34.856015, "name": "Test WER"}]}]}]}
automatic-speech-recognition
MehdiHosseiniMoghadam/wav2vec2-large-xlsr-53-French
[ "transformers", "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "audio", "speech", "xlsr-fine-tuning-week", "fr", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:04+00:00
[]
[ "fr" ]
TAGS #transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #fr #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us
# wav2vec2-large-xlsr-53-French Fine-tuned facebook/wav2vec2-large-xlsr-53 in French using the Common Voice When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ## Evaluation The model can be evaluated as follows on the French test data of Common Voice. Test Result: 34.856015 % ## Training 10% of the Common Voice 'train', 'validation' datasets were used for training. ## Testing 10% of the Common Voice 'Test' dataset were used for training.
[ "# wav2vec2-large-xlsr-53-French \n\nFine-tuned facebook/wav2vec2-large-xlsr-53 in French using the Common Voice\n\nWhen using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\n\nThe model can be used directly (without a language model) as follows:", "## Evaluation\n\nThe model can be evaluated as follows on the French test data of Common Voice.\n\n\n\nTest Result: 34.856015 %", "## Training\n\n10% of the Common Voice 'train', 'validation' datasets were used for training.", "## Testing\n\n10% of the Common Voice 'Test' dataset were used for training." ]
[ "TAGS\n#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #fr #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us \n", "# wav2vec2-large-xlsr-53-French \n\nFine-tuned facebook/wav2vec2-large-xlsr-53 in French using the Common Voice\n\nWhen using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\n\nThe model can be used directly (without a language model) as follows:", "## Evaluation\n\nThe model can be evaluated as follows on the French test data of Common Voice.\n\n\n\nTest Result: 34.856015 %", "## Training\n\n10% of the Common Voice 'train', 'validation' datasets were used for training.", "## Testing\n\n10% of the Common Voice 'Test' dataset were used for training." ]
[ 80, 62, 20, 29, 25, 18 ]
[ "passage: TAGS\n#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #fr #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us \n# wav2vec2-large-xlsr-53-French \n\nFine-tuned facebook/wav2vec2-large-xlsr-53 in French using the Common Voice\n\nWhen using this model, make sure that your speech input is sampled at 16kHz.## Usage\n\nThe model can be used directly (without a language model) as follows:## Evaluation\n\nThe model can be evaluated as follows on the French test data of Common Voice.\n\n\n\nTest Result: 34.856015 %## Training\n\n10% of the Common Voice 'train', 'validation' datasets were used for training.## Testing\n\n10% of the Common Voice 'Test' dataset were used for training." ]
[ -0.12650354206562042, 0.043782755732536316, -0.0028005202766507864, -0.014566348865628242, 0.04495466500520706, -0.04574501886963844, 0.18512555956840515, 0.10603601485490799, 0.009683053940534592, -0.010397164151072502, 0.03676145151257515, 0.014862395823001862, 0.002326483838260174, 0.05012214183807373, 0.01171914953738451, -0.1081482544541359, 0.014832000248134136, 0.029713280498981476, 0.043758004903793335, 0.13763435184955597, 0.10860602557659149, -0.06493718922138214, 0.00037694137427024543, 0.09132654219865799, -0.12254326045513153, 0.056059349328279495, 0.05766061693429947, -0.10745581239461899, 0.17761178314685822, 0.06081013008952141, 0.06718330085277557, 0.04451984167098999, 0.06647059321403503, -0.2164338082075119, 0.01077246479690075, 0.042209986597299576, 0.028289111331105232, 0.02818896621465683, 0.05031006038188934, -0.027798013761639595, 0.031019559130072594, 0.10397817939519882, 0.016502343118190765, 0.08449726551771164, -0.03083498403429985, -0.18069148063659668, -0.045668285340070724, -0.04177223518490791, 0.03927311673760414, 0.14845305681228638, -0.060415856540203094, 0.13817815482616425, -0.18315386772155762, 0.09275179356336594, 0.13027945160865784, -0.18199877440929413, -0.0035469781141728163, 0.09109924733638763, 0.0980091243982315, 0.05379612371325493, -0.051344431936740875, 0.028773494064807892, 0.07674627006053925, 0.036456651985645294, -0.027547037228941917, -0.031628694385290146, -0.14325876533985138, -0.02698579430580139, -0.12896102666854858, -0.06390706449747086, 0.24559810757637024, 0.00325281941331923, -0.09595384448766708, -0.15141946077346802, 0.006321929860860109, -0.010250675491988659, 0.006444856058806181, -0.09004450589418411, 0.026279810816049576, -0.0015932132955640554, -0.03867550566792488, -0.014544735662639141, -0.08769430965185165, -0.15964053571224213, -0.009714058600366116, 0.016873525455594063, 0.030570901930332184, -0.006991022266447544, -0.07883957028388977, 0.08492685109376907, -0.15378402173519135, -0.030177075415849686, -0.004963554907590151, 0.025454150512814522, -0.06624335050582886, -0.008864829316735268, -0.07956413924694061, -0.1548004448413849, 0.08412732928991318, 0.04192184656858444, 0.029965704306960106, 0.03112025372684002, -0.08616305142641068, 0.04854313284158707, 0.03752435743808746, 0.11796621233224869, -0.05292137712240219, -0.029452363029122353, 0.003995755687355995, 0.05152381956577301, -0.0810818150639534, 0.010951281525194645, -0.035898737609386444, -0.03082302398979664, 0.0724966824054718, 0.04772882163524628, -0.004552995320409536, -0.03821994736790657, -0.028661297634243965, -0.022379344329237938, 0.02763899229466915, -0.11592743545770645, -0.02642747387290001, 0.07679563760757446, -0.005796777084469795, 0.0722135677933693, 0.035198770463466644, 0.05095285177230835, -0.0567857064306736, -0.0422285720705986, 0.020347274839878082, 0.00820562057197094, -0.04202929139137268, -0.11108392477035522, -0.00414645578712225, 0.00005141430301591754, -0.032756078988313675, -0.05308616906404495, -0.0860234797000885, -0.11653660237789154, 0.012460999190807343, 0.03282107412815094, -0.037598080933094025, -0.11253460496664047, -0.05697329342365265, -0.023031027987599373, -0.03743300586938858, 0.06398046761751175, -0.03648931905627251, 0.06747158616781235, 0.012113525532186031, 0.010762849822640419, 0.06080421805381775, 0.06932433694601059, -0.07930025458335876, -0.03435012698173523, 0.002453151158988476, 0.1526062935590744, -0.05224725231528282, -0.11861229687929153, -0.09234055876731873, -0.11066808551549911, -0.046959783881902695, 0.06771621853113174, 0.07570920884609222, 0.11551918834447861, -0.2763320803642273, -0.09378599375486374, 0.196097269654274, -0.11662552505731583, -0.01755775325000286, 0.25288429856300354, -0.03377918526530266, 0.0804777666926384, 0.12884047627449036, 0.22116203606128693, 0.12296362221240997, -0.1793949007987976, 0.0013301654253154993, 0.008695852011442184, 0.013796191662549973, 0.03453720733523369, 0.08274952322244644, -0.0897192731499672, -0.05916063115000725, 0.002279945183545351, -0.051442768424749374, 0.012470110319554806, -0.04638206958770752, -0.053033456206321716, -0.028764130547642708, -0.05492180958390236, 0.13221661746501923, 0.07846731692552567, -0.021782495081424713, -0.06253830343484879, -0.09511369466781616, 0.06004577502608299, 0.1127169132232666, -0.1476379781961441, 0.03126426041126251, -0.09873206913471222, 0.08651217073202133, -0.08330859243869781, -0.048780519515275955, -0.14740245044231415, 0.13472966849803925, 0.018068507313728333, -0.008715132251381874, 0.06614532321691513, 0.22159592807292938, 0.03384174406528473, 0.0037876395508646965, -0.054278213530778885, -0.02324400283396244, -0.051133472472429276, -0.024966947734355927, -0.03180825710296631, -0.13850226998329163, 0.0005689249956049025, -0.06987091153860092, 0.11803857982158661, -0.16386856138706207, -0.008685179986059666, -0.0011711108963936567, -0.009244303219020367, -0.021151775494217873, -0.009198425337672234, 0.018330730497837067, 0.07512158900499344, 0.002181452699005604, 0.013841155916452408, 0.035067129880189896, -0.008670774288475513, -0.01534392312169075, 0.10259325057268143, -0.12737518548965454, -0.01983661949634552, 0.10537564754486084, -0.03584025427699089, -0.05365967005491257, 0.07957476377487183, -0.05689598247408867, -0.0053323423489928246, -0.07436497509479523, -0.02826174534857273, 0.29897546768188477, -0.011929118074476719, 0.10000669956207275, -0.12809236347675323, -0.03771968558430672, 0.029683146625757217, -0.06367381662130356, 0.06267882138490677, 0.08591223508119583, -0.019401900470256805, 0.05474885553121567, 0.039834581315517426, -0.036019466817379, -0.0957237035036087, 0.2001720815896988, -0.03066967986524105, -0.0862949937582016, 0.010043805465102196, -0.008573771454393864, -0.04094180092215538, 0.10092099010944366, -0.1798781454563141, -0.022252768278121948, 0.03476425260305405, 0.07620243728160858, 0.06766317784786224, -0.15048560500144958, 0.04462446644902229, 0.00728735513985157, -0.1293598711490631, -0.13397124409675598, 0.06613133102655411, -0.029573502019047737, 0.05282486602663994, -0.07578561455011368, -0.08904525637626648, 0.001233602873980999, -0.051476310938596725, -0.18737566471099854, 0.14339861273765564, -0.06848783046007156, -0.17965279519557953, -0.0857219323515892, 0.08144359290599823, -0.012801188975572586, 0.00808813888579607, 0.10029450058937073, -0.12390215694904327, 0.004000573884695768, -0.05189284682273865, -0.010691494680941105, -0.012285498902201653, -0.04128911718726158, -0.07540315389633179, 0.008361752144992352, 0.06959443539381027, -0.17156052589416504, 0.00753466272726655, -0.0518752820789814, -0.08850012719631195, -0.03202666714787483, -0.015690268948674202, -0.004820681642740965, 0.1819237917661667, -0.0029714242555201054, -0.0020226750057190657, -0.024080505594611168, 0.18817225098609924, -0.1193142756819725, -0.053193457424640656, 0.16291865706443787, 0.027067506685853004, -0.037207845598459244, 0.09959275275468826, 0.02355634607374668, -0.05432937294244766, -0.015973201021552086, 0.02850613184273243, -0.048431504517793655, -0.28588154911994934, -0.12208083271980286, -0.035427745431661606, -0.039679154753685, -0.03588801622390747, -0.0004110837762709707, 0.12180613726377487, -0.0033041625283658504, -0.008318120613694191, -0.09658010303974152, 0.0678112581372261, -0.01588129810988903, 0.15066933631896973, -0.028585052117705345, 0.09979385137557983, -0.048267826437950134, -0.0487016998231411, 0.006771983113139868, -0.006239378824830055, 0.12228208780288696, 0.05486598238348961, 0.04041969031095505, 0.114878349006176, 0.10300853848457336, 0.06595934927463531, 0.06471800059080124, -0.042070742696523666, 0.0024034585803747177, 0.010348846204578876, -0.05364300683140755, -0.020237915217876434, -0.000607830414082855, 0.15041053295135498, -0.03376225382089615, -0.04905726760625839, -0.08237874507904053, 0.04158542677760124, 0.19084471464157104, 0.108370341360569, -0.16695280373096466, -0.0716058537364006, -0.06489523500204086, -0.09301736950874329, -0.021764127537608147, 0.05911913141608238, 0.16781339049339294, -0.16826120018959045, 0.004743415862321854, -0.004055505618453026, 0.0872795507311821, 0.018002482131123543, 0.03688324987888336, -0.04232344031333923, 0.008079871535301208, 0.003754070494323969, 0.10114407539367676, -0.31035882234573364, 0.20721304416656494, 0.0007243218715302646, 0.10069330036640167, -0.0487104170024395, 0.0019080876372754574, -0.01150905154645443, 0.03387511894106865, 0.15270672738552094, 0.0008181041921488941, 0.07025546580553055, -0.027243589982390404, -0.06478956341743469, 0.06818626075983047, -0.008096348494291306, 0.0471426285803318, 0.04279099404811859, 0.004213307984173298, -0.007366562262177467, 0.01550290547311306, -0.04898611456155777, -0.17536528408527374, -0.04889310896396637, 0.012751513160765171, 0.0740538164973259, 0.06599955260753632, -0.023833204060792923, -0.1021706834435463, -0.16272029280662537, 0.08969023823738098, -0.10099268704652786, -0.02216528356075287, -0.03494258597493172, -0.06523832678794861, 0.15310876071453094, -0.0166900884360075, 0.028495896607637405, 0.07727792859077454, 0.09568148106336594, -0.04244571551680565, 0.00007127461140044034, 0.0310760997235775, -0.12453588843345642, -0.12296927720308304, -0.02038385719060898, 0.2186906933784485, 0.08705112338066101, 0.11554637551307678, 0.0710669457912445, 0.019671231508255005, -0.008057445287704468, -0.048298418521881104, -0.01133155170828104, 0.05051774904131889, -0.12013407796621323, 0.04408344626426697, 0.011096164584159851, -0.16057147085666656, -0.12856386601924896, -0.016160285100340843, 0.18678124248981476, 0.08528561890125275, -0.06253331899642944, 0.1616147756576538, 0.18807414174079895, -0.12297870218753815, -0.18476100265979767, 0.011467069387435913, 0.11833557486534119, 0.10077747702598572, -0.022425580769777298, -0.15324752032756805, 0.046672362834215164, -0.003883233293890953, -0.029700597748160362, -0.05384218692779541, -0.30074256658554077, -0.14975935220718384, 0.12959763407707214, -0.06634987145662308, 0.09301731735467911, 0.021462609991431236, -0.004613072145730257, -0.012554348446428776, 0.012831888161599636, 0.016826936975121498, -0.1056092232465744, 0.09289905428886414, 0.02851969376206398, 0.04597008228302002, 0.05748501047492027, -0.03915663808584213, 0.07833876460790634, 0.07705677300691605, 0.017316289246082306, 0.04030090570449829, 0.045438434928655624, 0.05264798924326897, 0.047172412276268005, 0.13396014273166656, -0.04051949828863144, 0.057443153113126755, -0.06884944438934326, -0.07995560020208359, -0.0986369326710701, 0.0698041319847107, -0.012013432569801807, -0.016705095767974854, -0.003991524688899517, -0.013176499865949154, 0.03924531117081642, 0.009535891003906727, -0.10459985584020615, -0.13542360067367554, 0.09660524129867554, 0.12280604988336563, 0.23151612281799316, -0.0015504119219258428, -0.13623343408107758, 0.04664960503578186, -0.015801353380084038, 0.09892605990171432, -0.08438458293676376, 0.050723765045404434, 0.09877825528383255, 0.057163055986166, 0.12922656536102295, 0.018225202336907387, -0.12858644127845764, 0.03403785824775696, 0.002679603174328804, -0.06415019184350967, -0.13318805396556854, -0.007641227450221777, -0.060419563204050064, -0.07055392116308212, 0.012810444459319115, 0.09906717389822006, -0.0811430811882019, -0.03795364499092102, -0.025276323780417442, -0.0023978701792657375, -0.1476689577102661, 0.23391008377075195, 0.013900907710194588, 0.07817505300045013, -0.10020772367715836, -0.009437520056962967, -0.01179997157305479, -0.08245197683572769, 0.050505541265010834, -0.05030667409300804, -0.05061992630362511, -0.04682762920856476, 0.026336681097745895, 0.13837990164756775, 0.06657642126083374, -0.12030435353517532, -0.11029843240976334, -0.09656200557947159, 0.00584004633128643, 0.1341080516576767, 0.06451025605201721, 0.021240118891000748, -0.058692917227745056, -0.07430054247379303, -0.12739485502243042, 0.09560763835906982, 0.0763632133603096, -0.023783765733242035, -0.06185031682252884, 0.1609768271446228, 0.06673851609230042, 0.05248202010989189, -0.04025672376155853, -0.05034877359867096, -0.013403194025158882, 0.08487646281719208, -0.07905617356300354, -0.02284233644604683, -0.00883158016949892, 0.011435729451477528, 0.018605466932058334, -0.05067722871899605, -0.0042244731448590755, 0.055985648185014725, -0.09512786567211151, 0.058464907109737396, 0.026090720668435097, 0.07096873223781586, -0.08658844232559204, 0.057105422019958496, 0.03805750608444214, -0.07550807297229767, 0.06773632019758224, 0.09233133494853973, -0.08236312121152878, 0.09900563955307007, -0.19773852825164795, -0.06740600615739822, 0.014051222242414951, 0.07980838418006897, -0.04721314087510109, -0.17923030257225037, 0.045658886432647705, 0.10516874492168427, 0.0707826018333435, 0.012455490417778492, 0.054078567773103714, -0.04679057002067566, 0.01082488615065813, -0.03422859311103821, -0.026136215776205063, -0.03977226838469505, 0.05005768686532974, 0.031162593513727188, 0.13277247548103333, 0.1645503044128418, -0.09719132632017136, 0.11416252702474594, -0.13498787581920624, -0.012424366548657417, -0.04835958778858185, 0.006066569592803717, -0.10810569673776627, -0.05037011206150055, 0.07247252017259598, -0.035609301179647446, 0.16405674815177917, 0.042947717010974884, 0.08247724920511246, -0.018383843824267387, -0.10454121977090836, 0.003957693465054035, 0.002715925918892026, 0.17237430810928345, 0.007714802399277687, 0.029777036979794502, -0.026371963322162628, -0.014097660779953003, -0.028021356090903282, 0.10387403517961502, -0.006456802133470774, 0.16657212376594543, 0.015238934196531773, 0.055708978325128555, 0.08093509078025818, -0.0711822584271431, 0.012830842286348343, 0.02686111256480217, -0.07095803320407867, 0.05664149671792984, -0.05663025751709938, 0.19822467863559723, 0.08786160498857498, -0.11626476794481277, 0.14610005915164948, 0.005454306956380606, -0.08808470517396927, -0.16493335366249084, -0.05476999282836914, -0.07732702046632767, -0.1434279978275299, 0.02225249819457531, -0.09545362740755081, 0.036981355398893356, 0.052310019731521606, 0.058123670518398285, -0.031970612704753876, 0.15329642593860626, -0.06764630973339081, -0.08356903493404388, 0.07156989723443985, -0.08085483312606812, 0.014480912126600742, -0.11830512434244156, 0.060642700642347336, 0.16850094497203827, -0.0012766357976943254, 0.0635739415884018, -0.0018867761828005314, -0.03369857743382454, 0.01836950145661831, -0.05948004871606827, -0.04182146117091179, 0.009944116696715355, -0.029268978163599968, 0.11231996864080429, 0.14591461420059204, 0.10462603718042374, -0.07180991023778915, 0.010352584533393383, 0.0824119821190834, -0.0427960529923439, -0.19124628603458405, -0.17789886891841888, 0.19602541625499725, 0.009207474999129772, 0.014540405012667179, 0.0038467771373689175, -0.024073930457234383, 0.035701584070920944, 0.22869646549224854, 0.22657161951065063, 0.06792718172073364, 0.0013995347544550896, 0.01896177977323532, -0.01702042669057846, -0.0012114450801163912, -0.014560183510184288, 0.0653248280286789, 0.22140313684940338, -0.042163725942373276, 0.02635257877409458, -0.0736689418554306, -0.05491545423865318, 0.04459106922149658, 0.06307028979063034, -0.04135429114103317, -0.11275365948677063, 0.010443564504384995, 0.1340143084526062, 0.002793282037600875, -0.1367557793855667, -0.06640256196260452, -0.09956980496644974, -0.0800778940320015, -0.010716943070292473, 0.015176504850387573, 0.07152161002159119, 0.0006375325028784573, -0.061096228659152985, -0.004528623074293137, 0.12901975214481354, -0.03628963604569435, -0.038012709468603134, -0.07690491527318954, 0.03803499415516853, -0.10217499732971191, 0.08581147342920303, 0.01775543950498104, 0.2308521568775177, 0.04757019877433777, 0.051471903920173645, -0.010377691127359867, 0.10710738599300385, 0.024309484288096428, -0.07236126065254211, 0.02264229767024517, 0.12276511639356613, 0.0024319887161254883, 0.12400097399950027, -0.005979088135063648, -0.09774188697338104, 0.08101477473974228, -0.1426035761833191, -0.05446985736489296, -0.1279747486114502, 0.09101208299398422, -0.05136137083172798, 0.09579196572303772, 0.10941421985626221, -0.05636388435959816, -0.0004544108232948929, -0.08637549728155136, 0.04556696489453316, 0.02007242478430271, -0.04000949487090111, -0.04943668842315674, -0.25727930665016174, 0.05148586258292198, -0.10457687079906464, -0.049178194254636765, -0.22149071097373962, -0.023890523239970207, 0.04923243075609207, -0.08393822610378265, 0.022113684564828873, 0.01511769276112318, 0.07486928999423981, 0.02451283670961857, -0.007646029349416494, 0.027844415977597237, 0.014939922839403152, 0.13009607791900635, -0.12789563834667206, -0.08968805521726608 ]
null
null
transformers
# wav2vec2-large-xlsr-53-Georgian Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) in Georgian using the [Common Voice](https://huggingface.co/datasets/common_voice) When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "ka", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("MehdiHosseiniMoghadam/wav2vec2-large-xlsr-53-Georgian") model = Wav2Vec2ForCTC.from_pretrained("MehdiHosseiniMoghadam/wav2vec2-large-xlsr-53-Georgian") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Georgian test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "ka", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("MehdiHosseiniMoghadam/wav2vec2-large-xlsr-53-Georgian") model = Wav2Vec2ForCTC.from_pretrained("MehdiHosseiniMoghadam/wav2vec2-large-xlsr-53-Georgian") model.to("cuda") chars_to_ignore_regex = '[\\,\\?\\.\\!\\-\\;\\:\\"\\“]' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 60.504024 % ## Training The Common Voice `train`, `validation` datasets were used for training.
{"language": "ka", "license": "apache-2.0", "tags": ["audio", "automatic-speech-recognition", "speech", "xlsr-fine-tuning-week"], "datasets": ["common_voice"], "model-index": [{"name": "wav2vec2-large-xlsr-53-Georgian by Mehdi Hosseini Moghadam", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice ka", "type": "common_voice", "args": "ka"}, "metrics": [{"type": "wer", "value": 60.504024, "name": "Test WER"}]}]}]}
automatic-speech-recognition
MehdiHosseiniMoghadam/wav2vec2-large-xlsr-53-Georgian
[ "transformers", "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "audio", "speech", "xlsr-fine-tuning-week", "ka", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:04+00:00
[]
[ "ka" ]
TAGS #transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #ka #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us
# wav2vec2-large-xlsr-53-Georgian Fine-tuned facebook/wav2vec2-large-xlsr-53 in Georgian using the Common Voice When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ## Evaluation The model can be evaluated as follows on the Georgian test data of Common Voice. Test Result: 60.504024 % ## Training The Common Voice 'train', 'validation' datasets were used for training.
[ "# wav2vec2-large-xlsr-53-Georgian \n\nFine-tuned facebook/wav2vec2-large-xlsr-53 in Georgian using the Common Voice\n\nWhen using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\n\nThe model can be used directly (without a language model) as follows:", "## Evaluation\n\nThe model can be evaluated as follows on the Georgian test data of Common Voice.\n\n\n\nTest Result: 60.504024 %", "## Training\n\nThe Common Voice 'train', 'validation' datasets were used for training." ]
[ "TAGS\n#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #ka #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us \n", "# wav2vec2-large-xlsr-53-Georgian \n\nFine-tuned facebook/wav2vec2-large-xlsr-53 in Georgian using the Common Voice\n\nWhen using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\n\nThe model can be used directly (without a language model) as follows:", "## Evaluation\n\nThe model can be evaluated as follows on the Georgian test data of Common Voice.\n\n\n\nTest Result: 60.504024 %", "## Training\n\nThe Common Voice 'train', 'validation' datasets were used for training." ]
[ 80, 63, 20, 31, 23 ]
[ "passage: TAGS\n#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #ka #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us \n# wav2vec2-large-xlsr-53-Georgian \n\nFine-tuned facebook/wav2vec2-large-xlsr-53 in Georgian using the Common Voice\n\nWhen using this model, make sure that your speech input is sampled at 16kHz.## Usage\n\nThe model can be used directly (without a language model) as follows:## Evaluation\n\nThe model can be evaluated as follows on the Georgian test data of Common Voice.\n\n\n\nTest Result: 60.504024 %## Training\n\nThe Common Voice 'train', 'validation' datasets were used for training." ]
[ -0.1441643238067627, 0.002212440362200141, -0.002644529100507498, -0.019960392266511917, 0.107213594019413, -0.044476594775915146, 0.16847947239875793, 0.07634612172842026, 0.04752425476908684, -0.0038065232802182436, 0.048704929649829865, 0.010684057138860226, 0.041051242500543594, 0.1159292683005333, 0.017991656437516212, -0.22971270978450775, -0.009277783334255219, 0.02000916376709938, 0.054558079689741135, 0.12595967948436737, 0.12539391219615936, -0.07559937238693237, 0.0020681768655776978, 0.08323968201875687, -0.18198512494564056, 0.04448658600449562, 0.06150713935494423, -0.09932046383619308, 0.13797405362129211, 0.028680607676506042, 0.02514280192553997, 0.03968259319663048, 0.06042472645640373, -0.21486006677150726, 0.016238708049058914, 0.03036542795598507, 0.04709070920944214, 0.006550053600221872, 0.022982420399785042, -0.00596593227237463, 0.0924152061343193, 0.06033993139863014, -0.029001226648688316, 0.08161680400371552, -0.07526563107967377, -0.2135535180568695, -0.0257498137652874, 0.010129299946129322, 0.07315336912870407, 0.14177455008029938, -0.07954234629869461, 0.07341025769710541, -0.1353578269481659, 0.11237812787294388, 0.09954436123371124, -0.20705454051494598, 0.0009504590416327119, 0.0649660974740982, 0.03395505249500275, 0.10005854815244675, -0.017246441915631294, 0.06815017759799957, 0.018525565043091774, 0.03445369377732277, 0.01695595122873783, -0.03024844266474247, -0.1676957905292511, -0.011390529572963715, -0.14854581654071808, -0.026803666725754738, 0.28308218717575073, -0.01554712001234293, -0.05413436517119408, -0.14185187220573425, 0.0027758218348026276, -0.005116856656968594, -0.001266731764189899, -0.06325070559978485, -0.01738237589597702, 0.037439923733472824, -0.015308686532080173, -0.07402289658784866, -0.1192852258682251, -0.15876980125904083, -0.030599471181631088, 0.15481717884540558, 0.023211654275655746, 0.02838881127536297, -0.10085701942443848, 0.06964637339115143, -0.14265176653862, -0.07211284339427948, 0.0011900045210495591, 0.024766987189650536, -0.06917106360197067, 0.02470209077000618, -0.08387476950883865, -0.18638990819454193, 0.03742963448166847, -0.041215721517801285, 0.0395999476313591, 0.025579020380973816, 0.022161444649100304, 0.05951721593737602, 0.026377186179161072, 0.12528450787067413, -0.020912883803248405, -0.05493645742535591, 0.008527449332177639, 0.009285284206271172, -0.06455577909946442, -0.011750446632504463, -0.06266850978136063, -0.06446091085672379, 0.014777085743844509, 0.04918525740504265, -0.0033525668550282717, 0.00856464821845293, -0.042500000447034836, -0.02992747165262699, -0.06604596227407455, -0.10080564767122269, -0.06632281094789505, 0.05133840814232826, 0.01431706640869379, 0.03393224626779556, 0.03374061733484268, 0.039128731936216354, -0.08046764135360718, -0.05930057540535927, 0.00891784392297268, 0.014718570746481419, 0.0038941276725381613, -0.062202222645282745, -0.023683875799179077, -0.08283967524766922, -0.011003934778273106, -0.08890877664089203, -0.1353897899389267, -0.06970901787281036, -0.004115247633308172, 0.04479040578007698, -0.052385617047548294, -0.059151791036129, -0.01593996398150921, -0.037821538746356964, -0.07332741469144821, 0.022139793261885643, -0.031062176451086998, 0.08249848335981369, 0.02596152387559414, 0.04055747389793396, 0.05263293907046318, 0.09143958985805511, -0.09528311342000961, -0.06123187020421028, 0.0023720930330455303, 0.1687544733285904, -0.035561129450798035, -0.05135422572493553, -0.07908374816179276, -0.0579952597618103, -0.052303463220596313, 0.08139190822839737, 0.048847492784261703, 0.107159323990345, -0.22768732905387878, -0.1274431049823761, 0.19633899629116058, -0.12693072855472565, -0.011793339625000954, 0.20856435596942902, 0.011778677813708782, 0.12533427774906158, 0.17881284654140472, 0.28579792380332947, 0.11106736212968826, -0.14664509892463684, 0.03635376691818237, -0.018090562894940376, -0.02902921847999096, -0.024808403104543686, 0.05605895444750786, -0.07690630853176117, -0.014971369877457619, 0.0545060969889164, -0.08416145294904709, 0.0800449326634407, -0.048500239849090576, -0.06584431976079941, -0.03389957919716835, -0.09808649867773056, 0.057130273431539536, 0.04747593030333519, 0.006894759833812714, -0.04658215492963791, -0.07306238263845444, -0.0011345477541908622, 0.1236116960644722, -0.1427399069070816, 0.037427790462970734, -0.12403161078691483, 0.09091601520776749, -0.032024282962083817, -0.018677961081266403, -0.1642899513244629, 0.17357227206230164, -0.002371602924540639, 0.056342996656894684, 0.07655806094408035, 0.12221293896436691, 0.0025902932975441217, 0.006546557880938053, -0.040183212608098984, -0.002708632033318281, -0.004347231704741716, -0.012398348189890385, -0.03707074746489525, -0.10839065164327621, 0.00976240448653698, -0.04755581170320511, 0.09288860857486725, -0.158117413520813, 0.0017652061069384217, 0.06948352605104446, 0.00957221444696188, 0.013091012835502625, -0.02704094909131527, 0.02948760613799095, 0.09352002292871475, 0.031247761100530624, 0.011481762863695621, 0.0574178621172905, -0.005351858679205179, -0.013857533223927021, 0.1306959092617035, -0.15018001198768616, -0.04351112246513367, 0.0848393663764, -0.03761063888669014, -0.020905746147036552, 0.06547724455595016, -0.012324904091656208, -0.016435321420431137, -0.03822479024529457, -0.0028069433756172657, 0.3081154525279999, -0.02287558652460575, 0.1032438799738884, -0.07858697324991226, 0.020827779546380043, 0.04575954005122185, -0.08789975941181183, 0.04319962486624718, 0.051727090030908585, -0.030660370364785194, -0.06378795206546783, 0.04408906027674675, -0.03860161080956459, -0.057106275111436844, 0.3198087811470032, -0.037072841078042984, -0.08850528299808502, -0.01795843616127968, -0.04874374344944954, -0.04506317898631096, 0.10848506540060043, -0.19171631336212158, -0.07248365134000778, 0.01960301399230957, 0.059608228504657745, 0.09113336354494095, -0.1315283626317978, 0.02972877211868763, 0.016820723190903664, -0.1276840716600418, -0.11197688430547714, 0.0895867571234703, -0.05461223050951958, 0.01853018067777157, -0.09472804516553879, -0.011673827655613422, 0.008282002992928028, -0.03764689713716507, -0.1557132452726364, 0.1448548287153244, -0.08170833438634872, -0.18698139488697052, -0.13063956797122955, -0.023497650399804115, 0.02220878377556801, 0.011522822082042694, 0.09280382096767426, -0.13381539285182953, -0.004900711588561535, -0.01879069209098816, 0.13061636686325073, -0.011811171658337116, -0.04732394963502884, -0.08098535984754562, 0.011410289444029331, 0.045565325766801834, -0.13001497089862823, -0.018423693254590034, -0.07188469171524048, -0.05495764687657356, 0.0034875678829848766, -0.04509804770350456, -0.024053294211626053, 0.17089127004146576, 0.032336872071027756, 0.03006899170577526, -0.023533454164862633, 0.1840745061635971, -0.12115157395601273, -0.05053691193461418, 0.21602989733219147, 0.009821617044508457, -0.019518613815307617, 0.09026831388473511, 0.01417978759855032, -0.05916876718401909, -0.009537904523313046, -0.01754281111061573, -0.07153134047985077, -0.23291699588298798, -0.16340287029743195, -0.07778596132993698, -0.03516865149140358, -0.03455570340156555, -0.0019810316152870655, 0.048585135489702225, 0.028521737083792686, 0.0018696788465604186, -0.13105301558971405, 0.05568751320242882, -0.008085435256361961, 0.21297165751457214, -0.03638485074043274, 0.09748125076293945, -0.0399622805416584, -0.004957987926900387, 0.03748347610235214, -0.009508892893791199, 0.21230842173099518, 0.07144292443990707, 0.09979818761348724, 0.11945030838251114, 0.10786353051662445, 0.11657829582691193, 0.02702486701309681, -0.01721932552754879, -0.012523679062724113, 0.028841452673077583, -0.055216364562511444, -0.04028834030032158, 0.011926649138331413, 0.15626642107963562, -0.08631949126720428, -0.04828868433833122, -0.030041111633181572, 0.010441338643431664, 0.2570742964744568, 0.09539388865232468, -0.1878242790699005, -0.10370082408189774, -0.03351171687245369, -0.0756090059876442, -0.011159049347043037, 0.048030756413936615, 0.1456059068441391, -0.1362600326538086, 0.002464988734573126, 0.0024335694033652544, 0.07638110965490341, -0.025919781997799873, 0.02713172324001789, -0.0806073546409607, 0.06216944009065628, 0.0068282922729849815, 0.08207680284976959, -0.20054931938648224, 0.24802850186824799, 0.02017076686024666, 0.12346257269382477, -0.046671535819768906, -0.005717175547033548, -0.0011447796132415533, 0.0920606330037117, 0.09306517988443375, 0.026735756546258926, 0.02559676207602024, -0.0989980697631836, -0.06330230832099915, 0.058417368680238724, 0.041486743837594986, -0.009138182736933231, 0.027491863816976547, -0.012228013016283512, 0.03632508963346481, 0.00793165061622858, -0.10333701223134995, -0.16262003779411316, -0.06533851474523544, 0.00686289370059967, 0.15249590575695038, 0.0994439572095871, -0.04201876372098923, -0.08553068339824677, -0.055860426276922226, 0.06399693340063095, -0.0782942846417427, -0.05970482900738716, -0.058034446090459824, -0.04544362425804138, 0.12326519936323166, -0.06469888985157013, 0.030032915994524956, 0.0851123183965683, 0.08320837467908859, -0.026991333812475204, -0.02801750972867012, 0.033664584159851074, -0.09864121675491333, -0.09518027305603027, -0.0031047589145600796, 0.18559576570987701, 0.15189123153686523, 0.04506811127066612, 0.06466621160507202, 0.02987709827721119, -0.03427441790699959, -0.03332888334989548, 0.017763342708349228, 0.07071749120950699, -0.07731208950281143, 0.08476400375366211, 0.027132853865623474, -0.20400308072566986, -0.14333680272102356, -0.05988922342658043, 0.1908249706029892, 0.10095382481813431, -0.0686933621764183, 0.17053711414337158, 0.2414495199918747, -0.08571545779705048, -0.18862657248973846, -0.02946224994957447, 0.1156768798828125, 0.15351620316505432, 0.022482533007860184, -0.21755990386009216, 0.06916892528533936, -0.022747065871953964, -0.03496905788779259, -0.04410171136260033, -0.22616885602474213, -0.13706570863723755, 0.17005915939807892, -0.04244580492377281, 0.16293111443519592, 0.01996939443051815, -0.01752961240708828, 0.025181910023093224, -0.03253800421953201, 0.04488193988800049, -0.06957241147756577, 0.14911368489265442, 0.01071619987487793, 0.08935583382844925, 0.05246790125966072, -0.015347960405051708, 0.08801337331533432, 0.05021602660417557, -0.027781391516327858, -0.009798528626561165, 0.04710793495178223, 0.09883391112089157, 0.034474849700927734, 0.1090029627084732, -0.06155887618660927, 0.05990147590637207, -0.09005937725305557, -0.10904794186353683, -0.10713455826044083, 0.05869695544242859, 0.033085841685533524, -0.052139732986688614, 0.015003475360572338, -0.015026235021650791, -0.009416023269295692, -0.003865110455080867, -0.08688540756702423, -0.15028950572013855, 0.03477940708398819, 0.14618752896785736, 0.1806173026561737, -0.06587056070566177, -0.16289232671260834, -0.032430049031972885, -0.03467092663049698, 0.10491890460252762, -0.10181645303964615, 0.022664252668619156, 0.05257834121584892, 0.05869857221841812, 0.12271048128604889, 0.009831918403506279, -0.12437523156404495, 0.07597566395998001, 0.051142580807209015, -0.07303882390260696, -0.12276391685009003, -0.04721909761428833, -0.10781322419643402, -0.024391936138272285, 0.04318580403923988, 0.11136911809444427, -0.07279308885335922, -0.01124264020472765, -0.03386533632874489, -0.01082065049558878, -0.1462864726781845, 0.21496431529521942, 0.03550022095441818, 0.05500747635960579, -0.09524790942668915, 0.03134208917617798, -0.017392585054039955, -0.003400935558602214, 0.020559918135404587, -0.024637427181005478, -0.08909614384174347, -0.05777870491147041, -0.07538603246212006, 0.024189485237002373, 0.05724359303712845, -0.11733365058898926, -0.05337706580758095, -0.11178703606128693, 0.002167054917663336, 0.0721702054142952, 0.06767416000366211, 0.013149089179933071, -0.15769924223423004, -0.04726609215140343, -0.10522885620594025, 0.06198769062757492, 0.09195493161678314, -0.04286089539527893, -0.1357395052909851, 0.17075549066066742, 0.0694129467010498, 0.06125884875655174, -0.05218891426920891, -0.09124834090471268, 0.01673106849193573, 0.09176415205001831, -0.04892822355031967, -0.05394408106803894, -0.044066399335861206, -0.005073520354926586, -0.01444985717535019, -0.08219120651483536, -0.04288807511329651, 0.08954691886901855, -0.09360891580581665, 0.057733017951250076, 0.003112413687631488, 0.0894002839922905, -0.044844452291727066, 0.03569401800632477, 0.0381290577352047, -0.05140738934278488, 0.10751038044691086, 0.12981799244880676, -0.08385587483644485, 0.1299971640110016, -0.13489829003810883, -0.05207419395446777, 0.044136736541986465, 0.060735344886779785, -0.04764506593346596, -0.1157996729016304, 0.02120046317577362, 0.07262023538351059, 0.06784167140722275, 0.007886262610554695, 0.09272044152021408, -0.060095421969890594, 0.002306518377736211, -0.032568175345659256, 0.011385494843125343, -0.044387709349393845, 0.026038680225610733, 0.032666366547346115, 0.1800675392150879, 0.16296319663524628, -0.0934198871254921, 0.09378941357135773, -0.12587185204029083, 0.019016698002815247, -0.0595785453915596, -0.048098739236593246, -0.07027022540569305, -0.061362188309431076, 0.07042206078767776, -0.037630267441272736, 0.16274654865264893, 0.019501324743032455, -0.00045495718950405717, -0.015399745665490627, -0.0632532387971878, 0.04780259355902672, -0.02239079959690571, 0.24774529039859772, 0.03480646014213562, 0.03690585494041443, -0.013809788040816784, 0.009990167804062366, -0.015958456322550774, 0.14284059405326843, -0.02903059683740139, 0.13143290579319, 0.016842780634760857, 0.052113406360149384, 0.09487329423427582, -0.03243279084563255, -0.04951680079102516, -0.019264088943600655, -0.15746580064296722, 0.0392037108540535, -0.05627495050430298, 0.16806229948997498, 0.16930042207241058, -0.0981898084282875, 0.10452745854854584, 0.03856457397341728, -0.10606967657804489, -0.16019339859485626, -0.12388106435537338, -0.05316486209630966, -0.14618019759655, 0.03271013870835304, -0.08627375215291977, 0.04445340111851692, 0.10322720557451248, 0.024217655882239342, -0.03810369223356247, 0.15644291043281555, 0.016378162428736687, -0.11035264283418655, 0.11248623579740524, -0.09481190145015717, -0.01943349279463291, -0.10492533445358276, 0.034573301672935486, 0.13814674317836761, -0.007782103959470987, 0.06163044646382332, -0.0029888388235121965, -0.10597103834152222, 0.020072996616363525, -0.08350367099046707, -0.05775122717022896, -0.027878260239958763, 0.001594716333784163, 0.09206859767436981, 0.08131563663482666, 0.08922415226697922, -0.08727779239416122, 0.014753805473446846, 0.15669217705726624, -0.019275827333331108, -0.17927852272987366, -0.11175018548965454, 0.14251084625720978, 0.0455542616546154, 0.012608828023076057, 0.002698408905416727, -0.034342534840106964, 0.005883956793695688, 0.21814236044883728, 0.23691891133785248, 0.07052499800920486, 0.04306311532855034, -0.013098825700581074, -0.01648508757352829, -0.04154222458600998, 0.07080460339784622, 0.021940240636467934, 0.2437591701745987, -0.004329994320869446, 0.06125875934958458, -0.1015743538737297, -0.07203400135040283, -0.027515703812241554, 0.022096488624811172, -0.021685680374503136, -0.10261119902133942, 0.0028708740137517452, 0.16030080616474152, -0.025779331102967262, -0.03738069534301758, -0.07068533450365067, -0.11560409516096115, -0.10215966403484344, -0.0166764073073864, 0.03743918612599373, 0.07701973617076874, 0.013733991421759129, -0.07930655032396317, 0.03788666054606438, 0.05116744711995125, -0.014365492388606071, -0.0790267363190651, -0.0702507346868515, 0.07827745378017426, -0.08003463596105576, 0.041925787925720215, -0.018216988071799278, 0.19742253422737122, 0.013982796110212803, 0.07189344614744186, -0.009863440878689289, 0.15897588431835175, -0.044792890548706055, -0.07337421923875809, 0.016280286014080048, 0.12281475216150284, -0.03798442333936691, 0.09633029252290726, 0.027834346517920494, -0.10660918802022934, 0.06790196150541306, -0.10512757301330566, -0.03206595405936241, -0.08147629350423813, 0.042167048901319504, -0.04564043879508972, 0.07694704085588455, 0.07606654614210129, -0.06460109353065491, -0.05864379182457924, -0.06489463895559311, 0.057738423347473145, 0.08352366834878922, -0.0006682543898932636, -0.044709522277116776, -0.2573160231113434, -0.011491588316857815, 0.007203813176602125, -0.04491428658366203, -0.1715744286775589, -0.049506742507219315, -0.0004724080499727279, -0.06616078317165375, 0.003942760173231363, 0.06161828711628914, 0.1167784184217453, 0.00810214038938284, 0.0068531460128724575, -0.048950452357530594, 0.02484579011797905, 0.12517806887626648, -0.20088039338588715, -0.11624648422002792 ]
null
null
transformers
# wav2vec2-large-xlsr-53-German Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) in German using the [Common Voice](https://huggingface.co/datasets/common_voice) When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "de", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("MehdiHosseiniMoghadam/wav2vec2-large-xlsr-53-German") model = Wav2Vec2ForCTC.from_pretrained("MehdiHosseiniMoghadam/wav2vec2-large-xlsr-53-German") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Czech test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "de", split="test[:15%]") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("MehdiHosseiniMoghadam/wav2vec2-large-xlsr-53-German") model = Wav2Vec2ForCTC.from_pretrained("MehdiHosseiniMoghadam/wav2vec2-large-xlsr-53-German") model.to("cuda") chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\%\‘\”\�]' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 25.284593 % ## Training 10% of the Common Voice `train`, `validation` datasets were used for training. ## Testing 15% of the Common Voice `Test` dataset were used for training.
{"language": "de", "license": "apache-2.0", "tags": ["audio", "automatic-speech-recognition", "speech", "xlsr-fine-tuning-week"], "datasets": ["common_voice"], "model-index": [{"name": "wav2vec2-large-xlsr-53-German by Mehdi Hosseini Moghadam", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice de", "type": "common_voice", "args": "de"}, "metrics": [{"type": "wer", "value": 25.284593, "name": "Test WER"}]}]}]}
automatic-speech-recognition
MehdiHosseiniMoghadam/wav2vec2-large-xlsr-53-German
[ "transformers", "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "audio", "speech", "xlsr-fine-tuning-week", "de", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:04+00:00
[]
[ "de" ]
TAGS #transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #de #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us
# wav2vec2-large-xlsr-53-German Fine-tuned facebook/wav2vec2-large-xlsr-53 in German using the Common Voice When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ## Evaluation The model can be evaluated as follows on the Czech test data of Common Voice. Test Result: 25.284593 % ## Training 10% of the Common Voice 'train', 'validation' datasets were used for training. ## Testing 15% of the Common Voice 'Test' dataset were used for training.
[ "# wav2vec2-large-xlsr-53-German\n\nFine-tuned facebook/wav2vec2-large-xlsr-53 in German using the Common Voice\n\nWhen using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\n\nThe model can be used directly (without a language model) as follows:", "## Evaluation\n\nThe model can be evaluated as follows on the Czech test data of Common Voice.\n\n\n\nTest Result: 25.284593 %", "## Training\n\n10% of the Common Voice 'train', 'validation' datasets were used for training.", "## Testing\n\n15% of the Common Voice 'Test' dataset were used for training." ]
[ "TAGS\n#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #de #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us \n", "# wav2vec2-large-xlsr-53-German\n\nFine-tuned facebook/wav2vec2-large-xlsr-53 in German using the Common Voice\n\nWhen using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\n\nThe model can be used directly (without a language model) as follows:", "## Evaluation\n\nThe model can be evaluated as follows on the Czech test data of Common Voice.\n\n\n\nTest Result: 25.284593 %", "## Training\n\n10% of the Common Voice 'train', 'validation' datasets were used for training.", "## Testing\n\n15% of the Common Voice 'Test' dataset were used for training." ]
[ 80, 60, 20, 29, 25, 18 ]
[ "passage: TAGS\n#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #de #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us \n# wav2vec2-large-xlsr-53-German\n\nFine-tuned facebook/wav2vec2-large-xlsr-53 in German using the Common Voice\n\nWhen using this model, make sure that your speech input is sampled at 16kHz.## Usage\n\nThe model can be used directly (without a language model) as follows:## Evaluation\n\nThe model can be evaluated as follows on the Czech test data of Common Voice.\n\n\n\nTest Result: 25.284593 %## Training\n\n10% of the Common Voice 'train', 'validation' datasets were used for training.## Testing\n\n15% of the Common Voice 'Test' dataset were used for training." ]
[ -0.15585589408874512, 0.0066885510459542274, -0.0022283303551375866, -0.015009536407887936, 0.06423494964838028, -0.010485803708434105, 0.168673574924469, 0.1124739795923233, 0.05134425312280655, 0.0228732842952013, 0.03808658942580223, -0.0019259635591879487, 0.001258129603229463, 0.051056016236543655, 0.013503205962479115, -0.10789313167333603, 0.03436298295855522, 0.00867515616118908, 0.054934605956077576, 0.11280886083841324, 0.10218163579702377, -0.08008237928152084, -0.04020556062459946, 0.09621347486972809, -0.1303023099899292, 0.04405543953180313, 0.06272269785404205, -0.08957082778215408, 0.17527346312999725, 0.05303875729441643, 0.057128746062517166, 0.018622776493430138, 0.047028880566358566, -0.1856076568365097, 0.0044466168619692326, 0.005227420013397932, 0.006292772013694048, 0.011864564381539822, 0.062366195023059845, -0.030475275591015816, 0.10503757745027542, 0.06848298758268356, -0.012261344119906425, 0.07032336294651031, -0.013789492659270763, -0.2028331756591797, -0.029750430956482887, -0.00010073483281303197, 0.06706026196479797, 0.15269812941551208, -0.07321992516517639, 0.1572308987379074, -0.1697191745042801, 0.11050355434417725, 0.09139057993888855, -0.195161372423172, -0.01098098885267973, 0.12127583473920822, 0.048865046352148056, 0.0634467601776123, -0.04413114860653877, 0.035377137362957, 0.07570425420999527, 0.04874732345342636, -0.05880381911993027, -0.023289183154702187, -0.1325378268957138, -0.03116774931550026, -0.15467719733715057, -0.07951326668262482, 0.20713475346565247, -0.015797141939401627, -0.07844570279121399, -0.15173554420471191, 0.017090389505028725, 0.01853696070611477, 0.03575630486011505, -0.056948963552713394, -0.012256314046680927, -0.02598113939166069, -0.0028506279923021793, -0.022517530247569084, -0.10480386763811111, -0.15196295082569122, 0.03700827807188034, 0.10899565368890762, 0.023322362452745438, -0.011144285090267658, -0.04415528103709221, 0.07930180430412292, -0.1125156432390213, -0.047305069863796234, -0.018439900130033493, 0.0477859191596508, -0.09309002757072449, -0.013489496894180775, -0.12245428562164307, -0.2238507866859436, 0.08810137957334518, 0.007752621546387672, 0.05799494683742523, 0.025602975860238075, -0.04498722404241562, 0.044706594198942184, 0.03775729611515999, 0.1329861879348755, -0.05346936360001564, 0.012358338572084904, -0.014464100822806358, -0.0027685484383255243, -0.05141144618391991, -0.006454958580434322, -0.07069889456033707, -0.0743330866098404, 0.10111608356237411, 0.06866804510354996, -0.03370899334549904, -0.021926680579781532, -0.021167375147342682, -0.018292760476469994, -0.0037097905296832323, -0.106599822640419, -0.03642144054174423, 0.07147692888975143, 0.01117283757776022, 0.07189527899026871, 0.0014790043933317065, 0.01828720234334469, -0.07531130313873291, 0.01498141698539257, 0.03103036992251873, 0.028856787830591202, -0.04741780832409859, -0.13371163606643677, 0.031128855422139168, -0.010921506211161613, -0.0074713872745633125, -0.06840803474187851, -0.04265109449625015, -0.11006640642881393, 0.0016626430442556739, 0.047674551606178284, -0.015125655569136143, -0.1011374294757843, -0.05569898709654808, -0.0014489928726106882, -0.04695374518632889, 0.04505998641252518, -0.03200732544064522, 0.07134642452001572, 0.00390411214902997, 0.0014449338195845485, 0.06972391903400421, 0.040500737726688385, -0.10632479935884476, -0.06313767284154892, -0.022791864350438118, 0.12637683749198914, -0.11259786039590836, -0.10102322697639465, -0.05332687869668007, -0.08283944427967072, 0.017207609489560127, 0.0656261071562767, 0.0758552998304367, 0.1107654795050621, -0.24535776674747467, -0.09081373363733292, 0.19713541865348816, -0.1490175426006317, -0.02359027974307537, 0.23490384221076965, -0.01573794148862362, 0.04952635616064072, 0.13305212557315826, 0.22985605895519257, 0.16762226819992065, -0.2139257788658142, -0.02695796638727188, 0.0018577304435893893, 0.009341929107904434, 0.009244688786566257, 0.07893037050962448, -0.073536716401577, -0.04979832470417023, 0.021218013018369675, -0.11483904719352722, 0.05880219116806984, -0.03155948594212532, -0.04678162559866905, -0.03241147845983505, -0.07029406726360321, 0.12356503307819366, 0.06592081487178802, -0.012434015050530434, -0.08832502365112305, -0.0861784964799881, 0.11084900051355362, 0.13318121433258057, -0.13500161468982697, 0.029804585501551628, -0.08341870456933975, 0.09688331186771393, -0.12947694957256317, -0.03635876998305321, -0.15489605069160461, 0.12268699705600739, 0.02154877968132496, -0.048694808036088943, 0.0648217499256134, 0.24141190946102142, 0.04848286882042885, -0.005802650470286608, -0.06289846450090408, -0.029069053009152412, -0.07733046263456345, -0.022140836343169212, -0.024874115362763405, -0.14028196036815643, -0.023391686379909515, -0.06794717162847519, 0.10907652229070663, -0.10027418285608292, -0.021775880828499794, 0.023578831925988197, 0.02287670224905014, -0.042004283517599106, -0.0175909623503685, 0.03135975822806358, 0.09282837808132172, 0.011062338016927242, 0.024539943784475327, 0.022554852068424225, 0.013100088573992252, -0.04339653253555298, 0.106849804520607, -0.08308382332324982, -0.03409101068973541, 0.09650914371013641, -0.014425234869122505, -0.043269820511341095, 0.06982426345348358, -0.04846717044711113, -0.0023436816409230232, -0.07839309424161911, -0.05332665145397186, 0.28611239790916443, -0.01951497048139572, 0.05260668694972992, -0.1088128387928009, -0.02462429739534855, 0.04279765114188194, -0.07635798305273056, 0.038761336356401443, 0.09573866426944733, -0.024390850216150284, 0.015521720983088017, 0.05545966327190399, -0.08189225941896439, -0.14420172572135925, 0.2355007380247116, -0.03616446629166603, -0.11078030616044998, 0.014456222765147686, 0.0036169500090181828, -0.02164631523191929, 0.1457928568124771, -0.19468267261981964, -0.012217513285577297, 0.03864618018269539, 0.07796120643615723, 0.08300711959600449, -0.11628606915473938, 0.03367096558213234, 0.003942269831895828, -0.13308383524417877, -0.13331426680088043, 0.074671670794487, -0.03926418349146843, 0.04457248002290726, -0.09678702801465988, -0.03893015906214714, 0.0005714731523767114, -0.04317336156964302, -0.19201521575450897, 0.12250372767448425, -0.0824640542268753, -0.2067791372537613, -0.13212351500988007, 0.11200141906738281, -0.035858385264873505, 0.0032905531115829945, 0.10455940663814545, -0.13173066079616547, -0.006888265255838633, 0.000283747969660908, 0.06310819834470749, 0.005135651212185621, -0.03383273258805275, -0.09948375821113586, -0.0014785437379032373, 0.08570527285337448, -0.14731130003929138, 0.009650788269937038, -0.04388773813843727, -0.04684413596987724, -0.006250557955354452, 0.005526302382349968, 0.04191228374838829, 0.14338050782680511, -0.014026673510670662, 0.002381646540015936, -0.02822243981063366, 0.167987659573555, -0.142061248421669, -0.059925906360149384, 0.14925815165042877, -0.016749201342463493, -0.06431141495704651, 0.049412138760089874, 0.010721098631620407, -0.05142604187130928, -0.023714996874332428, 0.0033071041107177734, -0.05127537250518799, -0.27754321694374084, -0.15797699987888336, -0.0593997947871685, -0.04030830040574074, -0.03237752988934517, -0.003252423135563731, 0.08004899322986603, 0.0009688876452855766, -0.033908043056726456, -0.13798728585243225, 0.0287387203425169, -0.01581120304763317, 0.15937508642673492, -0.011307044886052608, 0.07720305770635605, -0.05083547905087471, -0.024500465020537376, 0.006938342936336994, -0.013844678178429604, 0.1132630780339241, 0.028061896562576294, 0.03846390172839165, 0.08212790638208389, 0.12532585859298706, 0.06150796264410019, 0.09099817276000977, -0.051346126943826675, 0.0019995244219899178, 0.047644827514886856, -0.06719765067100525, -0.04314912483096123, 0.010773301124572754, 0.1563001424074173, -0.03613371402025223, -0.06048513948917389, -0.07146827131509781, 0.06650762259960175, 0.20325078070163727, 0.09903062880039215, -0.09989575296640396, -0.1291608363389969, -0.08542661368846893, -0.08618282526731491, -0.024989377707242966, 0.020966924726963043, 0.17912963032722473, -0.15417881309986115, 0.027694227173924446, -0.018047435209155083, 0.07844643294811249, 0.03813396766781807, 0.028461506590247154, -0.07938286662101746, 0.007947131991386414, 0.0049314945936203, 0.14137552678585052, -0.3512181043624878, 0.21501421928405762, 0.007297624833881855, 0.11987486481666565, -0.08586618304252625, 0.0032748356461524963, -0.00846889428794384, -0.004869008902460337, 0.12302938103675842, 0.014423749409615993, 0.06848973780870438, -0.02616661787033081, -0.07142768055200577, 0.07665543258190155, -0.009903146885335445, 0.05356863886117935, 0.04361580312252045, 0.019629180431365967, 0.017100609838962555, 0.005462631117552519, -0.0511195994913578, -0.12544924020767212, -0.040177103132009506, 0.019306758418679237, 0.0717640295624733, 0.03292160853743553, -0.012197373434901237, -0.12074296921491623, -0.16290202736854553, 0.08009170740842819, -0.10218394547700882, -0.02937283180654049, -0.05760936811566353, -0.030867932364344597, 0.15233400464057922, -0.04741280525922775, 0.025594662874937057, 0.08196346461772919, 0.12304611504077911, -0.07367904484272003, 0.00005565658284467645, 0.022335220128297806, -0.11749472469091415, -0.13200974464416504, 0.021740281954407692, 0.19544416666030884, 0.09412406384944916, 0.11727979779243469, 0.05727526172995567, 0.03335113078355789, 0.00933083239942789, -0.05320708453655243, 0.009778451174497604, 0.03815986588597298, -0.15755076706409454, 0.043476175516843796, 0.029874734580516815, -0.1597646176815033, -0.12369838356971741, -0.04015912115573883, 0.17475053668022156, 0.10752792656421661, -0.0708012729883194, 0.15244393050670624, 0.16234029829502106, -0.10291123390197754, -0.20701079070568085, 0.035567231476306915, 0.12250646948814392, 0.15435752272605896, -0.024070875719189644, -0.14264865219593048, 0.0519363097846508, 0.010377606377005577, -0.044907424598932266, -0.07973939925432205, -0.22270555794239044, -0.15164321660995483, 0.13993126153945923, -0.04690467193722725, 0.056718043982982635, 0.04455779492855072, -0.011326046660542488, -0.003106145653873682, 0.016912467777729034, -0.053071871399879456, -0.07680109143257141, 0.09759785979986191, 0.042489245533943176, 0.05112028494477272, 0.08239065855741501, -0.061118606477975845, 0.11340803653001785, 0.06616879254579544, -0.000023336770027526654, 0.010864273644983768, 0.06868980824947357, 0.020848577842116356, 0.04237490892410278, 0.16714735329151154, -0.10378049314022064, 0.0700656846165657, -0.06924322247505188, -0.0872715562582016, -0.09368758648633957, 0.11861913651227951, -0.013038688339293003, -0.03980930894613266, -0.0033535510301589966, 0.000803071481641382, 0.014425083063542843, 0.00027277544722892344, -0.057340700179338455, -0.1496070921421051, 0.07132596522569656, 0.09981835633516312, 0.2227049618959427, -0.008116430602967739, -0.08024413883686066, 0.03641868755221367, -0.03274102509021759, 0.11281920969486237, -0.04088996350765228, 0.05056343227624893, 0.11186882853507996, 0.07386571913957596, 0.10187399387359619, -0.016047053039073944, -0.14479829370975494, 0.052382998168468475, 0.008084917441010475, -0.09055466204881668, -0.13101787865161896, -0.017140312120318413, -0.06345508992671967, -0.049123600125312805, 0.04109140858054161, 0.12712694704532623, -0.10610738396644592, -0.016919689252972603, -0.03117048740386963, -0.023194503039121628, -0.13760389387607574, 0.251132994890213, -0.0000689367443555966, 0.08753263205289841, -0.10590342432260513, 0.0011849335860460997, -0.03255414590239525, -0.0986502468585968, 0.07551050931215286, -0.08647415041923523, -0.06003161147236824, -0.046774640679359436, 0.04525083675980568, 0.1411752849817276, 0.015031839720904827, -0.11872804909944534, -0.1201251670718193, -0.09657914936542511, -0.010159405879676342, 0.1381394863128662, 0.09754256904125214, 0.018198072910308838, -0.0655880868434906, -0.04390563443303108, -0.13381995260715485, 0.0891161859035492, 0.07846991717815399, -0.014500248245894909, -0.09822190552949905, 0.2105317860841751, 0.06161271408200264, 0.022899862378835678, -0.04945380985736847, -0.029712509363889694, -0.011309731751680374, 0.0826907604932785, -0.12205974757671356, -0.04568548500537872, -0.011727132834494114, 0.01655334234237671, 0.02018698677420616, -0.07472776621580124, 0.004574144724756479, 0.0773765817284584, -0.10235583782196045, 0.07001473754644394, -0.010281850583851337, 0.054267652332782745, -0.07868016511201859, 0.05642665922641754, 0.01621355302631855, -0.06989573687314987, 0.09158078581094742, 0.13739986717700958, -0.07080993801355362, 0.15079809725284576, -0.18283812701702118, -0.025948721915483475, 0.03977225348353386, 0.08446836471557617, -0.02062949724495411, -0.14049194753170013, 0.04395408183336258, 0.12149936705827713, 0.058791954070329666, 0.034793395549058914, 0.047695621848106384, -0.03425401821732521, 0.03060493804514408, -0.013439251109957695, -0.038378871977329254, -0.03285848721861839, 0.05857030674815178, 0.05932852253317833, 0.12201453745365143, 0.18423978984355927, -0.10952568799257278, 0.13066180050373077, -0.106802798807621, -0.003831173526123166, -0.0599924772977829, 0.004784089513123035, -0.1615799367427826, -0.04012858867645264, 0.07423566281795502, -0.04607783630490303, 0.1423334777355194, 0.01648581214249134, 0.0846191868185997, -0.005860795732587576, -0.08817709237337112, 0.03513946384191513, -0.0006394952652044594, 0.1899959146976471, -0.007279624231159687, 0.04278635233640671, -0.04457128047943115, -0.00739274313673377, -0.057577550411224365, 0.06680341809988022, -0.0016982833622023463, 0.16729429364204407, 0.01554157119244337, 0.05314154922962189, 0.140358105301857, -0.06675949692726135, -0.028394997119903564, -0.03988659009337425, -0.09198042750358582, 0.05708973482251167, -0.0273039061576128, 0.20245589315891266, 0.11047663539648056, -0.1352403461933136, 0.13991491496562958, -0.01623261719942093, -0.07373381406068802, -0.12485195696353912, -0.052492495626211166, -0.06995893269777298, -0.15681461989879608, 0.03347669914364815, -0.09800156950950623, -0.009458470158278942, 0.02680785395205021, 0.059695206582546234, -0.05709346383810043, 0.19605667889118195, -0.03312045335769653, -0.07217874377965927, 0.0856323391199112, -0.08116109669208527, 0.008071823045611382, -0.10267028957605362, 0.014320919290184975, 0.158119335770607, 0.012743161991238594, 0.05285770446062088, -0.010372396558523178, -0.04863327369093895, -0.011559348553419113, -0.05722947046160698, -0.05377824231982231, 0.024850260466337204, -0.03667900711297989, 0.12042561918497086, 0.1691301167011261, 0.09345186501741409, -0.044989850372076035, -0.024722103029489517, 0.08161294460296631, -0.03519851341843605, -0.18791599571704865, -0.182241752743721, 0.17666803300380707, -0.009548920206725597, 0.03794853389263153, 0.008561977185308933, -0.024990657344460487, 0.025510916486382484, 0.20205141603946686, 0.19303694367408752, 0.08909496665000916, 0.021599216386675835, -0.005328428465873003, -0.016456197947263718, -0.0027631826233118773, 0.016862653195858, 0.01585712842643261, 0.23126603662967682, -0.01670769415795803, 0.043213170021772385, -0.10079319030046463, -0.047190193086862564, 0.07225547730922699, 0.04610683023929596, -0.05095560476183891, -0.138495072722435, -0.006327011622488499, 0.1517946869134903, 0.001492081442847848, -0.12166588753461838, -0.10572822391986847, -0.08624047785997391, -0.10620594024658203, -0.003335843561217189, 0.0625983327627182, 0.07892481237649918, 0.02540123648941517, -0.0637926533818245, 0.024024777114391327, 0.1087588220834732, -0.018144521862268448, -0.013463077135384083, -0.11558666080236435, 0.049828894436359406, -0.06452075392007828, 0.0498732328414917, 0.026617994531989098, 0.2109435647726059, 0.05697767809033394, 0.08152766525745392, -0.02013971284031868, 0.10784418135881424, 0.02781633473932743, -0.14135976135730743, 0.04410514608025551, 0.1251249760389328, -0.013878479599952698, 0.15095366537570953, 0.02455000951886177, -0.14342691004276276, 0.06905531138181686, -0.11768360435962677, -0.006392763927578926, -0.11522074788808823, 0.1252397745847702, -0.04097820445895195, 0.0827799141407013, 0.15148106217384338, -0.05928337574005127, -0.03128618746995926, -0.08534406870603561, 0.07588636130094528, 0.03741594776511192, -0.01177595928311348, -0.04485606029629707, -0.28294384479522705, 0.03261043131351471, -0.12262322753667831, -0.08406203240156174, -0.18413370847702026, -0.03488295525312424, 0.04605187103152275, -0.088078074157238, 0.02644163742661476, 0.017825845628976822, 0.05095846951007843, 0.014904821291565895, 0.014231192879378796, 0.04339366778731346, 0.038236167281866074, 0.11426673829555511, -0.1218864694237709, -0.09778782725334167 ]
null
null
transformers
# wav2vec2-large-xlsr-53-Swedish Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) in Swedish using the [Common Voice](https://huggingface.co/datasets/common_voice) When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "sv-SE", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("MehdiHosseiniMoghadam/wav2vec2-large-xlsr-53-Swedish") model = Wav2Vec2ForCTC.from_pretrained("MehdiHosseiniMoghadam/wav2vec2-large-xlsr-53-Swedish") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Swedish test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "sv-SE", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("MehdiHosseiniMoghadam/wav2vec2-large-xlsr-53-Swedish") model = Wav2Vec2ForCTC.from_pretrained("MehdiHosseiniMoghadam/wav2vec2-large-xlsr-53-Swedish") model.to("cuda") chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“]' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 41.388337 % ## Training The Common Voice `train`, `validation` datasets were used for training.
{"language": "sv-SE", "license": "apache-2.0", "tags": ["audio", "automatic-speech-recognition", "speech", "xlsr-fine-tuning-week"], "datasets": ["common_voice"], "model-index": [{"name": "wav2vec2-large-xlsr-53-Swedish by Mehdi Hosseini Moghadam", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice sv-SE", "type": "common_voice", "args": "sv-SE"}, "metrics": [{"type": "wer", "value": 41.388337, "name": "Test WER"}]}]}]}
automatic-speech-recognition
MehdiHosseiniMoghadam/wav2vec2-large-xlsr-53-Swedish
[ "transformers", "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "audio", "speech", "xlsr-fine-tuning-week", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:04+00:00
[]
[ "sv-SE" ]
TAGS #transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us
# wav2vec2-large-xlsr-53-Swedish Fine-tuned facebook/wav2vec2-large-xlsr-53 in Swedish using the Common Voice When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ## Evaluation The model can be evaluated as follows on the Swedish test data of Common Voice. Test Result: 41.388337 % ## Training The Common Voice 'train', 'validation' datasets were used for training.
[ "# wav2vec2-large-xlsr-53-Swedish\n\nFine-tuned facebook/wav2vec2-large-xlsr-53 in Swedish using the Common Voice\n\nWhen using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\n\nThe model can be used directly (without a language model) as follows:", "## Evaluation\n\nThe model can be evaluated as follows on the Swedish test data of Common Voice.\n\n\n\nTest Result: 41.388337 %", "## Training\n\nThe Common Voice 'train', 'validation' datasets were used for training." ]
[ "TAGS\n#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us \n", "# wav2vec2-large-xlsr-53-Swedish\n\nFine-tuned facebook/wav2vec2-large-xlsr-53 in Swedish using the Common Voice\n\nWhen using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\n\nThe model can be used directly (without a language model) as follows:", "## Evaluation\n\nThe model can be evaluated as follows on the Swedish test data of Common Voice.\n\n\n\nTest Result: 41.388337 %", "## Training\n\nThe Common Voice 'train', 'validation' datasets were used for training." ]
[ 78, 62, 20, 29, 23 ]
[ "passage: TAGS\n#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us \n# wav2vec2-large-xlsr-53-Swedish\n\nFine-tuned facebook/wav2vec2-large-xlsr-53 in Swedish using the Common Voice\n\nWhen using this model, make sure that your speech input is sampled at 16kHz.## Usage\n\nThe model can be used directly (without a language model) as follows:## Evaluation\n\nThe model can be evaluated as follows on the Swedish test data of Common Voice.\n\n\n\nTest Result: 41.388337 %## Training\n\nThe Common Voice 'train', 'validation' datasets were used for training." ]
[ -0.1442115753889084, 0.010296936146914959, -0.002093652496114373, -0.011268951930105686, 0.08602942526340485, -0.08244416862726212, 0.12096956372261047, 0.06103392317891121, -0.014797795563936234, -0.012657328508794308, 0.03588803857564926, 0.03860867768526077, 0.057375889271497726, 0.07248369604349136, -0.0035798647440969944, -0.2552664875984192, 0.03563883900642395, -0.00320234801620245, 0.08748327940702438, 0.1090087741613388, 0.11590494960546494, -0.055797185748815536, -0.03570812940597534, 0.0993218719959259, -0.0896838903427124, 0.03165263682603836, 0.05516340211033821, -0.10483954101800919, 0.16016961634159088, 0.07516633719205856, 0.05335640534758568, 0.07878736406564713, 0.08985032886266708, -0.15872031450271606, 0.01850489340722561, -0.013914222829043865, 0.041172973811626434, 0.010201307013630867, 0.05268673226237297, 0.02728082798421383, 0.10938768833875656, 0.09329139441251755, -0.02973901852965355, 0.05795983597636223, 0.0017390918219462037, -0.24360817670822144, -0.013920377008616924, 0.025201233103871346, 0.09512181580066681, 0.1257922351360321, -0.07175312936306, 0.0728176012635231, -0.1383036971092224, 0.10464759916067123, 0.1034696102142334, -0.21194913983345032, -0.004946521949023008, 0.13178953528404236, 0.07520213723182678, 0.08633216470479965, -0.0468006432056427, 0.06204996630549431, 0.026443734765052795, 0.05557706207036972, 0.05112629011273384, -0.05316116660833359, -0.15564611554145813, -0.03485265374183655, -0.14785289764404297, 0.018097758293151855, 0.20867785811424255, -0.005381583236157894, -0.06473611295223236, -0.14929041266441345, 0.014709003269672394, 0.037497252225875854, -0.005155516322702169, -0.10239487141370773, 0.018001604825258255, 0.001189532340504229, -0.0055305734276771545, -0.07957378029823303, -0.11244580149650574, -0.1243349239230156, -0.010105395689606667, 0.07531917095184326, 0.007282462902367115, 0.006447147112339735, -0.05260832607746124, 0.03285212814807892, -0.12775960564613342, -0.03676479309797287, -0.03757394850254059, 0.002272313693538308, -0.07795576006174088, 0.011745109222829342, -0.10276912152767181, -0.24473077058792114, 0.04201946407556534, -0.05446748808026314, 0.026767103001475334, 0.006925453431904316, -0.00937007088214159, 0.08086208999156952, 0.03112691268324852, 0.14831030368804932, -0.08882281184196472, -0.06045101210474968, 0.018973231315612793, -0.017441637814044952, -0.037022992968559265, -0.026525234803557396, -0.09539755433797836, -0.09939519315958023, 0.06155543029308319, 0.026244988664984703, -0.06707414984703064, 0.018390625715255737, -0.017701005563139915, -0.0369131825864315, -0.0283307246863842, -0.11129945516586304, -0.04726564511656761, 0.04918873310089111, 0.006943505257368088, 0.12229298800230026, 0.07056926190853119, 0.048109155148267746, -0.09680263698101044, 0.005700965877622366, 0.036513738334178925, 0.03994601592421532, 0.01635388284921646, -0.11036995053291321, 0.010590150021016598, -0.05900442972779274, -0.015451867133378983, -0.0951933041214943, -0.05800790712237358, -0.09895975142717361, 0.0025264949072152376, 0.03775852546095848, -0.068018339574337, -0.12117872387170792, -0.023541681468486786, -0.038237571716308594, -0.09529857337474823, 0.04410359263420105, -0.0334232896566391, 0.042601075023412704, -0.027799617499113083, 0.05906780809164047, -0.015587027184665203, 0.0799325555562973, -0.09590157866477966, -0.053731583058834076, -0.05461079627275467, 0.15246528387069702, -0.09751609712839127, -0.07542892545461655, -0.08440737426280975, -0.09898269176483154, -0.007411160971969366, 0.0982474759221077, 0.04060203582048416, 0.07784122228622437, -0.21593405306339264, -0.11240419000387192, 0.20043374598026276, -0.14665380120277405, -0.013471163809299469, 0.18169444799423218, 0.017742792144417763, 0.10022445023059845, 0.17252734303474426, 0.2542235553264618, 0.11462369561195374, -0.16356277465820312, 0.03984508663415909, 0.06047409400343895, -0.04720030352473259, -0.07907338440418243, 0.06099657714366913, -0.0664854571223259, -0.026030566543340683, 0.049337469041347504, -0.06984730064868927, 0.04654887318611145, -0.008364979177713394, -0.057680487632751465, -0.0000579670122533571, -0.09341279417276382, 0.046833787113428116, 0.038239531219005585, 0.01648956537246704, -0.024309638887643814, -0.03554624691605568, 0.10056484490633011, 0.07752461731433868, -0.13263669610023499, 0.06590376049280167, -0.07956293225288391, 0.05053047463297844, -0.09387000650167465, -0.013826071284711361, -0.13323961198329926, 0.1225382387638092, -0.05267661437392235, 0.05153631046414375, 0.07817594707012177, 0.2301611304283142, 0.024271853268146515, 0.007436957210302353, -0.05463426932692528, -0.0020842174999415874, 0.020058484748005867, -0.015770208090543747, -0.030681200325489044, -0.08975875377655029, -0.03048746846616268, -0.05734894052147865, 0.061384402215480804, -0.11617512255907059, -0.03623715788125992, 0.007751997094601393, -0.012897309847176075, -0.010491223074495792, -0.0014554867520928383, 0.07940179854631424, 0.09782155603170395, 0.04910122603178024, 0.03651726245880127, 0.07066158950328827, -0.0017409060383215547, -0.12786038219928741, 0.17758604884147644, -0.07553096860647202, 0.01010935939848423, 0.08317281305789948, -0.073795385658741, -0.013681055046617985, 0.028879543766379356, -0.01200894545763731, -0.011186455376446247, -0.07288727164268494, -0.026648355647921562, 0.29674839973449707, 0.03111668862402439, 0.10557867586612701, -0.09812231361865997, 0.025660507380962372, 0.03022531419992447, -0.10906630754470825, 0.04179289937019348, 0.08425480127334595, 0.0008467299630865455, -0.007849430665373802, 0.0036563605535775423, -0.09280651807785034, -0.12180927395820618, 0.27622511982917786, -0.006671953946352005, -0.08654466271400452, 0.04723425209522247, -0.055414631962776184, -0.04432385042309761, 0.05910240858793259, -0.14413897693157196, -0.037478141486644745, 0.047059327363967896, 0.05893952026963234, 0.07587967813014984, -0.12145770341157913, 0.010857551358640194, 0.010464847087860107, -0.1393725872039795, -0.13028451800346375, 0.07937077432870865, -0.04584392532706261, 0.01594870537519455, -0.08921722322702408, -0.10650145262479782, 0.018921706825494766, -0.04380034655332565, -0.17085453867912292, 0.13004069030284882, -0.06383523344993591, -0.2541484236717224, -0.1575699895620346, 0.032084859907627106, -0.03250724822282791, 0.01743142120540142, 0.10247873514890671, -0.09891616553068161, -0.02766759879887104, -0.039146922528743744, 0.10955578833818436, 0.030760133638978004, -0.053698472678661346, -0.09053649008274078, -0.003490971401333809, 0.07120228558778763, -0.15297512710094452, -0.001651126891374588, -0.07411865890026093, -0.06963247805833817, -0.008707435801625252, -0.013295214623212814, 0.0013743212912231684, 0.1703261137008667, 0.03361254185438156, 0.01795872487127781, -0.014898435212671757, 0.17485740780830383, -0.06219387799501419, -0.024429690092802048, 0.17936904728412628, -0.010105075314640999, -0.0062105548568069935, 0.11370550096035004, 0.030581258237361908, -0.03660821542143822, -0.03955830633640289, 0.008197559975087643, -0.08505100011825562, -0.2312193512916565, -0.13505882024765015, -0.03820177912712097, -0.03530149534344673, -0.04688401147723198, 0.005412358324974775, 0.01395085733383894, 0.034107621759176254, 0.019245000556111336, -0.14228364825248718, 0.05539942905306816, -0.020595137029886246, 0.13284987211227417, -0.03426136448979378, 0.12086254358291626, -0.030185317620635033, -0.006888851057738066, 0.011600365862250328, 0.01958394981920719, 0.11321645975112915, 0.04677224159240723, 0.030356217175722122, 0.09201907366514206, 0.09929036349058151, 0.08716084063053131, 0.09213573485612869, -0.049467284232378006, -0.02128894440829754, 0.02549605816602707, -0.054719503968954086, -0.06958191096782684, 0.03023420460522175, 0.14468175172805786, -0.04952697828412056, -0.038031212985515594, -0.018920494243502617, 0.008335295133292675, 0.2113831341266632, 0.06849123537540436, -0.15059906244277954, -0.09852864593267441, -0.04120301082730293, -0.10710054636001587, 0.013297803699970245, 0.05612026900053024, 0.14202481508255005, -0.15315383672714233, 0.05592717230319977, -0.013121714815497398, 0.09847951680421829, 0.0052168723195791245, 0.039898596704006195, -0.10066487640142441, 0.049310069531202316, 0.020651182159781456, 0.09320768713951111, -0.19666001200675964, 0.21661140024662018, -0.011482618749141693, 0.11324819922447205, -0.045372940599918365, -0.007510110270231962, -0.004849953111261129, 0.12368995696306229, 0.1479635089635849, 0.03926710784435272, 0.017517579719424248, -0.06138138100504875, -0.052839428186416626, 0.06541478633880615, -0.03747246041893959, 0.02199970744550228, 0.03017411008477211, 0.01584394834935665, 0.00883146096020937, -0.02644134685397148, -0.026801984757184982, -0.09159743040800095, -0.02378624863922596, 0.000279516534646973, 0.1386757493019104, 0.12116336077451706, -0.018132012337446213, -0.09753027558326721, -0.1912749707698822, 0.09675373136997223, -0.07671051472425461, -0.10003361850976944, -0.06546980887651443, -0.050153739750385284, 0.07773053646087646, -0.06030816584825516, -0.010619165375828743, 0.09574321657419205, 0.10523858666419983, -0.08104212582111359, -0.000018703611203818582, 0.0495312474668026, -0.09164620190858841, -0.08262511342763901, 0.04151535406708717, 0.1956200748682022, 0.09820917993783951, 0.06769626587629318, 0.08517872542142868, 0.010746389627456665, 0.01041189581155777, -0.06074352189898491, 0.006984149105846882, 0.1001671850681305, -0.11839154362678528, 0.009103379212319851, 0.043195102363824844, -0.16214823722839355, -0.0967816486954689, -0.021728532388806343, 0.2039649933576584, 0.07116203755140305, -0.05952192842960358, 0.21194738149642944, 0.2508593797683716, -0.07165546715259552, -0.2366499900817871, -0.052199553698301315, 0.12360770255327225, 0.12408127635717392, 0.02421783283352852, -0.15622518956661224, 0.11913176625967026, 0.013780279085040092, -0.035991545766592026, -0.12374582886695862, -0.22958309948444366, -0.14566080272197723, 0.14862060546875, -0.01750379614531994, 0.15077067911624908, 0.06201300770044327, -0.027154169976711273, -0.02723751589655876, -0.009224975481629372, -0.01653975248336792, -0.10973457992076874, 0.13221950829029083, 0.04379698634147644, 0.12211396545171738, 0.06411349028348923, -0.02013435587286949, 0.07971522212028503, 0.08119534701108932, -0.034673385322093964, -0.014324849471449852, 0.10513889044523239, 0.01543782651424408, 0.02743017114698887, 0.1891508251428604, -0.1042880192399025, 0.015074312686920166, -0.05877566337585449, -0.12206274271011353, -0.11399511992931366, 0.10411000996828079, 0.031181279569864273, -0.05563759803771973, 0.03403862565755844, -0.01713097281754017, 0.04273863136768341, 0.0017170360079035163, -0.025019438937306404, -0.21465037763118744, 0.035613756626844406, 0.18293824791908264, 0.23427613079547882, -0.0859869197010994, -0.1324164718389511, -0.025193573907017708, -0.044473905116319656, 0.12842483818531036, -0.04093119129538536, 0.045592840760946274, 0.07125917077064514, 0.028229670599102974, 0.10613220185041428, -0.013630107045173645, -0.10266844183206558, 0.06812022626399994, 0.023875677958130836, -0.055028036236763, -0.13352246582508087, -0.03137800469994545, -0.08513229340314865, -0.008299445733428001, 0.053357042372226715, 0.14277781546115875, -0.10886388272047043, -0.01188692357391119, -0.022545453161001205, 0.014402232132852077, -0.1539078801870346, 0.20250967144966125, 0.03336607664823532, 0.08341383188962936, -0.11537474393844604, 0.03290418162941933, -0.04727381467819214, -0.031334035098552704, 0.04963025823235512, -0.01573876105248928, -0.07300183176994324, -0.05885736644268036, -0.026868237182497978, 0.09612623602151871, 0.002539166482165456, -0.137483149766922, -0.040692511945962906, -0.1286611109972, -0.004237472545355558, 0.07280876487493515, 0.06495780497789383, 0.006719889584928751, -0.11440479010343552, -0.07522542029619217, -0.0738324373960495, 0.04384857043623924, 0.05685420334339142, -0.045267585664987564, -0.11211292445659637, 0.1998424381017685, 0.038999687880277634, 0.05778857320547104, -0.0645875334739685, -0.048226483166217804, 0.009619557298719883, 0.06911288946866989, -0.12025941163301468, -0.015171293169260025, -0.045981042087078094, 0.02873523347079754, -0.010035501793026924, -0.04423860087990761, -0.0014921005349606276, 0.08104308694601059, -0.10989641398191452, 0.07011321187019348, -0.012303783558309078, 0.03925960883498192, -0.06960542500019073, 0.03020295687019825, 0.0016942992806434631, -0.004816446453332901, 0.07751914113759995, 0.09247768670320511, -0.1196667030453682, 0.15713422000408173, -0.1772005259990692, -0.01811952330172062, 0.06688867509365082, 0.044121719896793365, -0.004967924673110247, -0.06191818043589592, -0.0009482339373789728, 0.10260484367609024, 0.03918866068124771, -0.0026008794084191322, 0.042938146740198135, -0.07268466055393219, -0.006806512828916311, -0.033814024180173874, -0.012648053467273712, -0.039919231086969376, 0.037669211626052856, 0.06426871567964554, 0.1483209878206253, 0.1855594664812088, -0.11363689601421356, 0.09866616129875183, -0.10361717641353607, 0.025283334776759148, -0.039360411465168, -0.025089368224143982, -0.10653039067983627, -0.08374421298503876, 0.04869004338979721, -0.06754481792449951, 0.13203738629817963, 0.036975886672735214, 0.044773586094379425, -0.03438354283571243, -0.07327020913362503, 0.025742944329977036, -0.011407656595110893, 0.23252037167549133, 0.029638072475790977, 0.04436919838190079, -0.0068025002256035805, 0.011894124560058117, -0.013509142212569714, 0.11053851246833801, 0.013854965567588806, 0.11002393066883087, 0.03286847844719887, 0.09937001019716263, 0.13108272850513458, 0.010075347498059273, -0.07998242974281311, -0.010700388811528683, -0.05383238196372986, 0.03582777827978134, -0.045976489782333374, 0.12649138271808624, 0.13533350825309753, -0.08417785167694092, 0.11336028575897217, 0.04187997803092003, -0.07514981180429459, -0.18085238337516785, -0.18551714718341827, -0.09062416106462479, -0.13680268824100494, 0.032436780631542206, -0.09963774681091309, 0.003101644106209278, 0.032291825860738754, 0.05985382944345474, -0.02912556380033493, 0.14976119995117188, -0.0687825009226799, -0.11305635422468185, 0.08653756231069565, -0.09398680180311203, 0.001743287080898881, -0.06779792904853821, 0.032702431082725525, 0.1687067151069641, 0.05507639795541763, 0.03750770539045334, -0.004987072665244341, -0.05572409927845001, -0.021849103271961212, -0.07393248379230499, -0.06391268968582153, -0.0172717422246933, -0.010569768026471138, 0.11062964051961899, 0.08034304529428482, 0.1037367656826973, -0.09472034126520157, -0.02112434059381485, 0.1289408653974533, -0.0458577461540699, -0.16984538733959198, -0.14671729505062103, 0.17822100222110748, 0.010190040804445744, 0.06581531465053558, -0.009036137722432613, -0.023686952888965607, 0.014136148616671562, 0.20984072983264923, 0.23129087686538696, 0.057387832552194595, 0.03690725564956665, -0.04894016310572624, -0.01436348631978035, -0.02453259937465191, 0.049469850957393646, 0.025674061849713326, 0.19470377266407013, -0.0016006188234314322, 0.05503304302692413, -0.09267962723970413, -0.06921694427728653, 0.00979587808251381, 0.03931668400764465, -0.031593743711709976, -0.08946023881435394, -0.0267462320625782, 0.16217930614948273, -0.0985487699508667, -0.10010088235139847, -0.09367351233959198, -0.0217541866004467, -0.11911802738904953, -0.027544653043150902, 0.045410674065351486, 0.12401755899190903, 0.030303316190838814, -0.04425068572163582, 0.04081744700670242, 0.11515267193317413, -0.011795897036790848, -0.05769531801342964, -0.04836324602365494, 0.042380671948194504, -0.033024419099092484, 0.0022189144510775805, 0.024204688146710396, 0.13505537807941437, 0.010041258297860622, 0.1007758378982544, 0.018218718469142914, 0.18023143708705902, -0.026007067412137985, -0.1007690280675888, 0.052588045597076416, 0.16055013239383698, -0.024570640176534653, 0.13655255734920502, -0.003983364440500736, -0.199567973613739, 0.019078681245446205, -0.08897576481103897, -0.05665072053670883, -0.0483713299036026, 0.07986312359571457, -0.05031498894095421, 0.06700866669416428, 0.12437658756971359, -0.04019159823656082, -0.06314877420663834, -0.08826180547475815, 0.07507125288248062, 0.00872921571135521, -0.08581320196390152, -0.04071611538529396, -0.21626754105091095, -0.03374507650732994, -0.07417058944702148, -0.060522060841321945, -0.13827267289161682, -0.019925151020288467, -0.013034599833190441, -0.06011202558875084, 0.024566737934947014, 0.017269467934966087, 0.0638527050614357, 0.0023076131474226713, 0.02833690121769905, 0.030738800764083862, 0.07048404961824417, 0.11658486723899841, -0.18352088332176208, -0.11070515960454941 ]
null
null
transformers
# GPT-2 Story Generator ## Model description Generate a short story from an input prompt. Put the vocab ` [endprompt]` after your input. Example of an input: ``` A person with a high school education gets sent back into the 1600s and tries to explain science and technology to the people. [endprompt] ``` #### Limitations and bias The data we used to train was collected from reddit, so it could be very biased towards young, white, male demographic. ## Training data The data was collected from scraping reddit.
{"language": ["en"], "tags": ["gpt2", "text-generation"], "pipeline_tag": "text-generation", "widget": [{"text": "A person with a high school education gets sent back into the 1600s and tries to explain science and technology to the people. [endprompt]"}, {"text": "A kid doodling in a math class accidentally creates the world's first functional magic circle in centuries. [endprompt]"}]}
text-generation
Meli/GPT2-Prompt
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:04+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# GPT-2 Story Generator ## Model description Generate a short story from an input prompt. Put the vocab ' [endprompt]' after your input. Example of an input: #### Limitations and bias The data we used to train was collected from reddit, so it could be very biased towards young, white, male demographic. ## Training data The data was collected from scraping reddit.
[ "# GPT-2 Story Generator", "## Model description\n\nGenerate a short story from an input prompt.\n\nPut the vocab ' [endprompt]' after your input.\n\nExample of an input:", "#### Limitations and bias\n\nThe data we used to train was collected from reddit, so it could be very biased towards young, white, male demographic.", "## Training data\n\nThe data was collected from scraping reddit." ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# GPT-2 Story Generator", "## Model description\n\nGenerate a short story from an input prompt.\n\nPut the vocab ' [endprompt]' after your input.\n\nExample of an input:", "#### Limitations and bias\n\nThe data we used to train was collected from reddit, so it could be very biased towards young, white, male demographic.", "## Training data\n\nThe data was collected from scraping reddit." ]
[ 52, 6, 35, 35, 13 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# GPT-2 Story Generator## Model description\n\nGenerate a short story from an input prompt.\n\nPut the vocab ' [endprompt]' after your input.\n\nExample of an input:#### Limitations and bias\n\nThe data we used to train was collected from reddit, so it could be very biased towards young, white, male demographic.## Training data\n\nThe data was collected from scraping reddit." ]
[ -0.0340007059276104, 0.09647025913000107, -0.0024342609103769064, 0.02121998555958271, 0.13583850860595703, 0.031270258128643036, 0.16461381316184998, 0.10367490351200104, -0.04877212271094322, -0.12422825396060944, 0.2261255532503128, 0.046305593103170395, 0.041548214852809906, 0.06074715405702591, 0.012325309216976166, -0.2517731487751007, 0.005504395812749863, 0.024783555418252945, 0.0676821768283844, 0.14724528789520264, 0.10113929957151413, -0.041968587785959244, 0.08743838965892792, 0.0676027461886406, -0.2386949211359024, -0.00419417442753911, 0.036285966634750366, -0.010106563568115234, 0.12305016070604324, 0.09312651306390762, 0.13655905425548553, 0.037476569414138794, 0.017621025443077087, -0.143819198012352, 0.06153593957424164, 0.03652217239141464, -0.03629903122782707, 0.06382174044847488, 0.0909152701497078, -0.13326396048069, 0.23300737142562866, 0.1255306750535965, 0.016723021864891052, 0.07911297678947449, -0.14556753635406494, -0.021036924794316292, 0.023241223767399788, 0.009497210383415222, 0.05805084854364395, 0.14978604018688202, -0.0422244556248188, 0.09712369740009308, -0.22665740549564362, 0.07146987318992615, 0.11359954625368118, -0.14215822517871857, -0.02641545608639717, 0.03459042310714722, 0.06108460575342178, -0.07268892973661423, -0.14763084053993225, 0.003485785098746419, 0.0300256609916687, 0.04354886710643768, -0.008873921819031239, -0.014742041938006878, -0.01603708229959011, 0.012364350259304047, -0.10481073707342148, -0.05949946865439415, 0.16534647345542908, 0.017259631305933, -0.0018526725471019745, -0.08765939623117447, 0.018784787505865097, -0.05111236125230789, 0.02653888799250126, 0.03361695632338524, -0.14575624465942383, 0.06330590695142746, -0.12499430030584335, -0.053653616458177567, -0.12900446355342865, -0.11818654835224152, -0.048044733703136444, 0.046865202486515045, 0.001905202865600586, 0.079800546169281, -0.20032905042171478, 0.10999012738466263, 0.11209721118211746, -0.05067073926329613, 0.0573926642537117, -0.11298496276140213, 0.004844242706894875, -0.02965497598052025, -0.07468236237764359, -0.051171641796827316, 0.07213035225868225, 0.06349239498376846, 0.025615278631448746, -0.0052927169017493725, 0.009658905677497387, 0.05803479254245758, 0.06727772951126099, 0.0036858466919511557, -0.06343147903680801, -0.023723477497696877, 0.003203820902854204, -0.11213084310293198, -0.0888911560177803, -0.011041820980608463, -0.13917531073093414, -0.04957921430468559, 0.07721249014139175, 0.05998731404542923, -0.006219259928911924, 0.11994277685880661, -0.02365482784807682, -0.06207024306058884, -0.04044016823172569, 0.04415927454829216, -0.05551533401012421, 0.028622128069400787, -0.07768071442842484, 0.055272817611694336, -0.030817413702607155, 0.030556244775652885, -0.04323812574148178, -0.04326028749346733, -0.05953061580657959, -0.018481777980923653, -0.08076732605695724, -0.10413870960474014, -0.018704961985349655, -0.04968131333589554, 0.046683721244335175, -0.0876682698726654, -0.23835372924804688, -0.08889152109622955, 0.024723563343286514, -0.038414210081100464, -0.04315941780805588, -0.1517791748046875, -0.008350532501935959, 0.01605772040784359, 0.020078491419553757, 0.058279577642679214, -0.06691815704107285, 0.06491514295339584, -0.16697070002555847, 0.10974030196666718, -0.07293946295976639, 0.043520238250494, -0.11757458746433258, -0.011775156483054161, -0.03067859262228012, 0.12978202104568481, 0.07600503414869308, 0.13958072662353516, -0.056580834090709686, -0.05655069276690483, -0.09142805635929108, 0.039383549243211746, -0.06361161917448044, 0.185832217335701, -0.11843136698007584, -0.06392539292573929, 0.19770997762680054, -0.08227867633104324, -0.027177957817912102, 0.10716679692268372, -0.08758717030286789, 0.19352203607559204, 0.1264677196741104, 0.21795682609081268, 0.08902773261070251, 0.029904501512646675, 0.054537415504455566, 0.04779151827096939, -0.2171803116798401, 0.012985029257833958, 0.006147320382297039, 0.0481143482029438, -0.09276296943426132, -0.02147805690765381, 0.08962544053792953, 0.12933047115802765, -0.10464764386415482, -0.011659691110253334, 0.07048583775758743, -0.06365863978862762, 0.08309755474328995, 0.02959311753511429, 0.05796458572149277, -0.0066229249350726604, -0.073622927069664, -0.07943421602249146, 0.09081660956144333, -0.04187234491109848, -0.020558038726449013, -0.14908824861049652, 0.03618667274713516, 0.0009807924507185817, -0.03212651610374451, -0.14492610096931458, 0.009586400352418423, -0.08423030376434326, 0.18677903711795807, -0.03264117240905762, 0.17893658578395844, 0.07167141884565353, -0.020588064566254616, -0.0443602129817009, 0.007971138693392277, 0.10890715569257736, -0.024734102189540863, -0.03343402221798897, -0.13156715035438538, 0.03342428058385849, -0.029735909774899483, 0.1353522539138794, -0.17807570099830627, 0.02143903262913227, 0.12177194654941559, 0.06720148772001266, 0.055675629526376724, 0.0034306738525629044, 0.02762281894683838, -0.04698197543621063, -0.03311474248766899, -0.059137098491191864, 0.07142041623592377, 0.05268515646457672, -0.10763183236122131, 0.16671574115753174, -0.09937748312950134, -0.028009207919239998, 0.14528407156467438, -0.3028692305088043, -0.1416739672422409, -0.00053706846665591, -0.054810892790555954, 0.01687186397612095, -0.05521346628665924, -0.02370714582502842, 0.2119320183992386, 0.003727969713509083, 0.08050116151571274, 0.0023741801269352436, -0.034585922956466675, 0.0022227708250284195, -0.011621481738984585, 0.06728240847587585, 0.12078197300434113, 0.06080586463212967, -0.20029406249523163, 0.10662462562322617, -0.01776653714478016, 0.04137298837304115, 0.2367127537727356, 0.07949284464120865, -0.023347344249486923, 0.039875876158475876, -0.04987100884318352, -0.03670765832066536, 0.03256455063819885, -0.1866152584552765, -0.007608155719935894, 0.046421218663454056, -0.010473692789673805, 0.055978983640670776, -0.1586804836988449, -0.08947626501321793, -0.04939306527376175, -0.006675558164715767, -0.06423568725585938, 0.057515934109687805, -0.011434696614742279, 0.10361526161432266, 0.04033283516764641, -0.027558352798223495, 0.08818372339010239, -0.04187100753188133, -0.12780365347862244, 0.19798821210861206, 0.005545429419726133, -0.23070602118968964, -0.09744998067617416, -0.05239003524184227, 0.03055397979915142, 0.09487829357385635, 0.036355823278427124, -0.12652912735939026, 0.028644906356930733, 0.00046154289157129824, 0.14679816365242004, -0.09553073346614838, 0.0486757829785347, -0.07067451626062393, 0.1015428900718689, -0.07756075263023376, -0.008988899178802967, -0.029484255239367485, -0.04073796421289444, -0.07245364785194397, 0.12801049649715424, -0.21495170891284943, 0.01161457970738411, 0.1510370671749115, 0.04518246650695801, 0.02898312546312809, -0.06810986250638962, 0.25827792286872864, -0.15128645300865173, -0.03008270263671875, 0.12021344900131226, -0.10321167856454849, 0.004624026827514172, 0.09243660420179367, -0.029328854754567146, -0.1018056645989418, 0.09558063000440598, 0.04234866052865982, -0.076495461165905, -0.14320684969425201, -0.048526231199502945, -0.046836212277412415, 0.023387160152196884, 0.06397231668233871, 0.05421344190835953, 0.13729168474674225, 0.11210998147726059, -0.031207026913762093, 0.043120719492435455, 0.008862084709107876, 0.061446093022823334, 0.0433548241853714, -0.05143143609166145, 0.09154050797224045, -0.03444933146238327, -0.09703853726387024, 0.03724491223692894, -0.11468770354986191, 0.2546674907207489, 0.034896451979875565, 0.06635116785764694, 0.08074943721294403, -0.014257203787565231, 0.10316876322031021, 0.07377645373344421, 0.05615685135126114, -0.09109625220298767, -0.03612567111849785, 0.01215815357863903, -0.0737646222114563, 0.054107196629047394, -0.005020665470510721, -0.0352969616651535, -0.06385348737239838, 0.0033529317006468773, 0.052000533789396286, 0.17566736042499542, 0.10880658030509949, -0.27186843752861023, -0.11570626497268677, 0.018791357055306435, -0.0908033549785614, -0.06533872336149216, 0.06116216257214546, 0.08633381128311157, -0.15895245969295502, -0.0035740688908845186, 0.02872840315103531, 0.11305389553308487, -0.13583797216415405, 0.08606083691120148, -0.02580845355987549, -0.07700976729393005, -0.05721617862582207, 0.1419980525970459, -0.3079892694950104, 0.19720818102359772, 0.006860233377665281, 0.019803674891591072, -0.162170872092247, -0.11975084990262985, -0.010592828504741192, 0.07640323042869568, 0.17759370803833008, 0.011299124918878078, -0.004313815850764513, -0.050194770097732544, -0.03398695960640907, 0.01948847435414791, 0.05071977153420448, -0.08602973073720932, 0.03811854124069214, -0.034677326679229736, 0.05755764618515968, -0.007978575304150581, -0.08163846284151077, -0.02616097405552864, -0.08135379105806351, -0.02484200708568096, -0.017243167385458946, 0.10562165826559067, 0.025437362492084503, -0.04291723296046257, 0.12587527930736542, 0.1395013928413391, -0.029221368953585625, -0.08630179613828659, -0.09517380595207214, 0.13599687814712524, -0.06442376226186752, -0.03950054943561554, -0.03711685910820961, 0.06027799844741821, 0.14801692962646484, 0.023203568533062935, -0.0573929063975811, 0.08181799203157425, -0.06384005397558212, -0.1230030208826065, -0.05837301164865494, 0.0768197700381279, 0.13149681687355042, 0.1125401109457016, 0.050183262676000595, -0.023326408118009567, -0.08640837669372559, -0.12285204976797104, 0.05314546078443527, -0.009475569240748882, -0.05443365499377251, -0.01284596137702465, 0.12272465229034424, 0.07558950781822205, -0.0664118304848671, -0.0660707950592041, 0.3072352111339569, 0.12018342316150665, -0.049513597041368484, 0.11071436107158661, 0.029714256525039673, -0.09118738025426865, -0.31253859400749207, 0.05109245702624321, -0.023401537910103798, 0.04145784676074982, -0.03281567990779877, -0.19182075560092926, 0.02504112385213375, -0.0579724945127964, 0.03611310198903084, 0.03942936658859253, -0.22364722192287445, -0.054977379739284515, 0.11749938130378723, 0.020677650347352028, 0.2912346124649048, -0.04919843375682831, -0.005738076753914356, -0.12616975605487823, -0.06157105043530464, 0.18219438195228577, -0.0755564495921135, 0.054198551923036575, -0.04840623959898949, 0.1789642721414566, 0.040604427456855774, -0.029458478093147278, 0.06692042946815491, 0.03433903306722641, 0.03651129826903343, -0.12381456047296524, -0.08912520110607147, 0.09518798440694809, 0.06589046120643616, -0.046292342245578766, 0.0014079844113439322, -0.04197390377521515, -0.1735180914402008, -0.08598154783248901, -0.10812772810459137, -0.001311943051405251, 0.010402959771454334, -0.08157746493816376, -0.06182040646672249, 0.05051602050662041, 0.028264552354812622, 0.021568680182099342, 0.001446253969334066, -0.10748758167028427, 0.10604649037122726, -0.11100505292415619, 0.20955726504325867, -0.014740565791726112, 0.023255573585629463, 0.01721307821571827, -0.004629378207027912, 0.07448580116033554, -0.15758877992630005, 0.03381800279021263, 0.11149319261312485, 0.003861823119223118, 0.1148417741060257, 0.12360938638448715, -0.027771057561039925, 0.06370487809181213, 0.07511316984891891, -0.19495268166065216, -0.047065019607543945, -0.08249843120574951, 0.020514382049441338, -0.03670358285307884, -0.10797268152236938, 0.1055716797709465, -0.03175387904047966, -0.02307405322790146, 0.011049432680010796, 0.026630781590938568, -0.06148003041744232, 0.056043826043605804, 0.05843615531921387, 0.027494212612509727, -0.09493457525968552, 0.0014309088001027703, 0.0067401365377008915, -0.0037726673763245344, 0.04974822327494621, 0.0003547876258380711, -0.12030438333749771, -0.07078326493501663, -0.014027709141373634, 0.1836797297000885, -0.0887117013335228, -0.0665651485323906, -0.08218767493963242, -0.11608713120222092, 0.061855562031269073, 0.033927012234926224, 0.047513920813798904, 0.11396143585443497, -0.024365130811929703, -0.029302779585123062, -0.11988415569067001, 0.007296455092728138, -0.028247112408280373, -0.089741051197052, -0.056836698204278946, 0.12230443954467773, 0.017982130870223045, 0.06916224956512451, -0.09509611129760742, -0.06408697366714478, -0.15783405303955078, 0.06671921908855438, -0.10978387296199799, 0.013429648242890835, -0.07202956825494766, -0.0023873290047049522, -0.027230512350797653, -0.004224341828376055, -0.062059272080659866, -0.012754089199006557, -0.13242244720458984, 0.050390176475048065, 0.0206117182970047, -0.009784146212041378, 0.0344332680106163, 0.030676020309329033, 0.09848315268754959, -0.003408229211345315, 0.10265420377254486, 0.07440564036369324, -0.02528386563062668, 0.0594991035759449, -0.19544465839862823, -0.005687855649739504, -0.0005997833213768899, -0.03410525992512703, -0.016553349792957306, 0.01821914128959179, -0.02513483352959156, 0.019229646772146225, -0.007716801483184099, 0.0736209973692894, -0.004017641767859459, -0.05557086318731308, 0.11387917399406433, 0.033962052315473557, -0.011552502401173115, -0.07532176375389099, 0.06302351504564285, 0.08631765842437744, 0.029941951856017113, 0.12297175824642181, -0.03348406404256821, 0.10871972143650055, -0.12863869965076447, 0.08025124669075012, 0.01360214315354824, 0.01170048862695694, 0.025398382917046547, -0.08902812004089355, 0.04497087001800537, 0.017384879291057587, 0.19223278760910034, 0.04775996878743172, 0.07915858924388885, 0.025559671223163605, 0.13830797374248505, 0.031471893191337585, -0.009175816550850868, 0.12722516059875488, 0.045916613191366196, -0.013070674613118172, -0.017364392057061195, 0.04952569305896759, 0.04409908130764961, 0.07535728067159653, 0.14930780231952667, -0.04150567576289177, 0.042388398200273514, 0.0037680913228541613, -0.08710645884275436, 0.06110570207238197, -0.04665788263082504, 0.02658800594508648, 0.02141212671995163, -0.0070970067754387856, -0.05607501044869423, 0.11566818505525589, 0.17201589047908783, -0.03722527250647545, 0.0032260490115731955, -0.038267794996500015, -0.07411889731884003, -0.16801734268665314, -0.1961737871170044, -0.014661764726042747, -0.1239873394370079, 0.051500994712114334, -0.10881740599870682, -0.010947511531412601, 0.07938933372497559, 0.03053390048444271, -0.04459565505385399, 0.06547192484140396, 0.036036960780620575, -0.09390118718147278, 0.046461448073387146, -0.0768476128578186, -0.0010477160103619099, -0.109137162566185, 0.07545273751020432, 0.06470753997564316, 0.009285164065659046, 0.04970056563615799, -0.023864073678851128, -0.03002472035586834, -0.01949198544025421, -0.14596553146839142, -0.06186993420124054, -0.03080863691866398, 0.03512189909815788, 0.009299121797084808, 0.1192486584186554, 0.032532889395952225, 0.04004226252436638, -0.0007084010867401958, 0.18932035565376282, 0.015929393470287323, -0.027165863662958145, -0.13901209831237793, 0.08182940632104874, -0.029707124456763268, 0.004393721930682659, -0.025941340252757072, -0.02506028488278389, 0.06540767103433609, 0.32300594449043274, 0.2641558349132538, -0.07597687095403671, 0.013338064774870872, -0.02888917364180088, 0.010452625341713428, 0.0422838032245636, 0.05287095159292221, 0.020586373284459114, 0.06268991529941559, -0.14790695905685425, -0.02228447049856186, -0.03893197327852249, -0.020610732957720757, 0.07898032665252686, -0.009781344793736935, 0.06136568635702133, 0.054497648030519485, -0.09724854677915573, 0.17131704092025757, -0.3127913177013397, -0.06666313111782074, -0.07152765989303589, -0.08493874967098236, -0.07164078950881958, 0.0171572957187891, 0.0016207388835027814, 0.07064801454544067, 0.13133640587329865, -0.02915338985621929, 0.010486505925655365, 0.012040279805660248, 0.028429390862584114, -0.19978633522987366, -0.051032282412052155, 0.1207902729511261, -0.045926533639431, 0.05789659544825554, -0.10988408327102661, 0.08549018204212189, 0.09856946021318436, 0.012314960360527039, -0.11004374176263809, -0.01547908317297697, -0.04925428330898285, 0.020880771800875664, 0.0038137396331876516, 0.18213503062725067, -0.005360956769436598, 0.0002563357993494719, 0.06880839169025421, -0.09638413786888123, 0.06696081161499023, -0.19280053675174713, -0.0130564384162426, -0.04314841330051422, 0.048909224569797516, -0.02272343449294567, 0.10439649224281311, 0.14862625300884247, -0.07202275842428207, 0.0021795399952679873, -0.05294691398739815, -0.01578196883201599, -0.053433824330568314, -0.04385465011000633, -0.08878631889820099, -0.14408890902996063, -0.04110769182443619, 0.10645386576652527, -0.025848856195807457, -0.2080252319574356, 0.04286614805459976, -0.08628928661346436, -0.06541332602500916, 0.00836095679551363, 0.07650692015886307, 0.0030325984116643667, 0.05501459911465645, -0.02400016039609909, 0.012065926566720009, 0.0052620042115449905, 0.08765880018472672, -0.0607571117579937, -0.15075251460075378 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.6324 - Matthews Correlation: 0.5207 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.5245 | 1.0 | 535 | 0.5155 | 0.4181 | | 0.3446 | 2.0 | 1070 | 0.5623 | 0.4777 | | 0.2331 | 3.0 | 1605 | 0.6324 | 0.5207 | | 0.1678 | 4.0 | 2140 | 0.7706 | 0.5106 | | 0.1255 | 5.0 | 2675 | 0.8852 | 0.4998 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.18.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["glue"], "metrics": ["matthews_correlation"], "model-index": [{"name": "distilbert-base-uncased-finetuned-cola", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "glue", "type": "glue", "args": "cola"}, "metrics": [{"type": "matthews_correlation", "value": 0.5206791471093309, "name": "Matthews Correlation"}]}]}]}
text-classification
MelissaTESSA/distilbert-base-uncased-finetuned-cola
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #dataset-glue #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us
distilbert-base-uncased-finetuned-cola ====================================== This model is a fine-tuned version of distilbert-base-uncased on the glue dataset. It achieves the following results on the evaluation set: * Loss: 0.6324 * Matthews Correlation: 0.5207 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 16 * eval\_batch\_size: 16 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 5 ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.0+cu111 * Datasets 1.18.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #dataset-glue #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ 67, 98, 4, 35 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #dataset-glue #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ -0.10574699193239212, 0.09150970727205276, -0.002221889328211546, 0.12303871661424637, 0.1644229143857956, 0.02964385785162449, 0.11418065428733826, 0.12970876693725586, -0.08919671177864075, 0.0258101187646389, 0.12756742537021637, 0.16260862350463867, 0.020158758386969566, 0.12191565334796906, -0.05445447564125061, -0.2639211118221283, -0.010276902467012405, 0.05284940078854561, -0.040255215018987656, 0.13419625163078308, 0.0932815670967102, -0.12389829009771347, 0.0916728600859642, 0.01309914980083704, -0.19548551738262177, 0.0013088210253044963, 0.0005897274822928011, -0.05394193157553673, 0.14345255494117737, 0.024465948343276978, 0.11919017881155014, -0.0016087363474071026, 0.08036720007658005, -0.193436861038208, 0.009990460239350796, 0.047128938138484955, 0.0037352838553488255, 0.09203101694583893, 0.042816340923309326, -0.001426015398465097, 0.12640242278575897, -0.09033050388097763, 0.05111240968108177, 0.02109670825302601, -0.11469623446464539, -0.21383076906204224, -0.0800279751420021, 0.03996260091662407, 0.08052250742912292, 0.10933209210634232, -0.007367439568042755, 0.12384623289108276, -0.07680042833089828, 0.09504607319831848, 0.22993485629558563, -0.29675546288490295, -0.06587496399879456, 0.03566752001643181, 0.012684176675975323, 0.0382220633327961, -0.10194852203130722, -0.037278637290000916, 0.050746023654937744, 0.05314994975924492, 0.12854842841625214, -0.030055580660700798, -0.11210945248603821, 0.003000171622261405, -0.137007474899292, -0.0339813195168972, 0.16601018607616425, 0.042034704238176346, -0.03141216188669205, -0.06115489453077316, -0.05728361755609512, -0.1528596729040146, -0.04007215052843094, -0.01044462714344263, 0.047005556523799896, -0.022838402539491653, -0.04315579682588577, -0.004650035407394171, -0.1092267632484436, -0.05855197459459305, -0.07831680774688721, 0.1117313802242279, 0.036944326013326645, 0.009038976393640041, -0.033380065113306046, 0.10883326083421707, -0.009355161339044571, -0.12524858117103577, 0.015248222276568413, 0.022272860631346703, 0.01834971085190773, -0.04111248254776001, -0.05470244213938713, -0.06564810872077942, 0.008153753355145454, 0.12731648981571198, -0.05843135714530945, 0.04452135041356087, 0.046664658933877945, 0.046739764511585236, -0.0922369733452797, 0.19150198996067047, -0.03199601173400879, -0.022622982040047646, 0.011173354461789131, 0.04008617624640465, 0.02071211114525795, -0.00930369459092617, -0.12306998670101166, 0.0033269147388637066, 0.08944516628980637, 0.005465798079967499, -0.06554017215967178, 0.0774092823266983, -0.05338582396507263, -0.020501744002103806, 0.003805846441537142, -0.092376708984375, 0.02683897130191326, -0.0028807399794459343, -0.07020914554595947, -0.01994006335735321, 0.035347066819667816, 0.014873884618282318, -0.024913698434829712, 0.11317755281925201, -0.08705886453390121, 0.029872039332985878, -0.09422064572572708, -0.10551777482032776, 0.019315678626298904, -0.10435681790113449, 0.02661634422838688, -0.0956491082906723, -0.1830132007598877, -0.016089556738734245, 0.06185867637395859, -0.025585949420928955, -0.05944601818919182, -0.05640297383069992, -0.06936697661876678, 0.015045384876430035, -0.010469987988471985, 0.1190033033490181, -0.06395300477743149, 0.08996238559484482, 0.027219876646995544, 0.06271479278802872, -0.04401252418756485, 0.05667514726519585, -0.10415748506784439, 0.016155369579792023, -0.1598213016986847, 0.04041816294193268, -0.04425527900457382, 0.07795736938714981, -0.08337324857711792, -0.10718391835689545, 0.00242647435516119, -0.00465244147926569, 0.06712181866168976, 0.09468746185302734, -0.1788618266582489, -0.07367118448019028, 0.1655838042497635, -0.07057782262563705, -0.12610360980033875, 0.11946315318346024, -0.06085413321852684, 0.05395055189728737, 0.059349074959754944, 0.17904150485992432, 0.07074229419231415, -0.08134967088699341, -0.003249700181186199, 0.02351328171789646, 0.04597122594714165, -0.07207053154706955, 0.06604939699172974, 0.008725251071155071, 0.021188966929912567, 0.03683969005942345, -0.02244829759001732, 0.061185322701931, -0.0838036984205246, -0.09494756162166595, -0.04586677625775337, -0.08061137795448303, 0.033676836639642715, 0.07672780007123947, 0.07169865071773529, -0.09772004187107086, -0.08116523176431656, 0.04509560391306877, 0.07782474160194397, -0.05718550086021423, 0.03011373244225979, -0.054801877588033676, 0.07546334713697433, -0.02906121127307415, -0.022448034957051277, -0.18086451292037964, -0.02659408561885357, 0.0055857435800135136, 0.005321982316672802, 0.011680885218083858, 0.01913473941385746, 0.061932168900966644, 0.05370311439037323, -0.04894731938838959, -0.01450276281684637, -0.021431753411889076, -0.0013801180757582188, -0.1312013864517212, -0.18990901112556458, -0.028966661542654037, -0.023548070341348648, 0.141725555062294, -0.20643086731433868, 0.0461759939789772, -0.011063660494983196, 0.07186280936002731, 0.009111904539167881, -0.006047431845217943, -0.03762305527925491, 0.07062572985887527, -0.04543264955282211, -0.05098385363817215, 0.0800023302435875, 0.0220621470361948, -0.08925487846136093, -0.045500773936510086, -0.0929231122136116, 0.1574377715587616, 0.13114148378372192, -0.10671543329954147, -0.0784960463643074, -0.017215322703123093, -0.06788500398397446, -0.03269239515066147, -0.04726943373680115, 0.031363051384687424, 0.19456909596920013, -0.005868142005056143, 0.15200965106487274, -0.07064378261566162, -0.049025122076272964, 0.021208180114626884, -0.035982657223939896, 0.014745202846825123, 0.12839479744434357, 0.12973763048648834, -0.0672171339392662, 0.15216119587421417, 0.14374487102031708, -0.08648084104061127, 0.14002081751823425, -0.040465183556079865, -0.06633087247610092, -0.015604300424456596, -0.02896473929286003, -0.010696775279939175, 0.09913158416748047, -0.15722547471523285, -0.0026735994033515453, 0.03336216136813164, 0.01898314245045185, 0.02545694075524807, -0.2211402803659439, -0.0380670428276062, 0.03657940775156021, -0.03923147916793823, -0.009903093799948692, -0.005204441491514444, 0.005163697991520166, 0.10001060366630554, 0.004223693162202835, -0.0836784690618515, 0.04192342236638069, 0.005698137450963259, -0.08634421229362488, 0.21529723703861237, -0.07978218048810959, -0.17297381162643433, -0.12360626459121704, -0.07737994194030762, -0.04395132139325142, -0.001238985569216311, 0.07226777821779251, -0.08929359167814255, -0.033052295446395874, -0.07369281351566315, 0.01450338214635849, 0.0039017151575535536, 0.028015224263072014, 0.011388684622943401, 0.0042588678188622, 0.06401197612285614, -0.10645540803670883, -0.019788840785622597, -0.05644975230097771, -0.0362827330827713, 0.042924270033836365, 0.028815992176532745, 0.11012408882379532, 0.1479114145040512, -0.015774032101035118, 0.016355330124497414, -0.03238692879676819, 0.2380126416683197, -0.06004419922828674, -0.020491868257522583, 0.14169515669345856, -0.007068214938044548, 0.051429763436317444, 0.12007800489664078, 0.06913257390260696, -0.08054493367671967, 0.005054922308772802, 0.03207238018512726, -0.03744198754429817, -0.22904497385025024, -0.05397490784525871, -0.06027171388268471, 0.005244285799562931, 0.09270403534173965, 0.025705739855766296, 0.02892596833407879, 0.07275156676769257, 0.04302596300840378, 0.08130757510662079, -0.042262665927410126, 0.05978262051939964, 0.12806153297424316, 0.03662604093551636, 0.12544716894626617, -0.04940314590930939, -0.06270033866167068, 0.04166227579116821, -0.014610105194151402, 0.2231808751821518, 0.003968763630837202, 0.12871916592121124, 0.059401582926511765, 0.16435694694519043, -0.006158420350402594, 0.08089281618595123, -0.013667854480445385, -0.0412156879901886, -0.014968241564929485, -0.03711140528321266, -0.039572522044181824, 0.026966344565153122, -0.07461633533239365, 0.06235788017511368, -0.1238163486123085, 0.01925928331911564, 0.06067033112049103, 0.255914568901062, 0.03584641218185425, -0.3254505395889282, -0.1003030464053154, 0.00198675156570971, -0.03539799898862839, -0.02733016200363636, 0.02960084192454815, 0.08861826360225677, -0.09792119264602661, 0.03474656865000725, -0.07499148696660995, 0.09793892502784729, -0.047614939510822296, 0.050278909504413605, 0.08060435950756073, 0.08601803332567215, 0.012147570960223675, 0.09292320907115936, -0.29414987564086914, 0.27560123801231384, 0.00022364393225871027, 0.06406594812870026, -0.0811096802353859, 0.00928433146327734, 0.038015224039554596, 0.06328359991312027, 0.09049133211374283, -0.012662411667406559, -0.045707982033491135, -0.17415106296539307, -0.06602580100297928, 0.028462670743465424, 0.06309960782527924, -0.029387515038251877, 0.08520964533090591, -0.031087685376405716, 0.007165031973272562, 0.0703582912683487, 0.0049633425660431385, -0.046665169298648834, -0.10810916870832443, -0.009019904769957066, 0.028154658153653145, -0.06494946777820587, -0.058946724981069565, -0.1165085881948471, -0.12428398430347443, 0.16640886664390564, -0.030461197718977928, -0.04252227395772934, -0.10977210849523544, 0.08605346083641052, 0.05511318892240524, -0.09004565328359604, 0.044061046093702316, 0.0011759544722735882, 0.08200643956661224, 0.021626465022563934, -0.0747009813785553, 0.10432234406471252, -0.07590310275554657, -0.15068261325359344, -0.06450671702623367, 0.10723252594470978, 0.02936895377933979, 0.06429130584001541, -0.009153968654572964, 0.008879931643605232, -0.04979727044701576, -0.08986059576272964, 0.017089975997805595, 0.0007611435721628368, 0.08768553286790848, 0.008459556847810745, -0.07035096734762192, 0.010092457756400108, -0.05977173149585724, -0.03205105662345886, 0.20840032398700714, 0.20955567061901093, -0.10239951312541962, 0.02595059759914875, 0.01709146238863468, -0.07342441380023956, -0.19833609461784363, 0.032480791211128235, 0.05760990083217621, 0.00990027841180563, 0.03293952718377113, -0.17524322867393494, 0.140821173787117, 0.1028025895357132, -0.012408879585564137, 0.10254509001970291, -0.31097444891929626, -0.12331406772136688, 0.13507235050201416, 0.13113842904567719, 0.11231710016727448, -0.12694573402404785, -0.01957138068974018, -0.022133823484182358, -0.14143510162830353, 0.10883231461048126, -0.08542533963918686, 0.11572902649641037, -0.03651092201471329, 0.08464810252189636, 0.0027547753416001797, -0.060555074363946915, 0.11379577964544296, 0.02979387901723385, 0.0927826389670372, -0.06241221725940704, -0.03587158024311066, 0.0281683262437582, -0.04769054427742958, 0.0424623116850853, -0.09641774743795395, 0.029959628358483315, -0.11025798320770264, -0.027455130591988564, -0.06577378511428833, 0.044984012842178345, -0.04102103039622307, -0.06382209062576294, -0.03912864997982979, 0.021760467439889908, 0.05444656312465668, -0.007229467388242483, 0.13363583385944366, 0.02627558447420597, 0.14219926297664642, 0.09631923586130142, 0.07786185294389725, -0.07996558398008347, -0.07714398205280304, -0.022295666858553886, -0.011707625351846218, 0.04836102947592735, -0.14280153810977936, 0.022908683866262436, 0.15426111221313477, 0.01953495852649212, 0.14551492035388947, 0.08355195075273514, -0.017780963331460953, 0.0007364879129454494, 0.05939270183444023, -0.16760851442813873, -0.08784904330968857, -0.013712635263800621, -0.06312134861946106, -0.11985652148723602, 0.04385856166481972, 0.0896887481212616, -0.06828568875789642, -0.008907939307391644, -0.007430972997099161, 0.01481402013450861, -0.05158726125955582, 0.17920692265033722, 0.05767498537898064, 0.0452873557806015, -0.10030835121870041, 0.06853125244379044, 0.04415473714470863, -0.07784123718738556, 0.011154305189847946, 0.07637082040309906, -0.08745495975017548, -0.05439426749944687, 0.0704912543296814, 0.1886192113161087, -0.04563015326857567, -0.04984121769666672, -0.13911058008670807, -0.12496323138475418, 0.08518878370523453, 0.14041614532470703, 0.11851948499679565, 0.009778427891433239, -0.06645713746547699, -0.0007576986099593341, -0.11363153904676437, 0.10058259218931198, 0.04983150213956833, 0.0630212128162384, -0.14513753354549408, 0.13858933746814728, 0.014633992686867714, 0.05235723778605461, -0.01902252808213234, 0.027500545606017113, -0.09778148680925369, 0.009336830116808414, -0.09907571226358414, -0.009479225613176823, -0.039086129516363144, 0.009876909665763378, -0.0050237481482326984, -0.046158574521541595, -0.05877677723765373, 0.014300999231636524, -0.10721539705991745, -0.021707192063331604, 0.027936125174164772, 0.0663837417960167, -0.10575015842914581, -0.03599728271365166, 0.02567133679986, -0.06242181733250618, 0.07392608374357224, 0.04995151236653328, 0.01390848495066166, 0.0481695681810379, -0.13224448263645172, 0.018400680273771286, 0.07612836360931396, 0.02635989524424076, 0.06499990075826645, -0.0999947041273117, -0.005151581950485706, 0.0020814924500882626, 0.03770638629794121, 0.021028146147727966, 0.07369302958250046, -0.14300423860549927, 0.0019280873239040375, -0.01874489150941372, -0.07896372675895691, -0.06860597431659698, 0.02678074687719345, 0.09080234915018082, 0.017161492258310318, 0.19979649782180786, -0.07684026658535004, 0.04657537117600441, -0.21299569308757782, 0.0074897343292832375, -0.00876830704510212, -0.11017684638500214, -0.10067369043827057, -0.0684543251991272, 0.05730797350406647, -0.057893771678209305, 0.1536739021539688, 0.047158095985651016, 0.021166197955608368, 0.027802957221865654, -0.014698171988129616, 0.013590307906270027, 0.011676624417304993, 0.19268402457237244, 0.02425900287926197, -0.03904970362782478, 0.06080586835741997, 0.043516699224710464, 0.10713166743516922, 0.12307514250278473, 0.2049289047718048, 0.1441611349582672, 0.0010310952784493566, 0.10166773945093155, 0.03366097807884216, -0.05258185788989067, -0.1650606244802475, 0.04482370242476463, -0.0402703694999218, 0.11112456023693085, -0.019278179854154587, 0.21307776868343353, 0.06800496578216553, -0.1719304621219635, 0.04970325529575348, -0.056309644132852554, -0.0864400789141655, -0.11358723044395447, -0.06106816604733467, -0.08052743226289749, -0.13053825497627258, -0.0009598765172995627, -0.11767730116844177, 0.00015248419367708266, 0.11696769297122955, 0.0045120189897716045, -0.028612865135073662, 0.16116617619991302, 0.0091092549264431, 0.025261441245675087, 0.06355610489845276, 0.008900131098926067, -0.0370115265250206, -0.12443500012159348, -0.05382134020328522, -0.016815917566418648, -0.016614917665719986, 0.0346698984503746, -0.059713877737522125, -0.03724439814686775, 0.031277161091566086, -0.019714105874300003, -0.09111941605806351, 0.003836573800072074, 0.016776150092482567, 0.057724397629499435, 0.0480206273496151, 0.010275926440954208, 0.018949320539832115, -0.005862870253622532, 0.1990707963705063, -0.07397736608982086, -0.06339681893587112, -0.10838683694601059, 0.23342598974704742, 0.04256758093833923, -0.022951921448111534, 0.03199322894215584, -0.06594222784042358, 0.005219373386353254, 0.2523467540740967, 0.20963488519191742, -0.07289423793554306, -0.00706175621598959, 0.011533655226230621, -0.007555477786809206, -0.018920354545116425, 0.09844256192445755, 0.14901460707187653, 0.05656224861741066, -0.09308025240898132, -0.05077947676181793, -0.0602409765124321, -0.01783042587339878, -0.0402628518640995, 0.07304697483778, 0.046329181641340256, 0.0064404066652059555, -0.03267249837517738, 0.05403541028499603, -0.07004890590906143, -0.09018521010875702, 0.05483955144882202, -0.21560750901699066, -0.16424690186977386, -0.009430425241589546, 0.09643133729696274, 0.004726288840174675, 0.06232462450861931, -0.0267392136156559, -0.00451577827334404, 0.09348935633897781, -0.019699161872267723, -0.09747367352247238, -0.0651467815041542, 0.08400276303291321, -0.11795279383659363, 0.2225942462682724, -0.044804032891988754, 0.052723031491041183, 0.1270662546157837, 0.07137440145015717, -0.07307267934083939, 0.06363099068403244, 0.03831203281879425, -0.03756340593099594, 0.03004550002515316, 0.0740073099732399, -0.035173799842596054, 0.05622547119855881, 0.04682247340679169, -0.13967016339302063, 0.019545795395970345, -0.052903804928064346, -0.061931416392326355, -0.04836766794323921, -0.02166617289185524, -0.060912687331438065, 0.13131475448608398, 0.21713700890541077, -0.027515392750501633, -0.010560930706560612, -0.07107927650213242, 0.011686996556818485, 0.051080431789159775, 0.021661071106791496, -0.05678512528538704, -0.21221794188022614, 0.0193268321454525, 0.05099974200129509, -0.0193370021879673, -0.2448500245809555, -0.10044363886117935, 0.004146194085478783, -0.07393744587898254, -0.09677248448133469, 0.07144629210233688, 0.0880008414387703, 0.05215497314929962, -0.0590873546898365, -0.0395214781165123, -0.07380376011133194, 0.14700600504875183, -0.13905611634254456, -0.09229153394699097 ]
null
null
null
Gggg
{}
null
Mervtttt/Ges
[ "region:us" ]
2022-03-02T23:29:04+00:00
[]
[]
TAGS #region-us
Gggg
[]
[ "TAGS\n#region-us \n" ]
[ 6 ]
[ "passage: TAGS\n#region-us \n" ]
[ 0.024608636274933815, -0.026205500587821007, -0.009666500613093376, -0.10395516455173492, 0.08638657629489899, 0.059816278517246246, 0.01882290467619896, 0.020661840215325356, 0.23975107073783875, -0.005599027033895254, 0.1219947561621666, 0.0015615287702530622, -0.037353623658418655, 0.03733762726187706, -0.0035912662278860807, -0.17583473026752472, 0.03876631706953049, -0.018274923786520958, 0.01843859627842903, 0.026470553129911423, -0.07776834815740585, -0.07564429938793182, 0.015296397730708122, -0.10247814655303955, -0.083692267537117, 0.11002834886312485, 0.031466204673051834, -0.019670886918902397, 0.10779199749231339, -0.04243955761194229, 0.18699054419994354, -0.011512263678014278, -0.11213519424200058, -0.2536850869655609, 0.021806683391332626, -0.01765260472893715, -0.08747660368680954, 0.01506110467016697, 0.0665089413523674, -0.09014441072940826, -0.0588928684592247, 0.0795099288225174, -0.01132340170443058, 0.04246443510055542, -0.27593839168548584, -0.12684126198291779, -0.05297930911183357, -0.1421966552734375, 0.08651168644428253, 0.04035491496324539, 0.008764253929257393, 0.15506891906261444, -0.20897391438484192, 0.004104613792151213, 0.08255259692668915, -0.2538507878780365, 0.05591634660959244, 0.17671173810958862, 0.03623908758163452, 0.18037272989749908, 0.0060391901060938835, 0.11029672622680664, 0.0716743916273117, -0.024263937026262283, -0.17590197920799255, -0.08127854019403458, -0.04696211963891983, 0.16642488539218903, -0.06727185100317001, -0.14248386025428772, 0.34701237082481384, 0.00015008423360995948, 0.009657775051891804, 0.16921205818653107, -0.059524230659008026, -0.09972117841243744, 0.07259953022003174, 0.016484731808304787, 0.018492350354790688, 0.1471305936574936, 0.16307872533798218, -0.0458691343665123, -0.13837823271751404, -0.018630273640155792, -0.22798998653888702, 0.17510560154914856, -0.03248048573732376, 0.13137903809547424, -0.27447956800460815, 0.01684025302529335, -0.2570667266845703, 0.0032130838371813297, 0.04178816080093384, -0.06004921346902847, -0.0226522795855999, -0.013265985064208508, -0.08018817007541656, 0.004899587947875261, 0.06192673370242119, 0.1266920566558838, -0.06128726154565811, 0.06128238886594772, -0.09319206327199936, 0.141696035861969, 0.07166698575019836, 0.07868369668722153, 0.13037432730197906, 0.041205424815416336, -0.07187089323997498, -0.21872246265411377, -0.0026476888451725245, -0.06275863200426102, -0.09502086788415909, -0.0020165652967989445, -0.11606067419052124, 0.17244569957256317, -0.030802514404058456, -0.09825427830219269, -0.11208184063434601, 0.09148659557104111, -0.032992321997880936, -0.03437839448451996, -0.03552987426519394, -0.020977836102247238, 0.019381176680326462, 0.04704452306032181, -0.1548958420753479, -0.005131472367793322, 0.07039852440357208, 0.11502562463283539, -0.1346137970685959, -0.003783059772104025, -0.07908964157104492, 0.03039063885807991, 0.07654735445976257, -0.16510222852230072, 0.03158547356724739, -0.1124754324555397, -0.07531405985355377, 0.002912673633545637, -0.015710093080997467, -0.016202643513679504, 0.166526660323143, -0.0020451415330171585, 0.0714716836810112, -0.026345307007431984, -0.05890209600329399, -0.11243434250354767, -0.08489254862070084, 0.05390460044145584, 0.03670717030763626, 0.03266148269176483, -0.2193479984998703, 0.014805203303694725, -0.12762966752052307, 0.1360815018415451, -0.10566820204257965, -0.04705966264009476, -0.022842247039079666, 0.20562705397605896, 0.037286072969436646, 0.08762791007757187, -0.22171171009540558, 0.039756543934345245, -0.05404696613550186, 0.18480908870697021, -0.1502426266670227, -0.0799463614821434, 0.20813211798667908, -0.07964949309825897, -0.10115210711956024, 0.021235812455415726, 0.020391687750816345, 0.026287272572517395, 0.0766737088561058, 0.4564172327518463, -0.09766800701618195, -0.09146861732006073, 0.10178250074386597, 0.17055274546146393, -0.12427149713039398, -0.1827561855316162, 0.06446871906518936, -0.16666454076766968, -0.1973118633031845, 0.0018917324487119913, 0.09222044050693512, 0.038269978016614914, -0.07875611633062363, -0.020746968686580658, 0.06325206160545349, -0.0007678253459744155, 0.09095914661884308, 0.03755716234445572, 0.09034032374620438, -0.08716782182455063, 0.11115926504135132, -0.05017651244997978, 0.004037132486701012, 0.1343354731798172, 0.027325427159667015, -0.03223329409956932, 0.08694463223218918, -0.0485352948307991, 0.05295134335756302, -0.1662379503250122, -0.15068690478801727, 0.03398871049284935, 0.06283251196146011, 0.03186952322721481, 0.1280253529548645, 0.08141885697841644, -0.10732853412628174, 0.022690722718834877, -0.004228927195072174, 0.058398615568876266, 0.03891623765230179, 0.006107209715992212, 0.008764320984482765, 0.0961301177740097, -0.10607069730758667, -0.13589619100093842, -0.07336436957120895, -0.014715781435370445, 0.14371353387832642, -0.0302802175283432, 0.07690227776765823, -0.004240254405885935, 0.00013200697139836848, 0.06930823624134064, 0.08137880265712738, 0.016412746161222458, 0.08971183747053146, -0.05237193778157234, -0.05160155147314072, 0.10863113403320312, -0.13533565402030945, 0.17837053537368774, 0.14053137600421906, -0.20532016456127167, 0.029453208670020103, -0.06838275492191315, 0.03670361638069153, -0.008162540383636951, 0.0975119024515152, -0.08272241055965424, -0.02106042578816414, 0.013134466484189034, 0.0052274600602686405, -0.013007243163883686, 0.017682146281003952, -0.07295988500118256, -0.07787393033504486, -0.10233919322490692, 0.08436838537454605, 0.11562882363796234, -0.10282530635595322, 0.14214380085468292, 0.4384984076023102, 0.11495281755924225, 0.21582984924316406, -0.09581480920314789, -0.0412987545132637, 0.007486371789127588, 0.0001535322517156601, -0.04476691037416458, 0.08031861484050751, -0.15973517298698425, -0.038901735097169876, 0.027348900213837624, 0.07128690183162689, 0.11475157737731934, -0.14959022402763367, -0.09639324247837067, -0.00793045200407505, 0.0022841424215584993, -0.1249532699584961, 0.023905446752905846, -0.03974650055170059, 0.04015624523162842, 0.07232289016246796, -0.021535737439990044, 0.13939237594604492, -0.04166141897439957, -0.0639561116695404, 0.07585346698760986, -0.2017085999250412, -0.23179671168327332, -0.12309670448303223, -0.14680525660514832, 0.04366797208786011, 0.05154111236333847, 0.01726446859538555, -0.17635835707187653, -0.015074856579303741, 0.07706750929355621, 0.07820965349674225, -0.20886357128620148, -0.022814949974417686, -0.004290030337870121, 0.0895976573228836, -0.10227091610431671, -0.0017130117630586028, -0.04419664293527603, -0.10150232166051865, 0.0017003051470965147, 0.07279510796070099, -0.137485533952713, 0.13807645440101624, 0.21589438617229462, 0.07225540280342102, 0.07359948754310608, -0.019093448296189308, 0.09936179965734482, -0.10856141895055771, -0.16549113392829895, 0.08348225057125092, -0.06234746053814888, 0.047262318432331085, 0.17534415423870087, 0.03307317942380905, -0.13904969394207, -0.015682822093367577, -0.0402069091796875, -0.15603256225585938, -0.238995760679245, -0.09178274869918823, -0.1182505264878273, 0.16442428529262543, 0.0009358620154671371, 0.06651917099952698, 0.08258313685655594, -0.022042419761419296, 0.16447891294956207, -0.07379321753978729, -0.07578866183757782, -0.006978808436542749, 0.12375060468912125, -0.056660156697034836, -0.03080669604241848, -0.10566964000463486, -0.008295975625514984, 0.1151021271944046, 0.15304014086723328, 0.12214863300323486, 0.2957419455051422, 0.08268889784812927, 0.026645636186003685, 0.08958091586828232, 0.17622539401054382, 0.09495089203119278, 0.07838419824838638, -0.045413073152303696, -0.014814783819019794, 0.014317171648144722, -0.04022889584302902, 0.010141594335436821, 0.14683100581169128, -0.2679629921913147, -0.006678564939647913, -0.2710230350494385, 0.0965198427438736, -0.10913380235433578, 0.11837165057659149, -0.01015760749578476, 0.10194015502929688, 0.11082887649536133, 0.03233652561903, -0.03858073800802231, 0.16613617539405823, 0.08450309932231903, -0.11277695000171661, 0.001758623169735074, 0.03737903758883476, 0.09715615212917328, -0.02818971499800682, 0.12721189856529236, -0.11048974841833115, -0.1464834064245224, 0.013753619976341724, 0.07152791321277618, -0.15373679995536804, 0.3138748109340668, 0.012069208547472954, -0.13481520116329193, -0.01481647603213787, -0.09957809001207352, -0.006440147757530212, 0.1254177987575531, 0.09333524852991104, 0.07935678958892822, -0.2185502052307129, -0.13339371979236603, 0.05872276425361633, -0.00575496768578887, 0.22408108413219452, -0.034034017473459244, -0.11356475204229355, -0.027013886719942093, 0.04241163283586502, -0.06043251231312752, 0.08524788916110992, 0.023536119610071182, -0.08113526552915573, -0.032957352697849274, 0.05323701351881027, 0.012368366122245789, 0.00524376705288887, 0.09360801428556442, 0.020107939839363098, -0.0009265501867048442, 0.01785753294825554, 0.047885000705718994, -0.0675911232829094, -0.1984109878540039, 0.09357594698667526, -0.05215044692158699, 0.0015536568826064467, -0.08013670891523361, -0.15122665464878082, -0.08837161958217621, -0.16009655594825745, 0.12540200352668762, -0.034406669437885284, 0.12700119614601135, -0.06619787961244583, 0.17341409623622894, -0.07871770113706589, 0.04481020197272301, -0.047349292784929276, 0.050332702696323395, -0.007268077693879604, -0.07756082713603973, 0.16585899889469147, -0.15564003586769104, 0.01809087023139, 0.19572502374649048, -0.018915493041276932, 0.07177707552909851, 0.021322092041373253, -0.0636206790804863, 0.23147478699684143, 0.3014698624610901, 0.008138049393892288, 0.1665448248386383, 0.3018903136253357, -0.07466315478086472, -0.2642788887023926, -0.05505012720823288, -0.2841376066207886, -0.05371501296758652, 0.10716094076633453, -0.22523896396160126, 0.06986407935619354, 0.14383509755134583, -0.06471995264291763, 0.30228954553604126, -0.21825523674488068, 0.012589273042976856, 0.15434536337852478, -0.08868814259767532, 0.5515313148498535, -0.1133413165807724, -0.17677772045135498, -0.008122089318931103, -0.08741296827793121, 0.10602109134197235, -0.0340677872300148, 0.06877441704273224, 0.013465235009789467, 0.04797380417585373, 0.048932258039712906, -0.03111894056200981, 0.22701001167297363, 0.008710170164704323, 0.09015397727489471, -0.07378865778446198, -0.18624304234981537, 0.11639340221881866, -0.04359482601284981, -0.08891059458255768, 0.0849778801202774, -0.05942516401410103, -0.11078983545303345, 0.04663389176130295, -0.07950539886951447, -0.024862350896000862, 0.08423490077257156, -0.04678233340382576, -0.042606171220541, -0.008054176345467567, -0.1618063747882843, -0.0002289071271661669, 0.31360217928886414, -0.07096036523580551, 0.16695955395698547, 0.03677211329340935, 0.00038613268407061696, -0.11027684062719345, 0.030288029462099075, -0.05203165486454964, -0.021576624363660812, 0.09578979015350342, -0.11096979677677155, 0.03204701095819473, 0.14160704612731934, -0.04864364117383957, 0.05846960097551346, 0.09256096184253693, -0.0849417969584465, 0.007583672646433115, 0.17753590643405914, -0.17537221312522888, -0.1273445188999176, -0.006135711446404457, -0.09862716495990753, 0.14055661857128143, 0.04394126310944557, 0.05191568285226822, 0.16669964790344238, 0.03967129811644554, -0.029474308714270592, -0.02817419543862343, -0.1153380498290062, -0.0201893113553524, 0.040153320878744125, 0.00045633706031367183, -0.08791285753250122, 0.2262638509273529, 0.06409153342247009, -0.1328488290309906, -0.051157206296920776, 0.2161225974559784, -0.06805316358804703, -0.04911920800805092, -0.223562553524971, 0.10752306133508682, -0.07112517952919006, -0.0965060144662857, 0.05453834682703018, -0.02270081453025341, 0.005106312222778797, 0.181985542178154, 0.03941008821129799, 0.11070270836353302, 0.03738937899470329, -0.02448922023177147, 0.15798696875572205, -0.142850860953331, -0.14191335439682007, -0.025354057550430298, -0.08757315576076508, -0.13844476640224457, -0.026804137974977493, 0.1617041826248169, -0.09177309274673462, -0.14772607386112213, -0.2621181011199951, 0.10968475043773651, -0.16432365775108337, -0.10192688554525375, -0.03469514101743698, -0.08968492597341537, 0.0696166530251503, 0.030301768332719803, -0.03093348816037178, -0.06706760823726654, -0.18593791127204895, 0.0816768929362297, 0.06349513679742813, 0.045533183962106705, -0.017847947776317596, 0.0067379772663116455, 0.1720137596130371, 0.025955144315958023, 0.10040043294429779, 0.16762186586856842, 0.011397695168852806, 0.2246655523777008, -0.1671202927827835, -0.11496317386627197, 0.1336962729692459, -0.026543032377958298, 0.06762003898620605, 0.16792191565036774, -0.0772583931684494, 0.015526676550507545, -0.028136352077126503, 0.07066910713911057, -0.11003983020782471, -0.105624258518219, 0.007937257178127766, 0.02567129209637642, -0.2755882740020752, -0.005599735304713249, -0.19717298448085785, 0.14788752794265747, 0.02579621411859989, 0.03297143429517746, 0.10257530212402344, 0.10404334217309952, 0.08312062919139862, -0.0017710148822516203, 0.03226327523589134, -0.1176818460226059, 0.02753005363047123, -0.059239376336336136, -0.020663779228925705, 0.017624232918024063, 0.36952024698257446, -0.03603357449173927, -0.046802736818790436, 0.003710439894348383, 0.1307835876941681, -0.02139742486178875, 0.017395347356796265, 0.13209912180900574, 0.12607666850090027, -0.08595693111419678, -0.1504845917224884, 0.04888554662466049, -0.04565655067563057, -0.02836887165904045, 0.1464131623506546, 0.05905961990356445, 0.1050296202301979, 0.0908031314611435, -0.014463032595813274, -0.00318976235575974, 0.012856799177825451, -0.15486004948616028, 0.06223496049642563, -0.010558074340224266, 0.012565906159579754, 0.017934376373887062, 0.15238402783870697, -0.005540105979889631, 0.07739730179309845, -0.09889880567789078, 0.004208535887300968, -0.13498884439468384, -0.07913459837436676, 0.03617347031831741, -0.13393273949623108, 0.04141177982091904, -0.01871878281235695, 0.029611799865961075, 0.30386561155319214, 0.02558239921927452, -0.020639164373278618, 0.12512871623039246, -0.1214587539434433, -0.12050267308950424, -0.001594188273884356, -0.029960084706544876, 0.0791488066315651, -0.02633434161543846, -0.0997740775346756, -0.1001306027173996, -0.15166029334068298, -0.09759195148944855, 0.05182836204767227, -0.04993441700935364, -0.059362251311540604, -0.17634081840515137, -0.05707859992980957, -0.05147340148687363, 0.14025864005088806, -0.12263951450586319, 0.15159130096435547, -0.014490418136119843, 0.004084470681846142, 0.04405883327126503, 0.1950942426919937, -0.03644494712352753, 0.08714226633310318, 0.0154351145029068, 0.1522706001996994, -0.05119588226079941, 0.14720745384693146, -0.10931728035211563, -0.04014137014746666, -0.06710435450077057, 0.21513493359088898, 0.25630924105644226, -0.06136954948306084, -0.008937356993556023, -0.012760217301547527, 0.058654606342315674, 0.1073930487036705, 0.16049085557460785, 0.002326392102986574, 0.2802925705909729, -0.03133585304021835, 0.04815128445625305, 0.02901598811149597, 0.013607407920062542, -0.06336209923028946, 0.03397751972079277, 0.07539387792348862, -0.035039983689785004, -0.1412304788827896, 0.15837742388248444, -0.21980468928813934, 0.18157227337360382, 0.11640069633722305, -0.19996967911720276, -0.013728445395827293, -0.04882071167230606, 0.1689416468143463, -0.0856364443898201, 0.1637246012687683, -0.0903693437576294, -0.2108195722103119, -0.2056000679731369, 0.03867346793413162, -0.34623071551322937, -0.254462867975235, 0.10422009229660034, 0.1488201916217804, 0.04015883058309555, -0.018507536500692368, -0.019967829808592796, -0.018367022275924683, 0.04877542704343796, -0.0067357709631323814, 0.06014643982052803, 0.031397558748722076, -0.02988368645310402, -0.24127542972564697, -0.029804671183228493, 0.023964406922459602, -0.07093082368373871, 0.07464958727359772, -0.06874357163906097, -0.022495782002806664, 0.08059766888618469, -0.03066304884850979, 0.03298592567443848, -0.035373736172914505, -0.16326889395713806, 0.027529051527380943, 0.03900543600320816, 0.036012712866067886, 0.00634160777553916, 0.0008072225609794259, -0.03455270454287529, 0.0644603744149208, -0.16716794669628143, -0.16015739738941193, 0.14140215516090393, -0.06745140254497528, 0.2779497504234314, -0.05812826007604599, -0.0809100940823555, 0.04766704887151718, -0.03426874056458473, 0.1807648241519928, -0.07756473124027252, 0.047254521399736404, 0.12766779959201813, 0.011127962730824947, 0.03121316432952881, -0.3092964291572571, 0.11082969605922699, -0.000795336440205574, -0.006093299947679043, -0.07581598311662674 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-distilled-clinc This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the clinc_oos dataset. It achieves the following results on the evaluation set: - Loss: 0.2663 - Accuracy: 0.9461 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 9 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 4.1991 | 1.0 | 318 | 3.1495 | 0.7523 | | 2.4112 | 2.0 | 636 | 1.5868 | 0.8510 | | 1.1887 | 3.0 | 954 | 0.7975 | 0.9203 | | 0.5952 | 4.0 | 1272 | 0.4870 | 0.9319 | | 0.3275 | 5.0 | 1590 | 0.3571 | 0.9419 | | 0.2066 | 6.0 | 1908 | 0.3070 | 0.9429 | | 0.1456 | 7.0 | 2226 | 0.2809 | 0.9448 | | 0.1154 | 8.0 | 2544 | 0.2697 | 0.9468 | | 0.1011 | 9.0 | 2862 | 0.2663 | 0.9461 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["clinc_oos"], "metrics": ["accuracy"], "model-index": [{"name": "distilbert-base-uncased-distilled-clinc", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "clinc_oos", "type": "clinc_oos", "args": "plus"}, "metrics": [{"type": "accuracy", "value": 0.9461290322580646, "name": "Accuracy"}]}]}]}
text-classification
MhF/distilbert-base-uncased-distilled-clinc
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "dataset:clinc_oos", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #distilbert #text-classification #generated_from_trainer #dataset-clinc_oos #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us
distilbert-base-uncased-distilled-clinc ======================================= This model is a fine-tuned version of distilbert-base-uncased on the clinc\_oos dataset. It achieves the following results on the evaluation set: * Loss: 0.2663 * Accuracy: 0.9461 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 48 * eval\_batch\_size: 48 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 9 ### Training results ### Framework versions * Transformers 4.16.2 * Pytorch 1.10.0+cu111 * Datasets 1.18.3 * Tokenizers 0.11.0
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 48\n* eval\\_batch\\_size: 48\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 9", "### Training results", "### Framework versions\n\n\n* Transformers 4.16.2\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.3\n* Tokenizers 0.11.0" ]
[ "TAGS\n#transformers #pytorch #distilbert #text-classification #generated_from_trainer #dataset-clinc_oos #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 48\n* eval\\_batch\\_size: 48\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 9", "### Training results", "### Framework versions\n\n\n* Transformers 4.16.2\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.3\n* Tokenizers 0.11.0" ]
[ 66, 98, 4, 35 ]
[ "passage: TAGS\n#transformers #pytorch #distilbert #text-classification #generated_from_trainer #dataset-clinc_oos #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 48\n* eval\\_batch\\_size: 48\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 9### Training results### Framework versions\n\n\n* Transformers 4.16.2\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.3\n* Tokenizers 0.11.0" ]
[ -0.10695059597492218, 0.08726992458105087, -0.0016390635864809155, 0.12565109133720398, 0.16409151256084442, 0.026725126430392265, 0.10704100877046585, 0.12498167157173157, -0.09777852147817612, 0.020146867260336876, 0.11298233270645142, 0.1652182936668396, 0.027339676395058632, 0.12250585108995438, -0.08309363573789597, -0.2381569892168045, 0.004961363971233368, 0.03720686212182045, -0.06280001997947693, 0.12559178471565247, 0.09769012033939362, -0.11508309096097946, 0.10145950317382812, 0.009448140859603882, -0.17632150650024414, 0.01167055033147335, 0.0030764921102672815, -0.06678280234336853, 0.11641202867031097, 0.037480756640434265, 0.10022435337305069, 0.007438587490469217, 0.08874110877513885, -0.1962154358625412, 0.00516421627253294, 0.043603286147117615, -0.013976904563605785, 0.07256118208169937, 0.03281252831220627, 0.003650070633739233, 0.15405809879302979, -0.10316139459609985, 0.0519491508603096, 0.02150912582874298, -0.11678722500801086, -0.2051858901977539, -0.07663872838020325, 0.03404401242733002, 0.09090325981378555, 0.1344829797744751, 0.0016747059999033809, 0.13083697855472565, -0.11763901263475418, 0.08648942410945892, 0.2080143392086029, -0.25823989510536194, -0.062004685401916504, 0.013540550135076046, 0.008292384445667267, 0.04852014034986496, -0.1092260479927063, -0.058000918477773666, 0.044863760471343994, 0.03756129741668701, 0.09804338961839676, -0.04283832758665085, -0.09250961989164352, 0.02030797116458416, -0.13136902451515198, -0.0369146503508091, 0.18448632955551147, 0.06830214709043503, -0.04159107059240341, -0.028100216761231422, -0.05330900475382805, -0.16396264731884003, -0.03129996731877327, 0.006938091944903135, 0.06894826143980026, -0.021958883851766586, -0.026521457359194756, 0.021515315398573875, -0.10956787317991257, -0.04139617830514908, -0.09649558365345001, 0.13445456326007843, 0.024723082780838013, 0.01237548515200615, -0.024003470316529274, 0.09757030010223389, 0.026083186268806458, -0.12230077385902405, -0.014211149886250496, 0.03830916807055473, 0.02032313495874405, -0.04032145068049431, -0.06168599799275398, -0.014754069969058037, 0.029418237507343292, 0.10995806008577347, -0.035280175507068634, 0.030246835201978683, 0.035404618829488754, 0.033168449997901917, -0.07637564092874527, 0.19803157448768616, -0.01884068176150322, -0.01234695315361023, 0.02569306083023548, 0.0395067073404789, 0.011446970514953136, -0.005214174278080463, -0.11748045682907104, 0.012256111949682236, 0.07248127460479736, -0.0036924341693520546, -0.06487974524497986, 0.06530944257974625, -0.06712515652179718, -0.025261374190449715, -0.00633907550945878, -0.10381974279880524, 0.04830688238143921, 0.003745368681848049, -0.08639020472764969, -0.013045522384345531, 0.03588251397013664, 0.03631781041622162, -0.037413693964481354, 0.09360069036483765, -0.08548098057508469, 0.035369619727134705, -0.09244246035814285, -0.0799938514828682, 0.01265697367489338, -0.09136438369750977, 0.047094207257032394, -0.1026894673705101, -0.1786651313304901, -0.041708145290613174, 0.05499783530831337, -0.007927882485091686, -0.08033033460378647, -0.08790435642004013, -0.07323658466339111, 0.013866152614355087, -0.00843985565006733, 0.11529361456632614, -0.07152623683214188, 0.08746250718832016, 0.030058039352297783, 0.04355201870203018, -0.0757191926240921, 0.05854203179478645, -0.13143081963062286, 0.00949727650731802, -0.11748749017715454, 0.035030726343393326, -0.020777639001607895, 0.08500753343105316, -0.06439647823572159, -0.1011897474527359, 0.025153756141662598, 0.0055554891005158424, 0.050242532044649124, 0.09334857016801834, -0.1522897630929947, -0.06366115063428879, 0.12280537933111191, -0.05930785834789276, -0.12810634076595306, 0.10335414111614227, -0.057801857590675354, 0.034934151917696, 0.05592042952775955, 0.14705483615398407, 0.061449822038412094, -0.06482839584350586, 0.0000057802694755082484, -0.006034701596945524, 0.06146438047289848, -0.07873550802469254, 0.09419838339090347, 0.009829257614910603, 0.004670890048146248, 0.03408905118703842, -0.03365855664014816, 0.04032546281814575, -0.07548686861991882, -0.10393963009119034, -0.04977508261799812, -0.08126956969499588, -0.0013215814251452684, 0.07338980585336685, 0.06958594173192978, -0.10665425658226013, -0.07433359324932098, 0.03082893230021, 0.10102533549070358, -0.05362430214881897, 0.02130797505378723, -0.07051758468151093, 0.06897764652967453, -0.04371386766433716, -0.01920163631439209, -0.1690032184123993, -0.003416819032281637, 0.0023888058494776487, 0.020795224234461784, 0.007820268161594868, 0.022464271634817123, 0.0581241250038147, 0.05567513778805733, -0.03137322515249252, -0.02968914993107319, -0.03009789250791073, -0.001756457262672484, -0.1171567514538765, -0.19073742628097534, -0.02139732614159584, -0.01727617345750332, 0.15676522254943848, -0.2249770313501358, 0.0353391058743, -0.008958441205322742, 0.0720752626657486, 0.008032059296965599, -0.0017821333603933454, -0.05461733415722847, 0.08127262443304062, -0.05199294164776802, -0.055495500564575195, 0.06549441069364548, 0.019722379744052887, -0.08834678679704666, -0.06321050226688385, -0.07666166126728058, 0.19539378583431244, 0.14204004406929016, -0.09872662276029587, -0.049066901206970215, -0.0026692571118474007, -0.07816747575998306, -0.027006274089217186, -0.045857902616262436, 0.059487152844667435, 0.22027944028377533, -0.03146949037909508, 0.1296735554933548, -0.06636977940797806, -0.031984779983758926, 0.024646244943141937, -0.04202837124466896, 0.013333937153220177, 0.1327536255121231, 0.13427422940731049, -0.10104162991046906, 0.15901143848896027, 0.14575044810771942, -0.07591094076633453, 0.11250640451908112, -0.049640338867902756, -0.06452769041061401, -0.021665096282958984, -0.030227530747652054, -0.01150205172598362, 0.08839860558509827, -0.16747112572193146, 0.00885613914579153, 0.022109264507889748, 0.01948443241417408, 0.02022118866443634, -0.21280738711357117, -0.0355183482170105, 0.04863249137997627, -0.027413921430706978, -0.04194347932934761, -0.029726533219218254, 0.006183384917676449, 0.09627973288297653, -0.00213381415233016, -0.10017412900924683, 0.05964727699756622, 0.008285317569971085, -0.08082502335309982, 0.2132362425327301, -0.08614105731248856, -0.15571431815624237, -0.12417083978652954, -0.07011111080646515, -0.06623806804418564, 0.015979604795575142, 0.07289206981658936, -0.07353082299232483, -0.04045502096414566, -0.08457229286432266, 0.015587158501148224, 0.010886188596487045, 0.037850476801395416, 0.03231240063905716, 0.017803940922021866, 0.06830474734306335, -0.09133203327655792, -0.038445618003606796, -0.04267653450369835, -0.0675102174282074, 0.03596891090273857, 0.025280911475419998, 0.12497538328170776, 0.11988572031259537, -0.013441573828458786, 0.004089190624654293, -0.007801646366715431, 0.20403344929218292, -0.06467646360397339, -0.05025096610188484, 0.1329413652420044, 0.0019048803951591253, 0.0316326841711998, 0.11510004103183746, 0.049141526222229004, -0.09032731503248215, 0.005264563020318747, 0.031002234667539597, -0.020925939083099365, -0.2266395390033722, -0.045681431889534, -0.06652481853961945, -0.023242542520165443, 0.09351247549057007, 0.036210283637046814, 0.04136945679783821, 0.07153578847646713, 0.04781612753868103, 0.10711707919836044, -0.04422905296087265, 0.05220536142587662, 0.11111226677894592, 0.058340560644865036, 0.10450632125139236, -0.03603478521108627, -0.05503718554973602, 0.05061132460832596, -0.02963504008948803, 0.2105357050895691, 0.008756001479923725, 0.1171911284327507, 0.044131144881248474, 0.16082201898097992, -0.018899155780673027, 0.07558277994394302, 0.016817370429635048, -0.03093189001083374, -0.013368114829063416, -0.027321210131049156, -0.04635234549641609, 0.040673982352018356, -0.06049376353621483, 0.08597064018249512, -0.1567145437002182, 0.02980949357151985, 0.05528929457068443, 0.26852166652679443, 0.01712164841592312, -0.34253033995628357, -0.0894671082496643, 0.012181409634649754, -0.04334549233317375, -0.037483494728803635, 0.04346165433526039, 0.07227535545825958, -0.09161680191755295, 0.019188953563570976, -0.03729171305894852, 0.1021001860499382, -0.052183300256729126, 0.04421688988804817, 0.07726909220218658, 0.08221225440502167, 0.014834852889180183, 0.09925353527069092, -0.31310969591140747, 0.2600540816783905, -0.008854743093252182, 0.08422131091356277, -0.08596466481685638, 0.009345064871013165, 0.02942565083503723, 0.08171051740646362, 0.08777757734060287, -0.009657928720116615, -0.06051042303442955, -0.18045371770858765, -0.07272515445947647, 0.04232553765177727, 0.0460524819791317, -0.06270083785057068, 0.09395480155944824, -0.03460123389959335, 0.006648984272032976, 0.05790771543979645, 0.002610799390822649, -0.03339890390634537, -0.09845850616693497, -0.012070119380950928, 0.04708974063396454, -0.02322658710181713, -0.07040245085954666, -0.09925235062837601, -0.0945795327425003, 0.16798166930675507, -0.012330993078649044, -0.024767866358160973, -0.11706416308879852, 0.088978610932827, 0.06097136810421944, -0.08793403208255768, 0.016835851594805717, 0.022642508149147034, 0.06392329186201096, 0.04739469289779663, -0.0824127122759819, 0.11760033667087555, -0.06707944720983505, -0.16037766635417938, -0.06303690373897552, 0.10132857412099838, 0.027325648814439774, 0.06643309444189072, -0.00740374019369483, 0.008623902685940266, -0.050390977412462234, -0.08085788041353226, 0.011334792710840702, 0.031217273324728012, 0.10327426344156265, 0.031482480466365814, -0.04968947544693947, -0.00013153291365597397, -0.0659945160150528, -0.04338925704360008, 0.18404939770698547, 0.21151338517665863, -0.08054225146770477, 0.022046277299523354, -0.0030154187697917223, -0.0849708542227745, -0.16584263741970062, 0.034838296473026276, 0.04621845483779907, 0.030702900141477585, 0.0066701448522508144, -0.15537843108177185, 0.14857542514801025, 0.11972721666097641, -0.004618313629180193, 0.10767664760351181, -0.3117898404598236, -0.11592289805412292, 0.14343136548995972, 0.12730757892131805, 0.1632358878850937, -0.13870905339717865, 0.0036573235411196947, -0.04054045304656029, -0.1428823322057724, 0.10835476219654083, -0.07241575419902802, 0.10681160539388657, -0.0420665517449379, 0.07874605804681778, 0.00947616621851921, -0.050528381019830704, 0.12796342372894287, 0.03267786279320717, 0.09730664640665054, -0.08719028532505035, -0.03612155839800835, 0.013172627426683903, -0.035399481654167175, 0.0209287591278553, -0.08973689377307892, 0.02941444143652916, -0.1380060315132141, -0.035165634006261826, -0.05993255600333214, 0.03817909583449364, -0.03729571774601936, -0.04946724325418472, -0.023895518854260445, 0.024082664400339127, 0.08007468283176422, -0.0006719345110468566, 0.15890014171600342, 0.025342801585793495, 0.11485964059829712, 0.06992184370756149, 0.07907874137163162, -0.06932473182678223, -0.06033068895339966, -0.024683551862835884, 0.0002543716982472688, 0.04974314942955971, -0.1362473964691162, 0.023785719648003578, 0.1577487289905548, 0.007906612940132618, 0.15085263550281525, 0.0893682911992073, 0.008697199635207653, 0.0014853617176413536, 0.052945494651794434, -0.15745773911476135, -0.05411791428923607, -0.024245120584964752, -0.0552218034863472, -0.11364933848381042, 0.040649548172950745, 0.09090939909219742, -0.07496025413274765, -0.009043017402291298, -0.016386888921260834, 0.040173694491386414, -0.08477705717086792, 0.16411103308200836, 0.03509820997714996, 0.04285871982574463, -0.10043887048959732, 0.07110896706581116, 0.06699234992265701, -0.0834217518568039, 0.009510943666100502, 0.05760185420513153, -0.07418879866600037, -0.051072247326374054, 0.102824866771698, 0.19772936403751373, -0.04530616104602814, -0.0691862627863884, -0.1498231738805771, -0.1427338719367981, 0.0958799347281456, 0.13242322206497192, 0.11745841056108475, 0.023057997226715088, -0.052258871495723724, -0.02286752127110958, -0.1323034018278122, 0.06326974183320999, 0.03714156150817871, 0.058939237147569656, -0.14500750601291656, 0.10868574678897858, -0.017741046845912933, 0.03902279958128929, -0.008281541056931019, 0.030460940673947334, -0.11450741440057755, 0.007581067271530628, -0.09731289744377136, -0.005258847493678331, -0.036495160311460495, 0.026682928204536438, 0.01444006897509098, -0.0671575665473938, -0.06307848542928696, 0.024965427815914154, -0.11165229231119156, -0.029338503256440163, 0.03434593230485916, 0.0754612386226654, -0.09034617990255356, -0.05301831290125847, 0.017705131322145462, -0.07079695165157318, 0.05857253074645996, 0.0813533216714859, 0.01745162159204483, 0.02910139225423336, -0.14556759595870972, 0.02319546602666378, 0.06902814656496048, 0.030514327809214592, 0.07327303290367126, -0.10232450813055038, -0.0005826838314533234, 0.03881548345088959, 0.020288897678256035, 0.011158954352140427, 0.075379379093647, -0.1403571367263794, -0.023361563682556152, -0.018709346652030945, -0.09762139618396759, -0.06108676642179489, 0.012889206409454346, 0.1118580773472786, 0.012194964103400707, 0.21417388319969177, -0.06043442338705063, 0.05210641026496887, -0.20116767287254333, 0.002617739839479327, -0.006947805173695087, -0.0951615571975708, -0.10445850342512131, -0.07839155197143555, 0.06526823341846466, -0.046232517808675766, 0.13790084421634674, 0.039709314703941345, 0.06658171862363815, 0.01976180262863636, -0.03475480526685715, 0.040154214948415756, 0.027970105409622192, 0.20624355971813202, 0.036782193928956985, -0.04180021956562996, 0.09232787042856216, 0.024537384510040283, 0.11820374429225922, 0.12624821066856384, 0.19040830433368683, 0.13728222250938416, 0.014175623655319214, 0.11857062578201294, 0.032643478363752365, -0.05659986287355423, -0.1495336890220642, 0.03687608614563942, -0.04106130078434944, 0.09921851009130478, -0.030321214348077774, 0.18526886403560638, 0.0498264841735363, -0.17005252838134766, 0.026721946895122528, -0.065955251455307, -0.0804942175745964, -0.10802000015974045, -0.048439472913742065, -0.10015267878770828, -0.14267969131469727, 0.0042923144064843655, -0.11899066716432571, 0.009361580945551395, 0.08965102583169937, -0.0018939848523586988, -0.027422597631812096, 0.14868028461933136, 0.0030657874885946512, 0.03551734983921051, 0.05896976217627525, -0.01262054406106472, -0.03988051041960716, -0.11609671264886856, -0.07524945586919785, -0.02255541831254959, -0.04365629330277443, 0.033802323043346405, -0.06316739320755005, -0.031881432980298996, 0.044376078993082047, -0.02878512442111969, -0.08503810316324234, 0.009541518986225128, -0.0004419306351337582, 0.05644761025905609, 0.05543368309736252, 0.029283974319696426, 0.02482505887746811, 0.0094379261136055, 0.20866523683071136, -0.07429128885269165, -0.0650799572467804, -0.11749632656574249, 0.21439525485038757, 0.05957257002592087, -0.03554088622331619, 0.04317614436149597, -0.06663013249635696, 0.000962714315392077, 0.2302778661251068, 0.17739899456501007, -0.06603221595287323, -0.01190780196338892, 0.004588475450873375, -0.01002169493585825, -0.02614855207502842, 0.09806343913078308, 0.14726632833480835, 0.04140540957450867, -0.08881893008947372, -0.06589550524950027, -0.055179957300424576, -0.00039714836748316884, -0.028597483411431313, 0.06206865236163139, 0.027644764631986618, 0.006070397328585386, -0.016811588779091835, 0.03540891781449318, -0.06481345742940903, -0.08293906599283218, 0.08635251224040985, -0.20787227153778076, -0.15221171081066132, -0.025606844574213028, 0.09877471625804901, 0.015281634405255318, 0.06655916571617126, -0.02431609481573105, -0.02395872212946415, 0.09615980833768845, -0.015870068222284317, -0.10565648972988129, -0.0627308189868927, 0.08659747987985611, -0.10777857899665833, 0.2165045440196991, -0.04517412558197975, 0.07039123773574829, 0.11957748234272003, 0.0822872743010521, -0.08145909011363983, 0.0660933181643486, 0.02697397954761982, -0.04921981692314148, 0.05048389360308647, 0.06140384078025818, -0.04781043529510498, 0.0684429183602333, 0.045178476721048355, -0.12005651742219925, 0.018658161163330078, -0.076711006462574, -0.04310891777276993, -0.03106330707669258, -0.032395899295806885, -0.07679477334022522, 0.12975278496742249, 0.21611405909061432, -0.03250209614634514, -0.011849306523799896, -0.06798161566257477, 0.04781975969672203, 0.034628208726644516, 0.008867132477462292, -0.05880596861243248, -0.19491930305957794, 0.009930301457643509, 0.04219483211636543, -0.01874079555273056, -0.21993009746074677, -0.09190322458744049, 0.0006399593548849225, -0.09578613936901093, -0.10606476664543152, 0.052189599722623825, 0.08539258688688278, 0.04010055214166641, -0.07946737110614777, -0.050768326967954636, -0.06690628081560135, 0.15057536959648132, -0.12435603886842728, -0.09472952783107758 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-clinc This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the clinc_oos dataset. It achieves the following results on the evaluation set: - Loss: 0.7703 - Accuracy: 0.9187 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 4.2896 | 1.0 | 318 | 3.2887 | 0.7419 | | 2.6309 | 2.0 | 636 | 1.8797 | 0.8310 | | 1.5443 | 3.0 | 954 | 1.1537 | 0.8974 | | 1.0097 | 4.0 | 1272 | 0.8560 | 0.9135 | | 0.7918 | 5.0 | 1590 | 0.7703 | 0.9187 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["clinc_oos"], "metrics": ["accuracy"], "model-index": [{"name": "distilbert-base-uncased-finetuned-clinc", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "clinc_oos", "type": "clinc_oos", "args": "plus"}, "metrics": [{"type": "accuracy", "value": 0.9187096774193548, "name": "Accuracy"}]}]}]}
text-classification
MhF/distilbert-base-uncased-finetuned-clinc
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:clinc_oos", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #dataset-clinc_oos #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #has_space #region-us
distilbert-base-uncased-finetuned-clinc ======================================= This model is a fine-tuned version of distilbert-base-uncased on the clinc\_oos dataset. It achieves the following results on the evaluation set: * Loss: 0.7703 * Accuracy: 0.9187 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 48 * eval\_batch\_size: 48 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 5 ### Training results ### Framework versions * Transformers 4.16.2 * Pytorch 1.10.0+cu111 * Datasets 1.18.3 * Tokenizers 0.11.0
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 48\n* eval\\_batch\\_size: 48\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.16.2\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.3\n* Tokenizers 0.11.0" ]
[ "TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #dataset-clinc_oos #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #has_space #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 48\n* eval\\_batch\\_size: 48\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.16.2\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.3\n* Tokenizers 0.11.0" ]
[ 74, 98, 4, 35 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #dataset-clinc_oos #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #has_space #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 48\n* eval\\_batch\\_size: 48\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.16.2\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.3\n* Tokenizers 0.11.0" ]
[ -0.09431806206703186, 0.11679577082395554, -0.0023456986527889967, 0.12306787073612213, 0.14429818093776703, 0.021176768466830254, 0.12229941785335541, 0.13602130115032196, -0.07167928665876389, 0.039318058639764786, 0.10657576471567154, 0.12979945540428162, 0.04173321649432182, 0.14064128696918488, -0.08739002794027328, -0.23687008023262024, 0.0062333764508366585, 0.04756012186408043, -0.06952827423810959, 0.11783459037542343, 0.09404356777667999, -0.10943884402513504, 0.09603367745876312, -0.0038609355688095093, -0.1543281227350235, 0.0007082498050294816, -0.002192215994000435, -0.06811954081058502, 0.10617313534021378, 0.042965177446603775, 0.10511171072721481, 0.027928108349442482, 0.07279383391141891, -0.17898426949977875, 0.007443063892424107, 0.050211504101753235, -0.019940350204706192, 0.08444619178771973, 0.03762069344520569, 0.008746594190597534, 0.11922885477542877, -0.10957746207714081, 0.047109462320804596, 0.010123742744326591, -0.12158633023500443, -0.21913254261016846, -0.06927990913391113, 0.026833688840270042, 0.07082966715097427, 0.11369882524013519, -0.007641791831701994, 0.1421189159154892, -0.08258368074893951, 0.08898252248764038, 0.20291712880134583, -0.2684105634689331, -0.06332536041736603, 0.057994600385427475, 0.03982194885611534, 0.08032948523759842, -0.10943057388067245, -0.0517241545021534, 0.02935870736837387, 0.039485346525907516, 0.12567563354969025, -0.0429629422724247, -0.04734919220209122, 0.019230488687753677, -0.14005066454410553, -0.03839389979839325, 0.1863919347524643, 0.07405132055282593, -0.03148277848958969, -0.041171059012413025, -0.059641528874635696, -0.1508459746837616, -0.031646694988012314, 0.018998509272933006, 0.07328957319259644, -0.02539581060409546, -0.04139900952577591, -0.00680968165397644, -0.11123403906822205, -0.020310159772634506, -0.09156886488199234, 0.11446218192577362, 0.013570992276072502, 0.0065390123054385185, -0.011009905487298965, 0.08991969376802444, -0.0015587616944685578, -0.1300460547208786, 0.006472326349467039, 0.03995203226804733, 0.014020274393260479, -0.033603984862565994, -0.06557195633649826, -0.049539677798748016, 0.03018178790807724, 0.0918966755270958, -0.04855717346072197, 0.03492951765656471, 0.018700046464800835, 0.050310682505369186, -0.06997688859701157, 0.20712341368198395, -0.034132733941078186, -0.03287747502326965, 0.013957674615085125, 0.08286809921264648, 0.020463204011321068, -0.018808642402291298, -0.13365988433361053, 0.022620845586061478, 0.09845176339149475, -0.013690478168427944, -0.029924163594841957, 0.06654435396194458, -0.0682745948433876, -0.03239920735359192, 0.006997681688517332, -0.10511527210474014, 0.04657601937651634, 0.0005601259181275964, -0.08751325309276581, -0.024748127907514572, 0.03919007629156113, 0.03117387183010578, -0.04047512263059616, 0.08846230804920197, -0.0905916839838028, 0.026994748041033745, -0.0854983925819397, -0.10220017284154892, 0.013054702430963516, -0.09212920814752579, 0.031302668154239655, -0.10773446410894394, -0.14843451976776123, -0.04705621674656868, 0.06769739836454391, -0.019185950979590416, -0.08552752435207367, -0.07423017174005508, -0.08061092346906662, 0.014899480156600475, -0.011330068111419678, 0.10989227890968323, -0.07081753760576248, 0.10036307573318481, 0.019733639433979988, 0.05090708285570145, -0.08433740586042404, 0.060467611998319626, -0.12410557270050049, 0.02268388867378235, -0.11446978896856308, 0.028688328340649605, -0.02844245731830597, 0.0713098794221878, -0.0681791752576828, -0.09955573827028275, 0.016823941841721535, 0.003014183137565851, 0.04972882941365242, 0.07378894835710526, -0.1469249427318573, -0.06122846156358719, 0.11677106469869614, -0.04291309788823128, -0.12701059877872467, 0.11475193500518799, -0.047941986471414566, 0.023163968697190285, 0.039699725806713104, 0.19409747421741486, 0.07258263975381851, -0.07149141281843185, -0.005547970533370972, -0.0015229436103254557, 0.07989048212766647, -0.08293632417917252, 0.1026388630270958, 0.01650526002049446, 0.042151376605033875, 0.022087056189775467, -0.03964399918913841, 0.039009906351566315, -0.06583648920059204, -0.09481712430715561, -0.03894009813666344, -0.08953569084405899, 0.012504725717008114, 0.0770251527428627, 0.06730993837118149, -0.10302047431468964, -0.089731864631176, 0.040074482560157776, 0.09108638018369675, -0.06756944209337234, 0.02382279746234417, -0.06824006140232086, 0.09473036229610443, -0.05808436870574951, -0.013156415894627571, -0.16992081701755524, -0.01222057081758976, 0.009164730086922646, 0.01193250436335802, 0.023427261039614677, 0.05667697638273239, 0.06706035137176514, 0.052241548895835876, -0.042314592748880386, -0.03482188284397125, -0.022481629624962807, 0.005986239295452833, -0.11584573239088058, -0.17514729499816895, -0.03291573002934456, -0.02439984679222107, 0.16636894643306732, -0.2184547334909439, 0.04126433655619621, 0.0017399428179487586, 0.08940297365188599, 0.02643599919974804, -0.0037735593505203724, -0.038263123482465744, 0.07971613854169846, -0.04906678944826126, -0.0648014172911644, 0.0732153058052063, 0.025406163185834885, -0.08850537240505219, -0.04900894686579704, -0.1360902190208435, 0.20396988093852997, 0.15057192742824554, -0.0746956393122673, -0.03675169497728348, -0.0029692542739212513, -0.06922630965709686, -0.01924349181354046, -0.0279807448387146, 0.034397490322589874, 0.1761000007390976, -0.02013925276696682, 0.1457328051328659, -0.07406262308359146, -0.028887374326586723, 0.02560162916779518, -0.04191345348954201, -0.014641006477177143, 0.13346542418003082, 0.10182539373636246, -0.1015041321516037, 0.1720283180475235, 0.17514830827713013, -0.07889728993177414, 0.12814262509346008, -0.048450928181409836, -0.05782008171081543, -0.037617284804582596, -0.021104883402585983, -0.0024678523186594248, 0.09266895055770874, -0.12033240497112274, 0.007847856730222702, 0.02576836757361889, 0.016819527372717857, 0.022657819092273712, -0.20612014830112457, -0.026203598827123642, 0.04805203154683113, -0.03406354784965515, -0.014344457536935806, -0.024841994047164917, 0.00893037673085928, 0.09713394939899445, 0.003635121276602149, -0.10678242892026901, 0.05298905074596405, 0.0033398387022316456, -0.05633164197206497, 0.19194599986076355, -0.07883205264806747, -0.1913495808839798, -0.1305566281080246, -0.0521334707736969, -0.06483686715364456, 0.017854442819952965, 0.062432244420051575, -0.040834710001945496, -0.03750848025083542, -0.11096292734146118, -0.0038806742522865534, 0.0016313582891598344, 0.022053055465221405, 0.02422020211815834, 0.012959138490259647, 0.07876452803611755, -0.09070679545402527, -0.03424385190010071, -0.03040211834013462, -0.04800469055771828, 0.04199426621198654, 0.018776733428239822, 0.11939142644405365, 0.1163032129406929, -0.022860636934638023, 0.001811352325603366, -0.010182936675846577, 0.2057098001241684, -0.06795990467071533, -0.02602970227599144, 0.1324034184217453, 0.0017372161382809281, 0.047999560832977295, 0.12413761764764786, 0.046056196093559265, -0.07806488126516342, 0.0027312804013490677, 0.028380950912833214, -0.025327367708086967, -0.20442961156368256, -0.044218458235263824, -0.07398538291454315, 0.005167088005691767, 0.09888862073421478, 0.03355632349848747, 0.033560965210199356, 0.057749416679143906, 0.04700862616300583, 0.10374311357736588, -0.031459517776966095, 0.05411012843251228, 0.1187484934926033, 0.054002657532691956, 0.11524980515241623, -0.030493177473545074, -0.05156866833567619, 0.05090902000665665, 0.002197681926190853, 0.18577679991722107, -0.0007862087804824114, 0.13375675678253174, 0.02415861189365387, 0.15721744298934937, -0.01600780338048935, 0.0545806922018528, 0.0074736010283231735, -0.014847376383841038, -0.026355765759944916, -0.02601454220712185, -0.03451627865433693, 0.03527103736996651, -0.0023564593866467476, 0.05237238481640816, -0.13354845345020294, -0.012192236259579659, 0.049651388078927994, 0.23444055020809174, 0.030416419729590416, -0.3404054343700409, -0.07869158685207367, 0.0239566657692194, -0.035824112594127655, -0.03521359711885452, 0.03120727278292179, 0.10215076804161072, -0.07708293199539185, 0.016937285661697388, -0.05278944969177246, 0.0978977307677269, -0.06320911645889282, 0.04856221377849579, 0.07125749439001083, 0.08077259361743927, 0.009677577763795853, 0.088594950735569, -0.29379770159721375, 0.25294506549835205, 0.0013450153637677431, 0.055461492389440536, -0.07525667548179626, 0.004500477574765682, 0.023253103718161583, 0.06456096470355988, 0.07097235321998596, -0.00923948734998703, -0.041867662221193314, -0.18676047027111053, -0.07103900611400604, 0.02979513816535473, 0.05574851110577583, -0.06891532242298126, 0.1004742756485939, -0.03923759609460831, -0.0024498484563082457, 0.05669255182147026, 0.019754741340875626, -0.00788110215216875, -0.1051129475235939, 0.017013292759656906, 0.06740991026163101, -0.03251751512289047, -0.06972923874855042, -0.09752876311540604, -0.1188010424375534, 0.1603291630744934, -0.0028318336699157953, -0.028598204255104065, -0.1104360967874527, 0.08912884443998337, 0.0748448297381401, -0.08543013781309128, 0.004745580721646547, 0.009649831801652908, 0.06923883408308029, 0.03236714377999306, -0.07864675670862198, 0.12187936902046204, -0.05042433366179466, -0.1524772047996521, -0.0542769692838192, 0.10645737498998642, 0.0009281407110393047, 0.07427766919136047, -0.018504828214645386, 0.022614294663071632, -0.0552033931016922, -0.062201905995607376, 0.019615538418293, 0.000896090583410114, 0.09391649812459946, 0.029201937839388847, -0.03650486469268799, -0.01535218395292759, -0.05506817251443863, -0.03457074984908104, 0.16983939707279205, 0.23934707045555115, -0.07925516366958618, 0.013917830772697926, 0.01087299082428217, -0.07033201307058334, -0.1710788458585739, 0.022824257612228394, 0.034954819828271866, 0.029664304107427597, 0.03675756976008415, -0.13761664927005768, 0.09007422626018524, 0.09910813719034195, -0.013830779120326042, 0.11090587824583054, -0.3047690987586975, -0.11203185468912125, 0.12504886090755463, 0.12405281513929367, 0.1340107023715973, -0.16422446072101593, -0.00824395939707756, -0.01879080943763256, -0.13652807474136353, 0.13794749975204468, -0.0814492478966713, 0.12345592677593231, -0.02782147377729416, 0.07357000559568405, 0.018890321254730225, -0.055910974740982056, 0.13980790972709656, -0.0024595465511083603, 0.08720214664936066, -0.09565857797861099, -0.03720329701900482, 0.036513783037662506, -0.0467115081846714, 0.021182114258408546, -0.11131522804498672, 0.024157065898180008, -0.13487650454044342, -0.028530074283480644, -0.06702709943056107, 0.02542835846543312, -0.034402523189783096, -0.05024377629160881, -0.034399401396512985, 0.05338941887021065, 0.0759081244468689, 0.0047453525476157665, 0.1747061163187027, 0.017572807148098946, 0.12681923806667328, 0.14445734024047852, 0.06384076923131943, -0.05921197310090065, -0.06139836460351944, -0.020914284512400627, -0.007582691498100758, 0.04496736824512482, -0.13923271000385284, 0.02261499874293804, 0.15944193303585052, -0.004315568599849939, 0.15600746870040894, 0.07941772043704987, -0.013308500871062279, -0.0031672162003815174, 0.05470632389187813, -0.16354718804359436, -0.08667287975549698, -0.027268435806035995, -0.03875300660729408, -0.12962070107460022, 0.02382119558751583, 0.11979791522026062, -0.07531635463237762, -0.003077481174841523, -0.0000064644978010619525, 0.044078532606363297, -0.06049839034676552, 0.15998175740242004, 0.049774568527936935, 0.0461290217936039, -0.08147531002759933, 0.066905677318573, 0.09498558938503265, -0.10381331294775009, 0.009711693041026592, 0.061993926763534546, -0.0691521093249321, -0.05479264631867409, 0.07686279714107513, 0.1679278463125229, -0.039111897349357605, -0.05594346299767494, -0.16169828176498413, -0.12742510437965393, 0.08480454236268997, 0.11994460225105286, 0.10729604214429855, 0.014351854100823402, -0.040117692202329636, -0.02254433184862137, -0.11534276604652405, 0.08204172551631927, 0.04460573568940163, 0.06938692182302475, -0.14213228225708008, 0.10795962065458298, -0.024413282051682472, 0.0366826169192791, -0.010684477165341377, 0.030497997999191284, -0.12190969288349152, -0.0074816602282226086, -0.0885855033993721, -0.0049166311509907246, -0.023416293784976006, 0.018271027132868767, 0.004245205782353878, -0.07622227817773819, -0.06062828376889229, 0.01324441283941269, -0.11742302030324936, -0.03778533637523651, 0.023957742378115654, 0.06556005775928497, -0.08986767381429672, -0.06409312784671783, 0.01486659049987793, -0.06970033794641495, 0.05773141235113144, 0.03897141292691231, 0.007976196706295013, 0.015023477375507355, -0.123806431889534, 0.016405142843723297, 0.03998328372836113, 0.03555584326386452, 0.07035872340202332, -0.09311862289905548, -0.005921028554439545, 0.02684612199664116, 0.02862282283604145, 0.014097606763243675, 0.09229274839162827, -0.13871358335018158, -0.012852849438786507, -0.03783822059631348, -0.08818458020687103, -0.06256894022226334, 0.029035767540335655, 0.0912410244345665, 0.034364003688097, 0.21159149706363678, -0.05710450932383537, 0.04433414340019226, -0.2061060518026352, 0.0029870409052819014, -0.0001341063907602802, -0.11752072721719742, -0.06563269346952438, -0.07466157525777817, 0.06611231714487076, -0.04926217719912529, 0.11877290904521942, 0.056803684681653976, 0.06433382630348206, 0.02766442485153675, -0.029592834413051605, 0.035890620201826096, 0.029369622468948364, 0.18077543377876282, 0.026377486065030098, -0.04325425624847412, 0.08539769053459167, 0.017215708270668983, 0.1096368357539177, 0.12922723591327667, 0.1798759251832962, 0.14544829726219177, 0.014726342633366585, 0.11030785739421844, 0.03570888563990593, -0.04815288260579109, -0.15498793125152588, 0.06002363562583923, -0.03616129234433174, 0.1213209480047226, -0.04287353530526161, 0.18877670168876648, 0.05180014297366142, -0.17035968601703644, 0.03301085904240608, -0.07807262241840363, -0.08228683471679688, -0.08573585748672485, -0.07207119464874268, -0.09877556562423706, -0.1297624409198761, -0.013707705773413181, -0.11041635274887085, 0.021004650741815567, 0.11221656203269958, -0.0038784793578088284, -0.023153115063905716, 0.13146038353443146, -0.009467313066124916, 0.019994037225842476, 0.06706249713897705, -0.010583742521703243, -0.03513329476118088, -0.1050485298037529, -0.08958937972784042, -0.023332277312874794, -0.011611546389758587, 0.03152306005358696, -0.05150756612420082, -0.01667160913348198, 0.03626300022006035, -0.030929584056138992, -0.09793099761009216, 0.002208924852311611, 0.004280314315110445, 0.05918160825967789, 0.06037716940045357, 0.018283413723111153, 0.018798908218741417, 0.007333669345825911, 0.23044948279857635, -0.0776200145483017, -0.06306280195713043, -0.10901042819023132, 0.18023663759231567, 0.030855415388941765, -0.0449688695371151, 0.037783537060022354, -0.0786672905087471, -0.0084532480686903, 0.22322995960712433, 0.1906498521566391, -0.09415511786937714, -0.006680540274828672, 0.016066959127783775, -0.004307271912693977, -0.014554254710674286, 0.09689061343669891, 0.13445115089416504, 0.03479842096567154, -0.09151003509759903, -0.053141579031944275, -0.05791878700256348, 0.007076912559568882, -0.03265481814742088, 0.056747086346149445, 0.02547973394393921, 0.011160613968968391, -0.026572925969958305, 0.03127003088593483, -0.05414116010069847, -0.10876255482435226, 0.06342938542366028, -0.24017581343650818, -0.1581571400165558, -0.032084107398986816, 0.12100314348936081, -0.003602829994633794, 0.06174803897738457, -0.02660277858376503, -0.0020403172820806503, 0.06125006824731827, -0.024537328630685806, -0.08233585208654404, -0.047631483525037766, 0.08179979771375656, -0.11702204495668411, 0.2006794810295105, -0.04815728962421417, 0.060103390365839005, 0.12444452941417694, 0.06503569334745407, -0.07262338697910309, 0.06607083976268768, 0.044594213366508484, -0.04412844404578209, 0.04981579631567001, 0.07327018678188324, -0.045562345534563065, 0.09227299690246582, 0.05453191325068474, -0.11520861834287643, 0.006105110049247742, -0.07113398611545563, -0.037577204406261444, -0.024310503154993057, -0.04390112683176994, -0.07369952648878098, 0.13399207592010498, 0.2015930563211441, -0.03355313837528229, -0.02644273452460766, -0.059120140969753265, 0.02837548218667507, 0.04512191563844681, 0.007169018499553204, -0.061969976872205734, -0.1861920803785324, -0.0009223050437867641, 0.010049262084066868, -0.006085433531552553, -0.23977698385715485, -0.08374042063951492, -0.011552871204912663, -0.07213742285966873, -0.10754546523094177, 0.07310071587562561, 0.08278203010559082, 0.024850137531757355, -0.0857943445444107, -0.023933475837111473, -0.07230864465236664, 0.14633648097515106, -0.13569223880767822, -0.07929941266775131 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2232 - Accuracy: 0.9215 - F1: 0.9218 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8098 | 1.0 | 250 | 0.3138 | 0.9025 | 0.9001 | | 0.2429 | 2.0 | 500 | 0.2232 | 0.9215 | 0.9218 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["emotion"], "metrics": ["accuracy", "f1"], "model-index": [{"name": "distilbert-base-uncased-finetuned-emotion", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "emotion", "type": "emotion", "args": "default"}, "metrics": [{"type": "accuracy", "value": 0.9215, "name": "Accuracy"}, {"type": "f1", "value": 0.9217985126397109, "name": "F1"}]}]}]}
text-classification
MhF/distilbert-base-uncased-finetuned-emotion
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #dataset-emotion #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us
distilbert-base-uncased-finetuned-emotion ========================================= This model is a fine-tuned version of distilbert-base-uncased on the emotion dataset. It achieves the following results on the evaluation set: * Loss: 0.2232 * Accuracy: 0.9215 * F1: 0.9218 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 64 * eval\_batch\_size: 64 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 2 ### Training results ### Framework versions * Transformers 4.16.2 * Pytorch 1.10.0+cu111 * Datasets 1.18.3 * Tokenizers 0.11.0
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 2", "### Training results", "### Framework versions\n\n\n* Transformers 4.16.2\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.3\n* Tokenizers 0.11.0" ]
[ "TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #dataset-emotion #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 2", "### Training results", "### Framework versions\n\n\n* Transformers 4.16.2\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.3\n* Tokenizers 0.11.0" ]
[ 67, 98, 4, 35 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #dataset-emotion #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 2### Training results### Framework versions\n\n\n* Transformers 4.16.2\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.3\n* Tokenizers 0.11.0" ]
[ -0.10729362070560455, 0.1047292947769165, -0.0024711175356060266, 0.13316385447978973, 0.16401071846485138, 0.04042576253414154, 0.10044105350971222, 0.12800730764865875, -0.0852288007736206, 0.03607739880681038, 0.11509311944246292, 0.16314564645290375, 0.02035607397556305, 0.10854325443506241, -0.06299330294132233, -0.27483588457107544, -0.008726350031793118, 0.051931120455265045, -0.0033133854158222675, 0.13180971145629883, 0.09558909386396408, -0.1265009194612503, 0.09691281616687775, 0.007633947767317295, -0.1788771152496338, 0.0042419941164553165, 0.002333219163119793, -0.04618934169411659, 0.14245866239070892, 0.018829884007573128, 0.10378188639879227, 0.0042160204611718655, 0.08303368091583252, -0.21592605113983154, 0.01686237007379532, 0.03884436935186386, -0.0008284060168080032, 0.0867934301495552, 0.035970304161310196, -0.017690220847725868, 0.15871582925319672, -0.07400691509246826, 0.051401637494564056, 0.01809038780629635, -0.10891712456941605, -0.22057516872882843, -0.08290493488311768, 0.04705986753106117, 0.06983020156621933, 0.12207958847284317, -0.01847134716808796, 0.13202212750911713, -0.09214302152395248, 0.09749164432287216, 0.2406737506389618, -0.2591608166694641, -0.06779301911592484, 0.013458365574479103, 0.014229160733520985, 0.03417785093188286, -0.1190149188041687, -0.042226482182741165, 0.05254526063799858, 0.05231756344437599, 0.11917786300182343, -0.034545574337244034, -0.09468395262956619, 0.005687303841114044, -0.1268710047006607, -0.04855029657483101, 0.16417168080806732, 0.05871021747589111, -0.029439294710755348, -0.060039691627025604, -0.05639486759901047, -0.16768014430999756, -0.03451862558722496, -0.011855937540531158, 0.05206918716430664, -0.016418155282735825, -0.06295408308506012, 0.01447153277695179, -0.12162116169929504, -0.039976008236408234, -0.06780802458524704, 0.1075311154127121, 0.022186413407325745, 0.009949775412678719, -0.021492179483175278, 0.10042563080787659, 0.0003224578977096826, -0.1253768801689148, 0.01070945430546999, 0.01928461715579033, 0.030408021062612534, -0.03198050707578659, -0.06958989053964615, -0.0558076873421669, -0.007334659341722727, 0.10167807340621948, -0.0694628581404686, 0.04918947070837021, 0.041475359350442886, 0.036121904850006104, -0.06748844683170319, 0.19640591740608215, -0.03118940442800522, -0.02915976382791996, -0.0018044040771201253, 0.05060819536447525, 0.02405879832804203, -0.0032724638003855944, -0.12272071838378906, 0.020775578916072845, 0.0907864049077034, -0.001129860058426857, -0.09488388895988464, 0.08389153331518173, -0.0698997750878334, -0.016850372776389122, -0.016022395342588425, -0.07870841026306152, 0.03298290818929672, 0.016868289560079575, -0.07184309512376785, 0.002036898862570524, 0.030261674895882607, 0.007831711322069168, -0.020847242325544357, 0.09522684663534164, -0.07746980339288712, 0.027547942474484444, -0.09554529935121536, -0.10057154297828674, 0.0319836363196373, -0.0933026447892189, 0.03707559034228325, -0.09557268768548965, -0.1969965547323227, -0.02371833100914955, 0.06897696107625961, -0.023075198754668236, -0.049408528953790665, -0.06973061710596085, -0.06573869287967682, 0.022101590409874916, -0.006038626190274954, 0.09978187829256058, -0.06488972902297974, 0.08648522943258286, 0.029132578521966934, 0.08314822614192963, -0.0327628068625927, 0.05228634178638458, -0.11530283838510513, 0.007176255341619253, -0.14477860927581787, 0.04921390488743782, -0.040933482348918915, 0.08032797276973724, -0.06651826202869415, -0.11272696405649185, 0.014270448125898838, -0.008701889775693417, 0.06811949610710144, 0.10830722749233246, -0.1874769777059555, -0.08503932505846024, 0.16656242311000824, -0.06960446387529373, -0.11231537163257599, 0.12582966685295105, -0.06890527158975601, 0.06420158594846725, 0.06954458355903625, 0.17675773799419403, 0.04454420506954193, -0.07582211494445801, -0.021538954228162766, 0.011303065344691277, 0.046311553567647934, -0.040882594883441925, 0.05243360996246338, 0.032127413898706436, 0.036118075251579285, 0.039608173072338104, -0.009041768498718739, 0.06707309186458588, -0.08848506212234497, -0.09591000527143478, -0.03961322456598282, -0.08873633295297623, 0.035664066672325134, 0.08954097330570221, 0.06674152612686157, -0.10992896556854248, -0.07744910567998886, 0.025461889803409576, 0.09009505808353424, -0.06347711384296417, 0.033417969942092896, -0.06480710953474045, 0.06617280095815659, -0.003511756658554077, -0.01667897403240204, -0.17729134857654572, 0.01630166359245777, 0.004542169161140919, 0.02844761498272419, -0.00019540746870916337, 0.023198576644062996, 0.06452924013137817, 0.03740648180246353, -0.05454067140817642, -0.02172916568815708, -0.03341880440711975, -0.004205236677080393, -0.11680345982313156, -0.21564458310604095, -0.01974746398627758, -0.02661697380244732, 0.15774938464164734, -0.2086779922246933, 0.03996117785573006, -0.0019243378192186356, 0.05956423282623291, 0.012203168123960495, -0.01787281036376953, -0.033852286636829376, 0.06017862632870674, -0.05613437667489052, -0.042680077254772186, 0.07588963210582733, 0.01740330085158348, -0.08511539548635483, -0.030706949532032013, -0.1021745353937149, 0.14219696819782257, 0.13248753547668457, -0.10826127231121063, -0.07062311470508575, -0.011296364478766918, -0.06772562861442566, -0.017247330397367477, -0.039187315851449966, 0.04301421716809273, 0.20019438862800598, -0.00820479542016983, 0.14059090614318848, -0.06494151055812836, -0.031490977853536606, 0.026991359889507294, -0.04239301756024361, 0.004276996944099665, 0.1287386417388916, 0.11800841987133026, -0.06982634216547012, 0.14693941175937653, 0.13136978447437286, -0.0891217440366745, 0.15249906480312347, -0.03497766703367233, -0.05877610668540001, -0.02403487078845501, -0.045619092881679535, -0.01798650063574314, 0.10396979749202728, -0.18228667974472046, -0.012118436396121979, 0.0260163526982069, 0.005726987961679697, 0.007428900804370642, -0.21971000730991364, -0.04791821911931038, 0.04595760256052017, -0.03812717646360397, -0.010418609715998173, -0.009262105450034142, 0.006111920345574617, 0.10368035733699799, 0.001138293300755322, -0.08149299025535583, 0.03558086231350899, 0.0011295531876385212, -0.08863750845193863, 0.2055307924747467, -0.08933070302009583, -0.17410141229629517, -0.10471027344465256, -0.07815846055746078, -0.043997522443532944, 0.006574671249836683, 0.07453528046607971, -0.10984637588262558, -0.02622349001467228, -0.07987094670534134, 0.01593250408768654, 0.009252005256712437, 0.024781929329037666, 0.036951471120119095, -0.00465792091563344, 0.048271771520376205, -0.10302270203828812, -0.02403036691248417, -0.06304781883955002, -0.03993484005331993, 0.05265017971396446, 0.02005668729543686, 0.118043452501297, 0.16297343373298645, -0.0076253884471952915, 0.01597556471824646, -0.03907688334584236, 0.22747467458248138, -0.07208378612995148, -0.020123520866036415, 0.1348801553249359, -0.012867340818047523, 0.05217314139008522, 0.12073347717523575, 0.062393803149461746, -0.09354939311742783, 0.014609823934733868, 0.03963443264365196, -0.03961718827486038, -0.2182883620262146, -0.041471026837825775, -0.054045043885707855, 0.01904810592532158, 0.07290061563253403, 0.023992260918021202, 0.043753448873758316, 0.07843822985887527, 0.04238804057240486, 0.05585741251707077, -0.05172137916088104, 0.060923103243112564, 0.12870679795742035, 0.02477360889315605, 0.10340405255556107, -0.039904434233903885, -0.051694296300411224, 0.05727382376790047, -0.0235836673527956, 0.213295117020607, -0.0046312324702739716, 0.14205609261989594, 0.05248811095952988, 0.16770078241825104, -0.02623376064002514, 0.07764134556055069, -0.018527843058109283, -0.04362728074193001, -0.029597122222185135, -0.02704855240881443, -0.061481259763240814, 0.037875134497880936, -0.06760066747665405, 0.08125722408294678, -0.13951994478702545, 0.016720419749617577, 0.06496018171310425, 0.28609931468963623, 0.03024904616177082, -0.3238048255443573, -0.1145019680261612, 0.006392969749867916, -0.04281984642148018, -0.012938925065100193, 0.02482636086642742, 0.08696186542510986, -0.09557933360338211, 0.04103221744298935, -0.06149192899465561, 0.08659522235393524, -0.062083423137664795, 0.06185540556907654, 0.04686061665415764, 0.067520372569561, 0.011607197113335133, 0.0879162922501564, -0.2901266813278198, 0.26659315824508667, -0.009660146199166775, 0.06638708710670471, -0.09171168506145477, 0.0015390677144750953, 0.057999737560749054, 0.0645095482468605, 0.07839592546224594, -0.008353786543011665, -0.025936177000403404, -0.17033188045024872, -0.03941094130277634, 0.030702056363224983, 0.05801006406545639, -0.02464820072054863, 0.09037021547555923, -0.024266205728054047, 0.007068659644573927, 0.07367045432329178, 0.036816757172346115, -0.04217315465211868, -0.1023501306772232, -0.013262004591524601, 0.03541959077119827, -0.057665735483169556, -0.05188718065619469, -0.12367169559001923, -0.10359145700931549, 0.15542557835578918, -0.00006500956806121394, -0.027459781616926193, -0.1068275198340416, 0.08591251820325851, 0.038172826170921326, -0.08906199038028717, 0.028833167627453804, 0.007926978170871735, 0.08698344230651855, 0.020338594913482666, -0.07427806407213211, 0.10831718146800995, -0.07868301123380661, -0.1688513159751892, -0.06764310598373413, 0.09617795050144196, 0.04899711534380913, 0.07385817915201187, -0.0006031826487742364, -0.004917136859148741, -0.05156872048974037, -0.08633923530578613, 0.0346834622323513, 0.027141401544213295, 0.071261927485466, 0.004864595830440521, -0.04629438370466232, 0.005747415591031313, -0.06478627026081085, -0.03439803794026375, 0.20143994688987732, 0.22080206871032715, -0.09110598266124725, 0.03254473954439163, 0.0239409152418375, -0.07410942763090134, -0.19310620427131653, 0.047012005001306534, 0.06272011250257492, 0.011241049505770206, 0.03201361373066902, -0.18438269197940826, 0.13110940158367157, 0.0807967260479927, -0.012686248868703842, 0.09494052082300186, -0.2900375425815582, -0.11540846526622772, 0.13636305928230286, 0.13736146688461304, 0.13213872909545898, -0.13606145977973938, -0.000282821012660861, -0.0331534817814827, -0.12705792486667633, 0.11077027767896652, -0.07835882902145386, 0.1183292344212532, -0.023655373603105545, 0.12300385534763336, 0.008950582705438137, -0.04902263730764389, 0.1094827726483345, 0.026648862287402153, 0.09621351957321167, -0.0742063969373703, -0.031891871243715286, 0.021660272032022476, -0.046041831374168396, 0.037089988589286804, -0.09613772481679916, 0.019534418359398842, -0.12541505694389343, -0.0347626730799675, -0.08580275624990463, 0.03547784313559532, -0.03688618168234825, -0.06766413897275925, -0.05050470307469368, 0.025199441239237785, 0.08290276676416397, -0.003742208005860448, 0.09785968065261841, 0.021963901817798615, 0.10942701995372772, 0.10009158402681351, 0.09949485957622528, -0.0653558224439621, -0.0665293037891388, -0.018882058560848236, -0.010290192440152168, 0.046408869326114655, -0.154057115316391, 0.019539862871170044, 0.14107957482337952, 0.018524620682001114, 0.15923410654067993, 0.086464524269104, -0.03522064536809921, 0.019331954419612885, 0.06194582208991051, -0.1536843329668045, -0.08088555186986923, -0.01619407907128334, -0.06440259516239166, -0.12118636071681976, 0.030513474717736244, 0.08062941581010818, -0.07233089953660965, -0.002700845478102565, -0.017017927020788193, 0.019046444445848465, -0.04211467504501343, 0.15935401618480682, 0.042615655809640884, 0.028050988912582397, -0.10636944323778152, 0.07200022786855698, 0.02104838751256466, -0.11235780268907547, 0.035800471901893616, 0.07812155783176422, -0.07911717146635056, -0.056450918316841125, 0.07246264815330505, 0.20851120352745056, -0.0609748400747776, -0.051515739411115646, -0.14380614459514618, -0.1296641081571579, 0.09157031029462814, 0.1478157788515091, 0.11339854449033737, 0.008251185528934002, -0.08405079692602158, 0.02118947170674801, -0.12219466269016266, 0.08870178461074829, 0.060448646545410156, 0.04329829663038254, -0.1362001597881317, 0.11675106734037399, 0.0057970015332102776, 0.04512380063533783, -0.02142210863530636, 0.01621556468307972, -0.09014339745044708, 0.008532247506082058, -0.12278182059526443, -0.01684640347957611, -0.04931967332959175, 0.010625757277011871, 0.0019121913937851787, -0.042344022542238235, -0.049806080758571625, 0.008135498501360416, -0.11552951484918594, -0.013957532122731209, 0.03357489034533501, 0.07033564150333405, -0.11021576821804047, -0.03861508145928383, 0.02313329093158245, -0.06658323854207993, 0.09209239482879639, 0.06735558807849884, 0.012549255974590778, 0.05525312200188637, -0.1553274542093277, 0.02430122159421444, 0.09489823132753372, 0.012762150727212429, 0.05802254378795624, -0.08479415625333786, -0.008534411899745464, -0.00010694751108530909, 0.03706943988800049, 0.016222532838582993, 0.07832875102758408, -0.12882113456726074, 0.016799401491880417, 0.008114504627883434, -0.08316964656114578, -0.06917650997638702, 0.03155684471130371, 0.08236025273799896, 0.008819040842354298, 0.19790464639663696, -0.07840058207511902, 0.04377833008766174, -0.21245789527893066, 0.007146566640585661, -0.0014933281345292926, -0.10025528073310852, -0.12733981013298035, -0.07039541751146317, 0.05881955474615097, -0.05410310998558998, 0.13589723408222198, 0.045999959111213684, 0.01235200371593237, 0.014530939981341362, -0.012251087464392185, 0.02399143949151039, 0.005510806571692228, 0.18603813648223877, 0.027695367112755775, -0.05274145305156708, 0.06411328911781311, 0.05231228470802307, 0.11989478021860123, 0.13339386880397797, 0.20230893790721893, 0.13969458639621735, 0.033963028341531754, 0.11575202643871307, 0.02543461136519909, -0.03262630105018616, -0.15815185010433197, 0.024341994896531105, -0.05765404924750328, 0.11692982167005539, -0.0167445819824934, 0.2357674241065979, 0.0678008496761322, -0.15977829694747925, 0.059805046766996384, -0.0666084736585617, -0.07921454310417175, -0.1022128239274025, -0.07239903509616852, -0.08356468379497528, -0.1417270004749298, 0.006583749316632748, -0.13647694885730743, 0.007792337331920862, 0.08786148577928543, 0.011358031071722507, -0.04143144190311432, 0.14075921475887299, 0.011778234504163265, 0.023106886073946953, 0.09100471436977386, 0.008729695342481136, -0.06217772141098976, -0.11704227328300476, -0.05014779418706894, -0.01657717674970627, -0.023305591195821762, 0.04358667880296707, -0.048993438482284546, -0.0553666353225708, 0.025841066613793373, -0.0172811858355999, -0.09646714478731155, 0.006504023913294077, 0.012089506722986698, 0.06697583943605423, 0.04862723872065544, 0.002103988314047456, 0.022446153685450554, -0.0012293654726818204, 0.18963707983493805, -0.07616747915744781, -0.026641009375452995, -0.11109642684459686, 0.22364294528961182, 0.02844659984111786, -0.018694207072257996, 0.030168691650032997, -0.07148570567369461, -0.004298421088606119, 0.25087398290634155, 0.20104657113552094, -0.07867487519979477, -0.006430341396480799, -0.001906919525936246, 0.002854718128219247, -0.04296019300818443, 0.0966230109333992, 0.15746144950389862, 0.03463737294077873, -0.09859860688447952, -0.031270258128643036, -0.05984746292233467, -0.02341749146580696, -0.023579400032758713, 0.06165848299860954, 0.057010408490896225, 0.009236941114068031, -0.040890660136938095, 0.0482877753674984, -0.08954156190156937, -0.10071983933448792, 0.07293747365474701, -0.21676287055015564, -0.15200334787368774, -0.010801189579069614, 0.09315329790115356, 0.030188802629709244, 0.07307171821594238, -0.01563802920281887, -0.006410101894289255, 0.11621510982513428, -0.020048778504133224, -0.11753543466329575, -0.06383446604013443, 0.09692142903804779, -0.1351519227027893, 0.2077455222606659, -0.06165296211838722, 0.03952718898653984, 0.12620560824871063, 0.07369670271873474, -0.06323783099651337, 0.0695536807179451, 0.04448116943240166, -0.05124595761299133, 0.012946334667503834, 0.10566786676645279, -0.032710567116737366, 0.06821645051240921, 0.04730750992894173, -0.15438665449619293, 0.020901495590806007, -0.046528562903404236, -0.059128664433956146, -0.0503077358007431, -0.008768591098487377, -0.06569826602935791, 0.12388360500335693, 0.2201795130968094, -0.027535736560821533, -0.0036572322715073824, -0.06962022930383682, 0.0093183983117342, 0.04277172312140465, 0.008951366879045963, -0.05614110827445984, -0.20786675810813904, 0.01562237087637186, 0.07017044723033905, -0.014551161788403988, -0.25191476941108704, -0.10240420699119568, 0.003093148348852992, -0.07040718197822571, -0.09217037260532379, 0.061117835342884064, 0.06715869903564453, 0.05661793053150177, -0.0508190281689167, -0.05060721933841705, -0.061116866767406464, 0.1666710376739502, -0.1338857114315033, -0.08686347305774689 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-all This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1753 - F1: 0.8520 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2989 | 1.0 | 835 | 0.1878 | 0.8123 | | 0.1548 | 2.0 | 1670 | 0.1745 | 0.8480 | | 0.1012 | 3.0 | 2505 | 0.1753 | 0.8520 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu113 - Datasets 1.18.3 - Tokenizers 0.11.0
{"license": "mit", "tags": ["generated_from_trainer"], "metrics": ["f1"], "model-index": [{"name": "xlm-roberta-base-finetuned-panx-all", "results": []}]}
token-classification
MhF/xlm-roberta-base-finetuned-panx-all
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #xlm-roberta #token-classification #generated_from_trainer #license-mit #autotrain_compatible #endpoints_compatible #region-us
xlm-roberta-base-finetuned-panx-all =================================== This model is a fine-tuned version of xlm-roberta-base on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.1753 * F1: 0.8520 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 5e-05 * train\_batch\_size: 24 * eval\_batch\_size: 24 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 3 ### Training results ### Framework versions * Transformers 4.16.2 * Pytorch 1.10.0+cu113 * Datasets 1.18.3 * Tokenizers 0.11.0
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 24\n* eval\\_batch\\_size: 24\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3", "### Training results", "### Framework versions\n\n\n* Transformers 4.16.2\n* Pytorch 1.10.0+cu113\n* Datasets 1.18.3\n* Tokenizers 0.11.0" ]
[ "TAGS\n#transformers #pytorch #xlm-roberta #token-classification #generated_from_trainer #license-mit #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 24\n* eval\\_batch\\_size: 24\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3", "### Training results", "### Framework versions\n\n\n* Transformers 4.16.2\n* Pytorch 1.10.0+cu113\n* Datasets 1.18.3\n* Tokenizers 0.11.0" ]
[ 53, 98, 4, 35 ]
[ "passage: TAGS\n#transformers #pytorch #xlm-roberta #token-classification #generated_from_trainer #license-mit #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 24\n* eval\\_batch\\_size: 24\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3### Training results### Framework versions\n\n\n* Transformers 4.16.2\n* Pytorch 1.10.0+cu113\n* Datasets 1.18.3\n* Tokenizers 0.11.0" ]
[ -0.10404819995164871, 0.06169690564274788, -0.001358180190436542, 0.12218120694160461, 0.20749235153198242, 0.027356870472431183, 0.0892457664012909, 0.10810472816228867, -0.10666882246732712, 0.01126864179968834, 0.12861528992652893, 0.20943683385849, -0.00643515819683671, 0.12677447497844696, -0.06900625675916672, -0.2570095956325531, -0.018668124452233315, 0.03831714764237404, -0.06454173475503922, 0.13395178318023682, 0.09989925473928452, -0.1491435021162033, 0.08532873541116714, -0.0025159369688481092, -0.25222525000572205, 0.019363531842827797, 0.032335471361875534, -0.05522637069225311, 0.14995060861110687, 0.009408441372215748, 0.13605424761772156, -0.00520417932420969, 0.09462562203407288, -0.15974710881710052, 0.008190835826098919, 0.03975341096520424, 0.012027780525386333, 0.07765956968069077, 0.06190856918692589, -0.009611020796000957, 0.10576730966567993, -0.09063810855150223, 0.046136919409036636, 0.016326121985912323, -0.13122449815273285, -0.21686320006847382, -0.08932396024465561, 0.0034009653609246016, 0.06663086265325546, 0.0980428084731102, 0.0024341873358935118, 0.16673557460308075, -0.1091267466545105, 0.09628403931856155, 0.22399437427520752, -0.29310861229896545, -0.06793459504842758, 0.04174709692597389, 0.0008549506892450154, 0.06874647736549377, -0.1110498234629631, -0.020758232101798058, 0.06277292966842651, 0.05179301276803017, 0.12152885645627975, -0.04796924814581871, -0.10393919795751572, 0.027165090665221214, -0.14344795048236847, -0.021928919479250908, 0.1066356673836708, 0.02701621688902378, -0.041512612253427505, -0.021379688754677773, -0.041728902608156204, -0.1665928065776825, -0.03659866377711296, -0.008624773472547531, 0.044280681759119034, -0.05135774612426758, -0.07607263326644897, 0.023397797718644142, -0.09520459175109863, -0.062373895198106766, -0.07527011632919312, 0.18967564404010773, 0.03840644657611847, 0.01625458151102066, -0.016148487105965614, 0.10597866773605347, 0.006918307393789291, -0.1208949163556099, 0.021326052024960518, 0.027759166434407234, -0.010349360294640064, -0.0693034902215004, -0.07588832825422287, -0.03093349002301693, 0.0008354554884135723, 0.10052502155303955, -0.05866533890366554, 0.036402903497219086, 0.05441481992602348, 0.030964553356170654, -0.08969882130622864, 0.19531631469726562, -0.0267510786652565, -0.009311440400779247, 0.011265001259744167, 0.026483742520213127, -0.022188281640410423, 0.0041763815097510815, -0.11430558562278748, -0.008013282902538776, 0.11448324471712112, 0.026411132887005806, -0.09565355628728867, 0.06529425829648972, -0.052536625415086746, -0.030066564679145813, 0.0022765332832932472, -0.09794502705335617, 0.04113950952887535, -0.025499360635876656, -0.0890471562743187, -0.03136119246482849, -0.008842463605105877, 0.01824030466377735, -0.014618337154388428, 0.1276751160621643, -0.0937090739607811, 0.05533445253968239, -0.10690029710531235, -0.1078268513083458, -0.007074414286762476, -0.08783259242773056, 0.036986012011766434, -0.10265538841485977, -0.1551555097103119, -0.02554897405207157, 0.042382027953863144, -0.02205035276710987, -0.060202520340681076, -0.039541248232126236, -0.06581012904644012, -0.006763093173503876, -0.01556809525936842, 0.15786860883235931, -0.056606266647577286, 0.10857381671667099, 0.04563066363334656, 0.059069614857435226, -0.05684917792677879, 0.06083488091826439, -0.10392314195632935, -0.0015908743953332305, -0.19108863174915314, 0.043978821486234665, -0.044363658875226974, 0.08881807327270508, -0.07834666222333908, -0.12147921323776245, 0.043124157935380936, -0.009963023476302624, 0.07009106129407883, 0.07643555849790573, -0.1518123894929886, -0.06779495626688004, 0.13378910720348358, -0.05150681734085083, -0.10163295269012451, 0.09952055662870407, -0.07428479194641113, 0.046100884675979614, 0.07572896778583527, 0.1510532647371292, 0.06656254082918167, -0.07214992493391037, 0.0388994961977005, -0.023180803284049034, 0.02910860814154148, -0.08684421330690384, 0.052494194358587265, 0.021625330671668053, -0.03169143944978714, 0.03944529965519905, -0.033899251371622086, 0.06104135513305664, -0.11197295039892197, -0.0919102132320404, -0.03826691210269928, -0.10500875115394592, 0.037578970193862915, 0.07301118224859238, 0.09567052125930786, -0.10907302051782608, -0.04381569102406502, 0.07441036403179169, 0.06922637671232224, -0.03574693202972412, 0.018511811271309853, -0.05314818397164345, 0.056729212403297424, -0.054969292134046555, -0.03967335820198059, -0.1965123414993286, -0.017168404534459114, 0.010918967425823212, 0.03400913253426552, 0.029737526550889015, 0.025981074199080467, 0.0595305897295475, 0.06193501129746437, -0.04769338667392731, -0.013454518280923367, -0.012517407536506653, -0.003917303867638111, -0.15057335793972015, -0.17325212061405182, -0.029581906273961067, -0.01641116291284561, 0.09365896135568619, -0.19754022359848022, 0.01976580172777176, -0.0494547002017498, 0.06370886415243149, -0.0011350451968610287, -0.0071634030900895596, -0.05626318231225014, 0.10904920101165771, -0.02355349250137806, -0.044325947761535645, 0.08157239109277725, -0.004843669943511486, -0.07050199061632156, -0.052651043981313705, -0.07919689267873764, 0.20841602981090546, 0.131539449095726, -0.1393274962902069, -0.10034596174955368, -0.0071326023899018764, -0.058315377682447433, -0.0181391853839159, -0.05323660373687744, 0.0713028684258461, 0.19509343802928925, -0.025293627753853798, 0.1547897756099701, -0.06475953012704849, -0.04484809562563896, 0.020609896630048752, -0.03461789712309837, 0.040515314787626266, 0.11800464987754822, 0.1328565925359726, -0.1214292123913765, 0.13188722729682922, 0.1465202122926712, -0.08348364382982254, 0.11267238855361938, -0.03703446313738823, -0.059839386492967606, -0.024799460545182228, -0.02700820565223694, -0.006816379725933075, 0.08786275237798691, -0.09709858894348145, -0.010191991925239563, 0.014562196098268032, 0.02970227785408497, 0.018771613016724586, -0.23026573657989502, -0.0565045066177845, 0.029842862859368324, -0.02101551927626133, -0.014093130826950073, -0.011706885881721973, 0.02200649492442608, 0.11077600717544556, 0.005760580766946077, -0.09918082505464554, 0.04336925968527794, 0.01102240476757288, -0.0766967162489891, 0.2139827162027359, -0.08281311392784119, -0.1268225610256195, -0.10969362407922745, -0.08663057535886765, -0.05067479610443115, 0.012274299748241901, 0.04893884435296059, -0.08778742700815201, -0.0280554611235857, -0.03619147092103958, 0.0026959485840052366, -0.02058039978146553, 0.04424680769443512, -0.008429241366684437, 0.00005246436921879649, 0.060143113136291504, -0.09790857881307602, -0.020471513271331787, -0.06253904104232788, -0.08199597150087357, 0.0587334968149662, 0.04540647566318512, 0.1147574782371521, 0.14694447815418243, -0.0462862066924572, 0.007464562077075243, -0.03418159484863281, 0.25868865847587585, -0.06236117705702782, -0.05212125554680824, 0.11985168606042862, 0.006449272856116295, 0.05116982385516167, 0.10929495096206665, 0.07551103085279465, -0.10253960639238358, 0.01174631342291832, 0.023421764373779297, -0.036504656076431274, -0.20820342004299164, -0.05145980790257454, -0.05854761600494385, -0.061168987303972244, 0.09513187408447266, 0.02655232511460781, 0.04712474346160889, 0.07122097164392471, 0.0559944212436676, 0.08254478126764297, -0.07976945489645004, 0.06129320338368416, 0.10767976194620132, 0.05802345275878906, 0.12933377921581268, -0.03950619325041771, -0.08385720103979111, 0.02971872128546238, -0.017652766779065132, 0.23921747505664825, 0.01867671124637127, 0.08023292571306229, 0.055885180830955505, 0.19553418457508087, 0.010876198299229145, 0.08982959389686584, 0.0106820585206151, -0.05626106262207031, -0.011624258011579514, -0.025447985157370567, -0.0389363169670105, 0.01603860780596733, -0.04723866656422615, 0.045790642499923706, -0.13384751975536346, -0.030744343996047974, 0.048508524894714355, 0.24837619066238403, 0.02152075432240963, -0.31919175386428833, -0.06961330771446228, -0.005741146858781576, -0.04180794581770897, -0.01720363460481167, 0.013271760195493698, 0.06911531835794449, -0.11424896866083145, 0.020295729860663414, -0.06179116666316986, 0.09617406874895096, -0.025027252733707428, 0.044412966817617416, 0.07083060592412949, 0.08966963738203049, 0.0033616472501307726, 0.07523249834775925, -0.3131367862224579, 0.28262975811958313, 0.00805410835891962, 0.0758027508854866, -0.07606424391269684, -0.012575258500874043, 0.035382989794015884, 0.06558535993099213, 0.04790380969643593, -0.009387567639350891, -0.06502047181129456, -0.23966701328754425, -0.01485435664653778, 0.033138707280159, 0.10228303074836731, -0.019326046109199524, 0.09731224924325943, -0.029104391112923622, 0.014262638986110687, 0.06756804138422012, -0.02411993406713009, -0.05192403495311737, -0.06980057805776596, -0.023983830586075783, 0.023709401488304138, -0.03528789430856705, -0.05321300029754639, -0.10657299309968948, -0.13758020102977753, 0.15761397778987885, 0.014467705972492695, -0.026920223608613014, -0.1250886172056198, 0.0881798043847084, 0.07014725357294083, -0.08831591159105301, 0.046883076429367065, 0.01124491449445486, 0.0413244366645813, 0.036703940480947495, -0.06756045669317245, 0.10564868897199631, -0.05097067356109619, -0.14963705837726593, -0.05445219948887825, 0.08582785725593567, 0.025450997054576874, 0.06127428635954857, -0.003142155706882477, 0.02285926043987274, -0.03776666894555092, -0.10045608133077621, 0.029714664444327354, -0.048290103673934937, 0.08339609950780869, 0.03626447543501854, -0.05786248669028282, 0.022512519732117653, -0.06813215464353561, -0.03032401204109192, 0.19194547832012177, 0.23774755001068115, -0.10556765645742416, 0.006362302228808403, 0.005761784967035055, -0.0655343160033226, -0.18689127266407013, 0.06321006268262863, 0.07021056860685349, 0.006733984220772982, 0.04762426018714905, -0.16411688923835754, 0.1476805955171585, 0.10809095948934555, -0.005008189007639885, 0.11564088612794876, -0.29789814352989197, -0.12729708850383759, 0.1068229153752327, 0.1657387912273407, 0.16463400423526764, -0.1256428360939026, -0.0036290830466896296, -0.016517169773578644, -0.1086413562297821, 0.09526017308235168, -0.028932513669133186, 0.12800870835781097, -0.03858290612697601, 0.11410176008939743, 0.0033612202387303114, -0.05295708402991295, 0.11069541424512863, 0.03925801068544388, 0.12645284831523895, -0.05551263317465782, -0.062343526631593704, 0.013662029057741165, -0.025537878274917603, 0.00019131600856781006, -0.04957222566008568, 0.03031136654317379, -0.10693230479955673, -0.018363459035754204, -0.08660838752985, 0.0492718331515789, -0.02267635613679886, -0.06305935978889465, -0.03353482857346535, 0.03425135090947151, 0.03737848997116089, -0.023669781163334846, 0.11025024205446243, 0.01260374579578638, 0.15956662595272064, 0.08580461889505386, 0.06236085668206215, -0.0793604776263237, -0.04538809880614281, -0.013042992912232876, -0.01381018478423357, 0.05743589997291565, -0.10842917114496231, 0.02502567321062088, 0.15016286075115204, 0.022278383374214172, 0.12721823155879974, 0.08930382132530212, 0.005458123981952667, 0.015283577144145966, 0.06849280744791031, -0.1532025784254074, -0.0511535108089447, -0.00621261028572917, -0.0765671655535698, -0.07766600698232651, 0.05347447469830513, 0.07820543646812439, -0.0667511448264122, -0.02568107284605503, -0.025424299761652946, -0.013098991475999355, -0.07286173850297928, 0.2067939043045044, 0.0726364403963089, 0.046501707285642624, -0.11408805847167969, 0.04890819266438484, 0.05918113887310028, -0.049777764827013016, -0.012042618356645107, 0.07254832983016968, -0.08091025799512863, -0.038210827857255936, 0.11313176155090332, 0.1852467805147171, -0.09955015778541565, -0.02440965361893177, -0.13135363161563873, -0.1212395504117012, 0.07890740782022476, 0.1679515391588211, 0.1253834217786789, 0.0060613565146923065, -0.0507032684981823, -0.0014351274585351348, -0.13391585648059845, 0.061457883566617966, 0.031970005482435226, 0.07562847435474396, -0.14487969875335693, 0.191785991191864, -0.004100984428077936, 0.06359854340553284, -0.026290759444236755, 0.024394117295742035, -0.10683386772871017, 0.020809287205338478, -0.1055799052119255, -0.04092813655734062, -0.018191462382674217, 0.009345421567559242, 0.0012904478935524821, -0.06880437582731247, -0.05877099931240082, 0.019316278398036957, -0.1328660547733307, -0.02036920189857483, 0.043107982724905014, 0.04991450905799866, -0.09673697501420975, -0.05222184956073761, 0.01266335416585207, -0.04012679681181908, 0.04701979458332062, 0.05161741003394127, 0.022008949890732765, 0.06226195767521858, -0.14174053072929382, -0.009942750446498394, 0.07177964597940445, 0.001143737812526524, 0.08707481622695923, -0.08259253948926926, 0.005523409694433212, 0.014825143851339817, 0.08444725722074509, 0.027644068002700806, 0.059587512165308, -0.14912940561771393, -0.012875880114734173, -0.02382579632103443, -0.09258455783128738, -0.06635031849145889, 0.010184424929320812, 0.09024105221033096, 0.00959897879511118, 0.19250859320163727, -0.07671838998794556, 0.04946264252066612, -0.2015911191701889, -0.014894713647663593, -0.028158152475953102, -0.1141914427280426, -0.14153464138507843, -0.07111883908510208, 0.07040882855653763, -0.03502548858523369, 0.14638493955135345, 0.058479297906160355, 0.05801456794142723, 0.025302058085799217, -0.015711573883891106, 0.02061636373400688, 0.020988455042243004, 0.20917575061321259, 0.044776350259780884, -0.03672691062092781, 0.08183717727661133, 0.07661622017621994, 0.08735645562410355, 0.10768554359674454, 0.20000894367694855, 0.15291725099086761, -0.004985820036381483, 0.07221202552318573, 0.016139034181833267, -0.05663278326392174, -0.15335573256015778, 0.006278038024902344, -0.03863359987735748, 0.07940719276666641, -0.029024580493569374, 0.19199340045452118, 0.04903260990977287, -0.17826662957668304, 0.05051301419734955, -0.05708957090973854, -0.08371562510728836, -0.11012101918458939, -0.01907832734286785, -0.08750227093696594, -0.13697662949562073, 0.011319075711071491, -0.10183069854974747, 0.022005178034305573, 0.11542724817991257, -0.0013198793167248368, -0.025895677506923676, 0.14278052747249603, 0.022308804094791412, 0.03451293334364891, 0.057691264897584915, -0.0047647422179579735, -0.011245605535805225, -0.10118307918310165, -0.056092336773872375, -0.03604957461357117, -0.03874256834387779, 0.03797231987118721, -0.0731162428855896, -0.0884496197104454, 0.025478944182395935, -0.032478440552949905, -0.09568825364112854, 0.019902484491467476, 0.027210896834731102, 0.06622444838285446, 0.051676977425813675, 0.005849761888384819, 0.02158532850444317, -0.021846165880560875, 0.21327829360961914, -0.07104934006929398, -0.08135714381933212, -0.08476284891366959, 0.3178239166736603, 0.0610375702381134, -0.0006129713729023933, 0.0325167141854763, -0.05298558250069618, 0.021997220814228058, 0.23868967592716217, 0.1921180933713913, -0.10572624951601028, -0.0011852850439026952, -0.01140066608786583, -0.016592388972640038, -0.012190699577331543, 0.13743948936462402, 0.12923230230808258, 0.041168857365846634, -0.10590487718582153, -0.03248748555779457, -0.07212435454130173, -0.00425292830914259, -0.04888962581753731, 0.04370235279202461, 0.0484999418258667, 0.006862028036266565, -0.043758783489465714, 0.056473299860954285, -0.06255374848842621, -0.07040674239397049, 0.09421616792678833, -0.18430937826633453, -0.1594003438949585, -0.007686169818043709, 0.08065006136894226, 0.003476346144452691, 0.06782162934541702, -0.03701530396938324, 0.0024918965063989162, 0.04556237533688545, -0.02481471560895443, -0.08266950398683548, -0.09454464167356491, 0.11510074883699417, -0.10567781329154968, 0.17692875862121582, -0.045801062136888504, 0.08095186203718185, 0.11949664354324341, 0.07216934114694595, -0.07112893462181091, 0.07648502290248871, 0.03587523475289345, -0.08681035786867142, 0.04424271360039711, 0.09618008136749268, -0.026308149099349976, 0.04726054146885872, 0.025220928713679314, -0.1311240941286087, 0.03500180318951607, -0.08394933491945267, -0.038696788251399994, -0.040265295654535294, -0.046702999621629715, -0.05130087956786156, 0.13030825555324554, 0.22670340538024902, -0.018235651776194572, 0.020646221935749054, -0.08243437856435776, 0.010126519948244095, 0.059717562049627304, 0.016168201342225075, -0.10062933713197708, -0.2286103367805481, 0.01140062976628542, 0.09492775052785873, -0.040226127952337265, -0.2094814032316208, -0.0883287861943245, -0.008887561038136482, -0.08377480506896973, -0.08747792989015579, 0.09042588621377945, 0.052356284111738205, 0.04700300469994545, -0.04932516813278198, -0.11365800350904465, -0.08021124452352524, 0.1528458148241043, -0.13742713630199432, -0.09152252227067947 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de-fr This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1576 - F1: 0.8571 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2924 | 1.0 | 715 | 0.1819 | 0.8286 | | 0.1503 | 2.0 | 1430 | 0.1580 | 0.8511 | | 0.0972 | 3.0 | 2145 | 0.1576 | 0.8571 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu113 - Datasets 1.18.3 - Tokenizers 0.11.0
{"license": "mit", "tags": ["generated_from_trainer"], "metrics": ["f1"], "model-index": [{"name": "xlm-roberta-base-finetuned-panx-de-fr", "results": []}]}
token-classification
MhF/xlm-roberta-base-finetuned-panx-de-fr
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #xlm-roberta #token-classification #generated_from_trainer #license-mit #autotrain_compatible #endpoints_compatible #region-us
xlm-roberta-base-finetuned-panx-de-fr ===================================== This model is a fine-tuned version of xlm-roberta-base on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.1576 * F1: 0.8571 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 5e-05 * train\_batch\_size: 24 * eval\_batch\_size: 24 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 3 ### Training results ### Framework versions * Transformers 4.16.2 * Pytorch 1.10.0+cu113 * Datasets 1.18.3 * Tokenizers 0.11.0
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 24\n* eval\\_batch\\_size: 24\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3", "### Training results", "### Framework versions\n\n\n* Transformers 4.16.2\n* Pytorch 1.10.0+cu113\n* Datasets 1.18.3\n* Tokenizers 0.11.0" ]
[ "TAGS\n#transformers #pytorch #xlm-roberta #token-classification #generated_from_trainer #license-mit #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 24\n* eval\\_batch\\_size: 24\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3", "### Training results", "### Framework versions\n\n\n* Transformers 4.16.2\n* Pytorch 1.10.0+cu113\n* Datasets 1.18.3\n* Tokenizers 0.11.0" ]
[ 53, 98, 4, 35 ]
[ "passage: TAGS\n#transformers #pytorch #xlm-roberta #token-classification #generated_from_trainer #license-mit #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 24\n* eval\\_batch\\_size: 24\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3### Training results### Framework versions\n\n\n* Transformers 4.16.2\n* Pytorch 1.10.0+cu113\n* Datasets 1.18.3\n* Tokenizers 0.11.0" ]
[ -0.10404819995164871, 0.06169690564274788, -0.001358180190436542, 0.12218120694160461, 0.20749235153198242, 0.027356870472431183, 0.0892457664012909, 0.10810472816228867, -0.10666882246732712, 0.01126864179968834, 0.12861528992652893, 0.20943683385849, -0.00643515819683671, 0.12677447497844696, -0.06900625675916672, -0.2570095956325531, -0.018668124452233315, 0.03831714764237404, -0.06454173475503922, 0.13395178318023682, 0.09989925473928452, -0.1491435021162033, 0.08532873541116714, -0.0025159369688481092, -0.25222525000572205, 0.019363531842827797, 0.032335471361875534, -0.05522637069225311, 0.14995060861110687, 0.009408441372215748, 0.13605424761772156, -0.00520417932420969, 0.09462562203407288, -0.15974710881710052, 0.008190835826098919, 0.03975341096520424, 0.012027780525386333, 0.07765956968069077, 0.06190856918692589, -0.009611020796000957, 0.10576730966567993, -0.09063810855150223, 0.046136919409036636, 0.016326121985912323, -0.13122449815273285, -0.21686320006847382, -0.08932396024465561, 0.0034009653609246016, 0.06663086265325546, 0.0980428084731102, 0.0024341873358935118, 0.16673557460308075, -0.1091267466545105, 0.09628403931856155, 0.22399437427520752, -0.29310861229896545, -0.06793459504842758, 0.04174709692597389, 0.0008549506892450154, 0.06874647736549377, -0.1110498234629631, -0.020758232101798058, 0.06277292966842651, 0.05179301276803017, 0.12152885645627975, -0.04796924814581871, -0.10393919795751572, 0.027165090665221214, -0.14344795048236847, -0.021928919479250908, 0.1066356673836708, 0.02701621688902378, -0.041512612253427505, -0.021379688754677773, -0.041728902608156204, -0.1665928065776825, -0.03659866377711296, -0.008624773472547531, 0.044280681759119034, -0.05135774612426758, -0.07607263326644897, 0.023397797718644142, -0.09520459175109863, -0.062373895198106766, -0.07527011632919312, 0.18967564404010773, 0.03840644657611847, 0.01625458151102066, -0.016148487105965614, 0.10597866773605347, 0.006918307393789291, -0.1208949163556099, 0.021326052024960518, 0.027759166434407234, -0.010349360294640064, -0.0693034902215004, -0.07588832825422287, -0.03093349002301693, 0.0008354554884135723, 0.10052502155303955, -0.05866533890366554, 0.036402903497219086, 0.05441481992602348, 0.030964553356170654, -0.08969882130622864, 0.19531631469726562, -0.0267510786652565, -0.009311440400779247, 0.011265001259744167, 0.026483742520213127, -0.022188281640410423, 0.0041763815097510815, -0.11430558562278748, -0.008013282902538776, 0.11448324471712112, 0.026411132887005806, -0.09565355628728867, 0.06529425829648972, -0.052536625415086746, -0.030066564679145813, 0.0022765332832932472, -0.09794502705335617, 0.04113950952887535, -0.025499360635876656, -0.0890471562743187, -0.03136119246482849, -0.008842463605105877, 0.01824030466377735, -0.014618337154388428, 0.1276751160621643, -0.0937090739607811, 0.05533445253968239, -0.10690029710531235, -0.1078268513083458, -0.007074414286762476, -0.08783259242773056, 0.036986012011766434, -0.10265538841485977, -0.1551555097103119, -0.02554897405207157, 0.042382027953863144, -0.02205035276710987, -0.060202520340681076, -0.039541248232126236, -0.06581012904644012, -0.006763093173503876, -0.01556809525936842, 0.15786860883235931, -0.056606266647577286, 0.10857381671667099, 0.04563066363334656, 0.059069614857435226, -0.05684917792677879, 0.06083488091826439, -0.10392314195632935, -0.0015908743953332305, -0.19108863174915314, 0.043978821486234665, -0.044363658875226974, 0.08881807327270508, -0.07834666222333908, -0.12147921323776245, 0.043124157935380936, -0.009963023476302624, 0.07009106129407883, 0.07643555849790573, -0.1518123894929886, -0.06779495626688004, 0.13378910720348358, -0.05150681734085083, -0.10163295269012451, 0.09952055662870407, -0.07428479194641113, 0.046100884675979614, 0.07572896778583527, 0.1510532647371292, 0.06656254082918167, -0.07214992493391037, 0.0388994961977005, -0.023180803284049034, 0.02910860814154148, -0.08684421330690384, 0.052494194358587265, 0.021625330671668053, -0.03169143944978714, 0.03944529965519905, -0.033899251371622086, 0.06104135513305664, -0.11197295039892197, -0.0919102132320404, -0.03826691210269928, -0.10500875115394592, 0.037578970193862915, 0.07301118224859238, 0.09567052125930786, -0.10907302051782608, -0.04381569102406502, 0.07441036403179169, 0.06922637671232224, -0.03574693202972412, 0.018511811271309853, -0.05314818397164345, 0.056729212403297424, -0.054969292134046555, -0.03967335820198059, -0.1965123414993286, -0.017168404534459114, 0.010918967425823212, 0.03400913253426552, 0.029737526550889015, 0.025981074199080467, 0.0595305897295475, 0.06193501129746437, -0.04769338667392731, -0.013454518280923367, -0.012517407536506653, -0.003917303867638111, -0.15057335793972015, -0.17325212061405182, -0.029581906273961067, -0.01641116291284561, 0.09365896135568619, -0.19754022359848022, 0.01976580172777176, -0.0494547002017498, 0.06370886415243149, -0.0011350451968610287, -0.0071634030900895596, -0.05626318231225014, 0.10904920101165771, -0.02355349250137806, -0.044325947761535645, 0.08157239109277725, -0.004843669943511486, -0.07050199061632156, -0.052651043981313705, -0.07919689267873764, 0.20841602981090546, 0.131539449095726, -0.1393274962902069, -0.10034596174955368, -0.0071326023899018764, -0.058315377682447433, -0.0181391853839159, -0.05323660373687744, 0.0713028684258461, 0.19509343802928925, -0.025293627753853798, 0.1547897756099701, -0.06475953012704849, -0.04484809562563896, 0.020609896630048752, -0.03461789712309837, 0.040515314787626266, 0.11800464987754822, 0.1328565925359726, -0.1214292123913765, 0.13188722729682922, 0.1465202122926712, -0.08348364382982254, 0.11267238855361938, -0.03703446313738823, -0.059839386492967606, -0.024799460545182228, -0.02700820565223694, -0.006816379725933075, 0.08786275237798691, -0.09709858894348145, -0.010191991925239563, 0.014562196098268032, 0.02970227785408497, 0.018771613016724586, -0.23026573657989502, -0.0565045066177845, 0.029842862859368324, -0.02101551927626133, -0.014093130826950073, -0.011706885881721973, 0.02200649492442608, 0.11077600717544556, 0.005760580766946077, -0.09918082505464554, 0.04336925968527794, 0.01102240476757288, -0.0766967162489891, 0.2139827162027359, -0.08281311392784119, -0.1268225610256195, -0.10969362407922745, -0.08663057535886765, -0.05067479610443115, 0.012274299748241901, 0.04893884435296059, -0.08778742700815201, -0.0280554611235857, -0.03619147092103958, 0.0026959485840052366, -0.02058039978146553, 0.04424680769443512, -0.008429241366684437, 0.00005246436921879649, 0.060143113136291504, -0.09790857881307602, -0.020471513271331787, -0.06253904104232788, -0.08199597150087357, 0.0587334968149662, 0.04540647566318512, 0.1147574782371521, 0.14694447815418243, -0.0462862066924572, 0.007464562077075243, -0.03418159484863281, 0.25868865847587585, -0.06236117705702782, -0.05212125554680824, 0.11985168606042862, 0.006449272856116295, 0.05116982385516167, 0.10929495096206665, 0.07551103085279465, -0.10253960639238358, 0.01174631342291832, 0.023421764373779297, -0.036504656076431274, -0.20820342004299164, -0.05145980790257454, -0.05854761600494385, -0.061168987303972244, 0.09513187408447266, 0.02655232511460781, 0.04712474346160889, 0.07122097164392471, 0.0559944212436676, 0.08254478126764297, -0.07976945489645004, 0.06129320338368416, 0.10767976194620132, 0.05802345275878906, 0.12933377921581268, -0.03950619325041771, -0.08385720103979111, 0.02971872128546238, -0.017652766779065132, 0.23921747505664825, 0.01867671124637127, 0.08023292571306229, 0.055885180830955505, 0.19553418457508087, 0.010876198299229145, 0.08982959389686584, 0.0106820585206151, -0.05626106262207031, -0.011624258011579514, -0.025447985157370567, -0.0389363169670105, 0.01603860780596733, -0.04723866656422615, 0.045790642499923706, -0.13384751975536346, -0.030744343996047974, 0.048508524894714355, 0.24837619066238403, 0.02152075432240963, -0.31919175386428833, -0.06961330771446228, -0.005741146858781576, -0.04180794581770897, -0.01720363460481167, 0.013271760195493698, 0.06911531835794449, -0.11424896866083145, 0.020295729860663414, -0.06179116666316986, 0.09617406874895096, -0.025027252733707428, 0.044412966817617416, 0.07083060592412949, 0.08966963738203049, 0.0033616472501307726, 0.07523249834775925, -0.3131367862224579, 0.28262975811958313, 0.00805410835891962, 0.0758027508854866, -0.07606424391269684, -0.012575258500874043, 0.035382989794015884, 0.06558535993099213, 0.04790380969643593, -0.009387567639350891, -0.06502047181129456, -0.23966701328754425, -0.01485435664653778, 0.033138707280159, 0.10228303074836731, -0.019326046109199524, 0.09731224924325943, -0.029104391112923622, 0.014262638986110687, 0.06756804138422012, -0.02411993406713009, -0.05192403495311737, -0.06980057805776596, -0.023983830586075783, 0.023709401488304138, -0.03528789430856705, -0.05321300029754639, -0.10657299309968948, -0.13758020102977753, 0.15761397778987885, 0.014467705972492695, -0.026920223608613014, -0.1250886172056198, 0.0881798043847084, 0.07014725357294083, -0.08831591159105301, 0.046883076429367065, 0.01124491449445486, 0.0413244366645813, 0.036703940480947495, -0.06756045669317245, 0.10564868897199631, -0.05097067356109619, -0.14963705837726593, -0.05445219948887825, 0.08582785725593567, 0.025450997054576874, 0.06127428635954857, -0.003142155706882477, 0.02285926043987274, -0.03776666894555092, -0.10045608133077621, 0.029714664444327354, -0.048290103673934937, 0.08339609950780869, 0.03626447543501854, -0.05786248669028282, 0.022512519732117653, -0.06813215464353561, -0.03032401204109192, 0.19194547832012177, 0.23774755001068115, -0.10556765645742416, 0.006362302228808403, 0.005761784967035055, -0.0655343160033226, -0.18689127266407013, 0.06321006268262863, 0.07021056860685349, 0.006733984220772982, 0.04762426018714905, -0.16411688923835754, 0.1476805955171585, 0.10809095948934555, -0.005008189007639885, 0.11564088612794876, -0.29789814352989197, -0.12729708850383759, 0.1068229153752327, 0.1657387912273407, 0.16463400423526764, -0.1256428360939026, -0.0036290830466896296, -0.016517169773578644, -0.1086413562297821, 0.09526017308235168, -0.028932513669133186, 0.12800870835781097, -0.03858290612697601, 0.11410176008939743, 0.0033612202387303114, -0.05295708402991295, 0.11069541424512863, 0.03925801068544388, 0.12645284831523895, -0.05551263317465782, -0.062343526631593704, 0.013662029057741165, -0.025537878274917603, 0.00019131600856781006, -0.04957222566008568, 0.03031136654317379, -0.10693230479955673, -0.018363459035754204, -0.08660838752985, 0.0492718331515789, -0.02267635613679886, -0.06305935978889465, -0.03353482857346535, 0.03425135090947151, 0.03737848997116089, -0.023669781163334846, 0.11025024205446243, 0.01260374579578638, 0.15956662595272064, 0.08580461889505386, 0.06236085668206215, -0.0793604776263237, -0.04538809880614281, -0.013042992912232876, -0.01381018478423357, 0.05743589997291565, -0.10842917114496231, 0.02502567321062088, 0.15016286075115204, 0.022278383374214172, 0.12721823155879974, 0.08930382132530212, 0.005458123981952667, 0.015283577144145966, 0.06849280744791031, -0.1532025784254074, -0.0511535108089447, -0.00621261028572917, -0.0765671655535698, -0.07766600698232651, 0.05347447469830513, 0.07820543646812439, -0.0667511448264122, -0.02568107284605503, -0.025424299761652946, -0.013098991475999355, -0.07286173850297928, 0.2067939043045044, 0.0726364403963089, 0.046501707285642624, -0.11408805847167969, 0.04890819266438484, 0.05918113887310028, -0.049777764827013016, -0.012042618356645107, 0.07254832983016968, -0.08091025799512863, -0.038210827857255936, 0.11313176155090332, 0.1852467805147171, -0.09955015778541565, -0.02440965361893177, -0.13135363161563873, -0.1212395504117012, 0.07890740782022476, 0.1679515391588211, 0.1253834217786789, 0.0060613565146923065, -0.0507032684981823, -0.0014351274585351348, -0.13391585648059845, 0.061457883566617966, 0.031970005482435226, 0.07562847435474396, -0.14487969875335693, 0.191785991191864, -0.004100984428077936, 0.06359854340553284, -0.026290759444236755, 0.024394117295742035, -0.10683386772871017, 0.020809287205338478, -0.1055799052119255, -0.04092813655734062, -0.018191462382674217, 0.009345421567559242, 0.0012904478935524821, -0.06880437582731247, -0.05877099931240082, 0.019316278398036957, -0.1328660547733307, -0.02036920189857483, 0.043107982724905014, 0.04991450905799866, -0.09673697501420975, -0.05222184956073761, 0.01266335416585207, -0.04012679681181908, 0.04701979458332062, 0.05161741003394127, 0.022008949890732765, 0.06226195767521858, -0.14174053072929382, -0.009942750446498394, 0.07177964597940445, 0.001143737812526524, 0.08707481622695923, -0.08259253948926926, 0.005523409694433212, 0.014825143851339817, 0.08444725722074509, 0.027644068002700806, 0.059587512165308, -0.14912940561771393, -0.012875880114734173, -0.02382579632103443, -0.09258455783128738, -0.06635031849145889, 0.010184424929320812, 0.09024105221033096, 0.00959897879511118, 0.19250859320163727, -0.07671838998794556, 0.04946264252066612, -0.2015911191701889, -0.014894713647663593, -0.028158152475953102, -0.1141914427280426, -0.14153464138507843, -0.07111883908510208, 0.07040882855653763, -0.03502548858523369, 0.14638493955135345, 0.058479297906160355, 0.05801456794142723, 0.025302058085799217, -0.015711573883891106, 0.02061636373400688, 0.020988455042243004, 0.20917575061321259, 0.044776350259780884, -0.03672691062092781, 0.08183717727661133, 0.07661622017621994, 0.08735645562410355, 0.10768554359674454, 0.20000894367694855, 0.15291725099086761, -0.004985820036381483, 0.07221202552318573, 0.016139034181833267, -0.05663278326392174, -0.15335573256015778, 0.006278038024902344, -0.03863359987735748, 0.07940719276666641, -0.029024580493569374, 0.19199340045452118, 0.04903260990977287, -0.17826662957668304, 0.05051301419734955, -0.05708957090973854, -0.08371562510728836, -0.11012101918458939, -0.01907832734286785, -0.08750227093696594, -0.13697662949562073, 0.011319075711071491, -0.10183069854974747, 0.022005178034305573, 0.11542724817991257, -0.0013198793167248368, -0.025895677506923676, 0.14278052747249603, 0.022308804094791412, 0.03451293334364891, 0.057691264897584915, -0.0047647422179579735, -0.011245605535805225, -0.10118307918310165, -0.056092336773872375, -0.03604957461357117, -0.03874256834387779, 0.03797231987118721, -0.0731162428855896, -0.0884496197104454, 0.025478944182395935, -0.032478440552949905, -0.09568825364112854, 0.019902484491467476, 0.027210896834731102, 0.06622444838285446, 0.051676977425813675, 0.005849761888384819, 0.02158532850444317, -0.021846165880560875, 0.21327829360961914, -0.07104934006929398, -0.08135714381933212, -0.08476284891366959, 0.3178239166736603, 0.0610375702381134, -0.0006129713729023933, 0.0325167141854763, -0.05298558250069618, 0.021997220814228058, 0.23868967592716217, 0.1921180933713913, -0.10572624951601028, -0.0011852850439026952, -0.01140066608786583, -0.016592388972640038, -0.012190699577331543, 0.13743948936462402, 0.12923230230808258, 0.041168857365846634, -0.10590487718582153, -0.03248748555779457, -0.07212435454130173, -0.00425292830914259, -0.04888962581753731, 0.04370235279202461, 0.0484999418258667, 0.006862028036266565, -0.043758783489465714, 0.056473299860954285, -0.06255374848842621, -0.07040674239397049, 0.09421616792678833, -0.18430937826633453, -0.1594003438949585, -0.007686169818043709, 0.08065006136894226, 0.003476346144452691, 0.06782162934541702, -0.03701530396938324, 0.0024918965063989162, 0.04556237533688545, -0.02481471560895443, -0.08266950398683548, -0.09454464167356491, 0.11510074883699417, -0.10567781329154968, 0.17692875862121582, -0.045801062136888504, 0.08095186203718185, 0.11949664354324341, 0.07216934114694595, -0.07112893462181091, 0.07648502290248871, 0.03587523475289345, -0.08681035786867142, 0.04424271360039711, 0.09618008136749268, -0.026308149099349976, 0.04726054146885872, 0.025220928713679314, -0.1311240941286087, 0.03500180318951607, -0.08394933491945267, -0.038696788251399994, -0.040265295654535294, -0.046702999621629715, -0.05130087956786156, 0.13030825555324554, 0.22670340538024902, -0.018235651776194572, 0.020646221935749054, -0.08243437856435776, 0.010126519948244095, 0.059717562049627304, 0.016168201342225075, -0.10062933713197708, -0.2286103367805481, 0.01140062976628542, 0.09492775052785873, -0.040226127952337265, -0.2094814032316208, -0.0883287861943245, -0.008887561038136482, -0.08377480506896973, -0.08747792989015579, 0.09042588621377945, 0.052356284111738205, 0.04700300469994545, -0.04932516813278198, -0.11365800350904465, -0.08021124452352524, 0.1528458148241043, -0.13742713630199432, -0.09152252227067947 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1354 - F1: 0.8621 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.254 | 1.0 | 525 | 0.1652 | 0.8254 | | 0.1293 | 2.0 | 1050 | 0.1431 | 0.8489 | | 0.0797 | 3.0 | 1575 | 0.1354 | 0.8621 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu113 - Datasets 1.18.3 - Tokenizers 0.11.0
{"license": "mit", "tags": ["generated_from_trainer"], "datasets": ["xtreme"], "metrics": ["f1"], "model-index": [{"name": "xlm-roberta-base-finetuned-panx-de", "results": [{"task": {"type": "token-classification", "name": "Token Classification"}, "dataset": {"name": "xtreme", "type": "xtreme", "args": "PAN-X.de"}, "metrics": [{"type": "f1", "value": 0.862053266560437, "name": "F1"}]}]}]}
token-classification
MhF/xlm-roberta-base-finetuned-panx-de
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #xlm-roberta #token-classification #generated_from_trainer #dataset-xtreme #license-mit #model-index #autotrain_compatible #endpoints_compatible #region-us
xlm-roberta-base-finetuned-panx-de ================================== This model is a fine-tuned version of xlm-roberta-base on the xtreme dataset. It achieves the following results on the evaluation set: * Loss: 0.1354 * F1: 0.8621 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 5e-05 * train\_batch\_size: 24 * eval\_batch\_size: 24 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 3 ### Training results ### Framework versions * Transformers 4.16.2 * Pytorch 1.10.0+cu113 * Datasets 1.18.3 * Tokenizers 0.11.0
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 24\n* eval\\_batch\\_size: 24\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3", "### Training results", "### Framework versions\n\n\n* Transformers 4.16.2\n* Pytorch 1.10.0+cu113\n* Datasets 1.18.3\n* Tokenizers 0.11.0" ]
[ "TAGS\n#transformers #pytorch #tensorboard #xlm-roberta #token-classification #generated_from_trainer #dataset-xtreme #license-mit #model-index #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 24\n* eval\\_batch\\_size: 24\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3", "### Training results", "### Framework versions\n\n\n* Transformers 4.16.2\n* Pytorch 1.10.0+cu113\n* Datasets 1.18.3\n* Tokenizers 0.11.0" ]
[ 68, 98, 4, 35 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #xlm-roberta #token-classification #generated_from_trainer #dataset-xtreme #license-mit #model-index #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 24\n* eval\\_batch\\_size: 24\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3### Training results### Framework versions\n\n\n* Transformers 4.16.2\n* Pytorch 1.10.0+cu113\n* Datasets 1.18.3\n* Tokenizers 0.11.0" ]
[ -0.10667610913515091, 0.08047721534967422, -0.002429419895634055, 0.12057135999202728, 0.17115528881549835, 0.03312401473522186, 0.11276769638061523, 0.1255398839712143, -0.08585543930530548, 0.02696779929101467, 0.12097108364105225, 0.18411488831043243, 0.007747901137918234, 0.12489389628171921, -0.056797705590724945, -0.26593416929244995, -0.017036570236086845, 0.06358324736356735, -0.037422992289066315, 0.13317833840847015, 0.10034994035959244, -0.14672403037548065, 0.08958737552165985, 0.01661788858473301, -0.22441419959068298, 0.00961335189640522, 0.022453632205724716, -0.05948814004659653, 0.1408604085445404, 0.02367478981614113, 0.13709408044815063, 0.0016529266722500324, 0.08823209255933762, -0.16207487881183624, 0.00910867378115654, 0.043525781482458115, 0.0017426686827093363, 0.09096437692642212, 0.04175768420100212, -0.009276174008846283, 0.11591160297393799, -0.07392962276935577, 0.05439084768295288, 0.015195278450846672, -0.12241068482398987, -0.22972184419631958, -0.08418040722608566, 0.047909487038850784, 0.07361626625061035, 0.09736859053373337, -0.005620881449431181, 0.1574416160583496, -0.08836416900157928, 0.09427935630083084, 0.22785113751888275, -0.30538463592529297, -0.06959190219640732, 0.038292296230793, 0.026255682110786438, 0.042715124785900116, -0.10699237138032913, -0.029664749279618263, 0.05533348023891449, 0.045296527445316315, 0.13453054428100586, -0.03676643595099449, -0.07142414152622223, 0.019337307661771774, -0.14114411175251007, -0.02987694926559925, 0.14479665458202362, 0.038178011775016785, -0.03968276083469391, -0.0569605715572834, -0.04492400214076042, -0.1697176694869995, -0.036601513624191284, -0.017234893515706062, 0.041740234941244125, -0.047878142446279526, -0.08041226118803024, 0.008922826498746872, -0.10532627999782562, -0.064297616481781, -0.07704044878482819, 0.1690499484539032, 0.03864336013793945, 0.009701602160930634, -0.029086899012327194, 0.11198347061872482, -0.0015447016339749098, -0.11691765487194061, 0.010359516367316246, 0.022688137367367744, -0.003733276156708598, -0.055078648030757904, -0.04870903491973877, -0.06892427057027817, -0.012133408337831497, 0.12010200321674347, -0.0542791523039341, 0.030248859897255898, 0.047849107533693314, 0.043586764484643936, -0.0778660774230957, 0.19124843180179596, -0.04304327443242073, -0.010050131939351559, -0.001358814537525177, 0.03651852533221245, 0.002739989897236228, -0.0015672079753130674, -0.12474624067544937, -0.0010913872392848134, 0.09064015746116638, 0.013490356504917145, -0.08057532459497452, 0.07532960176467896, -0.04963843896985054, -0.027213599532842636, 0.00045880445395596325, -0.0845426693558693, 0.04099732264876366, -0.011995377019047737, -0.08043923228979111, -0.018888894468545914, 0.010715512558817863, 0.008350067771971226, -0.007679732050746679, 0.12439045310020447, -0.1039975956082344, 0.032069165259599686, -0.10145723819732666, -0.11684179306030273, 0.00954918097704649, -0.11144638806581497, 0.03628517687320709, -0.09401372820138931, -0.16478243470191956, -0.01280450914055109, 0.051380231976509094, -0.02611057460308075, -0.04351215437054634, -0.044190749526023865, -0.06940144300460815, 0.010098094120621681, -0.00970845203846693, 0.11870678514242172, -0.053323857486248016, 0.10036080330610275, 0.0378655381500721, 0.06237445026636124, -0.02843766286969185, 0.052903469651937485, -0.09904541075229645, 0.014845170080661774, -0.1741967499256134, 0.02931733801960945, -0.04739030823111534, 0.06236419081687927, -0.0783962681889534, -0.11729305982589722, 0.016999108716845512, 0.002252819249406457, 0.0670340284705162, 0.07541780918836594, -0.1612635850906372, -0.08006755262613297, 0.16953495144844055, -0.06790502369403839, -0.11755463480949402, 0.11301525682210922, -0.07227838039398193, 0.0494442954659462, 0.05573852360248566, 0.1556822508573532, 0.058420319110155106, -0.09517716616392136, -0.007528021931648254, -0.005633320659399033, 0.021956590935587883, -0.07083829492330551, 0.0607634112238884, 0.025369275361299515, 0.032043419778347015, 0.025132840499281883, -0.02762356400489807, 0.04878580942749977, -0.09928040951490402, -0.08706244081258774, -0.03640695661306381, -0.08097083121538162, 0.048297978937625885, 0.07576920837163925, 0.07360906898975372, -0.10418795049190521, -0.09151291102170944, 0.0735568106174469, 0.07953308522701263, -0.05439992621541023, 0.01847742311656475, -0.0814126580953598, 0.08018006384372711, -0.05854232609272003, -0.03915254771709442, -0.16905289888381958, -0.02905733697116375, 0.006200488656759262, 0.01956968940794468, 0.011383241973817348, 0.040766146034002304, 0.0643744096159935, 0.061627548187971115, -0.04800000786781311, -0.02140207402408123, -0.03358306363224983, -0.0005278594326227903, -0.13078616559505463, -0.18382535874843597, -0.04968641698360443, -0.025151824578642845, 0.1094692051410675, -0.20846900343894958, 0.036074500530958176, -0.01654970832169056, 0.08112122118473053, 0.020249120891094208, -0.012910490855574608, -0.04634643718600273, 0.07901269942522049, -0.041516054421663284, -0.04487662389874458, 0.06781437247991562, 0.011429982259869576, -0.08153381943702698, -0.040848977863788605, -0.10717270523309708, 0.18502992391586304, 0.13108080625534058, -0.11078239977359772, -0.09528806060552597, -0.012860864400863647, -0.06761082261800766, -0.02728237397968769, -0.051837336272001266, 0.031519483774900436, 0.18016216158866882, -0.014518415555357933, 0.14723321795463562, -0.07123535871505737, -0.05413671210408211, 0.03538723289966583, -0.03525959327816963, 0.012147927656769753, 0.11982732266187668, 0.13474661111831665, -0.10458502918481827, 0.14556066691875458, 0.12560507655143738, -0.07710256427526474, 0.1412481963634491, -0.03378021717071533, -0.0686529278755188, -0.038771554827690125, -0.03605356812477112, -0.0033255936577916145, 0.12021886557340622, -0.1397397816181183, -0.010530032217502594, 0.02583218924701214, 0.012889087200164795, 0.017063399776816368, -0.21924686431884766, -0.0483534038066864, 0.04117562249302864, -0.0280045997351408, -0.019353847950696945, 0.0005904702702537179, 0.012025604955852032, 0.10221847891807556, 0.0028526997193694115, -0.08962960541248322, 0.04446280375123024, 0.010155266150832176, -0.08151891082525253, 0.20478284358978271, -0.06803136318922043, -0.1430271565914154, -0.11477380245923996, -0.07986629009246826, -0.034485720098018646, 0.0005218458827584982, 0.05441395193338394, -0.07254601269960403, -0.030384505167603493, -0.05749671161174774, 0.006910224910825491, -0.01971372961997986, 0.032043203711509705, 0.004992275964468718, -0.0015491163358092308, 0.0477135069668293, -0.10281702131032944, -0.018107352778315544, -0.0681937113404274, -0.054590970277786255, 0.047907598316669464, 0.03422737494111061, 0.11733649671077728, 0.14764441549777985, -0.036446865648031235, 0.02008243091404438, -0.03883920982480049, 0.22546735405921936, -0.07396691292524338, -0.03408130630850792, 0.126348614692688, -0.002271702280268073, 0.04675064980983734, 0.10772073268890381, 0.07621483504772186, -0.08117897808551788, -0.007888540625572205, 0.034209419041872025, -0.04007183015346527, -0.21679696440696716, -0.044239845126867294, -0.05470890924334526, -0.009362589567899704, 0.08603663742542267, 0.023538008332252502, 0.046831902116537094, 0.07499827444553375, 0.0456906333565712, 0.06833092123270035, -0.06370588392019272, 0.06939760595560074, 0.10899819433689117, 0.044588908553123474, 0.13111042976379395, -0.0396413579583168, -0.06967725604772568, 0.031108522787690163, -0.004689517430961132, 0.23778967559337616, 0.012594573199748993, 0.12202659249305725, 0.06281981617212296, 0.16358201205730438, 0.004797188565135002, 0.07427649199962616, -0.010014388710260391, -0.05365944281220436, -0.007687678094953299, -0.03165556862950325, -0.02350809797644615, 0.025813747197389603, -0.0495021790266037, 0.060812924057245255, -0.1319745033979416, 0.007489542942494154, 0.054777998477220535, 0.23207536339759827, 0.027507560327649117, -0.33220145106315613, -0.09850319474935532, -0.009916301816701889, -0.04011180251836777, -0.01915867254137993, 0.01867956668138504, 0.09051576256752014, -0.09708981961011887, 0.020263660699129105, -0.08288160711526871, 0.08506608009338379, -0.042675431817770004, 0.0374642051756382, 0.08170187473297119, 0.0910235345363617, -0.00043862921302206814, 0.08090706914663315, -0.2747238874435425, 0.2892737090587616, 0.008025679737329483, 0.07736176252365112, -0.07396931946277618, -0.0010982616804540157, 0.019666379317641258, 0.061195164918899536, 0.09352175146341324, -0.016373494639992714, -0.055796753615140915, -0.2055397778749466, -0.031827155500650406, 0.01919802464544773, 0.08173879235982895, -0.023919975385069847, 0.10643263161182404, -0.02518361061811447, 0.005633041262626648, 0.07217653840780258, 0.0010758579010143876, -0.031698428094387054, -0.08860552310943604, -0.007423903793096542, 0.019708136096596718, -0.06673233956098557, -0.060155369341373444, -0.11820710450410843, -0.12102246284484863, 0.15810057520866394, -0.019027618691325188, -0.03789885342121124, -0.11242575943470001, 0.08538985252380371, 0.06188878044486046, -0.08613227307796478, 0.04437793791294098, 0.01369399018585682, 0.08419172465801239, 0.022021790966391563, -0.0558788999915123, 0.10800576210021973, -0.071457140147686, -0.1538129597902298, -0.06983894109725952, 0.10482664406299591, 0.03532614931464195, 0.06069538742303848, -0.001798697398044169, 0.015411557629704475, -0.03580896928906441, -0.08637101948261261, 0.042033176869153976, -0.02379666268825531, 0.08811434358358383, 0.00038902569212950766, -0.05011763423681259, 0.03067438118159771, -0.056789882481098175, -0.0221483763307333, 0.18593642115592957, 0.21426163613796234, -0.11144870519638062, 0.013694114983081818, 0.004169420804828405, -0.07116086781024933, -0.1793750375509262, 0.054526712745428085, 0.05628577619791031, 0.015747591853141785, 0.036778006702661514, -0.16817118227481842, 0.12345140427350998, 0.10156980901956558, -0.007073603570461273, 0.10799796134233475, -0.31465068459510803, -0.1188834086060524, 0.11296133697032928, 0.14569136500358582, 0.11352711170911789, -0.11761797964572906, -0.009406466037034988, 0.003401400288566947, -0.13290324807167053, 0.11309704184532166, -0.05328406020998955, 0.12286034226417542, -0.03698442503809929, 0.10353544354438782, 0.011149157769978046, -0.06460285186767578, 0.09627740830183029, 0.029487771913409233, 0.1058480367064476, -0.05170720815658569, -0.06691832840442657, 0.03975091129541397, -0.034506261348724365, 0.023609070107340813, -0.06678876280784607, 0.022326635196805, -0.11534974724054337, -0.03183901682496071, -0.07710224390029907, 0.04921932518482208, -0.03525419160723686, -0.07359785586595535, -0.04189247265458107, 0.03609069809317589, 0.04464862123131752, -0.01860339194536209, 0.12307654321193695, 0.02045500837266445, 0.14905309677124023, 0.09329274296760559, 0.08258975297212601, -0.07704553753137589, -0.0897534191608429, -0.016699595376849174, -0.012847550213336945, 0.058824095875024796, -0.11977406591176987, 0.02138524129986763, 0.15094779431819916, 0.03254095837473869, 0.137950137257576, 0.09072209894657135, -0.024077659472823143, 0.017325477674603462, 0.06152181699872017, -0.15269877016544342, -0.08614907413721085, -0.01145888026803732, -0.07441650331020355, -0.10517750680446625, 0.06057930737733841, 0.08912896364927292, -0.0740322470664978, -0.014425413683056831, -0.009178376756608486, -0.00278643099591136, -0.0522180050611496, 0.1814691424369812, 0.06321761757135391, 0.047483909875154495, -0.09349776804447174, 0.046726297587156296, 0.04029408469796181, -0.06322608143091202, 0.004945365712046623, 0.06194375827908516, -0.07427216321229935, -0.04069692641496658, 0.0441289059817791, 0.18604086339473724, -0.08947943150997162, -0.03665026277303696, -0.14621436595916748, -0.1160769984126091, 0.07996758818626404, 0.16280798614025116, 0.10755838453769684, 0.00945684127509594, -0.06470734626054764, 0.012933359481394291, -0.13830801844596863, 0.09480520337820053, 0.040969107300043106, 0.0710177943110466, -0.15523339807987213, 0.17714478075504303, 0.0036620975006371737, 0.05226525291800499, -0.021411407738924026, 0.027385924011468887, -0.10290002822875977, 0.013859990984201431, -0.09575775265693665, -0.027700014412403107, -0.04130291938781738, 0.0023874668404459953, -0.004031643271446228, -0.05390108749270439, -0.06313220411539078, 0.017348242923617363, -0.11280488967895508, -0.009882556274533272, 0.054188814014196396, 0.05459778010845184, -0.10055379569530487, -0.03362086042761803, 0.010878028348088264, -0.051743034273386, 0.06687305122613907, 0.04970836266875267, 0.03072708286345005, 0.0449635311961174, -0.11806681752204895, 0.026610424742102623, 0.06360118836164474, 0.012438193894922733, 0.07803428918123245, -0.09970330446958542, 0.0071271685883402824, -0.0025452340487390757, 0.0395662859082222, 0.019549118354916573, 0.03881800174713135, -0.14293761551380157, 0.0055524068884551525, -0.008594498969614506, -0.07121725380420685, -0.0729292705655098, 0.03308068960905075, 0.08950547873973846, 0.013558187521994114, 0.18968480825424194, -0.07291179150342941, 0.05093462020158768, -0.21267685294151306, -0.0015873444499447942, -0.006268659140914679, -0.10337302833795547, -0.09950557351112366, -0.05903013050556183, 0.058371737599372864, -0.05947185680270195, 0.15278257429599762, 0.05789206549525261, 0.020924150943756104, 0.028036752715706825, -0.035906657576560974, 0.020932527258992195, 0.010564851574599743, 0.19683976471424103, 0.021221918985247612, -0.04175605997443199, 0.058760207146406174, 0.05028728395700455, 0.0936911329627037, 0.11262542754411697, 0.19586366415023804, 0.1451229751110077, 0.004960065707564354, 0.08510434627532959, 0.049261424690485, -0.05886701121926308, -0.18887250125408173, 0.02509918250143528, -0.03639541566371918, 0.09666275978088379, -0.022574985399842262, 0.19490624964237213, 0.08237749338150024, -0.16445860266685486, 0.043756529688835144, -0.0466591902077198, -0.08279752731323242, -0.10549377650022507, -0.06431104987859726, -0.08102905005216599, -0.1287127435207367, 0.017484107986092567, -0.11760862171649933, 0.0141520407050848, 0.09029833227396011, 0.005827861838042736, -0.030714111402630806, 0.15304197371006012, 0.020540688186883926, 0.04089890792965889, 0.061377715319395065, 0.01374377217143774, -0.02549814060330391, -0.11689505726099014, -0.04280179738998413, -0.025447823107242584, -0.03532886877655983, 0.032166916877031326, -0.07081965357065201, -0.04178356006741524, 0.022732743993401527, -0.008338520303368568, -0.09196379035711288, 0.0038756481371819973, 0.021045943722128868, 0.06734657287597656, 0.028926564380526543, 0.0035805776715278625, 0.024619676172733307, -0.023630037903785706, 0.1964053213596344, -0.06951483339071274, -0.043919887393713, -0.10153898596763611, 0.25403717160224915, 0.0469762422144413, -0.012137058191001415, 0.03784891590476036, -0.0628688633441925, 0.020990245044231415, 0.2330540269613266, 0.19963446259498596, -0.06160556897521019, 0.0008065646979957819, 0.010398484766483307, -0.011644581332802773, -0.025416580960154533, 0.0994286760687828, 0.12117782980203629, 0.07442707568407059, -0.08959334343671799, -0.04450083151459694, -0.07270161807537079, -0.004351587034761906, -0.016512397676706314, 0.06655415892601013, 0.0576031357049942, 0.00896693579852581, -0.04125501587986946, 0.04770617559552193, -0.05981602519750595, -0.09406015276908875, 0.08811657875776291, -0.2048339992761612, -0.15441133081912994, -0.0036670381668955088, 0.08725029975175858, 0.000872041389811784, 0.07464709132909775, -0.032005663961172104, -0.011668805032968521, 0.0824078917503357, -0.010037018917500973, -0.10033101588487625, -0.0718279480934143, 0.097442127764225, -0.09444723278284073, 0.2188006192445755, -0.05419304221868515, 0.06753300130367279, 0.1259765774011612, 0.06582577526569366, -0.07083908468484879, 0.0627031922340393, 0.04356202855706215, -0.0608597993850708, 0.030584650114178658, 0.09341441094875336, -0.02388070710003376, 0.07729163020849228, 0.03326650708913803, -0.1525265872478485, 0.027578024193644524, -0.08033667504787445, -0.05890542268753052, -0.05014814808964729, -0.023190995678305626, -0.04866825044155121, 0.1404917985200882, 0.2243659496307373, -0.02476220205426216, -0.011427376419305801, -0.06586205214262009, 0.02134956605732441, 0.07278493791818619, 0.030413784086704254, -0.058830376714468, -0.22186391055583954, 0.016924181953072548, 0.07139766961336136, -0.02820761129260063, -0.2336762696504593, -0.09419982880353928, 0.010032007470726967, -0.08500058948993683, -0.08409929275512695, 0.0654211938381195, 0.08960843831300735, 0.06334061175584793, -0.06063440069556236, -0.036398377269506454, -0.07413125783205032, 0.14582975208759308, -0.1374177187681198, -0.08168718963861465 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-en This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.3856 - F1: 0.6808 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 1.1038 | 1.0 | 50 | 0.5255 | 0.5331 | | 0.4922 | 2.0 | 100 | 0.4377 | 0.6379 | | 0.3664 | 3.0 | 150 | 0.3856 | 0.6808 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu113 - Datasets 1.18.3 - Tokenizers 0.11.0
{"license": "mit", "tags": ["generated_from_trainer"], "datasets": ["xtreme"], "metrics": ["f1"], "model-index": [{"name": "xlm-roberta-base-finetuned-panx-en", "results": [{"task": {"type": "token-classification", "name": "Token Classification"}, "dataset": {"name": "xtreme", "type": "xtreme", "args": "PAN-X.en"}, "metrics": [{"type": "f1", "value": 0.6807563959955506, "name": "F1"}]}]}]}
token-classification
MhF/xlm-roberta-base-finetuned-panx-en
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #xlm-roberta #token-classification #generated_from_trainer #dataset-xtreme #license-mit #model-index #autotrain_compatible #endpoints_compatible #region-us
xlm-roberta-base-finetuned-panx-en ================================== This model is a fine-tuned version of xlm-roberta-base on the xtreme dataset. It achieves the following results on the evaluation set: * Loss: 0.3856 * F1: 0.6808 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 5e-05 * train\_batch\_size: 24 * eval\_batch\_size: 24 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 3 ### Training results ### Framework versions * Transformers 4.16.2 * Pytorch 1.10.0+cu113 * Datasets 1.18.3 * Tokenizers 0.11.0
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 24\n* eval\\_batch\\_size: 24\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3", "### Training results", "### Framework versions\n\n\n* Transformers 4.16.2\n* Pytorch 1.10.0+cu113\n* Datasets 1.18.3\n* Tokenizers 0.11.0" ]
[ "TAGS\n#transformers #pytorch #xlm-roberta #token-classification #generated_from_trainer #dataset-xtreme #license-mit #model-index #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 24\n* eval\\_batch\\_size: 24\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3", "### Training results", "### Framework versions\n\n\n* Transformers 4.16.2\n* Pytorch 1.10.0+cu113\n* Datasets 1.18.3\n* Tokenizers 0.11.0" ]
[ 64, 98, 4, 35 ]
[ "passage: TAGS\n#transformers #pytorch #xlm-roberta #token-classification #generated_from_trainer #dataset-xtreme #license-mit #model-index #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 24\n* eval\\_batch\\_size: 24\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3### Training results### Framework versions\n\n\n* Transformers 4.16.2\n* Pytorch 1.10.0+cu113\n* Datasets 1.18.3\n* Tokenizers 0.11.0" ]
[ -0.11436963826417923, 0.08216290175914764, -0.0014988728798925877, 0.11899861693382263, 0.19123201072216034, 0.03974498435854912, 0.10350155830383301, 0.12138590216636658, -0.09891786426305771, 0.013696652837097645, 0.12637798488140106, 0.1895143687725067, 0.0018154538702219725, 0.14313584566116333, -0.06025582179427147, -0.2619011700153351, -0.003350334707647562, 0.052718475461006165, -0.05394969880580902, 0.13216909766197205, 0.10750007629394531, -0.14981958270072937, 0.10015495121479034, 0.006444386672228575, -0.23981864750385284, 0.011690332554280758, 0.027355141937732697, -0.05588614568114281, 0.1399359256029129, 0.03566553443670273, 0.1263839304447174, 0.0030200087931007147, 0.09853485971689224, -0.17312058806419373, 0.008765882812440395, 0.038472212851047516, -0.000443514552898705, 0.0844867005944252, 0.040070001035928726, -0.013202887959778309, 0.12370803952217102, -0.07902373373508453, 0.05092515051364899, 0.017474493011832237, -0.13000470399856567, -0.2246100902557373, -0.08418529480695724, 0.047609493136405945, 0.07317133247852325, 0.10511699318885803, -0.003314343513920903, 0.16014689207077026, -0.10632647573947906, 0.09373842179775238, 0.21881651878356934, -0.29668357968330383, -0.06488552689552307, 0.031847983598709106, 0.014174254611134529, 0.04402214288711548, -0.10793596506118774, -0.02889988385140896, 0.06329386681318283, 0.04204453155398369, 0.12428336590528488, -0.0391516275703907, -0.07627827674150467, 0.026497427374124527, -0.13929937779903412, -0.02682936005294323, 0.15474264323711395, 0.04383007436990738, -0.0396600179374218, -0.04192468151450157, -0.03334873914718628, -0.16318167746067047, -0.03406932204961777, -0.010290565900504589, 0.043918341398239136, -0.04895852878689766, -0.08648735284805298, 0.02723311446607113, -0.097513847053051, -0.06545048207044601, -0.0746387168765068, 0.1782958060503006, 0.037355661392211914, 0.01192114781588316, -0.023329902440309525, 0.10323978215456009, 0.007858896628022194, -0.11702941358089447, 0.004397858399897814, 0.017407357692718506, -0.00815503764897585, -0.06893662363290787, -0.0570240393280983, -0.020737405866384506, -0.005045332480221987, 0.12494289875030518, -0.05916045978665352, 0.023372575640678406, 0.06467283517122269, 0.029114963486790657, -0.0722503587603569, 0.19237901270389557, -0.0481749065220356, -0.011949131265282631, 0.0016024229116737843, 0.03170987218618393, -0.015658723190426826, 0.004205819685012102, -0.12208401411771774, -0.006747600622475147, 0.09584765136241913, 0.016837822273373604, -0.09102528542280197, 0.07832750678062439, -0.05287430062890053, -0.028164485469460487, 0.0030340550001710653, -0.08302824199199677, 0.04031585529446602, -0.013750899583101273, -0.08648565411567688, -0.02910149097442627, 0.000869646726641804, 0.013589250855147839, -0.010291717015206814, 0.11161969602108002, -0.10701880604028702, 0.036874812096357346, -0.10269305855035782, -0.12077722698450089, 0.0035550203174352646, -0.08824023604393005, 0.046746887266635895, -0.09828832745552063, -0.16740597784519196, -0.021985862404108047, 0.042871154844760895, -0.02204023115336895, -0.06242973357439041, -0.0528845489025116, -0.07350925356149673, 0.003269244683906436, -0.010601988062262535, 0.1220708116889, -0.062120240181684494, 0.09998202323913574, 0.04162858426570892, 0.059219472110271454, -0.04391959309577942, 0.05711580812931061, -0.10268891602754593, 0.004278227686882019, -0.16758884489536285, 0.04038360342383385, -0.041206248104572296, 0.07446469366550446, -0.07323607802391052, -0.11914148181676865, 0.040456630289554596, 0.009273141622543335, 0.06437927484512329, 0.08528587222099304, -0.1485435962677002, -0.08106792718172073, 0.1537495106458664, -0.06615190207958221, -0.1300884187221527, 0.09811797738075256, -0.0760919377207756, 0.05335647240281105, 0.07025817036628723, 0.14440350234508514, 0.06541960686445236, -0.08486487716436386, -0.004819395020604134, -0.0051734731532633305, 0.024705344811081886, -0.08546008914709091, 0.07162002474069595, 0.03291914239525795, 0.005287147127091885, 0.027629638090729713, -0.04034605249762535, 0.05791088938713074, -0.11497120559215546, -0.09256569296121597, -0.032520558685064316, -0.09047923237085342, 0.03632182255387306, 0.07524582743644714, 0.07669538259506226, -0.10682988911867142, -0.07868388295173645, 0.08592458069324493, 0.09215538948774338, -0.04909861460328102, 0.012347917072474957, -0.08046656847000122, 0.06741593033075333, -0.05226065218448639, -0.04010547697544098, -0.17410588264465332, -0.024803929030895233, -0.0007737993146292865, 0.04608692601323128, 0.008276378735899925, 0.03235065937042236, 0.05520401522517204, 0.05960376560688019, -0.048801761120557785, -0.02539115399122238, -0.0294029638171196, 0.002539912471547723, -0.13808301091194153, -0.19332373142242432, -0.04251654073596001, -0.020142806693911552, 0.1249033659696579, -0.22437715530395508, 0.029007108882069588, -0.02871520258486271, 0.07426177710294724, 0.011721569113433361, -0.003251854330301285, -0.055020011961460114, 0.08822081983089447, -0.03932200372219086, -0.044027384370565414, 0.06838078051805496, 0.008939703926444054, -0.0789722204208374, -0.039984360337257385, -0.0887172669172287, 0.20261014997959137, 0.1337142139673233, -0.12298902869224548, -0.09678778052330017, -0.007630711887031794, -0.06243331357836723, -0.021630045026540756, -0.05101507902145386, 0.04452797397971153, 0.17106518149375916, -0.02558385394513607, 0.14947886765003204, -0.06596679240465164, -0.04439844563603401, 0.028379280120134354, -0.033760398626327515, 0.023240994662046432, 0.12171880900859833, 0.1400671750307083, -0.11191084235906601, 0.14908677339553833, 0.11894755065441132, -0.06939534842967987, 0.128013476729393, -0.03659433126449585, -0.06909586489200592, -0.034997597336769104, -0.04681326076388359, -0.013046471402049065, 0.11407805979251862, -0.11632366478443146, -0.011562669649720192, 0.024299196898937225, 0.01981676183640957, 0.017212720587849617, -0.21563690900802612, -0.054955627769231796, 0.039891187101602554, -0.025775404646992683, -0.039551831781864166, -0.010044187307357788, 0.00947077851742506, 0.10504135489463806, 0.009683988057076931, -0.09792460501194, 0.04537845030426979, 0.012410790659487247, -0.08784876763820648, 0.21034382283687592, -0.07726404070854187, -0.13240265846252441, -0.11652474105358124, -0.08285752683877945, -0.03622426465153694, 0.007236292585730553, 0.054457634687423706, -0.07977548241615295, -0.03372526168823242, -0.049317218363285065, 0.01294370274990797, -0.01984952762722969, 0.03348516672849655, 0.006480794865638018, 0.002270036842674017, 0.049839362502098083, -0.09591551125049591, -0.02081858180463314, -0.06461232900619507, -0.062210965901613235, 0.053143300116062164, 0.019623761996626854, 0.1198727935552597, 0.1424434334039688, -0.03576461970806122, 0.01943080872297287, -0.04389575496315956, 0.25205081701278687, -0.07117243111133575, -0.05165702849626541, 0.12126182019710541, 0.010276482440531254, 0.03498850017786026, 0.11536388099193573, 0.0684753879904747, -0.09433591365814209, -0.0003095936554018408, 0.028030406683683395, -0.029434025287628174, -0.21102295815944672, -0.053717583417892456, -0.05261370912194252, -0.03661859408020973, 0.08837959170341492, 0.019413357600569725, 0.03773632273077965, 0.07559649646282196, 0.04220343381166458, 0.07248175889253616, -0.06792391836643219, 0.06876213848590851, 0.10512872785329819, 0.05241573974490166, 0.13091912865638733, -0.043336473405361176, -0.06738448888063431, 0.03623181954026222, -0.02437460795044899, 0.23761111497879028, 0.011558156460523605, 0.10338330268859863, 0.06057492643594742, 0.1650814563035965, 0.005606879014521837, 0.07697603106498718, 0.0051834541372954845, -0.055139776319265366, -0.00946803018450737, -0.026650866493582726, -0.03241030126810074, 0.023228013888001442, -0.05301631987094879, 0.06065261363983154, -0.15523022413253784, 0.007981430739164352, 0.058689821511507034, 0.23982639610767365, 0.036855947226285934, -0.34025949239730835, -0.09753699600696564, -0.009854961186647415, -0.03588749095797539, -0.020682066679000854, 0.014720381237566471, 0.07522116601467133, -0.10453054308891296, 0.020545706152915955, -0.05856892466545105, 0.09376067668199539, -0.035638388246297836, 0.045686960220336914, 0.07741833478212357, 0.09092041850090027, -0.004357252269983292, 0.0824642926454544, -0.2955634295940399, 0.28832894563674927, 0.0070073590613901615, 0.08248049765825272, -0.07288496196269989, -0.00936117023229599, 0.023743847385048866, 0.08832725137472153, 0.07804135233163834, -0.010785143822431564, -0.060929231345653534, -0.22395974397659302, -0.021751439198851585, 0.03574969619512558, 0.0767158567905426, -0.024599624797701836, 0.11103778332471848, -0.03090990148484707, 0.01349241379648447, 0.07555870711803436, -0.00007651457417523488, -0.03725636377930641, -0.08015379309654236, -0.019695162773132324, 0.011818300932645798, -0.03565504774451256, -0.05997641012072563, -0.11697344481945038, -0.12142240256071091, 0.1573163866996765, -0.00981531385332346, -0.03070564940571785, -0.11674963682889938, 0.09840501844882965, 0.057556044310331345, -0.092213474214077, 0.037570711225271225, 0.02186315692961216, 0.0731658935546875, 0.0356525182723999, -0.05867455527186394, 0.1079450398683548, -0.06341419368982315, -0.15260575711727142, -0.057940494269132614, 0.08980552852153778, 0.034407198429107666, 0.06497398763895035, 0.0016317326808348298, 0.018239961937069893, -0.038960523903369904, -0.08825114369392395, 0.025494296103715897, -0.020786477252840996, 0.08989384025335312, 0.025797726586461067, -0.0600430853664875, 0.033090658485889435, -0.062009744346141815, -0.029074091464281082, 0.188361257314682, 0.23482514917850494, -0.11089865863323212, 0.003054240718483925, 0.0013566788984462619, -0.07410746812820435, -0.1882837861776352, 0.06031780689954758, 0.05481604114174843, 0.022217167541384697, 0.030596446245908737, -0.17174124717712402, 0.13351373374462128, 0.10599040240049362, -0.0009017300326377153, 0.09028779715299606, -0.2955513596534729, -0.11997119337320328, 0.11717075854539871, 0.14231634140014648, 0.1387888640165329, -0.11679933965206146, 0.002065488835796714, -0.020647751167416573, -0.1322845071554184, 0.11279263347387314, -0.04916840419173241, 0.12136766314506531, -0.034070029854774475, 0.09306932240724564, 0.009489216841757298, -0.05161649361252785, 0.10561338067054749, 0.041438762098550797, 0.117564857006073, -0.05038420110940933, -0.06973641365766525, 0.031193023547530174, -0.03445027396082878, 0.01829131320118904, -0.06203228607773781, 0.028923451900482178, -0.1267935335636139, -0.031008273363113403, -0.08011296391487122, 0.040568169206380844, -0.03253968805074692, -0.0678277537226677, -0.039108458906412125, 0.04112854227423668, 0.05100474879145622, -0.02078377641737461, 0.1261122077703476, 0.012100320309400558, 0.14496253430843353, 0.06766268610954285, 0.08470959961414337, -0.08388673514127731, -0.06188330054283142, -0.012614681385457516, -0.014991601929068565, 0.06286494433879852, -0.12694281339645386, 0.028911983594298363, 0.15148866176605225, 0.024095628410577774, 0.14668066799640656, 0.09270865470170975, -0.00774750392884016, 0.006704912520945072, 0.06958355754613876, -0.14650793373584747, -0.07492947578430176, -0.012758200988173485, -0.08417113870382309, -0.10491643846035004, 0.05329383537173271, 0.08774955570697784, -0.07457901537418365, -0.020306522026658058, -0.019659804180264473, -0.0046589067205786705, -0.06828700006008148, 0.19097475707530975, 0.07165631651878357, 0.04667729511857033, -0.1087474599480629, 0.046334683895111084, 0.03799278661608696, -0.044190697371959686, 0.0026104189455509186, 0.05789440497756004, -0.07891734689474106, -0.04618369787931442, 0.07565062493085861, 0.19724589586257935, -0.10639114677906036, -0.041730936616659164, -0.14412431418895721, -0.12482167035341263, 0.0858638733625412, 0.16407287120819092, 0.12001969665288925, 0.016542358323931694, -0.044627804309129715, 0.0004892611759714782, -0.14315193891525269, 0.07668711990118027, 0.03397877514362335, 0.06451647728681564, -0.1555926352739334, 0.19324186444282532, -0.005333597306162119, 0.05980570241808891, -0.024393189698457718, 0.02662535570561886, -0.1197163462638855, 0.015381762757897377, -0.1072821244597435, -0.0309952050447464, -0.0452880859375, 0.010538376867771149, 0.0044297343119978905, -0.05804304778575897, -0.06787515431642532, 0.019214682281017303, -0.12087952345609665, -0.011882785707712173, 0.052330054342746735, 0.06458622962236404, -0.09650682657957077, -0.03713372349739075, 0.005560739431530237, -0.04946653172373772, 0.06298165023326874, 0.053129035979509354, 0.03265496343374252, 0.05577000975608826, -0.12371541559696198, 0.012868620455265045, 0.06440827995538712, 0.007461529690772295, 0.08779594302177429, -0.09992941468954086, 0.011539554223418236, 0.008104230277240276, 0.05107768252491951, 0.026148788630962372, 0.04300077259540558, -0.1331465244293213, -0.0032487937714904547, -0.012922815047204494, -0.0705837830901146, -0.06860256940126419, 0.03572484478354454, 0.09413286298513412, 0.011181337758898735, 0.20211395621299744, -0.07241328805685043, 0.03911159187555313, -0.20864175260066986, -0.002821684814989567, -0.02039400488138199, -0.10292154550552368, -0.11756741255521774, -0.06827826797962189, 0.06675133109092712, -0.04846476390957832, 0.15926845371723175, 0.05514415353536606, 0.039845507591962814, 0.02924531139433384, -0.024599388241767883, 0.022414378821849823, 0.018331291154026985, 0.2072865515947342, 0.03242827579379082, -0.0374031737446785, 0.07177082449197769, 0.0631103664636612, 0.09669660031795502, 0.12287601828575134, 0.19441848993301392, 0.14783944189548492, 0.008169285021722317, 0.08258246630430222, 0.042839691042900085, -0.06839238852262497, -0.1541784405708313, 0.008040743879973888, -0.039424650371074677, 0.08197673410177231, -0.024419615045189857, 0.1872439682483673, 0.07117965817451477, -0.17282630503177643, 0.043817855417728424, -0.0612485446035862, -0.08095851540565491, -0.11154606193304062, -0.035318464040756226, -0.08987002074718475, -0.14176107943058014, 0.014213255606591702, -0.12320590019226074, 0.00632935855537653, 0.10535521060228348, 0.0018503557657822967, -0.02990477718412876, 0.12711457908153534, 0.015195788815617561, 0.03782793879508972, 0.050633810460567474, -0.0014095796504989266, -0.02131027542054653, -0.12255539745092392, -0.04312639683485031, -0.01655908115208149, -0.03916485607624054, 0.03420833870768547, -0.07266595214605331, -0.05807604640722275, 0.031155332922935486, -0.0194083321839571, -0.09185913950204849, 0.01302096527069807, 0.023594094440340996, 0.06487599015235901, 0.03717924281954765, 0.006430379115045071, 0.022888263687491417, -0.01629592664539814, 0.20849286019802094, -0.06752245873212814, -0.06448845565319061, -0.11597135663032532, 0.2857775092124939, 0.06247120723128319, -0.0029909361619502306, 0.03875966742634773, -0.06030166894197464, 0.018973320722579956, 0.22909623384475708, 0.2062881737947464, -0.08546915650367737, 0.0005180338630452752, -0.003911284264177084, -0.01239559892565012, -0.023509981110692024, 0.10638587176799774, 0.12344813346862793, 0.0492025762796402, -0.09264816343784332, -0.0384763702750206, -0.07486826926469803, -0.0014395563630387187, -0.010740344412624836, 0.05220017954707146, 0.05710618570446968, 0.005952389445155859, -0.035947054624557495, 0.04835249483585358, -0.0623173788189888, -0.07504520565271378, 0.08712742477655411, -0.19577696919441223, -0.15450870990753174, -0.011524424888193607, 0.060413897037506104, 0.014811385422945023, 0.07661215215921402, -0.034331414848566055, -0.009861629456281662, 0.07325059920549393, -0.013198725879192352, -0.10196882486343384, -0.08886867016553879, 0.11392643302679062, -0.08647555112838745, 0.20282095670700073, -0.051082540303468704, 0.0726238340139389, 0.1286064237356186, 0.06750267744064331, -0.07789085060358047, 0.07065197080373764, 0.033653661608695984, -0.06356313079595566, 0.039195507764816284, 0.07693500816822052, -0.03484167531132698, 0.07378298789262772, 0.03255413472652435, -0.15124978125095367, 0.028943153098225594, -0.08831965923309326, -0.059418000280857086, -0.04492110013961792, -0.03333628922700882, -0.049130234867334366, 0.13655219972133636, 0.2347915768623352, -0.029949385672807693, -0.000018238526536151767, -0.06771434098482132, 0.02497054822742939, 0.06521487236022949, 0.024716423824429512, -0.07069611549377441, -0.22834627330303192, 0.01762404851615429, 0.0770171582698822, -0.028476985171437263, -0.22311726212501526, -0.08355039358139038, -0.0037769372574985027, -0.08544792979955673, -0.08023001998662949, 0.08551409840583801, 0.08288803696632385, 0.05873243510723114, -0.06337666511535645, -0.06212843209505081, -0.076679527759552, 0.15396149456501007, -0.1293550431728363, -0.09847313910722733 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-fr This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.2736 - F1: 0.8353 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.5826 | 1.0 | 191 | 0.3442 | 0.7888 | | 0.2669 | 2.0 | 382 | 0.2848 | 0.8326 | | 0.1818 | 3.0 | 573 | 0.2736 | 0.8353 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu113 - Datasets 1.18.3 - Tokenizers 0.11.0
{"license": "mit", "tags": ["generated_from_trainer"], "datasets": ["xtreme"], "metrics": ["f1"], "model-index": [{"name": "xlm-roberta-base-finetuned-panx-fr", "results": [{"task": {"type": "token-classification", "name": "Token Classification"}, "dataset": {"name": "xtreme", "type": "xtreme", "args": "PAN-X.fr"}, "metrics": [{"type": "f1", "value": 0.8353494623655915, "name": "F1"}]}]}]}
token-classification
MhF/xlm-roberta-base-finetuned-panx-fr
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #xlm-roberta #token-classification #generated_from_trainer #dataset-xtreme #license-mit #model-index #autotrain_compatible #endpoints_compatible #region-us
xlm-roberta-base-finetuned-panx-fr ================================== This model is a fine-tuned version of xlm-roberta-base on the xtreme dataset. It achieves the following results on the evaluation set: * Loss: 0.2736 * F1: 0.8353 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 5e-05 * train\_batch\_size: 24 * eval\_batch\_size: 24 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 3 ### Training results ### Framework versions * Transformers 4.16.2 * Pytorch 1.10.0+cu113 * Datasets 1.18.3 * Tokenizers 0.11.0
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 24\n* eval\\_batch\\_size: 24\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3", "### Training results", "### Framework versions\n\n\n* Transformers 4.16.2\n* Pytorch 1.10.0+cu113\n* Datasets 1.18.3\n* Tokenizers 0.11.0" ]
[ "TAGS\n#transformers #pytorch #xlm-roberta #token-classification #generated_from_trainer #dataset-xtreme #license-mit #model-index #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 24\n* eval\\_batch\\_size: 24\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3", "### Training results", "### Framework versions\n\n\n* Transformers 4.16.2\n* Pytorch 1.10.0+cu113\n* Datasets 1.18.3\n* Tokenizers 0.11.0" ]
[ 64, 98, 4, 35 ]
[ "passage: TAGS\n#transformers #pytorch #xlm-roberta #token-classification #generated_from_trainer #dataset-xtreme #license-mit #model-index #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 24\n* eval\\_batch\\_size: 24\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3### Training results### Framework versions\n\n\n* Transformers 4.16.2\n* Pytorch 1.10.0+cu113\n* Datasets 1.18.3\n* Tokenizers 0.11.0" ]
[ -0.11436963826417923, 0.08216290175914764, -0.0014988728798925877, 0.11899861693382263, 0.19123201072216034, 0.03974498435854912, 0.10350155830383301, 0.12138590216636658, -0.09891786426305771, 0.013696652837097645, 0.12637798488140106, 0.1895143687725067, 0.0018154538702219725, 0.14313584566116333, -0.06025582179427147, -0.2619011700153351, -0.003350334707647562, 0.052718475461006165, -0.05394969880580902, 0.13216909766197205, 0.10750007629394531, -0.14981958270072937, 0.10015495121479034, 0.006444386672228575, -0.23981864750385284, 0.011690332554280758, 0.027355141937732697, -0.05588614568114281, 0.1399359256029129, 0.03566553443670273, 0.1263839304447174, 0.0030200087931007147, 0.09853485971689224, -0.17312058806419373, 0.008765882812440395, 0.038472212851047516, -0.000443514552898705, 0.0844867005944252, 0.040070001035928726, -0.013202887959778309, 0.12370803952217102, -0.07902373373508453, 0.05092515051364899, 0.017474493011832237, -0.13000470399856567, -0.2246100902557373, -0.08418529480695724, 0.047609493136405945, 0.07317133247852325, 0.10511699318885803, -0.003314343513920903, 0.16014689207077026, -0.10632647573947906, 0.09373842179775238, 0.21881651878356934, -0.29668357968330383, -0.06488552689552307, 0.031847983598709106, 0.014174254611134529, 0.04402214288711548, -0.10793596506118774, -0.02889988385140896, 0.06329386681318283, 0.04204453155398369, 0.12428336590528488, -0.0391516275703907, -0.07627827674150467, 0.026497427374124527, -0.13929937779903412, -0.02682936005294323, 0.15474264323711395, 0.04383007436990738, -0.0396600179374218, -0.04192468151450157, -0.03334873914718628, -0.16318167746067047, -0.03406932204961777, -0.010290565900504589, 0.043918341398239136, -0.04895852878689766, -0.08648735284805298, 0.02723311446607113, -0.097513847053051, -0.06545048207044601, -0.0746387168765068, 0.1782958060503006, 0.037355661392211914, 0.01192114781588316, -0.023329902440309525, 0.10323978215456009, 0.007858896628022194, -0.11702941358089447, 0.004397858399897814, 0.017407357692718506, -0.00815503764897585, -0.06893662363290787, -0.0570240393280983, -0.020737405866384506, -0.005045332480221987, 0.12494289875030518, -0.05916045978665352, 0.023372575640678406, 0.06467283517122269, 0.029114963486790657, -0.0722503587603569, 0.19237901270389557, -0.0481749065220356, -0.011949131265282631, 0.0016024229116737843, 0.03170987218618393, -0.015658723190426826, 0.004205819685012102, -0.12208401411771774, -0.006747600622475147, 0.09584765136241913, 0.016837822273373604, -0.09102528542280197, 0.07832750678062439, -0.05287430062890053, -0.028164485469460487, 0.0030340550001710653, -0.08302824199199677, 0.04031585529446602, -0.013750899583101273, -0.08648565411567688, -0.02910149097442627, 0.000869646726641804, 0.013589250855147839, -0.010291717015206814, 0.11161969602108002, -0.10701880604028702, 0.036874812096357346, -0.10269305855035782, -0.12077722698450089, 0.0035550203174352646, -0.08824023604393005, 0.046746887266635895, -0.09828832745552063, -0.16740597784519196, -0.021985862404108047, 0.042871154844760895, -0.02204023115336895, -0.06242973357439041, -0.0528845489025116, -0.07350925356149673, 0.003269244683906436, -0.010601988062262535, 0.1220708116889, -0.062120240181684494, 0.09998202323913574, 0.04162858426570892, 0.059219472110271454, -0.04391959309577942, 0.05711580812931061, -0.10268891602754593, 0.004278227686882019, -0.16758884489536285, 0.04038360342383385, -0.041206248104572296, 0.07446469366550446, -0.07323607802391052, -0.11914148181676865, 0.040456630289554596, 0.009273141622543335, 0.06437927484512329, 0.08528587222099304, -0.1485435962677002, -0.08106792718172073, 0.1537495106458664, -0.06615190207958221, -0.1300884187221527, 0.09811797738075256, -0.0760919377207756, 0.05335647240281105, 0.07025817036628723, 0.14440350234508514, 0.06541960686445236, -0.08486487716436386, -0.004819395020604134, -0.0051734731532633305, 0.024705344811081886, -0.08546008914709091, 0.07162002474069595, 0.03291914239525795, 0.005287147127091885, 0.027629638090729713, -0.04034605249762535, 0.05791088938713074, -0.11497120559215546, -0.09256569296121597, -0.032520558685064316, -0.09047923237085342, 0.03632182255387306, 0.07524582743644714, 0.07669538259506226, -0.10682988911867142, -0.07868388295173645, 0.08592458069324493, 0.09215538948774338, -0.04909861460328102, 0.012347917072474957, -0.08046656847000122, 0.06741593033075333, -0.05226065218448639, -0.04010547697544098, -0.17410588264465332, -0.024803929030895233, -0.0007737993146292865, 0.04608692601323128, 0.008276378735899925, 0.03235065937042236, 0.05520401522517204, 0.05960376560688019, -0.048801761120557785, -0.02539115399122238, -0.0294029638171196, 0.002539912471547723, -0.13808301091194153, -0.19332373142242432, -0.04251654073596001, -0.020142806693911552, 0.1249033659696579, -0.22437715530395508, 0.029007108882069588, -0.02871520258486271, 0.07426177710294724, 0.011721569113433361, -0.003251854330301285, -0.055020011961460114, 0.08822081983089447, -0.03932200372219086, -0.044027384370565414, 0.06838078051805496, 0.008939703926444054, -0.0789722204208374, -0.039984360337257385, -0.0887172669172287, 0.20261014997959137, 0.1337142139673233, -0.12298902869224548, -0.09678778052330017, -0.007630711887031794, -0.06243331357836723, -0.021630045026540756, -0.05101507902145386, 0.04452797397971153, 0.17106518149375916, -0.02558385394513607, 0.14947886765003204, -0.06596679240465164, -0.04439844563603401, 0.028379280120134354, -0.033760398626327515, 0.023240994662046432, 0.12171880900859833, 0.1400671750307083, -0.11191084235906601, 0.14908677339553833, 0.11894755065441132, -0.06939534842967987, 0.128013476729393, -0.03659433126449585, -0.06909586489200592, -0.034997597336769104, -0.04681326076388359, -0.013046471402049065, 0.11407805979251862, -0.11632366478443146, -0.011562669649720192, 0.024299196898937225, 0.01981676183640957, 0.017212720587849617, -0.21563690900802612, -0.054955627769231796, 0.039891187101602554, -0.025775404646992683, -0.039551831781864166, -0.010044187307357788, 0.00947077851742506, 0.10504135489463806, 0.009683988057076931, -0.09792460501194, 0.04537845030426979, 0.012410790659487247, -0.08784876763820648, 0.21034382283687592, -0.07726404070854187, -0.13240265846252441, -0.11652474105358124, -0.08285752683877945, -0.03622426465153694, 0.007236292585730553, 0.054457634687423706, -0.07977548241615295, -0.03372526168823242, -0.049317218363285065, 0.01294370274990797, -0.01984952762722969, 0.03348516672849655, 0.006480794865638018, 0.002270036842674017, 0.049839362502098083, -0.09591551125049591, -0.02081858180463314, -0.06461232900619507, -0.062210965901613235, 0.053143300116062164, 0.019623761996626854, 0.1198727935552597, 0.1424434334039688, -0.03576461970806122, 0.01943080872297287, -0.04389575496315956, 0.25205081701278687, -0.07117243111133575, -0.05165702849626541, 0.12126182019710541, 0.010276482440531254, 0.03498850017786026, 0.11536388099193573, 0.0684753879904747, -0.09433591365814209, -0.0003095936554018408, 0.028030406683683395, -0.029434025287628174, -0.21102295815944672, -0.053717583417892456, -0.05261370912194252, -0.03661859408020973, 0.08837959170341492, 0.019413357600569725, 0.03773632273077965, 0.07559649646282196, 0.04220343381166458, 0.07248175889253616, -0.06792391836643219, 0.06876213848590851, 0.10512872785329819, 0.05241573974490166, 0.13091912865638733, -0.043336473405361176, -0.06738448888063431, 0.03623181954026222, -0.02437460795044899, 0.23761111497879028, 0.011558156460523605, 0.10338330268859863, 0.06057492643594742, 0.1650814563035965, 0.005606879014521837, 0.07697603106498718, 0.0051834541372954845, -0.055139776319265366, -0.00946803018450737, -0.026650866493582726, -0.03241030126810074, 0.023228013888001442, -0.05301631987094879, 0.06065261363983154, -0.15523022413253784, 0.007981430739164352, 0.058689821511507034, 0.23982639610767365, 0.036855947226285934, -0.34025949239730835, -0.09753699600696564, -0.009854961186647415, -0.03588749095797539, -0.020682066679000854, 0.014720381237566471, 0.07522116601467133, -0.10453054308891296, 0.020545706152915955, -0.05856892466545105, 0.09376067668199539, -0.035638388246297836, 0.045686960220336914, 0.07741833478212357, 0.09092041850090027, -0.004357252269983292, 0.0824642926454544, -0.2955634295940399, 0.28832894563674927, 0.0070073590613901615, 0.08248049765825272, -0.07288496196269989, -0.00936117023229599, 0.023743847385048866, 0.08832725137472153, 0.07804135233163834, -0.010785143822431564, -0.060929231345653534, -0.22395974397659302, -0.021751439198851585, 0.03574969619512558, 0.0767158567905426, -0.024599624797701836, 0.11103778332471848, -0.03090990148484707, 0.01349241379648447, 0.07555870711803436, -0.00007651457417523488, -0.03725636377930641, -0.08015379309654236, -0.019695162773132324, 0.011818300932645798, -0.03565504774451256, -0.05997641012072563, -0.11697344481945038, -0.12142240256071091, 0.1573163866996765, -0.00981531385332346, -0.03070564940571785, -0.11674963682889938, 0.09840501844882965, 0.057556044310331345, -0.092213474214077, 0.037570711225271225, 0.02186315692961216, 0.0731658935546875, 0.0356525182723999, -0.05867455527186394, 0.1079450398683548, -0.06341419368982315, -0.15260575711727142, -0.057940494269132614, 0.08980552852153778, 0.034407198429107666, 0.06497398763895035, 0.0016317326808348298, 0.018239961937069893, -0.038960523903369904, -0.08825114369392395, 0.025494296103715897, -0.020786477252840996, 0.08989384025335312, 0.025797726586461067, -0.0600430853664875, 0.033090658485889435, -0.062009744346141815, -0.029074091464281082, 0.188361257314682, 0.23482514917850494, -0.11089865863323212, 0.003054240718483925, 0.0013566788984462619, -0.07410746812820435, -0.1882837861776352, 0.06031780689954758, 0.05481604114174843, 0.022217167541384697, 0.030596446245908737, -0.17174124717712402, 0.13351373374462128, 0.10599040240049362, -0.0009017300326377153, 0.09028779715299606, -0.2955513596534729, -0.11997119337320328, 0.11717075854539871, 0.14231634140014648, 0.1387888640165329, -0.11679933965206146, 0.002065488835796714, -0.020647751167416573, -0.1322845071554184, 0.11279263347387314, -0.04916840419173241, 0.12136766314506531, -0.034070029854774475, 0.09306932240724564, 0.009489216841757298, -0.05161649361252785, 0.10561338067054749, 0.041438762098550797, 0.117564857006073, -0.05038420110940933, -0.06973641365766525, 0.031193023547530174, -0.03445027396082878, 0.01829131320118904, -0.06203228607773781, 0.028923451900482178, -0.1267935335636139, -0.031008273363113403, -0.08011296391487122, 0.040568169206380844, -0.03253968805074692, -0.0678277537226677, -0.039108458906412125, 0.04112854227423668, 0.05100474879145622, -0.02078377641737461, 0.1261122077703476, 0.012100320309400558, 0.14496253430843353, 0.06766268610954285, 0.08470959961414337, -0.08388673514127731, -0.06188330054283142, -0.012614681385457516, -0.014991601929068565, 0.06286494433879852, -0.12694281339645386, 0.028911983594298363, 0.15148866176605225, 0.024095628410577774, 0.14668066799640656, 0.09270865470170975, -0.00774750392884016, 0.006704912520945072, 0.06958355754613876, -0.14650793373584747, -0.07492947578430176, -0.012758200988173485, -0.08417113870382309, -0.10491643846035004, 0.05329383537173271, 0.08774955570697784, -0.07457901537418365, -0.020306522026658058, -0.019659804180264473, -0.0046589067205786705, -0.06828700006008148, 0.19097475707530975, 0.07165631651878357, 0.04667729511857033, -0.1087474599480629, 0.046334683895111084, 0.03799278661608696, -0.044190697371959686, 0.0026104189455509186, 0.05789440497756004, -0.07891734689474106, -0.04618369787931442, 0.07565062493085861, 0.19724589586257935, -0.10639114677906036, -0.041730936616659164, -0.14412431418895721, -0.12482167035341263, 0.0858638733625412, 0.16407287120819092, 0.12001969665288925, 0.016542358323931694, -0.044627804309129715, 0.0004892611759714782, -0.14315193891525269, 0.07668711990118027, 0.03397877514362335, 0.06451647728681564, -0.1555926352739334, 0.19324186444282532, -0.005333597306162119, 0.05980570241808891, -0.024393189698457718, 0.02662535570561886, -0.1197163462638855, 0.015381762757897377, -0.1072821244597435, -0.0309952050447464, -0.0452880859375, 0.010538376867771149, 0.0044297343119978905, -0.05804304778575897, -0.06787515431642532, 0.019214682281017303, -0.12087952345609665, -0.011882785707712173, 0.052330054342746735, 0.06458622962236404, -0.09650682657957077, -0.03713372349739075, 0.005560739431530237, -0.04946653172373772, 0.06298165023326874, 0.053129035979509354, 0.03265496343374252, 0.05577000975608826, -0.12371541559696198, 0.012868620455265045, 0.06440827995538712, 0.007461529690772295, 0.08779594302177429, -0.09992941468954086, 0.011539554223418236, 0.008104230277240276, 0.05107768252491951, 0.026148788630962372, 0.04300077259540558, -0.1331465244293213, -0.0032487937714904547, -0.012922815047204494, -0.0705837830901146, -0.06860256940126419, 0.03572484478354454, 0.09413286298513412, 0.011181337758898735, 0.20211395621299744, -0.07241328805685043, 0.03911159187555313, -0.20864175260066986, -0.002821684814989567, -0.02039400488138199, -0.10292154550552368, -0.11756741255521774, -0.06827826797962189, 0.06675133109092712, -0.04846476390957832, 0.15926845371723175, 0.05514415353536606, 0.039845507591962814, 0.02924531139433384, -0.024599388241767883, 0.022414378821849823, 0.018331291154026985, 0.2072865515947342, 0.03242827579379082, -0.0374031737446785, 0.07177082449197769, 0.0631103664636612, 0.09669660031795502, 0.12287601828575134, 0.19441848993301392, 0.14783944189548492, 0.008169285021722317, 0.08258246630430222, 0.042839691042900085, -0.06839238852262497, -0.1541784405708313, 0.008040743879973888, -0.039424650371074677, 0.08197673410177231, -0.024419615045189857, 0.1872439682483673, 0.07117965817451477, -0.17282630503177643, 0.043817855417728424, -0.0612485446035862, -0.08095851540565491, -0.11154606193304062, -0.035318464040756226, -0.08987002074718475, -0.14176107943058014, 0.014213255606591702, -0.12320590019226074, 0.00632935855537653, 0.10535521060228348, 0.0018503557657822967, -0.02990477718412876, 0.12711457908153534, 0.015195788815617561, 0.03782793879508972, 0.050633810460567474, -0.0014095796504989266, -0.02131027542054653, -0.12255539745092392, -0.04312639683485031, -0.01655908115208149, -0.03916485607624054, 0.03420833870768547, -0.07266595214605331, -0.05807604640722275, 0.031155332922935486, -0.0194083321839571, -0.09185913950204849, 0.01302096527069807, 0.023594094440340996, 0.06487599015235901, 0.03717924281954765, 0.006430379115045071, 0.022888263687491417, -0.01629592664539814, 0.20849286019802094, -0.06752245873212814, -0.06448845565319061, -0.11597135663032532, 0.2857775092124939, 0.06247120723128319, -0.0029909361619502306, 0.03875966742634773, -0.06030166894197464, 0.018973320722579956, 0.22909623384475708, 0.2062881737947464, -0.08546915650367737, 0.0005180338630452752, -0.003911284264177084, -0.01239559892565012, -0.023509981110692024, 0.10638587176799774, 0.12344813346862793, 0.0492025762796402, -0.09264816343784332, -0.0384763702750206, -0.07486826926469803, -0.0014395563630387187, -0.010740344412624836, 0.05220017954707146, 0.05710618570446968, 0.005952389445155859, -0.035947054624557495, 0.04835249483585358, -0.0623173788189888, -0.07504520565271378, 0.08712742477655411, -0.19577696919441223, -0.15450870990753174, -0.011524424888193607, 0.060413897037506104, 0.014811385422945023, 0.07661215215921402, -0.034331414848566055, -0.009861629456281662, 0.07325059920549393, -0.013198725879192352, -0.10196882486343384, -0.08886867016553879, 0.11392643302679062, -0.08647555112838745, 0.20282095670700073, -0.051082540303468704, 0.0726238340139389, 0.1286064237356186, 0.06750267744064331, -0.07789085060358047, 0.07065197080373764, 0.033653661608695984, -0.06356313079595566, 0.039195507764816284, 0.07693500816822052, -0.03484167531132698, 0.07378298789262772, 0.03255413472652435, -0.15124978125095367, 0.028943153098225594, -0.08831965923309326, -0.059418000280857086, -0.04492110013961792, -0.03333628922700882, -0.049130234867334366, 0.13655219972133636, 0.2347915768623352, -0.029949385672807693, -0.000018238526536151767, -0.06771434098482132, 0.02497054822742939, 0.06521487236022949, 0.024716423824429512, -0.07069611549377441, -0.22834627330303192, 0.01762404851615429, 0.0770171582698822, -0.028476985171437263, -0.22311726212501526, -0.08355039358139038, -0.0037769372574985027, -0.08544792979955673, -0.08023001998662949, 0.08551409840583801, 0.08288803696632385, 0.05873243510723114, -0.06337666511535645, -0.06212843209505081, -0.076679527759552, 0.15396149456501007, -0.1293550431728363, -0.09847313910722733 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-it This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.2491 - F1: 0.8213 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.8192 | 1.0 | 70 | 0.3300 | 0.7184 | | 0.2949 | 2.0 | 140 | 0.2817 | 0.7959 | | 0.189 | 3.0 | 210 | 0.2491 | 0.8213 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu113 - Datasets 1.18.3 - Tokenizers 0.11.0
{"license": "mit", "tags": ["generated_from_trainer"], "datasets": ["xtreme"], "metrics": ["f1"], "model-index": [{"name": "xlm-roberta-base-finetuned-panx-it", "results": [{"task": {"type": "token-classification", "name": "Token Classification"}, "dataset": {"name": "xtreme", "type": "xtreme", "args": "PAN-X.it"}, "metrics": [{"type": "f1", "value": 0.8213114754098361, "name": "F1"}]}]}]}
token-classification
MhF/xlm-roberta-base-finetuned-panx-it
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #xlm-roberta #token-classification #generated_from_trainer #dataset-xtreme #license-mit #model-index #autotrain_compatible #endpoints_compatible #region-us
xlm-roberta-base-finetuned-panx-it ================================== This model is a fine-tuned version of xlm-roberta-base on the xtreme dataset. It achieves the following results on the evaluation set: * Loss: 0.2491 * F1: 0.8213 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 5e-05 * train\_batch\_size: 24 * eval\_batch\_size: 24 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 3 ### Training results ### Framework versions * Transformers 4.16.2 * Pytorch 1.10.0+cu113 * Datasets 1.18.3 * Tokenizers 0.11.0
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 24\n* eval\\_batch\\_size: 24\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3", "### Training results", "### Framework versions\n\n\n* Transformers 4.16.2\n* Pytorch 1.10.0+cu113\n* Datasets 1.18.3\n* Tokenizers 0.11.0" ]
[ "TAGS\n#transformers #pytorch #xlm-roberta #token-classification #generated_from_trainer #dataset-xtreme #license-mit #model-index #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 24\n* eval\\_batch\\_size: 24\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3", "### Training results", "### Framework versions\n\n\n* Transformers 4.16.2\n* Pytorch 1.10.0+cu113\n* Datasets 1.18.3\n* Tokenizers 0.11.0" ]
[ 64, 98, 4, 35 ]
[ "passage: TAGS\n#transformers #pytorch #xlm-roberta #token-classification #generated_from_trainer #dataset-xtreme #license-mit #model-index #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 24\n* eval\\_batch\\_size: 24\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3### Training results### Framework versions\n\n\n* Transformers 4.16.2\n* Pytorch 1.10.0+cu113\n* Datasets 1.18.3\n* Tokenizers 0.11.0" ]
[ -0.11436963826417923, 0.08216290175914764, -0.0014988728798925877, 0.11899861693382263, 0.19123201072216034, 0.03974498435854912, 0.10350155830383301, 0.12138590216636658, -0.09891786426305771, 0.013696652837097645, 0.12637798488140106, 0.1895143687725067, 0.0018154538702219725, 0.14313584566116333, -0.06025582179427147, -0.2619011700153351, -0.003350334707647562, 0.052718475461006165, -0.05394969880580902, 0.13216909766197205, 0.10750007629394531, -0.14981958270072937, 0.10015495121479034, 0.006444386672228575, -0.23981864750385284, 0.011690332554280758, 0.027355141937732697, -0.05588614568114281, 0.1399359256029129, 0.03566553443670273, 0.1263839304447174, 0.0030200087931007147, 0.09853485971689224, -0.17312058806419373, 0.008765882812440395, 0.038472212851047516, -0.000443514552898705, 0.0844867005944252, 0.040070001035928726, -0.013202887959778309, 0.12370803952217102, -0.07902373373508453, 0.05092515051364899, 0.017474493011832237, -0.13000470399856567, -0.2246100902557373, -0.08418529480695724, 0.047609493136405945, 0.07317133247852325, 0.10511699318885803, -0.003314343513920903, 0.16014689207077026, -0.10632647573947906, 0.09373842179775238, 0.21881651878356934, -0.29668357968330383, -0.06488552689552307, 0.031847983598709106, 0.014174254611134529, 0.04402214288711548, -0.10793596506118774, -0.02889988385140896, 0.06329386681318283, 0.04204453155398369, 0.12428336590528488, -0.0391516275703907, -0.07627827674150467, 0.026497427374124527, -0.13929937779903412, -0.02682936005294323, 0.15474264323711395, 0.04383007436990738, -0.0396600179374218, -0.04192468151450157, -0.03334873914718628, -0.16318167746067047, -0.03406932204961777, -0.010290565900504589, 0.043918341398239136, -0.04895852878689766, -0.08648735284805298, 0.02723311446607113, -0.097513847053051, -0.06545048207044601, -0.0746387168765068, 0.1782958060503006, 0.037355661392211914, 0.01192114781588316, -0.023329902440309525, 0.10323978215456009, 0.007858896628022194, -0.11702941358089447, 0.004397858399897814, 0.017407357692718506, -0.00815503764897585, -0.06893662363290787, -0.0570240393280983, -0.020737405866384506, -0.005045332480221987, 0.12494289875030518, -0.05916045978665352, 0.023372575640678406, 0.06467283517122269, 0.029114963486790657, -0.0722503587603569, 0.19237901270389557, -0.0481749065220356, -0.011949131265282631, 0.0016024229116737843, 0.03170987218618393, -0.015658723190426826, 0.004205819685012102, -0.12208401411771774, -0.006747600622475147, 0.09584765136241913, 0.016837822273373604, -0.09102528542280197, 0.07832750678062439, -0.05287430062890053, -0.028164485469460487, 0.0030340550001710653, -0.08302824199199677, 0.04031585529446602, -0.013750899583101273, -0.08648565411567688, -0.02910149097442627, 0.000869646726641804, 0.013589250855147839, -0.010291717015206814, 0.11161969602108002, -0.10701880604028702, 0.036874812096357346, -0.10269305855035782, -0.12077722698450089, 0.0035550203174352646, -0.08824023604393005, 0.046746887266635895, -0.09828832745552063, -0.16740597784519196, -0.021985862404108047, 0.042871154844760895, -0.02204023115336895, -0.06242973357439041, -0.0528845489025116, -0.07350925356149673, 0.003269244683906436, -0.010601988062262535, 0.1220708116889, -0.062120240181684494, 0.09998202323913574, 0.04162858426570892, 0.059219472110271454, -0.04391959309577942, 0.05711580812931061, -0.10268891602754593, 0.004278227686882019, -0.16758884489536285, 0.04038360342383385, -0.041206248104572296, 0.07446469366550446, -0.07323607802391052, -0.11914148181676865, 0.040456630289554596, 0.009273141622543335, 0.06437927484512329, 0.08528587222099304, -0.1485435962677002, -0.08106792718172073, 0.1537495106458664, -0.06615190207958221, -0.1300884187221527, 0.09811797738075256, -0.0760919377207756, 0.05335647240281105, 0.07025817036628723, 0.14440350234508514, 0.06541960686445236, -0.08486487716436386, -0.004819395020604134, -0.0051734731532633305, 0.024705344811081886, -0.08546008914709091, 0.07162002474069595, 0.03291914239525795, 0.005287147127091885, 0.027629638090729713, -0.04034605249762535, 0.05791088938713074, -0.11497120559215546, -0.09256569296121597, -0.032520558685064316, -0.09047923237085342, 0.03632182255387306, 0.07524582743644714, 0.07669538259506226, -0.10682988911867142, -0.07868388295173645, 0.08592458069324493, 0.09215538948774338, -0.04909861460328102, 0.012347917072474957, -0.08046656847000122, 0.06741593033075333, -0.05226065218448639, -0.04010547697544098, -0.17410588264465332, -0.024803929030895233, -0.0007737993146292865, 0.04608692601323128, 0.008276378735899925, 0.03235065937042236, 0.05520401522517204, 0.05960376560688019, -0.048801761120557785, -0.02539115399122238, -0.0294029638171196, 0.002539912471547723, -0.13808301091194153, -0.19332373142242432, -0.04251654073596001, -0.020142806693911552, 0.1249033659696579, -0.22437715530395508, 0.029007108882069588, -0.02871520258486271, 0.07426177710294724, 0.011721569113433361, -0.003251854330301285, -0.055020011961460114, 0.08822081983089447, -0.03932200372219086, -0.044027384370565414, 0.06838078051805496, 0.008939703926444054, -0.0789722204208374, -0.039984360337257385, -0.0887172669172287, 0.20261014997959137, 0.1337142139673233, -0.12298902869224548, -0.09678778052330017, -0.007630711887031794, -0.06243331357836723, -0.021630045026540756, -0.05101507902145386, 0.04452797397971153, 0.17106518149375916, -0.02558385394513607, 0.14947886765003204, -0.06596679240465164, -0.04439844563603401, 0.028379280120134354, -0.033760398626327515, 0.023240994662046432, 0.12171880900859833, 0.1400671750307083, -0.11191084235906601, 0.14908677339553833, 0.11894755065441132, -0.06939534842967987, 0.128013476729393, -0.03659433126449585, -0.06909586489200592, -0.034997597336769104, -0.04681326076388359, -0.013046471402049065, 0.11407805979251862, -0.11632366478443146, -0.011562669649720192, 0.024299196898937225, 0.01981676183640957, 0.017212720587849617, -0.21563690900802612, -0.054955627769231796, 0.039891187101602554, -0.025775404646992683, -0.039551831781864166, -0.010044187307357788, 0.00947077851742506, 0.10504135489463806, 0.009683988057076931, -0.09792460501194, 0.04537845030426979, 0.012410790659487247, -0.08784876763820648, 0.21034382283687592, -0.07726404070854187, -0.13240265846252441, -0.11652474105358124, -0.08285752683877945, -0.03622426465153694, 0.007236292585730553, 0.054457634687423706, -0.07977548241615295, -0.03372526168823242, -0.049317218363285065, 0.01294370274990797, -0.01984952762722969, 0.03348516672849655, 0.006480794865638018, 0.002270036842674017, 0.049839362502098083, -0.09591551125049591, -0.02081858180463314, -0.06461232900619507, -0.062210965901613235, 0.053143300116062164, 0.019623761996626854, 0.1198727935552597, 0.1424434334039688, -0.03576461970806122, 0.01943080872297287, -0.04389575496315956, 0.25205081701278687, -0.07117243111133575, -0.05165702849626541, 0.12126182019710541, 0.010276482440531254, 0.03498850017786026, 0.11536388099193573, 0.0684753879904747, -0.09433591365814209, -0.0003095936554018408, 0.028030406683683395, -0.029434025287628174, -0.21102295815944672, -0.053717583417892456, -0.05261370912194252, -0.03661859408020973, 0.08837959170341492, 0.019413357600569725, 0.03773632273077965, 0.07559649646282196, 0.04220343381166458, 0.07248175889253616, -0.06792391836643219, 0.06876213848590851, 0.10512872785329819, 0.05241573974490166, 0.13091912865638733, -0.043336473405361176, -0.06738448888063431, 0.03623181954026222, -0.02437460795044899, 0.23761111497879028, 0.011558156460523605, 0.10338330268859863, 0.06057492643594742, 0.1650814563035965, 0.005606879014521837, 0.07697603106498718, 0.0051834541372954845, -0.055139776319265366, -0.00946803018450737, -0.026650866493582726, -0.03241030126810074, 0.023228013888001442, -0.05301631987094879, 0.06065261363983154, -0.15523022413253784, 0.007981430739164352, 0.058689821511507034, 0.23982639610767365, 0.036855947226285934, -0.34025949239730835, -0.09753699600696564, -0.009854961186647415, -0.03588749095797539, -0.020682066679000854, 0.014720381237566471, 0.07522116601467133, -0.10453054308891296, 0.020545706152915955, -0.05856892466545105, 0.09376067668199539, -0.035638388246297836, 0.045686960220336914, 0.07741833478212357, 0.09092041850090027, -0.004357252269983292, 0.0824642926454544, -0.2955634295940399, 0.28832894563674927, 0.0070073590613901615, 0.08248049765825272, -0.07288496196269989, -0.00936117023229599, 0.023743847385048866, 0.08832725137472153, 0.07804135233163834, -0.010785143822431564, -0.060929231345653534, -0.22395974397659302, -0.021751439198851585, 0.03574969619512558, 0.0767158567905426, -0.024599624797701836, 0.11103778332471848, -0.03090990148484707, 0.01349241379648447, 0.07555870711803436, -0.00007651457417523488, -0.03725636377930641, -0.08015379309654236, -0.019695162773132324, 0.011818300932645798, -0.03565504774451256, -0.05997641012072563, -0.11697344481945038, -0.12142240256071091, 0.1573163866996765, -0.00981531385332346, -0.03070564940571785, -0.11674963682889938, 0.09840501844882965, 0.057556044310331345, -0.092213474214077, 0.037570711225271225, 0.02186315692961216, 0.0731658935546875, 0.0356525182723999, -0.05867455527186394, 0.1079450398683548, -0.06341419368982315, -0.15260575711727142, -0.057940494269132614, 0.08980552852153778, 0.034407198429107666, 0.06497398763895035, 0.0016317326808348298, 0.018239961937069893, -0.038960523903369904, -0.08825114369392395, 0.025494296103715897, -0.020786477252840996, 0.08989384025335312, 0.025797726586461067, -0.0600430853664875, 0.033090658485889435, -0.062009744346141815, -0.029074091464281082, 0.188361257314682, 0.23482514917850494, -0.11089865863323212, 0.003054240718483925, 0.0013566788984462619, -0.07410746812820435, -0.1882837861776352, 0.06031780689954758, 0.05481604114174843, 0.022217167541384697, 0.030596446245908737, -0.17174124717712402, 0.13351373374462128, 0.10599040240049362, -0.0009017300326377153, 0.09028779715299606, -0.2955513596534729, -0.11997119337320328, 0.11717075854539871, 0.14231634140014648, 0.1387888640165329, -0.11679933965206146, 0.002065488835796714, -0.020647751167416573, -0.1322845071554184, 0.11279263347387314, -0.04916840419173241, 0.12136766314506531, -0.034070029854774475, 0.09306932240724564, 0.009489216841757298, -0.05161649361252785, 0.10561338067054749, 0.041438762098550797, 0.117564857006073, -0.05038420110940933, -0.06973641365766525, 0.031193023547530174, -0.03445027396082878, 0.01829131320118904, -0.06203228607773781, 0.028923451900482178, -0.1267935335636139, -0.031008273363113403, -0.08011296391487122, 0.040568169206380844, -0.03253968805074692, -0.0678277537226677, -0.039108458906412125, 0.04112854227423668, 0.05100474879145622, -0.02078377641737461, 0.1261122077703476, 0.012100320309400558, 0.14496253430843353, 0.06766268610954285, 0.08470959961414337, -0.08388673514127731, -0.06188330054283142, -0.012614681385457516, -0.014991601929068565, 0.06286494433879852, -0.12694281339645386, 0.028911983594298363, 0.15148866176605225, 0.024095628410577774, 0.14668066799640656, 0.09270865470170975, -0.00774750392884016, 0.006704912520945072, 0.06958355754613876, -0.14650793373584747, -0.07492947578430176, -0.012758200988173485, -0.08417113870382309, -0.10491643846035004, 0.05329383537173271, 0.08774955570697784, -0.07457901537418365, -0.020306522026658058, -0.019659804180264473, -0.0046589067205786705, -0.06828700006008148, 0.19097475707530975, 0.07165631651878357, 0.04667729511857033, -0.1087474599480629, 0.046334683895111084, 0.03799278661608696, -0.044190697371959686, 0.0026104189455509186, 0.05789440497756004, -0.07891734689474106, -0.04618369787931442, 0.07565062493085861, 0.19724589586257935, -0.10639114677906036, -0.041730936616659164, -0.14412431418895721, -0.12482167035341263, 0.0858638733625412, 0.16407287120819092, 0.12001969665288925, 0.016542358323931694, -0.044627804309129715, 0.0004892611759714782, -0.14315193891525269, 0.07668711990118027, 0.03397877514362335, 0.06451647728681564, -0.1555926352739334, 0.19324186444282532, -0.005333597306162119, 0.05980570241808891, -0.024393189698457718, 0.02662535570561886, -0.1197163462638855, 0.015381762757897377, -0.1072821244597435, -0.0309952050447464, -0.0452880859375, 0.010538376867771149, 0.0044297343119978905, -0.05804304778575897, -0.06787515431642532, 0.019214682281017303, -0.12087952345609665, -0.011882785707712173, 0.052330054342746735, 0.06458622962236404, -0.09650682657957077, -0.03713372349739075, 0.005560739431530237, -0.04946653172373772, 0.06298165023326874, 0.053129035979509354, 0.03265496343374252, 0.05577000975608826, -0.12371541559696198, 0.012868620455265045, 0.06440827995538712, 0.007461529690772295, 0.08779594302177429, -0.09992941468954086, 0.011539554223418236, 0.008104230277240276, 0.05107768252491951, 0.026148788630962372, 0.04300077259540558, -0.1331465244293213, -0.0032487937714904547, -0.012922815047204494, -0.0705837830901146, -0.06860256940126419, 0.03572484478354454, 0.09413286298513412, 0.011181337758898735, 0.20211395621299744, -0.07241328805685043, 0.03911159187555313, -0.20864175260066986, -0.002821684814989567, -0.02039400488138199, -0.10292154550552368, -0.11756741255521774, -0.06827826797962189, 0.06675133109092712, -0.04846476390957832, 0.15926845371723175, 0.05514415353536606, 0.039845507591962814, 0.02924531139433384, -0.024599388241767883, 0.022414378821849823, 0.018331291154026985, 0.2072865515947342, 0.03242827579379082, -0.0374031737446785, 0.07177082449197769, 0.0631103664636612, 0.09669660031795502, 0.12287601828575134, 0.19441848993301392, 0.14783944189548492, 0.008169285021722317, 0.08258246630430222, 0.042839691042900085, -0.06839238852262497, -0.1541784405708313, 0.008040743879973888, -0.039424650371074677, 0.08197673410177231, -0.024419615045189857, 0.1872439682483673, 0.07117965817451477, -0.17282630503177643, 0.043817855417728424, -0.0612485446035862, -0.08095851540565491, -0.11154606193304062, -0.035318464040756226, -0.08987002074718475, -0.14176107943058014, 0.014213255606591702, -0.12320590019226074, 0.00632935855537653, 0.10535521060228348, 0.0018503557657822967, -0.02990477718412876, 0.12711457908153534, 0.015195788815617561, 0.03782793879508972, 0.050633810460567474, -0.0014095796504989266, -0.02131027542054653, -0.12255539745092392, -0.04312639683485031, -0.01655908115208149, -0.03916485607624054, 0.03420833870768547, -0.07266595214605331, -0.05807604640722275, 0.031155332922935486, -0.0194083321839571, -0.09185913950204849, 0.01302096527069807, 0.023594094440340996, 0.06487599015235901, 0.03717924281954765, 0.006430379115045071, 0.022888263687491417, -0.01629592664539814, 0.20849286019802094, -0.06752245873212814, -0.06448845565319061, -0.11597135663032532, 0.2857775092124939, 0.06247120723128319, -0.0029909361619502306, 0.03875966742634773, -0.06030166894197464, 0.018973320722579956, 0.22909623384475708, 0.2062881737947464, -0.08546915650367737, 0.0005180338630452752, -0.003911284264177084, -0.01239559892565012, -0.023509981110692024, 0.10638587176799774, 0.12344813346862793, 0.0492025762796402, -0.09264816343784332, -0.0384763702750206, -0.07486826926469803, -0.0014395563630387187, -0.010740344412624836, 0.05220017954707146, 0.05710618570446968, 0.005952389445155859, -0.035947054624557495, 0.04835249483585358, -0.0623173788189888, -0.07504520565271378, 0.08712742477655411, -0.19577696919441223, -0.15450870990753174, -0.011524424888193607, 0.060413897037506104, 0.014811385422945023, 0.07661215215921402, -0.034331414848566055, -0.009861629456281662, 0.07325059920549393, -0.013198725879192352, -0.10196882486343384, -0.08886867016553879, 0.11392643302679062, -0.08647555112838745, 0.20282095670700073, -0.051082540303468704, 0.0726238340139389, 0.1286064237356186, 0.06750267744064331, -0.07789085060358047, 0.07065197080373764, 0.033653661608695984, -0.06356313079595566, 0.039195507764816284, 0.07693500816822052, -0.03484167531132698, 0.07378298789262772, 0.03255413472652435, -0.15124978125095367, 0.028943153098225594, -0.08831965923309326, -0.059418000280857086, -0.04492110013961792, -0.03333628922700882, -0.049130234867334366, 0.13655219972133636, 0.2347915768623352, -0.029949385672807693, -0.000018238526536151767, -0.06771434098482132, 0.02497054822742939, 0.06521487236022949, 0.024716423824429512, -0.07069611549377441, -0.22834627330303192, 0.01762404851615429, 0.0770171582698822, -0.028476985171437263, -0.22311726212501526, -0.08355039358139038, -0.0037769372574985027, -0.08544792979955673, -0.08023001998662949, 0.08551409840583801, 0.08288803696632385, 0.05873243510723114, -0.06337666511535645, -0.06212843209505081, -0.076679527759552, 0.15396149456501007, -0.1293550431728363, -0.09847313910722733 ]
null
null
transformers
# feinschwarz This model is a fine-tuned version of [dbmdz/german-gpt2](https://huggingface.co/dbmdz/german-gpt2). The dataset was compiled from all texts of https://www.feinschwarz.net (as of October 2021). The homepage gathers essayistic texts on theological topics. The model will be used to explore the challenges of text-generating AI for theology with a hands on approach. Can an AI generate theological knowledge? Is a text by Karl Rahner of more value than an AI-generated text? Can we even distinguish a Rahner text from an AI-generated text in the future? And the crucial question: Would it be bad if not? The model is a very first attempt and in its current version certainly not yet a danger for academic theology 🤓 # Using the model You can create text with the model using this code: ```python from transformers import pipeline pipe = pipeline('text-generation', model="Michael711/feinschwarz", tokenizer="Michael711/feinschwarz") text = pipe("Der Sinn des Lebens ist es", max_length=100)[0]["generated_text"] print(text) ``` Have fun theologizing!
{"license": "mit", "tags": ["generated_from_trainer", "de"], "model-index": [{"name": "feinesblack", "results": []}]}
text-generation
Michael711/feinschwarz
[ "transformers", "pytorch", "gpt2", "text-generation", "generated_from_trainer", "de", "license:mit", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #generated_from_trainer #de #license-mit #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# feinschwarz This model is a fine-tuned version of dbmdz/german-gpt2. The dataset was compiled from all texts of URL (as of October 2021). The homepage gathers essayistic texts on theological topics. The model will be used to explore the challenges of text-generating AI for theology with a hands on approach. Can an AI generate theological knowledge? Is a text by Karl Rahner of more value than an AI-generated text? Can we even distinguish a Rahner text from an AI-generated text in the future? And the crucial question: Would it be bad if not? The model is a very first attempt and in its current version certainly not yet a danger for academic theology # Using the model You can create text with the model using this code: Have fun theologizing!
[ "# feinschwarz\n\nThis model is a fine-tuned version of dbmdz/german-gpt2. The dataset was compiled from all texts of URL (as of October 2021). The homepage gathers essayistic texts on theological topics.\n\nThe model will be used to explore the challenges of text-generating AI for theology with a hands on approach. Can an AI generate theological knowledge? Is a text by Karl Rahner of more value than an AI-generated text? Can we even distinguish a Rahner text from an AI-generated text in the future? And the crucial question: Would it be bad if not?\n\nThe model is a very first attempt and in its current version certainly not yet a danger for academic theology", "# Using the model\n\nYou can create text with the model using this code:\n\n\n\nHave fun theologizing!" ]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #generated_from_trainer #de #license-mit #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# feinschwarz\n\nThis model is a fine-tuned version of dbmdz/german-gpt2. The dataset was compiled from all texts of URL (as of October 2021). The homepage gathers essayistic texts on theological topics.\n\nThe model will be used to explore the challenges of text-generating AI for theology with a hands on approach. Can an AI generate theological knowledge? Is a text by Karl Rahner of more value than an AI-generated text? Can we even distinguish a Rahner text from an AI-generated text in the future? And the crucial question: Would it be bad if not?\n\nThe model is a very first attempt and in its current version certainly not yet a danger for academic theology", "# Using the model\n\nYou can create text with the model using this code:\n\n\n\nHave fun theologizing!" ]
[ 61, 163, 22 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #generated_from_trainer #de #license-mit #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# feinschwarz\n\nThis model is a fine-tuned version of dbmdz/german-gpt2. The dataset was compiled from all texts of URL (as of October 2021). The homepage gathers essayistic texts on theological topics.\n\nThe model will be used to explore the challenges of text-generating AI for theology with a hands on approach. Can an AI generate theological knowledge? Is a text by Karl Rahner of more value than an AI-generated text? Can we even distinguish a Rahner text from an AI-generated text in the future? And the crucial question: Would it be bad if not?\n\nThe model is a very first attempt and in its current version certainly not yet a danger for academic theology# Using the model\n\nYou can create text with the model using this code:\n\n\n\nHave fun theologizing!" ]
[ -0.03890291601419449, 0.11958906054496765, -0.0016347708879038692, 0.08013974875211716, 0.06969325989484787, 0.045594338327646255, 0.1286362260580063, 0.056609202176332474, 0.13870061933994293, 0.0701238140463829, 0.14972174167633057, -0.017883166670799255, 0.027465082705020905, 0.07995832711458206, 0.00791942048817873, -0.1765880584716797, 0.03308968245983124, -0.018419956788420677, 0.0820971429347992, 0.0700690969824791, 0.04720517620444298, -0.06064651906490326, 0.08124147355556488, -0.02691918984055519, -0.05725301802158356, -0.05261605978012085, -0.13075514137744904, 0.02522154338657856, 0.07655250281095505, 0.007288062945008278, 0.0004861250054091215, 0.005687744822353125, 0.03504073992371559, 0.025223536416888237, 0.04599650204181671, 0.0066916607320308685, -0.03654802218079567, 0.022857405245304108, 0.05349253490567207, -0.0468599833548069, 0.2983520030975342, 0.12335997074842453, -0.05788658186793327, 0.0189313106238842, -0.1316458284854889, 0.03278109431266785, -0.16615082323551178, 0.11841659247875214, 0.03158698230981827, 0.07416337728500366, -0.0724947527050972, 0.048174597322940826, -0.006086195353418589, 0.09200211614370346, 0.15591539442539215, -0.22843344509601593, -0.052411336451768875, 0.1470036655664444, 0.042951226234436035, 0.14451725780963898, -0.050319649279117584, 0.10440794378519058, 0.09531181305646896, 0.09988341480493546, 0.008691495284438133, 0.031122352927923203, 0.14665041863918304, -0.08789367228746414, -0.2236243337392807, -0.14275477826595306, 0.16351303458213806, -0.036545444279909134, -0.026187554001808167, -0.07487071305513382, 0.005038408096879721, 0.017547577619552612, 0.07662292569875717, -0.12327805161476135, -0.07291233539581299, -0.04534788802266121, 0.12287411838769913, -0.11031284183263779, -0.08505221456289291, -0.030488725751638412, -0.06395110487937927, 0.22026695311069489, 0.046150289475917816, 0.008463308215141296, 0.012526718899607658, 0.15634138882160187, -0.12325040996074677, -0.07984977960586548, -0.07881315052509308, -0.05162155628204346, 0.08645466715097427, -0.018246056511998177, -0.07759660482406616, -0.0021155597642064095, -0.04281408339738846, 0.048266395926475525, 0.04167436063289642, -0.0417691133916378, 0.03999225050210953, 0.00845471303910017, 0.13020089268684387, 0.036979902535676956, -0.06450951099395752, -0.003882071003317833, 0.06593633443117142, 0.13103562593460083, 0.05139971897006035, 0.01312311738729477, -0.1130092665553093, -0.0728709027171135, 0.08964887261390686, 0.08414781093597412, -0.01628105342388153, 0.06164016202092171, 0.020572109147906303, -0.045037683099508286, -0.0011598782148212194, -0.055508263409137726, -0.08541257679462433, -0.02721879631280899, 0.021354973316192627, -0.023641319945454597, 0.08884825557470322, -0.04576528072357178, -0.0747627466917038, 0.010164448991417885, -0.012160070240497589, -0.03954548016190529, -0.09723065048456192, -0.03808305785059929, 0.05371248722076416, -0.07507685571908951, -0.06907591223716736, -0.08548100292682648, -0.0696013867855072, -0.03185589239001274, 0.004286146257072687, -0.014057903550565243, 0.010048752650618553, -0.02611272782087326, -0.056478071957826614, -0.09622720628976822, 0.010999824851751328, -0.06223318353295326, 0.03527957201004028, 0.058680158108472824, -0.007246203254908323, 0.07275786250829697, -0.025061702355742455, 0.07659314572811127, -0.10228663682937622, 0.02704625204205513, -0.14000841975212097, 0.05398593470454216, -0.0813385546207428, -0.02527599409222603, -0.018554000183939934, -0.020292246714234352, -0.0699056014418602, 0.055676184594631195, 0.0632287859916687, 0.18425233662128448, -0.054214634001255035, -0.008357908576726913, 0.1479903906583786, -0.14205291867256165, -0.24751609563827515, 0.21658311784267426, -0.020967606455087662, 0.11376293748617172, 0.04675956442952156, 0.18045692145824432, 0.003103547263890505, -0.08107496052980423, -0.04162582382559776, -0.017126556485891342, 0.008475339971482754, 0.15300002694129944, 0.06884633004665375, 0.009279806166887283, -0.10194924473762512, -0.011906854808330536, -0.06773149967193604, -0.07083563506603241, -0.07742913067340851, -0.05150607228279114, -0.025485223159193993, -0.0524182990193367, 0.027026990428566933, -0.007514625322073698, -0.00008663931657793, 0.010683384723961353, -0.041165925562381744, -0.10202164947986603, 0.07423724979162216, -0.08903302252292633, -0.04647253081202507, -0.045336440205574036, 0.13238726556301117, -0.09112925082445145, 0.04475165158510208, -0.08080627024173737, -0.07414226979017258, 0.0071629914455115795, -0.02074730582535267, 0.21884943544864655, 0.06901998072862625, 0.048128433525562286, 0.1006237268447876, -0.018493108451366425, 0.018248289823532104, -0.024372532963752747, -0.01673855260014534, -0.16112680733203888, -0.031183917075395584, -0.04194115847349167, -0.03128623217344284, 0.1175009161233902, -0.20174303650856018, 0.04098743945360184, -0.013664772734045982, 0.09744039177894592, -0.06684225797653198, -0.034931011497974396, 0.05496715009212494, -0.0638960748910904, -0.03888754919171333, -0.038529809564352036, 0.006638680584728718, -0.04832122102379799, -0.10728378593921661, -0.023487376049160957, -0.13097739219665527, 0.08461572974920273, 0.09075774252414703, -0.02390783093869686, -0.09151782840490341, -0.030504215508699417, -0.06786840409040451, 0.02684495970606804, -0.028006475418806076, -0.03495658189058304, 0.1334201991558075, -0.013042950071394444, 0.03307192772626877, -0.0803891122341156, -0.03447992354631424, 0.002186873462051153, -0.07608011364936829, -0.03537014499306679, 0.14221304655075073, 0.04815002530813217, -0.23246878385543823, 0.08875148743391037, 0.20005491375923157, -0.11676669865846634, 0.010431164875626564, 0.015954183414578438, -0.06264417618513107, -0.01894240267574787, 0.02417059615254402, -0.027339810505509377, 0.0198032446205616, -0.08621497452259064, -0.009666073136031628, 0.05602844059467316, 0.008329718373715878, 0.05165042728185654, -0.10093993693590164, -0.00217426591552794, 0.003647052450105548, 0.00048676467849873006, 0.004124258179217577, 0.09364582598209381, -0.08021044731140137, 0.12372436374425888, -0.02514587715268135, 0.0007445962401106954, 0.034031305462121964, 0.0024331111926585436, -0.09860184043645859, 0.12774433195590973, 0.07881724834442139, -0.14817190170288086, -0.04605172574520111, 0.11839334666728973, -0.08568070083856583, 0.051809102296829224, 0.08189894258975983, 0.0019631567411124706, -0.06481289118528366, -0.07862256467342377, 0.04730362445116043, -0.0682818591594696, -0.07008195668458939, -0.0828198716044426, -0.1555253267288208, -0.052120279520750046, -0.06246392801403999, -0.04167543351650238, -0.04776398837566376, -0.19889186322689056, 0.06295009702444077, -0.10326843708753586, 0.1129617914557457, 0.05993563309311867, -0.049570538103580475, 0.05051589757204056, -0.0131343649700284, 0.21811401844024658, -0.10698949545621872, 0.04069490358233452, 0.1794705092906952, -0.03824777901172638, 0.0826120674610138, -0.03407752513885498, -0.02869231626391411, -0.09001732617616653, 0.03981255367398262, 0.01985475793480873, -0.06392802298069, -0.21336807310581207, -0.07833915203809738, -0.016228443011641502, -0.023314669728279114, 0.05064418166875839, 0.01884780451655388, 0.10473570972681046, 0.14834748208522797, -0.14708398282527924, 0.06533978134393692, -0.037903446704149246, 0.07689370214939117, 0.0843682587146759, 0.005318771582096815, 0.09995636343955994, -0.07752213627099991, -0.04630008712410927, 0.07482141256332397, 0.05405354127287865, 0.24509261548519135, -0.009693946689367294, 0.020756447687745094, 0.141938716173172, 0.16539157927036285, -0.017597807571291924, -0.026801100000739098, -0.03776855766773224, 0.03129350021481514, -0.099448561668396, -0.0739823579788208, -0.06357809901237488, 0.08039671182632446, -0.09551984816789627, -0.05834369733929634, -0.09434188902378082, 0.02070261538028717, 0.05575449392199516, 0.15546999871730804, -0.01908302679657936, -0.17842406034469604, -0.13239459693431854, 0.0038289609365165234, 0.0274689681828022, -0.029792137444019318, 0.0871683657169342, -0.014436163008213043, -0.1166696697473526, 0.016153177246451378, -0.022940363734960556, 0.08948731422424316, -0.035046860575675964, 0.040636856108903885, -0.08647462725639343, -0.010976044461131096, -0.023526450619101524, 0.15674376487731934, -0.30441996455192566, 0.20712564885616302, -0.011566578410565853, 0.03711993992328644, -0.12058745324611664, -0.07826954871416092, 0.11913749575614929, 0.18281888961791992, 0.10523656010627747, -0.0002955966047011316, 0.1030818298459053, 0.014727613888680935, 0.02712823450565338, 0.020238740369677544, 0.09145919233560562, -0.08243278414011002, 0.08474524319171906, -0.02060995250940323, 0.05802248418331146, -0.04155859723687172, 0.08708908408880234, -0.10021983832120895, -0.04764743149280548, 0.1340060532093048, -0.016795553267002106, 0.042155519127845764, -0.006236810702830553, -0.12489738315343857, -0.08976628631353378, 0.11493920534849167, 0.0019583136308938265, -0.026822732761502266, -0.04536023736000061, -0.0065572625026106834, 0.029599523171782494, -0.08228256553411484, -0.03794484585523605, -0.07671014219522476, 0.017966195940971375, -0.05872705206274986, -0.061555128544569016, 0.08394508063793182, -0.10396387428045273, -0.1592685431241989, 0.027432266622781754, 0.11836977303028107, 0.09909973293542862, 0.04120444878935814, 0.024886218830943108, -0.013073500245809555, -0.0382782407104969, -0.12986664474010468, 0.07039212435483932, 0.11083730310201645, -0.026246661320328712, 0.07193311303853989, -0.026642750948667526, -0.04919971525669098, -0.0889376625418663, -0.03589869663119316, 0.02013866789638996, 0.18895509839057922, -0.03171917796134949, 0.0007379791932180524, 0.21784211695194244, -0.06689712405204773, -0.31400129199028015, -0.0726935938000679, -0.0384516641497612, 0.028337884694337845, 0.025697631761431694, -0.08682511746883392, 0.09731464087963104, 0.07449252903461456, -0.07383881509304047, -0.007897299714386463, -0.209866464138031, -0.08765126764774323, 0.11810199171304703, 0.09631505608558655, 0.060621485114097595, -0.14150673151016235, -0.03350255638360977, 0.06465049833059311, -0.06987979263067245, 0.12350015342235565, -0.15031127631664276, 0.11766010522842407, 0.008468344807624817, 0.17412489652633667, 0.032389529049396515, -0.027815720066428185, 0.07390175759792328, 0.018318401649594307, 0.02275782637298107, -0.11182605475187302, -0.05171472206711769, 0.10688354074954987, -0.047600436955690384, 0.17316845059394836, -0.04629269614815712, 0.07531820237636566, -0.08982645720243454, -0.05276628956198692, -0.042048435658216476, 0.08317646384239197, -0.01930944062769413, -0.0729844719171524, -0.10882727056741714, 0.03702087327837944, 0.00021193278371356428, 0.06772804260253906, -0.005661734379827976, -0.06779234856367111, 0.04043940454721451, 0.04913506656885147, 0.21261842548847198, 0.03538353741168976, 0.11713576316833496, -0.07358013093471527, -0.03477292135357857, 0.07377898693084717, -0.06927022337913513, 0.013822995126247406, 0.14380697906017303, 0.017808901146054268, 0.08519212901592255, 0.03106749802827835, -0.08353105187416077, 0.052602723240852356, -0.03051595948636532, -0.2102707475423813, -0.3212815821170807, -0.04652427136898041, 0.044023528695106506, -0.10198704898357391, 0.21640585362911224, 0.13734905421733856, -0.0916815921664238, -0.023512132465839386, -0.049770139157772064, 0.023719655349850655, 0.002524284878745675, -0.01671919971704483, 0.004051469266414642, -0.004642045125365257, -0.03510042652487755, 0.054987698793411255, 0.05038798227906227, -0.06946749240159988, 0.10217069089412689, 0.10558264702558517, -0.050669603049755096, -0.101810984313488, -0.15542593598365784, 0.05786963552236557, -0.15313217043876648, 0.012759779579937458, 0.06367189437150955, -0.04743019863963127, -0.02957358956336975, 0.09562744200229645, 0.07037737965583801, -0.054028674960136414, -0.06135019287467003, 0.06154532730579376, -0.06297711282968521, 0.05915367975831032, 0.08864298462867737, 0.007471416611224413, -0.028985848650336266, 0.12397933006286621, -0.019618287682533264, 0.049854934215545654, -0.08324535936117172, -0.08071694523096085, -0.03473399579524994, -0.0401834137737751, -0.10503121465444565, -0.014083616435527802, -0.028434909880161285, 0.01148675475269556, -0.022248663008213043, -0.13002757728099823, 0.02220483124256134, 0.06188848987221718, -0.06705834716558456, 0.04657965525984764, 0.0019630587194114923, 0.1017366424202919, -0.08720061928033829, 0.0016781099839136004, 0.043109845370054245, -0.0018429062329232693, 0.14354382455348969, 0.06512036919593811, -0.05866784602403641, -0.03274849057197571, -0.16779986023902893, 0.045416105538606644, -0.04892420023679733, 0.06698194891214371, -0.06462612748146057, 0.00954956840723753, -0.02001376450061798, 0.02255396358668804, 0.03632272779941559, 0.047432754188776016, 0.030833490192890167, -0.019391976296901703, -0.034341081976890564, 0.06511691212654114, -0.043162040412425995, -0.07365597039461136, 0.057614658027887344, -0.04793384298682213, 0.05053046718239784, 0.043504346162080765, -0.032181572169065475, 0.031128952279686928, -0.10086347162723541, 0.031932707875967026, 0.0008297530584968626, -0.08276626467704773, -0.23626364767551422, -0.10878803580999374, 0.03835543245077133, 0.03817591443657875, 0.10321400314569473, -0.004316433798521757, -0.027706706896424294, -0.009342680685222149, 0.06779048591852188, 0.10204519331455231, -0.08816738426685333, 0.03104144148528576, 0.010746154934167862, -0.038167569786310196, -0.1230178028345108, 0.010158493183553219, -0.10496395826339722, -0.06454057991504669, 0.16951368749141693, 0.06086554005742073, -0.05419274792075157, -0.012208512984216213, 0.008039072155952454, 0.010704860091209412, -0.1352681964635849, -0.13236725330352783, 0.09414304792881012, 0.050802335143089294, -0.06199027597904205, 0.12063484638929367, 0.12828324735164642, -0.029144715517759323, 0.02686523087322712, -0.09686625748872757, -0.02199721336364746, -0.03718418627977371, -0.22162462770938873, -0.017812779173254967, 0.003339435439556837, 0.016989806666970253, -0.09034658223390579, 0.060201939195394516, 0.04919285699725151, 0.051856424659490585, -0.1477968990802765, 0.22679057717323303, -0.09510021656751633, -0.03270573914051056, 0.05363933742046356, -0.07085926085710526, 0.09475114196538925, -0.0651608258485794, -0.026815207675099373, 0.058569107204675674, 0.010520469397306442, 0.043884068727493286, 0.04294547811150551, 0.015311275608837605, -0.04182278364896774, -0.07778029143810272, -0.06665213406085968, -0.05461984500288963, 0.06400720775127411, 0.1015009954571724, 0.15685389935970306, -0.017250508069992065, -0.053908031433820724, 0.01766299270093441, 0.11656666547060013, -0.007161944173276424, -0.020878920331597328, 0.00026888740831054747, 0.37801656126976013, -0.03822724148631096, -0.010875883512198925, 0.005990048870444298, -0.0035715335980057716, 0.045107290148735046, 0.16812041401863098, 0.1486309915781021, -0.16386939585208893, -0.051456112414598465, -0.013948165811598301, 0.03538457304239273, 0.024972110986709595, 0.01886146515607834, 0.027902254834771156, 0.20933610200881958, -0.07012949883937836, 0.17459386587142944, -0.026178879663348198, -0.004879546817392111, 0.008882232010364532, 0.015702657401561737, 0.0020423477981239557, -0.013699252158403397, -0.02448767051100731, 0.07043906301259995, -0.01881076768040657, -0.17792557179927826, -0.18440558016300201, -0.0331355519592762, -0.09837809205055237, -0.00042403899715282023, -0.0762314721941948, 0.07260962575674057, 0.09254184365272522, -0.04489742964506149, 0.033062174916267395, 0.09788723289966583, 0.010736861266195774, -0.02514328993856907, 0.05380843207240105, 0.11464947462081909, -0.09727925807237625, 0.19944171607494354, 0.023756753653287888, 0.12045717984437943, 0.07599873095750809, -0.04782508313655853, -0.061663102358579636, 0.03226076066493988, 0.055834442377090454, -0.009598216973245144, 0.009027388878166676, 0.09769516438245773, 0.0173044316470623, -0.032602518796920776, 0.10948729515075684, -0.1638137400150299, 0.023189375177025795, 0.054703690111637115, -0.08230613172054291, -0.0004733102396130562, 0.08400687575340271, -0.03354969993233681, 0.12526187300682068, 0.17284172773361206, -0.03642476350069046, -0.011590179987251759, -0.05092315375804901, 0.045710913836956024, 0.0677303820848465, -0.031953584402799606, 0.08236975222826004, -0.12525928020477295, -0.015124152414500713, -0.025482814759016037, -0.023436129093170166, -0.24373769760131836, -0.04073348268866539, -0.08875711262226105, 0.09417904913425446, -0.06483294814825058, 0.039699655026197433, 0.10402675718069077, -0.02856920287013054, 0.017068590968847275, -0.05649976059794426, -0.08174742758274078, 0.054094698280096054, -0.08008760958909988, -0.047290366142988205 ]
null
null
transformers
# Harry Potter DialoGPT Model
{"tags": ["conversational"]}
text-generation
MichaelTheLearner/DialoGPT-medium-harry
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# Harry Potter DialoGPT Model
[ "# Harry Potter DialoGPT Model" ]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# Harry Potter DialoGPT Model" ]
[ 51, 8 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# Harry Potter DialoGPT Model" ]
[ -0.0009023238671943545, 0.07815738022327423, -0.006546166725456715, 0.07792752981185913, 0.10655936598777771, 0.048972971737384796, 0.17639793455600739, 0.12185695022344589, 0.016568755730986595, -0.04774167761206627, 0.11647630482912064, 0.2130284160375595, -0.002118367003276944, 0.024608047679066658, -0.05022026598453522, -0.3065771162509918, 0.0474756620824337, 0.014356585219502449, -0.07174845039844513, 0.11724270135164261, 0.09064973145723343, -0.046179238706827164, 0.08330509811639786, -0.009135239757597446, -0.13198648393154144, -0.039482954889535904, 0.019292812794446945, -0.11745545268058777, 0.1662212759256363, 0.05298272892832756, 0.02469746209681034, -0.008447164669632912, -0.06598151475191116, -0.15036040544509888, 0.037190426141023636, -0.027472136542201042, -0.01080626156181097, 0.05462246760725975, 0.023526115342974663, -0.07521048933267593, 0.170567125082016, 0.17678891122341156, 0.0833497866988182, 0.0349111407995224, -0.14917024970054626, -0.045548245310783386, 0.008950977586209774, 0.05421316996216774, -0.017893504351377487, 0.09349167346954346, -0.019903047010302544, 0.11801653355360031, -0.04491448402404785, 0.09210366010665894, 0.15255063772201538, -0.4016275703907013, -0.027563704177737236, 0.08920855820178986, 0.05989706888794899, 0.12076901644468307, -0.10560955852270126, 0.03972794860601425, -0.0039703017100691795, 0.01236654631793499, -0.014540530741214752, -0.08304883539676666, -0.07308239489793777, 0.032504837960004807, -0.1272556483745575, 0.008525865152478218, 0.23756256699562073, -0.10643257945775986, 0.037069112062454224, -0.09791990369558334, -0.07414398342370987, 0.048336777836084366, -0.053761593997478485, -0.081727035343647, -0.054839808493852615, 0.06347949057817459, 0.004366500303149223, -0.06301609426736832, -0.08326146006584167, -0.0006536149303428829, -0.12781435251235962, 0.17595994472503662, 0.061243366450071335, 0.041611745953559875, -0.21322020888328552, 0.08940251916646957, 0.04477722570300102, -0.04711297154426575, 0.007116159424185753, -0.11796226352453232, 0.04023287072777748, 0.005483259446918964, -0.03256071358919144, -0.021854614838957787, 0.0393419973552227, 0.13909944891929626, -0.01777748204767704, 0.03252175822854042, 0.006831915583461523, 0.05811219662427902, 0.08162496984004974, 0.02222144603729248, 0.019291909411549568, -0.0818009302020073, 0.019385190680623055, -0.08128736168146133, -0.0030400939285755157, -0.048940129578113556, -0.17071883380413055, -0.07477642595767975, 0.052610911428928375, 0.020047198981046677, 0.03746970370411873, 0.08054786175489426, -0.0017944995779544115, -0.05560554191470146, 0.03284840285778046, 0.01671096310019493, -0.020622212439775467, -0.010361049324274063, -0.02412462793290615, 0.19123271107673645, 0.019619356840848923, 0.014111656695604324, -0.12379156798124313, 0.10023640841245651, -0.08179095387458801, 0.0037731381598860025, 0.02743307314813137, -0.04204464703798294, -0.004716555587947369, 0.02917117439210415, 0.023101668804883957, -0.1252521574497223, -0.1099385917186737, -0.0030569476075470448, -0.012054097838699818, -0.036421261727809906, -0.10490952432155609, -0.08483029156923294, -0.012153145857155323, 0.0449371263384819, -0.013397793285548687, 0.007936403155326843, -0.05143149942159653, 0.0985720232129097, -0.0514979362487793, 0.09873400628566742, -0.08342572301626205, 0.06359215080738068, -0.09124887734651566, -0.061886150389909744, -0.11452563107013702, 0.05216052383184433, 0.012905281968414783, 0.066250741481781, 0.016998225823044777, -0.044836658984422684, -0.014836243353784084, 0.05253177136182785, -0.07656687498092651, 0.1940697431564331, -0.041674621403217316, -0.12459053844213486, 0.24146439135074615, -0.09138800948858261, -0.1802034229040146, 0.12973085045814514, -0.022254703566432, 0.08523941785097122, 0.12802475690841675, 0.20380465686321259, -0.00019822151807602495, -0.01302915159612894, 0.07281201332807541, 0.07031642645597458, -0.09803894907236099, 0.06239739805459976, 0.029653839766979218, -0.008071083575487137, -0.08906278014183044, 0.05762826278805733, 0.046033453196287155, -0.010650773532688618, -0.035073768347501755, -0.001896020956337452, -0.012895751744508743, -0.022185025736689568, 0.14126582443714142, -0.02006692811846733, 0.1300428807735443, -0.06926563382148743, -0.03515486419200897, -0.009500149637460709, 0.03533667325973511, -0.04091939330101013, 0.08151165395975113, -0.0436173714697361, 0.10586477071046829, 0.09034156054258347, 0.053724925965070724, -0.13120363652706146, 0.00466286763548851, -0.015246815048158169, 0.17014820873737335, 0.08964069187641144, 0.05222717300057411, 0.06265474855899811, -0.0020888058934360743, -0.06708643585443497, 0.045407816767692566, 0.13778303563594818, -0.037020038813352585, -0.12218865007162094, -0.1755627691745758, 0.051157694309949875, -0.045444171875715256, 0.10855234414339066, -0.10010123997926712, 0.022670533508062363, -0.055906031280756, 0.07772238552570343, -0.024998966604471207, 0.020512236282229424, -0.0013405600329861045, -0.021700702607631683, -0.08356887847185135, -0.002377772703766823, 0.08597290515899658, -0.02048647589981556, -0.06707409024238586, 0.16556480526924133, -0.16400809586048126, 0.1631954461336136, 0.2116095870733261, -0.28542569279670715, -0.005696662236005068, -0.15163889527320862, -0.0208092350512743, 0.019645055755972862, 0.07834604382514954, 0.026225795969367027, 0.2044338881969452, -0.012928472831845284, 0.16565458476543427, -0.05699567869305611, -0.07730039209127426, -0.06881127506494522, -0.048101142048835754, 0.013522743247449398, 0.09095205366611481, 0.04542696103453636, -0.11962861567735672, 0.13119758665561676, 0.1054433062672615, 0.06484298408031464, 0.12711186707019806, 0.1030748188495636, -0.008113685995340347, 0.07252490520477295, -0.03624548763036728, -0.03462279960513115, -0.09254947304725647, -0.30446043610572815, -0.04840317741036415, 0.0939924493432045, 0.007963384501636028, 0.09285714477300644, -0.0919896736741066, -0.03311870992183685, 0.006042704917490482, 0.009473444893956184, 0.028337622061371803, 0.09653715789318085, 0.013490920886397362, 0.15320514142513275, -0.008011690340936184, -0.03430786728858948, 0.05891305208206177, 0.017982570454478264, -0.09147711098194122, 0.17280617356300354, -0.17050009965896606, -0.27190929651260376, -0.06990014761686325, -0.21745692193508148, -0.013139115646481514, 0.05258983001112938, 0.0786920040845871, -0.11818131804466248, -0.018352627754211426, -0.006239492911845446, 0.05685517191886902, -0.2425733357667923, 0.0004911290016025305, -0.1354890614748001, 0.0501418262720108, -0.1974833607673645, -0.09718500077724457, -0.02271542325615883, -0.013450481928884983, -0.0464281290769577, 0.13365240395069122, -0.1448695808649063, -0.011572926305234432, 0.2329535037279129, 0.032479673624038696, 0.027794739231467247, -0.05020907148718834, 0.19788463413715363, -0.0958966314792633, -0.023973820731043816, 0.11024576425552368, -0.05038975924253464, 0.04834126681089401, 0.06649978458881378, -0.012981836684048176, -0.08557141572237015, 0.023789849132299423, -0.068336620926857, -0.03150583803653717, -0.27926525473594666, -0.0930178239941597, -0.09319330751895905, 0.11305391043424606, 0.04079577326774597, 0.06421639025211334, 0.16545771062374115, 0.05191578343510628, -0.024325082078576088, -0.03006586618721485, 0.11609793454408646, 0.12905290722846985, 0.2277202159166336, -0.06067761778831482, 0.10221996158361435, 0.009445492178201675, -0.08203992247581482, 0.06062209978699684, 0.056782789528369904, 0.06324724853038788, 0.02584579586982727, 0.03694582358002663, -0.030939655378460884, 0.1121687963604927, 0.12571842968463898, 0.05258069559931755, 0.0481170229613781, 0.0002127334737451747, -0.0561506561934948, -0.008168719708919525, -0.05726633965969086, 0.06774696707725525, 0.061340972781181335, -0.12918008863925934, -0.08061543852090836, 0.0011613310780376196, 0.06660808622837067, -0.016230419278144836, 0.06823775917291641, -0.13560809195041656, -0.03582429885864258, 0.0790911465883255, -0.07693151384592056, -0.14156894385814667, 0.11972879618406296, -0.026570770889520645, -0.19904157519340515, 0.05265914276242256, 0.007704653777182102, 0.0908159390091896, -0.06360849738121033, 0.05343840271234512, -0.13023801147937775, -0.12935101985931396, -0.018437571823596954, 0.07945099472999573, -0.3450873792171478, 0.13536721467971802, -0.013286802917718887, -0.02876877970993519, -0.06474969536066055, -0.02640824392437935, 0.013905409723520279, 0.12719078361988068, 0.08667250722646713, 0.0008821099763736129, 0.0991629809141159, 0.03823768347501755, 0.04188435152173042, -0.002011700300499797, 0.10950417071580887, 0.0050011589191854, 0.004797275178134441, -0.04982118681073189, 0.007274609990417957, -0.05164213851094246, -0.07472953200340271, 0.08393982797861099, -0.20678792893886566, 0.09087453782558441, -0.03378438204526901, 0.08427679538726807, 0.04304937273263931, -0.018965769559144974, -0.1001204177737236, 0.19745583832263947, -0.012206900864839554, -0.11405988782644272, -0.07517550885677338, -0.02810264565050602, 0.09103139489889145, -0.013817726634442806, 0.012886416167020798, -0.045470476150512695, 0.032183047384023666, -0.1263762265443802, -0.1597503274679184, 0.08734500408172607, -0.04441224783658981, -0.10894393920898438, -0.025462759658694267, 0.20382575690746307, -0.007266622502356768, 0.08242089301347733, 0.01605331338942051, 0.010653935372829437, -0.18066231906414032, -0.04018142446875572, 0.02645772136747837, -0.0016437612939625978, 0.005979063920676708, 0.047698814421892166, 0.019091911613941193, 0.06207629665732384, -0.1069745197892189, -0.013920160941779613, 0.3158324360847473, 0.15978319942951202, -0.00912671908736229, 0.14943915605545044, 0.1093616932630539, -0.08669080585241318, -0.17238758504390717, -0.1171615794301033, -0.1210922971367836, -0.08425768464803696, -0.10681738704442978, -0.1525043100118637, 0.09535340964794159, -0.03392014652490616, 0.03498011827468872, 0.14615866541862488, -0.280263751745224, -0.10949636250734329, 0.13820378482341766, 0.010744688101112843, 0.3510635495185852, -0.12303631007671356, -0.044944874942302704, -0.06214528530836105, -0.16933435201644897, 0.08021392673254013, -0.031203703954815865, 0.11581093072891235, -0.0744495838880539, 0.19395925104618073, 0.01719796098768711, 0.014287159778177738, 0.0916559100151062, 0.05038322135806084, -0.05808406323194504, -0.07368700206279755, -0.10248131304979324, 0.010812131687998772, 0.03546109423041344, 0.010252019390463829, -0.008802837692201138, 0.0211968794465065, -0.11341743916273117, -0.050869911909103394, -0.06302189081907272, 0.0072614275850355625, -0.01001308299601078, -0.042155615985393524, -0.05533592775464058, -0.022557416930794716, -0.020093943923711777, 0.02266426384449005, 0.14185629785060883, -0.07527699321508408, 0.18586260080337524, 0.02357078716158867, 0.1586609035730362, -0.11956068128347397, -0.06724818795919418, -0.029193658381700516, -0.05280323326587677, 0.06468886137008667, -0.08884575963020325, -0.027708567678928375, 0.1332162618637085, -0.01903904788196087, 0.04655366763472557, 0.12936700880527496, 0.02046884410083294, 0.015383756719529629, 0.034968774765729904, -0.2578005790710449, -0.07463036477565765, -0.03505445644259453, -0.012416874058544636, 0.05272092670202255, 0.05525677278637886, 0.19735674560070038, -0.03551921248435974, -0.08521962910890579, 0.020131373777985573, 0.02735883742570877, -0.02776256389915943, 0.10749414563179016, 0.019579345360398293, -0.004837906453758478, -0.16151933372020721, 0.08257976174354553, -0.005964108742773533, -0.08297000825405121, 0.028665626421570778, 0.2024049311876297, -0.12141239643096924, -0.10309756547212601, -0.06804922968149185, 0.07315051555633545, -0.09220825880765915, 0.016043387353420258, -0.005091092549264431, -0.1521538347005844, 0.06916408240795135, 0.07598215341567993, 0.04075418785214424, 0.06513199955224991, -0.11743064224720001, -0.015730571001768112, -0.04170290008187294, -0.002195435343310237, 0.03521120920777321, 0.01863143965601921, -0.057492829859256744, 0.15846455097198486, -0.0676199421286583, 0.08538917452096939, -0.0744810476899147, -0.1058846190571785, -0.1395980566740036, 0.04660497233271599, -0.08038312196731567, -0.07247276604175568, -0.12832807004451752, -0.052204377949237823, -0.0067099276930093765, -0.03388519585132599, 0.006552806124091148, -0.06627799570560455, -0.10922821611166, 0.01822470687329769, -0.00743203004822135, -0.009385870769619942, -0.06096754968166351, 0.026706209406256676, 0.06246216222643852, -0.039788868278265, 0.15730851888656616, 0.22509248554706573, -0.13591648638248444, 0.11564400047063828, -0.09797432273626328, -0.105463907122612, 0.046008042991161346, 0.009427277371287346, 0.03594303876161575, 0.0503489226102829, -0.03594081476330757, 0.0044484552927315235, 0.03905477747321129, 0.08074651658535004, 0.08456914126873016, -0.06776505708694458, 0.020801106467843056, -0.05122765153646469, -0.14904099702835083, -0.016655439510941505, -0.0464773029088974, 0.06876829266548157, -0.006725262850522995, 0.11020535975694656, -0.0515950471162796, 0.07739507406949997, -0.07558431476354599, 0.050614211708307266, 0.021146971732378006, -0.14688286185264587, -0.006612539757043123, -0.07093682140111923, 0.042144812643527985, -0.008834975771605968, 0.20241086184978485, -0.03228091076016426, 0.010342049412429333, 0.033811055123806, 0.06203942745923996, -0.01957780309021473, 0.009357001632452011, 0.2014283686876297, 0.12640917301177979, -0.08496357500553131, -0.02679651789367199, 0.06793134659528732, 0.07248228788375854, 0.07093550264835358, 0.10807815194129944, -0.015352966263890266, 0.028434239327907562, 0.07829629629850388, -0.060215238481760025, 0.07576877623796463, -0.08603982627391815, -0.11668483167886734, 0.05793621391057968, 0.012955795042216778, -0.055695828050374985, 0.20305177569389343, 0.19142870604991913, -0.026278704404830933, 0.018410727381706238, -0.0029499190859496593, -0.10117456316947937, -0.15619947016239166, -0.05423750728368759, -0.07170962542295456, -0.1319410353899002, -0.004549739416688681, -0.16646917164325714, 0.022016216069459915, -0.01132756657898426, 0.09506805986166, -0.06855440139770508, -0.01345991250127554, 0.1364889293909073, -0.1055467277765274, 0.0847758799791336, -0.024517204612493515, 0.07877567410469055, -0.03746940940618515, -0.018209461122751236, -0.10342709720134735, 0.007514837197959423, 0.01131442841142416, 0.06840907037258148, -0.10897937417030334, 0.02432350255548954, -0.12208317965269089, -0.08617185056209564, -0.026142612099647522, 0.09279687702655792, -0.0403008833527565, 0.15116846561431885, 0.02645145356655121, -0.06710928678512573, -0.004313822835683823, 0.2646709978580475, -0.08046227693557739, -0.08319197595119476, -0.030799202620983124, 0.2152107208967209, 0.04053696244955063, 0.06396269053220749, 0.019140036776661873, 0.038027774542570114, -0.07184682041406631, 0.2957373559474945, 0.34401440620422363, -0.1318037211894989, -0.007773484103381634, 0.04225075617432594, 0.04406323283910751, 0.14687567949295044, 0.07998795062303543, 0.11360671371221542, 0.2849363386631012, -0.09197647124528885, 0.016657205298542976, -0.04230864346027374, -0.01424806285649538, -0.06908884644508362, 0.045314885675907135, 0.08216670155525208, -0.09241747111082077, -0.022950593382120132, 0.08125471323728561, -0.29741767048835754, 0.10791494697332382, -0.15600289404392242, -0.14948409795761108, -0.05027429759502411, -0.008771711029112339, 0.014683255925774574, 0.019041186198592186, 0.09663030505180359, 0.025651484727859497, -0.07275258749723434, 0.07816889137029648, 0.024486342445015907, -0.23020237684249878, -0.01345184724777937, 0.1456068754196167, -0.06789913028478622, -0.025938833132386208, -0.021313713863492012, 0.051610056310892105, 0.05763651058077812, 0.09027529507875443, -0.03809558227658272, -0.0746568813920021, -0.007141788024455309, -0.022818787023425102, 0.01914946548640728, 0.0597183033823967, 0.06841408461332321, -0.0920223817229271, 0.1167774423956871, -0.07350476831197739, 0.0650370642542839, 0.037623800337314606, -0.022277191281318665, 0.0018526542698964477, 0.013183658011257648, -0.06512464582920074, 0.05533479526638985, 0.1295643299818039, -0.025459708645939827, -0.002524374984204769, -0.028180841356515884, -0.0767761766910553, -0.024015206843614578, -0.04643676429986954, -0.09101243317127228, -0.18130090832710266, -0.12738600373268127, 0.041754670441150665, -0.03240608796477318, -0.2046082615852356, 0.0060346988029778, -0.1128578633069992, 0.03700976446270943, -0.14154092967510223, 0.10004086047410965, 0.07216610759496689, 0.004716616589576006, 0.006774604320526123, 0.0675399899482727, 0.045677728950977325, 0.14796748757362366, -0.16543124616146088, -0.04919974133372307 ]
null
null
transformers
## About the model The model has been trained on a collection of 500k articles with headings. Its purpose is to create a one-line heading suitable for the given article. Sample code with a WikiNews article: ```python import torch from transformers import T5ForConditionalGeneration,T5Tokenizer device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model = T5ForConditionalGeneration.from_pretrained("Michau/t5-base-en-generate-headline") tokenizer = T5Tokenizer.from_pretrained("Michau/t5-base-en-generate-headline") model = model.to(device) article = ''' Very early yesterday morning, the United States President Donald Trump reported he and his wife First Lady Melania Trump tested positive for COVID-19. Officials said the Trumps' 14-year-old son Barron tested negative as did First Family and Senior Advisors Jared Kushner and Ivanka Trump. Trump took to social media, posting at 12:54 am local time (0454 UTC) on Twitter, "Tonight, [Melania] and I tested positive for COVID-19. We will begin our quarantine and recovery process immediately. We will get through this TOGETHER!" Yesterday afternoon Marine One landed on the White House's South Lawn flying Trump to Walter Reed National Military Medical Center (WRNMMC) in Bethesda, Maryland. Reports said both were showing "mild symptoms". Senior administration officials were tested as people were informed of the positive test. Senior advisor Hope Hicks had tested positive on Thursday. Presidential physician Sean Conley issued a statement saying Trump has been given zinc, vitamin D, Pepcid and a daily Aspirin. Conley also gave a single dose of the experimental polyclonal antibodies drug from Regeneron Pharmaceuticals. According to official statements, Trump, now operating from the WRNMMC, is to continue performing his duties as president during a 14-day quarantine. In the event of Trump becoming incapacitated, Vice President Mike Pence could take over the duties of president via the 25th Amendment of the US Constitution. The Pence family all tested negative as of yesterday and there were no changes regarding Pence's campaign events. ''' text = "headline: " + article max_len = 256 encoding = tokenizer.encode_plus(text, return_tensors = "pt") input_ids = encoding["input_ids"].to(device) attention_masks = encoding["attention_mask"].to(device) beam_outputs = model.generate( input_ids = input_ids, attention_mask = attention_masks, max_length = 64, num_beams = 3, early_stopping = True, ) result = tokenizer.decode(beam_outputs[0]) print(result) ``` Result: ```Trump and First Lady Melania Test Positive for COVID-19```
{}
text2text-generation
Michau/t5-base-en-generate-headline
[ "transformers", "pytorch", "tf", "jax", "t5", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "has_space", "text-generation-inference", "region:us" ]
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #tf #jax #t5 #text2text-generation #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us
## About the model The model has been trained on a collection of 500k articles with headings. Its purpose is to create a one-line heading suitable for the given article. Sample code with a WikiNews article: Result:
[ "## About the model\n\nThe model has been trained on a collection of 500k articles with headings. Its purpose is to create a one-line heading suitable for the given article.\n\nSample code with a WikiNews article:\n\n\n\nResult:" ]
[ "TAGS\n#transformers #pytorch #tf #jax #t5 #text2text-generation #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us \n", "## About the model\n\nThe model has been trained on a collection of 500k articles with headings. Its purpose is to create a one-line heading suitable for the given article.\n\nSample code with a WikiNews article:\n\n\n\nResult:" ]
[ 58, 50 ]
[ "passage: TAGS\n#transformers #pytorch #tf #jax #t5 #text2text-generation #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us \n## About the model\n\nThe model has been trained on a collection of 500k articles with headings. Its purpose is to create a one-line heading suitable for the given article.\n\nSample code with a WikiNews article:\n\n\n\nResult:" ]
[ 0.009566371329128742, -0.03402157500386238, -0.0011101050768047571, 0.002562953857704997, 0.11693409830331802, 0.04109892249107361, 0.17172931134700775, 0.07209879159927368, 0.0282570980489254, -0.030447976663708687, 0.2220216691493988, 0.14053303003311157, -0.00477921636775136, 0.15015628933906555, -0.04335939511656761, -0.2813583314418793, 0.05203967168927193, 0.04542301222681999, 0.025976767763495445, 0.11166840046644211, 0.11779218167066574, -0.07240160554647446, 0.0672663226723671, 0.01160481758415699, -0.18659530580043793, 0.04210321977734566, 0.032465435564517975, -0.08686960488557816, 0.08938036859035492, 0.06025243550539017, 0.14050130546092987, 0.034230757504701614, 0.04687314108014107, -0.11748987436294556, 0.0415765605866909, 0.04009265452623367, -0.05387622117996216, 0.08958037942647934, 0.03441455587744713, 0.019031023606657982, 0.21990637481212616, -0.007269705645740032, 0.018873414024710655, 0.03635892644524574, -0.11992660909891129, 0.058388132601976395, 0.003948681987822056, 0.1222662553191185, 0.053139958530664444, 0.0876489132642746, -0.007683662232011557, 0.07898298650979996, -0.08309205621480942, 0.10247025638818741, 0.11577875912189484, -0.3084980547428131, -0.03813433647155762, 0.11727993190288544, 0.020418701693415642, 0.024561377242207527, -0.005426016636192799, 0.08623846620321274, 0.0716228038072586, 0.011554569937288761, 0.039291031658649445, -0.07517398148775101, -0.1788615733385086, 0.003006132785230875, -0.10825084149837494, -0.07909316569566727, 0.2998611032962799, 0.021617740392684937, 0.026449427008628845, -0.040165845304727554, -0.08567235618829727, -0.020313406363129616, -0.014117913320660591, -0.038966529071331024, -0.049280207604169846, 0.03980221599340439, 0.11583522707223892, -0.06675489246845245, -0.12337204068899155, -0.03662924841046333, -0.19195011258125305, 0.18152734637260437, -0.02624264545738697, 0.10454771667718887, -0.21508750319480896, 0.12833097577095032, -0.022126153111457825, -0.10988020151853561, 0.07160178571939468, -0.08989723771810532, 0.01786769926548004, -0.016850996762514114, -0.024167584255337715, -0.14417894184589386, 0.03886082023382187, -0.0298207588493824, 0.006151536013931036, -0.01571900025010109, 0.034930113703012466, 0.09030135720968246, 0.08812321722507477, 0.06735363602638245, -0.0814967229962349, -0.031844478100538254, 0.04683338478207588, -0.035183135420084, -0.03095080889761448, -0.05509708449244499, -0.15331949293613434, -0.007197975181043148, 0.019792737439274788, 0.020000504329800606, 0.04243891313672066, 0.09713367372751236, -0.023877279832959175, -0.01496902946382761, -0.00871607381850481, -0.058852460235357285, -0.0362011194229126, -0.024611640721559525, 0.03737130016088486, 0.1594933718442917, 0.056252602487802505, 0.017373038455843925, -0.08505310118198395, 0.08566804975271225, -0.12192243337631226, -0.03573498874902725, -0.06230130419135094, -0.08956461399793625, 0.007839885540306568, -0.04219907522201538, 0.03926648572087288, -0.12643925845623016, -0.13800424337387085, -0.06263399869203568, 0.06972231715917587, -0.003977121785283089, -0.10702616721391678, -0.021541720256209373, -0.01390893291682005, 0.05418432876467705, -0.00786658562719822, 0.0801495686173439, -0.04964581876993179, 0.07294831424951553, -0.13618305325508118, 0.06548701226711273, -0.17651908099651337, 0.02084505558013916, -0.04398283734917641, 0.0061843255534768105, -0.03524744138121605, 0.05886559933423996, 0.023428436368703842, 0.14362800121307373, -0.010858356952667236, 0.002990635810419917, -0.1420295387506485, 0.051828380674123764, -0.00625342084094882, 0.20680226385593414, -0.08306122571229935, -0.03361710533499718, 0.10587602853775024, -0.05379260703921318, -0.1514665186405182, 0.04765363410115242, -0.027603358030319214, 0.23298509418964386, 0.08061850816011429, 0.19640108942985535, 0.07215677201747894, -0.0333453044295311, 0.07595018297433853, 0.11576481908559799, -0.08701083809137344, -0.053121183067560196, -0.009168078191578388, 0.034006860107183456, -0.20556704699993134, 0.027284055948257446, 0.05470553785562515, 0.008402339182794094, -0.06663770228624344, -0.04736589640378952, -0.04075019434094429, -0.030720431357622147, -0.004275617189705372, -0.016710469499230385, 0.1090582013130188, -0.023972297087311745, -0.03944080322980881, -0.022726748138666153, 0.052230171859264374, 0.0017556606326252222, 0.01798534207046032, -0.0018570764223113656, 0.05952708050608635, -0.06080812215805054, 0.05043007805943489, -0.15447410941123962, -0.08519892394542694, -0.026904338970780373, 0.18068157136440277, 0.05529509857296944, 0.20271413028240204, -0.006041762884706259, -0.0745776817202568, 0.0017944759456440806, 0.006764026824384928, 0.009295038878917694, 0.022525031119585037, -0.11104192584753036, -0.10097695142030716, 0.02325313910841942, -0.057017479091882706, -0.030694831162691116, -0.1350434124469757, 0.013641955330967903, -0.057998158037662506, 0.04777982458472252, 0.03355212137103081, 0.05708571523427963, 0.03779337927699089, 0.018474742770195007, -0.06268128007650375, 0.018685534596443176, 0.07526066154241562, -0.005684426985681057, -0.07035469263792038, 0.12682580947875977, -0.0639149397611618, 0.1973724216222763, 0.11571522802114487, -0.2190578728914261, -0.07681860774755478, 0.028239384293556213, -0.03945916146039963, 0.003347319085150957, -0.04331326112151146, -0.09157128632068634, 0.02751804329454899, -0.028614591807127, 0.08157271146774292, -0.059589266777038574, -0.02828737534582615, 0.026442082598805428, -0.050004176795482635, -0.01054071169346571, 0.06804247200489044, 0.15054984390735626, -0.25097551941871643, 0.11323250085115433, 0.19770871102809906, -0.012862811796367168, 0.20587177574634552, -0.003543869126588106, -0.049579620361328125, 0.042134519666433334, -0.058470819145441055, -0.05523443594574928, 0.01795523427426815, -0.15984585881233215, -0.017405914142727852, 0.045469414442777634, 0.026716435328125954, 0.06744586676359177, -0.11605925858020782, -0.03830310329794884, 0.011947589926421642, 0.03168274089694023, -0.05554332211613655, 0.06271939724683762, -0.026817621663212776, 0.1498875468969345, 0.01311174314469099, -0.05971450358629227, 0.04596566781401634, 0.009319539181888103, -0.11984673887491226, 0.16421495378017426, -0.01112812664359808, -0.20463933050632477, -0.12727758288383484, -0.014339246787130833, -0.009163415059447289, 0.00444045290350914, 0.05816788598895073, -0.05378959700465202, -0.009012505412101746, -0.04716881737112999, 0.009785814210772514, -0.04526941105723381, 0.06643639504909515, 0.01696600764989853, 0.04742007330060005, -0.05489857867360115, -0.07215014845132828, -0.06385032087564468, -0.06426768004894257, -0.007308527827262878, 0.0370846688747406, -0.13815727829933167, 0.10626806318759918, 0.17820043861865997, -0.011137894354760647, 0.06819175183773041, -0.006424755323678255, 0.2509293258190155, -0.10847283899784088, 0.10334564745426178, 0.09741673618555069, -0.04877495765686035, 0.05718980357050896, 0.18098904192447662, 0.0568707101047039, -0.05845443531870842, 0.05837199091911316, -0.022541167214512825, -0.06575090438127518, -0.20791423320770264, -0.06226439028978348, -0.11652027815580368, 0.022336792200803757, 0.024327877908945084, 0.04195505753159523, 0.011327140964567661, 0.10593944787979126, 0.02212419919669628, 0.06804865598678589, -0.052134446799755096, 0.03463684394955635, 0.07995683699846268, -0.011684115044772625, 0.11592920869588852, -0.08436944335699081, -0.092278853058815, 0.0708647221326828, -0.014665980823338032, 0.1467820703983307, 0.06052018329501152, 0.006623372435569763, 0.0746997818350792, -0.000012649489690375049, 0.13395272195339203, 0.23865555226802826, 0.003718754043802619, -0.06508778035640717, -0.03645659610629082, -0.02911054529249668, -0.016576850786805153, 0.07813453674316406, -0.07383602857589722, -0.10440225154161453, -0.05767178535461426, -0.049610260874032974, 0.023456690832972527, 0.11649783700704575, 0.1590227633714676, -0.1543368399143219, 0.012679025530815125, 0.05892502889037132, -0.10011414438486099, -0.11282677203416824, 0.0578048899769783, 0.05127231031656265, -0.1254836916923523, 0.01950891688466072, 0.04542633518576622, 0.15420496463775635, -0.043978024274110794, 0.07071984559297562, -0.1206870749592781, -0.12786738574504852, -0.0572337731719017, 0.11765873432159424, -0.2095308154821396, 0.2924772799015045, 0.012732735835015774, -0.03538275510072708, -0.10917018353939056, -0.04290371388196945, 0.006233162246644497, 0.21491758525371552, 0.08532196283340454, 0.013761743903160095, -0.06251015514135361, -0.018221188336610794, -0.029716497287154198, 0.027403606101870537, 0.023390447720885277, -0.0669071152806282, 0.059541840106248856, -0.01796802692115307, 0.01140978466719389, 0.01520222146064043, 0.10611294955015182, -0.09343492984771729, -0.15015099942684174, 0.015751611441373825, 0.07982777804136276, 0.0551646389067173, 0.014338972046971321, -0.035924118012189865, 0.06531227380037308, 0.0981067419052124, -0.003248167922720313, -0.07556670159101486, -0.13225921988487244, 0.01796893961727619, 0.007242776453495026, -0.06336367130279541, 0.009722833521664143, -0.041602928191423416, -0.010601033456623554, -0.02374686300754547, -0.13002531230449677, 0.07050459831953049, -0.09652979671955109, -0.02276768907904625, -0.04830586165189743, 0.07749824970960617, -0.06873165816068649, 0.01649043895304203, 0.023790473118424416, -0.013012184761464596, -0.08426309376955032, -0.1177261471748352, -0.010718454606831074, -0.045946840196847916, 0.0065190596505999565, 0.005818389821797609, -0.09347597509622574, -0.038202762603759766, 0.006203263998031616, -0.04092314839363098, 0.20290371775627136, 0.08966392278671265, -0.052828073501586914, 0.08265461772680283, 0.14971880614757538, -0.08315867930650711, -0.2861950695514679, -0.10157608240842819, -0.01841585338115692, 0.030780917033553123, -0.009404019452631474, -0.0999370664358139, 0.13442717492580414, -0.03034781478345394, -0.03644363209605217, 0.1401665061712265, -0.21562480926513672, -0.11462467908859253, 0.1439632624387741, -0.00850994884967804, 0.4574126601219177, -0.09225644916296005, -0.032109279185533524, -0.04438263922929764, -0.10268177837133408, 0.20233705639839172, -0.09792549908161163, 0.06341417133808136, -0.006473827641457319, 0.095432348549366, 0.03296713903546333, -0.02579096332192421, 0.0858023539185524, -0.0366458036005497, 0.013640112243592739, -0.10056651383638382, -0.0853886529803276, 0.11857448518276215, -0.00283722928725183, 0.12365622073411942, -0.05334976315498352, 0.028073588386178017, -0.13765482604503632, -0.06090444326400757, -0.0764922946691513, 0.0036950227804481983, -0.0238806065171957, -0.08447625488042831, -0.018038662150502205, -0.04206627607345581, -0.024001240730285645, -0.022797366604208946, 0.15769660472869873, -0.077004574239254, 0.12729625403881073, 0.1036948710680008, 0.1575823277235031, -0.11688355356454849, 0.0023650159128010273, -0.029828043654561043, -0.08968205004930496, 0.09713876992464066, -0.185052290558815, -0.019062688574194908, 0.07316526025533676, -0.023757724091410637, 0.052264582365751266, 0.09906362742185593, -0.01741074025630951, -0.03140563890337944, 0.12145797908306122, -0.24292322993278503, -0.058655571192502975, -0.08394113928079605, -0.009565263986587524, -0.05585455521941185, 0.0008566878386773169, 0.1436406821012497, -0.03522993624210358, -0.025120127946138382, 0.01838618889451027, -0.001876874710433185, -0.08275638520717621, 0.03375043720006943, 0.10814975202083588, 0.04453307390213013, -0.07819325476884842, -0.015455198474228382, 0.06792406737804413, -0.0378926582634449, -0.017790677025914192, 0.17967571318149567, -0.12319053709506989, -0.11233196407556534, -0.010300800204277039, 0.16945858299732208, -0.11694950610399246, -0.06779008358716965, -0.013480203226208687, -0.0938924103975296, 0.045869968831539154, 0.14037738740444183, 0.07664769142866135, 0.0795459970831871, -0.05641661956906319, -0.09085250645875931, -0.017451627179980278, 0.03663439303636551, -0.0019177609356120229, -0.0207781083881855, -0.11331933736801147, -0.0027019870467483997, 0.005415512714534998, 0.1874374896287918, -0.103303924202919, -0.024624573066830635, -0.17252859473228455, 0.025357339531183243, -0.07222769409418106, -0.02373744733631611, -0.05459613353013992, -0.06344590336084366, 0.0041981711983680725, -0.05565192177891731, -0.08458899706602097, -0.018956393003463745, -0.10003373771905899, 0.02626408450305462, -0.02393464185297489, 0.06104590371251106, -0.001218621269799769, 0.0012071480741724372, 0.09708929061889648, -0.016434280201792717, 0.06945241242647171, 0.008451391011476517, -0.08520118147134781, 0.06654782593250275, -0.08926498144865036, 0.034409694373607635, 0.023045480251312256, -0.011542512103915215, 0.02282118797302246, 0.05365258827805519, 0.004595936741679907, 0.03451137617230415, 0.06452087312936783, 0.052901167422533035, -0.027964597567915916, -0.10575462132692337, 0.01593001000583172, 0.036118507385253906, -0.14329437911510468, -0.02126884274184704, -0.030723555013537407, 0.023313695564866066, 0.03564905375242233, 0.15366540849208832, -0.025540543720126152, 0.0608225055038929, -0.08786796778440475, 0.05626511201262474, 0.012554369866847992, -0.08978522568941116, 0.0013665525475516915, -0.1216237023472786, 0.017929917201399803, -0.014224744401872158, 0.20241186022758484, 0.07870255410671234, -0.016435673460364342, 0.03164733946323395, 0.09340030699968338, 0.029375558719038963, -0.022620007395744324, 0.17521360516548157, 0.05675225332379341, -0.019268110394477844, -0.1723281592130661, 0.023830166086554527, -0.008947414346039295, 0.07851893454790115, 0.20367005467414856, -0.012262029573321342, 0.03662781044840813, 0.0918344035744667, -0.07277470827102661, 0.07960326969623566, -0.03308897465467453, -0.13813520967960358, -0.03831223398447037, 0.02931061014533043, -0.04238938167691231, -0.03634873405098915, 0.2193547487258911, 0.02561456523835659, 0.040252331644296646, 0.02684846892952919, -0.04176635667681694, -0.18756452202796936, -0.2192082405090332, -0.07007552683353424, -0.11462877690792084, -0.02257361449301243, -0.06291845440864563, 0.0252913199365139, 0.0693739652633667, 0.03442452847957611, -0.06060827895998955, 0.10097283869981766, 0.0775991678237915, -0.06934724003076553, 0.10988114029169083, 0.0019293938530609012, 0.03875674679875374, -0.08900588750839233, 0.03222065046429634, -0.1151338592171669, -0.025788409635424614, -0.04451068118214607, 0.029303474351763725, -0.0714845284819603, -0.010912708938121796, -0.0809195265173912, -0.08601684868335724, -0.07458917051553726, 0.001569955493323505, -0.012505369260907173, 0.11128886044025421, 0.006316571496427059, 0.006938256323337555, 0.007702502887696028, 0.1977706253528595, -0.02553786151111126, -0.10585429519414902, -0.1163974180817604, 0.17506824433803558, -0.005683428607881069, 0.06481767445802689, -0.04477851465344429, -0.038644302636384964, -0.04810681194067001, 0.35344767570495605, 0.30831271409988403, -0.08190906047821045, 0.023204544559121132, -0.006495988927781582, 0.018847674131393433, 0.07077370584011078, 0.14594389498233795, -0.020018214359879494, 0.29884758591651917, -0.08525250107049942, -0.017141658812761307, -0.08538349717855453, -0.013779671862721443, -0.05516161397099495, 0.00588420033454895, 0.11944729089736938, -0.07913901656866074, -0.05848182365298271, 0.12171093374490738, -0.17209188640117645, 0.05734603479504585, -0.07247914373874664, -0.10700743645429611, -0.06073868274688721, -0.018618974834680557, 0.02971622161567211, 0.006031529046595097, 0.09356077760457993, -0.05823894217610359, -0.02418363466858864, 0.02666248194873333, -0.016997667029500008, -0.12987090647220612, -0.05011244863271713, 0.10324597358703613, -0.04208924621343613, 0.03027614951133728, -0.0023297348525375128, 0.025435078889131546, 0.046914827078580856, -0.017587417736649513, -0.08181077241897583, 0.08625394850969315, -0.017868490889668465, 0.09068150073289871, 0.021248770877718925, 0.03128168359398842, 0.0014968754258006811, -0.14149856567382812, 0.05253595858812332, -0.18892896175384521, 0.014333941042423248, -0.05716751143336296, -0.013176984153687954, -0.040369175374507904, 0.04756147041916847, -0.041096143424510956, 0.11300668865442276, 0.1377808302640915, -0.034070711582899094, -0.004490653984248638, -0.007952653802931309, 0.025244485586881638, 0.007068832404911518, -0.07588548213243484, -0.0798296332359314, -0.057030607014894485, -0.07263052463531494, 0.027104130014777184, -0.03047160618007183, -0.19958950579166412, 0.019694222137331963, -0.06606923788785934, 0.0264334287494421, -0.12110380828380585, 0.03536640852689743, 0.15564045310020447, -0.003420177847146988, -0.0085205789655447, -0.08810371905565262, 0.033576712012290955, 0.05548471957445145, -0.1048048809170723, -0.11652830988168716 ]
null
null
transformers
#harry
{"tags": ["conversational"]}
text-generation
Mierln/SmartHarry
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
#harry
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 51 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.009697278961539268, 0.03208012506365776, -0.007204889785498381, 0.004809224978089333, 0.16726240515708923, 0.014898733235895634, 0.09765533357858658, 0.13672804832458496, -0.007841327227652073, -0.031050153076648712, 0.14490588009357452, 0.20411323010921478, -0.006439372431486845, 0.0661218985915184, -0.07572533935308456, -0.2683109939098358, 0.05759621039032936, 0.046649303287267685, 0.016515716910362244, 0.1200079694390297, 0.08573378622531891, -0.05473608896136284, 0.08714032918214798, -0.014583407901227474, -0.150366872549057, 0.017733458429574966, 0.043394338339567184, -0.12260226160287857, 0.11910516023635864, 0.05462685227394104, 0.07063519209623337, 0.014929565601050854, -0.07541623711585999, -0.1631229966878891, 0.03031250834465027, 0.01425902172923088, -0.0594632662832737, 0.04757995903491974, 0.059961482882499695, -0.10165371745824814, 0.10819483548402786, 0.09530027210712433, -0.013078106567263603, 0.06798283755779266, -0.16849711537361145, -0.020869607105851173, -0.01446688175201416, 0.009899779222905636, 0.05550243332982063, 0.09964893013238907, -0.03413357585668564, 0.10497362166643143, -0.09214533120393753, 0.11017382889986038, 0.10932035744190216, -0.32057443261146545, -0.005767723545432091, 0.09167823940515518, 0.039358653128147125, 0.07352814823389053, -0.04467793554067612, 0.06258884817361832, 0.018015462905168533, 0.017986174672842026, -0.014015024527907372, -0.07283061742782593, -0.11612214148044586, 0.04717336222529411, -0.08668071031570435, -0.059868961572647095, 0.2244078367948532, -0.05464440956711769, 0.06881742179393768, -0.05281897634267807, -0.10522868484258652, -0.04308144748210907, -0.029833965003490448, 0.00475557055324316, -0.07660607248544693, 0.08692064881324768, 0.00869679357856512, -0.09547875821590424, -0.1376667022705078, -0.02496783249080181, -0.1776352822780609, 0.16140350699424744, 0.02465328387916088, 0.05232657864689827, -0.2027255892753601, 0.09623090922832489, 0.017906051129102707, -0.08045592904090881, 0.022091427817940712, -0.10046248883008957, 0.029131146147847176, 0.013760408386588097, -0.04754498973488808, -0.061387211084365845, 0.0843690037727356, 0.11199145019054413, -0.01731434464454651, 0.025486016646027565, -0.039331406354904175, 0.08100687712430954, 0.03553595021367073, 0.09077847748994827, 0.007288969587534666, -0.028338588774204254, 0.025842782109975815, -0.13719046115875244, -0.003647835226729512, -0.07116208970546722, -0.16572439670562744, -0.021088803187012672, 0.02994808368384838, 0.08289173990488052, 0.015449047088623047, 0.11682453751564026, -0.03272046521306038, -0.025152435526251793, 0.03602350503206253, -0.047656361013650894, -0.012649794109165668, 0.016648368909955025, 0.013163427822291851, 0.12399329990148544, -0.0022096503525972366, 0.03235051408410072, -0.13653022050857544, 0.031423524022102356, -0.06793295592069626, -0.003740974934771657, -0.03486552834510803, -0.040637075901031494, 0.009043924510478973, -0.06862333416938782, 0.003486064961180091, -0.15030112862586975, -0.15063877403736115, 0.007587034720927477, -0.007836631499230862, -0.04107699543237686, -0.06370922178030014, -0.06952770054340363, -0.013550350442528725, 0.04251532256603241, -0.07093454152345657, -0.011352915316820145, -0.06403283774852753, 0.11004766076803207, -0.03197755664587021, 0.07921615242958069, -0.11953279376029968, 0.08390819281339645, -0.11260783672332764, -0.02386913076043129, -0.060801517218351364, 0.09317506104707718, -0.0006014376995153725, 0.09549830108880997, -0.006563255097717047, -0.017931854352355003, -0.07981178909540176, 0.06445012241601944, -0.042872510850429535, 0.21701598167419434, -0.0615808479487896, -0.11181682348251343, 0.28781595826148987, -0.052628401666879654, -0.1370542049407959, 0.11647392809391022, 0.008682746440172195, 0.05777018144726753, 0.10703510791063309, 0.19733482599258423, -0.015276194550096989, 0.004040541127324104, 0.09471915662288666, 0.11263324320316315, -0.11276852339506149, -0.033160366117954254, 0.013019153848290443, -0.04081077128648758, -0.10867965966463089, 0.04689536616206169, 0.09810488671064377, 0.07090286910533905, -0.04786505550146103, -0.03377414867281914, -0.01366397924721241, 0.0052589005790650845, 0.08885077387094498, -0.007157256826758385, 0.10962837189435959, -0.05819983780384064, -0.03796621412038803, -0.029282379895448685, -0.012126247398555279, -0.03951939567923546, 0.03137664496898651, -0.043376367539167404, 0.10821941494941711, -0.011204327456653118, 0.06364280730485916, -0.16185984015464783, -0.07691477984189987, -0.017002692446112633, 0.1581239402294159, 0.024538565427064896, 0.09859629720449448, 0.0552486926317215, -0.040398042649030685, -0.0012767292791977525, 0.012792680412530899, 0.15581141412258148, -0.022091681137681007, -0.065607450902462, -0.052166227251291275, 0.08642971515655518, -0.05641226842999458, 0.04504093527793884, -0.05937713757157326, 0.012367865070700645, 0.05064384639263153, 0.10342344641685486, -0.00018274025933351368, 0.03323284164071083, -0.008164864964783192, 0.002145637758076191, -0.058205123990774155, 0.007405933458358049, 0.10799351334571838, 0.00036868182360194623, -0.07365862280130386, 0.22074243426322937, -0.17796069383621216, 0.1765957772731781, 0.1893044263124466, -0.299345999956131, 0.017949223518371582, -0.10759581625461578, -0.04561871662735939, 0.014407722279429436, 0.05567655712366104, -0.0454222597181797, 0.1703362911939621, -0.009871348738670349, 0.18874616920948029, -0.04946064203977585, -0.04464937001466751, -0.0200483538210392, -0.05118836089968681, -0.0024189651012420654, 0.07781197130680084, 0.10685696452856064, -0.13992026448249817, 0.1964332014322281, 0.1621224284172058, 0.048237916082143784, 0.19945049285888672, 0.015346456319093704, -0.011589210480451584, 0.0909530371427536, 0.005220826715230942, -0.058739423751831055, -0.07409929484128952, -0.2594851851463318, -0.030033592134714127, 0.07992640137672424, 0.0422382652759552, 0.1212305948138237, -0.11349532753229141, -0.038956157863140106, -0.01763172075152397, -0.023146281018853188, 0.021672505885362625, 0.0914369598031044, 0.06075398623943329, 0.13201528787612915, -0.001710098935291171, -0.007300339173525572, 0.10524573177099228, 0.01783694699406624, -0.09354141354560852, 0.18308524787425995, -0.13652534782886505, -0.37097251415252686, -0.13911493122577667, -0.18057456612586975, -0.05449081212282181, 0.05712554603815079, 0.11679314076900482, -0.12011238187551498, -0.018752124160528183, 0.01578843593597412, 0.10931742936372757, -0.08449502289295197, 0.0021454424131661654, -0.06880278885364532, 0.0321490578353405, -0.10310184955596924, -0.09194442629814148, -0.055416494607925415, -0.031392451375722885, -0.08001253753900528, 0.1423761546611786, -0.10777941346168518, 0.04476889222860336, 0.20262959599494934, 0.04653622955083847, 0.05625178664922714, -0.044105201959609985, 0.19377262890338898, -0.11264272034168243, -0.01661740615963936, 0.19215328991413116, -0.048360925167798996, 0.07476246356964111, 0.1232115849852562, -0.006348740309476852, -0.08765771239995956, 0.03011748194694519, -0.02085109055042267, -0.07988511025905609, -0.23219464719295502, -0.13938382267951965, -0.12429051846265793, 0.09477275609970093, 0.028005298227071762, 0.056365787982940674, 0.17219258844852448, 0.06577219814062119, -0.038416244089603424, 0.006410336587578058, 0.02959546446800232, 0.08237514644861221, 0.23417828977108002, -0.06035616248846054, 0.1364797055721283, -0.03420931473374367, -0.14982740581035614, 0.08169995993375778, 0.0713929831981659, 0.10213395953178406, 0.06678459793329239, 0.0804823637008667, 0.0149586396291852, 0.06188136339187622, 0.1311223804950714, 0.08191446959972382, 0.019586285576224327, -0.02480296604335308, -0.03388110175728798, -0.025523077696561813, -0.05937909707427025, 0.040128443390131, 0.06589099019765854, -0.16763372719287872, -0.039227183908224106, -0.09338314831256866, 0.09657008945941925, 0.0873042419552803, 0.06609832495450974, -0.1842060089111328, -0.008006223477423191, 0.08488986641168594, -0.03854905813932419, -0.13727426528930664, 0.09535189718008041, 0.01523482333868742, -0.15144726634025574, 0.03139317408204079, -0.04061909019947052, 0.12188644707202911, -0.07804752141237259, 0.09809603542089462, -0.08108244836330414, -0.07448557764291763, 0.02123199962079525, 0.1261177361011505, -0.30527687072753906, 0.20240111649036407, -0.0024993624538183212, -0.06486981362104416, -0.1243603527545929, -0.0032166161108762026, 0.002410882618278265, 0.07357452809810638, 0.10519039630889893, -0.007196315098553896, 0.001897757756523788, -0.06300821900367737, -0.01829923689365387, 0.032471053302288055, 0.13080233335494995, -0.0401318334043026, -0.021158374845981598, -0.050194524228572845, -0.001653497340157628, -0.03173094615340233, -0.06934895366430283, 0.02002747356891632, -0.19509181380271912, 0.08751901984214783, 0.04166261479258537, 0.09648149460554123, 0.029994789510965347, 0.004265148192644119, -0.09651939570903778, 0.24698667228221893, -0.07148019969463348, -0.10072879493236542, -0.10919588059186935, -0.046813901513814926, 0.03569883480668068, -0.05628936365246773, 0.04309194162487984, -0.0788632407784462, 0.028997479006648064, -0.06352769583463669, -0.19235502183437347, 0.12410202622413635, -0.09027006477117538, -0.04412810131907463, -0.02371402643620968, 0.2110891044139862, -0.05598580464720726, 0.010335659608244896, 0.02930437959730625, 0.01208863127976656, -0.11645778268575668, -0.09678568691015244, 0.031018631532788277, -0.007351789623498917, 0.050603240728378296, 0.041841957718133926, -0.05915454775094986, -0.017138581722974777, -0.052199993282556534, -0.022926922887563705, 0.3496883809566498, 0.14231905341148376, -0.043836336582899094, 0.19347235560417175, 0.12347975373268127, -0.07452994585037231, -0.3159443140029907, -0.1066238060593605, -0.10937739163637161, -0.04680149629712105, -0.07012093812227249, -0.2002030611038208, 0.06474938243627548, 0.00662544509395957, -0.013415241613984108, 0.12749312818050385, -0.2561831772327423, -0.07571036368608475, 0.15906259417533875, -0.017980827018618584, 0.3745945692062378, -0.1168576180934906, -0.10926306992769241, -0.03950892388820648, -0.14175476133823395, 0.16968177258968353, -0.01989765651524067, 0.11221715062856674, -0.009765521623194218, 0.14388824999332428, 0.05548359826207161, -0.023479344323277473, 0.08544106781482697, 0.004999885335564613, -0.03290518373250961, -0.10304180532693863, -0.05676887184381485, 0.007092386484146118, 0.02477436140179634, 0.018026655539870262, -0.041834570467472076, 0.02227151393890381, -0.11731979995965958, -0.04657655209302902, -0.08982590585947037, 0.04431166127324104, 0.03899754583835602, -0.07325074821710587, -0.002380647463724017, -0.07165111601352692, -0.012272949330508709, 0.022334342822432518, 0.20356793701648712, -0.08029330521821976, 0.16448934376239777, 0.09239562600851059, 0.12419285625219345, -0.14376309514045715, -0.00019283240544609725, -0.0762530043721199, -0.05611240118741989, 0.07737895101308823, -0.09433035552501678, 0.058893077075481415, 0.10901971161365509, -0.04567738622426987, 0.08828683942556381, 0.10377411544322968, 0.008936077356338501, 0.003213887568563223, 0.10916902124881744, -0.2667325437068939, -0.0296600554138422, -0.07532413303852081, 0.000883326749317348, 0.09092561900615692, 0.08562852442264557, 0.18840822577476501, 0.025361526757478714, -0.04293036088347435, -0.002770674182102084, 0.028597986325621605, -0.039021048694849014, 0.051667019724845886, 0.001123449532315135, 0.01947369985282421, -0.1530752182006836, 0.072522833943367, 0.01490565575659275, -0.15215420722961426, 0.021316176280379295, 0.16572684049606323, -0.11656328290700912, -0.1283872276544571, -0.06520111113786697, 0.08313824236392975, -0.11755692958831787, -0.01578943058848381, -0.03279297426342964, -0.13145680725574493, 0.07992171496152878, 0.12629036605358124, 0.05557859688997269, 0.0972496047616005, -0.06061713397502899, -0.020469192415475845, -0.018721895292401314, -0.014099318534135818, -0.012384648434817791, -0.007667020428925753, -0.055978111922740936, 0.0590752474963665, -0.026677248999476433, 0.1425808072090149, -0.09221141785383224, -0.1037059873342514, -0.16142144799232483, 0.0374140702188015, -0.11013076454401016, -0.08825794607400894, -0.08821134269237518, -0.050188567489385605, 0.002360827289521694, -0.019856395199894905, -0.04037635400891304, -0.05829505994915962, -0.12300454825162888, 0.0338277705013752, -0.040771447122097015, 0.024727050215005875, -0.07512269169092178, 0.015856385231018066, 0.08507686108350754, -0.03285100311040878, 0.15655414760112762, 0.1450488418340683, -0.1006515845656395, 0.10741901397705078, -0.14806775748729706, -0.09138492494821548, 0.11116421222686768, 0.015329592861235142, 0.0449691042304039, 0.09723787009716034, 0.013362943194806576, 0.0635865181684494, 0.032776717096567154, 0.05308786407113075, 0.027619892731308937, -0.11959987878799438, 0.06483134627342224, -0.03626115620136261, -0.14700546860694885, -0.049338050186634064, -0.05282869189977646, 0.01647452637553215, 0.013054544106125832, 0.09622690081596375, -0.05301849544048309, 0.10698331147432327, -0.04055701196193695, 0.0346808135509491, 0.017554637044668198, -0.1730053424835205, -0.03816922754049301, -0.08538098633289337, 0.03681723028421402, 0.014741539023816586, 0.25266793370246887, 0.030072299763560295, 0.012416383251547813, 0.032671261578798294, 0.08285367488861084, 0.03899408504366875, 0.010228337720036507, 0.17482228577136993, 0.1162426546216011, -0.06621865928173065, -0.10445023328065872, 0.0729617029428482, 0.016332454979419708, 0.01286179106682539, 0.13617953658103943, 0.008365051820874214, 0.005795429926365614, 0.08649782836437225, -0.016865963116288185, 0.009968153201043606, -0.10052056610584259, -0.13426925241947174, -0.022176474332809448, 0.05151832848787308, -0.04655967652797699, 0.11727844923734665, 0.1406494379043579, -0.01806013658642769, 0.03222079202532768, -0.021771740168333054, -0.05699979141354561, -0.1683429479598999, -0.1429590880870819, -0.06883849948644638, -0.13416796922683716, 0.00897989235818386, -0.11180389672517776, 0.05395037308335304, 0.06001098081469536, 0.06750501692295074, -0.06899319589138031, 0.10220931470394135, 0.04626858979463577, -0.11440542340278625, 0.06264589726924896, -0.0296088308095932, 0.09430401772260666, -0.02759445086121559, -0.019505485892295837, -0.09039592742919922, 0.014574515633285046, 0.011419114656746387, 0.06245238706469536, -0.04707273095846176, 0.007463190704584122, -0.14696238934993744, -0.08972041308879852, -0.0523175448179245, 0.0718572810292244, -0.050409089773893356, 0.14282815158367157, 0.00775480642914772, -0.0170906875282526, 0.039554283022880554, 0.22787313163280487, -0.07476283609867096, -0.04778539761900902, -0.05269690603017807, 0.20717895030975342, 0.02975541539490223, 0.1171872541308403, -0.022938819602131844, -0.006106364540755749, -0.0919521227478981, 0.3764844834804535, 0.30030161142349243, -0.09031439572572708, 0.011794124729931355, 0.02137952297925949, 0.04502861574292183, 0.1316293478012085, 0.1216534823179245, 0.10318691283464432, 0.3006802201271057, -0.07452366501092911, -0.04653361067175865, -0.012629742734134197, -0.023858042433857918, -0.09059546142816544, 0.1021224707365036, 0.04839762672781944, -0.06382183730602264, -0.03313443064689636, 0.0954432487487793, -0.25862133502960205, 0.1277991235256195, -0.12311873584985733, -0.17578600347042084, -0.06654827296733856, 0.009760108776390553, 0.10465722531080246, 0.015642458572983742, 0.0946015790104866, 0.007128213066607714, -0.11252258718013763, 0.06305865943431854, 0.03397420793771744, -0.22762253880500793, 0.0006893770187161863, 0.06642123311758041, -0.07006710022687912, -0.0024247700348496437, -0.026499588042497635, 0.05657242611050606, 0.0656052976846695, 0.054629553109407425, -0.00971333310008049, 0.03816632181406021, 0.0034184439573436975, -0.0585215799510479, 0.016623929142951965, 0.05121519789099693, 0.02472509816288948, -0.09763528406620026, 0.06927435845136642, -0.1574270874261856, 0.04766253009438515, -0.0030655991286039352, -0.04124255105853081, 0.006064958870410919, 0.008823691867291927, -0.06491616368293762, 0.05165379121899605, 0.07916834205389023, -0.0016257909592241049, -0.0062433634884655476, -0.057178743183612823, -0.02632102556526661, -0.027755750343203545, -0.09291748702526093, -0.10495562851428986, -0.14682936668395996, -0.11640441417694092, 0.09368976950645447, -0.01011267676949501, -0.1848134547472, 0.022154374048113823, -0.08606051653623581, 0.08319322764873505, -0.1670055389404297, 0.08040720224380493, 0.07041648775339127, 0.013038921169936657, -0.0031511052511632442, -0.02002427540719509, 0.054132770746946335, 0.086809903383255, -0.10407156497240067, -0.07400695979595184 ]
null
null
transformers
# Edward Elric DialoGPT Model
{"tags": ["conversational"]}
text-generation
MightyCoderX/DialoGPT-medium-EdwardElric
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# Edward Elric DialoGPT Model
[ "# Edward Elric DialoGPT Model" ]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# Edward Elric DialoGPT Model" ]
[ 51, 9 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# Edward Elric DialoGPT Model" ]
[ -0.017397863790392876, 0.0879199206829071, -0.006367306225001812, 0.03810550272464752, 0.10248364508152008, 0.004583759233355522, 0.15401378273963928, 0.11181757599115372, -0.012589044868946075, -0.05199332535266876, 0.15025055408477783, 0.19357270002365112, -0.032656628638505936, 0.06796696782112122, -0.08338519930839539, -0.2953522205352783, 0.03873146325349808, 0.07443559169769287, 0.04388028383255005, 0.09147083759307861, 0.09744364023208618, -0.06566866487264633, 0.08568674325942993, 0.012572333216667175, -0.09452833235263824, 0.02643842063844204, -0.011782845482230186, -0.11889005452394485, 0.11539040505886078, 0.08949838578701019, 0.028744954615831375, 0.018956942483782768, -0.03384212777018547, -0.15650418400764465, 0.02543330378830433, -0.03503895178437233, -0.05713437497615814, 0.037887949496507645, 0.013319790363311768, -0.10023649781942368, 0.1352381706237793, 0.11095823347568512, 0.024398474022746086, 0.004685677587985992, -0.1498672366142273, 0.012515542097389698, 0.03474815934896469, 0.0740576684474945, 0.07693243771791458, 0.12542302906513214, -0.032664090394973755, 0.10173792392015457, -0.04562142491340637, 0.107282854616642, 0.09568719565868378, -0.3147338330745697, -0.0016671812627464533, 0.08105619251728058, 0.06659507751464844, 0.051122035831213, -0.040148768573999405, 0.07392443716526031, 0.04730680212378502, 0.0036048991605639458, 0.0014909300953149796, -0.07853856682777405, -0.1111026257276535, 0.023995045572519302, -0.08946362137794495, -0.0028372358065098524, 0.24418103694915771, -0.03217361494898796, 0.07285325229167938, -0.053245238959789276, -0.09857970476150513, -0.014395330101251602, 0.00016794074326753616, -0.059125833213329315, -0.0625428855419159, 0.06371387094259262, 0.017046719789505005, -0.10510373115539551, -0.11926762759685516, 0.011318227276206017, -0.2058136910200119, 0.18979783356189728, 0.03855957090854645, 0.02019633911550045, -0.19056931138038635, 0.08812756091356277, -0.04082309827208519, -0.08906480669975281, 0.011277073062956333, -0.07899122685194016, 0.04622693359851837, 0.004408457316458225, -0.0257619209587574, 0.004127968102693558, 0.034720733761787415, 0.13901889324188232, -0.03743275627493858, -0.003388072829693556, 0.02919076196849346, 0.05457686260342598, 0.052580174058675766, 0.10271298885345459, 0.0016579972580075264, -0.050079695880413055, 0.015008509159088135, -0.1015072837471962, 0.007085601333528757, -0.06059548631310463, -0.21062427759170532, -0.017341947183012962, 0.04175741598010063, 0.017815567553043365, 0.0002960828132927418, 0.08852845430374146, -0.0175199955701828, -0.04407954961061478, 0.015365596860647202, -0.010596290230751038, -0.006868254859000444, -0.0035922809038311243, -0.01662786863744259, 0.1146504357457161, 0.03868290036916733, 0.06930230557918549, -0.11583004891872406, 0.05674102529883385, -0.06549724191427231, -0.015746543183922768, -0.008231883868575096, -0.0715690329670906, -0.024879708886146545, -0.04900035634636879, 0.05769716203212738, -0.1545790284872055, -0.15695753693580627, 0.0025128424167633057, -0.0016195117495954037, -0.030573628842830658, -0.1090778335928917, -0.13607262074947357, -0.011627458035945892, 0.033232808113098145, -0.06302724033594131, -0.05310674011707306, -0.070287324488163, 0.06575638055801392, -0.020545419305562973, 0.07795491069555283, -0.1053314357995987, 0.07487146556377411, -0.08263491839170456, -0.058697838336229324, -0.07236193120479584, 0.10747092962265015, 0.040859803557395935, 0.04518438130617142, -0.013180941343307495, -0.023228412494063377, -0.044399671256542206, 0.09485522657632828, -0.034758858382701874, 0.2187846302986145, -0.040350716561079025, -0.1209663674235344, 0.2217106819152832, -0.03750401362776756, -0.14178109169006348, 0.12976239621639252, -0.011167393997311592, 0.06321706622838974, 0.1311517357826233, 0.1769588142633438, -0.0001031169667840004, -0.023425588384270668, 0.06440508365631104, 0.11615804582834244, -0.04979246109724045, -0.0015916870906949043, 0.03571245074272156, -0.011784669011831284, -0.04613831639289856, 0.011974887922406197, 0.07382959872484207, 0.01359171699732542, -0.0711517482995987, -0.011069769971072674, 0.017942439764738083, -0.007406656630337238, 0.08451223373413086, -0.05195517838001251, 0.1281675547361374, -0.04474327713251114, -0.07004084438085556, 0.01937721110880375, 0.022725895047187805, -0.0641813650727272, 0.045908499509096146, -0.09564857929944992, 0.03734055906534195, -0.023560043424367905, 0.039640989154577255, -0.12081115692853928, -0.04426664113998413, -0.04609708860516548, 0.1928998827934265, 0.07296086102724075, 0.12302999198436737, 0.04021448642015457, -0.02589683048427105, -0.020975574851036072, -0.0011854259064421058, 0.1395317018032074, -0.01907692477107048, -0.11573952436447144, -0.11370228230953217, 0.11590319126844406, -0.06342776864767075, 0.03397258371114731, -0.0970320850610733, 0.010228899307549, -0.043750613927841187, 0.08642465621232986, -0.015362026169896126, 0.06292107701301575, -0.0152110131457448, -0.013554169796407223, -0.09061424434185028, 0.017452649772167206, 0.07938329130411148, -0.008014394901692867, -0.13929572701454163, 0.2199236899614334, -0.17198410630226135, 0.1843348890542984, 0.18036207556724548, -0.27185311913490295, 0.026798415929079056, -0.11247186362743378, -0.024748625233769417, -0.0031835653353482485, 0.045894816517829895, -0.054284729063510895, 0.312564492225647, -0.03443912789225578, 0.17258299887180328, -0.04306039586663246, -0.05592500418424606, -0.04172832518815994, -0.055728718638420105, -0.012215860188007355, 0.1321045309305191, 0.09192957729101181, -0.10065332800149918, 0.15763317048549652, 0.10448609292507172, 0.019384518265724182, 0.14828771352767944, 0.057113051414489746, -0.00298800365999341, 0.07713142782449722, -0.02764524333178997, -0.05099761113524437, -0.08499112725257874, -0.28455212712287903, -0.02899828739464283, 0.061200354248285294, 0.031588371843099594, 0.11367157101631165, -0.09914633631706238, -0.034851089119911194, 0.03442039713263512, -0.004511128179728985, 0.01443568430840969, 0.08930982649326324, 0.001559610478579998, 0.1100289449095726, -0.03239261731505394, -0.10327388346195221, 0.05603761598467827, 0.029437871649861336, -0.08964326232671738, 0.20162150263786316, -0.12345919013023376, -0.3087513744831085, -0.09911736100912094, -0.20326733589172363, -0.06288830935955048, 0.06996039301156998, 0.13298070430755615, -0.11415566504001617, -0.03236455097794533, -0.02383357845246792, 0.1013433188199997, -0.12237046658992767, 0.01611286588013172, -0.004353244323283434, -0.015056800097227097, -0.15585008263587952, -0.11155678331851959, -0.05597139522433281, -0.04709164798259735, -0.04304933175444603, 0.1257377564907074, -0.14372578263282776, 0.02305031567811966, 0.23288266360759735, 0.039137065410614014, 0.040189795196056366, -0.03450688719749451, 0.2236975133419037, -0.09084857255220413, -0.025636035948991776, 0.18373847007751465, -0.05362210050225258, 0.07163724303245544, 0.10610614717006683, -0.01150908786803484, -0.08024779707193375, 0.04368620365858078, -0.009774766862392426, -0.04330410063266754, -0.2521566152572632, -0.1220080554485321, -0.08454902470111847, 0.06756647676229477, 0.04530210793018341, 0.03320843353867531, 0.14230063557624817, 0.06106513366103172, -0.03222188726067543, 0.05561197176575661, 0.05126974359154701, 0.09423888474702835, 0.2621493935585022, -0.06367357075214386, 0.13157162070274353, 0.009600214660167694, -0.17846103012561798, 0.08414385467767715, 0.04638010263442993, 0.08070133626461029, 0.07865472882986069, 0.054551295936107635, 0.004987828433513641, -0.03909678012132645, 0.08947330713272095, 0.0688832700252533, -0.006299750879406929, -0.035982437431812286, -0.054921120405197144, -0.03756677731871605, 0.006468416191637516, 0.07289572060108185, 0.04586830735206604, -0.12055492401123047, -0.04866562783718109, 0.015496531501412392, 0.05738111212849617, 0.006330179050564766, 0.09825864434242249, -0.20741859078407288, -0.012430306524038315, 0.0834885835647583, -0.05198176950216293, -0.10889050364494324, 0.07995790243148804, 0.02538832277059555, -0.09016142040491104, 0.04192871227860451, 0.027010954916477203, 0.1245446652173996, -0.10916492342948914, 0.08169253915548325, -0.133220374584198, -0.07595991343259811, -0.001079972367733717, 0.09551785886287689, -0.29101499915122986, 0.20782418549060822, -0.006545457988977432, -0.036461878567934036, -0.08029485493898392, -0.010447072796523571, 0.008558910340070724, 0.14587250351905823, 0.12657848000526428, -0.023770876228809357, 0.060317084193229675, 0.02218419685959816, -0.07428404688835144, 0.03388567268848419, 0.08840417861938477, -0.08180834352970123, 0.0005058469250798225, -0.01644962839782238, 0.008585100993514061, 0.0032165434677153826, -0.07252250611782074, -0.018461884930729866, -0.17395345866680145, 0.061212681233882904, 0.06013994291424751, 0.09400233626365662, 0.05981476604938507, -0.060655202716588974, -0.1057482361793518, 0.2354656159877777, -0.02669389173388481, -0.10175107419490814, -0.07522429525852203, -0.030968671664595604, 0.03494371846318245, -0.07517462968826294, 0.00759926438331604, -0.022184263914823532, 0.03982791304588318, -0.08141399919986725, -0.14420004189014435, 0.11501645296812057, -0.09532787650823593, -0.03228142112493515, -0.04996483027935028, 0.1802826225757599, 0.0026958163361996412, 0.029101522639393806, 0.04527939856052399, -0.02125324308872223, -0.13744722306728363, -0.09883090853691101, 0.00045068562030792236, 0.05197451263666153, 0.038412388414144516, 0.02929411083459854, -0.03867700695991516, -0.032417185604572296, -0.06452599912881851, -0.03812368959188461, 0.2909771203994751, 0.16598612070083618, -0.020151294767856598, 0.11303964257240295, 0.14757953584194183, -0.08987770229578018, -0.24408002197742462, -0.1084880381822586, -0.07774273306131363, -0.038791004568338394, -0.06761331856250763, -0.16327480971813202, 0.09951137006282806, -0.020814288407564163, 0.011005625128746033, 0.09435020387172699, -0.29418879747390747, -0.12072211503982544, 0.18933863937854767, -0.017154283821582794, 0.43041670322418213, -0.07836693525314331, -0.06847669184207916, -0.06851064413785934, -0.1622706949710846, 0.14456519484519958, 0.013544648885726929, 0.10871375352144241, -0.006866501644253731, 0.16121956706047058, 0.04222950339317322, 0.033678121864795685, 0.07980787754058838, 0.043103642761707306, -0.04454663395881653, -0.07614998519420624, -0.08600300550460815, -0.028523262590169907, 0.012128699570894241, 0.028156176209449768, -0.04944625869393349, 0.016094617545604706, -0.1702278107404709, -0.06962469965219498, -0.03877110779285431, 0.04438779130578041, 0.019562650471925735, -0.08722154796123505, 0.00218299962580204, -0.07641389966011047, 0.007555140182375908, 0.006345590576529503, 0.1853373497724533, -0.09380559623241425, 0.09996873140335083, 0.011095860973000526, 0.1560295671224594, -0.14403052628040314, -0.036220915615558624, -0.046616826206445694, -0.054224587976932526, 0.0749967023730278, -0.11108529567718506, 0.0304431039839983, 0.1417156457901001, -0.0504220686852932, 0.08749417960643768, 0.11413318663835526, -0.0013146204873919487, 0.019434072077274323, 0.07850295305252075, -0.24438712000846863, -0.023911941796541214, -0.08303922414779663, -0.01194736547768116, 0.09725134074687958, 0.1169448122382164, 0.20597153902053833, -0.019589673727750778, -0.040026720613241196, 0.009674147702753544, 0.009029914624989033, -0.026314925402402878, 0.07236045598983765, -0.013035066425800323, 0.0018312351312488317, -0.12389400601387024, 0.06402812898159027, -0.005707780830562115, -0.13516052067279816, 0.019754674285650253, 0.13837024569511414, -0.07397040724754333, -0.11681501567363739, -0.05885807424783707, 0.1656184047460556, -0.19065016508102417, -0.008951149880886078, -0.04232392460107803, -0.12434268742799759, 0.07958025485277176, 0.12490112334489822, 0.060653578490018845, 0.04674521088600159, -0.09087160229682922, -0.008246532641351223, -0.013176415115594864, 0.013793477788567543, 0.0642654150724411, -0.014054629020392895, -0.0732591450214386, 0.052440106868743896, -0.03067188523709774, 0.12109740078449249, -0.08015748113393784, -0.07541438192129135, -0.15760919451713562, 0.04950419068336487, -0.06793543696403503, -0.05093856900930405, -0.06737171113491058, -0.03251031041145325, -0.007607643958181143, -0.0375051274895668, -0.04324888437986374, -0.038738083094358444, -0.10023128986358643, 0.04437641054391861, -0.012603751383721828, 0.025072721764445305, -0.06723257154226303, 0.005228125024586916, 0.03807225823402405, -0.030131863430142403, 0.15880277752876282, 0.11319076269865036, -0.1063711866736412, 0.06787928938865662, -0.15692999958992004, -0.037824928760528564, 0.11952053755521774, 0.02986745350062847, 0.06632795184850693, 0.05324582755565643, -0.0015081154415383935, 0.048707395792007446, 0.05028683319687843, 0.031021034345030785, 0.02595752850174904, -0.07973231375217438, 0.016282809898257256, -0.04365713521838188, -0.1587037593126297, -0.039751265197992325, -0.031216565519571304, 0.04902849346399307, 0.035357728600502014, 0.12114112079143524, -0.047079529613256454, 0.07346750795841217, -0.03690626099705696, 0.05716618150472641, 0.05074182152748108, -0.15873464941978455, 0.006978125777095556, -0.08433830738067627, 0.04046636074781418, -0.010314314626157284, 0.20924128592014313, 0.01741097867488861, 0.027243075892329216, 0.027996687218546867, 0.033518072217702866, 0.004556815139949322, 0.001804254949092865, 0.19389943778514862, 0.08232355862855911, -0.03185339644551277, -0.11747945845127106, 0.09108669310808182, 0.09377550333738327, 0.08671890944242477, 0.13095027208328247, -0.06052490696310997, 0.018139708787202835, 0.12745708227157593, -0.01366942748427391, 0.03641975671052933, -0.18184998631477356, -0.18888023495674133, 0.026423178613185883, 0.04283735156059265, -0.02428305894136429, 0.10705479979515076, 0.1675858497619629, -0.01186966709792614, 0.007624674588441849, 0.004108884371817112, -0.06132147088646889, -0.19782619178295135, -0.14977219700813293, -0.0913085788488388, -0.12105390429496765, 0.0027047251351177692, -0.15941981971263885, 0.03680024296045303, -0.0042222123593091965, 0.10239531844854355, -0.06518694758415222, 0.023251071572303772, 0.037328872829675674, -0.10936374962329865, 0.057288311421871185, -0.027701137587428093, 0.09696401655673981, -0.045586008578538895, 0.007527332752943039, -0.08113822340965271, 0.05577966198325157, -0.004185596480965614, 0.03088262490928173, -0.0442773699760437, 0.009079392068088055, -0.1036122739315033, -0.07005056738853455, -0.07355950772762299, 0.060822922736406326, -0.0025378731079399586, 0.14353802800178528, 0.01035715639591217, -0.03943062201142311, 0.030107002705335617, 0.24516603350639343, -0.08938342332839966, -0.08216813206672668, -0.051916997879743576, 0.20472505688667297, 0.05024275928735733, 0.1346951723098755, -0.024157365784049034, -0.00023386382963508368, -0.10657913982868195, 0.33772891759872437, 0.2628685235977173, -0.09093641489744186, 0.008197595365345478, 0.013423147611320019, 0.05151212587952614, 0.12234476208686829, 0.040790170431137085, 0.11643674224615097, 0.29785847663879395, -0.07497019320726395, -0.04940525442361832, -0.025768527761101723, 0.02344692125916481, -0.04184182360768318, 0.05622439831495285, 0.06785416603088379, -0.05846551060676575, -0.020743243396282196, 0.08209048211574554, -0.2584373950958252, 0.07737455517053604, -0.14488831162452698, -0.1697753667831421, -0.05276713892817497, 0.019291618838906288, 0.11535125225782394, 0.024598369374871254, 0.10562597960233688, 0.005072241183370352, -0.1075105369091034, 0.05154008790850639, 0.020844755694270134, -0.21199572086334229, 0.007445636671036482, 0.05390384793281555, -0.03961189463734627, 0.008964781649410725, -0.008265634998679161, 0.09612846374511719, 0.06509658694267273, 0.06372959166765213, 0.004969782195985317, 0.040639638900756836, -0.01141333021223545, -0.03124164417386055, 0.049333978444337845, 0.010080080479383469, 0.002307802438735962, -0.053501278162002563, 0.0826248899102211, -0.1644807755947113, 0.0384821891784668, 0.03330492228269577, -0.06899265199899673, -0.006611526012420654, 0.029547028243541718, -0.08462509512901306, 0.06610096246004105, 0.08198986947536469, -0.0028799930587410927, -0.033389605581760406, -0.006070289760828018, -0.013469165191054344, -0.031738076359033585, -0.03583362698554993, -0.07431697100400925, -0.1586664319038391, -0.08323431760072708, 0.0947074219584465, 0.015507840551435947, -0.17814040184020996, 0.013484902679920197, -0.12864145636558533, 0.04901173710823059, -0.13287141919136047, 0.07676082104444504, 0.10736994445323944, 0.016674142330884933, -0.015202638693153858, -0.028908027336001396, 0.03047097846865654, 0.07691247016191483, -0.12133724987506866, -0.10489401966333389 ]
null
null
transformers
kcbert-mlm-finetune
{}
fill-mask
stresscaptor/kcbert-mlm-finetune
[ "transformers", "pytorch", "bert", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #bert #fill-mask #autotrain_compatible #endpoints_compatible #region-us
kcbert-mlm-finetune
[]
[ "TAGS\n#transformers #pytorch #bert #fill-mask #autotrain_compatible #endpoints_compatible #region-us \n" ]
[ 36 ]
[ "passage: TAGS\n#transformers #pytorch #bert #fill-mask #autotrain_compatible #endpoints_compatible #region-us \n" ]
[ -0.06357412785291672, 0.00690077617764473, -0.008467365056276321, 0.020235946401953697, 0.12968459725379944, 0.03302915394306183, 0.09807441383600235, 0.07729126513004303, 0.10806342214345932, -0.009440856985747814, 0.15823203325271606, 0.20325462520122528, -0.03393663093447685, 0.18361465632915497, -0.065280981361866, -0.2617916762828827, 0.06820162385702133, 0.06229938939213753, -0.06546879559755325, 0.11254725605249405, 0.05687131732702255, -0.0869792252779007, 0.07119062542915344, -0.02728140354156494, -0.10962541401386261, 0.04230697825551033, 0.05219662934541702, -0.10162917524576187, 0.12035926431417465, 0.021910926327109337, 0.2123224288225174, 0.016079774126410484, -0.07168376445770264, -0.09227655827999115, 0.046415410935878754, -0.0007212258642539382, -0.07019324600696564, 0.04336128383874893, 0.01872076466679573, -0.07103253155946732, -0.03834306448698044, 0.05254431441426277, 0.027913549914956093, 0.0400172658264637, -0.146876260638237, -0.1195456013083458, -0.012633946724236012, 0.03010692074894905, 0.04268079623579979, 0.060200124979019165, 0.019220897927880287, 0.21056215465068817, -0.12365733087062836, 0.10502377897500992, 0.15344665944576263, -0.3129054605960846, 0.002867099829018116, 0.06838289648294449, 0.07103738188743591, -0.04424971342086792, -0.023489616811275482, 0.05856989696621895, 0.01071459986269474, 0.022148624062538147, 0.044038139283657074, -0.07715853303670883, -0.044328734278678894, 0.01152737345546484, -0.0813736543059349, -0.059741389006376266, 0.16159793734550476, -0.04301191866397858, 0.04482201114296913, 0.012044340372085571, -0.13646052777767181, -0.04112602770328522, -0.0220506452023983, -0.0066766394302248955, -0.034124407917261124, 0.043702688068151474, -0.030891025438904762, -0.01450628973543644, -0.11146465688943863, 0.02620311640202999, -0.2388714849948883, 0.25444263219833374, 0.025913868099451065, 0.06962989270687103, -0.19036757946014404, 0.04825044423341751, -0.032656311988830566, -0.12202991545200348, 0.05392675846815109, -0.09348990768194199, 0.023280160501599312, -0.004289025440812111, -0.06674729287624359, -0.024281397461891174, 0.07810400426387787, 0.19070357084274292, 0.07175330817699432, 0.038729287683963776, 0.022616418078541756, 0.10197576135396957, 0.015252627432346344, 0.0927167534828186, 0.02304348163306713, -0.03693375736474991, 0.058425456285476685, -0.11234977096319199, 0.02645397186279297, -0.06413000077009201, -0.13045111298561096, -0.03655298054218292, 0.026817962527275085, 0.07910523563623428, 0.039121128618717194, 0.05921967700123787, -0.09775126725435257, -0.00039136706618592143, 0.10266957432031631, -0.07596733421087265, 0.011552278883755207, -0.012669426389038563, 0.05071375519037247, 0.10554905235767365, 0.019699934870004654, -0.013951314613223076, -0.02595921792089939, 0.12606576085090637, -0.07414942234754562, -0.0338914580643177, -0.057671189308166504, -0.0717587098479271, 0.04045988991856575, -0.12276265770196915, 0.03537328913807869, -0.18295785784721375, -0.12786880135536194, 0.05937539413571358, 0.05743318796157837, 0.0075002796947956085, -0.02198064886033535, 0.027785688638687134, 0.0016502209473401308, 0.014095489867031574, -0.051991820335388184, -0.05198881775140762, -0.03936923295259476, 0.10392222553491592, 0.01174288708716631, 0.12164439260959625, -0.12003052234649658, 0.04834338277578354, -0.08534543961286545, 0.014317753724753857, -0.15386703610420227, -0.04163011908531189, -0.028065448626875877, 0.1477208137512207, -0.0017313070129603148, -0.044967345893383026, -0.1107422336935997, 0.03536098450422287, -0.008266955614089966, 0.174587219953537, -0.0640043392777443, -0.13445088267326355, 0.238468199968338, -0.10142715275287628, -0.15124346315860748, 0.08353633433580399, 0.00263609504327178, -0.00937309768050909, 0.05675121024250984, 0.109283447265625, 0.03876260668039322, -0.14184610545635223, 0.0926179513335228, 0.11292947828769684, -0.13638317584991455, -0.12760622799396515, 0.022435644641518593, -0.00732642924413085, -0.12322323024272919, 0.04600539803504944, 0.07860185950994492, 0.1112794280052185, -0.07251705229282379, -0.04695776477456093, -0.01390511728823185, -0.03809646517038345, 0.1488271951675415, 0.03689313679933548, 0.09978006780147552, -0.07845763862133026, -0.02166028693318367, -0.028704503551125526, -0.008114258758723736, 0.06035853177309036, 0.038866739720106125, -0.08729325234889984, 0.1360790729522705, -0.0566742941737175, 0.010620499961078167, -0.180439755320549, -0.12009736150503159, -0.0016330704092979431, 0.05382363870739937, -0.027322817593812943, 0.12601551413536072, 0.11395162343978882, -0.03539265692234039, -0.007137839682400227, -0.03099343180656433, 0.09945479035377502, 0.025088751688599586, -0.03798593953251839, -0.0885278731584549, 0.007986658252775669, -0.08452948927879333, -0.014333197847008705, 0.01457307767122984, 0.002566321985796094, 0.00016168280853889883, 0.13817834854125977, -0.0010485704988241196, 0.03795786574482918, -0.05177360028028488, 0.04081299155950546, -0.034957047551870346, 0.01450793631374836, 0.09004251658916473, -0.000576441758312285, -0.06362977623939514, 0.15637962520122528, -0.14581918716430664, 0.35973721742630005, 0.19387078285217285, -0.3088320195674896, -0.016066158190369606, 0.01958218589425087, -0.01481733750551939, -0.0028315566014498472, 0.056414127349853516, -0.015269504860043526, 0.04143389314413071, 0.014644528739154339, 0.15166911482810974, -0.015120322816073895, -0.02077334001660347, 0.027502890676259995, -0.0772947371006012, -0.04431246966123581, 0.03279697522521019, 0.09859511256217957, -0.13104848563671112, 0.17962734401226044, 0.2618531882762909, 0.004645867273211479, 0.13293692469596863, 0.01004520058631897, -0.0017370838904753327, 0.012384308502078056, -0.03448771312832832, -0.02204137109220028, 0.036397550255060196, -0.19078975915908813, -0.037138842046260834, 0.07815047353506088, -0.030133357271552086, 0.05545393377542496, -0.11835511028766632, -0.03323771432042122, 0.029111113399267197, 0.05119411274790764, -0.07707978785037994, 0.12659992277622223, 0.04097466543316841, 0.0710253193974495, 0.0037192106246948242, -0.07951492071151733, 0.11071927845478058, 0.007798798382282257, -0.038606591522693634, 0.15219268202781677, -0.13388566672801971, -0.3540363311767578, -0.1352192908525467, -0.186979740858078, 0.010174541734158993, 0.04617423936724663, 0.07225015014410019, -0.08286191523075104, -0.05899273604154587, 0.09581182152032852, -0.003480511251837015, -0.02892324887216091, 0.06940968334674835, -0.06169416382908821, 0.011217288672924042, -0.027349013835191727, -0.06347832828760147, -0.07560451328754425, -0.028934668749570847, -0.02698061801493168, 0.15005719661712646, -0.09269136935472488, 0.08664495497941971, 0.13057461380958557, 0.0057759047485888, 0.07016542553901672, -0.0002483248827047646, 0.18727800250053406, -0.06556744873523712, -0.005412220023572445, 0.18072476983070374, -0.05880381539463997, 0.1026553139090538, 0.1556575745344162, 0.020712751895189285, -0.05158966779708862, 0.00875561498105526, -0.05700365826487541, -0.11636948585510254, -0.1564129889011383, -0.11075278371572495, -0.13123051822185516, -0.011434734798967838, 0.05559059977531433, 0.04917698726058006, 0.13644592463970184, 0.08514466881752014, 0.03654884546995163, -0.018586870282888412, -0.06805557757616043, 0.0498523935675621, 0.17366138100624084, -0.030056441202759743, 0.1334504783153534, -0.036830224096775055, -0.14371523261070251, 0.059510327875614166, 0.0252390094101429, 0.12022719532251358, 0.10808205604553223, -0.004712763242423534, 0.03895212337374687, 0.16281089186668396, 0.1563887745141983, 0.16660696268081665, 0.025009524077177048, -0.057338543236255646, -0.004954719450324774, -0.009356440976262093, -0.058457158505916595, 0.02018333598971367, 0.15226905047893524, -0.1055486798286438, -0.051534514874219894, -0.145093634724617, 0.05207017809152603, 0.09619975835084915, 0.06738487631082535, -0.22444024682044983, 0.012990519404411316, 0.06385935842990875, 0.007989094592630863, -0.06883342564105988, 0.03757710009813309, -0.02228686586022377, -0.13463854789733887, 0.06749572604894638, -0.05030853673815727, 0.09488040208816528, 0.03667333722114563, 0.07960424572229385, -0.03426273167133331, -0.06298200786113739, 0.04128245636820793, 0.0669965147972107, -0.2517971694469452, 0.2858309745788574, -0.008294520899653435, -0.051533956080675125, -0.08108772337436676, -0.009787647053599358, 0.04465258866548538, 0.12031106650829315, 0.0992002934217453, 0.032960955053567886, -0.021231580525636673, -0.15835201740264893, -0.012746589258313179, 0.028594577684998512, 0.10843918472528458, -0.02854795753955841, -0.016072293743491173, -0.02141297422349453, -0.054353177547454834, -0.007548002991825342, 0.09288700670003891, 0.00021381601982284337, -0.13055965304374695, 0.0781245231628418, 0.056197553873062134, 0.0030072317458689213, -0.010090996511280537, -0.05736343935132027, -0.11168934404850006, 0.18835410475730896, -0.02566578984260559, -0.054508499801158905, -0.10566588491201401, -0.11198879778385162, 0.09742310643196106, -0.10951992124319077, 0.1106313019990921, -0.09603893011808395, 0.004723524209111929, -0.09463068842887878, -0.18368598818778992, 0.1582668572664261, -0.1269671618938446, -0.006225429475307465, -0.07936962693929672, 0.15473303198814392, -0.0639534443616867, 0.02866891399025917, 0.003773587988689542, 0.028899380937218666, -0.10591752827167511, -0.05296826362609863, 0.030782422050833702, -0.05678727477788925, 0.04187817499041557, 0.044521696865558624, -0.06555546075105667, -0.01695936545729637, 0.019335398450493813, 0.04292288422584534, 0.23622342944145203, 0.2353804111480713, -0.052708715200424194, 0.1417168378829956, 0.1806049793958664, -0.028383145108819008, -0.3410240709781647, -0.11411335319280624, -0.13666872680187225, -0.003915437962859869, 0.007809142116457224, -0.1327342689037323, 0.09345895051956177, -0.032195452600717545, -0.04637759178876877, 0.12031539529561996, -0.15053622424602509, -0.09246959537267685, 0.2436363250017166, 0.008315314538776875, 0.4863871932029724, -0.09246446192264557, -0.06652036309242249, -0.03995967283844948, -0.14584210515022278, 0.05183078721165657, 0.024809755384922028, 0.08875752240419388, -0.015901152044534683, 0.08785346150398254, 0.03374331444501877, -0.09186475723981857, 0.09677482396364212, -0.03436388820409775, 0.01234909426420927, -0.10329624265432358, -0.09800854325294495, 0.06808411329984665, -0.01401363592594862, -0.01322801224887371, 0.015540778636932373, 0.007425607182085514, -0.04579975828528404, -0.020523425191640854, -0.10680554807186127, 0.10987795889377594, 0.03320621699094772, -0.062224309891462326, 0.03879779577255249, -0.017917169257998466, -0.009515928104519844, 0.0034782900474965572, 0.1910327970981598, -0.008325624279677868, 0.17571797966957092, 0.08782124519348145, 0.0300945732742548, -0.16413554549217224, -0.0698731392621994, -0.050175994634628296, -0.0846821516752243, 0.08663877099752426, 0.008863678202033043, 0.05756894871592522, 0.11674199998378754, -0.021469993516802788, 0.040903765708208084, 0.11679863929748535, 0.013281558640301228, -0.03635825589299202, 0.15106870234012604, -0.2260168492794037, 0.040877439081668854, -0.024700431153178215, -0.002281648339703679, 0.06495176255702972, 0.0602131113409996, 0.08886897563934326, 0.04362958297133446, -0.03604341670870781, -0.0080631198361516, -0.011103777214884758, -0.059563565999269485, 0.05411487817764282, 0.060502372682094574, 0.05677267909049988, -0.13078919053077698, 0.0061960369348526, -0.020739618688821793, -0.2086004763841629, -0.016145547851920128, 0.07876262068748474, -0.12113361060619354, -0.10942773520946503, 0.0038382872007787228, 0.09838655591011047, -0.08085829019546509, -0.03981052711606026, -0.06243035942316055, -0.11349830776453018, 0.05747007206082344, 0.2176428735256195, 0.1169067993760109, 0.0780315026640892, -0.01989174261689186, -0.01007353700697422, -0.002601395593956113, -0.015962328761816025, 0.02512223646044731, 0.033555783331394196, -0.08247660100460052, 0.01702079549431801, -0.008670814335346222, 0.16094514727592468, -0.11036427319049835, -0.05973701551556587, -0.1687975972890854, 0.04017099365592003, -0.06963387876749039, -0.10318976640701294, -0.09188957512378693, -0.07771022617816925, 0.01973199099302292, -0.07843679189682007, -0.04138858988881111, -0.03797203674912453, -0.1261909008026123, 0.025888055562973022, 0.036669645458459854, -0.015996644273400307, -0.06865283101797104, -0.044388484209775925, 0.13997533917427063, -0.050470441579818726, 0.06897341459989548, 0.14721760153770447, -0.08223868906497955, 0.08987827599048615, -0.11864562332630157, -0.14169776439666748, 0.09844960272312164, 0.024490095674991608, 0.09209379553794861, 0.06073470786213875, 0.01991713047027588, 0.054184310138225555, 0.03840716555714607, 0.039452992379665375, 0.08403609693050385, -0.11287132650613785, 0.06809459626674652, 0.011329096741974354, -0.1869479864835739, -0.02397647127509117, -0.09611000120639801, 0.07828033715486526, 0.0018079385627061129, 0.11844782531261444, -0.0382930189371109, 0.10906048864126205, -0.0436384454369545, 0.014289634302258492, -0.02247670851647854, -0.16372942924499512, -0.004627579357475042, -0.048289380967617035, 0.012862684205174446, -0.013447915203869343, 0.23876222968101501, -0.024661000818014145, 0.024913061410188675, 0.03820062428712845, 0.0719211995601654, -0.003087579505518079, 0.0022083136718720198, 0.15241484344005585, 0.09013786166906357, -0.05284610390663147, -0.0749572142958641, 0.09104806929826736, 0.019679788500070572, -0.05150250345468521, 0.13582676649093628, 0.06253648549318314, 0.04935529828071594, 0.09676174819469452, 0.00193702126853168, 0.04410434886813164, -0.13451460003852844, -0.2456214725971222, -0.04142381623387337, 0.06802476942539215, 0.022965481504797935, 0.02864265814423561, 0.12449731677770615, -0.011933309026062489, 0.057093679904937744, -0.02881103754043579, -0.022149965167045593, -0.1927638053894043, -0.12258896976709366, -0.08218653500080109, -0.07139991223812103, 0.023771436884999275, -0.02313394285738468, -0.020754177123308182, 0.09821733087301254, 0.034732282161712646, -0.026418423280119896, 0.15178021788597107, -0.003468479262664914, -0.011058829724788666, 0.016801699995994568, -0.01001247763633728, 0.0172751322388649, 0.032349079847335815, -0.03294634073972702, -0.16857078671455383, 0.004473234061151743, -0.05259554460644722, 0.0047274017706513405, -0.08785852044820786, 0.02359730750322342, -0.09015554189682007, -0.13330627977848053, -0.07091958820819855, 0.0264219231903553, -0.04996372386813164, 0.09263461828231812, -0.013066912069916725, 0.05031539872288704, 0.0013845227658748627, 0.1200626865029335, -0.07606708258390427, -0.09816689789295197, -0.04547613114118576, 0.1901932656764984, 0.041288163512945175, 0.0920717865228653, -0.015353480353951454, 0.030952494591474533, -0.11943032592535019, 0.34167152643203735, 0.314802885055542, -0.049354273825883865, 0.0750916451215744, 0.054602526128292084, 0.03442682698369026, 0.07451198995113373, 0.1279372125864029, 0.0763775110244751, 0.2879911959171295, -0.09316780418157578, -0.04345858469605446, -0.044293951243162155, -0.03673816844820976, -0.1208759993314743, 0.01128399558365345, 0.03953966125845909, -0.03837299346923828, -0.0634862631559372, 0.07261399179697037, -0.17381651699543, 0.12662146985530853, 0.057949863374233246, -0.21046149730682373, -0.04841303452849388, -0.027771536260843277, 0.17428803443908691, 0.017816947773098946, 0.1136963814496994, -0.03833884000778198, -0.08398560434579849, 0.062350668013095856, 0.022619010880589485, -0.20338550209999084, -0.06756751984357834, 0.10970646142959595, -0.012227135710418224, 0.05940033122897148, -0.017002668231725693, 0.031783878803253174, 0.0780811533331871, 0.07013798505067825, -0.014899644069373608, 0.02075999788939953, 0.023412270471453667, -0.10955478996038437, -0.07060349732637405, 0.01478694099932909, -0.0013840675819665194, -0.11833599954843521, 0.02185012586414814, -0.16461415588855743, 0.04151973873376846, -0.09669603407382965, -0.027114197611808777, -0.0026749002281576395, 0.05793723464012146, -0.04355005547404289, 0.04500356316566467, 0.06464733183383942, 0.018565697595477104, -0.0383153110742569, -0.05022261664271355, -0.011393008753657341, 0.0629846602678299, -0.11954975128173828, -0.17594216763973236, -0.08240210264921188, -0.07172682136297226, 0.04485165327787399, -0.010793168097734451, -0.13988232612609863, -0.04391428083181381, -0.10527841746807098, 0.032555706799030304, -0.15290100872516632, 0.04201599210500717, 0.04696520045399666, 0.04337937757372856, 0.017507996410131454, -0.04434172064065933, 0.04486740753054619, 0.049446675926446915, -0.155558243393898, -0.09162718802690506 ]
null
null
transformers
# FEEL-IT: Emotion and Sentiment Classification for the Italian Language ## FEEL-IT Python Package You can find the package that uses this model for emotion and sentiment classification **[here](https://github.com/MilaNLProc/feel-it)** it is meant to be a very simple interface over HuggingFace models. ## License Users should refer to the [following license](https://developer.twitter.com/en/developer-terms/commercial-terms) ## Abstract Sentiment analysis is a common task to understand people's reactions online. Still, we often need more nuanced information: is the post negative because the user is angry or because they are sad? An abundance of approaches has been introduced for tackling both tasks. However, at least for Italian, they all treat only one of the tasks at a time. We introduce *FEEL-IT*, a novel benchmark corpus of Italian Twitter posts annotated with four basic emotions: **anger, fear, joy, sadness**. By collapsing them, we can also do **sentiment analysis**. We evaluate our corpus on benchmark datasets for both emotion and sentiment classification, obtaining competitive results. We release an [open-source Python library](https://github.com/MilaNLProc/feel-it), so researchers can use a model trained on FEEL-IT for inferring both sentiments and emotions from Italian text. | Model | Download | | ------ | -------------------------| | `feel-it-italian-sentiment` | [Link](https://huggingface.co/MilaNLProc/feel-it-italian-sentiment) | | `feel-it-italian-emotion` | [Link](https://huggingface.co/MilaNLProc/feel-it-italian-emotion) | ## Model The *feel-it-italian-emotion* model performs **emotion classification (joy, fear, anger, sadness)** on Italian. We fine-tuned the [UmBERTo model](https://huggingface.co/Musixmatch/umberto-commoncrawl-cased-v1) on our new dataset (i.e., FEEL-IT) obtaining state-of-the-art performances on different benchmark corpora. ## Data Our data has been collected by annotating tweets from a broad range of topics. In total, we have 2037 tweets annotated with an emotion label. More details can be found in our paper (https://aclanthology.org/2021.wassa-1.8/). ## Performance We evaluate our performance using [MultiEmotions-It](http://ceur-ws.org/Vol-2769/paper_08.pdf). This dataset differs from FEEL-IT both in terms of topic variety and considered social media (i.e., YouTube and Facebook). We considered only the subset of emotions present in FEEL-IT. To give a point of reference, we also show the Most Frequent Class (MFC) baseline results. The results show that training on FEEL-IT brings stable performance even on datasets from different contexts. | Training Dataset | Macro-F1 | Accuracy | ------ | ------ |------ | | MFC | 0.20 | 0.64 | | FEEL-IT | **0.57** | **0.73** | ## Usage ```python from transformers import pipeline classifier = pipeline("text-classification",model='MilaNLProc/feel-it-italian-emotion',top_k=2) prediction = classifier("Oggi sono proprio contento!") print(prediction) ``` ## Citation Please use the following bibtex entry if you use this model in your project: ``` @inproceedings{bianchi2021feel, title = {{"FEEL-IT: Emotion and Sentiment Classification for the Italian Language"}}, author = "Bianchi, Federico and Nozza, Debora and Hovy, Dirk", booktitle = "Proceedings of the 11th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis", year = "2021", publisher = "Association for Computational Linguistics", } ```
{"language": "it", "tags": ["sentiment", "emotion", "Italian"]}
text-classification
MilaNLProc/feel-it-italian-emotion
[ "transformers", "pytorch", "tf", "camembert", "text-classification", "sentiment", "emotion", "Italian", "it", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
2022-03-02T23:29:04+00:00
[]
[ "it" ]
TAGS #transformers #pytorch #tf #camembert #text-classification #sentiment #emotion #Italian #it #autotrain_compatible #endpoints_compatible #has_space #region-us
FEEL-IT: Emotion and Sentiment Classification for the Italian Language ====================================================================== FEEL-IT Python Package ---------------------- You can find the package that uses this model for emotion and sentiment classification here it is meant to be a very simple interface over HuggingFace models. License ------- Users should refer to the following license Abstract -------- Sentiment analysis is a common task to understand people's reactions online. Still, we often need more nuanced information: is the post negative because the user is angry or because they are sad? An abundance of approaches has been introduced for tackling both tasks. However, at least for Italian, they all treat only one of the tasks at a time. We introduce *FEEL-IT*, a novel benchmark corpus of Italian Twitter posts annotated with four basic emotions: anger, fear, joy, sadness. By collapsing them, we can also do sentiment analysis. We evaluate our corpus on benchmark datasets for both emotion and sentiment classification, obtaining competitive results. We release an open-source Python library, so researchers can use a model trained on FEEL-IT for inferring both sentiments and emotions from Italian text. Model ----- The *feel-it-italian-emotion* model performs emotion classification (joy, fear, anger, sadness) on Italian. We fine-tuned the UmBERTo model on our new dataset (i.e., FEEL-IT) obtaining state-of-the-art performances on different benchmark corpora. Data ---- Our data has been collected by annotating tweets from a broad range of topics. In total, we have 2037 tweets annotated with an emotion label. More details can be found in our paper (URL Performance ----------- We evaluate our performance using MultiEmotions-It. This dataset differs from FEEL-IT both in terms of topic variety and considered social media (i.e., YouTube and Facebook). We considered only the subset of emotions present in FEEL-IT. To give a point of reference, we also show the Most Frequent Class (MFC) baseline results. The results show that training on FEEL-IT brings stable performance even on datasets from different contexts. Training Dataset: MFC, Macro-F1: 0.20, Accuracy: 0.64 Training Dataset: FEEL-IT, Macro-F1: 0.57, Accuracy: 0.73 Usage ----- Please use the following bibtex entry if you use this model in your project:
[]
[ "TAGS\n#transformers #pytorch #tf #camembert #text-classification #sentiment #emotion #Italian #it #autotrain_compatible #endpoints_compatible #has_space #region-us \n" ]
[ 56 ]
[ "passage: TAGS\n#transformers #pytorch #tf #camembert #text-classification #sentiment #emotion #Italian #it #autotrain_compatible #endpoints_compatible #has_space #region-us \n" ]
[ -0.05174405127763748, 0.051023151725530624, -0.007187739945948124, 0.07262186706066132, 0.15221735835075378, 0.07527746260166168, -0.005411570426076651, 0.11482132971286774, 0.09977499395608902, 0.05101886764168739, 0.05506066605448723, 0.11839862167835236, -0.018378403037786484, 0.02282925508916378, -0.11422192305326462, -0.30952662229537964, -0.0010884886141866446, 0.07027868926525116, 0.03725861757993698, 0.10173039138317108, 0.10975959151983261, -0.07426681369543076, 0.1228388324379921, -0.034128885716199875, -0.10996618121862411, 0.09704799205064774, 0.043637413531541824, -0.057787418365478516, 0.1517971009016037, 0.07437954097986221, 0.12234170734882355, 0.035097088664770126, -0.028388014063239098, -0.13315223157405853, 0.04845662787556648, 0.03273266926407814, -0.07152026146650314, 0.0037262856494635344, 0.10164753347635269, -0.12896613776683807, 0.16451089084148407, 0.03143670782446861, -0.032454729080200195, 0.02393213100731373, -0.1264977604150772, -0.08661271631717682, 0.007475912570953369, 0.035324033349752426, -0.10025305300951004, 0.07800827920436859, -0.03749578073620796, 0.15630391240119934, -0.18942324817180634, 0.0923369973897934, 0.16108964383602142, -0.16113749146461487, -0.08398424088954926, -0.012084917165338993, 0.08629032224416733, 0.06447751075029373, -0.09900040924549103, 0.06972859054803848, 0.04431787505745888, 0.015149440616369247, -0.04883000999689102, -0.06996533274650574, -0.047287717461586, 0.003218666650354862, -0.052552465349435806, -0.032349079847335815, 0.21260114014148712, -0.022844413295388222, 0.06455422937870026, -0.021708618849515915, -0.05315910279750824, -0.08901454508304596, 0.004180042073130608, -0.046093422919511795, -0.005645476747304201, 0.09286163002252579, 0.08694367110729218, 0.048939842730760574, -0.14701242744922638, 0.10419300198554993, -0.18972466886043549, 0.2368914932012558, -0.02912273071706295, 0.008418694138526917, -0.04161616787314415, 0.010883930139243603, -0.05796768516302109, -0.06546711176633835, 0.07226114720106125, -0.07236846536397934, 0.06335613876581192, -0.008509820327162743, -0.0809515193104744, 0.01763460785150528, 0.02786143310368061, 0.026103653013706207, -0.006891502067446709, -0.023763133212924004, 0.00667210528627038, 0.091863252222538, 0.12387651950120926, 0.11648539453744888, -0.03266433998942375, -0.08311261236667633, -0.10505381971597672, -0.11499843746423721, 0.0037517824675887823, -0.0367894284427166, -0.1727534383535385, -0.049990955740213394, -0.013048766180872917, 0.018587274476885796, 0.026368074119091034, 0.09995294362306595, -0.09338147938251495, 0.021645773202180862, -0.10477529466152191, -0.04449785128235817, 0.05489243566989899, 0.02724829502403736, -0.014992421492934227, 0.2290741503238678, -0.10377062857151031, -0.031682565808296204, -0.0400569774210453, 0.04249747470021248, -0.045233529061079025, 0.0007180010434240103, -0.030011439695954323, -0.0788557156920433, 0.08532886207103729, -0.1668016016483307, 0.06770923733711243, -0.18234072625637054, 0.012947900220751762, -0.02300683967769146, 0.0460776723921299, -0.09634748846292496, 0.025157732889056206, -0.00039916738751344383, 0.01961318776011467, 0.09612958878278732, -0.011979500763118267, -0.10530878603458405, -0.07816030830144882, 0.08120515197515488, -0.05357830598950386, 0.14884187281131744, -0.12728646397590637, 0.036920223385095596, -0.12070322036743164, -0.03432626277208328, -0.06763235479593277, 0.00036905656452290714, -0.00928451493382454, 0.16489282250404358, 0.0556812658905983, -0.033782780170440674, -0.10569249838590622, 0.06067396700382233, -0.0640142410993576, 0.20251891016960144, -0.21397094428539276, -0.08823254704475403, 0.1545465588569641, -0.0797332301735878, -0.0695071890950203, 0.18303532898426056, 0.0280039943754673, 0.10861385613679886, 0.0673031359910965, 0.2337455302476883, -0.03835951164364815, -0.028347473591566086, -0.05168925225734711, 0.1411001831293106, -0.08805584162473679, 0.06805389374494553, 0.01345669012516737, 0.10204553604125977, 0.06641780585050583, 0.04843277484178543, 0.0950842946767807, 0.07811400294303894, -0.08394627273082733, -0.060462430119514465, -0.03637680783867836, -0.021174591034650803, 0.1135568842291832, 0.08903153985738754, 0.07803381979465485, -0.12283775955438614, -0.06649076193571091, -0.17480918765068054, 0.03894080966711044, 0.02802419289946556, 0.042707957327365875, -0.04383617267012596, 0.20778602361679077, 0.12882141768932343, -0.007749773561954498, -0.15212877094745636, 0.021261775866150856, -0.050236839801073074, 0.1900119036436081, 0.010405373759567738, 0.19865384697914124, 0.08273772895336151, -0.10972043871879578, -0.06708181649446487, 0.03336937353014946, 0.11530499905347824, 0.023833507671952248, 0.015184917487204075, -0.21260610222816467, 0.08272608369588852, -0.049474772065877914, 0.05864928290247917, -0.11931098252534866, 0.023652423173189163, 0.18166132271289825, 0.12032584100961685, -0.04982297122478485, 0.05769271031022072, -0.1326410174369812, 0.006201597861945629, -0.09688858687877655, -0.011358499526977539, 0.08144168555736542, -0.030014168471097946, -0.05090045556426048, 0.18785718083381653, -0.12174728512763977, 0.29162511229515076, 0.1919350028038025, -0.34253883361816406, -0.05545724183320999, -0.03365832939743996, -0.03736535459756851, 0.09990410506725311, 0.10354326665401459, 0.011764553375542164, -0.007984883151948452, -0.07299152761697769, 0.07232222706079483, -0.0370674803853035, 0.050415895879268646, 0.03155576437711716, -0.04786121845245361, -0.14020521938800812, 0.07728961110115051, 0.043932460248470306, -0.15535777807235718, 0.238067626953125, 0.3708811402320862, -0.008387202396988869, 0.28159427642822266, 0.0411364883184433, 0.05223650485277176, 0.0283229760825634, -0.05036814883351326, -0.09132549911737442, 0.008929421193897724, -0.2690736651420593, -0.04150178283452988, 0.007437183056026697, -0.021447589620947838, 0.019270146265625954, -0.09441281855106354, -0.08100083470344543, 0.008077896200120449, 0.04135872796177864, -0.006616789381951094, 0.08623502403497696, 0.004083168692886829, 0.15812870860099792, 0.03969413787126541, -0.11427333950996399, 0.06000777706503868, 0.037719596177339554, -0.026778042316436768, 0.10225731879472733, -0.1728508323431015, -0.27283769845962524, -0.0028196803759783506, -0.06476336717605591, -0.018842419609427452, 0.03236791118979454, 0.06006971374154091, -0.15549567341804504, 0.022148586809635162, 0.03138202801346779, 0.04255099967122078, -0.10297445952892303, -0.007495061960071325, -0.09916722029447556, 0.06353991478681564, -0.1330195814371109, -0.031026074662804604, -0.07825660705566406, -0.059795599430799484, -0.07875892519950867, 0.07719555497169495, -0.16035111248493195, 0.1276267021894455, 0.23480680584907532, -0.019926372915506363, 0.05099640414118767, -0.06806445866823196, 0.1523893028497696, -0.19155581295490265, 0.030251797288656235, 0.11524862796068192, -0.007590107154101133, 0.042064592242240906, 0.21767383813858032, 0.027059702202677727, -0.07436499744653702, -0.015046198852360249, 0.02488473616540432, -0.07280344516038895, -0.12131703644990921, -0.12622897326946259, -0.11102142184972763, 0.14106692373752594, -0.04479459300637245, 0.07703208178281784, 0.10367009043693542, 0.0450051873922348, 0.006610874552279711, -0.1831168830394745, -0.06637643277645111, 0.019422976300120354, 0.20445135235786438, -0.07449250668287277, 0.09427681565284729, -0.01871880516409874, -0.1054689884185791, 0.1810915321111679, 0.08574984222650528, -0.02361535094678402, 0.038860056549310684, 0.045116301625967026, 0.020286476239562035, 0.14110374450683594, 0.044661685824394226, 0.02371704950928688, 0.05402658134698868, -0.08860845863819122, -0.047166887670755386, 0.0006375749944709241, -0.034705422818660736, 0.06462521106004715, 0.11216054111719131, -0.11475725471973419, -0.09986864030361176, -0.13541504740715027, 0.15374277532100677, 0.07598521560430527, 0.049770403653383255, -0.15937091410160065, 0.02780444361269474, 0.04736274480819702, 0.025802191346883774, -0.0748366191983223, 0.002983669750392437, 0.07296120375394821, -0.13085868954658508, 0.07545308768749237, 0.06595294922590256, 0.07140519469976425, -0.062028709799051285, 0.11429782956838608, -0.13223661482334137, -0.15509358048439026, -0.0023628990165889263, 0.060581836849451065, -0.20060907304286957, 0.2491476684808731, 0.019934114068746567, -0.09887661784887314, -0.08278682082891464, -0.06696239858865738, 0.0941479504108429, 0.27172011137008667, 0.08965141326189041, 0.041953809559345245, -0.014977019280195236, -0.15979917347431183, 0.09969394654035568, -0.031089968979358673, 0.18440918624401093, 0.011718211695551872, -0.0639442428946495, -0.03064793348312378, 0.0016474485164508224, 0.02247060276567936, 0.21559004485607147, 0.006261349190026522, -0.17354533076286316, 0.08379686623811722, 0.09613120555877686, -0.04639246314764023, 0.07607322186231613, -0.10341291129589081, -0.13621750473976135, 0.171179860830307, 0.047247264534235, 0.057085175067186356, -0.11711104959249496, -0.04925651475787163, -0.04186409339308739, -0.024537058547139168, 0.000379744655219838, -0.07675673812627792, 0.025173036381602287, -0.10474032908678055, -0.08033634722232819, 0.182878777384758, -0.0886317640542984, -0.023976346477866173, -0.07185228914022446, 0.06279401481151581, -0.032562676817178726, 0.06296136975288391, 0.06066064164042473, -0.029304584488272667, -0.09104045480489731, -0.04365408420562744, 0.08141887933015823, -0.06485569477081299, -0.05048026889562607, 0.09297316521406174, -0.07845285534858704, -0.06786444038152695, -0.0046630441211164, -0.05684492737054825, 0.20493891835212708, 0.15606556832790375, -0.06945602595806122, 0.053077902644872665, 0.017529673874378204, -0.06151597574353218, -0.36456099152565, 0.050989266484975815, -0.104921355843544, -0.007301460485905409, 0.03808346018195152, -0.08591900020837784, 0.01326666958630085, -0.04101937264204025, -0.027823977172374725, 0.025660315528512, -0.1553402841091156, -0.033388011157512665, 0.11992272734642029, -0.03465365990996361, 0.40987110137939453, -0.10293895751237869, 0.013926339335739613, -0.04736074432730675, -0.019786829128861427, 0.08569899201393127, -0.0173458494246006, 0.06057285517454147, 0.017899099737405777, 0.06667579710483551, 0.04689885675907135, 0.024038653820753098, 0.1144276112318039, 0.0014494335046038032, 0.0005478124949149787, -0.13025888800621033, -0.1350436806678772, 0.015309848822653294, 0.024136198684573174, -0.05656305328011513, -0.03858131915330887, -0.09326725453138351, -0.10785721242427826, -0.03178632631897926, -0.17113475501537323, 0.08674250543117523, -0.018753575161099434, -0.050013232976198196, -0.06339939683675766, 0.07374254614114761, 0.021603675559163094, 0.002547748386859894, 0.028110265731811523, -0.10971657186746597, 0.11073483526706696, 0.10362912714481354, 0.14872223138809204, -0.0997045710682869, 0.04646342620253563, -0.021076567471027374, -0.04336133971810341, 0.014997448772192001, -0.03747878968715668, 0.044781897217035294, 0.10755188763141632, -0.066507488489151, 0.03582475334405899, 0.11317149549722672, -0.020330481231212616, -0.04167785495519638, 0.17976294457912445, -0.1424543857574463, -0.04516840726137161, -0.11235429346561432, -0.10567183792591095, 0.07337713241577148, -0.030709343031048775, 0.10047370940446854, 0.025542819872498512, -0.012237699702382088, -0.023366739973425865, -0.045712001621723175, -0.01767238788306713, 0.00407118396833539, 0.010759582743048668, -0.05632098391652107, -0.07150876522064209, 0.02987797185778618, -0.02758500725030899, -0.3240644335746765, 0.010065006092190742, 0.1712460219860077, -0.08610183745622635, -0.14105123281478882, 0.019870180636644363, 0.10200463980436325, -0.19139376282691956, -0.056472036987543106, -0.08249069005250931, -0.17795222997665405, 0.055697694420814514, 0.2072874903678894, 0.1007552295923233, 0.07498710602521896, -0.06697429716587067, -0.015471160411834717, 0.04918380081653595, 0.006964945700019598, 0.07570667564868927, -0.04448733106255531, -0.06037457659840584, 0.03734070435166359, -0.02337983064353466, 0.10299582779407501, -0.09256623685359955, -0.07246594876050949, -0.09907207638025284, -0.026117753237485886, -0.03732955828309059, -0.15698404610157013, -0.04058234766125679, -0.055636320263147354, 0.019001245498657227, -0.03899778425693512, -0.03071928583085537, -0.1230248287320137, -0.139863520860672, 0.045223336666822433, 0.046113643795251846, 0.07878216356039047, -0.03638116270303726, -0.025316596031188965, 0.08172895014286041, -0.03121178038418293, 0.13580870628356934, 0.089433953166008, -0.053250886499881744, 0.09434553235769272, -0.178927943110466, -0.07309958338737488, 0.062137141823768616, -0.02394474484026432, 0.03102419711649418, 0.15269102156162262, 0.018743105232715607, 0.056999899446964264, 0.010461682453751564, 0.07636452466249466, 0.016483794897794724, -0.0294273030012846, 0.16412435472011566, 0.1248941496014595, -0.21934078633785248, -0.021797414869070053, 0.03456098958849907, 0.07813087850809097, -0.07183340191841125, 0.028032444417476654, -0.0502462275326252, 0.023945840075612068, -0.01949360780417919, 0.04333137720823288, 0.0016507545951753855, -0.1838436722755432, -0.10035247355699539, -0.07503239065408707, 0.023175375536084175, 0.04715698957443237, 0.140740767121315, 0.15855173766613007, 0.005537448450922966, 0.034998323768377304, 0.11587455868721008, -0.023294277489185333, -0.008824000135064125, 0.05901874229311943, 0.09714566171169281, -0.09047571569681168, -0.07456959784030914, 0.06926126778125763, 0.04170622676610947, 0.09838958829641342, 0.08085451275110245, 0.08687343448400497, 0.14122647047042847, 0.11520075798034668, 0.016993802040815353, 0.011850859969854355, -0.05446759983897209, -0.14551834762096405, -0.05235493928194046, 0.0972878709435463, -0.09793953597545624, 0.06753645092248917, 0.1082000583410263, 0.008348528295755386, 0.05873560160398483, -0.08503080904483795, -0.03517420217394829, -0.1396438330411911, -0.17654769122600555, -0.0050495644100010395, -0.11385844647884369, -0.034057896584272385, -0.11537535488605499, 0.06610006839036942, -0.05074344947934151, 0.07305702567100525, -0.11635338515043259, 0.09122062474489212, -0.0353039987385273, -0.08900105208158493, 0.15622016787528992, -0.00034943321952596307, 0.09703412652015686, -0.10756447166204453, -0.05457392707467079, -0.19415615499019623, -0.026023264974355698, -0.021315155550837517, 0.02631032094359398, -0.09236020594835281, -0.08504407852888107, -0.14936251938343048, -0.074181467294693, -0.04938459396362305, -0.000709641957655549, -0.03749404847621918, 0.11405640095472336, -0.061376508325338364, 0.016460193321108818, 0.020433098077774048, 0.188449889421463, -0.042347803711891174, 0.09314414858818054, -0.016818268224596977, 0.09780791401863098, -0.01072909589856863, 0.1134638786315918, -0.08831357955932617, 0.00007880652992753312, -0.10327373445034027, 0.275266170501709, 0.2971106469631195, -0.12168009579181671, 0.04145337641239166, 0.03107208013534546, 0.07539922744035721, 0.06195073947310448, 0.06208754703402519, 0.0903744027018547, 0.14328604936599731, -0.12882596254348755, 0.06994576752185822, -0.07984847575426102, 0.04487054795026779, -0.02248828485608101, 0.07554890960454941, 0.15492717921733856, -0.004675078671425581, -0.08542482554912567, 0.09806134551763535, -0.13796381652355194, 0.1534774750471115, 0.08713098615407944, -0.27890899777412415, -0.07138209044933319, -0.017293047159910202, 0.12649700045585632, 0.0733935683965683, 0.17460867762565613, -0.004093860276043415, -0.11897072196006775, 0.05692238360643387, 0.0022329126950353384, -0.24547579884529114, -0.09401996433734894, 0.10279282182455063, -0.1265835464000702, 0.06498724967241287, -0.10596706718206406, -0.033530496060848236, 0.12526187300682068, 0.06246905028820038, 0.06740239262580872, -0.009791719727218151, 0.04423391446471214, -0.033526599407196045, -0.06876790523529053, 0.035262346267700195, -0.02218537963926792, -0.056081485003232956, 0.08931892365217209, -0.21956469118595123, 0.11616189032793045, -0.04421297833323479, -0.05823814868927002, -0.008088226430118084, 0.16526468098163605, -0.09674475342035294, 0.028672436252236366, 0.11016171425580978, 0.05387653410434723, -0.05776134505867958, -0.07401812821626663, -0.0532442182302475, 0.04038132354617119, -0.05565844476222992, -0.04919197037816048, -0.03861180692911148, -0.06368981301784515, 0.11315000057220459, -0.007872572168707848, -0.09145423769950867, -0.05951443687081337, -0.03008262626826763, 0.07267589122056961, -0.15291467308998108, 0.019692515954375267, 0.05304541438817978, 0.02433839626610279, 0.02471284009516239, -0.12793485820293427, 0.07262372970581055, 0.09478409588336945, -0.037454281002283096, -0.013506684452295303 ]
null
null
transformers
# FEEL-IT: Emotion and Sentiment Classification for the Italian Language ## FEEL-IT Python Package You can find the package that uses this model for emotion and sentiment classification **[here](https://github.com/MilaNLProc/feel-it)** it is meant to be a very simple interface over HuggingFace models. ## License Users should refer to the [following license](https://developer.twitter.com/en/developer-terms/commercial-terms) ## Abstract Sentiment analysis is a common task to understand people's reactions online. Still, we often need more nuanced information: is the post negative because the user is angry or because they are sad? An abundance of approaches has been introduced for tackling both tasks. However, at least for Italian, they all treat only one of the tasks at a time. We introduce *FEEL-IT*, a novel benchmark corpus of Italian Twitter posts annotated with four basic emotions: **anger, fear, joy, sadness**. By collapsing them, we can also do **sentiment analysis**. We evaluate our corpus on benchmark datasets for both emotion and sentiment classification, obtaining competitive results. We release an [open-source Python library](https://github.com/MilaNLProc/feel-it), so researchers can use a model trained on FEEL-IT for inferring both sentiments and emotions from Italian text. | Model | Download | | ------ | -------------------------| | `feel-it-italian-sentiment` | [Link](https://huggingface.co/MilaNLProc/feel-it-italian-sentiment) | | `feel-it-italian-emotion` | [Link](https://huggingface.co/MilaNLProc/feel-it-italian-emotion) | ## Model The *feel-it-italian-sentiment* model performs **sentiment analysis** on Italian. We fine-tuned the [UmBERTo model](https://huggingface.co/Musixmatch/umberto-commoncrawl-cased-v1) on our new dataset (i.e., FEEL-IT) obtaining state-of-the-art performances on different benchmark corpora. ## Data Our data has been collected by annotating tweets from a broad range of topics. In total, we have 2037 tweets annotated with an emotion label. More details can be found in our paper (https://aclanthology.org/2021.wassa-1.8/). ## Performance We evaluate our performance using [SENTIPOLC16 Evalita](http://www.di.unito.it/~tutreeb/sentipolc-evalita16/). We collapsed the FEEL-IT classes into 2 by mapping joy to the *positive* class and anger, fear and sadness into the *negative* class. We compare three different experimental configurations training on FEEL-IT, SENTIPOLC16, or both by testing on the SENTIPOLC16 test set. The results show that training on FEEL-IT can provide better results on the SENTIPOLC16 test set than those that can be obtained with the SENTIPOLC16 training set. | Training Dataset | Macro-F1 | Accuracy | ------ | ------ |------ | | SENTIPOLC16 | 0.80 | 0.81 | | FEEL-IT | **0.81** | **0.84** | | FEEL-IT+SentiPolc | 0.81 | 0.82 ## Usage ```python from transformers import pipeline classifier = pipeline("text-classification",model='MilaNLProc/feel-it-italian-sentiment',top_k=2) prediction = classifier("Oggi sono proprio contento!") print(prediction) ``` ## Citation Please use the following bibtex entry if you use this model in your project: ``` @inproceedings{bianchi2021feel, title = {{"FEEL-IT: Emotion and Sentiment Classification for the Italian Language"}}, author = "Bianchi, Federico and Nozza, Debora and Hovy, Dirk", booktitle = "Proceedings of the 11th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis", year = "2021", publisher = "Association for Computational Linguistics", } ```
{"language": "it", "tags": ["sentiment", "Italian"]}
text-classification
MilaNLProc/feel-it-italian-sentiment
[ "transformers", "pytorch", "tf", "camembert", "text-classification", "sentiment", "Italian", "it", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
2022-03-02T23:29:04+00:00
[]
[ "it" ]
TAGS #transformers #pytorch #tf #camembert #text-classification #sentiment #Italian #it #autotrain_compatible #endpoints_compatible #has_space #region-us
FEEL-IT: Emotion and Sentiment Classification for the Italian Language ====================================================================== FEEL-IT Python Package ---------------------- You can find the package that uses this model for emotion and sentiment classification here it is meant to be a very simple interface over HuggingFace models. License ------- Users should refer to the following license Abstract -------- Sentiment analysis is a common task to understand people's reactions online. Still, we often need more nuanced information: is the post negative because the user is angry or because they are sad? An abundance of approaches has been introduced for tackling both tasks. However, at least for Italian, they all treat only one of the tasks at a time. We introduce *FEEL-IT*, a novel benchmark corpus of Italian Twitter posts annotated with four basic emotions: anger, fear, joy, sadness. By collapsing them, we can also do sentiment analysis. We evaluate our corpus on benchmark datasets for both emotion and sentiment classification, obtaining competitive results. We release an open-source Python library, so researchers can use a model trained on FEEL-IT for inferring both sentiments and emotions from Italian text. Model ----- The *feel-it-italian-sentiment* model performs sentiment analysis on Italian. We fine-tuned the UmBERTo model on our new dataset (i.e., FEEL-IT) obtaining state-of-the-art performances on different benchmark corpora. Data ---- Our data has been collected by annotating tweets from a broad range of topics. In total, we have 2037 tweets annotated with an emotion label. More details can be found in our paper (URL Performance ----------- We evaluate our performance using SENTIPOLC16 Evalita. We collapsed the FEEL-IT classes into 2 by mapping joy to the *positive* class and anger, fear and sadness into the *negative* class. We compare three different experimental configurations training on FEEL-IT, SENTIPOLC16, or both by testing on the SENTIPOLC16 test set. The results show that training on FEEL-IT can provide better results on the SENTIPOLC16 test set than those that can be obtained with the SENTIPOLC16 training set. Training Dataset: SENTIPOLC16, Macro-F1: 0.80, Accuracy: 0.81 Training Dataset: FEEL-IT, Macro-F1: 0.81, Accuracy: 0.84 Training Dataset: FEEL-IT+SentiPolc, Macro-F1: 0.81, Accuracy: 0.82 Usage ----- Please use the following bibtex entry if you use this model in your project:
[]
[ "TAGS\n#transformers #pytorch #tf #camembert #text-classification #sentiment #Italian #it #autotrain_compatible #endpoints_compatible #has_space #region-us \n" ]
[ 53 ]
[ "passage: TAGS\n#transformers #pytorch #tf #camembert #text-classification #sentiment #Italian #it #autotrain_compatible #endpoints_compatible #has_space #region-us \n" ]
[ -0.03766711801290512, 0.045123063027858734, -0.006414099130779505, 0.06190945953130722, 0.1403743177652359, 0.06005149707198143, 0.032185111194849014, 0.11739737540483475, 0.09566333889961243, 0.044162601232528687, 0.07712525874376297, 0.11397742480039597, -0.022694531828165054, 0.032130979001522064, -0.10533025860786438, -0.2925475835800171, 0.030198466032743454, 0.045618023723363876, -0.022576307877898216, 0.10235457122325897, 0.12062951177358627, -0.07986011356115341, 0.10164309293031693, -0.040839020162820816, -0.12204118072986603, 0.09726168215274811, 0.039867106825113297, -0.08622131496667862, 0.15264470875263214, 0.09053220599889755, 0.1498182862997055, 0.03093133494257927, -0.04346650093793869, -0.10384292900562286, 0.04091736674308777, 0.031752098351716995, -0.08708235621452332, 0.010464861989021301, 0.10216471552848816, -0.11601047962903976, 0.13926060497760773, 0.030382515862584114, -0.026394668966531754, 0.022458093240857124, -0.14509649574756622, -0.06300865113735199, 0.002653745235875249, 0.02517644129693508, -0.0978357344865799, 0.06626974046230316, -0.030273472890257835, 0.1482974737882614, -0.2054716795682907, 0.10171322524547577, 0.13041187822818756, -0.20212705433368683, -0.07620968669652939, 0.02832782082259655, 0.05960254371166229, 0.10321049392223358, -0.06902997195720673, 0.07760161906480789, 0.04637652263045311, 0.004666302353143692, -0.05104934796690941, -0.046537112444639206, -0.06094351038336754, 0.01956600323319435, -0.07194539904594421, -0.043775759637355804, 0.2451639324426651, -0.045022152364254, 0.0685495063662529, -0.01437348872423172, -0.06190795078873634, -0.07813261449337006, 0.013896369375288486, -0.04093445464968681, -0.03186037391424179, 0.08809034526348114, 0.11387120932340622, 0.03018876723945141, -0.14363476634025574, 0.07809946686029434, -0.22378075122833252, 0.2732669711112976, -0.0024270093999803066, 0.015149571001529694, -0.08491858839988708, 0.03194337710738182, -0.059408292174339294, -0.08445652574300766, 0.0754956379532814, -0.0746074914932251, 0.04859617352485657, -0.015209225006401539, -0.08072152733802795, 0.013190267607569695, 0.05248802527785301, 0.0701252818107605, 0.0076987710781395435, -0.01011301577091217, -0.008846884593367577, 0.1053352877497673, 0.09493298828601837, 0.11047033965587616, -0.04584009572863579, -0.07247715443372726, -0.07210945338010788, -0.11841308325529099, 0.0019907010719180107, -0.04950884357094765, -0.18310855329036713, -0.07302208244800568, 0.0026917990762740374, 0.04406403750181198, 0.04253675043582916, 0.081851065158844, -0.06904204934835434, 0.01015487965196371, -0.05633251368999481, -0.07567267119884491, 0.06021188572049141, 0.021520543843507767, -0.017225949093699455, 0.20189771056175232, -0.09568727761507034, -0.029419895261526108, -0.054250575602054596, 0.06489407271146774, -0.06120939552783966, -0.0030774332117289305, -0.034706346690654755, -0.10677383095026016, 0.06914441287517548, -0.18167364597320557, 0.04206822067499161, -0.17600390315055847, 0.03453551605343819, -0.001561779179610312, 0.027044760063290596, -0.08501481264829636, 0.017638064920902252, 0.0047660828568041325, -0.008351295255124569, 0.0858236700296402, -0.020676111802458763, -0.07705637812614441, -0.09361718595027924, 0.09670796990394592, -0.05959349498152733, 0.11953118443489075, -0.17455841600894928, 0.047572966665029526, -0.09797285497188568, -0.033129122108221054, -0.09925926476716995, -0.0057119810953736305, -0.01939093880355358, 0.12720130383968353, 0.04385807365179062, -0.03462417051196098, -0.13600462675094604, 0.08158448338508606, -0.04216688871383667, 0.18141873180866241, -0.2022998183965683, -0.07073113322257996, 0.14321765303611755, -0.10258423537015915, -0.07793468981981277, 0.18023273348808289, 0.027778074145317078, 0.08017724752426147, 0.06084302440285683, 0.22541289031505585, -0.0031660597305744886, -0.04942652955651283, -0.016673075035214424, 0.1250714808702469, -0.08696245402097702, 0.03705202043056488, 0.014636723324656487, 0.061280492693185806, 0.03109300509095192, 0.04004472866654396, 0.04884044826030731, 0.05971909686923027, -0.07262251526117325, -0.055258892476558685, -0.044046130031347275, -0.014832689426839352, 0.12272282689809799, 0.06492125988006592, 0.09253013879060745, -0.11523592472076416, -0.06868269294500351, -0.14245620369911194, 0.02122393622994423, 0.03726793825626373, 0.0327320396900177, -0.045940328389406204, 0.22605623304843903, 0.09813753515481949, -0.0030702538788318634, -0.1649656593799591, -0.03227027505636215, -0.034749481827020645, 0.1865728497505188, 0.007881799712777138, 0.2261652648448944, 0.07038045674562454, -0.08961732685565948, -0.058758534491062164, 0.02764933370053768, 0.11262979358434677, 0.023848574608564377, 0.0034424024634063244, -0.17193281650543213, 0.08365210890769958, -0.052340105175971985, 0.03221876546740532, -0.11183177679777145, 0.019174085929989815, 0.1917911171913147, 0.1431976556777954, -0.04330733045935631, 0.08591342717409134, -0.12947013974189758, 0.027269186452031136, -0.10200455784797668, 0.005643736571073532, 0.06599637120962143, -0.04129791632294655, -0.03542754799127579, 0.17353850603103638, -0.13550004363059998, 0.32601651549339294, 0.21247099339962006, -0.32302168011665344, -0.0501074455678463, -0.027878619730472565, -0.025757543742656708, 0.07711561024188995, 0.06713985651731491, -0.01751520484685898, -0.009358740411698818, -0.06307908892631531, 0.09280341863632202, -0.060905180871486664, 0.03101579286158085, 0.024238206446170807, -0.03704968839883804, -0.12581324577331543, 0.08235159516334534, 0.06440763175487518, -0.16784395277500153, 0.2426077425479889, 0.37837597727775574, -0.01654408872127533, 0.26816344261169434, 0.027601320296525955, 0.03186769410967827, 0.04084007069468498, -0.024425970390439034, -0.07857964187860489, 0.01963210664689541, -0.2539059817790985, -0.04355628043413162, 0.020851977169513702, 0.010856184177100658, 0.03964225947856903, -0.10536978393793106, -0.06246635690331459, 0.003488181158900261, 0.04003684222698212, -0.026014240458607674, 0.08598791062831879, 0.017424797639250755, 0.17103895545005798, 0.026799215003848076, -0.1456519365310669, 0.08005635440349579, 0.024742068722844124, -0.02224249206483364, 0.10956497490406036, -0.16840997338294983, -0.27365121245384216, -0.031032538041472435, -0.07258538901805878, -0.026945456862449646, 0.04125210642814636, 0.06250486522912979, -0.12733067572116852, 0.010213641449809074, 0.019118420779705048, 0.020754830911755562, -0.1159970834851265, 0.015370847657322884, -0.1312924325466156, 0.0711849182844162, -0.1256995052099228, -0.03663523122668266, -0.08530087023973465, -0.04742085561156273, -0.07504996657371521, 0.07576253265142441, -0.16441263258457184, 0.11910729855298996, 0.22180311381816864, -0.025976594537496567, 0.06850576400756836, -0.0536416657269001, 0.16197921335697174, -0.17984876036643982, 0.030553387477993965, 0.1335924118757248, 0.0065958439372479916, 0.039086852222681046, 0.22049471735954285, 0.022717168554663658, -0.05199699103832245, -0.017003258690238, 0.005607806146144867, -0.0853894054889679, -0.1239856481552124, -0.1466759443283081, -0.1371614634990692, 0.08212272822856903, -0.011640273034572601, 0.08077312260866165, 0.11106040328741074, 0.03843897208571434, 0.013637679629027843, -0.14018599689006805, -0.029626643285155296, 0.02278796397149563, 0.21777594089508057, -0.05969077721238136, 0.13105256855487823, -0.03790261596441269, -0.11528728902339935, 0.15775753557682037, 0.08991935104131699, 0.005355177912861109, 0.04885414242744446, 0.03196633607149124, 0.027632303535938263, 0.14139078557491302, 0.08770035952329636, 0.01911521703004837, 0.07670366019010544, -0.07580118626356125, -0.0349503718316555, -0.01954641379415989, -0.026440247893333435, 0.055179912596940994, 0.1308973878622055, -0.16259367763996124, -0.07313080877065659, -0.1478564590215683, 0.1516818404197693, 0.06054938584566116, 0.05387485399842262, -0.16778449714183807, 0.033281661570072174, 0.06010114774107933, 0.02111387997865677, -0.09239400923252106, 0.028328046202659607, 0.08866356313228607, -0.11794120073318481, 0.05442473292350769, 0.056948352605104446, 0.08938657492399216, -0.04046820476651192, 0.11286838352680206, -0.09748266637325287, -0.14862848818302155, -0.009530792944133282, 0.07106640189886093, -0.22280867397785187, 0.26672694087028503, 0.013060132972896099, -0.09245216101408005, -0.0898047387599945, -0.05894363299012184, 0.07899675518274307, 0.28934019804000854, 0.09093885123729706, 0.03527163714170456, -0.06882412731647491, -0.15240702033042908, 0.09331654012203217, -0.025382259860634804, 0.1847321093082428, 0.004552736412733793, -0.06124483793973923, -0.045204222202301025, 0.01147815864533186, 0.014475242234766483, 0.1764567792415619, 0.016593052074313164, -0.18488532304763794, 0.0932617038488388, 0.09211241453886032, -0.03728117793798447, 0.04905765876173973, -0.09743167459964752, -0.16774488985538483, 0.17215952277183533, -0.013908074237406254, 0.035132065415382385, -0.12311045080423355, -0.047088153660297394, -0.00862361490726471, -0.03614021837711334, 0.012294632382690907, -0.0930652767419815, 0.0245414599776268, -0.09815338253974915, -0.08067034184932709, 0.1750863790512085, -0.08916091918945312, -0.014000877737998962, -0.07775016129016876, 0.09482582658529282, -0.06348612159490585, 0.04311167821288109, 0.053720567375421524, 0.0063316309824585915, -0.08077871054410934, -0.05732136592268944, 0.045127127319574356, -0.07838524132966995, -0.021840106695890427, 0.11267159879207611, -0.0907948836684227, -0.0828607976436615, 0.011899023316800594, -0.04205469787120819, 0.212784081697464, 0.13881392776966095, -0.08021458238363266, 0.04665003716945648, 0.03456198051571846, -0.05678414925932884, -0.36744052171707153, 0.02042475901544094, -0.11304040253162384, -0.005239427555352449, 0.016850478947162628, -0.08487042039632797, 0.022838173434138298, -0.00209723599255085, -0.03636219725012779, 0.03420843929052353, -0.19851434230804443, -0.0447162501513958, 0.10273512452840805, -0.049286749213933945, 0.38943472504615784, -0.08956583589315414, -0.014580706134438515, -0.021152781322598457, -0.02957664243876934, 0.0863870307803154, -0.02792532369494438, 0.06589870899915695, 0.01513153500854969, 0.025810765102505684, 0.05302002280950546, 0.0026488211005926132, 0.12962257862091064, -0.0021598143503069878, 0.011416148394346237, -0.12525048851966858, -0.15323461592197418, 0.04389616474509239, 0.019032681360840797, -0.05623511224985123, -0.01859946921467781, -0.07133930921554565, -0.09521789103746414, -0.025334252044558525, -0.13995929062366486, 0.08671672642230988, -0.02317982167005539, -0.043686844408512115, -0.04956752434372902, 0.05819595232605934, 0.005775017663836479, 0.005772129166871309, 0.11925260722637177, -0.1117866262793541, 0.15218111872673035, 0.1146608516573906, 0.12407759577035904, -0.12441505491733551, 0.0464128814637661, -0.009043270722031593, -0.036355480551719666, 0.023735126480460167, -0.03282614424824715, 0.053660184144973755, 0.11832677572965622, -0.06999503821134567, 0.04530894011259079, 0.1152971014380455, 0.009333059191703796, -0.058987099677324295, 0.19233053922653198, -0.1684306412935257, -0.04157722741365433, -0.09147137403488159, -0.07631392031908035, 0.08328834176063538, -0.010251802392303944, 0.12219910323619843, 0.04298567771911621, -0.005679545924067497, -0.009235728532075882, -0.03901579603552818, -0.03458238020539284, 0.021653953939676285, 0.03095025196671486, -0.0319514162838459, -0.08134905993938446, 0.032890450209379196, 0.01409768033772707, -0.27131888270378113, -0.00018774051568470895, 0.15970683097839355, -0.09904950112104416, -0.14762276411056519, -0.02149278111755848, 0.061759136617183685, -0.16527384519577026, -0.06917716562747955, -0.07810667157173157, -0.15893808007240295, 0.05032648891210556, 0.19509078562259674, 0.11190447211265564, 0.08013466745615005, -0.05398917198181152, -0.04725165292620659, 0.046634431928396225, 0.011568903923034668, 0.04372377321124077, -0.026320353150367737, -0.07226753979921341, 0.06298688054084778, -0.012769238092005253, 0.10342654585838318, -0.09508005529642105, -0.07377456873655319, -0.12046857178211212, -0.0013054778100922704, -0.033663712441921234, -0.12342466413974762, -0.040565039962530136, -0.06005467101931572, 0.010778065770864487, -0.07798656821250916, -0.05989571660757065, -0.107242651283741, -0.14675843715667725, 0.0526568777859211, 0.031174274161458015, 0.08410611003637314, -0.04194549843668938, -0.014147097244858742, 0.09305963665246964, -0.024285992607474327, 0.11307457834482193, 0.08139898627996445, -0.0695679783821106, 0.08954136073589325, -0.14146092534065247, -0.08292211592197418, 0.04886668547987938, 0.0022366936318576336, 0.04180426523089409, 0.10931950062513351, 0.030433164909482002, 0.0721936821937561, 0.016044871881604195, 0.08323648571968079, 0.008013271726667881, -0.05243908241391182, 0.14895814657211304, 0.07531533390283585, -0.2274497002363205, -0.014567802660167217, 0.0420425608754158, 0.10536359250545502, -0.060201313346624374, 0.03732479736208916, -0.042143724858760834, 0.03178929165005684, -0.002553715603426099, 0.051278140395879745, -0.013847935013473034, -0.19907887279987335, -0.07610442489385605, -0.07363136857748032, 0.01629619486629963, 0.03431759029626846, 0.17302095890045166, 0.14896772801876068, 0.02044430561363697, 0.05554208531975746, 0.10806392878293991, -0.029331088066101074, 0.012710539624094963, 0.0806269496679306, 0.07727723568677902, -0.06758943200111389, -0.07499226927757263, 0.04359382018446922, 0.007430349942296743, 0.08566344529390335, 0.09130115807056427, 0.10688483715057373, 0.09190378338098526, 0.09945651888847351, 0.025840194895863533, -0.022531889379024506, -0.05612358823418617, -0.12489188462495804, -0.04053867980837822, 0.08190476894378662, -0.10586028546094894, 0.026104215532541275, 0.11726560443639755, -0.01971936970949173, 0.04932863637804985, -0.09204956889152527, -0.03594690561294556, -0.14223910868167877, -0.1669631451368332, -0.020762290805578232, -0.09817411005496979, -0.04104011505842209, -0.09424889087677002, 0.08385363221168518, 0.01098279096186161, 0.07445207238197327, -0.10669245570898056, 0.09356167167425156, -0.05249251052737236, -0.10129542648792267, 0.11788354068994522, -0.003702617483213544, 0.127711683511734, -0.11354660242795944, -0.06075739488005638, -0.20206405222415924, -0.021327389404177666, -0.046962566673755646, 0.035692453384399414, -0.0573592409491539, -0.09112527221441269, -0.1549130529165268, -0.07132144272327423, -0.05154760926961899, 0.01436280831694603, -0.03451196104288101, 0.13998772203922272, -0.041883356869220734, 0.009199246764183044, 0.025467906147241592, 0.22674152255058289, -0.04911099746823311, 0.02083653397858143, -0.04012320190668106, 0.13070960342884064, 0.034392714500427246, 0.1264096051454544, -0.08062270283699036, -0.012500150129199028, -0.1005835235118866, 0.2662452161312103, 0.31927716732025146, -0.11709437519311905, 0.0534711554646492, 0.033866044133901596, 0.0669790506362915, 0.11034378409385681, 0.056908972561359406, 0.0629199743270874, 0.18068037927150726, -0.10671377182006836, 0.056469883769750595, -0.07385954260826111, 0.047655630856752396, -0.054385311901569366, 0.0953175500035286, 0.12120410799980164, -0.03440198674798012, -0.09129321575164795, 0.10671371966600418, -0.11152542382478714, 0.1391432285308838, 0.06309599429368973, -0.2807597815990448, -0.08579576760530472, 0.0013356305425986648, 0.12416628748178482, 0.03233592212200165, 0.16373808681964874, -0.031458351761102676, -0.1265697479248047, 0.014151426963508129, 0.012377623468637466, -0.20877328515052795, -0.09572943300008774, 0.09470809251070023, -0.083450548350811, 0.06300366669893265, -0.07437308877706528, -0.0029763150960206985, 0.13268347084522247, 0.07339511066675186, 0.04068736732006073, -0.005385556723922491, 0.04400746896862984, -0.02012837491929531, -0.06794517487287521, -0.008957881480455399, -0.013582275249063969, -0.07308495044708252, 0.10239575803279877, -0.20207063853740692, 0.10871821641921997, -0.06695196032524109, -0.06569384038448334, -0.005519755184650421, 0.12020135670900345, -0.09075070917606354, 0.05264652892947197, 0.10944585502147675, 0.04172288626432419, -0.05690424516797066, -0.06512316316366196, -0.05437389016151428, 0.03551841154694557, -0.05964362993836403, -0.08193256705999374, -0.06905442476272583, -0.058471906930208206, 0.08665235340595245, -0.010516762733459473, -0.06922057271003723, -0.05015447363257408, -0.03735316917300224, 0.0889882743358612, -0.13890153169631958, 0.03761127591133118, 0.07331005483865738, 0.010449693538248539, 0.010581312701106071, -0.09620187431573868, 0.06124727055430412, 0.06952691823244095, -0.05049143731594086, -0.023623203858733177 ]
null
null
transformers
# Slovak GPT-J-1.4B Slovak GPT-J-1.4B with the whopping `1,415,283,792` parameters is the latest and the largest model released in Slovak GPT-J series. Smaller variants, [Slovak GPT-J-405M](https://huggingface.co/Milos/slovak-gpt-j-405M) and [Slovak GPT-J-162M](https://huggingface.co/Milos/slovak-gpt-j-162M), are still available. ## Model Description Model is based on [GPT-J](https://github.com/kingoflolz/mesh-transformer-jax/) and has over 1.4B trainable parameters. <figure> | Hyperparameter | Value | |----------------------|----------------------------------------------------------------------------------------------------------------------------------------| | \\(n_{parameters}\\) | 1,415,283,792 | | \\(n_{layers}\\) | 24 | | \\(d_{model}\\) | 2048 | | \\(d_{ff}\\) | 16384 | | \\(n_{heads}\\) | 16 | | \\(d_{head}\\) | 256 | | \\(n_{ctx}\\) | 2048 | | \\(n_{vocab}\\) | 50256 (same tokenizer as GPT-2/3&dagger;) | | Positional Encoding | [Rotary Position Embedding (RoPE)](https://arxiv.org/abs/2104.09864) | | RoPE Dimensions | [64](https://github.com/kingoflolz/mesh-transformer-jax/blob/f2aa66e0925de6593dcbb70e72399b97b4130482/mesh_transformer/layers.py#L223) | <p><strong>&dagger;</strong> ByteLevelBPETokenizer was trained on the same Slovak corpus.</p></figure> ## Training data Slovak GPT-J models were trained on a privately collected dataset consisting of predominantly Slovak text spanning different categories, e.g. web, news articles or even biblical texts - in total, over 40GB of text data was used to train this model. The dataset was preprocessed and cleaned in a specific way that involves minor but a few caveats, so in order to achieve the expected performance, feel free to refer to [How to use] section. Please, keep in mind that despite the effort to remove inappropriate corpus, the model still might generate sensitive content or leak sensitive information. ## Training procedure This model was trained for a bit more than 26.5 billion tokens over 48,001 steps on TPU v3-8 pod. The cross-entropy validation loss at the last step was `2.657`. ## Intended Use Same as the original GPT-J, Slovak GPT-J learns an inner representation of the language that can be used to extract features useful for downstream tasks, however, the intended use is text generation from a prompt. ### How to use This model along with the tokenizer can be easily loaded using the `AutoModelForCausalLM` functionality: ```python from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("Milos/slovak-gpt-j-1.4B") model = AutoModelForCausalLM.from_pretrained("Milos/slovak-gpt-j-1.4B") ``` When generating a prompt keep in mind these three things, and you should be good to go: 1. Never leave trailing whitespaces. There's a difference between how tokenizer encodes "Mám rád slovenčinu" (no space after `slovenčinu`) and "Mám rád slovenčinu " (trailing space after `slovenčinu`), i.e `[12805, 2872, 46878]` != `[12805, 2872, 46878, 221]`. 2. Always use good ol' US English primary double quotation marks, i.e. `""` instead of `„“`. 3. In case of a new line always enter `\n\n` instead of a single `\n` To illustrate an example of a basic text generation: ``` >>> prompt = "Tradičné jedlo na Orave sú" >>> encoded_input = tokenizer(prompt, return_tensors='pt') >>> output = model.generate(**encoded_input) >>> tokenizer.decode(output[0]) 'Tradičné jedlo na Orave sú bryndzové halušky\n\nNa Orave sa v minulosti varilo viac druhov' ``` ### Capabilities, Limitations, and Biases Based on the parameter count and our internal testing this should be by far the most capable model out of all models released in Slovak GPT-J series. For sake of simplicity, I have omitted all the boilerplate code and swapped `\n` for new lines in the examples that follow. These were generated with both `top_p` and `temperature` set to `0.9`. A spin on "Mor ho!" by Samo Chalpuka ``` PROMPT Zleteli orly z Tatry, tiahnu na podolia, ponad vysoké hory, ponad rovné polia; preleteli cez Dunaj, cez tú šíru vodu, sadli tam za pomedzím slovenského rodu. Duní Dunaj a luna za lunou sa valí OUTPUT Zleteli orly z Tatry, tiahnu na podolia, ponad vysoké hory, ponad rovné polia; preleteli cez Dunaj, cez tú šíru vodu, sadli tam za pomedzím slovenského rodu. Duní Dunaj a luna za lunou sa valí: nad ním svieti pevný hrad na vysokom bralí. Pod tým hradom je zem slovenská, na nej je Slovensko naše. Na tom vrchu leží slovenský národ, pod tým bralom leží krajina slovenská. A pod tým hradom leží i jeho sláva: na tom vrchu, na tom brale leží sláva slovenského národa.``` ``` Jokes are a bit hit or miss. Very often they contain vulgarisms and/or are highly politically incorrect. This one is rather exception than the rule. ``` PROMPT Nasledujú najlepšie vtipy. Prečo OUTPUT Nasledujú najlepšie vtipy. Prečo má policajt pri sebe vždy dva nože? Jeden je na sebaobranu, druhý na boj zblízka. ``` The infamous unicorn prompt from GPT-2 paper. ``` PROMPT V šokujúcom náleze vedci objavili stádo jednorožcov žijúcich v odľahlom, predtým nepreskúmanom údolí, v Andách. Ešte prekvapivejšie pre vedcov bol fakt, že jednorožce hovorili plynule po slovensky. OUTPUT V šokujúcom náleze vedci objavili stádo jednorožcov žijúcich v odľahlom, predtým nepreskúmanom údolí, v Andách. Ešte prekvapivejšie pre vedcov bol fakt, že jednorožce hovorili plynule po slovensky. V Andách ich totiž žilo približne 700 jedincov, ktoré sa živili výhradne materským mliekom. Slováci sú tak pravdepodobne prvými Európanmi, ktorí v Andách stretli jednorožca. "Je to dôkaz, že tieto zvieratá sú inteligentné a že žijú v Andách už stovky rokov," povedal pre webový portál televízie JOJ profesor geológie, geografie a zoológie, Milan Kováč. Podľa profesora Kováča si v Andách zvieratá vytvárajú svoj vlastný jazyk. Je to zároveň dôkaz, že jednorožce žili v minulosti aj v slovenských pohoriach. "Jednorožce sa tam síce vyskytovali, ale neboli tak dobre preskúmané, ako teraz v Andách." Na Slovensku však ľudia o jednorožcoch donedávna vedeli veľmi málo.<|endoftext|> ``` Since the dataset contains profanity, politically incorrect language, and (unintentionally) even a bits of text in Czech, the model can generate them in some extent too. Here's an example of the model output when prompt is in Czech: ``` >>> prompt = "Věta nesmí být sprostá a musí být zcela" >>> encoded_input = tokenizer(prompt, return_tensors='pt') >>> output = model.generate(**encoded_input, max_length=16) >>> tokenizer.decode(output[0]) 'Věta nesmí být sprostá a musí být zcela pravdivá.' ``` ## Citation and Related Information This was done as a moonlighting project during summer of 2021 to better understand transformers. I didn't have much free time to open source it properly, so it all sat on my hard drive until now :) If you use this model or have any questions about it feel free to hit me up at [twitter](https://twitter.com/miloskondela) or check out my [github](https://github.com/kondela) profile. ### BibTeX entry To cite this model: ```bibtex @misc{slovak-gpt-j-1.4B, author = {Kondela, Milos}, title = {{Slovak GPT-J-1.4B}}, howpublished = {\url{https://huggingface.co/Milos/slovak-gpt-j-1.4B}}, year = 2022, month = February } ``` To cite the codebase that trained this model: ```bibtex @misc{mesh-transformer-jax, author = {Wang, Ben}, title = {{Mesh-Transformer-JAX: Model-Parallel Implementation of Transformer Language Model with JAX}}, howpublished = {\url{https://github.com/kingoflolz/mesh-transformer-jax}}, year = 2021, month = May } ``` ## Acknowledgements This project was generously supported by [TPU Research Cloud (TRC) program](https://sites.research.google/trc/about/). Shoutout also goes to [Ben Wang](https://github.com/kingoflolz) and great [EleutherAI community](https://www.eleuther.ai/).
{"language": ["sk"], "license": "gpl-3.0", "tags": ["Slovak GPT-J", "pytorch", "causal-lm"]}
text-generation
Milos/slovak-gpt-j-1.4B
[ "transformers", "pytorch", "gptj", "text-generation", "Slovak GPT-J", "causal-lm", "sk", "arxiv:2104.09864", "license:gpl-3.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
2022-03-02T23:29:04+00:00
[ "2104.09864" ]
[ "sk" ]
TAGS #transformers #pytorch #gptj #text-generation #Slovak GPT-J #causal-lm #sk #arxiv-2104.09864 #license-gpl-3.0 #autotrain_compatible #endpoints_compatible #has_space #region-us
Slovak GPT-J-1.4B ================= Slovak GPT-J-1.4B with the whopping '1,415,283,792' parameters is the latest and the largest model released in Slovak GPT-J series. Smaller variants, Slovak GPT-J-405M and Slovak GPT-J-162M, are still available. Model Description ----------------- Model is based on GPT-J and has over 1.4B trainable parameters. **†** ByteLevelBPETokenizer was trained on the same Slovak corpus. Training data ------------- Slovak GPT-J models were trained on a privately collected dataset consisting of predominantly Slovak text spanning different categories, e.g. web, news articles or even biblical texts - in total, over 40GB of text data was used to train this model. The dataset was preprocessed and cleaned in a specific way that involves minor but a few caveats, so in order to achieve the expected performance, feel free to refer to [How to use] section. Please, keep in mind that despite the effort to remove inappropriate corpus, the model still might generate sensitive content or leak sensitive information. Training procedure ------------------ This model was trained for a bit more than 26.5 billion tokens over 48,001 steps on TPU v3-8 pod. The cross-entropy validation loss at the last step was '2.657'. Intended Use ------------ Same as the original GPT-J, Slovak GPT-J learns an inner representation of the language that can be used to extract features useful for downstream tasks, however, the intended use is text generation from a prompt. ### How to use This model along with the tokenizer can be easily loaded using the 'AutoModelForCausalLM' functionality: When generating a prompt keep in mind these three things, and you should be good to go: 1. Never leave trailing whitespaces. There's a difference between how tokenizer encodes "Mám rád slovenčinu" (no space after 'slovenčinu') and "Mám rád slovenčinu " (trailing space after 'slovenčinu'), i.e '[12805, 2872, 46878]' != '[12805, 2872, 46878, 221]'. 2. Always use good ol' US English primary double quotation marks, i.e. '""' instead of '„“'. 3. In case of a new line always enter '\n\n' instead of a single '\n' To illustrate an example of a basic text generation: ### Capabilities, Limitations, and Biases Based on the parameter count and our internal testing this should be by far the most capable model out of all models released in Slovak GPT-J series. For sake of simplicity, I have omitted all the boilerplate code and swapped '\n' for new lines in the examples that follow. These were generated with both 'top\_p' and 'temperature' set to '0.9'. A spin on "Mor ho!" by Samo Chalpuka PROMPT Nasledujú najlepšie vtipy. Prečo OUTPUT Nasledujú najlepšie vtipy. Prečo má policajt pri sebe vždy dva nože? Jeden je na sebaobranu, druhý na boj zblízka. PROMPT V šokujúcom náleze vedci objavili stádo jednorožcov žijúcich v odľahlom, predtým nepreskúmanom údolí, v Andách. Ešte prekvapivejšie pre vedcov bol fakt, že jednorožce hovorili plynule po slovensky. OUTPUT V šokujúcom náleze vedci objavili stádo jednorožcov žijúcich v odľahlom, predtým nepreskúmanom údolí, v Andách. Ešte prekvapivejšie pre vedcov bol fakt, že jednorožce hovorili plynule po slovensky. V Andách ich totiž žilo približne 700 jedincov, ktoré sa živili výhradne materským mliekom. Slováci sú tak pravdepodobne prvými Európanmi, ktorí v Andách stretli jednorožca. "Je to dôkaz, že tieto zvieratá sú inteligentné a že žijú v Andách už stovky rokov," povedal pre webový portál televízie JOJ profesor geológie, geografie a zoológie, Milan Kováč. Podľa profesora Kováča si v Andách zvieratá vytvárajú svoj vlastný jazyk. Je to zároveň dôkaz, že jednorožce žili v minulosti aj v slovenských pohoriach. "Jednorožce sa tam síce vyskytovali, ale neboli tak dobre preskúmané, ako teraz v Andách." Na Slovensku však ľudia o jednorožcoch donedávna vedeli veľmi málo.<|endoftext|> > > > > > > > > > > > > prompt = "Věta nesmí být sprostá a musí být zcela" > > > encoded\_input = tokenizer(prompt, return\_tensors='pt') > > > output = model.generate(encoded\_input, max\_length=16) > > > URL(output[0]) > > > 'Věta nesmí být sprostá a musí být zcela pravdivá.' > > > bibtex > > > @misc{slovak-gpt-j-1.4B, > > > author = {Kondela, Milos}, > > > title = {{Slovak GPT-J-1.4B}}, > > > howpublished = {\url{URL > > > year = 2022, > > > month = February > > > } > > > bibtex > > > @misc{mesh-transformer-jax, > > > author = {Wang, Ben}, > > > title = {{Mesh-Transformer-JAX: Model-Parallel Implementation of Transformer Language Model with JAX}}, > > > howpublished = {\url{URL > > > year = 2021, > > > month = May > > > } > > > ''' > > > > > > > > > > > > > > > > > > Acknowledgements ---------------- This project was generously supported by TPU Research Cloud (TRC) program. Shoutout also goes to Ben Wang and great EleutherAI community.
[ "### How to use\n\n\nThis model along with the tokenizer can be easily loaded using the 'AutoModelForCausalLM' functionality:\n\n\nWhen generating a prompt keep in mind these three things, and you should be good to go:\n\n\n1. Never leave trailing whitespaces. There's a difference between how tokenizer encodes \"Mám rád slovenčinu\" (no space after 'slovenčinu') and \"Mám rád slovenčinu \" (trailing space after 'slovenčinu'), i.e '[12805, 2872, 46878]' != '[12805, 2872, 46878, 221]'.\n2. Always use good ol' US English primary double quotation marks, i.e. '\"\"' instead of '„“'.\n3. In case of a new line always enter '\\n\\n' instead of a single '\\n'\n\n\nTo illustrate an example of a basic text generation:", "### Capabilities, Limitations, and Biases\n\n\nBased on the parameter count and our internal testing this should be by far the most capable model out of all models released in Slovak GPT-J series.\nFor sake of simplicity, I have omitted all the boilerplate code and swapped '\\n' for new lines in the examples that follow. These were generated with both 'top\\_p' and 'temperature' set to '0.9'.\n\n\nA spin on \"Mor ho!\" by Samo Chalpuka\n\n\nPROMPT\nNasledujú najlepšie vtipy.\n\n\nPrečo\nOUTPUT\nNasledujú najlepšie vtipy.\n\n\nPrečo má policajt pri sebe vždy dva nože? Jeden je na sebaobranu, druhý na boj zblízka.\n\n\nPROMPT\nV šokujúcom náleze vedci objavili stádo jednorožcov žijúcich v odľahlom, predtým nepreskúmanom údolí, v Andách. Ešte prekvapivejšie pre vedcov bol fakt, že jednorožce hovorili plynule po slovensky.\n\n\nOUTPUT\nV šokujúcom náleze vedci objavili stádo jednorožcov žijúcich v odľahlom, predtým nepreskúmanom údolí, v Andách. Ešte prekvapivejšie pre vedcov bol fakt, že jednorožce hovorili plynule po slovensky.\n\n\nV Andách ich totiž žilo približne 700 jedincov, ktoré sa živili výhradne materským mliekom. Slováci sú tak pravdepodobne prvými Európanmi, ktorí v Andách stretli jednorožca. \"Je to dôkaz, že tieto zvieratá sú inteligentné a že žijú v Andách už stovky rokov,\" povedal pre webový portál televízie JOJ profesor geológie, geografie a zoológie, Milan Kováč.\n\n\nPodľa profesora Kováča si v Andách zvieratá vytvárajú svoj vlastný jazyk. Je to zároveň dôkaz, že jednorožce žili v minulosti aj v slovenských pohoriach. \"Jednorožce sa tam síce vyskytovali, ale neboli tak dobre preskúmané, ako teraz v Andách.\"\n\n\nNa Slovensku však ľudia o jednorožcoch donedávna vedeli veľmi málo.<|endoftext|>\n\n\n\n> \n> \n> > \n> > \n> > > \n> > > prompt = \"Věta nesmí být sprostá a musí být zcela\"\n> > > encoded\\_input = tokenizer(prompt, return\\_tensors='pt')\n> > > output = model.generate(encoded\\_input, max\\_length=16)\n> > > URL(output[0])\n> > > 'Věta nesmí být sprostá a musí být zcela pravdivá.'\n> > > bibtex\n> > > @misc{slovak-gpt-j-1.4B,\n> > > author = {Kondela, Milos},\n> > > title = {{Slovak GPT-J-1.4B}},\n> > > howpublished = {\\url{URL\n> > > year = 2022,\n> > > month = February\n> > > }\n> > > bibtex\n> > > @misc{mesh-transformer-jax,\n> > > author = {Wang, Ben},\n> > > title = {{Mesh-Transformer-JAX: Model-Parallel Implementation of Transformer Language Model with JAX}},\n> > > howpublished = {\\url{URL\n> > > year = 2021,\n> > > month = May\n> > > }\n> > > '''\n> > > \n> > > \n> > > \n> > \n> > \n> > \n> \n> \n> \n\n\nAcknowledgements\n----------------\n\n\nThis project was generously supported by TPU Research Cloud (TRC) program. Shoutout also goes to Ben Wang and great EleutherAI community." ]
[ "TAGS\n#transformers #pytorch #gptj #text-generation #Slovak GPT-J #causal-lm #sk #arxiv-2104.09864 #license-gpl-3.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n", "### How to use\n\n\nThis model along with the tokenizer can be easily loaded using the 'AutoModelForCausalLM' functionality:\n\n\nWhen generating a prompt keep in mind these three things, and you should be good to go:\n\n\n1. Never leave trailing whitespaces. There's a difference between how tokenizer encodes \"Mám rád slovenčinu\" (no space after 'slovenčinu') and \"Mám rád slovenčinu \" (trailing space after 'slovenčinu'), i.e '[12805, 2872, 46878]' != '[12805, 2872, 46878, 221]'.\n2. Always use good ol' US English primary double quotation marks, i.e. '\"\"' instead of '„“'.\n3. In case of a new line always enter '\\n\\n' instead of a single '\\n'\n\n\nTo illustrate an example of a basic text generation:", "### Capabilities, Limitations, and Biases\n\n\nBased on the parameter count and our internal testing this should be by far the most capable model out of all models released in Slovak GPT-J series.\nFor sake of simplicity, I have omitted all the boilerplate code and swapped '\\n' for new lines in the examples that follow. These were generated with both 'top\\_p' and 'temperature' set to '0.9'.\n\n\nA spin on \"Mor ho!\" by Samo Chalpuka\n\n\nPROMPT\nNasledujú najlepšie vtipy.\n\n\nPrečo\nOUTPUT\nNasledujú najlepšie vtipy.\n\n\nPrečo má policajt pri sebe vždy dva nože? Jeden je na sebaobranu, druhý na boj zblízka.\n\n\nPROMPT\nV šokujúcom náleze vedci objavili stádo jednorožcov žijúcich v odľahlom, predtým nepreskúmanom údolí, v Andách. Ešte prekvapivejšie pre vedcov bol fakt, že jednorožce hovorili plynule po slovensky.\n\n\nOUTPUT\nV šokujúcom náleze vedci objavili stádo jednorožcov žijúcich v odľahlom, predtým nepreskúmanom údolí, v Andách. Ešte prekvapivejšie pre vedcov bol fakt, že jednorožce hovorili plynule po slovensky.\n\n\nV Andách ich totiž žilo približne 700 jedincov, ktoré sa živili výhradne materským mliekom. Slováci sú tak pravdepodobne prvými Európanmi, ktorí v Andách stretli jednorožca. \"Je to dôkaz, že tieto zvieratá sú inteligentné a že žijú v Andách už stovky rokov,\" povedal pre webový portál televízie JOJ profesor geológie, geografie a zoológie, Milan Kováč.\n\n\nPodľa profesora Kováča si v Andách zvieratá vytvárajú svoj vlastný jazyk. Je to zároveň dôkaz, že jednorožce žili v minulosti aj v slovenských pohoriach. \"Jednorožce sa tam síce vyskytovali, ale neboli tak dobre preskúmané, ako teraz v Andách.\"\n\n\nNa Slovensku však ľudia o jednorožcoch donedávna vedeli veľmi málo.<|endoftext|>\n\n\n\n> \n> \n> > \n> > \n> > > \n> > > prompt = \"Věta nesmí být sprostá a musí být zcela\"\n> > > encoded\\_input = tokenizer(prompt, return\\_tensors='pt')\n> > > output = model.generate(encoded\\_input, max\\_length=16)\n> > > URL(output[0])\n> > > 'Věta nesmí být sprostá a musí být zcela pravdivá.'\n> > > bibtex\n> > > @misc{slovak-gpt-j-1.4B,\n> > > author = {Kondela, Milos},\n> > > title = {{Slovak GPT-J-1.4B}},\n> > > howpublished = {\\url{URL\n> > > year = 2022,\n> > > month = February\n> > > }\n> > > bibtex\n> > > @misc{mesh-transformer-jax,\n> > > author = {Wang, Ben},\n> > > title = {{Mesh-Transformer-JAX: Model-Parallel Implementation of Transformer Language Model with JAX}},\n> > > howpublished = {\\url{URL\n> > > year = 2021,\n> > > month = May\n> > > }\n> > > '''\n> > > \n> > > \n> > > \n> > \n> > \n> > \n> \n> \n> \n\n\nAcknowledgements\n----------------\n\n\nThis project was generously supported by TPU Research Cloud (TRC) program. Shoutout also goes to Ben Wang and great EleutherAI community." ]
[ 74, 208, 830 ]
[ "passage: TAGS\n#transformers #pytorch #gptj #text-generation #Slovak GPT-J #causal-lm #sk #arxiv-2104.09864 #license-gpl-3.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n### How to use\n\n\nThis model along with the tokenizer can be easily loaded using the 'AutoModelForCausalLM' functionality:\n\n\nWhen generating a prompt keep in mind these three things, and you should be good to go:\n\n\n1. Never leave trailing whitespaces. There's a difference between how tokenizer encodes \"Mám rád slovenčinu\" (no space after 'slovenčinu') and \"Mám rád slovenčinu \" (trailing space after 'slovenčinu'), i.e '[12805, 2872, 46878]' != '[12805, 2872, 46878, 221]'.\n2. Always use good ol' US English primary double quotation marks, i.e. '\"\"' instead of '„“'.\n3. In case of a new line always enter '\\n\\n' instead of a single '\\n'\n\n\nTo illustrate an example of a basic text generation:" ]
[ -0.0057349856942892075, -0.047072187066078186, -0.007197163533419371, 0.051143579185009, 0.092738576233387, 0.017531631514430046, 0.187772735953331, 0.056786615401506424, 0.0424443818628788, 0.039976246654987335, 0.1467117965221405, 0.06433714181184769, 0.006206857040524483, 0.03895532339811325, 0.007760980632156134, -0.26760950684547424, 0.1143471747636795, 0.00001194739706988912, 0.07026843726634979, 0.07851991802453995, 0.13009017705917358, -0.08307619392871857, 0.025989195331931114, 0.006785652134567499, -0.10594813525676727, 0.0038122856058180332, 0.011483747512102127, -0.08277156203985214, 0.08501551300287247, 0.001962969545274973, 0.03614967316389084, 0.05298226326704025, 0.020832447335124016, -0.1347028911113739, 0.018187949433922768, 0.020244885236024857, 0.0336078517138958, 0.027494320645928383, -0.016996080055832863, -0.016161669045686722, 0.15127713978290558, -0.03070131130516529, 0.050586849451065063, -0.025042617693543434, -0.09316524118185043, -0.15439869463443756, -0.02682512439787388, 0.015049649402499199, 0.07973439991474152, -0.05115141719579697, 0.008094076067209244, 0.11840975284576416, -0.08727362751960754, 0.08514394611120224, 0.18166273832321167, -0.27086547017097473, -0.024220583960413933, 0.021979929879307747, 0.04220067709684372, 0.03963107988238335, -0.030662385746836662, 0.0062517630867660046, -0.017477313056588173, -0.0001391430851072073, 0.04055844992399216, -0.03069140389561653, -0.023006649687886238, 0.04487684741616249, -0.15315572917461395, -0.07550155371427536, 0.17103010416030884, -0.018227403983473778, -0.026532240211963654, -0.08844368904829025, -0.027005339041352272, -0.07627138495445251, -0.026760011911392212, -0.02314872480928898, -0.029927324503660202, -0.010677970014512539, 0.01147451438009739, -0.14610305428504944, -0.1211283877491951, -0.012087436392903328, -0.09364818036556244, 0.1948087066411972, 0.047742605209350586, 0.05772174522280693, 0.020907940343022346, 0.062263648957014084, -0.10858641564846039, -0.07460285723209381, 0.005533124320209026, -0.05446575954556465, 0.04186837375164032, 0.012503089383244514, -0.043638769537210464, -0.11184925585985184, 0.0523238331079483, 0.1219559758901596, -0.01634444110095501, 0.032000526785850525, -0.003971239551901817, 0.08254770189523697, -0.0033952572848647833, 0.1583092361688614, -0.016179071739315987, 0.10786687582731247, 0.06842450797557831, 0.011341146193444729, 0.04904705286026001, -0.08073317259550095, -0.1693146824836731, -0.04229648783802986, 0.1444271206855774, 0.06615281850099564, -0.016149163246154785, 0.0366964153945446, -0.040574949234724045, 0.0027594000566750765, -0.003355594351887703, -0.16757456958293915, 0.06903894990682602, 0.008202639408409595, 0.02060295082628727, 0.018042610958218575, -0.07239671051502228, 0.04430055990815163, -0.13774169981479645, 0.006017535924911499, -0.01909472979605198, 0.09251774847507477, -0.12017800658941269, -0.1117963194847107, 0.038470298051834106, -0.01879258267581463, -0.04529635235667229, -0.05014561861753464, -0.12670455873012543, 0.027903525158762932, 0.04812280461192131, -0.004857304506003857, -0.018312521278858185, -0.04116232693195343, -0.015023847110569477, 0.010960646905004978, -0.010940765962004662, -0.09533899277448654, -0.024705756455659866, 0.06014036387205124, 0.0472942516207695, 0.0723116397857666, -0.09759705513715744, 0.01842452771961689, -0.08420729637145996, 0.005908820312470198, -0.2843395173549652, 0.07416817545890808, -0.02182716876268387, -0.0310989897698164, -0.003720324020832777, -0.039782531559467316, -0.01444322895258665, 0.03915562480688095, 0.003042955417186022, 0.1038077250123024, -0.11770309507846832, -0.03096296451985836, 0.09014815092086792, -0.12578067183494568, 0.0006206760881468654, 0.17268547415733337, -0.029239961877465248, -0.00853818655014038, 0.07527368515729904, 0.16639740765094757, 0.031193986535072327, -0.14084550738334656, 0.08660276979207993, 0.031632740050554276, -0.09421893209218979, 0.02353149652481079, 0.07548990100622177, 0.0001379782916046679, 0.038166631013154984, 0.028066858649253845, -0.05285903438925743, -0.014898796565830708, -0.0238553024828434, -0.014426054432988167, -0.02027260884642601, 0.03880443423986435, 0.059241194278001785, -0.04049253091216087, -0.017869165167212486, -0.09606022387742996, -0.08557530492544174, 0.14884649217128754, 0.007061829324811697, -0.0670533999800682, 0.05011509358882904, -0.1252164989709854, 0.12516804039478302, -0.09920480847358704, -0.022683000192046165, -0.10452304035425186, -0.0660753846168518, 0.023090267553925514, 0.008320242166519165, 0.04270496591925621, 0.025017134845256805, 0.027448900043964386, 0.07783082872629166, -0.021180149167776108, 0.03856828063726425, 0.008370986208319664, 0.010281194001436234, -0.023314742371439934, -0.06369490176439285, -0.03782961145043373, -0.014711008407175541, -0.026255302131175995, 0.02298993244767189, 0.05732154846191406, 0.14981812238693237, 0.07726971060037613, 0.007022158242762089, 0.0032754475250840187, -0.0012758938828483224, 0.04418068751692772, -0.0027887055184692144, 0.00031161849619820714, 0.02727081999182701, 0.016471004113554955, -0.05380621924996376, 0.15403346717357635, -0.21496565639972687, 0.1136370599269867, 0.1075454130768776, -0.09446761012077332, -0.027619322761893272, 0.03719380125403404, -0.03438057750463486, 0.05919226258993149, -0.04125896468758583, -0.06133407726883888, 0.13995137810707092, 0.034998007118701935, 0.08185949176549911, -0.11945280432701111, -0.07764539122581482, -0.0014486178988590837, -0.09221307188272476, -0.07291217148303986, 0.06386513262987137, 0.11229681968688965, -0.11590228229761124, 0.09396638721227646, 0.0572814866900444, -0.05142713710665703, 0.23621422052383423, -0.008135711774230003, -0.05856965482234955, -0.09871447831392288, 0.07618358731269836, -0.04273849353194237, 0.08367887139320374, -0.06233097240328789, 0.00959514919668436, 0.03576173260807991, 0.028057588264346123, 0.049273695796728134, -0.1927551031112671, 0.018710914999246597, 0.01129497867077589, -0.11002307385206223, 0.006859099958091974, -0.013374407775700092, 0.054836757481098175, 0.11665517836809158, -0.0032029643189162016, 0.002284818794578314, 0.04764479026198387, 0.017907802015542984, -0.08146923780441284, 0.09028033167123795, -0.12812785804271698, -0.24445754289627075, -0.20475558936595917, 0.03601287677884102, -0.030608944594860077, 0.004479080904275179, 0.0723283514380455, -0.011728080920875072, -0.035681720823049545, -0.07550567388534546, 0.0846705287694931, -0.025816166773438454, -0.062197066843509674, -0.007652320899069309, -0.01923673041164875, -0.04136792942881584, -0.11609180271625519, -0.08514198660850525, -0.01040066871792078, 0.012261267751455307, 0.0954626128077507, 0.03985149785876274, 0.047084491699934006, 0.04533514380455017, -0.09719323366880417, 0.034539226442575455, -0.015620425343513489, 0.19866982102394104, -0.03162415325641632, 0.06469558924436569, 0.150814950466156, -0.07122102379798889, 0.09863008558750153, 0.09786977618932724, 0.0045704590156674385, -0.03545351326465607, -0.03166447579860687, -0.02124173194169998, -0.08213097602128983, -0.1301514357328415, -0.007192754186689854, -0.13381583988666534, -0.02823474258184433, -0.01980571821331978, -0.016225920990109444, -0.049560125917196274, 0.022012213245034218, -0.06600488722324371, 0.030277902260422707, 0.10037918388843536, 0.11421070247888565, 0.3113085627555847, 0.016315432265400887, 0.08786296844482422, -0.06459428369998932, -0.13729320466518402, 0.039280809462070465, 0.0062085650861263275, 0.09165932983160019, -0.026360606774687767, 0.03380899131298065, 0.052313778549432755, 0.047378405928611755, 0.09314673393964767, 0.09673745185136795, -0.06563425064086914, 0.0323684997856617, -0.03700771927833557, -0.05272764712572098, -0.06478894501924515, 0.0043134624138474464, 0.03285307064652443, -0.08860602229833603, -0.019410686567425728, 0.04986708238720894, 0.08861417323350906, 0.14845521748065948, 0.0420253612101078, -0.18300500512123108, -0.05177447199821472, 0.03286026418209076, -0.020526718348264694, -0.05978776887059212, 0.013759126886725426, 0.11378048360347748, -0.08972731977701187, 0.05758233368396759, 0.0005523786530829966, 0.03912528231739998, -0.0773657038807869, 0.08675622940063477, -0.06126505881547928, 0.07094115018844604, -0.004612678196281195, 0.08417502790689468, -0.2617751359939575, 0.08713194727897644, 0.03135745972394943, 0.0293751023709774, -0.06017313525080681, 0.03966958448290825, 0.004055132623761892, -0.048437368124723434, 0.023795785382390022, 0.010317236185073853, -0.15643686056137085, -0.10280109196901321, -0.020201215520501137, 0.007534086238592863, 0.095083087682724, -0.0054997652769088745, 0.06643859297037125, -0.048807304352521896, 0.030230771750211716, -0.007274749223142862, -0.04821058735251427, -0.019847305491566658, -0.1851530522108078, 0.07508107274770737, 0.004328297451138496, -0.07589926570653915, -0.031657297164201736, -0.023325039073824883, -0.0008312526042573154, 0.10927679389715195, -0.07271483540534973, -0.1552465409040451, -0.08470365405082703, -0.004980321973562241, 0.1478438675403595, -0.05921503156423569, -0.03515665978193283, -0.04518904164433479, 0.1381109058856964, -0.05045022442936897, -0.05159414932131767, 0.04429306462407112, -0.008269895799458027, -0.1033996120095253, 0.016230305656790733, 0.17739661037921906, -0.05235358700156212, 0.03810710087418556, 0.0409911647439003, 0.0803879126906395, -0.02938241884112358, -0.13887397944927216, 0.025479523465037346, -0.04704037681221962, -0.018977707251906395, 0.009551424533128738, -0.13600045442581177, -0.0034230947494506836, -0.03795212507247925, -0.005954262334853411, 0.23939736187458038, 0.2832818925380707, -0.05445995554327965, 0.15724830329418182, 0.10505099594593048, -0.07095813006162643, -0.1557549238204956, -0.13264037668704987, -0.012472978793084621, 0.036369748413562775, -0.040206119418144226, -0.12190593034029007, 0.02957087941467762, 0.09160064160823822, 0.01799868792295456, 0.02079390175640583, -0.2348162978887558, -0.08571720123291016, 0.10654262453317642, -0.001515344250947237, 0.20744428038597107, -0.0933372750878334, -0.043996889144182205, -0.018851667642593384, -0.09464981406927109, 0.18676772713661194, 0.04473619908094406, 0.0643523633480072, 0.02542881853878498, 0.10623572021722794, 0.06315099447965622, -0.04483945667743683, 0.10631151497364044, -0.08331529051065445, 0.05196423456072807, -0.09100925177335739, -0.10532470047473907, 0.11544573307037354, -0.03608289361000061, 0.1562453806400299, -0.04263126105070114, -0.04027687758207321, -0.08469203859567642, -0.08650069683790207, -0.01806265488266945, 0.0426529161632061, -0.03405359759926796, -0.04952103644609451, -0.032172027975320816, -0.05261135846376419, 0.009901143610477448, -0.027183059602975845, 0.03374156355857849, -0.04197309911251068, 0.11560526490211487, 0.11217038333415985, 0.10026788711547852, -0.12334465980529785, 0.03493348881602287, -0.0021742423996329308, -0.008165687322616577, 0.0443393774330616, 0.044465258717536926, 0.08949622511863708, 0.08429090678691864, -0.02971385046839714, 0.11600162088871002, 0.05104215070605278, -0.05140094459056854, 0.01845959760248661, 0.06249497830867767, -0.18532656133174896, -0.09838234633207321, 0.01729492098093033, 0.03875015676021576, 0.019331933930516243, -0.024157200008630753, 0.16509243845939636, -0.01633388362824917, -0.052592240273952484, 0.0026932174805551767, 0.078792504966259, 0.02110624872148037, 0.028024723753333092, 0.05907515436410904, 0.06425691395998001, -0.08043663203716278, -0.04997850954532623, 0.02219243161380291, -0.07812632620334625, 0.04678674787282944, 0.06475479900836945, -0.06783460825681686, -0.05225396156311035, -0.04127068817615509, 0.11007878929376602, -0.08353541791439056, -0.03626300022006035, -0.11442991346120834, -0.14048419892787933, 0.04882090911269188, 0.06916940957307816, 0.0573357418179512, 0.07242200523614883, 0.006261092144995928, 0.05495007336139679, -0.049014657735824585, 0.07933931052684784, -0.01624944992363453, -0.024332920089364052, -0.06534382700920105, 0.16731946170330048, -0.022832045331597328, 0.028571315109729767, -0.029922252520918846, -0.0027693314477801323, -0.11379172652959824, -0.029099291190505028, 0.011462760157883167, 0.00007220248517114669, -0.046426787972450256, 0.03637112304568291, 0.07368796318769455, -0.04922839626669884, -0.05134671926498413, 0.017702048644423485, -0.12366872280836105, -0.008031693287193775, -0.0665021538734436, 0.020643800497055054, -0.08389819413423538, 0.003381972433999181, 0.11451844871044159, -0.08725813031196594, 0.07695910334587097, 0.04403843730688095, -0.06947405636310577, 0.01547153852880001, -0.03917195275425911, -0.03264608234167099, 0.00032662120065651834, 0.033492203801870346, -0.013316309079527855, -0.043256793171167374, 0.06333879381418228, 0.09828388690948486, 0.0774422213435173, 0.028909387066960335, 0.10607246309518814, -0.11639265716075897, 0.05259063467383385, 0.0016241018893197179, -0.16316455602645874, -0.04808168485760689, 0.04313391447067261, 0.02048078365623951, 0.044513169676065445, 0.13531813025474548, -0.0673014372587204, 0.037391409277915955, -0.05631688982248306, 0.00982812698930502, 0.030182531103491783, -0.05829046666622162, -0.05413094162940979, -0.06706902384757996, 0.027823811396956444, -0.014999170787632465, 0.19391624629497528, 0.05961480736732483, -0.037473857402801514, 0.038454942405223846, 0.04093509167432785, -0.0307632926851511, 0.02923562005162239, 0.06547556072473526, 0.005193862598389387, -0.024425510317087173, -0.056468717753887177, -0.051615290343761444, 0.014901791699230671, -0.08253314346075058, 0.11666768789291382, 0.04536425322294235, 0.07984708249568939, 0.055003754794597626, 0.05512252822518349, 0.041115958243608475, -0.033788684755563736, 0.06801987439393997, 0.02693585492670536, 0.03953544422984123, -0.020206855610013008, 0.18415161967277527, 0.21604956686496735, -0.11552371829748154, 0.10294920951128006, 0.006373832933604717, -0.04535730555653572, -0.15215562283992767, -0.13380193710327148, -0.05665339529514313, -0.10493451356887817, 0.009969905950129032, -0.13654951751232147, 0.03443717584013939, 0.025021495297551155, 0.039679620414972305, 0.015077014453709126, 0.01309417374432087, -0.009955895133316517, -0.06259962916374207, 0.026937071233987808, -0.03326522558927536, 0.0458308681845665, 0.10297241806983948, -0.06928498297929764, 0.035614121705293655, 0.04360666126012802, 0.10374854505062103, 0.05802086368203163, 0.09593196213245392, -0.05863988772034645, -0.1460026353597641, -0.03559671714901924, -0.01717573031783104, -0.028291694819927216, 0.0762803703546524, 0.016883758828043938, -0.018222032114863396, -0.06863762438297272, -0.010972400195896626, 0.19093601405620575, 0.006810690276324749, -0.2379109114408493, -0.1128251925110817, 0.10616462677717209, 0.08117634057998657, 0.07822982221841812, -0.03896191343665123, -0.07419490069150925, -0.042567599564790726, 0.13050536811351776, 0.19000259041786194, -0.01666676253080368, -0.017981482669711113, -0.022236252203583717, 0.02062198705971241, 0.07852482050657272, 0.05922945216298103, 0.07829863578081131, 0.19060328602790833, -0.05158773437142372, 0.049792688339948654, -0.11279740929603577, 0.03282282501459122, -0.15072059631347656, 0.08593619614839554, -0.028665145859122276, -0.02041953057050705, -0.05980658531188965, 0.0823621153831482, -0.03516125679016113, -0.10598897933959961, -0.09288454055786133, -0.09974703937768936, -0.07340659946203232, 0.07945416122674942, 0.17468887567520142, -0.039761122316122055, 0.05763537436723709, -0.027502911165356636, -0.07338852435350418, -0.025344504043459892, 0.04706510156393051, -0.14499153196811676, 0.04662945121526718, 0.0940486267209053, 0.04710554704070091, 0.06609460711479187, 0.022434942424297333, 0.17603248357772827, 0.08730874955654144, -0.059042204171419144, -0.036685314029455185, 0.12405719608068466, 0.024219786748290062, -0.04013902693986893, 0.028735734522342682, 0.045440707355737686, 0.017221825197339058, -0.023876074701547623, 0.06455875933170319, -0.07028263807296753, -0.004626776557415724, -0.03949359059333801, -0.03249469771981239, 0.014363220892846584, 0.0029670570511370897, -0.10543207079172134, 0.04572170600295067, 0.1198713406920433, -0.027371032163500786, -0.01579754427075386, -0.05811672657728195, 0.014711963944137096, -0.020135046914219856, -0.06095324829220772, -0.04988255351781845, -0.1271294802427292, -0.013749389909207821, 0.03499547764658928, 0.005823120474815369, -0.1146378442645073, -0.06680215895175934, 0.027199598029255867, 0.05308104678988457, -0.09175797551870346, 0.09136294573545456, 0.10809558629989624, 0.020636677742004395, -0.030403340235352516, -0.14450056850910187, -0.008998381905257702, 0.06406611204147339, -0.023481830954551697, 0.005950274411588907 ]
null
null
transformers
# Slovak GPT-J-162M Slovak GPT-J-162M is the first model released in Slovak GPT-J series and the very first publicly available transformer trained predominantly on Slovak corpus. Since the initial release two other models were made public, [Slovak GPT-J-405M](https://huggingface.co/Milos/slovak-gpt-j-405M) and the largest [Slovak GPT-J-1.4B](https://huggingface.co/Milos/slovak-gpt-j-1.4B). ## Model Description Model is based on [GPT-J](https://github.com/kingoflolz/mesh-transformer-jax/) and has over 162M trainable parameters. <figure> | Hyperparameter | Value | |----------------------|-------------------------------------------------------------------------------------------------------------------------------| | \\(n_{parameters}\\) | 162,454,608 | | \\(n_{layers}\\) | 12 | | \\(d_{model}\\) | 768 | | \\(d_{ff}\\) | 16384 | | \\(n_{heads}\\) | 16 | | \\(d_{head}\\) | 256 | | \\(n_{ctx}\\) | 2048 | | \\(n_{vocab}\\) | 50256 (same tokenizer as GPT-2/3&dagger;) | | Positional Encoding | [Rotary Position Embedding (RoPE)](https://arxiv.org/abs/2104.09864) | | RoPE Dimensions | [64](https://github.com/kingoflolz/mesh-transformer-jax/blob/f2aa66e0925de6593dcbb70e72399b97b4130482/mesh_transformer/layers.py#L223) | <p><strong>&dagger;</strong> ByteLevelBPETokenizer was trained on the same Slovak corpus.</p></figure> ## Training data Slovak GPT-J-162M was trained on a privately collected dataset consisting of predominantly Slovak text spanning different categories, e.g. web, news articles or even biblical texts - in total, over 40GB of text data was used to train this model. The dataset was preprocessed and cleaned in a specific way that involves minor but a few caveats, so in order to achieve the expected performance, feel free to refer to [How to use] section. Please, keep in mind that despite the effort to remove inappropriate parts of the corpus, the model still might generate sensitive content or leak sensitive information. ## Training procedure This model was trained for almost 37 billion tokens over 69,001 steps on TPU v3-8 pod. The cross-entropy validation loss at the last step was 3.065. ## Intended Use Same as the original GPT-J, Slovak GPT-J learns an inner representation of the language that can be used to extract features useful for downstream tasks, however, the intended use is text generation from a prompt. ### How to use This model along with the tokenizer can be easily loaded using the `AutoModelForCausalLM` functionality: ```python from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("Milos/slovak-gpt-j-162M") model = AutoModelForCausalLM.from_pretrained("Milos/slovak-gpt-j-162M") ``` When generating a prompt keep in mind these three things, and you should be good to go: 1. Never leave trailing whitespaces. There's a difference between how tokenizer encodes "Mám rád slovenčinu" (no space after `slovenčinu`) and "Mám rád slovenčinu " (trailing space after `slovenčinu`), i.e `[12805, 2872, 46878]` != `[12805, 2872, 46878, 221]`. 2. Always use good ol' US English primary double quotation marks, i.e. `""` instead of `„“`. 3. In case of a new line always enter `\n\n` instead of a single `\n` To illustrate an example of a basic text generation: ``` >>> prompt = "Moje najobľubenejšie mesto na severe Slovenska je" >>> encoded_input = tokenizer(prompt, return_tensors='pt') >>> output = model.generate(**encoded_input) >>> tokenizer.decode(output[0]) 'Moje najobľubenejšie mesto na severe Slovenska je Žilina.\n\nV Žiline sa nachádza množstvo zaujímavých miest' ``` ### Capabilities, Limitations, and Biases First and foremost, the capability of this particular model is very limited due to its relatively small size totalling only 162M parameters, hence the intended use of this particular model is to educate and have fun! :) Since the dataset contains profanity, politically incorrect language, and (unintentionally) even a bits of text in Czech, the model can generate them in some extent too. Here's an example of the model output when prompt is in Czech: ``` >>> prompt = "Věta nesmí být sprostá a musí být zcela" >>> encoded_input = tokenizer(prompt, return_tensors='pt') >>> output = model.generate(**encoded_input, max_length=16) >>> tokenizer.decode(output[0]) 'Věta nesmí být sprostá a musí být zcela věrná.' ``` ## Citation and Related Information This was done as a moonlighting project during summer of 2021 to better understand transformers. I didn't have much free time to open source it properly, so it all sat on my hard drive until now. Based on the popularity and interest in this model I might release _substantially_ larger versions of Slovak GPT-J models that are way more capable. If you use this model or have any questions about it feel free to hit me up at [twitter](https://twitter.com/miloskondela) or check out my [github](https://github.com/kondela) profile. ### BibTeX entry To cite this model: ```bibtex @misc{slovak-gpt-j-162m, author = {Kondela, Milos}, title = {{Slovak GPT-J-162M}}, howpublished = {\url{https://huggingface.co/Milos/slovak-gpt-j-162M}}, year = 2022, month = February } ``` To cite the codebase that trained this model: ```bibtex @misc{mesh-transformer-jax, author = {Wang, Ben}, title = {{Mesh-Transformer-JAX: Model-Parallel Implementation of Transformer Language Model with JAX}}, howpublished = {\url{https://github.com/kingoflolz/mesh-transformer-jax}}, year = 2021, month = May } ``` ## Acknowledgements This project was generously supported by [TPU Research Cloud (TRC) program](https://sites.research.google/trc/about/). Shoutout also goes to [Ben Wang](https://github.com/kingoflolz) and great [EleutherAI community](https://www.eleuther.ai/).
{"language": ["sk"], "license": "gpl-3.0", "tags": ["Slovak GPT-J", "pytorch", "causal-lm"]}
text-generation
Milos/slovak-gpt-j-162M
[ "transformers", "pytorch", "gptj", "text-generation", "Slovak GPT-J", "causal-lm", "sk", "arxiv:2104.09864", "license:gpl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:04+00:00
[ "2104.09864" ]
[ "sk" ]
TAGS #transformers #pytorch #gptj #text-generation #Slovak GPT-J #causal-lm #sk #arxiv-2104.09864 #license-gpl-3.0 #autotrain_compatible #endpoints_compatible #region-us
Slovak GPT-J-162M ================= Slovak GPT-J-162M is the first model released in Slovak GPT-J series and the very first publicly available transformer trained predominantly on Slovak corpus. Since the initial release two other models were made public, Slovak GPT-J-405M and the largest Slovak GPT-J-1.4B. Model Description ----------------- Model is based on GPT-J and has over 162M trainable parameters. **†** ByteLevelBPETokenizer was trained on the same Slovak corpus. Training data ------------- Slovak GPT-J-162M was trained on a privately collected dataset consisting of predominantly Slovak text spanning different categories, e.g. web, news articles or even biblical texts - in total, over 40GB of text data was used to train this model. The dataset was preprocessed and cleaned in a specific way that involves minor but a few caveats, so in order to achieve the expected performance, feel free to refer to [How to use] section. Please, keep in mind that despite the effort to remove inappropriate parts of the corpus, the model still might generate sensitive content or leak sensitive information. Training procedure ------------------ This model was trained for almost 37 billion tokens over 69,001 steps on TPU v3-8 pod. The cross-entropy validation loss at the last step was 3.065. Intended Use ------------ Same as the original GPT-J, Slovak GPT-J learns an inner representation of the language that can be used to extract features useful for downstream tasks, however, the intended use is text generation from a prompt. ### How to use This model along with the tokenizer can be easily loaded using the 'AutoModelForCausalLM' functionality: When generating a prompt keep in mind these three things, and you should be good to go: 1. Never leave trailing whitespaces. There's a difference between how tokenizer encodes "Mám rád slovenčinu" (no space after 'slovenčinu') and "Mám rád slovenčinu " (trailing space after 'slovenčinu'), i.e '[12805, 2872, 46878]' != '[12805, 2872, 46878, 221]'. 2. Always use good ol' US English primary double quotation marks, i.e. '""' instead of '„“'. 3. In case of a new line always enter '\n\n' instead of a single '\n' To illustrate an example of a basic text generation: ### Capabilities, Limitations, and Biases First and foremost, the capability of this particular model is very limited due to its relatively small size totalling only 162M parameters, hence the intended use of this particular model is to educate and have fun! :) Since the dataset contains profanity, politically incorrect language, and (unintentionally) even a bits of text in Czech, the model can generate them in some extent too. Here's an example of the model output when prompt is in Czech: and Related Information This was done as a moonlighting project during summer of 2021 to better understand transformers. I didn't have much free time to open source it properly, so it all sat on my hard drive until now. Based on the popularity and interest in this model I might release *substantially* larger versions of Slovak GPT-J models that are way more capable. If you use this model or have any questions about it feel free to hit me up at twitter or check out my github profile. ### BibTeX entry To cite this model: To cite the codebase that trained this model: Acknowledgements ---------------- This project was generously supported by TPU Research Cloud (TRC) program. Shoutout also goes to Ben Wang and great EleutherAI community.
[ "### How to use\n\n\nThis model along with the tokenizer can be easily loaded using the 'AutoModelForCausalLM' functionality:\n\n\nWhen generating a prompt keep in mind these three things, and you should be good to go:\n\n\n1. Never leave trailing whitespaces. There's a difference between how tokenizer encodes \"Mám rád slovenčinu\" (no space after 'slovenčinu') and \"Mám rád slovenčinu \" (trailing space after 'slovenčinu'), i.e '[12805, 2872, 46878]' != '[12805, 2872, 46878, 221]'.\n2. Always use good ol' US English primary double quotation marks, i.e. '\"\"' instead of '„“'.\n3. In case of a new line always enter '\\n\\n' instead of a single '\\n'\n\n\nTo illustrate an example of a basic text generation:", "### Capabilities, Limitations, and Biases\n\n\nFirst and foremost, the capability of this particular model is very limited due to its relatively small size totalling only 162M parameters, hence the intended use of this particular model is to educate and have fun! :)\n\n\nSince the dataset contains profanity, politically incorrect language, and (unintentionally) even a bits of text in Czech, the model can generate them in some extent too. Here's an example of the model output when prompt is in Czech:\n\n\nand Related Information\n\n\nThis was done as a moonlighting project during summer of 2021 to better understand transformers. I didn't have much free time to open source it properly, so it all sat on my hard drive until now. Based on the popularity and interest in this model I might release *substantially* larger versions of Slovak GPT-J models that are way more capable.\n\n\nIf you use this model or have any questions about it feel free to hit me up at twitter or check out my github profile.", "### BibTeX entry\n\n\nTo cite this model:\n\n\nTo cite the codebase that trained this model:\n\n\nAcknowledgements\n----------------\n\n\nThis project was generously supported by TPU Research Cloud (TRC) program. Shoutout also goes to Ben Wang and great EleutherAI community." ]
[ "TAGS\n#transformers #pytorch #gptj #text-generation #Slovak GPT-J #causal-lm #sk #arxiv-2104.09864 #license-gpl-3.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### How to use\n\n\nThis model along with the tokenizer can be easily loaded using the 'AutoModelForCausalLM' functionality:\n\n\nWhen generating a prompt keep in mind these three things, and you should be good to go:\n\n\n1. Never leave trailing whitespaces. There's a difference between how tokenizer encodes \"Mám rád slovenčinu\" (no space after 'slovenčinu') and \"Mám rád slovenčinu \" (trailing space after 'slovenčinu'), i.e '[12805, 2872, 46878]' != '[12805, 2872, 46878, 221]'.\n2. Always use good ol' US English primary double quotation marks, i.e. '\"\"' instead of '„“'.\n3. In case of a new line always enter '\\n\\n' instead of a single '\\n'\n\n\nTo illustrate an example of a basic text generation:", "### Capabilities, Limitations, and Biases\n\n\nFirst and foremost, the capability of this particular model is very limited due to its relatively small size totalling only 162M parameters, hence the intended use of this particular model is to educate and have fun! :)\n\n\nSince the dataset contains profanity, politically incorrect language, and (unintentionally) even a bits of text in Czech, the model can generate them in some extent too. Here's an example of the model output when prompt is in Czech:\n\n\nand Related Information\n\n\nThis was done as a moonlighting project during summer of 2021 to better understand transformers. I didn't have much free time to open source it properly, so it all sat on my hard drive until now. Based on the popularity and interest in this model I might release *substantially* larger versions of Slovak GPT-J models that are way more capable.\n\n\nIf you use this model or have any questions about it feel free to hit me up at twitter or check out my github profile.", "### BibTeX entry\n\n\nTo cite this model:\n\n\nTo cite the codebase that trained this model:\n\n\nAcknowledgements\n----------------\n\n\nThis project was generously supported by TPU Research Cloud (TRC) program. Shoutout also goes to Ben Wang and great EleutherAI community." ]
[ 70, 208, 227, 63 ]
[ "passage: TAGS\n#transformers #pytorch #gptj #text-generation #Slovak GPT-J #causal-lm #sk #arxiv-2104.09864 #license-gpl-3.0 #autotrain_compatible #endpoints_compatible #region-us \n### How to use\n\n\nThis model along with the tokenizer can be easily loaded using the 'AutoModelForCausalLM' functionality:\n\n\nWhen generating a prompt keep in mind these three things, and you should be good to go:\n\n\n1. Never leave trailing whitespaces. There's a difference between how tokenizer encodes \"Mám rád slovenčinu\" (no space after 'slovenčinu') and \"Mám rád slovenčinu \" (trailing space after 'slovenčinu'), i.e '[12805, 2872, 46878]' != '[12805, 2872, 46878, 221]'.\n2. Always use good ol' US English primary double quotation marks, i.e. '\"\"' instead of '„“'.\n3. In case of a new line always enter '\\n\\n' instead of a single '\\n'\n\n\nTo illustrate an example of a basic text generation:### Capabilities, Limitations, and Biases\n\n\nFirst and foremost, the capability of this particular model is very limited due to its relatively small size totalling only 162M parameters, hence the intended use of this particular model is to educate and have fun! :)\n\n\nSince the dataset contains profanity, politically incorrect language, and (unintentionally) even a bits of text in Czech, the model can generate them in some extent too. Here's an example of the model output when prompt is in Czech:\n\n\nand Related Information\n\n\nThis was done as a moonlighting project during summer of 2021 to better understand transformers. I didn't have much free time to open source it properly, so it all sat on my hard drive until now. Based on the popularity and interest in this model I might release *substantially* larger versions of Slovak GPT-J models that are way more capable.\n\n\nIf you use this model or have any questions about it feel free to hit me up at twitter or check out my github profile." ]
[ -0.06641848385334015, -0.02252829261124134, -0.007983901537954807, 0.020889079198241234, 0.08639875799417496, -0.007474017795175314, 0.0705656036734581, 0.04089771583676338, 0.10903546959161758, 0.09032931178808212, 0.07963507622480392, 0.0027105738408863544, 0.028809309005737305, 0.06986928731203079, 0.07993630319833755, -0.24144762754440308, 0.12229129672050476, -0.10673420876264572, 0.06074114888906479, 0.05155619606375694, 0.15039817988872528, -0.07135991752147675, 0.011066124774515629, 0.0031525439117103815, 0.002386093605309725, 0.009623120538890362, -0.03306948393583298, -0.029776066541671753, 0.08618638664484024, 0.040666572749614716, -0.01767933927476406, 0.010001069866120815, 0.0012811418855562806, -0.17437827587127686, 0.004309259820729494, 0.03591025993227959, 0.015340795740485191, 0.0038031351286917925, 0.040426477789878845, 0.02791137620806694, 0.21811002492904663, -0.1548384726047516, 0.03393915295600891, 0.0032541484106332064, -0.1003418117761612, -0.12377200275659561, -0.06835148483514786, -0.007467793300747871, 0.0969524160027504, -0.029590724036097527, -0.03906990960240364, 0.1573781669139862, -0.025431333109736443, 0.07124875485897064, 0.11991234123706818, -0.25950777530670166, -0.027346797287464142, -0.04166020080447197, 0.024616511538624763, 0.07035217434167862, -0.04042939469218254, -0.002541834022849798, 0.003257053904235363, 0.00923523586243391, -0.005096313543617725, 0.0012203073129057884, 0.04354626312851906, -0.011467074044048786, -0.15405625104904175, -0.09248633682727814, 0.15011130273342133, 0.009413392283022404, -0.07512610405683517, -0.13121452927589417, -0.00686628045514226, 0.01693745329976082, -0.0020193583332002163, -0.013772075064480305, -0.003966083284467459, -0.008678480051457882, 0.10812639445066452, -0.12763114273548126, -0.1299140751361847, 0.005824801046401262, -0.030161891132593155, 0.19173307716846466, 0.012218000367283821, 0.059145379811525345, 0.11370041966438293, 0.01299404539167881, -0.06600823998451233, -0.0779055580496788, -0.060869261622428894, -0.045967210084199905, -0.07913091778755188, -0.04971379414200783, -0.039450857788324356, -0.03513539582490921, 0.042630840092897415, 0.11744996160268784, -0.04718976840376854, 0.0036251263227313757, 0.028500977903604507, 0.03584010899066925, 0.10134010016918182, 0.14537116885185242, -0.08533389121294022, 0.03190939128398895, 0.02966206520795822, -0.09812891483306885, 0.0669943317770958, -0.022636430338025093, -0.09972725808620453, -0.06379237025976181, 0.12099803984165192, 0.0929296612739563, 0.01755271665751934, 0.035933319479227066, -0.009330477565526962, 0.0015172134153544903, 0.10442125797271729, -0.10814692080020905, 0.03483521193265915, -0.013946923427283764, -0.027013298124074936, 0.07865332067012787, -0.0998176634311676, 0.0467396154999733, -0.1317475289106369, 0.006104621104896069, -0.021374860778450966, 0.04923068732023239, -0.08365610241889954, -0.1289728432893753, 0.09022968262434006, 0.017738210037350655, -0.04504742845892906, -0.09130656719207764, -0.1158662885427475, -0.0286103505641222, 0.002772044623270631, -0.0467505156993866, -0.020946554839611053, -0.0031513741705566645, -0.03968985006213188, 0.008344517089426517, -0.0049751801416277885, 0.004042230546474457, -0.026071319356560707, 0.02478097938001156, -0.050834160298109055, 0.05370968207716942, -0.02881731651723385, -0.043471358716487885, -0.1557994931936264, 0.011492420919239521, -0.31648823618888855, 0.09396793693304062, -0.07758498191833496, 0.026782892644405365, -0.049252983182668686, 0.017783811315894127, -0.0013664279831573367, 0.011350143700838089, 0.012534492649137974, 0.14375491440296173, -0.1992693692445755, 0.01309897843748331, 0.04006876051425934, -0.15963512659072876, -0.034248821437358856, 0.1687653660774231, 0.009745405986905098, 0.05727922543883324, 0.13730411231517792, 0.09066142141819, 0.020971963182091713, -0.14354854822158813, -0.06905022263526917, -0.01544742751866579, -0.07660924643278122, 0.0544043630361557, 0.08248072117567062, -0.029568113386631012, 0.08556145429611206, 0.014649721793830395, -0.08513149619102478, 0.021103987470269203, 0.005134431179612875, -0.007509442511945963, 0.010029763914644718, -0.02452896162867546, 0.019912907853722572, -0.005431652069091797, -0.04275878518819809, -0.1028200089931488, -0.09828402101993561, 0.0831318199634552, 0.022207805886864662, -0.008464434184134007, 0.045652080327272415, -0.08602702617645264, 0.07615915685892105, -0.09639805555343628, -0.012580499053001404, -0.12944433093070984, -0.10523796826601028, 0.05228535085916519, -0.033574916422367096, 0.02167411893606186, -0.04537772014737129, 0.07977411895990372, 0.07759720832109451, -0.010552564635872841, 0.04369281977415085, 0.014750706031918526, 0.028405271470546722, -0.03847745060920715, -0.11028236895799637, -0.034636881202459335, -0.01824619248509407, 0.06198294460773468, 0.01865159161388874, -0.024921325966715813, 0.1673782467842102, 0.14403507113456726, -0.001115154940634966, -0.04407196119427681, -0.02863103151321411, 0.012206567451357841, 0.030117733404040337, -0.038852088153362274, 0.030793145298957825, 0.04886975884437561, -0.019225556403398514, 0.17904101312160492, -0.14032267034053802, -0.13304099440574646, 0.08146506547927856, -0.042393408715724945, -0.06809518486261368, 0.0036201435141265392, -0.03721248358488083, 0.017630811780691147, -0.012468399479985237, -0.12165363878011703, 0.07991889864206314, 0.044219087809324265, -0.004036602098494768, -0.08950568735599518, -0.0809357613325119, 0.02169717289507389, -0.06971754133701324, -0.08183054625988007, 0.07587503641843796, 0.13966405391693115, -0.20573340356349945, 0.06945378333330154, -0.00749014038592577, -0.015397080220282078, 0.21800601482391357, -0.008602330461144447, -0.13440614938735962, -0.08518724888563156, 0.06940856575965881, 0.0014498841483145952, 0.13423548638820648, -0.0761728435754776, 0.010276238434016705, 0.028328798711299896, 0.0063765328377485275, 0.05074016749858856, -0.07623205333948135, 0.06280677765607834, -0.0112470593303442, -0.0673607736825943, 0.04708598554134369, -0.004930791910737753, -0.001217069337144494, 0.10548084229230881, 0.021368084475398064, 0.09713675081729889, -0.0003831405483651906, -0.013606947846710682, -0.12999941408634186, 0.06941622495651245, -0.10161033272743225, -0.22858482599258423, -0.13633494079113007, 0.08794353902339935, 0.013726024888455868, 0.006381625309586525, 0.015825429931282997, -0.04059656336903572, -0.07310027629137039, -0.051667407155036926, 0.1136428713798523, 0.027295811101794243, -0.0611274391412735, -0.05555571988224983, 0.028927162289619446, -0.010696322657167912, -0.05109470710158348, -0.04457937180995941, 0.015153552405536175, -0.04778527095913887, 0.0003873616806231439, 0.04257211834192276, 0.11223535239696503, -0.006680781487375498, -0.015214304439723492, 0.0002529376943130046, -0.014896604232490063, 0.2766081392765045, -0.09465835988521576, 0.1323338747024536, 0.13416166603565216, -0.0512828603386879, 0.06031978130340576, 0.1072770208120346, -0.017900001257658005, -0.003261325880885124, 0.014202384278178215, 0.01483235601335764, -0.08687743544578552, -0.11418762803077698, -0.08718150109052658, -0.10609027743339539, -0.01952163316309452, 0.028543738648295403, -0.0015770088648423553, -0.057455580681562424, 0.021288901567459106, -0.13090158998966217, 0.003397266147658229, 0.062043122947216034, 0.09087840467691422, 0.20873397588729858, 0.02411670796573162, 0.03261284902691841, -0.06244117394089699, -0.07158925384283066, 0.0747302994132042, -0.043635714799165726, 0.11958973109722137, -0.038366593420505524, 0.13986097276210785, 0.030348729342222214, 0.06103897839784622, 0.021442368626594543, 0.08927237242460251, -0.04189247265458107, 0.03641520440578461, -0.014298936352133751, -0.0903390645980835, -0.05254008248448372, 0.037132006138563156, 0.07946094125509262, -0.10871245712041855, -0.010623722337186337, 0.03408476337790489, 0.09975119680166245, 0.15950699150562286, 0.04082334786653519, -0.07717098295688629, -0.08489914983510971, 0.04040514677762985, -0.038967762142419815, -0.06532790511846542, -0.042862217873334885, 0.10761771351099014, -0.1245342344045639, 0.03178950771689415, 0.03887254744768143, 0.024534475058317184, -0.10813368111848831, 0.02239733748137951, -0.013240485452115536, 0.06407782435417175, -0.005708689801394939, 0.10000810027122498, -0.18889427185058594, 0.05974029749631882, 0.014367467723786831, 0.09807255119085312, -0.10473097860813141, 0.028162218630313873, 0.005012800917029381, -0.12851108610630035, 0.07429259270429611, 0.038413070142269135, -0.09918799251317978, -0.03380049765110016, -0.05213404819369316, 0.010972170159220695, 0.04654264077544212, -0.04376674443483353, 0.10182467103004456, -0.04006827622652054, 0.037601228803396225, -0.050340499728918076, -0.018730921670794487, -0.07628827542066574, -0.1741366982460022, 0.08228034526109695, -0.040741343051195145, -0.08425774425268173, -0.04061923176050186, -0.03145194798707962, -0.05434856936335564, 0.10258868336677551, -0.08784522116184235, -0.15755107998847961, -0.08771777898073196, -0.015353200025856495, 0.19784186780452728, -0.07160302251577377, 0.01288339402526617, -0.014085568487644196, 0.19284886121749878, -0.04489933326840401, -0.010407773777842522, -0.004792687017470598, -0.0640142485499382, -0.1278938502073288, 0.03028256446123123, 0.16485679149627686, 0.028384201228618622, 0.029688898473978043, 0.03177341818809509, 0.10370286554098129, 0.03325933963060379, -0.12882083654403687, 0.023232949897646904, -0.06255367398262024, -0.0823843777179718, 0.024362212046980858, -0.047386493533849716, 0.0074980417266488075, -0.0739532858133316, -0.05282158777117729, 0.1568620651960373, 0.29805701971054077, -0.071148581802845, 0.14515355229377747, 0.13843581080436707, -0.07633539289236069, -0.18775862455368042, -0.0766509547829628, 0.058903470635414124, 0.02112235128879547, -0.049740999937057495, -0.14035087823867798, 0.04905454441905022, 0.09517159312963486, -0.013201095163822174, 0.012813768349587917, -0.1314045786857605, -0.1056467667222023, 0.056625545024871826, -0.0002529456978663802, 0.10850397497415543, -0.07493706047534943, -0.0619007907807827, -0.03936689347028732, -0.04741046950221062, 0.15180259943008423, -0.0015593337593600154, 0.00834136176854372, 0.09601300209760666, 0.07713844627141953, 0.07903870940208435, -0.04173260182142258, 0.1673511564731598, -0.06568017601966858, -0.02603982947766781, -0.10121177136898041, -0.03706948459148407, 0.059442102909088135, -0.03267892450094223, 0.14029346406459808, 0.03157966956496239, -0.03526241332292557, -0.06964940577745438, -0.07170301675796509, -0.06336130201816559, 0.05448110029101372, -0.06269500404596329, -0.049740198999643326, -0.01835748739540577, 0.06801094859838486, 0.03183199092745781, -0.021572764962911606, -0.10417640954256058, -0.039346273988485336, -0.019658805802464485, 0.10296893864870071, 0.13817353546619415, -0.05864164978265762, 0.02736605703830719, 0.029400503262877464, -0.01800960674881935, 0.01274553406983614, 0.09740894287824631, 0.08536949008703232, 0.08134424686431885, -0.010684163309633732, 0.07080215960741043, -0.012727038934826851, -0.1384742110967636, -0.02195950411260128, 0.05935528874397278, -0.1448446810245514, -0.13587191700935364, 0.029798662289977074, 0.07085655629634857, -0.025882622227072716, -0.08211937546730042, 0.16976457834243774, -0.045713555067777634, -0.023588720709085464, -0.0198073647916317, 0.06900759786367416, 0.03841178119182587, 0.05883096531033516, 0.0480232909321785, 0.030763573944568634, -0.08107413351535797, 0.018195824697613716, 0.04152180626988411, -0.034398071467876434, 0.04413396492600441, 0.07805956155061722, -0.07028559595346451, -0.04680320993065834, -0.05607116222381592, -0.0056667206808924675, -0.09149852395057678, -0.06830579042434692, -0.03330129012465477, -0.11424421519041061, 0.02360047772526741, 0.07011985778808594, 0.05520674213767052, 0.056259363889694214, 0.02365150675177574, 0.05049464479088783, -0.06785870343446732, 0.09169787168502808, 0.027835221961140633, -0.024608341977000237, -0.031112851575016975, 0.16942301392555237, -0.039777085185050964, -0.051438260823488235, -0.0029682086315006018, 0.0064895316027104855, -0.07178022712469101, -0.03404547646641731, -0.058838941156864166, 0.015640169382095337, -0.06582871079444885, 0.0024153576232492924, 0.05934293940663338, -0.04648975655436516, -0.04407630115747452, 0.02044215239584446, -0.07061563432216644, -0.016511742025613785, -0.06823661923408508, 0.03260595351457596, -0.10520751774311066, -0.017316389828920364, 0.1378428190946579, -0.11196967214345932, 0.09212912619113922, 0.05187356099486351, 0.0017788407858461142, 0.050048597157001495, -0.05205554515123367, 0.021634120494127274, -0.020329808816313744, 0.03371204063296318, 0.01653602533042431, -0.09321136772632599, 0.03603940084576607, 0.08221252262592316, 0.06424221396446228, 0.03122399002313614, 0.03716056048870087, -0.06366312503814697, 0.06649806350469589, 0.07167227566242218, -0.11597977578639984, -0.05132105201482773, 0.05982701852917671, 0.033032942563295364, 0.04955093562602997, 0.13544130325317383, -0.06183851137757301, 0.02530534565448761, -0.06940863281488419, 0.025932518765330315, 0.009776623919606209, 0.033140864223241806, -0.047646794468164444, -0.026061220094561577, 0.055727701634168625, 0.0037186061963438988, 0.15295936167240143, 0.01934557594358921, 0.07615353167057037, 0.08427540212869644, 0.024357521906495094, -0.023845726624131203, 0.04724973067641258, 0.051914650946855545, -0.011731739155948162, 0.012427360750734806, -0.08693678677082062, -0.03050854429602623, -0.04432857036590576, -0.11512882262468338, 0.1084413155913353, 0.04188258945941925, 0.1858537346124649, 0.05278639867901802, 0.07709472626447678, -0.022509552538394928, 0.04118845984339714, 0.043692026287317276, 0.007047838997095823, -0.004097316414117813, -0.04468706250190735, 0.21427009999752045, 0.18676605820655823, -0.174837127327919, 0.0799746960401535, -0.02977127395570278, -0.05567609891295433, -0.08880306035280228, -0.13957464694976807, -0.029083717614412308, -0.018901824951171875, 0.014846308156847954, -0.12840384244918823, 0.035030994564294815, 0.0021109015215188265, 0.021819163113832474, -0.011464265175163746, 0.014383271336555481, -0.04068334400653839, -0.08957107365131378, 0.054357439279556274, -0.01978449895977974, 0.10294967889785767, 0.08120128512382507, -0.029455959796905518, -0.001377455540932715, 0.08881425112485886, 0.06975816935300827, 0.0784011110663414, 0.026148851960897446, -0.05736227706074715, -0.06920766085386276, -0.048720937222242355, 0.002471794141456485, -0.03485817089676857, 0.0361761637032032, 0.14386528730392456, 0.036250822246074677, -0.016174424439668655, -0.020334584638476372, 0.1885293573141098, 0.0054839118383824825, -0.20346839725971222, -0.18902286887168884, -0.0011504775611683726, 0.0017245064955204725, 0.07556197047233582, -0.015550145879387856, -0.10689917206764221, 0.018804313614964485, 0.11361272633075714, 0.09662304073572159, -0.014702357351779938, -0.030783159658312798, -0.0516071617603302, 0.00340093276463449, 0.05710689350962639, 0.06365689635276794, -0.005677381064742804, 0.2506299316883087, -0.07975345849990845, 0.15506820380687714, -0.11064445227384567, 0.026109885424375534, -0.11578987538814545, 0.13251693546772003, -0.06145961955189705, 0.014330117963254452, -0.08884350210428238, 0.14038851857185364, -0.05835558846592903, -0.26027578115463257, -0.10367700457572937, -0.030954701825976372, -0.085804782807827, 0.08294574171304703, 0.09844984114170074, 0.0243768822401762, 0.09631890058517456, -0.017694320529699326, -0.029118919745087624, 0.01094280369579792, 0.054866354912519455, -0.06388512253761292, -0.01300013530999422, 0.09378647804260254, 0.07569631189107895, 0.18755872547626495, 0.00807427242398262, 0.1688951551914215, 0.11148223280906677, -0.033540092408657074, -0.1524169147014618, 0.009075223468244076, 0.030678123235702515, -0.130920872092247, 0.0650259330868721, 0.08480386435985565, 0.009254205040633678, 0.01551869884133339, 0.10254398733377457, -0.07778963446617126, 0.04214008152484894, 0.10160329192876816, 0.018218927085399628, -0.023739458993077278, 0.1184983178973198, -0.12060477584600449, 0.06346617639064789, 0.13266654312610626, -0.0387873612344265, 0.0000585370980843436, -0.06883808225393295, -0.005188485141843557, -0.0179568063467741, 0.014125926420092583, -0.017353031784296036, -0.14566382765769958, 0.003972495906054974, 0.03249566629528999, 0.039684172719717026, -0.07606156170368195, -0.06689053773880005, 0.03463977947831154, 0.032988209277391434, -0.03366558253765106, 0.09640510380268097, 0.037118300795555115, 0.007466690614819527, -0.020223092287778854, 0.01699848659336567, -0.015250434167683125, 0.07322892546653748, -0.012073743157088757, -0.018019983544945717 ]
null
null
transformers
# Slovak GPT-J-405M Slovak GPT-J-405M is the second model released in Slovak GPT-J series after its smaller variant [Slovak GPT-J-162M](https://huggingface.co/Milos/slovak-gpt-j-162M). Since then a larger [Slovak GPT-J-1.4B](https://huggingface.co/Milos/slovak-gpt-j-1.4B) was released. ## Model Description Model is based on [GPT-J](https://github.com/kingoflolz/mesh-transformer-jax/) and has over 405M trainable parameters. <figure> | Hyperparameter | Value | |----------------------|----------------------------------------------------------------------------------------------------------------------------------------| | \\(n_{parameters}\\) | 405,677,136 | | \\(n_{layers}\\) | 24 | | \\(d_{model}\\) | 1024 | | \\(d_{ff}\\) | 16384 | | \\(n_{heads}\\) | 16 | | \\(d_{head}\\) | 256 | | \\(n_{ctx}\\) | 2048 | | \\(n_{vocab}\\) | 50256 (same tokenizer as GPT-2/3&dagger;) | | Positional Encoding | [Rotary Position Embedding (RoPE)](https://arxiv.org/abs/2104.09864) | | RoPE Dimensions | [64](https://github.com/kingoflolz/mesh-transformer-jax/blob/f2aa66e0925de6593dcbb70e72399b97b4130482/mesh_transformer/layers.py#L223) | <p><strong>&dagger;</strong> ByteLevelBPETokenizer was trained on the same Slovak corpus.</p></figure> ## Training data Slovak GPT-J models were trained on a privately collected dataset consisting of predominantly Slovak text spanning different categories, e.g. web, news articles or even biblical texts - in total, over 40GB of text data was used to train this model. The dataset was preprocessed and cleaned in a specific way that involves minor but a few caveats, so in order to achieve the expected performance, feel free to refer to [How to use] section. Please, keep in mind that despite the effort to remove inappropriate corpus, the model still might generate sensitive content or leak sensitive information. ## Training procedure This model was trained for a bit more than 36.5 billion tokens over 69,001 steps on TPU v3-8 pod. The cross-entropy validation loss at the last step was `2.821`. ## Intended Use Same as the original GPT-J, Slovak GPT-J learns an inner representation of the language that can be used to extract features useful for downstream tasks, however, the intended use is text generation from a prompt. ### How to use This model along with the tokenizer can be easily loaded using the `AutoModelForCausalLM` functionality: ```python from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("Milos/slovak-gpt-j-405M") model = AutoModelForCausalLM.from_pretrained("Milos/slovak-gpt-j-405M") ``` When generating a prompt keep in mind these three things, and you should be good to go: 1. Never leave trailing whitespaces. There's a difference between how tokenizer encodes "Mám rád slovenčinu" (no space after `slovenčinu`) and "Mám rád slovenčinu " (trailing space after `slovenčinu`), i.e `[12805, 2872, 46878]` != `[12805, 2872, 46878, 221]`. 2. Always use good ol' US English primary double quotation marks, i.e. `""` instead of `„“`. 3. In case of a new line always enter `\n\n` instead of a single `\n` To illustrate an example of a basic text generation: ``` >>> prompt = "Tradičné jedlo na Orave sú" >>> encoded_input = tokenizer(prompt, return_tensors='pt') >>> output = model.generate(**encoded_input) >>> tokenizer.decode(output[0]) 'Tradičné jedlo na Orave sú bryndzové halušky\n\nNa Orave sa v minulosti varilo viac druhov' ``` ### Capabilities, Limitations, and Biases The capability of this particular model is somewhat decent despite its small size totalling 405M parameters. With relative ease it can manage to generate interesting and grammatically correct content. For example, you can try few of the following prompts. (For sake of simplicity, I have omitted all the boilerplate code and swapped `\n` for new lines). Try generating "How to" articles: ``` PROMPT Ako napísať pôsobivú esej krok za krokom OUTPUT Ako napísať pôsobivú esej krok za krokom V tomto článku sa dozviete, ako napísať esej, ktorá bude mať v sebe niečo, čo zaujme a bude sa vám páčiť. V prvom rade si musíte uvedomiť, že esej je vlastne písaný text, ktorý má byť napísaný na počítači.' ``` However, relying on the model to produce factually correct information isn't recommended. Or try to generate chat conversations: ``` PROMPT Peter: Ako sa mas? Lucia: Ale celkom dobre. Co si robil? Peter: OUTPUT Peter: Ako sa mas? Lucia: Ale celkom dobre. Co si robil? Peter: No, bol som na chate. Lucia: A co si tam robil? Peter: No, bol som tam s kamošmi. Lucia: A co si tam robil? Peter: No, bol som tam s kamošmi. ``` Apparently either Peters are more likely to act suspiciously in this particular context or there's a problem with the model. Let's assume that the second explanation may hold some merit. In general, GPT models can (and often will) get into a repeating cycle of generating same content. This is a common problem beyond the scope of this README, however, see [generate's documentation](https://huggingface.co/docs/transformers/master/en/main_classes/model#transformers.generation_utils.GenerationMixin.generate) on how to introduce a frequency/repetition penalty. Since the dataset contains profanity, politically incorrect language, and (unintentionally) even a bits of text in Czech, the model can generate them in some extent too. Here's an example of the model output when prompt is in Czech: ``` >>> prompt = "Věta nesmí být sprostá a musí být zcela" >>> encoded_input = tokenizer(prompt, return_tensors='pt') >>> output = model.generate(**encoded_input, max_length=16) >>> tokenizer.decode(output[0]) 'Věta nesmí být sprostá a musí být zcela pravdivá.' ``` ## Citation and Related Information This was done as a moonlighting project during summer of 2021 to better understand transformers. I didn't have much free time to open source it properly, so it all sat on my hard drive until now :) If you use this model or have any questions about it feel free to hit me up at [twitter](https://twitter.com/miloskondela) or check out my [github](https://github.com/kondela) profile. ### BibTeX entry To cite this model: ```bibtex @misc{slovak-gpt-j-405m, author = {Kondela, Milos}, title = {{Slovak GPT-J-405M}}, howpublished = {\url{https://huggingface.co/Milos/slovak-gpt-j-405M}}, year = 2022, month = February } ``` To cite the codebase that trained this model: ```bibtex @misc{mesh-transformer-jax, author = {Wang, Ben}, title = {{Mesh-Transformer-JAX: Model-Parallel Implementation of Transformer Language Model with JAX}}, howpublished = {\url{https://github.com/kingoflolz/mesh-transformer-jax}}, year = 2021, month = May } ``` ## Acknowledgements This project was generously supported by [TPU Research Cloud (TRC) program](https://sites.research.google/trc/about/). Shoutout also goes to [Ben Wang](https://github.com/kingoflolz) and great [EleutherAI community](https://www.eleuther.ai/).
{"language": ["sk"], "license": "gpl-3.0", "tags": ["Slovak GPT-J", "pytorch", "causal-lm"]}
text-generation
Milos/slovak-gpt-j-405M
[ "transformers", "pytorch", "gptj", "text-generation", "Slovak GPT-J", "causal-lm", "sk", "arxiv:2104.09864", "license:gpl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:04+00:00
[ "2104.09864" ]
[ "sk" ]
TAGS #transformers #pytorch #gptj #text-generation #Slovak GPT-J #causal-lm #sk #arxiv-2104.09864 #license-gpl-3.0 #autotrain_compatible #endpoints_compatible #region-us
Slovak GPT-J-405M ================= Slovak GPT-J-405M is the second model released in Slovak GPT-J series after its smaller variant Slovak GPT-J-162M. Since then a larger Slovak GPT-J-1.4B was released. Model Description ----------------- Model is based on GPT-J and has over 405M trainable parameters. **†** ByteLevelBPETokenizer was trained on the same Slovak corpus. Training data ------------- Slovak GPT-J models were trained on a privately collected dataset consisting of predominantly Slovak text spanning different categories, e.g. web, news articles or even biblical texts - in total, over 40GB of text data was used to train this model. The dataset was preprocessed and cleaned in a specific way that involves minor but a few caveats, so in order to achieve the expected performance, feel free to refer to [How to use] section. Please, keep in mind that despite the effort to remove inappropriate corpus, the model still might generate sensitive content or leak sensitive information. Training procedure ------------------ This model was trained for a bit more than 36.5 billion tokens over 69,001 steps on TPU v3-8 pod. The cross-entropy validation loss at the last step was '2.821'. Intended Use ------------ Same as the original GPT-J, Slovak GPT-J learns an inner representation of the language that can be used to extract features useful for downstream tasks, however, the intended use is text generation from a prompt. ### How to use This model along with the tokenizer can be easily loaded using the 'AutoModelForCausalLM' functionality: When generating a prompt keep in mind these three things, and you should be good to go: 1. Never leave trailing whitespaces. There's a difference between how tokenizer encodes "Mám rád slovenčinu" (no space after 'slovenčinu') and "Mám rád slovenčinu " (trailing space after 'slovenčinu'), i.e '[12805, 2872, 46878]' != '[12805, 2872, 46878, 221]'. 2. Always use good ol' US English primary double quotation marks, i.e. '""' instead of '„“'. 3. In case of a new line always enter '\n\n' instead of a single '\n' To illustrate an example of a basic text generation: ### Capabilities, Limitations, and Biases The capability of this particular model is somewhat decent despite its small size totalling 405M parameters. With relative ease it can manage to generate interesting and grammatically correct content. For example, you can try few of the following prompts. (For sake of simplicity, I have omitted all the boilerplate code and swapped '\n' for new lines). Try generating "How to" articles: However, relying on the model to produce factually correct information isn't recommended. Or try to generate chat conversations: Apparently either Peters are more likely to act suspiciously in this particular context or there's a problem with the model. Let's assume that the second explanation may hold some merit. In general, GPT models can (and often will) get into a repeating cycle of generating same content. This is a common problem beyond the scope of this README, however, see generate's documentation on how to introduce a frequency/repetition penalty. Since the dataset contains profanity, politically incorrect language, and (unintentionally) even a bits of text in Czech, the model can generate them in some extent too. Here's an example of the model output when prompt is in Czech: and Related Information This was done as a moonlighting project during summer of 2021 to better understand transformers. I didn't have much free time to open source it properly, so it all sat on my hard drive until now :) If you use this model or have any questions about it feel free to hit me up at twitter or check out my github profile. ### BibTeX entry To cite this model: To cite the codebase that trained this model: Acknowledgements ---------------- This project was generously supported by TPU Research Cloud (TRC) program. Shoutout also goes to Ben Wang and great EleutherAI community.
[ "### How to use\n\n\nThis model along with the tokenizer can be easily loaded using the 'AutoModelForCausalLM' functionality:\n\n\nWhen generating a prompt keep in mind these three things, and you should be good to go:\n\n\n1. Never leave trailing whitespaces. There's a difference between how tokenizer encodes \"Mám rád slovenčinu\" (no space after 'slovenčinu') and \"Mám rád slovenčinu \" (trailing space after 'slovenčinu'), i.e '[12805, 2872, 46878]' != '[12805, 2872, 46878, 221]'.\n2. Always use good ol' US English primary double quotation marks, i.e. '\"\"' instead of '„“'.\n3. In case of a new line always enter '\\n\\n' instead of a single '\\n'\n\n\nTo illustrate an example of a basic text generation:", "### Capabilities, Limitations, and Biases\n\n\nThe capability of this particular model is somewhat decent despite its small size totalling 405M parameters. With relative ease it can manage to generate interesting and grammatically correct content.\nFor example, you can try few of the following prompts. (For sake of simplicity, I have omitted all the boilerplate code and swapped '\\n' for new lines).\n\n\nTry generating \"How to\" articles:\n\n\nHowever, relying on the model to produce factually correct information isn't recommended.\n\n\nOr try to generate chat conversations:\n\n\nApparently either Peters are more likely to act suspiciously in this particular context or there's a problem with the model. Let's assume that the second explanation may hold some merit. In general, GPT models can (and often will) get into a repeating cycle of generating same content. This is a common problem beyond the scope of this README, however, see generate's documentation on how to introduce a frequency/repetition penalty.\n\n\nSince the dataset contains profanity, politically incorrect language, and (unintentionally) even a bits of text in Czech, the model can generate them in some extent too. Here's an example of the model output when prompt is in Czech:\n\n\nand Related Information\n\n\nThis was done as a moonlighting project during summer of 2021 to better understand transformers. I didn't have much free time to open source it properly, so it all sat on my hard drive until now :)\n\n\nIf you use this model or have any questions about it feel free to hit me up at twitter or check out my github profile.", "### BibTeX entry\n\n\nTo cite this model:\n\n\nTo cite the codebase that trained this model:\n\n\nAcknowledgements\n----------------\n\n\nThis project was generously supported by TPU Research Cloud (TRC) program. Shoutout also goes to Ben Wang and great EleutherAI community." ]
[ "TAGS\n#transformers #pytorch #gptj #text-generation #Slovak GPT-J #causal-lm #sk #arxiv-2104.09864 #license-gpl-3.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### How to use\n\n\nThis model along with the tokenizer can be easily loaded using the 'AutoModelForCausalLM' functionality:\n\n\nWhen generating a prompt keep in mind these three things, and you should be good to go:\n\n\n1. Never leave trailing whitespaces. There's a difference between how tokenizer encodes \"Mám rád slovenčinu\" (no space after 'slovenčinu') and \"Mám rád slovenčinu \" (trailing space after 'slovenčinu'), i.e '[12805, 2872, 46878]' != '[12805, 2872, 46878, 221]'.\n2. Always use good ol' US English primary double quotation marks, i.e. '\"\"' instead of '„“'.\n3. In case of a new line always enter '\\n\\n' instead of a single '\\n'\n\n\nTo illustrate an example of a basic text generation:", "### Capabilities, Limitations, and Biases\n\n\nThe capability of this particular model is somewhat decent despite its small size totalling 405M parameters. With relative ease it can manage to generate interesting and grammatically correct content.\nFor example, you can try few of the following prompts. (For sake of simplicity, I have omitted all the boilerplate code and swapped '\\n' for new lines).\n\n\nTry generating \"How to\" articles:\n\n\nHowever, relying on the model to produce factually correct information isn't recommended.\n\n\nOr try to generate chat conversations:\n\n\nApparently either Peters are more likely to act suspiciously in this particular context or there's a problem with the model. Let's assume that the second explanation may hold some merit. In general, GPT models can (and often will) get into a repeating cycle of generating same content. This is a common problem beyond the scope of this README, however, see generate's documentation on how to introduce a frequency/repetition penalty.\n\n\nSince the dataset contains profanity, politically incorrect language, and (unintentionally) even a bits of text in Czech, the model can generate them in some extent too. Here's an example of the model output when prompt is in Czech:\n\n\nand Related Information\n\n\nThis was done as a moonlighting project during summer of 2021 to better understand transformers. I didn't have much free time to open source it properly, so it all sat on my hard drive until now :)\n\n\nIf you use this model or have any questions about it feel free to hit me up at twitter or check out my github profile.", "### BibTeX entry\n\n\nTo cite this model:\n\n\nTo cite the codebase that trained this model:\n\n\nAcknowledgements\n----------------\n\n\nThis project was generously supported by TPU Research Cloud (TRC) program. Shoutout also goes to Ben Wang and great EleutherAI community." ]
[ 70, 208, 363, 63 ]
[ "passage: TAGS\n#transformers #pytorch #gptj #text-generation #Slovak GPT-J #causal-lm #sk #arxiv-2104.09864 #license-gpl-3.0 #autotrain_compatible #endpoints_compatible #region-us \n### How to use\n\n\nThis model along with the tokenizer can be easily loaded using the 'AutoModelForCausalLM' functionality:\n\n\nWhen generating a prompt keep in mind these three things, and you should be good to go:\n\n\n1. Never leave trailing whitespaces. There's a difference between how tokenizer encodes \"Mám rád slovenčinu\" (no space after 'slovenčinu') and \"Mám rád slovenčinu \" (trailing space after 'slovenčinu'), i.e '[12805, 2872, 46878]' != '[12805, 2872, 46878, 221]'.\n2. Always use good ol' US English primary double quotation marks, i.e. '\"\"' instead of '„“'.\n3. In case of a new line always enter '\\n\\n' instead of a single '\\n'\n\n\nTo illustrate an example of a basic text generation:" ]
[ -0.0007844021893106401, -0.060283876955509186, -0.007210723124444485, 0.051685791462659836, 0.09602367132902145, 0.013701320625841618, 0.19930201768875122, 0.06612897664308548, 0.06486530601978302, 0.023963427171111107, 0.1812986582517624, 0.09087535738945007, -0.016706163063645363, 0.06681270152330399, 0.001989691285416484, -0.26059213280677795, 0.122231125831604, -0.015568305738270283, 0.10743620246648788, 0.0782245323061943, 0.14591339230537415, -0.07017529010772705, 0.042630214244127274, 0.0017620635917410254, -0.1475658416748047, -0.006208814214915037, 0.022767389193177223, -0.06269395351409912, 0.08214253932237625, -0.002872408600524068, 0.0038913374301046133, 0.05537378787994385, 0.011643988080322742, -0.13297471404075623, 0.011192730627954006, 0.003484030719846487, 0.027516990900039673, 0.017782386392354965, -0.044794369488954544, -0.033258210867643356, 0.11622271686792374, -0.01852131262421608, 0.05035753175616264, -0.020416302606463432, -0.11450593173503876, -0.14522035419940948, -0.027049001306295395, -0.002572096884250641, 0.09830622375011444, -0.0716095045208931, 0.004207654390484095, 0.15404415130615234, -0.06765659898519516, 0.09203951060771942, 0.1626925766468048, -0.2942087650299072, -0.021344605833292007, 0.036144088953733444, 0.05056734383106232, 0.050457123667001724, -0.027177900075912476, 0.036120593547821045, -0.006384196225553751, -0.006897357292473316, 0.04962572827935219, -0.049327194690704346, -0.014488069340586662, 0.044784240424633026, -0.1472620666027069, -0.06274659931659698, 0.2022818922996521, -0.022268282249569893, -0.05014485865831375, -0.08044005930423737, -0.0027669528499245644, -0.07116636633872986, -0.03949885070323944, -0.036953095346689224, -0.015460683964192867, -0.004882183391600847, 0.008614287711679935, -0.13234876096248627, -0.10381202399730682, -0.0283233392983675, -0.062609001994133, 0.235946387052536, 0.037052374333143234, 0.05932043120265007, 0.015326437540352345, 0.02886362187564373, -0.14392563700675964, -0.0606699176132679, -0.015583320520818233, -0.06263090670108795, 0.04417852684855461, -0.001677948166616261, -0.056162379682064056, -0.14684586226940155, 0.06348275393247604, 0.15861110389232635, -0.010668041184544563, 0.03293638676404953, -0.0028688395395874977, 0.10511074960231781, 0.015730097889900208, 0.14350225031375885, 0.00189790443982929, 0.10227219015359879, 0.07528552412986755, -0.020505843684077263, 0.047977279871702194, -0.07532307505607605, -0.1889033317565918, -0.02629651501774788, 0.14636258780956268, 0.06601665169000626, -0.03877273201942444, 0.04987137019634247, -0.05438700318336487, 0.015089414082467556, -0.02530795894563198, -0.14357620477676392, 0.07322913408279419, -0.007191221695393324, 0.01359372679144144, 0.002936673117801547, -0.08370278775691986, 0.06363891810178757, -0.10617747157812119, -0.00228832196444273, -0.01261560246348381, 0.11270233243703842, -0.11672298610210419, -0.12586775422096252, 0.036528121680021286, -0.02369580790400505, -0.03633981943130493, -0.07299363613128662, -0.13625137507915497, 0.020019758492708206, 0.05596374720335007, -0.011820012703537941, -0.009370876476168633, -0.06921306997537613, -0.013082399033010006, 0.0038975300267338753, 0.003765167435631156, -0.13143165409564972, -0.027862682938575745, 0.052434638142585754, 0.036957427859306335, 0.09547124803066254, -0.1458161622285843, 0.006574410013854504, -0.10805568844079971, 0.015798041597008705, -0.3225524127483368, 0.07023429870605469, -0.000083218386862427, 0.004376872908324003, -0.02457227185368538, -0.007036821451038122, -0.026771286502480507, 0.04935489222407341, 0.0090563939884305, 0.12117249518632889, -0.15526629984378815, -0.02161226235330105, 0.078182652592659, -0.13119521737098694, -0.027811426669359207, 0.18532343208789825, -0.0312553308904171, 0.06440243124961853, 0.0768466368317604, 0.19944992661476135, -0.017457447946071625, -0.12783630192279816, 0.10119672119617462, 0.00014366241521202028, -0.11015409976243973, 0.013273676857352257, 0.06631385535001755, 0.007048705127090216, 0.03695175424218178, 0.02307996153831482, -0.060664597898721695, -0.010166640393435955, -0.023226885125041008, -0.004819134250283241, -0.008264993317425251, 0.021297071129083633, 0.0628572478890419, -0.05623210221529007, -0.004225047770887613, -0.10631008446216583, -0.058561790734529495, 0.1620485633611679, -0.02721039205789566, -0.051517799496650696, 0.06027443706989288, -0.14673031866550446, 0.113582544028759, -0.09271647036075592, -0.0030208344105631113, -0.10165878385305405, -0.03699721023440361, 0.034374743700027466, 0.033931199461221695, 0.03950488567352295, -0.04147551581263542, 0.027663283050060272, 0.06572265923023224, -0.009606086649000645, 0.04990111663937569, 0.05737997964024544, 0.02326212450861931, -0.036342985928058624, -0.0731850191950798, -0.01687629148364067, -0.014383772388100624, -0.03481779620051384, 0.022706715390086174, 0.05940240994095802, 0.15476448833942413, 0.07147952169179916, 0.01428092923015356, 0.0006171037093736231, 0.0014939268585294485, 0.04869662597775459, -0.006593299098312855, 0.003108617151156068, 0.037649963051080704, 0.019155897200107574, -0.07518063485622406, 0.18586790561676025, -0.20388227701187134, 0.08942792564630508, 0.10040395706892014, -0.12192681431770325, -0.06670216470956802, 0.027302535250782967, -0.027162721380591393, 0.05362389609217644, -0.02334969863295555, -0.06727258861064911, 0.1266593039035797, 0.028020448982715607, 0.07120609283447266, -0.10443497449159622, -0.07419688999652863, 0.0063150180503726006, -0.11062825471162796, -0.060527775436639786, 0.048020947724580765, 0.11440218985080719, -0.155449777841568, 0.07766227424144745, 0.047873347997665405, -0.05424493923783302, 0.23337942361831665, 0.007273007649928331, -0.04577619209885597, -0.10888369381427765, 0.08581683784723282, -0.02693294547498226, 0.10450718551874161, -0.07459740340709686, -0.02441553771495819, 0.02144276537001133, 0.02287708967924118, 0.023723017424345016, -0.16669675707817078, 0.025771422311663628, -0.013085570186376572, -0.0993911400437355, 0.005228250287473202, -0.004519417881965637, 0.022782102227211, 0.11042273789644241, -0.004878271371126175, -0.0037727458402514458, 0.06128646805882454, 0.03007032535970211, -0.10440944135189056, 0.09669086337089539, -0.12627829611301422, -0.22886233031749725, -0.18842865526676178, 0.009444021619856358, -0.02049175649881363, 0.005459961947053671, 0.08441931009292603, 0.0006475457339547575, -0.03447040915489197, -0.06502467393875122, 0.06466954946517944, -0.02018524892628193, -0.05708133056759834, -0.028442589566111565, -0.026699354872107506, -0.0436004176735878, -0.09498091787099838, -0.0907578393816948, -0.00010844631469808519, 0.05486325919628143, 0.12156376987695694, 0.011417118832468987, 0.06072528660297394, 0.02633173018693924, -0.09779559075832367, 0.05103731527924538, -0.01801101118326187, 0.23851093649864197, -0.034990597516298294, 0.08221685886383057, 0.10826918482780457, -0.09589745849370956, 0.09333404898643494, 0.12016945332288742, -0.0011558190453797579, -0.061794620007276535, -0.0244187880307436, -0.039611902087926865, -0.09549842029809952, -0.09165085852146149, 0.009456807747483253, -0.1306070238351822, -0.024634303525090218, -0.02377132512629032, -0.01674828864634037, -0.04087863862514496, 0.02511909231543541, -0.03808673471212387, 0.048921745270490646, 0.11130955070257187, 0.14533664286136627, 0.3130863308906555, 0.02333349920809269, 0.09146997332572937, -0.05065550655126572, -0.12773394584655762, 0.017159579321742058, 0.009240246377885342, 0.0745411366224289, 0.013423707336187363, 0.05564519762992859, 0.0646897628903389, 0.029439250007271767, 0.09116820245981216, 0.08550476282835007, -0.061707753688097, 0.03330380469560623, -0.04579174146056175, -0.05306515470147133, -0.053319111466407776, 0.02694307640194893, 0.010833663865923882, -0.11516362428665161, -0.0017784906085580587, 0.07441040128469467, 0.11867166310548782, 0.1615053117275238, 0.045091208070516586, -0.21183553338050842, -0.04506703466176987, 0.020236244425177574, -0.009273569099605083, -0.05098719522356987, 0.016060996800661087, 0.11274067312479019, -0.08716878294944763, 0.061494551599025726, 0.0021298567298799753, 0.03150459751486778, -0.056213077157735825, 0.09547248482704163, -0.05672645568847656, 0.04977116733789444, -0.01289539597928524, 0.06279459595680237, -0.3024633824825287, 0.08543628454208374, 0.04274681955575943, 0.0358944907784462, -0.04337906092405319, 0.021863682195544243, 0.005964952055364847, -0.044240452349185944, 0.054351743310689926, 0.02291831001639366, -0.19480955600738525, -0.09919160604476929, 0.00020357056928332895, -0.002855876460671425, 0.10944952070713043, -0.009912123903632164, 0.0694757029414177, -0.03599199280142784, 0.025303857401013374, -0.017580093815922737, -0.06380701065063477, -0.04030696675181389, -0.14633360505104065, 0.06267926096916199, 0.02750035934150219, -0.0635194182395935, -0.017049089074134827, 0.006736099254339933, 0.026574674993753433, 0.0963345393538475, -0.045879919081926346, -0.15368568897247314, -0.07819367945194244, -0.01856342703104019, 0.1254933923482895, -0.04259854555130005, -0.040718648582696915, -0.03158237412571907, 0.13420037925243378, -0.06367059797048569, -0.02839597687125206, 0.06619488447904587, -0.011781273409724236, -0.07721905410289764, -0.0001398073509335518, 0.15119580924510956, -0.0514797680079937, 0.029567962512373924, 0.06720680743455887, 0.0991864949464798, -0.00037016565329395235, -0.12548786401748657, 0.04003297910094261, -0.08175807446241379, -0.04384610056877136, -0.01307317428290844, -0.14541327953338623, 0.009250734932720661, -0.060905877500772476, -0.019076505675911903, 0.24671313166618347, 0.3400818109512329, -0.05336138606071472, 0.1636098027229309, 0.11032108217477798, -0.08152449131011963, -0.16043931245803833, -0.11362254619598389, -0.03587104007601738, 0.03129873424768448, -0.041696351021528244, -0.11823242902755737, 0.012481427751481533, 0.08193940669298172, 0.020648134872317314, 0.024228880181908607, -0.22298979759216309, -0.10062823444604874, 0.10133460909128189, 0.011508863419294357, 0.2642274498939514, -0.09022679924964905, -0.05030326917767525, -0.03530149906873703, -0.08958780765533447, 0.1852758526802063, 0.06843732297420502, 0.05115232989192009, 0.03366110473871231, 0.09873310476541519, 0.05434534698724747, -0.025051860138773918, 0.08990225940942764, -0.0592675656080246, 0.04391998425126076, -0.07795848697423935, -0.12147469073534012, 0.10714534670114517, -0.04278164356946945, 0.15538272261619568, -0.04803675413131714, -0.06408781558275223, -0.08345522731542587, -0.07454808056354523, 0.003856909228488803, 0.03253950551152229, -0.031003201380372047, -0.05544314160943031, -0.01720835268497467, -0.053736612200737, 0.005537502467632294, -0.018502306193113327, 0.008497895672917366, -0.061751026660203934, 0.09711353480815887, 0.12053442001342773, 0.10750260949134827, -0.14818157255649567, 0.07487144321203232, 0.02875402197241783, -0.019577890634536743, 0.044211044907569885, 0.043191272765398026, 0.0949963852763176, 0.07020942866802216, -0.02754376269876957, 0.12087485194206238, 0.04952419921755791, -0.04491092637181282, 0.022784359753131866, 0.058067336678504944, -0.1737716645002365, -0.06459657102823257, 0.03527679294347763, 0.03974243998527527, 0.05028145760297775, -0.026245208457112312, 0.16809117794036865, -0.0354740172624588, -0.04925134778022766, 0.004044920206069946, 0.0877106711268425, 0.010941569693386555, 0.007757542654871941, 0.043880537152290344, 0.06696539372205734, -0.0747029110789299, -0.050028566271066666, -0.0039062462747097015, -0.0399489663541317, 0.05317923426628113, 0.051614876836538315, -0.073347307741642, -0.0476987399160862, -0.05619102343916893, 0.13706126809120178, -0.09741085022687912, -0.0485621877014637, -0.1209651455283165, -0.13417872786521912, 0.0203000009059906, 0.09265485405921936, 0.06609221547842026, 0.07491203397512436, 0.02885153330862522, 0.04478464275598526, -0.044358767569065094, 0.06453656405210495, -0.005882255733013153, -0.03244977071881294, -0.05444600060582161, 0.15357835590839386, -0.03396615758538246, 0.008336939848959446, -0.032364267855882645, 0.0021898914128541946, -0.14547297358512878, -0.015927543863654137, 0.03367080166935921, 0.017084594815969467, -0.054144542664289474, 0.024419408291578293, 0.08716229349374771, -0.04109739884734154, -0.05616359785199165, 0.009011820890009403, -0.13297618925571442, -0.00659301970154047, -0.04801670461893082, 0.026332208886742592, -0.05752285569906235, -0.015680160373449326, 0.11214380711317062, -0.09112586826086044, 0.06835012137889862, 0.04657245799899101, -0.07949888706207275, 0.01685837097465992, -0.049033187329769135, -0.017265887930989265, 0.014712472446262836, 0.007047988940030336, 0.0020316552836447954, -0.03591243550181389, 0.04763305187225342, 0.10653416067361832, 0.09596497565507889, 0.042007170617580414, 0.12804315984249115, -0.09585798531770706, 0.06081172451376915, -0.02070886828005314, -0.1636698693037033, -0.049169525504112244, 0.04005883261561394, 0.026809168979525566, 0.06338045001029968, 0.14105309545993805, -0.08108144253492355, 0.03043421357870102, -0.024211667478084564, 0.022212127223610878, 0.044662054628133774, -0.06834641098976135, -0.07710529863834381, -0.07127144187688828, 0.01495019905269146, -0.02148526906967163, 0.2019505649805069, 0.058223310858011246, -0.03882760554552078, 0.05042383074760437, 0.047024182975292206, -0.0757966935634613, 0.029061689972877502, 0.04516306146979332, -0.003974022343754768, -0.026962915435433388, -0.09163690358400345, -0.026095980778336525, 0.030036892741918564, -0.11046329140663147, 0.10222896188497543, 0.052280403673648834, 0.08301414549350739, 0.09145347028970718, 0.05065276846289635, 0.05899200588464737, 0.004955006763339043, 0.11396066844463348, 0.05026157945394516, 0.053070068359375, -0.02264382876455784, 0.22066929936408997, 0.23489423096179962, -0.11274805665016174, 0.07782435417175293, -0.003805744694545865, -0.051867470145225525, -0.14187481999397278, -0.1282237470149994, -0.058717746287584305, -0.12380356341600418, 0.008149447850883007, -0.11970602720975876, 0.02701880969107151, -0.004320877604186535, 0.0336664617061615, 0.025056811049580574, -0.007327303756028414, -0.039191022515296936, -0.0424995943903923, 0.026624493300914764, -0.06475093215703964, 0.029622508212924004, 0.12026071548461914, -0.08508337289094925, 0.04118165001273155, 0.03562025725841522, 0.10328611731529236, 0.0684543028473854, 0.119753398001194, -0.06670702993869781, -0.15881340205669403, -0.05377475917339325, -0.018771834671497345, -0.01587330549955368, 0.06294472515583038, -0.0212179496884346, 0.00179566559381783, -0.07752878218889236, -0.004978696350008249, 0.18191838264465332, 0.01470041275024414, -0.22165027260780334, -0.12897983193397522, 0.07072274386882782, 0.075522281229496, 0.09169402718544006, -0.06423330307006836, -0.07837926596403122, -0.025399407371878624, 0.12231563031673431, 0.18434295058250427, -0.0157209113240242, -0.030372386798262596, -0.035610828548669815, 0.02240908145904541, 0.08824755251407623, 0.058741942048072815, 0.062424253672361374, 0.1468125730752945, -0.04144011065363884, 0.06095942482352257, -0.13985197246074677, 0.02213456481695175, -0.15248240530490875, 0.0741339921951294, -0.0017014278564602137, -0.019296716898679733, -0.06122264638543129, 0.10904379189014435, -0.08100917935371399, -0.10020612925291061, -0.10263121873140335, -0.10204656422138214, -0.05184583365917206, 0.06775428354740143, 0.14469771087169647, -0.03696378320455551, 0.07655206322669983, -0.041131392121315, -0.07454361766576767, -0.06314729154109955, 0.04419221729040146, -0.13857534527778625, 0.04007105529308319, 0.07574110478162766, 0.0365169495344162, 0.07675452530384064, 0.012519476003944874, 0.19639797508716583, 0.0807192474603653, -0.07258856296539307, -0.030649395659565926, 0.11597446352243423, -0.00155172951053828, -0.015593364834785461, 0.03503086045384407, 0.055722590535879135, 0.006573599297553301, -0.00506006320938468, 0.060623589903116226, -0.08086471259593964, 0.008643320761620998, -0.03981878608465195, -0.04636360704898834, 0.011943344958126545, -0.0062062786892056465, -0.10611704736948013, 0.03280223533511162, 0.0993439331650734, -0.02739855833351612, -0.005032224580645561, -0.047036923468112946, 0.017462335526943207, -0.008038326166570187, -0.11458055675029755, -0.06720224022865295, -0.1424378603696823, -0.018136311322450638, 0.04579868167638779, -0.005722371395677328, -0.10228309780359268, -0.06259619444608688, 0.006945442873984575, 0.07974846661090851, -0.09187763184309006, 0.08456405252218246, 0.13478541374206543, 0.023247981444001198, -0.043805837631225586, -0.19164051115512848, 0.011540891602635384, 0.06103873997926712, 0.008400365710258484, -0.015444112941622734 ]
null
null
transformers
# RuT5Tox
{"language": ["ru"], "license": ["apache-2.0"], "tags": ["t5"], "inference": {"parameters": {"num_beams": 5, "no_repeat_ngram_size": 4}}, "widget": [{"text": "\u0427\u0442\u043e \u044d\u0442\u043e \u0437\u0430 \u0435\u0440\u0443\u043d\u0434\u0430?"}]}
text2text-generation
IlyaGusev/rut5_tox
[ "transformers", "pytorch", "t5", "text2text-generation", "ru", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:04+00:00
[]
[ "ru" ]
TAGS #transformers #pytorch #t5 #text2text-generation #ru #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# RuT5Tox
[ "# RuT5Tox" ]
[ "TAGS\n#transformers #pytorch #t5 #text2text-generation #ru #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# RuT5Tox" ]
[ 58, 6 ]
[ "passage: TAGS\n#transformers #pytorch #t5 #text2text-generation #ru #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# RuT5Tox" ]
[ 0.010242968797683716, 0.013941626064479351, -0.005839290097355843, 0.06512144953012466, 0.09821499139070511, 0.018411478027701378, 0.12601850926876068, 0.13955502212047577, -0.07954487949609756, -0.02647291123867035, 0.16912057995796204, 0.1324712187051773, 0.03952905163168907, 0.09603920578956604, -0.0729467123746872, -0.21971465647220612, 0.06777145713567734, 0.013112136162817478, 0.007399227004498243, 0.11820777505636215, 0.1304296851158142, 0.0001765318593243137, 0.0999840795993805, -0.019634583964943886, -0.1351107805967331, 0.07078943401575089, 0.07668527215719223, -0.11364157497882843, 0.0836876854300499, 0.07879037410020828, 0.06311441957950592, 0.05795811861753464, 0.00957479514181614, -0.12742695212364197, 0.025545144453644753, 0.051000144332647324, -0.11171355843544006, 0.058372244238853455, 0.12063764035701752, -0.03984499350190163, 0.19224846363067627, 0.047103144228458405, -0.06541421264410019, 0.0850052759051323, -0.1048494502902031, -0.05070037394762039, -0.10197599977254868, 0.17290300130844116, 0.05689186975359917, 0.10712531208992004, 0.0116876270622015, 0.11508400738239288, -0.08675170689821243, 0.08848098665475845, 0.23976275324821472, -0.3965630829334259, -0.03220954164862633, 0.05468335747718811, 0.04479833319783211, 0.08319748193025589, -0.002172544365748763, 0.024987442418932915, 0.05945924296975136, 0.03360113501548767, -0.00259667937643826, -0.07561313360929489, -0.17089998722076416, 0.009908371604979038, -0.08788231015205383, -0.034425489604473114, 0.27136269211769104, -0.014566068537533283, 0.043553080409765244, 0.041976895183324814, -0.11452892422676086, -0.054410070180892944, 0.0047240848653018475, -0.0073840320110321045, -0.026985973119735718, 0.09417705982923508, 0.09306956082582474, -0.044012587517499924, -0.16136540472507477, 0.008141104131937027, -0.1646711230278015, 0.01673884317278862, 0.04158008098602295, 0.07291579991579056, -0.17406852543354034, 0.07699722051620483, 0.019391879439353943, -0.11730629205703735, 0.00026374944718554616, -0.12004092335700989, 0.07864736765623093, 0.033600445836782455, -0.06506428122520447, -0.09557835757732391, 0.13344967365264893, 0.2061396688222885, 0.013588856905698776, 0.033796172589063644, -0.06151677668094635, 0.09433142840862274, -0.06374303251504898, 0.029247337952256203, -0.03894215077161789, -0.030936213210225105, 0.0904548168182373, -0.13277094066143036, 0.03874832019209862, -0.030200794339179993, -0.1430138200521469, -0.07672131061553955, 0.0011742842616513371, 0.08707138150930405, 0.05131366848945618, 0.053271111100912094, -0.04165535047650337, -0.006633879616856575, 0.05994022637605667, -0.055487293750047684, -0.03797503933310509, 0.006250876467674971, 0.02314959466457367, 0.14665080606937408, 0.05468936637043953, 0.016909578815102577, -0.13556353747844696, 0.03520527854561806, -0.042815547436475754, -0.03214023634791374, -0.007509551476687193, -0.05123557895421982, 0.05256448686122894, -0.1258978396654129, 0.024227144196629524, -0.19421687722206116, -0.1058378666639328, 0.026513144373893738, 0.050451405346393585, -0.0372915081679821, -0.0442880280315876, 0.029458392411470413, -0.0693042054772377, 0.04897815361618996, -0.05089985579252243, 0.00399969145655632, -0.04080081358551979, 0.05950535833835602, -0.08843061327934265, 0.05360019952058792, -0.18614961206912994, 0.05485974997282028, -0.12824738025665283, -0.044992342591285706, 0.04263695329427719, -0.013721384108066559, -0.031699568033218384, 0.10192130506038666, -0.09131994843482971, -0.05005066469311714, -0.024937167763710022, -0.01986556686460972, -0.0075086443684995174, 0.13617458939552307, -0.12617860734462738, -0.04420146718621254, 0.2659771740436554, -0.11352331936359406, -0.15914925932884216, 0.09949978440999985, 0.04496597498655319, 0.041253991425037384, 0.05886157974600792, 0.14679698646068573, 0.08463231474161148, -0.04755089804530144, 0.04233972355723381, 0.07944900542497635, -0.09278711676597595, -0.11407201737165451, 0.03558668494224548, -0.012080317363142967, -0.07757455855607986, 0.051808569580316544, 0.012658610008656979, 0.07076769322156906, -0.003465115325525403, -0.05079493671655655, -0.08488143235445023, -0.034954410046339035, 0.04719655215740204, -0.026860129088163376, 0.06395465135574341, -0.07767856121063232, -0.05447044223546982, -0.12065289914608002, 0.025692474097013474, 0.03759731352329254, 0.052232954651117325, -0.06015583872795105, 0.10946948826313019, 0.06119098514318466, 0.0721135139465332, -0.12377645075321198, 0.01251119002699852, -0.023946838453412056, 0.11463950574398041, 0.037249431014060974, 0.12158960103988647, 0.04463260993361473, -0.05715661495923996, -0.03563615679740906, -0.022749265655875206, 0.07297343760728836, -0.0003866191837005317, -0.017640599980950356, -0.11684714257717133, 0.038865264505147934, -0.03878219053149223, -0.05633629485964775, -0.03875821828842163, 0.031317319720983505, 0.037562910467386246, 0.12112517654895782, -0.018973086029291153, 0.09072601050138474, -0.04003635048866272, -0.006016351282596588, -0.10042925179004669, -0.009660251438617706, 0.07634209096431732, 0.0200379379093647, -0.059818170964717865, 0.156058669090271, -0.056583136320114136, 0.21170111000537872, 0.16858269274234772, -0.10310810804367065, 0.0029197498224675655, 0.0664302334189415, -0.0404694639146328, -0.0071458974853158, 0.046291500329971313, 0.03000250644981861, 0.021627582609653473, 0.00964654516428709, 0.11984407156705856, -0.048866838216781616, -0.02216646634042263, 0.03618607297539711, -0.08078022301197052, 0.010428796522319317, 0.05236818641424179, 0.11879049986600876, -0.2341124564409256, 0.13263234496116638, 0.31014180183410645, -0.024346496909856796, 0.0790075808763504, -0.04061799496412277, -0.050477106124162674, 0.058236949145793915, 0.03181835263967514, -0.0054610250517725945, -0.06604694575071335, -0.02990884706377983, 0.029959892854094505, 0.07875432819128036, 0.02157777175307274, 0.02876911126077175, -0.09243761748075485, -0.03714624047279358, -0.03530687838792801, -0.02294783666729927, -0.04055149853229523, 0.13842220604419708, -0.010966707952320576, 0.13298077881336212, -0.04164310172200203, -0.07538332790136337, 0.10955550521612167, 0.026286741718649864, -0.09649301320314407, 0.16760388016700745, -0.1405722051858902, -0.29302069544792175, -0.11096540838479996, -0.12730801105499268, -0.05580638721585274, -0.007972359657287598, 0.1716611385345459, -0.1257810890674591, -0.0420612208545208, -0.014001837000250816, -0.02700282633304596, -0.03386556729674339, 0.03455141931772232, -0.05041187256574631, 0.061399299651384354, 0.00894126482307911, -0.09796500205993652, -0.03891448676586151, 0.03477846086025238, -0.07116004824638367, 0.13315929472446442, -0.10214940458536148, 0.07615631073713303, 0.11114780604839325, 0.003681765403598547, 0.03303093463182449, -0.0429123118519783, 0.11874740570783615, -0.006328802090138197, 0.05879119038581848, 0.2729256749153137, -0.025733888149261475, 0.08270660042762756, 0.15294434130191803, -0.014730896800756454, -0.041282910853624344, 0.03710201382637024, -0.0497603714466095, -0.058655209839344025, -0.32484349608421326, -0.05097505450248718, -0.12158217281103134, 0.0961565375328064, 0.056253910064697266, 0.08024151623249054, 0.14393062889575958, 0.07649773359298706, -0.03371819481253624, 0.02885529026389122, 0.028681498020887375, 0.08776898682117462, 0.1819213479757309, -0.003977367654442787, 0.1296929568052292, -0.13330231606960297, -0.020542727783322334, 0.1487368941307068, 0.0271699670702219, 0.14236332476139069, 0.07606169581413269, 0.040658801794052124, 0.0617855004966259, 0.20949405431747437, 0.07378968596458435, 0.13495656847953796, 0.061999768018722534, -0.00570847699418664, -0.04622698575258255, -0.030682483687996864, -0.010935970582067966, 0.06394331902265549, -0.07605105638504028, -0.14122186601161957, -0.04374171793460846, -0.01537687424570322, 0.06558667868375778, 0.21711649000644684, 0.06183652952313423, -0.17924512922763824, -0.0123422397300601, 0.043279971927404404, -0.002800840185955167, -0.07786010205745697, 0.1047094538807869, -0.05146976560354233, -0.10416997224092484, 0.1163497045636177, -0.03178905323147774, 0.12417442351579666, 0.09113780409097672, 0.053264766931533813, 0.005303600337356329, -0.050906337797641754, 0.055556029081344604, 0.1234048381447792, -0.3711297810077667, 0.18572215735912323, -0.03386934846639633, -0.02863120473921299, -0.06838351488113403, 0.007628381252288818, 0.02849455177783966, 0.1656857430934906, 0.12131832540035248, 0.013154781423509121, -0.1268080323934555, 0.0334780290722847, -0.01114541944116354, 0.057111598551273346, 0.08469873666763306, 0.007746171206235886, -0.01963476464152336, -0.09688160568475723, -0.012315094470977783, 0.012098086066544056, 0.035000018775463104, -0.12452632933855057, -0.1337253302335739, 0.08102479577064514, 0.09285903722047806, 0.07354376465082169, -0.054555103182792664, -0.028691250830888748, -0.010294242762029171, 0.1835039108991623, -0.056515179574489594, -0.07659248262643814, -0.1283222883939743, -0.05508933588862419, 0.051800213754177094, -0.09685387462377548, 0.0589863546192646, -0.0907178521156311, 0.002076429082080722, -0.030069705098867416, -0.22624000906944275, 0.1070604994893074, -0.1284080296754837, -0.09310559928417206, -0.014829602092504501, 0.12962806224822998, -0.06796164810657501, 0.01488350797444582, 0.021131206303834915, 0.005520525388419628, -0.09582656621932983, -0.09842874854803085, 0.013275763019919395, -0.03326544165611267, -0.0023323367349803448, -0.053944945335388184, -0.08225809037685394, -0.13098463416099548, -0.02582714892923832, -0.0456371009349823, 0.2468525916337967, 0.1300225555896759, -0.09463091194629669, 0.2043391615152359, 0.0918380618095398, -0.08768690377473831, -0.27963605523109436, -0.16315041482448578, -0.08316962420940399, -0.05043816566467285, 0.017579693347215652, -0.1451401561498642, 0.04878472909331322, 0.008584232069551945, -0.04199985787272453, 0.07341271638870239, -0.27278807759284973, -0.06994186341762543, 0.15461355447769165, -0.02312253788113594, 0.2881985902786255, -0.1138654425740242, -0.051967132836580276, -0.07544690370559692, -0.16596180200576782, 0.08714192360639572, -0.17305965721607208, 0.0709761530160904, -0.04932680353522301, 0.04500231891870499, -0.01862316019833088, -0.023071633651852608, 0.024080336093902588, -0.022276246920228004, -0.013681311160326004, -0.11998455971479416, 0.05011458322405815, 0.1292123645544052, -0.005552303045988083, 0.048444196581840515, -0.14487116038799286, 0.07158185541629791, -0.036947377026081085, -0.0022571797017008066, -0.08436770737171173, 0.08542309701442719, -0.005329301115125418, -0.05734339728951454, -0.028533965349197388, -0.05961230769753456, 0.060681071132421494, -0.009776866063475609, 0.17821252346038818, 0.023908210918307304, 0.11675070971250534, 0.15735401213169098, 0.05399319902062416, -0.05449197068810463, 0.02711593545973301, -0.10843175649642944, -0.08284847438335419, 0.03708263859152794, -0.159768745303154, 0.03322392329573631, 0.09658506512641907, -0.07920496165752411, 0.04191393032670021, 0.08116484433412552, -0.012870552018284798, 0.005435783416032791, 0.15097619593143463, -0.21813055872917175, -0.016808513551950455, -0.05517357587814331, 0.0469340980052948, 0.007351474836468697, 0.08016164600849152, 0.17602819204330444, -0.0477093867957592, -0.054238270968198776, 0.009790854528546333, 0.052396196871995926, -0.11140767484903336, 0.05207866430282593, 0.03616904839873314, -0.02167561464011669, -0.0955061987042427, 0.10712092369794846, 0.029885021969676018, -0.0840320885181427, 0.012366300448775291, 0.16823503375053406, -0.16790880262851715, -0.12689508497714996, 0.10036906599998474, -0.009729837067425251, -0.18431735038757324, -0.07768683135509491, -0.05590222775936127, -0.11198638379573822, 0.07865945994853973, 0.15237365663051605, 0.06196385249495506, 0.03150340914726257, -0.017384937033057213, -0.08320113271474838, 0.026031138375401497, 0.01147284172475338, -0.0009187316172756255, 0.04120486229658127, -0.1366426944732666, -0.04689792916178703, -0.007933119311928749, 0.10525312274694443, -0.051185328513383865, 0.01897020824253559, -0.10937777906656265, -0.00239807297475636, -0.2080456018447876, -0.021466564387083054, -0.032909877598285675, -0.0353081151843071, -0.029824305325746536, -0.0666317269206047, -0.05674923211336136, 0.022915972396731377, -0.09112877398729324, -0.029595300555229187, -0.05050059035420418, 0.09381130337715149, -0.11449582129716873, -0.0012076713610440493, 0.07518408447504044, -0.0129880765452981, 0.12164993584156036, 0.09047448635101318, -0.11810296773910522, 0.13258400559425354, -0.14815892279148102, -0.07271791249513626, 0.08483505994081497, 0.04288504272699356, 0.015624060295522213, 0.018509086221456528, 0.01418314129114151, 0.08942096680402756, -0.03751459717750549, 0.01884813979268074, 0.015981663018465042, -0.11407755315303802, -0.01472412794828415, -0.11258167028427124, -0.09876900911331177, -0.045225657522678375, -0.05801577493548393, 0.08896999061107635, 0.0567673034965992, 0.16410456597805023, -0.06633312255144119, 0.08897772431373596, -0.054217107594013214, 0.02854732610285282, 0.005585852079093456, -0.12539398670196533, -0.17804750800132751, -0.07512412220239639, -0.008924501948058605, -0.03906711935997009, 0.13000240921974182, -0.02495521679520607, -0.04248519986867905, 0.057936906814575195, 0.023202553391456604, -0.05013679713010788, 0.005925697740167379, 0.21135199069976807, 0.034279704093933105, -0.041696593165397644, -0.12725628912448883, -0.02550443448126316, -0.014159669168293476, -0.07302887737751007, 0.1801525354385376, 0.07191594690084457, 0.009301084093749523, 0.06287344545125961, -0.016334600746631622, -0.004250404890626669, -0.07524918019771576, -0.1128481850028038, 0.008837522007524967, 0.07341531664133072, -0.01633058488368988, 0.14409707486629486, 0.21620489656925201, -0.009701764211058617, -0.03920852765440941, -0.05355953425168991, -0.018520893529057503, -0.14761382341384888, -0.1358177363872528, -0.09417634457349777, -0.14935864508152008, 0.00557055976241827, -0.0743243619799614, 0.09195125848054886, 0.015010585077106953, 0.07004664838314056, -0.07553131133317947, 0.0363013856112957, 0.033696118742227554, -0.11884268373250961, 0.052740678191185, -0.04690418764948845, 0.0035364136565476656, 0.02563764527440071, -0.0015799306565895677, -0.07944899797439575, -0.018583206459879875, -0.02678127959370613, 0.05135297402739525, -0.010615603066980839, 0.04571766406297684, -0.1449255794286728, -0.07626768946647644, -0.013101723045110703, 0.06955651193857193, -0.007465502712875605, 0.14374211430549622, 0.048215556889772415, -0.0055811782367527485, 0.07235437631607056, 0.16620010137557983, -0.07784353941679001, -0.14229071140289307, -0.06902872771024704, 0.14334990084171295, 0.0576564185321331, 0.041732240468263626, -0.009075058624148369, 0.007778123952448368, -0.06513304263353348, 0.3244158923625946, 0.2599896788597107, -0.01202026754617691, 0.016897089779376984, -0.009592466056346893, 0.033911872655153275, 0.07910555601119995, 0.14687782526016235, 0.10910733789205551, 0.16456687450408936, -0.0837995707988739, 0.00307840877212584, -0.042461786419153214, 0.02544061839580536, -0.1531565934419632, 0.0995749831199646, -0.010096953250467777, -0.11281725019216537, 0.017422031611204147, 0.13214288651943207, -0.1513529270887375, 0.07205034792423248, -0.0708080306649208, -0.07228679955005646, -0.046783629804849625, 0.001826972234994173, 0.16304008662700653, 0.03804205358028412, 0.06418425589799881, -0.03989410400390625, -0.06333794444799423, 0.14807650446891785, 0.0182314645498991, -0.17813846468925476, -0.013836429454386234, 0.05886952206492424, -0.12350832670927048, 0.02795148268342018, -0.004988443106412888, 0.048338714987039566, 0.09629026800394058, 0.07967247068881989, -0.10740621387958527, 0.039649467915296555, 0.010995503515005112, 0.01334874052554369, 0.018681339919567108, -0.049021802842617035, -0.006487985607236624, -0.06435056030750275, 0.06542704999446869, -0.057247210294008255, 0.032859526574611664, 0.024864561855793, 0.014496852643787861, -0.04144516587257385, 0.07246946543455124, -0.06124584749341011, 0.06264326721429825, 0.0634494349360466, -0.057964883744716644, -0.03214487433433533, -0.11010286211967468, -0.031551115214824677, 0.05195428803563118, -0.129494309425354, -0.02016434445977211, -0.028323590755462646, -0.05695315822958946, 0.09865494072437286, 0.06021309643983841, -0.11554783582687378, 0.008927919901907444, -0.12896223366260529, 0.047026168555021286, -0.2130342274904251, 0.09825776517391205, 0.10022125393152237, -0.01615842431783676, 0.030783331021666527, -0.024636002257466316, 0.0048915729857981205, 0.04486583545804024, -0.09497017413377762, -0.08335229754447937 ]
null
null
transformers
[DialogLM: Pre-trained Model for Long Dialogue Understanding and Summarization](https://arxiv.org/abs/2109.02492). ## Introduction DialogLED is a pre-trained model for long dialogue understanding and summarization. It builds on the Longformer-Encoder-Decoder (LED) architecture and uses window-based denoising as the pre-training task on a large amount of long dialogue data for further training. Here is a base version of DialogLED, the input length is limited to 16,384 in the pre-training phase. ## Finetuning for Downstream Tasks Please refer to [our GitHub page](https://github.com/microsoft/DialogLM).
{}
text2text-generation
MingZhong/DialogLED-base-16384
[ "transformers", "pytorch", "led", "text2text-generation", "arxiv:2109.02492", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:04+00:00
[ "2109.02492" ]
[]
TAGS #transformers #pytorch #led #text2text-generation #arxiv-2109.02492 #autotrain_compatible #endpoints_compatible #region-us
DialogLM: Pre-trained Model for Long Dialogue Understanding and Summarization. ## Introduction DialogLED is a pre-trained model for long dialogue understanding and summarization. It builds on the Longformer-Encoder-Decoder (LED) architecture and uses window-based denoising as the pre-training task on a large amount of long dialogue data for further training. Here is a base version of DialogLED, the input length is limited to 16,384 in the pre-training phase. ## Finetuning for Downstream Tasks Please refer to our GitHub page.
[ "## Introduction\nDialogLED is a pre-trained model for long dialogue understanding and summarization. It builds on the Longformer-Encoder-Decoder (LED) architecture and uses window-based denoising as the pre-training task on a large amount of long dialogue data for further training. Here is a base version of DialogLED, the input length is limited to 16,384 in the pre-training phase.", "## Finetuning for Downstream Tasks\nPlease refer to our GitHub page." ]
[ "TAGS\n#transformers #pytorch #led #text2text-generation #arxiv-2109.02492 #autotrain_compatible #endpoints_compatible #region-us \n", "## Introduction\nDialogLED is a pre-trained model for long dialogue understanding and summarization. It builds on the Longformer-Encoder-Decoder (LED) architecture and uses window-based denoising as the pre-training task on a large amount of long dialogue data for further training. Here is a base version of DialogLED, the input length is limited to 16,384 in the pre-training phase.", "## Finetuning for Downstream Tasks\nPlease refer to our GitHub page." ]
[ 46, 92, 18 ]
[ "passage: TAGS\n#transformers #pytorch #led #text2text-generation #arxiv-2109.02492 #autotrain_compatible #endpoints_compatible #region-us \n## Introduction\nDialogLED is a pre-trained model for long dialogue understanding and summarization. It builds on the Longformer-Encoder-Decoder (LED) architecture and uses window-based denoising as the pre-training task on a large amount of long dialogue data for further training. Here is a base version of DialogLED, the input length is limited to 16,384 in the pre-training phase.## Finetuning for Downstream Tasks\nPlease refer to our GitHub page." ]
[ -0.08278501033782959, -0.07753627747297287, -0.0011123783187940717, 0.008513441309332848, 0.11035501956939697, -0.011801265180110931, 0.1631525158882141, 0.07840042561292648, -0.006308655720204115, -0.03066447004675865, 0.12315734475851059, 0.058362800627946854, -0.0038143584970384836, 0.17513954639434814, -0.06398636102676392, -0.3169810175895691, 0.0380178801715374, 0.0406322255730629, 0.025548312813043594, 0.08487796783447266, 0.13043434917926788, -0.10134678333997726, 0.019280599430203438, -0.014350492507219315, -0.1770893931388855, -0.030198710039258003, -0.02617459185421467, -0.06412886083126068, 0.1458224207162857, 0.01839119754731655, 0.08823635429143906, 0.05678359791636467, -0.006255317945033312, -0.10453656315803528, 0.047154251486063004, -0.024914821609854698, 0.05458170548081398, 0.0428602397441864, -0.06024433672428131, 0.1265622228384018, 0.1112121120095253, -0.011578322388231754, 0.06621595472097397, 0.023634642362594604, -0.08897470682859421, -0.0609646774828434, -0.023503219708800316, 0.07804537564516068, 0.11100129038095474, 0.1206674724817276, 0.0033843342680484056, 0.03305629640817642, -0.09818419814109802, 0.10449377447366714, -0.03530023619532585, -0.19726483523845673, -0.03460412845015526, 0.16261924803256989, 0.06825368851423264, 0.0178715568035841, -0.09302742779254913, -0.0028485290240496397, 0.001854209927842021, 0.051018666476011276, -0.03218553587794304, -0.0629395991563797, -0.10386370867490768, -0.06660725921392441, -0.10044557601213455, 0.043078284710645676, 0.2494252324104309, -0.016318056732416153, -0.030117861926555634, -0.14793239533901215, -0.06600262969732285, -0.07600820064544678, -0.051217854022979736, -0.07242857664823532, -0.04982670396566391, 0.04324721544981003, -0.0075950357131659985, -0.11710058897733688, -0.14855341613292694, -0.026240909472107887, -0.16487249732017517, 0.1774175465106964, 0.011810248717665672, 0.032803505659103394, -0.1855110228061676, 0.1110287681221962, 0.027898553758859634, -0.10154353082180023, -0.02124944142997265, -0.06707718223333359, 0.012905570678412914, -0.0234171524643898, -0.01973937638103962, -0.07687249779701233, 0.021943479776382446, 0.17754551768302917, -0.0744292214512825, 0.018931064754724503, 0.0030960103031247854, 0.04207618907094002, -0.008897725492715836, 0.1600983738899231, 0.10382935404777527, -0.041432980448007584, 0.10836994647979736, 0.014036620035767555, 0.0171230286359787, -0.0181773342192173, -0.17096452414989471, -0.07639379054307938, 0.031124133616685867, 0.04666772484779358, 0.07726237177848816, 0.11056552827358246, -0.01081958506256342, -0.04133237898349762, 0.14404793083667755, -0.07297723740339279, 0.00930887833237648, 0.008081329986453056, -0.07694986462593079, 0.002458058763295412, 0.04459700733423233, 0.014711841940879822, -0.0558544285595417, 0.04266227036714554, -0.01834332011640072, -0.0311494879424572, -0.10578420013189316, -0.08288557082414627, 0.02205042541027069, -0.03889010474085808, 0.041917406022548676, -0.16988646984100342, -0.15407021343708038, -0.00788917113095522, 0.015593097545206547, -0.00723310885950923, -0.08412330597639084, -0.09443827718496323, -0.010881908237934113, 0.03334135189652443, -0.05327928438782692, 0.023085640743374825, -0.02202627994120121, 0.06479284912347794, 0.05953618139028549, 0.10997579991817474, -0.2156009078025818, 0.027026668190956116, -0.09265407174825668, -0.016799388453364372, -0.07178132236003876, 0.09750937670469284, 0.017584361135959625, 0.08586082607507706, -0.023334726691246033, -0.06677083671092987, -0.1181812733411789, 0.04459725320339203, 0.0424627959728241, 0.18596220016479492, -0.1234164834022522, -0.01338868960738182, 0.08011241257190704, -0.108021080493927, -0.1069561243057251, 0.1139911413192749, -0.024105418473482132, 0.21300558745861053, 0.11296172440052032, 0.18111304938793182, 0.059303876012563705, -0.08678356558084488, 0.045023176819086075, 0.11998037993907928, -0.06638675928115845, -0.030362768098711967, -0.02399127371609211, 0.058121901005506516, 0.007193085737526417, 0.043409354984760284, 0.09564930200576782, 0.0689876601099968, -0.04473692178726196, -0.039973802864551544, 0.012471936643123627, 0.027053330093622208, 0.0556744746863842, 0.008030525408685207, 0.08835585415363312, -0.04436999186873436, -0.04529448226094246, 0.013077379204332829, 0.0750248059630394, -0.015657644718885422, 0.024362247437238693, -0.08623217046260834, -0.05181492492556572, 0.01264121849089861, 0.049769360572099686, -0.14452192187309265, -0.12427916377782822, -0.026066452264785767, 0.2498285323381424, -0.005001905839890242, 0.18234889209270477, 0.04264107719063759, -0.04226565733551979, 0.01182202436029911, -0.0329587459564209, 0.01716795563697815, -0.03528938442468643, -0.08060922473669052, -0.07104809582233429, 0.025536561384797096, -0.07709470391273499, 0.06022346764802933, -0.12659688293933868, 0.04662444442510605, -0.005031914915889502, 0.027185434475541115, 0.05161573365330696, 0.022379405796527863, 0.00755626754835248, 0.04668540880084038, -0.01258176751434803, -0.011262844316661358, 0.06608109176158905, 0.06822443753480911, -0.07680023461580276, 0.09452281147241592, -0.11417146027088165, 0.07067933678627014, 0.12586373090744019, -0.08421044051647186, -0.04018878936767578, -0.05058124661445618, -0.0651109367609024, -0.03701683133840561, 0.03239372372627258, 0.023007050156593323, 0.24899491667747498, 0.004547294229269028, 0.12428279221057892, -0.006273776758462191, 0.03080003522336483, -0.0536620169878006, -0.06396546214818954, 0.030929841101169586, 0.0644543319940567, 0.04376194626092911, -0.1512089967727661, 0.06166709214448929, -0.08443542569875717, 0.061970632523298264, 0.17267177999019623, -0.0032882860396057367, 0.00010451253183418885, 0.03703824803233147, 0.02408447116613388, -0.06347028911113739, 0.09876172244548798, -0.22853675484657288, -0.05621659383177757, 0.03335804119706154, 0.05470221862196922, 0.08522888273000717, -0.13979209959506989, 0.01634768769145012, -0.013456404209136963, -0.012879900634288788, 0.002869246993213892, 0.10567424446344376, -0.012446177192032337, 0.04858296737074852, 0.08790537714958191, -0.06040423735976219, 0.07458709925413132, 0.01656692661345005, -0.08269621431827545, 0.13629992306232452, -0.09858040511608124, -0.39031362533569336, -0.0771433636546135, -0.10975202918052673, -0.001607362530194223, 0.027523381635546684, 0.08563164621591568, -0.0849570780992508, -0.03402439132332802, 0.025977184996008873, 0.15306976437568665, -0.12498989701271057, 0.03647755831480026, 0.030988121405243874, -0.001575350179336965, -0.07634904980659485, -0.11118816584348679, -0.030379094183444977, -0.04814678430557251, -0.04173944145441055, 0.06347507238388062, -0.06259448826313019, 0.03551841527223587, 0.11193422228097916, -0.019539792090654373, 0.02773633785545826, -0.04236213490366936, 0.19172348082065582, -0.0893707200884819, 0.03979746997356415, 0.22336800396442413, -0.03187282755970955, -0.023485617712140083, 0.20702610909938812, -0.019238963723182678, -0.11570192128419876, 0.06721735000610352, -0.057924773544073105, -0.04724720120429993, -0.11100152879953384, -0.10350251197814941, -0.12163086235523224, 0.09556887298822403, 0.009239856153726578, 0.05903716757893562, 0.05997921898961067, 0.005321876145899296, -0.00868496485054493, 0.05515149608254433, 0.027664275839924812, 0.09854429215192795, 0.2907120883464813, -0.07369551807641983, 0.09862040728330612, -0.04400579631328583, -0.03690751641988754, 0.048890553414821625, 0.008563552051782608, 0.12255337834358215, -0.016617823392152786, 0.030100475996732712, 0.023367879912257195, 0.04321318864822388, 0.12221910059452057, 0.04771177098155022, -0.009829144924879074, -0.0680929496884346, 0.006216719280928373, 0.01949736848473549, -0.13790667057037354, 0.013091877102851868, -0.04007062315940857, -0.06631074845790863, -0.102232925593853, 0.1532275676727295, -0.006337224505841732, 0.14328482747077942, 0.057826366275548935, -0.20802131295204163, -0.1917950063943863, -0.02944093383848667, -0.08447597920894623, -0.11431197822093964, 0.02757478877902031, 0.1322002112865448, -0.07761453092098236, -0.063617043197155, 0.006291477009654045, 0.10742392390966415, -0.17634081840515137, 0.08912055939435959, -0.10398591309785843, 0.007996947504580021, 0.013437870889902115, 0.05240562558174133, -0.2854715585708618, 0.11252328753471375, -0.0016789520159363747, 0.07991364598274231, -0.055853694677352905, -0.04671606048941612, -0.02812991477549076, 0.170172780752182, 0.01367832813411951, -0.01566767320036888, -0.003973905462771654, -0.00855238363146782, -0.11147454380989075, 0.05072993412613869, 0.06840679794549942, 0.023150142282247543, 0.01945149526000023, -0.04395117238163948, 0.026255104690790176, 0.02400156669318676, -0.11638590693473816, -0.047795407474040985, -0.12668195366859436, 0.047846898436546326, 0.12083184719085693, 0.0814603716135025, -0.031071363016963005, -0.007830229587852955, 0.17219533026218414, 0.31472986936569214, 0.03680406138300896, -0.0762919932603836, -0.10909266769886017, 0.09570615738630295, 0.018893439322710037, -0.06404243409633636, 0.07641573995351791, -0.018445365130901337, 0.005348017439246178, -0.04438004270195961, -0.08870027959346771, 0.10262489318847656, -0.12273344397544861, -0.0015359617536887527, -0.005500779952853918, 0.08618378639221191, 0.013618377037346363, 0.004122466780245304, 0.028614943847060204, -0.056124117225408554, -0.1036752387881279, -0.048528991639614105, -0.06232831999659538, 0.052342016249895096, -0.021228604018688202, -0.048545289784669876, -0.05451727658510208, -0.05797157064080238, 0.019733315333724022, -0.027575543150305748, 0.2380102127790451, 0.053879186511039734, -0.055993009358644485, 0.12158097326755524, 0.09555958956480026, 0.014002200216054916, -0.27912089228630066, 0.018252823501825333, 0.0201350599527359, 0.053565818816423416, -0.20973916351795197, -0.1900658756494522, 0.023373790085315704, -0.09834273904561996, -0.0077040973119437695, 0.1721199005842209, -0.26053348183631897, -0.06895951181650162, 0.09653124958276749, -0.025960752740502357, 0.4537116587162018, -0.029291734099388123, -0.014436067081987858, 0.03905170038342476, -0.12240801751613617, 0.005454082041978836, 0.10717972368001938, 0.09401816874742508, -0.04457664489746094, 0.19147172570228577, 0.05625443905591965, -0.027727805078029633, 0.047759391367435455, -0.07473058998584747, 0.013061586767435074, -0.10042038559913635, -0.03501969948410988, -0.09257504343986511, -0.04831424728035927, 0.136307954788208, 0.04094890505075455, 0.05665750801563263, -0.07381686568260193, -0.07635059207677841, -0.04933278635144234, 0.04404611140489578, -0.005608527455478907, -0.0850139781832695, 0.0026961443945765495, -0.012606563046574593, -0.0526537261903286, 0.046846903860569, 0.11477844417095184, -0.08371377736330032, 0.010938892140984535, -0.026830652728676796, 0.1630704700946808, -0.1472787857055664, -0.011930094100534916, 0.029861895367503166, -0.03584957495331764, 0.11972274631261826, -0.14130982756614685, 0.0023696599528193474, 0.0928884968161583, -0.023243343457579613, 0.08996522426605225, 0.06816637516021729, 0.0048776729963719845, 0.01280273962765932, 0.08887211978435516, -0.1626107543706894, -0.12015567719936371, -0.01464391965419054, 0.021916823461651802, -0.023674406111240387, 0.09040606766939163, 0.15630631148815155, -0.03557699918746948, -0.0030246947426348925, -0.017538104206323624, 0.04657404124736786, -0.050134580582380295, 0.015651140362024307, -0.024861495941877365, 0.03832308575510979, -0.06800644099712372, 0.011928060092031956, 0.046717580407857895, -0.14207036793231964, 0.03767761215567589, 0.19111590087413788, -0.14693771302700043, -0.09658468514680862, -0.10883595794439316, 0.03142223879694939, 0.01243407092988491, -0.053900860249996185, -0.053193315863609314, -0.07780790328979492, 0.045111022889614105, 0.018254566937685013, 0.01987862028181553, 0.037782326340675354, -0.08105304837226868, 0.05995112657546997, -0.11480005830526352, 0.029144052416086197, -0.010341107845306396, 0.017250200733542442, -0.058544088155031204, 0.05739771947264671, -0.0027724311221390963, 0.06026224046945572, -0.05066423863172531, -0.06886006891727448, -0.12695682048797607, 0.04035621136426926, -0.08695725351572037, -0.06058421730995178, -0.04029770940542221, -0.012911944650113583, 0.01713189110159874, -0.04867074638605118, -0.012338932603597641, 0.005663881544023752, -0.06330384314060211, 0.015994485467672348, -0.05152392014861107, -0.02705320529639721, -0.018955308943986893, -0.010033528320491314, 0.016810383647680283, -0.05338359624147415, 0.1570146381855011, 0.10224073380231857, -0.059554923325777054, 0.003702831920236349, -0.0851474329829216, -0.021657001227140427, 0.12041736394166946, 0.03756991773843765, 0.04041975736618042, 0.04156748577952385, -0.009852916933596134, 0.0807499885559082, 0.06628026068210602, 0.030967025086283684, 0.11100903898477554, -0.11026453226804733, 0.03586613014340401, -0.06332370638847351, -0.04803720489144325, -0.08406692743301392, 0.0074393837712705135, -0.02209688350558281, 0.15641479194164276, 0.10881024599075317, -0.07448796927928925, 0.05908938869833946, -0.027773188427090645, 0.0005084472359158099, 0.003454660065472126, -0.04328130558133125, 0.0719616487622261, -0.11238489300012589, 0.07517591863870621, -0.018762132152915, 0.06608060747385025, 0.03402543067932129, -0.04428717866539955, 0.018820926547050476, -0.041476648300886154, -0.021292617544531822, -0.03117806278169155, 0.1557549685239792, 0.05750361084938049, 0.008509542793035507, 0.02844073995947838, 0.12182080745697021, 0.05441909283399582, 0.061780981719493866, 0.1719483584165573, 0.05276305601000786, 0.026902083307504654, 0.09829164296388626, -0.05037891864776611, -0.03100084885954857, -0.19001071155071259, -0.0864981934428215, -0.0990833044052124, 0.015873176977038383, -0.07928358763456345, 0.07877260446548462, 0.15517699718475342, -0.010942130349576473, 0.02604040503501892, 0.028592154383659363, -0.06242699921131134, -0.1193818524479866, -0.10327097773551941, -0.04451551288366318, -0.11042304337024689, -0.004535386338829994, -0.10102283954620361, -0.03896657004952431, -0.09076764434576035, 0.05680900439620018, -0.030428610742092133, 0.1594991385936737, 0.0615791417658329, -0.09073278307914734, 0.05112898722290993, -0.018769724294543266, 0.04683199152350426, -0.09759967029094696, 0.02150781825184822, -0.061263393610715866, 0.03320719301700592, 0.07181346416473389, 0.00960999820381403, -0.03865872696042061, 0.0024320660158991814, -0.03654874116182327, -0.02847805619239807, -0.05831179395318031, 0.083150215446949, 0.05766090750694275, 0.2658400535583496, 0.04005727916955948, -0.05735921487212181, 0.006774577312171459, 0.3188195824623108, -0.064692422747612, -0.24300873279571533, -0.09446325153112411, 0.19070477783679962, -0.005248026456683874, 0.007574136834591627, -0.05847448110580444, -0.026035794988274574, -0.06264606863260269, 0.25479456782341003, 0.25564858317375183, -0.03542640060186386, 0.0077287196181714535, -0.010881245136260986, 0.014937357977032661, -0.0241615679115057, 0.12536630034446716, 0.14947478473186493, 0.341548889875412, -0.0027940066065639257, -0.07905112206935883, -0.0337076336145401, -0.0034174600150436163, -0.0770670622587204, -0.036476098001003265, 0.030646104365587234, 0.006362529471516609, -0.09913463145494461, 0.04371650144457817, -0.08092805743217468, -0.11487627774477005, -0.01244906336069107, -0.1254289746284485, -0.042049746960401535, 0.018571387976408005, 0.10979636758565903, -0.058859873563051224, 0.10314254462718964, -0.02136201411485672, 0.007205400615930557, 0.11602238565683365, -0.04738185554742813, -0.06377114355564117, 0.04200509190559387, 0.09928678721189499, -0.017538491636514664, 0.03393476828932762, -0.04969211295247078, 0.10948793590068817, 0.06179453432559967, 0.0853710025548935, -0.09930945187807083, 0.060711849480867386, -0.03472919762134552, -0.03532778471708298, 0.013745722360908985, 0.04062467813491821, -0.021412478759884834, 0.048785340040922165, 0.08830680698156357, -0.20113465189933777, -0.019024990499019623, -0.023381877690553665, -0.05983894690871239, -0.07728558778762817, 0.04459930211305618, -0.03312574699521065, 0.09839378297328949, 0.0916733667254448, -0.015916382893919945, -0.017078764736652374, -0.03293146193027496, -0.0017209878424182534, 0.0179368257522583, -0.03122606687247753, -0.11199750751256943, -0.1155330240726471, -0.06075442582368851, 0.05804290995001793, -0.015822933986783028, -0.20548909902572632, -0.0603347048163414, -0.05469838157296181, 0.02669438160955906, -0.06072825565934181, 0.08877035975456238, 0.05705457180738449, 0.005664943717420101, -0.035603731870651245, -0.0767093226313591, 0.030966252088546753, 0.057020485401153564, -0.1401263028383255, -0.12622034549713135 ]
null
null
transformers
[DialogLM: Pre-trained Model for Long Dialogue Understanding and Summarization](https://arxiv.org/abs/2109.02492). ## Introduction DialogLED is a pre-trained model for long dialogue understanding and summarization. It builds on the Longformer-Encoder-Decoder (LED) architecture and uses window-based denoising as the pre-training task on a large amount of long dialogue data for further training. Here is a large version of DialogLED, the input length is limited to 5,120 in the pre-training phase. ## Finetuning for Downstream Tasks Please refer to [our GitHub page](https://github.com/microsoft/DialogLM).
{}
text2text-generation
MingZhong/DialogLED-large-5120
[ "transformers", "pytorch", "led", "text2text-generation", "arxiv:2109.02492", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:04+00:00
[ "2109.02492" ]
[]
TAGS #transformers #pytorch #led #text2text-generation #arxiv-2109.02492 #autotrain_compatible #endpoints_compatible #region-us
DialogLM: Pre-trained Model for Long Dialogue Understanding and Summarization. ## Introduction DialogLED is a pre-trained model for long dialogue understanding and summarization. It builds on the Longformer-Encoder-Decoder (LED) architecture and uses window-based denoising as the pre-training task on a large amount of long dialogue data for further training. Here is a large version of DialogLED, the input length is limited to 5,120 in the pre-training phase. ## Finetuning for Downstream Tasks Please refer to our GitHub page.
[ "## Introduction\nDialogLED is a pre-trained model for long dialogue understanding and summarization. It builds on the Longformer-Encoder-Decoder (LED) architecture and uses window-based denoising as the pre-training task on a large amount of long dialogue data for further training. Here is a large version of DialogLED, the input length is limited to 5,120 in the pre-training phase.", "## Finetuning for Downstream Tasks\nPlease refer to our GitHub page." ]
[ "TAGS\n#transformers #pytorch #led #text2text-generation #arxiv-2109.02492 #autotrain_compatible #endpoints_compatible #region-us \n", "## Introduction\nDialogLED is a pre-trained model for long dialogue understanding and summarization. It builds on the Longformer-Encoder-Decoder (LED) architecture and uses window-based denoising as the pre-training task on a large amount of long dialogue data for further training. Here is a large version of DialogLED, the input length is limited to 5,120 in the pre-training phase.", "## Finetuning for Downstream Tasks\nPlease refer to our GitHub page." ]
[ 46, 92, 18 ]
[ "passage: TAGS\n#transformers #pytorch #led #text2text-generation #arxiv-2109.02492 #autotrain_compatible #endpoints_compatible #region-us \n## Introduction\nDialogLED is a pre-trained model for long dialogue understanding and summarization. It builds on the Longformer-Encoder-Decoder (LED) architecture and uses window-based denoising as the pre-training task on a large amount of long dialogue data for further training. Here is a large version of DialogLED, the input length is limited to 5,120 in the pre-training phase.## Finetuning for Downstream Tasks\nPlease refer to our GitHub page." ]
[ -0.08300551772117615, -0.0798109918832779, -0.0011441016104072332, 0.010596897453069687, 0.11309229582548141, -0.01297505758702755, 0.1622408628463745, 0.07380465418100357, -0.004900705069303513, -0.03088943473994732, 0.12482099235057831, 0.06512434035539627, -0.0074750324711203575, 0.17869414389133453, -0.06370854377746582, -0.31903767585754395, 0.038532156497240067, 0.036933764815330505, 0.01773589476943016, 0.0853094607591629, 0.12900465726852417, -0.10392901301383972, 0.021386126056313515, -0.014211160130798817, -0.1767979860305786, -0.033995214849710464, -0.026529943570494652, -0.06832592189311981, 0.14594444632530212, 0.018810616806149483, 0.0843779519200325, 0.05871032178401947, -0.010498604737222195, -0.10075001418590546, 0.04717278480529785, -0.02794436551630497, 0.056421417742967606, 0.040263962000608444, -0.05942101031541824, 0.1305796056985855, 0.10426872968673706, -0.014876078814268112, 0.06854123622179031, 0.022073429077863693, -0.08665752410888672, -0.06339326500892639, -0.022940387949347496, 0.07449746876955032, 0.10619998723268509, 0.12159658223390579, 0.005262712948024273, 0.03494611009955406, -0.10082076489925385, 0.10366805642843246, -0.029721280559897423, -0.1975589394569397, -0.0344587117433548, 0.16039666533470154, 0.06872091442346573, 0.01756458543241024, -0.09298720210790634, -0.0012244600802659988, 0.0012125973589718342, 0.04919072985649109, -0.02755269967019558, -0.06349008530378342, -0.11019319295883179, -0.0670447126030922, -0.1006317138671875, 0.04379856586456299, 0.2515602707862854, -0.014853287488222122, -0.028205284848809242, -0.1549677848815918, -0.062154319137334824, -0.0731830820441246, -0.04854470491409302, -0.0739617645740509, -0.04761979728937149, 0.03780598193407059, -0.013642004691064358, -0.1148349791765213, -0.1506236344575882, -0.024415913969278336, -0.17087003588676453, 0.17480650544166565, 0.010537219233810902, 0.03193612024188042, -0.1939198225736618, 0.10918121039867401, 0.02620845101773739, -0.09832219034433365, -0.021551942452788353, -0.07295601814985275, 0.009032352827489376, -0.02198825217783451, -0.01712673157453537, -0.07998836785554886, 0.02513301372528076, 0.1695404350757599, -0.07434646040201187, 0.015819378197193146, 0.006647116504609585, 0.039392583072185516, -0.00698948884382844, 0.162446528673172, 0.10206863284111023, -0.041619621217250824, 0.10055652260780334, 0.012872510589659214, 0.0132288234308362, -0.017954207956790924, -0.17001588642597198, -0.07911039888858795, 0.02906966395676136, 0.046956032514572144, 0.07413182407617569, 0.11326523125171661, -0.009039702825248241, -0.03951883688569069, 0.1362595558166504, -0.06994974613189697, 0.011447376571595669, 0.009881244972348213, -0.07598819583654404, 0.00910927914083004, 0.04199511185288429, 0.010400889441370964, -0.054121941328048706, 0.050095729529857635, -0.01770741678774357, -0.02953134849667549, -0.10431724786758423, -0.08303702622652054, 0.02455401048064232, -0.03809763118624687, 0.04159848392009735, -0.1721300333738327, -0.14684917032718658, -0.006293655838817358, 0.01109599880874157, -0.005721041467040777, -0.08324413001537323, -0.09408845752477646, -0.012465373612940311, 0.03153402730822563, -0.05500244349241257, 0.02992776222527027, -0.019956396892666817, 0.06560682505369186, 0.057599131017923355, 0.11171647906303406, -0.21601831912994385, 0.026754328981041908, -0.08972395211458206, -0.017516784369945526, -0.06569179147481918, 0.09958785772323608, 0.020782627165317535, 0.08484895527362823, -0.023466259241104126, -0.06894968450069427, -0.12080959975719452, 0.04278210550546646, 0.03901609405875206, 0.18529337644577026, -0.1255970150232315, -0.012934601865708828, 0.09282268583774567, -0.10517627745866776, -0.11314022541046143, 0.11607455462217331, -0.02518070675432682, 0.2140767127275467, 0.11752048879861832, 0.17475713789463043, 0.05388296768069267, -0.09174249321222305, 0.03761248663067818, 0.11922667920589447, -0.07078050822019577, -0.028474677354097366, -0.022437678650021553, 0.05873178318142891, 0.010942074470221996, 0.04284136742353439, 0.10083985328674316, 0.06992638856172562, -0.044794145971536636, -0.04016680642962456, 0.014288900420069695, 0.02875748835504055, 0.05232086032629013, 0.003890682477504015, 0.08917145431041718, -0.04411383345723152, -0.041320864111185074, 0.013320481404662132, 0.07139039784669876, -0.01657751388847828, 0.02319914661347866, -0.08777855336666107, -0.05044200271368027, 0.01250979769974947, 0.05252097174525261, -0.14713600277900696, -0.12315930426120758, -0.025473393499851227, 0.24077188968658447, -0.006035045254975557, 0.18598352372646332, 0.042449694126844406, -0.04516918584704399, 0.013818003237247467, -0.0298716202378273, 0.017430748790502548, -0.03521718457341194, -0.07752495259046555, -0.0693206638097763, 0.03415293991565704, -0.07813320308923721, 0.0645693764090538, -0.13007648289203644, 0.04448102414608002, -0.0023598582483828068, 0.02303270436823368, 0.0550396591424942, 0.02450207807123661, 0.007137944921851158, 0.04661286994814873, -0.013138381764292717, -0.00831231102347374, 0.06442175805568695, 0.06551056355237961, -0.08406850695610046, 0.09478477388620377, -0.1181277185678482, 0.07475902140140533, 0.1259409785270691, -0.0853075161576271, -0.04229424148797989, -0.05763517692685127, -0.06571536511182785, -0.03747072443366051, 0.027982715517282486, 0.0228863637894392, 0.24304114282131195, 0.007124530617147684, 0.1253349483013153, -0.005052558612078428, 0.03362727910280228, -0.05056114122271538, -0.0611317902803421, 0.02997962012887001, 0.06570614129304886, 0.04778147488832474, -0.1571642905473709, 0.059799276292324066, -0.07635550945997238, 0.06023816764354706, 0.17682045698165894, -0.0028131159488111734, -0.00123565923422575, 0.03413059562444687, 0.022658422589302063, -0.06338199228048325, 0.09482425451278687, -0.22613970935344696, -0.05435401201248169, 0.03701590374112129, 0.056856025010347366, 0.07980851083993912, -0.1367821842432022, 0.014811445958912373, -0.01506793312728405, -0.010928909294307232, 0.0005879610544070601, 0.1125454381108284, -0.008778342045843601, 0.0495409294962883, 0.08586474508047104, -0.05885270982980728, 0.07605012506246567, 0.017226606607437134, -0.07813842594623566, 0.1373775154352188, -0.09474238753318787, -0.39857763051986694, -0.0727669820189476, -0.11135031282901764, -0.0005107956822030246, 0.02178782783448696, 0.08786887675523758, -0.0838097557425499, -0.03174452856183052, 0.027360539883375168, 0.15879279375076294, -0.1243932843208313, 0.038658760488033295, 0.028367791324853897, 0.0012409896589815617, -0.07957988977432251, -0.10799159109592438, -0.03057580254971981, -0.04862423241138458, -0.040916066616773605, 0.0661267638206482, -0.06257250159978867, 0.040083520114421844, 0.10607356578111649, -0.017997298389673233, 0.02856355346739292, -0.04383785277605057, 0.18724912405014038, -0.09409443289041519, 0.031326569616794586, 0.22188913822174072, -0.03182316571474075, -0.02358206734061241, 0.2086060494184494, -0.01839546300470829, -0.11346616595983505, 0.06480404734611511, -0.05968724191188812, -0.04678898677229881, -0.11212674528360367, -0.10222937166690826, -0.12178260833024979, 0.10294163227081299, 0.006708886474370956, 0.0571553073823452, 0.056235525757074356, 0.004798530600965023, -0.0025801321025937796, 0.0510420948266983, 0.03127241134643555, 0.0988367423415184, 0.2975126802921295, -0.07307455688714981, 0.0971684381365776, -0.04642556607723236, -0.04245302081108093, 0.048877522349357605, 0.007422144990414381, 0.13136641681194305, -0.01755223236978054, 0.0322549007833004, 0.023015759885311127, 0.03328206390142441, 0.12061828374862671, 0.04871012270450592, -0.003535274649038911, -0.06862754374742508, 0.0026433002203702927, 0.019813857972621918, -0.1322024166584015, 0.011442279443144798, -0.03308214247226715, -0.06781518459320068, -0.10364052653312683, 0.15880116820335388, -0.0030014188960194588, 0.1405303031206131, 0.05461041256785393, -0.2093103528022766, -0.1894025206565857, -0.03147418797016144, -0.08722981065511703, -0.11109232157468796, 0.025985771790146828, 0.13843688368797302, -0.08347082138061523, -0.05815363675355911, 0.005526534281671047, 0.1058901995420456, -0.17814786732196808, 0.0911969542503357, -0.11056549102067947, 0.007446369156241417, 0.014731691218912601, 0.05461721867322922, -0.2914595305919647, 0.11252929270267487, -0.0022552788723260164, 0.07654179632663727, -0.05817246809601784, -0.05056987330317497, -0.028050728142261505, 0.16729342937469482, 0.016831528395414352, -0.01897813007235527, 0.007737133651971817, 0.00012440142745617777, -0.11423566937446594, 0.05000859498977661, 0.06865549087524414, 0.02523350529372692, 0.01767907291650772, -0.0447346456348896, 0.024615120142698288, 0.020898986607789993, -0.1147889792919159, -0.04034833610057831, -0.12884755432605743, 0.049618422985076904, 0.12195992469787598, 0.077945277094841, -0.027674656361341476, -0.0105848154053092, 0.1662549376487732, 0.30476507544517517, 0.03742971643805504, -0.07391665130853653, -0.10466054081916809, 0.10162518173456192, 0.019735896959900856, -0.06497453153133392, 0.07267200201749802, -0.02009647712111473, 0.004007365088909864, -0.0446355938911438, -0.08140819519758224, 0.10344851016998291, -0.12198654562234879, -0.0031899462919682264, -0.007229078561067581, 0.08196098357439041, 0.011497590690851212, 0.004246916621923447, 0.027448398992419243, -0.06028670072555542, -0.10466396808624268, -0.04929647967219353, -0.06642912328243256, 0.06212356686592102, -0.02186482958495617, -0.044788990169763565, -0.05351891741156578, -0.06408645212650299, 0.01930786855518818, -0.02966044656932354, 0.24494147300720215, 0.05380914732813835, -0.05877207964658737, 0.12470372021198273, 0.09237568080425262, 0.016279324889183044, -0.27894774079322815, 0.017559170722961426, 0.021115906536579132, 0.05298401787877083, -0.20575782656669617, -0.18317419290542603, 0.02263396605849266, -0.09546073526144028, -0.005496470257639885, 0.17143040895462036, -0.2634449899196625, -0.06730097532272339, 0.09344369918107986, -0.03048132359981537, 0.4526600241661072, -0.02750920131802559, -0.01093441154807806, 0.037483129650354385, -0.11708124727010727, 0.011440168134868145, 0.10696180164813995, 0.09583491832017899, -0.04465009272098541, 0.1932813972234726, 0.05704819783568382, -0.029137833043932915, 0.04583924636244774, -0.07616827636957169, 0.010818696580827236, -0.09887537360191345, -0.038885023444890976, -0.0918254405260086, -0.048167768865823746, 0.13915354013442993, 0.04001470282673836, 0.05256412923336029, -0.06302332878112793, -0.0789237841963768, -0.05171210691332817, 0.044279634952545166, -0.005983577575534582, -0.08211079239845276, 0.0032252902165055275, -0.013538206927478313, -0.050391290336847305, 0.04778764024376869, 0.11427554488182068, -0.0822228342294693, 0.0030553436372429132, -0.038249481469392776, 0.173253133893013, -0.14006464183330536, -0.021714532747864723, 0.02739053964614868, -0.036263126879930496, 0.11937002837657928, -0.13912898302078247, 0.0042862668633461, 0.09416768699884415, -0.02539387159049511, 0.0907806009054184, 0.07026667892932892, 0.006487972103059292, 0.014060387387871742, 0.08968054503202438, -0.16244816780090332, -0.12699584662914276, -0.010256420820951462, 0.025784611701965332, -0.022156011313199997, 0.0930890291929245, 0.1559828668832779, -0.03327235206961632, -0.0030821675900369883, -0.017339132726192474, 0.04692121967673302, -0.04605934023857117, 0.017942460253834724, -0.031183885410428047, 0.03633074089884758, -0.06884089857339859, 0.01052289828658104, 0.04303544759750366, -0.15545883774757385, 0.036254674196243286, 0.18829619884490967, -0.1481318324804306, -0.09478314220905304, -0.1102694496512413, 0.03154897689819336, 0.011687776073813438, -0.05710241571068764, -0.05053916573524475, -0.07788047194480896, 0.04675453528761864, 0.01782367005944252, 0.02054329589009285, 0.03694355487823486, -0.07901838421821594, 0.05939686670899391, -0.11408296227455139, 0.03137849643826485, -0.011061965487897396, 0.0166153721511364, -0.0611504428088665, 0.0533953495323658, -0.003991290461272001, 0.06433826684951782, -0.048698220402002335, -0.0696248859167099, -0.1257159262895584, 0.03793465346097946, -0.08348348736763, -0.05870841443538666, -0.038454487919807434, -0.013179083354771137, 0.018508678302168846, -0.04479629173874855, -0.00955029483884573, 0.0016789669170975685, -0.06553926318883896, 0.01655733585357666, -0.051279570907354355, -0.02095627970993519, -0.017399726435542107, -0.011260803788900375, 0.015480333007872105, -0.05227160453796387, 0.16170728206634521, 0.10351012647151947, -0.06399603188037872, -0.00018398264364805073, -0.08395764976739883, -0.02531866915524006, 0.12247906625270844, 0.039759330451488495, 0.04262436553835869, 0.04148433357477188, -0.009014754556119442, 0.08172371238470078, 0.072227843105793, 0.03159358352422714, 0.10627827048301697, -0.10917528718709946, 0.03905855491757393, -0.06150922179222107, -0.04856236279010773, -0.08524589985609055, 0.00370506988838315, -0.029332557693123817, 0.15744569897651672, 0.11378065496683121, -0.07095401734113693, 0.05998367816209793, -0.02547319233417511, 0.001542455516755581, 0.004232943989336491, -0.04549660533666611, 0.07598298043012619, -0.11051240563392639, 0.077889584004879, -0.021627673879265785, 0.07083287835121155, 0.03625557944178581, -0.04647829383611679, 0.018014565110206604, -0.04280471056699753, -0.024498213082551956, -0.033425331115722656, 0.14895595610141754, 0.05903828144073486, 0.007851769216358662, 0.029895352199673653, 0.11943395435810089, 0.05526139959692955, 0.07515200227499008, 0.17640851438045502, 0.054699819535017014, 0.021992145106196404, 0.09637395292520523, -0.048164576292037964, -0.028530186042189598, -0.19380219280719757, -0.09072793275117874, -0.10025572776794434, 0.019544564187526703, -0.08128563314676285, 0.08045533299446106, 0.15243127942085266, -0.007769980002194643, 0.024769458919763565, 0.026344038546085358, -0.06242121383547783, -0.11905044317245483, -0.10187606513500214, -0.0484875813126564, -0.10440917313098907, -0.0011281599290668964, -0.10181424766778946, -0.036177411675453186, -0.08945274353027344, 0.060096289962530136, -0.030509743839502335, 0.1600986123085022, 0.05999177694320679, -0.0926346480846405, 0.051574185490608215, -0.019495820626616478, 0.046737246215343475, -0.09592694044113159, 0.026746483519673347, -0.06552135199308395, 0.034555595368146896, 0.07176437973976135, 0.011035989969968796, -0.038122329860925674, -0.0010968628339469433, -0.04042481258511543, -0.024110985919833183, -0.06128580495715141, 0.0846729651093483, 0.05608368664979935, 0.2634707987308502, 0.04263627156615257, -0.061829838901758194, 0.0066634477116167545, 0.3156507611274719, -0.06737267225980759, -0.24591903388500214, -0.09498299658298492, 0.18563997745513916, -0.007275837007910013, 0.006642914842814207, -0.06008479371666908, -0.020976388826966286, -0.06684146821498871, 0.2571982443332672, 0.2612469494342804, -0.036058466881513596, 0.008342188782989979, -0.011826829053461552, 0.01561471726745367, -0.025482192635536194, 0.1257784366607666, 0.1498929262161255, 0.3520938456058502, -0.0001996755599975586, -0.07294496893882751, -0.033607061952352524, 0.001429612166248262, -0.07653873413801193, -0.03389904648065567, 0.028727281838655472, 0.007623771671205759, -0.09874863177537918, 0.046579841524362564, -0.0826268196105957, -0.11609191447496414, -0.020901693031191826, -0.12568922340869904, -0.04471404850482941, 0.020015163347125053, 0.11202941089868546, -0.05892577022314072, 0.10175958275794983, -0.022485660389065742, 0.004497146233916283, 0.1117088571190834, -0.04613715410232544, -0.06586222350597382, 0.04751063138246536, 0.09976844489574432, -0.01813722588121891, 0.030689189210534096, -0.04752058535814285, 0.11492295563220978, 0.06449276208877563, 0.0829126238822937, -0.09572876989841461, 0.06082429364323616, -0.0341985858976841, -0.030275948345661163, 0.015107711777091026, 0.039187461137771606, -0.022416764870285988, 0.046941131353378296, 0.09007678180932999, -0.19611139595508575, -0.018112264573574066, -0.01814146153628826, -0.059475578367710114, -0.08051837980747223, 0.048376601189374924, -0.03154381737112999, 0.09696025401353836, 0.0951712504029274, -0.01478549838066101, -0.015900947153568268, -0.03426576033234596, -0.001955112675204873, 0.0167581457644701, -0.03965425491333008, -0.11631302535533905, -0.11206994205713272, -0.0640796646475792, 0.056435372680425644, -0.014048570767045021, -0.20135526359081268, -0.05968372896313667, -0.05328696593642235, 0.026827501133084297, -0.05915588513016701, 0.08485434204339981, 0.05622074753046036, 0.006277131848037243, -0.03503330051898956, -0.07568018138408661, 0.0303140040487051, 0.05574629083275795, -0.14137445390224457, -0.12567715346813202 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # tmp6tsjsfbf This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0178 - Train Sparse Categorical Accuracy: 0.9962 - Epoch: 49 ## Model description This model classifies the title of a content (e.g., YouTube video, article, or podcast episode) into 1 of 8 subjects 0. art 1. personal development 2. world 3. health 4. science 5. business 6. humanities 7. technology. This model is used to support [Sanderling](https://sanderling.app) ## Intended uses & limitations More information needed ## Training and evaluation data We used 1.5k labeled titles to train the model. Majority of the training dataset are English titles. The rest are Chinese titles. ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': 5e-06, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train Sparse Categorical Accuracy | Epoch | |:----------:|:---------------------------------:|:-----:| | 1.8005 | 0.3956 | 0 | | 1.3302 | 0.5916 | 1 | | 0.8998 | 0.7575 | 2 | | 0.6268 | 0.8468 | 3 | | 0.4239 | 0.9062 | 4 | | 0.2982 | 0.9414 | 5 | | 0.2245 | 0.9625 | 6 | | 0.1678 | 0.9730 | 7 | | 0.1399 | 0.9745 | 8 | | 0.1059 | 0.9827 | 9 | | 0.0822 | 0.9850 | 10 | | 0.0601 | 0.9902 | 11 | | 0.0481 | 0.9932 | 12 | | 0.0386 | 0.9955 | 13 | | 0.0292 | 0.9977 | 14 | | 0.0353 | 0.9940 | 15 | | 0.0336 | 0.9932 | 16 | | 0.0345 | 0.9910 | 17 | | 0.0179 | 0.9985 | 18 | | 0.0150 | 0.9985 | 19 | | 0.0365 | 0.9895 | 20 | | 0.0431 | 0.9895 | 21 | | 0.0243 | 0.9955 | 22 | | 0.0317 | 0.9925 | 23 | | 0.0375 | 0.9902 | 24 | | 0.0138 | 0.9970 | 25 | | 0.0159 | 0.9977 | 26 | | 0.0160 | 0.9962 | 27 | | 0.0151 | 0.9977 | 28 | | 0.0337 | 0.9902 | 29 | | 0.0119 | 0.9977 | 30 | | 0.0165 | 0.9955 | 31 | | 0.0133 | 0.9977 | 32 | | 0.0047 | 1.0 | 33 | | 0.0037 | 1.0 | 34 | | 0.0033 | 1.0 | 35 | | 0.0031 | 1.0 | 36 | | 0.0036 | 1.0 | 37 | | 0.0343 | 0.9887 | 38 | | 0.0234 | 0.9962 | 39 | | 0.0034 | 1.0 | 40 | | 0.0036 | 1.0 | 41 | | 0.0261 | 0.9917 | 42 | | 0.0111 | 0.9970 | 43 | | 0.0039 | 1.0 | 44 | | 0.0214 | 0.9932 | 45 | | 0.0044 | 0.9985 | 46 | | 0.0122 | 0.9985 | 47 | | 0.0119 | 0.9962 | 48 | | 0.0178 | 0.9962 | 49 | ### Framework versions - Transformers 4.15.0 - TensorFlow 2.7.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_keras_callback"], "model-index": [{"name": "tmp6tsjsfbf", "results": []}]}
text-classification
Mingyi/classify_title_subject
[ "transformers", "tf", "bert", "text-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #tf #bert #text-classification #generated_from_keras_callback #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
tmp6tsjsfbf =========== This model is a fine-tuned version of bert-base-multilingual-cased on an unknown dataset. It achieves the following results on the evaluation set: * Train Loss: 0.0178 * Train Sparse Categorical Accuracy: 0.9962 * Epoch: 49 Model description ----------------- This model classifies the title of a content (e.g., YouTube video, article, or podcast episode) into 1 of 8 subjects 0. art 1. personal development 2. world 3. health 4. science 5. business 6. humanities 7. technology. This model is used to support Sanderling Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- We used 1.5k labeled titles to train the model. Majority of the training dataset are English titles. The rest are Chinese titles. Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * optimizer: {'name': 'Adam', 'learning\_rate': 5e-06, 'decay': 0.0, 'beta\_1': 0.9, 'beta\_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False} * training\_precision: float32 ### Training results ### Framework versions * Transformers 4.15.0 * TensorFlow 2.7.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* optimizer: {'name': 'Adam', 'learning\\_rate': 5e-06, 'decay': 0.0, 'beta\\_1': 0.9, 'beta\\_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False}\n* training\\_precision: float32", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* TensorFlow 2.7.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #tf #bert #text-classification #generated_from_keras_callback #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* optimizer: {'name': 'Adam', 'learning\\_rate': 5e-06, 'decay': 0.0, 'beta\\_1': 0.9, 'beta\\_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False}\n* training\\_precision: float32", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* TensorFlow 2.7.0\n* Tokenizers 0.10.3" ]
[ 54, 99, 4, 25 ]
[ "passage: TAGS\n#transformers #tf #bert #text-classification #generated_from_keras_callback #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* optimizer: {'name': 'Adam', 'learning\\_rate': 5e-06, 'decay': 0.0, 'beta\\_1': 0.9, 'beta\\_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False}\n* training\\_precision: float32### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* TensorFlow 2.7.0\n* Tokenizers 0.10.3" ]
[ -0.040892135351896286, 0.015069159679114819, -0.002589141484349966, 0.0820472314953804, 0.1788872629404068, 0.031541794538497925, 0.130594402551651, 0.10970385372638702, -0.12195108085870743, 0.03444581851363182, 0.14560551941394806, 0.19947348535060883, 0.03145374730229378, 0.0915801003575325, -0.11764748394489288, -0.16990971565246582, 0.0503060407936573, 0.0024401976261287928, -0.07186846435070038, 0.09407252818346024, 0.09887602925300598, -0.08494783937931061, 0.11205544322729111, 0.0020442791283130646, -0.20909853279590607, 0.05862114578485489, 0.11675888299942017, -0.09175587445497513, 0.13239414989948273, 0.09441588073968887, 0.09341295808553696, -0.014214105904102325, 0.017633013427257538, -0.17099739611148834, 0.015919113531708717, 0.10128919780254364, -0.02101319655776024, 0.06661153584718704, 0.014852894470095634, -0.007415967993438244, 0.14335639774799347, -0.07100637257099152, 0.03253068029880524, 0.035158902406692505, -0.1249636635184288, -0.21336089074611664, -0.12058147042989731, -0.017781255766749382, 0.06197015568614006, 0.0933905616402626, 0.005774956662207842, 0.2169465571641922, -0.05713510513305664, 0.10241255909204483, 0.16916529834270477, -0.36680611968040466, -0.054478954523801804, 0.023039182648062706, -0.005879248026758432, 0.056927017867565155, -0.04823709651827812, 0.05647244676947594, 0.07510095089673996, 0.04067461937665939, 0.0637306421995163, -0.04146159812808037, -0.14070716500282288, -0.009666571393609047, -0.09628838300704956, -0.0070338137447834015, 0.1391432136297226, 0.0368695892393589, -0.0653308555483818, -0.011414144188165665, -0.04177739471197128, -0.11652795970439911, 0.0027426539454609156, -0.0666966363787651, 0.03437943384051323, 0.010279388166964054, -0.03699455410242081, -0.050289224833250046, -0.08878783881664276, -0.050977062433958054, -0.12633571028709412, 0.17936787009239197, 0.014043617062270641, 0.057737041264772415, -0.04916343092918396, 0.05158255994319916, -0.07221700251102448, -0.10604601353406906, 0.008521923795342445, 0.008155734278261662, -0.015872808173298836, -0.054383400827646255, -0.11849956214427948, -0.1403125673532486, 0.053071990609169006, 0.10005082935094833, -0.018779966980218887, 0.07150381058454514, -0.07488546520471573, 0.03000008873641491, -0.12601104378700256, 0.17070633172988892, -0.011541948653757572, -0.0030440273694694042, 0.052888061851263046, -0.008185300044715405, 0.05730614438652992, -0.03971031308174133, -0.11067209392786026, -0.0009968888480216265, 0.07888786494731903, 0.013821154832839966, -0.08159077167510986, 0.107342429459095, -0.062487922608852386, -0.007511947304010391, -0.04088873416185379, -0.08551207929849625, 0.030443623661994934, -0.018509194254875183, -0.08671321719884872, -0.0057837944477796555, 0.06974971294403076, 0.025086136534810066, -0.041270967572927475, 0.05014318972826004, -0.06174204498529434, -0.007406086195260286, -0.09899794310331345, -0.12881548702716827, 0.015731465071439743, -0.07897347211837769, 0.013340506702661514, -0.10377419739961624, -0.17757491767406464, -0.009507489390671253, 0.0637216791510582, -0.02763890102505684, -0.014408843591809273, -0.059863392263650894, -0.13483785092830658, 0.028825072571635246, -0.01919451914727688, 0.1588534414768219, -0.055361151695251465, 0.05546147748827934, 0.0060592046938836575, 0.06451446563005447, -0.15658438205718994, 0.0437048003077507, -0.057559043169021606, -0.013846462592482567, -0.172914519906044, 0.047228265553712845, -0.04970845580101013, 0.06388342380523682, -0.12489983439445496, -0.06238006055355072, 0.028925033286213875, 0.027899177744984627, 0.09220723807811737, 0.07749763876199722, -0.17110595107078552, -0.05777338147163391, 0.10271938890218735, -0.07332821935415268, -0.10990206897258759, 0.10010628402233124, -0.06662188470363617, 0.06601327657699585, 0.10307362675666809, 0.11609651893377304, -0.022288469597697258, -0.1064319908618927, 0.06459199637174606, -0.020477546378970146, -0.04276460036635399, -0.006263018120080233, 0.004174367990344763, -0.006173397414386272, -0.10779134184122086, 0.032144635915756226, -0.013756705448031425, 0.03157518059015274, -0.06741097569465637, -0.07390004396438599, -0.04424123093485832, -0.07666808366775513, 0.04062657058238983, 0.02011757530272007, 0.09660565108060837, -0.11666639894247055, -0.09884196519851685, 0.0639667883515358, 0.007949662394821644, -0.019867831841111183, 0.03615244850516319, -0.08948929607868195, 0.007466447539627552, 0.02075055055320263, 0.014569079503417015, -0.17658349871635437, -0.037717655301094055, 0.008896628394722939, 0.0623636469244957, 0.05728466063737869, 0.01290876418352127, 0.06580282002687454, -0.003059380454942584, -0.055354975163936615, 0.0474705696105957, 0.026216844096779823, 0.023438720032572746, -0.11441010981798172, -0.22321940958499908, 0.029152551665902138, -0.015127413906157017, 0.07398266345262527, -0.24881410598754883, 0.010606213472783566, 0.022037731483578682, 0.09247548878192902, 0.027537459507584572, 0.023723620921373367, -0.06329106539487839, 0.06757228821516037, -0.036248426884412766, -0.04476300999522209, 0.04387587681412697, 0.02633180283010006, -0.13159386813640594, 0.0002854393096640706, -0.13853120803833008, 0.17248545587062836, 0.16815201938152313, -0.1479257345199585, -0.11426138877868652, 0.060772113502025604, -0.004225005861371756, -0.013091573491692543, 0.003293476765975356, 0.02594747580587864, 0.1960301399230957, -0.019448919221758842, 0.14927361905574799, -0.058963678777217865, -0.02673708274960518, 0.03197485953569412, -0.039806436747312546, -0.010711496695876122, 0.08266211301088333, 0.009708772413432598, -0.19123204052448273, 0.10678543150424957, 0.15885517001152039, -0.12395491451025009, 0.09935426712036133, -0.02643691748380661, -0.03939657285809517, -0.04037090390920639, 0.004500807728618383, 0.03512928634881973, 0.06097389757633209, -0.11068864166736603, -0.002950778231024742, 0.01764911226928234, 0.023181645199656487, -0.0025201255921274424, -0.21014483273029327, -0.01623752899467945, 0.002193467691540718, -0.03420178219676018, 0.002998697105795145, 0.016169223934412003, 0.02238248474895954, 0.13634929060935974, 0.03161122649908066, -0.06105377897620201, 0.098137266933918, -0.012833372689783573, -0.08724787831306458, 0.2106763869524002, -0.149100199341774, -0.13027334213256836, -0.12874247133731842, -0.08483388274908066, -0.08105779439210892, 0.020848000422120094, 0.02501041255891323, -0.10703746974468231, -0.06522853672504425, -0.058360591530799866, -0.006241283379495144, -0.013282591477036476, 0.05678129196166992, 0.04169870913028717, -0.007702070288360119, 0.11526276916265488, -0.09779342263936996, -0.04671335592865944, -0.0510307252407074, -0.08228637278079987, 0.038765691220760345, -0.0008237096481025219, 0.04004495218396187, 0.10964954644441605, -0.04335306957364082, 0.02042810246348381, -0.051212552934885025, 0.22501246631145477, -0.051197994500398636, -0.0392654612660408, 0.13673947751522064, -0.04804052412509918, 0.032763537019491196, 0.10653559118509293, 0.03606560826301575, -0.13726362586021423, 0.05856574699282646, 0.057680223137140274, -0.037337180227041245, -0.24719582498073578, -0.02254120633006096, -0.037829600274562836, -0.12375321239233017, 0.02405768446624279, 0.03621289134025574, 0.16553768515586853, 0.03031267784535885, 0.05385182052850723, 0.13190540671348572, -0.003168745432049036, 0.05108560249209404, 0.20380590856075287, 0.05664050951600075, 0.10712867975234985, -0.05484028533101082, -0.03186966851353645, 0.058323461562395096, -0.04055756703019142, 0.18248552083969116, 0.05641946196556091, 0.03201282396912575, 0.06510891765356064, 0.08797182887792587, -0.018407156690955162, 0.020319370552897453, 0.018803128972649574, -0.060938429087400436, -0.02003621682524681, -0.05047218129038811, -0.052151232957839966, 0.06060422584414482, -0.09396765381097794, 0.06092675402760506, -0.08331666141748428, 0.008398075588047504, 0.06576130539178848, 0.2492552399635315, 0.032240014523267746, -0.31846776604652405, -0.09290570765733719, 0.009557829238474369, -0.03542123734951019, -0.030591752380132675, 0.00436699204146862, 0.06946741044521332, -0.0754583328962326, 0.10578187555074692, -0.057398248463869095, 0.07317130267620087, 0.01068112626671791, 0.07403083890676498, 0.06651465594768524, 0.10314153879880905, 0.0049456278793513775, 0.02677512727677822, -0.3640464246273041, 0.2820029854774475, 0.03661465272307396, 0.13851317763328552, -0.09121793508529663, 0.013993781991302967, 0.05014538764953613, 0.05051989108324051, 0.06782891601324081, -0.024192215874791145, -0.12229746580123901, -0.1500340849161148, -0.004395669791847467, 0.03346240147948265, 0.14554423093795776, 0.0662078931927681, 0.08507844805717468, -0.04640822485089302, 0.023045793175697327, 0.09708134084939957, 0.029198085889220238, -0.12954792380332947, -0.0630720928311348, 0.002676550066098571, 0.06968420743942261, -0.048727236688137054, -0.05346348509192467, -0.07930222153663635, -0.11750918626785278, 0.20956631004810333, -0.051511459052562714, -0.012572934851050377, -0.12658946216106415, 0.09983746707439423, 0.032338179647922516, -0.053260430693626404, 0.04207354411482811, -0.0016240448458120227, 0.03835900127887726, 0.059608958661556244, -0.1385989487171173, 0.1588873267173767, -0.029286960139870644, -0.1578911393880844, -0.05869951471686363, 0.05966314673423767, 0.028128115460276604, 0.046440571546554565, 0.01565602980554104, 0.04484345763921738, 0.024352846667170525, -0.09226202219724655, 0.07815469801425934, 0.003612861968576908, 0.03450474888086319, 0.023741841316223145, -0.03508652374148369, -0.036996353417634964, -0.05181979015469551, -0.013008968904614449, 0.1721116006374359, 0.2538455128669739, -0.08449549973011017, 0.02014492079615593, -0.014523935504257679, -0.0849921926856041, -0.23189957439899445, 0.11800721287727356, 0.06691135466098785, 0.007563297636806965, -0.012931950390338898, -0.14314067363739014, 0.11349273473024368, 0.08914823085069656, -0.01333177462220192, 0.09068970382213593, -0.2547113001346588, -0.15446443855762482, 0.1181003525853157, 0.14209599792957306, 0.22530381381511688, -0.14838524162769318, -0.03311017155647278, -0.08781314641237259, -0.054463475942611694, 0.17563322186470032, -0.14717277884483337, 0.10433413833379745, 0.02257624641060829, 0.06984768062829971, -0.002768881618976593, -0.017327625304460526, 0.10506302118301392, -0.044605836272239685, 0.13157278299331665, -0.07315029948949814, -0.05362119525671005, 0.08760259300470352, -0.033651016652584076, 0.010369725525379181, -0.0523996464908123, 0.016461025923490524, -0.0525827519595623, 0.001167725189588964, -0.07761955261230469, 0.06835281103849411, -0.027712244540452957, -0.03360246121883392, -0.02422146126627922, 0.025099389255046844, 0.0593038946390152, -0.04171212017536163, 0.15508273243904114, -0.023770006373524666, 0.1807539314031601, 0.16297820210456848, 0.10422396659851074, -0.05449880287051201, 0.0815851092338562, 0.07205162197351456, -0.040161702781915665, 0.0930439904332161, -0.1502770483493805, 0.04840891435742378, 0.11111092567443848, -0.017978189513087273, 0.1344071924686432, 0.07318370044231415, -0.02906736172735691, 0.030026400461792946, 0.07584742456674576, -0.15523341298103333, -0.09506624937057495, 0.019951092079281807, -0.02537650428712368, -0.037651561200618744, 0.07419939339160919, 0.15204836428165436, -0.04426894336938858, 0.02065860666334629, 0.003728739218786359, -0.004445025231689215, -0.10133115202188492, 0.12483156472444534, 0.023877473548054695, 0.002483336254954338, -0.09376869350671768, 0.12763822078704834, 0.031663503497838974, -0.0786745622754097, 0.08673062175512314, 0.01421752292662859, -0.07661241292953491, -0.020221881568431854, 0.08015859872102737, 0.15701980888843536, -0.02964209020137787, -0.06884708255529404, -0.11642687022686005, -0.16823126375675201, 0.060084689408540726, 0.2589253783226013, 0.08602456748485565, 0.028567742556333542, -0.055112551897764206, -0.004582315217703581, -0.07433561235666275, 0.02325037494301796, 0.019112881273031235, 0.045735251158475876, -0.13899245858192444, 0.16764043271541595, -0.017834264785051346, 0.018318582326173782, -0.051282960921525955, 0.027845455333590508, -0.15933893620967865, 0.0019505548989400268, -0.1700390875339508, -0.012972655706107616, 0.018636180087924004, 0.00013521159416995943, 0.04051519185304642, -0.07823044061660767, -0.10492876172065735, 0.040097709745168686, -0.1184341087937355, -0.020039603114128113, 0.06627295166254044, 0.04341462254524231, -0.10676391422748566, -0.07301240414381027, 0.020802190527319908, -0.053501471877098083, 0.0359295979142189, 0.08829842507839203, -0.013917618431150913, 0.09454216063022614, -0.1916753500699997, -0.002259512897580862, 0.09909701347351074, 0.009477430954575539, 0.08621327579021454, -0.08041457831859589, -0.007688627112656832, 0.024126285687088966, 0.08163721859455109, 0.0364210270345211, 0.1342482566833496, -0.09283127635717392, -0.05817238613963127, -0.012113677337765694, -0.054738666862249374, -0.04163198918104172, 0.03210968151688576, 0.1425900161266327, -0.009945860132575035, 0.20250308513641357, -0.11973682790994644, -0.01947539858520031, -0.14985695481300354, 0.019500575959682465, -0.008157502859830856, -0.13646547496318817, -0.13251177966594696, -0.04064543545246124, 0.08295769989490509, -0.06665969640016556, 0.14470814168453217, 0.0022008309606462717, 0.07510402798652649, 0.055976007133722305, -0.03500363975763321, -0.049473196268081665, 0.049513183534145355, 0.20857806503772736, 0.05286296457052231, -0.017025992274284363, 0.026072561740875244, 0.011858463287353516, 0.09970630705356598, 0.09072759002447128, 0.24426831305027008, 0.1303248107433319, -0.0283205509185791, 0.1496196836233139, 0.04517655447125435, -0.033930204808712006, -0.0856708511710167, 0.08687378466129303, -0.093464195728302, 0.15487675368785858, -0.04931977018713951, 0.09764549136161804, 0.0678534060716629, -0.1621183454990387, 0.017523709684610367, -0.09363282471895218, -0.07731089740991592, -0.15178947150707245, -0.08260252326726913, -0.1105201318860054, -0.12809796631336212, 0.006952587049454451, -0.09215497225522995, 0.0553007647395134, 0.056022338569164276, 0.019715512171387672, -0.029521072283387184, 0.1296108216047287, -0.07224808633327484, 0.0025513137225061655, 0.10107026994228363, -0.03180120140314102, -0.037115179002285004, -0.09270767867565155, -0.06703292578458786, 0.02243218757212162, -0.00950988382101059, 0.019850855693221092, -0.01421509962528944, -0.024406161159276962, 0.030096041038632393, -0.059387341141700745, -0.0907687321305275, 0.04864049330353737, 0.047045040875673294, 0.024309402331709862, 0.024203339591622353, 0.044817738234996796, -0.003292370354756713, -0.0037972547579556704, 0.17192061245441437, -0.10325680673122406, -0.05177976191043854, -0.13868550956249237, 0.3051932454109192, 0.011828532442450523, 0.05788864940404892, -0.003292829031124711, -0.0498507022857666, -0.039963506162166595, 0.23904727399349213, 0.17505010962486267, -0.112907275557518, -0.008105386979877949, 0.018097972497344017, -0.0006499981973320246, -0.052484992891550064, 0.149323508143425, 0.09281047433614731, -0.048760320991277695, -0.06549044698476791, -0.04042349010705948, -0.021407265216112137, 0.0021092849783599377, -0.03517141938209534, 0.07198412716388702, 0.039190925657749176, -0.018370119854807854, -0.0135193495079875, 0.05601242929697037, -0.062477272003889084, -0.11065230518579483, 0.050078243017196655, -0.19250600039958954, -0.15775719285011292, -0.00017676300194580108, 0.017210809513926506, -0.010178965516388416, 0.07429414242506027, -0.029046695679426193, -0.0006043734611012042, 0.060799490660429, -0.04339677095413208, -0.03925222158432007, -0.09306810051202774, 0.09337004274129868, -0.11573569476604462, 0.17237207293510437, -0.019790735095739365, 0.06598813831806183, 0.12101615965366364, 0.05302375927567482, -0.05538538098335266, 0.06581001728773117, 0.02893674187362194, -0.10971243679523468, 0.009292793460190296, 0.04892497509717941, -0.029511483386158943, 0.0991598516702652, 0.06097489967942238, -0.07752104848623276, 0.06932197511196136, -0.11796075105667114, -0.1139262467622757, -0.025055263191461563, -0.050689417868852615, -0.10353764146566391, 0.11422880738973618, 0.23621714115142822, -0.022561410441994667, 0.0431344248354435, -0.05452635884284973, -0.008054062724113464, 0.07274606078863144, 0.00001741196683724411, -0.08685308694839478, -0.21459124982357025, 0.04875106364488602, 0.12868788838386536, 0.004231562372297049, -0.19255250692367554, -0.07357954233884811, -0.026082748547196388, -0.0293571837246418, -0.09393774718046188, 0.07459858804941177, 0.09189145267009735, 0.037711579352617264, -0.05397449806332588, -0.19128498435020447, -0.03395431861281395, 0.15680131316184998, -0.0824538916349411, -0.09092768281698227 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-ner This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0596 - Precision: 0.9240 - Recall: 0.9378 - F1: 0.9308 - Accuracy: 0.9838 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.2381 | 1.0 | 878 | 0.0707 | 0.9100 | 0.9240 | 0.9170 | 0.9805 | | 0.0563 | 2.0 | 1756 | 0.0583 | 0.9246 | 0.9382 | 0.9314 | 0.9835 | | 0.03 | 3.0 | 2634 | 0.0596 | 0.9240 | 0.9378 | 0.9308 | 0.9838 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["conll2003"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "distilbert-base-uncased-finetuned-ner", "results": [{"task": {"type": "token-classification", "name": "Token Classification"}, "dataset": {"name": "conll2003", "type": "conll2003", "args": "conll2003"}, "metrics": [{"type": "precision", "value": 0.9239501818582607, "name": "Precision"}, {"type": "recall", "value": 0.9378006488421524, "name": "Recall"}, {"type": "f1", "value": 0.9308238951809905, "name": "F1"}, {"type": "accuracy", "value": 0.9837800054013695, "name": "Accuracy"}]}]}]}
token-classification
Minowa/distilbert-base-uncased-finetuned-ner
[ "transformers", "pytorch", "tensorboard", "distilbert", "token-classification", "generated_from_trainer", "dataset:conll2003", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #dataset-conll2003 #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us
distilbert-base-uncased-finetuned-ner ===================================== This model is a fine-tuned version of distilbert-base-uncased on the conll2003 dataset. It achieves the following results on the evaluation set: * Loss: 0.0596 * Precision: 0.9240 * Recall: 0.9378 * F1: 0.9308 * Accuracy: 0.9838 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 16 * eval\_batch\_size: 16 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 3 ### Training results ### Framework versions * Transformers 4.16.2 * Pytorch 1.10.0+cu111 * Datasets 1.18.3 * Tokenizers 0.11.0
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3", "### Training results", "### Framework versions\n\n\n* Transformers 4.16.2\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.3\n* Tokenizers 0.11.0" ]
[ "TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #dataset-conll2003 #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3", "### Training results", "### Framework versions\n\n\n* Transformers 4.16.2\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.3\n* Tokenizers 0.11.0" ]
[ 69, 98, 4, 35 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #dataset-conll2003 #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3### Training results### Framework versions\n\n\n* Transformers 4.16.2\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.3\n* Tokenizers 0.11.0" ]
[ -0.10674282163381577, 0.10102853178977966, -0.002465517958626151, 0.13086916506290436, 0.15187130868434906, 0.025957146659493446, 0.11255491524934769, 0.11721572279930115, -0.09562104195356369, 0.0270137470215559, 0.1370638906955719, 0.16641782224178314, 0.013783784583210945, 0.12305346876382828, -0.05596703663468361, -0.24812856316566467, -0.00004839667963096872, 0.046464625746011734, -0.03727592155337334, 0.1317840814590454, 0.09936363995075226, -0.13511036336421967, 0.09445904195308685, 0.017068661749362946, -0.19642263650894165, 0.00028291752096265554, 0.0009192695142701268, -0.05253244936466217, 0.13723407685756683, 0.014662216417491436, 0.12165889143943787, -0.008518403396010399, 0.0882231667637825, -0.17646488547325134, 0.004884419031441212, 0.0443740151822567, 0.009695981629192829, 0.09259212762117386, 0.03925318270921707, 0.006019055377691984, 0.10988382250070572, -0.0687335878610611, 0.05746150016784668, 0.013257723301649094, -0.121727854013443, -0.21955782175064087, -0.09356819838285446, 0.05253014713525772, 0.08678703755140305, 0.09994229674339294, 0.0014248932711780071, 0.14581012725830078, -0.08803924173116684, 0.08871152997016907, 0.21807128190994263, -0.2951975464820862, -0.06571486592292786, 0.03994613140821457, 0.010211204178631306, 0.03563041239976883, -0.09827253222465515, -0.04465358704328537, 0.046999357640743256, 0.05221337080001831, 0.1336880922317505, -0.028782129287719727, -0.0979757234454155, 0.010821076110005379, -0.14144182205200195, -0.044912077486515045, 0.16239452362060547, 0.05129718407988548, -0.03871642053127289, -0.04960737004876137, -0.05820475146174431, -0.16618512570858002, -0.031186511740088463, -0.014052723534405231, 0.046592827886343, -0.029446624219417572, -0.05671209469437599, 0.007384976372122765, -0.10098742693662643, -0.061459071934223175, -0.07898029685020447, 0.1378692239522934, 0.0380202978849411, 0.017170654609799385, -0.025197463110089302, 0.11008170992136002, -0.0007584613631479442, -0.12385369837284088, 0.013307468965649605, 0.022157777100801468, 0.007831222377717495, -0.04721156135201454, -0.053048375993967056, -0.046784933656454086, 0.005354710854589939, 0.14378765225410461, -0.05120700225234032, 0.038449469953775406, 0.052312400192022324, 0.04207761958241463, -0.08751679956912994, 0.1827598661184311, -0.040401481091976166, -0.01872001215815544, 0.005442928988486528, 0.04769450053572655, 0.026054345071315765, -0.0006679188227280974, -0.12291231751441956, 0.013516504317522049, 0.09664712846279144, 0.009179356507956982, -0.06989584863185883, 0.06822370737791061, -0.06309515237808228, -0.025515535846352577, 0.024381037801504135, -0.08730525523424149, 0.031791117042303085, -0.012069731019437313, -0.08048929274082184, -0.02808321639895439, 0.015679024159908295, 0.022837277501821518, -0.00988794770091772, 0.11039619147777557, -0.09297914803028107, 0.022776952013373375, -0.08954820036888123, -0.0993276908993721, 0.01845838502049446, -0.10994039475917816, 0.036175988614559174, -0.09486308693885803, -0.18903225660324097, -0.0038846442475914955, 0.06562262773513794, -0.024950560182332993, -0.06624921411275864, -0.04604743421077728, -0.06844868510961533, 0.009623613208532333, -0.010505547747015953, 0.12080568820238113, -0.06546470522880554, 0.08635265380144119, 0.029610253870487213, 0.06161821633577347, -0.04670310765504837, 0.04827064275741577, -0.10792987793684006, 0.025507966056466103, -0.16176465153694153, 0.030266569927334785, -0.045471832156181335, 0.07196910679340363, -0.09100852906703949, -0.10512590408325195, 0.015515857376158237, -0.01769314706325531, 0.07060462981462479, 0.08869008719921112, -0.17287050187587738, -0.06328638643026352, 0.14490774273872375, -0.06518428027629852, -0.12903136014938354, 0.12257422506809235, -0.06550604850053787, 0.03821851685643196, 0.056645359843969345, 0.15878097712993622, 0.05736479535698891, -0.08159112185239792, -0.0012114942073822021, 0.00736780371516943, 0.04426080733537674, -0.06593077629804611, 0.07466672360897064, 0.010129696689546108, 0.027494868263602257, 0.029349837452173233, -0.027780141681432724, 0.05252052843570709, -0.08934454619884491, -0.09802853316068649, -0.04370284080505371, -0.09547458589076996, 0.035864461213350296, 0.06593748182058334, 0.06729681044816971, -0.09844117611646652, -0.08040683716535568, 0.046185001730918884, 0.0853930339217186, -0.046075526624917984, 0.027247508987784386, -0.07179886847734451, 0.07998564839363098, -0.04585660248994827, -0.030455738306045532, -0.173146590590477, -0.021135522052645683, 0.011449356563389301, 0.005250225309282541, 0.008500825613737106, 0.015068413689732552, 0.06364927440881729, 0.06626728177070618, -0.04492207616567612, -0.019944723695516586, -0.028954509645700455, 0.00415543420240283, -0.12995602190494537, -0.19181965291500092, -0.04576271027326584, -0.02194259501993656, 0.13523346185684204, -0.2007986456155777, 0.03426539525389671, -0.0173116996884346, 0.08893585205078125, 0.014517122879624367, -0.015163951553404331, -0.04120983928442001, 0.06646399945020676, -0.04824735224246979, -0.05329236760735512, 0.06536132842302322, 0.014176443219184875, -0.09443461149930954, -0.05966218188405037, -0.08352094143629074, 0.16836236417293549, 0.1288071572780609, -0.10255037248134613, -0.07724419981241226, -0.013089139945805073, -0.06763476878404617, -0.03228446841239929, -0.044649820774793625, 0.03615560755133629, 0.18236829340457916, -0.006742941681295633, 0.14499835669994354, -0.07430697977542877, -0.05101504176855087, 0.026975082233548164, -0.03516611456871033, 0.014795116148889065, 0.11928204447031021, 0.1253187507390976, -0.09267465770244598, 0.1501709669828415, 0.15188230574131012, -0.08425208181142807, 0.11108430474996567, -0.043191276490688324, -0.0634067952632904, -0.026275664567947388, -0.024664338678121567, -0.005939875263720751, 0.11116600036621094, -0.14112092554569244, 0.00290662026964128, 0.034061066806316376, 0.025776922702789307, 0.010538382455706596, -0.21731895208358765, -0.04119028523564339, 0.04029413312673569, -0.033073846250772476, -0.016511686146259308, -0.010677571408450603, 0.004849852062761784, 0.09807133674621582, 0.007697263732552528, -0.10082371532917023, 0.04869714751839638, 0.01059610117226839, -0.07544916123151779, 0.20647667348384857, -0.0838761180639267, -0.14361785352230072, -0.11599905043840408, -0.0905027911067009, -0.05345507338643074, 0.009856254793703556, 0.059931620955467224, -0.07878634333610535, -0.0372200682759285, -0.07558973133563995, -0.0029136089142411947, -0.006422283127903938, 0.03108035773038864, 0.02529793605208397, -0.007471349555999041, 0.06815987080335617, -0.10210000723600388, -0.01752580516040325, -0.05290599167346954, -0.04062176123261452, 0.03858441486954689, 0.03593001142144203, 0.11251383274793625, 0.14275948703289032, -0.014959091320633888, 0.014134107157588005, -0.024766532704234123, 0.25239330530166626, -0.05814717337489128, -0.024917688220739365, 0.13630107045173645, -0.014195050112903118, 0.05360303074121475, 0.11823192238807678, 0.0721510648727417, -0.08749548345804214, -0.002848532050848007, 0.028049834072589874, -0.040592268109321594, -0.21315468847751617, -0.04792482405900955, -0.055354729294776917, -0.011332789435982704, 0.09793354570865631, 0.024930022656917572, 0.03219345957040787, 0.07930275797843933, 0.038632556796073914, 0.08867747336626053, -0.051558732986450195, 0.06800032407045364, 0.11710257828235626, 0.047733768820762634, 0.12461777776479721, -0.03793270140886307, -0.058964915573596954, 0.0440322607755661, 0.002559319604188204, 0.22588501870632172, 0.012717983685433865, 0.12898562848567963, 0.06364044547080994, 0.17565664649009705, -0.011989033780992031, 0.07707777619361877, -0.013251837342977524, -0.0395975261926651, -0.018950078636407852, -0.034655436873435974, -0.0357043594121933, 0.027804311364889145, -0.06382867693901062, 0.07202896475791931, -0.11216448247432709, 0.024230865761637688, 0.0554962120950222, 0.26348328590393066, 0.03910595923662186, -0.34014397859573364, -0.1007639467716217, 0.00034686445724219084, -0.03767513483762741, -0.0241052508354187, 0.030681224539875984, 0.07496927678585052, -0.0916021540760994, 0.02920544147491455, -0.06441991776227951, 0.09343470633029938, -0.044736020267009735, 0.04377024993300438, 0.07920880615711212, 0.08378970623016357, 0.012969340197741985, 0.08495619893074036, -0.28017479181289673, 0.2777101397514343, 0.0029753795824944973, 0.0658332034945488, -0.07982791215181351, 0.008441386744379997, 0.027505360543727875, 0.06389282643795013, 0.08304000645875931, -0.005217297002673149, -0.039826568216085434, -0.19002212584018707, -0.054978903383016586, 0.021851669996976852, 0.06265510618686676, -0.029603345319628716, 0.09129036217927933, -0.026676936075091362, 0.010843174532055855, 0.06695637851953506, 0.012017486616969109, -0.044859565794467926, -0.10035078972578049, -0.009613905102014542, 0.03524918109178543, -0.056653618812561035, -0.0620555654168129, -0.10601742565631866, -0.12040865421295166, 0.15700536966323853, -0.024988263845443726, -0.04100542888045311, -0.10817570239305496, 0.07568781822919846, 0.07458308339118958, -0.08317926526069641, 0.04716647416353226, -0.003054100787267089, 0.07531878352165222, 0.028949754312634468, -0.06046878919005394, 0.10396163165569305, -0.0814371183514595, -0.1629093736410141, -0.06901572644710541, 0.10507304221391678, 0.035538200289011, 0.0638664960861206, -0.003054016502574086, 0.01955837942659855, -0.050755079835653305, -0.08799341320991516, 0.030556347221136093, -0.010500391013920307, 0.09959588944911957, 0.0054665314964950085, -0.0447206124663353, 0.0323449969291687, -0.05476900190114975, -0.032835133373737335, 0.18673425912857056, 0.23573119938373566, -0.10216915607452393, 0.02183579094707966, 0.02417724020779133, -0.06260868161916733, -0.17163985967636108, 0.024704085662961006, 0.055032216012477875, 0.003409328870475292, 0.03614190220832825, -0.17390695214271545, 0.1411168873310089, 0.1134105995297432, -0.017489926889538765, 0.10005639493465424, -0.3180955648422241, -0.11898104846477509, 0.1295904666185379, 0.13270096480846405, 0.11247265338897705, -0.12470323592424393, -0.017806313931941986, -0.017273206263780594, -0.1503603607416153, 0.10643728077411652, -0.06807143241167068, 0.1109628975391388, -0.035119764506816864, 0.09704557061195374, 0.0032560708932578564, -0.06019850820302963, 0.12085691839456558, 0.03499970585107803, 0.10045310109853745, -0.05871070921421051, -0.04046986252069473, 0.03471328690648079, -0.04558533802628517, 0.02915523387491703, -0.08303598314523697, 0.03766954317688942, -0.113989919424057, -0.0221501924097538, -0.06576741486787796, 0.04006345942616463, -0.03517349064350128, -0.06803809106349945, -0.04485134407877922, 0.02729581855237484, 0.0612279511988163, -0.011496484279632568, 0.143491730093956, 0.043676260858774185, 0.13765773177146912, 0.10363790392875671, 0.07146705687046051, -0.08871149271726608, -0.08053770661354065, -0.026951611042022705, -0.016436947509646416, 0.05504250153899193, -0.1278722882270813, 0.02687564492225647, 0.14543835818767548, 0.023421823978424072, 0.13306835293769836, 0.08313989639282227, -0.01810944452881813, 0.007063448429107666, 0.05403922125697136, -0.16837191581726074, -0.07124345749616623, -0.001094398321583867, -0.03538297861814499, -0.11630727350711823, 0.0555201917886734, 0.08830641210079193, -0.07034257054328918, -0.011280592530965805, -0.006711053662002087, 0.01500918809324503, -0.052304212003946304, 0.18425290286540985, 0.05229801684617996, 0.04810124635696411, -0.10273027420043945, 0.07023852318525314, 0.050831444561481476, -0.06215246766805649, 0.0038517804350703955, 0.050537750124931335, -0.08748049288988113, -0.042676471173763275, 0.05316803231835365, 0.16745227575302124, -0.06502221524715424, -0.04683596268296242, -0.13560546934604645, -0.11896153539419174, 0.08686268329620361, 0.136448934674263, 0.11606625467538834, 0.01427344512194395, -0.06237145513296127, 0.0007489633280783892, -0.11452894657850266, 0.09314202517271042, 0.04565829783678055, 0.07186681777238846, -0.15841245651245117, 0.13322530686855316, 0.0034389542415738106, 0.04350648820400238, -0.014787247404456139, 0.03040989860892296, -0.09584079682826996, 0.011858407407999039, -0.11450181901454926, -0.019432533532381058, -0.04153725877404213, 0.012445530854165554, -0.004439115524291992, -0.055704232305288315, -0.05927538871765137, 0.019824326038360596, -0.10941969603300095, -0.01811685971915722, 0.04256252944469452, 0.05963975191116333, -0.11101070046424866, -0.037789322435855865, 0.024938523769378662, -0.061650775372982025, 0.07265954464673996, 0.0489344447851181, 0.022871850058436394, 0.0398770309984684, -0.11427760124206543, 0.013910734094679356, 0.06993600726127625, 0.023240569978952408, 0.07710328698158264, -0.10562027990818024, -0.011992787010967731, 0.004989787936210632, 0.033350568264722824, 0.015847381204366684, 0.07284040749073029, -0.13886187970638275, -0.008171064779162407, -0.00729010533541441, -0.0787961333990097, -0.0653151422739029, 0.021642902866005898, 0.1064024418592453, 0.013527140021324158, 0.20946772396564484, -0.062065597623586655, 0.03913082554936409, -0.20597189664840698, 0.001969011267647147, -0.007653293199837208, -0.1084112823009491, -0.1260104477405548, -0.057148925960063934, 0.052404046058654785, -0.05882440134882927, 0.15651600062847137, 0.02671966701745987, 0.023507723584771156, 0.026373030617833138, -0.007912973873317242, 0.018484774976968765, 0.010433545336127281, 0.1963111013174057, 0.032430727034807205, -0.03997042402625084, 0.06263040006160736, 0.03891667351126671, 0.10380959510803223, 0.1113637164235115, 0.18906551599502563, 0.14337694644927979, 0.004050645045936108, 0.09300757199525833, 0.032170411199331284, -0.05951380729675293, -0.17797166109085083, 0.030102550983428955, -0.03811167553067207, 0.10814602673053741, -0.012081380002200603, 0.21837441623210907, 0.06686980277299881, -0.17005465924739838, 0.037332724779844284, -0.05451732501387596, -0.07969462126493454, -0.10215689241886139, -0.07059860974550247, -0.07879133522510529, -0.12883445620536804, 0.004674707073718309, -0.11389997601509094, 0.010397393256425858, 0.11740593612194061, 0.006749420426785946, -0.02397792786359787, 0.1461671143770218, 0.008625485934317112, 0.04190048947930336, 0.04274088516831398, 0.008663094602525234, -0.038811590522527695, -0.10210888832807541, -0.0673278421163559, -0.019397543743252754, -0.023396525532007217, 0.038504183292388916, -0.06824186444282532, -0.03711562603712082, 0.02567237615585327, -0.011723523028194904, -0.09057211875915527, 0.005746922921389341, 0.010010451078414917, 0.055684708058834076, 0.03810015693306923, 0.004775369074195623, 0.033840011805295944, -0.011677463538944721, 0.19643491506576538, -0.07451341301202774, -0.05845458060503006, -0.10950228571891785, 0.24114395678043365, 0.03693195804953575, -0.02210855670273304, 0.03894197568297386, -0.0664689913392067, 0.00470855413004756, 0.23232252895832062, 0.19555817544460297, -0.0834326446056366, -0.012748012319207191, 0.005029243417084217, -0.011920949444174767, -0.028262468054890633, 0.09249874949455261, 0.13674820959568024, 0.04225609451532364, -0.09074192494153976, -0.042047761380672455, -0.0727899968624115, -0.012567151337862015, -0.037049513310194016, 0.06375797837972641, 0.04465434327721596, 0.005771932192146778, -0.04135825112462044, 0.04752006754279137, -0.06755976378917694, -0.0883558914065361, 0.06430817395448685, -0.20212537050247192, -0.16304227709770203, -0.006964839994907379, 0.09373234212398529, 0.005723511800169945, 0.06281958520412445, -0.029416315257549286, -0.0034009122755378485, 0.08030503243207932, -0.01716633327305317, -0.0925389900803566, -0.0801924392580986, 0.10340769588947296, -0.08788875490427017, 0.22933462262153625, -0.043892644345760345, 0.07098235934972763, 0.1248423233628273, 0.06573887169361115, -0.08509965240955353, 0.05806952342391014, 0.04861181601881981, -0.04972453415393829, 0.022362101823091507, 0.07280808687210083, -0.02689461037516594, 0.07473395764827728, 0.042557165026664734, -0.13498808443546295, 0.009949230588972569, -0.04935310035943985, -0.05053258687257767, -0.04572097584605217, -0.029754679650068283, -0.054324671626091, 0.13611038029193878, 0.21150311827659607, -0.03477213904261589, -0.013347029685974121, -0.06998419016599655, 0.02596234157681465, 0.06159254536032677, 0.004541901871562004, -0.06296718865633011, -0.2194681167602539, 0.020278602838516235, 0.057225458323955536, -0.02004455402493477, -0.2154700756072998, -0.10131493210792542, 0.003165888600051403, -0.07604747265577316, -0.0877133160829544, 0.06855418533086777, 0.08297023177146912, 0.0543673038482666, -0.06316111981868744, -0.025643769651651382, -0.08014149218797684, 0.13839265704154968, -0.12965811789035797, -0.08774403482675552 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-ro-to-en This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the wmt16 dataset. It achieves the following results on the evaluation set: - Loss: 1.5877 - Bleu: 13.4499 - Gen Len: 17.5073 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:| | 1.6167 | 0.05 | 2000 | 1.8649 | 9.7029 | 17.5753 | | 1.4551 | 0.1 | 4000 | 1.7810 | 10.6382 | 17.5358 | | 1.3723 | 0.16 | 6000 | 1.7369 | 11.1285 | 17.5158 | | 1.3373 | 0.21 | 8000 | 1.7086 | 11.6173 | 17.5013 | | 1.2935 | 0.26 | 10000 | 1.6890 | 12.0641 | 17.5038 | | 1.2632 | 0.31 | 12000 | 1.6670 | 12.3012 | 17.5253 | | 1.2463 | 0.37 | 14000 | 1.6556 | 12.3991 | 17.5153 | | 1.2272 | 0.42 | 16000 | 1.6442 | 12.7392 | 17.4732 | | 1.2052 | 0.47 | 18000 | 1.6328 | 12.8446 | 17.5143 | | 1.1985 | 0.52 | 20000 | 1.6233 | 13.0892 | 17.4807 | | 1.1821 | 0.58 | 22000 | 1.6153 | 13.1529 | 17.4952 | | 1.1791 | 0.63 | 24000 | 1.6079 | 13.2964 | 17.5088 | | 1.1698 | 0.68 | 26000 | 1.6038 | 13.3548 | 17.4842 | | 1.154 | 0.73 | 28000 | 1.5957 | 13.3012 | 17.5053 | | 1.1634 | 0.79 | 30000 | 1.5931 | 13.4203 | 17.5083 | | 1.1487 | 0.84 | 32000 | 1.5893 | 13.3959 | 17.5123 | | 1.1495 | 0.89 | 34000 | 1.5875 | 13.3745 | 17.4902 | | 1.1458 | 0.94 | 36000 | 1.5877 | 13.4129 | 17.5043 | | 1.1465 | 1.0 | 38000 | 1.5877 | 13.4499 | 17.5073 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["wmt16"], "metrics": ["bleu"], "model-index": [{"name": "t5-small-finetuned-ro-to-en", "results": [{"task": {"type": "text2text-generation", "name": "Sequence-to-sequence Language Modeling"}, "dataset": {"name": "wmt16", "type": "wmt16", "args": "ro-en"}, "metrics": [{"type": "bleu", "value": 13.4499, "name": "Bleu"}]}]}]}
text2text-generation
Mirelle/t5-small-finetuned-ro-to-en
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:wmt16", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #t5 #text2text-generation #generated_from_trainer #dataset-wmt16 #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
t5-small-finetuned-ro-to-en =========================== This model is a fine-tuned version of t5-small on the wmt16 dataset. It achieves the following results on the evaluation set: * Loss: 1.5877 * Bleu: 13.4499 * Gen Len: 17.5073 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 0.0001 * train\_batch\_size: 16 * eval\_batch\_size: 16 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 1 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.12.5 * Pytorch 1.10.0+cu111 * Datasets 1.16.1 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 1\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.10.0+cu111\n* Datasets 1.16.1\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #t5 #text2text-generation #generated_from_trainer #dataset-wmt16 #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 1\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.10.0+cu111\n* Datasets 1.16.1\n* Tokenizers 0.10.3" ]
[ 78, 112, 4, 33 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #t5 #text2text-generation #generated_from_trainer #dataset-wmt16 #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 1\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.10.0+cu111\n* Datasets 1.16.1\n* Tokenizers 0.10.3" ]
[ -0.10866700857877731, 0.11974101513624191, -0.0027264354284852743, 0.09600313752889633, 0.10849028825759888, -0.005148209631443024, 0.1655799001455307, 0.16212397813796997, -0.11878840625286102, 0.05549045279622078, 0.14491526782512665, 0.12638597190380096, 0.05068835988640785, 0.1555665135383606, -0.059562601149082184, -0.24603095650672913, 0.04058774933218956, 0.05931289121508598, -0.013458222150802612, 0.13255195319652557, 0.08515366166830063, -0.11952744424343109, 0.09456729143857956, 0.031222909688949585, -0.18976297974586487, -0.014935052022337914, 0.0022096431348472834, -0.07866314798593521, 0.10998022556304932, 0.03290041536092758, 0.08489129692316055, 0.035091839730739594, 0.04520026966929436, -0.15954338014125824, 0.010978162288665771, 0.061198890209198, 0.003415173152461648, 0.10636013001203537, 0.0570523701608181, -0.011776912026107311, 0.10281424224376678, -0.06948225945234299, 0.0648222342133522, 0.025503244251012802, -0.12688827514648438, -0.26125219464302063, -0.1054549589753151, 0.05852954462170601, 0.06681399047374725, 0.09053628891706467, -0.005392900202423334, 0.18890926241874695, -0.02292795293033123, 0.11137115210294724, 0.24607761204242706, -0.2969650328159332, -0.05548715963959694, -0.01033320277929306, 0.041037727147340775, 0.07642528414726257, -0.07791058719158173, -0.03290880098938942, 0.025947164744138718, 0.04848676547408104, 0.14780046045780182, -0.013575151562690735, -0.02849189005792141, -0.012812397442758083, -0.1321612000465393, -0.0789896622300148, 0.16612130403518677, 0.035220302641391754, -0.04277465492486954, -0.07158263027667999, -0.08017382770776749, -0.18043756484985352, -0.04656888544559479, 0.016165249049663544, 0.03138282895088196, -0.0369839109480381, -0.09753571450710297, -0.012887257151305676, -0.0817524641752243, -0.03981681168079376, -0.045407265424728394, 0.13005195558071136, 0.04067758470773697, 0.01725415699183941, -0.06999299675226212, 0.07999175786972046, -0.023497598245739937, -0.17274674773216248, -0.004064799752086401, 0.01812821626663208, 0.013965649530291557, -0.035708118230104446, -0.03698365390300751, -0.13117672502994537, 0.00453955540433526, 0.1486748307943344, -0.09271598607301712, 0.07638579607009888, -0.02678397111594677, 0.03715444356203079, -0.07441927492618561, 0.19234251976013184, -0.030503110960125923, 0.0189263503998518, 0.0193315539509058, 0.0807543694972992, 0.06018213555216789, -0.03611305356025696, -0.11795100569725037, 0.03448091074824333, 0.11648444831371307, 0.022906189784407616, -0.02410144731402397, 0.0599219910800457, -0.04276036098599434, -0.030920539051294327, 0.058645542711019516, -0.10068733245134354, 0.02567381225526333, -0.012368631549179554, -0.055254533886909485, -0.015112222172319889, 0.02118525840342045, 0.0004879262123722583, -0.04501795023679733, 0.08463549613952637, -0.09775000810623169, 0.01630803942680359, -0.07734888046979904, -0.13582995533943176, 0.03490374609827995, -0.08393868803977966, 0.0023283183109015226, -0.09426839649677277, -0.1412021517753601, -0.007352680433541536, 0.055033765733242035, -0.035639528185129166, -0.05679557844996452, -0.04662160202860832, -0.08992482721805573, 0.05189455673098564, -0.01436336524784565, 0.08694113045930862, -0.07071500271558762, 0.09357771277427673, 0.04021649435162544, 0.06725283712148666, -0.04071002081036568, 0.046626828610897064, -0.09211000800132751, 0.047080185264348984, -0.21040406823158264, 0.05945158377289772, -0.04792136326432228, 0.08952371776103973, -0.10918068885803223, -0.09965361654758453, 0.035238806158304214, -0.027959689497947693, 0.10696958005428314, 0.10182347893714905, -0.1745527982711792, -0.07524314522743225, 0.1954677700996399, -0.08594785630702972, -0.142621248960495, 0.13908061385154724, -0.04550836235284805, 0.00993098970502615, 0.051475074142217636, 0.2244628220796585, 0.07005336880683899, -0.0954434722661972, -0.019818317145109177, -0.03790958970785141, 0.06938967853784561, -0.07434108853340149, 0.07714477181434631, 0.004582762252539396, 0.06112358719110489, 0.004956127610057592, 0.010266289114952087, 0.03882388025522232, -0.08090750873088837, -0.08103752881288528, -0.05551495775580406, -0.06943173706531525, 0.01079676765948534, 0.04370720684528351, 0.06201643869280815, -0.12602335214614868, -0.11203891783952713, 0.04578676074743271, 0.08000804483890533, -0.08461017906665802, 0.05905115231871605, -0.09858179837465286, 0.11501814424991608, -0.07690592855215073, -0.002010851399973035, -0.1812252402305603, -0.023098910227417946, 0.03168207406997681, 0.004416408017277718, 0.021671175956726074, -0.055010903626680374, 0.06701582670211792, 0.07031814008951187, -0.03881712630391121, -0.038826774805784225, -0.02570129558444023, 0.0006052344106137753, -0.11861315369606018, -0.19685916602611542, -0.0445556566119194, -0.03748886659741402, 0.09285581856966019, -0.1481369584798813, 0.04348405823111534, 0.06790435314178467, 0.10726150125265121, 0.04028383642435074, -0.029190167784690857, 0.00035577936796471477, 0.06954467296600342, -0.05120937526226044, -0.07142055779695511, 0.05857802554965019, 0.030069997534155846, -0.09699447453022003, 0.00973796658217907, -0.16435348987579346, 0.16047002375125885, 0.13963468372821808, 0.002958780387416482, -0.055433470755815506, -0.01585761085152626, -0.052808962762355804, -0.028744535520672798, -0.025589438155293465, 0.01622612774372101, 0.15970148146152496, 0.028403265401721, 0.15852424502372742, -0.10240904986858368, -0.05395721271634102, 0.05130675435066223, -0.029991937801241875, -0.01288657821714878, 0.11924389004707336, 0.034414444118738174, -0.11886086314916611, 0.1428578644990921, 0.1370604932308197, -0.0503230057656765, 0.1348528116941452, -0.0696236863732338, -0.07262857258319855, -0.035876236855983734, -0.011696822009980679, 0.03632991388440132, 0.10428787022829056, -0.11863783746957779, -0.01698855310678482, 0.04105518013238907, 0.028343094512820244, 0.006353895645588636, -0.18709459900856018, -0.0024696188047528267, 0.04158126190304756, -0.04873595014214516, -0.05945111811161041, -0.006377115845680237, 0.00473929475992918, 0.09713936597108841, 0.013517108745872974, -0.05019650608301163, 0.03314216434955597, 0.014101722277700901, -0.0694495439529419, 0.19128559529781342, -0.10432656109333038, -0.16350097954273224, -0.1325504332780838, -0.10176653414964676, -0.06728753447532654, -0.006397409830242395, 0.0802653357386589, -0.08463981002569199, -0.04786578565835953, -0.10398951172828674, -0.024874845519661903, -0.011693255044519901, 0.023199917748570442, 0.03871411085128784, -0.021184710785746574, 0.06952043622732162, -0.11508771777153015, -0.028382498770952225, -0.010001854971051216, 0.022162796929478645, 0.06630722433328629, 0.00891382247209549, 0.11247055232524872, 0.13204047083854675, -0.020586185157299042, 0.044254936277866364, -0.038943301886320114, 0.24222764372825623, -0.06787753850221634, -0.015591857023537159, 0.13528749346733093, -0.012511339038610458, 0.09587235748767853, 0.11808642745018005, 0.05417242273688316, -0.08667916804552078, -0.002580764004960656, 0.00324815372005105, -0.0481097549200058, -0.21623970568180084, -0.016020286828279495, -0.05615103617310524, 0.00809829868376255, 0.10652399063110352, 0.025026310235261917, 0.028301602229475975, 0.05575011670589447, 0.009198513813316822, 0.062431320548057556, -0.02826153300702572, 0.1137806698679924, 0.12810836732387543, 0.06095733866095543, 0.13640540838241577, -0.05931391194462776, -0.02367604337632656, 0.0467793233692646, 0.017342012375593185, 0.20869287848472595, -0.013759752735495567, 0.21930184960365295, 0.04299984499812126, 0.15713784098625183, 0.031148362904787064, 0.0754070058465004, -0.02825341932475567, -0.01116804126650095, -0.011933855712413788, -0.05359599366784096, -0.04524827003479004, 0.016921525821089745, -0.059459783136844635, 0.03747059777379036, -0.11678017675876617, 0.0273419339209795, 0.046121593564748764, 0.29992905259132385, 0.04092560335993767, -0.3742450177669525, -0.11449802666902542, 0.0067045604810118675, -0.04631917178630829, -0.04523775726556778, 0.004511852283030748, 0.09533607959747314, -0.07637561857700348, 0.06759587675333023, -0.08326992392539978, 0.1113443672657013, -0.056659895926713943, 0.03384514898061752, 0.042953163385391235, 0.09068454056978226, -0.018383128568530083, 0.05674423649907112, -0.2861432433128357, 0.2733892500400543, 0.029086288064718246, 0.06183129549026489, -0.07608848810195923, 0.012763865292072296, 0.011651594191789627, 0.046903010457754135, 0.05879383534193039, -0.005195989273488522, -0.10097233206033707, -0.16321608424186707, -0.10482768714427948, 0.011347864754498005, 0.07749044895172119, 0.013006160035729408, 0.12160924077033997, -0.012117698788642883, -0.0028735881205648184, 0.046367350965738297, -0.010777421295642853, -0.03257995843887329, -0.11508738994598389, 0.027481311932206154, 0.04567497968673706, -0.03117581456899643, -0.07665251940488815, -0.10663463175296783, -0.052301060408353806, 0.15763798356056213, 0.02913348563015461, -0.07465798407793045, -0.12720036506652832, 0.04013274982571602, 0.08132364600896835, -0.09826172143220901, 0.025171514600515366, -0.020083647221326828, 0.11962208151817322, -0.008291077800095081, -0.0789562240242958, 0.11262192577123642, -0.054138269275426865, -0.1638936698436737, -0.04694529250264168, 0.12421095371246338, 0.007663379423320293, 0.06006471440196037, -0.013747013173997402, 0.03652716055512428, -0.03558463603258133, -0.07201714813709259, 0.02456330694258213, -0.005013322923332453, 0.09330243617296219, -0.04626652970910072, -0.0016306295292451978, 0.030149228870868683, -0.07088245451450348, -0.027149349451065063, 0.18103505671024323, 0.2511516511440277, -0.08333971351385117, 0.061647847294807434, 0.050745464861392975, -0.04744555801153183, -0.15107327699661255, 0.010368742980062962, 0.05581265315413475, 0.0040060351602733135, 0.000948441622313112, -0.17624127864837646, 0.03318394348025322, 0.0766080841422081, -0.009766744449734688, 0.0744151920080185, -0.31874820590019226, -0.1252685934305191, 0.09105053544044495, 0.13041937351226807, 0.07985437661409378, -0.15648320317268372, -0.049473416060209274, -0.028246045112609863, -0.15040841698646545, 0.1392909288406372, -0.1007954403758049, 0.11530029028654099, -0.03325217217206955, 0.11239545792341232, 0.01477944478392601, -0.06521269679069519, 0.11703373491764069, -0.005114223342388868, 0.07463782280683517, -0.06674814969301224, 0.02300873212516308, 0.11367549747228622, -0.08600657433271408, 0.047228142619132996, -0.10965364426374435, 0.04044399410486221, -0.12810561060905457, -0.012071188539266586, -0.06895031034946442, 0.000612039992120117, -0.03828904777765274, -0.03947646915912628, -0.03927449882030487, 0.005951832979917526, 0.06981673836708069, -0.02822679467499256, 0.18616291880607605, 0.01842249557375908, 0.1405520737171173, 0.1604970395565033, 0.0977732241153717, -0.1323254555463791, -0.0629473328590393, 0.0013128044083714485, -0.033039648085832596, 0.04878697916865349, -0.1712261587381363, 0.03373259678483009, 0.1341758817434311, 0.012642978690564632, 0.1188509464263916, 0.06377620995044708, -0.06856872886419296, 0.021403783932328224, 0.0515725314617157, -0.17222055792808533, -0.11115382611751556, -0.006873825564980507, 0.060349926352500916, -0.13250763714313507, 0.04005778208374977, 0.12529213726520538, -0.05902816355228424, -0.022205373272299767, 0.008855422958731651, 0.013289486058056355, -0.01692500337958336, 0.17952603101730347, 0.03563894331455231, 0.06894166022539139, -0.11167515069246292, 0.08210523426532745, 0.059377774596214294, -0.1129031851887703, 0.05345812812447548, 0.11406157910823822, -0.0986965224146843, -0.028439179062843323, 0.03553406149148941, 0.16915298998355865, -0.06495720893144608, -0.04598887264728546, -0.15875200927257538, -0.12009570002555847, 0.09608550369739532, 0.18049128353595734, 0.06665022671222687, 0.010963128879666328, -0.04450917989015579, -0.013024990446865559, -0.12546944618225098, 0.10184744745492935, 0.05364498868584633, 0.08198170363903046, -0.12788009643554688, 0.12249177694320679, -0.012485024519264698, 0.048258695751428604, -0.005710630211979151, 0.011729307472705841, -0.11193320155143738, 0.00950953084975481, -0.14180831611156464, 0.006138843018561602, -0.05182437226176262, 0.0024547812063246965, -0.02550593763589859, -0.0348997600376606, -0.057841598987579346, 0.01884852908551693, -0.11297107487916946, -0.03628145158290863, 0.015429835766553879, 0.02722441963851452, -0.12016493082046509, -0.016107460483908653, 0.01371956616640091, -0.08822425454854965, 0.08550850301980972, 0.04331982135772705, -0.009080789983272552, 0.02192912995815277, -0.023002926260232925, 0.0014403110835701227, 0.04420192912220955, 0.008099319413304329, 0.07776298373937607, -0.11174514889717102, -0.013346622698009014, 0.003521536709740758, 0.01735743321478367, 0.028993267565965652, 0.12167535722255707, -0.11734387278556824, -0.0010121287778019905, 0.0063524008728563786, -0.05744747817516327, -0.07514682412147522, 0.07372133433818817, 0.09457672387361526, 0.018154628574848175, 0.18413054943084717, -0.0730152353644371, 0.03136115521192551, -0.19986458122730255, -0.0005307596875354648, 0.010395500808954239, -0.14734792709350586, -0.06319671869277954, -0.04081171005964279, 0.06746014207601547, -0.07312098145484924, 0.09865323454141617, -0.002805701456964016, 0.027062255889177322, 0.045748159289360046, -0.024279914796352386, -0.022638432681560516, 0.006690753158181906, 0.18408840894699097, 0.01688307709991932, -0.038608431816101074, 0.08002529293298721, 0.01910341903567314, 0.08403479307889938, 0.14174918830394745, 0.19403868913650513, 0.12100735306739807, 0.05137220397591591, 0.09842599928379059, 0.025709878653287888, -0.025601578876376152, -0.187485471367836, 0.04771963134407997, -0.03482851758599281, 0.14896123111248016, -0.007270466070622206, 0.1896739900112152, 0.13231787085533142, -0.15350551903247833, 0.048504676669836044, -0.037970125675201416, -0.0852460116147995, -0.10289658606052399, -0.11000252515077591, -0.08408118039369583, -0.1407899111509323, -0.007052294909954071, -0.12312786281108856, 0.04534393548965454, 0.05751875787973404, 0.0170160960406065, -0.004972342401742935, 0.13067232072353363, 0.034891992807388306, 0.007241397630423307, 0.05949414521455765, -0.0006526333745568991, -0.04261959716677666, -0.04268418997526169, -0.06742969155311584, 0.022075794637203217, -0.003819868667051196, 0.048928402364254, -0.0027316734194755554, -0.005409324541687965, 0.04761878028512001, -0.027948632836341858, -0.11965975910425186, 0.009180259890854359, 0.026601171121001244, 0.06929843127727509, 0.04880054295063019, 0.012541050091385841, 0.004306471440941095, -0.01561027392745018, 0.19419638812541962, -0.07684820890426636, -0.06145111471414566, -0.11399295926094055, 0.2424170821905136, 0.008176939561963081, -0.056113116443157196, 0.03478280454874039, -0.06681754440069199, -0.008248193189501762, 0.20213201642036438, 0.17219360172748566, -0.03631921112537384, -0.011359061114490032, -0.019371140748262405, -0.009121040813624859, -0.02914934791624546, 0.1107148751616478, 0.1232781708240509, 0.02362404391169548, -0.07642211765050888, -0.03395913541316986, -0.06718283146619797, -0.01891007460653782, -0.047839436680078506, 0.07849948108196259, 0.020663337782025337, -0.007238178979605436, -0.033687785267829895, 0.05125903710722923, -0.055818088352680206, -0.050718165934085846, 0.00477880472317338, -0.20919464528560638, -0.15942703187465668, -0.00020172417862340808, 0.07421199977397919, -0.007061357609927654, 0.057211291044950485, -0.0028462810441851616, 0.014225666411221027, 0.09002643078565598, -0.016180938109755516, -0.08018682897090912, -0.07583651691675186, 0.10615188628435135, -0.15706151723861694, 0.18394102156162262, -0.033284902572631836, 0.029175644740462303, 0.14448875188827515, 0.05305968225002289, -0.11677127331495285, 0.06303729116916656, 0.04873304069042206, -0.04517769441008568, 0.0061697885394096375, 0.12411287426948547, -0.023591894656419754, 0.07289958000183105, 0.033912453800439835, -0.11308829486370087, -0.01193294394761324, -0.08287691324949265, -0.0076309009455144405, -0.023730440065264702, -0.04568516090512276, -0.04531502351164818, 0.12827132642269135, 0.19314543902873993, -0.048310812562704086, -0.01409322489053011, -0.06435379385948181, 0.009738815948367119, 0.06811542063951492, -0.020796960219740868, -0.055744145065546036, -0.257766991853714, 0.003702053800225258, 0.07272925227880478, -0.006629191339015961, -0.2756670415401459, -0.08777344971895218, 0.002986642997711897, -0.045677922666072845, -0.10600236058235168, 0.09534639865159988, 0.08445166051387787, 0.04693363606929779, -0.06765611469745636, 0.001715286634862423, -0.07074078172445297, 0.16082027554512024, -0.13926587998867035, -0.06493224203586578 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # test-finetuned This model is a fine-tuned version of [yhavinga/t5-v1.1-base-dutch-cnn-test](https://huggingface.co/yhavinga/t5-v1.1-base-dutch-cnn-test) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 3 - eval_batch_size: 3 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:| | No log | 1.0 | 1 | nan | 33.8462 | 31.746 | 30.7692 | 30.7692 | 86.0 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1 - Datasets 1.15.1 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "model-index": [{"name": "test-finetuned", "results": []}]}
text2text-generation
Mirjam/test-finetuned
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #t5 #text2text-generation #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
test-finetuned ============== This model is a fine-tuned version of yhavinga/t5-v1.1-base-dutch-cnn-test on the None dataset. Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 3 * eval\_batch\_size: 3 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 1 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.1 * Datasets 1.15.1 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 3\n* eval\\_batch\\_size: 3\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 1\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1\n* Datasets 1.15.1\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #t5 #text2text-generation #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 3\n* eval\\_batch\\_size: 3\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 1\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1\n* Datasets 1.15.1\n* Tokenizers 0.10.3" ]
[ 67, 113, 4, 30 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #t5 #text2text-generation #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 3\n* eval\\_batch\\_size: 3\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 1\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1\n* Datasets 1.15.1\n* Tokenizers 0.10.3" ]
[ -0.06927420943975449, 0.03864745795726776, -0.0034429680090397596, 0.09618672728538513, 0.1462920904159546, 0.015077797695994377, 0.13126476109027863, 0.12826426327228546, -0.10488490760326385, 0.025710003450512886, 0.11671248823404312, 0.14548587799072266, 0.031500980257987976, 0.10968917608261108, -0.05127629265189171, -0.27951779961586, 0.0012274534674361348, 0.04470193386077881, -0.056676555424928665, 0.13806912302970886, 0.0926670953631401, -0.11239400506019592, 0.07830400764942169, 0.010045676492154598, -0.16233688592910767, 0.02203819528222084, -0.0006489616935141385, -0.0566987469792366, 0.1479494720697403, 0.04148878902196884, 0.11426226049661636, 0.009482411667704582, 0.06961450725793839, -0.21019068360328674, 0.011227755807340145, 0.06503651291131973, 0.004659661557525396, 0.08444646745920181, 0.07561497390270233, 0.007536452263593674, 0.16205646097660065, -0.05699726566672325, 0.05433364585042, 0.029408367350697517, -0.11425352096557617, -0.22577238082885742, -0.07630915194749832, 0.04067326337099075, 0.08201165497303009, 0.11180596798658371, -0.015138750895857811, 0.10725430399179459, -0.07011612504720688, 0.10729614645242691, 0.24331854283809662, -0.283370703458786, -0.062058959156274796, 0.001049215905368328, 0.04354221001267433, 0.07859576493501663, -0.08308625966310501, -0.02760353311896324, 0.03341241553425789, 0.05712080001831055, 0.13158731162548065, -0.02471710927784443, -0.09392550587654114, 0.0050139958038926125, -0.14856068789958954, -0.04947228729724884, 0.1494074910879135, 0.039155252277851105, -0.023879608139395714, -0.06303274631500244, -0.07498223334550858, -0.1752077341079712, -0.0344720333814621, -0.01966974511742592, 0.041574541479349136, -0.016307881101965904, -0.0512041300535202, -0.029410842806100845, -0.11312589794397354, -0.06519685685634613, -0.06937127560377121, 0.11921249330043793, 0.048838332295417786, -0.0018964095506817102, -0.04303722083568573, 0.11128037422895432, -0.00734809460118413, -0.12353190779685974, 0.018111957237124443, 0.026440342888236046, 0.0036278143525123596, -0.027330098673701286, -0.060785867273807526, -0.09703940898180008, 0.0073484559543430805, 0.13412357866764069, -0.07196775078773499, 0.055204231292009354, -0.0001821689074859023, 0.04905993491411209, -0.10075975209474564, 0.16696873307228088, -0.03741203248500824, -0.012030272744596004, -0.0019952484872192144, 0.04779547080397606, 0.027692344039678574, -0.01623382605612278, -0.1139351949095726, 0.0096172159537673, 0.10317020118236542, 0.020435307174921036, -0.05230236425995827, 0.07064355164766312, -0.04623034968972206, -0.023702001199126244, -0.018389074131846428, -0.0955490693449974, 0.020176880061626434, 0.0008682992774993181, -0.06785982847213745, 0.003067274810746312, 0.04355129227042198, 0.013572977855801582, -0.04752618446946144, 0.10541387647390366, -0.07393742352724075, 0.027908049523830414, -0.09513840824365616, -0.1228175163269043, 0.02764199860394001, -0.06305328011512756, 0.010674234479665756, -0.10137690603733063, -0.17987152934074402, -0.01284798514097929, 0.05926104262471199, -0.0347808301448822, -0.055233024060726166, -0.04801338538527489, -0.07203736901283264, 0.026909824460744858, -0.028018871322274208, 0.14875461161136627, -0.06261613965034485, 0.0979580357670784, 0.02999952808022499, 0.05256343632936478, -0.03535458818078041, 0.06361163407564163, -0.09347525238990784, 0.019036896526813507, -0.15746872127056122, 0.048372868448495865, -0.03930080682039261, 0.05767786502838135, -0.10099707543849945, -0.10193568468093872, -0.017075171694159508, 0.003943458199501038, 0.08338106423616409, 0.0885830745100975, -0.15354596078395844, -0.08581575006246567, 0.1715553104877472, -0.07723960280418396, -0.12026572227478027, 0.13161365687847137, -0.05010146275162697, 0.03821423277258873, 0.052155137062072754, 0.1716427206993103, 0.06120600923895836, -0.08965626358985901, 0.022550947964191437, -0.0020783112850040197, 0.046988844871520996, -0.037377920001745224, 0.07343198359012604, -0.006587779149413109, 0.015468595549464226, 0.022648874670267105, -0.009625363163650036, 0.0694010928273201, -0.08617173135280609, -0.0828467458486557, -0.04751043766736984, -0.07050064951181412, 0.02431313507258892, 0.05946493148803711, 0.07286642491817474, -0.10124119371175766, -0.10330862551927567, 0.05764910206198692, 0.07587550580501556, -0.08144675195217133, 0.04881588742136955, -0.056260280311107635, 0.06118539348244667, -0.03170675411820412, -0.0006091041141189635, -0.18375523388385773, -0.019795842468738556, 0.010423260740935802, -0.02080710232257843, 0.02918376587331295, 0.011789481155574322, 0.06900111585855484, 0.05845039710402489, -0.054561831057071686, -0.028969958424568176, -0.043584663420915604, -0.007228055037558079, -0.12080492824316025, -0.19636604189872742, -0.030442144721746445, -0.013293866999447346, 0.11912253499031067, -0.21049764752388, 0.04327817261219025, -0.010791506618261337, 0.0811036080121994, 0.012773151509463787, -0.0014530121115967631, -0.04543796181678772, 0.07886189967393875, -0.05702996999025345, -0.039596181362867355, 0.07627125829458237, 0.011850732378661633, -0.09997338801622391, -0.008202400989830494, -0.13895994424819946, 0.1411997526884079, 0.12857037782669067, -0.13393031060695648, -0.0702342540025711, -0.012040013447403908, -0.06450583040714264, -0.04776124656200409, -0.03458370640873909, 0.0012897358974441886, 0.18555691838264465, 0.0012792719062417746, 0.16156728565692902, -0.07552932947874069, -0.0491349920630455, 0.023251518607139587, -0.030825505033135414, 0.017278390005230904, 0.1355309784412384, 0.11143007129430771, -0.0758175477385521, 0.14230884611606598, 0.1579604148864746, -0.08767904341220856, 0.1513502150774002, -0.038714151829481125, -0.09031186997890472, -0.01436332706362009, -0.0063594039529562, -0.0015133001143112779, 0.0671125128865242, -0.17031440138816833, 0.007054836023598909, 0.027395252138376236, 0.027887888252735138, 0.03521570935845375, -0.21777226030826569, -0.01830543391406536, 0.043206412345170975, -0.05404288321733475, -0.00479123555123806, -0.007269660476595163, 0.014435768127441406, 0.10953880101442337, -0.0006431947113014758, -0.07587426155805588, 0.03336234390735626, -0.004354077856987715, -0.08798623085021973, 0.20591537654399872, -0.08141813427209854, -0.18761442601680756, -0.13003520667552948, -0.07992840558290482, -0.04789084941148758, 0.0012768980814144015, 0.07579684257507324, -0.07994641363620758, -0.03182588890194893, -0.08713561296463013, 0.05324127525091171, -0.023334726691246033, 0.022275837138295174, -0.0001849438267527148, 0.004140973091125488, 0.07010306417942047, -0.10662776976823807, -0.01263984851539135, -0.04331830143928528, -0.05519426614046097, 0.04509018361568451, 0.03121352568268776, 0.10637473315000534, 0.16253793239593506, -0.009491520933806896, 0.013556240126490593, -0.03511819243431091, 0.197130024433136, -0.06461352109909058, -0.020504150539636612, 0.15812508761882782, -0.009759273380041122, 0.056749772280454636, 0.1172778457403183, 0.05979543551802635, -0.07350477576255798, 0.019501350820064545, 0.04354698583483696, -0.03632735833525658, -0.24159294366836548, -0.042714767158031464, -0.06282466650009155, 0.02220963127911091, 0.0951281189918518, 0.02700820378959179, 0.0488891638815403, 0.0543709360063076, 0.02276482805609703, 0.06473185122013092, -0.008443201892077923, 0.07366826385259628, 0.1580491065979004, 0.03021777980029583, 0.13654276728630066, -0.0443272665143013, -0.06087114289402962, 0.046985577791929245, -0.005122019909322262, 0.2176017165184021, 0.008342322893440723, 0.15598295629024506, 0.06110100820660591, 0.14606888592243195, -0.002233497565612197, 0.07369118183851242, -0.002710391767323017, -0.03330108895897865, -0.012336676008999348, -0.04690653458237648, -0.027559926733374596, 0.031123235821723938, -0.06705384701490402, 0.04460898041725159, -0.12497983127832413, -0.00870009046047926, 0.04425470530986786, 0.27106186747550964, 0.03330160677433014, -0.31349653005599976, -0.09204993396997452, 0.0083541888743639, -0.06655439734458923, -0.022770149633288383, 0.035490769892930984, 0.09356063604354858, -0.08801931887865067, 0.04273192211985588, -0.08141597360372543, 0.10667037963867188, -0.03554610162973404, 0.046705689281225204, 0.06883663684129715, 0.09079822152853012, 0.010459979064762592, 0.08597394078969955, -0.31558284163475037, 0.272970050573349, -0.004522982053458691, 0.054595548659563065, -0.07250882685184479, 0.017414163798093796, 0.027741942554712296, 0.039135757833719254, 0.06390797346830368, -0.025544652715325356, -0.054755810648202896, -0.16730691492557526, -0.06106305867433548, 0.018659047782421112, 0.09558877348899841, -0.02913685142993927, 0.1092069149017334, -0.04493570327758789, 0.0100143663585186, 0.07587361335754395, 0.005740978289395571, -0.07648123055696487, -0.10479165613651276, 0.009617485105991364, 0.03116946667432785, -0.026564348489046097, -0.0696939080953598, -0.11136368662118912, -0.10389403253793716, 0.16426865756511688, -0.036159954965114594, -0.03768233582377434, -0.10643342137336731, 0.08670622855424881, 0.0744585394859314, -0.08714727312326431, 0.03789501264691353, 0.0040630437433719635, 0.08020833879709244, 0.024424199014902115, -0.0821157842874527, 0.11763297766447067, -0.07325682789087296, -0.1712581366300583, -0.05270102620124817, 0.1273568570613861, 0.02171667478978634, 0.06339742988348007, -0.021428098902106285, 0.006571646314114332, -0.04856570065021515, -0.08307919651269913, 0.015134465880692005, -0.006953757256269455, 0.06560682505369186, 0.023962032049894333, -0.0664367750287056, 0.014191371388733387, -0.0584457665681839, -0.05341145023703575, 0.2027626633644104, 0.22817428410053253, -0.0836978629231453, 0.033515918999910355, 0.034304384142160416, -0.07867303490638733, -0.1863378882408142, 0.010270712897181511, 0.06453471630811691, -0.0006875229300931096, 0.043934378772974014, -0.1925022155046463, 0.09194138646125793, 0.10340947657823563, -0.010509091429412365, 0.09791464358568192, -0.3534366488456726, -0.13637734949588776, 0.12456273287534714, 0.137921541929245, 0.0888335183262825, -0.1545974165201187, -0.023348389193415642, -0.028168857097625732, -0.1181696429848671, 0.12787984311580658, -0.09219368547201157, 0.12793748080730438, -0.029133927077054977, 0.09747403115034103, 0.010773804038763046, -0.05751439556479454, 0.10501465946435928, -0.016448484733700752, 0.0804864764213562, -0.06815499812364578, 0.018556473776698112, 0.039466504007577896, -0.0421554297208786, 0.029416166245937347, -0.09981783479452133, 0.019645849242806435, -0.09326620399951935, -0.033565305173397064, -0.07252553105354309, 0.03504785895347595, -0.03633171319961548, -0.06230124831199646, -0.03400080278515816, 0.00664475979283452, 0.05818649008870125, -0.00860078725963831, 0.1591029018163681, -0.0021159090101718903, 0.15389594435691833, 0.13066138327121735, 0.08644304424524307, -0.054244134575128555, -0.0704188272356987, -0.021411767229437828, -0.017377803102135658, 0.05018947273492813, -0.1357422024011612, 0.029722467064857483, 0.148004949092865, 0.007351619657129049, 0.15179955959320068, 0.08444363623857498, -0.039673738181591034, 0.010060847736895084, 0.06033994257450104, -0.15945468842983246, -0.12163376063108444, -0.02447567693889141, -0.026639966294169426, -0.10882827639579773, 0.04405210167169571, 0.11992300301790237, -0.07289229333400726, -0.002227066084742546, 0.002706671366468072, 0.01952756755053997, -0.052584316581487656, 0.1883981078863144, 0.029030943289399147, 0.04548978433012962, -0.09038019925355911, 0.08668804168701172, 0.047201968729496, -0.10915245860815048, 0.018530771136283875, 0.11205505579710007, -0.06658085435628891, -0.04905271530151367, 0.05198083072900772, 0.15735328197479248, -0.06578002125024796, -0.057886891067028046, -0.1407829374074936, -0.13562563061714172, 0.09799332916736603, 0.14942875504493713, 0.08277449011802673, 0.011961777694523335, -0.0620330385863781, 0.018614014610648155, -0.11144635081291199, 0.10448160767555237, 0.04818432033061981, 0.0601016990840435, -0.13652655482292175, 0.15353946387767792, 0.015321451239287853, 0.037723563611507416, -0.020183589309453964, 0.018200870603322983, -0.09352486580610275, 0.015161979012191296, -0.142805278301239, -0.027097221463918686, -0.021939940750598907, -0.0024582380428910255, -0.004401256795972586, -0.03918638452887535, -0.06492393463850021, 0.018306298181414604, -0.11259167641401291, -0.029740024358034134, 0.013676400296390057, 0.060719870030879974, -0.1101648211479187, -0.0289759524166584, 0.02520778588950634, -0.06851048022508621, 0.08129096776247025, 0.05096236988902092, 0.00880877859890461, 0.05179445073008537, -0.13665764033794403, 0.025181937962770462, 0.062054283916950226, 0.02357235923409462, 0.038281042128801346, -0.09556597471237183, -0.009584148414433002, 0.002404069295153022, 0.038496892899274826, 0.011018600314855576, 0.0566844679415226, -0.14026658236980438, -0.007389194332063198, -0.018862370401620865, -0.08310900628566742, -0.06926511973142624, 0.03335842490196228, 0.04457733407616615, 0.03296962380409241, 0.1857730746269226, -0.08889735490083694, 0.05011232569813728, -0.22123324871063232, 0.015172787941992283, 0.003875778056681156, -0.1086902916431427, -0.08043508976697922, -0.07244383543729782, 0.05816085636615753, -0.057637136429548264, 0.13562098145484924, 0.02149592526257038, 0.04426772892475128, 0.0369926355779171, -0.033500127494335175, 0.02373001165688038, 0.017353856936097145, 0.21615847945213318, 0.027968211099505424, -0.04099126160144806, 0.04141217842698097, 0.03563665971159935, 0.10867653787136078, 0.13236543536186218, 0.20896568894386292, 0.15321843326091766, -0.007508388254791498, 0.09983447939157486, 0.03518045321106911, -0.06323185563087463, -0.16348658502101898, 0.04544004425406456, -0.02985011227428913, 0.1342168152332306, -0.030977480113506317, 0.2387584000825882, 0.09579609334468842, -0.15519993007183075, 0.0488879419863224, -0.04615119472146034, -0.07511060684919357, -0.11903084814548492, -0.07508934289216995, -0.08022022247314453, -0.15556444227695465, -0.006774964276701212, -0.1193113848567009, 0.04175950586795807, 0.09467409551143646, 0.02487688884139061, -0.025136873126029968, 0.14187142252922058, 0.03178691864013672, -0.00466029392555356, 0.06528516858816147, 0.0022446648217737675, -0.015938881784677505, -0.10470356792211533, -0.0718233659863472, 0.003883552737534046, -0.01520009245723486, 0.034146104007959366, -0.03759452700614929, -0.05386538803577423, 0.03459317237138748, -0.026093492284417152, -0.09520578384399414, 0.010099138133227825, 0.02160218544304371, 0.066110759973526, 0.06915482878684998, 0.004582082387059927, 0.0020923777483403683, -0.01204050425440073, 0.23136112093925476, -0.08508983254432678, -0.07381290197372437, -0.09145762026309967, 0.24539795517921448, 0.033292535692453384, -0.014496996067464352, 0.025598041713237762, -0.05825876444578171, -0.01469689141958952, 0.24477213621139526, 0.19016258418560028, -0.0643279030919075, -0.012820043601095676, 0.014700253494083881, -0.005872568115592003, -0.017108868807554245, 0.10697711259126663, 0.1459016054868698, 0.07656826078891754, -0.08787723630666733, -0.02718481607735157, -0.04486604034900665, -0.0034130695275962353, -0.047024305909872055, 0.08647604286670685, 0.04158713296055794, 0.0001424141228199005, -0.022903738543391228, 0.05824052542448044, -0.0689161941409111, -0.07838565856218338, 0.00764914695173502, -0.19969847798347473, -0.1535222828388214, -0.016933226957917213, 0.11956728249788284, -0.005474949721246958, 0.05394163355231285, -0.02435455098748207, 0.0006512244581244886, 0.08393140137195587, -0.017363332211971283, -0.08454500883817673, -0.07053042948246002, 0.09042404592037201, -0.11777952313423157, 0.1948850005865097, -0.04088323190808296, 0.04332616180181503, 0.12839262187480927, 0.06152460351586342, -0.0704357698559761, 0.07526765018701553, 0.043318863958120346, -0.06369035691022873, 0.03902381286025047, 0.10621370375156403, -0.02965736761689186, 0.0673598051071167, 0.04756581038236618, -0.14009162783622742, 0.018506327643990517, -0.07204493135213852, -0.06473089009523392, -0.027455858886241913, -0.03532924875617027, -0.06080121546983719, 0.1260659396648407, 0.21779854595661163, -0.03734381124377251, -0.002513354644179344, -0.08296651393175125, 0.0010419017635285854, 0.04871061444282532, 0.057071536779403687, -0.03743121773004532, -0.22818538546562195, 0.009528418071568012, 0.06492479890584946, -0.009725742042064667, -0.2674953043460846, -0.09542685002088547, 0.012965411879122257, -0.06061020493507385, -0.11831946671009064, 0.0820804163813591, 0.1015501618385315, 0.048100415617227554, -0.05043651536107063, -0.07866650819778442, -0.06679541617631912, 0.16350555419921875, -0.1405436098575592, -0.07565888017416 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.7134 - Matthews Correlation: 0.5411 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.5294 | 1.0 | 535 | 0.5082 | 0.4183 | | 0.3483 | 2.0 | 1070 | 0.4969 | 0.5259 | | 0.2355 | 3.0 | 1605 | 0.6260 | 0.5065 | | 0.1733 | 4.0 | 2140 | 0.7134 | 0.5411 | | 0.1238 | 5.0 | 2675 | 0.8516 | 0.5291 | ### Framework versions - Transformers 4.12.3 - Pytorch 1.10.0+cu111 - Datasets 1.15.1 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["glue"], "metrics": ["matthews_correlation"], "model-index": [{"name": "distilbert-base-uncased-finetuned-cola", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "glue", "type": "glue", "args": "cola"}, "metrics": [{"type": "matthews_correlation", "value": 0.54109909504615, "name": "Matthews Correlation"}]}]}]}
text-classification
MisbaHF/distilbert-base-uncased-finetuned-cola
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #dataset-glue #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us
distilbert-base-uncased-finetuned-cola ====================================== This model is a fine-tuned version of distilbert-base-uncased on the glue dataset. It achieves the following results on the evaluation set: * Loss: 0.7134 * Matthews Correlation: 0.5411 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 16 * eval\_batch\_size: 16 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 5 ### Training results ### Framework versions * Transformers 4.12.3 * Pytorch 1.10.0+cu111 * Datasets 1.15.1 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.3\n* Pytorch 1.10.0+cu111\n* Datasets 1.15.1\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #dataset-glue #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.3\n* Pytorch 1.10.0+cu111\n* Datasets 1.15.1\n* Tokenizers 0.10.3" ]
[ 67, 98, 4, 33 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #dataset-glue #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.12.3\n* Pytorch 1.10.0+cu111\n* Datasets 1.15.1\n* Tokenizers 0.10.3" ]
[ -0.09953347593545914, 0.09874087572097778, -0.002511604456230998, 0.12091247737407684, 0.16499070823192596, 0.034331291913986206, 0.1324433982372284, 0.12642896175384521, -0.08521388471126556, 0.021414093673229218, 0.12043958902359009, 0.1608530431985855, 0.02341119386255741, 0.11020602285861969, -0.04826747626066208, -0.26533666253089905, -0.01393829844892025, 0.04971835017204285, -0.05632239580154419, 0.1354067325592041, 0.09114500880241394, -0.12023554742336273, 0.09020212292671204, 0.0099337138235569, -0.19124649465084076, 0.0011048978194594383, -0.0010920170461758971, -0.05103665590286255, 0.14910998940467834, 0.02660513110458851, 0.12270399183034897, 0.005109584890305996, 0.08301815390586853, -0.20412342250347137, 0.010900583118200302, 0.046728942543268204, 0.0031716071534901857, 0.09235342592000961, 0.045432198792696, 0.0016819247975945473, 0.11801120638847351, -0.07893169671297073, 0.05534156784415245, 0.024939799681305885, -0.11975694447755814, -0.2128710299730301, -0.0778748020529747, 0.036783378571271896, 0.07661557197570801, 0.10431034117937088, -0.008242898620665073, 0.1184171512722969, -0.08168778568506241, 0.09322264790534973, 0.2265443205833435, -0.28452247381210327, -0.06619590520858765, 0.04379666596651077, 0.015058509074151516, 0.04781145974993706, -0.1015576496720314, -0.035203490406274796, 0.04749462753534317, 0.0519600510597229, 0.12782640755176544, -0.027968812733888626, -0.11474987864494324, 0.006442997604608536, -0.14108677208423615, -0.03252919390797615, 0.16779018938541412, 0.04112625494599342, -0.027329619973897934, -0.05655708163976669, -0.0565880686044693, -0.15023289620876312, -0.035420678555965424, -0.016137896105647087, 0.049116719514131546, -0.02263779006898403, -0.04222801327705383, -0.0091459471732378, -0.1084260642528534, -0.0649506226181984, -0.07226604968309402, 0.11088686436414719, 0.038162484765052795, 0.0058541507460176945, -0.030373068526387215, 0.1126675009727478, -0.005879268515855074, -0.12169726938009262, 0.02592085860669613, 0.022252557799220085, 0.012412738986313343, -0.039657268673181534, -0.052843380719423294, -0.06314884126186371, 0.01163672935217619, 0.13044480979442596, -0.05523933470249176, 0.04299374297261238, 0.051151104271411896, 0.0497078113257885, -0.09264211356639862, 0.18815849721431732, -0.03412971273064613, -0.0246804878115654, -0.0013784491457045078, 0.05078420042991638, 0.015825295820832253, -0.012068700976669788, -0.12227529287338257, 0.007106361445039511, 0.08839566260576248, 0.009266041219234467, -0.0627312883734703, 0.07418110966682434, -0.060031548142433167, -0.024304281920194626, -0.000583169050514698, -0.09094366431236267, 0.021768907085061073, 0.0020300941541790962, -0.07044500857591629, -0.021747708320617676, 0.03545186296105385, 0.016193050891160965, -0.01973368413746357, 0.10824801027774811, -0.08700212091207504, 0.02766178362071514, -0.09214701503515244, -0.11091382056474686, 0.016382884234189987, -0.10616400837898254, 0.02209707722067833, -0.09194151312112808, -0.17804844677448273, -0.016779260709881783, 0.06123820319771767, -0.0249736700206995, -0.057835739105939865, -0.059264104813337326, -0.0670977234840393, 0.010518141090869904, -0.007938647642731667, 0.11550603061914444, -0.06454900652170181, 0.09306663274765015, 0.02486114203929901, 0.06328190118074417, -0.03969729691743851, 0.060109253972768784, -0.10152862221002579, 0.014346135780215263, -0.15077118575572968, 0.04044334962964058, -0.051775697618722916, 0.06826219707727432, -0.0828319564461708, -0.10620411485433578, 0.004799502901732922, -0.002012147568166256, 0.06199968606233597, 0.09603439271450043, -0.18445594608783722, -0.08309091627597809, 0.1646650731563568, -0.07347718626260757, -0.12144056707620621, 0.12104693800210953, -0.05849684029817581, 0.06013638526201248, 0.05822913348674774, 0.18045574426651, 0.08632402122020721, -0.07972324639558792, 0.0034902701154351234, 0.023290645331144333, 0.0507633276283741, -0.0611066073179245, 0.06806862354278564, 0.0016729767667129636, 0.021276770159602165, 0.035037096589803696, -0.028808169066905975, 0.06409851461648941, -0.0885707437992096, -0.0994555801153183, -0.03766985982656479, -0.08175698667764664, 0.047097474336624146, 0.07800299674272537, 0.0673503428697586, -0.09371918439865112, -0.07792548090219498, 0.05101942643523216, 0.08089784532785416, -0.05952814593911171, 0.02505442686378956, -0.05018920451402664, 0.07249259203672409, -0.023010022938251495, -0.021495360881090164, -0.17935718595981598, -0.03304700180888176, 0.007671220228075981, 0.0016373213147744536, 0.018306195735931396, 0.03491630405187607, 0.06346556544303894, 0.06125207617878914, -0.04979454353451729, -0.019516687840223312, -0.034941304475069046, 0.00024957084679044783, -0.12484022974967957, -0.1978163868188858, -0.029437387362122536, -0.022979283705353737, 0.15926769375801086, -0.20804807543754578, 0.05219445005059242, -0.012930957600474358, 0.06893651932477951, 0.01259586587548256, -0.006784488912671804, -0.037707116454839706, 0.07587210088968277, -0.04283028841018677, -0.05062086880207062, 0.08230898529291153, 0.014233949594199657, -0.09096012264490128, -0.04920530319213867, -0.09941975027322769, 0.1581258773803711, 0.12762826681137085, -0.11041786521673203, -0.07833212614059448, -0.023729141801595688, -0.06755886971950531, -0.03483648970723152, -0.046310633420944214, 0.025552386417984962, 0.18936489522457123, -0.004262363072484732, 0.14987918734550476, -0.0682009607553482, -0.04397238418459892, 0.017608368769288063, -0.037649307399988174, 0.015210999175906181, 0.13444697856903076, 0.1345853954553604, -0.05895493924617767, 0.15505675971508026, 0.14793606102466583, -0.08454471826553345, 0.15085500478744507, -0.04173930361866951, -0.06567565351724625, -0.017701338976621628, -0.02857152186334133, -0.010895025916397572, 0.09964711219072342, -0.15596097707748413, -0.0019119561184197664, 0.03000222146511078, 0.015877656638622284, 0.02510448545217514, -0.22794215381145477, -0.04155518114566803, 0.0389273501932621, -0.0450444333255291, -0.006036035716533661, -0.007226346060633659, 0.005228179506957531, 0.10049860179424286, -0.00018409325275570154, -0.08764992654323578, 0.03679626062512398, 0.0018983642803505063, -0.08439407497644424, 0.21584919095039368, -0.08084686845541, -0.17281745374202728, -0.13095782697200775, -0.07243042439222336, -0.04566062614321709, -0.0010706400498747826, 0.0691693052649498, -0.0967247262597084, -0.026842236518859863, -0.07250673323869705, 0.02798851579427719, 0.007345893885940313, 0.022695617750287056, 0.004121406003832817, 0.007244843058288097, 0.06366469711065292, -0.11213372647762299, -0.015016691759228706, -0.0575074627995491, -0.044975247234106064, 0.04634639620780945, 0.027689194306731224, 0.11020880937576294, 0.15379390120506287, -0.012518510222434998, 0.012555653229355812, -0.03148170933127403, 0.2373463362455368, -0.05985097959637642, -0.020610256120562553, 0.14333312213420868, -0.009508912451565266, 0.052515190094709396, 0.11528576165437698, 0.0747729167342186, -0.07828541100025177, 0.0047271978110075, 0.03834423050284386, -0.034632548689842224, -0.23223504424095154, -0.05309094488620758, -0.05468036234378815, 0.012766015715897083, 0.09088542312383652, 0.023131858557462692, 0.029285304248332977, 0.06966236978769302, 0.04191255196928978, 0.07321835309267044, -0.03509543091058731, 0.05163390561938286, 0.12911584973335266, 0.02997245267033577, 0.12461114674806595, -0.0458318330347538, -0.06507453322410583, 0.04078632593154907, -0.008546932600438595, 0.2244189828634262, 0.01144444476813078, 0.13197962939739227, 0.0672767236828804, 0.16255813837051392, -0.009635847993195057, 0.07562866061925888, -0.009486976079642773, -0.037601273506879807, -0.01691015623509884, -0.03981604427099228, -0.038888368755578995, 0.024911319836974144, -0.06262046843767166, 0.06230686232447624, -0.1238240972161293, 0.014674068428575993, 0.05898761749267578, 0.2494848221540451, 0.03398442640900612, -0.317575603723526, -0.09669401496648788, 0.001925171003676951, -0.03102806955575943, -0.01730147935450077, 0.027163192629814148, 0.09546197950839996, -0.09838628023862839, 0.028661495074629784, -0.07474260032176971, 0.09572183340787888, -0.056389112025499344, 0.0516512431204319, 0.08281200379133224, 0.08809110522270203, 0.011251848191022873, 0.09231287240982056, -0.2882535457611084, 0.2763582170009613, -0.0006312874611467123, 0.0553419403731823, -0.07551172375679016, 0.008627848699688911, 0.04104002192616463, 0.06337206810712814, 0.08036306500434875, -0.012492210604250431, -0.019014839082956314, -0.1881796270608902, -0.06654578447341919, 0.026966385543346405, 0.06983157992362976, -0.042700767517089844, 0.08395274728536606, -0.032174501568078995, 0.00960498582571745, 0.07390110939741135, 0.0026269557420164347, -0.05285651981830597, -0.10823807865381241, -0.00419450830668211, 0.019751714542508125, -0.0604015551507473, -0.06156456097960472, -0.12159401923418045, -0.12967482209205627, 0.1563071310520172, -0.03687328100204468, -0.03934948891401291, -0.10622747987508774, 0.08209172636270523, 0.05936790630221367, -0.08948037028312683, 0.042552195489406586, 0.0031793885864317417, 0.07605233788490295, 0.020437801256775856, -0.07035695016384125, 0.10311683267354965, -0.07421185821294785, -0.15605419874191284, -0.06501059234142303, 0.10722552239894867, 0.03453879803419113, 0.06701719015836716, -0.014527936466038227, 0.0036785739939659834, -0.04561163857579231, -0.08830267190933228, 0.021457381546497345, 0.0034411305096000433, 0.07714685052633286, 0.01873295195400715, -0.07657564431428909, 0.012000871822237968, -0.0651417076587677, -0.033748023211956024, 0.2058180272579193, 0.22602058947086334, -0.0996016338467598, 0.02484969235956669, 0.025279255583882332, -0.07408372312784195, -0.19799210131168365, 0.03336464613676071, 0.054752811789512634, 0.008055822923779488, 0.0453217551112175, -0.18585991859436035, 0.12986215949058533, 0.10611351579427719, -0.011682478711009026, 0.10396619141101837, -0.3257942497730255, -0.1207713782787323, 0.13650722801685333, 0.13745655119419098, 0.09705239534378052, -0.13265833258628845, -0.02269246056675911, -0.017406022176146507, -0.13992424309253693, 0.11496812850236893, -0.090373694896698, 0.1212964728474617, -0.03681858256459236, 0.07597478479146957, 0.0026575999800115824, -0.05805017799139023, 0.12036504596471786, 0.02447415143251419, 0.09468253701925278, -0.05885415896773338, -0.0346006378531456, 0.03072948008775711, -0.04217635840177536, 0.03359675034880638, -0.09899406880140305, 0.028582602739334106, -0.10210000723600388, -0.02577287144958973, -0.06836604326963425, 0.04421823471784592, -0.046214211732149124, -0.06974469125270844, -0.03741461783647537, 0.026357466354966164, 0.048025988042354584, -0.007492511998862028, 0.12165822833776474, 0.023274313658475876, 0.14792604744434357, 0.09826693683862686, 0.07475673407316208, -0.06614682078361511, -0.08220246434211731, -0.02739529311656952, -0.010869084857404232, 0.04992781952023506, -0.1360960453748703, 0.020313922315835953, 0.15213249623775482, 0.019550077617168427, 0.15458178520202637, 0.08367957174777985, -0.021696390584111214, -0.0013909009285271168, 0.05894676223397255, -0.16482074558734894, -0.095497265458107, -0.01692536473274231, -0.0687151551246643, -0.12071292847394943, 0.04411275312304497, 0.09410307556390762, -0.06731542944908142, -0.0070029981434345245, -0.004590475466102362, 0.014873005449771881, -0.05009814724326134, 0.1844250112771988, 0.06193801015615463, 0.04888257756829262, -0.09574009478092194, 0.07230930775403976, 0.04460417479276657, -0.07260123640298843, 0.003555342322215438, 0.0730445459485054, -0.08470243215560913, -0.054818421602249146, 0.06414514034986496, 0.19110994040966034, -0.04363720491528511, -0.0468888059258461, -0.14587534964084625, -0.12429648637771606, 0.07791906595230103, 0.14010050892829895, 0.11792059242725372, 0.011102552525699139, -0.06639044731855392, 0.003767638234421611, -0.10668066143989563, 0.10225244611501694, 0.04751317575573921, 0.061346109956502914, -0.14212389290332794, 0.14342623949050903, 0.019682904705405235, 0.0481918640434742, -0.01839926466345787, 0.0225361417979002, -0.1020636260509491, 0.008319245651364326, -0.09447463601827621, -0.019602062180638313, -0.0297740139067173, 0.011695586144924164, -0.005361055489629507, -0.04652413725852966, -0.05381449684500694, 0.010594788007438183, -0.10772327333688736, -0.023150067776441574, 0.029049210250377655, 0.07299237698316574, -0.1094348207116127, -0.03556108847260475, 0.030979042872786522, -0.06228852644562721, 0.07504276186227798, 0.042609747499227524, 0.014938700012862682, 0.05030939728021622, -0.1388765275478363, 0.020099302753806114, 0.07358679920434952, 0.028721114620566368, 0.060426343232393265, -0.10016195476055145, -0.00950651615858078, -0.009530103765428066, 0.039311885833740234, 0.02166745252907276, 0.07522766292095184, -0.1405515968799591, 0.004839055240154266, -0.023800915107131004, -0.08430628478527069, -0.06710097193717957, 0.027594968676567078, 0.08822209388017654, 0.018141360953450203, 0.19948069751262665, -0.07641546428203583, 0.05125359818339348, -0.21803437173366547, 0.006752499379217625, -0.0058495057746768, -0.10863523185253143, -0.09944412857294083, -0.07315931469202042, 0.05366877093911171, -0.06116030365228653, 0.15022185444831848, 0.04569690302014351, 0.01782877743244171, 0.024864260107278824, -0.01193123310804367, 0.01258366834372282, 0.01141111645847559, 0.18875959515571594, 0.030172210186719894, -0.03526976332068443, 0.05705257132649422, 0.044683922082185745, 0.10286445170640945, 0.11252806335687637, 0.20122970640659332, 0.14473356306552887, -0.009614331647753716, 0.09224250167608261, 0.043594636023044586, -0.0571451298892498, -0.15734533965587616, 0.0523236021399498, -0.03337396681308746, 0.10859769582748413, -0.020434541627764702, 0.22116538882255554, 0.06473782658576965, -0.1704503446817398, 0.051612015813589096, -0.05156480893492699, -0.08757349848747253, -0.11537886410951614, -0.049788981676101685, -0.07638025283813477, -0.13064563274383545, -0.004418745171278715, -0.11596781760454178, -0.0030279008205980062, 0.1252775639295578, 0.004495105240494013, -0.026288362219929695, 0.1577172875404358, 0.013742298819124699, 0.022418297827243805, 0.05891863629221916, 0.008379055187106133, -0.03827941045165062, -0.1397867351770401, -0.058738671243190765, -0.013102419674396515, -0.008189517073333263, 0.0301776472479105, -0.061405882239341736, -0.04409507289528847, 0.03033839538693428, -0.02161327563226223, -0.0961952656507492, 0.0058813439682126045, 0.0114591708406806, 0.05236304923892021, 0.04504939168691635, 0.009300000965595245, 0.017563441768288612, -0.0029333671554923058, 0.19917263090610504, -0.07183873653411865, -0.0666523203253746, -0.10286440700292587, 0.2338429093360901, 0.034976303577423096, -0.017381610348820686, 0.03417123854160309, -0.06636831164360046, 0.0040776897221803665, 0.24897538125514984, 0.21798938512802124, -0.08088204264640808, -0.005363496020436287, 0.017881739884614944, -0.007192263379693031, -0.020721865817904472, 0.09718649834394455, 0.14278611540794373, 0.04755014181137085, -0.09300366789102554, -0.04347268119454384, -0.05805261433124542, -0.01779104396700859, -0.03378866985440254, 0.0696251168847084, 0.052194997668266296, 0.010079930536448956, -0.03599933162331581, 0.05708372965455055, -0.06848310679197311, -0.08963042497634888, 0.05697747692465782, -0.21786916255950928, -0.16666465997695923, -0.016561424359679222, 0.10220707952976227, 0.0009916772833094, 0.062436070293188095, -0.02936011739075184, -0.004481164738535881, 0.0916908010840416, -0.01840386539697647, -0.09784910827875137, -0.0714891329407692, 0.08569670468568802, -0.11273930966854095, 0.21685214340686798, -0.04774317145347595, 0.05394842475652695, 0.12543116509914398, 0.0677146464586258, -0.06339026987552643, 0.06550512462854385, 0.04276767000555992, -0.04071614146232605, 0.02216651663184166, 0.06880888342857361, -0.03338196873664856, 0.06525374948978424, 0.04850692301988602, -0.13922524452209473, 0.023588009178638458, -0.04621881991624832, -0.06968139857053757, -0.04311145469546318, -0.022173874080181122, -0.05998322367668152, 0.1285596489906311, 0.21853448450565338, -0.02487208880484104, -0.009410974569618702, -0.07095746695995331, 0.00939994491636753, 0.055758699774742126, 0.023770613595843315, -0.0571277029812336, -0.21143896877765656, 0.01634996384382248, 0.044792741537094116, -0.017037682235240936, -0.25224122405052185, -0.10219690948724747, 0.0042416369542479515, -0.07179052382707596, -0.09612056612968445, 0.07293257117271423, 0.08916149288415909, 0.05552821233868599, -0.056204959750175476, -0.04866582155227661, -0.07454274594783783, 0.14954450726509094, -0.1451619565486908, -0.09071090817451477 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilroberta-base-testingSB-testingSB This model is a fine-tuned version of [MistahCase/distilroberta-base-testingSB](https://huggingface.co/MistahCase/distilroberta-base-testingSB) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9870 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.1463 | 1.0 | 1461 | 1.1171 | | 1.0188 | 2.0 | 2922 | 1.0221 | | 1.0016 | 3.0 | 4383 | 0.9870 | ### Framework versions - Transformers 4.20.0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "model-index": [{"name": "distilroberta-base-testingSB-testingSB", "results": []}]}
fill-mask
MistahCase/distilroberta-base-testingSB-testingSB
[ "transformers", "pytorch", "tensorboard", "roberta", "fill-mask", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #roberta #fill-mask #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
distilroberta-base-testingSB-testingSB ====================================== This model is a fine-tuned version of MistahCase/distilroberta-base-testingSB on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.9870 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 8 * eval\_batch\_size: 8 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 3.0 ### Training results ### Framework versions * Transformers 4.20.0 * Pytorch 1.11.0+cu113 * Datasets 2.3.2 * Tokenizers 0.12.1
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3.0", "### Training results", "### Framework versions\n\n\n* Transformers 4.20.0\n* Pytorch 1.11.0+cu113\n* Datasets 2.3.2\n* Tokenizers 0.12.1" ]
[ "TAGS\n#transformers #pytorch #tensorboard #roberta #fill-mask #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3.0", "### Training results", "### Framework versions\n\n\n* Transformers 4.20.0\n* Pytorch 1.11.0+cu113\n* Datasets 2.3.2\n* Tokenizers 0.12.1" ]
[ 56, 98, 4, 33 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #roberta #fill-mask #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3.0### Training results### Framework versions\n\n\n* Transformers 4.20.0\n* Pytorch 1.11.0+cu113\n* Datasets 2.3.2\n* Tokenizers 0.12.1" ]
[ -0.10813123732805252, 0.06192031502723694, -0.0023941928520798683, 0.12369661033153534, 0.16542890667915344, 0.026288365945219994, 0.12292338162660599, 0.11755134165287018, -0.10071606189012527, 0.020171090960502625, 0.13119588792324066, 0.17196129262447357, 0.012070291675627232, 0.13376851379871368, -0.02451334334909916, -0.23995299637317657, -0.008124047890305519, 0.038217488676309586, -0.1153402104973793, 0.13970790803432465, 0.09082803130149841, -0.12993989884853363, 0.07338913530111313, 0.01375524140894413, -0.21642623841762543, 0.011008622124791145, 0.02499743178486824, -0.06671535968780518, 0.15116293728351593, 0.006503337528556585, 0.1392025500535965, -0.0032129257451742887, 0.08367625623941422, -0.15997442603111267, 0.01646750047802925, 0.055290378630161285, 0.004274697508662939, 0.0857204794883728, 0.04185977578163147, 0.003916923422366381, 0.09680601954460144, -0.0882469117641449, 0.05428231135010719, 0.021313203498721123, -0.1260918378829956, -0.24457058310508728, -0.08264598995447159, 0.015518750995397568, 0.05814192071557045, 0.10785380750894547, 0.007771150209009647, 0.14908188581466675, -0.09044020622968674, 0.08617255836725235, 0.24897699058055878, -0.27884674072265625, -0.06955065578222275, 0.021929258480668068, 0.021994702517986298, 0.04596710577607155, -0.09982199966907501, -0.01562384981662035, 0.04316044971346855, 0.050005730241537094, 0.14527809619903564, -0.03684965521097183, -0.10833985358476639, 0.010528112761676311, -0.13934293389320374, -0.03618074208498001, 0.10029289871454239, 0.025949809700250626, -0.03415977209806442, -0.02902979589998722, -0.0719524472951889, -0.15919256210327148, -0.044361412525177, -0.010649302043020725, 0.046263184398412704, -0.0432136207818985, -0.08628983795642853, -0.005541750695556402, -0.1033654659986496, -0.07513569295406342, -0.07510989159345627, 0.1733601987361908, 0.04014572128653526, 0.028255434706807137, -0.036074087023735046, 0.10423297435045242, -0.006207908503711224, -0.14107553660869598, 0.03161824494600296, 0.035794369876384735, -0.007713021244853735, -0.023772459477186203, -0.0702507272362709, -0.07892672717571259, 0.023145001381635666, 0.1281769871711731, -0.04909802973270416, 0.03862302750349045, 0.04957463592290878, 0.055001139640808105, -0.11721256375312805, 0.18832099437713623, -0.04951590672135353, -0.01692829839885235, 0.014805939979851246, 0.04507972672581673, 0.02892317809164524, -0.005199163220822811, -0.10674145817756653, -0.0014356030151247978, 0.08911313861608505, 0.01981969363987446, -0.04746095463633537, 0.05724012479186058, -0.05806022509932518, -0.01439809799194336, 0.00842785183340311, -0.09975678473711014, 0.021215708926320076, -0.01770479790866375, -0.07549398392438889, -0.026790210977196693, 0.04560514912009239, 0.010274110361933708, -0.006613573059439659, 0.11593084037303925, -0.08856981247663498, 0.034948188811540604, -0.10817183554172516, -0.10466190427541733, 0.007607146166265011, -0.08216089755296707, 0.021405167877674103, -0.10205373913049698, -0.1636306345462799, 0.002370377304032445, 0.0712774321436882, -0.023073231801390648, -0.05152348056435585, -0.017902255058288574, -0.07154019176959991, 0.006072877440601587, -0.01256642583757639, 0.16722780466079712, -0.05758459493517876, 0.1159009113907814, 0.05341252312064171, 0.086018405854702, -0.04770912230014801, 0.05172540619969368, -0.09580136090517044, 0.00801147986203432, -0.1952635794878006, 0.014737416990101337, -0.04568331688642502, 0.061235461384058, -0.08849447220563889, -0.11206676065921783, 0.00025842859758995473, -0.006391454022377729, 0.08429448306560516, 0.09335144609212875, -0.16299548745155334, -0.0779196172952652, 0.16992568969726562, -0.06845900416374207, -0.1047574058175087, 0.1175009086728096, -0.047726646065711975, 0.04340372607111931, 0.05210309103131294, 0.12598149478435516, 0.06693005561828613, -0.10218565911054611, 0.038612499833106995, -0.004033498000353575, 0.03725897893309593, -0.07859915494918823, 0.0721883475780487, -0.008043861947953701, -0.0013031201669946313, 0.033045705407857895, -0.03479478880763054, 0.07253869622945786, -0.09600330889225006, -0.10460618138313293, -0.04368885979056358, -0.11071855574846268, 0.07149724662303925, 0.06990581750869751, 0.07709678262472153, -0.0961921364068985, -0.08556868135929108, 0.03818752244114876, 0.07848875224590302, -0.04677443951368332, 0.0325591079890728, -0.06007353216409683, 0.06480921804904938, -0.0613020583987236, -0.028236020356416702, -0.18879638612270355, -0.021678369492292404, -0.0008327814284712076, -0.02755872532725334, 0.018009183928370476, 0.011559252627193928, 0.08511785417795181, 0.06619782745838165, -0.056833747774362564, -0.016139987856149673, -0.05035145580768585, -0.010500511154532433, -0.12245692312717438, -0.19568519294261932, -0.037686269730329514, -0.019636929035186768, 0.12705855071544647, -0.15631535649299622, 0.028421487659215927, -0.06115227937698364, 0.0684947595000267, 0.006763670593500137, -0.010826046578586102, -0.046506367623806, 0.08628655225038528, -0.018359597772359848, -0.05488540604710579, 0.07049024850130081, -0.0035162456333637238, -0.08688265830278397, -0.042591165751218796, -0.08918548375368118, 0.18535013496875763, 0.13762858510017395, -0.11173974722623825, -0.08263111859560013, 0.040658723562955856, -0.07080156356096268, -0.035209108144044876, -0.04361249506473541, 0.04278329387307167, 0.16112056374549866, -0.004989321809262037, 0.1392255425453186, -0.06151653453707695, -0.03812876716256142, 0.03365465998649597, -0.04083796218037605, 0.031345516443252563, 0.09197024255990982, 0.1341475248336792, -0.03987932950258255, 0.13572528958320618, 0.1665673702955246, -0.11616215854883194, 0.12300963699817657, -0.02997003123164177, -0.07626461237668991, -0.019047820940613747, -0.02442266047000885, 0.011212144047021866, 0.1213841438293457, -0.12416912615299225, 0.0035822014324367046, 0.026334594935178757, 0.0006894701509736478, 0.022438611835241318, -0.236656054854393, -0.049690667539834976, 0.026749635115265846, -0.04162320867180824, -0.012882069684565067, -0.0012409238843247294, 0.004298592451959848, 0.10104387998580933, 0.005372070707380772, -0.08728443086147308, 0.044399190694093704, 0.007987492717802525, -0.06489136815071106, 0.21388639509677887, -0.08211972564458847, -0.1669406145811081, -0.12566567957401276, -0.07890991121530533, -0.03783981874585152, 0.010696282610297203, 0.058527179062366486, -0.09558053314685822, -0.03517504781484604, -0.040170248597860336, 0.019427800551056862, 0.012002158910036087, 0.05372367799282074, 0.009345967322587967, -0.003161186585202813, 0.09334222227334976, -0.11067916452884674, -0.007318022195249796, -0.04821018874645233, -0.0674373060464859, 0.05647304654121399, 0.06237233430147171, 0.12455741316080093, 0.15127629041671753, -0.017646729946136475, 0.0023436143528670073, -0.017204128205776215, 0.22114507853984833, -0.07265575975179672, -0.033265337347984314, 0.1504909098148346, -0.00011763650400098413, 0.061658091843128204, 0.10070927441120148, 0.07425299286842346, -0.08420660346746445, 0.009469041600823402, 0.027460386976599693, -0.0485495962202549, -0.210409477353096, -0.03943127393722534, -0.06135907024145126, -0.04572640731930733, 0.09071923047304153, 0.029849357903003693, 0.04718365520238876, 0.07346175611019135, 0.04787631705403328, 0.07461107522249222, -0.06236197054386139, 0.0449608713388443, 0.07712144404649734, 0.04974444955587387, 0.1253378838300705, -0.04171127453446388, -0.07502791285514832, 0.02584957517683506, -0.012795398011803627, 0.2253190279006958, 0.001223063562065363, 0.11147768795490265, 0.07243005931377411, 0.20745690166950226, -0.0032296397257596254, 0.09610127657651901, 0.006638945546001196, -0.052693914622068405, -0.007940535433590412, -0.047879721969366074, -0.036193616688251495, 0.011164139024913311, -0.04176235571503639, 0.0669177696108818, -0.10363619029521942, -0.007923544384539127, 0.04357964172959328, 0.269864559173584, 0.03303473815321922, -0.32765328884124756, -0.08555412292480469, -0.012168311513960361, -0.016836468130350113, -0.014869017526507378, 0.00328956451267004, 0.08221973478794098, -0.0955495610833168, 0.02980576828122139, -0.08273402601480484, 0.08295447379350662, 0.0005119811394251883, 0.040965400636196136, 0.07395949214696884, 0.11314336955547333, 0.019340911880135536, 0.06969897449016571, -0.3073621094226837, 0.2872801721096039, -0.0015770383179187775, 0.0791645273566246, -0.08241550624370575, 0.007221917621791363, 0.044086605310440063, 0.03078320063650608, 0.06995570659637451, -0.01463546883314848, -0.013403700664639473, -0.19094134867191315, -0.05957872420549393, 0.03126096725463867, 0.08620504289865494, -0.020358091220259666, 0.08857143670320511, -0.02246031165122986, -0.006092217285186052, 0.07381772249937057, 0.00815993919968605, -0.06086070463061333, -0.08410029113292694, 0.0008143357699736953, 0.017305471003055573, -0.06875825673341751, -0.07309045642614365, -0.12116360664367676, -0.12265689671039581, 0.15866424143314362, 0.005708341021090746, -0.030441932380199432, -0.11468378454446793, 0.07847146689891815, 0.09826979041099548, -0.08932711184024811, 0.06626905500888824, 0.0006296047940850258, 0.06189645826816559, 0.022733058780431747, -0.0773530825972557, 0.10739733278751373, -0.07264881581068039, -0.14871886372566223, -0.06310176104307175, 0.09609878808259964, 0.02782938815653324, 0.07018335163593292, -0.020554695278406143, 0.02029637061059475, -0.03758077323436737, -0.08051425963640213, 0.035146892070770264, -0.03176361322402954, 0.06539569795131683, 0.029114853590726852, -0.04359481856226921, 0.006211916916072369, -0.05724969506263733, -0.027963804081082344, 0.1763727068901062, 0.23629342019557953, -0.101325623691082, 0.02579057216644287, 0.036692894995212555, -0.049336474388837814, -0.21220523118972778, 0.0336453914642334, 0.06091569364070892, 0.013321274891495705, 0.060640834271907806, -0.16871899366378784, 0.1281038075685501, 0.09714377671480179, -0.01804751344025135, 0.13089314103126526, -0.3418874740600586, -0.12843108177185059, 0.12571537494659424, 0.15955212712287903, 0.14476317167282104, -0.1443520486354828, -0.01680317521095276, -0.025327280163764954, -0.1245204284787178, 0.07248682528734207, -0.08976215869188309, 0.12939521670341492, -0.03923969715833664, 0.08642438799142838, -0.001368788885883987, -0.07539025694131851, 0.1277303546667099, -0.005965877790004015, 0.08871659636497498, -0.058880262076854706, -0.015394105575978756, 0.05966389179229736, -0.02977079153060913, 0.0038564507849514484, -0.07014890015125275, 0.02678091451525688, -0.04452287033200264, -0.01245957612991333, -0.08995025604963303, 0.057868294417858124, -0.02867966517806053, -0.05860557779669762, -0.028653891757130623, 0.026970328763127327, 0.03923589736223221, -0.019183384254574776, 0.11636608839035034, 0.036050040274858475, 0.15645363926887512, 0.09530403465032578, 0.030160989612340927, -0.049925483763217926, -0.1035168319940567, -0.016072500497102737, -0.020076878368854523, 0.06213269382715225, -0.12914763391017914, 0.01951722614467144, 0.12445330619812012, 0.028097309172153473, 0.11730217933654785, 0.08195924758911133, -0.031545136123895645, 0.01845819130539894, 0.07965989410877228, -0.16214635968208313, -0.06664539128541946, 0.008667001500725746, -0.07366335391998291, -0.11399991810321808, 0.04149728640913963, 0.08105858415365219, -0.06778707355260849, -0.00897426437586546, -0.010229364037513733, 0.006777905393391848, -0.0798036977648735, 0.21658143401145935, 0.06339942663908005, 0.051697347313165665, -0.10089901834726334, 0.06094424054026604, 0.041948940604925156, -0.07045690715312958, -0.010798385366797447, 0.06668180972337723, -0.07047370076179504, -0.03644074499607086, 0.11611023545265198, 0.1564667522907257, -0.05139933153986931, -0.04090951755642891, -0.15320253372192383, -0.108662448823452, 0.06539342552423477, 0.15621265769004822, 0.10923424363136292, 0.003502006409689784, -0.04679906740784645, 0.01630772463977337, -0.11389962583780289, 0.06955549865961075, 0.046580877155065536, 0.06978067010641098, -0.12537862360477448, 0.16512152552604675, 0.017188536003232002, 0.06515271961688995, -0.02496061660349369, 0.033254340291023254, -0.09032431989908218, 0.0197515357285738, -0.11506086587905884, -0.036311183124780655, -0.016223622485995293, -0.01138891838490963, -0.007995984517037868, -0.059627022594213486, -0.0644913986325264, 0.024686066433787346, -0.12212074548006058, -0.036252979189157486, 0.03671353682875633, 0.027763130143284798, -0.11627855151891708, -0.04311889782547951, 0.035911768674850464, -0.06018103286623955, 0.05419453978538513, 0.057709526270627975, 0.014736933633685112, 0.06514506042003632, -0.14653395116329193, -0.0188650693744421, 0.06997746974229813, 0.008260803297162056, 0.06950832158327103, -0.08623672276735306, -0.014708041213452816, -0.008203336037695408, 0.07090861350297928, 0.010637778788805008, 0.08185118436813354, -0.1509493738412857, 0.00016078930639196187, -0.030516337603330612, -0.08245060592889786, -0.06066332384943962, 0.011194862425327301, 0.0858750194311142, 0.014340021647512913, 0.19492138922214508, -0.08800514787435532, 0.05480609089136124, -0.20574147999286652, 0.0009039221913553774, -0.03009256348013878, -0.09588105231523514, -0.11263550072908401, -0.044659487903118134, 0.06637188047170639, -0.05312567204236984, 0.12959085404872894, 0.015626106411218643, 0.05673816800117493, 0.023642411455512047, -0.021045539528131485, 0.017503784969449043, 0.013194465078413486, 0.20728199183940887, 0.03287766873836517, -0.029170764610171318, 0.07498958706855774, 0.06602838635444641, 0.09501317888498306, 0.10381083190441132, 0.2080826312303543, 0.15395371615886688, 0.03079076111316681, 0.10189151018857956, 0.02167772687971592, -0.04786510765552521, -0.14776243269443512, 0.021503794938325882, -0.04937819764018059, 0.09303077310323715, -0.010695286095142365, 0.19141043722629547, 0.07405327260494232, -0.16252559423446655, 0.056620992720127106, -0.04486018791794777, -0.08256347477436066, -0.10594362020492554, -0.03324979171156883, -0.07666632533073425, -0.12574350833892822, 0.007164893206208944, -0.08522273600101471, 0.012853192165493965, 0.1270178109407425, -0.0024044199381023645, -0.020601119846105576, 0.18934935331344604, 0.03209647536277771, 0.029921242967247963, 0.03664378076791763, 0.011803733184933662, -0.025447623804211617, -0.0786726325750351, -0.06464298814535141, -0.026188593357801437, -0.006109050940722227, 0.04033733904361725, -0.0672285184264183, -0.08440374583005905, 0.05587857961654663, -0.019930284470319748, -0.10449614375829697, 0.014294975437223911, 0.015741318464279175, 0.06887851655483246, 0.044823795557022095, 0.012784655205905437, 0.02743658795952797, -0.022221757099032402, 0.19972606003284454, -0.08330486714839935, -0.09982962161302567, -0.09543364495038986, 0.25733116269111633, 0.037117548286914825, -0.02176758088171482, 0.023844636976718903, -0.06116658076643944, -0.010838985443115234, 0.2625541388988495, 0.21939080953598022, -0.08820115029811859, -0.0012562505435198545, 0.01159367524087429, -0.014109069481492043, -0.04017776623368263, 0.1218043714761734, 0.1416471153497696, 0.06191858649253845, -0.10352752357721329, -0.05060608685016632, -0.06383351236581802, -0.012082170695066452, -0.06680309027433395, 0.03743917867541313, 0.03419441357254982, 0.005075778346508741, -0.03861188888549805, 0.05428176373243332, -0.05308292433619499, -0.11273647099733353, 0.09009690582752228, -0.20147819817066193, -0.1684468686580658, -0.011379220522940159, 0.1155339851975441, 0.0066735404543578625, 0.06914401799440384, -0.029960716143250465, 0.008254365995526314, 0.06357748806476593, -0.013053232803940773, -0.08354456722736359, -0.09742332249879837, 0.09910187870264053, -0.10100872814655304, 0.2135719209909439, -0.03994517773389816, 0.06711073219776154, 0.12402764707803726, 0.07302813231945038, -0.0716155469417572, 0.06554361432790756, 0.04031723365187645, -0.09105554223060608, 0.02580035850405693, 0.1028556302189827, -0.03303554281592369, 0.021581491455435753, 0.030502064153552055, -0.10303667932748795, 0.02212897315621376, -0.07652607560157776, -0.029596563428640366, -0.0328046940267086, -0.03796745836734772, -0.06204088404774666, 0.11737148463726044, 0.21340550482273102, -0.02154078707098961, 0.009755998849868774, -0.08250804990530014, 0.01660541631281376, 0.06365121155977249, 0.019655752927064896, -0.10068373382091522, -0.21923811733722687, 0.01547295693308115, 0.03005087561905384, -0.03054196760058403, -0.23522047698497772, -0.1015770360827446, 0.002723539946600795, -0.08616941422224045, -0.08995182812213898, 0.06932666897773743, 0.06965496391057968, 0.0566946379840374, -0.04282943904399872, -0.077698715031147, -0.0796448290348053, 0.14917369186878204, -0.17427250742912292, -0.09407766908407211 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilroberta-base-testingSB This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on a company specific, Danish dataset. It achieves the following results on the evaluation set: - Loss: 1.0403 ## Model description Customer-specific model used to embed asset management work orders in Danish ## Intended uses & limitations Customer-specific and trained for unsupervised categorization tasks ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results Epoch Training Loss Validation Loss 1 0.988500 1.056376 2 0.996300 1.027803 3 0.990300 1.040270 | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.98850 | 1.0 | 1461 | 1.5211 | | 1.3179 | 2.0 | 2922 | 1.3314 | | 1.1931 | 3.0 | 4383 | 1.2530 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu111 - Datasets 1.15.1 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "model-index": [{"name": "distilroberta-base-testingSB", "results": []}]}
fill-mask
MistahCase/distilroberta-base-testingSB
[ "transformers", "pytorch", "tensorboard", "roberta", "fill-mask", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #roberta #fill-mask #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
distilroberta-base-testingSB ============================ This model is a fine-tuned version of distilroberta-base on a company specific, Danish dataset. It achieves the following results on the evaluation set: * Loss: 1.0403 Model description ----------------- Customer-specific model used to embed asset management work orders in Danish Intended uses & limitations --------------------------- Customer-specific and trained for unsupervised categorization tasks Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 8 * eval\_batch\_size: 8 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 3.0 ### Training results Epoch Training Loss Validation Loss 1 0.988500 1.056376 2 0.996300 1.027803 3 0.990300 1.040270 ### Framework versions * Transformers 4.12.5 * Pytorch 1.10.0+cu111 * Datasets 1.15.1 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3.0", "### Training results\n\n\nEpoch Training Loss Validation Loss\n1 0.988500 1.056376\n2 0.996300 1.027803\n3 0.990300 1.040270", "### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.10.0+cu111\n* Datasets 1.15.1\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #roberta #fill-mask #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3.0", "### Training results\n\n\nEpoch Training Loss Validation Loss\n1 0.988500 1.056376\n2 0.996300 1.027803\n3 0.990300 1.040270", "### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.10.0+cu111\n* Datasets 1.15.1\n* Tokenizers 0.10.3" ]
[ 56, 98, 39, 33 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #roberta #fill-mask #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3.0### Training results\n\n\nEpoch Training Loss Validation Loss\n1 0.988500 1.056376\n2 0.996300 1.027803\n3 0.990300 1.040270### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.10.0+cu111\n* Datasets 1.15.1\n* Tokenizers 0.10.3" ]
[ -0.13752877712249756, 0.12989236414432526, -0.0034601837396621704, 0.10844044387340546, 0.1279502958059311, 0.005237409844994545, 0.12876667082309723, 0.1509983390569687, -0.14039452373981476, 0.06251870840787888, 0.1454060822725296, 0.15618062019348145, 0.04624820873141289, 0.18135665357112885, -0.057823702692985535, -0.22928433120250702, 0.04380159080028534, 0.04718059301376343, -0.051975950598716736, 0.1255083531141281, 0.07848452776670456, -0.1250438541173935, 0.07251352071762085, 0.034012582153081894, -0.196950763463974, -0.002322869375348091, 0.028547026216983795, -0.08400397002696991, 0.10919327288866043, 0.006846084259450436, 0.10688018053770065, 0.033497732132673264, 0.06343605369329453, -0.14967124164104462, 0.008196935057640076, 0.061721790581941605, -0.00996048841625452, 0.09569422155618668, 0.045613132417201996, -0.020016880705952644, 0.09252570569515228, -0.07774513959884644, 0.06954571604728699, 0.028921453282237053, -0.13737967610359192, -0.2629183232784271, -0.13246886432170868, 0.07300600409507751, 0.047991082072257996, 0.10231868922710419, 0.007750765420496464, 0.2040911614894867, -0.050521671772003174, 0.10102556645870209, 0.29066064953804016, -0.3263718783855438, -0.04686066508293152, 0.0017450266750529408, 0.020994380116462708, 0.01168964896351099, -0.09607016295194626, -0.01814776100218296, 0.04685807600617409, 0.04087381437420845, 0.14003151655197144, -0.013071530498564243, -0.03821246698498726, -0.015786850824952126, -0.13164326548576355, -0.07572631537914276, 0.09889189153909683, 0.02698303945362568, -0.05653783306479454, -0.03957108408212662, -0.06202574074268341, -0.22927941381931305, -0.042937882244586945, 0.002412394154816866, 0.03915552794933319, -0.04870546981692314, -0.1054331362247467, 0.02030726708471775, -0.07208374887704849, -0.0548718124628067, -0.06638019531965256, 0.15051525831222534, 0.05971687287092209, 0.04296349361538887, -0.04104318469762802, 0.08026798069477081, -0.04400305077433586, -0.15657231211662292, -0.011666649021208286, 0.027537543326616287, -0.020466439425945282, -0.033592864871025085, -0.045118652284145355, -0.0956520065665245, -0.0031906680669635534, 0.16210824251174927, -0.12248767167329788, 0.06465620547533035, 0.009379363618791103, 0.050156109035015106, -0.10169637203216553, 0.17649413645267487, -0.044981203973293304, 0.02538762055337429, 0.023542167618870735, 0.07435627281665802, 0.05758562311530113, -0.016642220318317413, -0.08578100800514221, 0.018738023936748505, 0.12802882492542267, 0.03398934006690979, -0.026812052354216576, 0.05169786140322685, -0.0653889924287796, -0.004587143659591675, 0.05696617439389229, -0.09693942219018936, 0.03000066615641117, -0.018586935475468636, -0.08649486303329468, -0.030350735411047935, 0.05310763046145439, -0.024213187396526337, -0.03861887380480766, 0.09570933133363724, -0.10094759613275528, 0.029176361858844757, -0.08528104424476624, -0.13015513122081757, 0.033510588109493256, -0.11428350955247879, -0.005473646335303783, -0.10357818007469177, -0.14702384173870087, -0.008580605499446392, 0.043252311646938324, -0.04088268429040909, -0.03964982554316521, -0.03398009017109871, -0.11421940475702286, 0.02303490787744522, -0.005055092740803957, 0.08114412426948547, -0.0573684386909008, 0.10346902161836624, 0.05922491475939751, 0.09979851543903351, -0.036569152027368546, 0.03805858641862869, -0.07722749561071396, 0.031419530510902405, -0.22585724294185638, 0.026673872023820877, -0.07321105897426605, 0.06266793608665466, -0.09416788816452026, -0.12042117863893509, 0.024428196251392365, -0.02916002832353115, 0.12161130458116531, 0.10943837463855743, -0.1644124686717987, -0.07025544345378876, 0.20169489085674286, -0.09624660760164261, -0.09852255135774612, 0.11735140532255173, -0.03782627731561661, -0.01435168832540512, 0.04079250991344452, 0.1608954817056656, 0.047512996941804886, -0.11531715095043182, -0.0353892557322979, -0.06125766411423683, 0.01540530938655138, -0.08436977118253708, 0.043553903698921204, -0.014450890012085438, 0.06105221062898636, 0.01529266219586134, 0.002567286603152752, 0.02851530723273754, -0.11117581278085709, -0.08611506968736649, -0.053020574152469635, -0.08729007840156555, 0.052082039415836334, 0.05527715012431145, 0.07723195850849152, -0.1193472146987915, -0.1072482243180275, 0.04494328424334526, 0.08960233628749847, -0.05550721287727356, 0.059122201055288315, -0.10445362329483032, 0.12039557844400406, -0.08527716249227524, -0.020177170634269714, -0.20734430849552155, -0.006442910525947809, 0.02899978868663311, -0.0426630936563015, -0.0026424976531416178, -0.057249587029218674, 0.08511880040168762, 0.0696558803319931, -0.05410284921526909, -0.03608056902885437, -0.05888816714286804, -0.0009453793172724545, -0.10774604976177216, -0.20979495346546173, -0.05561188980937004, -0.032447777688503265, 0.07978107035160065, -0.13259567320346832, 0.03994340822100639, 0.02954900823533535, 0.10886009782552719, 0.03037894144654274, -0.04302550479769707, -0.014973876997828484, 0.08617497980594635, -0.01764455810189247, -0.07809178531169891, 0.05045007914304733, 0.019285131245851517, -0.0790712907910347, -0.014583000913262367, -0.13920758664608002, 0.16598275303840637, 0.14672206342220306, -0.01088344119489193, -0.09725455194711685, 0.04452597722411156, -0.060115136206150055, -0.03398444503545761, -0.029772985726594925, 0.055517468601465225, 0.14240069687366486, 0.02108791656792164, 0.14757560193538666, -0.08510971069335938, -0.04276660084724426, 0.058423180133104324, -0.029850982129573822, 0.0014553596265614033, 0.09923838078975677, 0.06461935490369797, -0.09328235685825348, 0.13908885419368744, 0.10137659311294556, -0.094390369951725, 0.10933085530996323, -0.06487218290567398, -0.07636722177267075, -0.044245555996894836, -0.015550045296549797, 0.05163779482245445, 0.140824094414711, -0.06902983784675598, -0.010689550079405308, 0.03068711794912815, 0.0216322410851717, 0.016692429780960083, -0.2062053382396698, -0.018257521092891693, 0.019420763477683067, -0.05734970420598984, -0.05750473588705063, 0.0021728938445448875, 0.019572289660573006, 0.10084031522274017, 0.012143571861088276, -0.067693330347538, 0.0418521910905838, 0.020671822130680084, -0.054338738322257996, 0.20341850817203522, -0.11359526962041855, -0.15599702298641205, -0.12654542922973633, -0.04455970227718353, -0.04825001582503319, -0.012818737886846066, 0.07155738025903702, -0.08356418460607529, -0.05554880574345589, -0.07163557410240173, -0.0379440076649189, 0.0087536396458745, 0.045556578785181046, 0.062122032046318054, -0.01945328153669834, 0.09477561712265015, -0.11634501069784164, -0.030072681605815887, -0.03507428616285324, -0.02398638054728508, 0.06899509578943253, 0.03737841919064522, 0.11915739625692368, 0.11771044135093689, -0.03441280871629715, 0.039214350283145905, -0.02712520956993103, 0.20187236368656158, -0.05528897047042847, -0.036077409982681274, 0.11795681715011597, 0.012954331934452057, 0.09452304989099503, 0.08532019704580307, 0.051175639033317566, -0.08822090923786163, -0.009257777594029903, 0.015304026193916798, -0.042403023689985275, -0.20868068933486938, -0.014542629010975361, -0.041184186935424805, -0.01977260783314705, 0.09098273515701294, 0.03254422917962074, 0.06458903849124908, 0.043044187128543854, 0.03064807318150997, 0.03559782728552818, -0.04862595722079277, 0.10393092781305313, 0.0749817043542862, 0.06258325278759003, 0.13079892098903656, -0.062185946851968765, -0.005582358688116074, 0.042135465890169144, -0.024912498891353607, 0.26394781470298767, -0.009748210199177265, 0.15964865684509277, 0.06897201389074326, 0.19974641501903534, 0.019223378971219063, 0.07999885827302933, 0.003712605917826295, -0.028401976451277733, 0.010331436060369015, -0.04125529155135155, -0.035799454897642136, -0.002160011325031519, -0.03993307799100876, 0.06814505159854889, -0.1361686736345291, 0.027506472542881966, 0.048151895403862, 0.3122890293598175, 0.04211372137069702, -0.3660248816013336, -0.11596677452325821, -0.027576124295592308, -0.033434681594371796, -0.02951578050851822, -0.011395166628062725, 0.06989314407110214, -0.09305039793252945, 0.06323299556970596, -0.08409670740365982, 0.08958756178617477, -0.03399619832634926, 0.019176574423909187, 0.02915896102786064, 0.10080254077911377, -0.005140355322510004, 0.02853677235543728, -0.284026175737381, 0.2952103912830353, 0.014060137793421745, 0.09731465578079224, -0.06001824513077736, 0.005515623837709427, 0.03479793667793274, 0.0447070337831974, 0.06629986315965652, -0.010767717845737934, -0.08593056350946426, -0.17746952176094055, -0.0840226411819458, -0.00702889496460557, 0.07554789632558823, 0.03994393348693848, 0.11241298913955688, -0.004214833490550518, -0.007001162972301245, 0.04535234346985817, -0.029618265107274055, -0.05747188255190849, -0.07505770027637482, 0.02767016366124153, 0.021265607327222824, -0.03904115781188011, -0.09294462949037552, -0.1202508807182312, -0.07446391135454178, 0.1756916046142578, 0.007857188582420349, -0.04814065992832184, -0.1259671449661255, 0.06230950728058815, 0.10999876260757446, -0.0960850790143013, 0.0658564567565918, -0.002253927756100893, 0.0791691392660141, -0.008645686320960522, -0.07009416818618774, 0.10270348191261292, -0.052542347460985184, -0.18106824159622192, -0.04136975109577179, 0.09943581372499466, 0.033343199640512466, 0.06572554260492325, -0.008046244271099567, 0.032880570739507675, -0.0044538588263094425, -0.08271896094083786, 0.04374342039227486, -0.00043220556108281016, 0.1089434027671814, -0.011578449048101902, 0.006038036197423935, 0.005404732655733824, -0.06471564620733261, -0.005246018059551716, 0.1478075087070465, 0.3007764220237732, -0.10355311632156372, 0.05793630704283714, 0.022143783047795296, -0.04116392880678177, -0.16333021223545074, 0.031621214002370834, 0.05489538609981537, 0.005462955683469772, 0.0038328624796122313, -0.1362076997756958, 0.021674109622836113, 0.0987473875284195, -0.022617259994149208, 0.09622172266244888, -0.3232667148113251, -0.11856596171855927, 0.10332593321800232, 0.1447768360376358, 0.13441044092178345, -0.16596660017967224, -0.0320940837264061, -0.002216813387349248, -0.16229300200939178, 0.08623015135526657, -0.07363463938236237, 0.1259048581123352, -0.05178525298833847, 0.06855712831020355, 0.004631220828741789, -0.07723920047283173, 0.12887002527713776, -0.012272056192159653, 0.1023818850517273, -0.05247098580002785, 0.012143026106059551, 0.12508271634578705, -0.0729604959487915, 0.040639154613018036, -0.05714085325598717, 0.04541659355163574, -0.07079501450061798, -0.0036871328484266996, -0.092345230281353, 0.03449825569987297, -0.04014407843351364, -0.012562035582959652, -0.03229083493351936, 0.028973765671253204, 0.04732278361916542, -0.028399450704455376, 0.1414920687675476, 0.03672010079026222, 0.14804227650165558, 0.15205609798431396, 0.043865591287612915, -0.07004248350858688, -0.08484894037246704, 0.011708115227520466, -0.04020154848694801, 0.055818378925323486, -0.13956646621227264, 0.028429189696907997, 0.1287350356578827, 0.02155892923474312, 0.10833418369293213, 0.07059259712696075, -0.07507360726594925, 0.02719324640929699, 0.06980545073747635, -0.15639278292655945, -0.06020127981901169, 0.033454105257987976, -0.011951287277042866, -0.09957856684923172, 0.06147076189517975, 0.08601727336645126, -0.06046608090400696, -0.024640493094921112, -0.002265334827825427, 0.0180398877710104, -0.03434019908308983, 0.2052329033613205, 0.034721389412879944, 0.06563642621040344, -0.1087096780538559, 0.0979992225766182, 0.029902338981628418, -0.10320170968770981, 0.04153916984796524, 0.08710763603448868, -0.09099874645471573, -0.015431108884513378, 0.07887683808803558, 0.15584412217140198, -0.04640575498342514, -0.048486433923244476, -0.17872501909732819, -0.10758066177368164, 0.09365151077508926, 0.21971836686134338, 0.0758664458990097, 0.014964557252824306, -0.018463965505361557, 0.0002370786532992497, -0.13502825796604156, 0.055275678634643555, 0.09702016413211823, 0.07268219441175461, -0.11602377146482468, 0.16914886236190796, -0.005140225403010845, 0.047361671924591064, -0.006193709094077349, 0.03331479802727699, -0.12049799412488937, 0.006304371170699596, -0.12322086840867996, -0.0039190188981592655, -0.04813389107584953, -0.01583878882229328, -0.016716696321964264, -0.04124408960342407, -0.058017902076244354, 0.04612082242965698, -0.11821535974740982, -0.044805943965911865, 0.03691290691494942, -0.004168936517089605, -0.12541210651397705, -0.03030380606651306, 0.021171165630221367, -0.08102873712778091, 0.06881867349147797, 0.07610956579446793, 0.01656966283917427, 0.04590670391917229, -0.030480284243822098, -0.02078661508858204, 0.06806132942438126, -0.022884543985128403, 0.07326948642730713, -0.12185104191303253, -0.013425610959529877, -0.008695580065250397, 0.030474096536636353, 0.02327611856162548, 0.10363493114709854, -0.1319771409034729, -0.01233722548931837, -0.010675203986465931, -0.04840918257832527, -0.06970638036727905, 0.045472241938114166, 0.13020378351211548, 0.006777707953006029, 0.17512211203575134, -0.09252764284610748, 0.032461296766996384, -0.1892666220664978, -0.0004934339667670429, -0.018934348598122597, -0.12092404812574387, -0.058535005897283554, -0.014500738121569157, 0.08205721527338028, -0.06621622294187546, 0.08236300200223923, -0.036938998848199844, 0.024714317172765732, 0.0417938195168972, -0.04895882308483124, -0.05019467696547508, 0.015732549130916595, 0.1639232039451599, 0.01865408383309841, -0.039505910128355026, 0.08053474873304367, 0.04774154722690582, 0.0767490565776825, 0.07664366066455841, 0.21105457842350006, 0.1342204362154007, 0.036775700747966766, 0.1214016005396843, 0.012919208034873009, -0.05075910687446594, -0.14988923072814941, 0.05974221229553223, -0.059471599757671356, 0.11300145834684372, 0.00022712389181833714, 0.14381232857704163, 0.12590046226978302, -0.14875862002372742, 0.07705722004175186, -0.020275505259633064, -0.08695029467344284, -0.10809392482042313, -0.06332992762327194, -0.07691559940576553, -0.1335235834121704, 0.021115558221936226, -0.09547287970781326, 0.053897079080343246, 0.07080014795064926, 0.011774525046348572, -0.005929920822381973, 0.14557865262031555, 0.012383238412439823, 0.0365997739136219, 0.051321644335985184, 0.0006632255972363055, -0.051890864968299866, -0.03405272215604782, -0.0645097866654396, 0.010607130825519562, -0.014414445497095585, 0.05906223878264427, -0.015245807357132435, -0.035087551921606064, 0.06784024089574814, -0.002295990940183401, -0.11297854781150818, 0.024493776261806488, 0.020344706252217293, 0.07772276550531387, 0.06927035748958588, 0.0229646023362875, 0.023022806271910667, -0.024073956534266472, 0.18822647631168365, -0.08578713238239288, -0.0762091651558876, -0.1255883425474167, 0.268290638923645, 0.05296475812792778, -0.046169791370630264, 0.033966973423957825, -0.07407929003238678, -0.0059983436949551105, 0.19187067449092865, 0.17061391472816467, -0.0024462572764605284, -0.0010332553647458553, -0.01601170375943184, -0.024298109114170074, -0.03151432424783707, 0.08004068583250046, 0.12698717415332794, 0.028119686990976334, -0.07865221798419952, -0.04036542773246765, -0.06593291461467743, -0.015620706602931023, -0.05840594694018364, 0.0557757131755352, 0.01182536594569683, -0.003964056260883808, -0.04726219177246094, 0.0322449766099453, -0.04143068939447403, -0.10251335799694061, 0.09444314241409302, -0.2036656141281128, -0.16378837823867798, 0.012464810162782669, 0.06821948289871216, -0.006239474751055241, 0.07363255321979523, 0.0014887450961396098, 0.008423922583460808, 0.10532572865486145, -0.008663604967296124, -0.08692027628421783, -0.1076611876487732, 0.07629311084747314, -0.1343335509300232, 0.17873302102088928, -0.031763747334480286, 0.04310406371951103, 0.14322379231452942, 0.06692559272050858, -0.110024094581604, 0.0650673359632492, 0.0284880418330431, -0.09145832061767578, 0.0037912451662123203, 0.14107000827789307, -0.0220202524214983, 0.0374886728823185, 0.013634930364787579, -0.11154184490442276, -0.010454662144184113, -0.1125691831111908, -0.018856434151530266, -0.025549469515681267, -0.02643374167382717, -0.03527442365884781, 0.1171715036034584, 0.19945403933525085, -0.028669873252511024, 0.015940696001052856, -0.06650803983211517, 0.022535327821969986, 0.07362819463014603, -0.029614297673106194, -0.07874896377325058, -0.23230767250061035, 0.038990579545497894, 0.03634994849562645, -0.007720442488789558, -0.23884893953800201, -0.09578792005777359, 0.010213904082775116, -0.08190613240003586, -0.0967445820569992, 0.0758160725235939, 0.06320802122354507, 0.06725618243217468, -0.05164487659931183, -0.008010455407202244, -0.06948230415582657, 0.16410107910633087, -0.16263076663017273, -0.08195357769727707 ]
null
null
transformers
# Model Description This model is fine-tuning bert-base model on Cola dataset
{"language": "en", "license": "mit", "tags": ["sequence classification"], "datasets": ["cola"]}
text-classification
Modfiededition/bert-fine-tuned-cola
[ "transformers", "tf", "bert", "text-classification", "sequence classification", "en", "dataset:cola", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:04+00:00
[]
[ "en" ]
TAGS #transformers #tf #bert #text-classification #sequence classification #en #dataset-cola #license-mit #autotrain_compatible #endpoints_compatible #region-us
# Model Description This model is fine-tuning bert-base model on Cola dataset
[ "# Model Description\nThis model is fine-tuning bert-base model on Cola dataset" ]
[ "TAGS\n#transformers #tf #bert #text-classification #sequence classification #en #dataset-cola #license-mit #autotrain_compatible #endpoints_compatible #region-us \n", "# Model Description\nThis model is fine-tuning bert-base model on Cola dataset" ]
[ 53, 19 ]
[ "passage: TAGS\n#transformers #tf #bert #text-classification #sequence classification #en #dataset-cola #license-mit #autotrain_compatible #endpoints_compatible #region-us \n# Model Description\nThis model is fine-tuning bert-base model on Cola dataset" ]
[ -0.020902639254927635, 0.09949765354394913, -0.0006071748794056475, 0.049601539969444275, 0.16614103317260742, 0.04374587535858154, 0.05646221339702606, 0.04001956060528755, 0.048046909272670746, -0.039872873574495316, 0.0878416895866394, 0.12651711702346802, -0.013201550580561161, 0.22097569704055786, -0.12503153085708618, -0.28381142020225525, 0.039324961602687836, 0.07205486297607422, -0.021390601992607117, 0.11029283702373505, 0.11628878861665726, -0.06642197072505951, 0.13159288465976715, -0.023702114820480347, -0.1699482798576355, 0.013934403657913208, 0.036283835768699646, -0.12682011723518372, 0.09599759429693222, 0.0989515408873558, 0.1330612152814865, 0.11306280642747879, 0.03407221660017967, -0.06162811443209648, 0.037529122084379196, -0.05275379866361618, -0.0505223348736763, 0.085921511054039, 0.027949616312980652, -0.07212791591882706, 0.010619152337312698, 0.10699532926082611, 0.11730705946683884, 0.06010487303137779, -0.13261918723583221, 0.041055578738451004, -0.026673054322600365, 0.04455458000302315, 0.1353854387998581, 0.0062768831849098206, 0.014727266505360603, 0.03884505480527878, -0.15402303636074066, 0.03177745267748833, 0.08664659410715103, -0.3226955533027649, -0.0034872654359787703, 0.1497429609298706, -0.0011295407311990857, -0.04227621480822563, 0.011651619337499142, 0.067410409450531, 0.06164955347776413, -0.01211787760257721, 0.0010661279084160924, -0.049751315265893936, -0.03078356944024563, -0.0006206294638104737, -0.04959818720817566, 0.00468283100053668, 0.24250933527946472, 0.025274604558944702, -0.03374810144305229, -0.0064557334408164024, -0.01719604805111885, 0.0019237265223637223, -0.07226758450269699, -0.05283305421471596, -0.023661283776164055, 0.05131091549992561, 0.013560150749981403, 0.04671499878168106, -0.05463910847902298, -0.06127076968550682, -0.19435566663742065, 0.2044239491224289, -0.03984112665057182, 0.01569255441427231, -0.06788119673728943, 0.06814635545015335, -0.07614414393901825, -0.07713454961776733, -0.019450422376394272, -0.10909412056207657, -0.06746380031108856, -0.14903897047042847, -0.04982574284076691, 0.08281216025352478, 0.038844458758831024, 0.1473161280155182, 0.11025584489107132, 0.011659475974738598, -0.058975640684366226, -0.028627602383494377, -0.008904621936380863, 0.15407848358154297, -0.014373845420777798, -0.13552415370941162, 0.012205191887915134, -0.09873423725366592, -0.09201238304376602, -0.00748662743717432, -0.22509993612766266, -0.01811457984149456, -0.04486720636487007, 0.04065683111548424, -0.04365377500653267, 0.1404389888048172, -0.09747081249952316, -0.07845522463321686, 0.15612168610095978, -0.025883030146360397, 0.02847338281571865, 0.008886211551725864, -0.011609488166868687, 0.04113812372088432, 0.0060610417276620865, 0.022982371971011162, 0.0028128609992563725, 0.09869246184825897, -0.10438591241836548, -0.0840488001704216, -0.02677035890519619, -0.03425893560051918, 0.008534415625035763, -0.04870239272713661, 0.04363001883029938, -0.14723901450634003, -0.17098885774612427, 0.0479809045791626, 0.02800723724067211, -0.088345006108284, -0.07089588046073914, -0.015436956658959389, 0.05623552203178406, 0.03720903396606445, -0.00424329424276948, -0.005091499071568251, -0.051067057996988297, 0.018599733710289, -0.04152342304587364, 0.06854161620140076, -0.12161572277545929, 0.09232565015554428, -0.12143050879240036, -0.005223809275776148, -0.24055443704128265, 0.059770986437797546, -0.029449205845594406, 0.16379810869693756, -0.12625373899936676, -0.0444885790348053, -0.09606605768203735, -0.002430182881653309, -0.1048756018280983, 0.20159472525119781, -0.14233767986297607, -0.0894312933087349, 0.02919739857316017, -0.08060449361801147, -0.09994503110647202, 0.006179054733365774, -0.012504391372203827, 0.08609777688980103, 0.15201318264007568, 0.09282726794481277, 0.058606378734111786, -0.03147760033607483, 0.08062109351158142, 0.06574416160583496, -0.0771695226430893, -0.031120924279093742, 0.0671640932559967, -0.04141606390476227, -0.17158931493759155, 0.03349750488996506, 0.0354137122631073, 0.047199562191963196, -0.047330666333436966, -0.021225715056061745, 0.005183266010135412, -0.018576720729470253, 0.09011390805244446, -0.024393081665039062, 0.06300248950719833, -0.004238490480929613, -0.029158789664506912, 0.1184685006737709, 0.029261598363518715, 0.044264066964387894, -0.04714585840702057, -0.13599121570587158, 0.1743384152650833, 0.018249711021780968, -0.011045513674616814, -0.1427772492170334, -0.08511704951524734, 0.000655340903904289, 0.1568097472190857, 0.0037673511542379856, 0.008418875746428967, -0.0007711721700616181, -0.03216436877846718, -0.023885808885097504, 0.04114648699760437, 0.1278129667043686, 0.10065758228302002, -0.034174542874097824, -0.20563489198684692, 0.022661704570055008, -0.02278323471546173, 0.12397562712430954, -0.10168154537677765, -0.04719085991382599, 0.187895268201828, 0.15718193352222443, 0.04934246838092804, 0.05018547177314758, -0.0022723206784576178, 0.03860022872686386, -0.03233863040804863, -0.04597840830683708, 0.07443902641534805, -0.03151357173919678, -0.014119469560682774, 0.11925361305475235, -0.016882626339793205, 0.18019087612628937, 0.17813828587532043, -0.015394866466522217, -0.09982643276453018, -0.11146359890699387, 0.017946818843483925, 0.03339146450161934, 0.02813711203634739, -0.013238486833870411, 0.06315627694129944, -0.06283686310052872, 0.1482730358839035, -0.05785076692700386, -0.0022248681634664536, 0.024202214553952217, 0.0035207299515604973, -0.09487387537956238, 0.02526364102959633, 0.12859748303890228, -0.3641788959503174, 0.11302783340215683, 0.15002523362636566, 0.17355239391326904, 0.12854857742786407, 0.01675141043961048, -0.0052557517774403095, 0.00351659650914371, -0.0902523398399353, -0.008099822327494621, 0.09229698032140732, -0.11382898688316345, 0.014377548359334469, 0.06970331817865372, -0.019049935042858124, 0.04411973059177399, -0.015034751035273075, -0.00013068866974208504, 0.05168362334370613, 0.013341037556529045, 0.024079445749521255, 0.01682131737470627, 0.04161496087908745, 0.1292712688446045, 0.09280049800872803, -0.21290521323680878, 0.1153317466378212, 0.039207760244607925, -0.08866811543703079, 0.19815129041671753, -0.12769067287445068, -0.24137958884239197, -0.13519734144210815, -0.2324419468641281, 0.0329456701874733, 0.06103317439556122, 0.036104392260313034, -0.014924179762601852, -0.07800187915563583, 0.010496856644749641, 0.10584669560194016, -0.001445944420993328, 0.08091545104980469, -0.05170334503054619, 0.02079678140580654, -0.0459168441593647, -0.05883200466632843, -0.04767945036292076, 0.007192071992903948, -0.019931700080633163, 0.07867029309272766, -0.24650749564170837, 0.0783790573477745, 0.2365039736032486, -0.058246687054634094, 0.05664224922657013, -0.06238535791635513, 0.20779280364513397, -0.08501710742712021, 0.0837348997592926, 0.02836167812347412, -0.024888282641768456, -0.021233022212982178, 0.19962279498577118, 0.009819930419325829, -0.13326077163219452, 0.06104347109794617, -0.0417540967464447, -0.07015642523765564, -0.15169285237789154, -0.1453450322151184, -0.05033811926841736, -0.006537167821079493, 0.10406768321990967, 0.034170255064964294, 0.11360937356948853, 0.06324713677167892, 0.02383972890675068, 0.07963080704212189, -0.014087727293372154, 0.05067116767168045, 0.20396338403224945, 0.018846552819013596, 0.09586013853549957, -0.04292448237538338, -0.07025709003210068, 0.12688882648944855, -0.026161788031458855, 0.08627337217330933, 0.10884422808885574, 0.07652924954891205, 0.022325456142425537, 0.009108062833547592, 0.175345316529274, 0.1385793536901474, 0.017840391024947166, -0.04295772686600685, -0.025200791656970978, -0.04032439738512039, 0.001464893575757742, 0.022845638915896416, 0.010723963379859924, -0.12467288970947266, -0.05988895148038864, -0.08714353293180466, 0.008860049769282341, 0.1342526227235794, 0.06427666544914246, -0.3231762945652008, -0.017610931769013405, 0.02449391596019268, -0.010174845345318317, -0.09663394838571548, 0.037959977984428406, -0.05719652399420738, -0.07521020621061325, 0.09956047683954239, 0.0035752523690462112, 0.12825031578540802, 0.05887791886925697, 0.03222525864839554, 0.10165166854858398, -0.10127939283847809, -0.041886720806360245, 0.08837921172380447, -0.23689457774162292, 0.19164495170116425, 0.0399446077644825, -0.037737634032964706, -0.06744999438524246, -0.021164758130908012, -0.006511556450277567, 0.2972172796726227, 0.10079903900623322, 0.0096189109608531, 0.049497440457344055, -0.19227994978427887, -0.10570122301578522, -0.007177093997597694, 0.021311210468411446, -0.08891423046588898, 0.03642625734210014, -0.03800971433520317, -0.01008959487080574, 0.04182879999279976, 0.06984583288431168, -0.06018754094839096, -0.16112743318080902, 0.03946207836270332, -0.10396132618188858, 0.12657304108142853, -0.017770539969205856, -0.06895367801189423, -0.02772187627851963, 0.1325557380914688, -0.028979796916246414, -0.02467941679060459, -0.1650385707616806, -0.054685574024915695, 0.04710284620523453, -0.04587124288082123, 0.06399150937795639, -0.051175862550735474, 0.05062386393547058, 0.010466708801686764, -0.23786529898643494, 0.14264127612113953, -0.05001398175954819, -0.07041577249765396, -0.07939521223306656, 0.10354680567979813, -0.04062061384320259, 0.01810614764690399, 0.15028069913387299, 0.011256991885602474, 0.02124246396124363, -0.07087921351194382, -0.07854820787906647, -0.07403447479009628, 0.12443356961011887, 0.017725294455885887, -0.0714452788233757, -0.035805169492959976, 0.01694917306303978, 0.07368995994329453, 0.07975798845291138, 0.055663302540779114, -0.1005946546792984, 0.13618215918540955, 0.03261992707848549, -0.0472441203892231, -0.20046673715114594, -0.007809446193277836, -0.0912303701043129, 0.0047746277414262295, -0.028761034831404686, -0.16693980991840363, 0.14630313217639923, 0.00827447697520256, -0.04635852947831154, 0.0014565967721864581, -0.0980672687292099, -0.11058523505926132, 0.23619471490383148, 0.006167158484458923, 0.2762322425842285, -0.06666228920221329, -0.09570334851741791, -0.0681631788611412, -0.14786528050899506, 0.2723599374294281, 0.017695488408207893, 0.08287946879863739, -0.018862584605813026, 0.00574971130117774, 0.03612222522497177, 0.02150888554751873, 0.09801094979047775, 0.020609861239790916, -0.007378470618277788, -0.07322593033313751, -0.1182599663734436, 0.0054223379120230675, 0.006700506433844566, 0.0236456710845232, 0.063387431204319, 0.055990785360336304, -0.17696596682071686, -0.07903627306222916, 0.00471789576113224, 0.11909937858581543, -0.02707907371222973, -0.06864316016435623, -0.033975809812545776, 0.03977099433541298, -0.033289238810539246, -0.06362634897232056, 0.09392883628606796, -0.061314426362514496, 0.07455912977457047, 0.07339348644018173, 0.16819895803928375, -0.13128721714019775, 0.02300920896232128, 0.01237399596720934, -0.06691223382949829, 0.06934551149606705, -0.102549247443676, 0.0666898712515831, 0.11174213141202927, -0.02119913138449192, 0.10919834673404694, 0.08873582631349564, 0.044130727648735046, -0.10947848856449127, 0.18800906836986542, -0.16877047717571259, 0.02395721897482872, -0.09086562693119049, -0.09061720222234726, 0.041673336178064346, -0.019712595269083977, 0.12365412712097168, 0.010504054836928844, -0.050685103982686996, 0.028214886784553528, -0.033134616911411285, -0.044543344527482986, 0.11154602468013763, 0.06918103992938995, 0.04984988644719124, -0.15528516471385956, 0.037387117743492126, 0.10311316698789597, 0.005583344493061304, -0.06740768253803253, 0.004759109113365412, -0.17322997748851776, -0.07226324081420898, 0.0007725651958025992, 0.16424591839313507, -0.13856694102287292, -0.0321027971804142, -0.07744935899972916, -0.17446546256542206, 0.088719941675663, 0.23993311822414398, 0.10928744822740555, 0.18475541472434998, -0.026914888992905617, -0.09642001241445541, 0.00815021712332964, 0.0216801930218935, -0.07148180156946182, 0.010077554732561111, -0.12418359518051147, 0.05208966135978699, -0.06970681995153427, 0.06050851568579674, -0.1031758114695549, -0.038380254060029984, -0.16438539326190948, -0.06276319175958633, -0.14920592308044434, 0.00901883840560913, -0.05977059155702591, 0.0043838368728756905, -0.019825367256999016, -0.024103818461298943, -0.01842324063181877, -0.03835214674472809, -0.10256496071815491, 0.04521292820572853, -0.021872038021683693, 0.13115449249744415, -0.06737866252660751, 0.02164188213646412, 0.06704942882061005, -0.03603735193610191, 0.09774038195610046, 0.04390464723110199, -0.018750015646219254, 0.0019957423210144043, -0.07613667100667953, -0.03502735495567322, 0.058069322258234024, 0.04063836485147476, 0.10812962800264359, -0.0531231090426445, 0.03798342123627663, 0.04908519983291626, 0.0023845722898840904, 0.06020382046699524, 0.030590608716011047, -0.12154112011194229, -0.023561686277389526, -0.06099078059196472, -0.09498678892850876, 0.027517221868038177, -0.020051751285791397, 0.1508830189704895, -0.008794736117124557, 0.11492414027452469, -0.021428387612104416, -0.041305672377347946, -0.0552683062851429, -0.026885895058512688, -0.05212505906820297, -0.0949413999915123, -0.12898771464824677, -0.03720710799098015, -0.0358736589550972, 0.05236819386482239, 0.20771093666553497, 0.11079991608858109, 0.01261376217007637, 0.08060171455144882, 0.08601810783147812, 0.15954524278640747, 0.062007371336221695, 0.17842282354831696, 0.06630130857229233, 0.02239290438592434, -0.013591092079877853, 0.07982976734638214, -0.0209646075963974, 0.03413872793316841, 0.07568910717964172, 0.09781930595636368, -0.040694333612918854, -0.007507741451263428, 0.03944704309105873, -0.02387962117791176, -0.09731925278902054, -0.015107707120478153, -0.05276962369680405, 0.0385279655456543, 0.013412395492196083, -0.04060211405158043, 0.04378684237599373, -0.15659861266613007, 0.03372987359762192, -0.01552897971123457, -0.05626961961388588, -0.12678253650665283, -0.1016782894730568, -0.10933484882116318, -0.15194396674633026, 0.006387942470610142, -0.12145858258008957, -0.055489134043455124, 0.12744629383087158, 0.0051698628813028336, -0.016374163329601288, 0.06650286167860031, -0.15252266824245453, -0.05264747887849808, 0.1087050661444664, 0.00757161108776927, -0.016421997919678688, -0.12290230393409729, -0.019124792888760567, -0.08422781527042389, 0.007977570407092571, -0.0846753641963005, -0.0032240834552794695, 0.048488251864910126, -0.0067584156058728695, -0.050347018986940384, -0.030826114118099213, 0.004552020691335201, 0.024704718962311745, -0.0302042867988348, 0.04696843773126602, -0.00117775599937886, -0.0005310724955052137, 0.062376122921705246, 0.2552677094936371, -0.012401667423546314, -0.07962445169687271, -0.12080568075180054, 0.17207403481006622, 0.03935389593243599, 0.14928503334522247, 0.0357213094830513, 0.00391156692057848, -0.015234355814754963, 0.24101649224758148, 0.15182039141654968, -0.04776865988969803, -0.006842534989118576, -0.025473851710557938, 0.00804982054978609, 0.13783080875873566, 0.12014277279376984, 0.033672817051410675, 0.10415925830602646, -0.021109217777848244, -0.0940559133887291, -0.02369094081223011, -0.004443606827408075, -0.027362383902072906, 0.06831413507461548, 0.10218757390975952, -0.07036854326725006, -0.07659439742565155, 0.15257634222507477, -0.10117698460817337, -0.03941173478960991, 0.010426980443298817, -0.1859918087720871, -0.11979180574417114, -0.08591429889202118, -0.031280845403671265, -0.024983668699860573, 0.06152300909161568, -0.052669379860162735, -0.039996981620788574, -0.029855307191610336, 0.0375419557094574, -0.23616474866867065, -0.07390859723091125, 0.11544618755578995, -0.05856171250343323, 0.0924311950802803, -0.013009164482355118, 0.009489258751273155, 0.0890965536236763, 0.08267011493444443, -0.07174794375896454, -0.02162177488207817, -0.02934221923351288, -0.04432745277881622, 0.08062060177326202, -0.05325866490602493, 0.019026219844818115, 0.025689179077744484, 0.011699088849127293, -0.17254017293453217, 0.06732162833213806, -0.0011490603210404515, -0.09222718328237534, -0.053939249366521835, 0.014479080215096474, -0.08542024344205856, 0.10454320162534714, 0.17067374289035797, -0.05712180957198143, 0.014040786772966385, -0.009570452384650707, 0.0713408961892128, 0.049421049654483795, -0.11973608285188675, -0.06928703188896179, -0.09605333209037781, -0.08265906572341919, -0.005878808908164501, -0.04116401448845863, -0.15699462592601776, -0.014966550283133984, -0.13424283266067505, 0.059326108545064926, -0.13382267951965332, 0.16928422451019287, 0.07850196212530136, 0.03653924539685249, -0.018023978918790817, -0.06191530451178551, -0.0032088179141283035, 0.07813720405101776, -0.1257685422897339, -0.09688671678304672 ]
null
null
transformers
## t5-base-fine-tuned-on-jfleg T5-base model fine-tuned on the [**JFLEG dataset**](https://huggingface.co/datasets/jfleg) with the objective of **text2text-generation**. # Model Description: T5 is an encoder-decoder model pre-trained with a multi-task mixture of unsupervised and supervised tasks and for which each task is converted into a text-to-text format. .T5 works well on a variety of tasks out-of-the-box by prepending a different prefix to the input corresponding to each task, e.g., for translation: translate English to German: …, for summarization: summarize: …. The T5 model was presented in [**Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer**](https://arxiv.org/pdf/1910.10683.pdf) by Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, Peter J. Liu. ## Pre-Processing: For this task of grammar correction, we’ll use the prefix “grammar: “ to each of the input sentences. ``` Grammar: Your Sentence ``` ## How to use : You can use this model directly with the pipeline for detecting and correcting grammatical mistakes. ``` from transformers import pipeline model_checkpoint = "Modfiededition/t5-base-fine-tuned-on-jfleg" model = pipeline("text2text-generation", model=model_checkpoint) text = "I am write on AI" output = model(text) ``` Result(s) ``` I am writing on AI. ```
{}
text2text-generation
Modfiededition/t5-base-fine-tuned-on-jfleg
[ "transformers", "tf", "t5", "text2text-generation", "arxiv:1910.10683", "autotrain_compatible", "endpoints_compatible", "has_space", "text-generation-inference", "region:us" ]
2022-03-02T23:29:04+00:00
[ "1910.10683" ]
[]
TAGS #transformers #tf #t5 #text2text-generation #arxiv-1910.10683 #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us
## t5-base-fine-tuned-on-jfleg T5-base model fine-tuned on the JFLEG dataset with the objective of text2text-generation. # Model Description: T5 is an encoder-decoder model pre-trained with a multi-task mixture of unsupervised and supervised tasks and for which each task is converted into a text-to-text format. .T5 works well on a variety of tasks out-of-the-box by prepending a different prefix to the input corresponding to each task, e.g., for translation: translate English to German: …, for summarization: summarize: …. The T5 model was presented in Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer by Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, Peter J. Liu. ## Pre-Processing: For this task of grammar correction, we’ll use the prefix “grammar: “ to each of the input sentences. ## How to use : You can use this model directly with the pipeline for detecting and correcting grammatical mistakes. Result(s)
[ "## t5-base-fine-tuned-on-jfleg\nT5-base model fine-tuned on the JFLEG dataset with the objective of text2text-generation.", "# Model Description:\nT5 is an encoder-decoder model pre-trained with a multi-task mixture of unsupervised and supervised tasks and for which each task is converted into a text-to-text format.\n.T5 works well on a variety of tasks out-of-the-box by prepending a different prefix to the input corresponding to each task, e.g., for translation: translate English to German: …, for summarization: summarize: ….\n\nThe T5 model was presented in Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer by Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, Peter J. Liu.", "## Pre-Processing:\nFor this task of grammar correction, we’ll use the prefix “grammar: “ to each of the input sentences.", "## How to use :\nYou can use this model directly with the pipeline for detecting and correcting grammatical mistakes.\n\n\nResult(s)" ]
[ "TAGS\n#transformers #tf #t5 #text2text-generation #arxiv-1910.10683 #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us \n", "## t5-base-fine-tuned-on-jfleg\nT5-base model fine-tuned on the JFLEG dataset with the objective of text2text-generation.", "# Model Description:\nT5 is an encoder-decoder model pre-trained with a multi-task mixture of unsupervised and supervised tasks and for which each task is converted into a text-to-text format.\n.T5 works well on a variety of tasks out-of-the-box by prepending a different prefix to the input corresponding to each task, e.g., for translation: translate English to German: …, for summarization: summarize: ….\n\nThe T5 model was presented in Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer by Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, Peter J. Liu.", "## Pre-Processing:\nFor this task of grammar correction, we’ll use the prefix “grammar: “ to each of the input sentences.", "## How to use :\nYou can use this model directly with the pipeline for detecting and correcting grammatical mistakes.\n\n\nResult(s)" ]
[ 60, 40, 183, 35, 31 ]
[ "passage: TAGS\n#transformers #tf #t5 #text2text-generation #arxiv-1910.10683 #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us \n## t5-base-fine-tuned-on-jfleg\nT5-base model fine-tuned on the JFLEG dataset with the objective of text2text-generation.# Model Description:\nT5 is an encoder-decoder model pre-trained with a multi-task mixture of unsupervised and supervised tasks and for which each task is converted into a text-to-text format.\n.T5 works well on a variety of tasks out-of-the-box by prepending a different prefix to the input corresponding to each task, e.g., for translation: translate English to German: …, for summarization: summarize: ….\n\nThe T5 model was presented in Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer by Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, Peter J. Liu.## Pre-Processing:\nFor this task of grammar correction, we’ll use the prefix “grammar: “ to each of the input sentences.## How to use :\nYou can use this model directly with the pipeline for detecting and correcting grammatical mistakes.\n\n\nResult(s)" ]
[ -0.00710787158459425, -0.022959625348448753, -0.003797292010858655, 0.02243938483297825, 0.06120988726615906, -0.017601236701011658, 0.14418572187423706, 0.05428808555006981, -0.016459735110402107, 0.04039566218852997, 0.0007140975794754922, -0.008786925114691257, 0.06283082067966461, 0.0910925418138504, 0.01786111854016781, -0.2437487095594406, 0.048370469361543655, -0.06296490132808685, -0.05684102699160576, 0.0786670595407486, 0.1271989345550537, -0.04821500554680824, 0.06888823956251144, 0.049647849053144455, -0.04713987559080124, 0.022984517738223076, -0.013759598135948181, -0.018781032413244247, 0.10959333926439285, 0.11568499356508255, 0.09231815487146378, 0.04713674634695053, 0.022142013534903526, -0.13775859773159027, 0.010002903640270233, 0.029069427400827408, -0.04008116200566292, 0.0024656415916979313, 0.05548057705163956, 0.04535911604762077, 0.16108228266239166, -0.108280710875988, -0.01083887368440628, 0.06714939326047897, -0.08518192172050476, 0.07160459458827972, -0.0810275748372078, 0.10599751025438309, 0.0508304163813591, 0.09912008047103882, -0.06348250806331635, 0.1558048278093338, -0.06888218969106674, 0.09427788853645325, 0.10509093105792999, -0.41371598839759827, -0.05667378008365631, 0.0591149628162384, 0.04401732608675957, 0.05628013610839844, -0.05099620670080185, 0.02114238403737545, 0.041652049869298935, -0.022824184969067574, -0.01154499314725399, -0.08851929754018784, 0.14297214150428772, 0.025304248556494713, -0.18295210599899292, -0.010152386501431465, 0.24597600102424622, 0.04840025678277016, -0.07898683845996857, -0.09738519042730331, -0.06512697041034698, 0.11070062220096588, -0.015879793092608452, -0.1123526468873024, -0.042877428233623505, 0.038606006652116776, 0.07277586311101913, -0.13586944341659546, -0.08577363193035126, -0.057811275124549866, -0.06054112687706947, 0.103550985455513, 0.058074720203876495, -0.03479473292827606, -0.08174138516187668, 0.034304287284612656, -0.0551505871117115, -0.06358537077903748, -0.00728395814076066, -0.07190489023923874, -0.16099479794502258, -0.01030085887759924, -0.04074198752641678, -0.15929384529590607, 0.018176697194576263, 0.10561233013868332, 0.10956167429685593, 0.04367993399500847, -0.008177811279892921, 0.01716585084795952, 0.04596443846821785, 0.14145208895206451, -0.0707012340426445, -0.0464724525809288, 0.029418032616376877, 0.009748307056725025, -0.024984201416373253, -0.02542467787861824, -0.06811142712831497, -0.008388257585465908, 0.030681809410452843, 0.05782920494675636, 0.01644659973680973, 0.05864930525422096, -0.027913155034184456, -0.05734848231077194, 0.0303273294121027, -0.14415694773197174, -0.06913959234952927, -0.008630373515188694, -0.053035736083984375, 0.01653968170285225, 0.03960516303777695, 0.0055498224683105946, -0.11403211206197739, -0.014050410129129887, -0.08454127609729767, -0.086725153028965, -0.00530993053689599, -0.1092616468667984, -0.04622691497206688, -0.019939379766583443, -0.039576854556798935, -0.15427958965301514, -0.06547737121582031, -0.03423074632883072, -0.028188420459628105, -0.017841337248682976, -0.03754572197794914, -0.04291307553648949, -0.07862433046102524, -0.05203278735280037, 0.005808812100440264, -0.0479154996573925, 0.0023119046818464994, 0.03808622807264328, 0.011491179466247559, -0.0031308347824960947, 0.015829870477318764, 0.007774430327117443, -0.0785953477025032, 0.021657411009073257, -0.15032704174518585, 0.16557514667510986, -0.07022293657064438, -0.0262251365929842, -0.13825823366641998, -0.013649462722241879, -0.0163218155503273, 0.029787549749016762, 0.033850714564323425, 0.12990505993366241, -0.1745164692401886, -0.05992607772350311, 0.14930790662765503, -0.12777401506900787, -0.06247950717806816, 0.15250343084335327, 0.014343088492751122, 0.11415693163871765, 0.10095248371362686, 0.21783219277858734, 0.07687126845121384, -0.07357195019721985, -0.027182796970009804, -0.003759618615731597, -0.025915054604411125, 0.19096700847148895, 0.0667317807674408, -0.011347882449626923, -0.02768673375248909, -0.02956339903175831, -0.09179313480854034, 0.03778548911213875, -0.015616446733474731, -0.08486376702785492, 0.005684735253453255, -0.010541044175624847, 0.07286558300256729, -0.053703516721725464, 0.05101568251848221, 0.012108717113733292, -0.09686196595430374, 0.03414386883378029, 0.07214754074811935, -0.02859136089682579, 0.05000472813844681, -0.14359691739082336, 0.04727276414632797, 0.08952882885932922, 0.04401521384716034, -0.13850970566272736, -0.0712682455778122, 0.042637068778276443, -0.004146867897361517, 0.1472926288843155, 0.1310489922761917, -0.0013325947802513838, 0.0465688481926918, -0.04020416736602783, -0.004983291961252689, -0.08878394961357117, 0.012301918119192123, -0.03076994977891445, -0.15097284317016602, -0.035010967403650284, -0.0006491709500551224, 0.11340723931789398, -0.17880822718143463, 0.016942055895924568, 0.022016288712620735, 0.059328172355890274, 0.012748961336910725, -0.01281801424920559, -0.020690057426691055, 0.04045373201370239, -0.01978899911046028, -0.010119796730577946, 0.030586030334234238, 0.038124702870845795, -0.13366106152534485, 0.14840435981750488, -0.1556902378797531, -0.13953867554664612, 0.09065302461385727, -0.049641113728284836, -0.10314156860113144, 0.08550233393907547, -0.05544034391641617, -0.03408566117286682, 0.017808467149734497, -0.03223762661218643, 0.14908906817436218, -0.007634338922798634, 0.0919799879193306, -0.10441110283136368, -0.018121879547834396, -0.006882421672344208, -0.02263634093105793, -0.0041260612197220325, 0.12429627031087875, -0.03524750843644142, -0.2402561604976654, 0.04172958433628082, -0.025488609448075294, -0.027042431756854057, 0.15374356508255005, -0.0028031866531819105, -0.06455007195472717, -0.0668974295258522, 0.1256342977285385, 0.047041937708854675, 0.0792548879981041, -0.1032409593462944, -0.03381356969475746, 0.013852559961378574, 0.0416385792195797, 0.04667370393872261, -0.09659183025360107, 0.025221332907676697, 0.025965102016925812, -0.04572879523038864, 0.0639687106013298, 0.037621259689331055, -0.041823092848062515, 0.07729337364435196, 0.026570193469524384, 0.056309282779693604, -0.03965897858142853, -0.03744491562247276, -0.1823798567056656, 0.11732176691293716, -0.07853595912456512, -0.20305180549621582, -0.026973316445946693, 0.052791349589824677, -0.09120221436023712, -0.009432878345251083, 0.05479661002755165, -0.0679360181093216, -0.06025759130716324, -0.07629921287298203, 0.04938287287950516, -0.06430759280920029, -0.02420661225914955, -0.030631229281425476, 0.010732728987932205, 0.0020796628668904305, -0.07865504175424576, 0.0011295315343886614, -0.02659708447754383, -0.09204830229282379, 0.006658777128905058, -0.12029771506786346, 0.10383977741003036, 0.09189459681510925, 0.0282677561044693, 0.0005540431593544781, -0.07660119235515594, 0.25960564613342285, -0.07783875614404678, 0.10073218494653702, 0.13206017017364502, -0.04837194085121155, 0.027415597811341286, 0.04763854295015335, -0.036584965884685516, -0.04536048322916031, 0.06827464699745178, 0.08781074732542038, -0.01626291126012802, -0.24706050753593445, -0.11946582794189453, -0.12710128724575043, 0.030897527933120728, 0.016995051875710487, 0.06007767096161842, 0.08164244145154953, -0.009979805909097195, -0.07142838090658188, 0.07728756964206696, 0.11411164700984955, 0.10360244661569595, 0.12749934196472168, 0.0013080710778012872, 0.08315196633338928, -0.05457790568470955, -0.04834897816181183, 0.08192286640405655, -0.02459687553346157, 0.1904996633529663, 0.03836170211434364, 0.17215880751609802, 0.08828619867563248, 0.16289860010147095, 0.05598641559481621, 0.00014401556109078228, -0.04249269887804985, 0.007957661524415016, -0.03945770859718323, -0.09700755774974823, -0.030335383489727974, 0.07888361066579819, 0.08336842805147171, -0.05347883328795433, -0.020116863772273064, 0.10490720719099045, 0.09060142189264297, 0.17582066357135773, 0.10036551207304001, -0.040413279086351395, -0.05372784659266472, -0.013009046204388142, -0.06096729636192322, 0.003837038530036807, 0.05024553835391998, 0.11357533931732178, -0.12301108986139297, 0.018791435286402702, -0.00504268566146493, 0.09573002904653549, 0.0041913860477507114, 0.0034891129471361637, -0.08909278362989426, 0.03208160772919655, -0.00647003436461091, 0.10357838124036789, -0.2727016508579254, 0.20487573742866516, 0.018841305747628212, 0.05521582067012787, -0.053882140666246414, 0.005352234933525324, 0.04041310399770737, -0.015803147107362747, 0.18207302689552307, 0.03208228945732117, 0.03749924898147583, -0.04595109075307846, -0.04974078759551048, 0.029684090986847878, 0.12345905601978302, -0.03157605603337288, 0.061424557119607925, -0.07807926833629608, 0.024223145097494125, 0.0064397165551781654, 0.24172678589820862, -0.1851913183927536, -0.12901929020881653, 0.04413558170199394, -0.048223983496427536, -0.042380236089229584, -0.03143928572535515, -0.019477451220154762, 0.008235116489231586, 0.16933895647525787, -0.07563861459493637, -0.05208808556199074, -0.1073683649301529, 0.008039009757339954, 0.09395008534193039, -0.07431915402412415, -0.03354377672076225, -0.005483439192175865, 0.041763607412576675, -0.07730083912611008, -0.08481607586145401, 0.04782600328326225, -0.03150554746389389, -0.09715104103088379, 0.013394452631473541, 0.15789099037647247, 0.09942920506000519, 0.07117723673582077, 0.016275539994239807, 0.000800256326328963, 0.036937691271305084, -0.1299576610326767, -0.06626968830823898, -0.020751120522618294, 0.00914022233337164, 0.10310857743024826, -0.10882733762264252, -0.05139944702386856, -0.1815672069787979, -0.03357855603098869, 0.1334662139415741, 0.17711900174617767, -0.05773494765162468, 0.06414055824279785, 0.06465403735637665, -0.07470867782831192, -0.18727344274520874, -0.09580561518669128, 0.0545431524515152, 0.02850736491382122, -0.019893739372491837, -0.10803790390491486, 0.00827121827751398, 0.024688126519322395, 0.02096741646528244, -0.06830962002277374, -0.2201545387506485, -0.14887095987796783, 0.060074906796216965, 0.015385336242616177, 0.10056615620851517, -0.1344527155160904, -0.059868644922971725, 0.03153344243764877, -0.022531980648636818, 0.09833139926195145, -0.03365505486726761, 0.09361815452575684, 0.08070168644189835, -0.04324398562312126, 0.016846325248479843, 0.021763084456324577, 0.1023232489824295, 0.0342395044863224, -0.016463788226246834, -0.04706700146198273, -0.07465039938688278, 0.047249410301446915, -0.0023327271919697523, 0.10678482055664062, -0.01072636991739273, 0.0823402926325798, -0.10827045887708664, -0.034129705280065536, -0.05718528851866722, 0.032683927565813065, -0.05873112380504608, -0.0791231319308281, -0.10817499458789825, 0.11348413676023483, 0.07833593338727951, 0.022516367956995964, 0.09974361956119537, -0.06829510629177094, -0.0007946658879518509, 0.05407720059156418, 0.10700369626283646, 0.04728907719254494, -0.06125415116548538, -0.012530125677585602, 0.0273569505661726, 0.08438372611999512, -0.09997986257076263, 0.05760442093014717, 0.09344390034675598, 0.037196606397628784, 0.1676238626241684, 0.025846049189567566, -0.12963886559009552, 0.0050546652637422085, -0.009951145388185978, -0.17446407675743103, -0.21553254127502441, -0.10167315602302551, -0.06576939672231674, 0.004662204068154097, -0.02041006088256836, 0.15066370368003845, -0.09600547701120377, 0.003022979712113738, 0.020692866295576096, -0.0033790708985179663, -0.07581936568021774, 0.10480071604251862, 0.03414199873805046, 0.03425652161240578, -0.051376279443502426, 0.06571223586797714, 0.08695551007986069, -0.01613386906683445, 0.056283578276634216, 0.14148209989070892, -0.12205791473388672, -0.03630830720067024, -0.06943429261445999, 0.0879710242152214, -0.04139241948723793, -0.020858168601989746, -0.03999984264373779, -0.07370934635400772, -0.00005046385194873437, 0.14524400234222412, 0.03452496975660324, 0.05358681455254555, -0.061636969447135925, -0.0016464941436424851, -0.07237809896469116, 0.04838844761252403, 0.04131504148244858, -0.0210436824709177, -0.0814274251461029, 0.14295445382595062, 0.05109249800443649, 0.09093693643808365, -0.04233386367559433, -0.07814428955316544, -0.16737021505832672, 0.001492224633693695, -0.10114190727472305, 0.06056009232997894, -0.11265269666910172, -0.027917947620153427, -0.03223618492484093, -0.06133072078227997, -0.018791966140270233, 0.0397096611559391, -0.021566815674304962, -0.04406515881419182, -0.025451187044382095, 0.07721193879842758, -0.0995820164680481, 0.029569657519459724, 0.015324288979172707, -0.08972302079200745, 0.07297103852033615, 0.04681955277919769, -0.03628632426261902, 0.08257368206977844, 0.0793331116437912, -0.027414165437221527, -0.04222600534558296, 0.05087871104478836, 0.05319350212812424, -0.10623817145824432, -0.023008503019809723, 0.002783751580864191, 0.018372029066085815, 0.00039004909922368824, 0.09231598675251007, -0.05236068367958069, -0.004506207071244717, -0.07881934195756912, -0.04675024747848511, -0.06328372657299042, 0.04303229600191116, 0.03638507053256035, 0.0396767184138298, 0.07776141911745071, -0.07917378097772598, 0.0724322572350502, -0.17992568016052246, -0.021437305957078934, 0.02386431396007538, 0.0074453637935221195, 0.0374162383377552, -0.08523024618625641, 0.044151097536087036, -0.07815558463335037, 0.02529633790254593, -0.06543175131082535, 0.05111876502633095, 0.06677917391061783, -0.03355571627616882, -0.009012485854327679, 0.010098690167069435, 0.15251100063323975, 0.04110102728009224, 0.013910666108131409, -0.030912844464182854, -0.01378204207867384, -0.058795586228370667, 0.028078977018594742, 0.21433113515377045, 0.08658885955810547, 0.018044564872980118, 0.08235972374677658, 0.03760930895805359, -0.06136303395032883, -0.09401999413967133, 0.04084906727075577, -0.056448545306921005, 0.03106164000928402, 0.0016049982514232397, 0.0074974060989916325, 0.19234976172447205, -0.17657965421676636, 0.12505584955215454, 0.01576017215847969, -0.10070069879293442, -0.09731215238571167, -0.1838240772485733, -0.057556699961423874, -0.050887394696474075, -0.0031563963275402784, -0.14051370322704315, -0.027031084522604942, -0.022543486207723618, 0.05462402477860451, -0.026975609362125397, 0.08298766613006592, -0.12721729278564453, -0.1144389808177948, 0.04442071542143822, -0.011153968051075935, 0.05543571710586548, 0.01417695451527834, -0.0009878268465399742, 0.021354425698518753, 0.03954331949353218, 0.01820516772568226, 0.041963979601860046, 0.0757858082652092, 0.07868453860282898, -0.0439545176923275, -0.03364557772874832, 0.01813267543911934, 0.016088739037513733, 0.07023649662733078, 0.13192692399024963, 0.04540030658245087, -0.09473195672035217, -0.00839231163263321, 0.16718968749046326, 0.004397279117256403, -0.12342671304941177, -0.1921522617340088, 0.22357885539531708, -0.0055085294879972935, 0.0021526177879422903, 0.015006222762167454, -0.08228907734155655, -0.010061371140182018, 0.3140229284763336, 0.19235262274742126, -0.08165579289197922, 0.001771719311363995, 0.019264688715338707, 0.019187409430742264, 0.04164554551243782, 0.07857056707143784, 0.04451450705528259, 0.29435408115386963, -0.013743172399699688, 0.010527361184358597, -0.09242603182792664, -0.0001534508919576183, -0.034700360149145126, 0.1872021108865738, 0.07405605167150497, -0.05983957275748253, -0.028555018827319145, 0.10176300257444382, -0.052447862923145294, -0.15102800726890564, -0.02233564667403698, -0.09852082282304764, -0.0891427993774414, -0.008703812956809998, -0.01253592036664486, 0.024102747440338135, 0.060692526400089264, 0.005842240992933512, 0.04347378388047218, -0.0034440841991454363, 0.060495100915431976, -0.03761041909456253, -0.04191377013921738, 0.1237623542547226, 0.023529082536697388, 0.0986025333404541, -0.007374727167189121, 0.05742596834897995, 0.0901137962937355, 0.07077911496162415, -0.04024716466665268, 0.06989230215549469, 0.020234232768416405, -0.07046832144260406, -0.012480353936553001, 0.05499826371669769, -0.007892334833741188, 0.09903128445148468, 0.07571501284837723, -0.10964394360780716, 0.045338261872529984, 0.09348692744970322, 0.01089897844940424, -0.08463317155838013, 0.10579095035791397, -0.1701459437608719, 0.1261904090642929, 0.17466256022453308, -0.03244971111416817, 0.034797798842191696, -0.054648999124765396, -0.000790495949331671, -0.003595412243157625, 0.10629618167877197, -0.04425432160496712, -0.12874406576156616, -0.0033630062825977802, -0.11363421380519867, -0.006379659287631512, -0.19000433385372162, -0.062347568571567535, 0.012991598807275295, -0.01426349114626646, -0.06229868158698082, 0.12542100250720978, 0.09757193177938461, 0.013798910193145275, -0.019977601245045662, -0.2616630494594574, 0.006418558768928051, 0.09336741268634796, -0.08999698609113693, -0.0834103673696518 ]
null
null
transformers
# Okabe Rintaro DialoGPT Model
{"tags": ["conversational"]}
text-generation
ModzabazeR/small-okaberintaro
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# Okabe Rintaro DialoGPT Model
[ "# Okabe Rintaro DialoGPT Model" ]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# Okabe Rintaro DialoGPT Model" ]
[ 51, 10 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# Okabe Rintaro DialoGPT Model" ]
[ -0.016011958941817284, 0.06112118437886238, -0.005886291153728962, 0.009617472067475319, 0.15664976835250854, 0.008790962398052216, 0.1458677351474762, 0.10999497026205063, -0.006357854697853327, -0.004074499476701021, 0.07007542252540588, 0.1486656665802002, 0.03816981613636017, 0.12755778431892395, -0.08138715475797653, -0.29993343353271484, 0.06936482340097427, 0.06614777445793152, 0.11718286573886871, 0.11826520413160324, 0.08035343140363693, -0.04097331315279007, 0.05892736092209816, 0.026809247210621834, -0.12275394797325134, 0.007838040590286255, -0.019930582493543625, -0.15411899983882904, 0.07413887977600098, 0.05858388915657997, 0.03080046735703945, 0.028059128671884537, -0.050313178449869156, -0.15512706339359283, 0.04005163535475731, -0.032347746193408966, -0.06763067841529846, 0.032350312918424606, 0.03625302389264107, -0.09020745009183884, 0.13413965702056885, 0.1232609674334526, -0.04274963587522507, 0.03485685586929321, -0.16614161431789398, 0.07755309343338013, 0.011642561294138432, 0.08715075999498367, 0.07312214374542236, 0.1183004379272461, -0.05266910418868065, 0.09768205881118774, -0.08700154721736908, 0.07748179882764816, 0.07705612480640411, -0.26560384035110474, -0.03352012112736702, 0.08793572336435318, 0.05458670109510422, 0.06986448913812637, -0.070207379758358, 0.043994393199682236, 0.022077640518546104, -0.014123708009719849, -0.08282825350761414, -0.08299341797828674, -0.07772228866815567, -0.020796071738004684, -0.07716861367225647, 0.007007468491792679, 0.24451884627342224, -0.014549609273672104, 0.03295600414276123, -0.05354250967502594, -0.0889497771859169, -0.019376371055841446, -0.049667101353406906, -0.012805070728063583, -0.08428514748811722, 0.06818318367004395, 0.010394991375505924, -0.07089229673147202, -0.12721723318099976, 0.0023039928637444973, -0.18162618577480316, 0.2350238561630249, 0.03198671340942383, -0.004378674551844597, -0.18107502162456512, 0.09183382242918015, -0.049278050661087036, -0.11200974881649017, -0.0015436663525179029, -0.07346503436565399, 0.049649231135845184, 0.01651459001004696, -0.0011614763643592596, -0.014109594747424126, 0.09439471364021301, 0.1080196276307106, 0.012507757171988487, 0.011631792411208153, -0.021955864503979683, 0.04962790757417679, 0.06770496815443039, 0.07843302190303802, 0.006251786835491657, -0.05322497338056564, 0.006413978058844805, -0.08716605603694916, -0.010432668961584568, -0.058748263865709305, -0.15802307426929474, -0.028231311589479446, 0.042662493884563446, 0.03052527643740177, 0.04424199089407921, 0.10694794356822968, -0.027472376823425293, -0.05937276780605316, -0.0033634367864578962, -0.03327828273177147, -0.01578197255730629, 0.005183621775358915, -0.035082194954156876, 0.09097051620483398, 0.0022346600890159607, 0.052352264523506165, -0.13699971139431, 0.031185202300548553, -0.058365993201732635, 0.00373996514827013, -0.01763901859521866, -0.015742242336273193, -0.01143667008727789, -0.09558127820491791, 0.015393389388918877, -0.16554053127765656, -0.14702023565769196, -0.041150618344545364, -0.02690482884645462, -0.060783762484788895, -0.1153663918375969, -0.10658210515975952, 0.010195636190474033, 0.04621408134698868, -0.07693414390087128, -0.042787909507751465, -0.07196204364299774, 0.08346918970346451, -0.0016225293511524796, 0.07438196986913681, -0.07616674154996872, 0.07587116956710815, -0.11073984950780869, -0.03390735387802124, -0.04426954314112663, 0.09627249836921692, 0.018123703077435493, 0.036129191517829895, -0.04406314343214035, 0.018905656412243843, -0.1274818331003189, 0.07464327663183212, -0.016282737255096436, 0.24878740310668945, -0.036926619708538055, -0.1105855330824852, 0.26632481813430786, -0.0600181445479393, -0.12660036981105804, 0.11237766593694687, 0.01653308980166912, 0.1433795690536499, 0.09706605970859528, 0.21887558698654175, -0.02645905315876007, -0.010634728707373142, 0.0394783653318882, 0.04566812515258789, -0.05546312406659126, -0.031619954854249954, 0.022796425968408585, -0.020218003541231155, -0.03141351789236069, 0.035415492951869965, 0.0955495834350586, 0.059685174375772476, -0.05739990621805191, -0.019587615504860878, 0.0028331619687378407, 0.0003979186585638672, 0.03617418557405472, -0.013816315680742264, 0.12144732475280762, -0.019171005114912987, -0.06460292637348175, -0.0788300409913063, 0.030998505651950836, -0.04839841648936272, 0.025943251326680183, -0.0891076847910881, 0.11845892667770386, -0.04865102842450142, 0.06165246292948723, -0.09980043768882751, -0.021135535091161728, -0.04299337789416313, 0.15723665058612823, 0.070703886449337, 0.09535964578390121, 0.036179207265377045, -0.026452627032995224, -0.019595706835389137, -0.021093126386404037, 0.1587742418050766, -0.020307401195168495, -0.07754722982645035, -0.0708078071475029, 0.12411962449550629, -0.05545707419514656, 0.09304767847061157, -0.04907269775867462, 0.02863602340221405, -0.0302046537399292, 0.12642814218997955, -0.041662875562906265, 0.0487990565598011, 0.01238865777850151, -0.004372960887849331, -0.08061158657073975, 0.019818367436528206, 0.08795899897813797, 0.00291278213262558, -0.1083439290523529, 0.23319199681282043, -0.1816374659538269, 0.13760699331760406, 0.1789635568857193, -0.16193009912967682, 0.04726414754986763, -0.13960206508636475, -0.035680606961250305, 0.016195207834243774, 0.08966705948114395, 0.044314417988061905, 0.1835012137889862, -0.016687102615833282, 0.16729094088077545, -0.042387060821056366, 0.018570471554994583, -0.007758413907140493, -0.09757310897111893, -0.004409226588904858, 0.09898663312196732, 0.12348055094480515, -0.15008364617824554, 0.17557041347026825, 0.09251681715250015, 0.055025119334459305, 0.2291024923324585, 0.020320868119597435, -0.009706351906061172, 0.04632352665066719, 0.011205947026610374, -0.04611912742257118, -0.08931710571050644, -0.28038260340690613, -0.010159830562770367, 0.06665390729904175, 0.04520747810602188, 0.12291441112756729, -0.08559180796146393, -0.03207144886255264, -0.012834468856453896, 0.015436560846865177, 0.05735629424452782, 0.10442402958869934, 0.007226564921438694, 0.10583928227424622, -0.03162309154868126, -0.09043658524751663, 0.07306662201881409, 0.0380520336329937, -0.04994674772024155, 0.18786312639713287, -0.09036117792129517, -0.3318084478378296, -0.1061156839132309, -0.23868022859096527, -0.08879214525222778, 0.07265859097242355, 0.11283908039331436, -0.1270574927330017, -0.007543372455984354, -0.00252523273229599, 0.1103520467877388, -0.047241903841495514, -0.0021788161247968674, -0.02818400226533413, 0.004801597911864519, -0.14500851929187775, -0.08244186639785767, -0.06464030593633652, -0.0527644045650959, -0.11880913376808167, 0.1711985319852829, -0.16459321975708008, 0.0655132457613945, 0.22255849838256836, 0.06271164119243622, 0.035984162241220474, -0.0019631609320640564, 0.13665537536144257, -0.13462337851524353, -0.005970413330942392, 0.2062111347913742, -0.028919978067278862, 0.06364994496107101, 0.14836131036281586, -0.030702784657478333, -0.06002393737435341, 0.04010957479476929, -0.016637055203318596, -0.04596179723739624, -0.23774027824401855, -0.12560349702835083, -0.11334634572267532, 0.0777054876089096, -0.0019532106816768646, 0.052704934030771255, 0.23077291250228882, 0.11434094607830048, -0.03794632852077484, -0.041206955909729004, 0.05590594559907913, 0.10511458665132523, 0.1931697428226471, -0.06079242378473282, 0.1430487334728241, 0.01224248856306076, -0.16390997171401978, 0.06666850298643112, 0.05829222500324249, 0.09125716984272003, 0.06343694031238556, 0.06339995563030243, 0.019246235489845276, 0.04267914965748787, 0.12106040120124817, 0.06518302112817764, 0.042841777205467224, -0.046474143862724304, -0.05267423391342163, -0.02105122059583664, -0.034224845468997955, 0.05103044584393501, 0.07743927091360092, -0.1581830084323883, -0.04687998443841934, -0.0008040178217925131, 0.057180847972631454, 0.025705929845571518, 0.06447762995958328, -0.16372282803058624, -0.0037339869886636734, 0.07829663157463074, -0.035304922610521317, -0.1487821340560913, 0.05772551894187927, 0.010218370705842972, -0.1330385059118271, 0.026207802817225456, 0.026433540508151054, 0.12665951251983643, -0.06866578757762909, 0.06904110312461853, -0.15188761055469513, -0.05877871811389923, -0.024943679571151733, 0.10707712173461914, -0.2714843153953552, 0.17382121086120605, -0.010321934707462788, -0.005260367412120104, -0.10904033482074738, -0.027408378198742867, 0.0010023948270827532, 0.09166242182254791, 0.11074419319629669, -0.03194880858063698, 0.046258099377155304, 0.008224819786846638, -0.05502474680542946, 0.028959227725863457, 0.09628848731517792, -0.06792595982551575, 0.00077249068999663, -0.006042557302862406, 0.022722726687788963, -0.03977564722299576, -0.029123691841959953, -0.02863646298646927, -0.1640923023223877, 0.08790386468172073, 0.06399375945329666, 0.13083592057228088, 0.025374166667461395, -0.028881162405014038, -0.048887260258197784, 0.2483125478029251, 0.02127821557223797, -0.06144001707434654, -0.0965331420302391, -0.04957948252558708, 0.06441345810890198, -0.08042588829994202, 0.00481959106400609, -0.07808521389961243, 0.028512079268693924, -0.08032441139221191, -0.13318535685539246, 0.10216634720563889, -0.09090542048215866, -0.055812373757362366, -0.03999822214245796, 0.18915700912475586, 0.0034211897291243076, 0.009370754472911358, 0.04010391607880592, -0.013474574312567711, -0.0968465507030487, -0.0647306814789772, -0.0027987167704850435, 0.02449660189449787, 0.03497746214270592, 0.0503169447183609, -0.04549236223101616, -0.10457391291856766, -0.10019988566637039, -0.05267223343253136, 0.26728954911231995, 0.1586330235004425, 0.02772345021367073, 0.13176514208316803, 0.1656360775232315, -0.08273191750049591, -0.26072564721107483, -0.13025206327438354, -0.07251144200563431, -0.006302247755229473, -0.12587037682533264, -0.16045379638671875, 0.06908994168043137, -0.004940293729305267, -0.015525978989899158, 0.10367880761623383, -0.2497374564409256, -0.11128980666399002, 0.18761463463306427, -0.040097955614328384, 0.43956705927848816, -0.10567043721675873, -0.06212061271071434, -0.056079454720020294, -0.16467566788196564, 0.13277983665466309, -0.0030292465817183256, 0.14163804054260254, -0.0396101251244545, 0.131836399435997, 0.057278867810964584, 0.001040771952830255, 0.10316559672355652, 0.04332935810089111, -0.08054976165294647, -0.13457278907299042, -0.062288474291563034, -0.005008203908801079, 0.022579193115234375, 0.011016671545803547, -0.0382629930973053, -0.0007965523400343955, -0.17238706350326538, -0.07768655568361282, -0.08307186514139175, 0.06867854297161102, 0.030651388689875603, -0.0657728835940361, 0.005620358046144247, -0.018298504874110222, -0.00007345458288909867, 0.04903508722782135, 0.18656794726848602, -0.1051303967833519, 0.14628922939300537, 0.10186867415904999, 0.10842349380254745, -0.0977662056684494, 0.01684609055519104, -0.08395680785179138, -0.04411423206329346, 0.05127784609794617, -0.05212322995066643, 0.002424054779112339, 0.11977076530456543, -0.052850186824798584, 0.10030972957611084, 0.07898271083831787, -0.017178311944007874, 0.021305866539478302, 0.1177547350525856, -0.20173101127147675, -0.0664365291595459, -0.07070888578891754, 0.006991098169237375, 0.06649206578731537, 0.08334559202194214, 0.18803554773330688, 0.0013368435902521014, -0.04851031303405762, -0.0171238724142313, 0.053431134670972824, -0.05289679393172264, 0.08016402274370193, -0.010250226594507694, 0.0016820497112348676, -0.13062429428100586, 0.07518437504768372, 0.019330834969878197, -0.10456915944814682, 0.008135747164487839, 0.12360718101263046, -0.08308112621307373, -0.12244502454996109, -0.007459809072315693, 0.1425476372241974, -0.11587749421596527, -0.02815450169146061, -0.03178272768855095, -0.1342000663280487, 0.05458557605743408, 0.0598197840154171, 0.016028162091970444, 0.022787999361753464, -0.06912354379892349, -0.032480765134096146, -0.05087672546505928, -0.027936358004808426, 0.11503928154706955, -0.0049423580057919025, -0.04371004179120064, 0.023088332265615463, -0.03314436599612236, 0.1123540848493576, -0.08067860454320908, -0.11860751360654831, -0.14636576175689697, 0.029360299929976463, -0.10681641846895218, -0.07304779440164566, -0.12452556937932968, -0.05588376149535179, -0.017079045996069908, -0.06903076171875, -0.06339343637228012, -0.06518354266881943, -0.11622418463230133, 0.040799643844366074, -0.03661048412322998, 0.030823616310954094, -0.03252709284424782, 0.022536834701895714, 0.05914638563990593, -0.045244839042425156, 0.14285412430763245, 0.1647096574306488, -0.09672670066356659, 0.08939624577760696, -0.17497354745864868, -0.03205270320177078, 0.11164379119873047, 0.003010794520378113, 0.02842162922024727, 0.0700906440615654, 0.02662634290754795, 0.0740218237042427, 0.038981206715106964, 0.02150711417198181, 0.007812135852873325, -0.10953433811664581, 0.02832682617008686, -0.07269103080034256, -0.17149090766906738, -0.05385939031839371, 0.002023214241489768, 0.048396699130535126, 0.043074727058410645, 0.1084907054901123, -0.045064155012369156, 0.10245931148529053, -0.05039939284324646, 0.04121745750308037, 0.023168697953224182, -0.15684252977371216, 0.06180034205317497, -0.12152980268001556, 0.03587774932384491, 0.013882934115827084, 0.13161443173885345, 0.0468115396797657, -0.031255561858415604, -0.013097735121846199, 0.03552883118391037, 0.034916702657938004, -0.007331711705774069, 0.21042470633983612, 0.13221578299999237, -0.03258120268583298, -0.09598378837108612, 0.061952780932188034, 0.03073003888130188, 0.02577613852918148, 0.07724916189908981, 0.0017040630336850882, 0.010347255505621433, 0.13093341886997223, -0.007164962589740753, -0.004348232410848141, -0.10286041349172592, -0.11743025481700897, -0.06268275529146194, 0.03826538473367691, -0.041194334626197815, 0.107975073158741, 0.15461674332618713, -0.02003426104784012, 0.0013360579032450914, -0.010301798582077026, -0.07732363045215607, -0.15918684005737305, -0.18502190709114075, -0.09495522826910019, -0.12070488184690475, 0.05244554951786995, -0.13343331217765808, 0.05099314823746681, 0.04039422795176506, 0.07261575013399124, -0.07561163604259491, 0.08468987792730331, 0.09629257023334503, -0.14389902353286743, 0.08421742916107178, -0.03932281211018562, 0.09270581603050232, -0.07290638238191605, -0.004924508277326822, -0.10191014409065247, 0.0651446208357811, 0.02635553665459156, 0.06355176866054535, -0.017553431913256645, 0.03181542828679085, -0.12616847455501556, -0.08433361351490021, -0.054015371948480606, 0.0552167184650898, 0.023738600313663483, 0.18226446211338043, -0.006727518513798714, -0.0487973690032959, 0.03355270251631737, 0.2373686283826828, -0.02824047952890396, -0.10382484644651413, -0.04834527522325516, 0.18683363497257233, 0.0343504399061203, 0.08765650540590286, -0.03324156254529953, -0.016987204551696777, -0.08248510211706161, 0.3045847415924072, 0.23218537867069244, -0.07261962443590164, -0.012283663265407085, 0.029321594163775444, 0.04044979438185692, 0.10506242513656616, 0.07243094593286514, 0.09260943531990051, 0.30039310455322266, -0.07169128209352493, 0.05415438860654831, -0.020413806661963463, -0.014419854618608952, -0.04540439695119858, 0.07605868577957153, 0.04548350349068642, -0.060597971081733704, -0.055807095021009445, 0.07777039706707001, -0.2767772078514099, 0.08300065249204636, -0.10405994206666946, -0.15795157849788666, -0.09829749912023544, -0.01597643829882145, 0.10172217339277267, 0.05415763333439827, 0.1146097183227539, -0.00868072360754013, -0.09380710870027542, 0.014215354807674885, 0.031090281903743744, -0.15866494178771973, 0.009272022172808647, 0.057916246354579926, -0.07198188453912735, -0.005658880807459354, -0.026923229917883873, 0.0762024074792862, 0.0736948773264885, 0.0498754158616066, 0.0038596661761403084, 0.059789013117551804, -0.02149530127644539, -0.025949429720640182, 0.06728973984718323, 0.03463399410247803, 0.011850944720208645, -0.12163642793893814, 0.10188489407300949, -0.1653476357460022, 0.054192494601011276, 0.017055677250027657, -0.020060304552316666, -0.027453957125544548, 0.07935615628957748, -0.09931802749633789, 0.07518744468688965, 0.06930691748857498, -0.01775876246392727, -0.010905047878623009, -0.04659072682261467, 0.024317974224686623, -0.032440103590488434, -0.04687825217843056, -0.06253378093242645, -0.1752179116010666, -0.11584415286779404, 0.08362042158842087, 0.020025992766022682, -0.1985606998205185, 0.02391696348786354, -0.14183345437049866, 0.038395605981349945, -0.14785467088222504, 0.09002568572759628, 0.09284002333879471, 0.020337188616394997, -0.0030761579982936382, -0.030486129224300385, 0.030159901827573776, 0.06525030732154846, -0.0967361256480217, -0.07099789381027222 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [hf-test/xls-r-dummy](https://huggingface.co/hf-test/xls-r-dummy) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - AB dataset. It achieves the following results on the evaluation set: - Loss: 207.6065 - Wer: 1.5484 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 10 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu113 - Datasets 1.18.4.dev0 - Tokenizers 0.11.0
{"language": ["ab"], "tags": ["automatic-speech-recognition", "mozilla-foundation/common_voice_7_0", "generated_from_trainer"], "datasets": ["common_voice"], "model-index": [{"name": "", "results": []}]}
automatic-speech-recognition
Mofe/speech-sprint-test
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "mozilla-foundation/common_voice_7_0", "generated_from_trainer", "ab", "dataset:common_voice", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:04+00:00
[]
[ "ab" ]
TAGS #transformers #pytorch #wav2vec2 #automatic-speech-recognition #mozilla-foundation/common_voice_7_0 #generated_from_trainer #ab #dataset-common_voice #endpoints_compatible #region-us
# This model is a fine-tuned version of hf-test/xls-r-dummy on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - AB dataset. It achieves the following results on the evaluation set: - Loss: 207.6065 - Wer: 1.5484 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 10 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu113 - Datasets 1.18.4.dev0 - Tokenizers 0.11.0
[ "# \n\nThis model is a fine-tuned version of hf-test/xls-r-dummy on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - AB dataset.\nIt achieves the following results on the evaluation set:\n- Loss: 207.6065\n- Wer: 1.5484", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 0.0003\n- train_batch_size: 2\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- training_steps: 10\n- mixed_precision_training: Native AMP", "### Training results", "### Framework versions\n\n- Transformers 4.17.0.dev0\n- Pytorch 1.10.2+cu113\n- Datasets 1.18.4.dev0\n- Tokenizers 0.11.0" ]
[ "TAGS\n#transformers #pytorch #wav2vec2 #automatic-speech-recognition #mozilla-foundation/common_voice_7_0 #generated_from_trainer #ab #dataset-common_voice #endpoints_compatible #region-us \n", "# \n\nThis model is a fine-tuned version of hf-test/xls-r-dummy on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - AB dataset.\nIt achieves the following results on the evaluation set:\n- Loss: 207.6065\n- Wer: 1.5484", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 0.0003\n- train_batch_size: 2\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- training_steps: 10\n- mixed_precision_training: Native AMP", "### Training results", "### Framework versions\n\n- Transformers 4.17.0.dev0\n- Pytorch 1.10.2+cu113\n- Datasets 1.18.4.dev0\n- Tokenizers 0.11.0" ]
[ 71, 71, 6, 12, 8, 3, 101, 4, 39 ]
[ "passage: TAGS\n#transformers #pytorch #wav2vec2 #automatic-speech-recognition #mozilla-foundation/common_voice_7_0 #generated_from_trainer #ab #dataset-common_voice #endpoints_compatible #region-us \n# \n\nThis model is a fine-tuned version of hf-test/xls-r-dummy on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - AB dataset.\nIt achieves the following results on the evaluation set:\n- Loss: 207.6065\n- Wer: 1.5484## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 0.0003\n- train_batch_size: 2\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- training_steps: 10\n- mixed_precision_training: Native AMP### Training results### Framework versions\n\n- Transformers 4.17.0.dev0\n- Pytorch 1.10.2+cu113\n- Datasets 1.18.4.dev0\n- Tokenizers 0.11.0" ]
[ -0.11369607597589493, 0.11757971346378326, -0.003984853625297546, 0.025437284260988235, 0.1395273208618164, 0.014353722333908081, 0.06646880507469177, 0.157508984208107, -0.09123051166534424, 0.08846329152584076, 0.06530880928039551, 0.02677779458463192, 0.09448324888944626, 0.0770578384399414, -0.0055977534502744675, -0.26797550916671753, 0.019208766520023346, -0.011063794605433941, -0.03838376700878143, 0.08922117948532104, 0.13432423770427704, -0.08294118940830231, 0.022897114977240562, 0.04808732122182846, -0.14287012815475464, 0.012461824342608452, -0.028323452919721603, -0.056813858449459076, 0.08876059204339981, 0.018580332398414612, 0.062441252171993256, 0.006479434669017792, 0.069768026471138, -0.2511826157569885, 0.0027465589810162783, 0.06823167204856873, 0.0734206885099411, 0.07881693542003632, 0.06754466891288757, 0.018199317157268524, 0.0716460794210434, -0.12571492791175842, 0.04282800108194351, 0.07932838052511215, -0.07507197558879852, -0.2281668484210968, -0.09354521334171295, 0.04664319008588791, 0.0769914984703064, 0.10422160476446152, -0.020996522158384323, 0.12122329324483871, -0.038202930241823196, 0.06362627446651459, 0.19354869425296783, -0.2322794497013092, -0.04206664487719536, -0.011210879310965538, 0.07736383378505707, 0.07252125442028046, -0.10427232086658478, 0.006991776637732983, 0.06030583381652832, 0.0169074684381485, 0.04637832194566727, 0.01602637767791748, -0.01511798333376646, -0.026915287598967552, -0.11478815972805023, -0.07609099894762039, 0.23129133880138397, 0.0724535882472992, -0.06696844846010208, -0.11037798970937729, -0.006688052322715521, -0.12351997196674347, -0.03077077306807041, -0.004493142478168011, 0.002810040256008506, -0.0243240799754858, -0.024580594152212143, -0.061980605125427246, -0.08776576817035675, -0.06485514342784882, 0.06164281815290451, 0.13454768061637878, 0.04372294619679451, -0.007718467619270086, -0.016283074393868446, 0.09065283834934235, -0.024022702127695084, -0.14087238907814026, -0.047272659838199615, -0.00817741546779871, -0.06557565927505493, -0.02509390376508236, -0.05187505483627319, -0.036596156656742096, 0.03365478292107582, 0.0851047933101654, -0.03899860382080078, 0.07507480680942535, -0.004884639289230108, 0.013960565440356731, -0.009412302635610104, 0.17717836797237396, -0.01429557241499424, -0.035383787006139755, 0.0025303089059889317, 0.11398353427648544, -0.0029480098746716976, -0.025881778448820114, -0.06315494328737259, -0.02949410118162632, 0.12761755287647247, 0.08570803701877594, -0.013176609762012959, 0.0058140321634709835, -0.08405905216932297, -0.03498461842536926, 0.0014062105910852551, -0.13943028450012207, 0.02967393770813942, 0.009474480524659157, -0.05864178016781807, 0.02500765584409237, 0.013920292258262634, 0.010382776148617268, -0.07360966503620148, -0.001459208084270358, -0.049052245914936066, -0.01952555775642395, -0.0728726014494896, -0.06850521266460419, 0.015956569463014603, -0.014041118323802948, 0.009464317932724953, -0.06696086376905441, -0.12942352890968323, -0.048177145421504974, 0.018483152613043785, -0.06850987672805786, -0.08731355518102646, -0.019269175827503204, -0.0606679692864418, 0.021665042266249657, -0.023599160835146904, 0.11495178937911987, -0.023968279361724854, 0.07999461889266968, 0.05649835988879204, 0.012095353566110134, 0.04925623908638954, 0.07108376920223236, -0.032530833035707474, 0.050178658217191696, -0.08718523383140564, 0.1250888854265213, -0.12455239146947861, 0.0343342088162899, -0.14075610041618347, -0.10443593561649323, -0.01215645857155323, -0.02581517957150936, 0.10144738852977753, 0.1276293247938156, -0.14412552118301392, -0.04978332668542862, 0.13255521655082703, -0.06067118048667908, -0.061128951609134674, 0.12262062728404999, -0.009563324972987175, 0.014322733506560326, 0.051921773701906204, 0.18243299424648285, 0.1482151299715042, -0.11800359189510345, 0.002422876190394163, 0.005249993409961462, 0.08150675147771835, 0.041189126670360565, 0.07822605222463608, -0.06823723018169403, -0.02373000606894493, 0.018535371869802475, -0.05739534646272659, 0.017775971442461014, -0.07965513318777084, -0.07540490478277206, -0.04128894582390785, -0.06503437459468842, 0.04074438288807869, 0.0206826813519001, 0.0076767392456531525, -0.08116049319505692, -0.12083496898412704, 0.04521157220005989, 0.1359538733959198, -0.0771041065454483, 0.024611713364720345, -0.08809413015842438, 0.05011695623397827, -0.05373679846525192, -0.007278891745954752, -0.19002613425254822, -0.04485183209180832, 0.07201071083545685, -0.09245488792657852, 0.03669069707393646, 0.0037605431862175465, 0.04697328805923462, 0.03746486082673073, -0.006253366824239492, -0.0462898425757885, -0.10218556970357895, 0.00013559246144723147, -0.07157687097787857, -0.1609165370464325, -0.07759074121713638, -0.027985423803329468, 0.18200570344924927, -0.21045926213264465, -0.004420020151883364, 0.02788754366338253, 0.10915267467498779, -0.010793738067150116, -0.058863602578639984, 0.028281787410378456, 0.035223495215177536, 0.006241480819880962, -0.08940333127975464, 0.02311864122748375, 0.024076808243989944, -0.11792919784784317, 0.005253572482615709, -0.14217475056648254, -0.011436083354055882, 0.0729350671172142, 0.052424151450395584, -0.04276967793703079, -0.036358676850795746, -0.05197570472955704, -0.05050661042332649, -0.037318311631679535, -0.06110910698771477, 0.20435646176338196, 0.020714664831757545, 0.12210202217102051, -0.0724341943860054, -0.04224570840597153, 0.02207699976861477, -0.008165402337908745, -0.0210312157869339, 0.0673845186829567, -0.03280950337648392, -0.10087473690509796, 0.055785249918699265, 0.047561898827552795, -0.03392123430967331, 0.16069552302360535, -0.07869423925876617, -0.10678210109472275, -0.018054336309432983, 0.02329404279589653, 0.011027684435248375, 0.10505636781454086, -0.16550837457180023, -0.006292612291872501, 0.05189887434244156, 0.022004391998052597, 0.04363276809453964, -0.16990336775779724, 0.03171763941645622, 0.04607198014855385, -0.05722609907388687, -0.01644282415509224, -0.006000415422022343, 0.0043579647317528725, 0.06468651443719864, 0.015868928283452988, -0.01582389324903488, 0.014121231622993946, -0.037872157990932465, -0.0884845033288002, 0.14396706223487854, -0.12360956519842148, -0.1719183623790741, -0.15871934592723846, 0.03252675011754036, -0.0290803425014019, -0.021585781127214432, 0.0254179947078228, -0.08871196210384369, -0.06625443696975708, -0.060207150876522064, 0.00377454562112689, -0.08962206542491913, -0.01280655525624752, 0.0924178883433342, -0.017462024465203285, 0.12135789543390274, -0.13751764595508575, 0.0014287270605564117, 0.01176697388291359, -0.048613011837005615, -0.022472592070698738, 0.01174052245914936, 0.0802587941288948, 0.12118230015039444, 0.0047327675856649876, 0.024110088124871254, -0.02315407060086727, 0.24059104919433594, -0.11065509170293808, -0.00862528569996357, 0.14762577414512634, 0.012926647439599037, 0.06348742544651031, 0.09366140514612198, 0.02139248326420784, -0.0744120180606842, 0.02456752024590969, 0.0176067054271698, -0.0013632266782224178, -0.2781451642513275, -0.03999224677681923, -0.06506627798080444, -0.09126202762126923, 0.07945338636636734, 0.04368727654218674, 0.05859876796603203, 0.03349297121167183, -0.052937936037778854, 0.030466517433524132, -0.005830668844282627, 0.0912867933511734, 0.12934812903404236, 0.021398715674877167, 0.07846479117870331, -0.030910158529877663, -0.013016624376177788, 0.04276859015226364, 0.02544499561190605, 0.2604075074195862, 0.02976979874074459, 0.21476531028747559, 0.03688172250986099, 0.14964435994625092, 0.012698590755462646, 0.03613407164812088, 0.019595753401517868, 0.014821266755461693, 0.019320255145430565, -0.06007852405309677, -0.05406473949551582, 0.012464063242077827, 0.08461998403072357, 0.029195789247751236, -0.09378830343484879, 0.013039911165833473, -0.00913967378437519, 0.29668039083480835, 0.05605961009860039, -0.26405173540115356, -0.07594548165798187, 0.014380278997123241, -0.04778384417295456, -0.1071261316537857, -0.002299326239153743, 0.09218502789735794, -0.14490291476249695, 0.04956559091806412, -0.046610258519649506, 0.10226106643676758, -0.04706614464521408, 0.019960962235927582, 0.023318227380514145, 0.1250268965959549, 0.002974687609821558, 0.10060693323612213, -0.20809277892112732, 0.19907060265541077, 0.012006500735878944, 0.10556048154830933, -0.05797905847430229, 0.05561857670545578, 0.01577688194811344, 0.022989962249994278, 0.08926814794540405, 0.014376526698470116, -0.04325666278600693, -0.1553621143102646, -0.0877142921090126, 0.021551255136728287, 0.1268603503704071, -0.024088803678750992, 0.08701838552951813, -0.06579464673995972, 0.0029058533255010843, 0.0300246961414814, -0.044608306139707565, -0.18033558130264282, -0.13043305277824402, 0.05120500177145004, 0.0515630841255188, 0.08731342852115631, -0.09351613372564316, -0.08373944461345673, -0.022814054042100906, 0.1798192858695984, -0.04567217081785202, -0.06734030693769455, -0.13894787430763245, 0.08357010036706924, 0.15670059621334076, -0.04680321365594864, 0.029082220047712326, 0.011592155322432518, 0.1745101511478424, 0.018892623484134674, -0.03545263409614563, 0.036807529628276825, -0.06554250419139862, -0.16620436310768127, -0.03105184994637966, 0.1877758800983429, 0.0033934093080461025, 0.06578771024942398, 0.0135872233659029, -0.00428725453093648, -0.006808998994529247, -0.0818672925233841, 0.03317355364561081, 0.07269784063100815, 0.009037895128130913, 0.06030542775988579, -0.024041688069701195, 0.013964742422103882, -0.10051914304494858, -0.040889136493206024, 0.14736829698085785, 0.21869754791259766, -0.060365449637174606, 0.053640831261873245, 0.05733178183436394, -0.07926751673221588, -0.14370949566364288, 0.0070283496752381325, 0.1488322764635086, 0.05511321499943733, 0.017158769071102142, -0.1886681318283081, 0.02536414936184883, 0.07275184243917465, -0.033042311668395996, 0.03385458141565323, -0.27934888005256653, -0.11529646813869476, 0.08712731301784515, 0.059004198759794235, 0.017964160069823265, -0.13187973201274872, -0.07935819774866104, -0.045394908636808395, -0.09520860761404037, 0.026083970442414284, -0.004086018539965153, 0.13090349733829498, 0.0030808772426098585, 0.08995576202869415, 0.04770051687955856, -0.03299472853541374, 0.18126121163368225, 0.015406320802867413, 0.034579116851091385, -0.02016572654247284, 0.07245874404907227, 0.07582714408636093, -0.06351886689662933, 0.07686863094568253, -0.040944904088974, 0.0577305443584919, -0.16555486619472504, -0.024463985115289688, -0.07390906661748886, 0.04943738132715225, -0.04678458720445633, -0.026532793417572975, -0.014896661043167114, 0.034432314336299896, 0.0447784960269928, 0.006790931336581707, 0.05558915063738823, -0.02072134241461754, 0.055707644671201706, 0.12828373908996582, 0.12488414347171783, 0.038282327353954315, -0.1394985169172287, -0.011390076950192451, -0.0097719831392169, 0.07959675043821335, -0.11117710918188095, 0.03134950250387192, 0.09608767926692963, 0.03923449665307999, 0.13764336705207825, 0.010355147533118725, -0.1340346336364746, 0.009916242212057114, 0.03114774450659752, -0.041621290147304535, -0.18637944757938385, -0.059434425085783005, 0.07344555109739304, -0.13893163204193115, -0.0013870957773178816, 0.10639381408691406, -0.056288979947566986, -0.022840145975351334, -0.019702419638633728, 0.0072742849588394165, -0.047930628061294556, 0.19078367948532104, 0.04336152225732803, 0.10377391427755356, -0.08164603263139725, 0.10398565232753754, 0.0835350975394249, -0.0569288432598114, 0.07358507066965103, 0.03460804373025894, -0.0547950342297554, -0.018646936863660812, 0.017306607216596603, 0.060423344373703, 0.017954129725694656, -0.06692302972078323, -0.04636120796203613, -0.11591706424951553, 0.02908005379140377, 0.0088484026491642, 0.01781836710870266, 0.013196209445595741, -0.03288443014025688, 0.005772240925580263, -0.1511349380016327, 0.08461720496416092, 0.05188163369894028, 0.05987894535064697, -0.14527066051959991, 0.04205115884542465, 0.012860806658864021, 0.0462714359164238, -0.0013177028158679605, -0.04048708453774452, -0.054094113409519196, 0.00779169425368309, -0.13924117386341095, -0.0013770957011729479, -0.019702870398759842, -0.011806556023657322, -0.005047064274549484, -0.056145451962947845, -0.02020568773150444, 0.086764857172966, -0.07332394272089005, -0.08870191872119904, -0.0030698063783347607, 0.06946025788784027, -0.08185476809740067, 0.002025218214839697, 0.04915152117609978, -0.12510916590690613, 0.07739962637424469, 0.0628964751958847, 0.018275244161486626, 0.02689240500330925, -0.05270599573850632, -0.032851845026016235, 0.03326140716671944, 0.03749184310436249, 0.03835781663656235, -0.12504111230373383, -0.014758427627384663, -0.009505169466137886, 0.026144281029701233, -0.022427331656217575, 0.016361668705940247, -0.12447600066661835, -0.06590297818183899, -0.044376641511917114, -0.016256043687462807, -0.06325290352106094, 0.04349815100431442, 0.0645970031619072, 0.036053530871868134, 0.14039738476276398, -0.06410403549671173, 0.05949006602168083, -0.19515183568000793, -0.004718287382274866, -0.03796934336423874, -0.033512845635414124, -0.04289243742823601, -0.03864140063524246, 0.0845208689570427, -0.053972773253917694, 0.09438042342662811, -0.041928730905056, 0.10213875770568848, 0.028021518141031265, -0.042584292590618134, -0.004800321534276009, 0.003294884692877531, 0.21330401301383972, 0.08304480463266373, -0.00048546469770371914, 0.095232293009758, -0.04046228155493736, 0.05412484332919121, 0.09871689975261688, 0.08189843595027924, 0.17579643428325653, 0.01955668441951275, 0.06843986362218857, 0.07485417276620865, -0.09511104971170425, -0.1442558765411377, 0.09901279211044312, -0.0030749994330108166, 0.1268739104270935, -0.02507118321955204, 0.12675821781158447, 0.14588361978530884, -0.162186399102211, 0.0732741728425026, -0.053017061203718185, -0.11358612775802612, -0.09436991810798645, -0.10876502841711044, -0.07051463425159454, -0.1337665319442749, 0.024635236710309982, -0.11194976419210434, 0.04714395850896835, 0.06714078038930893, 0.008444690145552158, -0.01664721593260765, 0.1509198695421219, 0.028206150978803635, -0.04564676061272621, 0.10504100471735, -0.02792167104780674, 0.006653729826211929, -0.03738902509212494, -0.06571166217327118, 0.10038212686777115, 0.028159523382782936, 0.1050105094909668, -0.010804081335663795, -0.031147878617048264, 0.04993758723139763, -0.008226203732192516, -0.11638364940881729, 0.023524198681116104, -0.008741721510887146, 0.029815221205353737, 0.0754174217581749, 0.052339740097522736, -0.01221577636897564, -0.033085234463214874, 0.22218351066112518, -0.05770573765039444, -0.08499816805124283, -0.12479724735021591, 0.17275471985340118, 0.03732991963624954, -0.02064439281821251, 0.0487980954349041, -0.11133472621440887, 0.005432900507003069, 0.1458243578672409, 0.11216311156749725, -0.014243334531784058, -0.02236674353480339, -0.022841911762952805, -0.02530759945511818, -0.07478084415197372, 0.11180462688207626, 0.10292617231607437, -0.020367011427879333, -0.030327042564749718, 0.05992388725280762, -0.017884286120533943, -0.05994910001754761, -0.09558645635843277, 0.08641884475946426, 0.01627354696393013, -0.013460621237754822, -0.005862428806722164, 0.09871747344732285, -0.004543042276054621, -0.1576649248600006, -0.020259950309991837, -0.10595840215682983, -0.17535296082496643, -0.03702922910451889, 0.07110472768545151, 0.041568804532289505, 0.05305590108036995, -0.027049800381064415, 0.003172983881086111, 0.15651145577430725, -0.01209518127143383, -0.023408789187669754, -0.06658302247524261, 0.08566773682832718, -0.10886408388614655, 0.17093610763549805, 0.01455630175769329, 0.0774538516998291, 0.0884651467204094, 0.022608235478401184, -0.14631296694278717, 0.054699502885341644, 0.06087811663746834, -0.0823156088590622, 0.05983544513583183, 0.2211541384458542, -0.009895803406834602, 0.09056790173053741, 0.027872521430253983, -0.12410479784011841, -0.03872663527727127, -0.04443952813744545, 0.013220205903053284, -0.07062018662691116, -0.014180404134094715, -0.06241565942764282, 0.1450931280851364, 0.16822484135627747, -0.08147382736206055, -0.031171685084700584, -0.07012912631034851, 0.006243774201720953, 0.06102060154080391, 0.12981894612312317, -0.03817593306303024, -0.20439413189888, -0.003926546312868595, 0.005615175701677799, 0.028446460142731667, -0.21571436524391174, -0.07983539253473282, 0.026365935802459717, -0.05211733654141426, -0.03551732748746872, 0.10090593993663788, 0.058577992022037506, 0.01769876852631569, -0.033273059874773026, -0.10981247574090958, -0.04740552231669426, 0.15368057787418365, -0.16656990349292755, -0.04375142604112625 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - HA dataset. It achieves the following results on the evaluation set: - Loss: 0.4998 - Wer: 0.5153 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 9.6e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 80.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.0021 | 8.33 | 500 | 2.9059 | 1.0 | | 2.6604 | 16.66 | 1000 | 2.6402 | 0.9892 | | 1.2216 | 24.99 | 1500 | 0.6051 | 0.6851 | | 1.0754 | 33.33 | 2000 | 0.5408 | 0.6464 | | 0.9582 | 41.66 | 2500 | 0.5521 | 0.5935 | | 0.8653 | 49.99 | 3000 | 0.5156 | 0.5550 | | 0.7867 | 58.33 | 3500 | 0.5439 | 0.5606 | | 0.7265 | 66.66 | 4000 | 0.4863 | 0.5255 | | 0.6699 | 74.99 | 4500 | 0.5050 | 0.5169 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu113 - Datasets 1.18.4.dev0 - Tokenizers 0.11.0
{"language": ["ha"], "license": "apache-2.0", "tags": ["automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "robust-speech-event", "hf-asr-leaderboard"], "datasets": ["mozilla-foundation/common_voice_8_0"], "model-index": [{"name": "", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Common Voice 8.0", "type": "mozilla-foundation/common_voice_8_0", "args": "ha"}, "metrics": [{"type": "wer", "value": 51.31, "name": "Test WER"}]}]}]}
automatic-speech-recognition
Mofe/xls-r-hausa-40
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "robust-speech-event", "hf-asr-leaderboard", "ha", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:04+00:00
[]
[ "ha" ]
TAGS #transformers #pytorch #wav2vec2 #automatic-speech-recognition #mozilla-foundation/common_voice_8_0 #generated_from_trainer #robust-speech-event #hf-asr-leaderboard #ha #dataset-mozilla-foundation/common_voice_8_0 #license-apache-2.0 #endpoints_compatible #region-us
This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the MOZILLA-FOUNDATION/COMMON\_VOICE\_8\_0 - HA dataset. It achieves the following results on the evaluation set: * Loss: 0.4998 * Wer: 0.5153 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 9.6e-05 * train\_batch\_size: 8 * eval\_batch\_size: 8 * seed: 42 * gradient\_accumulation\_steps: 4 * total\_train\_batch\_size: 32 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * lr\_scheduler\_warmup\_steps: 2000 * num\_epochs: 80.0 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.17.0.dev0 * Pytorch 1.10.2+cu113 * Datasets 1.18.4.dev0 * Tokenizers 0.11.0
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 9.6e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 32\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 2000\n* num\\_epochs: 80.0\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.17.0.dev0\n* Pytorch 1.10.2+cu113\n* Datasets 1.18.4.dev0\n* Tokenizers 0.11.0" ]
[ "TAGS\n#transformers #pytorch #wav2vec2 #automatic-speech-recognition #mozilla-foundation/common_voice_8_0 #generated_from_trainer #robust-speech-event #hf-asr-leaderboard #ha #dataset-mozilla-foundation/common_voice_8_0 #license-apache-2.0 #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 9.6e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 32\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 2000\n* num\\_epochs: 80.0\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.17.0.dev0\n* Pytorch 1.10.2+cu113\n* Datasets 1.18.4.dev0\n* Tokenizers 0.11.0" ]
[ 107, 161, 4, 39 ]
[ "passage: TAGS\n#transformers #pytorch #wav2vec2 #automatic-speech-recognition #mozilla-foundation/common_voice_8_0 #generated_from_trainer #robust-speech-event #hf-asr-leaderboard #ha #dataset-mozilla-foundation/common_voice_8_0 #license-apache-2.0 #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 9.6e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 32\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 2000\n* num\\_epochs: 80.0\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.17.0.dev0\n* Pytorch 1.10.2+cu113\n* Datasets 1.18.4.dev0\n* Tokenizers 0.11.0" ]
[ -0.13802620768547058, 0.12079241126775742, -0.004752619192004204, 0.040297601372003555, 0.10502050817012787, 0.00562854902818799, 0.08607729524374008, 0.14852099120616913, -0.08985696732997894, 0.11225176602602005, 0.0852745920419693, 0.06944966316223145, 0.08992873132228851, 0.11179018020629883, -0.01812770962715149, -0.2926039397716522, 0.02274646982550621, -0.04114290699362755, -0.12828190624713898, 0.0946141704916954, 0.10047130286693573, -0.09612782299518585, 0.035192932933568954, 0.023109499365091324, -0.08785925060510635, -0.0020540037658065557, -0.050281062722206116, -0.03822080418467522, 0.07918041944503784, 0.05542326718568802, 0.0380033403635025, 0.027415890246629715, 0.0927732065320015, -0.2608248293399811, 0.006799866445362568, 0.06639379262924194, 0.041807375848293304, 0.054763853549957275, 0.11063655465841293, -0.005900414660573006, 0.11100099980831146, -0.0665329098701477, 0.026932332664728165, 0.07149472087621689, -0.09495669603347778, -0.23621594905853271, -0.0846574530005455, 0.037360694259405136, 0.12998564541339874, 0.08234953135251999, -0.039251748472452164, 0.01886901631951332, -0.0683601126074791, 0.09325561672449112, 0.21178914606571198, -0.21059271693229675, -0.07625504583120346, -0.021863456815481186, 0.038144852966070175, 0.04025708884000778, -0.11071125417947769, -0.015007194131612778, 0.022104434669017792, 0.007380171678960323, 0.06542962789535522, 0.007922116667032242, 0.009566446766257286, 0.006363449152559042, -0.1396452635526657, -0.047075361013412476, 0.14590516686439514, 0.09353064000606537, -0.013107791543006897, -0.10073741525411606, -0.01941586099565029, -0.18488895893096924, -0.04840826615691185, 0.03681916743516922, 0.029139893129467964, -0.033517781645059586, -0.05240394547581673, 0.02662731520831585, -0.043118786066770554, -0.07761819660663605, 0.06469329446554184, 0.10985912382602692, 0.03310036659240723, -0.033005740493535995, 0.010823538526892662, 0.0903884619474411, 0.05717086046934128, -0.172427698969841, -0.03728164732456207, 0.04014276713132858, -0.11070674657821655, -0.0037535950541496277, -0.013328703120350838, 0.046500757336616516, 0.05704674497246742, 0.10795190185308456, -0.009229523129761219, 0.09447907656431198, 0.013922694139182568, 0.009222852997481823, -0.08485347032546997, 0.1735912263393402, -0.07174047082662582, -0.09856012463569641, -0.04809780418872833, 0.1333475112915039, -0.013180775567889214, -0.004287321120500565, -0.06546507030725479, 0.031906720250844955, 0.08477499336004257, 0.05724862590432167, -0.00949498824775219, 0.03022993728518486, -0.04966585710644722, -0.021460730582475662, 0.0036257875617593527, -0.12599757313728333, 0.03340128809213638, 0.06322226673364639, -0.09224706888198853, 0.000979508040472865, -0.01619231328368187, 0.01031001191586256, -0.043084003031253815, 0.06710437685251236, -0.053682077676057816, -0.004672082606703043, -0.08021219074726105, -0.08805771917104721, 0.038029592484235764, -0.03170977905392647, -0.010581613518297672, -0.04989813640713692, -0.09838780015707016, -0.0775558352470398, 0.04539453983306885, -0.06055464968085289, -0.06969695538282394, -0.09388534724712372, -0.10025225579738617, 0.054937854409217834, -0.02123352512717247, 0.1664811372756958, -0.05497685819864273, 0.07965949177742004, 0.032915640622377396, 0.042333297431468964, 0.09936845302581787, 0.06678279489278793, -0.008592722937464714, 0.06083998084068298, -0.11684034764766693, 0.10815378278493881, -0.11779505759477615, 0.07904854416847229, -0.12974727153778076, -0.10024741291999817, -0.01746613346040249, 0.008565508760511875, 0.09304050356149673, 0.12976446747779846, -0.17191153764724731, -0.0894557535648346, 0.1589372605085373, -0.04091461002826691, -0.09730842709541321, 0.12040309607982635, -0.0049919383600354195, -0.03796238824725151, 0.026341155171394348, 0.17160719633102417, 0.14661237597465515, -0.08423524349927902, -0.002390580717474222, -0.04804087057709694, 0.1272851973772049, 0.049477752298116684, 0.08734805881977081, -0.05639181658625603, 0.04999035224318504, 0.004192687105387449, -0.029545405879616737, 0.04971212148666382, -0.07887808233499527, -0.08313006907701492, -0.011199165135622025, -0.08495858311653137, -0.01923515647649765, 0.053806547075510025, 0.014024321921169758, -0.07031810283660889, -0.12666264176368713, -0.011606717482209206, 0.11643655598163605, -0.10827841609716415, 0.008599731139838696, -0.08315825462341309, 0.052343934774398804, 0.0012368484167382121, 0.0037472948897629976, -0.14076276123523712, -0.01141383033245802, 0.034111443907022476, -0.06539046764373779, 0.012243887409567833, -0.021552370861172676, 0.0704815685749054, 0.03617370128631592, -0.02833602763712406, -0.057866185903549194, -0.024372341111302376, -0.013844398781657219, -0.04117709770798683, -0.23034565150737762, -0.07649925351142883, -0.008348203264176846, 0.1957702934741974, -0.21352937817573547, 0.006729497574269772, 0.059869471937417984, 0.12426046282052994, 0.016434377059340477, -0.0517701581120491, 0.018906181678175926, 0.05062106251716614, -0.020582031458616257, -0.08093740046024323, 0.02223467081785202, 0.007910646498203278, -0.09265902638435364, 0.0148067157715559, -0.13830308616161346, 0.0684622973203659, 0.08421710878610611, 0.018481668084859848, -0.057390328496694565, -0.04243171960115433, -0.058215174823999405, -0.05252305418252945, -0.005262875463813543, -0.018551373854279518, 0.15490907430648804, 0.006180057767778635, 0.10887967795133591, -0.07998751103878021, -0.054680369794368744, 0.03561604395508766, 0.023107174783945084, 0.002107804175466299, 0.15136206150054932, 0.05458417907357216, -0.04043501242995262, 0.08473791927099228, -0.004180957097560167, -0.05817098915576935, 0.16146358847618103, -0.0826856791973114, -0.08904743939638138, -0.03278909996151924, 0.03604064881801605, 0.030008181929588318, 0.10996558517217636, -0.19483840465545654, -0.03558859974145889, 0.021197404712438583, 0.027768781408667564, 0.0314185693860054, -0.17658931016921997, 0.007838287390768528, 0.0332026332616806, -0.09843187779188156, -0.012822664342820644, 0.0022098899353295565, -0.022184664383530617, 0.07901696860790253, 0.007569054141640663, -0.07982107251882553, -0.046282727271318436, -0.054584722965955734, -0.0989123210310936, 0.16320516169071198, -0.0886414423584938, -0.12938173115253448, -0.13131900131702423, -0.025084830820560455, -0.02908218279480934, -0.011805363930761814, 0.02938954532146454, -0.10022561252117157, -0.03762107715010643, -0.07353395968675613, 0.024550188332796097, -0.04023341089487076, 0.019200477749109268, 0.04471324011683464, 0.013277020305395126, 0.07585266977548599, -0.1011664941906929, 0.019628629088401794, -0.010216344147920609, -0.027649927884340286, -0.01838357374072075, 0.006968457251787186, 0.10457541793584824, 0.16912570595741272, 0.0741916298866272, 0.05285144969820976, -0.022973505780100822, 0.1832229495048523, -0.1402151882648468, 0.007801125757396221, 0.10213524848222733, 0.009269570000469685, 0.039982788264751434, 0.15028703212738037, 0.038355980068445206, -0.07983005046844482, 0.01271399948745966, 0.03736986964941025, -0.015470868907868862, -0.2190602421760559, -0.026540132239460945, -0.08564694225788116, -0.02491340972483158, 0.09832952916622162, 0.027286510914564133, 0.01116130780428648, 0.012367418967187405, -0.02660898119211197, -0.0098221180960536, 0.056686997413635254, 0.04185919091105461, 0.06812478601932526, 0.04664739593863487, 0.11138886958360672, -0.0200898889452219, -0.029094278812408447, 0.020843153819441795, -0.016319258138537407, 0.24876384437084198, 0.000010755496077763382, 0.20386941730976105, 0.04994398355484009, 0.12911270558834076, -0.006524037104099989, 0.04649464413523674, 0.003262793179601431, -0.0038545855786651373, 0.03543819487094879, -0.06041095405817032, -0.020727893337607384, 0.03397419676184654, 0.11383551359176636, 0.023902541026473045, -0.10054657608270645, 0.018520435318350792, 0.02757776901125908, 0.36631664633750916, 0.08860663324594498, -0.2900457978248596, -0.07446654886007309, 0.01567402482032776, -0.07340461015701294, -0.03636469691991806, 0.035799261182546616, 0.11954224109649658, -0.06507790088653564, 0.08627860993146896, -0.04395385831594467, 0.09252914786338806, -0.060240551829338074, 0.006196077447384596, 0.09230049699544907, 0.09868176281452179, 0.009855109266936779, 0.06378944963216782, -0.2405979037284851, 0.2683066129684448, -0.009603718295693398, 0.07986325025558472, -0.04093664884567261, 0.051926858723163605, 0.042380932718515396, -0.01765206828713417, 0.06977123767137527, -0.0059356652200222015, -0.1013638824224472, -0.14926986396312714, -0.08773072808980942, 0.020518040284514427, 0.1320342719554901, -0.057462166994810104, 0.12754014134407043, -0.04344428703188896, -0.053751662373542786, 0.03952297568321228, -0.07353979349136353, -0.10861853510141373, -0.10659809410572052, 0.045494869351387024, 0.020723868161439896, 0.08504948019981384, -0.08453237265348434, -0.0760362297296524, -0.06233663111925125, 0.14537911117076874, -0.13052327930927277, -0.01703137904405594, -0.12642927467823029, 0.05118822678923607, 0.16363109648227692, -0.057970814406871796, 0.03277411311864853, 0.01792491041123867, 0.1448911726474762, 0.047752056270837784, -0.006874124053865671, 0.09589287638664246, -0.08101949095726013, -0.1993463784456253, -0.044258467853069305, 0.18317222595214844, 0.025556650012731552, 0.06426418572664261, -0.02298368327319622, 0.021220464259386063, -0.012747022323310375, -0.07883576303720474, 0.06600487232208252, 0.05120363458991051, -0.010271020233631134, 0.046779122203588486, -0.027098502963781357, 0.016804497689008713, -0.083457812666893, -0.049542058259248734, 0.09434659034013748, 0.24340026080608368, -0.07519771158695221, 0.02315419726073742, 0.02395627833902836, -0.06207855045795441, -0.15055280923843384, 0.0017337347380816936, 0.13875211775302887, 0.04712686315178871, -0.05719554051756859, -0.1980983167886734, 0.011454763822257519, 0.07071377336978912, -0.021248813718557358, 0.10219397395849228, -0.3283931612968445, -0.1348319798707962, 0.08054350316524506, 0.03952772915363312, -0.05289682373404503, -0.16904740035533905, -0.07238781452178955, -0.03228549659252167, -0.07903216779232025, 0.026161491870880127, -0.00789833627641201, 0.11811715364456177, 0.010880698449909687, 0.027578549459576607, 0.013727434910833836, -0.04469822347164154, 0.1541123241186142, 0.027046063914895058, 0.03169538080692291, -0.009373770095407963, 0.021448591724038124, -0.0002257366868434474, -0.07925046980381012, 0.018283722922205925, -0.07136885076761246, 0.025124454870820045, -0.15431056916713715, -0.025029392912983894, -0.08846224844455719, 0.010600595735013485, -0.042765676975250244, -0.0015528143849223852, -0.019605688750743866, 0.03913696110248566, 0.0887361615896225, 0.028941893950104713, 0.09763926267623901, -0.08101075142621994, 0.11813417822122574, 0.121698297560215, 0.11323192715644836, -0.005920664872974157, -0.08855117857456207, -0.004729102831333876, 0.016652965918183327, 0.02806161716580391, -0.12174087017774582, 0.03813779354095459, 0.1453736126422882, 0.04552647843956947, 0.15075527131557465, 0.048397574573755264, -0.07920584827661514, -0.0012616018066182733, 0.059893898665905, -0.06170836463570595, -0.12829290330410004, -0.02775912918150425, 0.012341370806097984, -0.13677702844142914, -0.012611305341124535, 0.10680732876062393, -0.03238215297460556, 0.015909310430288315, 0.012618517503142357, 0.050561364740133286, -0.0386868380010128, 0.22517651319503784, 0.035139359533786774, 0.10443023592233658, -0.09703477472066879, 0.06328995525836945, 0.04042189195752144, -0.08018945157527924, 0.026999853551387787, 0.1038803979754448, -0.045666616410017014, -0.017337461933493614, -0.010603397153317928, 0.08079242706298828, 0.0505240336060524, -0.0630512684583664, -0.11908294260501862, -0.1586403101682663, 0.09866099804639816, 0.08446846157312393, 0.018151642754673958, 0.032391294836997986, -0.017808329313993454, 0.03340580314397812, -0.09090156853199005, 0.10102959722280502, 0.0907374918460846, 0.06004071980714798, -0.12367008626461029, 0.11427228897809982, 0.0006761369877494872, -0.0016290880739688873, 0.009142417460680008, -0.00912567600607872, -0.09954153746366501, 0.030741389840841293, -0.12964825332164764, -0.005523279309272766, -0.04955333098769188, -0.0023042766842991114, 0.018362995237112045, -0.05793678015470505, -0.07396260648965836, 0.02234862931072712, -0.11675722151994705, -0.047506362199783325, -0.0354444682598114, 0.06922245025634766, -0.09277208149433136, -0.004427534993737936, 0.02938697673380375, -0.1369263082742691, 0.0848456472158432, 0.04404187947511673, 0.008371630683541298, 0.019526012241840363, -0.0666997954249382, -0.013689604587852955, 0.03143761307001114, 0.012604908086359501, 0.03968757763504982, -0.16494323313236237, -0.0028508345130831003, -0.02066880650818348, 0.01943526230752468, -0.018080081790685654, -0.01017448864877224, -0.10701500624418259, -0.004288588184863329, -0.03975577652454376, -0.03455111011862755, -0.04151352494955063, 0.07045964896678925, 0.07414163649082184, 0.020173205062747, 0.14508971571922302, -0.0683731883764267, 0.052274808287620544, -0.23503941297531128, 0.006859556771814823, -0.003519302699714899, -0.0670994445681572, -0.029332837089896202, -0.02343667484819889, 0.1102394238114357, -0.06456871330738068, 0.08054661005735397, -0.032158441841602325, 0.049397096037864685, 0.02602260932326317, -0.11248369514942169, 0.024957172572612762, 0.065286785364151, 0.15052779018878937, 0.05920148640871048, -0.010504902340471745, 0.08734504878520966, -0.024971164762973785, 0.060163673013448715, 0.10938067734241486, 0.15482789278030396, 0.12491000443696976, 0.057098645716905594, 0.09596233814954758, 0.10808856785297394, -0.15036970376968384, -0.10808638483285904, 0.16085025668144226, -0.08295020461082458, 0.15302003920078278, -0.032362084835767746, 0.1847897320985794, 0.11010672897100449, -0.19828198850154877, 0.0625380426645279, -0.04550665244460106, -0.0947193056344986, -0.10064368695020676, -0.06748839467763901, -0.08215765655040741, -0.17514309287071228, 0.018298080191016197, -0.10985860228538513, 0.07618824392557144, 0.05186423286795616, 0.04947223141789436, 0.0378434844315052, 0.10185080766677856, 0.05501992627978325, -0.006024356000125408, 0.12726910412311554, -0.0032062598038464785, -0.018375081941485405, -0.05080448091030121, -0.10155034810304642, 0.06175874173641205, -0.03440563380718231, 0.07281695306301117, -0.035383228212594986, -0.10415239632129669, 0.058894045650959015, 0.014245610684156418, -0.0940384492278099, 0.02953561581671238, -0.020647751167416573, 0.055330418050289154, 0.07159723341464996, 0.04133978858590126, -0.013594834133982658, -0.006350104697048664, 0.1945602148771286, -0.09534236043691635, -0.061115559190511703, -0.135755255818367, 0.1694939285516739, -0.0005963749717921019, 0.0045345439575612545, 0.017487412318587303, -0.07007697224617004, -0.021830366924405098, 0.18420551717281342, 0.14209231734275818, -0.0333874337375164, -0.02849225141108036, 0.012041832320392132, -0.005105121526867151, -0.030988559126853943, 0.07664112001657486, 0.1206425279378891, 0.06493381410837173, -0.023779872804880142, -0.03330007195472717, -0.012654870748519897, -0.0706159770488739, -0.021100427955389023, 0.09168500453233719, 0.014156432822346687, -0.002280307002365589, -0.01631830260157585, 0.11330906301736832, -0.08695334196090698, -0.15082043409347534, 0.022032318636775017, -0.17581424117088318, -0.1898622065782547, -0.03944331780076027, 0.0457533523440361, 0.04690604656934738, 0.056747082620859146, -0.011341473087668419, -0.04997410625219345, 0.12018861621618271, 0.004227910190820694, -0.035726070404052734, -0.11648400127887726, 0.06579582393169403, -0.14424674212932587, 0.1744966059923172, -0.047895561903715134, 0.013636467047035694, 0.12003746628761292, 0.0418705940246582, -0.08380958437919617, 0.024243269115686417, 0.08690223097801208, -0.1374327689409256, 0.04352300241589546, 0.19867637753486633, -0.04729362949728966, 0.14159348607063293, 0.038428355008363724, -0.07698022574186325, 0.013207921758294106, -0.06081521511077881, -0.03306189179420471, -0.06998255848884583, -0.017155641689896584, -0.04278796538710594, 0.13403406739234924, 0.21419037878513336, -0.0756555050611496, -0.008972160518169403, -0.04020514339208603, 0.014670563861727715, 0.010732284747064114, 0.1322213113307953, -0.04699048399925232, -0.2758679986000061, 0.011384688317775726, -0.025562910363078117, 0.0172622948884964, -0.1941647231578827, -0.0724835991859436, 0.029250169172883034, -0.05662219598889351, -0.04534631967544556, 0.12726014852523804, 0.06355445086956024, 0.04677312448620796, -0.05716840177774429, -0.08487062901258469, -0.020956747233867645, 0.1872701495885849, -0.17788389325141907, -0.06539879739284515 ]
null
null
spacy
| Feature | Description | | --- | --- | | **Name** | `en_pipeline` | | **Version** | `0.0.0` | | **spaCy** | `>=3.1.0,<3.2.0` | | **Default Pipeline** | `tok2vec`, `tagger`, `parser`, `ner`, `attribute_ruler`, `lemmatizer` | | **Components** | `tok2vec`, `tagger`, `parser`, `ner`, `attribute_ruler`, `lemmatizer` | | **Vectors** | 0 keys, 0 unique vectors (0 dimensions) | | **Sources** | n/a | | **License** | n/a | | **Author** | [n/a]() | ### Label Scheme <details> <summary>View label scheme (114 labels for 3 components)</summary> | Component | Labels | | --- | --- | | **`tagger`** | `$`, `''`, `,`, `-LRB-`, `-RRB-`, `.`, `:`, `ADD`, `AFX`, `CC`, `CD`, `DT`, `EX`, `FW`, `HYPH`, `IN`, `JJ`, `JJR`, `JJS`, `LS`, `MD`, `NFP`, `NN`, `NNP`, `NNPS`, `NNS`, `PDT`, `POS`, `PRP`, `PRP$`, `RB`, `RBR`, `RBS`, `RP`, `SYM`, `TO`, `UH`, `VB`, `VBD`, `VBG`, `VBN`, `VBP`, `VBZ`, `WDT`, `WP`, `WP$`, `WRB`, `XX`, ```` | | **`parser`** | `ROOT`, `acl`, `acomp`, `advcl`, `advmod`, `agent`, `amod`, `appos`, `attr`, `aux`, `auxpass`, `case`, `cc`, `ccomp`, `compound`, `conj`, `csubj`, `csubjpass`, `dative`, `dep`, `det`, `dobj`, `expl`, `intj`, `mark`, `meta`, `neg`, `nmod`, `npadvmod`, `nsubj`, `nsubjpass`, `nummod`, `oprd`, `parataxis`, `pcomp`, `pobj`, `poss`, `preconj`, `predet`, `prep`, `prt`, `punct`, `quantmod`, `relcl`, `xcomp` | | **`ner`** | `ARC`, `AST`, `BOOK`, `CAUSAL`, `COMPARISON`, `DATE`, `HEM`, `HOUR`, `HYPO`, `INSTRUMENT`, `JUDGEMENT`, `LAWS`, `MODEL`, `NAME`, `Observation`, `PAR`, `PLACE`, `QUANTITY`, `REASON`, `ZOD` | </details> ### Accuracy | Type | Score | | --- | --- | | `TAG_ACC` | 0.00 | | `DEP_UAS` | 0.00 | | `DEP_LAS` | 0.00 | | `DEP_LAS_PER_TYPE` | 0.00 | | `SENTS_P` | 100.00 | | `SENTS_R` | 100.00 | | `SENTS_F` | 100.00 | | `ENTS_F` | 99.32 | | `ENTS_P` | 99.47 | | `ENTS_R` | 99.17 | | `LEMMA_ACC` | 0.00 | | `NER_LOSS` | 7790.09 |
{"language": ["en"], "tags": ["spacy", "token-classification"]}
token-classification
MohaAM/en_pipeline
[ "spacy", "token-classification", "en", "model-index", "region:us" ]
2022-03-02T23:29:04+00:00
[]
[ "en" ]
TAGS #spacy #token-classification #en #model-index #region-us
### Label Scheme View label scheme (114 labels for 3 components) ### Accuracy
[ "### Label Scheme\n\n\n\nView label scheme (114 labels for 3 components)", "### Accuracy" ]
[ "TAGS\n#spacy #token-classification #en #model-index #region-us \n", "### Label Scheme\n\n\n\nView label scheme (114 labels for 3 components)", "### Accuracy" ]
[ 21, 17, 5 ]
[ "passage: TAGS\n#spacy #token-classification #en #model-index #region-us \n### Label Scheme\n\n\n\nView label scheme (114 labels for 3 components)### Accuracy" ]
[ -0.05873693525791168, 0.11019489169120789, -0.002881773514673114, 0.03051782213151455, 0.11072378605604172, 0.06305928528308868, 0.2088172882795334, 0.06126440688967705, 0.2045586258172989, 0.056800249963998795, 0.02497333288192749, 0.0959811806678772, 0.05375315994024277, 0.2770455777645111, -0.11474063992500305, -0.2576470971107483, 0.09192781150341034, -0.010729488916695118, 0.09952762722969055, 0.14008870720863342, 0.0546424500644207, -0.13183753192424774, 0.06585344672203064, -0.08325116336345673, -0.21996650099754333, 0.032243434339761734, 0.0154957827180624, -0.09998788684606552, 0.07325625419616699, -0.06313622742891312, 0.2311459183692932, 0.015820663422346115, 0.054683614522218704, -0.19288381934165955, 0.003222938859835267, -0.025926711037755013, -0.03804320469498634, 0.08200550824403763, 0.04036218300461769, 0.00738347414880991, -0.07621888816356659, -0.07651196420192719, 0.07137680798768997, 0.021564042195677757, -0.14009535312652588, -0.1130857765674591, -0.05160500854253769, 0.1272234320640564, 0.12242279946804047, -0.07112347334623337, -0.017926324158906937, 0.09852010011672974, -0.07778148353099823, 0.0613485723733902, 0.19187572598457336, -0.3040100932121277, -0.012343612499535084, 0.236003115773201, -0.04803028330206871, 0.10472278296947479, -0.02301803044974804, 0.12978576123714447, 0.11993538588285446, -0.007049894426018, -0.031377747654914856, -0.006463416386395693, 0.041924554854631424, 0.009535593912005424, -0.13654321432113647, -0.05607856810092926, 0.5062087178230286, 0.09162726253271103, -0.029549341648817062, -0.10229390859603882, -0.07600969076156616, -0.15576523542404175, -0.08851125836372375, -0.06839694827795029, 0.057179804891347885, -0.01377574261277914, 0.13330282270908356, 0.10301046073436737, -0.08453252911567688, -0.05878896266222, -0.1677810698747635, 0.24570004642009735, 0.00942547433078289, 0.07360991835594177, -0.17754437029361725, 0.022923653945326805, -0.11596528440713882, -0.07409031689167023, 0.025019340217113495, -0.10719351470470428, -0.09945758432149887, -0.05692543089389801, 0.049543846398591995, 0.11689557135105133, 0.04985459893941879, 0.04046554118394852, -0.038025882095098495, 0.05869293212890625, -0.026613833382725716, 0.056603480130434036, 0.12033902108669281, 0.1762871891260147, -0.050856441259384155, -0.027073901146650314, -0.06836874783039093, -0.062420234084129333, 0.046951841562986374, -0.03754032030701637, -0.1279633641242981, -0.0008560675196349621, 0.09825430810451508, 0.10535099357366562, -0.0820368081331253, -0.029385937377810478, -0.1302652209997177, -0.056917399168014526, 0.08631569147109985, -0.12866343557834625, 0.017757490277290344, -0.012852244079113007, -0.01339131873100996, 0.11378251016139984, -0.13775634765625, -0.017902512103319168, 0.041050024330616, 0.014304015785455704, -0.09883522242307663, -0.006230506114661694, -0.02314017340540886, -0.11343307048082352, 0.0063850777223706245, -0.12161211669445038, 0.015359359793365002, -0.04270382598042488, -0.09819412231445312, -0.012465129606425762, -0.01695690117776394, -0.07449278980493546, 0.031278159469366074, -0.020577356219291687, -0.0706276148557663, -0.016942009329795837, 0.015953773632645607, -0.03827693313360214, -0.07772684842348099, -0.006648161914199591, -0.017160234972834587, 0.10707741230726242, -0.0656999796628952, 0.027955520898103714, -0.05783316493034363, 0.07676693052053452, -0.20423898100852966, 0.02502504177391529, -0.06655709445476532, 0.0732959732413292, -0.07109804451465607, -0.08589103817939758, 0.02723599039018154, 0.002626200905069709, -0.09538616985082626, 0.1655968427658081, -0.22086992859840393, -0.05106411874294281, 0.20817433297634125, -0.18262135982513428, -0.12002053111791611, 0.02619342878460884, -0.0021024378947913647, 0.06361886113882065, 0.09107896685600281, 0.14760908484458923, -0.007682568393647671, -0.11313790082931519, -0.01893119141459465, 0.07910557091236115, -0.05358706787228584, -0.039228543639183044, 0.09420983493328094, 0.02344467304646969, -0.014603814110159874, 0.02509158104658127, 0.03977230191230774, -0.12806516885757446, -0.0530381053686142, -0.052848827093839645, -0.0031809986103326082, 0.02599349059164524, 0.08322345465421677, 0.03719186410307884, 0.02176259458065033, -0.05421450734138489, 0.023295404389500618, 0.03061685897409916, 0.04429490491747856, 0.022926371544599533, -0.059566471725702286, -0.04024721682071686, 0.14017616212368011, -0.12772159278392792, -0.07803144305944443, -0.16709300875663757, -0.17728359997272491, 0.053679756820201874, 0.03390062600374222, -0.0027312368620187044, 0.14138802886009216, 0.021228911355137825, 0.0003173001459799707, -0.003808526322245598, -0.023167015984654427, 0.00045479252003133297, 0.0827377662062645, -0.06075775995850563, -0.16343754529953003, -0.04702894762158394, -0.10631582140922546, 0.011822832748293877, -0.02657737210392952, 0.008283356204628944, 0.15802623331546783, 0.07613150775432587, 0.04760625213384628, 0.05515633523464203, 0.05705847591161728, 0.02594243921339512, -0.028630029410123825, -0.055068809539079666, 0.07994403690099716, -0.10538074374198914, -0.038876309990882874, -0.05815127491950989, -0.12870027124881744, 0.09924814105033875, 0.14281074702739716, -0.08381474763154984, -0.06289579719305038, -0.08166218549013138, -0.00176724954508245, 0.0020649922080338, -0.10044601559638977, -0.0056135025806725025, -0.06341277062892914, -0.022654905915260315, 0.015661338344216347, -0.08345051109790802, -0.0357682965695858, 0.027854073792696, -0.0263302531093359, -0.17055892944335938, 0.11623112857341766, -0.011960827745497227, -0.23795588314533234, 0.14773660898208618, 0.26804444193840027, 0.17667575180530548, 0.08782783895730972, -0.02891644649207592, -0.03705631196498871, -0.023244783282279968, -0.01140848733484745, -0.08426359295845032, 0.1710602045059204, -0.1609293669462204, -0.045213669538497925, 0.047621458768844604, 0.053233545273542404, 0.007036644034087658, -0.1790272742509842, -0.0063420250080525875, -0.019219957292079926, -0.027758318930864334, -0.06427337974309921, -0.03240380436182022, 0.02417680434882641, 0.14881356060504913, 0.06588593870401382, -0.2009160816669464, 0.06250356137752533, -0.055530425161123276, -0.05889517441391945, 0.17121078073978424, -0.0855877473950386, -0.23387834429740906, -0.11159557849168777, -0.1220347061753273, -0.06467811018228531, 0.043227359652519226, -0.03576232120394707, -0.13658802211284637, -0.04101105406880379, 0.022228891029953957, -0.025656718760728836, -0.15199831128120422, -0.03078480064868927, -0.02770496904850006, 0.06733720004558563, -0.15654033422470093, -0.03584891930222511, -0.1018548309803009, -0.0935208722949028, 0.09773148596286774, 0.09586381912231445, -0.20515641570091248, 0.07970065623521805, 0.2968319058418274, -0.03798466548323631, 0.09075693786144257, -0.013728148303925991, 0.08839704841375351, -0.0830325037240982, 0.04757140949368477, 0.10837936401367188, 0.05299841985106468, 0.04722531884908676, 0.2726903557777405, 0.061888936907052994, -0.16171729564666748, -0.028556160628795624, -0.052893176674842834, -0.11344103515148163, -0.1549910455942154, -0.11676830053329468, -0.04941488802433014, -0.027032887563109398, 0.03920255973935127, 0.013241621665656567, -0.0003952902334276587, 0.06687907874584198, 0.032103173434734344, -0.01571829244494438, 0.032632388174533844, 0.0490955151617527, 0.08200178295373917, -0.06470811367034912, 0.0779266357421875, -0.040939200669527054, -0.07802585512399673, 0.08915027230978012, 0.10875894874334335, 0.19461190700531006, 0.1773233413696289, -0.002784307347610593, 0.07625328004360199, -0.012107951566576958, 0.13051967322826385, 0.1021900400519371, 0.1391221433877945, -0.016759371384978294, -0.03480345755815506, -0.06701599806547165, 0.010558491572737694, 0.04293738678097725, -0.022821135818958282, -0.058986030519008636, -0.06769312173128128, -0.07781995087862015, 0.071751669049263, -0.0020766828674823046, 0.27927476167678833, -0.24330607056617737, 0.025561559945344925, 0.12444194406270981, 0.09871648997068405, -0.0998169407248497, 0.09174620360136032, 0.03331476077437401, -0.1032247543334961, 0.0766758844256401, -0.016224296763539314, 0.10303743928670883, -0.11891055852174759, -0.007020336110144854, -0.06703075021505356, -0.046427663415670395, -0.024100037291646004, 0.0838402658700943, -0.05684126541018486, 0.3572731912136078, 0.035003870725631714, -0.04889493063092232, -0.05723907798528671, -0.008935889229178429, 0.026246998459100723, 0.21472081542015076, 0.22912216186523438, 0.03977038338780403, -0.19546668231487274, -0.2195528894662857, -0.03909355774521828, -0.022910885512828827, 0.16465957462787628, -0.049246110022068024, 0.03393569216132164, 0.024923967197537422, 0.007044041994959116, -0.026721524074673653, 0.022432491183280945, -0.030455542728304863, -0.009385323151946068, 0.029783809557557106, 0.0796050950884819, -0.0971861332654953, 0.0025264171417802572, -0.0950435996055603, -0.132487490773201, 0.1495160460472107, 0.007114808075129986, -0.12139378488063812, -0.09294839203357697, -0.030149439349770546, 0.11023235321044922, -0.021597953513264656, -0.026906238868832588, -0.04977524280548096, 0.14894349873065948, 0.01069355383515358, -0.09523167461156845, 0.13542406260967255, -0.027332060039043427, -0.028078114613890648, -0.06266233325004578, 0.16183722019195557, -0.009224018082022667, -0.01505583431571722, 0.0666312724351883, 0.08577129989862442, -0.003578498959541321, -0.10825265944004059, 0.11403019726276398, 0.0037282004486769438, 0.06277751922607422, 0.31362244486808777, -0.09730387479066849, -0.15772973001003265, -0.05579530820250511, 0.09843603521585464, 0.10333765298128128, 0.22107292711734772, -0.0778246745467186, 0.05064311623573303, 0.08940909057855606, -0.03135242313146591, -0.1809159368276596, -0.01624881476163864, -0.15444985032081604, 0.021807413548231125, -0.02210354059934616, -0.05716335400938988, 0.1525048166513443, 0.0276979748159647, -0.06036398559808731, 0.05678572878241539, -0.21017444133758545, -0.050350598990917206, 0.2124476283788681, 0.09072977304458618, 0.18869125843048096, -0.055419739335775375, -0.10085775703191757, -0.06210455298423767, -0.17009110748767853, 0.14573942124843597, 0.0009171363199129701, 0.09706390649080276, -0.06149256229400635, 0.03404134884476662, 0.030316440388560295, -0.017664076760411263, 0.21621254086494446, 0.12014272809028625, 0.09054771810770035, 0.010018565692007542, -0.21152810752391815, 0.1910766363143921, -0.022391822189092636, 0.02395143173635006, 0.21361587941646576, 0.019455311819911003, -0.13478849828243256, -0.01363779790699482, -0.012618583627045155, -0.006228008773177862, -0.05000802129507065, -0.0775517001748085, -0.08823426067829132, 0.02310766838490963, -0.06556377559900284, -0.052347611635923386, 0.24884749948978424, -0.044465478509664536, 0.13779422640800476, 0.08472949266433716, 0.024078885093331337, -0.08966238796710968, -0.02583329752087593, -0.07066991925239563, -0.05825459957122803, 0.05075599253177643, -0.1634436398744583, 0.046996332705020905, 0.1357024610042572, 0.04128016531467438, 0.11339418590068817, 0.13426178693771362, -0.028886735439300537, -0.04454214125871658, 0.12145058065652847, -0.12430677562952042, -0.1375601440668106, 0.001421947730705142, -0.20548035204410553, -0.011672536842525005, 0.09311477094888687, 0.057984404265880585, 0.04718690365552902, -0.020899534225463867, 0.007398487534373999, 0.0496341772377491, -0.051991697400808334, 0.11322620511054993, 0.02190064638853073, 0.07214392721652985, -0.14895331859588623, 0.11383891850709915, 0.06264650076627731, 0.013418183661997318, -0.05911218747496605, -0.028006210923194885, -0.1382589191198349, -0.03939284756779671, 0.007156173698604107, 0.13040708005428314, -0.0905921533703804, -0.10251913964748383, -0.07666323333978653, -0.16608239710330963, 0.023253943771123886, 0.10539466142654419, 0.1509973704814911, 0.10240001976490021, -0.007406312506645918, -0.12537892162799835, 0.03536490350961685, 0.04090863838791847, -0.050954051315784454, 0.032887350767850876, -0.246215358376503, -0.00691100163385272, -0.03911595046520233, 0.13564936816692352, -0.11075594276189804, -0.08774102479219437, -0.13570937514305115, 0.012462129816412926, -0.03959936276078224, 0.05428437516093254, -0.029200071468949318, -0.0017068554880097508, -0.018084490671753883, 0.0017335000447928905, -0.06452954560518265, -0.02544957585632801, -0.10826709866523743, 0.06952255219221115, 0.0055446443147957325, 0.13580872118473053, -0.07635547965765, -0.02101031132042408, 0.07881936430931091, -0.039927009493112564, 0.06704983860254288, 0.03774590417742729, 0.021956000477075577, 0.07401999086141586, -0.17660319805145264, -0.014180495403707027, 0.10287535935640335, 0.02248154580593109, 0.10903551429510117, -0.13615821301937103, -0.010285211727023125, 0.011727177537977695, -0.04274822771549225, 0.1013636365532875, -0.05427801236510277, -0.1010257676243782, -0.11995106190443039, -0.14925739169120789, -0.14416828751564026, -0.03090284951031208, 0.040017321705818176, 0.21138958632946014, 0.04444756731390953, -0.008212876506149769, 0.045859869569540024, 0.019706523045897484, -0.04234306141734123, -0.017536181956529617, -0.05072026699781418, -0.11229946464300156, 0.038281120359897614, -0.0031799988355487585, 0.006602850276976824, -0.026580480858683586, 0.3422297239303589, 0.049701131880283356, 0.055504072457551956, 0.044566746801137924, 0.174846813082695, -0.031466949731111526, 0.04692148044705391, 0.2042260617017746, 0.06154349446296692, -0.07498588413000107, 0.07383860647678375, 0.053350210189819336, 0.013955775648355484, 0.09087999910116196, 0.1910114735364914, 0.08516138792037964, -0.13361525535583496, 0.07070380449295044, 0.03234931081533432, 0.019743207842111588, -0.05163450911641121, 0.03547145053744316, 0.036514151841402054, 0.02721494436264038, 0.06121571734547615, -0.0960426926612854, 0.1085628867149353, -0.1678735315799713, 0.1251760721206665, -0.03130948916077614, -0.10420306026935577, -0.18375469744205475, -0.05695338174700737, -0.0908234640955925, -0.023742815479636192, -0.004846683703362942, -0.1287398636341095, -0.06728068739175797, 0.21769914031028748, 0.04367898777127266, 0.01774527318775654, 0.06851755827665329, -0.21213674545288086, 0.0045302072539925575, 0.13517926633358002, 0.018326908349990845, 0.005896731745451689, -0.04499160125851631, -0.008495486341416836, 0.018700076267123222, -0.05556993931531906, -0.042278021574020386, -0.036091167479753494, 0.027248255908489227, -0.05139470100402832, -0.15298330783843994, -0.07479147613048553, -0.061279296875, -0.009973788633942604, -0.018491623923182487, -0.10213358700275421, 0.03338981792330742, -0.032993465662002563, 0.015874745324254036, 0.2444322407245636, -0.06603974103927612, 0.06259281188249588, -0.0772942379117012, 0.24170361459255219, -0.0669189989566803, 0.08927816152572632, 0.049574386328458786, -0.05338221415877342, -0.04817880690097809, 0.08547690510749817, 0.15668104588985443, 0.017993520945310593, -0.014819771982729435, 0.014021668583154678, 0.023370597511529922, 0.058242931962013245, 0.027835102751851082, -0.03302228823304176, 0.13712921738624573, -0.05083293095231056, 0.08638335019350052, -0.06816946715116501, -0.04222041741013527, -0.038416098803281784, -0.04604949802160263, 0.174753338098526, -0.0385897271335125, -0.14063067734241486, 0.2196972668170929, -0.03531193733215332, 0.009985765442252159, 0.22970855236053467, -0.1548478603363037, -0.14126870036125183, -0.008658885024487972, 0.003652147715911269, -0.016225289553403854, 0.07480822503566742, -0.11651859432458878, 0.004356971476227045, -0.005266281776130199, 0.04633764177560806, -0.20020395517349243, -0.09602513164281845, 0.0421636737883091, -0.03945542499423027, 0.07389471679925919, -0.00015755515778437257, 0.13633880019187927, 0.09215516597032547, -0.05881647393107414, -0.04833662882447243, 0.0708017572760582, 0.0018871239153668284, 0.06086873635649681, -0.0027480365242809057, 0.10511957854032516, -0.021981777623295784, -0.12522457540035248, 0.10724057257175446, -0.11917069554328918, -0.026973342522978783, -0.010769075714051723, -0.0838431790471077, -0.059355881065130234, 0.05169236287474632, -0.11087781190872192, 0.10708562284708023, 0.12185043096542358, -0.006826302502304316, 0.00556368799880147, 0.005132436752319336, 0.08191318064928055, 0.059678301215171814, -0.0959353968501091, 0.000359495694283396, 0.0030251871794462204, -0.04803250730037689, 0.07644454389810562, -0.037376247346401215, -0.20194821059703827, -0.005830476526170969, -0.07958851009607315, 0.03642258048057556, -0.07039114832878113, 0.0991675853729248, 0.11057879775762558, 0.05312042310833931, -0.045310329645872116, -0.18922223150730133, 0.0494253933429718, 0.09842003881931305, -0.09043125808238983, -0.06497542560100555 ]
null
null
null
utyuiue6
{}
null
MohamedH/object
[ "region:us" ]
2022-03-02T23:29:04+00:00
[]
[]
TAGS #region-us
utyuiue6
[]
[ "TAGS\n#region-us \n" ]
[ 6 ]
[ "passage: TAGS\n#region-us \n" ]
[ 0.024608636274933815, -0.026205500587821007, -0.009666500613093376, -0.10395516455173492, 0.08638657629489899, 0.059816278517246246, 0.01882290467619896, 0.020661840215325356, 0.23975107073783875, -0.005599027033895254, 0.1219947561621666, 0.0015615287702530622, -0.037353623658418655, 0.03733762726187706, -0.0035912662278860807, -0.17583473026752472, 0.03876631706953049, -0.018274923786520958, 0.01843859627842903, 0.026470553129911423, -0.07776834815740585, -0.07564429938793182, 0.015296397730708122, -0.10247814655303955, -0.083692267537117, 0.11002834886312485, 0.031466204673051834, -0.019670886918902397, 0.10779199749231339, -0.04243955761194229, 0.18699054419994354, -0.011512263678014278, -0.11213519424200058, -0.2536850869655609, 0.021806683391332626, -0.01765260472893715, -0.08747660368680954, 0.01506110467016697, 0.0665089413523674, -0.09014441072940826, -0.0588928684592247, 0.0795099288225174, -0.01132340170443058, 0.04246443510055542, -0.27593839168548584, -0.12684126198291779, -0.05297930911183357, -0.1421966552734375, 0.08651168644428253, 0.04035491496324539, 0.008764253929257393, 0.15506891906261444, -0.20897391438484192, 0.004104613792151213, 0.08255259692668915, -0.2538507878780365, 0.05591634660959244, 0.17671173810958862, 0.03623908758163452, 0.18037272989749908, 0.0060391901060938835, 0.11029672622680664, 0.0716743916273117, -0.024263937026262283, -0.17590197920799255, -0.08127854019403458, -0.04696211963891983, 0.16642488539218903, -0.06727185100317001, -0.14248386025428772, 0.34701237082481384, 0.00015008423360995948, 0.009657775051891804, 0.16921205818653107, -0.059524230659008026, -0.09972117841243744, 0.07259953022003174, 0.016484731808304787, 0.018492350354790688, 0.1471305936574936, 0.16307872533798218, -0.0458691343665123, -0.13837823271751404, -0.018630273640155792, -0.22798998653888702, 0.17510560154914856, -0.03248048573732376, 0.13137903809547424, -0.27447956800460815, 0.01684025302529335, -0.2570667266845703, 0.0032130838371813297, 0.04178816080093384, -0.06004921346902847, -0.0226522795855999, -0.013265985064208508, -0.08018817007541656, 0.004899587947875261, 0.06192673370242119, 0.1266920566558838, -0.06128726154565811, 0.06128238886594772, -0.09319206327199936, 0.141696035861969, 0.07166698575019836, 0.07868369668722153, 0.13037432730197906, 0.041205424815416336, -0.07187089323997498, -0.21872246265411377, -0.0026476888451725245, -0.06275863200426102, -0.09502086788415909, -0.0020165652967989445, -0.11606067419052124, 0.17244569957256317, -0.030802514404058456, -0.09825427830219269, -0.11208184063434601, 0.09148659557104111, -0.032992321997880936, -0.03437839448451996, -0.03552987426519394, -0.020977836102247238, 0.019381176680326462, 0.04704452306032181, -0.1548958420753479, -0.005131472367793322, 0.07039852440357208, 0.11502562463283539, -0.1346137970685959, -0.003783059772104025, -0.07908964157104492, 0.03039063885807991, 0.07654735445976257, -0.16510222852230072, 0.03158547356724739, -0.1124754324555397, -0.07531405985355377, 0.002912673633545637, -0.015710093080997467, -0.016202643513679504, 0.166526660323143, -0.0020451415330171585, 0.0714716836810112, -0.026345307007431984, -0.05890209600329399, -0.11243434250354767, -0.08489254862070084, 0.05390460044145584, 0.03670717030763626, 0.03266148269176483, -0.2193479984998703, 0.014805203303694725, -0.12762966752052307, 0.1360815018415451, -0.10566820204257965, -0.04705966264009476, -0.022842247039079666, 0.20562705397605896, 0.037286072969436646, 0.08762791007757187, -0.22171171009540558, 0.039756543934345245, -0.05404696613550186, 0.18480908870697021, -0.1502426266670227, -0.0799463614821434, 0.20813211798667908, -0.07964949309825897, -0.10115210711956024, 0.021235812455415726, 0.020391687750816345, 0.026287272572517395, 0.0766737088561058, 0.4564172327518463, -0.09766800701618195, -0.09146861732006073, 0.10178250074386597, 0.17055274546146393, -0.12427149713039398, -0.1827561855316162, 0.06446871906518936, -0.16666454076766968, -0.1973118633031845, 0.0018917324487119913, 0.09222044050693512, 0.038269978016614914, -0.07875611633062363, -0.020746968686580658, 0.06325206160545349, -0.0007678253459744155, 0.09095914661884308, 0.03755716234445572, 0.09034032374620438, -0.08716782182455063, 0.11115926504135132, -0.05017651244997978, 0.004037132486701012, 0.1343354731798172, 0.027325427159667015, -0.03223329409956932, 0.08694463223218918, -0.0485352948307991, 0.05295134335756302, -0.1662379503250122, -0.15068690478801727, 0.03398871049284935, 0.06283251196146011, 0.03186952322721481, 0.1280253529548645, 0.08141885697841644, -0.10732853412628174, 0.022690722718834877, -0.004228927195072174, 0.058398615568876266, 0.03891623765230179, 0.006107209715992212, 0.008764320984482765, 0.0961301177740097, -0.10607069730758667, -0.13589619100093842, -0.07336436957120895, -0.014715781435370445, 0.14371353387832642, -0.0302802175283432, 0.07690227776765823, -0.004240254405885935, 0.00013200697139836848, 0.06930823624134064, 0.08137880265712738, 0.016412746161222458, 0.08971183747053146, -0.05237193778157234, -0.05160155147314072, 0.10863113403320312, -0.13533565402030945, 0.17837053537368774, 0.14053137600421906, -0.20532016456127167, 0.029453208670020103, -0.06838275492191315, 0.03670361638069153, -0.008162540383636951, 0.0975119024515152, -0.08272241055965424, -0.02106042578816414, 0.013134466484189034, 0.0052274600602686405, -0.013007243163883686, 0.017682146281003952, -0.07295988500118256, -0.07787393033504486, -0.10233919322490692, 0.08436838537454605, 0.11562882363796234, -0.10282530635595322, 0.14214380085468292, 0.4384984076023102, 0.11495281755924225, 0.21582984924316406, -0.09581480920314789, -0.0412987545132637, 0.007486371789127588, 0.0001535322517156601, -0.04476691037416458, 0.08031861484050751, -0.15973517298698425, -0.038901735097169876, 0.027348900213837624, 0.07128690183162689, 0.11475157737731934, -0.14959022402763367, -0.09639324247837067, -0.00793045200407505, 0.0022841424215584993, -0.1249532699584961, 0.023905446752905846, -0.03974650055170059, 0.04015624523162842, 0.07232289016246796, -0.021535737439990044, 0.13939237594604492, -0.04166141897439957, -0.0639561116695404, 0.07585346698760986, -0.2017085999250412, -0.23179671168327332, -0.12309670448303223, -0.14680525660514832, 0.04366797208786011, 0.05154111236333847, 0.01726446859538555, -0.17635835707187653, -0.015074856579303741, 0.07706750929355621, 0.07820965349674225, -0.20886357128620148, -0.022814949974417686, -0.004290030337870121, 0.0895976573228836, -0.10227091610431671, -0.0017130117630586028, -0.04419664293527603, -0.10150232166051865, 0.0017003051470965147, 0.07279510796070099, -0.137485533952713, 0.13807645440101624, 0.21589438617229462, 0.07225540280342102, 0.07359948754310608, -0.019093448296189308, 0.09936179965734482, -0.10856141895055771, -0.16549113392829895, 0.08348225057125092, -0.06234746053814888, 0.047262318432331085, 0.17534415423870087, 0.03307317942380905, -0.13904969394207, -0.015682822093367577, -0.0402069091796875, -0.15603256225585938, -0.238995760679245, -0.09178274869918823, -0.1182505264878273, 0.16442428529262543, 0.0009358620154671371, 0.06651917099952698, 0.08258313685655594, -0.022042419761419296, 0.16447891294956207, -0.07379321753978729, -0.07578866183757782, -0.006978808436542749, 0.12375060468912125, -0.056660156697034836, -0.03080669604241848, -0.10566964000463486, -0.008295975625514984, 0.1151021271944046, 0.15304014086723328, 0.12214863300323486, 0.2957419455051422, 0.08268889784812927, 0.026645636186003685, 0.08958091586828232, 0.17622539401054382, 0.09495089203119278, 0.07838419824838638, -0.045413073152303696, -0.014814783819019794, 0.014317171648144722, -0.04022889584302902, 0.010141594335436821, 0.14683100581169128, -0.2679629921913147, -0.006678564939647913, -0.2710230350494385, 0.0965198427438736, -0.10913380235433578, 0.11837165057659149, -0.01015760749578476, 0.10194015502929688, 0.11082887649536133, 0.03233652561903, -0.03858073800802231, 0.16613617539405823, 0.08450309932231903, -0.11277695000171661, 0.001758623169735074, 0.03737903758883476, 0.09715615212917328, -0.02818971499800682, 0.12721189856529236, -0.11048974841833115, -0.1464834064245224, 0.013753619976341724, 0.07152791321277618, -0.15373679995536804, 0.3138748109340668, 0.012069208547472954, -0.13481520116329193, -0.01481647603213787, -0.09957809001207352, -0.006440147757530212, 0.1254177987575531, 0.09333524852991104, 0.07935678958892822, -0.2185502052307129, -0.13339371979236603, 0.05872276425361633, -0.00575496768578887, 0.22408108413219452, -0.034034017473459244, -0.11356475204229355, -0.027013886719942093, 0.04241163283586502, -0.06043251231312752, 0.08524788916110992, 0.023536119610071182, -0.08113526552915573, -0.032957352697849274, 0.05323701351881027, 0.012368366122245789, 0.00524376705288887, 0.09360801428556442, 0.020107939839363098, -0.0009265501867048442, 0.01785753294825554, 0.047885000705718994, -0.0675911232829094, -0.1984109878540039, 0.09357594698667526, -0.05215044692158699, 0.0015536568826064467, -0.08013670891523361, -0.15122665464878082, -0.08837161958217621, -0.16009655594825745, 0.12540200352668762, -0.034406669437885284, 0.12700119614601135, -0.06619787961244583, 0.17341409623622894, -0.07871770113706589, 0.04481020197272301, -0.047349292784929276, 0.050332702696323395, -0.007268077693879604, -0.07756082713603973, 0.16585899889469147, -0.15564003586769104, 0.01809087023139, 0.19572502374649048, -0.018915493041276932, 0.07177707552909851, 0.021322092041373253, -0.0636206790804863, 0.23147478699684143, 0.3014698624610901, 0.008138049393892288, 0.1665448248386383, 0.3018903136253357, -0.07466315478086472, -0.2642788887023926, -0.05505012720823288, -0.2841376066207886, -0.05371501296758652, 0.10716094076633453, -0.22523896396160126, 0.06986407935619354, 0.14383509755134583, -0.06471995264291763, 0.30228954553604126, -0.21825523674488068, 0.012589273042976856, 0.15434536337852478, -0.08868814259767532, 0.5515313148498535, -0.1133413165807724, -0.17677772045135498, -0.008122089318931103, -0.08741296827793121, 0.10602109134197235, -0.0340677872300148, 0.06877441704273224, 0.013465235009789467, 0.04797380417585373, 0.048932258039712906, -0.03111894056200981, 0.22701001167297363, 0.008710170164704323, 0.09015397727489471, -0.07378865778446198, -0.18624304234981537, 0.11639340221881866, -0.04359482601284981, -0.08891059458255768, 0.0849778801202774, -0.05942516401410103, -0.11078983545303345, 0.04663389176130295, -0.07950539886951447, -0.024862350896000862, 0.08423490077257156, -0.04678233340382576, -0.042606171220541, -0.008054176345467567, -0.1618063747882843, -0.0002289071271661669, 0.31360217928886414, -0.07096036523580551, 0.16695955395698547, 0.03677211329340935, 0.00038613268407061696, -0.11027684062719345, 0.030288029462099075, -0.05203165486454964, -0.021576624363660812, 0.09578979015350342, -0.11096979677677155, 0.03204701095819473, 0.14160704612731934, -0.04864364117383957, 0.05846960097551346, 0.09256096184253693, -0.0849417969584465, 0.007583672646433115, 0.17753590643405914, -0.17537221312522888, -0.1273445188999176, -0.006135711446404457, -0.09862716495990753, 0.14055661857128143, 0.04394126310944557, 0.05191568285226822, 0.16669964790344238, 0.03967129811644554, -0.029474308714270592, -0.02817419543862343, -0.1153380498290062, -0.0201893113553524, 0.040153320878744125, 0.00045633706031367183, -0.08791285753250122, 0.2262638509273529, 0.06409153342247009, -0.1328488290309906, -0.051157206296920776, 0.2161225974559784, -0.06805316358804703, -0.04911920800805092, -0.223562553524971, 0.10752306133508682, -0.07112517952919006, -0.0965060144662857, 0.05453834682703018, -0.02270081453025341, 0.005106312222778797, 0.181985542178154, 0.03941008821129799, 0.11070270836353302, 0.03738937899470329, -0.02448922023177147, 0.15798696875572205, -0.142850860953331, -0.14191335439682007, -0.025354057550430298, -0.08757315576076508, -0.13844476640224457, -0.026804137974977493, 0.1617041826248169, -0.09177309274673462, -0.14772607386112213, -0.2621181011199951, 0.10968475043773651, -0.16432365775108337, -0.10192688554525375, -0.03469514101743698, -0.08968492597341537, 0.0696166530251503, 0.030301768332719803, -0.03093348816037178, -0.06706760823726654, -0.18593791127204895, 0.0816768929362297, 0.06349513679742813, 0.045533183962106705, -0.017847947776317596, 0.0067379772663116455, 0.1720137596130371, 0.025955144315958023, 0.10040043294429779, 0.16762186586856842, 0.011397695168852806, 0.2246655523777008, -0.1671202927827835, -0.11496317386627197, 0.1336962729692459, -0.026543032377958298, 0.06762003898620605, 0.16792191565036774, -0.0772583931684494, 0.015526676550507545, -0.028136352077126503, 0.07066910713911057, -0.11003983020782471, -0.105624258518219, 0.007937257178127766, 0.02567129209637642, -0.2755882740020752, -0.005599735304713249, -0.19717298448085785, 0.14788752794265747, 0.02579621411859989, 0.03297143429517746, 0.10257530212402344, 0.10404334217309952, 0.08312062919139862, -0.0017710148822516203, 0.03226327523589134, -0.1176818460226059, 0.02753005363047123, -0.059239376336336136, -0.020663779228925705, 0.017624232918024063, 0.36952024698257446, -0.03603357449173927, -0.046802736818790436, 0.003710439894348383, 0.1307835876941681, -0.02139742486178875, 0.017395347356796265, 0.13209912180900574, 0.12607666850090027, -0.08595693111419678, -0.1504845917224884, 0.04888554662466049, -0.04565655067563057, -0.02836887165904045, 0.1464131623506546, 0.05905961990356445, 0.1050296202301979, 0.0908031314611435, -0.014463032595813274, -0.00318976235575974, 0.012856799177825451, -0.15486004948616028, 0.06223496049642563, -0.010558074340224266, 0.012565906159579754, 0.017934376373887062, 0.15238402783870697, -0.005540105979889631, 0.07739730179309845, -0.09889880567789078, 0.004208535887300968, -0.13498884439468384, -0.07913459837436676, 0.03617347031831741, -0.13393273949623108, 0.04141177982091904, -0.01871878281235695, 0.029611799865961075, 0.30386561155319214, 0.02558239921927452, -0.020639164373278618, 0.12512871623039246, -0.1214587539434433, -0.12050267308950424, -0.001594188273884356, -0.029960084706544876, 0.0791488066315651, -0.02633434161543846, -0.0997740775346756, -0.1001306027173996, -0.15166029334068298, -0.09759195148944855, 0.05182836204767227, -0.04993441700935364, -0.059362251311540604, -0.17634081840515137, -0.05707859992980957, -0.05147340148687363, 0.14025864005088806, -0.12263951450586319, 0.15159130096435547, -0.014490418136119843, 0.004084470681846142, 0.04405883327126503, 0.1950942426919937, -0.03644494712352753, 0.08714226633310318, 0.0154351145029068, 0.1522706001996994, -0.05119588226079941, 0.14720745384693146, -0.10931728035211563, -0.04014137014746666, -0.06710435450077057, 0.21513493359088898, 0.25630924105644226, -0.06136954948306084, -0.008937356993556023, -0.012760217301547527, 0.058654606342315674, 0.1073930487036705, 0.16049085557460785, 0.002326392102986574, 0.2802925705909729, -0.03133585304021835, 0.04815128445625305, 0.02901598811149597, 0.013607407920062542, -0.06336209923028946, 0.03397751972079277, 0.07539387792348862, -0.035039983689785004, -0.1412304788827896, 0.15837742388248444, -0.21980468928813934, 0.18157227337360382, 0.11640069633722305, -0.19996967911720276, -0.013728445395827293, -0.04882071167230606, 0.1689416468143463, -0.0856364443898201, 0.1637246012687683, -0.0903693437576294, -0.2108195722103119, -0.2056000679731369, 0.03867346793413162, -0.34623071551322937, -0.254462867975235, 0.10422009229660034, 0.1488201916217804, 0.04015883058309555, -0.018507536500692368, -0.019967829808592796, -0.018367022275924683, 0.04877542704343796, -0.0067357709631323814, 0.06014643982052803, 0.031397558748722076, -0.02988368645310402, -0.24127542972564697, -0.029804671183228493, 0.023964406922459602, -0.07093082368373871, 0.07464958727359772, -0.06874357163906097, -0.022495782002806664, 0.08059766888618469, -0.03066304884850979, 0.03298592567443848, -0.035373736172914505, -0.16326889395713806, 0.027529051527380943, 0.03900543600320816, 0.036012712866067886, 0.00634160777553916, 0.0008072225609794259, -0.03455270454287529, 0.0644603744149208, -0.16716794669628143, -0.16015739738941193, 0.14140215516090393, -0.06745140254497528, 0.2779497504234314, -0.05812826007604599, -0.0809100940823555, 0.04766704887151718, -0.03426874056458473, 0.1807648241519928, -0.07756473124027252, 0.047254521399736404, 0.12766779959201813, 0.011127962730824947, 0.03121316432952881, -0.3092964291572571, 0.11082969605922699, -0.000795336440205574, -0.006093299947679043, -0.07581598311662674 ]