pipeline_tag
stringclasses
48 values
library_name
stringclasses
198 values
text
stringlengths
1
900k
metadata
stringlengths
2
438k
id
stringlengths
5
122
last_modified
null
tags
sequencelengths
1
1.84k
sha
null
created_at
stringlengths
25
25
arxiv
sequencelengths
0
201
languages
sequencelengths
0
1.83k
tags_str
stringlengths
17
9.34k
text_str
stringlengths
0
389k
text_lists
sequencelengths
0
722
processed_texts
sequencelengths
1
723
tokens_length
sequencelengths
1
723
input_texts
sequencelengths
1
1
text-generation
transformers
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) Qwen1.5-4B - bnb 8bits - Model creator: https://huggingface.co/Qwen/ - Original model: https://huggingface.co/Qwen/Qwen1.5-4B/ Original model description: --- license: other license_name: tongyi-qianwen-research license_link: >- https://huggingface.co/Qwen/Qwen1.5-4B/blob/main/LICENSE language: - en pipeline_tag: text-generation tags: - pretrained --- # Qwen1.5-4B ## Introduction Qwen1.5 is the beta version of Qwen2, a transformer-based decoder-only language model pretrained on a large amount of data. In comparison with the previous released Qwen, the improvements include: * 8 model sizes, including 0.5B, 1.8B, 4B, 7B, 14B, 32B and 72B dense models, and an MoE model of 14B with 2.7B activated; * Significant performance improvement in Chat models; * Multilingual support of both base and chat models; * Stable support of 32K context length for models of all sizes * No need of `trust_remote_code`. For more details, please refer to our [blog post](https://qwenlm.github.io/blog/qwen1.5/) and [GitHub repo](https://github.com/QwenLM/Qwen1.5). ## Model Details Qwen1.5 is a language model series including decoder language models of different model sizes. For each size, we release the base language model and the aligned chat model. It is based on the Transformer architecture with SwiGLU activation, attention QKV bias, group query attention, mixture of sliding window attention and full attention, etc. Additionally, we have an improved tokenizer adaptive to multiple natural languages and codes. For the beta version, temporarily we did not include GQA (except for 32B) and the mixture of SWA and full attention. ## Requirements The code of Qwen1.5 has been in the latest Hugging face transformers and we advise you to install `transformers>=4.37.0`, or you might encounter the following error: ``` KeyError: 'qwen2'. ``` ## Usage We do not advise you to use base language models for text generation. Instead, you can apply post-training, e.g., SFT, RLHF, continued pretraining, etc., on this model. ## Citation If you find our work helpful, feel free to give us a cite. ``` @article{qwen, title={Qwen Technical Report}, author={Jinze Bai and Shuai Bai and Yunfei Chu and Zeyu Cui and Kai Dang and Xiaodong Deng and Yang Fan and Wenbin Ge and Yu Han and Fei Huang and Binyuan Hui and Luo Ji and Mei Li and Junyang Lin and Runji Lin and Dayiheng Liu and Gao Liu and Chengqiang Lu and Keming Lu and Jianxin Ma and Rui Men and Xingzhang Ren and Xuancheng Ren and Chuanqi Tan and Sinan Tan and Jianhong Tu and Peng Wang and Shijie Wang and Wei Wang and Shengguang Wu and Benfeng Xu and Jin Xu and An Yang and Hao Yang and Jian Yang and Shusheng Yang and Yang Yao and Bowen Yu and Hongyi Yuan and Zheng Yuan and Jianwei Zhang and Xingxuan Zhang and Yichang Zhang and Zhenru Zhang and Chang Zhou and Jingren Zhou and Xiaohuan Zhou and Tianhang Zhu}, journal={arXiv preprint arXiv:2309.16609}, year={2023} } ```
{}
RichardErkhov/Qwen_-_Qwen1.5-4B-8bits
null
[ "transformers", "safetensors", "qwen2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "8-bit", "region:us" ]
null
2024-04-30T19:08:55+00:00
[]
[]
TAGS #transformers #safetensors #qwen2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #8-bit #region-us
Quantization made by Richard Erkhov. Github Discord Request more models Qwen1.5-4B - bnb 8bits - Model creator: URL - Original model: URL Original model description: --- license: other license_name: tongyi-qianwen-research license_link: >- URL language: - en pipeline_tag: text-generation tags: - pretrained --- # Qwen1.5-4B ## Introduction Qwen1.5 is the beta version of Qwen2, a transformer-based decoder-only language model pretrained on a large amount of data. In comparison with the previous released Qwen, the improvements include: * 8 model sizes, including 0.5B, 1.8B, 4B, 7B, 14B, 32B and 72B dense models, and an MoE model of 14B with 2.7B activated; * Significant performance improvement in Chat models; * Multilingual support of both base and chat models; * Stable support of 32K context length for models of all sizes * No need of 'trust_remote_code'. For more details, please refer to our blog post and GitHub repo. ## Model Details Qwen1.5 is a language model series including decoder language models of different model sizes. For each size, we release the base language model and the aligned chat model. It is based on the Transformer architecture with SwiGLU activation, attention QKV bias, group query attention, mixture of sliding window attention and full attention, etc. Additionally, we have an improved tokenizer adaptive to multiple natural languages and codes. For the beta version, temporarily we did not include GQA (except for 32B) and the mixture of SWA and full attention. ## Requirements The code of Qwen1.5 has been in the latest Hugging face transformers and we advise you to install 'transformers>=4.37.0', or you might encounter the following error: ## Usage We do not advise you to use base language models for text generation. Instead, you can apply post-training, e.g., SFT, RLHF, continued pretraining, etc., on this model. If you find our work helpful, feel free to give us a cite.
[ "# Qwen1.5-4B", "## Introduction\n\nQwen1.5 is the beta version of Qwen2, a transformer-based decoder-only language model pretrained on a large amount of data. In comparison with the previous released Qwen, the improvements include:\n\n* 8 model sizes, including 0.5B, 1.8B, 4B, 7B, 14B, 32B and 72B dense models, and an MoE model of 14B with 2.7B activated;\n* Significant performance improvement in Chat models;\n* Multilingual support of both base and chat models;\n* Stable support of 32K context length for models of all sizes\n* No need of 'trust_remote_code'.\n\nFor more details, please refer to our blog post and GitHub repo.", "## Model Details\nQwen1.5 is a language model series including decoder language models of different model sizes. For each size, we release the base language model and the aligned chat model. It is based on the Transformer architecture with SwiGLU activation, attention QKV bias, group query attention, mixture of sliding window attention and full attention, etc. Additionally, we have an improved tokenizer adaptive to multiple natural languages and codes. For the beta version, temporarily we did not include GQA (except for 32B) and the mixture of SWA and full attention.", "## Requirements\nThe code of Qwen1.5 has been in the latest Hugging face transformers and we advise you to install 'transformers>=4.37.0', or you might encounter the following error:", "## Usage\n\nWe do not advise you to use base language models for text generation. Instead, you can apply post-training, e.g., SFT, RLHF, continued pretraining, etc., on this model.\n\n\nIf you find our work helpful, feel free to give us a cite." ]
[ "TAGS\n#transformers #safetensors #qwen2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #8-bit #region-us \n", "# Qwen1.5-4B", "## Introduction\n\nQwen1.5 is the beta version of Qwen2, a transformer-based decoder-only language model pretrained on a large amount of data. In comparison with the previous released Qwen, the improvements include:\n\n* 8 model sizes, including 0.5B, 1.8B, 4B, 7B, 14B, 32B and 72B dense models, and an MoE model of 14B with 2.7B activated;\n* Significant performance improvement in Chat models;\n* Multilingual support of both base and chat models;\n* Stable support of 32K context length for models of all sizes\n* No need of 'trust_remote_code'.\n\nFor more details, please refer to our blog post and GitHub repo.", "## Model Details\nQwen1.5 is a language model series including decoder language models of different model sizes. For each size, we release the base language model and the aligned chat model. It is based on the Transformer architecture with SwiGLU activation, attention QKV bias, group query attention, mixture of sliding window attention and full attention, etc. Additionally, we have an improved tokenizer adaptive to multiple natural languages and codes. For the beta version, temporarily we did not include GQA (except for 32B) and the mixture of SWA and full attention.", "## Requirements\nThe code of Qwen1.5 has been in the latest Hugging face transformers and we advise you to install 'transformers>=4.37.0', or you might encounter the following error:", "## Usage\n\nWe do not advise you to use base language models for text generation. Instead, you can apply post-training, e.g., SFT, RLHF, continued pretraining, etc., on this model.\n\n\nIf you find our work helpful, feel free to give us a cite." ]
[ 42, 9, 160, 119, 44, 66 ]
[ "TAGS\n#transformers #safetensors #qwen2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #8-bit #region-us \n# Qwen1.5-4B## Introduction\n\nQwen1.5 is the beta version of Qwen2, a transformer-based decoder-only language model pretrained on a large amount of data. In comparison with the previous released Qwen, the improvements include:\n\n* 8 model sizes, including 0.5B, 1.8B, 4B, 7B, 14B, 32B and 72B dense models, and an MoE model of 14B with 2.7B activated;\n* Significant performance improvement in Chat models;\n* Multilingual support of both base and chat models;\n* Stable support of 32K context length for models of all sizes\n* No need of 'trust_remote_code'.\n\nFor more details, please refer to our blog post and GitHub repo.## Model Details\nQwen1.5 is a language model series including decoder language models of different model sizes. For each size, we release the base language model and the aligned chat model. It is based on the Transformer architecture with SwiGLU activation, attention QKV bias, group query attention, mixture of sliding window attention and full attention, etc. Additionally, we have an improved tokenizer adaptive to multiple natural languages and codes. For the beta version, temporarily we did not include GQA (except for 32B) and the mixture of SWA and full attention.## Requirements\nThe code of Qwen1.5 has been in the latest Hugging face transformers and we advise you to install 'transformers>=4.37.0', or you might encounter the following error:## Usage\n\nWe do not advise you to use base language models for text generation. Instead, you can apply post-training, e.g., SFT, RLHF, continued pretraining, etc., on this model.\n\n\nIf you find our work helpful, feel free to give us a cite." ]
image-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swinv2-base-patch4-window12to16-192to256-22kto1k-ft-finetuned-footulcer This model is a fine-tuned version of [microsoft/swinv2-base-patch4-window12to16-192to256-22kto1k-ft](https://huggingface.co/microsoft/swinv2-base-patch4-window12to16-192to256-22kto1k-ft) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.0013 - Accuracy: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.425 | 1.0 | 65 | 0.2769 | 0.8793 | | 0.3182 | 2.0 | 130 | 0.0547 | 0.9828 | | 0.2053 | 3.0 | 195 | 0.0286 | 0.9914 | | 0.2892 | 4.0 | 260 | 0.0167 | 0.9914 | | 0.1774 | 5.0 | 325 | 0.0013 | 1.0 | ### Framework versions - Transformers 4.39.3 - Pytorch 2.1.2 - Datasets 2.18.0 - Tokenizers 0.15.2
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["imagefolder"], "metrics": ["accuracy"], "base_model": "microsoft/swinv2-base-patch4-window12to16-192to256-22kto1k-ft", "model-index": [{"name": "swinv2-base-patch4-window12to16-192to256-22kto1k-ft-finetuned-footulcer", "results": [{"task": {"type": "image-classification", "name": "Image Classification"}, "dataset": {"name": "imagefolder", "type": "imagefolder", "config": "default", "split": "train", "args": "default"}, "metrics": [{"type": "accuracy", "value": 1.0, "name": "Accuracy"}]}]}]}
Nitish2801/swinv2-base-patch4-window12to16-192to256-22kto1k-ft-finetuned-footulcer
null
[ "transformers", "tensorboard", "safetensors", "swinv2", "image-classification", "generated_from_trainer", "dataset:imagefolder", "base_model:microsoft/swinv2-base-patch4-window12to16-192to256-22kto1k-ft", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2024-04-30T19:09:54+00:00
[]
[]
TAGS #transformers #tensorboard #safetensors #swinv2 #image-classification #generated_from_trainer #dataset-imagefolder #base_model-microsoft/swinv2-base-patch4-window12to16-192to256-22kto1k-ft #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us
swinv2-base-patch4-window12to16-192to256-22kto1k-ft-finetuned-footulcer ======================================================================= This model is a fine-tuned version of microsoft/swinv2-base-patch4-window12to16-192to256-22kto1k-ft on the imagefolder dataset. It achieves the following results on the evaluation set: * Loss: 0.0013 * Accuracy: 1.0 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 5e-05 * train\_batch\_size: 4 * eval\_batch\_size: 4 * seed: 42 * gradient\_accumulation\_steps: 4 * total\_train\_batch\_size: 16 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * lr\_scheduler\_warmup\_ratio: 0.1 * num\_epochs: 5 ### Training results ### Framework versions * Transformers 4.39.3 * Pytorch 2.1.2 * Datasets 2.18.0 * Tokenizers 0.15.2
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 16\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_ratio: 0.1\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.39.3\n* Pytorch 2.1.2\n* Datasets 2.18.0\n* Tokenizers 0.15.2" ]
[ "TAGS\n#transformers #tensorboard #safetensors #swinv2 #image-classification #generated_from_trainer #dataset-imagefolder #base_model-microsoft/swinv2-base-patch4-window12to16-192to256-22kto1k-ft #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 16\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_ratio: 0.1\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.39.3\n* Pytorch 2.1.2\n* Datasets 2.18.0\n* Tokenizers 0.15.2" ]
[ 92, 142, 5, 40 ]
[ "TAGS\n#transformers #tensorboard #safetensors #swinv2 #image-classification #generated_from_trainer #dataset-imagefolder #base_model-microsoft/swinv2-base-patch4-window12to16-192to256-22kto1k-ft #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 16\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_ratio: 0.1\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.39.3\n* Pytorch 2.1.2\n* Datasets 2.18.0\n* Tokenizers 0.15.2" ]
depth-estimation
transformers
# ZoeDepth (fine-tuned on NYU) ZoeDepth model fine-tuned on the NYU dataset. It was introduced in the paper [ZoeDepth: Zero-shot Transfer by Combining Relative and Metric Depth](https://arxiv.org/abs/2302.12288) by Shariq et al. and first released in [this repository](https://github.com/isl-org/ZoeDepth). ZoeDepth extends the [DPT](https://huggingface.co/docs/transformers/en/model_doc/dpt) framework for metric (also called absolute) depth estimation, obtaining state-of-the-art results. Disclaimer: The team releasing ZoeDepth did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description ZoeDepth adapts [DPT](https://huggingface.co/docs/transformers/en/model_doc/dpt), a model for relative depth estimation, for so-called metric (also called absolute) depth estimation. This means that the model is able to estimate depth in actual metric values. <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/zoedepth_architecture_bis.png" alt="drawing" width="600"/> <small> ZoeDepth architecture. Taken from the <a href="https://arxiv.org/abs/2302.12288">original paper.</a> </small> ## Intended uses & limitations You can use the raw model for tasks like zero-shot monocular depth estimation. See the [model hub](https://huggingface.co/models?search=Intel/zoedepth) to look for other versions on a task that interests you. ### How to use The easiest is to leverage the pipeline API which abstracts away the complexity for the user: ```python from transformers import pipeline from PIL import Image import requests # load pipe depth_estimator = pipeline(task="depth-estimation", model="Intel/zoedepth-nyu") # load image url = 'http://images.cocodataset.org/val2017/000000039769.jpg' image = Image.open(requests.get(url, stream=True).raw) # inference outputs = depth_estimator(image) depth = outputs.depth ``` For more code examples, we refer to the [documentation](https://huggingface.co/transformers/main/model_doc/zoedepth.html#). ### BibTeX entry and citation info ```bibtex @misc{bhat2023zoedepth, title={ZoeDepth: Zero-shot Transfer by Combining Relative and Metric Depth}, author={Shariq Farooq Bhat and Reiner Birkl and Diana Wofk and Peter Wonka and Matthias Müller}, year={2023}, eprint={2302.12288}, archivePrefix={arXiv}, primaryClass={cs.CV} } ```
{"license": "mit", "tags": ["vision"], "pipeline_tag": "depth-estimation"}
Intel/zoedepth-nyu
null
[ "transformers", "safetensors", "zoedepth", "vision", "depth-estimation", "arxiv:2302.12288", "license:mit", "endpoints_compatible", "region:us" ]
null
2024-04-30T19:10:04+00:00
[ "2302.12288" ]
[]
TAGS #transformers #safetensors #zoedepth #vision #depth-estimation #arxiv-2302.12288 #license-mit #endpoints_compatible #region-us
# ZoeDepth (fine-tuned on NYU) ZoeDepth model fine-tuned on the NYU dataset. It was introduced in the paper ZoeDepth: Zero-shot Transfer by Combining Relative and Metric Depth by Shariq et al. and first released in this repository. ZoeDepth extends the DPT framework for metric (also called absolute) depth estimation, obtaining state-of-the-art results. Disclaimer: The team releasing ZoeDepth did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description ZoeDepth adapts DPT, a model for relative depth estimation, for so-called metric (also called absolute) depth estimation. This means that the model is able to estimate depth in actual metric values. <img src="URL alt="drawing" width="600"/> <small> ZoeDepth architecture. Taken from the <a href="URL paper.</a> </small> ## Intended uses & limitations You can use the raw model for tasks like zero-shot monocular depth estimation. See the model hub to look for other versions on a task that interests you. ### How to use The easiest is to leverage the pipeline API which abstracts away the complexity for the user: For more code examples, we refer to the documentation. ### BibTeX entry and citation info
[ "# ZoeDepth (fine-tuned on NYU) \n\nZoeDepth model fine-tuned on the NYU dataset. It was introduced in the paper ZoeDepth: Zero-shot Transfer by Combining Relative and Metric Depth by Shariq et al. and first released in this repository.\n\nZoeDepth extends the DPT framework for metric (also called absolute) depth estimation, obtaining state-of-the-art results.\n\nDisclaimer: The team releasing ZoeDepth did not write a model card for this model so this model card has been written by the Hugging Face team.", "## Model description\n\nZoeDepth adapts DPT, a model for relative depth estimation, for so-called metric (also called absolute) depth estimation.\n\nThis means that the model is able to estimate depth in actual metric values.\n\n<img src=\"URL\nalt=\"drawing\" width=\"600\"/>\n\n<small> ZoeDepth architecture. Taken from the <a href=\"URL paper.</a> </small>", "## Intended uses & limitations\n\nYou can use the raw model for tasks like zero-shot monocular depth estimation. See the model hub to look for\nother versions on a task that interests you.", "### How to use\n\nThe easiest is to leverage the pipeline API which abstracts away the complexity for the user:\n\n\nFor more code examples, we refer to the documentation.", "### BibTeX entry and citation info" ]
[ "TAGS\n#transformers #safetensors #zoedepth #vision #depth-estimation #arxiv-2302.12288 #license-mit #endpoints_compatible #region-us \n", "# ZoeDepth (fine-tuned on NYU) \n\nZoeDepth model fine-tuned on the NYU dataset. It was introduced in the paper ZoeDepth: Zero-shot Transfer by Combining Relative and Metric Depth by Shariq et al. and first released in this repository.\n\nZoeDepth extends the DPT framework for metric (also called absolute) depth estimation, obtaining state-of-the-art results.\n\nDisclaimer: The team releasing ZoeDepth did not write a model card for this model so this model card has been written by the Hugging Face team.", "## Model description\n\nZoeDepth adapts DPT, a model for relative depth estimation, for so-called metric (also called absolute) depth estimation.\n\nThis means that the model is able to estimate depth in actual metric values.\n\n<img src=\"URL\nalt=\"drawing\" width=\"600\"/>\n\n<small> ZoeDepth architecture. Taken from the <a href=\"URL paper.</a> </small>", "## Intended uses & limitations\n\nYou can use the raw model for tasks like zero-shot monocular depth estimation. See the model hub to look for\nother versions on a task that interests you.", "### How to use\n\nThe easiest is to leverage the pipeline API which abstracts away the complexity for the user:\n\n\nFor more code examples, we refer to the documentation.", "### BibTeX entry and citation info" ]
[ 42, 123, 99, 39, 34, 10 ]
[ "TAGS\n#transformers #safetensors #zoedepth #vision #depth-estimation #arxiv-2302.12288 #license-mit #endpoints_compatible #region-us \n# ZoeDepth (fine-tuned on NYU) \n\nZoeDepth model fine-tuned on the NYU dataset. It was introduced in the paper ZoeDepth: Zero-shot Transfer by Combining Relative and Metric Depth by Shariq et al. and first released in this repository.\n\nZoeDepth extends the DPT framework for metric (also called absolute) depth estimation, obtaining state-of-the-art results.\n\nDisclaimer: The team releasing ZoeDepth did not write a model card for this model so this model card has been written by the Hugging Face team.## Model description\n\nZoeDepth adapts DPT, a model for relative depth estimation, for so-called metric (also called absolute) depth estimation.\n\nThis means that the model is able to estimate depth in actual metric values.\n\n<img src=\"URL\nalt=\"drawing\" width=\"600\"/>\n\n<small> ZoeDepth architecture. Taken from the <a href=\"URL paper.</a> </small>## Intended uses & limitations\n\nYou can use the raw model for tasks like zero-shot monocular depth estimation. See the model hub to look for\nother versions on a task that interests you.### How to use\n\nThe easiest is to leverage the pipeline API which abstracts away the complexity for the user:\n\n\nFor more code examples, we refer to the documentation.### BibTeX entry and citation info" ]
null
null
# MergerixExperiment26-7B MergerixExperiment26-7B is an automated merge created by [Maxime Labonne](https://huggingface.co/mlabonne) using the following configuration. ## 🧩 Configuration ```yaml models: - model: mistralai/Mistral-7B-v0.1 - model: MiniMoog/Mergerix-7b-v0.3 - model: yam-peleg/Experiment26-7B merge_method: model_stock base_model: mistralai/Mistral-7B-v0.1 dtype: bfloat16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "automerger/MergerixExperiment26-7B" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```
{"license": "apache-2.0", "tags": ["merge", "mergekit", "lazymergekit", "automerger"]}
automerger/MergerixExperiment26-7B
null
[ "merge", "mergekit", "lazymergekit", "automerger", "license:apache-2.0", "region:us" ]
null
2024-04-30T19:11:49+00:00
[]
[]
TAGS #merge #mergekit #lazymergekit #automerger #license-apache-2.0 #region-us
# MergerixExperiment26-7B MergerixExperiment26-7B is an automated merge created by Maxime Labonne using the following configuration. ## Configuration ## Usage
[ "# MergerixExperiment26-7B\n\nMergerixExperiment26-7B is an automated merge created by Maxime Labonne using the following configuration.", "## Configuration", "## Usage" ]
[ "TAGS\n#merge #mergekit #lazymergekit #automerger #license-apache-2.0 #region-us \n", "# MergerixExperiment26-7B\n\nMergerixExperiment26-7B is an automated merge created by Maxime Labonne using the following configuration.", "## Configuration", "## Usage" ]
[ 27, 36, 3, 3 ]
[ "TAGS\n#merge #mergekit #lazymergekit #automerger #license-apache-2.0 #region-us \n# MergerixExperiment26-7B\n\nMergerixExperiment26-7B is an automated merge created by Maxime Labonne using the following configuration.## Configuration## Usage" ]
reinforcement-learning
stable-baselines3
# **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
{"library_name": "stable-baselines3", "tags": ["LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "stable-baselines3"], "model-index": [{"name": "PPO", "results": [{"task": {"type": "reinforcement-learning", "name": "reinforcement-learning"}, "dataset": {"name": "LunarLander-v2", "type": "LunarLander-v2"}, "metrics": [{"type": "mean_reward", "value": "295.00 +/- 22.86", "name": "mean_reward", "verified": false}]}]}]}
Leevroko/ppo-LunarLander-v2
null
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
null
2024-04-30T19:11:55+00:00
[]
[]
TAGS #stable-baselines3 #LunarLander-v2 #deep-reinforcement-learning #reinforcement-learning #model-index #region-us
# PPO Agent playing LunarLander-v2 This is a trained model of a PPO agent playing LunarLander-v2 using the stable-baselines3 library. ## Usage (with Stable-baselines3) TODO: Add your code
[ "# PPO Agent playing LunarLander-v2\nThis is a trained model of a PPO agent playing LunarLander-v2\nusing the stable-baselines3 library.", "## Usage (with Stable-baselines3)\nTODO: Add your code" ]
[ "TAGS\n#stable-baselines3 #LunarLander-v2 #deep-reinforcement-learning #reinforcement-learning #model-index #region-us \n", "# PPO Agent playing LunarLander-v2\nThis is a trained model of a PPO agent playing LunarLander-v2\nusing the stable-baselines3 library.", "## Usage (with Stable-baselines3)\nTODO: Add your code" ]
[ 31, 35, 17 ]
[ "TAGS\n#stable-baselines3 #LunarLander-v2 #deep-reinforcement-learning #reinforcement-learning #model-index #region-us \n# PPO Agent playing LunarLander-v2\nThis is a trained model of a PPO agent playing LunarLander-v2\nusing the stable-baselines3 library.## Usage (with Stable-baselines3)\nTODO: Add your code" ]
text-generation
mlx
# batmac/Phi-3-mini-128k-instruct-mlx-4bit This model was converted to MLX format from [`microsoft/Phi-3-mini-128k-instruct`]() using mlx-lm version **0.12.0**. Refer to the [original model card](https://huggingface.co/microsoft/Phi-3-mini-128k-instruct) for more details on the model. ## Use with mlx ```bash pip install mlx-lm ``` ```python from mlx_lm import load, generate model, tokenizer = load("batmac/Phi-3-mini-128k-instruct-mlx-4bit") response = generate(model, tokenizer, prompt="hello", verbose=True) ```
{"language": ["en"], "license": "mit", "tags": ["nlp", "code", "mlx"], "license_link": "https://huggingface.co/microsoft/Phi-3-mini-128k-instruct/resolve/main/LICENSE", "pipeline_tag": "text-generation", "widget": [{"messages": [{"role": "user", "content": "Can you provide ways to eat combinations of bananas and dragonfruits?"}]}]}
batmac/Phi-3-mini-128k-instruct-mlx-4bit
null
[ "mlx", "safetensors", "phi3", "nlp", "code", "text-generation", "conversational", "custom_code", "en", "license:mit", "region:us" ]
null
2024-04-30T19:12:34+00:00
[]
[ "en" ]
TAGS #mlx #safetensors #phi3 #nlp #code #text-generation #conversational #custom_code #en #license-mit #region-us
# batmac/Phi-3-mini-128k-instruct-mlx-4bit This model was converted to MLX format from ['microsoft/Phi-3-mini-128k-instruct']() using mlx-lm version 0.12.0. Refer to the original model card for more details on the model. ## Use with mlx
[ "# batmac/Phi-3-mini-128k-instruct-mlx-4bit\nThis model was converted to MLX format from ['microsoft/Phi-3-mini-128k-instruct']() using mlx-lm version 0.12.0.\nRefer to the original model card for more details on the model.", "## Use with mlx" ]
[ "TAGS\n#mlx #safetensors #phi3 #nlp #code #text-generation #conversational #custom_code #en #license-mit #region-us \n", "# batmac/Phi-3-mini-128k-instruct-mlx-4bit\nThis model was converted to MLX format from ['microsoft/Phi-3-mini-128k-instruct']() using mlx-lm version 0.12.0.\nRefer to the original model card for more details on the model.", "## Use with mlx" ]
[ 37, 75, 6 ]
[ "TAGS\n#mlx #safetensors #phi3 #nlp #code #text-generation #conversational #custom_code #en #license-mit #region-us \n# batmac/Phi-3-mini-128k-instruct-mlx-4bit\nThis model was converted to MLX format from ['microsoft/Phi-3-mini-128k-instruct']() using mlx-lm version 0.12.0.\nRefer to the original model card for more details on the model.## Use with mlx" ]
null
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": ["trl", "sft"]}
EdBerg/Llama3_b_finance_finetuned_test
null
[ "transformers", "safetensors", "trl", "sft", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-04-30T19:12:45+00:00
[ "1910.09700" ]
[]
TAGS #transformers #safetensors #trl #sft #arxiv-1910.09700 #endpoints_compatible #region-us
# Model Card for Model ID ## Model Details ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #safetensors #trl #sft #arxiv-1910.09700 #endpoints_compatible #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ 32, 6, 4, 75, 23, 3, 5, 8, 9, 8, 34, 20, 4, 5, 5, 11, 13, 12, 3, 10, 6, 5, 6, 4, 5, 7, 49, 7, 7, 5, 5, 15, 7, 7, 8, 5 ]
[ "TAGS\n#transformers #safetensors #trl #sft #arxiv-1910.09700 #endpoints_compatible #region-us \n# Model Card for Model ID## Model Details### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Downstream Use [optional]### Out-of-Scope Use## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.## How to Get Started with the Model\n\nUse the code below to get started with the model.## Training Details### Training Data### Training Procedure#### Preprocessing [optional]#### Training Hyperparameters\n\n- Training regime:#### Speeds, Sizes, Times [optional]## Evaluation### Testing Data, Factors & Metrics#### Testing Data#### Factors#### Metrics### Results#### Summary## Model Examination [optional]## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:## Technical Specifications [optional]### Model Architecture and Objective### Compute Infrastructure#### Hardware#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Model Card Authors [optional]## Model Card Contact" ]
text-generation
transformers
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) Qwen1.5-7B - bnb 8bits - Model creator: https://huggingface.co/Qwen/ - Original model: https://huggingface.co/Qwen/Qwen1.5-7B/ Original model description: --- license: other license_name: tongyi-qianwen license_link: >- https://huggingface.co/Qwen/Qwen1.5-7B/blob/main/LICENSE language: - en pipeline_tag: text-generation tags: - pretrained --- # Qwen1.5-7B ## Introduction Qwen1.5 is the beta version of Qwen2, a transformer-based decoder-only language model pretrained on a large amount of data. In comparison with the previous released Qwen, the improvements include: * 8 model sizes, including 0.5B, 1.8B, 4B, 7B, 14B, 32B and 72B dense models, and an MoE model of 14B with 2.7B activated; * Significant performance improvement in Chat models; * Multilingual support of both base and chat models; * Stable support of 32K context length for models of all sizes * No need of `trust_remote_code`. For more details, please refer to our [blog post](https://qwenlm.github.io/blog/qwen1.5/) and [GitHub repo](https://github.com/QwenLM/Qwen1.5). ## Model Details Qwen1.5 is a language model series including decoder language models of different model sizes. For each size, we release the base language model and the aligned chat model. It is based on the Transformer architecture with SwiGLU activation, attention QKV bias, group query attention, mixture of sliding window attention and full attention, etc. Additionally, we have an improved tokenizer adaptive to multiple natural languages and codes. For the beta version, temporarily we did not include GQA (except for 32B) and the mixture of SWA and full attention. ## Requirements The code of Qwen1.5 has been in the latest Hugging face transformers and we advise you to install `transformers>=4.37.0`, or you might encounter the following error: ``` KeyError: 'qwen2'. ``` ## Usage We do not advise you to use base language models for text generation. Instead, you can apply post-training, e.g., SFT, RLHF, continued pretraining, etc., on this model. ## Citation If you find our work helpful, feel free to give us a cite. ``` @article{qwen, title={Qwen Technical Report}, author={Jinze Bai and Shuai Bai and Yunfei Chu and Zeyu Cui and Kai Dang and Xiaodong Deng and Yang Fan and Wenbin Ge and Yu Han and Fei Huang and Binyuan Hui and Luo Ji and Mei Li and Junyang Lin and Runji Lin and Dayiheng Liu and Gao Liu and Chengqiang Lu and Keming Lu and Jianxin Ma and Rui Men and Xingzhang Ren and Xuancheng Ren and Chuanqi Tan and Sinan Tan and Jianhong Tu and Peng Wang and Shijie Wang and Wei Wang and Shengguang Wu and Benfeng Xu and Jin Xu and An Yang and Hao Yang and Jian Yang and Shusheng Yang and Yang Yao and Bowen Yu and Hongyi Yuan and Zheng Yuan and Jianwei Zhang and Xingxuan Zhang and Yichang Zhang and Zhenru Zhang and Chang Zhou and Jingren Zhou and Xiaohuan Zhou and Tianhang Zhu}, journal={arXiv preprint arXiv:2309.16609}, year={2023} } ```
{}
RichardErkhov/Qwen_-_Qwen1.5-7B-8bits
null
[ "transformers", "safetensors", "qwen2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "8-bit", "region:us" ]
null
2024-04-30T19:12:51+00:00
[]
[]
TAGS #transformers #safetensors #qwen2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #8-bit #region-us
Quantization made by Richard Erkhov. Github Discord Request more models Qwen1.5-7B - bnb 8bits - Model creator: URL - Original model: URL Original model description: --- license: other license_name: tongyi-qianwen license_link: >- URL language: - en pipeline_tag: text-generation tags: - pretrained --- # Qwen1.5-7B ## Introduction Qwen1.5 is the beta version of Qwen2, a transformer-based decoder-only language model pretrained on a large amount of data. In comparison with the previous released Qwen, the improvements include: * 8 model sizes, including 0.5B, 1.8B, 4B, 7B, 14B, 32B and 72B dense models, and an MoE model of 14B with 2.7B activated; * Significant performance improvement in Chat models; * Multilingual support of both base and chat models; * Stable support of 32K context length for models of all sizes * No need of 'trust_remote_code'. For more details, please refer to our blog post and GitHub repo. ## Model Details Qwen1.5 is a language model series including decoder language models of different model sizes. For each size, we release the base language model and the aligned chat model. It is based on the Transformer architecture with SwiGLU activation, attention QKV bias, group query attention, mixture of sliding window attention and full attention, etc. Additionally, we have an improved tokenizer adaptive to multiple natural languages and codes. For the beta version, temporarily we did not include GQA (except for 32B) and the mixture of SWA and full attention. ## Requirements The code of Qwen1.5 has been in the latest Hugging face transformers and we advise you to install 'transformers>=4.37.0', or you might encounter the following error: ## Usage We do not advise you to use base language models for text generation. Instead, you can apply post-training, e.g., SFT, RLHF, continued pretraining, etc., on this model. If you find our work helpful, feel free to give us a cite.
[ "# Qwen1.5-7B", "## Introduction\n\nQwen1.5 is the beta version of Qwen2, a transformer-based decoder-only language model pretrained on a large amount of data. In comparison with the previous released Qwen, the improvements include:\n\n* 8 model sizes, including 0.5B, 1.8B, 4B, 7B, 14B, 32B and 72B dense models, and an MoE model of 14B with 2.7B activated;\n* Significant performance improvement in Chat models;\n* Multilingual support of both base and chat models;\n* Stable support of 32K context length for models of all sizes\n* No need of 'trust_remote_code'.\n\nFor more details, please refer to our blog post and GitHub repo.", "## Model Details\nQwen1.5 is a language model series including decoder language models of different model sizes. For each size, we release the base language model and the aligned chat model. It is based on the Transformer architecture with SwiGLU activation, attention QKV bias, group query attention, mixture of sliding window attention and full attention, etc. Additionally, we have an improved tokenizer adaptive to multiple natural languages and codes. For the beta version, temporarily we did not include GQA (except for 32B) and the mixture of SWA and full attention.", "## Requirements\nThe code of Qwen1.5 has been in the latest Hugging face transformers and we advise you to install 'transformers>=4.37.0', or you might encounter the following error:", "## Usage\n\nWe do not advise you to use base language models for text generation. Instead, you can apply post-training, e.g., SFT, RLHF, continued pretraining, etc., on this model.\n\n\nIf you find our work helpful, feel free to give us a cite." ]
[ "TAGS\n#transformers #safetensors #qwen2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #8-bit #region-us \n", "# Qwen1.5-7B", "## Introduction\n\nQwen1.5 is the beta version of Qwen2, a transformer-based decoder-only language model pretrained on a large amount of data. In comparison with the previous released Qwen, the improvements include:\n\n* 8 model sizes, including 0.5B, 1.8B, 4B, 7B, 14B, 32B and 72B dense models, and an MoE model of 14B with 2.7B activated;\n* Significant performance improvement in Chat models;\n* Multilingual support of both base and chat models;\n* Stable support of 32K context length for models of all sizes\n* No need of 'trust_remote_code'.\n\nFor more details, please refer to our blog post and GitHub repo.", "## Model Details\nQwen1.5 is a language model series including decoder language models of different model sizes. For each size, we release the base language model and the aligned chat model. It is based on the Transformer architecture with SwiGLU activation, attention QKV bias, group query attention, mixture of sliding window attention and full attention, etc. Additionally, we have an improved tokenizer adaptive to multiple natural languages and codes. For the beta version, temporarily we did not include GQA (except for 32B) and the mixture of SWA and full attention.", "## Requirements\nThe code of Qwen1.5 has been in the latest Hugging face transformers and we advise you to install 'transformers>=4.37.0', or you might encounter the following error:", "## Usage\n\nWe do not advise you to use base language models for text generation. Instead, you can apply post-training, e.g., SFT, RLHF, continued pretraining, etc., on this model.\n\n\nIf you find our work helpful, feel free to give us a cite." ]
[ 42, 9, 160, 119, 44, 66 ]
[ "TAGS\n#transformers #safetensors #qwen2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #8-bit #region-us \n# Qwen1.5-7B## Introduction\n\nQwen1.5 is the beta version of Qwen2, a transformer-based decoder-only language model pretrained on a large amount of data. In comparison with the previous released Qwen, the improvements include:\n\n* 8 model sizes, including 0.5B, 1.8B, 4B, 7B, 14B, 32B and 72B dense models, and an MoE model of 14B with 2.7B activated;\n* Significant performance improvement in Chat models;\n* Multilingual support of both base and chat models;\n* Stable support of 32K context length for models of all sizes\n* No need of 'trust_remote_code'.\n\nFor more details, please refer to our blog post and GitHub repo.## Model Details\nQwen1.5 is a language model series including decoder language models of different model sizes. For each size, we release the base language model and the aligned chat model. It is based on the Transformer architecture with SwiGLU activation, attention QKV bias, group query attention, mixture of sliding window attention and full attention, etc. Additionally, we have an improved tokenizer adaptive to multiple natural languages and codes. For the beta version, temporarily we did not include GQA (except for 32B) and the mixture of SWA and full attention.## Requirements\nThe code of Qwen1.5 has been in the latest Hugging face transformers and we advise you to install 'transformers>=4.37.0', or you might encounter the following error:## Usage\n\nWe do not advise you to use base language models for text generation. Instead, you can apply post-training, e.g., SFT, RLHF, continued pretraining, etc., on this model.\n\n\nIf you find our work helpful, feel free to give us a cite." ]
text-generation
mlx
# batmac/Phi-3-mini-128k-instruct-mlx-8bit This model was converted to MLX format from [`microsoft/Phi-3-mini-128k-instruct`]() using mlx-lm version **0.12.0**. Refer to the [original model card](https://huggingface.co/microsoft/Phi-3-mini-128k-instruct) for more details on the model. ## Use with mlx ```bash pip install mlx-lm ``` ```python from mlx_lm import load, generate model, tokenizer = load("batmac/Phi-3-mini-128k-instruct-mlx-8bit") response = generate(model, tokenizer, prompt="hello", verbose=True) ```
{"language": ["en"], "license": "mit", "tags": ["nlp", "code", "mlx"], "license_link": "https://huggingface.co/microsoft/Phi-3-mini-128k-instruct/resolve/main/LICENSE", "pipeline_tag": "text-generation", "widget": [{"messages": [{"role": "user", "content": "Can you provide ways to eat combinations of bananas and dragonfruits?"}]}]}
batmac/Phi-3-mini-128k-instruct-mlx-8bit
null
[ "mlx", "safetensors", "phi3", "nlp", "code", "text-generation", "conversational", "custom_code", "en", "license:mit", "region:us" ]
null
2024-04-30T19:15:10+00:00
[]
[ "en" ]
TAGS #mlx #safetensors #phi3 #nlp #code #text-generation #conversational #custom_code #en #license-mit #region-us
# batmac/Phi-3-mini-128k-instruct-mlx-8bit This model was converted to MLX format from ['microsoft/Phi-3-mini-128k-instruct']() using mlx-lm version 0.12.0. Refer to the original model card for more details on the model. ## Use with mlx
[ "# batmac/Phi-3-mini-128k-instruct-mlx-8bit\nThis model was converted to MLX format from ['microsoft/Phi-3-mini-128k-instruct']() using mlx-lm version 0.12.0.\nRefer to the original model card for more details on the model.", "## Use with mlx" ]
[ "TAGS\n#mlx #safetensors #phi3 #nlp #code #text-generation #conversational #custom_code #en #license-mit #region-us \n", "# batmac/Phi-3-mini-128k-instruct-mlx-8bit\nThis model was converted to MLX format from ['microsoft/Phi-3-mini-128k-instruct']() using mlx-lm version 0.12.0.\nRefer to the original model card for more details on the model.", "## Use with mlx" ]
[ 37, 75, 6 ]
[ "TAGS\n#mlx #safetensors #phi3 #nlp #code #text-generation #conversational #custom_code #en #license-mit #region-us \n# batmac/Phi-3-mini-128k-instruct-mlx-8bit\nThis model was converted to MLX format from ['microsoft/Phi-3-mini-128k-instruct']() using mlx-lm version 0.12.0.\nRefer to the original model card for more details on the model.## Use with mlx" ]
null
peft
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # llava-1.5-7b-hf-ft-mix-vsft This model is a fine-tuned version of [llava-hf/llava-1.5-7b-hf](https://huggingface.co/llava-hf/llava-1.5-7b-hf) on the imagefolder dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1.4e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results ### Framework versions - PEFT 0.10.0 - Transformers 4.40.1 - Pytorch 2.3.0+cu121 - Datasets 2.19.0 - Tokenizers 0.19.1
{"library_name": "peft", "tags": ["trl", "sft", "generated_from_trainer"], "datasets": ["imagefolder"], "base_model": "llava-hf/llava-1.5-7b-hf", "model-index": [{"name": "llava-1.5-7b-hf-ft-mix-vsft", "results": []}]}
rakitha/llava-1.5-7b-hf-ft-mix-vsft
null
[ "peft", "tensorboard", "safetensors", "trl", "sft", "generated_from_trainer", "dataset:imagefolder", "base_model:llava-hf/llava-1.5-7b-hf", "region:us" ]
null
2024-04-30T19:17:37+00:00
[]
[]
TAGS #peft #tensorboard #safetensors #trl #sft #generated_from_trainer #dataset-imagefolder #base_model-llava-hf/llava-1.5-7b-hf #region-us
# llava-1.5-7b-hf-ft-mix-vsft This model is a fine-tuned version of llava-hf/llava-1.5-7b-hf on the imagefolder dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1.4e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results ### Framework versions - PEFT 0.10.0 - Transformers 4.40.1 - Pytorch 2.3.0+cu121 - Datasets 2.19.0 - Tokenizers 0.19.1
[ "# llava-1.5-7b-hf-ft-mix-vsft\n\nThis model is a fine-tuned version of llava-hf/llava-1.5-7b-hf on the imagefolder dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 1.4e-05\n- train_batch_size: 16\n- eval_batch_size: 16\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 1\n- mixed_precision_training: Native AMP", "### Training results", "### Framework versions\n\n- PEFT 0.10.0\n- Transformers 4.40.1\n- Pytorch 2.3.0+cu121\n- Datasets 2.19.0\n- Tokenizers 0.19.1" ]
[ "TAGS\n#peft #tensorboard #safetensors #trl #sft #generated_from_trainer #dataset-imagefolder #base_model-llava-hf/llava-1.5-7b-hf #region-us \n", "# llava-1.5-7b-hf-ft-mix-vsft\n\nThis model is a fine-tuned version of llava-hf/llava-1.5-7b-hf on the imagefolder dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 1.4e-05\n- train_batch_size: 16\n- eval_batch_size: 16\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 1\n- mixed_precision_training: Native AMP", "### Training results", "### Framework versions\n\n- PEFT 0.10.0\n- Transformers 4.40.1\n- Pytorch 2.3.0+cu121\n- Datasets 2.19.0\n- Tokenizers 0.19.1" ]
[ 57, 55, 7, 9, 9, 4, 104, 5, 52 ]
[ "TAGS\n#peft #tensorboard #safetensors #trl #sft #generated_from_trainer #dataset-imagefolder #base_model-llava-hf/llava-1.5-7b-hf #region-us \n# llava-1.5-7b-hf-ft-mix-vsft\n\nThis model is a fine-tuned version of llava-hf/llava-1.5-7b-hf on the imagefolder dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 1.4e-05\n- train_batch_size: 16\n- eval_batch_size: 16\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 1\n- mixed_precision_training: Native AMP### Training results### Framework versions\n\n- PEFT 0.10.0\n- Transformers 4.40.1\n- Pytorch 2.3.0+cu121\n- Datasets 2.19.0\n- Tokenizers 0.19.1" ]
text-generation
null
<a href="https://www.gradient.ai" target="_blank"><img src="https://cdn-uploads.huggingface.co/production/uploads/655bb613e8a8971e89944f3e/TSa3V8YpoVagnTYgxiLaO.png" width="200"/></a> # Llama-3 8B Gradient Instruct 1048k Gradient incorporates your data to deploy autonomous assistants that power critical operations across your business. If you're looking to build custom AI models or agents, email us a message [email protected]. For more info see our [End-to-end development service for custom LLMs and AI systems](https://gradient.ai/development-lab) This model extends LLama-3 8B's context length from 8k to > 1040K, developed by Gradient, sponsored by compute from [Crusoe Energy](https://huggingface.co/crusoeai). It demonstrates that SOTA LLMs can learn to operate on long context with minimal training by appropriately adjusting RoPE theta. We trained on 830M tokens for this stage, and 1.4B tokens total for all stages, which is < 0.01% of Llama-3's original pre-training data. ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6585dc9be92bc5f258156bd6/6MKLoX2ruLIaREiyb6coO.png) **Approach:** - [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) as the base - NTK-aware interpolation [1] to initialize an optimal schedule for RoPE theta, followed by empirical RoPE theta optimization - Progressive training on increasing context lengths, similar to [Large World Model](https://huggingface.co/LargeWorldModel) [2] (See details below) **Infra:** We build on top of the EasyContext Blockwise RingAttention library [3] to scalably and efficiently train on contexts up to 1048k tokens on [Crusoe Energy](https://huggingface.co/crusoeai) high performance L40S cluster. Notably, we layered parallelism on top of Ring Attention with a custom network topology to better leverage large GPU clusters in the face of network bottlenecks from passing many KV blocks between devices. This gave us a 33x speedup in model training (compare 524k and 1048k to 65k and 262k in the table below). **Data:** For training data, we generate long contexts by augmenting [SlimPajama](https://huggingface.co/datasets/cerebras/SlimPajama-627B). **Progressive Training Details:** | | 65K | 262K | 524k | 1048k | |------------------------|-----------|-----------|-----------|-----------| | Initialize From | LLaMA-3 8B| 65K | 262K | 524k | | Sequence Length 2^N | 16 | 18 | 19 | 20 | | RoPE theta | 15.3 M | 207.1 M | 1.06B | 2.80B | | Batch Size | 1 | 1 | 16 | 16 | | Gradient Accumulation Steps | 32 | 16 | 1 | 1 | | Steps | 30 | 24 | 50 | 50 | | Total Tokens | 62914560 | 100663296 | 419430400 | 838860800 | | Learning Rate | 2.00E-05 | 2.00E-05 | 2.00E-05 | 2.00E-05 | | # GPUs | 8 | 32 | 512 | 512 | | GPU Type | NVIDIA L40S | NVIDIA L40S | NVIDIA L40S | NVIDIA L40S | | Minutes to Train (Wall)| 202 | 555 | 61 | 87 | **Quants**: - [GGUF](https://huggingface.co/crusoeai/Llama-3-8B-Instruct-1048k-GGUF) - [MLX-4bit](https://huggingface.co/mlx-community/Llama-3-8B-Instruct-1048k-4bit) ## The Gradient AI Team https://gradient.ai/ Gradient is accelerating AI transformation across industries. Our AI Foundry incorporates your data to deploy autonomous assistants that power critical operations across your business. ## Contact Us Drop an email to [[email protected]](mailto:[email protected]) ## References [1] Peng, Bowen, et al. "Yarn: Efficient context window extension of large language models." arXiv preprint arXiv:2309.00071 (2023). [2] Liu, Hao, et al. "World Model on Million-Length Video And Language With RingAttention." arXiv preprint arXiv:2402.08268 (2024). [3] https://github.com/jzhang38/EasyContext ---- # Base Model ## Model Details Meta developed and released the Meta Llama 3 family of large language models (LLMs), a collection of pretrained and instruction tuned generative text models in 8 and 70B sizes. The Llama 3 instruction tuned models are optimized for dialogue use cases and outperform many of the available open source chat models on common industry benchmarks. Further, in developing these models, we took great care to optimize helpfulness and safety. **Model developers** Meta **Variations** Llama 3 comes in two sizes — 8B and 70B parameters — in pre-trained and instruction tuned variants. **Input** Models input text only. **Output** Models generate text and code only. **Model Architecture** Llama 3 is an auto-regressive language model that uses an optimized transformer architecture. The tuned versions use supervised fine-tuning (SFT) and reinforcement learning with human feedback (RLHF) to align with human preferences for helpfulness and safety. <table> <tr> <td> </td> <td><strong>Training Data</strong> </td> <td><strong>Params</strong> </td> <td><strong>Context length</strong> </td> <td><strong>GQA</strong> </td> <td><strong>Token count</strong> </td> <td><strong>Knowledge cutoff</strong> </td> </tr> <tr> <td rowspan="2" >Llama 3 </td> <td rowspan="2" >A new mix of publicly available online data. </td> <td>8B </td> <td>8k </td> <td>Yes </td> <td rowspan="2" >15T+ </td> <td>March, 2023 </td> </tr> <tr> <td>70B </td> <td>8k </td> <td>Yes </td> <td>December, 2023 </td> </tr> </table> **Llama 3 family of models**. Token counts refer to pretraining data only. Both the 8 and 70B versions use Grouped-Query Attention (GQA) for improved inference scalability. **Model Release Date** April 18, 2024. **Status** This is a static model trained on an offline dataset. Future versions of the tuned models will be released as we improve model safety with community feedback. **License** A custom commercial license is available at: [https://llama.meta.com/llama3/license](https://llama.meta.com/llama3/license) Where to send questions or comments about the model Instructions on how to provide feedback or comments on the model can be found in the model [README](https://github.com/meta-llama/llama3). For more technical information about generation parameters and recipes for how to use Llama 3 in applications, please go [here](https://github.com/meta-llama/llama-recipes). ## Intended Use **Intended Use Cases** Llama 3 is intended for commercial and research use in English. Instruction tuned models are intended for assistant-like chat, whereas pretrained models can be adapted for a variety of natural language generation tasks. **Out-of-scope** Use in any manner that violates applicable laws or regulations (including trade compliance laws). Use in any other way that is prohibited by the Acceptable Use Policy and Llama 3 Community License. Use in languages other than English**. **Note: Developers may fine-tune Llama 3 models for languages beyond English provided they comply with the Llama 3 Community License and the Acceptable Use Policy. ## How to use This repository contains two versions of Meta-Llama-3-8B-Instruct, for use with transformers and with the original `llama3` codebase. ### Use with transformers You can run conversational inference using the Transformers pipeline abstraction, or by leveraging the Auto classes with the `generate()` function. Let's see examples of both. #### Transformers pipeline ```python import transformers import torch model_id = "meta-llama/Meta-Llama-3-8B-Instruct" pipeline = transformers.pipeline( "text-generation", model=model_id, model_kwargs={"torch_dtype": torch.bfloat16}, device_map="auto", ) messages = [ {"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"}, {"role": "user", "content": "Who are you?"}, ] prompt = pipeline.tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) terminators = [ pipeline.tokenizer.eos_token_id, pipeline.tokenizer.convert_tokens_to_ids("<|eot_id|>") ] outputs = pipeline( prompt, max_new_tokens=256, eos_token_id=terminators, do_sample=True, temperature=0.6, top_p=0.9, ) print(outputs[0]["generated_text"][len(prompt):]) ``` #### Transformers AutoModelForCausalLM ```python from transformers import AutoTokenizer, AutoModelForCausalLM import torch model_id = "meta-llama/Meta-Llama-3-8B-Instruct" tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained( model_id, torch_dtype=torch.bfloat16, device_map="auto", ) messages = [ {"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"}, {"role": "user", "content": "Who are you?"}, ] input_ids = tokenizer.apply_chat_template( messages, add_generation_prompt=True, return_tensors="pt" ).to(model.device) terminators = [ tokenizer.eos_token_id, tokenizer.convert_tokens_to_ids("<|eot_id|>") ] outputs = model.generate( input_ids, max_new_tokens=256, eos_token_id=terminators, do_sample=True, temperature=0.6, top_p=0.9, ) response = outputs[0][input_ids.shape[-1]:] print(tokenizer.decode(response, skip_special_tokens=True)) ``` ### Use with `llama3` Please, follow the instructions in the [repository](https://github.com/meta-llama/llama3) To download Original checkpoints, see the example command below leveraging `huggingface-cli`: ``` huggingface-cli download meta-llama/Meta-Llama-3-8B-Instruct --include "original/*" --local-dir Meta-Llama-3-8B-Instruct ``` For Hugging Face support, we recommend using transformers or TGI, but a similar command works. ## Hardware and Software **Training Factors** We used custom training libraries, Meta's Research SuperCluster, and production clusters for pretraining. Fine-tuning, annotation, and evaluation were also performed on third-party cloud compute. **Carbon Footprint Pretraining utilized a cumulative** 7.7M GPU hours of computation on hardware of type H100-80GB (TDP of 700W). Estimated total emissions were 2290 tCO2eq, 100% of which were offset by Meta’s sustainability program. <table> <tr> <td> </td> <td><strong>Time (GPU hours)</strong> </td> <td><strong>Power Consumption (W)</strong> </td> <td><strong>Carbon Emitted(tCO2eq)</strong> </td> </tr> <tr> <td>Llama 3 8B </td> <td>1.3M </td> <td>700 </td> <td>390 </td> </tr> <tr> <td>Llama 3 70B </td> <td>6.4M </td> <td>700 </td> <td>1900 </td> </tr> <tr> <td>Total </td> <td>7.7M </td> <td> </td> <td>2290 </td> </tr> </table> **CO2 emissions during pre-training**. Time: total GPU time required for training each model. Power Consumption: peak power capacity per GPU device for the GPUs used adjusted for power usage efficiency. 100% of the emissions are directly offset by Meta's sustainability program, and because we are openly releasing these models, the pretraining costs do not need to be incurred by others. ## Training Data **Overview** Llama 3 was pretrained on over 15 trillion tokens of data from publicly available sources. The fine-tuning data includes publicly available instruction datasets, as well as over 10M human-annotated examples. Neither the pretraining nor the fine-tuning datasets include Meta user data. **Data Freshness** The pretraining data has a cutoff of March 2023 for the 7B and December 2023 for the 70B models respectively. ## Benchmarks In this section, we report the results for Llama 3 models on standard automatic benchmarks. For all the evaluations, we use our internal evaluations library. For details on the methodology see [here](https://github.com/meta-llama/llama3/blob/main/eval_methodology.md). ### Base pretrained models <table> <tr> <td><strong>Category</strong> </td> <td><strong>Benchmark</strong> </td> <td><strong>Llama 3 8B</strong> </td> <td><strong>Llama2 7B</strong> </td> <td><strong>Llama2 13B</strong> </td> <td><strong>Llama 3 70B</strong> </td> <td><strong>Llama2 70B</strong> </td> </tr> <tr> <td rowspan="6" >General </td> <td>MMLU (5-shot) </td> <td>66.6 </td> <td>45.7 </td> <td>53.8 </td> <td>79.5 </td> <td>69.7 </td> </tr> <tr> <td>AGIEval English (3-5 shot) </td> <td>45.9 </td> <td>28.8 </td> <td>38.7 </td> <td>63.0 </td> <td>54.8 </td> </tr> <tr> <td>CommonSenseQA (7-shot) </td> <td>72.6 </td> <td>57.6 </td> <td>67.6 </td> <td>83.8 </td> <td>78.7 </td> </tr> <tr> <td>Winogrande (5-shot) </td> <td>76.1 </td> <td>73.3 </td> <td>75.4 </td> <td>83.1 </td> <td>81.8 </td> </tr> <tr> <td>BIG-Bench Hard (3-shot, CoT) </td> <td>61.1 </td> <td>38.1 </td> <td>47.0 </td> <td>81.3 </td> <td>65.7 </td> </tr> <tr> <td>ARC-Challenge (25-shot) </td> <td>78.6 </td> <td>53.7 </td> <td>67.6 </td> <td>93.0 </td> <td>85.3 </td> </tr> <tr> <td>Knowledge reasoning </td> <td>TriviaQA-Wiki (5-shot) </td> <td>78.5 </td> <td>72.1 </td> <td>79.6 </td> <td>89.7 </td> <td>87.5 </td> </tr> <tr> <td rowspan="4" >Reading comprehension </td> <td>SQuAD (1-shot) </td> <td>76.4 </td> <td>72.2 </td> <td>72.1 </td> <td>85.6 </td> <td>82.6 </td> </tr> <tr> <td>QuAC (1-shot, F1) </td> <td>44.4 </td> <td>39.6 </td> <td>44.9 </td> <td>51.1 </td> <td>49.4 </td> </tr> <tr> <td>BoolQ (0-shot) </td> <td>75.7 </td> <td>65.5 </td> <td>66.9 </td> <td>79.0 </td> <td>73.1 </td> </tr> <tr> <td>DROP (3-shot, F1) </td> <td>58.4 </td> <td>37.9 </td> <td>49.8 </td> <td>79.7 </td> <td>70.2 </td> </tr> </table> ### Instruction tuned models <table> <tr> <td><strong>Benchmark</strong> </td> <td><strong>Llama 3 8B</strong> </td> <td><strong>Llama 2 7B</strong> </td> <td><strong>Llama 2 13B</strong> </td> <td><strong>Llama 3 70B</strong> </td> <td><strong>Llama 2 70B</strong> </td> </tr> <tr> <td>MMLU (5-shot) </td> <td>68.4 </td> <td>34.1 </td> <td>47.8 </td> <td>82.0 </td> <td>52.9 </td> </tr> <tr> <td>GPQA (0-shot) </td> <td>34.2 </td> <td>21.7 </td> <td>22.3 </td> <td>39.5 </td> <td>21.0 </td> </tr> <tr> <td>HumanEval (0-shot) </td> <td>62.2 </td> <td>7.9 </td> <td>14.0 </td> <td>81.7 </td> <td>25.6 </td> </tr> <tr> <td>GSM-8K (8-shot, CoT) </td> <td>79.6 </td> <td>25.7 </td> <td>77.4 </td> <td>93.0 </td> <td>57.5 </td> </tr> <tr> <td>MATH (4-shot, CoT) </td> <td>30.0 </td> <td>3.8 </td> <td>6.7 </td> <td>50.4 </td> <td>11.6 </td> </tr> </table> ### Responsibility & Safety We believe that an open approach to AI leads to better, safer products, faster innovation, and a bigger overall market. We are committed to Responsible AI development and took a series of steps to limit misuse and harm and support the open source community. Foundation models are widely capable technologies that are built to be used for a diverse range of applications. They are not designed to meet every developer preference on safety levels for all use cases, out-of-the-box, as those by their nature will differ across different applications. Rather, responsible LLM-application deployment is achieved by implementing a series of safety best practices throughout the development of such applications, from the model pre-training, fine-tuning and the deployment of systems composed of safeguards to tailor the safety needs specifically to the use case and audience. As part of the Llama 3 release, we updated our [Responsible Use Guide](https://llama.meta.com/responsible-use-guide/) to outline the steps and best practices for developers to implement model and system level safety for their application. We also provide a set of resources including [Meta Llama Guard 2](https://llama.meta.com/purple-llama/) and [Code Shield](https://llama.meta.com/purple-llama/) safeguards. These tools have proven to drastically reduce residual risks of LLM Systems, while maintaining a high level of helpfulness. We encourage developers to tune and deploy these safeguards according to their needs and we provide a [reference implementation](https://github.com/meta-llama/llama-recipes/tree/main/recipes/responsible_ai) to get you started. #### Llama 3-Instruct As outlined in the Responsible Use Guide, some trade-off between model helpfulness and model alignment is likely unavoidable. Developers should exercise discretion about how to weigh the benefits of alignment and helpfulness for their specific use case and audience. Developers should be mindful of residual risks when using Llama models and leverage additional safety tools as needed to reach the right safety bar for their use case. <span style="text-decoration:underline;">Safety</span> For our instruction tuned model, we conducted extensive red teaming exercises, performed adversarial evaluations and implemented safety mitigations techniques to lower residual risks. As with any Large Language Model, residual risks will likely remain and we recommend that developers assess these risks in the context of their use case. In parallel, we are working with the community to make AI safety benchmark standards transparent, rigorous and interpretable. <span style="text-decoration:underline;">Refusals</span> In addition to residual risks, we put a great emphasis on model refusals to benign prompts. Over-refusing not only can impact the user experience but could even be harmful in certain contexts as well. We’ve heard the feedback from the developer community and improved our fine tuning to ensure that Llama 3 is significantly less likely to falsely refuse to answer prompts than Llama 2. We built internal benchmarks and developed mitigations to limit false refusals making Llama 3 our most helpful model to date. #### Responsible release In addition to responsible use considerations outlined above, we followed a rigorous process that requires us to take extra measures against misuse and critical risks before we make our release decision. Misuse If you access or use Llama 3, you agree to the Acceptable Use Policy. The most recent copy of this policy can be found at [https://llama.meta.com/llama3/use-policy/](https://llama.meta.com/llama3/use-policy/). #### Critical risks <span style="text-decoration:underline;">CBRNE</span> (Chemical, Biological, Radiological, Nuclear, and high yield Explosives) We have conducted a two fold assessment of the safety of the model in this area: * Iterative testing during model training to assess the safety of responses related to CBRNE threats and other adversarial risks. * Involving external CBRNE experts to conduct an uplift test assessing the ability of the model to accurately provide expert knowledge and reduce barriers to potential CBRNE misuse, by reference to what can be achieved using web search (without the model). ### <span style="text-decoration:underline;">Cyber Security </span> We have evaluated Llama 3 with CyberSecEval, Meta’s cybersecurity safety eval suite, measuring Llama 3’s propensity to suggest insecure code when used as a coding assistant, and Llama 3’s propensity to comply with requests to help carry out cyber attacks, where attacks are defined by the industry standard MITRE ATT&CK cyber attack ontology. On our insecure coding and cyber attacker helpfulness tests, Llama 3 behaved in the same range or safer than models of [equivalent coding capability](https://huggingface.co/spaces/facebook/CyberSecEval). ### <span style="text-decoration:underline;">Child Safety</span> Child Safety risk assessments were conducted using a team of experts, to assess the model’s capability to produce outputs that could result in Child Safety risks and inform on any necessary and appropriate risk mitigations via fine tuning. We leveraged those expert red teaming sessions to expand the coverage of our evaluation benchmarks through Llama 3 model development. For Llama 3, we conducted new in-depth sessions using objective based methodologies to assess the model risks along multiple attack vectors. We also partnered with content specialists to perform red teaming exercises assessing potentially violating content while taking account of market specific nuances or experiences. ### Community Generative AI safety requires expertise and tooling, and we believe in the strength of the open community to accelerate its progress. We are active members of open consortiums, including the AI Alliance, Partnership in AI and MLCommons, actively contributing to safety standardization and transparency. We encourage the community to adopt taxonomies like the MLCommons Proof of Concept evaluation to facilitate collaboration and transparency on safety and content evaluations. Our Purple Llama tools are open sourced for the community to use and widely distributed across ecosystem partners including cloud service providers. We encourage community contributions to our [Github repository](https://github.com/meta-llama/PurpleLlama). Finally, we put in place a set of resources including an [output reporting mechanism](https://developers.facebook.com/llama_output_feedback) and [bug bounty program](https://www.facebook.com/whitehat) to continuously improve the Llama technology with the help of the community. ## Ethical Considerations and Limitations The core values of Llama 3 are openness, inclusivity and helpfulness. It is meant to serve everyone, and to work for a wide range of use cases. It is thus designed to be accessible to people across many different backgrounds, experiences and perspectives. Llama 3 addresses users and their needs as they are, without insertion unnecessary judgment or normativity, while reflecting the understanding that even content that may appear problematic in some cases can serve valuable purposes in others. It respects the dignity and autonomy of all users, especially in terms of the values of free thought and expression that power innovation and progress. But Llama 3 is a new technology, and like any new technology, there are risks associated with its use. Testing conducted to date has been in English, and has not covered, nor could it cover, all scenarios. For these reasons, as with all LLMs, Llama 3’s potential outputs cannot be predicted in advance, and the model may in some instances produce inaccurate, biased or other objectionable responses to user prompts. Therefore, before deploying any applications of Llama 3 models, developers should perform safety testing and tuning tailored to their specific applications of the model. As outlined in the Responsible Use Guide, we recommend incorporating [Purple Llama](https://github.com/facebookresearch/PurpleLlama) solutions into your workflows and specifically [Llama Guard](https://ai.meta.com/research/publications/llama-guard-llm-based-input-output-safeguard-for-human-ai-conversations/) which provides a base model to filter input and output prompts to layer system-level safety on top of model-level safety. Please see the Responsible Use Guide available at [http://llama.meta.com/responsible-use-guide](http://llama.meta.com/responsible-use-guide) ## Citation instructions @article{llama3modelcard, title={Llama 3 Model Card}, author={AI@Meta}, year={2024}, url = {https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md} } ## Contributors Aaditya Singh; Aaron Grattafiori; Abhimanyu Dubey; Abhinav Jauhri; Abhinav Pandey; Abhishek Kadian; Adam Kelsey; Adi Gangidi; Ahmad Al-Dahle; Ahuva Goldstand; Aiesha Letman; Ajay Menon; Akhil Mathur; Alan Schelten; Alex Vaughan; Amy Yang; Andrei Lupu; Andres Alvarado; Andrew Gallagher; Andrew Gu; Andrew Ho; Andrew Poulton; Andrew Ryan; Angela Fan; Ankit Ramchandani; Anthony Hartshorn; Archi Mitra; Archie Sravankumar; Artem Korenev; Arun Rao; Ashley Gabriel; Ashwin Bharambe; Assaf Eisenman; Aston Zhang; Aurelien Rodriguez; Austen Gregerson; Ava Spataru; Baptiste Roziere; Ben Maurer; Benjamin Leonhardi; Bernie Huang; Bhargavi Paranjape; Bing Liu; Binh Tang; Bobbie Chern; Brani Stojkovic; Brian Fuller; Catalina Mejia Arenas; Chao Zhou; Charlotte Caucheteux; Chaya Nayak; Ching-Hsiang Chu; Chloe Bi; Chris Cai; Chris Cox; Chris Marra; Chris McConnell; Christian Keller; Christoph Feichtenhofer; Christophe Touret; Chunyang Wu; Corinne Wong; Cristian Canton Ferrer; Damien Allonsius; Daniel Kreymer; Daniel Haziza; Daniel Li; Danielle Pintz; Danny Livshits; Danny Wyatt; David Adkins; David Esiobu; David Xu; Davide Testuggine; Delia David; Devi Parikh; Dhruv Choudhary; Dhruv Mahajan; Diana Liskovich; Diego Garcia-Olano; Diego Perino; Dieuwke Hupkes; Dingkang Wang; Dustin Holland; Egor Lakomkin; Elina Lobanova; Xiaoqing Ellen Tan; Emily Dinan; Eric Smith; Erik Brinkman; Esteban Arcaute; Filip Radenovic; Firat Ozgenel; Francesco Caggioni; Frank Seide; Frank Zhang; Gabriel Synnaeve; Gabriella Schwarz; Gabrielle Lee; Gada Badeer; Georgia Anderson; Graeme Nail; Gregoire Mialon; Guan Pang; Guillem Cucurell; Hailey Nguyen; Hannah Korevaar; Hannah Wang; Haroun Habeeb; Harrison Rudolph; Henry Aspegren; Hu Xu; Hugo Touvron; Iga Kozlowska; Igor Molybog; Igor Tufanov; Iliyan Zarov; Imanol Arrieta Ibarra; Irina-Elena Veliche; Isabel Kloumann; Ishan Misra; Ivan Evtimov; Jacob Xu; Jade Copet; Jake Weissman; Jan Geffert; Jana Vranes; Japhet Asher; Jason Park; Jay Mahadeokar; Jean-Baptiste Gaya; Jeet Shah; Jelmer van der Linde; Jennifer Chan; Jenny Hong; Jenya Lee; Jeremy Fu; Jeremy Teboul; Jianfeng Chi; Jianyu Huang; Jie Wang; Jiecao Yu; Joanna Bitton; Joe Spisak; Joelle Pineau; Jon Carvill; Jongsoo Park; Joseph Rocca; Joshua Johnstun; Junteng Jia; Kalyan Vasuden Alwala; Kam Hou U; Kate Plawiak; Kartikeya Upasani; Kaushik Veeraraghavan; Ke Li; Kenneth Heafield; Kevin Stone; Khalid El-Arini; Krithika Iyer; Kshitiz Malik; Kuenley Chiu; Kunal Bhalla; Kyle Huang; Lakshya Garg; Lauren Rantala-Yeary; Laurens van der Maaten; Lawrence Chen; Leandro Silva; Lee Bell; Lei Zhang; Liang Tan; Louis Martin; Lovish Madaan; Luca Wehrstedt; Lukas Blecher; Luke de Oliveira; Madeline Muzzi; Madian Khabsa; Manav Avlani; Mannat Singh; Manohar Paluri; Mark Zuckerberg; Marcin Kardas; Martynas Mankus; Mathew Oldham; Mathieu Rita; Matthew Lennie; Maya Pavlova; Meghan Keneally; Melanie Kambadur; Mihir Patel; Mikayel Samvelyan; Mike Clark; Mike Lewis; Min Si; Mitesh Kumar Singh; Mo Metanat; Mona Hassan; Naman Goyal; Narjes Torabi; Nicolas Usunier; Nikolay Bashlykov; Nikolay Bogoychev; Niladri Chatterji; Ning Dong; Oliver Aobo Yang; Olivier Duchenne; Onur Celebi; Parth Parekh; Patrick Alrassy; Paul Saab; Pavan Balaji; Pedro Rittner; Pengchuan Zhang; Pengwei Li; Petar Vasic; Peter Weng; Polina Zvyagina; Prajjwal Bhargava; Pratik Dubal; Praveen Krishnan; Punit Singh Koura; Qing He; Rachel Rodriguez; Ragavan Srinivasan; Rahul Mitra; Ramon Calderer; Raymond Li; Robert Stojnic; Roberta Raileanu; Robin Battey; Rocky Wang; Rohit Girdhar; Rohit Patel; Romain Sauvestre; Ronnie Polidoro; Roshan Sumbaly; Ross Taylor; Ruan Silva; Rui Hou; Rui Wang; Russ Howes; Ruty Rinott; Saghar Hosseini; Sai Jayesh Bondu; Samyak Datta; Sanjay Singh; Sara Chugh; Sargun Dhillon; Satadru Pan; Sean Bell; Sergey Edunov; Shaoliang Nie; Sharan Narang; Sharath Raparthy; Shaun Lindsay; Sheng Feng; Sheng Shen; Shenghao Lin; Shiva Shankar; Shruti Bhosale; Shun Zhang; Simon Vandenhende; Sinong Wang; Seohyun Sonia Kim; Soumya Batra; Sten Sootla; Steve Kehoe; Suchin Gururangan; Sumit Gupta; Sunny Virk; Sydney Borodinsky; Tamar Glaser; Tamar Herman; Tamara Best; Tara Fowler; Thomas Georgiou; Thomas Scialom; Tianhe Li; Todor Mihaylov; Tong Xiao; Ujjwal Karn; Vedanuj Goswami; Vibhor Gupta; Vignesh Ramanathan; Viktor Kerkez; Vinay Satish Kumar; Vincent Gonguet; Vish Vogeti; Vlad Poenaru; Vlad Tiberiu Mihailescu; Vladan Petrovic; Vladimir Ivanov; Wei Li; Weiwei Chu; Wenhan Xiong; Wenyin Fu; Wes Bouaziz; Whitney Meers; Will Constable; Xavier Martinet; Xiaojian Wu; Xinbo Gao; Xinfeng Xie; Xuchao Jia; Yaelle Goldschlag; Yann LeCun; Yashesh Gaur; Yasmine Babaei; Ye Qi; Yenda Li; Yi Wen; Yiwen Song; Youngjin Nam; Yuchen Hao; Yuchen Zhang; Yun Wang; Yuning Mao; Yuzi He; Zacharie Delpierre Coudert; Zachary DeVito; Zahra Hankir; Zhaoduo Wen; Zheng Yan; Zhengxing Chen; Zhenyu Yang; Zoe Papakipos
{"language": ["en"], "license": "llama3", "tags": ["meta", "llama-3"], "pipeline_tag": "text-generation"}
LoneStriker/Llama-3-8B-Instruct-Gradient-1048k-GGUF
null
[ "gguf", "meta", "llama-3", "text-generation", "en", "license:llama3", "region:us" ]
null
2024-04-30T19:18:07+00:00
[]
[ "en" ]
TAGS #gguf #meta #llama-3 #text-generation #en #license-llama3 #region-us
[<img src="URL width="200"/>](URL) Llama-3 8B Gradient Instruct 1048k ================================== Gradient incorporates your data to deploy autonomous assistants that power critical operations across your business. If you're looking to build custom AI models or agents, email us a message contact@URL. For more info see our End-to-end development service for custom LLMs and AI systems This model extends LLama-3 8B's context length from 8k to > 1040K, developed by Gradient, sponsored by compute from Crusoe Energy. It demonstrates that SOTA LLMs can learn to operate on long context with minimal training by appropriately adjusting RoPE theta. We trained on 830M tokens for this stage, and 1.4B tokens total for all stages, which is < 0.01% of Llama-3's original pre-training data. !image/png Approach: * meta-llama/Meta-Llama-3-8B-Instruct as the base * NTK-aware interpolation [1] to initialize an optimal schedule for RoPE theta, followed by empirical RoPE theta optimization * Progressive training on increasing context lengths, similar to Large World Model [2] (See details below) Infra: We build on top of the EasyContext Blockwise RingAttention library [3] to scalably and efficiently train on contexts up to 1048k tokens on Crusoe Energy high performance L40S cluster. Notably, we layered parallelism on top of Ring Attention with a custom network topology to better leverage large GPU clusters in the face of network bottlenecks from passing many KV blocks between devices. This gave us a 33x speedup in model training (compare 524k and 1048k to 65k and 262k in the table below). Data: For training data, we generate long contexts by augmenting SlimPajama. Progressive Training Details: Quants: * GGUF * MLX-4bit The Gradient AI Team -------------------- URL Gradient is accelerating AI transformation across industries. Our AI Foundry incorporates your data to deploy autonomous assistants that power critical operations across your business. Contact Us ---------- Drop an email to contact@URL References ---------- [1] Peng, Bowen, et al. "Yarn: Efficient context window extension of large language models." arXiv preprint arXiv:2309.00071 (2023). [2] Liu, Hao, et al. "World Model on Million-Length Video And Language With RingAttention." arXiv preprint arXiv:2402.08268 (2024). [3] URL --- Base Model ========== Model Details ------------- Meta developed and released the Meta Llama 3 family of large language models (LLMs), a collection of pretrained and instruction tuned generative text models in 8 and 70B sizes. The Llama 3 instruction tuned models are optimized for dialogue use cases and outperform many of the available open source chat models on common industry benchmarks. Further, in developing these models, we took great care to optimize helpfulness and safety. Model developers Meta Variations Llama 3 comes in two sizes — 8B and 70B parameters — in pre-trained and instruction tuned variants. Input Models input text only. Output Models generate text and code only. Model Architecture Llama 3 is an auto-regressive language model that uses an optimized transformer architecture. The tuned versions use supervised fine-tuning (SFT) and reinforcement learning with human feedback (RLHF) to align with human preferences for helpfulness and safety. Llama 3 family of models. Token counts refer to pretraining data only. Both the 8 and 70B versions use Grouped-Query Attention (GQA) for improved inference scalability. Model Release Date April 18, 2024. Status This is a static model trained on an offline dataset. Future versions of the tuned models will be released as we improve model safety with community feedback. License A custom commercial license is available at: URL Where to send questions or comments about the model Instructions on how to provide feedback or comments on the model can be found in the model README. For more technical information about generation parameters and recipes for how to use Llama 3 in applications, please go here. Intended Use ------------ Intended Use Cases Llama 3 is intended for commercial and research use in English. Instruction tuned models are intended for assistant-like chat, whereas pretrained models can be adapted for a variety of natural language generation tasks. Out-of-scope Use in any manner that violates applicable laws or regulations (including trade compliance laws). Use in any other way that is prohibited by the Acceptable Use Policy and Llama 3 Community License. Use in languages other than English. Note: Developers may fine-tune Llama 3 models for languages beyond English provided they comply with the Llama 3 Community License and the Acceptable Use Policy. How to use ---------- This repository contains two versions of Meta-Llama-3-8B-Instruct, for use with transformers and with the original 'llama3' codebase. ### Use with transformers You can run conversational inference using the Transformers pipeline abstraction, or by leveraging the Auto classes with the 'generate()' function. Let's see examples of both. #### Transformers pipeline #### Transformers AutoModelForCausalLM ### Use with 'llama3' Please, follow the instructions in the repository To download Original checkpoints, see the example command below leveraging 'huggingface-cli': For Hugging Face support, we recommend using transformers or TGI, but a similar command works. Hardware and Software --------------------- Training Factors We used custom training libraries, Meta's Research SuperCluster, and production clusters for pretraining. Fine-tuning, annotation, and evaluation were also performed on third-party cloud compute. Carbon Footprint Pretraining utilized a cumulative 7.7M GPU hours of computation on hardware of type H100-80GB (TDP of 700W). Estimated total emissions were 2290 tCO2eq, 100% of which were offset by Meta’s sustainability program. CO2 emissions during pre-training. Time: total GPU time required for training each model. Power Consumption: peak power capacity per GPU device for the GPUs used adjusted for power usage efficiency. 100% of the emissions are directly offset by Meta's sustainability program, and because we are openly releasing these models, the pretraining costs do not need to be incurred by others. Training Data ------------- Overview Llama 3 was pretrained on over 15 trillion tokens of data from publicly available sources. The fine-tuning data includes publicly available instruction datasets, as well as over 10M human-annotated examples. Neither the pretraining nor the fine-tuning datasets include Meta user data. Data Freshness The pretraining data has a cutoff of March 2023 for the 7B and December 2023 for the 70B models respectively. Benchmarks ---------- In this section, we report the results for Llama 3 models on standard automatic benchmarks. For all the evaluations, we use our internal evaluations library. For details on the methodology see here. ### Base pretrained models ### Instruction tuned models ### Responsibility & Safety We believe that an open approach to AI leads to better, safer products, faster innovation, and a bigger overall market. We are committed to Responsible AI development and took a series of steps to limit misuse and harm and support the open source community. Foundation models are widely capable technologies that are built to be used for a diverse range of applications. They are not designed to meet every developer preference on safety levels for all use cases, out-of-the-box, as those by their nature will differ across different applications. Rather, responsible LLM-application deployment is achieved by implementing a series of safety best practices throughout the development of such applications, from the model pre-training, fine-tuning and the deployment of systems composed of safeguards to tailor the safety needs specifically to the use case and audience. As part of the Llama 3 release, we updated our Responsible Use Guide to outline the steps and best practices for developers to implement model and system level safety for their application. We also provide a set of resources including Meta Llama Guard 2 and Code Shield safeguards. These tools have proven to drastically reduce residual risks of LLM Systems, while maintaining a high level of helpfulness. We encourage developers to tune and deploy these safeguards according to their needs and we provide a reference implementation to get you started. #### Llama 3-Instruct As outlined in the Responsible Use Guide, some trade-off between model helpfulness and model alignment is likely unavoidable. Developers should exercise discretion about how to weigh the benefits of alignment and helpfulness for their specific use case and audience. Developers should be mindful of residual risks when using Llama models and leverage additional safety tools as needed to reach the right safety bar for their use case. Safety For our instruction tuned model, we conducted extensive red teaming exercises, performed adversarial evaluations and implemented safety mitigations techniques to lower residual risks. As with any Large Language Model, residual risks will likely remain and we recommend that developers assess these risks in the context of their use case. In parallel, we are working with the community to make AI safety benchmark standards transparent, rigorous and interpretable. Refusals In addition to residual risks, we put a great emphasis on model refusals to benign prompts. Over-refusing not only can impact the user experience but could even be harmful in certain contexts as well. We’ve heard the feedback from the developer community and improved our fine tuning to ensure that Llama 3 is significantly less likely to falsely refuse to answer prompts than Llama 2. We built internal benchmarks and developed mitigations to limit false refusals making Llama 3 our most helpful model to date. #### Responsible release In addition to responsible use considerations outlined above, we followed a rigorous process that requires us to take extra measures against misuse and critical risks before we make our release decision. Misuse If you access or use Llama 3, you agree to the Acceptable Use Policy. The most recent copy of this policy can be found at URL #### Critical risks CBRNE (Chemical, Biological, Radiological, Nuclear, and high yield Explosives) We have conducted a two fold assessment of the safety of the model in this area: * Iterative testing during model training to assess the safety of responses related to CBRNE threats and other adversarial risks. * Involving external CBRNE experts to conduct an uplift test assessing the ability of the model to accurately provide expert knowledge and reduce barriers to potential CBRNE misuse, by reference to what can be achieved using web search (without the model). ### Cyber Security We have evaluated Llama 3 with CyberSecEval, Meta’s cybersecurity safety eval suite, measuring Llama 3’s propensity to suggest insecure code when used as a coding assistant, and Llama 3’s propensity to comply with requests to help carry out cyber attacks, where attacks are defined by the industry standard MITRE ATT&CK cyber attack ontology. On our insecure coding and cyber attacker helpfulness tests, Llama 3 behaved in the same range or safer than models of equivalent coding capability. ### Child Safety Child Safety risk assessments were conducted using a team of experts, to assess the model’s capability to produce outputs that could result in Child Safety risks and inform on any necessary and appropriate risk mitigations via fine tuning. We leveraged those expert red teaming sessions to expand the coverage of our evaluation benchmarks through Llama 3 model development. For Llama 3, we conducted new in-depth sessions using objective based methodologies to assess the model risks along multiple attack vectors. We also partnered with content specialists to perform red teaming exercises assessing potentially violating content while taking account of market specific nuances or experiences. ### Community Generative AI safety requires expertise and tooling, and we believe in the strength of the open community to accelerate its progress. We are active members of open consortiums, including the AI Alliance, Partnership in AI and MLCommons, actively contributing to safety standardization and transparency. We encourage the community to adopt taxonomies like the MLCommons Proof of Concept evaluation to facilitate collaboration and transparency on safety and content evaluations. Our Purple Llama tools are open sourced for the community to use and widely distributed across ecosystem partners including cloud service providers. We encourage community contributions to our Github repository. Finally, we put in place a set of resources including an output reporting mechanism and bug bounty program to continuously improve the Llama technology with the help of the community. Ethical Considerations and Limitations -------------------------------------- The core values of Llama 3 are openness, inclusivity and helpfulness. It is meant to serve everyone, and to work for a wide range of use cases. It is thus designed to be accessible to people across many different backgrounds, experiences and perspectives. Llama 3 addresses users and their needs as they are, without insertion unnecessary judgment or normativity, while reflecting the understanding that even content that may appear problematic in some cases can serve valuable purposes in others. It respects the dignity and autonomy of all users, especially in terms of the values of free thought and expression that power innovation and progress. But Llama 3 is a new technology, and like any new technology, there are risks associated with its use. Testing conducted to date has been in English, and has not covered, nor could it cover, all scenarios. For these reasons, as with all LLMs, Llama 3’s potential outputs cannot be predicted in advance, and the model may in some instances produce inaccurate, biased or other objectionable responses to user prompts. Therefore, before deploying any applications of Llama 3 models, developers should perform safety testing and tuning tailored to their specific applications of the model. As outlined in the Responsible Use Guide, we recommend incorporating Purple Llama solutions into your workflows and specifically Llama Guard which provides a base model to filter input and output prompts to layer system-level safety on top of model-level safety. Please see the Responsible Use Guide available at URL instructions @article{llama3modelcard, title={Llama 3 Model Card}, author={AI@Meta}, year={2024}, url = {URL } Contributors ------------ Aaditya Singh; Aaron Grattafiori; Abhimanyu Dubey; Abhinav Jauhri; Abhinav Pandey; Abhishek Kadian; Adam Kelsey; Adi Gangidi; Ahmad Al-Dahle; Ahuva Goldstand; Aiesha Letman; Ajay Menon; Akhil Mathur; Alan Schelten; Alex Vaughan; Amy Yang; Andrei Lupu; Andres Alvarado; Andrew Gallagher; Andrew Gu; Andrew Ho; Andrew Poulton; Andrew Ryan; Angela Fan; Ankit Ramchandani; Anthony Hartshorn; Archi Mitra; Archie Sravankumar; Artem Korenev; Arun Rao; Ashley Gabriel; Ashwin Bharambe; Assaf Eisenman; Aston Zhang; Aurelien Rodriguez; Austen Gregerson; Ava Spataru; Baptiste Roziere; Ben Maurer; Benjamin Leonhardi; Bernie Huang; Bhargavi Paranjape; Bing Liu; Binh Tang; Bobbie Chern; Brani Stojkovic; Brian Fuller; Catalina Mejia Arenas; Chao Zhou; Charlotte Caucheteux; Chaya Nayak; Ching-Hsiang Chu; Chloe Bi; Chris Cai; Chris Cox; Chris Marra; Chris McConnell; Christian Keller; Christoph Feichtenhofer; Christophe Touret; Chunyang Wu; Corinne Wong; Cristian Canton Ferrer; Damien Allonsius; Daniel Kreymer; Daniel Haziza; Daniel Li; Danielle Pintz; Danny Livshits; Danny Wyatt; David Adkins; David Esiobu; David Xu; Davide Testuggine; Delia David; Devi Parikh; Dhruv Choudhary; Dhruv Mahajan; Diana Liskovich; Diego Garcia-Olano; Diego Perino; Dieuwke Hupkes; Dingkang Wang; Dustin Holland; Egor Lakomkin; Elina Lobanova; Xiaoqing Ellen Tan; Emily Dinan; Eric Smith; Erik Brinkman; Esteban Arcaute; Filip Radenovic; Firat Ozgenel; Francesco Caggioni; Frank Seide; Frank Zhang; Gabriel Synnaeve; Gabriella Schwarz; Gabrielle Lee; Gada Badeer; Georgia Anderson; Graeme Nail; Gregoire Mialon; Guan Pang; Guillem Cucurell; Hailey Nguyen; Hannah Korevaar; Hannah Wang; Haroun Habeeb; Harrison Rudolph; Henry Aspegren; Hu Xu; Hugo Touvron; Iga Kozlowska; Igor Molybog; Igor Tufanov; Iliyan Zarov; Imanol Arrieta Ibarra; Irina-Elena Veliche; Isabel Kloumann; Ishan Misra; Ivan Evtimov; Jacob Xu; Jade Copet; Jake Weissman; Jan Geffert; Jana Vranes; Japhet Asher; Jason Park; Jay Mahadeokar; Jean-Baptiste Gaya; Jeet Shah; Jelmer van der Linde; Jennifer Chan; Jenny Hong; Jenya Lee; Jeremy Fu; Jeremy Teboul; Jianfeng Chi; Jianyu Huang; Jie Wang; Jiecao Yu; Joanna Bitton; Joe Spisak; Joelle Pineau; Jon Carvill; Jongsoo Park; Joseph Rocca; Joshua Johnstun; Junteng Jia; Kalyan Vasuden Alwala; Kam Hou U; Kate Plawiak; Kartikeya Upasani; Kaushik Veeraraghavan; Ke Li; Kenneth Heafield; Kevin Stone; Khalid El-Arini; Krithika Iyer; Kshitiz Malik; Kuenley Chiu; Kunal Bhalla; Kyle Huang; Lakshya Garg; Lauren Rantala-Yeary; Laurens van der Maaten; Lawrence Chen; Leandro Silva; Lee Bell; Lei Zhang; Liang Tan; Louis Martin; Lovish Madaan; Luca Wehrstedt; Lukas Blecher; Luke de Oliveira; Madeline Muzzi; Madian Khabsa; Manav Avlani; Mannat Singh; Manohar Paluri; Mark Zuckerberg; Marcin Kardas; Martynas Mankus; Mathew Oldham; Mathieu Rita; Matthew Lennie; Maya Pavlova; Meghan Keneally; Melanie Kambadur; Mihir Patel; Mikayel Samvelyan; Mike Clark; Mike Lewis; Min Si; Mitesh Kumar Singh; Mo Metanat; Mona Hassan; Naman Goyal; Narjes Torabi; Nicolas Usunier; Nikolay Bashlykov; Nikolay Bogoychev; Niladri Chatterji; Ning Dong; Oliver Aobo Yang; Olivier Duchenne; Onur Celebi; Parth Parekh; Patrick Alrassy; Paul Saab; Pavan Balaji; Pedro Rittner; Pengchuan Zhang; Pengwei Li; Petar Vasic; Peter Weng; Polina Zvyagina; Prajjwal Bhargava; Pratik Dubal; Praveen Krishnan; Punit Singh Koura; Qing He; Rachel Rodriguez; Ragavan Srinivasan; Rahul Mitra; Ramon Calderer; Raymond Li; Robert Stojnic; Roberta Raileanu; Robin Battey; Rocky Wang; Rohit Girdhar; Rohit Patel; Romain Sauvestre; Ronnie Polidoro; Roshan Sumbaly; Ross Taylor; Ruan Silva; Rui Hou; Rui Wang; Russ Howes; Ruty Rinott; Saghar Hosseini; Sai Jayesh Bondu; Samyak Datta; Sanjay Singh; Sara Chugh; Sargun Dhillon; Satadru Pan; Sean Bell; Sergey Edunov; Shaoliang Nie; Sharan Narang; Sharath Raparthy; Shaun Lindsay; Sheng Feng; Sheng Shen; Shenghao Lin; Shiva Shankar; Shruti Bhosale; Shun Zhang; Simon Vandenhende; Sinong Wang; Seohyun Sonia Kim; Soumya Batra; Sten Sootla; Steve Kehoe; Suchin Gururangan; Sumit Gupta; Sunny Virk; Sydney Borodinsky; Tamar Glaser; Tamar Herman; Tamara Best; Tara Fowler; Thomas Georgiou; Thomas Scialom; Tianhe Li; Todor Mihaylov; Tong Xiao; Ujjwal Karn; Vedanuj Goswami; Vibhor Gupta; Vignesh Ramanathan; Viktor Kerkez; Vinay Satish Kumar; Vincent Gonguet; Vish Vogeti; Vlad Poenaru; Vlad Tiberiu Mihailescu; Vladan Petrovic; Vladimir Ivanov; Wei Li; Weiwei Chu; Wenhan Xiong; Wenyin Fu; Wes Bouaziz; Whitney Meers; Will Constable; Xavier Martinet; Xiaojian Wu; Xinbo Gao; Xinfeng Xie; Xuchao Jia; Yaelle Goldschlag; Yann LeCun; Yashesh Gaur; Yasmine Babaei; Ye Qi; Yenda Li; Yi Wen; Yiwen Song; Youngjin Nam; Yuchen Hao; Yuchen Zhang; Yun Wang; Yuning Mao; Yuzi He; Zacharie Delpierre Coudert; Zachary DeVito; Zahra Hankir; Zhaoduo Wen; Zheng Yan; Zhengxing Chen; Zhenyu Yang; Zoe Papakipos
[ "### Use with transformers\n\n\nYou can run conversational inference using the Transformers pipeline abstraction, or by leveraging the Auto classes with the 'generate()' function. Let's see examples of both.", "#### Transformers pipeline", "#### Transformers AutoModelForCausalLM", "### Use with 'llama3'\n\n\nPlease, follow the instructions in the repository\n\n\nTo download Original checkpoints, see the example command below leveraging 'huggingface-cli':\n\n\nFor Hugging Face support, we recommend using transformers or TGI, but a similar command works.\n\n\nHardware and Software\n---------------------\n\n\nTraining Factors We used custom training libraries, Meta's Research SuperCluster, and production clusters for pretraining. Fine-tuning, annotation, and evaluation were also performed on third-party cloud compute.\n\n\nCarbon Footprint Pretraining utilized a cumulative 7.7M GPU hours of computation on hardware of type H100-80GB (TDP of 700W). Estimated total emissions were 2290 tCO2eq, 100% of which were offset by Meta’s sustainability program.\n\n\n\nCO2 emissions during pre-training. Time: total GPU time required for training each model. Power Consumption: peak power capacity per GPU device for the GPUs used adjusted for power usage efficiency. 100% of the emissions are directly offset by Meta's sustainability program, and because we are openly releasing these models, the pretraining costs do not need to be incurred by others.\n\n\nTraining Data\n-------------\n\n\nOverview Llama 3 was pretrained on over 15 trillion tokens of data from publicly available sources. The fine-tuning data includes publicly available instruction datasets, as well as over 10M human-annotated examples. Neither the pretraining nor the fine-tuning datasets include Meta user data.\n\n\nData Freshness The pretraining data has a cutoff of March 2023 for the 7B and December 2023 for the 70B models respectively.\n\n\nBenchmarks\n----------\n\n\nIn this section, we report the results for Llama 3 models on standard automatic benchmarks. For all the evaluations, we use our internal evaluations library. For details on the methodology see here.", "### Base pretrained models", "### Instruction tuned models", "### Responsibility & Safety\n\n\nWe believe that an open approach to AI leads to better, safer products, faster innovation, and a bigger overall market. We are committed to Responsible AI development and took a series of steps to limit misuse and harm and support the open source community.\n\n\nFoundation models are widely capable technologies that are built to be used for a diverse range of applications. They are not designed to meet every developer preference on safety levels for all use cases, out-of-the-box, as those by their nature will differ across different applications.\n\n\nRather, responsible LLM-application deployment is achieved by implementing a series of safety best practices throughout the development of such applications, from the model pre-training, fine-tuning and the deployment of systems composed of safeguards to tailor the safety needs specifically to the use case and audience.\n\n\nAs part of the Llama 3 release, we updated our Responsible Use Guide to outline the steps and best practices for developers to implement model and system level safety for their application. We also provide a set of resources including Meta Llama Guard 2 and Code Shield safeguards. These tools have proven to drastically reduce residual risks of LLM Systems, while maintaining a high level of helpfulness. We encourage developers to tune and deploy these safeguards according to their needs and we provide a reference implementation to get you started.", "#### Llama 3-Instruct\n\n\nAs outlined in the Responsible Use Guide, some trade-off between model helpfulness and model alignment is likely unavoidable. Developers should exercise discretion about how to weigh the benefits of alignment and helpfulness for their specific use case and audience. Developers should be mindful of residual risks when using Llama models and leverage additional safety tools as needed to reach the right safety bar for their use case.\n\n\nSafety\n\n\nFor our instruction tuned model, we conducted extensive red teaming exercises, performed adversarial evaluations and implemented safety mitigations techniques to lower residual risks. As with any Large Language Model, residual risks will likely remain and we recommend that developers assess these risks in the context of their use case. In parallel, we are working with the community to make AI safety benchmark standards transparent, rigorous and interpretable.\n\n\nRefusals\n\n\nIn addition to residual risks, we put a great emphasis on model refusals to benign prompts. Over-refusing not only can impact the user experience but could even be harmful in certain contexts as well. We’ve heard the feedback from the developer community and improved our fine tuning to ensure that Llama 3 is significantly less likely to falsely refuse to answer prompts than Llama 2.\n\n\nWe built internal benchmarks and developed mitigations to limit false refusals making Llama 3 our most helpful model to date.", "#### Responsible release\n\n\nIn addition to responsible use considerations outlined above, we followed a rigorous process that requires us to take extra measures against misuse and critical risks before we make our release decision.\n\n\nMisuse\n\n\nIf you access or use Llama 3, you agree to the Acceptable Use Policy. The most recent copy of this policy can be found at URL", "#### Critical risks\n\n\nCBRNE (Chemical, Biological, Radiological, Nuclear, and high yield Explosives)\n\n\nWe have conducted a two fold assessment of the safety of the model in this area:\n\n\n* Iterative testing during model training to assess the safety of responses related to CBRNE threats and other adversarial risks.\n* Involving external CBRNE experts to conduct an uplift test assessing the ability of the model to accurately provide expert knowledge and reduce barriers to potential CBRNE misuse, by reference to what can be achieved using web search (without the model).", "### Cyber Security\n\n\nWe have evaluated Llama 3 with CyberSecEval, Meta’s cybersecurity safety eval suite, measuring Llama 3’s propensity to suggest insecure code when used as a coding assistant, and Llama 3’s propensity to comply with requests to help carry out cyber attacks, where attacks are defined by the industry standard MITRE ATT&CK cyber attack ontology. On our insecure coding and cyber attacker helpfulness tests, Llama 3 behaved in the same range or safer than models of equivalent coding capability.", "### Child Safety\n\n\nChild Safety risk assessments were conducted using a team of experts, to assess the model’s capability to produce outputs that could result in Child Safety risks and inform on any necessary and appropriate risk mitigations via fine tuning. We leveraged those expert red teaming sessions to expand the coverage of our evaluation benchmarks through Llama 3 model development. For Llama 3, we conducted new in-depth sessions using objective based methodologies to assess the model risks along multiple attack vectors. We also partnered with content specialists to perform red teaming exercises assessing potentially violating content while taking account of market specific nuances or experiences.", "### Community\n\n\nGenerative AI safety requires expertise and tooling, and we believe in the strength of the open community to accelerate its progress. We are active members of open consortiums, including the AI Alliance, Partnership in AI and MLCommons, actively contributing to safety standardization and transparency. We encourage the community to adopt taxonomies like the MLCommons Proof of Concept evaluation to facilitate collaboration and transparency on safety and content evaluations. Our Purple Llama tools are open sourced for the community to use and widely distributed across ecosystem partners including cloud service providers. We encourage community contributions to our Github repository.\n\n\nFinally, we put in place a set of resources including an output reporting mechanism and bug bounty program to continuously improve the Llama technology with the help of the community.\n\n\nEthical Considerations and Limitations\n--------------------------------------\n\n\nThe core values of Llama 3 are openness, inclusivity and helpfulness. It is meant to serve everyone, and to work for a wide range of use cases. It is thus designed to be accessible to people across many different backgrounds, experiences and perspectives. Llama 3 addresses users and their needs as they are, without insertion unnecessary judgment or normativity, while reflecting the understanding that even content that may appear problematic in some cases can serve valuable purposes in others. It respects the dignity and autonomy of all users, especially in terms of the values of free thought and expression that power innovation and progress.\n\n\nBut Llama 3 is a new technology, and like any new technology, there are risks associated with its use. Testing conducted to date has been in English, and has not covered, nor could it cover, all scenarios. For these reasons, as with all LLMs, Llama 3’s potential outputs cannot be predicted in advance, and the model may in some instances produce inaccurate, biased or other objectionable responses to user prompts. Therefore, before deploying any applications of Llama 3 models, developers should perform safety testing and tuning tailored to their specific applications of the model. As outlined in the Responsible Use Guide, we recommend incorporating Purple Llama solutions into your workflows and specifically Llama Guard which provides a base model to filter input and output prompts to layer system-level safety on top of model-level safety.\n\n\nPlease see the Responsible Use Guide available at URL\n\n\ninstructions\n\n\n@article{llama3modelcard,\n\n\ntitle={Llama 3 Model Card},\n\n\nauthor={AI@Meta},\n\n\nyear={2024},\n\n\nurl = {URL\n\n\n}\n\n\nContributors\n------------\n\n\nAaditya Singh; Aaron Grattafiori; Abhimanyu Dubey; Abhinav Jauhri; Abhinav Pandey; Abhishek Kadian; Adam Kelsey; Adi Gangidi; Ahmad Al-Dahle; Ahuva Goldstand; Aiesha Letman; Ajay Menon; Akhil Mathur; Alan Schelten; Alex Vaughan; Amy Yang; Andrei Lupu; Andres Alvarado; Andrew Gallagher; Andrew Gu; Andrew Ho; Andrew Poulton; Andrew Ryan; Angela Fan; Ankit Ramchandani; Anthony Hartshorn; Archi Mitra; Archie Sravankumar; Artem Korenev; Arun Rao; Ashley Gabriel; Ashwin Bharambe; Assaf Eisenman; Aston Zhang; Aurelien Rodriguez; Austen Gregerson; Ava Spataru; Baptiste Roziere; Ben Maurer; Benjamin Leonhardi; Bernie Huang; Bhargavi Paranjape; Bing Liu; Binh Tang; Bobbie Chern; Brani Stojkovic; Brian Fuller; Catalina Mejia Arenas; Chao Zhou; Charlotte Caucheteux; Chaya Nayak; Ching-Hsiang Chu; Chloe Bi; Chris Cai; Chris Cox; Chris Marra; Chris McConnell; Christian Keller; Christoph Feichtenhofer; Christophe Touret; Chunyang Wu; Corinne Wong; Cristian Canton Ferrer; Damien Allonsius; Daniel Kreymer; Daniel Haziza; Daniel Li; Danielle Pintz; Danny Livshits; Danny Wyatt; David Adkins; David Esiobu; David Xu; Davide Testuggine; Delia David; Devi Parikh; Dhruv Choudhary; Dhruv Mahajan; Diana Liskovich; Diego Garcia-Olano; Diego Perino; Dieuwke Hupkes; Dingkang Wang; Dustin Holland; Egor Lakomkin; Elina Lobanova; Xiaoqing Ellen Tan; Emily Dinan; Eric Smith; Erik Brinkman; Esteban Arcaute; Filip Radenovic; Firat Ozgenel; Francesco Caggioni; Frank Seide; Frank Zhang; Gabriel Synnaeve; Gabriella Schwarz; Gabrielle Lee; Gada Badeer; Georgia Anderson; Graeme Nail; Gregoire Mialon; Guan Pang; Guillem Cucurell; Hailey Nguyen; Hannah Korevaar; Hannah Wang; Haroun Habeeb; Harrison Rudolph; Henry Aspegren; Hu Xu; Hugo Touvron; Iga Kozlowska; Igor Molybog; Igor Tufanov; Iliyan Zarov; Imanol Arrieta Ibarra; Irina-Elena Veliche; Isabel Kloumann; Ishan Misra; Ivan Evtimov; Jacob Xu; Jade Copet; Jake Weissman; Jan Geffert; Jana Vranes; Japhet Asher; Jason Park; Jay Mahadeokar; Jean-Baptiste Gaya; Jeet Shah; Jelmer van der Linde; Jennifer Chan; Jenny Hong; Jenya Lee; Jeremy Fu; Jeremy Teboul; Jianfeng Chi; Jianyu Huang; Jie Wang; Jiecao Yu; Joanna Bitton; Joe Spisak; Joelle Pineau; Jon Carvill; Jongsoo Park; Joseph Rocca; Joshua Johnstun; Junteng Jia; Kalyan Vasuden Alwala; Kam Hou U; Kate Plawiak; Kartikeya Upasani; Kaushik Veeraraghavan; Ke Li; Kenneth Heafield; Kevin Stone; Khalid El-Arini; Krithika Iyer; Kshitiz Malik; Kuenley Chiu; Kunal Bhalla; Kyle Huang; Lakshya Garg; Lauren Rantala-Yeary; Laurens van der Maaten; Lawrence Chen; Leandro Silva; Lee Bell; Lei Zhang; Liang Tan; Louis Martin; Lovish Madaan; Luca Wehrstedt; Lukas Blecher; Luke de Oliveira; Madeline Muzzi; Madian Khabsa; Manav Avlani; Mannat Singh; Manohar Paluri; Mark Zuckerberg; Marcin Kardas; Martynas Mankus; Mathew Oldham; Mathieu Rita; Matthew Lennie; Maya Pavlova; Meghan Keneally; Melanie Kambadur; Mihir Patel; Mikayel Samvelyan; Mike Clark; Mike Lewis; Min Si; Mitesh Kumar Singh; Mo Metanat; Mona Hassan; Naman Goyal; Narjes Torabi; Nicolas Usunier; Nikolay Bashlykov; Nikolay Bogoychev; Niladri Chatterji; Ning Dong; Oliver Aobo Yang; Olivier Duchenne; Onur Celebi; Parth Parekh; Patrick Alrassy; Paul Saab; Pavan Balaji; Pedro Rittner; Pengchuan Zhang; Pengwei Li; Petar Vasic; Peter Weng; Polina Zvyagina; Prajjwal Bhargava; Pratik Dubal; Praveen Krishnan; Punit Singh Koura; Qing He; Rachel Rodriguez; Ragavan Srinivasan; Rahul Mitra; Ramon Calderer; Raymond Li; Robert Stojnic; Roberta Raileanu; Robin Battey; Rocky Wang; Rohit Girdhar; Rohit Patel; Romain Sauvestre; Ronnie Polidoro; Roshan Sumbaly; Ross Taylor; Ruan Silva; Rui Hou; Rui Wang; Russ Howes; Ruty Rinott; Saghar Hosseini; Sai Jayesh Bondu; Samyak Datta; Sanjay Singh; Sara Chugh; Sargun Dhillon; Satadru Pan; Sean Bell; Sergey Edunov; Shaoliang Nie; Sharan Narang; Sharath Raparthy; Shaun Lindsay; Sheng Feng; Sheng Shen; Shenghao Lin; Shiva Shankar; Shruti Bhosale; Shun Zhang; Simon Vandenhende; Sinong Wang; Seohyun Sonia Kim; Soumya Batra; Sten Sootla; Steve Kehoe; Suchin Gururangan; Sumit Gupta; Sunny Virk; Sydney Borodinsky; Tamar Glaser; Tamar Herman; Tamara Best; Tara Fowler; Thomas Georgiou; Thomas Scialom; Tianhe Li; Todor Mihaylov; Tong Xiao; Ujjwal Karn; Vedanuj Goswami; Vibhor Gupta; Vignesh Ramanathan; Viktor Kerkez; Vinay Satish Kumar; Vincent Gonguet; Vish Vogeti; Vlad Poenaru; Vlad Tiberiu Mihailescu; Vladan Petrovic; Vladimir Ivanov; Wei Li; Weiwei Chu; Wenhan Xiong; Wenyin Fu; Wes Bouaziz; Whitney Meers; Will Constable; Xavier Martinet; Xiaojian Wu; Xinbo Gao; Xinfeng Xie; Xuchao Jia; Yaelle Goldschlag; Yann LeCun; Yashesh Gaur; Yasmine Babaei; Ye Qi; Yenda Li; Yi Wen; Yiwen Song; Youngjin Nam; Yuchen Hao; Yuchen Zhang; Yun Wang; Yuning Mao; Yuzi He; Zacharie Delpierre Coudert; Zachary DeVito; Zahra Hankir; Zhaoduo Wen; Zheng Yan; Zhengxing Chen; Zhenyu Yang; Zoe Papakipos" ]
[ "TAGS\n#gguf #meta #llama-3 #text-generation #en #license-llama3 #region-us \n", "### Use with transformers\n\n\nYou can run conversational inference using the Transformers pipeline abstraction, or by leveraging the Auto classes with the 'generate()' function. Let's see examples of both.", "#### Transformers pipeline", "#### Transformers AutoModelForCausalLM", "### Use with 'llama3'\n\n\nPlease, follow the instructions in the repository\n\n\nTo download Original checkpoints, see the example command below leveraging 'huggingface-cli':\n\n\nFor Hugging Face support, we recommend using transformers or TGI, but a similar command works.\n\n\nHardware and Software\n---------------------\n\n\nTraining Factors We used custom training libraries, Meta's Research SuperCluster, and production clusters for pretraining. Fine-tuning, annotation, and evaluation were also performed on third-party cloud compute.\n\n\nCarbon Footprint Pretraining utilized a cumulative 7.7M GPU hours of computation on hardware of type H100-80GB (TDP of 700W). Estimated total emissions were 2290 tCO2eq, 100% of which were offset by Meta’s sustainability program.\n\n\n\nCO2 emissions during pre-training. Time: total GPU time required for training each model. Power Consumption: peak power capacity per GPU device for the GPUs used adjusted for power usage efficiency. 100% of the emissions are directly offset by Meta's sustainability program, and because we are openly releasing these models, the pretraining costs do not need to be incurred by others.\n\n\nTraining Data\n-------------\n\n\nOverview Llama 3 was pretrained on over 15 trillion tokens of data from publicly available sources. The fine-tuning data includes publicly available instruction datasets, as well as over 10M human-annotated examples. Neither the pretraining nor the fine-tuning datasets include Meta user data.\n\n\nData Freshness The pretraining data has a cutoff of March 2023 for the 7B and December 2023 for the 70B models respectively.\n\n\nBenchmarks\n----------\n\n\nIn this section, we report the results for Llama 3 models on standard automatic benchmarks. For all the evaluations, we use our internal evaluations library. For details on the methodology see here.", "### Base pretrained models", "### Instruction tuned models", "### Responsibility & Safety\n\n\nWe believe that an open approach to AI leads to better, safer products, faster innovation, and a bigger overall market. We are committed to Responsible AI development and took a series of steps to limit misuse and harm and support the open source community.\n\n\nFoundation models are widely capable technologies that are built to be used for a diverse range of applications. They are not designed to meet every developer preference on safety levels for all use cases, out-of-the-box, as those by their nature will differ across different applications.\n\n\nRather, responsible LLM-application deployment is achieved by implementing a series of safety best practices throughout the development of such applications, from the model pre-training, fine-tuning and the deployment of systems composed of safeguards to tailor the safety needs specifically to the use case and audience.\n\n\nAs part of the Llama 3 release, we updated our Responsible Use Guide to outline the steps and best practices for developers to implement model and system level safety for their application. We also provide a set of resources including Meta Llama Guard 2 and Code Shield safeguards. These tools have proven to drastically reduce residual risks of LLM Systems, while maintaining a high level of helpfulness. We encourage developers to tune and deploy these safeguards according to their needs and we provide a reference implementation to get you started.", "#### Llama 3-Instruct\n\n\nAs outlined in the Responsible Use Guide, some trade-off between model helpfulness and model alignment is likely unavoidable. Developers should exercise discretion about how to weigh the benefits of alignment and helpfulness for their specific use case and audience. Developers should be mindful of residual risks when using Llama models and leverage additional safety tools as needed to reach the right safety bar for their use case.\n\n\nSafety\n\n\nFor our instruction tuned model, we conducted extensive red teaming exercises, performed adversarial evaluations and implemented safety mitigations techniques to lower residual risks. As with any Large Language Model, residual risks will likely remain and we recommend that developers assess these risks in the context of their use case. In parallel, we are working with the community to make AI safety benchmark standards transparent, rigorous and interpretable.\n\n\nRefusals\n\n\nIn addition to residual risks, we put a great emphasis on model refusals to benign prompts. Over-refusing not only can impact the user experience but could even be harmful in certain contexts as well. We’ve heard the feedback from the developer community and improved our fine tuning to ensure that Llama 3 is significantly less likely to falsely refuse to answer prompts than Llama 2.\n\n\nWe built internal benchmarks and developed mitigations to limit false refusals making Llama 3 our most helpful model to date.", "#### Responsible release\n\n\nIn addition to responsible use considerations outlined above, we followed a rigorous process that requires us to take extra measures against misuse and critical risks before we make our release decision.\n\n\nMisuse\n\n\nIf you access or use Llama 3, you agree to the Acceptable Use Policy. The most recent copy of this policy can be found at URL", "#### Critical risks\n\n\nCBRNE (Chemical, Biological, Radiological, Nuclear, and high yield Explosives)\n\n\nWe have conducted a two fold assessment of the safety of the model in this area:\n\n\n* Iterative testing during model training to assess the safety of responses related to CBRNE threats and other adversarial risks.\n* Involving external CBRNE experts to conduct an uplift test assessing the ability of the model to accurately provide expert knowledge and reduce barriers to potential CBRNE misuse, by reference to what can be achieved using web search (without the model).", "### Cyber Security\n\n\nWe have evaluated Llama 3 with CyberSecEval, Meta’s cybersecurity safety eval suite, measuring Llama 3’s propensity to suggest insecure code when used as a coding assistant, and Llama 3’s propensity to comply with requests to help carry out cyber attacks, where attacks are defined by the industry standard MITRE ATT&CK cyber attack ontology. On our insecure coding and cyber attacker helpfulness tests, Llama 3 behaved in the same range or safer than models of equivalent coding capability.", "### Child Safety\n\n\nChild Safety risk assessments were conducted using a team of experts, to assess the model’s capability to produce outputs that could result in Child Safety risks and inform on any necessary and appropriate risk mitigations via fine tuning. We leveraged those expert red teaming sessions to expand the coverage of our evaluation benchmarks through Llama 3 model development. For Llama 3, we conducted new in-depth sessions using objective based methodologies to assess the model risks along multiple attack vectors. We also partnered with content specialists to perform red teaming exercises assessing potentially violating content while taking account of market specific nuances or experiences.", "### Community\n\n\nGenerative AI safety requires expertise and tooling, and we believe in the strength of the open community to accelerate its progress. We are active members of open consortiums, including the AI Alliance, Partnership in AI and MLCommons, actively contributing to safety standardization and transparency. We encourage the community to adopt taxonomies like the MLCommons Proof of Concept evaluation to facilitate collaboration and transparency on safety and content evaluations. Our Purple Llama tools are open sourced for the community to use and widely distributed across ecosystem partners including cloud service providers. We encourage community contributions to our Github repository.\n\n\nFinally, we put in place a set of resources including an output reporting mechanism and bug bounty program to continuously improve the Llama technology with the help of the community.\n\n\nEthical Considerations and Limitations\n--------------------------------------\n\n\nThe core values of Llama 3 are openness, inclusivity and helpfulness. It is meant to serve everyone, and to work for a wide range of use cases. It is thus designed to be accessible to people across many different backgrounds, experiences and perspectives. Llama 3 addresses users and their needs as they are, without insertion unnecessary judgment or normativity, while reflecting the understanding that even content that may appear problematic in some cases can serve valuable purposes in others. It respects the dignity and autonomy of all users, especially in terms of the values of free thought and expression that power innovation and progress.\n\n\nBut Llama 3 is a new technology, and like any new technology, there are risks associated with its use. Testing conducted to date has been in English, and has not covered, nor could it cover, all scenarios. For these reasons, as with all LLMs, Llama 3’s potential outputs cannot be predicted in advance, and the model may in some instances produce inaccurate, biased or other objectionable responses to user prompts. Therefore, before deploying any applications of Llama 3 models, developers should perform safety testing and tuning tailored to their specific applications of the model. As outlined in the Responsible Use Guide, we recommend incorporating Purple Llama solutions into your workflows and specifically Llama Guard which provides a base model to filter input and output prompts to layer system-level safety on top of model-level safety.\n\n\nPlease see the Responsible Use Guide available at URL\n\n\ninstructions\n\n\n@article{llama3modelcard,\n\n\ntitle={Llama 3 Model Card},\n\n\nauthor={AI@Meta},\n\n\nyear={2024},\n\n\nurl = {URL\n\n\n}\n\n\nContributors\n------------\n\n\nAaditya Singh; Aaron Grattafiori; Abhimanyu Dubey; Abhinav Jauhri; Abhinav Pandey; Abhishek Kadian; Adam Kelsey; Adi Gangidi; Ahmad Al-Dahle; Ahuva Goldstand; Aiesha Letman; Ajay Menon; Akhil Mathur; Alan Schelten; Alex Vaughan; Amy Yang; Andrei Lupu; Andres Alvarado; Andrew Gallagher; Andrew Gu; Andrew Ho; Andrew Poulton; Andrew Ryan; Angela Fan; Ankit Ramchandani; Anthony Hartshorn; Archi Mitra; Archie Sravankumar; Artem Korenev; Arun Rao; Ashley Gabriel; Ashwin Bharambe; Assaf Eisenman; Aston Zhang; Aurelien Rodriguez; Austen Gregerson; Ava Spataru; Baptiste Roziere; Ben Maurer; Benjamin Leonhardi; Bernie Huang; Bhargavi Paranjape; Bing Liu; Binh Tang; Bobbie Chern; Brani Stojkovic; Brian Fuller; Catalina Mejia Arenas; Chao Zhou; Charlotte Caucheteux; Chaya Nayak; Ching-Hsiang Chu; Chloe Bi; Chris Cai; Chris Cox; Chris Marra; Chris McConnell; Christian Keller; Christoph Feichtenhofer; Christophe Touret; Chunyang Wu; Corinne Wong; Cristian Canton Ferrer; Damien Allonsius; Daniel Kreymer; Daniel Haziza; Daniel Li; Danielle Pintz; Danny Livshits; Danny Wyatt; David Adkins; David Esiobu; David Xu; Davide Testuggine; Delia David; Devi Parikh; Dhruv Choudhary; Dhruv Mahajan; Diana Liskovich; Diego Garcia-Olano; Diego Perino; Dieuwke Hupkes; Dingkang Wang; Dustin Holland; Egor Lakomkin; Elina Lobanova; Xiaoqing Ellen Tan; Emily Dinan; Eric Smith; Erik Brinkman; Esteban Arcaute; Filip Radenovic; Firat Ozgenel; Francesco Caggioni; Frank Seide; Frank Zhang; Gabriel Synnaeve; Gabriella Schwarz; Gabrielle Lee; Gada Badeer; Georgia Anderson; Graeme Nail; Gregoire Mialon; Guan Pang; Guillem Cucurell; Hailey Nguyen; Hannah Korevaar; Hannah Wang; Haroun Habeeb; Harrison Rudolph; Henry Aspegren; Hu Xu; Hugo Touvron; Iga Kozlowska; Igor Molybog; Igor Tufanov; Iliyan Zarov; Imanol Arrieta Ibarra; Irina-Elena Veliche; Isabel Kloumann; Ishan Misra; Ivan Evtimov; Jacob Xu; Jade Copet; Jake Weissman; Jan Geffert; Jana Vranes; Japhet Asher; Jason Park; Jay Mahadeokar; Jean-Baptiste Gaya; Jeet Shah; Jelmer van der Linde; Jennifer Chan; Jenny Hong; Jenya Lee; Jeremy Fu; Jeremy Teboul; Jianfeng Chi; Jianyu Huang; Jie Wang; Jiecao Yu; Joanna Bitton; Joe Spisak; Joelle Pineau; Jon Carvill; Jongsoo Park; Joseph Rocca; Joshua Johnstun; Junteng Jia; Kalyan Vasuden Alwala; Kam Hou U; Kate Plawiak; Kartikeya Upasani; Kaushik Veeraraghavan; Ke Li; Kenneth Heafield; Kevin Stone; Khalid El-Arini; Krithika Iyer; Kshitiz Malik; Kuenley Chiu; Kunal Bhalla; Kyle Huang; Lakshya Garg; Lauren Rantala-Yeary; Laurens van der Maaten; Lawrence Chen; Leandro Silva; Lee Bell; Lei Zhang; Liang Tan; Louis Martin; Lovish Madaan; Luca Wehrstedt; Lukas Blecher; Luke de Oliveira; Madeline Muzzi; Madian Khabsa; Manav Avlani; Mannat Singh; Manohar Paluri; Mark Zuckerberg; Marcin Kardas; Martynas Mankus; Mathew Oldham; Mathieu Rita; Matthew Lennie; Maya Pavlova; Meghan Keneally; Melanie Kambadur; Mihir Patel; Mikayel Samvelyan; Mike Clark; Mike Lewis; Min Si; Mitesh Kumar Singh; Mo Metanat; Mona Hassan; Naman Goyal; Narjes Torabi; Nicolas Usunier; Nikolay Bashlykov; Nikolay Bogoychev; Niladri Chatterji; Ning Dong; Oliver Aobo Yang; Olivier Duchenne; Onur Celebi; Parth Parekh; Patrick Alrassy; Paul Saab; Pavan Balaji; Pedro Rittner; Pengchuan Zhang; Pengwei Li; Petar Vasic; Peter Weng; Polina Zvyagina; Prajjwal Bhargava; Pratik Dubal; Praveen Krishnan; Punit Singh Koura; Qing He; Rachel Rodriguez; Ragavan Srinivasan; Rahul Mitra; Ramon Calderer; Raymond Li; Robert Stojnic; Roberta Raileanu; Robin Battey; Rocky Wang; Rohit Girdhar; Rohit Patel; Romain Sauvestre; Ronnie Polidoro; Roshan Sumbaly; Ross Taylor; Ruan Silva; Rui Hou; Rui Wang; Russ Howes; Ruty Rinott; Saghar Hosseini; Sai Jayesh Bondu; Samyak Datta; Sanjay Singh; Sara Chugh; Sargun Dhillon; Satadru Pan; Sean Bell; Sergey Edunov; Shaoliang Nie; Sharan Narang; Sharath Raparthy; Shaun Lindsay; Sheng Feng; Sheng Shen; Shenghao Lin; Shiva Shankar; Shruti Bhosale; Shun Zhang; Simon Vandenhende; Sinong Wang; Seohyun Sonia Kim; Soumya Batra; Sten Sootla; Steve Kehoe; Suchin Gururangan; Sumit Gupta; Sunny Virk; Sydney Borodinsky; Tamar Glaser; Tamar Herman; Tamara Best; Tara Fowler; Thomas Georgiou; Thomas Scialom; Tianhe Li; Todor Mihaylov; Tong Xiao; Ujjwal Karn; Vedanuj Goswami; Vibhor Gupta; Vignesh Ramanathan; Viktor Kerkez; Vinay Satish Kumar; Vincent Gonguet; Vish Vogeti; Vlad Poenaru; Vlad Tiberiu Mihailescu; Vladan Petrovic; Vladimir Ivanov; Wei Li; Weiwei Chu; Wenhan Xiong; Wenyin Fu; Wes Bouaziz; Whitney Meers; Will Constable; Xavier Martinet; Xiaojian Wu; Xinbo Gao; Xinfeng Xie; Xuchao Jia; Yaelle Goldschlag; Yann LeCun; Yashesh Gaur; Yasmine Babaei; Ye Qi; Yenda Li; Yi Wen; Yiwen Song; Youngjin Nam; Yuchen Hao; Yuchen Zhang; Yun Wang; Yuning Mao; Yuzi He; Zacharie Delpierre Coudert; Zachary DeVito; Zahra Hankir; Zhaoduo Wen; Zheng Yan; Zhengxing Chen; Zhenyu Yang; Zoe Papakipos" ]
[ 28, 42, 6, 13, 429, 8, 6, 270, 280, 72, 115, 118, 126, 2136 ]
[ "TAGS\n#gguf #meta #llama-3 #text-generation #en #license-llama3 #region-us \n### Use with transformers\n\n\nYou can run conversational inference using the Transformers pipeline abstraction, or by leveraging the Auto classes with the 'generate()' function. Let's see examples of both.#### Transformers pipeline#### Transformers AutoModelForCausalLM### Use with 'llama3'\n\n\nPlease, follow the instructions in the repository\n\n\nTo download Original checkpoints, see the example command below leveraging 'huggingface-cli':\n\n\nFor Hugging Face support, we recommend using transformers or TGI, but a similar command works.\n\n\nHardware and Software\n---------------------\n\n\nTraining Factors We used custom training libraries, Meta's Research SuperCluster, and production clusters for pretraining. Fine-tuning, annotation, and evaluation were also performed on third-party cloud compute.\n\n\nCarbon Footprint Pretraining utilized a cumulative 7.7M GPU hours of computation on hardware of type H100-80GB (TDP of 700W). Estimated total emissions were 2290 tCO2eq, 100% of which were offset by Meta’s sustainability program.\n\n\n\nCO2 emissions during pre-training. Time: total GPU time required for training each model. Power Consumption: peak power capacity per GPU device for the GPUs used adjusted for power usage efficiency. 100% of the emissions are directly offset by Meta's sustainability program, and because we are openly releasing these models, the pretraining costs do not need to be incurred by others.\n\n\nTraining Data\n-------------\n\n\nOverview Llama 3 was pretrained on over 15 trillion tokens of data from publicly available sources. The fine-tuning data includes publicly available instruction datasets, as well as over 10M human-annotated examples. Neither the pretraining nor the fine-tuning datasets include Meta user data.\n\n\nData Freshness The pretraining data has a cutoff of March 2023 for the 7B and December 2023 for the 70B models respectively.\n\n\nBenchmarks\n----------\n\n\nIn this section, we report the results for Llama 3 models on standard automatic benchmarks. For all the evaluations, we use our internal evaluations library. For details on the methodology see here.### Base pretrained models### Instruction tuned models### Responsibility & Safety\n\n\nWe believe that an open approach to AI leads to better, safer products, faster innovation, and a bigger overall market. We are committed to Responsible AI development and took a series of steps to limit misuse and harm and support the open source community.\n\n\nFoundation models are widely capable technologies that are built to be used for a diverse range of applications. They are not designed to meet every developer preference on safety levels for all use cases, out-of-the-box, as those by their nature will differ across different applications.\n\n\nRather, responsible LLM-application deployment is achieved by implementing a series of safety best practices throughout the development of such applications, from the model pre-training, fine-tuning and the deployment of systems composed of safeguards to tailor the safety needs specifically to the use case and audience.\n\n\nAs part of the Llama 3 release, we updated our Responsible Use Guide to outline the steps and best practices for developers to implement model and system level safety for their application. We also provide a set of resources including Meta Llama Guard 2 and Code Shield safeguards. These tools have proven to drastically reduce residual risks of LLM Systems, while maintaining a high level of helpfulness. We encourage developers to tune and deploy these safeguards according to their needs and we provide a reference implementation to get you started.#### Llama 3-Instruct\n\n\nAs outlined in the Responsible Use Guide, some trade-off between model helpfulness and model alignment is likely unavoidable. Developers should exercise discretion about how to weigh the benefits of alignment and helpfulness for their specific use case and audience. Developers should be mindful of residual risks when using Llama models and leverage additional safety tools as needed to reach the right safety bar for their use case.\n\n\nSafety\n\n\nFor our instruction tuned model, we conducted extensive red teaming exercises, performed adversarial evaluations and implemented safety mitigations techniques to lower residual risks. As with any Large Language Model, residual risks will likely remain and we recommend that developers assess these risks in the context of their use case. In parallel, we are working with the community to make AI safety benchmark standards transparent, rigorous and interpretable.\n\n\nRefusals\n\n\nIn addition to residual risks, we put a great emphasis on model refusals to benign prompts. Over-refusing not only can impact the user experience but could even be harmful in certain contexts as well. We’ve heard the feedback from the developer community and improved our fine tuning to ensure that Llama 3 is significantly less likely to falsely refuse to answer prompts than Llama 2.\n\n\nWe built internal benchmarks and developed mitigations to limit false refusals making Llama 3 our most helpful model to date.#### Responsible release\n\n\nIn addition to responsible use considerations outlined above, we followed a rigorous process that requires us to take extra measures against misuse and critical risks before we make our release decision.\n\n\nMisuse\n\n\nIf you access or use Llama 3, you agree to the Acceptable Use Policy. The most recent copy of this policy can be found at URL#### Critical risks\n\n\nCBRNE (Chemical, Biological, Radiological, Nuclear, and high yield Explosives)\n\n\nWe have conducted a two fold assessment of the safety of the model in this area:\n\n\n* Iterative testing during model training to assess the safety of responses related to CBRNE threats and other adversarial risks.\n* Involving external CBRNE experts to conduct an uplift test assessing the ability of the model to accurately provide expert knowledge and reduce barriers to potential CBRNE misuse, by reference to what can be achieved using web search (without the model).### Cyber Security\n\n\nWe have evaluated Llama 3 with CyberSecEval, Meta’s cybersecurity safety eval suite, measuring Llama 3’s propensity to suggest insecure code when used as a coding assistant, and Llama 3’s propensity to comply with requests to help carry out cyber attacks, where attacks are defined by the industry standard MITRE ATT&CK cyber attack ontology. On our insecure coding and cyber attacker helpfulness tests, Llama 3 behaved in the same range or safer than models of equivalent coding capability.### Child Safety\n\n\nChild Safety risk assessments were conducted using a team of experts, to assess the model’s capability to produce outputs that could result in Child Safety risks and inform on any necessary and appropriate risk mitigations via fine tuning. We leveraged those expert red teaming sessions to expand the coverage of our evaluation benchmarks through Llama 3 model development. For Llama 3, we conducted new in-depth sessions using objective based methodologies to assess the model risks along multiple attack vectors. We also partnered with content specialists to perform red teaming exercises assessing potentially violating content while taking account of market specific nuances or experiences.### Community\n\n\nGenerative AI safety requires expertise and tooling, and we believe in the strength of the open community to accelerate its progress. We are active members of open consortiums, including the AI Alliance, Partnership in AI and MLCommons, actively contributing to safety standardization and transparency. We encourage the community to adopt taxonomies like the MLCommons Proof of Concept evaluation to facilitate collaboration and transparency on safety and content evaluations. Our Purple Llama tools are open sourced for the community to use and widely distributed across ecosystem partners including cloud service providers. We encourage community contributions to our Github repository.\n\n\nFinally, we put in place a set of resources including an output reporting mechanism and bug bounty program to continuously improve the Llama technology with the help of the community.\n\n\nEthical Considerations and Limitations\n--------------------------------------\n\n\nThe core values of Llama 3 are openness, inclusivity and helpfulness. It is meant to serve everyone, and to work for a wide range of use cases. It is thus designed to be accessible to people across many different backgrounds, experiences and perspectives. Llama 3 addresses users and their needs as they are, without insertion unnecessary judgment or normativity, while reflecting the understanding that even content that may appear problematic in some cases can serve valuable purposes in others. It respects the dignity and autonomy of all users, especially in terms of the values of free thought and expression that power innovation and progress.\n\n\nBut Llama 3 is a new technology, and like any new technology, there are risks associated with its use. Testing conducted to date has been in English, and has not covered, nor could it cover, all scenarios. For these reasons, as with all LLMs, Llama 3’s potential outputs cannot be predicted in advance, and the model may in some instances produce inaccurate, biased or other objectionable responses to user prompts. Therefore, before deploying any applications of Llama 3 models, developers should perform safety testing and tuning tailored to their specific applications of the model. As outlined in the Responsible Use Guide, we recommend incorporating Purple Llama solutions into your workflows and specifically Llama Guard which provides a base model to filter input and output prompts to layer system-level safety on top of model-level safety.\n\n\nPlease see the Responsible Use Guide available at URL\n\n\ninstructions\n\n\n@article{llama3modelcard,\n\n\ntitle={Llama 3 Model Card},\n\n\nauthor={AI@Meta},\n\n\nyear={2024},\n\n\nurl = {URL\n\n\n}\n\n\nContributors\n------------\n\n\nAaditya Singh; Aaron Grattafiori; Abhimanyu Dubey; Abhinav Jauhri; Abhinav Pandey; Abhishek Kadian; Adam Kelsey; Adi Gangidi; Ahmad Al-Dahle; Ahuva Goldstand; Aiesha Letman; Ajay Menon; Akhil Mathur; Alan Schelten; Alex Vaughan; Amy Yang; Andrei Lupu; Andres Alvarado; Andrew Gallagher; Andrew Gu; Andrew Ho; Andrew Poulton; Andrew Ryan; Angela Fan; Ankit Ramchandani; Anthony Hartshorn; Archi Mitra; Archie Sravankumar; Artem Korenev; Arun Rao; Ashley Gabriel; Ashwin Bharambe; Assaf Eisenman; Aston Zhang; Aurelien Rodriguez; Austen Gregerson; Ava Spataru; Baptiste Roziere; Ben Maurer; Benjamin Leonhardi; Bernie Huang; Bhargavi Paranjape; Bing Liu; Binh Tang; Bobbie Chern; Brani Stojkovic; Brian Fuller; Catalina Mejia Arenas; Chao Zhou; Charlotte Caucheteux; Chaya Nayak; Ching-Hsiang Chu; Chloe Bi; Chris Cai; Chris Cox; Chris Marra; Chris McConnell; Christian Keller; Christoph Feichtenhofer; Christophe Touret; Chunyang Wu; Corinne Wong; Cristian Canton Ferrer; Damien Allonsius; Daniel Kreymer; Daniel Haziza; Daniel Li; Danielle Pintz; Danny Livshits; Danny Wyatt; David Adkins; David Esiobu; David Xu; Davide Testuggine; Delia David; Devi Parikh; Dhruv Choudhary; Dhruv Mahajan; Diana Liskovich; Diego Garcia-Olano; Diego Perino; Dieuwke Hupkes; Dingkang Wang; Dustin Holland; Egor Lakomkin; Elina Lobanova; Xiaoqing Ellen Tan; Emily Dinan; Eric Smith; Erik Brinkman; Esteban Arcaute; Filip Radenovic; Firat Ozgenel; Francesco Caggioni; Frank Seide; Frank Zhang; Gabriel Synnaeve; Gabriella Schwarz; Gabrielle Lee; Gada Badeer; Georgia Anderson; Graeme Nail; Gregoire Mialon; Guan Pang; Guillem Cucurell; Hailey Nguyen; Hannah Korevaar; Hannah Wang; Haroun Habeeb; Harrison Rudolph; Henry Aspegren; Hu Xu; Hugo Touvron; Iga Kozlowska; Igor Molybog; Igor Tufanov; Iliyan Zarov; Imanol Arrieta Ibarra; Irina-Elena Veliche; Isabel Kloumann; Ishan Misra; Ivan Evtimov; Jacob Xu; Jade Copet; Jake Weissman; Jan Geffert; Jana Vranes; Japhet Asher; Jason Park; Jay Mahadeokar; Jean-Baptiste Gaya; Jeet Shah; Jelmer van der Linde; Jennifer Chan; Jenny Hong; Jenya Lee; Jeremy Fu; Jeremy Teboul; Jianfeng Chi; Jianyu Huang; Jie Wang; Jiecao Yu; Joanna Bitton; Joe Spisak; Joelle Pineau; Jon Carvill; Jongsoo Park; Joseph Rocca; Joshua Johnstun; Junteng Jia; Kalyan Vasuden Alwala; Kam Hou U; Kate Plawiak; Kartikeya Upasani; Kaushik Veeraraghavan; Ke Li; Kenneth Heafield; Kevin Stone; Khalid El-Arini; Krithika Iyer; Kshitiz Malik; Kuenley Chiu; Kunal Bhalla; Kyle Huang; Lakshya Garg; Lauren Rantala-Yeary; Laurens van der Maaten; Lawrence Chen; Leandro Silva; Lee Bell; Lei Zhang; Liang Tan; Louis Martin; Lovish Madaan; Luca Wehrstedt; Lukas Blecher; Luke de Oliveira; Madeline Muzzi; Madian Khabsa; Manav Avlani; Mannat Singh; Manohar Paluri; Mark Zuckerberg; Marcin Kardas; Martynas Mankus; Mathew Oldham; Mathieu Rita; Matthew Lennie; Maya Pavlova; Meghan Keneally; Melanie Kambadur; Mihir Patel; Mikayel Samvelyan; Mike Clark; Mike Lewis; Min Si; Mitesh Kumar Singh; Mo Metanat; Mona Hassan; Naman Goyal; Narjes Torabi; Nicolas Usunier; Nikolay Bashlykov; Nikolay Bogoychev; Niladri Chatterji; Ning Dong; Oliver Aobo Yang; Olivier Duchenne; Onur Celebi; Parth Parekh; Patrick Alrassy; Paul Saab; Pavan Balaji; Pedro Rittner; Pengchuan Zhang; Pengwei Li; Petar Vasic; Peter Weng; Polina Zvyagina; Prajjwal Bhargava; Pratik Dubal; Praveen Krishnan; Punit Singh Koura; Qing He; Rachel Rodriguez; Ragavan Srinivasan; Rahul Mitra; Ramon Calderer; Raymond Li; Robert Stojnic; Roberta Raileanu; Robin Battey; Rocky Wang; Rohit Girdhar; Rohit Patel; Romain Sauvestre; Ronnie Polidoro; Roshan Sumbaly; Ross Taylor; Ruan Silva; Rui Hou; Rui Wang; Russ Howes; Ruty Rinott; Saghar Hosseini; Sai Jayesh Bondu; Samyak Datta; Sanjay Singh; Sara Chugh; Sargun Dhillon; Satadru Pan; Sean Bell; Sergey Edunov; Shaoliang Nie; Sharan Narang; Sharath Raparthy; Shaun Lindsay; Sheng Feng; Sheng Shen; Shenghao Lin; Shiva Shankar; Shruti Bhosale; Shun Zhang; Simon Vandenhende; Sinong Wang; Seohyun Sonia Kim; Soumya Batra; Sten Sootla; Steve Kehoe; Suchin Gururangan; Sumit Gupta; Sunny Virk; Sydney Borodinsky; Tamar Glaser; Tamar Herman; Tamara Best; Tara Fowler; Thomas Georgiou; Thomas Scialom; Tianhe Li; Todor Mihaylov; Tong Xiao; Ujjwal Karn; Vedanuj Goswami; Vibhor Gupta; Vignesh Ramanathan; Viktor Kerkez; Vinay Satish Kumar; Vincent Gonguet; Vish Vogeti; Vlad Poenaru; Vlad Tiberiu Mihailescu; Vladan Petrovic; Vladimir Ivanov; Wei Li; Weiwei Chu; Wenhan Xiong; Wenyin Fu; Wes Bouaziz; Whitney Meers; Will Constable; Xavier Martinet; Xiaojian Wu; Xinbo Gao; Xinfeng Xie; Xuchao Jia; Yaelle Goldschlag; Yann LeCun; Yashesh Gaur; Yasmine Babaei; Ye Qi; Yenda Li; Yi Wen; Yiwen Song; Youngjin Nam; Yuchen Hao; Yuchen Zhang; Yun Wang; Yuning Mao; Yuzi He; Zacharie Delpierre Coudert; Zachary DeVito; Zahra Hankir; Zhaoduo Wen; Zheng Yan; Zhengxing Chen; Zhenyu Yang; Zoe Papakipos" ]
text-generation
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
nem012/gemma2b-1e-5r8
null
[ "transformers", "safetensors", "gemma", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-04-30T19:18:11+00:00
[ "1910.09700" ]
[]
TAGS #transformers #safetensors #gemma #text-generation #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# Model Card for Model ID ## Model Details ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #safetensors #gemma #text-generation #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ 43, 6, 4, 75, 23, 3, 5, 8, 9, 8, 34, 20, 4, 5, 5, 11, 13, 12, 3, 10, 6, 5, 6, 4, 5, 7, 49, 7, 7, 5, 5, 15, 7, 7, 8, 5 ]
[ "TAGS\n#transformers #safetensors #gemma #text-generation #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# Model Card for Model ID## Model Details### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Downstream Use [optional]### Out-of-Scope Use## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.## How to Get Started with the Model\n\nUse the code below to get started with the model.## Training Details### Training Data### Training Procedure#### Preprocessing [optional]#### Training Hyperparameters\n\n- Training regime:#### Speeds, Sizes, Times [optional]## Evaluation### Testing Data, Factors & Metrics#### Testing Data#### Factors#### Metrics### Results#### Summary## Model Examination [optional]## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:## Technical Specifications [optional]### Model Architecture and Objective### Compute Infrastructure#### Hardware#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Model Card Authors [optional]## Model Card Contact" ]
text-generation
mlx
# batmac/Meta-Llama-3-8B-Instruct-mlx-4bit This model was converted to MLX format from [`meta-llama/Meta-Llama-3-8B-Instruct`]() using mlx-lm version **0.12.0**. Refer to the [original model card](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) for more details on the model. ## Use with mlx ```bash pip install mlx-lm ``` ```python from mlx_lm import load, generate model, tokenizer = load("batmac/Meta-Llama-3-8B-Instruct-mlx-4bit") response = generate(model, tokenizer, prompt="hello", verbose=True) ```
{"language": ["en"], "license": "other", "tags": ["facebook", "meta", "pytorch", "llama", "llama-3", "mlx"], "pipeline_tag": "text-generation", "license_name": "llama3", "license_link": "LICENSE", "extra_gated_prompt": "### META LLAMA 3 COMMUNITY LICENSE AGREEMENT\nMeta Llama 3 Version Release Date: April 18, 2024\n\"Agreement\" means the terms and conditions for use, reproduction, distribution and modification of the Llama Materials set forth herein.\n\"Documentation\" means the specifications, manuals and documentation accompanying Meta Llama 3 distributed by Meta at https://llama.meta.com/get-started/.\n\"Licensee\" or \"you\" means you, or your employer or any other person or entity (if you are entering into this Agreement on such person or entity\u2019s behalf), of the age required under applicable laws, rules or regulations to provide legal consent and that has legal authority to bind your employer or such other person or entity if you are entering in this Agreement on their behalf.\n\"Meta Llama 3\" means the foundational large language models and software and algorithms, including machine-learning model code, trained model weights, inference-enabling code, training-enabling code, fine-tuning enabling code and other elements of the foregoing distributed by Meta at https://llama.meta.com/llama-downloads.\n\"Llama Materials\" means, collectively, Meta\u2019s proprietary Meta Llama 3 and Documentation (and any portion thereof) made available under this Agreement.\n\"Meta\" or \"we\" means Meta Platforms Ireland Limited (if you are located in or, if you are an entity, your principal place of business is in the EEA or Switzerland) and Meta Platforms, Inc. (if you are located outside of the EEA or Switzerland).\n \n1. License Rights and Redistribution.\na. Grant of Rights. You are granted a non-exclusive, worldwide, non-transferable and royalty-free limited license under Meta\u2019s intellectual property or other rights owned by Meta embodied in the Llama Materials to use, reproduce, distribute, copy, create derivative works of, and make modifications to the Llama Materials.\nb. Redistribution and Use.\ni. If you distribute or make available the Llama Materials (or any derivative works thereof), or a product or service that uses any of them, including another AI model, you shall (A) provide a copy of this Agreement with any such Llama Materials; and (B) prominently display \u201cBuilt with Meta Llama 3\u201d on a related website, user interface, blogpost, about page, or product documentation. If you use the Llama Materials to create, train, fine tune, or otherwise improve an AI model, which is distributed or made available, you shall also include \u201cLlama 3\u201d at the beginning of any such AI model name.\nii. If you receive Llama Materials, or any derivative works thereof, from a Licensee as part of an integrated end user product, then Section 2 of this Agreement will not apply to you.\niii. You must retain in all copies of the Llama Materials that you distribute the following attribution notice within a \u201cNotice\u201d text file distributed as a part of such copies: \u201cMeta Llama 3 is licensed under the Meta Llama 3 Community License, Copyright \u00a9 Meta Platforms, Inc. All Rights Reserved.\u201d\niv. Your use of the Llama Materials must comply with applicable laws and regulations (including trade compliance laws and regulations) and adhere to the Acceptable Use Policy for the Llama Materials (available at https://llama.meta.com/llama3/use-policy), which is hereby incorporated by reference into this Agreement.\nv. You will not use the Llama Materials or any output or results of the Llama Materials to improve any other large language model (excluding Meta Llama 3 or derivative works thereof).\n2. Additional Commercial Terms. If, on the Meta Llama 3 version release date, the monthly active users of the products or services made available by or for Licensee, or Licensee\u2019s affiliates, is greater than 700 million monthly active users in the preceding calendar month, you must request a license from Meta, which Meta may grant to you in its sole discretion, and you are not authorized to exercise any of the rights under this Agreement unless or until Meta otherwise expressly grants you such rights.\n3. Disclaimer of Warranty. UNLESS REQUIRED BY APPLICABLE LAW, THE LLAMA MATERIALS AND ANY OUTPUT AND RESULTS THEREFROM ARE PROVIDED ON AN \u201cAS IS\u201d BASIS, WITHOUT WARRANTIES OF ANY KIND, AND META DISCLAIMS ALL WARRANTIES OF ANY KIND, BOTH EXPRESS AND IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY WARRANTIES OF TITLE, NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE. YOU ARE SOLELY RESPONSIBLE FOR DETERMINING THE APPROPRIATENESS OF USING OR REDISTRIBUTING THE LLAMA MATERIALS AND ASSUME ANY RISKS ASSOCIATED WITH YOUR USE OF THE LLAMA MATERIALS AND ANY OUTPUT AND RESULTS.\n4. Limitation of Liability. IN NO EVENT WILL META OR ITS AFFILIATES BE LIABLE UNDER ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, TORT, NEGLIGENCE, PRODUCTS LIABILITY, OR OTHERWISE, ARISING OUT OF THIS AGREEMENT, FOR ANY LOST PROFITS OR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, INCIDENTAL, EXEMPLARY OR PUNITIVE DAMAGES, EVEN IF META OR ITS AFFILIATES HAVE BEEN ADVISED OF THE POSSIBILITY OF ANY OF THE FOREGOING.\n5. Intellectual Property.\na. No trademark licenses are granted under this Agreement, and in connection with the Llama Materials, neither Meta nor Licensee may use any name or mark owned by or associated with the other or any of its affiliates, except as required for reasonable and customary use in describing and redistributing the Llama Materials or as set forth in this Section 5(a). Meta hereby grants you a license to use \u201cLlama 3\u201d (the \u201cMark\u201d) solely as required to comply with the last sentence of Section 1.b.i. You will comply with Meta\u2019s brand guidelines (currently accessible at https://about.meta.com/brand/resources/meta/company-brand/ ). All goodwill arising out of your use of the Mark will inure to the benefit of Meta.\nb. Subject to Meta\u2019s ownership of Llama Materials and derivatives made by or for Meta, with respect to any derivative works and modifications of the Llama Materials that are made by you, as between you and Meta, you are and will be the owner of such derivative works and modifications.\nc. If you institute litigation or other proceedings against Meta or any entity (including a cross-claim or counterclaim in a lawsuit) alleging that the Llama Materials or Meta Llama 3 outputs or results, or any portion of any of the foregoing, constitutes infringement of intellectual property or other rights owned or licensable by you, then any licenses granted to you under this Agreement shall terminate as of the date such litigation or claim is filed or instituted. You will indemnify and hold harmless Meta from and against any claim by any third party arising out of or related to your use or distribution of the Llama Materials.\n6. Term and Termination. The term of this Agreement will commence upon your acceptance of this Agreement or access to the Llama Materials and will continue in full force and effect until terminated in accordance with the terms and conditions herein. Meta may terminate this Agreement if you are in breach of any term or condition of this Agreement. Upon termination of this Agreement, you shall delete and cease use of the Llama Materials. Sections 3, 4 and 7 shall survive the termination of this Agreement.\n7. Governing Law and Jurisdiction. This Agreement will be governed and construed under the laws of the State of California without regard to choice of law principles, and the UN Convention on Contracts for the International Sale of Goods does not apply to this Agreement. The courts of California shall have exclusive jurisdiction of any dispute arising out of this Agreement.\n### Meta Llama 3 Acceptable Use Policy\nMeta is committed to promoting safe and fair use of its tools and features, including Meta Llama 3. If you access or use Meta Llama 3, you agree to this Acceptable Use Policy (\u201cPolicy\u201d). The most recent copy of this policy can be found at [https://llama.meta.com/llama3/use-policy](https://llama.meta.com/llama3/use-policy)\n#### Prohibited Uses\nWe want everyone to use Meta Llama 3 safely and responsibly. You agree you will not use, or allow others to use, Meta Llama 3 to: 1. Violate the law or others\u2019 rights, including to:\n 1. Engage in, promote, generate, contribute to, encourage, plan, incite, or further illegal or unlawful activity or content, such as:\n 1. Violence or terrorism\n 2. Exploitation or harm to children, including the solicitation, creation, acquisition, or dissemination of child exploitative content or failure to report Child Sexual Abuse Material\n 3. Human trafficking, exploitation, and sexual violence\n 4. The illegal distribution of information or materials to minors, including obscene materials, or failure to employ legally required age-gating in connection with such information or materials.\n 5. Sexual solicitation\n 6. Any other criminal activity\n 2. Engage in, promote, incite, or facilitate the harassment, abuse, threatening, or bullying of individuals or groups of individuals\n 3. Engage in, promote, incite, or facilitate discrimination or other unlawful or harmful conduct in the provision of employment, employment benefits, credit, housing, other economic benefits, or other essential goods and services\n 4. Engage in the unauthorized or unlicensed practice of any profession including, but not limited to, financial, legal, medical/health, or related professional practices\n 5. Collect, process, disclose, generate, or infer health, demographic, or other sensitive personal or private information about individuals without rights and consents required by applicable laws\n 6. Engage in or facilitate any action or generate any content that infringes, misappropriates, or otherwise violates any third-party rights, including the outputs or results of any products or services using the Llama Materials\n 7. Create, generate, or facilitate the creation of malicious code, malware, computer viruses or do anything else that could disable, overburden, interfere with or impair the proper working, integrity, operation or appearance of a website or computer system\n2. Engage in, promote, incite, facilitate, or assist in the planning or development of activities that present a risk of death or bodily harm to individuals, including use of Meta Llama 3 related to the following:\n 1. Military, warfare, nuclear industries or applications, espionage, use for materials or activities that are subject to the International Traffic Arms Regulations (ITAR) maintained by the United States Department of State\n 2. Guns and illegal weapons (including weapon development)\n 3. Illegal drugs and regulated/controlled substances\n 4. Operation of critical infrastructure, transportation technologies, or heavy machinery\n 5. Self-harm or harm to others, including suicide, cutting, and eating disorders\n 6. Any content intended to incite or promote violence, abuse, or any infliction of bodily harm to an individual\n3. Intentionally deceive or mislead others, including use of Meta Llama 3 related to the following:\n 1. Generating, promoting, or furthering fraud or the creation or promotion of disinformation\n 2. Generating, promoting, or furthering defamatory content, including the creation of defamatory statements, images, or other content\n 3. Generating, promoting, or further distributing spam\n 4. Impersonating another individual without consent, authorization, or legal right\n 5. Representing that the use of Meta Llama 3 or outputs are human-generated\n 6. Generating or facilitating false online engagement, including fake reviews and other means of fake online engagement\n4. Fail to appropriately disclose to end users any known dangers of your AI system\nPlease report any violation of this Policy, software \u201cbug,\u201d or other problems that could lead to a violation of this Policy through one of the following means:\n * Reporting issues with the model: [https://github.com/meta-llama/llama3](https://github.com/meta-llama/llama3)\n * Reporting risky content generated by the model:\n developers.facebook.com/llama_output_feedback\n * Reporting bugs and security concerns: facebook.com/whitehat/info\n * Reporting violations of the Acceptable Use Policy or unlicensed uses of Meta Llama 3: [email protected]", "extra_gated_fields": {"First Name": "text", "Last Name": "text", "Date of birth": "date_picker", "Country": "country", "Affiliation": "text", "geo": "ip_location", "By clicking Submit below I accept the terms of the license and acknowledge that the information I provide will be collected stored processed and shared in accordance with the Meta Privacy Policy": "checkbox"}, "extra_gated_description": "The information you provide will be collected, stored, processed and shared in accordance with the [Meta Privacy Policy](https://www.facebook.com/privacy/policy/).", "extra_gated_button_content": "Submit", "widget": [{"example_title": "Hello", "messages": [{"role": "user", "content": "Hey my name is Julien! How are you?"}]}, {"example_title": "Winter holidays", "messages": [{"role": "system", "content": "You are a helpful and honest assistant. Please, respond concisely and truthfully."}, {"role": "user", "content": "Can you recommend a good destination for Winter holidays?"}]}, {"example_title": "Programming assistant", "messages": [{"role": "system", "content": "You are a helpful and honest code and programming assistant. Please, respond concisely and truthfully."}, {"role": "user", "content": "Write a function that computes the nth fibonacci number."}]}], "inference": {"parameters": {"max_new_tokens": 300, "stop": ["<|end_of_text|>", "<|eot_id|>"]}}}
batmac/Meta-Llama-3-8B-Instruct-mlx-4bit
null
[ "mlx", "safetensors", "llama", "facebook", "meta", "pytorch", "llama-3", "text-generation", "conversational", "en", "license:other", "region:us" ]
null
2024-04-30T19:20:57+00:00
[]
[ "en" ]
TAGS #mlx #safetensors #llama #facebook #meta #pytorch #llama-3 #text-generation #conversational #en #license-other #region-us
# batmac/Meta-Llama-3-8B-Instruct-mlx-4bit This model was converted to MLX format from ['meta-llama/Meta-Llama-3-8B-Instruct']() using mlx-lm version 0.12.0. Refer to the original model card for more details on the model. ## Use with mlx
[ "# batmac/Meta-Llama-3-8B-Instruct-mlx-4bit\nThis model was converted to MLX format from ['meta-llama/Meta-Llama-3-8B-Instruct']() using mlx-lm version 0.12.0.\nRefer to the original model card for more details on the model.", "## Use with mlx" ]
[ "TAGS\n#mlx #safetensors #llama #facebook #meta #pytorch #llama-3 #text-generation #conversational #en #license-other #region-us \n", "# batmac/Meta-Llama-3-8B-Instruct-mlx-4bit\nThis model was converted to MLX format from ['meta-llama/Meta-Llama-3-8B-Instruct']() using mlx-lm version 0.12.0.\nRefer to the original model card for more details on the model.", "## Use with mlx" ]
[ 42, 80, 6 ]
[ "TAGS\n#mlx #safetensors #llama #facebook #meta #pytorch #llama-3 #text-generation #conversational #en #license-other #region-us \n# batmac/Meta-Llama-3-8B-Instruct-mlx-4bit\nThis model was converted to MLX format from ['meta-llama/Meta-Llama-3-8B-Instruct']() using mlx-lm version 0.12.0.\nRefer to the original model card for more details on the model.## Use with mlx" ]
text-classification
transformers
# VulBERTa MLP Devign ## VulBERTa: Simplified Source Code Pre-Training for Vulnerability Detection ![VulBERTa architecture](https://raw.githubusercontent.com/ICL-ml4csec/VulBERTa/main/VB.png) ## Overview This model is the unofficial HuggingFace version of "[VulBERTa](https://github.com/ICL-ml4csec/VulBERTa/tree/main)" with an MLP classification head, trained on CodeXGlue Devign (C code), by Hazim Hanif & Sergio Maffeis (Imperial College London). I simplified the tokenization process by adding the cleaning (comment removal) step to the tokenizer and added the simplified tokenizer to this model repo as an AutoClass. > This paper presents presents VulBERTa, a deep learning approach to detect security vulnerabilities in source code. Our approach pre-trains a RoBERTa model with a custom tokenisation pipeline on real-world code from open-source C/C++ projects. The model learns a deep knowledge representation of the code syntax and semantics, which we leverage to train vulnerability detection classifiers. We evaluate our approach on binary and multi-class vulnerability detection tasks across several datasets (Vuldeepecker, Draper, REVEAL and muVuldeepecker) and benchmarks (CodeXGLUE and D2A). The evaluation results show that VulBERTa achieves state-of-the-art performance and outperforms existing approaches across different datasets, despite its conceptual simplicity, and limited cost in terms of size of training data and number of model parameters. ## Usage **You must install libclang for tokenization.** ```bash pip install libclang ``` Note that due to the custom tokenizer, you must pass `trust_remote_code=True` when instantiating the model. Example: ``` from transformers import pipeline pipe = pipeline("text-classification", model="claudios/VulBERTa-MLP-Devign", trust_remote_code=True, return_all_scores=True) pipe("static void filter_mirror_setup(NetFilterState *nf, Error **errp)\n{\n MirrorState *s = FILTER_MIRROR(nf);\n Chardev *chr;\n chr = qemu_chr_find(s->outdev);\n if (chr == NULL) {\n error_set(errp, ERROR_CLASS_DEVICE_NOT_FOUND,\n \"Device '%s' not found\", s->outdev);\n qemu_chr_fe_init(&s->chr_out, chr, errp);") >> [[{'label': 'LABEL_0', 'score': 0.014685827307403088}, {'label': 'LABEL_1', 'score': 0.985314130783081}]] ``` *** ## Data We provide all data required by VulBERTa. This includes: - Tokenizer training data - Pre-training data - Fine-tuning data Please refer to the [data](https://github.com/ICL-ml4csec/VulBERTa/tree/main/data "data") directory for further instructions and details. ## Models We provide all models pre-trained and fine-tuned by VulBERTa. This includes: - Trained tokenisers - Pre-trained VulBERTa model (core representation knowledge) - Fine-tuned VulBERTa-MLP and VulBERTa-CNN models Please refer to the [models](https://github.com/ICL-ml4csec/VulBERTa/tree/main/models "models") directory for further instructions and details. ## How to use In our project, we uses Jupyterlab notebook to run experiments. Therefore, we separate each task into different notebook: - [Pretraining_VulBERTa.ipynb](https://github.com/ICL-ml4csec/VulBERTa/blob/main/Pretraining_VulBERTa.ipynb "Pretraining_VulBERTa.ipynb") - Pre-trains the core VulBERTa knowledge representation model using DrapGH dataset. - [Finetuning_VulBERTa-MLP.ipynb](https://github.com/ICL-ml4csec/VulBERTa/blob/main/Finetuning_VulBERTa-MLP.ipynb "Finetuning_VulBERTa-MLP.ipynb") - Fine-tunes the VulBERTa-MLP model on a specific vulnerability detection dataset. - [Evaluation_VulBERTa-MLP.ipynb](https://github.com/ICL-ml4csec/VulBERTa/blob/main/Evaluation_VulBERTa-MLP.ipynb "Evaluation_VulBERTa-MLP.ipynb") - Evaluates the fine-tuned VulBERTa-MLP models on testing set of a specific vulnerability detection dataset. - [Finetuning+evaluation_VulBERTa-CNN](https://github.com/ICL-ml4csec/VulBERTa/blob/main/Finetuning%2Bevaluation_VulBERTa-CNN.ipynb "Finetuning+evaluation_VulBERTa-CNN.ipynb") - Fine-tunes VulBERTa-CNN models and evaluates it on a testing set of a specific vulnerability detection dataset. ## Citation Accepted as conference paper (oral presentation) at the International Joint Conference on Neural Networks (IJCNN) 2022. Link to paper: https://ieeexplore.ieee.org/document/9892280 ```bibtex @INPROCEEDINGS{hanif2022vulberta, author={Hanif, Hazim and Maffeis, Sergio}, booktitle={2022 International Joint Conference on Neural Networks (IJCNN)}, title={VulBERTa: Simplified Source Code Pre-Training for Vulnerability Detection}, year={2022}, volume={}, number={}, pages={1-8}, doi={10.1109/IJCNN55064.2022.9892280} } ```
{"license": "mit", "tags": ["devign", "defect detection", "code"], "datasets": ["code_x_glue_cc_defect_detection"], "metrics": ["accuracy", "precision", "recall", "f1", "roc_auc"], "arxiv": 2205.12424, "pipeline_tag": "text-classification", "model-index": [{"name": "VulBERTa MLP", "results": [{"task": {"type": "defect-detection"}, "dataset": {"name": "codexglue-devign", "type": "codexglue-devign"}, "metrics": [{"type": "Accuracy", "value": 64.71, "name": "Accuracy"}, {"type": "Precision", "value": 64.8, "name": "Precision"}, {"type": "Recall", "value": 50.76, "name": "Recall"}, {"type": "F1", "value": 56.93, "name": "F1"}, {"type": "ROC-AUC", "value": 71.02, "name": "ROC-AUC"}]}]}]}
claudios/VulBERTa-mlm
null
[ "transformers", "safetensors", "roberta", "fill-mask", "devign", "defect detection", "code", "text-classification", "dataset:code_x_glue_cc_defect_detection", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2024-04-30T19:21:44+00:00
[]
[]
TAGS #transformers #safetensors #roberta #fill-mask #devign #defect detection #code #text-classification #dataset-code_x_glue_cc_defect_detection #license-mit #model-index #autotrain_compatible #endpoints_compatible #region-us
# VulBERTa MLP Devign ## VulBERTa: Simplified Source Code Pre-Training for Vulnerability Detection !VulBERTa architecture ## Overview This model is the unofficial HuggingFace version of "VulBERTa" with an MLP classification head, trained on CodeXGlue Devign (C code), by Hazim Hanif & Sergio Maffeis (Imperial College London). I simplified the tokenization process by adding the cleaning (comment removal) step to the tokenizer and added the simplified tokenizer to this model repo as an AutoClass. > This paper presents presents VulBERTa, a deep learning approach to detect security vulnerabilities in source code. Our approach pre-trains a RoBERTa model with a custom tokenisation pipeline on real-world code from open-source C/C++ projects. The model learns a deep knowledge representation of the code syntax and semantics, which we leverage to train vulnerability detection classifiers. We evaluate our approach on binary and multi-class vulnerability detection tasks across several datasets (Vuldeepecker, Draper, REVEAL and muVuldeepecker) and benchmarks (CodeXGLUE and D2A). The evaluation results show that VulBERTa achieves state-of-the-art performance and outperforms existing approaches across different datasets, despite its conceptual simplicity, and limited cost in terms of size of training data and number of model parameters. ## Usage You must install libclang for tokenization. Note that due to the custom tokenizer, you must pass 'trust_remote_code=True' when instantiating the model. Example: * ## Data We provide all data required by VulBERTa. This includes: - Tokenizer training data - Pre-training data - Fine-tuning data Please refer to the data directory for further instructions and details. ## Models We provide all models pre-trained and fine-tuned by VulBERTa. This includes: - Trained tokenisers - Pre-trained VulBERTa model (core representation knowledge) - Fine-tuned VulBERTa-MLP and VulBERTa-CNN models Please refer to the models directory for further instructions and details. ## How to use In our project, we uses Jupyterlab notebook to run experiments. Therefore, we separate each task into different notebook: - Pretraining_VulBERTa.ipynb - Pre-trains the core VulBERTa knowledge representation model using DrapGH dataset. - Finetuning_VulBERTa-URL - Fine-tunes the VulBERTa-MLP model on a specific vulnerability detection dataset. - Evaluation_VulBERTa-URL - Evaluates the fine-tuned VulBERTa-MLP models on testing set of a specific vulnerability detection dataset. - Finetuning+evaluation_VulBERTa-CNN - Fine-tunes VulBERTa-CNN models and evaluates it on a testing set of a specific vulnerability detection dataset. Accepted as conference paper (oral presentation) at the International Joint Conference on Neural Networks (IJCNN) 2022. Link to paper: URL
[ "# VulBERTa MLP Devign", "## VulBERTa: Simplified Source Code Pre-Training for Vulnerability Detection\n\n!VulBERTa architecture", "## Overview\nThis model is the unofficial HuggingFace version of \"VulBERTa\" with an MLP classification head, trained on CodeXGlue Devign (C code), by Hazim Hanif & Sergio Maffeis (Imperial College London). I simplified the tokenization process by adding the cleaning (comment removal) step to the tokenizer and added the simplified tokenizer to this model repo as an AutoClass.\n\n> This paper presents presents VulBERTa, a deep learning approach to detect security vulnerabilities in source code. Our approach pre-trains a RoBERTa model with a custom tokenisation pipeline on real-world code from open-source C/C++ projects. The model learns a deep knowledge representation of the code syntax and semantics, which we leverage to train vulnerability detection classifiers. We evaluate our approach on binary and multi-class vulnerability detection tasks across several datasets (Vuldeepecker, Draper, REVEAL and muVuldeepecker) and benchmarks (CodeXGLUE and D2A). The evaluation results show that VulBERTa achieves state-of-the-art performance and outperforms existing approaches across different datasets, despite its conceptual simplicity, and limited cost in terms of size of training data and number of model parameters.", "## Usage\nYou must install libclang for tokenization.\n\n\n\nNote that due to the custom tokenizer, you must pass 'trust_remote_code=True' when instantiating the model.\nExample:\n\n\n*", "## Data\nWe provide all data required by VulBERTa. \nThis includes:\n - Tokenizer training data\n - Pre-training data\n - Fine-tuning data\n\nPlease refer to the data directory for further instructions and details.", "## Models\nWe provide all models pre-trained and fine-tuned by VulBERTa. \nThis includes:\n - Trained tokenisers\n - Pre-trained VulBERTa model (core representation knowledge)\n - Fine-tuned VulBERTa-MLP and VulBERTa-CNN models\n\nPlease refer to the models directory for further instructions and details.", "## How to use\n\nIn our project, we uses Jupyterlab notebook to run experiments. \nTherefore, we separate each task into different notebook:\n\n - Pretraining_VulBERTa.ipynb - Pre-trains the core VulBERTa knowledge representation model using DrapGH dataset.\n - Finetuning_VulBERTa-URL - Fine-tunes the VulBERTa-MLP model on a specific vulnerability detection dataset.\n - Evaluation_VulBERTa-URL - Evaluates the fine-tuned VulBERTa-MLP models on testing set of a specific vulnerability detection dataset.\n - Finetuning+evaluation_VulBERTa-CNN - Fine-tunes VulBERTa-CNN models and evaluates it on a testing set of a specific vulnerability detection dataset.\n\n\nAccepted as conference paper (oral presentation) at the International Joint Conference on Neural Networks (IJCNN) 2022. \nLink to paper: URL" ]
[ "TAGS\n#transformers #safetensors #roberta #fill-mask #devign #defect detection #code #text-classification #dataset-code_x_glue_cc_defect_detection #license-mit #model-index #autotrain_compatible #endpoints_compatible #region-us \n", "# VulBERTa MLP Devign", "## VulBERTa: Simplified Source Code Pre-Training for Vulnerability Detection\n\n!VulBERTa architecture", "## Overview\nThis model is the unofficial HuggingFace version of \"VulBERTa\" with an MLP classification head, trained on CodeXGlue Devign (C code), by Hazim Hanif & Sergio Maffeis (Imperial College London). I simplified the tokenization process by adding the cleaning (comment removal) step to the tokenizer and added the simplified tokenizer to this model repo as an AutoClass.\n\n> This paper presents presents VulBERTa, a deep learning approach to detect security vulnerabilities in source code. Our approach pre-trains a RoBERTa model with a custom tokenisation pipeline on real-world code from open-source C/C++ projects. The model learns a deep knowledge representation of the code syntax and semantics, which we leverage to train vulnerability detection classifiers. We evaluate our approach on binary and multi-class vulnerability detection tasks across several datasets (Vuldeepecker, Draper, REVEAL and muVuldeepecker) and benchmarks (CodeXGLUE and D2A). The evaluation results show that VulBERTa achieves state-of-the-art performance and outperforms existing approaches across different datasets, despite its conceptual simplicity, and limited cost in terms of size of training data and number of model parameters.", "## Usage\nYou must install libclang for tokenization.\n\n\n\nNote that due to the custom tokenizer, you must pass 'trust_remote_code=True' when instantiating the model.\nExample:\n\n\n*", "## Data\nWe provide all data required by VulBERTa. \nThis includes:\n - Tokenizer training data\n - Pre-training data\n - Fine-tuning data\n\nPlease refer to the data directory for further instructions and details.", "## Models\nWe provide all models pre-trained and fine-tuned by VulBERTa. \nThis includes:\n - Trained tokenisers\n - Pre-trained VulBERTa model (core representation knowledge)\n - Fine-tuned VulBERTa-MLP and VulBERTa-CNN models\n\nPlease refer to the models directory for further instructions and details.", "## How to use\n\nIn our project, we uses Jupyterlab notebook to run experiments. \nTherefore, we separate each task into different notebook:\n\n - Pretraining_VulBERTa.ipynb - Pre-trains the core VulBERTa knowledge representation model using DrapGH dataset.\n - Finetuning_VulBERTa-URL - Fine-tunes the VulBERTa-MLP model on a specific vulnerability detection dataset.\n - Evaluation_VulBERTa-URL - Evaluates the fine-tuned VulBERTa-MLP models on testing set of a specific vulnerability detection dataset.\n - Finetuning+evaluation_VulBERTa-CNN - Fine-tunes VulBERTa-CNN models and evaluates it on a testing set of a specific vulnerability detection dataset.\n\n\nAccepted as conference paper (oral presentation) at the International Joint Conference on Neural Networks (IJCNN) 2022. \nLink to paper: URL" ]
[ 62, 8, 20, 266, 43, 43, 69, 195 ]
[ "TAGS\n#transformers #safetensors #roberta #fill-mask #devign #defect detection #code #text-classification #dataset-code_x_glue_cc_defect_detection #license-mit #model-index #autotrain_compatible #endpoints_compatible #region-us \n# VulBERTa MLP Devign## VulBERTa: Simplified Source Code Pre-Training for Vulnerability Detection\n\n!VulBERTa architecture## Overview\nThis model is the unofficial HuggingFace version of \"VulBERTa\" with an MLP classification head, trained on CodeXGlue Devign (C code), by Hazim Hanif & Sergio Maffeis (Imperial College London). I simplified the tokenization process by adding the cleaning (comment removal) step to the tokenizer and added the simplified tokenizer to this model repo as an AutoClass.\n\n> This paper presents presents VulBERTa, a deep learning approach to detect security vulnerabilities in source code. Our approach pre-trains a RoBERTa model with a custom tokenisation pipeline on real-world code from open-source C/C++ projects. The model learns a deep knowledge representation of the code syntax and semantics, which we leverage to train vulnerability detection classifiers. We evaluate our approach on binary and multi-class vulnerability detection tasks across several datasets (Vuldeepecker, Draper, REVEAL and muVuldeepecker) and benchmarks (CodeXGLUE and D2A). The evaluation results show that VulBERTa achieves state-of-the-art performance and outperforms existing approaches across different datasets, despite its conceptual simplicity, and limited cost in terms of size of training data and number of model parameters.## Usage\nYou must install libclang for tokenization.\n\n\n\nNote that due to the custom tokenizer, you must pass 'trust_remote_code=True' when instantiating the model.\nExample:\n\n\n*## Data\nWe provide all data required by VulBERTa. \nThis includes:\n - Tokenizer training data\n - Pre-training data\n - Fine-tuning data\n\nPlease refer to the data directory for further instructions and details.## Models\nWe provide all models pre-trained and fine-tuned by VulBERTa. \nThis includes:\n - Trained tokenisers\n - Pre-trained VulBERTa model (core representation knowledge)\n - Fine-tuned VulBERTa-MLP and VulBERTa-CNN models\n\nPlease refer to the models directory for further instructions and details.## How to use\n\nIn our project, we uses Jupyterlab notebook to run experiments. \nTherefore, we separate each task into different notebook:\n\n - Pretraining_VulBERTa.ipynb - Pre-trains the core VulBERTa knowledge representation model using DrapGH dataset.\n - Finetuning_VulBERTa-URL - Fine-tunes the VulBERTa-MLP model on a specific vulnerability detection dataset.\n - Evaluation_VulBERTa-URL - Evaluates the fine-tuned VulBERTa-MLP models on testing set of a specific vulnerability detection dataset.\n - Finetuning+evaluation_VulBERTa-CNN - Fine-tunes VulBERTa-CNN models and evaluates it on a testing set of a specific vulnerability detection dataset.\n\n\nAccepted as conference paper (oral presentation) at the International Joint Conference on Neural Networks (IJCNN) 2022. \nLink to paper: URL" ]
null
null
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> This is just a gguf version of the joseagmz/mistral-7B-PsychiatryCaseNotes-epochs-3-lr-000002 model. ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** https://huggingface.co/joseagmz/mistral-7B-PsychiatryCaseNotes-epochs-3-lr-000002
{"license": "apache-2.0"}
ubGPT/mistral-7B-PsychiatryCaseNotes-epochs-3-lr-000002gguf
null
[ "gguf", "license:apache-2.0", "region:us" ]
null
2024-04-30T19:22:46+00:00
[]
[]
TAGS #gguf #license-apache-2.0 #region-us
# Model Card for Model ID This is just a gguf version of the joseagmz/mistral-7B-PsychiatryCaseNotes-epochs-3-lr-000002 model. ## Model Details ### Model Description - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: URL
[ "# Model Card for Model ID\n\n\n\nThis is just a gguf version of the joseagmz/mistral-7B-PsychiatryCaseNotes-epochs-3-lr-000002 model.", "## Model Details", "### Model Description\n\n\n\n\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: URL" ]
[ "TAGS\n#gguf #license-apache-2.0 #region-us \n", "# Model Card for Model ID\n\n\n\nThis is just a gguf version of the joseagmz/mistral-7B-PsychiatryCaseNotes-epochs-3-lr-000002 model.", "## Model Details", "### Model Description\n\n\n\n\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: URL" ]
[ 17, 44, 4, 50, 13 ]
[ "TAGS\n#gguf #license-apache-2.0 #region-us \n# Model Card for Model ID\n\n\n\nThis is just a gguf version of the joseagmz/mistral-7B-PsychiatryCaseNotes-epochs-3-lr-000002 model.## Model Details### Model Description\n\n\n\n\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:### Model Sources [optional]\n\n\n\n- Repository: URL" ]
text2text-generation
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
liuyuxiang/wiki_cs_paraphraser
null
[ "transformers", "safetensors", "bart", "text2text-generation", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2024-04-30T19:24:21+00:00
[ "1910.09700" ]
[]
TAGS #transformers #safetensors #bart #text2text-generation #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #region-us
# Model Card for Model ID ## Model Details ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #safetensors #bart #text2text-generation #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ 39, 6, 4, 75, 23, 3, 5, 8, 9, 8, 34, 20, 4, 5, 5, 11, 13, 12, 3, 10, 6, 5, 6, 4, 5, 7, 49, 7, 7, 5, 5, 15, 7, 7, 8, 5 ]
[ "TAGS\n#transformers #safetensors #bart #text2text-generation #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #region-us \n# Model Card for Model ID## Model Details### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Downstream Use [optional]### Out-of-Scope Use## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.## How to Get Started with the Model\n\nUse the code below to get started with the model.## Training Details### Training Data### Training Procedure#### Preprocessing [optional]#### Training Hyperparameters\n\n- Training regime:#### Speeds, Sizes, Times [optional]## Evaluation### Testing Data, Factors & Metrics#### Testing Data#### Factors#### Metrics### Results#### Summary## Model Examination [optional]## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:## Technical Specifications [optional]### Model Architecture and Objective### Compute Infrastructure#### Hardware#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Model Card Authors [optional]## Model Card Contact" ]
text2text-generation
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # flan-t5-base-med-corr-error-flag This model is a fine-tuned version of [google/flan-t5-base](https://huggingface.co/google/flan-t5-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2759 - F1: 51.5181 - Gen Len: 2.1307 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.28.1 - Pytorch 2.2.1+cu121 - Datasets 2.19.0 - Tokenizers 0.13.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["f1"], "model-index": [{"name": "flan-t5-base-med-corr-error-flag", "results": []}]}
srajwal1/flan-t5-base-med-corr-error-flag
null
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-04-30T19:26:08+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #t5 #text2text-generation #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# flan-t5-base-med-corr-error-flag This model is a fine-tuned version of google/flan-t5-base on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2759 - F1: 51.5181 - Gen Len: 2.1307 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.28.1 - Pytorch 2.2.1+cu121 - Datasets 2.19.0 - Tokenizers 0.13.3
[ "# flan-t5-base-med-corr-error-flag\n\nThis model is a fine-tuned version of google/flan-t5-base on the None dataset.\nIt achieves the following results on the evaluation set:\n- Loss: 0.2759\n- F1: 51.5181\n- Gen Len: 2.1307", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 0.0003\n- train_batch_size: 8\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 2", "### Training results", "### Framework versions\n\n- Transformers 4.28.1\n- Pytorch 2.2.1+cu121\n- Datasets 2.19.0\n- Tokenizers 0.13.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #t5 #text2text-generation #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# flan-t5-base-med-corr-error-flag\n\nThis model is a fine-tuned version of google/flan-t5-base on the None dataset.\nIt achieves the following results on the evaluation set:\n- Loss: 0.2759\n- F1: 51.5181\n- Gen Len: 2.1307", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 0.0003\n- train_batch_size: 8\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 2", "### Training results", "### Framework versions\n\n- Transformers 4.28.1\n- Pytorch 2.2.1+cu121\n- Datasets 2.19.0\n- Tokenizers 0.13.3" ]
[ 54, 75, 7, 9, 9, 4, 93, 5, 44 ]
[ "TAGS\n#transformers #pytorch #tensorboard #t5 #text2text-generation #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# flan-t5-base-med-corr-error-flag\n\nThis model is a fine-tuned version of google/flan-t5-base on the None dataset.\nIt achieves the following results on the evaluation set:\n- Loss: 0.2759\n- F1: 51.5181\n- Gen Len: 2.1307## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 0.0003\n- train_batch_size: 8\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 2### Training results### Framework versions\n\n- Transformers 4.28.1\n- Pytorch 2.2.1+cu121\n- Datasets 2.19.0\n- Tokenizers 0.13.3" ]
null
mlx
# mlx-community/llava-phi-3-mini-4bit This model was converted to MLX format from [`qnguyen3/nanoLLaVAxtuner/llava-phi-3-mini-hf`]() using mlx-vllm version **0.0.3**. Refer to the [original model card](xtuner/llava-phi-3-mini-hf) for more details on the model. ## Use with mlx ```bash pip install -U mlx-vlm ``` ```bash python -m mlx_vlm.generate --model mlx-community/llava-phi-3-mini-4bit \ --prompt "what are these?" --image "http://images.cocodataset.org/val2017/000000039769.jpg" \ --max-tokens 100 --temp 0.0 ```
{"language": ["en"], "license": "apache-2.0", "tags": ["llava", "multimodal", "phi-mini-3", "mlx"]}
mlx-community/llava-phi-3-mini-4bit
null
[ "mlx", "safetensors", "llava", "multimodal", "phi-mini-3", "en", "license:apache-2.0", "region:us" ]
null
2024-04-30T19:26:22+00:00
[]
[ "en" ]
TAGS #mlx #safetensors #llava #multimodal #phi-mini-3 #en #license-apache-2.0 #region-us
# mlx-community/llava-phi-3-mini-4bit This model was converted to MLX format from ['qnguyen3/nanoLLaVAxtuner/llava-phi-3-mini-hf']() using mlx-vllm version 0.0.3. Refer to the original model card for more details on the model. ## Use with mlx
[ "# mlx-community/llava-phi-3-mini-4bit\nThis model was converted to MLX format from ['qnguyen3/nanoLLaVAxtuner/llava-phi-3-mini-hf']() using mlx-vllm version 0.0.3.\nRefer to the original model card for more details on the model.", "## Use with mlx" ]
[ "TAGS\n#mlx #safetensors #llava #multimodal #phi-mini-3 #en #license-apache-2.0 #region-us \n", "# mlx-community/llava-phi-3-mini-4bit\nThis model was converted to MLX format from ['qnguyen3/nanoLLaVAxtuner/llava-phi-3-mini-hf']() using mlx-vllm version 0.0.3.\nRefer to the original model card for more details on the model.", "## Use with mlx" ]
[ 35, 83, 6 ]
[ "TAGS\n#mlx #safetensors #llava #multimodal #phi-mini-3 #en #license-apache-2.0 #region-us \n# mlx-community/llava-phi-3-mini-4bit\nThis model was converted to MLX format from ['qnguyen3/nanoLLaVAxtuner/llava-phi-3-mini-hf']() using mlx-vllm version 0.0.3.\nRefer to the original model card for more details on the model.## Use with mlx" ]
null
peft
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.10.0
{"library_name": "peft", "base_model": "Salesforce/codegen-350M-mono"}
Denis641/CodeGen-MNTP
null
[ "peft", "safetensors", "codegen", "arxiv:1910.09700", "base_model:Salesforce/codegen-350M-mono", "region:us" ]
null
2024-04-30T19:27:30+00:00
[ "1910.09700" ]
[]
TAGS #peft #safetensors #codegen #arxiv-1910.09700 #base_model-Salesforce/codegen-350M-mono #region-us
# Model Card for Model ID ## Model Details ### Model Description - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact ### Framework versions - PEFT 0.10.0
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\n\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact", "### Framework versions\n\n- PEFT 0.10.0" ]
[ "TAGS\n#peft #safetensors #codegen #arxiv-1910.09700 #base_model-Salesforce/codegen-350M-mono #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\n\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact", "### Framework versions\n\n- PEFT 0.10.0" ]
[ 40, 6, 4, 50, 23, 3, 5, 8, 9, 8, 34, 20, 4, 5, 5, 11, 13, 12, 3, 10, 6, 5, 6, 4, 5, 7, 49, 7, 7, 5, 5, 15, 7, 7, 8, 5, 13 ]
[ "TAGS\n#peft #safetensors #codegen #arxiv-1910.09700 #base_model-Salesforce/codegen-350M-mono #region-us \n# Model Card for Model ID## Model Details### Model Description\n\n\n\n\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Downstream Use [optional]### Out-of-Scope Use## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.## How to Get Started with the Model\n\nUse the code below to get started with the model.## Training Details### Training Data### Training Procedure#### Preprocessing [optional]#### Training Hyperparameters\n\n- Training regime:#### Speeds, Sizes, Times [optional]## Evaluation### Testing Data, Factors & Metrics#### Testing Data#### Factors#### Metrics### Results#### Summary## Model Examination [optional]## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:## Technical Specifications [optional]### Model Architecture and Objective### Compute Infrastructure#### Hardware#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Model Card Authors [optional]## Model Card Contact### Framework versions\n\n- PEFT 0.10.0" ]
feature-extraction
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
andersonbcdefg/tiny-emb-2024-04-30_19-28-00
null
[ "transformers", "safetensors", "bert", "feature-extraction", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-04-30T19:28:00+00:00
[ "1910.09700" ]
[]
TAGS #transformers #safetensors #bert #feature-extraction #arxiv-1910.09700 #endpoints_compatible #region-us
# Model Card for Model ID ## Model Details ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #safetensors #bert #feature-extraction #arxiv-1910.09700 #endpoints_compatible #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ 32, 6, 4, 75, 23, 3, 5, 8, 9, 8, 34, 20, 4, 5, 5, 11, 13, 12, 3, 10, 6, 5, 6, 4, 5, 7, 49, 7, 7, 5, 5, 15, 7, 7, 8, 5 ]
[ "TAGS\n#transformers #safetensors #bert #feature-extraction #arxiv-1910.09700 #endpoints_compatible #region-us \n# Model Card for Model ID## Model Details### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Downstream Use [optional]### Out-of-Scope Use## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.## How to Get Started with the Model\n\nUse the code below to get started with the model.## Training Details### Training Data### Training Procedure#### Preprocessing [optional]#### Training Hyperparameters\n\n- Training regime:#### Speeds, Sizes, Times [optional]## Evaluation### Testing Data, Factors & Metrics#### Testing Data#### Factors#### Metrics### Results#### Summary## Model Examination [optional]## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:## Technical Specifications [optional]### Model Architecture and Objective### Compute Infrastructure#### Hardware#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Model Card Authors [optional]## Model Card Contact" ]
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # robust_llm_pythia-160m_mz-135_WordLength_n-its-10-seed-4 This model is a fine-tuned version of [EleutherAI/pythia-160m](https://huggingface.co/EleutherAI/pythia-160m) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 64 - seed: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results ### Framework versions - Transformers 4.39.3 - Pytorch 2.2.1 - Datasets 2.18.0 - Tokenizers 0.15.2
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "base_model": "EleutherAI/pythia-160m", "model-index": [{"name": "robust_llm_pythia-160m_mz-135_WordLength_n-its-10-seed-4", "results": []}]}
AlignmentResearch/robust_llm_pythia-160m_mz-135_WordLength_n-its-10-seed-4
null
[ "transformers", "tensorboard", "safetensors", "gpt_neox", "text-classification", "generated_from_trainer", "base_model:EleutherAI/pythia-160m", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-04-30T19:29:59+00:00
[]
[]
TAGS #transformers #tensorboard #safetensors #gpt_neox #text-classification #generated_from_trainer #base_model-EleutherAI/pythia-160m #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# robust_llm_pythia-160m_mz-135_WordLength_n-its-10-seed-4 This model is a fine-tuned version of EleutherAI/pythia-160m on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 64 - seed: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results ### Framework versions - Transformers 4.39.3 - Pytorch 2.2.1 - Datasets 2.18.0 - Tokenizers 0.15.2
[ "# robust_llm_pythia-160m_mz-135_WordLength_n-its-10-seed-4\n\nThis model is a fine-tuned version of EleutherAI/pythia-160m on an unknown dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 1e-05\n- train_batch_size: 8\n- eval_batch_size: 64\n- seed: 4\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 1", "### Training results", "### Framework versions\n\n- Transformers 4.39.3\n- Pytorch 2.2.1\n- Datasets 2.18.0\n- Tokenizers 0.15.2" ]
[ "TAGS\n#transformers #tensorboard #safetensors #gpt_neox #text-classification #generated_from_trainer #base_model-EleutherAI/pythia-160m #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# robust_llm_pythia-160m_mz-135_WordLength_n-its-10-seed-4\n\nThis model is a fine-tuned version of EleutherAI/pythia-160m on an unknown dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 1e-05\n- train_batch_size: 8\n- eval_batch_size: 64\n- seed: 4\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 1", "### Training results", "### Framework versions\n\n- Transformers 4.39.3\n- Pytorch 2.2.1\n- Datasets 2.18.0\n- Tokenizers 0.15.2" ]
[ 70, 58, 7, 9, 9, 4, 93, 5, 40 ]
[ "TAGS\n#transformers #tensorboard #safetensors #gpt_neox #text-classification #generated_from_trainer #base_model-EleutherAI/pythia-160m #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# robust_llm_pythia-160m_mz-135_WordLength_n-its-10-seed-4\n\nThis model is a fine-tuned version of EleutherAI/pythia-160m on an unknown dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 1e-05\n- train_batch_size: 8\n- eval_batch_size: 64\n- seed: 4\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 1### Training results### Framework versions\n\n- Transformers 4.39.3\n- Pytorch 2.2.1\n- Datasets 2.18.0\n- Tokenizers 0.15.2" ]
token-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # trained_croatian This model is a fine-tuned version of [distilbert/distilbert-base-multilingual-cased](https://huggingface.co/distilbert/distilbert-base-multilingual-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0766 - Precision: 0.8130 - Recall: 0.8568 - F1: 0.8343 - Accuracy: 0.9769 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 216 | 0.0886 | 0.7632 | 0.8161 | 0.7888 | 0.9729 | | No log | 2.0 | 432 | 0.0801 | 0.8070 | 0.8478 | 0.8269 | 0.9764 | | 0.1112 | 3.0 | 648 | 0.0766 | 0.8130 | 0.8568 | 0.8343 | 0.9769 | ### Framework versions - Transformers 4.38.2 - Pytorch 2.1.2+cpu - Datasets 2.18.0 - Tokenizers 0.15.2
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "base_model": "distilbert/distilbert-base-multilingual-cased", "model-index": [{"name": "trained_croatian", "results": []}]}
annamariagnat/trained_croatian
null
[ "transformers", "tensorboard", "safetensors", "distilbert", "token-classification", "generated_from_trainer", "base_model:distilbert/distilbert-base-multilingual-cased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2024-04-30T19:30:24+00:00
[]
[]
TAGS #transformers #tensorboard #safetensors #distilbert #token-classification #generated_from_trainer #base_model-distilbert/distilbert-base-multilingual-cased #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
trained\_croatian ================= This model is a fine-tuned version of distilbert/distilbert-base-multilingual-cased on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.0766 * Precision: 0.8130 * Recall: 0.8568 * F1: 0.8343 * Accuracy: 0.9769 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 8 * eval\_batch\_size: 8 * seed: 42 * gradient\_accumulation\_steps: 4 * total\_train\_batch\_size: 32 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 3 ### Training results ### Framework versions * Transformers 4.38.2 * Pytorch 2.1.2+cpu * Datasets 2.18.0 * Tokenizers 0.15.2
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 32\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3", "### Training results", "### Framework versions\n\n\n* Transformers 4.38.2\n* Pytorch 2.1.2+cpu\n* Datasets 2.18.0\n* Tokenizers 0.15.2" ]
[ "TAGS\n#transformers #tensorboard #safetensors #distilbert #token-classification #generated_from_trainer #base_model-distilbert/distilbert-base-multilingual-cased #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 32\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3", "### Training results", "### Framework versions\n\n\n* Transformers 4.38.2\n* Pytorch 2.1.2+cpu\n* Datasets 2.18.0\n* Tokenizers 0.15.2" ]
[ 67, 124, 5, 42 ]
[ "TAGS\n#transformers #tensorboard #safetensors #distilbert #token-classification #generated_from_trainer #base_model-distilbert/distilbert-base-multilingual-cased #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 32\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3### Training results### Framework versions\n\n\n* Transformers 4.38.2\n* Pytorch 2.1.2+cpu\n* Datasets 2.18.0\n* Tokenizers 0.15.2" ]
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # robust_llm_pythia-160m_mz-135_WordLength_n-its-10-seed-3 This model is a fine-tuned version of [EleutherAI/pythia-160m](https://huggingface.co/EleutherAI/pythia-160m) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 64 - seed: 3 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results ### Framework versions - Transformers 4.39.3 - Pytorch 2.2.1 - Datasets 2.18.0 - Tokenizers 0.15.2
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "base_model": "EleutherAI/pythia-160m", "model-index": [{"name": "robust_llm_pythia-160m_mz-135_WordLength_n-its-10-seed-3", "results": []}]}
AlignmentResearch/robust_llm_pythia-160m_mz-135_WordLength_n-its-10-seed-3
null
[ "transformers", "tensorboard", "safetensors", "gpt_neox", "text-classification", "generated_from_trainer", "base_model:EleutherAI/pythia-160m", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-04-30T19:30:26+00:00
[]
[]
TAGS #transformers #tensorboard #safetensors #gpt_neox #text-classification #generated_from_trainer #base_model-EleutherAI/pythia-160m #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# robust_llm_pythia-160m_mz-135_WordLength_n-its-10-seed-3 This model is a fine-tuned version of EleutherAI/pythia-160m on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 64 - seed: 3 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results ### Framework versions - Transformers 4.39.3 - Pytorch 2.2.1 - Datasets 2.18.0 - Tokenizers 0.15.2
[ "# robust_llm_pythia-160m_mz-135_WordLength_n-its-10-seed-3\n\nThis model is a fine-tuned version of EleutherAI/pythia-160m on an unknown dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 1e-05\n- train_batch_size: 8\n- eval_batch_size: 64\n- seed: 3\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 1", "### Training results", "### Framework versions\n\n- Transformers 4.39.3\n- Pytorch 2.2.1\n- Datasets 2.18.0\n- Tokenizers 0.15.2" ]
[ "TAGS\n#transformers #tensorboard #safetensors #gpt_neox #text-classification #generated_from_trainer #base_model-EleutherAI/pythia-160m #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# robust_llm_pythia-160m_mz-135_WordLength_n-its-10-seed-3\n\nThis model is a fine-tuned version of EleutherAI/pythia-160m on an unknown dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 1e-05\n- train_batch_size: 8\n- eval_batch_size: 64\n- seed: 3\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 1", "### Training results", "### Framework versions\n\n- Transformers 4.39.3\n- Pytorch 2.2.1\n- Datasets 2.18.0\n- Tokenizers 0.15.2" ]
[ 70, 58, 7, 9, 9, 4, 93, 5, 40 ]
[ "TAGS\n#transformers #tensorboard #safetensors #gpt_neox #text-classification #generated_from_trainer #base_model-EleutherAI/pythia-160m #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# robust_llm_pythia-160m_mz-135_WordLength_n-its-10-seed-3\n\nThis model is a fine-tuned version of EleutherAI/pythia-160m on an unknown dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 1e-05\n- train_batch_size: 8\n- eval_batch_size: 64\n- seed: 3\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 1### Training results### Framework versions\n\n- Transformers 4.39.3\n- Pytorch 2.2.1\n- Datasets 2.18.0\n- Tokenizers 0.15.2" ]
automatic-speech-recognition
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
ivillar/whisperfinetune-regular
null
[ "transformers", "safetensors", "whisper", "automatic-speech-recognition", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-04-30T19:30:29+00:00
[ "1910.09700" ]
[]
TAGS #transformers #safetensors #whisper #automatic-speech-recognition #arxiv-1910.09700 #endpoints_compatible #region-us
# Model Card for Model ID ## Model Details ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #safetensors #whisper #automatic-speech-recognition #arxiv-1910.09700 #endpoints_compatible #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ 34, 6, 4, 75, 23, 3, 5, 8, 9, 8, 34, 20, 4, 5, 5, 11, 13, 12, 3, 10, 6, 5, 6, 4, 5, 7, 49, 7, 7, 5, 5, 15, 7, 7, 8, 5 ]
[ "TAGS\n#transformers #safetensors #whisper #automatic-speech-recognition #arxiv-1910.09700 #endpoints_compatible #region-us \n# Model Card for Model ID## Model Details### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Downstream Use [optional]### Out-of-Scope Use## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.## How to Get Started with the Model\n\nUse the code below to get started with the model.## Training Details### Training Data### Training Procedure#### Preprocessing [optional]#### Training Hyperparameters\n\n- Training regime:#### Speeds, Sizes, Times [optional]## Evaluation### Testing Data, Factors & Metrics#### Testing Data#### Factors#### Metrics### Results#### Summary## Model Examination [optional]## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:## Technical Specifications [optional]### Model Architecture and Objective### Compute Infrastructure#### Hardware#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Model Card Authors [optional]## Model Card Contact" ]
null
transformers
# Uploaded model - **Developed by:** HoneyBadger2989 - **License:** apache-2.0 - **Finetuned from model :** unsloth/llama-3-8b-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
{"language": ["en"], "license": "apache-2.0", "tags": ["text-generation-inference", "transformers", "unsloth", "llama", "trl"], "base_model": "unsloth/llama-3-8b-bnb-4bit"}
HoneyBadger2989/llama-3-8b-bnb-4bit
null
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "llama", "trl", "en", "base_model:unsloth/llama-3-8b-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-04-30T19:31:11+00:00
[]
[ "en" ]
TAGS #transformers #safetensors #text-generation-inference #unsloth #llama #trl #en #base_model-unsloth/llama-3-8b-bnb-4bit #license-apache-2.0 #endpoints_compatible #region-us
# Uploaded model - Developed by: HoneyBadger2989 - License: apache-2.0 - Finetuned from model : unsloth/llama-3-8b-bnb-4bit This llama model was trained 2x faster with Unsloth and Huggingface's TRL library. <img src="URL width="200"/>
[ "# Uploaded model\n\n- Developed by: HoneyBadger2989\n- License: apache-2.0\n- Finetuned from model : unsloth/llama-3-8b-bnb-4bit\n\nThis llama model was trained 2x faster with Unsloth and Huggingface's TRL library.\n\n<img src=\"URL width=\"200\"/>" ]
[ "TAGS\n#transformers #safetensors #text-generation-inference #unsloth #llama #trl #en #base_model-unsloth/llama-3-8b-bnb-4bit #license-apache-2.0 #endpoints_compatible #region-us \n", "# Uploaded model\n\n- Developed by: HoneyBadger2989\n- License: apache-2.0\n- Finetuned from model : unsloth/llama-3-8b-bnb-4bit\n\nThis llama model was trained 2x faster with Unsloth and Huggingface's TRL library.\n\n<img src=\"URL width=\"200\"/>" ]
[ 64, 83 ]
[ "TAGS\n#transformers #safetensors #text-generation-inference #unsloth #llama #trl #en #base_model-unsloth/llama-3-8b-bnb-4bit #license-apache-2.0 #endpoints_compatible #region-us \n# Uploaded model\n\n- Developed by: HoneyBadger2989\n- License: apache-2.0\n- Finetuned from model : unsloth/llama-3-8b-bnb-4bit\n\nThis llama model was trained 2x faster with Unsloth and Huggingface's TRL library.\n\n<img src=\"URL width=\"200\"/>" ]
text-generation
mlx
# batmac/Phi-3-mini-4k-instruct-mlx-4bit This model was converted to MLX format from [`microsoft/Phi-3-mini-4k-instruct`]() using mlx-lm version **0.12.0**. Refer to the [original model card](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct) for more details on the model. ## Use with mlx ```bash pip install mlx-lm ``` ```python from mlx_lm import load, generate model, tokenizer = load("batmac/Phi-3-mini-4k-instruct-mlx-4bit") response = generate(model, tokenizer, prompt="hello", verbose=True) ```
{"language": ["en"], "license": "mit", "tags": ["nlp", "code", "mlx"], "license_link": "https://huggingface.co/microsoft/Phi-3-mini-4k-instruct/resolve/main/LICENSE", "pipeline_tag": "text-generation", "widget": [{"messages": [{"role": "user", "content": "Can you provide ways to eat combinations of bananas and dragonfruits?"}]}]}
batmac/Phi-3-mini-4k-instruct-mlx-4bit
null
[ "mlx", "safetensors", "phi3", "nlp", "code", "text-generation", "conversational", "custom_code", "en", "license:mit", "region:us" ]
null
2024-04-30T19:31:59+00:00
[]
[ "en" ]
TAGS #mlx #safetensors #phi3 #nlp #code #text-generation #conversational #custom_code #en #license-mit #region-us
# batmac/Phi-3-mini-4k-instruct-mlx-4bit This model was converted to MLX format from ['microsoft/Phi-3-mini-4k-instruct']() using mlx-lm version 0.12.0. Refer to the original model card for more details on the model. ## Use with mlx
[ "# batmac/Phi-3-mini-4k-instruct-mlx-4bit\nThis model was converted to MLX format from ['microsoft/Phi-3-mini-4k-instruct']() using mlx-lm version 0.12.0.\nRefer to the original model card for more details on the model.", "## Use with mlx" ]
[ "TAGS\n#mlx #safetensors #phi3 #nlp #code #text-generation #conversational #custom_code #en #license-mit #region-us \n", "# batmac/Phi-3-mini-4k-instruct-mlx-4bit\nThis model was converted to MLX format from ['microsoft/Phi-3-mini-4k-instruct']() using mlx-lm version 0.12.0.\nRefer to the original model card for more details on the model.", "## Use with mlx" ]
[ 37, 75, 6 ]
[ "TAGS\n#mlx #safetensors #phi3 #nlp #code #text-generation #conversational #custom_code #en #license-mit #region-us \n# batmac/Phi-3-mini-4k-instruct-mlx-4bit\nThis model was converted to MLX format from ['microsoft/Phi-3-mini-4k-instruct']() using mlx-lm version 0.12.0.\nRefer to the original model card for more details on the model.## Use with mlx" ]
text-generation
mlx
# batmac/Phi-3-mini-4k-instruct-mlx-8bit This model was converted to MLX format from [`microsoft/Phi-3-mini-4k-instruct`]() using mlx-lm version **0.12.0**. Refer to the [original model card](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct) for more details on the model. ## Use with mlx ```bash pip install mlx-lm ``` ```python from mlx_lm import load, generate model, tokenizer = load("batmac/Phi-3-mini-4k-instruct-mlx-8bit") response = generate(model, tokenizer, prompt="hello", verbose=True) ```
{"language": ["en"], "license": "mit", "tags": ["nlp", "code", "mlx"], "license_link": "https://huggingface.co/microsoft/Phi-3-mini-4k-instruct/resolve/main/LICENSE", "pipeline_tag": "text-generation", "widget": [{"messages": [{"role": "user", "content": "Can you provide ways to eat combinations of bananas and dragonfruits?"}]}]}
batmac/Phi-3-mini-4k-instruct-mlx-8bit
null
[ "mlx", "safetensors", "phi3", "nlp", "code", "text-generation", "conversational", "custom_code", "en", "license:mit", "region:us" ]
null
2024-04-30T19:34:00+00:00
[]
[ "en" ]
TAGS #mlx #safetensors #phi3 #nlp #code #text-generation #conversational #custom_code #en #license-mit #region-us
# batmac/Phi-3-mini-4k-instruct-mlx-8bit This model was converted to MLX format from ['microsoft/Phi-3-mini-4k-instruct']() using mlx-lm version 0.12.0. Refer to the original model card for more details on the model. ## Use with mlx
[ "# batmac/Phi-3-mini-4k-instruct-mlx-8bit\nThis model was converted to MLX format from ['microsoft/Phi-3-mini-4k-instruct']() using mlx-lm version 0.12.0.\nRefer to the original model card for more details on the model.", "## Use with mlx" ]
[ "TAGS\n#mlx #safetensors #phi3 #nlp #code #text-generation #conversational #custom_code #en #license-mit #region-us \n", "# batmac/Phi-3-mini-4k-instruct-mlx-8bit\nThis model was converted to MLX format from ['microsoft/Phi-3-mini-4k-instruct']() using mlx-lm version 0.12.0.\nRefer to the original model card for more details on the model.", "## Use with mlx" ]
[ 37, 75, 6 ]
[ "TAGS\n#mlx #safetensors #phi3 #nlp #code #text-generation #conversational #custom_code #en #license-mit #region-us \n# batmac/Phi-3-mini-4k-instruct-mlx-8bit\nThis model was converted to MLX format from ['microsoft/Phi-3-mini-4k-instruct']() using mlx-lm version 0.12.0.\nRefer to the original model card for more details on the model.## Use with mlx" ]
text-generation
transformers
### Bielik-7B-Instruct-v0.1 ExLlamav2 8 bpw quants of https://huggingface.co/speakleash/Bielik-7B-Instruct-v0.1
{"language": ["pl"], "license": "cc-by-nc-4.0", "library_name": "transformers", "tags": ["finetuned"], "inference": false}
altomek/Bielik-7B-Instruct-v0.1-8bpw-EXL2
null
[ "transformers", "safetensors", "mistral", "text-generation", "finetuned", "conversational", "pl", "license:cc-by-nc-4.0", "autotrain_compatible", "text-generation-inference", "region:us" ]
null
2024-04-30T19:36:55+00:00
[]
[ "pl" ]
TAGS #transformers #safetensors #mistral #text-generation #finetuned #conversational #pl #license-cc-by-nc-4.0 #autotrain_compatible #text-generation-inference #region-us
### Bielik-7B-Instruct-v0.1 ExLlamav2 8 bpw quants of URL
[ "### Bielik-7B-Instruct-v0.1\n\nExLlamav2 8 bpw quants of URL" ]
[ "TAGS\n#transformers #safetensors #mistral #text-generation #finetuned #conversational #pl #license-cc-by-nc-4.0 #autotrain_compatible #text-generation-inference #region-us \n", "### Bielik-7B-Instruct-v0.1\n\nExLlamav2 8 bpw quants of URL" ]
[ 50, 30 ]
[ "TAGS\n#transformers #safetensors #mistral #text-generation #finetuned #conversational #pl #license-cc-by-nc-4.0 #autotrain_compatible #text-generation-inference #region-us \n### Bielik-7B-Instruct-v0.1\n\nExLlamav2 8 bpw quants of URL" ]
null
peft
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.10.0
{"library_name": "peft", "base_model": "Universal-NER/UniNER-7B-type"}
jc80622/unilora_sec151_populated_denser
null
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:Universal-NER/UniNER-7B-type", "region:us" ]
null
2024-04-30T19:37:20+00:00
[ "1910.09700" ]
[]
TAGS #peft #safetensors #arxiv-1910.09700 #base_model-Universal-NER/UniNER-7B-type #region-us
# Model Card for Model ID ## Model Details ### Model Description - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact ### Framework versions - PEFT 0.10.0
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\n\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact", "### Framework versions\n\n- PEFT 0.10.0" ]
[ "TAGS\n#peft #safetensors #arxiv-1910.09700 #base_model-Universal-NER/UniNER-7B-type #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\n\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact", "### Framework versions\n\n- PEFT 0.10.0" ]
[ 39, 6, 4, 50, 23, 3, 5, 8, 9, 8, 34, 20, 4, 5, 5, 11, 13, 12, 3, 10, 6, 5, 6, 4, 5, 7, 49, 7, 7, 5, 5, 15, 7, 7, 8, 5, 13 ]
[ "TAGS\n#peft #safetensors #arxiv-1910.09700 #base_model-Universal-NER/UniNER-7B-type #region-us \n# Model Card for Model ID## Model Details### Model Description\n\n\n\n\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Downstream Use [optional]### Out-of-Scope Use## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.## How to Get Started with the Model\n\nUse the code below to get started with the model.## Training Details### Training Data### Training Procedure#### Preprocessing [optional]#### Training Hyperparameters\n\n- Training regime:#### Speeds, Sizes, Times [optional]## Evaluation### Testing Data, Factors & Metrics#### Testing Data#### Factors#### Metrics### Results#### Summary## Model Examination [optional]## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:## Technical Specifications [optional]### Model Architecture and Objective### Compute Infrastructure#### Hardware#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Model Card Authors [optional]## Model Card Contact### Framework versions\n\n- PEFT 0.10.0" ]
text-generation
transformers
<a href="https://www.gradient.ai" target="_blank"><img src="https://cdn-uploads.huggingface.co/production/uploads/655bb613e8a8971e89944f3e/TSa3V8YpoVagnTYgxiLaO.png" width="200"/></a> # Llama-3 8B Gradient Instruct 1048k Gradient incorporates your data to deploy autonomous assistants that power critical operations across your business. If you're looking to build custom AI models or agents, email us a message [email protected]. For more info see our [End-to-end development service for custom LLMs and AI systems](https://gradient.ai/development-lab) This model extends LLama-3 8B's context length from 8k to > 1040K, developed by Gradient, sponsored by compute from [Crusoe Energy](https://huggingface.co/crusoeai). It demonstrates that SOTA LLMs can learn to operate on long context with minimal training by appropriately adjusting RoPE theta. We trained on 830M tokens for this stage, and 1.4B tokens total for all stages, which is < 0.01% of Llama-3's original pre-training data. ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6585dc9be92bc5f258156bd6/6MKLoX2ruLIaREiyb6coO.png) **Approach:** - [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) as the base - NTK-aware interpolation [1] to initialize an optimal schedule for RoPE theta, followed by empirical RoPE theta optimization - Progressive training on increasing context lengths, similar to [Large World Model](https://huggingface.co/LargeWorldModel) [2] (See details below) **Infra:** We build on top of the EasyContext Blockwise RingAttention library [3] to scalably and efficiently train on contexts up to 1048k tokens on [Crusoe Energy](https://huggingface.co/crusoeai) high performance L40S cluster. Notably, we layered parallelism on top of Ring Attention with a custom network topology to better leverage large GPU clusters in the face of network bottlenecks from passing many KV blocks between devices. This gave us a 33x speedup in model training (compare 524k and 1048k to 65k and 262k in the table below). **Data:** For training data, we generate long contexts by augmenting [SlimPajama](https://huggingface.co/datasets/cerebras/SlimPajama-627B). **Progressive Training Details:** | | 65K | 262K | 524k | 1048k | |------------------------|-----------|-----------|-----------|-----------| | Initialize From | LLaMA-3 8B| 65K | 262K | 524k | | Sequence Length 2^N | 16 | 18 | 19 | 20 | | RoPE theta | 15.3 M | 207.1 M | 1.06B | 2.80B | | Batch Size | 1 | 1 | 16 | 16 | | Gradient Accumulation Steps | 32 | 16 | 1 | 1 | | Steps | 30 | 24 | 50 | 50 | | Total Tokens | 62914560 | 100663296 | 419430400 | 838860800 | | Learning Rate | 2.00E-05 | 2.00E-05 | 2.00E-05 | 2.00E-05 | | # GPUs | 8 | 32 | 512 | 512 | | GPU Type | NVIDIA L40S | NVIDIA L40S | NVIDIA L40S | NVIDIA L40S | | Minutes to Train (Wall)| 202 | 555 | 61 | 87 | **Quants**: - [GGUF](https://huggingface.co/crusoeai/Llama-3-8B-Instruct-1048k-GGUF) - [MLX-4bit](https://huggingface.co/mlx-community/Llama-3-8B-Instruct-1048k-4bit) ## The Gradient AI Team https://gradient.ai/ Gradient is accelerating AI transformation across industries. Our AI Foundry incorporates your data to deploy autonomous assistants that power critical operations across your business. ## Contact Us Drop an email to [[email protected]](mailto:[email protected]) ## References [1] Peng, Bowen, et al. "Yarn: Efficient context window extension of large language models." arXiv preprint arXiv:2309.00071 (2023). [2] Liu, Hao, et al. "World Model on Million-Length Video And Language With RingAttention." arXiv preprint arXiv:2402.08268 (2024). [3] https://github.com/jzhang38/EasyContext ---- # Base Model ## Model Details Meta developed and released the Meta Llama 3 family of large language models (LLMs), a collection of pretrained and instruction tuned generative text models in 8 and 70B sizes. The Llama 3 instruction tuned models are optimized for dialogue use cases and outperform many of the available open source chat models on common industry benchmarks. Further, in developing these models, we took great care to optimize helpfulness and safety. **Model developers** Meta **Variations** Llama 3 comes in two sizes — 8B and 70B parameters — in pre-trained and instruction tuned variants. **Input** Models input text only. **Output** Models generate text and code only. **Model Architecture** Llama 3 is an auto-regressive language model that uses an optimized transformer architecture. The tuned versions use supervised fine-tuning (SFT) and reinforcement learning with human feedback (RLHF) to align with human preferences for helpfulness and safety. <table> <tr> <td> </td> <td><strong>Training Data</strong> </td> <td><strong>Params</strong> </td> <td><strong>Context length</strong> </td> <td><strong>GQA</strong> </td> <td><strong>Token count</strong> </td> <td><strong>Knowledge cutoff</strong> </td> </tr> <tr> <td rowspan="2" >Llama 3 </td> <td rowspan="2" >A new mix of publicly available online data. </td> <td>8B </td> <td>8k </td> <td>Yes </td> <td rowspan="2" >15T+ </td> <td>March, 2023 </td> </tr> <tr> <td>70B </td> <td>8k </td> <td>Yes </td> <td>December, 2023 </td> </tr> </table> **Llama 3 family of models**. Token counts refer to pretraining data only. Both the 8 and 70B versions use Grouped-Query Attention (GQA) for improved inference scalability. **Model Release Date** April 18, 2024. **Status** This is a static model trained on an offline dataset. Future versions of the tuned models will be released as we improve model safety with community feedback. **License** A custom commercial license is available at: [https://llama.meta.com/llama3/license](https://llama.meta.com/llama3/license) Where to send questions or comments about the model Instructions on how to provide feedback or comments on the model can be found in the model [README](https://github.com/meta-llama/llama3). For more technical information about generation parameters and recipes for how to use Llama 3 in applications, please go [here](https://github.com/meta-llama/llama-recipes). ## Intended Use **Intended Use Cases** Llama 3 is intended for commercial and research use in English. Instruction tuned models are intended for assistant-like chat, whereas pretrained models can be adapted for a variety of natural language generation tasks. **Out-of-scope** Use in any manner that violates applicable laws or regulations (including trade compliance laws). Use in any other way that is prohibited by the Acceptable Use Policy and Llama 3 Community License. Use in languages other than English**. **Note: Developers may fine-tune Llama 3 models for languages beyond English provided they comply with the Llama 3 Community License and the Acceptable Use Policy. ## How to use This repository contains two versions of Meta-Llama-3-8B-Instruct, for use with transformers and with the original `llama3` codebase. ### Use with transformers You can run conversational inference using the Transformers pipeline abstraction, or by leveraging the Auto classes with the `generate()` function. Let's see examples of both. #### Transformers pipeline ```python import transformers import torch model_id = "meta-llama/Meta-Llama-3-8B-Instruct" pipeline = transformers.pipeline( "text-generation", model=model_id, model_kwargs={"torch_dtype": torch.bfloat16}, device_map="auto", ) messages = [ {"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"}, {"role": "user", "content": "Who are you?"}, ] prompt = pipeline.tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) terminators = [ pipeline.tokenizer.eos_token_id, pipeline.tokenizer.convert_tokens_to_ids("<|eot_id|>") ] outputs = pipeline( prompt, max_new_tokens=256, eos_token_id=terminators, do_sample=True, temperature=0.6, top_p=0.9, ) print(outputs[0]["generated_text"][len(prompt):]) ``` #### Transformers AutoModelForCausalLM ```python from transformers import AutoTokenizer, AutoModelForCausalLM import torch model_id = "meta-llama/Meta-Llama-3-8B-Instruct" tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained( model_id, torch_dtype=torch.bfloat16, device_map="auto", ) messages = [ {"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"}, {"role": "user", "content": "Who are you?"}, ] input_ids = tokenizer.apply_chat_template( messages, add_generation_prompt=True, return_tensors="pt" ).to(model.device) terminators = [ tokenizer.eos_token_id, tokenizer.convert_tokens_to_ids("<|eot_id|>") ] outputs = model.generate( input_ids, max_new_tokens=256, eos_token_id=terminators, do_sample=True, temperature=0.6, top_p=0.9, ) response = outputs[0][input_ids.shape[-1]:] print(tokenizer.decode(response, skip_special_tokens=True)) ``` ### Use with `llama3` Please, follow the instructions in the [repository](https://github.com/meta-llama/llama3) To download Original checkpoints, see the example command below leveraging `huggingface-cli`: ``` huggingface-cli download meta-llama/Meta-Llama-3-8B-Instruct --include "original/*" --local-dir Meta-Llama-3-8B-Instruct ``` For Hugging Face support, we recommend using transformers or TGI, but a similar command works. ## Hardware and Software **Training Factors** We used custom training libraries, Meta's Research SuperCluster, and production clusters for pretraining. Fine-tuning, annotation, and evaluation were also performed on third-party cloud compute. **Carbon Footprint Pretraining utilized a cumulative** 7.7M GPU hours of computation on hardware of type H100-80GB (TDP of 700W). Estimated total emissions were 2290 tCO2eq, 100% of which were offset by Meta’s sustainability program. <table> <tr> <td> </td> <td><strong>Time (GPU hours)</strong> </td> <td><strong>Power Consumption (W)</strong> </td> <td><strong>Carbon Emitted(tCO2eq)</strong> </td> </tr> <tr> <td>Llama 3 8B </td> <td>1.3M </td> <td>700 </td> <td>390 </td> </tr> <tr> <td>Llama 3 70B </td> <td>6.4M </td> <td>700 </td> <td>1900 </td> </tr> <tr> <td>Total </td> <td>7.7M </td> <td> </td> <td>2290 </td> </tr> </table> **CO2 emissions during pre-training**. Time: total GPU time required for training each model. Power Consumption: peak power capacity per GPU device for the GPUs used adjusted for power usage efficiency. 100% of the emissions are directly offset by Meta's sustainability program, and because we are openly releasing these models, the pretraining costs do not need to be incurred by others. ## Training Data **Overview** Llama 3 was pretrained on over 15 trillion tokens of data from publicly available sources. The fine-tuning data includes publicly available instruction datasets, as well as over 10M human-annotated examples. Neither the pretraining nor the fine-tuning datasets include Meta user data. **Data Freshness** The pretraining data has a cutoff of March 2023 for the 7B and December 2023 for the 70B models respectively. ## Benchmarks In this section, we report the results for Llama 3 models on standard automatic benchmarks. For all the evaluations, we use our internal evaluations library. For details on the methodology see [here](https://github.com/meta-llama/llama3/blob/main/eval_methodology.md). ### Base pretrained models <table> <tr> <td><strong>Category</strong> </td> <td><strong>Benchmark</strong> </td> <td><strong>Llama 3 8B</strong> </td> <td><strong>Llama2 7B</strong> </td> <td><strong>Llama2 13B</strong> </td> <td><strong>Llama 3 70B</strong> </td> <td><strong>Llama2 70B</strong> </td> </tr> <tr> <td rowspan="6" >General </td> <td>MMLU (5-shot) </td> <td>66.6 </td> <td>45.7 </td> <td>53.8 </td> <td>79.5 </td> <td>69.7 </td> </tr> <tr> <td>AGIEval English (3-5 shot) </td> <td>45.9 </td> <td>28.8 </td> <td>38.7 </td> <td>63.0 </td> <td>54.8 </td> </tr> <tr> <td>CommonSenseQA (7-shot) </td> <td>72.6 </td> <td>57.6 </td> <td>67.6 </td> <td>83.8 </td> <td>78.7 </td> </tr> <tr> <td>Winogrande (5-shot) </td> <td>76.1 </td> <td>73.3 </td> <td>75.4 </td> <td>83.1 </td> <td>81.8 </td> </tr> <tr> <td>BIG-Bench Hard (3-shot, CoT) </td> <td>61.1 </td> <td>38.1 </td> <td>47.0 </td> <td>81.3 </td> <td>65.7 </td> </tr> <tr> <td>ARC-Challenge (25-shot) </td> <td>78.6 </td> <td>53.7 </td> <td>67.6 </td> <td>93.0 </td> <td>85.3 </td> </tr> <tr> <td>Knowledge reasoning </td> <td>TriviaQA-Wiki (5-shot) </td> <td>78.5 </td> <td>72.1 </td> <td>79.6 </td> <td>89.7 </td> <td>87.5 </td> </tr> <tr> <td rowspan="4" >Reading comprehension </td> <td>SQuAD (1-shot) </td> <td>76.4 </td> <td>72.2 </td> <td>72.1 </td> <td>85.6 </td> <td>82.6 </td> </tr> <tr> <td>QuAC (1-shot, F1) </td> <td>44.4 </td> <td>39.6 </td> <td>44.9 </td> <td>51.1 </td> <td>49.4 </td> </tr> <tr> <td>BoolQ (0-shot) </td> <td>75.7 </td> <td>65.5 </td> <td>66.9 </td> <td>79.0 </td> <td>73.1 </td> </tr> <tr> <td>DROP (3-shot, F1) </td> <td>58.4 </td> <td>37.9 </td> <td>49.8 </td> <td>79.7 </td> <td>70.2 </td> </tr> </table> ### Instruction tuned models <table> <tr> <td><strong>Benchmark</strong> </td> <td><strong>Llama 3 8B</strong> </td> <td><strong>Llama 2 7B</strong> </td> <td><strong>Llama 2 13B</strong> </td> <td><strong>Llama 3 70B</strong> </td> <td><strong>Llama 2 70B</strong> </td> </tr> <tr> <td>MMLU (5-shot) </td> <td>68.4 </td> <td>34.1 </td> <td>47.8 </td> <td>82.0 </td> <td>52.9 </td> </tr> <tr> <td>GPQA (0-shot) </td> <td>34.2 </td> <td>21.7 </td> <td>22.3 </td> <td>39.5 </td> <td>21.0 </td> </tr> <tr> <td>HumanEval (0-shot) </td> <td>62.2 </td> <td>7.9 </td> <td>14.0 </td> <td>81.7 </td> <td>25.6 </td> </tr> <tr> <td>GSM-8K (8-shot, CoT) </td> <td>79.6 </td> <td>25.7 </td> <td>77.4 </td> <td>93.0 </td> <td>57.5 </td> </tr> <tr> <td>MATH (4-shot, CoT) </td> <td>30.0 </td> <td>3.8 </td> <td>6.7 </td> <td>50.4 </td> <td>11.6 </td> </tr> </table> ### Responsibility & Safety We believe that an open approach to AI leads to better, safer products, faster innovation, and a bigger overall market. We are committed to Responsible AI development and took a series of steps to limit misuse and harm and support the open source community. Foundation models are widely capable technologies that are built to be used for a diverse range of applications. They are not designed to meet every developer preference on safety levels for all use cases, out-of-the-box, as those by their nature will differ across different applications. Rather, responsible LLM-application deployment is achieved by implementing a series of safety best practices throughout the development of such applications, from the model pre-training, fine-tuning and the deployment of systems composed of safeguards to tailor the safety needs specifically to the use case and audience. As part of the Llama 3 release, we updated our [Responsible Use Guide](https://llama.meta.com/responsible-use-guide/) to outline the steps and best practices for developers to implement model and system level safety for their application. We also provide a set of resources including [Meta Llama Guard 2](https://llama.meta.com/purple-llama/) and [Code Shield](https://llama.meta.com/purple-llama/) safeguards. These tools have proven to drastically reduce residual risks of LLM Systems, while maintaining a high level of helpfulness. We encourage developers to tune and deploy these safeguards according to their needs and we provide a [reference implementation](https://github.com/meta-llama/llama-recipes/tree/main/recipes/responsible_ai) to get you started. #### Llama 3-Instruct As outlined in the Responsible Use Guide, some trade-off between model helpfulness and model alignment is likely unavoidable. Developers should exercise discretion about how to weigh the benefits of alignment and helpfulness for their specific use case and audience. Developers should be mindful of residual risks when using Llama models and leverage additional safety tools as needed to reach the right safety bar for their use case. <span style="text-decoration:underline;">Safety</span> For our instruction tuned model, we conducted extensive red teaming exercises, performed adversarial evaluations and implemented safety mitigations techniques to lower residual risks. As with any Large Language Model, residual risks will likely remain and we recommend that developers assess these risks in the context of their use case. In parallel, we are working with the community to make AI safety benchmark standards transparent, rigorous and interpretable. <span style="text-decoration:underline;">Refusals</span> In addition to residual risks, we put a great emphasis on model refusals to benign prompts. Over-refusing not only can impact the user experience but could even be harmful in certain contexts as well. We’ve heard the feedback from the developer community and improved our fine tuning to ensure that Llama 3 is significantly less likely to falsely refuse to answer prompts than Llama 2. We built internal benchmarks and developed mitigations to limit false refusals making Llama 3 our most helpful model to date. #### Responsible release In addition to responsible use considerations outlined above, we followed a rigorous process that requires us to take extra measures against misuse and critical risks before we make our release decision. Misuse If you access or use Llama 3, you agree to the Acceptable Use Policy. The most recent copy of this policy can be found at [https://llama.meta.com/llama3/use-policy/](https://llama.meta.com/llama3/use-policy/). #### Critical risks <span style="text-decoration:underline;">CBRNE</span> (Chemical, Biological, Radiological, Nuclear, and high yield Explosives) We have conducted a two fold assessment of the safety of the model in this area: * Iterative testing during model training to assess the safety of responses related to CBRNE threats and other adversarial risks. * Involving external CBRNE experts to conduct an uplift test assessing the ability of the model to accurately provide expert knowledge and reduce barriers to potential CBRNE misuse, by reference to what can be achieved using web search (without the model). ### <span style="text-decoration:underline;">Cyber Security </span> We have evaluated Llama 3 with CyberSecEval, Meta’s cybersecurity safety eval suite, measuring Llama 3’s propensity to suggest insecure code when used as a coding assistant, and Llama 3’s propensity to comply with requests to help carry out cyber attacks, where attacks are defined by the industry standard MITRE ATT&CK cyber attack ontology. On our insecure coding and cyber attacker helpfulness tests, Llama 3 behaved in the same range or safer than models of [equivalent coding capability](https://huggingface.co/spaces/facebook/CyberSecEval). ### <span style="text-decoration:underline;">Child Safety</span> Child Safety risk assessments were conducted using a team of experts, to assess the model’s capability to produce outputs that could result in Child Safety risks and inform on any necessary and appropriate risk mitigations via fine tuning. We leveraged those expert red teaming sessions to expand the coverage of our evaluation benchmarks through Llama 3 model development. For Llama 3, we conducted new in-depth sessions using objective based methodologies to assess the model risks along multiple attack vectors. We also partnered with content specialists to perform red teaming exercises assessing potentially violating content while taking account of market specific nuances or experiences. ### Community Generative AI safety requires expertise and tooling, and we believe in the strength of the open community to accelerate its progress. We are active members of open consortiums, including the AI Alliance, Partnership in AI and MLCommons, actively contributing to safety standardization and transparency. We encourage the community to adopt taxonomies like the MLCommons Proof of Concept evaluation to facilitate collaboration and transparency on safety and content evaluations. Our Purple Llama tools are open sourced for the community to use and widely distributed across ecosystem partners including cloud service providers. We encourage community contributions to our [Github repository](https://github.com/meta-llama/PurpleLlama). Finally, we put in place a set of resources including an [output reporting mechanism](https://developers.facebook.com/llama_output_feedback) and [bug bounty program](https://www.facebook.com/whitehat) to continuously improve the Llama technology with the help of the community. ## Ethical Considerations and Limitations The core values of Llama 3 are openness, inclusivity and helpfulness. It is meant to serve everyone, and to work for a wide range of use cases. It is thus designed to be accessible to people across many different backgrounds, experiences and perspectives. Llama 3 addresses users and their needs as they are, without insertion unnecessary judgment or normativity, while reflecting the understanding that even content that may appear problematic in some cases can serve valuable purposes in others. It respects the dignity and autonomy of all users, especially in terms of the values of free thought and expression that power innovation and progress. But Llama 3 is a new technology, and like any new technology, there are risks associated with its use. Testing conducted to date has been in English, and has not covered, nor could it cover, all scenarios. For these reasons, as with all LLMs, Llama 3’s potential outputs cannot be predicted in advance, and the model may in some instances produce inaccurate, biased or other objectionable responses to user prompts. Therefore, before deploying any applications of Llama 3 models, developers should perform safety testing and tuning tailored to their specific applications of the model. As outlined in the Responsible Use Guide, we recommend incorporating [Purple Llama](https://github.com/facebookresearch/PurpleLlama) solutions into your workflows and specifically [Llama Guard](https://ai.meta.com/research/publications/llama-guard-llm-based-input-output-safeguard-for-human-ai-conversations/) which provides a base model to filter input and output prompts to layer system-level safety on top of model-level safety. Please see the Responsible Use Guide available at [http://llama.meta.com/responsible-use-guide](http://llama.meta.com/responsible-use-guide) ## Citation instructions @article{llama3modelcard, title={Llama 3 Model Card}, author={AI@Meta}, year={2024}, url = {https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md} } ## Contributors Aaditya Singh; Aaron Grattafiori; Abhimanyu Dubey; Abhinav Jauhri; Abhinav Pandey; Abhishek Kadian; Adam Kelsey; Adi Gangidi; Ahmad Al-Dahle; Ahuva Goldstand; Aiesha Letman; Ajay Menon; Akhil Mathur; Alan Schelten; Alex Vaughan; Amy Yang; Andrei Lupu; Andres Alvarado; Andrew Gallagher; Andrew Gu; Andrew Ho; Andrew Poulton; Andrew Ryan; Angela Fan; Ankit Ramchandani; Anthony Hartshorn; Archi Mitra; Archie Sravankumar; Artem Korenev; Arun Rao; Ashley Gabriel; Ashwin Bharambe; Assaf Eisenman; Aston Zhang; Aurelien Rodriguez; Austen Gregerson; Ava Spataru; Baptiste Roziere; Ben Maurer; Benjamin Leonhardi; Bernie Huang; Bhargavi Paranjape; Bing Liu; Binh Tang; Bobbie Chern; Brani Stojkovic; Brian Fuller; Catalina Mejia Arenas; Chao Zhou; Charlotte Caucheteux; Chaya Nayak; Ching-Hsiang Chu; Chloe Bi; Chris Cai; Chris Cox; Chris Marra; Chris McConnell; Christian Keller; Christoph Feichtenhofer; Christophe Touret; Chunyang Wu; Corinne Wong; Cristian Canton Ferrer; Damien Allonsius; Daniel Kreymer; Daniel Haziza; Daniel Li; Danielle Pintz; Danny Livshits; Danny Wyatt; David Adkins; David Esiobu; David Xu; Davide Testuggine; Delia David; Devi Parikh; Dhruv Choudhary; Dhruv Mahajan; Diana Liskovich; Diego Garcia-Olano; Diego Perino; Dieuwke Hupkes; Dingkang Wang; Dustin Holland; Egor Lakomkin; Elina Lobanova; Xiaoqing Ellen Tan; Emily Dinan; Eric Smith; Erik Brinkman; Esteban Arcaute; Filip Radenovic; Firat Ozgenel; Francesco Caggioni; Frank Seide; Frank Zhang; Gabriel Synnaeve; Gabriella Schwarz; Gabrielle Lee; Gada Badeer; Georgia Anderson; Graeme Nail; Gregoire Mialon; Guan Pang; Guillem Cucurell; Hailey Nguyen; Hannah Korevaar; Hannah Wang; Haroun Habeeb; Harrison Rudolph; Henry Aspegren; Hu Xu; Hugo Touvron; Iga Kozlowska; Igor Molybog; Igor Tufanov; Iliyan Zarov; Imanol Arrieta Ibarra; Irina-Elena Veliche; Isabel Kloumann; Ishan Misra; Ivan Evtimov; Jacob Xu; Jade Copet; Jake Weissman; Jan Geffert; Jana Vranes; Japhet Asher; Jason Park; Jay Mahadeokar; Jean-Baptiste Gaya; Jeet Shah; Jelmer van der Linde; Jennifer Chan; Jenny Hong; Jenya Lee; Jeremy Fu; Jeremy Teboul; Jianfeng Chi; Jianyu Huang; Jie Wang; Jiecao Yu; Joanna Bitton; Joe Spisak; Joelle Pineau; Jon Carvill; Jongsoo Park; Joseph Rocca; Joshua Johnstun; Junteng Jia; Kalyan Vasuden Alwala; Kam Hou U; Kate Plawiak; Kartikeya Upasani; Kaushik Veeraraghavan; Ke Li; Kenneth Heafield; Kevin Stone; Khalid El-Arini; Krithika Iyer; Kshitiz Malik; Kuenley Chiu; Kunal Bhalla; Kyle Huang; Lakshya Garg; Lauren Rantala-Yeary; Laurens van der Maaten; Lawrence Chen; Leandro Silva; Lee Bell; Lei Zhang; Liang Tan; Louis Martin; Lovish Madaan; Luca Wehrstedt; Lukas Blecher; Luke de Oliveira; Madeline Muzzi; Madian Khabsa; Manav Avlani; Mannat Singh; Manohar Paluri; Mark Zuckerberg; Marcin Kardas; Martynas Mankus; Mathew Oldham; Mathieu Rita; Matthew Lennie; Maya Pavlova; Meghan Keneally; Melanie Kambadur; Mihir Patel; Mikayel Samvelyan; Mike Clark; Mike Lewis; Min Si; Mitesh Kumar Singh; Mo Metanat; Mona Hassan; Naman Goyal; Narjes Torabi; Nicolas Usunier; Nikolay Bashlykov; Nikolay Bogoychev; Niladri Chatterji; Ning Dong; Oliver Aobo Yang; Olivier Duchenne; Onur Celebi; Parth Parekh; Patrick Alrassy; Paul Saab; Pavan Balaji; Pedro Rittner; Pengchuan Zhang; Pengwei Li; Petar Vasic; Peter Weng; Polina Zvyagina; Prajjwal Bhargava; Pratik Dubal; Praveen Krishnan; Punit Singh Koura; Qing He; Rachel Rodriguez; Ragavan Srinivasan; Rahul Mitra; Ramon Calderer; Raymond Li; Robert Stojnic; Roberta Raileanu; Robin Battey; Rocky Wang; Rohit Girdhar; Rohit Patel; Romain Sauvestre; Ronnie Polidoro; Roshan Sumbaly; Ross Taylor; Ruan Silva; Rui Hou; Rui Wang; Russ Howes; Ruty Rinott; Saghar Hosseini; Sai Jayesh Bondu; Samyak Datta; Sanjay Singh; Sara Chugh; Sargun Dhillon; Satadru Pan; Sean Bell; Sergey Edunov; Shaoliang Nie; Sharan Narang; Sharath Raparthy; Shaun Lindsay; Sheng Feng; Sheng Shen; Shenghao Lin; Shiva Shankar; Shruti Bhosale; Shun Zhang; Simon Vandenhende; Sinong Wang; Seohyun Sonia Kim; Soumya Batra; Sten Sootla; Steve Kehoe; Suchin Gururangan; Sumit Gupta; Sunny Virk; Sydney Borodinsky; Tamar Glaser; Tamar Herman; Tamara Best; Tara Fowler; Thomas Georgiou; Thomas Scialom; Tianhe Li; Todor Mihaylov; Tong Xiao; Ujjwal Karn; Vedanuj Goswami; Vibhor Gupta; Vignesh Ramanathan; Viktor Kerkez; Vinay Satish Kumar; Vincent Gonguet; Vish Vogeti; Vlad Poenaru; Vlad Tiberiu Mihailescu; Vladan Petrovic; Vladimir Ivanov; Wei Li; Weiwei Chu; Wenhan Xiong; Wenyin Fu; Wes Bouaziz; Whitney Meers; Will Constable; Xavier Martinet; Xiaojian Wu; Xinbo Gao; Xinfeng Xie; Xuchao Jia; Yaelle Goldschlag; Yann LeCun; Yashesh Gaur; Yasmine Babaei; Ye Qi; Yenda Li; Yi Wen; Yiwen Song; Youngjin Nam; Yuchen Hao; Yuchen Zhang; Yun Wang; Yuning Mao; Yuzi He; Zacharie Delpierre Coudert; Zachary DeVito; Zahra Hankir; Zhaoduo Wen; Zheng Yan; Zhengxing Chen; Zhenyu Yang; Zoe Papakipos
{"language": ["en"], "license": "llama3", "tags": ["meta", "llama-3"], "pipeline_tag": "text-generation"}
LoneStriker/Llama-3-8B-Instruct-Gradient-1048k-3.0bpw-h6-exl2
null
[ "transformers", "safetensors", "llama", "text-generation", "meta", "llama-3", "conversational", "en", "license:llama3", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "3-bit", "region:us" ]
null
2024-04-30T19:38:18+00:00
[]
[ "en" ]
TAGS #transformers #safetensors #llama #text-generation #meta #llama-3 #conversational #en #license-llama3 #autotrain_compatible #endpoints_compatible #text-generation-inference #3-bit #region-us
[<img src="URL width="200"/>](URL) Llama-3 8B Gradient Instruct 1048k ================================== Gradient incorporates your data to deploy autonomous assistants that power critical operations across your business. If you're looking to build custom AI models or agents, email us a message contact@URL. For more info see our End-to-end development service for custom LLMs and AI systems This model extends LLama-3 8B's context length from 8k to > 1040K, developed by Gradient, sponsored by compute from Crusoe Energy. It demonstrates that SOTA LLMs can learn to operate on long context with minimal training by appropriately adjusting RoPE theta. We trained on 830M tokens for this stage, and 1.4B tokens total for all stages, which is < 0.01% of Llama-3's original pre-training data. !image/png Approach: * meta-llama/Meta-Llama-3-8B-Instruct as the base * NTK-aware interpolation [1] to initialize an optimal schedule for RoPE theta, followed by empirical RoPE theta optimization * Progressive training on increasing context lengths, similar to Large World Model [2] (See details below) Infra: We build on top of the EasyContext Blockwise RingAttention library [3] to scalably and efficiently train on contexts up to 1048k tokens on Crusoe Energy high performance L40S cluster. Notably, we layered parallelism on top of Ring Attention with a custom network topology to better leverage large GPU clusters in the face of network bottlenecks from passing many KV blocks between devices. This gave us a 33x speedup in model training (compare 524k and 1048k to 65k and 262k in the table below). Data: For training data, we generate long contexts by augmenting SlimPajama. Progressive Training Details: Quants: * GGUF * MLX-4bit The Gradient AI Team -------------------- URL Gradient is accelerating AI transformation across industries. Our AI Foundry incorporates your data to deploy autonomous assistants that power critical operations across your business. Contact Us ---------- Drop an email to contact@URL References ---------- [1] Peng, Bowen, et al. "Yarn: Efficient context window extension of large language models." arXiv preprint arXiv:2309.00071 (2023). [2] Liu, Hao, et al. "World Model on Million-Length Video And Language With RingAttention." arXiv preprint arXiv:2402.08268 (2024). [3] URL --- Base Model ========== Model Details ------------- Meta developed and released the Meta Llama 3 family of large language models (LLMs), a collection of pretrained and instruction tuned generative text models in 8 and 70B sizes. The Llama 3 instruction tuned models are optimized for dialogue use cases and outperform many of the available open source chat models on common industry benchmarks. Further, in developing these models, we took great care to optimize helpfulness and safety. Model developers Meta Variations Llama 3 comes in two sizes — 8B and 70B parameters — in pre-trained and instruction tuned variants. Input Models input text only. Output Models generate text and code only. Model Architecture Llama 3 is an auto-regressive language model that uses an optimized transformer architecture. The tuned versions use supervised fine-tuning (SFT) and reinforcement learning with human feedback (RLHF) to align with human preferences for helpfulness and safety. Llama 3 family of models. Token counts refer to pretraining data only. Both the 8 and 70B versions use Grouped-Query Attention (GQA) for improved inference scalability. Model Release Date April 18, 2024. Status This is a static model trained on an offline dataset. Future versions of the tuned models will be released as we improve model safety with community feedback. License A custom commercial license is available at: URL Where to send questions or comments about the model Instructions on how to provide feedback or comments on the model can be found in the model README. For more technical information about generation parameters and recipes for how to use Llama 3 in applications, please go here. Intended Use ------------ Intended Use Cases Llama 3 is intended for commercial and research use in English. Instruction tuned models are intended for assistant-like chat, whereas pretrained models can be adapted for a variety of natural language generation tasks. Out-of-scope Use in any manner that violates applicable laws or regulations (including trade compliance laws). Use in any other way that is prohibited by the Acceptable Use Policy and Llama 3 Community License. Use in languages other than English. Note: Developers may fine-tune Llama 3 models for languages beyond English provided they comply with the Llama 3 Community License and the Acceptable Use Policy. How to use ---------- This repository contains two versions of Meta-Llama-3-8B-Instruct, for use with transformers and with the original 'llama3' codebase. ### Use with transformers You can run conversational inference using the Transformers pipeline abstraction, or by leveraging the Auto classes with the 'generate()' function. Let's see examples of both. #### Transformers pipeline #### Transformers AutoModelForCausalLM ### Use with 'llama3' Please, follow the instructions in the repository To download Original checkpoints, see the example command below leveraging 'huggingface-cli': For Hugging Face support, we recommend using transformers or TGI, but a similar command works. Hardware and Software --------------------- Training Factors We used custom training libraries, Meta's Research SuperCluster, and production clusters for pretraining. Fine-tuning, annotation, and evaluation were also performed on third-party cloud compute. Carbon Footprint Pretraining utilized a cumulative 7.7M GPU hours of computation on hardware of type H100-80GB (TDP of 700W). Estimated total emissions were 2290 tCO2eq, 100% of which were offset by Meta’s sustainability program. CO2 emissions during pre-training. Time: total GPU time required for training each model. Power Consumption: peak power capacity per GPU device for the GPUs used adjusted for power usage efficiency. 100% of the emissions are directly offset by Meta's sustainability program, and because we are openly releasing these models, the pretraining costs do not need to be incurred by others. Training Data ------------- Overview Llama 3 was pretrained on over 15 trillion tokens of data from publicly available sources. The fine-tuning data includes publicly available instruction datasets, as well as over 10M human-annotated examples. Neither the pretraining nor the fine-tuning datasets include Meta user data. Data Freshness The pretraining data has a cutoff of March 2023 for the 7B and December 2023 for the 70B models respectively. Benchmarks ---------- In this section, we report the results for Llama 3 models on standard automatic benchmarks. For all the evaluations, we use our internal evaluations library. For details on the methodology see here. ### Base pretrained models ### Instruction tuned models ### Responsibility & Safety We believe that an open approach to AI leads to better, safer products, faster innovation, and a bigger overall market. We are committed to Responsible AI development and took a series of steps to limit misuse and harm and support the open source community. Foundation models are widely capable technologies that are built to be used for a diverse range of applications. They are not designed to meet every developer preference on safety levels for all use cases, out-of-the-box, as those by their nature will differ across different applications. Rather, responsible LLM-application deployment is achieved by implementing a series of safety best practices throughout the development of such applications, from the model pre-training, fine-tuning and the deployment of systems composed of safeguards to tailor the safety needs specifically to the use case and audience. As part of the Llama 3 release, we updated our Responsible Use Guide to outline the steps and best practices for developers to implement model and system level safety for their application. We also provide a set of resources including Meta Llama Guard 2 and Code Shield safeguards. These tools have proven to drastically reduce residual risks of LLM Systems, while maintaining a high level of helpfulness. We encourage developers to tune and deploy these safeguards according to their needs and we provide a reference implementation to get you started. #### Llama 3-Instruct As outlined in the Responsible Use Guide, some trade-off between model helpfulness and model alignment is likely unavoidable. Developers should exercise discretion about how to weigh the benefits of alignment and helpfulness for their specific use case and audience. Developers should be mindful of residual risks when using Llama models and leverage additional safety tools as needed to reach the right safety bar for their use case. Safety For our instruction tuned model, we conducted extensive red teaming exercises, performed adversarial evaluations and implemented safety mitigations techniques to lower residual risks. As with any Large Language Model, residual risks will likely remain and we recommend that developers assess these risks in the context of their use case. In parallel, we are working with the community to make AI safety benchmark standards transparent, rigorous and interpretable. Refusals In addition to residual risks, we put a great emphasis on model refusals to benign prompts. Over-refusing not only can impact the user experience but could even be harmful in certain contexts as well. We’ve heard the feedback from the developer community and improved our fine tuning to ensure that Llama 3 is significantly less likely to falsely refuse to answer prompts than Llama 2. We built internal benchmarks and developed mitigations to limit false refusals making Llama 3 our most helpful model to date. #### Responsible release In addition to responsible use considerations outlined above, we followed a rigorous process that requires us to take extra measures against misuse and critical risks before we make our release decision. Misuse If you access or use Llama 3, you agree to the Acceptable Use Policy. The most recent copy of this policy can be found at URL #### Critical risks CBRNE (Chemical, Biological, Radiological, Nuclear, and high yield Explosives) We have conducted a two fold assessment of the safety of the model in this area: * Iterative testing during model training to assess the safety of responses related to CBRNE threats and other adversarial risks. * Involving external CBRNE experts to conduct an uplift test assessing the ability of the model to accurately provide expert knowledge and reduce barriers to potential CBRNE misuse, by reference to what can be achieved using web search (without the model). ### Cyber Security We have evaluated Llama 3 with CyberSecEval, Meta’s cybersecurity safety eval suite, measuring Llama 3’s propensity to suggest insecure code when used as a coding assistant, and Llama 3’s propensity to comply with requests to help carry out cyber attacks, where attacks are defined by the industry standard MITRE ATT&CK cyber attack ontology. On our insecure coding and cyber attacker helpfulness tests, Llama 3 behaved in the same range or safer than models of equivalent coding capability. ### Child Safety Child Safety risk assessments were conducted using a team of experts, to assess the model’s capability to produce outputs that could result in Child Safety risks and inform on any necessary and appropriate risk mitigations via fine tuning. We leveraged those expert red teaming sessions to expand the coverage of our evaluation benchmarks through Llama 3 model development. For Llama 3, we conducted new in-depth sessions using objective based methodologies to assess the model risks along multiple attack vectors. We also partnered with content specialists to perform red teaming exercises assessing potentially violating content while taking account of market specific nuances or experiences. ### Community Generative AI safety requires expertise and tooling, and we believe in the strength of the open community to accelerate its progress. We are active members of open consortiums, including the AI Alliance, Partnership in AI and MLCommons, actively contributing to safety standardization and transparency. We encourage the community to adopt taxonomies like the MLCommons Proof of Concept evaluation to facilitate collaboration and transparency on safety and content evaluations. Our Purple Llama tools are open sourced for the community to use and widely distributed across ecosystem partners including cloud service providers. We encourage community contributions to our Github repository. Finally, we put in place a set of resources including an output reporting mechanism and bug bounty program to continuously improve the Llama technology with the help of the community. Ethical Considerations and Limitations -------------------------------------- The core values of Llama 3 are openness, inclusivity and helpfulness. It is meant to serve everyone, and to work for a wide range of use cases. It is thus designed to be accessible to people across many different backgrounds, experiences and perspectives. Llama 3 addresses users and their needs as they are, without insertion unnecessary judgment or normativity, while reflecting the understanding that even content that may appear problematic in some cases can serve valuable purposes in others. It respects the dignity and autonomy of all users, especially in terms of the values of free thought and expression that power innovation and progress. But Llama 3 is a new technology, and like any new technology, there are risks associated with its use. Testing conducted to date has been in English, and has not covered, nor could it cover, all scenarios. For these reasons, as with all LLMs, Llama 3’s potential outputs cannot be predicted in advance, and the model may in some instances produce inaccurate, biased or other objectionable responses to user prompts. Therefore, before deploying any applications of Llama 3 models, developers should perform safety testing and tuning tailored to their specific applications of the model. As outlined in the Responsible Use Guide, we recommend incorporating Purple Llama solutions into your workflows and specifically Llama Guard which provides a base model to filter input and output prompts to layer system-level safety on top of model-level safety. Please see the Responsible Use Guide available at URL instructions @article{llama3modelcard, title={Llama 3 Model Card}, author={AI@Meta}, year={2024}, url = {URL } Contributors ------------ Aaditya Singh; Aaron Grattafiori; Abhimanyu Dubey; Abhinav Jauhri; Abhinav Pandey; Abhishek Kadian; Adam Kelsey; Adi Gangidi; Ahmad Al-Dahle; Ahuva Goldstand; Aiesha Letman; Ajay Menon; Akhil Mathur; Alan Schelten; Alex Vaughan; Amy Yang; Andrei Lupu; Andres Alvarado; Andrew Gallagher; Andrew Gu; Andrew Ho; Andrew Poulton; Andrew Ryan; Angela Fan; Ankit Ramchandani; Anthony Hartshorn; Archi Mitra; Archie Sravankumar; Artem Korenev; Arun Rao; Ashley Gabriel; Ashwin Bharambe; Assaf Eisenman; Aston Zhang; Aurelien Rodriguez; Austen Gregerson; Ava Spataru; Baptiste Roziere; Ben Maurer; Benjamin Leonhardi; Bernie Huang; Bhargavi Paranjape; Bing Liu; Binh Tang; Bobbie Chern; Brani Stojkovic; Brian Fuller; Catalina Mejia Arenas; Chao Zhou; Charlotte Caucheteux; Chaya Nayak; Ching-Hsiang Chu; Chloe Bi; Chris Cai; Chris Cox; Chris Marra; Chris McConnell; Christian Keller; Christoph Feichtenhofer; Christophe Touret; Chunyang Wu; Corinne Wong; Cristian Canton Ferrer; Damien Allonsius; Daniel Kreymer; Daniel Haziza; Daniel Li; Danielle Pintz; Danny Livshits; Danny Wyatt; David Adkins; David Esiobu; David Xu; Davide Testuggine; Delia David; Devi Parikh; Dhruv Choudhary; Dhruv Mahajan; Diana Liskovich; Diego Garcia-Olano; Diego Perino; Dieuwke Hupkes; Dingkang Wang; Dustin Holland; Egor Lakomkin; Elina Lobanova; Xiaoqing Ellen Tan; Emily Dinan; Eric Smith; Erik Brinkman; Esteban Arcaute; Filip Radenovic; Firat Ozgenel; Francesco Caggioni; Frank Seide; Frank Zhang; Gabriel Synnaeve; Gabriella Schwarz; Gabrielle Lee; Gada Badeer; Georgia Anderson; Graeme Nail; Gregoire Mialon; Guan Pang; Guillem Cucurell; Hailey Nguyen; Hannah Korevaar; Hannah Wang; Haroun Habeeb; Harrison Rudolph; Henry Aspegren; Hu Xu; Hugo Touvron; Iga Kozlowska; Igor Molybog; Igor Tufanov; Iliyan Zarov; Imanol Arrieta Ibarra; Irina-Elena Veliche; Isabel Kloumann; Ishan Misra; Ivan Evtimov; Jacob Xu; Jade Copet; Jake Weissman; Jan Geffert; Jana Vranes; Japhet Asher; Jason Park; Jay Mahadeokar; Jean-Baptiste Gaya; Jeet Shah; Jelmer van der Linde; Jennifer Chan; Jenny Hong; Jenya Lee; Jeremy Fu; Jeremy Teboul; Jianfeng Chi; Jianyu Huang; Jie Wang; Jiecao Yu; Joanna Bitton; Joe Spisak; Joelle Pineau; Jon Carvill; Jongsoo Park; Joseph Rocca; Joshua Johnstun; Junteng Jia; Kalyan Vasuden Alwala; Kam Hou U; Kate Plawiak; Kartikeya Upasani; Kaushik Veeraraghavan; Ke Li; Kenneth Heafield; Kevin Stone; Khalid El-Arini; Krithika Iyer; Kshitiz Malik; Kuenley Chiu; Kunal Bhalla; Kyle Huang; Lakshya Garg; Lauren Rantala-Yeary; Laurens van der Maaten; Lawrence Chen; Leandro Silva; Lee Bell; Lei Zhang; Liang Tan; Louis Martin; Lovish Madaan; Luca Wehrstedt; Lukas Blecher; Luke de Oliveira; Madeline Muzzi; Madian Khabsa; Manav Avlani; Mannat Singh; Manohar Paluri; Mark Zuckerberg; Marcin Kardas; Martynas Mankus; Mathew Oldham; Mathieu Rita; Matthew Lennie; Maya Pavlova; Meghan Keneally; Melanie Kambadur; Mihir Patel; Mikayel Samvelyan; Mike Clark; Mike Lewis; Min Si; Mitesh Kumar Singh; Mo Metanat; Mona Hassan; Naman Goyal; Narjes Torabi; Nicolas Usunier; Nikolay Bashlykov; Nikolay Bogoychev; Niladri Chatterji; Ning Dong; Oliver Aobo Yang; Olivier Duchenne; Onur Celebi; Parth Parekh; Patrick Alrassy; Paul Saab; Pavan Balaji; Pedro Rittner; Pengchuan Zhang; Pengwei Li; Petar Vasic; Peter Weng; Polina Zvyagina; Prajjwal Bhargava; Pratik Dubal; Praveen Krishnan; Punit Singh Koura; Qing He; Rachel Rodriguez; Ragavan Srinivasan; Rahul Mitra; Ramon Calderer; Raymond Li; Robert Stojnic; Roberta Raileanu; Robin Battey; Rocky Wang; Rohit Girdhar; Rohit Patel; Romain Sauvestre; Ronnie Polidoro; Roshan Sumbaly; Ross Taylor; Ruan Silva; Rui Hou; Rui Wang; Russ Howes; Ruty Rinott; Saghar Hosseini; Sai Jayesh Bondu; Samyak Datta; Sanjay Singh; Sara Chugh; Sargun Dhillon; Satadru Pan; Sean Bell; Sergey Edunov; Shaoliang Nie; Sharan Narang; Sharath Raparthy; Shaun Lindsay; Sheng Feng; Sheng Shen; Shenghao Lin; Shiva Shankar; Shruti Bhosale; Shun Zhang; Simon Vandenhende; Sinong Wang; Seohyun Sonia Kim; Soumya Batra; Sten Sootla; Steve Kehoe; Suchin Gururangan; Sumit Gupta; Sunny Virk; Sydney Borodinsky; Tamar Glaser; Tamar Herman; Tamara Best; Tara Fowler; Thomas Georgiou; Thomas Scialom; Tianhe Li; Todor Mihaylov; Tong Xiao; Ujjwal Karn; Vedanuj Goswami; Vibhor Gupta; Vignesh Ramanathan; Viktor Kerkez; Vinay Satish Kumar; Vincent Gonguet; Vish Vogeti; Vlad Poenaru; Vlad Tiberiu Mihailescu; Vladan Petrovic; Vladimir Ivanov; Wei Li; Weiwei Chu; Wenhan Xiong; Wenyin Fu; Wes Bouaziz; Whitney Meers; Will Constable; Xavier Martinet; Xiaojian Wu; Xinbo Gao; Xinfeng Xie; Xuchao Jia; Yaelle Goldschlag; Yann LeCun; Yashesh Gaur; Yasmine Babaei; Ye Qi; Yenda Li; Yi Wen; Yiwen Song; Youngjin Nam; Yuchen Hao; Yuchen Zhang; Yun Wang; Yuning Mao; Yuzi He; Zacharie Delpierre Coudert; Zachary DeVito; Zahra Hankir; Zhaoduo Wen; Zheng Yan; Zhengxing Chen; Zhenyu Yang; Zoe Papakipos
[ "### Use with transformers\n\n\nYou can run conversational inference using the Transformers pipeline abstraction, or by leveraging the Auto classes with the 'generate()' function. Let's see examples of both.", "#### Transformers pipeline", "#### Transformers AutoModelForCausalLM", "### Use with 'llama3'\n\n\nPlease, follow the instructions in the repository\n\n\nTo download Original checkpoints, see the example command below leveraging 'huggingface-cli':\n\n\nFor Hugging Face support, we recommend using transformers or TGI, but a similar command works.\n\n\nHardware and Software\n---------------------\n\n\nTraining Factors We used custom training libraries, Meta's Research SuperCluster, and production clusters for pretraining. Fine-tuning, annotation, and evaluation were also performed on third-party cloud compute.\n\n\nCarbon Footprint Pretraining utilized a cumulative 7.7M GPU hours of computation on hardware of type H100-80GB (TDP of 700W). Estimated total emissions were 2290 tCO2eq, 100% of which were offset by Meta’s sustainability program.\n\n\n\nCO2 emissions during pre-training. Time: total GPU time required for training each model. Power Consumption: peak power capacity per GPU device for the GPUs used adjusted for power usage efficiency. 100% of the emissions are directly offset by Meta's sustainability program, and because we are openly releasing these models, the pretraining costs do not need to be incurred by others.\n\n\nTraining Data\n-------------\n\n\nOverview Llama 3 was pretrained on over 15 trillion tokens of data from publicly available sources. The fine-tuning data includes publicly available instruction datasets, as well as over 10M human-annotated examples. Neither the pretraining nor the fine-tuning datasets include Meta user data.\n\n\nData Freshness The pretraining data has a cutoff of March 2023 for the 7B and December 2023 for the 70B models respectively.\n\n\nBenchmarks\n----------\n\n\nIn this section, we report the results for Llama 3 models on standard automatic benchmarks. For all the evaluations, we use our internal evaluations library. For details on the methodology see here.", "### Base pretrained models", "### Instruction tuned models", "### Responsibility & Safety\n\n\nWe believe that an open approach to AI leads to better, safer products, faster innovation, and a bigger overall market. We are committed to Responsible AI development and took a series of steps to limit misuse and harm and support the open source community.\n\n\nFoundation models are widely capable technologies that are built to be used for a diverse range of applications. They are not designed to meet every developer preference on safety levels for all use cases, out-of-the-box, as those by their nature will differ across different applications.\n\n\nRather, responsible LLM-application deployment is achieved by implementing a series of safety best practices throughout the development of such applications, from the model pre-training, fine-tuning and the deployment of systems composed of safeguards to tailor the safety needs specifically to the use case and audience.\n\n\nAs part of the Llama 3 release, we updated our Responsible Use Guide to outline the steps and best practices for developers to implement model and system level safety for their application. We also provide a set of resources including Meta Llama Guard 2 and Code Shield safeguards. These tools have proven to drastically reduce residual risks of LLM Systems, while maintaining a high level of helpfulness. We encourage developers to tune and deploy these safeguards according to their needs and we provide a reference implementation to get you started.", "#### Llama 3-Instruct\n\n\nAs outlined in the Responsible Use Guide, some trade-off between model helpfulness and model alignment is likely unavoidable. Developers should exercise discretion about how to weigh the benefits of alignment and helpfulness for their specific use case and audience. Developers should be mindful of residual risks when using Llama models and leverage additional safety tools as needed to reach the right safety bar for their use case.\n\n\nSafety\n\n\nFor our instruction tuned model, we conducted extensive red teaming exercises, performed adversarial evaluations and implemented safety mitigations techniques to lower residual risks. As with any Large Language Model, residual risks will likely remain and we recommend that developers assess these risks in the context of their use case. In parallel, we are working with the community to make AI safety benchmark standards transparent, rigorous and interpretable.\n\n\nRefusals\n\n\nIn addition to residual risks, we put a great emphasis on model refusals to benign prompts. Over-refusing not only can impact the user experience but could even be harmful in certain contexts as well. We’ve heard the feedback from the developer community and improved our fine tuning to ensure that Llama 3 is significantly less likely to falsely refuse to answer prompts than Llama 2.\n\n\nWe built internal benchmarks and developed mitigations to limit false refusals making Llama 3 our most helpful model to date.", "#### Responsible release\n\n\nIn addition to responsible use considerations outlined above, we followed a rigorous process that requires us to take extra measures against misuse and critical risks before we make our release decision.\n\n\nMisuse\n\n\nIf you access or use Llama 3, you agree to the Acceptable Use Policy. The most recent copy of this policy can be found at URL", "#### Critical risks\n\n\nCBRNE (Chemical, Biological, Radiological, Nuclear, and high yield Explosives)\n\n\nWe have conducted a two fold assessment of the safety of the model in this area:\n\n\n* Iterative testing during model training to assess the safety of responses related to CBRNE threats and other adversarial risks.\n* Involving external CBRNE experts to conduct an uplift test assessing the ability of the model to accurately provide expert knowledge and reduce barriers to potential CBRNE misuse, by reference to what can be achieved using web search (without the model).", "### Cyber Security\n\n\nWe have evaluated Llama 3 with CyberSecEval, Meta’s cybersecurity safety eval suite, measuring Llama 3’s propensity to suggest insecure code when used as a coding assistant, and Llama 3’s propensity to comply with requests to help carry out cyber attacks, where attacks are defined by the industry standard MITRE ATT&CK cyber attack ontology. On our insecure coding and cyber attacker helpfulness tests, Llama 3 behaved in the same range or safer than models of equivalent coding capability.", "### Child Safety\n\n\nChild Safety risk assessments were conducted using a team of experts, to assess the model’s capability to produce outputs that could result in Child Safety risks and inform on any necessary and appropriate risk mitigations via fine tuning. We leveraged those expert red teaming sessions to expand the coverage of our evaluation benchmarks through Llama 3 model development. For Llama 3, we conducted new in-depth sessions using objective based methodologies to assess the model risks along multiple attack vectors. We also partnered with content specialists to perform red teaming exercises assessing potentially violating content while taking account of market specific nuances or experiences.", "### Community\n\n\nGenerative AI safety requires expertise and tooling, and we believe in the strength of the open community to accelerate its progress. We are active members of open consortiums, including the AI Alliance, Partnership in AI and MLCommons, actively contributing to safety standardization and transparency. We encourage the community to adopt taxonomies like the MLCommons Proof of Concept evaluation to facilitate collaboration and transparency on safety and content evaluations. Our Purple Llama tools are open sourced for the community to use and widely distributed across ecosystem partners including cloud service providers. We encourage community contributions to our Github repository.\n\n\nFinally, we put in place a set of resources including an output reporting mechanism and bug bounty program to continuously improve the Llama technology with the help of the community.\n\n\nEthical Considerations and Limitations\n--------------------------------------\n\n\nThe core values of Llama 3 are openness, inclusivity and helpfulness. It is meant to serve everyone, and to work for a wide range of use cases. It is thus designed to be accessible to people across many different backgrounds, experiences and perspectives. Llama 3 addresses users and their needs as they are, without insertion unnecessary judgment or normativity, while reflecting the understanding that even content that may appear problematic in some cases can serve valuable purposes in others. It respects the dignity and autonomy of all users, especially in terms of the values of free thought and expression that power innovation and progress.\n\n\nBut Llama 3 is a new technology, and like any new technology, there are risks associated with its use. Testing conducted to date has been in English, and has not covered, nor could it cover, all scenarios. For these reasons, as with all LLMs, Llama 3’s potential outputs cannot be predicted in advance, and the model may in some instances produce inaccurate, biased or other objectionable responses to user prompts. Therefore, before deploying any applications of Llama 3 models, developers should perform safety testing and tuning tailored to their specific applications of the model. As outlined in the Responsible Use Guide, we recommend incorporating Purple Llama solutions into your workflows and specifically Llama Guard which provides a base model to filter input and output prompts to layer system-level safety on top of model-level safety.\n\n\nPlease see the Responsible Use Guide available at URL\n\n\ninstructions\n\n\n@article{llama3modelcard,\n\n\ntitle={Llama 3 Model Card},\n\n\nauthor={AI@Meta},\n\n\nyear={2024},\n\n\nurl = {URL\n\n\n}\n\n\nContributors\n------------\n\n\nAaditya Singh; Aaron Grattafiori; Abhimanyu Dubey; Abhinav Jauhri; Abhinav Pandey; Abhishek Kadian; Adam Kelsey; Adi Gangidi; Ahmad Al-Dahle; Ahuva Goldstand; Aiesha Letman; Ajay Menon; Akhil Mathur; Alan Schelten; Alex Vaughan; Amy Yang; Andrei Lupu; Andres Alvarado; Andrew Gallagher; Andrew Gu; Andrew Ho; Andrew Poulton; Andrew Ryan; Angela Fan; Ankit Ramchandani; Anthony Hartshorn; Archi Mitra; Archie Sravankumar; Artem Korenev; Arun Rao; Ashley Gabriel; Ashwin Bharambe; Assaf Eisenman; Aston Zhang; Aurelien Rodriguez; Austen Gregerson; Ava Spataru; Baptiste Roziere; Ben Maurer; Benjamin Leonhardi; Bernie Huang; Bhargavi Paranjape; Bing Liu; Binh Tang; Bobbie Chern; Brani Stojkovic; Brian Fuller; Catalina Mejia Arenas; Chao Zhou; Charlotte Caucheteux; Chaya Nayak; Ching-Hsiang Chu; Chloe Bi; Chris Cai; Chris Cox; Chris Marra; Chris McConnell; Christian Keller; Christoph Feichtenhofer; Christophe Touret; Chunyang Wu; Corinne Wong; Cristian Canton Ferrer; Damien Allonsius; Daniel Kreymer; Daniel Haziza; Daniel Li; Danielle Pintz; Danny Livshits; Danny Wyatt; David Adkins; David Esiobu; David Xu; Davide Testuggine; Delia David; Devi Parikh; Dhruv Choudhary; Dhruv Mahajan; Diana Liskovich; Diego Garcia-Olano; Diego Perino; Dieuwke Hupkes; Dingkang Wang; Dustin Holland; Egor Lakomkin; Elina Lobanova; Xiaoqing Ellen Tan; Emily Dinan; Eric Smith; Erik Brinkman; Esteban Arcaute; Filip Radenovic; Firat Ozgenel; Francesco Caggioni; Frank Seide; Frank Zhang; Gabriel Synnaeve; Gabriella Schwarz; Gabrielle Lee; Gada Badeer; Georgia Anderson; Graeme Nail; Gregoire Mialon; Guan Pang; Guillem Cucurell; Hailey Nguyen; Hannah Korevaar; Hannah Wang; Haroun Habeeb; Harrison Rudolph; Henry Aspegren; Hu Xu; Hugo Touvron; Iga Kozlowska; Igor Molybog; Igor Tufanov; Iliyan Zarov; Imanol Arrieta Ibarra; Irina-Elena Veliche; Isabel Kloumann; Ishan Misra; Ivan Evtimov; Jacob Xu; Jade Copet; Jake Weissman; Jan Geffert; Jana Vranes; Japhet Asher; Jason Park; Jay Mahadeokar; Jean-Baptiste Gaya; Jeet Shah; Jelmer van der Linde; Jennifer Chan; Jenny Hong; Jenya Lee; Jeremy Fu; Jeremy Teboul; Jianfeng Chi; Jianyu Huang; Jie Wang; Jiecao Yu; Joanna Bitton; Joe Spisak; Joelle Pineau; Jon Carvill; Jongsoo Park; Joseph Rocca; Joshua Johnstun; Junteng Jia; Kalyan Vasuden Alwala; Kam Hou U; Kate Plawiak; Kartikeya Upasani; Kaushik Veeraraghavan; Ke Li; Kenneth Heafield; Kevin Stone; Khalid El-Arini; Krithika Iyer; Kshitiz Malik; Kuenley Chiu; Kunal Bhalla; Kyle Huang; Lakshya Garg; Lauren Rantala-Yeary; Laurens van der Maaten; Lawrence Chen; Leandro Silva; Lee Bell; Lei Zhang; Liang Tan; Louis Martin; Lovish Madaan; Luca Wehrstedt; Lukas Blecher; Luke de Oliveira; Madeline Muzzi; Madian Khabsa; Manav Avlani; Mannat Singh; Manohar Paluri; Mark Zuckerberg; Marcin Kardas; Martynas Mankus; Mathew Oldham; Mathieu Rita; Matthew Lennie; Maya Pavlova; Meghan Keneally; Melanie Kambadur; Mihir Patel; Mikayel Samvelyan; Mike Clark; Mike Lewis; Min Si; Mitesh Kumar Singh; Mo Metanat; Mona Hassan; Naman Goyal; Narjes Torabi; Nicolas Usunier; Nikolay Bashlykov; Nikolay Bogoychev; Niladri Chatterji; Ning Dong; Oliver Aobo Yang; Olivier Duchenne; Onur Celebi; Parth Parekh; Patrick Alrassy; Paul Saab; Pavan Balaji; Pedro Rittner; Pengchuan Zhang; Pengwei Li; Petar Vasic; Peter Weng; Polina Zvyagina; Prajjwal Bhargava; Pratik Dubal; Praveen Krishnan; Punit Singh Koura; Qing He; Rachel Rodriguez; Ragavan Srinivasan; Rahul Mitra; Ramon Calderer; Raymond Li; Robert Stojnic; Roberta Raileanu; Robin Battey; Rocky Wang; Rohit Girdhar; Rohit Patel; Romain Sauvestre; Ronnie Polidoro; Roshan Sumbaly; Ross Taylor; Ruan Silva; Rui Hou; Rui Wang; Russ Howes; Ruty Rinott; Saghar Hosseini; Sai Jayesh Bondu; Samyak Datta; Sanjay Singh; Sara Chugh; Sargun Dhillon; Satadru Pan; Sean Bell; Sergey Edunov; Shaoliang Nie; Sharan Narang; Sharath Raparthy; Shaun Lindsay; Sheng Feng; Sheng Shen; Shenghao Lin; Shiva Shankar; Shruti Bhosale; Shun Zhang; Simon Vandenhende; Sinong Wang; Seohyun Sonia Kim; Soumya Batra; Sten Sootla; Steve Kehoe; Suchin Gururangan; Sumit Gupta; Sunny Virk; Sydney Borodinsky; Tamar Glaser; Tamar Herman; Tamara Best; Tara Fowler; Thomas Georgiou; Thomas Scialom; Tianhe Li; Todor Mihaylov; Tong Xiao; Ujjwal Karn; Vedanuj Goswami; Vibhor Gupta; Vignesh Ramanathan; Viktor Kerkez; Vinay Satish Kumar; Vincent Gonguet; Vish Vogeti; Vlad Poenaru; Vlad Tiberiu Mihailescu; Vladan Petrovic; Vladimir Ivanov; Wei Li; Weiwei Chu; Wenhan Xiong; Wenyin Fu; Wes Bouaziz; Whitney Meers; Will Constable; Xavier Martinet; Xiaojian Wu; Xinbo Gao; Xinfeng Xie; Xuchao Jia; Yaelle Goldschlag; Yann LeCun; Yashesh Gaur; Yasmine Babaei; Ye Qi; Yenda Li; Yi Wen; Yiwen Song; Youngjin Nam; Yuchen Hao; Yuchen Zhang; Yun Wang; Yuning Mao; Yuzi He; Zacharie Delpierre Coudert; Zachary DeVito; Zahra Hankir; Zhaoduo Wen; Zheng Yan; Zhengxing Chen; Zhenyu Yang; Zoe Papakipos" ]
[ "TAGS\n#transformers #safetensors #llama #text-generation #meta #llama-3 #conversational #en #license-llama3 #autotrain_compatible #endpoints_compatible #text-generation-inference #3-bit #region-us \n", "### Use with transformers\n\n\nYou can run conversational inference using the Transformers pipeline abstraction, or by leveraging the Auto classes with the 'generate()' function. Let's see examples of both.", "#### Transformers pipeline", "#### Transformers AutoModelForCausalLM", "### Use with 'llama3'\n\n\nPlease, follow the instructions in the repository\n\n\nTo download Original checkpoints, see the example command below leveraging 'huggingface-cli':\n\n\nFor Hugging Face support, we recommend using transformers or TGI, but a similar command works.\n\n\nHardware and Software\n---------------------\n\n\nTraining Factors We used custom training libraries, Meta's Research SuperCluster, and production clusters for pretraining. Fine-tuning, annotation, and evaluation were also performed on third-party cloud compute.\n\n\nCarbon Footprint Pretraining utilized a cumulative 7.7M GPU hours of computation on hardware of type H100-80GB (TDP of 700W). Estimated total emissions were 2290 tCO2eq, 100% of which were offset by Meta’s sustainability program.\n\n\n\nCO2 emissions during pre-training. Time: total GPU time required for training each model. Power Consumption: peak power capacity per GPU device for the GPUs used adjusted for power usage efficiency. 100% of the emissions are directly offset by Meta's sustainability program, and because we are openly releasing these models, the pretraining costs do not need to be incurred by others.\n\n\nTraining Data\n-------------\n\n\nOverview Llama 3 was pretrained on over 15 trillion tokens of data from publicly available sources. The fine-tuning data includes publicly available instruction datasets, as well as over 10M human-annotated examples. Neither the pretraining nor the fine-tuning datasets include Meta user data.\n\n\nData Freshness The pretraining data has a cutoff of March 2023 for the 7B and December 2023 for the 70B models respectively.\n\n\nBenchmarks\n----------\n\n\nIn this section, we report the results for Llama 3 models on standard automatic benchmarks. For all the evaluations, we use our internal evaluations library. For details on the methodology see here.", "### Base pretrained models", "### Instruction tuned models", "### Responsibility & Safety\n\n\nWe believe that an open approach to AI leads to better, safer products, faster innovation, and a bigger overall market. We are committed to Responsible AI development and took a series of steps to limit misuse and harm and support the open source community.\n\n\nFoundation models are widely capable technologies that are built to be used for a diverse range of applications. They are not designed to meet every developer preference on safety levels for all use cases, out-of-the-box, as those by their nature will differ across different applications.\n\n\nRather, responsible LLM-application deployment is achieved by implementing a series of safety best practices throughout the development of such applications, from the model pre-training, fine-tuning and the deployment of systems composed of safeguards to tailor the safety needs specifically to the use case and audience.\n\n\nAs part of the Llama 3 release, we updated our Responsible Use Guide to outline the steps and best practices for developers to implement model and system level safety for their application. We also provide a set of resources including Meta Llama Guard 2 and Code Shield safeguards. These tools have proven to drastically reduce residual risks of LLM Systems, while maintaining a high level of helpfulness. We encourage developers to tune and deploy these safeguards according to their needs and we provide a reference implementation to get you started.", "#### Llama 3-Instruct\n\n\nAs outlined in the Responsible Use Guide, some trade-off between model helpfulness and model alignment is likely unavoidable. Developers should exercise discretion about how to weigh the benefits of alignment and helpfulness for their specific use case and audience. Developers should be mindful of residual risks when using Llama models and leverage additional safety tools as needed to reach the right safety bar for their use case.\n\n\nSafety\n\n\nFor our instruction tuned model, we conducted extensive red teaming exercises, performed adversarial evaluations and implemented safety mitigations techniques to lower residual risks. As with any Large Language Model, residual risks will likely remain and we recommend that developers assess these risks in the context of their use case. In parallel, we are working with the community to make AI safety benchmark standards transparent, rigorous and interpretable.\n\n\nRefusals\n\n\nIn addition to residual risks, we put a great emphasis on model refusals to benign prompts. Over-refusing not only can impact the user experience but could even be harmful in certain contexts as well. We’ve heard the feedback from the developer community and improved our fine tuning to ensure that Llama 3 is significantly less likely to falsely refuse to answer prompts than Llama 2.\n\n\nWe built internal benchmarks and developed mitigations to limit false refusals making Llama 3 our most helpful model to date.", "#### Responsible release\n\n\nIn addition to responsible use considerations outlined above, we followed a rigorous process that requires us to take extra measures against misuse and critical risks before we make our release decision.\n\n\nMisuse\n\n\nIf you access or use Llama 3, you agree to the Acceptable Use Policy. The most recent copy of this policy can be found at URL", "#### Critical risks\n\n\nCBRNE (Chemical, Biological, Radiological, Nuclear, and high yield Explosives)\n\n\nWe have conducted a two fold assessment of the safety of the model in this area:\n\n\n* Iterative testing during model training to assess the safety of responses related to CBRNE threats and other adversarial risks.\n* Involving external CBRNE experts to conduct an uplift test assessing the ability of the model to accurately provide expert knowledge and reduce barriers to potential CBRNE misuse, by reference to what can be achieved using web search (without the model).", "### Cyber Security\n\n\nWe have evaluated Llama 3 with CyberSecEval, Meta’s cybersecurity safety eval suite, measuring Llama 3’s propensity to suggest insecure code when used as a coding assistant, and Llama 3’s propensity to comply with requests to help carry out cyber attacks, where attacks are defined by the industry standard MITRE ATT&CK cyber attack ontology. On our insecure coding and cyber attacker helpfulness tests, Llama 3 behaved in the same range or safer than models of equivalent coding capability.", "### Child Safety\n\n\nChild Safety risk assessments were conducted using a team of experts, to assess the model’s capability to produce outputs that could result in Child Safety risks and inform on any necessary and appropriate risk mitigations via fine tuning. We leveraged those expert red teaming sessions to expand the coverage of our evaluation benchmarks through Llama 3 model development. For Llama 3, we conducted new in-depth sessions using objective based methodologies to assess the model risks along multiple attack vectors. We also partnered with content specialists to perform red teaming exercises assessing potentially violating content while taking account of market specific nuances or experiences.", "### Community\n\n\nGenerative AI safety requires expertise and tooling, and we believe in the strength of the open community to accelerate its progress. We are active members of open consortiums, including the AI Alliance, Partnership in AI and MLCommons, actively contributing to safety standardization and transparency. We encourage the community to adopt taxonomies like the MLCommons Proof of Concept evaluation to facilitate collaboration and transparency on safety and content evaluations. Our Purple Llama tools are open sourced for the community to use and widely distributed across ecosystem partners including cloud service providers. We encourage community contributions to our Github repository.\n\n\nFinally, we put in place a set of resources including an output reporting mechanism and bug bounty program to continuously improve the Llama technology with the help of the community.\n\n\nEthical Considerations and Limitations\n--------------------------------------\n\n\nThe core values of Llama 3 are openness, inclusivity and helpfulness. It is meant to serve everyone, and to work for a wide range of use cases. It is thus designed to be accessible to people across many different backgrounds, experiences and perspectives. Llama 3 addresses users and their needs as they are, without insertion unnecessary judgment or normativity, while reflecting the understanding that even content that may appear problematic in some cases can serve valuable purposes in others. It respects the dignity and autonomy of all users, especially in terms of the values of free thought and expression that power innovation and progress.\n\n\nBut Llama 3 is a new technology, and like any new technology, there are risks associated with its use. Testing conducted to date has been in English, and has not covered, nor could it cover, all scenarios. For these reasons, as with all LLMs, Llama 3’s potential outputs cannot be predicted in advance, and the model may in some instances produce inaccurate, biased or other objectionable responses to user prompts. Therefore, before deploying any applications of Llama 3 models, developers should perform safety testing and tuning tailored to their specific applications of the model. As outlined in the Responsible Use Guide, we recommend incorporating Purple Llama solutions into your workflows and specifically Llama Guard which provides a base model to filter input and output prompts to layer system-level safety on top of model-level safety.\n\n\nPlease see the Responsible Use Guide available at URL\n\n\ninstructions\n\n\n@article{llama3modelcard,\n\n\ntitle={Llama 3 Model Card},\n\n\nauthor={AI@Meta},\n\n\nyear={2024},\n\n\nurl = {URL\n\n\n}\n\n\nContributors\n------------\n\n\nAaditya Singh; Aaron Grattafiori; Abhimanyu Dubey; Abhinav Jauhri; Abhinav Pandey; Abhishek Kadian; Adam Kelsey; Adi Gangidi; Ahmad Al-Dahle; Ahuva Goldstand; Aiesha Letman; Ajay Menon; Akhil Mathur; Alan Schelten; Alex Vaughan; Amy Yang; Andrei Lupu; Andres Alvarado; Andrew Gallagher; Andrew Gu; Andrew Ho; Andrew Poulton; Andrew Ryan; Angela Fan; Ankit Ramchandani; Anthony Hartshorn; Archi Mitra; Archie Sravankumar; Artem Korenev; Arun Rao; Ashley Gabriel; Ashwin Bharambe; Assaf Eisenman; Aston Zhang; Aurelien Rodriguez; Austen Gregerson; Ava Spataru; Baptiste Roziere; Ben Maurer; Benjamin Leonhardi; Bernie Huang; Bhargavi Paranjape; Bing Liu; Binh Tang; Bobbie Chern; Brani Stojkovic; Brian Fuller; Catalina Mejia Arenas; Chao Zhou; Charlotte Caucheteux; Chaya Nayak; Ching-Hsiang Chu; Chloe Bi; Chris Cai; Chris Cox; Chris Marra; Chris McConnell; Christian Keller; Christoph Feichtenhofer; Christophe Touret; Chunyang Wu; Corinne Wong; Cristian Canton Ferrer; Damien Allonsius; Daniel Kreymer; Daniel Haziza; Daniel Li; Danielle Pintz; Danny Livshits; Danny Wyatt; David Adkins; David Esiobu; David Xu; Davide Testuggine; Delia David; Devi Parikh; Dhruv Choudhary; Dhruv Mahajan; Diana Liskovich; Diego Garcia-Olano; Diego Perino; Dieuwke Hupkes; Dingkang Wang; Dustin Holland; Egor Lakomkin; Elina Lobanova; Xiaoqing Ellen Tan; Emily Dinan; Eric Smith; Erik Brinkman; Esteban Arcaute; Filip Radenovic; Firat Ozgenel; Francesco Caggioni; Frank Seide; Frank Zhang; Gabriel Synnaeve; Gabriella Schwarz; Gabrielle Lee; Gada Badeer; Georgia Anderson; Graeme Nail; Gregoire Mialon; Guan Pang; Guillem Cucurell; Hailey Nguyen; Hannah Korevaar; Hannah Wang; Haroun Habeeb; Harrison Rudolph; Henry Aspegren; Hu Xu; Hugo Touvron; Iga Kozlowska; Igor Molybog; Igor Tufanov; Iliyan Zarov; Imanol Arrieta Ibarra; Irina-Elena Veliche; Isabel Kloumann; Ishan Misra; Ivan Evtimov; Jacob Xu; Jade Copet; Jake Weissman; Jan Geffert; Jana Vranes; Japhet Asher; Jason Park; Jay Mahadeokar; Jean-Baptiste Gaya; Jeet Shah; Jelmer van der Linde; Jennifer Chan; Jenny Hong; Jenya Lee; Jeremy Fu; Jeremy Teboul; Jianfeng Chi; Jianyu Huang; Jie Wang; Jiecao Yu; Joanna Bitton; Joe Spisak; Joelle Pineau; Jon Carvill; Jongsoo Park; Joseph Rocca; Joshua Johnstun; Junteng Jia; Kalyan Vasuden Alwala; Kam Hou U; Kate Plawiak; Kartikeya Upasani; Kaushik Veeraraghavan; Ke Li; Kenneth Heafield; Kevin Stone; Khalid El-Arini; Krithika Iyer; Kshitiz Malik; Kuenley Chiu; Kunal Bhalla; Kyle Huang; Lakshya Garg; Lauren Rantala-Yeary; Laurens van der Maaten; Lawrence Chen; Leandro Silva; Lee Bell; Lei Zhang; Liang Tan; Louis Martin; Lovish Madaan; Luca Wehrstedt; Lukas Blecher; Luke de Oliveira; Madeline Muzzi; Madian Khabsa; Manav Avlani; Mannat Singh; Manohar Paluri; Mark Zuckerberg; Marcin Kardas; Martynas Mankus; Mathew Oldham; Mathieu Rita; Matthew Lennie; Maya Pavlova; Meghan Keneally; Melanie Kambadur; Mihir Patel; Mikayel Samvelyan; Mike Clark; Mike Lewis; Min Si; Mitesh Kumar Singh; Mo Metanat; Mona Hassan; Naman Goyal; Narjes Torabi; Nicolas Usunier; Nikolay Bashlykov; Nikolay Bogoychev; Niladri Chatterji; Ning Dong; Oliver Aobo Yang; Olivier Duchenne; Onur Celebi; Parth Parekh; Patrick Alrassy; Paul Saab; Pavan Balaji; Pedro Rittner; Pengchuan Zhang; Pengwei Li; Petar Vasic; Peter Weng; Polina Zvyagina; Prajjwal Bhargava; Pratik Dubal; Praveen Krishnan; Punit Singh Koura; Qing He; Rachel Rodriguez; Ragavan Srinivasan; Rahul Mitra; Ramon Calderer; Raymond Li; Robert Stojnic; Roberta Raileanu; Robin Battey; Rocky Wang; Rohit Girdhar; Rohit Patel; Romain Sauvestre; Ronnie Polidoro; Roshan Sumbaly; Ross Taylor; Ruan Silva; Rui Hou; Rui Wang; Russ Howes; Ruty Rinott; Saghar Hosseini; Sai Jayesh Bondu; Samyak Datta; Sanjay Singh; Sara Chugh; Sargun Dhillon; Satadru Pan; Sean Bell; Sergey Edunov; Shaoliang Nie; Sharan Narang; Sharath Raparthy; Shaun Lindsay; Sheng Feng; Sheng Shen; Shenghao Lin; Shiva Shankar; Shruti Bhosale; Shun Zhang; Simon Vandenhende; Sinong Wang; Seohyun Sonia Kim; Soumya Batra; Sten Sootla; Steve Kehoe; Suchin Gururangan; Sumit Gupta; Sunny Virk; Sydney Borodinsky; Tamar Glaser; Tamar Herman; Tamara Best; Tara Fowler; Thomas Georgiou; Thomas Scialom; Tianhe Li; Todor Mihaylov; Tong Xiao; Ujjwal Karn; Vedanuj Goswami; Vibhor Gupta; Vignesh Ramanathan; Viktor Kerkez; Vinay Satish Kumar; Vincent Gonguet; Vish Vogeti; Vlad Poenaru; Vlad Tiberiu Mihailescu; Vladan Petrovic; Vladimir Ivanov; Wei Li; Weiwei Chu; Wenhan Xiong; Wenyin Fu; Wes Bouaziz; Whitney Meers; Will Constable; Xavier Martinet; Xiaojian Wu; Xinbo Gao; Xinfeng Xie; Xuchao Jia; Yaelle Goldschlag; Yann LeCun; Yashesh Gaur; Yasmine Babaei; Ye Qi; Yenda Li; Yi Wen; Yiwen Song; Youngjin Nam; Yuchen Hao; Yuchen Zhang; Yun Wang; Yuning Mao; Yuzi He; Zacharie Delpierre Coudert; Zachary DeVito; Zahra Hankir; Zhaoduo Wen; Zheng Yan; Zhengxing Chen; Zhenyu Yang; Zoe Papakipos" ]
[ 56, 42, 6, 13, 429, 8, 6, 270, 280, 72, 115, 118, 126, 2136 ]
[ "TAGS\n#transformers #safetensors #llama #text-generation #meta #llama-3 #conversational #en #license-llama3 #autotrain_compatible #endpoints_compatible #text-generation-inference #3-bit #region-us \n### Use with transformers\n\n\nYou can run conversational inference using the Transformers pipeline abstraction, or by leveraging the Auto classes with the 'generate()' function. Let's see examples of both.#### Transformers pipeline#### Transformers AutoModelForCausalLM### Use with 'llama3'\n\n\nPlease, follow the instructions in the repository\n\n\nTo download Original checkpoints, see the example command below leveraging 'huggingface-cli':\n\n\nFor Hugging Face support, we recommend using transformers or TGI, but a similar command works.\n\n\nHardware and Software\n---------------------\n\n\nTraining Factors We used custom training libraries, Meta's Research SuperCluster, and production clusters for pretraining. Fine-tuning, annotation, and evaluation were also performed on third-party cloud compute.\n\n\nCarbon Footprint Pretraining utilized a cumulative 7.7M GPU hours of computation on hardware of type H100-80GB (TDP of 700W). Estimated total emissions were 2290 tCO2eq, 100% of which were offset by Meta’s sustainability program.\n\n\n\nCO2 emissions during pre-training. Time: total GPU time required for training each model. Power Consumption: peak power capacity per GPU device for the GPUs used adjusted for power usage efficiency. 100% of the emissions are directly offset by Meta's sustainability program, and because we are openly releasing these models, the pretraining costs do not need to be incurred by others.\n\n\nTraining Data\n-------------\n\n\nOverview Llama 3 was pretrained on over 15 trillion tokens of data from publicly available sources. The fine-tuning data includes publicly available instruction datasets, as well as over 10M human-annotated examples. Neither the pretraining nor the fine-tuning datasets include Meta user data.\n\n\nData Freshness The pretraining data has a cutoff of March 2023 for the 7B and December 2023 for the 70B models respectively.\n\n\nBenchmarks\n----------\n\n\nIn this section, we report the results for Llama 3 models on standard automatic benchmarks. For all the evaluations, we use our internal evaluations library. For details on the methodology see here.### Base pretrained models### Instruction tuned models### Responsibility & Safety\n\n\nWe believe that an open approach to AI leads to better, safer products, faster innovation, and a bigger overall market. We are committed to Responsible AI development and took a series of steps to limit misuse and harm and support the open source community.\n\n\nFoundation models are widely capable technologies that are built to be used for a diverse range of applications. They are not designed to meet every developer preference on safety levels for all use cases, out-of-the-box, as those by their nature will differ across different applications.\n\n\nRather, responsible LLM-application deployment is achieved by implementing a series of safety best practices throughout the development of such applications, from the model pre-training, fine-tuning and the deployment of systems composed of safeguards to tailor the safety needs specifically to the use case and audience.\n\n\nAs part of the Llama 3 release, we updated our Responsible Use Guide to outline the steps and best practices for developers to implement model and system level safety for their application. We also provide a set of resources including Meta Llama Guard 2 and Code Shield safeguards. These tools have proven to drastically reduce residual risks of LLM Systems, while maintaining a high level of helpfulness. We encourage developers to tune and deploy these safeguards according to their needs and we provide a reference implementation to get you started.#### Llama 3-Instruct\n\n\nAs outlined in the Responsible Use Guide, some trade-off between model helpfulness and model alignment is likely unavoidable. Developers should exercise discretion about how to weigh the benefits of alignment and helpfulness for their specific use case and audience. Developers should be mindful of residual risks when using Llama models and leverage additional safety tools as needed to reach the right safety bar for their use case.\n\n\nSafety\n\n\nFor our instruction tuned model, we conducted extensive red teaming exercises, performed adversarial evaluations and implemented safety mitigations techniques to lower residual risks. As with any Large Language Model, residual risks will likely remain and we recommend that developers assess these risks in the context of their use case. In parallel, we are working with the community to make AI safety benchmark standards transparent, rigorous and interpretable.\n\n\nRefusals\n\n\nIn addition to residual risks, we put a great emphasis on model refusals to benign prompts. Over-refusing not only can impact the user experience but could even be harmful in certain contexts as well. We’ve heard the feedback from the developer community and improved our fine tuning to ensure that Llama 3 is significantly less likely to falsely refuse to answer prompts than Llama 2.\n\n\nWe built internal benchmarks and developed mitigations to limit false refusals making Llama 3 our most helpful model to date.#### Responsible release\n\n\nIn addition to responsible use considerations outlined above, we followed a rigorous process that requires us to take extra measures against misuse and critical risks before we make our release decision.\n\n\nMisuse\n\n\nIf you access or use Llama 3, you agree to the Acceptable Use Policy. The most recent copy of this policy can be found at URL#### Critical risks\n\n\nCBRNE (Chemical, Biological, Radiological, Nuclear, and high yield Explosives)\n\n\nWe have conducted a two fold assessment of the safety of the model in this area:\n\n\n* Iterative testing during model training to assess the safety of responses related to CBRNE threats and other adversarial risks.\n* Involving external CBRNE experts to conduct an uplift test assessing the ability of the model to accurately provide expert knowledge and reduce barriers to potential CBRNE misuse, by reference to what can be achieved using web search (without the model).### Cyber Security\n\n\nWe have evaluated Llama 3 with CyberSecEval, Meta’s cybersecurity safety eval suite, measuring Llama 3’s propensity to suggest insecure code when used as a coding assistant, and Llama 3’s propensity to comply with requests to help carry out cyber attacks, where attacks are defined by the industry standard MITRE ATT&CK cyber attack ontology. On our insecure coding and cyber attacker helpfulness tests, Llama 3 behaved in the same range or safer than models of equivalent coding capability.### Child Safety\n\n\nChild Safety risk assessments were conducted using a team of experts, to assess the model’s capability to produce outputs that could result in Child Safety risks and inform on any necessary and appropriate risk mitigations via fine tuning. We leveraged those expert red teaming sessions to expand the coverage of our evaluation benchmarks through Llama 3 model development. For Llama 3, we conducted new in-depth sessions using objective based methodologies to assess the model risks along multiple attack vectors. We also partnered with content specialists to perform red teaming exercises assessing potentially violating content while taking account of market specific nuances or experiences.### Community\n\n\nGenerative AI safety requires expertise and tooling, and we believe in the strength of the open community to accelerate its progress. We are active members of open consortiums, including the AI Alliance, Partnership in AI and MLCommons, actively contributing to safety standardization and transparency. We encourage the community to adopt taxonomies like the MLCommons Proof of Concept evaluation to facilitate collaboration and transparency on safety and content evaluations. Our Purple Llama tools are open sourced for the community to use and widely distributed across ecosystem partners including cloud service providers. We encourage community contributions to our Github repository.\n\n\nFinally, we put in place a set of resources including an output reporting mechanism and bug bounty program to continuously improve the Llama technology with the help of the community.\n\n\nEthical Considerations and Limitations\n--------------------------------------\n\n\nThe core values of Llama 3 are openness, inclusivity and helpfulness. It is meant to serve everyone, and to work for a wide range of use cases. It is thus designed to be accessible to people across many different backgrounds, experiences and perspectives. Llama 3 addresses users and their needs as they are, without insertion unnecessary judgment or normativity, while reflecting the understanding that even content that may appear problematic in some cases can serve valuable purposes in others. It respects the dignity and autonomy of all users, especially in terms of the values of free thought and expression that power innovation and progress.\n\n\nBut Llama 3 is a new technology, and like any new technology, there are risks associated with its use. Testing conducted to date has been in English, and has not covered, nor could it cover, all scenarios. For these reasons, as with all LLMs, Llama 3’s potential outputs cannot be predicted in advance, and the model may in some instances produce inaccurate, biased or other objectionable responses to user prompts. Therefore, before deploying any applications of Llama 3 models, developers should perform safety testing and tuning tailored to their specific applications of the model. As outlined in the Responsible Use Guide, we recommend incorporating Purple Llama solutions into your workflows and specifically Llama Guard which provides a base model to filter input and output prompts to layer system-level safety on top of model-level safety.\n\n\nPlease see the Responsible Use Guide available at URL\n\n\ninstructions\n\n\n@article{llama3modelcard,\n\n\ntitle={Llama 3 Model Card},\n\n\nauthor={AI@Meta},\n\n\nyear={2024},\n\n\nurl = {URL\n\n\n}\n\n\nContributors\n------------\n\n\nAaditya Singh; Aaron Grattafiori; Abhimanyu Dubey; Abhinav Jauhri; Abhinav Pandey; Abhishek Kadian; Adam Kelsey; Adi Gangidi; Ahmad Al-Dahle; Ahuva Goldstand; Aiesha Letman; Ajay Menon; Akhil Mathur; Alan Schelten; Alex Vaughan; Amy Yang; Andrei Lupu; Andres Alvarado; Andrew Gallagher; Andrew Gu; Andrew Ho; Andrew Poulton; Andrew Ryan; Angela Fan; Ankit Ramchandani; Anthony Hartshorn; Archi Mitra; Archie Sravankumar; Artem Korenev; Arun Rao; Ashley Gabriel; Ashwin Bharambe; Assaf Eisenman; Aston Zhang; Aurelien Rodriguez; Austen Gregerson; Ava Spataru; Baptiste Roziere; Ben Maurer; Benjamin Leonhardi; Bernie Huang; Bhargavi Paranjape; Bing Liu; Binh Tang; Bobbie Chern; Brani Stojkovic; Brian Fuller; Catalina Mejia Arenas; Chao Zhou; Charlotte Caucheteux; Chaya Nayak; Ching-Hsiang Chu; Chloe Bi; Chris Cai; Chris Cox; Chris Marra; Chris McConnell; Christian Keller; Christoph Feichtenhofer; Christophe Touret; Chunyang Wu; Corinne Wong; Cristian Canton Ferrer; Damien Allonsius; Daniel Kreymer; Daniel Haziza; Daniel Li; Danielle Pintz; Danny Livshits; Danny Wyatt; David Adkins; David Esiobu; David Xu; Davide Testuggine; Delia David; Devi Parikh; Dhruv Choudhary; Dhruv Mahajan; Diana Liskovich; Diego Garcia-Olano; Diego Perino; Dieuwke Hupkes; Dingkang Wang; Dustin Holland; Egor Lakomkin; Elina Lobanova; Xiaoqing Ellen Tan; Emily Dinan; Eric Smith; Erik Brinkman; Esteban Arcaute; Filip Radenovic; Firat Ozgenel; Francesco Caggioni; Frank Seide; Frank Zhang; Gabriel Synnaeve; Gabriella Schwarz; Gabrielle Lee; Gada Badeer; Georgia Anderson; Graeme Nail; Gregoire Mialon; Guan Pang; Guillem Cucurell; Hailey Nguyen; Hannah Korevaar; Hannah Wang; Haroun Habeeb; Harrison Rudolph; Henry Aspegren; Hu Xu; Hugo Touvron; Iga Kozlowska; Igor Molybog; Igor Tufanov; Iliyan Zarov; Imanol Arrieta Ibarra; Irina-Elena Veliche; Isabel Kloumann; Ishan Misra; Ivan Evtimov; Jacob Xu; Jade Copet; Jake Weissman; Jan Geffert; Jana Vranes; Japhet Asher; Jason Park; Jay Mahadeokar; Jean-Baptiste Gaya; Jeet Shah; Jelmer van der Linde; Jennifer Chan; Jenny Hong; Jenya Lee; Jeremy Fu; Jeremy Teboul; Jianfeng Chi; Jianyu Huang; Jie Wang; Jiecao Yu; Joanna Bitton; Joe Spisak; Joelle Pineau; Jon Carvill; Jongsoo Park; Joseph Rocca; Joshua Johnstun; Junteng Jia; Kalyan Vasuden Alwala; Kam Hou U; Kate Plawiak; Kartikeya Upasani; Kaushik Veeraraghavan; Ke Li; Kenneth Heafield; Kevin Stone; Khalid El-Arini; Krithika Iyer; Kshitiz Malik; Kuenley Chiu; Kunal Bhalla; Kyle Huang; Lakshya Garg; Lauren Rantala-Yeary; Laurens van der Maaten; Lawrence Chen; Leandro Silva; Lee Bell; Lei Zhang; Liang Tan; Louis Martin; Lovish Madaan; Luca Wehrstedt; Lukas Blecher; Luke de Oliveira; Madeline Muzzi; Madian Khabsa; Manav Avlani; Mannat Singh; Manohar Paluri; Mark Zuckerberg; Marcin Kardas; Martynas Mankus; Mathew Oldham; Mathieu Rita; Matthew Lennie; Maya Pavlova; Meghan Keneally; Melanie Kambadur; Mihir Patel; Mikayel Samvelyan; Mike Clark; Mike Lewis; Min Si; Mitesh Kumar Singh; Mo Metanat; Mona Hassan; Naman Goyal; Narjes Torabi; Nicolas Usunier; Nikolay Bashlykov; Nikolay Bogoychev; Niladri Chatterji; Ning Dong; Oliver Aobo Yang; Olivier Duchenne; Onur Celebi; Parth Parekh; Patrick Alrassy; Paul Saab; Pavan Balaji; Pedro Rittner; Pengchuan Zhang; Pengwei Li; Petar Vasic; Peter Weng; Polina Zvyagina; Prajjwal Bhargava; Pratik Dubal; Praveen Krishnan; Punit Singh Koura; Qing He; Rachel Rodriguez; Ragavan Srinivasan; Rahul Mitra; Ramon Calderer; Raymond Li; Robert Stojnic; Roberta Raileanu; Robin Battey; Rocky Wang; Rohit Girdhar; Rohit Patel; Romain Sauvestre; Ronnie Polidoro; Roshan Sumbaly; Ross Taylor; Ruan Silva; Rui Hou; Rui Wang; Russ Howes; Ruty Rinott; Saghar Hosseini; Sai Jayesh Bondu; Samyak Datta; Sanjay Singh; Sara Chugh; Sargun Dhillon; Satadru Pan; Sean Bell; Sergey Edunov; Shaoliang Nie; Sharan Narang; Sharath Raparthy; Shaun Lindsay; Sheng Feng; Sheng Shen; Shenghao Lin; Shiva Shankar; Shruti Bhosale; Shun Zhang; Simon Vandenhende; Sinong Wang; Seohyun Sonia Kim; Soumya Batra; Sten Sootla; Steve Kehoe; Suchin Gururangan; Sumit Gupta; Sunny Virk; Sydney Borodinsky; Tamar Glaser; Tamar Herman; Tamara Best; Tara Fowler; Thomas Georgiou; Thomas Scialom; Tianhe Li; Todor Mihaylov; Tong Xiao; Ujjwal Karn; Vedanuj Goswami; Vibhor Gupta; Vignesh Ramanathan; Viktor Kerkez; Vinay Satish Kumar; Vincent Gonguet; Vish Vogeti; Vlad Poenaru; Vlad Tiberiu Mihailescu; Vladan Petrovic; Vladimir Ivanov; Wei Li; Weiwei Chu; Wenhan Xiong; Wenyin Fu; Wes Bouaziz; Whitney Meers; Will Constable; Xavier Martinet; Xiaojian Wu; Xinbo Gao; Xinfeng Xie; Xuchao Jia; Yaelle Goldschlag; Yann LeCun; Yashesh Gaur; Yasmine Babaei; Ye Qi; Yenda Li; Yi Wen; Yiwen Song; Youngjin Nam; Yuchen Hao; Yuchen Zhang; Yun Wang; Yuning Mao; Yuzi He; Zacharie Delpierre Coudert; Zachary DeVito; Zahra Hankir; Zhaoduo Wen; Zheng Yan; Zhengxing Chen; Zhenyu Yang; Zoe Papakipos" ]
text-generation
transformers
<a href="https://www.gradient.ai" target="_blank"><img src="https://cdn-uploads.huggingface.co/production/uploads/655bb613e8a8971e89944f3e/TSa3V8YpoVagnTYgxiLaO.png" width="200"/></a> # Llama-3 8B Gradient Instruct 1048k Gradient incorporates your data to deploy autonomous assistants that power critical operations across your business. If you're looking to build custom AI models or agents, email us a message [email protected]. For more info see our [End-to-end development service for custom LLMs and AI systems](https://gradient.ai/development-lab) This model extends LLama-3 8B's context length from 8k to > 1040K, developed by Gradient, sponsored by compute from [Crusoe Energy](https://huggingface.co/crusoeai). It demonstrates that SOTA LLMs can learn to operate on long context with minimal training by appropriately adjusting RoPE theta. We trained on 830M tokens for this stage, and 1.4B tokens total for all stages, which is < 0.01% of Llama-3's original pre-training data. ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6585dc9be92bc5f258156bd6/6MKLoX2ruLIaREiyb6coO.png) **Approach:** - [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) as the base - NTK-aware interpolation [1] to initialize an optimal schedule for RoPE theta, followed by empirical RoPE theta optimization - Progressive training on increasing context lengths, similar to [Large World Model](https://huggingface.co/LargeWorldModel) [2] (See details below) **Infra:** We build on top of the EasyContext Blockwise RingAttention library [3] to scalably and efficiently train on contexts up to 1048k tokens on [Crusoe Energy](https://huggingface.co/crusoeai) high performance L40S cluster. Notably, we layered parallelism on top of Ring Attention with a custom network topology to better leverage large GPU clusters in the face of network bottlenecks from passing many KV blocks between devices. This gave us a 33x speedup in model training (compare 524k and 1048k to 65k and 262k in the table below). **Data:** For training data, we generate long contexts by augmenting [SlimPajama](https://huggingface.co/datasets/cerebras/SlimPajama-627B). **Progressive Training Details:** | | 65K | 262K | 524k | 1048k | |------------------------|-----------|-----------|-----------|-----------| | Initialize From | LLaMA-3 8B| 65K | 262K | 524k | | Sequence Length 2^N | 16 | 18 | 19 | 20 | | RoPE theta | 15.3 M | 207.1 M | 1.06B | 2.80B | | Batch Size | 1 | 1 | 16 | 16 | | Gradient Accumulation Steps | 32 | 16 | 1 | 1 | | Steps | 30 | 24 | 50 | 50 | | Total Tokens | 62914560 | 100663296 | 419430400 | 838860800 | | Learning Rate | 2.00E-05 | 2.00E-05 | 2.00E-05 | 2.00E-05 | | # GPUs | 8 | 32 | 512 | 512 | | GPU Type | NVIDIA L40S | NVIDIA L40S | NVIDIA L40S | NVIDIA L40S | | Minutes to Train (Wall)| 202 | 555 | 61 | 87 | **Quants**: - [GGUF](https://huggingface.co/crusoeai/Llama-3-8B-Instruct-1048k-GGUF) - [MLX-4bit](https://huggingface.co/mlx-community/Llama-3-8B-Instruct-1048k-4bit) ## The Gradient AI Team https://gradient.ai/ Gradient is accelerating AI transformation across industries. Our AI Foundry incorporates your data to deploy autonomous assistants that power critical operations across your business. ## Contact Us Drop an email to [[email protected]](mailto:[email protected]) ## References [1] Peng, Bowen, et al. "Yarn: Efficient context window extension of large language models." arXiv preprint arXiv:2309.00071 (2023). [2] Liu, Hao, et al. "World Model on Million-Length Video And Language With RingAttention." arXiv preprint arXiv:2402.08268 (2024). [3] https://github.com/jzhang38/EasyContext ---- # Base Model ## Model Details Meta developed and released the Meta Llama 3 family of large language models (LLMs), a collection of pretrained and instruction tuned generative text models in 8 and 70B sizes. The Llama 3 instruction tuned models are optimized for dialogue use cases and outperform many of the available open source chat models on common industry benchmarks. Further, in developing these models, we took great care to optimize helpfulness and safety. **Model developers** Meta **Variations** Llama 3 comes in two sizes — 8B and 70B parameters — in pre-trained and instruction tuned variants. **Input** Models input text only. **Output** Models generate text and code only. **Model Architecture** Llama 3 is an auto-regressive language model that uses an optimized transformer architecture. The tuned versions use supervised fine-tuning (SFT) and reinforcement learning with human feedback (RLHF) to align with human preferences for helpfulness and safety. <table> <tr> <td> </td> <td><strong>Training Data</strong> </td> <td><strong>Params</strong> </td> <td><strong>Context length</strong> </td> <td><strong>GQA</strong> </td> <td><strong>Token count</strong> </td> <td><strong>Knowledge cutoff</strong> </td> </tr> <tr> <td rowspan="2" >Llama 3 </td> <td rowspan="2" >A new mix of publicly available online data. </td> <td>8B </td> <td>8k </td> <td>Yes </td> <td rowspan="2" >15T+ </td> <td>March, 2023 </td> </tr> <tr> <td>70B </td> <td>8k </td> <td>Yes </td> <td>December, 2023 </td> </tr> </table> **Llama 3 family of models**. Token counts refer to pretraining data only. Both the 8 and 70B versions use Grouped-Query Attention (GQA) for improved inference scalability. **Model Release Date** April 18, 2024. **Status** This is a static model trained on an offline dataset. Future versions of the tuned models will be released as we improve model safety with community feedback. **License** A custom commercial license is available at: [https://llama.meta.com/llama3/license](https://llama.meta.com/llama3/license) Where to send questions or comments about the model Instructions on how to provide feedback or comments on the model can be found in the model [README](https://github.com/meta-llama/llama3). For more technical information about generation parameters and recipes for how to use Llama 3 in applications, please go [here](https://github.com/meta-llama/llama-recipes). ## Intended Use **Intended Use Cases** Llama 3 is intended for commercial and research use in English. Instruction tuned models are intended for assistant-like chat, whereas pretrained models can be adapted for a variety of natural language generation tasks. **Out-of-scope** Use in any manner that violates applicable laws or regulations (including trade compliance laws). Use in any other way that is prohibited by the Acceptable Use Policy and Llama 3 Community License. Use in languages other than English**. **Note: Developers may fine-tune Llama 3 models for languages beyond English provided they comply with the Llama 3 Community License and the Acceptable Use Policy. ## How to use This repository contains two versions of Meta-Llama-3-8B-Instruct, for use with transformers and with the original `llama3` codebase. ### Use with transformers You can run conversational inference using the Transformers pipeline abstraction, or by leveraging the Auto classes with the `generate()` function. Let's see examples of both. #### Transformers pipeline ```python import transformers import torch model_id = "meta-llama/Meta-Llama-3-8B-Instruct" pipeline = transformers.pipeline( "text-generation", model=model_id, model_kwargs={"torch_dtype": torch.bfloat16}, device_map="auto", ) messages = [ {"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"}, {"role": "user", "content": "Who are you?"}, ] prompt = pipeline.tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) terminators = [ pipeline.tokenizer.eos_token_id, pipeline.tokenizer.convert_tokens_to_ids("<|eot_id|>") ] outputs = pipeline( prompt, max_new_tokens=256, eos_token_id=terminators, do_sample=True, temperature=0.6, top_p=0.9, ) print(outputs[0]["generated_text"][len(prompt):]) ``` #### Transformers AutoModelForCausalLM ```python from transformers import AutoTokenizer, AutoModelForCausalLM import torch model_id = "meta-llama/Meta-Llama-3-8B-Instruct" tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained( model_id, torch_dtype=torch.bfloat16, device_map="auto", ) messages = [ {"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"}, {"role": "user", "content": "Who are you?"}, ] input_ids = tokenizer.apply_chat_template( messages, add_generation_prompt=True, return_tensors="pt" ).to(model.device) terminators = [ tokenizer.eos_token_id, tokenizer.convert_tokens_to_ids("<|eot_id|>") ] outputs = model.generate( input_ids, max_new_tokens=256, eos_token_id=terminators, do_sample=True, temperature=0.6, top_p=0.9, ) response = outputs[0][input_ids.shape[-1]:] print(tokenizer.decode(response, skip_special_tokens=True)) ``` ### Use with `llama3` Please, follow the instructions in the [repository](https://github.com/meta-llama/llama3) To download Original checkpoints, see the example command below leveraging `huggingface-cli`: ``` huggingface-cli download meta-llama/Meta-Llama-3-8B-Instruct --include "original/*" --local-dir Meta-Llama-3-8B-Instruct ``` For Hugging Face support, we recommend using transformers or TGI, but a similar command works. ## Hardware and Software **Training Factors** We used custom training libraries, Meta's Research SuperCluster, and production clusters for pretraining. Fine-tuning, annotation, and evaluation were also performed on third-party cloud compute. **Carbon Footprint Pretraining utilized a cumulative** 7.7M GPU hours of computation on hardware of type H100-80GB (TDP of 700W). Estimated total emissions were 2290 tCO2eq, 100% of which were offset by Meta’s sustainability program. <table> <tr> <td> </td> <td><strong>Time (GPU hours)</strong> </td> <td><strong>Power Consumption (W)</strong> </td> <td><strong>Carbon Emitted(tCO2eq)</strong> </td> </tr> <tr> <td>Llama 3 8B </td> <td>1.3M </td> <td>700 </td> <td>390 </td> </tr> <tr> <td>Llama 3 70B </td> <td>6.4M </td> <td>700 </td> <td>1900 </td> </tr> <tr> <td>Total </td> <td>7.7M </td> <td> </td> <td>2290 </td> </tr> </table> **CO2 emissions during pre-training**. Time: total GPU time required for training each model. Power Consumption: peak power capacity per GPU device for the GPUs used adjusted for power usage efficiency. 100% of the emissions are directly offset by Meta's sustainability program, and because we are openly releasing these models, the pretraining costs do not need to be incurred by others. ## Training Data **Overview** Llama 3 was pretrained on over 15 trillion tokens of data from publicly available sources. The fine-tuning data includes publicly available instruction datasets, as well as over 10M human-annotated examples. Neither the pretraining nor the fine-tuning datasets include Meta user data. **Data Freshness** The pretraining data has a cutoff of March 2023 for the 7B and December 2023 for the 70B models respectively. ## Benchmarks In this section, we report the results for Llama 3 models on standard automatic benchmarks. For all the evaluations, we use our internal evaluations library. For details on the methodology see [here](https://github.com/meta-llama/llama3/blob/main/eval_methodology.md). ### Base pretrained models <table> <tr> <td><strong>Category</strong> </td> <td><strong>Benchmark</strong> </td> <td><strong>Llama 3 8B</strong> </td> <td><strong>Llama2 7B</strong> </td> <td><strong>Llama2 13B</strong> </td> <td><strong>Llama 3 70B</strong> </td> <td><strong>Llama2 70B</strong> </td> </tr> <tr> <td rowspan="6" >General </td> <td>MMLU (5-shot) </td> <td>66.6 </td> <td>45.7 </td> <td>53.8 </td> <td>79.5 </td> <td>69.7 </td> </tr> <tr> <td>AGIEval English (3-5 shot) </td> <td>45.9 </td> <td>28.8 </td> <td>38.7 </td> <td>63.0 </td> <td>54.8 </td> </tr> <tr> <td>CommonSenseQA (7-shot) </td> <td>72.6 </td> <td>57.6 </td> <td>67.6 </td> <td>83.8 </td> <td>78.7 </td> </tr> <tr> <td>Winogrande (5-shot) </td> <td>76.1 </td> <td>73.3 </td> <td>75.4 </td> <td>83.1 </td> <td>81.8 </td> </tr> <tr> <td>BIG-Bench Hard (3-shot, CoT) </td> <td>61.1 </td> <td>38.1 </td> <td>47.0 </td> <td>81.3 </td> <td>65.7 </td> </tr> <tr> <td>ARC-Challenge (25-shot) </td> <td>78.6 </td> <td>53.7 </td> <td>67.6 </td> <td>93.0 </td> <td>85.3 </td> </tr> <tr> <td>Knowledge reasoning </td> <td>TriviaQA-Wiki (5-shot) </td> <td>78.5 </td> <td>72.1 </td> <td>79.6 </td> <td>89.7 </td> <td>87.5 </td> </tr> <tr> <td rowspan="4" >Reading comprehension </td> <td>SQuAD (1-shot) </td> <td>76.4 </td> <td>72.2 </td> <td>72.1 </td> <td>85.6 </td> <td>82.6 </td> </tr> <tr> <td>QuAC (1-shot, F1) </td> <td>44.4 </td> <td>39.6 </td> <td>44.9 </td> <td>51.1 </td> <td>49.4 </td> </tr> <tr> <td>BoolQ (0-shot) </td> <td>75.7 </td> <td>65.5 </td> <td>66.9 </td> <td>79.0 </td> <td>73.1 </td> </tr> <tr> <td>DROP (3-shot, F1) </td> <td>58.4 </td> <td>37.9 </td> <td>49.8 </td> <td>79.7 </td> <td>70.2 </td> </tr> </table> ### Instruction tuned models <table> <tr> <td><strong>Benchmark</strong> </td> <td><strong>Llama 3 8B</strong> </td> <td><strong>Llama 2 7B</strong> </td> <td><strong>Llama 2 13B</strong> </td> <td><strong>Llama 3 70B</strong> </td> <td><strong>Llama 2 70B</strong> </td> </tr> <tr> <td>MMLU (5-shot) </td> <td>68.4 </td> <td>34.1 </td> <td>47.8 </td> <td>82.0 </td> <td>52.9 </td> </tr> <tr> <td>GPQA (0-shot) </td> <td>34.2 </td> <td>21.7 </td> <td>22.3 </td> <td>39.5 </td> <td>21.0 </td> </tr> <tr> <td>HumanEval (0-shot) </td> <td>62.2 </td> <td>7.9 </td> <td>14.0 </td> <td>81.7 </td> <td>25.6 </td> </tr> <tr> <td>GSM-8K (8-shot, CoT) </td> <td>79.6 </td> <td>25.7 </td> <td>77.4 </td> <td>93.0 </td> <td>57.5 </td> </tr> <tr> <td>MATH (4-shot, CoT) </td> <td>30.0 </td> <td>3.8 </td> <td>6.7 </td> <td>50.4 </td> <td>11.6 </td> </tr> </table> ### Responsibility & Safety We believe that an open approach to AI leads to better, safer products, faster innovation, and a bigger overall market. We are committed to Responsible AI development and took a series of steps to limit misuse and harm and support the open source community. Foundation models are widely capable technologies that are built to be used for a diverse range of applications. They are not designed to meet every developer preference on safety levels for all use cases, out-of-the-box, as those by their nature will differ across different applications. Rather, responsible LLM-application deployment is achieved by implementing a series of safety best practices throughout the development of such applications, from the model pre-training, fine-tuning and the deployment of systems composed of safeguards to tailor the safety needs specifically to the use case and audience. As part of the Llama 3 release, we updated our [Responsible Use Guide](https://llama.meta.com/responsible-use-guide/) to outline the steps and best practices for developers to implement model and system level safety for their application. We also provide a set of resources including [Meta Llama Guard 2](https://llama.meta.com/purple-llama/) and [Code Shield](https://llama.meta.com/purple-llama/) safeguards. These tools have proven to drastically reduce residual risks of LLM Systems, while maintaining a high level of helpfulness. We encourage developers to tune and deploy these safeguards according to their needs and we provide a [reference implementation](https://github.com/meta-llama/llama-recipes/tree/main/recipes/responsible_ai) to get you started. #### Llama 3-Instruct As outlined in the Responsible Use Guide, some trade-off between model helpfulness and model alignment is likely unavoidable. Developers should exercise discretion about how to weigh the benefits of alignment and helpfulness for their specific use case and audience. Developers should be mindful of residual risks when using Llama models and leverage additional safety tools as needed to reach the right safety bar for their use case. <span style="text-decoration:underline;">Safety</span> For our instruction tuned model, we conducted extensive red teaming exercises, performed adversarial evaluations and implemented safety mitigations techniques to lower residual risks. As with any Large Language Model, residual risks will likely remain and we recommend that developers assess these risks in the context of their use case. In parallel, we are working with the community to make AI safety benchmark standards transparent, rigorous and interpretable. <span style="text-decoration:underline;">Refusals</span> In addition to residual risks, we put a great emphasis on model refusals to benign prompts. Over-refusing not only can impact the user experience but could even be harmful in certain contexts as well. We’ve heard the feedback from the developer community and improved our fine tuning to ensure that Llama 3 is significantly less likely to falsely refuse to answer prompts than Llama 2. We built internal benchmarks and developed mitigations to limit false refusals making Llama 3 our most helpful model to date. #### Responsible release In addition to responsible use considerations outlined above, we followed a rigorous process that requires us to take extra measures against misuse and critical risks before we make our release decision. Misuse If you access or use Llama 3, you agree to the Acceptable Use Policy. The most recent copy of this policy can be found at [https://llama.meta.com/llama3/use-policy/](https://llama.meta.com/llama3/use-policy/). #### Critical risks <span style="text-decoration:underline;">CBRNE</span> (Chemical, Biological, Radiological, Nuclear, and high yield Explosives) We have conducted a two fold assessment of the safety of the model in this area: * Iterative testing during model training to assess the safety of responses related to CBRNE threats and other adversarial risks. * Involving external CBRNE experts to conduct an uplift test assessing the ability of the model to accurately provide expert knowledge and reduce barriers to potential CBRNE misuse, by reference to what can be achieved using web search (without the model). ### <span style="text-decoration:underline;">Cyber Security </span> We have evaluated Llama 3 with CyberSecEval, Meta’s cybersecurity safety eval suite, measuring Llama 3’s propensity to suggest insecure code when used as a coding assistant, and Llama 3’s propensity to comply with requests to help carry out cyber attacks, where attacks are defined by the industry standard MITRE ATT&CK cyber attack ontology. On our insecure coding and cyber attacker helpfulness tests, Llama 3 behaved in the same range or safer than models of [equivalent coding capability](https://huggingface.co/spaces/facebook/CyberSecEval). ### <span style="text-decoration:underline;">Child Safety</span> Child Safety risk assessments were conducted using a team of experts, to assess the model’s capability to produce outputs that could result in Child Safety risks and inform on any necessary and appropriate risk mitigations via fine tuning. We leveraged those expert red teaming sessions to expand the coverage of our evaluation benchmarks through Llama 3 model development. For Llama 3, we conducted new in-depth sessions using objective based methodologies to assess the model risks along multiple attack vectors. We also partnered with content specialists to perform red teaming exercises assessing potentially violating content while taking account of market specific nuances or experiences. ### Community Generative AI safety requires expertise and tooling, and we believe in the strength of the open community to accelerate its progress. We are active members of open consortiums, including the AI Alliance, Partnership in AI and MLCommons, actively contributing to safety standardization and transparency. We encourage the community to adopt taxonomies like the MLCommons Proof of Concept evaluation to facilitate collaboration and transparency on safety and content evaluations. Our Purple Llama tools are open sourced for the community to use and widely distributed across ecosystem partners including cloud service providers. We encourage community contributions to our [Github repository](https://github.com/meta-llama/PurpleLlama). Finally, we put in place a set of resources including an [output reporting mechanism](https://developers.facebook.com/llama_output_feedback) and [bug bounty program](https://www.facebook.com/whitehat) to continuously improve the Llama technology with the help of the community. ## Ethical Considerations and Limitations The core values of Llama 3 are openness, inclusivity and helpfulness. It is meant to serve everyone, and to work for a wide range of use cases. It is thus designed to be accessible to people across many different backgrounds, experiences and perspectives. Llama 3 addresses users and their needs as they are, without insertion unnecessary judgment or normativity, while reflecting the understanding that even content that may appear problematic in some cases can serve valuable purposes in others. It respects the dignity and autonomy of all users, especially in terms of the values of free thought and expression that power innovation and progress. But Llama 3 is a new technology, and like any new technology, there are risks associated with its use. Testing conducted to date has been in English, and has not covered, nor could it cover, all scenarios. For these reasons, as with all LLMs, Llama 3’s potential outputs cannot be predicted in advance, and the model may in some instances produce inaccurate, biased or other objectionable responses to user prompts. Therefore, before deploying any applications of Llama 3 models, developers should perform safety testing and tuning tailored to their specific applications of the model. As outlined in the Responsible Use Guide, we recommend incorporating [Purple Llama](https://github.com/facebookresearch/PurpleLlama) solutions into your workflows and specifically [Llama Guard](https://ai.meta.com/research/publications/llama-guard-llm-based-input-output-safeguard-for-human-ai-conversations/) which provides a base model to filter input and output prompts to layer system-level safety on top of model-level safety. Please see the Responsible Use Guide available at [http://llama.meta.com/responsible-use-guide](http://llama.meta.com/responsible-use-guide) ## Citation instructions @article{llama3modelcard, title={Llama 3 Model Card}, author={AI@Meta}, year={2024}, url = {https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md} } ## Contributors Aaditya Singh; Aaron Grattafiori; Abhimanyu Dubey; Abhinav Jauhri; Abhinav Pandey; Abhishek Kadian; Adam Kelsey; Adi Gangidi; Ahmad Al-Dahle; Ahuva Goldstand; Aiesha Letman; Ajay Menon; Akhil Mathur; Alan Schelten; Alex Vaughan; Amy Yang; Andrei Lupu; Andres Alvarado; Andrew Gallagher; Andrew Gu; Andrew Ho; Andrew Poulton; Andrew Ryan; Angela Fan; Ankit Ramchandani; Anthony Hartshorn; Archi Mitra; Archie Sravankumar; Artem Korenev; Arun Rao; Ashley Gabriel; Ashwin Bharambe; Assaf Eisenman; Aston Zhang; Aurelien Rodriguez; Austen Gregerson; Ava Spataru; Baptiste Roziere; Ben Maurer; Benjamin Leonhardi; Bernie Huang; Bhargavi Paranjape; Bing Liu; Binh Tang; Bobbie Chern; Brani Stojkovic; Brian Fuller; Catalina Mejia Arenas; Chao Zhou; Charlotte Caucheteux; Chaya Nayak; Ching-Hsiang Chu; Chloe Bi; Chris Cai; Chris Cox; Chris Marra; Chris McConnell; Christian Keller; Christoph Feichtenhofer; Christophe Touret; Chunyang Wu; Corinne Wong; Cristian Canton Ferrer; Damien Allonsius; Daniel Kreymer; Daniel Haziza; Daniel Li; Danielle Pintz; Danny Livshits; Danny Wyatt; David Adkins; David Esiobu; David Xu; Davide Testuggine; Delia David; Devi Parikh; Dhruv Choudhary; Dhruv Mahajan; Diana Liskovich; Diego Garcia-Olano; Diego Perino; Dieuwke Hupkes; Dingkang Wang; Dustin Holland; Egor Lakomkin; Elina Lobanova; Xiaoqing Ellen Tan; Emily Dinan; Eric Smith; Erik Brinkman; Esteban Arcaute; Filip Radenovic; Firat Ozgenel; Francesco Caggioni; Frank Seide; Frank Zhang; Gabriel Synnaeve; Gabriella Schwarz; Gabrielle Lee; Gada Badeer; Georgia Anderson; Graeme Nail; Gregoire Mialon; Guan Pang; Guillem Cucurell; Hailey Nguyen; Hannah Korevaar; Hannah Wang; Haroun Habeeb; Harrison Rudolph; Henry Aspegren; Hu Xu; Hugo Touvron; Iga Kozlowska; Igor Molybog; Igor Tufanov; Iliyan Zarov; Imanol Arrieta Ibarra; Irina-Elena Veliche; Isabel Kloumann; Ishan Misra; Ivan Evtimov; Jacob Xu; Jade Copet; Jake Weissman; Jan Geffert; Jana Vranes; Japhet Asher; Jason Park; Jay Mahadeokar; Jean-Baptiste Gaya; Jeet Shah; Jelmer van der Linde; Jennifer Chan; Jenny Hong; Jenya Lee; Jeremy Fu; Jeremy Teboul; Jianfeng Chi; Jianyu Huang; Jie Wang; Jiecao Yu; Joanna Bitton; Joe Spisak; Joelle Pineau; Jon Carvill; Jongsoo Park; Joseph Rocca; Joshua Johnstun; Junteng Jia; Kalyan Vasuden Alwala; Kam Hou U; Kate Plawiak; Kartikeya Upasani; Kaushik Veeraraghavan; Ke Li; Kenneth Heafield; Kevin Stone; Khalid El-Arini; Krithika Iyer; Kshitiz Malik; Kuenley Chiu; Kunal Bhalla; Kyle Huang; Lakshya Garg; Lauren Rantala-Yeary; Laurens van der Maaten; Lawrence Chen; Leandro Silva; Lee Bell; Lei Zhang; Liang Tan; Louis Martin; Lovish Madaan; Luca Wehrstedt; Lukas Blecher; Luke de Oliveira; Madeline Muzzi; Madian Khabsa; Manav Avlani; Mannat Singh; Manohar Paluri; Mark Zuckerberg; Marcin Kardas; Martynas Mankus; Mathew Oldham; Mathieu Rita; Matthew Lennie; Maya Pavlova; Meghan Keneally; Melanie Kambadur; Mihir Patel; Mikayel Samvelyan; Mike Clark; Mike Lewis; Min Si; Mitesh Kumar Singh; Mo Metanat; Mona Hassan; Naman Goyal; Narjes Torabi; Nicolas Usunier; Nikolay Bashlykov; Nikolay Bogoychev; Niladri Chatterji; Ning Dong; Oliver Aobo Yang; Olivier Duchenne; Onur Celebi; Parth Parekh; Patrick Alrassy; Paul Saab; Pavan Balaji; Pedro Rittner; Pengchuan Zhang; Pengwei Li; Petar Vasic; Peter Weng; Polina Zvyagina; Prajjwal Bhargava; Pratik Dubal; Praveen Krishnan; Punit Singh Koura; Qing He; Rachel Rodriguez; Ragavan Srinivasan; Rahul Mitra; Ramon Calderer; Raymond Li; Robert Stojnic; Roberta Raileanu; Robin Battey; Rocky Wang; Rohit Girdhar; Rohit Patel; Romain Sauvestre; Ronnie Polidoro; Roshan Sumbaly; Ross Taylor; Ruan Silva; Rui Hou; Rui Wang; Russ Howes; Ruty Rinott; Saghar Hosseini; Sai Jayesh Bondu; Samyak Datta; Sanjay Singh; Sara Chugh; Sargun Dhillon; Satadru Pan; Sean Bell; Sergey Edunov; Shaoliang Nie; Sharan Narang; Sharath Raparthy; Shaun Lindsay; Sheng Feng; Sheng Shen; Shenghao Lin; Shiva Shankar; Shruti Bhosale; Shun Zhang; Simon Vandenhende; Sinong Wang; Seohyun Sonia Kim; Soumya Batra; Sten Sootla; Steve Kehoe; Suchin Gururangan; Sumit Gupta; Sunny Virk; Sydney Borodinsky; Tamar Glaser; Tamar Herman; Tamara Best; Tara Fowler; Thomas Georgiou; Thomas Scialom; Tianhe Li; Todor Mihaylov; Tong Xiao; Ujjwal Karn; Vedanuj Goswami; Vibhor Gupta; Vignesh Ramanathan; Viktor Kerkez; Vinay Satish Kumar; Vincent Gonguet; Vish Vogeti; Vlad Poenaru; Vlad Tiberiu Mihailescu; Vladan Petrovic; Vladimir Ivanov; Wei Li; Weiwei Chu; Wenhan Xiong; Wenyin Fu; Wes Bouaziz; Whitney Meers; Will Constable; Xavier Martinet; Xiaojian Wu; Xinbo Gao; Xinfeng Xie; Xuchao Jia; Yaelle Goldschlag; Yann LeCun; Yashesh Gaur; Yasmine Babaei; Ye Qi; Yenda Li; Yi Wen; Yiwen Song; Youngjin Nam; Yuchen Hao; Yuchen Zhang; Yun Wang; Yuning Mao; Yuzi He; Zacharie Delpierre Coudert; Zachary DeVito; Zahra Hankir; Zhaoduo Wen; Zheng Yan; Zhengxing Chen; Zhenyu Yang; Zoe Papakipos
{"language": ["en"], "license": "llama3", "tags": ["meta", "llama-3"], "pipeline_tag": "text-generation"}
LoneStriker/Llama-3-8B-Instruct-Gradient-1048k-4.0bpw-h6-exl2
null
[ "transformers", "safetensors", "llama", "text-generation", "meta", "llama-3", "conversational", "en", "license:llama3", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "4-bit", "region:us" ]
null
2024-04-30T19:40:09+00:00
[]
[ "en" ]
TAGS #transformers #safetensors #llama #text-generation #meta #llama-3 #conversational #en #license-llama3 #autotrain_compatible #endpoints_compatible #text-generation-inference #4-bit #region-us
[<img src="URL width="200"/>](URL) Llama-3 8B Gradient Instruct 1048k ================================== Gradient incorporates your data to deploy autonomous assistants that power critical operations across your business. If you're looking to build custom AI models or agents, email us a message contact@URL. For more info see our End-to-end development service for custom LLMs and AI systems This model extends LLama-3 8B's context length from 8k to > 1040K, developed by Gradient, sponsored by compute from Crusoe Energy. It demonstrates that SOTA LLMs can learn to operate on long context with minimal training by appropriately adjusting RoPE theta. We trained on 830M tokens for this stage, and 1.4B tokens total for all stages, which is < 0.01% of Llama-3's original pre-training data. !image/png Approach: * meta-llama/Meta-Llama-3-8B-Instruct as the base * NTK-aware interpolation [1] to initialize an optimal schedule for RoPE theta, followed by empirical RoPE theta optimization * Progressive training on increasing context lengths, similar to Large World Model [2] (See details below) Infra: We build on top of the EasyContext Blockwise RingAttention library [3] to scalably and efficiently train on contexts up to 1048k tokens on Crusoe Energy high performance L40S cluster. Notably, we layered parallelism on top of Ring Attention with a custom network topology to better leverage large GPU clusters in the face of network bottlenecks from passing many KV blocks between devices. This gave us a 33x speedup in model training (compare 524k and 1048k to 65k and 262k in the table below). Data: For training data, we generate long contexts by augmenting SlimPajama. Progressive Training Details: Quants: * GGUF * MLX-4bit The Gradient AI Team -------------------- URL Gradient is accelerating AI transformation across industries. Our AI Foundry incorporates your data to deploy autonomous assistants that power critical operations across your business. Contact Us ---------- Drop an email to contact@URL References ---------- [1] Peng, Bowen, et al. "Yarn: Efficient context window extension of large language models." arXiv preprint arXiv:2309.00071 (2023). [2] Liu, Hao, et al. "World Model on Million-Length Video And Language With RingAttention." arXiv preprint arXiv:2402.08268 (2024). [3] URL --- Base Model ========== Model Details ------------- Meta developed and released the Meta Llama 3 family of large language models (LLMs), a collection of pretrained and instruction tuned generative text models in 8 and 70B sizes. The Llama 3 instruction tuned models are optimized for dialogue use cases and outperform many of the available open source chat models on common industry benchmarks. Further, in developing these models, we took great care to optimize helpfulness and safety. Model developers Meta Variations Llama 3 comes in two sizes — 8B and 70B parameters — in pre-trained and instruction tuned variants. Input Models input text only. Output Models generate text and code only. Model Architecture Llama 3 is an auto-regressive language model that uses an optimized transformer architecture. The tuned versions use supervised fine-tuning (SFT) and reinforcement learning with human feedback (RLHF) to align with human preferences for helpfulness and safety. Llama 3 family of models. Token counts refer to pretraining data only. Both the 8 and 70B versions use Grouped-Query Attention (GQA) for improved inference scalability. Model Release Date April 18, 2024. Status This is a static model trained on an offline dataset. Future versions of the tuned models will be released as we improve model safety with community feedback. License A custom commercial license is available at: URL Where to send questions or comments about the model Instructions on how to provide feedback or comments on the model can be found in the model README. For more technical information about generation parameters and recipes for how to use Llama 3 in applications, please go here. Intended Use ------------ Intended Use Cases Llama 3 is intended for commercial and research use in English. Instruction tuned models are intended for assistant-like chat, whereas pretrained models can be adapted for a variety of natural language generation tasks. Out-of-scope Use in any manner that violates applicable laws or regulations (including trade compliance laws). Use in any other way that is prohibited by the Acceptable Use Policy and Llama 3 Community License. Use in languages other than English. Note: Developers may fine-tune Llama 3 models for languages beyond English provided they comply with the Llama 3 Community License and the Acceptable Use Policy. How to use ---------- This repository contains two versions of Meta-Llama-3-8B-Instruct, for use with transformers and with the original 'llama3' codebase. ### Use with transformers You can run conversational inference using the Transformers pipeline abstraction, or by leveraging the Auto classes with the 'generate()' function. Let's see examples of both. #### Transformers pipeline #### Transformers AutoModelForCausalLM ### Use with 'llama3' Please, follow the instructions in the repository To download Original checkpoints, see the example command below leveraging 'huggingface-cli': For Hugging Face support, we recommend using transformers or TGI, but a similar command works. Hardware and Software --------------------- Training Factors We used custom training libraries, Meta's Research SuperCluster, and production clusters for pretraining. Fine-tuning, annotation, and evaluation were also performed on third-party cloud compute. Carbon Footprint Pretraining utilized a cumulative 7.7M GPU hours of computation on hardware of type H100-80GB (TDP of 700W). Estimated total emissions were 2290 tCO2eq, 100% of which were offset by Meta’s sustainability program. CO2 emissions during pre-training. Time: total GPU time required for training each model. Power Consumption: peak power capacity per GPU device for the GPUs used adjusted for power usage efficiency. 100% of the emissions are directly offset by Meta's sustainability program, and because we are openly releasing these models, the pretraining costs do not need to be incurred by others. Training Data ------------- Overview Llama 3 was pretrained on over 15 trillion tokens of data from publicly available sources. The fine-tuning data includes publicly available instruction datasets, as well as over 10M human-annotated examples. Neither the pretraining nor the fine-tuning datasets include Meta user data. Data Freshness The pretraining data has a cutoff of March 2023 for the 7B and December 2023 for the 70B models respectively. Benchmarks ---------- In this section, we report the results for Llama 3 models on standard automatic benchmarks. For all the evaluations, we use our internal evaluations library. For details on the methodology see here. ### Base pretrained models ### Instruction tuned models ### Responsibility & Safety We believe that an open approach to AI leads to better, safer products, faster innovation, and a bigger overall market. We are committed to Responsible AI development and took a series of steps to limit misuse and harm and support the open source community. Foundation models are widely capable technologies that are built to be used for a diverse range of applications. They are not designed to meet every developer preference on safety levels for all use cases, out-of-the-box, as those by their nature will differ across different applications. Rather, responsible LLM-application deployment is achieved by implementing a series of safety best practices throughout the development of such applications, from the model pre-training, fine-tuning and the deployment of systems composed of safeguards to tailor the safety needs specifically to the use case and audience. As part of the Llama 3 release, we updated our Responsible Use Guide to outline the steps and best practices for developers to implement model and system level safety for their application. We also provide a set of resources including Meta Llama Guard 2 and Code Shield safeguards. These tools have proven to drastically reduce residual risks of LLM Systems, while maintaining a high level of helpfulness. We encourage developers to tune and deploy these safeguards according to their needs and we provide a reference implementation to get you started. #### Llama 3-Instruct As outlined in the Responsible Use Guide, some trade-off between model helpfulness and model alignment is likely unavoidable. Developers should exercise discretion about how to weigh the benefits of alignment and helpfulness for their specific use case and audience. Developers should be mindful of residual risks when using Llama models and leverage additional safety tools as needed to reach the right safety bar for their use case. Safety For our instruction tuned model, we conducted extensive red teaming exercises, performed adversarial evaluations and implemented safety mitigations techniques to lower residual risks. As with any Large Language Model, residual risks will likely remain and we recommend that developers assess these risks in the context of their use case. In parallel, we are working with the community to make AI safety benchmark standards transparent, rigorous and interpretable. Refusals In addition to residual risks, we put a great emphasis on model refusals to benign prompts. Over-refusing not only can impact the user experience but could even be harmful in certain contexts as well. We’ve heard the feedback from the developer community and improved our fine tuning to ensure that Llama 3 is significantly less likely to falsely refuse to answer prompts than Llama 2. We built internal benchmarks and developed mitigations to limit false refusals making Llama 3 our most helpful model to date. #### Responsible release In addition to responsible use considerations outlined above, we followed a rigorous process that requires us to take extra measures against misuse and critical risks before we make our release decision. Misuse If you access or use Llama 3, you agree to the Acceptable Use Policy. The most recent copy of this policy can be found at URL #### Critical risks CBRNE (Chemical, Biological, Radiological, Nuclear, and high yield Explosives) We have conducted a two fold assessment of the safety of the model in this area: * Iterative testing during model training to assess the safety of responses related to CBRNE threats and other adversarial risks. * Involving external CBRNE experts to conduct an uplift test assessing the ability of the model to accurately provide expert knowledge and reduce barriers to potential CBRNE misuse, by reference to what can be achieved using web search (without the model). ### Cyber Security We have evaluated Llama 3 with CyberSecEval, Meta’s cybersecurity safety eval suite, measuring Llama 3’s propensity to suggest insecure code when used as a coding assistant, and Llama 3’s propensity to comply with requests to help carry out cyber attacks, where attacks are defined by the industry standard MITRE ATT&CK cyber attack ontology. On our insecure coding and cyber attacker helpfulness tests, Llama 3 behaved in the same range or safer than models of equivalent coding capability. ### Child Safety Child Safety risk assessments were conducted using a team of experts, to assess the model’s capability to produce outputs that could result in Child Safety risks and inform on any necessary and appropriate risk mitigations via fine tuning. We leveraged those expert red teaming sessions to expand the coverage of our evaluation benchmarks through Llama 3 model development. For Llama 3, we conducted new in-depth sessions using objective based methodologies to assess the model risks along multiple attack vectors. We also partnered with content specialists to perform red teaming exercises assessing potentially violating content while taking account of market specific nuances or experiences. ### Community Generative AI safety requires expertise and tooling, and we believe in the strength of the open community to accelerate its progress. We are active members of open consortiums, including the AI Alliance, Partnership in AI and MLCommons, actively contributing to safety standardization and transparency. We encourage the community to adopt taxonomies like the MLCommons Proof of Concept evaluation to facilitate collaboration and transparency on safety and content evaluations. Our Purple Llama tools are open sourced for the community to use and widely distributed across ecosystem partners including cloud service providers. We encourage community contributions to our Github repository. Finally, we put in place a set of resources including an output reporting mechanism and bug bounty program to continuously improve the Llama technology with the help of the community. Ethical Considerations and Limitations -------------------------------------- The core values of Llama 3 are openness, inclusivity and helpfulness. It is meant to serve everyone, and to work for a wide range of use cases. It is thus designed to be accessible to people across many different backgrounds, experiences and perspectives. Llama 3 addresses users and their needs as they are, without insertion unnecessary judgment or normativity, while reflecting the understanding that even content that may appear problematic in some cases can serve valuable purposes in others. It respects the dignity and autonomy of all users, especially in terms of the values of free thought and expression that power innovation and progress. But Llama 3 is a new technology, and like any new technology, there are risks associated with its use. Testing conducted to date has been in English, and has not covered, nor could it cover, all scenarios. For these reasons, as with all LLMs, Llama 3’s potential outputs cannot be predicted in advance, and the model may in some instances produce inaccurate, biased or other objectionable responses to user prompts. Therefore, before deploying any applications of Llama 3 models, developers should perform safety testing and tuning tailored to their specific applications of the model. As outlined in the Responsible Use Guide, we recommend incorporating Purple Llama solutions into your workflows and specifically Llama Guard which provides a base model to filter input and output prompts to layer system-level safety on top of model-level safety. Please see the Responsible Use Guide available at URL instructions @article{llama3modelcard, title={Llama 3 Model Card}, author={AI@Meta}, year={2024}, url = {URL } Contributors ------------ Aaditya Singh; Aaron Grattafiori; Abhimanyu Dubey; Abhinav Jauhri; Abhinav Pandey; Abhishek Kadian; Adam Kelsey; Adi Gangidi; Ahmad Al-Dahle; Ahuva Goldstand; Aiesha Letman; Ajay Menon; Akhil Mathur; Alan Schelten; Alex Vaughan; Amy Yang; Andrei Lupu; Andres Alvarado; Andrew Gallagher; Andrew Gu; Andrew Ho; Andrew Poulton; Andrew Ryan; Angela Fan; Ankit Ramchandani; Anthony Hartshorn; Archi Mitra; Archie Sravankumar; Artem Korenev; Arun Rao; Ashley Gabriel; Ashwin Bharambe; Assaf Eisenman; Aston Zhang; Aurelien Rodriguez; Austen Gregerson; Ava Spataru; Baptiste Roziere; Ben Maurer; Benjamin Leonhardi; Bernie Huang; Bhargavi Paranjape; Bing Liu; Binh Tang; Bobbie Chern; Brani Stojkovic; Brian Fuller; Catalina Mejia Arenas; Chao Zhou; Charlotte Caucheteux; Chaya Nayak; Ching-Hsiang Chu; Chloe Bi; Chris Cai; Chris Cox; Chris Marra; Chris McConnell; Christian Keller; Christoph Feichtenhofer; Christophe Touret; Chunyang Wu; Corinne Wong; Cristian Canton Ferrer; Damien Allonsius; Daniel Kreymer; Daniel Haziza; Daniel Li; Danielle Pintz; Danny Livshits; Danny Wyatt; David Adkins; David Esiobu; David Xu; Davide Testuggine; Delia David; Devi Parikh; Dhruv Choudhary; Dhruv Mahajan; Diana Liskovich; Diego Garcia-Olano; Diego Perino; Dieuwke Hupkes; Dingkang Wang; Dustin Holland; Egor Lakomkin; Elina Lobanova; Xiaoqing Ellen Tan; Emily Dinan; Eric Smith; Erik Brinkman; Esteban Arcaute; Filip Radenovic; Firat Ozgenel; Francesco Caggioni; Frank Seide; Frank Zhang; Gabriel Synnaeve; Gabriella Schwarz; Gabrielle Lee; Gada Badeer; Georgia Anderson; Graeme Nail; Gregoire Mialon; Guan Pang; Guillem Cucurell; Hailey Nguyen; Hannah Korevaar; Hannah Wang; Haroun Habeeb; Harrison Rudolph; Henry Aspegren; Hu Xu; Hugo Touvron; Iga Kozlowska; Igor Molybog; Igor Tufanov; Iliyan Zarov; Imanol Arrieta Ibarra; Irina-Elena Veliche; Isabel Kloumann; Ishan Misra; Ivan Evtimov; Jacob Xu; Jade Copet; Jake Weissman; Jan Geffert; Jana Vranes; Japhet Asher; Jason Park; Jay Mahadeokar; Jean-Baptiste Gaya; Jeet Shah; Jelmer van der Linde; Jennifer Chan; Jenny Hong; Jenya Lee; Jeremy Fu; Jeremy Teboul; Jianfeng Chi; Jianyu Huang; Jie Wang; Jiecao Yu; Joanna Bitton; Joe Spisak; Joelle Pineau; Jon Carvill; Jongsoo Park; Joseph Rocca; Joshua Johnstun; Junteng Jia; Kalyan Vasuden Alwala; Kam Hou U; Kate Plawiak; Kartikeya Upasani; Kaushik Veeraraghavan; Ke Li; Kenneth Heafield; Kevin Stone; Khalid El-Arini; Krithika Iyer; Kshitiz Malik; Kuenley Chiu; Kunal Bhalla; Kyle Huang; Lakshya Garg; Lauren Rantala-Yeary; Laurens van der Maaten; Lawrence Chen; Leandro Silva; Lee Bell; Lei Zhang; Liang Tan; Louis Martin; Lovish Madaan; Luca Wehrstedt; Lukas Blecher; Luke de Oliveira; Madeline Muzzi; Madian Khabsa; Manav Avlani; Mannat Singh; Manohar Paluri; Mark Zuckerberg; Marcin Kardas; Martynas Mankus; Mathew Oldham; Mathieu Rita; Matthew Lennie; Maya Pavlova; Meghan Keneally; Melanie Kambadur; Mihir Patel; Mikayel Samvelyan; Mike Clark; Mike Lewis; Min Si; Mitesh Kumar Singh; Mo Metanat; Mona Hassan; Naman Goyal; Narjes Torabi; Nicolas Usunier; Nikolay Bashlykov; Nikolay Bogoychev; Niladri Chatterji; Ning Dong; Oliver Aobo Yang; Olivier Duchenne; Onur Celebi; Parth Parekh; Patrick Alrassy; Paul Saab; Pavan Balaji; Pedro Rittner; Pengchuan Zhang; Pengwei Li; Petar Vasic; Peter Weng; Polina Zvyagina; Prajjwal Bhargava; Pratik Dubal; Praveen Krishnan; Punit Singh Koura; Qing He; Rachel Rodriguez; Ragavan Srinivasan; Rahul Mitra; Ramon Calderer; Raymond Li; Robert Stojnic; Roberta Raileanu; Robin Battey; Rocky Wang; Rohit Girdhar; Rohit Patel; Romain Sauvestre; Ronnie Polidoro; Roshan Sumbaly; Ross Taylor; Ruan Silva; Rui Hou; Rui Wang; Russ Howes; Ruty Rinott; Saghar Hosseini; Sai Jayesh Bondu; Samyak Datta; Sanjay Singh; Sara Chugh; Sargun Dhillon; Satadru Pan; Sean Bell; Sergey Edunov; Shaoliang Nie; Sharan Narang; Sharath Raparthy; Shaun Lindsay; Sheng Feng; Sheng Shen; Shenghao Lin; Shiva Shankar; Shruti Bhosale; Shun Zhang; Simon Vandenhende; Sinong Wang; Seohyun Sonia Kim; Soumya Batra; Sten Sootla; Steve Kehoe; Suchin Gururangan; Sumit Gupta; Sunny Virk; Sydney Borodinsky; Tamar Glaser; Tamar Herman; Tamara Best; Tara Fowler; Thomas Georgiou; Thomas Scialom; Tianhe Li; Todor Mihaylov; Tong Xiao; Ujjwal Karn; Vedanuj Goswami; Vibhor Gupta; Vignesh Ramanathan; Viktor Kerkez; Vinay Satish Kumar; Vincent Gonguet; Vish Vogeti; Vlad Poenaru; Vlad Tiberiu Mihailescu; Vladan Petrovic; Vladimir Ivanov; Wei Li; Weiwei Chu; Wenhan Xiong; Wenyin Fu; Wes Bouaziz; Whitney Meers; Will Constable; Xavier Martinet; Xiaojian Wu; Xinbo Gao; Xinfeng Xie; Xuchao Jia; Yaelle Goldschlag; Yann LeCun; Yashesh Gaur; Yasmine Babaei; Ye Qi; Yenda Li; Yi Wen; Yiwen Song; Youngjin Nam; Yuchen Hao; Yuchen Zhang; Yun Wang; Yuning Mao; Yuzi He; Zacharie Delpierre Coudert; Zachary DeVito; Zahra Hankir; Zhaoduo Wen; Zheng Yan; Zhengxing Chen; Zhenyu Yang; Zoe Papakipos
[ "### Use with transformers\n\n\nYou can run conversational inference using the Transformers pipeline abstraction, or by leveraging the Auto classes with the 'generate()' function. Let's see examples of both.", "#### Transformers pipeline", "#### Transformers AutoModelForCausalLM", "### Use with 'llama3'\n\n\nPlease, follow the instructions in the repository\n\n\nTo download Original checkpoints, see the example command below leveraging 'huggingface-cli':\n\n\nFor Hugging Face support, we recommend using transformers or TGI, but a similar command works.\n\n\nHardware and Software\n---------------------\n\n\nTraining Factors We used custom training libraries, Meta's Research SuperCluster, and production clusters for pretraining. Fine-tuning, annotation, and evaluation were also performed on third-party cloud compute.\n\n\nCarbon Footprint Pretraining utilized a cumulative 7.7M GPU hours of computation on hardware of type H100-80GB (TDP of 700W). Estimated total emissions were 2290 tCO2eq, 100% of which were offset by Meta’s sustainability program.\n\n\n\nCO2 emissions during pre-training. Time: total GPU time required for training each model. Power Consumption: peak power capacity per GPU device for the GPUs used adjusted for power usage efficiency. 100% of the emissions are directly offset by Meta's sustainability program, and because we are openly releasing these models, the pretraining costs do not need to be incurred by others.\n\n\nTraining Data\n-------------\n\n\nOverview Llama 3 was pretrained on over 15 trillion tokens of data from publicly available sources. The fine-tuning data includes publicly available instruction datasets, as well as over 10M human-annotated examples. Neither the pretraining nor the fine-tuning datasets include Meta user data.\n\n\nData Freshness The pretraining data has a cutoff of March 2023 for the 7B and December 2023 for the 70B models respectively.\n\n\nBenchmarks\n----------\n\n\nIn this section, we report the results for Llama 3 models on standard automatic benchmarks. For all the evaluations, we use our internal evaluations library. For details on the methodology see here.", "### Base pretrained models", "### Instruction tuned models", "### Responsibility & Safety\n\n\nWe believe that an open approach to AI leads to better, safer products, faster innovation, and a bigger overall market. We are committed to Responsible AI development and took a series of steps to limit misuse and harm and support the open source community.\n\n\nFoundation models are widely capable technologies that are built to be used for a diverse range of applications. They are not designed to meet every developer preference on safety levels for all use cases, out-of-the-box, as those by their nature will differ across different applications.\n\n\nRather, responsible LLM-application deployment is achieved by implementing a series of safety best practices throughout the development of such applications, from the model pre-training, fine-tuning and the deployment of systems composed of safeguards to tailor the safety needs specifically to the use case and audience.\n\n\nAs part of the Llama 3 release, we updated our Responsible Use Guide to outline the steps and best practices for developers to implement model and system level safety for their application. We also provide a set of resources including Meta Llama Guard 2 and Code Shield safeguards. These tools have proven to drastically reduce residual risks of LLM Systems, while maintaining a high level of helpfulness. We encourage developers to tune and deploy these safeguards according to their needs and we provide a reference implementation to get you started.", "#### Llama 3-Instruct\n\n\nAs outlined in the Responsible Use Guide, some trade-off between model helpfulness and model alignment is likely unavoidable. Developers should exercise discretion about how to weigh the benefits of alignment and helpfulness for their specific use case and audience. Developers should be mindful of residual risks when using Llama models and leverage additional safety tools as needed to reach the right safety bar for their use case.\n\n\nSafety\n\n\nFor our instruction tuned model, we conducted extensive red teaming exercises, performed adversarial evaluations and implemented safety mitigations techniques to lower residual risks. As with any Large Language Model, residual risks will likely remain and we recommend that developers assess these risks in the context of their use case. In parallel, we are working with the community to make AI safety benchmark standards transparent, rigorous and interpretable.\n\n\nRefusals\n\n\nIn addition to residual risks, we put a great emphasis on model refusals to benign prompts. Over-refusing not only can impact the user experience but could even be harmful in certain contexts as well. We’ve heard the feedback from the developer community and improved our fine tuning to ensure that Llama 3 is significantly less likely to falsely refuse to answer prompts than Llama 2.\n\n\nWe built internal benchmarks and developed mitigations to limit false refusals making Llama 3 our most helpful model to date.", "#### Responsible release\n\n\nIn addition to responsible use considerations outlined above, we followed a rigorous process that requires us to take extra measures against misuse and critical risks before we make our release decision.\n\n\nMisuse\n\n\nIf you access or use Llama 3, you agree to the Acceptable Use Policy. The most recent copy of this policy can be found at URL", "#### Critical risks\n\n\nCBRNE (Chemical, Biological, Radiological, Nuclear, and high yield Explosives)\n\n\nWe have conducted a two fold assessment of the safety of the model in this area:\n\n\n* Iterative testing during model training to assess the safety of responses related to CBRNE threats and other adversarial risks.\n* Involving external CBRNE experts to conduct an uplift test assessing the ability of the model to accurately provide expert knowledge and reduce barriers to potential CBRNE misuse, by reference to what can be achieved using web search (without the model).", "### Cyber Security\n\n\nWe have evaluated Llama 3 with CyberSecEval, Meta’s cybersecurity safety eval suite, measuring Llama 3’s propensity to suggest insecure code when used as a coding assistant, and Llama 3’s propensity to comply with requests to help carry out cyber attacks, where attacks are defined by the industry standard MITRE ATT&CK cyber attack ontology. On our insecure coding and cyber attacker helpfulness tests, Llama 3 behaved in the same range or safer than models of equivalent coding capability.", "### Child Safety\n\n\nChild Safety risk assessments were conducted using a team of experts, to assess the model’s capability to produce outputs that could result in Child Safety risks and inform on any necessary and appropriate risk mitigations via fine tuning. We leveraged those expert red teaming sessions to expand the coverage of our evaluation benchmarks through Llama 3 model development. For Llama 3, we conducted new in-depth sessions using objective based methodologies to assess the model risks along multiple attack vectors. We also partnered with content specialists to perform red teaming exercises assessing potentially violating content while taking account of market specific nuances or experiences.", "### Community\n\n\nGenerative AI safety requires expertise and tooling, and we believe in the strength of the open community to accelerate its progress. We are active members of open consortiums, including the AI Alliance, Partnership in AI and MLCommons, actively contributing to safety standardization and transparency. We encourage the community to adopt taxonomies like the MLCommons Proof of Concept evaluation to facilitate collaboration and transparency on safety and content evaluations. Our Purple Llama tools are open sourced for the community to use and widely distributed across ecosystem partners including cloud service providers. We encourage community contributions to our Github repository.\n\n\nFinally, we put in place a set of resources including an output reporting mechanism and bug bounty program to continuously improve the Llama technology with the help of the community.\n\n\nEthical Considerations and Limitations\n--------------------------------------\n\n\nThe core values of Llama 3 are openness, inclusivity and helpfulness. It is meant to serve everyone, and to work for a wide range of use cases. It is thus designed to be accessible to people across many different backgrounds, experiences and perspectives. Llama 3 addresses users and their needs as they are, without insertion unnecessary judgment or normativity, while reflecting the understanding that even content that may appear problematic in some cases can serve valuable purposes in others. It respects the dignity and autonomy of all users, especially in terms of the values of free thought and expression that power innovation and progress.\n\n\nBut Llama 3 is a new technology, and like any new technology, there are risks associated with its use. Testing conducted to date has been in English, and has not covered, nor could it cover, all scenarios. For these reasons, as with all LLMs, Llama 3’s potential outputs cannot be predicted in advance, and the model may in some instances produce inaccurate, biased or other objectionable responses to user prompts. Therefore, before deploying any applications of Llama 3 models, developers should perform safety testing and tuning tailored to their specific applications of the model. As outlined in the Responsible Use Guide, we recommend incorporating Purple Llama solutions into your workflows and specifically Llama Guard which provides a base model to filter input and output prompts to layer system-level safety on top of model-level safety.\n\n\nPlease see the Responsible Use Guide available at URL\n\n\ninstructions\n\n\n@article{llama3modelcard,\n\n\ntitle={Llama 3 Model Card},\n\n\nauthor={AI@Meta},\n\n\nyear={2024},\n\n\nurl = {URL\n\n\n}\n\n\nContributors\n------------\n\n\nAaditya Singh; Aaron Grattafiori; Abhimanyu Dubey; Abhinav Jauhri; Abhinav Pandey; Abhishek Kadian; Adam Kelsey; Adi Gangidi; Ahmad Al-Dahle; Ahuva Goldstand; Aiesha Letman; Ajay Menon; Akhil Mathur; Alan Schelten; Alex Vaughan; Amy Yang; Andrei Lupu; Andres Alvarado; Andrew Gallagher; Andrew Gu; Andrew Ho; Andrew Poulton; Andrew Ryan; Angela Fan; Ankit Ramchandani; Anthony Hartshorn; Archi Mitra; Archie Sravankumar; Artem Korenev; Arun Rao; Ashley Gabriel; Ashwin Bharambe; Assaf Eisenman; Aston Zhang; Aurelien Rodriguez; Austen Gregerson; Ava Spataru; Baptiste Roziere; Ben Maurer; Benjamin Leonhardi; Bernie Huang; Bhargavi Paranjape; Bing Liu; Binh Tang; Bobbie Chern; Brani Stojkovic; Brian Fuller; Catalina Mejia Arenas; Chao Zhou; Charlotte Caucheteux; Chaya Nayak; Ching-Hsiang Chu; Chloe Bi; Chris Cai; Chris Cox; Chris Marra; Chris McConnell; Christian Keller; Christoph Feichtenhofer; Christophe Touret; Chunyang Wu; Corinne Wong; Cristian Canton Ferrer; Damien Allonsius; Daniel Kreymer; Daniel Haziza; Daniel Li; Danielle Pintz; Danny Livshits; Danny Wyatt; David Adkins; David Esiobu; David Xu; Davide Testuggine; Delia David; Devi Parikh; Dhruv Choudhary; Dhruv Mahajan; Diana Liskovich; Diego Garcia-Olano; Diego Perino; Dieuwke Hupkes; Dingkang Wang; Dustin Holland; Egor Lakomkin; Elina Lobanova; Xiaoqing Ellen Tan; Emily Dinan; Eric Smith; Erik Brinkman; Esteban Arcaute; Filip Radenovic; Firat Ozgenel; Francesco Caggioni; Frank Seide; Frank Zhang; Gabriel Synnaeve; Gabriella Schwarz; Gabrielle Lee; Gada Badeer; Georgia Anderson; Graeme Nail; Gregoire Mialon; Guan Pang; Guillem Cucurell; Hailey Nguyen; Hannah Korevaar; Hannah Wang; Haroun Habeeb; Harrison Rudolph; Henry Aspegren; Hu Xu; Hugo Touvron; Iga Kozlowska; Igor Molybog; Igor Tufanov; Iliyan Zarov; Imanol Arrieta Ibarra; Irina-Elena Veliche; Isabel Kloumann; Ishan Misra; Ivan Evtimov; Jacob Xu; Jade Copet; Jake Weissman; Jan Geffert; Jana Vranes; Japhet Asher; Jason Park; Jay Mahadeokar; Jean-Baptiste Gaya; Jeet Shah; Jelmer van der Linde; Jennifer Chan; Jenny Hong; Jenya Lee; Jeremy Fu; Jeremy Teboul; Jianfeng Chi; Jianyu Huang; Jie Wang; Jiecao Yu; Joanna Bitton; Joe Spisak; Joelle Pineau; Jon Carvill; Jongsoo Park; Joseph Rocca; Joshua Johnstun; Junteng Jia; Kalyan Vasuden Alwala; Kam Hou U; Kate Plawiak; Kartikeya Upasani; Kaushik Veeraraghavan; Ke Li; Kenneth Heafield; Kevin Stone; Khalid El-Arini; Krithika Iyer; Kshitiz Malik; Kuenley Chiu; Kunal Bhalla; Kyle Huang; Lakshya Garg; Lauren Rantala-Yeary; Laurens van der Maaten; Lawrence Chen; Leandro Silva; Lee Bell; Lei Zhang; Liang Tan; Louis Martin; Lovish Madaan; Luca Wehrstedt; Lukas Blecher; Luke de Oliveira; Madeline Muzzi; Madian Khabsa; Manav Avlani; Mannat Singh; Manohar Paluri; Mark Zuckerberg; Marcin Kardas; Martynas Mankus; Mathew Oldham; Mathieu Rita; Matthew Lennie; Maya Pavlova; Meghan Keneally; Melanie Kambadur; Mihir Patel; Mikayel Samvelyan; Mike Clark; Mike Lewis; Min Si; Mitesh Kumar Singh; Mo Metanat; Mona Hassan; Naman Goyal; Narjes Torabi; Nicolas Usunier; Nikolay Bashlykov; Nikolay Bogoychev; Niladri Chatterji; Ning Dong; Oliver Aobo Yang; Olivier Duchenne; Onur Celebi; Parth Parekh; Patrick Alrassy; Paul Saab; Pavan Balaji; Pedro Rittner; Pengchuan Zhang; Pengwei Li; Petar Vasic; Peter Weng; Polina Zvyagina; Prajjwal Bhargava; Pratik Dubal; Praveen Krishnan; Punit Singh Koura; Qing He; Rachel Rodriguez; Ragavan Srinivasan; Rahul Mitra; Ramon Calderer; Raymond Li; Robert Stojnic; Roberta Raileanu; Robin Battey; Rocky Wang; Rohit Girdhar; Rohit Patel; Romain Sauvestre; Ronnie Polidoro; Roshan Sumbaly; Ross Taylor; Ruan Silva; Rui Hou; Rui Wang; Russ Howes; Ruty Rinott; Saghar Hosseini; Sai Jayesh Bondu; Samyak Datta; Sanjay Singh; Sara Chugh; Sargun Dhillon; Satadru Pan; Sean Bell; Sergey Edunov; Shaoliang Nie; Sharan Narang; Sharath Raparthy; Shaun Lindsay; Sheng Feng; Sheng Shen; Shenghao Lin; Shiva Shankar; Shruti Bhosale; Shun Zhang; Simon Vandenhende; Sinong Wang; Seohyun Sonia Kim; Soumya Batra; Sten Sootla; Steve Kehoe; Suchin Gururangan; Sumit Gupta; Sunny Virk; Sydney Borodinsky; Tamar Glaser; Tamar Herman; Tamara Best; Tara Fowler; Thomas Georgiou; Thomas Scialom; Tianhe Li; Todor Mihaylov; Tong Xiao; Ujjwal Karn; Vedanuj Goswami; Vibhor Gupta; Vignesh Ramanathan; Viktor Kerkez; Vinay Satish Kumar; Vincent Gonguet; Vish Vogeti; Vlad Poenaru; Vlad Tiberiu Mihailescu; Vladan Petrovic; Vladimir Ivanov; Wei Li; Weiwei Chu; Wenhan Xiong; Wenyin Fu; Wes Bouaziz; Whitney Meers; Will Constable; Xavier Martinet; Xiaojian Wu; Xinbo Gao; Xinfeng Xie; Xuchao Jia; Yaelle Goldschlag; Yann LeCun; Yashesh Gaur; Yasmine Babaei; Ye Qi; Yenda Li; Yi Wen; Yiwen Song; Youngjin Nam; Yuchen Hao; Yuchen Zhang; Yun Wang; Yuning Mao; Yuzi He; Zacharie Delpierre Coudert; Zachary DeVito; Zahra Hankir; Zhaoduo Wen; Zheng Yan; Zhengxing Chen; Zhenyu Yang; Zoe Papakipos" ]
[ "TAGS\n#transformers #safetensors #llama #text-generation #meta #llama-3 #conversational #en #license-llama3 #autotrain_compatible #endpoints_compatible #text-generation-inference #4-bit #region-us \n", "### Use with transformers\n\n\nYou can run conversational inference using the Transformers pipeline abstraction, or by leveraging the Auto classes with the 'generate()' function. Let's see examples of both.", "#### Transformers pipeline", "#### Transformers AutoModelForCausalLM", "### Use with 'llama3'\n\n\nPlease, follow the instructions in the repository\n\n\nTo download Original checkpoints, see the example command below leveraging 'huggingface-cli':\n\n\nFor Hugging Face support, we recommend using transformers or TGI, but a similar command works.\n\n\nHardware and Software\n---------------------\n\n\nTraining Factors We used custom training libraries, Meta's Research SuperCluster, and production clusters for pretraining. Fine-tuning, annotation, and evaluation were also performed on third-party cloud compute.\n\n\nCarbon Footprint Pretraining utilized a cumulative 7.7M GPU hours of computation on hardware of type H100-80GB (TDP of 700W). Estimated total emissions were 2290 tCO2eq, 100% of which were offset by Meta’s sustainability program.\n\n\n\nCO2 emissions during pre-training. Time: total GPU time required for training each model. Power Consumption: peak power capacity per GPU device for the GPUs used adjusted for power usage efficiency. 100% of the emissions are directly offset by Meta's sustainability program, and because we are openly releasing these models, the pretraining costs do not need to be incurred by others.\n\n\nTraining Data\n-------------\n\n\nOverview Llama 3 was pretrained on over 15 trillion tokens of data from publicly available sources. The fine-tuning data includes publicly available instruction datasets, as well as over 10M human-annotated examples. Neither the pretraining nor the fine-tuning datasets include Meta user data.\n\n\nData Freshness The pretraining data has a cutoff of March 2023 for the 7B and December 2023 for the 70B models respectively.\n\n\nBenchmarks\n----------\n\n\nIn this section, we report the results for Llama 3 models on standard automatic benchmarks. For all the evaluations, we use our internal evaluations library. For details on the methodology see here.", "### Base pretrained models", "### Instruction tuned models", "### Responsibility & Safety\n\n\nWe believe that an open approach to AI leads to better, safer products, faster innovation, and a bigger overall market. We are committed to Responsible AI development and took a series of steps to limit misuse and harm and support the open source community.\n\n\nFoundation models are widely capable technologies that are built to be used for a diverse range of applications. They are not designed to meet every developer preference on safety levels for all use cases, out-of-the-box, as those by their nature will differ across different applications.\n\n\nRather, responsible LLM-application deployment is achieved by implementing a series of safety best practices throughout the development of such applications, from the model pre-training, fine-tuning and the deployment of systems composed of safeguards to tailor the safety needs specifically to the use case and audience.\n\n\nAs part of the Llama 3 release, we updated our Responsible Use Guide to outline the steps and best practices for developers to implement model and system level safety for their application. We also provide a set of resources including Meta Llama Guard 2 and Code Shield safeguards. These tools have proven to drastically reduce residual risks of LLM Systems, while maintaining a high level of helpfulness. We encourage developers to tune and deploy these safeguards according to their needs and we provide a reference implementation to get you started.", "#### Llama 3-Instruct\n\n\nAs outlined in the Responsible Use Guide, some trade-off between model helpfulness and model alignment is likely unavoidable. Developers should exercise discretion about how to weigh the benefits of alignment and helpfulness for their specific use case and audience. Developers should be mindful of residual risks when using Llama models and leverage additional safety tools as needed to reach the right safety bar for their use case.\n\n\nSafety\n\n\nFor our instruction tuned model, we conducted extensive red teaming exercises, performed adversarial evaluations and implemented safety mitigations techniques to lower residual risks. As with any Large Language Model, residual risks will likely remain and we recommend that developers assess these risks in the context of their use case. In parallel, we are working with the community to make AI safety benchmark standards transparent, rigorous and interpretable.\n\n\nRefusals\n\n\nIn addition to residual risks, we put a great emphasis on model refusals to benign prompts. Over-refusing not only can impact the user experience but could even be harmful in certain contexts as well. We’ve heard the feedback from the developer community and improved our fine tuning to ensure that Llama 3 is significantly less likely to falsely refuse to answer prompts than Llama 2.\n\n\nWe built internal benchmarks and developed mitigations to limit false refusals making Llama 3 our most helpful model to date.", "#### Responsible release\n\n\nIn addition to responsible use considerations outlined above, we followed a rigorous process that requires us to take extra measures against misuse and critical risks before we make our release decision.\n\n\nMisuse\n\n\nIf you access or use Llama 3, you agree to the Acceptable Use Policy. The most recent copy of this policy can be found at URL", "#### Critical risks\n\n\nCBRNE (Chemical, Biological, Radiological, Nuclear, and high yield Explosives)\n\n\nWe have conducted a two fold assessment of the safety of the model in this area:\n\n\n* Iterative testing during model training to assess the safety of responses related to CBRNE threats and other adversarial risks.\n* Involving external CBRNE experts to conduct an uplift test assessing the ability of the model to accurately provide expert knowledge and reduce barriers to potential CBRNE misuse, by reference to what can be achieved using web search (without the model).", "### Cyber Security\n\n\nWe have evaluated Llama 3 with CyberSecEval, Meta’s cybersecurity safety eval suite, measuring Llama 3’s propensity to suggest insecure code when used as a coding assistant, and Llama 3’s propensity to comply with requests to help carry out cyber attacks, where attacks are defined by the industry standard MITRE ATT&CK cyber attack ontology. On our insecure coding and cyber attacker helpfulness tests, Llama 3 behaved in the same range or safer than models of equivalent coding capability.", "### Child Safety\n\n\nChild Safety risk assessments were conducted using a team of experts, to assess the model’s capability to produce outputs that could result in Child Safety risks and inform on any necessary and appropriate risk mitigations via fine tuning. We leveraged those expert red teaming sessions to expand the coverage of our evaluation benchmarks through Llama 3 model development. For Llama 3, we conducted new in-depth sessions using objective based methodologies to assess the model risks along multiple attack vectors. We also partnered with content specialists to perform red teaming exercises assessing potentially violating content while taking account of market specific nuances or experiences.", "### Community\n\n\nGenerative AI safety requires expertise and tooling, and we believe in the strength of the open community to accelerate its progress. We are active members of open consortiums, including the AI Alliance, Partnership in AI and MLCommons, actively contributing to safety standardization and transparency. We encourage the community to adopt taxonomies like the MLCommons Proof of Concept evaluation to facilitate collaboration and transparency on safety and content evaluations. Our Purple Llama tools are open sourced for the community to use and widely distributed across ecosystem partners including cloud service providers. We encourage community contributions to our Github repository.\n\n\nFinally, we put in place a set of resources including an output reporting mechanism and bug bounty program to continuously improve the Llama technology with the help of the community.\n\n\nEthical Considerations and Limitations\n--------------------------------------\n\n\nThe core values of Llama 3 are openness, inclusivity and helpfulness. It is meant to serve everyone, and to work for a wide range of use cases. It is thus designed to be accessible to people across many different backgrounds, experiences and perspectives. Llama 3 addresses users and their needs as they are, without insertion unnecessary judgment or normativity, while reflecting the understanding that even content that may appear problematic in some cases can serve valuable purposes in others. It respects the dignity and autonomy of all users, especially in terms of the values of free thought and expression that power innovation and progress.\n\n\nBut Llama 3 is a new technology, and like any new technology, there are risks associated with its use. Testing conducted to date has been in English, and has not covered, nor could it cover, all scenarios. For these reasons, as with all LLMs, Llama 3’s potential outputs cannot be predicted in advance, and the model may in some instances produce inaccurate, biased or other objectionable responses to user prompts. Therefore, before deploying any applications of Llama 3 models, developers should perform safety testing and tuning tailored to their specific applications of the model. As outlined in the Responsible Use Guide, we recommend incorporating Purple Llama solutions into your workflows and specifically Llama Guard which provides a base model to filter input and output prompts to layer system-level safety on top of model-level safety.\n\n\nPlease see the Responsible Use Guide available at URL\n\n\ninstructions\n\n\n@article{llama3modelcard,\n\n\ntitle={Llama 3 Model Card},\n\n\nauthor={AI@Meta},\n\n\nyear={2024},\n\n\nurl = {URL\n\n\n}\n\n\nContributors\n------------\n\n\nAaditya Singh; Aaron Grattafiori; Abhimanyu Dubey; Abhinav Jauhri; Abhinav Pandey; Abhishek Kadian; Adam Kelsey; Adi Gangidi; Ahmad Al-Dahle; Ahuva Goldstand; Aiesha Letman; Ajay Menon; Akhil Mathur; Alan Schelten; Alex Vaughan; Amy Yang; Andrei Lupu; Andres Alvarado; Andrew Gallagher; Andrew Gu; Andrew Ho; Andrew Poulton; Andrew Ryan; Angela Fan; Ankit Ramchandani; Anthony Hartshorn; Archi Mitra; Archie Sravankumar; Artem Korenev; Arun Rao; Ashley Gabriel; Ashwin Bharambe; Assaf Eisenman; Aston Zhang; Aurelien Rodriguez; Austen Gregerson; Ava Spataru; Baptiste Roziere; Ben Maurer; Benjamin Leonhardi; Bernie Huang; Bhargavi Paranjape; Bing Liu; Binh Tang; Bobbie Chern; Brani Stojkovic; Brian Fuller; Catalina Mejia Arenas; Chao Zhou; Charlotte Caucheteux; Chaya Nayak; Ching-Hsiang Chu; Chloe Bi; Chris Cai; Chris Cox; Chris Marra; Chris McConnell; Christian Keller; Christoph Feichtenhofer; Christophe Touret; Chunyang Wu; Corinne Wong; Cristian Canton Ferrer; Damien Allonsius; Daniel Kreymer; Daniel Haziza; Daniel Li; Danielle Pintz; Danny Livshits; Danny Wyatt; David Adkins; David Esiobu; David Xu; Davide Testuggine; Delia David; Devi Parikh; Dhruv Choudhary; Dhruv Mahajan; Diana Liskovich; Diego Garcia-Olano; Diego Perino; Dieuwke Hupkes; Dingkang Wang; Dustin Holland; Egor Lakomkin; Elina Lobanova; Xiaoqing Ellen Tan; Emily Dinan; Eric Smith; Erik Brinkman; Esteban Arcaute; Filip Radenovic; Firat Ozgenel; Francesco Caggioni; Frank Seide; Frank Zhang; Gabriel Synnaeve; Gabriella Schwarz; Gabrielle Lee; Gada Badeer; Georgia Anderson; Graeme Nail; Gregoire Mialon; Guan Pang; Guillem Cucurell; Hailey Nguyen; Hannah Korevaar; Hannah Wang; Haroun Habeeb; Harrison Rudolph; Henry Aspegren; Hu Xu; Hugo Touvron; Iga Kozlowska; Igor Molybog; Igor Tufanov; Iliyan Zarov; Imanol Arrieta Ibarra; Irina-Elena Veliche; Isabel Kloumann; Ishan Misra; Ivan Evtimov; Jacob Xu; Jade Copet; Jake Weissman; Jan Geffert; Jana Vranes; Japhet Asher; Jason Park; Jay Mahadeokar; Jean-Baptiste Gaya; Jeet Shah; Jelmer van der Linde; Jennifer Chan; Jenny Hong; Jenya Lee; Jeremy Fu; Jeremy Teboul; Jianfeng Chi; Jianyu Huang; Jie Wang; Jiecao Yu; Joanna Bitton; Joe Spisak; Joelle Pineau; Jon Carvill; Jongsoo Park; Joseph Rocca; Joshua Johnstun; Junteng Jia; Kalyan Vasuden Alwala; Kam Hou U; Kate Plawiak; Kartikeya Upasani; Kaushik Veeraraghavan; Ke Li; Kenneth Heafield; Kevin Stone; Khalid El-Arini; Krithika Iyer; Kshitiz Malik; Kuenley Chiu; Kunal Bhalla; Kyle Huang; Lakshya Garg; Lauren Rantala-Yeary; Laurens van der Maaten; Lawrence Chen; Leandro Silva; Lee Bell; Lei Zhang; Liang Tan; Louis Martin; Lovish Madaan; Luca Wehrstedt; Lukas Blecher; Luke de Oliveira; Madeline Muzzi; Madian Khabsa; Manav Avlani; Mannat Singh; Manohar Paluri; Mark Zuckerberg; Marcin Kardas; Martynas Mankus; Mathew Oldham; Mathieu Rita; Matthew Lennie; Maya Pavlova; Meghan Keneally; Melanie Kambadur; Mihir Patel; Mikayel Samvelyan; Mike Clark; Mike Lewis; Min Si; Mitesh Kumar Singh; Mo Metanat; Mona Hassan; Naman Goyal; Narjes Torabi; Nicolas Usunier; Nikolay Bashlykov; Nikolay Bogoychev; Niladri Chatterji; Ning Dong; Oliver Aobo Yang; Olivier Duchenne; Onur Celebi; Parth Parekh; Patrick Alrassy; Paul Saab; Pavan Balaji; Pedro Rittner; Pengchuan Zhang; Pengwei Li; Petar Vasic; Peter Weng; Polina Zvyagina; Prajjwal Bhargava; Pratik Dubal; Praveen Krishnan; Punit Singh Koura; Qing He; Rachel Rodriguez; Ragavan Srinivasan; Rahul Mitra; Ramon Calderer; Raymond Li; Robert Stojnic; Roberta Raileanu; Robin Battey; Rocky Wang; Rohit Girdhar; Rohit Patel; Romain Sauvestre; Ronnie Polidoro; Roshan Sumbaly; Ross Taylor; Ruan Silva; Rui Hou; Rui Wang; Russ Howes; Ruty Rinott; Saghar Hosseini; Sai Jayesh Bondu; Samyak Datta; Sanjay Singh; Sara Chugh; Sargun Dhillon; Satadru Pan; Sean Bell; Sergey Edunov; Shaoliang Nie; Sharan Narang; Sharath Raparthy; Shaun Lindsay; Sheng Feng; Sheng Shen; Shenghao Lin; Shiva Shankar; Shruti Bhosale; Shun Zhang; Simon Vandenhende; Sinong Wang; Seohyun Sonia Kim; Soumya Batra; Sten Sootla; Steve Kehoe; Suchin Gururangan; Sumit Gupta; Sunny Virk; Sydney Borodinsky; Tamar Glaser; Tamar Herman; Tamara Best; Tara Fowler; Thomas Georgiou; Thomas Scialom; Tianhe Li; Todor Mihaylov; Tong Xiao; Ujjwal Karn; Vedanuj Goswami; Vibhor Gupta; Vignesh Ramanathan; Viktor Kerkez; Vinay Satish Kumar; Vincent Gonguet; Vish Vogeti; Vlad Poenaru; Vlad Tiberiu Mihailescu; Vladan Petrovic; Vladimir Ivanov; Wei Li; Weiwei Chu; Wenhan Xiong; Wenyin Fu; Wes Bouaziz; Whitney Meers; Will Constable; Xavier Martinet; Xiaojian Wu; Xinbo Gao; Xinfeng Xie; Xuchao Jia; Yaelle Goldschlag; Yann LeCun; Yashesh Gaur; Yasmine Babaei; Ye Qi; Yenda Li; Yi Wen; Yiwen Song; Youngjin Nam; Yuchen Hao; Yuchen Zhang; Yun Wang; Yuning Mao; Yuzi He; Zacharie Delpierre Coudert; Zachary DeVito; Zahra Hankir; Zhaoduo Wen; Zheng Yan; Zhengxing Chen; Zhenyu Yang; Zoe Papakipos" ]
[ 56, 42, 6, 13, 429, 8, 6, 270, 280, 72, 115, 118, 126, 2136 ]
[ "TAGS\n#transformers #safetensors #llama #text-generation #meta #llama-3 #conversational #en #license-llama3 #autotrain_compatible #endpoints_compatible #text-generation-inference #4-bit #region-us \n### Use with transformers\n\n\nYou can run conversational inference using the Transformers pipeline abstraction, or by leveraging the Auto classes with the 'generate()' function. Let's see examples of both.#### Transformers pipeline#### Transformers AutoModelForCausalLM### Use with 'llama3'\n\n\nPlease, follow the instructions in the repository\n\n\nTo download Original checkpoints, see the example command below leveraging 'huggingface-cli':\n\n\nFor Hugging Face support, we recommend using transformers or TGI, but a similar command works.\n\n\nHardware and Software\n---------------------\n\n\nTraining Factors We used custom training libraries, Meta's Research SuperCluster, and production clusters for pretraining. Fine-tuning, annotation, and evaluation were also performed on third-party cloud compute.\n\n\nCarbon Footprint Pretraining utilized a cumulative 7.7M GPU hours of computation on hardware of type H100-80GB (TDP of 700W). Estimated total emissions were 2290 tCO2eq, 100% of which were offset by Meta’s sustainability program.\n\n\n\nCO2 emissions during pre-training. Time: total GPU time required for training each model. Power Consumption: peak power capacity per GPU device for the GPUs used adjusted for power usage efficiency. 100% of the emissions are directly offset by Meta's sustainability program, and because we are openly releasing these models, the pretraining costs do not need to be incurred by others.\n\n\nTraining Data\n-------------\n\n\nOverview Llama 3 was pretrained on over 15 trillion tokens of data from publicly available sources. The fine-tuning data includes publicly available instruction datasets, as well as over 10M human-annotated examples. Neither the pretraining nor the fine-tuning datasets include Meta user data.\n\n\nData Freshness The pretraining data has a cutoff of March 2023 for the 7B and December 2023 for the 70B models respectively.\n\n\nBenchmarks\n----------\n\n\nIn this section, we report the results for Llama 3 models on standard automatic benchmarks. For all the evaluations, we use our internal evaluations library. For details on the methodology see here.### Base pretrained models### Instruction tuned models### Responsibility & Safety\n\n\nWe believe that an open approach to AI leads to better, safer products, faster innovation, and a bigger overall market. We are committed to Responsible AI development and took a series of steps to limit misuse and harm and support the open source community.\n\n\nFoundation models are widely capable technologies that are built to be used for a diverse range of applications. They are not designed to meet every developer preference on safety levels for all use cases, out-of-the-box, as those by their nature will differ across different applications.\n\n\nRather, responsible LLM-application deployment is achieved by implementing a series of safety best practices throughout the development of such applications, from the model pre-training, fine-tuning and the deployment of systems composed of safeguards to tailor the safety needs specifically to the use case and audience.\n\n\nAs part of the Llama 3 release, we updated our Responsible Use Guide to outline the steps and best practices for developers to implement model and system level safety for their application. We also provide a set of resources including Meta Llama Guard 2 and Code Shield safeguards. These tools have proven to drastically reduce residual risks of LLM Systems, while maintaining a high level of helpfulness. We encourage developers to tune and deploy these safeguards according to their needs and we provide a reference implementation to get you started.#### Llama 3-Instruct\n\n\nAs outlined in the Responsible Use Guide, some trade-off between model helpfulness and model alignment is likely unavoidable. Developers should exercise discretion about how to weigh the benefits of alignment and helpfulness for their specific use case and audience. Developers should be mindful of residual risks when using Llama models and leverage additional safety tools as needed to reach the right safety bar for their use case.\n\n\nSafety\n\n\nFor our instruction tuned model, we conducted extensive red teaming exercises, performed adversarial evaluations and implemented safety mitigations techniques to lower residual risks. As with any Large Language Model, residual risks will likely remain and we recommend that developers assess these risks in the context of their use case. In parallel, we are working with the community to make AI safety benchmark standards transparent, rigorous and interpretable.\n\n\nRefusals\n\n\nIn addition to residual risks, we put a great emphasis on model refusals to benign prompts. Over-refusing not only can impact the user experience but could even be harmful in certain contexts as well. We’ve heard the feedback from the developer community and improved our fine tuning to ensure that Llama 3 is significantly less likely to falsely refuse to answer prompts than Llama 2.\n\n\nWe built internal benchmarks and developed mitigations to limit false refusals making Llama 3 our most helpful model to date.#### Responsible release\n\n\nIn addition to responsible use considerations outlined above, we followed a rigorous process that requires us to take extra measures against misuse and critical risks before we make our release decision.\n\n\nMisuse\n\n\nIf you access or use Llama 3, you agree to the Acceptable Use Policy. The most recent copy of this policy can be found at URL#### Critical risks\n\n\nCBRNE (Chemical, Biological, Radiological, Nuclear, and high yield Explosives)\n\n\nWe have conducted a two fold assessment of the safety of the model in this area:\n\n\n* Iterative testing during model training to assess the safety of responses related to CBRNE threats and other adversarial risks.\n* Involving external CBRNE experts to conduct an uplift test assessing the ability of the model to accurately provide expert knowledge and reduce barriers to potential CBRNE misuse, by reference to what can be achieved using web search (without the model).### Cyber Security\n\n\nWe have evaluated Llama 3 with CyberSecEval, Meta’s cybersecurity safety eval suite, measuring Llama 3’s propensity to suggest insecure code when used as a coding assistant, and Llama 3’s propensity to comply with requests to help carry out cyber attacks, where attacks are defined by the industry standard MITRE ATT&CK cyber attack ontology. On our insecure coding and cyber attacker helpfulness tests, Llama 3 behaved in the same range or safer than models of equivalent coding capability.### Child Safety\n\n\nChild Safety risk assessments were conducted using a team of experts, to assess the model’s capability to produce outputs that could result in Child Safety risks and inform on any necessary and appropriate risk mitigations via fine tuning. We leveraged those expert red teaming sessions to expand the coverage of our evaluation benchmarks through Llama 3 model development. For Llama 3, we conducted new in-depth sessions using objective based methodologies to assess the model risks along multiple attack vectors. We also partnered with content specialists to perform red teaming exercises assessing potentially violating content while taking account of market specific nuances or experiences.### Community\n\n\nGenerative AI safety requires expertise and tooling, and we believe in the strength of the open community to accelerate its progress. We are active members of open consortiums, including the AI Alliance, Partnership in AI and MLCommons, actively contributing to safety standardization and transparency. We encourage the community to adopt taxonomies like the MLCommons Proof of Concept evaluation to facilitate collaboration and transparency on safety and content evaluations. Our Purple Llama tools are open sourced for the community to use and widely distributed across ecosystem partners including cloud service providers. We encourage community contributions to our Github repository.\n\n\nFinally, we put in place a set of resources including an output reporting mechanism and bug bounty program to continuously improve the Llama technology with the help of the community.\n\n\nEthical Considerations and Limitations\n--------------------------------------\n\n\nThe core values of Llama 3 are openness, inclusivity and helpfulness. It is meant to serve everyone, and to work for a wide range of use cases. It is thus designed to be accessible to people across many different backgrounds, experiences and perspectives. Llama 3 addresses users and their needs as they are, without insertion unnecessary judgment or normativity, while reflecting the understanding that even content that may appear problematic in some cases can serve valuable purposes in others. It respects the dignity and autonomy of all users, especially in terms of the values of free thought and expression that power innovation and progress.\n\n\nBut Llama 3 is a new technology, and like any new technology, there are risks associated with its use. Testing conducted to date has been in English, and has not covered, nor could it cover, all scenarios. For these reasons, as with all LLMs, Llama 3’s potential outputs cannot be predicted in advance, and the model may in some instances produce inaccurate, biased or other objectionable responses to user prompts. Therefore, before deploying any applications of Llama 3 models, developers should perform safety testing and tuning tailored to their specific applications of the model. As outlined in the Responsible Use Guide, we recommend incorporating Purple Llama solutions into your workflows and specifically Llama Guard which provides a base model to filter input and output prompts to layer system-level safety on top of model-level safety.\n\n\nPlease see the Responsible Use Guide available at URL\n\n\ninstructions\n\n\n@article{llama3modelcard,\n\n\ntitle={Llama 3 Model Card},\n\n\nauthor={AI@Meta},\n\n\nyear={2024},\n\n\nurl = {URL\n\n\n}\n\n\nContributors\n------------\n\n\nAaditya Singh; Aaron Grattafiori; Abhimanyu Dubey; Abhinav Jauhri; Abhinav Pandey; Abhishek Kadian; Adam Kelsey; Adi Gangidi; Ahmad Al-Dahle; Ahuva Goldstand; Aiesha Letman; Ajay Menon; Akhil Mathur; Alan Schelten; Alex Vaughan; Amy Yang; Andrei Lupu; Andres Alvarado; Andrew Gallagher; Andrew Gu; Andrew Ho; Andrew Poulton; Andrew Ryan; Angela Fan; Ankit Ramchandani; Anthony Hartshorn; Archi Mitra; Archie Sravankumar; Artem Korenev; Arun Rao; Ashley Gabriel; Ashwin Bharambe; Assaf Eisenman; Aston Zhang; Aurelien Rodriguez; Austen Gregerson; Ava Spataru; Baptiste Roziere; Ben Maurer; Benjamin Leonhardi; Bernie Huang; Bhargavi Paranjape; Bing Liu; Binh Tang; Bobbie Chern; Brani Stojkovic; Brian Fuller; Catalina Mejia Arenas; Chao Zhou; Charlotte Caucheteux; Chaya Nayak; Ching-Hsiang Chu; Chloe Bi; Chris Cai; Chris Cox; Chris Marra; Chris McConnell; Christian Keller; Christoph Feichtenhofer; Christophe Touret; Chunyang Wu; Corinne Wong; Cristian Canton Ferrer; Damien Allonsius; Daniel Kreymer; Daniel Haziza; Daniel Li; Danielle Pintz; Danny Livshits; Danny Wyatt; David Adkins; David Esiobu; David Xu; Davide Testuggine; Delia David; Devi Parikh; Dhruv Choudhary; Dhruv Mahajan; Diana Liskovich; Diego Garcia-Olano; Diego Perino; Dieuwke Hupkes; Dingkang Wang; Dustin Holland; Egor Lakomkin; Elina Lobanova; Xiaoqing Ellen Tan; Emily Dinan; Eric Smith; Erik Brinkman; Esteban Arcaute; Filip Radenovic; Firat Ozgenel; Francesco Caggioni; Frank Seide; Frank Zhang; Gabriel Synnaeve; Gabriella Schwarz; Gabrielle Lee; Gada Badeer; Georgia Anderson; Graeme Nail; Gregoire Mialon; Guan Pang; Guillem Cucurell; Hailey Nguyen; Hannah Korevaar; Hannah Wang; Haroun Habeeb; Harrison Rudolph; Henry Aspegren; Hu Xu; Hugo Touvron; Iga Kozlowska; Igor Molybog; Igor Tufanov; Iliyan Zarov; Imanol Arrieta Ibarra; Irina-Elena Veliche; Isabel Kloumann; Ishan Misra; Ivan Evtimov; Jacob Xu; Jade Copet; Jake Weissman; Jan Geffert; Jana Vranes; Japhet Asher; Jason Park; Jay Mahadeokar; Jean-Baptiste Gaya; Jeet Shah; Jelmer van der Linde; Jennifer Chan; Jenny Hong; Jenya Lee; Jeremy Fu; Jeremy Teboul; Jianfeng Chi; Jianyu Huang; Jie Wang; Jiecao Yu; Joanna Bitton; Joe Spisak; Joelle Pineau; Jon Carvill; Jongsoo Park; Joseph Rocca; Joshua Johnstun; Junteng Jia; Kalyan Vasuden Alwala; Kam Hou U; Kate Plawiak; Kartikeya Upasani; Kaushik Veeraraghavan; Ke Li; Kenneth Heafield; Kevin Stone; Khalid El-Arini; Krithika Iyer; Kshitiz Malik; Kuenley Chiu; Kunal Bhalla; Kyle Huang; Lakshya Garg; Lauren Rantala-Yeary; Laurens van der Maaten; Lawrence Chen; Leandro Silva; Lee Bell; Lei Zhang; Liang Tan; Louis Martin; Lovish Madaan; Luca Wehrstedt; Lukas Blecher; Luke de Oliveira; Madeline Muzzi; Madian Khabsa; Manav Avlani; Mannat Singh; Manohar Paluri; Mark Zuckerberg; Marcin Kardas; Martynas Mankus; Mathew Oldham; Mathieu Rita; Matthew Lennie; Maya Pavlova; Meghan Keneally; Melanie Kambadur; Mihir Patel; Mikayel Samvelyan; Mike Clark; Mike Lewis; Min Si; Mitesh Kumar Singh; Mo Metanat; Mona Hassan; Naman Goyal; Narjes Torabi; Nicolas Usunier; Nikolay Bashlykov; Nikolay Bogoychev; Niladri Chatterji; Ning Dong; Oliver Aobo Yang; Olivier Duchenne; Onur Celebi; Parth Parekh; Patrick Alrassy; Paul Saab; Pavan Balaji; Pedro Rittner; Pengchuan Zhang; Pengwei Li; Petar Vasic; Peter Weng; Polina Zvyagina; Prajjwal Bhargava; Pratik Dubal; Praveen Krishnan; Punit Singh Koura; Qing He; Rachel Rodriguez; Ragavan Srinivasan; Rahul Mitra; Ramon Calderer; Raymond Li; Robert Stojnic; Roberta Raileanu; Robin Battey; Rocky Wang; Rohit Girdhar; Rohit Patel; Romain Sauvestre; Ronnie Polidoro; Roshan Sumbaly; Ross Taylor; Ruan Silva; Rui Hou; Rui Wang; Russ Howes; Ruty Rinott; Saghar Hosseini; Sai Jayesh Bondu; Samyak Datta; Sanjay Singh; Sara Chugh; Sargun Dhillon; Satadru Pan; Sean Bell; Sergey Edunov; Shaoliang Nie; Sharan Narang; Sharath Raparthy; Shaun Lindsay; Sheng Feng; Sheng Shen; Shenghao Lin; Shiva Shankar; Shruti Bhosale; Shun Zhang; Simon Vandenhende; Sinong Wang; Seohyun Sonia Kim; Soumya Batra; Sten Sootla; Steve Kehoe; Suchin Gururangan; Sumit Gupta; Sunny Virk; Sydney Borodinsky; Tamar Glaser; Tamar Herman; Tamara Best; Tara Fowler; Thomas Georgiou; Thomas Scialom; Tianhe Li; Todor Mihaylov; Tong Xiao; Ujjwal Karn; Vedanuj Goswami; Vibhor Gupta; Vignesh Ramanathan; Viktor Kerkez; Vinay Satish Kumar; Vincent Gonguet; Vish Vogeti; Vlad Poenaru; Vlad Tiberiu Mihailescu; Vladan Petrovic; Vladimir Ivanov; Wei Li; Weiwei Chu; Wenhan Xiong; Wenyin Fu; Wes Bouaziz; Whitney Meers; Will Constable; Xavier Martinet; Xiaojian Wu; Xinbo Gao; Xinfeng Xie; Xuchao Jia; Yaelle Goldschlag; Yann LeCun; Yashesh Gaur; Yasmine Babaei; Ye Qi; Yenda Li; Yi Wen; Yiwen Song; Youngjin Nam; Yuchen Hao; Yuchen Zhang; Yun Wang; Yuning Mao; Yuzi He; Zacharie Delpierre Coudert; Zachary DeVito; Zahra Hankir; Zhaoduo Wen; Zheng Yan; Zhengxing Chen; Zhenyu Yang; Zoe Papakipos" ]
null
peft
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.10.0
{"library_name": "peft", "base_model": "Universal-NER/UniNER-7B-type"}
jc80622/unilora_sec151_populated_dense
null
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:Universal-NER/UniNER-7B-type", "region:us" ]
null
2024-04-30T19:42:20+00:00
[ "1910.09700" ]
[]
TAGS #peft #safetensors #arxiv-1910.09700 #base_model-Universal-NER/UniNER-7B-type #region-us
# Model Card for Model ID ## Model Details ### Model Description - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact ### Framework versions - PEFT 0.10.0
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\n\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact", "### Framework versions\n\n- PEFT 0.10.0" ]
[ "TAGS\n#peft #safetensors #arxiv-1910.09700 #base_model-Universal-NER/UniNER-7B-type #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\n\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact", "### Framework versions\n\n- PEFT 0.10.0" ]
[ 39, 6, 4, 50, 23, 3, 5, 8, 9, 8, 34, 20, 4, 5, 5, 11, 13, 12, 3, 10, 6, 5, 6, 4, 5, 7, 49, 7, 7, 5, 5, 15, 7, 7, 8, 5, 13 ]
[ "TAGS\n#peft #safetensors #arxiv-1910.09700 #base_model-Universal-NER/UniNER-7B-type #region-us \n# Model Card for Model ID## Model Details### Model Description\n\n\n\n\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Downstream Use [optional]### Out-of-Scope Use## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.## How to Get Started with the Model\n\nUse the code below to get started with the model.## Training Details### Training Data### Training Procedure#### Preprocessing [optional]#### Training Hyperparameters\n\n- Training regime:#### Speeds, Sizes, Times [optional]## Evaluation### Testing Data, Factors & Metrics#### Testing Data#### Factors#### Metrics### Results#### Summary## Model Examination [optional]## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:## Technical Specifications [optional]### Model Architecture and Objective### Compute Infrastructure#### Hardware#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Model Card Authors [optional]## Model Card Contact### Framework versions\n\n- PEFT 0.10.0" ]
text-generation
transformers
<a href="https://www.gradient.ai" target="_blank"><img src="https://cdn-uploads.huggingface.co/production/uploads/655bb613e8a8971e89944f3e/TSa3V8YpoVagnTYgxiLaO.png" width="200"/></a> # Llama-3 8B Gradient Instruct 1048k Gradient incorporates your data to deploy autonomous assistants that power critical operations across your business. If you're looking to build custom AI models or agents, email us a message [email protected]. For more info see our [End-to-end development service for custom LLMs and AI systems](https://gradient.ai/development-lab) This model extends LLama-3 8B's context length from 8k to > 1040K, developed by Gradient, sponsored by compute from [Crusoe Energy](https://huggingface.co/crusoeai). It demonstrates that SOTA LLMs can learn to operate on long context with minimal training by appropriately adjusting RoPE theta. We trained on 830M tokens for this stage, and 1.4B tokens total for all stages, which is < 0.01% of Llama-3's original pre-training data. ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6585dc9be92bc5f258156bd6/6MKLoX2ruLIaREiyb6coO.png) **Approach:** - [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) as the base - NTK-aware interpolation [1] to initialize an optimal schedule for RoPE theta, followed by empirical RoPE theta optimization - Progressive training on increasing context lengths, similar to [Large World Model](https://huggingface.co/LargeWorldModel) [2] (See details below) **Infra:** We build on top of the EasyContext Blockwise RingAttention library [3] to scalably and efficiently train on contexts up to 1048k tokens on [Crusoe Energy](https://huggingface.co/crusoeai) high performance L40S cluster. Notably, we layered parallelism on top of Ring Attention with a custom network topology to better leverage large GPU clusters in the face of network bottlenecks from passing many KV blocks between devices. This gave us a 33x speedup in model training (compare 524k and 1048k to 65k and 262k in the table below). **Data:** For training data, we generate long contexts by augmenting [SlimPajama](https://huggingface.co/datasets/cerebras/SlimPajama-627B). **Progressive Training Details:** | | 65K | 262K | 524k | 1048k | |------------------------|-----------|-----------|-----------|-----------| | Initialize From | LLaMA-3 8B| 65K | 262K | 524k | | Sequence Length 2^N | 16 | 18 | 19 | 20 | | RoPE theta | 15.3 M | 207.1 M | 1.06B | 2.80B | | Batch Size | 1 | 1 | 16 | 16 | | Gradient Accumulation Steps | 32 | 16 | 1 | 1 | | Steps | 30 | 24 | 50 | 50 | | Total Tokens | 62914560 | 100663296 | 419430400 | 838860800 | | Learning Rate | 2.00E-05 | 2.00E-05 | 2.00E-05 | 2.00E-05 | | # GPUs | 8 | 32 | 512 | 512 | | GPU Type | NVIDIA L40S | NVIDIA L40S | NVIDIA L40S | NVIDIA L40S | | Minutes to Train (Wall)| 202 | 555 | 61 | 87 | **Quants**: - [GGUF](https://huggingface.co/crusoeai/Llama-3-8B-Instruct-1048k-GGUF) - [MLX-4bit](https://huggingface.co/mlx-community/Llama-3-8B-Instruct-1048k-4bit) ## The Gradient AI Team https://gradient.ai/ Gradient is accelerating AI transformation across industries. Our AI Foundry incorporates your data to deploy autonomous assistants that power critical operations across your business. ## Contact Us Drop an email to [[email protected]](mailto:[email protected]) ## References [1] Peng, Bowen, et al. "Yarn: Efficient context window extension of large language models." arXiv preprint arXiv:2309.00071 (2023). [2] Liu, Hao, et al. "World Model on Million-Length Video And Language With RingAttention." arXiv preprint arXiv:2402.08268 (2024). [3] https://github.com/jzhang38/EasyContext ---- # Base Model ## Model Details Meta developed and released the Meta Llama 3 family of large language models (LLMs), a collection of pretrained and instruction tuned generative text models in 8 and 70B sizes. The Llama 3 instruction tuned models are optimized for dialogue use cases and outperform many of the available open source chat models on common industry benchmarks. Further, in developing these models, we took great care to optimize helpfulness and safety. **Model developers** Meta **Variations** Llama 3 comes in two sizes — 8B and 70B parameters — in pre-trained and instruction tuned variants. **Input** Models input text only. **Output** Models generate text and code only. **Model Architecture** Llama 3 is an auto-regressive language model that uses an optimized transformer architecture. The tuned versions use supervised fine-tuning (SFT) and reinforcement learning with human feedback (RLHF) to align with human preferences for helpfulness and safety. <table> <tr> <td> </td> <td><strong>Training Data</strong> </td> <td><strong>Params</strong> </td> <td><strong>Context length</strong> </td> <td><strong>GQA</strong> </td> <td><strong>Token count</strong> </td> <td><strong>Knowledge cutoff</strong> </td> </tr> <tr> <td rowspan="2" >Llama 3 </td> <td rowspan="2" >A new mix of publicly available online data. </td> <td>8B </td> <td>8k </td> <td>Yes </td> <td rowspan="2" >15T+ </td> <td>March, 2023 </td> </tr> <tr> <td>70B </td> <td>8k </td> <td>Yes </td> <td>December, 2023 </td> </tr> </table> **Llama 3 family of models**. Token counts refer to pretraining data only. Both the 8 and 70B versions use Grouped-Query Attention (GQA) for improved inference scalability. **Model Release Date** April 18, 2024. **Status** This is a static model trained on an offline dataset. Future versions of the tuned models will be released as we improve model safety with community feedback. **License** A custom commercial license is available at: [https://llama.meta.com/llama3/license](https://llama.meta.com/llama3/license) Where to send questions or comments about the model Instructions on how to provide feedback or comments on the model can be found in the model [README](https://github.com/meta-llama/llama3). For more technical information about generation parameters and recipes for how to use Llama 3 in applications, please go [here](https://github.com/meta-llama/llama-recipes). ## Intended Use **Intended Use Cases** Llama 3 is intended for commercial and research use in English. Instruction tuned models are intended for assistant-like chat, whereas pretrained models can be adapted for a variety of natural language generation tasks. **Out-of-scope** Use in any manner that violates applicable laws or regulations (including trade compliance laws). Use in any other way that is prohibited by the Acceptable Use Policy and Llama 3 Community License. Use in languages other than English**. **Note: Developers may fine-tune Llama 3 models for languages beyond English provided they comply with the Llama 3 Community License and the Acceptable Use Policy. ## How to use This repository contains two versions of Meta-Llama-3-8B-Instruct, for use with transformers and with the original `llama3` codebase. ### Use with transformers You can run conversational inference using the Transformers pipeline abstraction, or by leveraging the Auto classes with the `generate()` function. Let's see examples of both. #### Transformers pipeline ```python import transformers import torch model_id = "meta-llama/Meta-Llama-3-8B-Instruct" pipeline = transformers.pipeline( "text-generation", model=model_id, model_kwargs={"torch_dtype": torch.bfloat16}, device_map="auto", ) messages = [ {"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"}, {"role": "user", "content": "Who are you?"}, ] prompt = pipeline.tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) terminators = [ pipeline.tokenizer.eos_token_id, pipeline.tokenizer.convert_tokens_to_ids("<|eot_id|>") ] outputs = pipeline( prompt, max_new_tokens=256, eos_token_id=terminators, do_sample=True, temperature=0.6, top_p=0.9, ) print(outputs[0]["generated_text"][len(prompt):]) ``` #### Transformers AutoModelForCausalLM ```python from transformers import AutoTokenizer, AutoModelForCausalLM import torch model_id = "meta-llama/Meta-Llama-3-8B-Instruct" tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained( model_id, torch_dtype=torch.bfloat16, device_map="auto", ) messages = [ {"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"}, {"role": "user", "content": "Who are you?"}, ] input_ids = tokenizer.apply_chat_template( messages, add_generation_prompt=True, return_tensors="pt" ).to(model.device) terminators = [ tokenizer.eos_token_id, tokenizer.convert_tokens_to_ids("<|eot_id|>") ] outputs = model.generate( input_ids, max_new_tokens=256, eos_token_id=terminators, do_sample=True, temperature=0.6, top_p=0.9, ) response = outputs[0][input_ids.shape[-1]:] print(tokenizer.decode(response, skip_special_tokens=True)) ``` ### Use with `llama3` Please, follow the instructions in the [repository](https://github.com/meta-llama/llama3) To download Original checkpoints, see the example command below leveraging `huggingface-cli`: ``` huggingface-cli download meta-llama/Meta-Llama-3-8B-Instruct --include "original/*" --local-dir Meta-Llama-3-8B-Instruct ``` For Hugging Face support, we recommend using transformers or TGI, but a similar command works. ## Hardware and Software **Training Factors** We used custom training libraries, Meta's Research SuperCluster, and production clusters for pretraining. Fine-tuning, annotation, and evaluation were also performed on third-party cloud compute. **Carbon Footprint Pretraining utilized a cumulative** 7.7M GPU hours of computation on hardware of type H100-80GB (TDP of 700W). Estimated total emissions were 2290 tCO2eq, 100% of which were offset by Meta’s sustainability program. <table> <tr> <td> </td> <td><strong>Time (GPU hours)</strong> </td> <td><strong>Power Consumption (W)</strong> </td> <td><strong>Carbon Emitted(tCO2eq)</strong> </td> </tr> <tr> <td>Llama 3 8B </td> <td>1.3M </td> <td>700 </td> <td>390 </td> </tr> <tr> <td>Llama 3 70B </td> <td>6.4M </td> <td>700 </td> <td>1900 </td> </tr> <tr> <td>Total </td> <td>7.7M </td> <td> </td> <td>2290 </td> </tr> </table> **CO2 emissions during pre-training**. Time: total GPU time required for training each model. Power Consumption: peak power capacity per GPU device for the GPUs used adjusted for power usage efficiency. 100% of the emissions are directly offset by Meta's sustainability program, and because we are openly releasing these models, the pretraining costs do not need to be incurred by others. ## Training Data **Overview** Llama 3 was pretrained on over 15 trillion tokens of data from publicly available sources. The fine-tuning data includes publicly available instruction datasets, as well as over 10M human-annotated examples. Neither the pretraining nor the fine-tuning datasets include Meta user data. **Data Freshness** The pretraining data has a cutoff of March 2023 for the 7B and December 2023 for the 70B models respectively. ## Benchmarks In this section, we report the results for Llama 3 models on standard automatic benchmarks. For all the evaluations, we use our internal evaluations library. For details on the methodology see [here](https://github.com/meta-llama/llama3/blob/main/eval_methodology.md). ### Base pretrained models <table> <tr> <td><strong>Category</strong> </td> <td><strong>Benchmark</strong> </td> <td><strong>Llama 3 8B</strong> </td> <td><strong>Llama2 7B</strong> </td> <td><strong>Llama2 13B</strong> </td> <td><strong>Llama 3 70B</strong> </td> <td><strong>Llama2 70B</strong> </td> </tr> <tr> <td rowspan="6" >General </td> <td>MMLU (5-shot) </td> <td>66.6 </td> <td>45.7 </td> <td>53.8 </td> <td>79.5 </td> <td>69.7 </td> </tr> <tr> <td>AGIEval English (3-5 shot) </td> <td>45.9 </td> <td>28.8 </td> <td>38.7 </td> <td>63.0 </td> <td>54.8 </td> </tr> <tr> <td>CommonSenseQA (7-shot) </td> <td>72.6 </td> <td>57.6 </td> <td>67.6 </td> <td>83.8 </td> <td>78.7 </td> </tr> <tr> <td>Winogrande (5-shot) </td> <td>76.1 </td> <td>73.3 </td> <td>75.4 </td> <td>83.1 </td> <td>81.8 </td> </tr> <tr> <td>BIG-Bench Hard (3-shot, CoT) </td> <td>61.1 </td> <td>38.1 </td> <td>47.0 </td> <td>81.3 </td> <td>65.7 </td> </tr> <tr> <td>ARC-Challenge (25-shot) </td> <td>78.6 </td> <td>53.7 </td> <td>67.6 </td> <td>93.0 </td> <td>85.3 </td> </tr> <tr> <td>Knowledge reasoning </td> <td>TriviaQA-Wiki (5-shot) </td> <td>78.5 </td> <td>72.1 </td> <td>79.6 </td> <td>89.7 </td> <td>87.5 </td> </tr> <tr> <td rowspan="4" >Reading comprehension </td> <td>SQuAD (1-shot) </td> <td>76.4 </td> <td>72.2 </td> <td>72.1 </td> <td>85.6 </td> <td>82.6 </td> </tr> <tr> <td>QuAC (1-shot, F1) </td> <td>44.4 </td> <td>39.6 </td> <td>44.9 </td> <td>51.1 </td> <td>49.4 </td> </tr> <tr> <td>BoolQ (0-shot) </td> <td>75.7 </td> <td>65.5 </td> <td>66.9 </td> <td>79.0 </td> <td>73.1 </td> </tr> <tr> <td>DROP (3-shot, F1) </td> <td>58.4 </td> <td>37.9 </td> <td>49.8 </td> <td>79.7 </td> <td>70.2 </td> </tr> </table> ### Instruction tuned models <table> <tr> <td><strong>Benchmark</strong> </td> <td><strong>Llama 3 8B</strong> </td> <td><strong>Llama 2 7B</strong> </td> <td><strong>Llama 2 13B</strong> </td> <td><strong>Llama 3 70B</strong> </td> <td><strong>Llama 2 70B</strong> </td> </tr> <tr> <td>MMLU (5-shot) </td> <td>68.4 </td> <td>34.1 </td> <td>47.8 </td> <td>82.0 </td> <td>52.9 </td> </tr> <tr> <td>GPQA (0-shot) </td> <td>34.2 </td> <td>21.7 </td> <td>22.3 </td> <td>39.5 </td> <td>21.0 </td> </tr> <tr> <td>HumanEval (0-shot) </td> <td>62.2 </td> <td>7.9 </td> <td>14.0 </td> <td>81.7 </td> <td>25.6 </td> </tr> <tr> <td>GSM-8K (8-shot, CoT) </td> <td>79.6 </td> <td>25.7 </td> <td>77.4 </td> <td>93.0 </td> <td>57.5 </td> </tr> <tr> <td>MATH (4-shot, CoT) </td> <td>30.0 </td> <td>3.8 </td> <td>6.7 </td> <td>50.4 </td> <td>11.6 </td> </tr> </table> ### Responsibility & Safety We believe that an open approach to AI leads to better, safer products, faster innovation, and a bigger overall market. We are committed to Responsible AI development and took a series of steps to limit misuse and harm and support the open source community. Foundation models are widely capable technologies that are built to be used for a diverse range of applications. They are not designed to meet every developer preference on safety levels for all use cases, out-of-the-box, as those by their nature will differ across different applications. Rather, responsible LLM-application deployment is achieved by implementing a series of safety best practices throughout the development of such applications, from the model pre-training, fine-tuning and the deployment of systems composed of safeguards to tailor the safety needs specifically to the use case and audience. As part of the Llama 3 release, we updated our [Responsible Use Guide](https://llama.meta.com/responsible-use-guide/) to outline the steps and best practices for developers to implement model and system level safety for their application. We also provide a set of resources including [Meta Llama Guard 2](https://llama.meta.com/purple-llama/) and [Code Shield](https://llama.meta.com/purple-llama/) safeguards. These tools have proven to drastically reduce residual risks of LLM Systems, while maintaining a high level of helpfulness. We encourage developers to tune and deploy these safeguards according to their needs and we provide a [reference implementation](https://github.com/meta-llama/llama-recipes/tree/main/recipes/responsible_ai) to get you started. #### Llama 3-Instruct As outlined in the Responsible Use Guide, some trade-off between model helpfulness and model alignment is likely unavoidable. Developers should exercise discretion about how to weigh the benefits of alignment and helpfulness for their specific use case and audience. Developers should be mindful of residual risks when using Llama models and leverage additional safety tools as needed to reach the right safety bar for their use case. <span style="text-decoration:underline;">Safety</span> For our instruction tuned model, we conducted extensive red teaming exercises, performed adversarial evaluations and implemented safety mitigations techniques to lower residual risks. As with any Large Language Model, residual risks will likely remain and we recommend that developers assess these risks in the context of their use case. In parallel, we are working with the community to make AI safety benchmark standards transparent, rigorous and interpretable. <span style="text-decoration:underline;">Refusals</span> In addition to residual risks, we put a great emphasis on model refusals to benign prompts. Over-refusing not only can impact the user experience but could even be harmful in certain contexts as well. We’ve heard the feedback from the developer community and improved our fine tuning to ensure that Llama 3 is significantly less likely to falsely refuse to answer prompts than Llama 2. We built internal benchmarks and developed mitigations to limit false refusals making Llama 3 our most helpful model to date. #### Responsible release In addition to responsible use considerations outlined above, we followed a rigorous process that requires us to take extra measures against misuse and critical risks before we make our release decision. Misuse If you access or use Llama 3, you agree to the Acceptable Use Policy. The most recent copy of this policy can be found at [https://llama.meta.com/llama3/use-policy/](https://llama.meta.com/llama3/use-policy/). #### Critical risks <span style="text-decoration:underline;">CBRNE</span> (Chemical, Biological, Radiological, Nuclear, and high yield Explosives) We have conducted a two fold assessment of the safety of the model in this area: * Iterative testing during model training to assess the safety of responses related to CBRNE threats and other adversarial risks. * Involving external CBRNE experts to conduct an uplift test assessing the ability of the model to accurately provide expert knowledge and reduce barriers to potential CBRNE misuse, by reference to what can be achieved using web search (without the model). ### <span style="text-decoration:underline;">Cyber Security </span> We have evaluated Llama 3 with CyberSecEval, Meta’s cybersecurity safety eval suite, measuring Llama 3’s propensity to suggest insecure code when used as a coding assistant, and Llama 3’s propensity to comply with requests to help carry out cyber attacks, where attacks are defined by the industry standard MITRE ATT&CK cyber attack ontology. On our insecure coding and cyber attacker helpfulness tests, Llama 3 behaved in the same range or safer than models of [equivalent coding capability](https://huggingface.co/spaces/facebook/CyberSecEval). ### <span style="text-decoration:underline;">Child Safety</span> Child Safety risk assessments were conducted using a team of experts, to assess the model’s capability to produce outputs that could result in Child Safety risks and inform on any necessary and appropriate risk mitigations via fine tuning. We leveraged those expert red teaming sessions to expand the coverage of our evaluation benchmarks through Llama 3 model development. For Llama 3, we conducted new in-depth sessions using objective based methodologies to assess the model risks along multiple attack vectors. We also partnered with content specialists to perform red teaming exercises assessing potentially violating content while taking account of market specific nuances or experiences. ### Community Generative AI safety requires expertise and tooling, and we believe in the strength of the open community to accelerate its progress. We are active members of open consortiums, including the AI Alliance, Partnership in AI and MLCommons, actively contributing to safety standardization and transparency. We encourage the community to adopt taxonomies like the MLCommons Proof of Concept evaluation to facilitate collaboration and transparency on safety and content evaluations. Our Purple Llama tools are open sourced for the community to use and widely distributed across ecosystem partners including cloud service providers. We encourage community contributions to our [Github repository](https://github.com/meta-llama/PurpleLlama). Finally, we put in place a set of resources including an [output reporting mechanism](https://developers.facebook.com/llama_output_feedback) and [bug bounty program](https://www.facebook.com/whitehat) to continuously improve the Llama technology with the help of the community. ## Ethical Considerations and Limitations The core values of Llama 3 are openness, inclusivity and helpfulness. It is meant to serve everyone, and to work for a wide range of use cases. It is thus designed to be accessible to people across many different backgrounds, experiences and perspectives. Llama 3 addresses users and their needs as they are, without insertion unnecessary judgment or normativity, while reflecting the understanding that even content that may appear problematic in some cases can serve valuable purposes in others. It respects the dignity and autonomy of all users, especially in terms of the values of free thought and expression that power innovation and progress. But Llama 3 is a new technology, and like any new technology, there are risks associated with its use. Testing conducted to date has been in English, and has not covered, nor could it cover, all scenarios. For these reasons, as with all LLMs, Llama 3’s potential outputs cannot be predicted in advance, and the model may in some instances produce inaccurate, biased or other objectionable responses to user prompts. Therefore, before deploying any applications of Llama 3 models, developers should perform safety testing and tuning tailored to their specific applications of the model. As outlined in the Responsible Use Guide, we recommend incorporating [Purple Llama](https://github.com/facebookresearch/PurpleLlama) solutions into your workflows and specifically [Llama Guard](https://ai.meta.com/research/publications/llama-guard-llm-based-input-output-safeguard-for-human-ai-conversations/) which provides a base model to filter input and output prompts to layer system-level safety on top of model-level safety. Please see the Responsible Use Guide available at [http://llama.meta.com/responsible-use-guide](http://llama.meta.com/responsible-use-guide) ## Citation instructions @article{llama3modelcard, title={Llama 3 Model Card}, author={AI@Meta}, year={2024}, url = {https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md} } ## Contributors Aaditya Singh; Aaron Grattafiori; Abhimanyu Dubey; Abhinav Jauhri; Abhinav Pandey; Abhishek Kadian; Adam Kelsey; Adi Gangidi; Ahmad Al-Dahle; Ahuva Goldstand; Aiesha Letman; Ajay Menon; Akhil Mathur; Alan Schelten; Alex Vaughan; Amy Yang; Andrei Lupu; Andres Alvarado; Andrew Gallagher; Andrew Gu; Andrew Ho; Andrew Poulton; Andrew Ryan; Angela Fan; Ankit Ramchandani; Anthony Hartshorn; Archi Mitra; Archie Sravankumar; Artem Korenev; Arun Rao; Ashley Gabriel; Ashwin Bharambe; Assaf Eisenman; Aston Zhang; Aurelien Rodriguez; Austen Gregerson; Ava Spataru; Baptiste Roziere; Ben Maurer; Benjamin Leonhardi; Bernie Huang; Bhargavi Paranjape; Bing Liu; Binh Tang; Bobbie Chern; Brani Stojkovic; Brian Fuller; Catalina Mejia Arenas; Chao Zhou; Charlotte Caucheteux; Chaya Nayak; Ching-Hsiang Chu; Chloe Bi; Chris Cai; Chris Cox; Chris Marra; Chris McConnell; Christian Keller; Christoph Feichtenhofer; Christophe Touret; Chunyang Wu; Corinne Wong; Cristian Canton Ferrer; Damien Allonsius; Daniel Kreymer; Daniel Haziza; Daniel Li; Danielle Pintz; Danny Livshits; Danny Wyatt; David Adkins; David Esiobu; David Xu; Davide Testuggine; Delia David; Devi Parikh; Dhruv Choudhary; Dhruv Mahajan; Diana Liskovich; Diego Garcia-Olano; Diego Perino; Dieuwke Hupkes; Dingkang Wang; Dustin Holland; Egor Lakomkin; Elina Lobanova; Xiaoqing Ellen Tan; Emily Dinan; Eric Smith; Erik Brinkman; Esteban Arcaute; Filip Radenovic; Firat Ozgenel; Francesco Caggioni; Frank Seide; Frank Zhang; Gabriel Synnaeve; Gabriella Schwarz; Gabrielle Lee; Gada Badeer; Georgia Anderson; Graeme Nail; Gregoire Mialon; Guan Pang; Guillem Cucurell; Hailey Nguyen; Hannah Korevaar; Hannah Wang; Haroun Habeeb; Harrison Rudolph; Henry Aspegren; Hu Xu; Hugo Touvron; Iga Kozlowska; Igor Molybog; Igor Tufanov; Iliyan Zarov; Imanol Arrieta Ibarra; Irina-Elena Veliche; Isabel Kloumann; Ishan Misra; Ivan Evtimov; Jacob Xu; Jade Copet; Jake Weissman; Jan Geffert; Jana Vranes; Japhet Asher; Jason Park; Jay Mahadeokar; Jean-Baptiste Gaya; Jeet Shah; Jelmer van der Linde; Jennifer Chan; Jenny Hong; Jenya Lee; Jeremy Fu; Jeremy Teboul; Jianfeng Chi; Jianyu Huang; Jie Wang; Jiecao Yu; Joanna Bitton; Joe Spisak; Joelle Pineau; Jon Carvill; Jongsoo Park; Joseph Rocca; Joshua Johnstun; Junteng Jia; Kalyan Vasuden Alwala; Kam Hou U; Kate Plawiak; Kartikeya Upasani; Kaushik Veeraraghavan; Ke Li; Kenneth Heafield; Kevin Stone; Khalid El-Arini; Krithika Iyer; Kshitiz Malik; Kuenley Chiu; Kunal Bhalla; Kyle Huang; Lakshya Garg; Lauren Rantala-Yeary; Laurens van der Maaten; Lawrence Chen; Leandro Silva; Lee Bell; Lei Zhang; Liang Tan; Louis Martin; Lovish Madaan; Luca Wehrstedt; Lukas Blecher; Luke de Oliveira; Madeline Muzzi; Madian Khabsa; Manav Avlani; Mannat Singh; Manohar Paluri; Mark Zuckerberg; Marcin Kardas; Martynas Mankus; Mathew Oldham; Mathieu Rita; Matthew Lennie; Maya Pavlova; Meghan Keneally; Melanie Kambadur; Mihir Patel; Mikayel Samvelyan; Mike Clark; Mike Lewis; Min Si; Mitesh Kumar Singh; Mo Metanat; Mona Hassan; Naman Goyal; Narjes Torabi; Nicolas Usunier; Nikolay Bashlykov; Nikolay Bogoychev; Niladri Chatterji; Ning Dong; Oliver Aobo Yang; Olivier Duchenne; Onur Celebi; Parth Parekh; Patrick Alrassy; Paul Saab; Pavan Balaji; Pedro Rittner; Pengchuan Zhang; Pengwei Li; Petar Vasic; Peter Weng; Polina Zvyagina; Prajjwal Bhargava; Pratik Dubal; Praveen Krishnan; Punit Singh Koura; Qing He; Rachel Rodriguez; Ragavan Srinivasan; Rahul Mitra; Ramon Calderer; Raymond Li; Robert Stojnic; Roberta Raileanu; Robin Battey; Rocky Wang; Rohit Girdhar; Rohit Patel; Romain Sauvestre; Ronnie Polidoro; Roshan Sumbaly; Ross Taylor; Ruan Silva; Rui Hou; Rui Wang; Russ Howes; Ruty Rinott; Saghar Hosseini; Sai Jayesh Bondu; Samyak Datta; Sanjay Singh; Sara Chugh; Sargun Dhillon; Satadru Pan; Sean Bell; Sergey Edunov; Shaoliang Nie; Sharan Narang; Sharath Raparthy; Shaun Lindsay; Sheng Feng; Sheng Shen; Shenghao Lin; Shiva Shankar; Shruti Bhosale; Shun Zhang; Simon Vandenhende; Sinong Wang; Seohyun Sonia Kim; Soumya Batra; Sten Sootla; Steve Kehoe; Suchin Gururangan; Sumit Gupta; Sunny Virk; Sydney Borodinsky; Tamar Glaser; Tamar Herman; Tamara Best; Tara Fowler; Thomas Georgiou; Thomas Scialom; Tianhe Li; Todor Mihaylov; Tong Xiao; Ujjwal Karn; Vedanuj Goswami; Vibhor Gupta; Vignesh Ramanathan; Viktor Kerkez; Vinay Satish Kumar; Vincent Gonguet; Vish Vogeti; Vlad Poenaru; Vlad Tiberiu Mihailescu; Vladan Petrovic; Vladimir Ivanov; Wei Li; Weiwei Chu; Wenhan Xiong; Wenyin Fu; Wes Bouaziz; Whitney Meers; Will Constable; Xavier Martinet; Xiaojian Wu; Xinbo Gao; Xinfeng Xie; Xuchao Jia; Yaelle Goldschlag; Yann LeCun; Yashesh Gaur; Yasmine Babaei; Ye Qi; Yenda Li; Yi Wen; Yiwen Song; Youngjin Nam; Yuchen Hao; Yuchen Zhang; Yun Wang; Yuning Mao; Yuzi He; Zacharie Delpierre Coudert; Zachary DeVito; Zahra Hankir; Zhaoduo Wen; Zheng Yan; Zhengxing Chen; Zhenyu Yang; Zoe Papakipos
{"language": ["en"], "license": "llama3", "tags": ["meta", "llama-3"], "pipeline_tag": "text-generation"}
LoneStriker/Llama-3-8B-Instruct-Gradient-1048k-5.0bpw-h6-exl2
null
[ "transformers", "safetensors", "llama", "text-generation", "meta", "llama-3", "conversational", "en", "license:llama3", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "5-bit", "region:us" ]
null
2024-04-30T19:42:22+00:00
[]
[ "en" ]
TAGS #transformers #safetensors #llama #text-generation #meta #llama-3 #conversational #en #license-llama3 #autotrain_compatible #endpoints_compatible #text-generation-inference #5-bit #region-us
[<img src="URL width="200"/>](URL) Llama-3 8B Gradient Instruct 1048k ================================== Gradient incorporates your data to deploy autonomous assistants that power critical operations across your business. If you're looking to build custom AI models or agents, email us a message contact@URL. For more info see our End-to-end development service for custom LLMs and AI systems This model extends LLama-3 8B's context length from 8k to > 1040K, developed by Gradient, sponsored by compute from Crusoe Energy. It demonstrates that SOTA LLMs can learn to operate on long context with minimal training by appropriately adjusting RoPE theta. We trained on 830M tokens for this stage, and 1.4B tokens total for all stages, which is < 0.01% of Llama-3's original pre-training data. !image/png Approach: * meta-llama/Meta-Llama-3-8B-Instruct as the base * NTK-aware interpolation [1] to initialize an optimal schedule for RoPE theta, followed by empirical RoPE theta optimization * Progressive training on increasing context lengths, similar to Large World Model [2] (See details below) Infra: We build on top of the EasyContext Blockwise RingAttention library [3] to scalably and efficiently train on contexts up to 1048k tokens on Crusoe Energy high performance L40S cluster. Notably, we layered parallelism on top of Ring Attention with a custom network topology to better leverage large GPU clusters in the face of network bottlenecks from passing many KV blocks between devices. This gave us a 33x speedup in model training (compare 524k and 1048k to 65k and 262k in the table below). Data: For training data, we generate long contexts by augmenting SlimPajama. Progressive Training Details: Quants: * GGUF * MLX-4bit The Gradient AI Team -------------------- URL Gradient is accelerating AI transformation across industries. Our AI Foundry incorporates your data to deploy autonomous assistants that power critical operations across your business. Contact Us ---------- Drop an email to contact@URL References ---------- [1] Peng, Bowen, et al. "Yarn: Efficient context window extension of large language models." arXiv preprint arXiv:2309.00071 (2023). [2] Liu, Hao, et al. "World Model on Million-Length Video And Language With RingAttention." arXiv preprint arXiv:2402.08268 (2024). [3] URL --- Base Model ========== Model Details ------------- Meta developed and released the Meta Llama 3 family of large language models (LLMs), a collection of pretrained and instruction tuned generative text models in 8 and 70B sizes. The Llama 3 instruction tuned models are optimized for dialogue use cases and outperform many of the available open source chat models on common industry benchmarks. Further, in developing these models, we took great care to optimize helpfulness and safety. Model developers Meta Variations Llama 3 comes in two sizes — 8B and 70B parameters — in pre-trained and instruction tuned variants. Input Models input text only. Output Models generate text and code only. Model Architecture Llama 3 is an auto-regressive language model that uses an optimized transformer architecture. The tuned versions use supervised fine-tuning (SFT) and reinforcement learning with human feedback (RLHF) to align with human preferences for helpfulness and safety. Llama 3 family of models. Token counts refer to pretraining data only. Both the 8 and 70B versions use Grouped-Query Attention (GQA) for improved inference scalability. Model Release Date April 18, 2024. Status This is a static model trained on an offline dataset. Future versions of the tuned models will be released as we improve model safety with community feedback. License A custom commercial license is available at: URL Where to send questions or comments about the model Instructions on how to provide feedback or comments on the model can be found in the model README. For more technical information about generation parameters and recipes for how to use Llama 3 in applications, please go here. Intended Use ------------ Intended Use Cases Llama 3 is intended for commercial and research use in English. Instruction tuned models are intended for assistant-like chat, whereas pretrained models can be adapted for a variety of natural language generation tasks. Out-of-scope Use in any manner that violates applicable laws or regulations (including trade compliance laws). Use in any other way that is prohibited by the Acceptable Use Policy and Llama 3 Community License. Use in languages other than English. Note: Developers may fine-tune Llama 3 models for languages beyond English provided they comply with the Llama 3 Community License and the Acceptable Use Policy. How to use ---------- This repository contains two versions of Meta-Llama-3-8B-Instruct, for use with transformers and with the original 'llama3' codebase. ### Use with transformers You can run conversational inference using the Transformers pipeline abstraction, or by leveraging the Auto classes with the 'generate()' function. Let's see examples of both. #### Transformers pipeline #### Transformers AutoModelForCausalLM ### Use with 'llama3' Please, follow the instructions in the repository To download Original checkpoints, see the example command below leveraging 'huggingface-cli': For Hugging Face support, we recommend using transformers or TGI, but a similar command works. Hardware and Software --------------------- Training Factors We used custom training libraries, Meta's Research SuperCluster, and production clusters for pretraining. Fine-tuning, annotation, and evaluation were also performed on third-party cloud compute. Carbon Footprint Pretraining utilized a cumulative 7.7M GPU hours of computation on hardware of type H100-80GB (TDP of 700W). Estimated total emissions were 2290 tCO2eq, 100% of which were offset by Meta’s sustainability program. CO2 emissions during pre-training. Time: total GPU time required for training each model. Power Consumption: peak power capacity per GPU device for the GPUs used adjusted for power usage efficiency. 100% of the emissions are directly offset by Meta's sustainability program, and because we are openly releasing these models, the pretraining costs do not need to be incurred by others. Training Data ------------- Overview Llama 3 was pretrained on over 15 trillion tokens of data from publicly available sources. The fine-tuning data includes publicly available instruction datasets, as well as over 10M human-annotated examples. Neither the pretraining nor the fine-tuning datasets include Meta user data. Data Freshness The pretraining data has a cutoff of March 2023 for the 7B and December 2023 for the 70B models respectively. Benchmarks ---------- In this section, we report the results for Llama 3 models on standard automatic benchmarks. For all the evaluations, we use our internal evaluations library. For details on the methodology see here. ### Base pretrained models ### Instruction tuned models ### Responsibility & Safety We believe that an open approach to AI leads to better, safer products, faster innovation, and a bigger overall market. We are committed to Responsible AI development and took a series of steps to limit misuse and harm and support the open source community. Foundation models are widely capable technologies that are built to be used for a diverse range of applications. They are not designed to meet every developer preference on safety levels for all use cases, out-of-the-box, as those by their nature will differ across different applications. Rather, responsible LLM-application deployment is achieved by implementing a series of safety best practices throughout the development of such applications, from the model pre-training, fine-tuning and the deployment of systems composed of safeguards to tailor the safety needs specifically to the use case and audience. As part of the Llama 3 release, we updated our Responsible Use Guide to outline the steps and best practices for developers to implement model and system level safety for their application. We also provide a set of resources including Meta Llama Guard 2 and Code Shield safeguards. These tools have proven to drastically reduce residual risks of LLM Systems, while maintaining a high level of helpfulness. We encourage developers to tune and deploy these safeguards according to their needs and we provide a reference implementation to get you started. #### Llama 3-Instruct As outlined in the Responsible Use Guide, some trade-off between model helpfulness and model alignment is likely unavoidable. Developers should exercise discretion about how to weigh the benefits of alignment and helpfulness for their specific use case and audience. Developers should be mindful of residual risks when using Llama models and leverage additional safety tools as needed to reach the right safety bar for their use case. Safety For our instruction tuned model, we conducted extensive red teaming exercises, performed adversarial evaluations and implemented safety mitigations techniques to lower residual risks. As with any Large Language Model, residual risks will likely remain and we recommend that developers assess these risks in the context of their use case. In parallel, we are working with the community to make AI safety benchmark standards transparent, rigorous and interpretable. Refusals In addition to residual risks, we put a great emphasis on model refusals to benign prompts. Over-refusing not only can impact the user experience but could even be harmful in certain contexts as well. We’ve heard the feedback from the developer community and improved our fine tuning to ensure that Llama 3 is significantly less likely to falsely refuse to answer prompts than Llama 2. We built internal benchmarks and developed mitigations to limit false refusals making Llama 3 our most helpful model to date. #### Responsible release In addition to responsible use considerations outlined above, we followed a rigorous process that requires us to take extra measures against misuse and critical risks before we make our release decision. Misuse If you access or use Llama 3, you agree to the Acceptable Use Policy. The most recent copy of this policy can be found at URL #### Critical risks CBRNE (Chemical, Biological, Radiological, Nuclear, and high yield Explosives) We have conducted a two fold assessment of the safety of the model in this area: * Iterative testing during model training to assess the safety of responses related to CBRNE threats and other adversarial risks. * Involving external CBRNE experts to conduct an uplift test assessing the ability of the model to accurately provide expert knowledge and reduce barriers to potential CBRNE misuse, by reference to what can be achieved using web search (without the model). ### Cyber Security We have evaluated Llama 3 with CyberSecEval, Meta’s cybersecurity safety eval suite, measuring Llama 3’s propensity to suggest insecure code when used as a coding assistant, and Llama 3’s propensity to comply with requests to help carry out cyber attacks, where attacks are defined by the industry standard MITRE ATT&CK cyber attack ontology. On our insecure coding and cyber attacker helpfulness tests, Llama 3 behaved in the same range or safer than models of equivalent coding capability. ### Child Safety Child Safety risk assessments were conducted using a team of experts, to assess the model’s capability to produce outputs that could result in Child Safety risks and inform on any necessary and appropriate risk mitigations via fine tuning. We leveraged those expert red teaming sessions to expand the coverage of our evaluation benchmarks through Llama 3 model development. For Llama 3, we conducted new in-depth sessions using objective based methodologies to assess the model risks along multiple attack vectors. We also partnered with content specialists to perform red teaming exercises assessing potentially violating content while taking account of market specific nuances or experiences. ### Community Generative AI safety requires expertise and tooling, and we believe in the strength of the open community to accelerate its progress. We are active members of open consortiums, including the AI Alliance, Partnership in AI and MLCommons, actively contributing to safety standardization and transparency. We encourage the community to adopt taxonomies like the MLCommons Proof of Concept evaluation to facilitate collaboration and transparency on safety and content evaluations. Our Purple Llama tools are open sourced for the community to use and widely distributed across ecosystem partners including cloud service providers. We encourage community contributions to our Github repository. Finally, we put in place a set of resources including an output reporting mechanism and bug bounty program to continuously improve the Llama technology with the help of the community. Ethical Considerations and Limitations -------------------------------------- The core values of Llama 3 are openness, inclusivity and helpfulness. It is meant to serve everyone, and to work for a wide range of use cases. It is thus designed to be accessible to people across many different backgrounds, experiences and perspectives. Llama 3 addresses users and their needs as they are, without insertion unnecessary judgment or normativity, while reflecting the understanding that even content that may appear problematic in some cases can serve valuable purposes in others. It respects the dignity and autonomy of all users, especially in terms of the values of free thought and expression that power innovation and progress. But Llama 3 is a new technology, and like any new technology, there are risks associated with its use. Testing conducted to date has been in English, and has not covered, nor could it cover, all scenarios. For these reasons, as with all LLMs, Llama 3’s potential outputs cannot be predicted in advance, and the model may in some instances produce inaccurate, biased or other objectionable responses to user prompts. Therefore, before deploying any applications of Llama 3 models, developers should perform safety testing and tuning tailored to their specific applications of the model. As outlined in the Responsible Use Guide, we recommend incorporating Purple Llama solutions into your workflows and specifically Llama Guard which provides a base model to filter input and output prompts to layer system-level safety on top of model-level safety. Please see the Responsible Use Guide available at URL instructions @article{llama3modelcard, title={Llama 3 Model Card}, author={AI@Meta}, year={2024}, url = {URL } Contributors ------------ Aaditya Singh; Aaron Grattafiori; Abhimanyu Dubey; Abhinav Jauhri; Abhinav Pandey; Abhishek Kadian; Adam Kelsey; Adi Gangidi; Ahmad Al-Dahle; Ahuva Goldstand; Aiesha Letman; Ajay Menon; Akhil Mathur; Alan Schelten; Alex Vaughan; Amy Yang; Andrei Lupu; Andres Alvarado; Andrew Gallagher; Andrew Gu; Andrew Ho; Andrew Poulton; Andrew Ryan; Angela Fan; Ankit Ramchandani; Anthony Hartshorn; Archi Mitra; Archie Sravankumar; Artem Korenev; Arun Rao; Ashley Gabriel; Ashwin Bharambe; Assaf Eisenman; Aston Zhang; Aurelien Rodriguez; Austen Gregerson; Ava Spataru; Baptiste Roziere; Ben Maurer; Benjamin Leonhardi; Bernie Huang; Bhargavi Paranjape; Bing Liu; Binh Tang; Bobbie Chern; Brani Stojkovic; Brian Fuller; Catalina Mejia Arenas; Chao Zhou; Charlotte Caucheteux; Chaya Nayak; Ching-Hsiang Chu; Chloe Bi; Chris Cai; Chris Cox; Chris Marra; Chris McConnell; Christian Keller; Christoph Feichtenhofer; Christophe Touret; Chunyang Wu; Corinne Wong; Cristian Canton Ferrer; Damien Allonsius; Daniel Kreymer; Daniel Haziza; Daniel Li; Danielle Pintz; Danny Livshits; Danny Wyatt; David Adkins; David Esiobu; David Xu; Davide Testuggine; Delia David; Devi Parikh; Dhruv Choudhary; Dhruv Mahajan; Diana Liskovich; Diego Garcia-Olano; Diego Perino; Dieuwke Hupkes; Dingkang Wang; Dustin Holland; Egor Lakomkin; Elina Lobanova; Xiaoqing Ellen Tan; Emily Dinan; Eric Smith; Erik Brinkman; Esteban Arcaute; Filip Radenovic; Firat Ozgenel; Francesco Caggioni; Frank Seide; Frank Zhang; Gabriel Synnaeve; Gabriella Schwarz; Gabrielle Lee; Gada Badeer; Georgia Anderson; Graeme Nail; Gregoire Mialon; Guan Pang; Guillem Cucurell; Hailey Nguyen; Hannah Korevaar; Hannah Wang; Haroun Habeeb; Harrison Rudolph; Henry Aspegren; Hu Xu; Hugo Touvron; Iga Kozlowska; Igor Molybog; Igor Tufanov; Iliyan Zarov; Imanol Arrieta Ibarra; Irina-Elena Veliche; Isabel Kloumann; Ishan Misra; Ivan Evtimov; Jacob Xu; Jade Copet; Jake Weissman; Jan Geffert; Jana Vranes; Japhet Asher; Jason Park; Jay Mahadeokar; Jean-Baptiste Gaya; Jeet Shah; Jelmer van der Linde; Jennifer Chan; Jenny Hong; Jenya Lee; Jeremy Fu; Jeremy Teboul; Jianfeng Chi; Jianyu Huang; Jie Wang; Jiecao Yu; Joanna Bitton; Joe Spisak; Joelle Pineau; Jon Carvill; Jongsoo Park; Joseph Rocca; Joshua Johnstun; Junteng Jia; Kalyan Vasuden Alwala; Kam Hou U; Kate Plawiak; Kartikeya Upasani; Kaushik Veeraraghavan; Ke Li; Kenneth Heafield; Kevin Stone; Khalid El-Arini; Krithika Iyer; Kshitiz Malik; Kuenley Chiu; Kunal Bhalla; Kyle Huang; Lakshya Garg; Lauren Rantala-Yeary; Laurens van der Maaten; Lawrence Chen; Leandro Silva; Lee Bell; Lei Zhang; Liang Tan; Louis Martin; Lovish Madaan; Luca Wehrstedt; Lukas Blecher; Luke de Oliveira; Madeline Muzzi; Madian Khabsa; Manav Avlani; Mannat Singh; Manohar Paluri; Mark Zuckerberg; Marcin Kardas; Martynas Mankus; Mathew Oldham; Mathieu Rita; Matthew Lennie; Maya Pavlova; Meghan Keneally; Melanie Kambadur; Mihir Patel; Mikayel Samvelyan; Mike Clark; Mike Lewis; Min Si; Mitesh Kumar Singh; Mo Metanat; Mona Hassan; Naman Goyal; Narjes Torabi; Nicolas Usunier; Nikolay Bashlykov; Nikolay Bogoychev; Niladri Chatterji; Ning Dong; Oliver Aobo Yang; Olivier Duchenne; Onur Celebi; Parth Parekh; Patrick Alrassy; Paul Saab; Pavan Balaji; Pedro Rittner; Pengchuan Zhang; Pengwei Li; Petar Vasic; Peter Weng; Polina Zvyagina; Prajjwal Bhargava; Pratik Dubal; Praveen Krishnan; Punit Singh Koura; Qing He; Rachel Rodriguez; Ragavan Srinivasan; Rahul Mitra; Ramon Calderer; Raymond Li; Robert Stojnic; Roberta Raileanu; Robin Battey; Rocky Wang; Rohit Girdhar; Rohit Patel; Romain Sauvestre; Ronnie Polidoro; Roshan Sumbaly; Ross Taylor; Ruan Silva; Rui Hou; Rui Wang; Russ Howes; Ruty Rinott; Saghar Hosseini; Sai Jayesh Bondu; Samyak Datta; Sanjay Singh; Sara Chugh; Sargun Dhillon; Satadru Pan; Sean Bell; Sergey Edunov; Shaoliang Nie; Sharan Narang; Sharath Raparthy; Shaun Lindsay; Sheng Feng; Sheng Shen; Shenghao Lin; Shiva Shankar; Shruti Bhosale; Shun Zhang; Simon Vandenhende; Sinong Wang; Seohyun Sonia Kim; Soumya Batra; Sten Sootla; Steve Kehoe; Suchin Gururangan; Sumit Gupta; Sunny Virk; Sydney Borodinsky; Tamar Glaser; Tamar Herman; Tamara Best; Tara Fowler; Thomas Georgiou; Thomas Scialom; Tianhe Li; Todor Mihaylov; Tong Xiao; Ujjwal Karn; Vedanuj Goswami; Vibhor Gupta; Vignesh Ramanathan; Viktor Kerkez; Vinay Satish Kumar; Vincent Gonguet; Vish Vogeti; Vlad Poenaru; Vlad Tiberiu Mihailescu; Vladan Petrovic; Vladimir Ivanov; Wei Li; Weiwei Chu; Wenhan Xiong; Wenyin Fu; Wes Bouaziz; Whitney Meers; Will Constable; Xavier Martinet; Xiaojian Wu; Xinbo Gao; Xinfeng Xie; Xuchao Jia; Yaelle Goldschlag; Yann LeCun; Yashesh Gaur; Yasmine Babaei; Ye Qi; Yenda Li; Yi Wen; Yiwen Song; Youngjin Nam; Yuchen Hao; Yuchen Zhang; Yun Wang; Yuning Mao; Yuzi He; Zacharie Delpierre Coudert; Zachary DeVito; Zahra Hankir; Zhaoduo Wen; Zheng Yan; Zhengxing Chen; Zhenyu Yang; Zoe Papakipos
[ "### Use with transformers\n\n\nYou can run conversational inference using the Transformers pipeline abstraction, or by leveraging the Auto classes with the 'generate()' function. Let's see examples of both.", "#### Transformers pipeline", "#### Transformers AutoModelForCausalLM", "### Use with 'llama3'\n\n\nPlease, follow the instructions in the repository\n\n\nTo download Original checkpoints, see the example command below leveraging 'huggingface-cli':\n\n\nFor Hugging Face support, we recommend using transformers or TGI, but a similar command works.\n\n\nHardware and Software\n---------------------\n\n\nTraining Factors We used custom training libraries, Meta's Research SuperCluster, and production clusters for pretraining. Fine-tuning, annotation, and evaluation were also performed on third-party cloud compute.\n\n\nCarbon Footprint Pretraining utilized a cumulative 7.7M GPU hours of computation on hardware of type H100-80GB (TDP of 700W). Estimated total emissions were 2290 tCO2eq, 100% of which were offset by Meta’s sustainability program.\n\n\n\nCO2 emissions during pre-training. Time: total GPU time required for training each model. Power Consumption: peak power capacity per GPU device for the GPUs used adjusted for power usage efficiency. 100% of the emissions are directly offset by Meta's sustainability program, and because we are openly releasing these models, the pretraining costs do not need to be incurred by others.\n\n\nTraining Data\n-------------\n\n\nOverview Llama 3 was pretrained on over 15 trillion tokens of data from publicly available sources. The fine-tuning data includes publicly available instruction datasets, as well as over 10M human-annotated examples. Neither the pretraining nor the fine-tuning datasets include Meta user data.\n\n\nData Freshness The pretraining data has a cutoff of March 2023 for the 7B and December 2023 for the 70B models respectively.\n\n\nBenchmarks\n----------\n\n\nIn this section, we report the results for Llama 3 models on standard automatic benchmarks. For all the evaluations, we use our internal evaluations library. For details on the methodology see here.", "### Base pretrained models", "### Instruction tuned models", "### Responsibility & Safety\n\n\nWe believe that an open approach to AI leads to better, safer products, faster innovation, and a bigger overall market. We are committed to Responsible AI development and took a series of steps to limit misuse and harm and support the open source community.\n\n\nFoundation models are widely capable technologies that are built to be used for a diverse range of applications. They are not designed to meet every developer preference on safety levels for all use cases, out-of-the-box, as those by their nature will differ across different applications.\n\n\nRather, responsible LLM-application deployment is achieved by implementing a series of safety best practices throughout the development of such applications, from the model pre-training, fine-tuning and the deployment of systems composed of safeguards to tailor the safety needs specifically to the use case and audience.\n\n\nAs part of the Llama 3 release, we updated our Responsible Use Guide to outline the steps and best practices for developers to implement model and system level safety for their application. We also provide a set of resources including Meta Llama Guard 2 and Code Shield safeguards. These tools have proven to drastically reduce residual risks of LLM Systems, while maintaining a high level of helpfulness. We encourage developers to tune and deploy these safeguards according to their needs and we provide a reference implementation to get you started.", "#### Llama 3-Instruct\n\n\nAs outlined in the Responsible Use Guide, some trade-off between model helpfulness and model alignment is likely unavoidable. Developers should exercise discretion about how to weigh the benefits of alignment and helpfulness for their specific use case and audience. Developers should be mindful of residual risks when using Llama models and leverage additional safety tools as needed to reach the right safety bar for their use case.\n\n\nSafety\n\n\nFor our instruction tuned model, we conducted extensive red teaming exercises, performed adversarial evaluations and implemented safety mitigations techniques to lower residual risks. As with any Large Language Model, residual risks will likely remain and we recommend that developers assess these risks in the context of their use case. In parallel, we are working with the community to make AI safety benchmark standards transparent, rigorous and interpretable.\n\n\nRefusals\n\n\nIn addition to residual risks, we put a great emphasis on model refusals to benign prompts. Over-refusing not only can impact the user experience but could even be harmful in certain contexts as well. We’ve heard the feedback from the developer community and improved our fine tuning to ensure that Llama 3 is significantly less likely to falsely refuse to answer prompts than Llama 2.\n\n\nWe built internal benchmarks and developed mitigations to limit false refusals making Llama 3 our most helpful model to date.", "#### Responsible release\n\n\nIn addition to responsible use considerations outlined above, we followed a rigorous process that requires us to take extra measures against misuse and critical risks before we make our release decision.\n\n\nMisuse\n\n\nIf you access or use Llama 3, you agree to the Acceptable Use Policy. The most recent copy of this policy can be found at URL", "#### Critical risks\n\n\nCBRNE (Chemical, Biological, Radiological, Nuclear, and high yield Explosives)\n\n\nWe have conducted a two fold assessment of the safety of the model in this area:\n\n\n* Iterative testing during model training to assess the safety of responses related to CBRNE threats and other adversarial risks.\n* Involving external CBRNE experts to conduct an uplift test assessing the ability of the model to accurately provide expert knowledge and reduce barriers to potential CBRNE misuse, by reference to what can be achieved using web search (without the model).", "### Cyber Security\n\n\nWe have evaluated Llama 3 with CyberSecEval, Meta’s cybersecurity safety eval suite, measuring Llama 3’s propensity to suggest insecure code when used as a coding assistant, and Llama 3’s propensity to comply with requests to help carry out cyber attacks, where attacks are defined by the industry standard MITRE ATT&CK cyber attack ontology. On our insecure coding and cyber attacker helpfulness tests, Llama 3 behaved in the same range or safer than models of equivalent coding capability.", "### Child Safety\n\n\nChild Safety risk assessments were conducted using a team of experts, to assess the model’s capability to produce outputs that could result in Child Safety risks and inform on any necessary and appropriate risk mitigations via fine tuning. We leveraged those expert red teaming sessions to expand the coverage of our evaluation benchmarks through Llama 3 model development. For Llama 3, we conducted new in-depth sessions using objective based methodologies to assess the model risks along multiple attack vectors. We also partnered with content specialists to perform red teaming exercises assessing potentially violating content while taking account of market specific nuances or experiences.", "### Community\n\n\nGenerative AI safety requires expertise and tooling, and we believe in the strength of the open community to accelerate its progress. We are active members of open consortiums, including the AI Alliance, Partnership in AI and MLCommons, actively contributing to safety standardization and transparency. We encourage the community to adopt taxonomies like the MLCommons Proof of Concept evaluation to facilitate collaboration and transparency on safety and content evaluations. Our Purple Llama tools are open sourced for the community to use and widely distributed across ecosystem partners including cloud service providers. We encourage community contributions to our Github repository.\n\n\nFinally, we put in place a set of resources including an output reporting mechanism and bug bounty program to continuously improve the Llama technology with the help of the community.\n\n\nEthical Considerations and Limitations\n--------------------------------------\n\n\nThe core values of Llama 3 are openness, inclusivity and helpfulness. It is meant to serve everyone, and to work for a wide range of use cases. It is thus designed to be accessible to people across many different backgrounds, experiences and perspectives. Llama 3 addresses users and their needs as they are, without insertion unnecessary judgment or normativity, while reflecting the understanding that even content that may appear problematic in some cases can serve valuable purposes in others. It respects the dignity and autonomy of all users, especially in terms of the values of free thought and expression that power innovation and progress.\n\n\nBut Llama 3 is a new technology, and like any new technology, there are risks associated with its use. Testing conducted to date has been in English, and has not covered, nor could it cover, all scenarios. For these reasons, as with all LLMs, Llama 3’s potential outputs cannot be predicted in advance, and the model may in some instances produce inaccurate, biased or other objectionable responses to user prompts. Therefore, before deploying any applications of Llama 3 models, developers should perform safety testing and tuning tailored to their specific applications of the model. As outlined in the Responsible Use Guide, we recommend incorporating Purple Llama solutions into your workflows and specifically Llama Guard which provides a base model to filter input and output prompts to layer system-level safety on top of model-level safety.\n\n\nPlease see the Responsible Use Guide available at URL\n\n\ninstructions\n\n\n@article{llama3modelcard,\n\n\ntitle={Llama 3 Model Card},\n\n\nauthor={AI@Meta},\n\n\nyear={2024},\n\n\nurl = {URL\n\n\n}\n\n\nContributors\n------------\n\n\nAaditya Singh; Aaron Grattafiori; Abhimanyu Dubey; Abhinav Jauhri; Abhinav Pandey; Abhishek Kadian; Adam Kelsey; Adi Gangidi; Ahmad Al-Dahle; Ahuva Goldstand; Aiesha Letman; Ajay Menon; Akhil Mathur; Alan Schelten; Alex Vaughan; Amy Yang; Andrei Lupu; Andres Alvarado; Andrew Gallagher; Andrew Gu; Andrew Ho; Andrew Poulton; Andrew Ryan; Angela Fan; Ankit Ramchandani; Anthony Hartshorn; Archi Mitra; Archie Sravankumar; Artem Korenev; Arun Rao; Ashley Gabriel; Ashwin Bharambe; Assaf Eisenman; Aston Zhang; Aurelien Rodriguez; Austen Gregerson; Ava Spataru; Baptiste Roziere; Ben Maurer; Benjamin Leonhardi; Bernie Huang; Bhargavi Paranjape; Bing Liu; Binh Tang; Bobbie Chern; Brani Stojkovic; Brian Fuller; Catalina Mejia Arenas; Chao Zhou; Charlotte Caucheteux; Chaya Nayak; Ching-Hsiang Chu; Chloe Bi; Chris Cai; Chris Cox; Chris Marra; Chris McConnell; Christian Keller; Christoph Feichtenhofer; Christophe Touret; Chunyang Wu; Corinne Wong; Cristian Canton Ferrer; Damien Allonsius; Daniel Kreymer; Daniel Haziza; Daniel Li; Danielle Pintz; Danny Livshits; Danny Wyatt; David Adkins; David Esiobu; David Xu; Davide Testuggine; Delia David; Devi Parikh; Dhruv Choudhary; Dhruv Mahajan; Diana Liskovich; Diego Garcia-Olano; Diego Perino; Dieuwke Hupkes; Dingkang Wang; Dustin Holland; Egor Lakomkin; Elina Lobanova; Xiaoqing Ellen Tan; Emily Dinan; Eric Smith; Erik Brinkman; Esteban Arcaute; Filip Radenovic; Firat Ozgenel; Francesco Caggioni; Frank Seide; Frank Zhang; Gabriel Synnaeve; Gabriella Schwarz; Gabrielle Lee; Gada Badeer; Georgia Anderson; Graeme Nail; Gregoire Mialon; Guan Pang; Guillem Cucurell; Hailey Nguyen; Hannah Korevaar; Hannah Wang; Haroun Habeeb; Harrison Rudolph; Henry Aspegren; Hu Xu; Hugo Touvron; Iga Kozlowska; Igor Molybog; Igor Tufanov; Iliyan Zarov; Imanol Arrieta Ibarra; Irina-Elena Veliche; Isabel Kloumann; Ishan Misra; Ivan Evtimov; Jacob Xu; Jade Copet; Jake Weissman; Jan Geffert; Jana Vranes; Japhet Asher; Jason Park; Jay Mahadeokar; Jean-Baptiste Gaya; Jeet Shah; Jelmer van der Linde; Jennifer Chan; Jenny Hong; Jenya Lee; Jeremy Fu; Jeremy Teboul; Jianfeng Chi; Jianyu Huang; Jie Wang; Jiecao Yu; Joanna Bitton; Joe Spisak; Joelle Pineau; Jon Carvill; Jongsoo Park; Joseph Rocca; Joshua Johnstun; Junteng Jia; Kalyan Vasuden Alwala; Kam Hou U; Kate Plawiak; Kartikeya Upasani; Kaushik Veeraraghavan; Ke Li; Kenneth Heafield; Kevin Stone; Khalid El-Arini; Krithika Iyer; Kshitiz Malik; Kuenley Chiu; Kunal Bhalla; Kyle Huang; Lakshya Garg; Lauren Rantala-Yeary; Laurens van der Maaten; Lawrence Chen; Leandro Silva; Lee Bell; Lei Zhang; Liang Tan; Louis Martin; Lovish Madaan; Luca Wehrstedt; Lukas Blecher; Luke de Oliveira; Madeline Muzzi; Madian Khabsa; Manav Avlani; Mannat Singh; Manohar Paluri; Mark Zuckerberg; Marcin Kardas; Martynas Mankus; Mathew Oldham; Mathieu Rita; Matthew Lennie; Maya Pavlova; Meghan Keneally; Melanie Kambadur; Mihir Patel; Mikayel Samvelyan; Mike Clark; Mike Lewis; Min Si; Mitesh Kumar Singh; Mo Metanat; Mona Hassan; Naman Goyal; Narjes Torabi; Nicolas Usunier; Nikolay Bashlykov; Nikolay Bogoychev; Niladri Chatterji; Ning Dong; Oliver Aobo Yang; Olivier Duchenne; Onur Celebi; Parth Parekh; Patrick Alrassy; Paul Saab; Pavan Balaji; Pedro Rittner; Pengchuan Zhang; Pengwei Li; Petar Vasic; Peter Weng; Polina Zvyagina; Prajjwal Bhargava; Pratik Dubal; Praveen Krishnan; Punit Singh Koura; Qing He; Rachel Rodriguez; Ragavan Srinivasan; Rahul Mitra; Ramon Calderer; Raymond Li; Robert Stojnic; Roberta Raileanu; Robin Battey; Rocky Wang; Rohit Girdhar; Rohit Patel; Romain Sauvestre; Ronnie Polidoro; Roshan Sumbaly; Ross Taylor; Ruan Silva; Rui Hou; Rui Wang; Russ Howes; Ruty Rinott; Saghar Hosseini; Sai Jayesh Bondu; Samyak Datta; Sanjay Singh; Sara Chugh; Sargun Dhillon; Satadru Pan; Sean Bell; Sergey Edunov; Shaoliang Nie; Sharan Narang; Sharath Raparthy; Shaun Lindsay; Sheng Feng; Sheng Shen; Shenghao Lin; Shiva Shankar; Shruti Bhosale; Shun Zhang; Simon Vandenhende; Sinong Wang; Seohyun Sonia Kim; Soumya Batra; Sten Sootla; Steve Kehoe; Suchin Gururangan; Sumit Gupta; Sunny Virk; Sydney Borodinsky; Tamar Glaser; Tamar Herman; Tamara Best; Tara Fowler; Thomas Georgiou; Thomas Scialom; Tianhe Li; Todor Mihaylov; Tong Xiao; Ujjwal Karn; Vedanuj Goswami; Vibhor Gupta; Vignesh Ramanathan; Viktor Kerkez; Vinay Satish Kumar; Vincent Gonguet; Vish Vogeti; Vlad Poenaru; Vlad Tiberiu Mihailescu; Vladan Petrovic; Vladimir Ivanov; Wei Li; Weiwei Chu; Wenhan Xiong; Wenyin Fu; Wes Bouaziz; Whitney Meers; Will Constable; Xavier Martinet; Xiaojian Wu; Xinbo Gao; Xinfeng Xie; Xuchao Jia; Yaelle Goldschlag; Yann LeCun; Yashesh Gaur; Yasmine Babaei; Ye Qi; Yenda Li; Yi Wen; Yiwen Song; Youngjin Nam; Yuchen Hao; Yuchen Zhang; Yun Wang; Yuning Mao; Yuzi He; Zacharie Delpierre Coudert; Zachary DeVito; Zahra Hankir; Zhaoduo Wen; Zheng Yan; Zhengxing Chen; Zhenyu Yang; Zoe Papakipos" ]
[ "TAGS\n#transformers #safetensors #llama #text-generation #meta #llama-3 #conversational #en #license-llama3 #autotrain_compatible #endpoints_compatible #text-generation-inference #5-bit #region-us \n", "### Use with transformers\n\n\nYou can run conversational inference using the Transformers pipeline abstraction, or by leveraging the Auto classes with the 'generate()' function. Let's see examples of both.", "#### Transformers pipeline", "#### Transformers AutoModelForCausalLM", "### Use with 'llama3'\n\n\nPlease, follow the instructions in the repository\n\n\nTo download Original checkpoints, see the example command below leveraging 'huggingface-cli':\n\n\nFor Hugging Face support, we recommend using transformers or TGI, but a similar command works.\n\n\nHardware and Software\n---------------------\n\n\nTraining Factors We used custom training libraries, Meta's Research SuperCluster, and production clusters for pretraining. Fine-tuning, annotation, and evaluation were also performed on third-party cloud compute.\n\n\nCarbon Footprint Pretraining utilized a cumulative 7.7M GPU hours of computation on hardware of type H100-80GB (TDP of 700W). Estimated total emissions were 2290 tCO2eq, 100% of which were offset by Meta’s sustainability program.\n\n\n\nCO2 emissions during pre-training. Time: total GPU time required for training each model. Power Consumption: peak power capacity per GPU device for the GPUs used adjusted for power usage efficiency. 100% of the emissions are directly offset by Meta's sustainability program, and because we are openly releasing these models, the pretraining costs do not need to be incurred by others.\n\n\nTraining Data\n-------------\n\n\nOverview Llama 3 was pretrained on over 15 trillion tokens of data from publicly available sources. The fine-tuning data includes publicly available instruction datasets, as well as over 10M human-annotated examples. Neither the pretraining nor the fine-tuning datasets include Meta user data.\n\n\nData Freshness The pretraining data has a cutoff of March 2023 for the 7B and December 2023 for the 70B models respectively.\n\n\nBenchmarks\n----------\n\n\nIn this section, we report the results for Llama 3 models on standard automatic benchmarks. For all the evaluations, we use our internal evaluations library. For details on the methodology see here.", "### Base pretrained models", "### Instruction tuned models", "### Responsibility & Safety\n\n\nWe believe that an open approach to AI leads to better, safer products, faster innovation, and a bigger overall market. We are committed to Responsible AI development and took a series of steps to limit misuse and harm and support the open source community.\n\n\nFoundation models are widely capable technologies that are built to be used for a diverse range of applications. They are not designed to meet every developer preference on safety levels for all use cases, out-of-the-box, as those by their nature will differ across different applications.\n\n\nRather, responsible LLM-application deployment is achieved by implementing a series of safety best practices throughout the development of such applications, from the model pre-training, fine-tuning and the deployment of systems composed of safeguards to tailor the safety needs specifically to the use case and audience.\n\n\nAs part of the Llama 3 release, we updated our Responsible Use Guide to outline the steps and best practices for developers to implement model and system level safety for their application. We also provide a set of resources including Meta Llama Guard 2 and Code Shield safeguards. These tools have proven to drastically reduce residual risks of LLM Systems, while maintaining a high level of helpfulness. We encourage developers to tune and deploy these safeguards according to their needs and we provide a reference implementation to get you started.", "#### Llama 3-Instruct\n\n\nAs outlined in the Responsible Use Guide, some trade-off between model helpfulness and model alignment is likely unavoidable. Developers should exercise discretion about how to weigh the benefits of alignment and helpfulness for their specific use case and audience. Developers should be mindful of residual risks when using Llama models and leverage additional safety tools as needed to reach the right safety bar for their use case.\n\n\nSafety\n\n\nFor our instruction tuned model, we conducted extensive red teaming exercises, performed adversarial evaluations and implemented safety mitigations techniques to lower residual risks. As with any Large Language Model, residual risks will likely remain and we recommend that developers assess these risks in the context of their use case. In parallel, we are working with the community to make AI safety benchmark standards transparent, rigorous and interpretable.\n\n\nRefusals\n\n\nIn addition to residual risks, we put a great emphasis on model refusals to benign prompts. Over-refusing not only can impact the user experience but could even be harmful in certain contexts as well. We’ve heard the feedback from the developer community and improved our fine tuning to ensure that Llama 3 is significantly less likely to falsely refuse to answer prompts than Llama 2.\n\n\nWe built internal benchmarks and developed mitigations to limit false refusals making Llama 3 our most helpful model to date.", "#### Responsible release\n\n\nIn addition to responsible use considerations outlined above, we followed a rigorous process that requires us to take extra measures against misuse and critical risks before we make our release decision.\n\n\nMisuse\n\n\nIf you access or use Llama 3, you agree to the Acceptable Use Policy. The most recent copy of this policy can be found at URL", "#### Critical risks\n\n\nCBRNE (Chemical, Biological, Radiological, Nuclear, and high yield Explosives)\n\n\nWe have conducted a two fold assessment of the safety of the model in this area:\n\n\n* Iterative testing during model training to assess the safety of responses related to CBRNE threats and other adversarial risks.\n* Involving external CBRNE experts to conduct an uplift test assessing the ability of the model to accurately provide expert knowledge and reduce barriers to potential CBRNE misuse, by reference to what can be achieved using web search (without the model).", "### Cyber Security\n\n\nWe have evaluated Llama 3 with CyberSecEval, Meta’s cybersecurity safety eval suite, measuring Llama 3’s propensity to suggest insecure code when used as a coding assistant, and Llama 3’s propensity to comply with requests to help carry out cyber attacks, where attacks are defined by the industry standard MITRE ATT&CK cyber attack ontology. On our insecure coding and cyber attacker helpfulness tests, Llama 3 behaved in the same range or safer than models of equivalent coding capability.", "### Child Safety\n\n\nChild Safety risk assessments were conducted using a team of experts, to assess the model’s capability to produce outputs that could result in Child Safety risks and inform on any necessary and appropriate risk mitigations via fine tuning. We leveraged those expert red teaming sessions to expand the coverage of our evaluation benchmarks through Llama 3 model development. For Llama 3, we conducted new in-depth sessions using objective based methodologies to assess the model risks along multiple attack vectors. We also partnered with content specialists to perform red teaming exercises assessing potentially violating content while taking account of market specific nuances or experiences.", "### Community\n\n\nGenerative AI safety requires expertise and tooling, and we believe in the strength of the open community to accelerate its progress. We are active members of open consortiums, including the AI Alliance, Partnership in AI and MLCommons, actively contributing to safety standardization and transparency. We encourage the community to adopt taxonomies like the MLCommons Proof of Concept evaluation to facilitate collaboration and transparency on safety and content evaluations. Our Purple Llama tools are open sourced for the community to use and widely distributed across ecosystem partners including cloud service providers. We encourage community contributions to our Github repository.\n\n\nFinally, we put in place a set of resources including an output reporting mechanism and bug bounty program to continuously improve the Llama technology with the help of the community.\n\n\nEthical Considerations and Limitations\n--------------------------------------\n\n\nThe core values of Llama 3 are openness, inclusivity and helpfulness. It is meant to serve everyone, and to work for a wide range of use cases. It is thus designed to be accessible to people across many different backgrounds, experiences and perspectives. Llama 3 addresses users and their needs as they are, without insertion unnecessary judgment or normativity, while reflecting the understanding that even content that may appear problematic in some cases can serve valuable purposes in others. It respects the dignity and autonomy of all users, especially in terms of the values of free thought and expression that power innovation and progress.\n\n\nBut Llama 3 is a new technology, and like any new technology, there are risks associated with its use. Testing conducted to date has been in English, and has not covered, nor could it cover, all scenarios. For these reasons, as with all LLMs, Llama 3’s potential outputs cannot be predicted in advance, and the model may in some instances produce inaccurate, biased or other objectionable responses to user prompts. Therefore, before deploying any applications of Llama 3 models, developers should perform safety testing and tuning tailored to their specific applications of the model. As outlined in the Responsible Use Guide, we recommend incorporating Purple Llama solutions into your workflows and specifically Llama Guard which provides a base model to filter input and output prompts to layer system-level safety on top of model-level safety.\n\n\nPlease see the Responsible Use Guide available at URL\n\n\ninstructions\n\n\n@article{llama3modelcard,\n\n\ntitle={Llama 3 Model Card},\n\n\nauthor={AI@Meta},\n\n\nyear={2024},\n\n\nurl = {URL\n\n\n}\n\n\nContributors\n------------\n\n\nAaditya Singh; Aaron Grattafiori; Abhimanyu Dubey; Abhinav Jauhri; Abhinav Pandey; Abhishek Kadian; Adam Kelsey; Adi Gangidi; Ahmad Al-Dahle; Ahuva Goldstand; Aiesha Letman; Ajay Menon; Akhil Mathur; Alan Schelten; Alex Vaughan; Amy Yang; Andrei Lupu; Andres Alvarado; Andrew Gallagher; Andrew Gu; Andrew Ho; Andrew Poulton; Andrew Ryan; Angela Fan; Ankit Ramchandani; Anthony Hartshorn; Archi Mitra; Archie Sravankumar; Artem Korenev; Arun Rao; Ashley Gabriel; Ashwin Bharambe; Assaf Eisenman; Aston Zhang; Aurelien Rodriguez; Austen Gregerson; Ava Spataru; Baptiste Roziere; Ben Maurer; Benjamin Leonhardi; Bernie Huang; Bhargavi Paranjape; Bing Liu; Binh Tang; Bobbie Chern; Brani Stojkovic; Brian Fuller; Catalina Mejia Arenas; Chao Zhou; Charlotte Caucheteux; Chaya Nayak; Ching-Hsiang Chu; Chloe Bi; Chris Cai; Chris Cox; Chris Marra; Chris McConnell; Christian Keller; Christoph Feichtenhofer; Christophe Touret; Chunyang Wu; Corinne Wong; Cristian Canton Ferrer; Damien Allonsius; Daniel Kreymer; Daniel Haziza; Daniel Li; Danielle Pintz; Danny Livshits; Danny Wyatt; David Adkins; David Esiobu; David Xu; Davide Testuggine; Delia David; Devi Parikh; Dhruv Choudhary; Dhruv Mahajan; Diana Liskovich; Diego Garcia-Olano; Diego Perino; Dieuwke Hupkes; Dingkang Wang; Dustin Holland; Egor Lakomkin; Elina Lobanova; Xiaoqing Ellen Tan; Emily Dinan; Eric Smith; Erik Brinkman; Esteban Arcaute; Filip Radenovic; Firat Ozgenel; Francesco Caggioni; Frank Seide; Frank Zhang; Gabriel Synnaeve; Gabriella Schwarz; Gabrielle Lee; Gada Badeer; Georgia Anderson; Graeme Nail; Gregoire Mialon; Guan Pang; Guillem Cucurell; Hailey Nguyen; Hannah Korevaar; Hannah Wang; Haroun Habeeb; Harrison Rudolph; Henry Aspegren; Hu Xu; Hugo Touvron; Iga Kozlowska; Igor Molybog; Igor Tufanov; Iliyan Zarov; Imanol Arrieta Ibarra; Irina-Elena Veliche; Isabel Kloumann; Ishan Misra; Ivan Evtimov; Jacob Xu; Jade Copet; Jake Weissman; Jan Geffert; Jana Vranes; Japhet Asher; Jason Park; Jay Mahadeokar; Jean-Baptiste Gaya; Jeet Shah; Jelmer van der Linde; Jennifer Chan; Jenny Hong; Jenya Lee; Jeremy Fu; Jeremy Teboul; Jianfeng Chi; Jianyu Huang; Jie Wang; Jiecao Yu; Joanna Bitton; Joe Spisak; Joelle Pineau; Jon Carvill; Jongsoo Park; Joseph Rocca; Joshua Johnstun; Junteng Jia; Kalyan Vasuden Alwala; Kam Hou U; Kate Plawiak; Kartikeya Upasani; Kaushik Veeraraghavan; Ke Li; Kenneth Heafield; Kevin Stone; Khalid El-Arini; Krithika Iyer; Kshitiz Malik; Kuenley Chiu; Kunal Bhalla; Kyle Huang; Lakshya Garg; Lauren Rantala-Yeary; Laurens van der Maaten; Lawrence Chen; Leandro Silva; Lee Bell; Lei Zhang; Liang Tan; Louis Martin; Lovish Madaan; Luca Wehrstedt; Lukas Blecher; Luke de Oliveira; Madeline Muzzi; Madian Khabsa; Manav Avlani; Mannat Singh; Manohar Paluri; Mark Zuckerberg; Marcin Kardas; Martynas Mankus; Mathew Oldham; Mathieu Rita; Matthew Lennie; Maya Pavlova; Meghan Keneally; Melanie Kambadur; Mihir Patel; Mikayel Samvelyan; Mike Clark; Mike Lewis; Min Si; Mitesh Kumar Singh; Mo Metanat; Mona Hassan; Naman Goyal; Narjes Torabi; Nicolas Usunier; Nikolay Bashlykov; Nikolay Bogoychev; Niladri Chatterji; Ning Dong; Oliver Aobo Yang; Olivier Duchenne; Onur Celebi; Parth Parekh; Patrick Alrassy; Paul Saab; Pavan Balaji; Pedro Rittner; Pengchuan Zhang; Pengwei Li; Petar Vasic; Peter Weng; Polina Zvyagina; Prajjwal Bhargava; Pratik Dubal; Praveen Krishnan; Punit Singh Koura; Qing He; Rachel Rodriguez; Ragavan Srinivasan; Rahul Mitra; Ramon Calderer; Raymond Li; Robert Stojnic; Roberta Raileanu; Robin Battey; Rocky Wang; Rohit Girdhar; Rohit Patel; Romain Sauvestre; Ronnie Polidoro; Roshan Sumbaly; Ross Taylor; Ruan Silva; Rui Hou; Rui Wang; Russ Howes; Ruty Rinott; Saghar Hosseini; Sai Jayesh Bondu; Samyak Datta; Sanjay Singh; Sara Chugh; Sargun Dhillon; Satadru Pan; Sean Bell; Sergey Edunov; Shaoliang Nie; Sharan Narang; Sharath Raparthy; Shaun Lindsay; Sheng Feng; Sheng Shen; Shenghao Lin; Shiva Shankar; Shruti Bhosale; Shun Zhang; Simon Vandenhende; Sinong Wang; Seohyun Sonia Kim; Soumya Batra; Sten Sootla; Steve Kehoe; Suchin Gururangan; Sumit Gupta; Sunny Virk; Sydney Borodinsky; Tamar Glaser; Tamar Herman; Tamara Best; Tara Fowler; Thomas Georgiou; Thomas Scialom; Tianhe Li; Todor Mihaylov; Tong Xiao; Ujjwal Karn; Vedanuj Goswami; Vibhor Gupta; Vignesh Ramanathan; Viktor Kerkez; Vinay Satish Kumar; Vincent Gonguet; Vish Vogeti; Vlad Poenaru; Vlad Tiberiu Mihailescu; Vladan Petrovic; Vladimir Ivanov; Wei Li; Weiwei Chu; Wenhan Xiong; Wenyin Fu; Wes Bouaziz; Whitney Meers; Will Constable; Xavier Martinet; Xiaojian Wu; Xinbo Gao; Xinfeng Xie; Xuchao Jia; Yaelle Goldschlag; Yann LeCun; Yashesh Gaur; Yasmine Babaei; Ye Qi; Yenda Li; Yi Wen; Yiwen Song; Youngjin Nam; Yuchen Hao; Yuchen Zhang; Yun Wang; Yuning Mao; Yuzi He; Zacharie Delpierre Coudert; Zachary DeVito; Zahra Hankir; Zhaoduo Wen; Zheng Yan; Zhengxing Chen; Zhenyu Yang; Zoe Papakipos" ]
[ 56, 42, 6, 13, 429, 8, 6, 270, 280, 72, 115, 118, 126, 2136 ]
[ "TAGS\n#transformers #safetensors #llama #text-generation #meta #llama-3 #conversational #en #license-llama3 #autotrain_compatible #endpoints_compatible #text-generation-inference #5-bit #region-us \n### Use with transformers\n\n\nYou can run conversational inference using the Transformers pipeline abstraction, or by leveraging the Auto classes with the 'generate()' function. Let's see examples of both.#### Transformers pipeline#### Transformers AutoModelForCausalLM### Use with 'llama3'\n\n\nPlease, follow the instructions in the repository\n\n\nTo download Original checkpoints, see the example command below leveraging 'huggingface-cli':\n\n\nFor Hugging Face support, we recommend using transformers or TGI, but a similar command works.\n\n\nHardware and Software\n---------------------\n\n\nTraining Factors We used custom training libraries, Meta's Research SuperCluster, and production clusters for pretraining. Fine-tuning, annotation, and evaluation were also performed on third-party cloud compute.\n\n\nCarbon Footprint Pretraining utilized a cumulative 7.7M GPU hours of computation on hardware of type H100-80GB (TDP of 700W). Estimated total emissions were 2290 tCO2eq, 100% of which were offset by Meta’s sustainability program.\n\n\n\nCO2 emissions during pre-training. Time: total GPU time required for training each model. Power Consumption: peak power capacity per GPU device for the GPUs used adjusted for power usage efficiency. 100% of the emissions are directly offset by Meta's sustainability program, and because we are openly releasing these models, the pretraining costs do not need to be incurred by others.\n\n\nTraining Data\n-------------\n\n\nOverview Llama 3 was pretrained on over 15 trillion tokens of data from publicly available sources. The fine-tuning data includes publicly available instruction datasets, as well as over 10M human-annotated examples. Neither the pretraining nor the fine-tuning datasets include Meta user data.\n\n\nData Freshness The pretraining data has a cutoff of March 2023 for the 7B and December 2023 for the 70B models respectively.\n\n\nBenchmarks\n----------\n\n\nIn this section, we report the results for Llama 3 models on standard automatic benchmarks. For all the evaluations, we use our internal evaluations library. For details on the methodology see here.### Base pretrained models### Instruction tuned models### Responsibility & Safety\n\n\nWe believe that an open approach to AI leads to better, safer products, faster innovation, and a bigger overall market. We are committed to Responsible AI development and took a series of steps to limit misuse and harm and support the open source community.\n\n\nFoundation models are widely capable technologies that are built to be used for a diverse range of applications. They are not designed to meet every developer preference on safety levels for all use cases, out-of-the-box, as those by their nature will differ across different applications.\n\n\nRather, responsible LLM-application deployment is achieved by implementing a series of safety best practices throughout the development of such applications, from the model pre-training, fine-tuning and the deployment of systems composed of safeguards to tailor the safety needs specifically to the use case and audience.\n\n\nAs part of the Llama 3 release, we updated our Responsible Use Guide to outline the steps and best practices for developers to implement model and system level safety for their application. We also provide a set of resources including Meta Llama Guard 2 and Code Shield safeguards. These tools have proven to drastically reduce residual risks of LLM Systems, while maintaining a high level of helpfulness. We encourage developers to tune and deploy these safeguards according to their needs and we provide a reference implementation to get you started.#### Llama 3-Instruct\n\n\nAs outlined in the Responsible Use Guide, some trade-off between model helpfulness and model alignment is likely unavoidable. Developers should exercise discretion about how to weigh the benefits of alignment and helpfulness for their specific use case and audience. Developers should be mindful of residual risks when using Llama models and leverage additional safety tools as needed to reach the right safety bar for their use case.\n\n\nSafety\n\n\nFor our instruction tuned model, we conducted extensive red teaming exercises, performed adversarial evaluations and implemented safety mitigations techniques to lower residual risks. As with any Large Language Model, residual risks will likely remain and we recommend that developers assess these risks in the context of their use case. In parallel, we are working with the community to make AI safety benchmark standards transparent, rigorous and interpretable.\n\n\nRefusals\n\n\nIn addition to residual risks, we put a great emphasis on model refusals to benign prompts. Over-refusing not only can impact the user experience but could even be harmful in certain contexts as well. We’ve heard the feedback from the developer community and improved our fine tuning to ensure that Llama 3 is significantly less likely to falsely refuse to answer prompts than Llama 2.\n\n\nWe built internal benchmarks and developed mitigations to limit false refusals making Llama 3 our most helpful model to date.#### Responsible release\n\n\nIn addition to responsible use considerations outlined above, we followed a rigorous process that requires us to take extra measures against misuse and critical risks before we make our release decision.\n\n\nMisuse\n\n\nIf you access or use Llama 3, you agree to the Acceptable Use Policy. The most recent copy of this policy can be found at URL#### Critical risks\n\n\nCBRNE (Chemical, Biological, Radiological, Nuclear, and high yield Explosives)\n\n\nWe have conducted a two fold assessment of the safety of the model in this area:\n\n\n* Iterative testing during model training to assess the safety of responses related to CBRNE threats and other adversarial risks.\n* Involving external CBRNE experts to conduct an uplift test assessing the ability of the model to accurately provide expert knowledge and reduce barriers to potential CBRNE misuse, by reference to what can be achieved using web search (without the model).### Cyber Security\n\n\nWe have evaluated Llama 3 with CyberSecEval, Meta’s cybersecurity safety eval suite, measuring Llama 3’s propensity to suggest insecure code when used as a coding assistant, and Llama 3’s propensity to comply with requests to help carry out cyber attacks, where attacks are defined by the industry standard MITRE ATT&CK cyber attack ontology. On our insecure coding and cyber attacker helpfulness tests, Llama 3 behaved in the same range or safer than models of equivalent coding capability.### Child Safety\n\n\nChild Safety risk assessments were conducted using a team of experts, to assess the model’s capability to produce outputs that could result in Child Safety risks and inform on any necessary and appropriate risk mitigations via fine tuning. We leveraged those expert red teaming sessions to expand the coverage of our evaluation benchmarks through Llama 3 model development. For Llama 3, we conducted new in-depth sessions using objective based methodologies to assess the model risks along multiple attack vectors. We also partnered with content specialists to perform red teaming exercises assessing potentially violating content while taking account of market specific nuances or experiences.### Community\n\n\nGenerative AI safety requires expertise and tooling, and we believe in the strength of the open community to accelerate its progress. We are active members of open consortiums, including the AI Alliance, Partnership in AI and MLCommons, actively contributing to safety standardization and transparency. We encourage the community to adopt taxonomies like the MLCommons Proof of Concept evaluation to facilitate collaboration and transparency on safety and content evaluations. Our Purple Llama tools are open sourced for the community to use and widely distributed across ecosystem partners including cloud service providers. We encourage community contributions to our Github repository.\n\n\nFinally, we put in place a set of resources including an output reporting mechanism and bug bounty program to continuously improve the Llama technology with the help of the community.\n\n\nEthical Considerations and Limitations\n--------------------------------------\n\n\nThe core values of Llama 3 are openness, inclusivity and helpfulness. It is meant to serve everyone, and to work for a wide range of use cases. It is thus designed to be accessible to people across many different backgrounds, experiences and perspectives. Llama 3 addresses users and their needs as they are, without insertion unnecessary judgment or normativity, while reflecting the understanding that even content that may appear problematic in some cases can serve valuable purposes in others. It respects the dignity and autonomy of all users, especially in terms of the values of free thought and expression that power innovation and progress.\n\n\nBut Llama 3 is a new technology, and like any new technology, there are risks associated with its use. Testing conducted to date has been in English, and has not covered, nor could it cover, all scenarios. For these reasons, as with all LLMs, Llama 3’s potential outputs cannot be predicted in advance, and the model may in some instances produce inaccurate, biased or other objectionable responses to user prompts. Therefore, before deploying any applications of Llama 3 models, developers should perform safety testing and tuning tailored to their specific applications of the model. As outlined in the Responsible Use Guide, we recommend incorporating Purple Llama solutions into your workflows and specifically Llama Guard which provides a base model to filter input and output prompts to layer system-level safety on top of model-level safety.\n\n\nPlease see the Responsible Use Guide available at URL\n\n\ninstructions\n\n\n@article{llama3modelcard,\n\n\ntitle={Llama 3 Model Card},\n\n\nauthor={AI@Meta},\n\n\nyear={2024},\n\n\nurl = {URL\n\n\n}\n\n\nContributors\n------------\n\n\nAaditya Singh; Aaron Grattafiori; Abhimanyu Dubey; Abhinav Jauhri; Abhinav Pandey; Abhishek Kadian; Adam Kelsey; Adi Gangidi; Ahmad Al-Dahle; Ahuva Goldstand; Aiesha Letman; Ajay Menon; Akhil Mathur; Alan Schelten; Alex Vaughan; Amy Yang; Andrei Lupu; Andres Alvarado; Andrew Gallagher; Andrew Gu; Andrew Ho; Andrew Poulton; Andrew Ryan; Angela Fan; Ankit Ramchandani; Anthony Hartshorn; Archi Mitra; Archie Sravankumar; Artem Korenev; Arun Rao; Ashley Gabriel; Ashwin Bharambe; Assaf Eisenman; Aston Zhang; Aurelien Rodriguez; Austen Gregerson; Ava Spataru; Baptiste Roziere; Ben Maurer; Benjamin Leonhardi; Bernie Huang; Bhargavi Paranjape; Bing Liu; Binh Tang; Bobbie Chern; Brani Stojkovic; Brian Fuller; Catalina Mejia Arenas; Chao Zhou; Charlotte Caucheteux; Chaya Nayak; Ching-Hsiang Chu; Chloe Bi; Chris Cai; Chris Cox; Chris Marra; Chris McConnell; Christian Keller; Christoph Feichtenhofer; Christophe Touret; Chunyang Wu; Corinne Wong; Cristian Canton Ferrer; Damien Allonsius; Daniel Kreymer; Daniel Haziza; Daniel Li; Danielle Pintz; Danny Livshits; Danny Wyatt; David Adkins; David Esiobu; David Xu; Davide Testuggine; Delia David; Devi Parikh; Dhruv Choudhary; Dhruv Mahajan; Diana Liskovich; Diego Garcia-Olano; Diego Perino; Dieuwke Hupkes; Dingkang Wang; Dustin Holland; Egor Lakomkin; Elina Lobanova; Xiaoqing Ellen Tan; Emily Dinan; Eric Smith; Erik Brinkman; Esteban Arcaute; Filip Radenovic; Firat Ozgenel; Francesco Caggioni; Frank Seide; Frank Zhang; Gabriel Synnaeve; Gabriella Schwarz; Gabrielle Lee; Gada Badeer; Georgia Anderson; Graeme Nail; Gregoire Mialon; Guan Pang; Guillem Cucurell; Hailey Nguyen; Hannah Korevaar; Hannah Wang; Haroun Habeeb; Harrison Rudolph; Henry Aspegren; Hu Xu; Hugo Touvron; Iga Kozlowska; Igor Molybog; Igor Tufanov; Iliyan Zarov; Imanol Arrieta Ibarra; Irina-Elena Veliche; Isabel Kloumann; Ishan Misra; Ivan Evtimov; Jacob Xu; Jade Copet; Jake Weissman; Jan Geffert; Jana Vranes; Japhet Asher; Jason Park; Jay Mahadeokar; Jean-Baptiste Gaya; Jeet Shah; Jelmer van der Linde; Jennifer Chan; Jenny Hong; Jenya Lee; Jeremy Fu; Jeremy Teboul; Jianfeng Chi; Jianyu Huang; Jie Wang; Jiecao Yu; Joanna Bitton; Joe Spisak; Joelle Pineau; Jon Carvill; Jongsoo Park; Joseph Rocca; Joshua Johnstun; Junteng Jia; Kalyan Vasuden Alwala; Kam Hou U; Kate Plawiak; Kartikeya Upasani; Kaushik Veeraraghavan; Ke Li; Kenneth Heafield; Kevin Stone; Khalid El-Arini; Krithika Iyer; Kshitiz Malik; Kuenley Chiu; Kunal Bhalla; Kyle Huang; Lakshya Garg; Lauren Rantala-Yeary; Laurens van der Maaten; Lawrence Chen; Leandro Silva; Lee Bell; Lei Zhang; Liang Tan; Louis Martin; Lovish Madaan; Luca Wehrstedt; Lukas Blecher; Luke de Oliveira; Madeline Muzzi; Madian Khabsa; Manav Avlani; Mannat Singh; Manohar Paluri; Mark Zuckerberg; Marcin Kardas; Martynas Mankus; Mathew Oldham; Mathieu Rita; Matthew Lennie; Maya Pavlova; Meghan Keneally; Melanie Kambadur; Mihir Patel; Mikayel Samvelyan; Mike Clark; Mike Lewis; Min Si; Mitesh Kumar Singh; Mo Metanat; Mona Hassan; Naman Goyal; Narjes Torabi; Nicolas Usunier; Nikolay Bashlykov; Nikolay Bogoychev; Niladri Chatterji; Ning Dong; Oliver Aobo Yang; Olivier Duchenne; Onur Celebi; Parth Parekh; Patrick Alrassy; Paul Saab; Pavan Balaji; Pedro Rittner; Pengchuan Zhang; Pengwei Li; Petar Vasic; Peter Weng; Polina Zvyagina; Prajjwal Bhargava; Pratik Dubal; Praveen Krishnan; Punit Singh Koura; Qing He; Rachel Rodriguez; Ragavan Srinivasan; Rahul Mitra; Ramon Calderer; Raymond Li; Robert Stojnic; Roberta Raileanu; Robin Battey; Rocky Wang; Rohit Girdhar; Rohit Patel; Romain Sauvestre; Ronnie Polidoro; Roshan Sumbaly; Ross Taylor; Ruan Silva; Rui Hou; Rui Wang; Russ Howes; Ruty Rinott; Saghar Hosseini; Sai Jayesh Bondu; Samyak Datta; Sanjay Singh; Sara Chugh; Sargun Dhillon; Satadru Pan; Sean Bell; Sergey Edunov; Shaoliang Nie; Sharan Narang; Sharath Raparthy; Shaun Lindsay; Sheng Feng; Sheng Shen; Shenghao Lin; Shiva Shankar; Shruti Bhosale; Shun Zhang; Simon Vandenhende; Sinong Wang; Seohyun Sonia Kim; Soumya Batra; Sten Sootla; Steve Kehoe; Suchin Gururangan; Sumit Gupta; Sunny Virk; Sydney Borodinsky; Tamar Glaser; Tamar Herman; Tamara Best; Tara Fowler; Thomas Georgiou; Thomas Scialom; Tianhe Li; Todor Mihaylov; Tong Xiao; Ujjwal Karn; Vedanuj Goswami; Vibhor Gupta; Vignesh Ramanathan; Viktor Kerkez; Vinay Satish Kumar; Vincent Gonguet; Vish Vogeti; Vlad Poenaru; Vlad Tiberiu Mihailescu; Vladan Petrovic; Vladimir Ivanov; Wei Li; Weiwei Chu; Wenhan Xiong; Wenyin Fu; Wes Bouaziz; Whitney Meers; Will Constable; Xavier Martinet; Xiaojian Wu; Xinbo Gao; Xinfeng Xie; Xuchao Jia; Yaelle Goldschlag; Yann LeCun; Yashesh Gaur; Yasmine Babaei; Ye Qi; Yenda Li; Yi Wen; Yiwen Song; Youngjin Nam; Yuchen Hao; Yuchen Zhang; Yun Wang; Yuning Mao; Yuzi He; Zacharie Delpierre Coudert; Zachary DeVito; Zahra Hankir; Zhaoduo Wen; Zheng Yan; Zhengxing Chen; Zhenyu Yang; Zoe Papakipos" ]
sentence-similarity
sentence-transformers
# ai-maker-space/snowflake-ft-camelids This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('ai-maker-space/snowflake-ft-camelids') embeddings = model.encode(sentences) print(embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=ai-maker-space/snowflake-ft-camelids) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 10 with parameters: ``` {'batch_size': 10, 'sampler': 'torch.utils.data.sampler.SequentialSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters: ``` {'scale': 20.0, 'similarity_fct': 'cos_sim'} ``` Parameters of the fit()-Method: ``` { "epochs": 2, "evaluation_steps": 50, "evaluator": "sentence_transformers.evaluation.InformationRetrievalEvaluator.InformationRetrievalEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 2, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
{"library_name": "sentence-transformers", "tags": ["sentence-transformers", "feature-extraction", "sentence-similarity"], "pipeline_tag": "sentence-similarity"}
ai-maker-space/snowflake-ft-camelids
null
[ "sentence-transformers", "safetensors", "bert", "feature-extraction", "sentence-similarity", "endpoints_compatible", "region:us" ]
null
2024-04-30T19:43:15+00:00
[]
[]
TAGS #sentence-transformers #safetensors #bert #feature-extraction #sentence-similarity #endpoints_compatible #region-us
# ai-maker-space/snowflake-ft-camelids This is a sentence-transformers model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. ## Usage (Sentence-Transformers) Using this model becomes easy when you have sentence-transformers installed: Then you can use the model like this: ## Evaluation Results For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: URL ## Training The model was trained with the parameters: DataLoader: 'URL.dataloader.DataLoader' of length 10 with parameters: Loss: 'sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss' with parameters: Parameters of the fit()-Method: ## Full Model Architecture ## Citing & Authors
[ "# ai-maker-space/snowflake-ft-camelids\n\nThis is a sentence-transformers model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.", "## Usage (Sentence-Transformers)\n\nUsing this model becomes easy when you have sentence-transformers installed:\n\n\n\nThen you can use the model like this:", "## Evaluation Results\n\n\n\nFor an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: URL", "## Training\nThe model was trained with the parameters:\n\nDataLoader:\n\n'URL.dataloader.DataLoader' of length 10 with parameters:\n\n\nLoss:\n\n'sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss' with parameters:\n \n\nParameters of the fit()-Method:", "## Full Model Architecture", "## Citing & Authors" ]
[ "TAGS\n#sentence-transformers #safetensors #bert #feature-extraction #sentence-similarity #endpoints_compatible #region-us \n", "# ai-maker-space/snowflake-ft-camelids\n\nThis is a sentence-transformers model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.", "## Usage (Sentence-Transformers)\n\nUsing this model becomes easy when you have sentence-transformers installed:\n\n\n\nThen you can use the model like this:", "## Evaluation Results\n\n\n\nFor an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: URL", "## Training\nThe model was trained with the parameters:\n\nDataLoader:\n\n'URL.dataloader.DataLoader' of length 10 with parameters:\n\n\nLoss:\n\n'sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss' with parameters:\n \n\nParameters of the fit()-Method:", "## Full Model Architecture", "## Citing & Authors" ]
[ 28, 50, 30, 26, 72, 5, 5 ]
[ "TAGS\n#sentence-transformers #safetensors #bert #feature-extraction #sentence-similarity #endpoints_compatible #region-us \n# ai-maker-space/snowflake-ft-camelids\n\nThis is a sentence-transformers model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.## Usage (Sentence-Transformers)\n\nUsing this model becomes easy when you have sentence-transformers installed:\n\n\n\nThen you can use the model like this:## Evaluation Results\n\n\n\nFor an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: URL## Training\nThe model was trained with the parameters:\n\nDataLoader:\n\n'URL.dataloader.DataLoader' of length 10 with parameters:\n\n\nLoss:\n\n'sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss' with parameters:\n \n\nParameters of the fit()-Method:## Full Model Architecture## Citing & Authors" ]
null
mlx
# mlx-community/llava-phi-3-mini-8bit This model was converted to MLX format from [`qnguyen3/nanoLLaVAxtuner/llava-phi-3-mini-hf`]() using mlx-vllm version **0.0.3**. Refer to the [original model card](xtuner/llava-phi-3-mini-hf) for more details on the model. ## Use with mlx ```bash pip install -U mlx-vlm ``` ```bash python -m mlx_vlm.generate --model mlx-community/llava-phi-3-mini-8bit \ --prompt "what are these?" --image "http://images.cocodataset.org/val2017/000000039769.jpg" \ --max-tokens 100 --temp 0.0 ```
{"language": ["en"], "license": "apache-2.0", "tags": ["llava", "multimodal", "phi-mini-3", "mlx"]}
mlx-community/llava-phi-3-mini-8bit
null
[ "mlx", "safetensors", "llava", "multimodal", "phi-mini-3", "en", "license:apache-2.0", "region:us" ]
null
2024-04-30T19:44:19+00:00
[]
[ "en" ]
TAGS #mlx #safetensors #llava #multimodal #phi-mini-3 #en #license-apache-2.0 #region-us
# mlx-community/llava-phi-3-mini-8bit This model was converted to MLX format from ['qnguyen3/nanoLLaVAxtuner/llava-phi-3-mini-hf']() using mlx-vllm version 0.0.3. Refer to the original model card for more details on the model. ## Use with mlx
[ "# mlx-community/llava-phi-3-mini-8bit\nThis model was converted to MLX format from ['qnguyen3/nanoLLaVAxtuner/llava-phi-3-mini-hf']() using mlx-vllm version 0.0.3.\nRefer to the original model card for more details on the model.", "## Use with mlx" ]
[ "TAGS\n#mlx #safetensors #llava #multimodal #phi-mini-3 #en #license-apache-2.0 #region-us \n", "# mlx-community/llava-phi-3-mini-8bit\nThis model was converted to MLX format from ['qnguyen3/nanoLLaVAxtuner/llava-phi-3-mini-hf']() using mlx-vllm version 0.0.3.\nRefer to the original model card for more details on the model.", "## Use with mlx" ]
[ 35, 83, 6 ]
[ "TAGS\n#mlx #safetensors #llava #multimodal #phi-mini-3 #en #license-apache-2.0 #region-us \n# mlx-community/llava-phi-3-mini-8bit\nThis model was converted to MLX format from ['qnguyen3/nanoLLaVAxtuner/llava-phi-3-mini-hf']() using mlx-vllm version 0.0.3.\nRefer to the original model card for more details on the model.## Use with mlx" ]
text-generation
transformers
<a href="https://www.gradient.ai" target="_blank"><img src="https://cdn-uploads.huggingface.co/production/uploads/655bb613e8a8971e89944f3e/TSa3V8YpoVagnTYgxiLaO.png" width="200"/></a> # Llama-3 8B Gradient Instruct 1048k Gradient incorporates your data to deploy autonomous assistants that power critical operations across your business. If you're looking to build custom AI models or agents, email us a message [email protected]. For more info see our [End-to-end development service for custom LLMs and AI systems](https://gradient.ai/development-lab) This model extends LLama-3 8B's context length from 8k to > 1040K, developed by Gradient, sponsored by compute from [Crusoe Energy](https://huggingface.co/crusoeai). It demonstrates that SOTA LLMs can learn to operate on long context with minimal training by appropriately adjusting RoPE theta. We trained on 830M tokens for this stage, and 1.4B tokens total for all stages, which is < 0.01% of Llama-3's original pre-training data. ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6585dc9be92bc5f258156bd6/6MKLoX2ruLIaREiyb6coO.png) **Approach:** - [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) as the base - NTK-aware interpolation [1] to initialize an optimal schedule for RoPE theta, followed by empirical RoPE theta optimization - Progressive training on increasing context lengths, similar to [Large World Model](https://huggingface.co/LargeWorldModel) [2] (See details below) **Infra:** We build on top of the EasyContext Blockwise RingAttention library [3] to scalably and efficiently train on contexts up to 1048k tokens on [Crusoe Energy](https://huggingface.co/crusoeai) high performance L40S cluster. Notably, we layered parallelism on top of Ring Attention with a custom network topology to better leverage large GPU clusters in the face of network bottlenecks from passing many KV blocks between devices. This gave us a 33x speedup in model training (compare 524k and 1048k to 65k and 262k in the table below). **Data:** For training data, we generate long contexts by augmenting [SlimPajama](https://huggingface.co/datasets/cerebras/SlimPajama-627B). **Progressive Training Details:** | | 65K | 262K | 524k | 1048k | |------------------------|-----------|-----------|-----------|-----------| | Initialize From | LLaMA-3 8B| 65K | 262K | 524k | | Sequence Length 2^N | 16 | 18 | 19 | 20 | | RoPE theta | 15.3 M | 207.1 M | 1.06B | 2.80B | | Batch Size | 1 | 1 | 16 | 16 | | Gradient Accumulation Steps | 32 | 16 | 1 | 1 | | Steps | 30 | 24 | 50 | 50 | | Total Tokens | 62914560 | 100663296 | 419430400 | 838860800 | | Learning Rate | 2.00E-05 | 2.00E-05 | 2.00E-05 | 2.00E-05 | | # GPUs | 8 | 32 | 512 | 512 | | GPU Type | NVIDIA L40S | NVIDIA L40S | NVIDIA L40S | NVIDIA L40S | | Minutes to Train (Wall)| 202 | 555 | 61 | 87 | **Quants**: - [GGUF](https://huggingface.co/crusoeai/Llama-3-8B-Instruct-1048k-GGUF) - [MLX-4bit](https://huggingface.co/mlx-community/Llama-3-8B-Instruct-1048k-4bit) ## The Gradient AI Team https://gradient.ai/ Gradient is accelerating AI transformation across industries. Our AI Foundry incorporates your data to deploy autonomous assistants that power critical operations across your business. ## Contact Us Drop an email to [[email protected]](mailto:[email protected]) ## References [1] Peng, Bowen, et al. "Yarn: Efficient context window extension of large language models." arXiv preprint arXiv:2309.00071 (2023). [2] Liu, Hao, et al. "World Model on Million-Length Video And Language With RingAttention." arXiv preprint arXiv:2402.08268 (2024). [3] https://github.com/jzhang38/EasyContext ---- # Base Model ## Model Details Meta developed and released the Meta Llama 3 family of large language models (LLMs), a collection of pretrained and instruction tuned generative text models in 8 and 70B sizes. The Llama 3 instruction tuned models are optimized for dialogue use cases and outperform many of the available open source chat models on common industry benchmarks. Further, in developing these models, we took great care to optimize helpfulness and safety. **Model developers** Meta **Variations** Llama 3 comes in two sizes — 8B and 70B parameters — in pre-trained and instruction tuned variants. **Input** Models input text only. **Output** Models generate text and code only. **Model Architecture** Llama 3 is an auto-regressive language model that uses an optimized transformer architecture. The tuned versions use supervised fine-tuning (SFT) and reinforcement learning with human feedback (RLHF) to align with human preferences for helpfulness and safety. <table> <tr> <td> </td> <td><strong>Training Data</strong> </td> <td><strong>Params</strong> </td> <td><strong>Context length</strong> </td> <td><strong>GQA</strong> </td> <td><strong>Token count</strong> </td> <td><strong>Knowledge cutoff</strong> </td> </tr> <tr> <td rowspan="2" >Llama 3 </td> <td rowspan="2" >A new mix of publicly available online data. </td> <td>8B </td> <td>8k </td> <td>Yes </td> <td rowspan="2" >15T+ </td> <td>March, 2023 </td> </tr> <tr> <td>70B </td> <td>8k </td> <td>Yes </td> <td>December, 2023 </td> </tr> </table> **Llama 3 family of models**. Token counts refer to pretraining data only. Both the 8 and 70B versions use Grouped-Query Attention (GQA) for improved inference scalability. **Model Release Date** April 18, 2024. **Status** This is a static model trained on an offline dataset. Future versions of the tuned models will be released as we improve model safety with community feedback. **License** A custom commercial license is available at: [https://llama.meta.com/llama3/license](https://llama.meta.com/llama3/license) Where to send questions or comments about the model Instructions on how to provide feedback or comments on the model can be found in the model [README](https://github.com/meta-llama/llama3). For more technical information about generation parameters and recipes for how to use Llama 3 in applications, please go [here](https://github.com/meta-llama/llama-recipes). ## Intended Use **Intended Use Cases** Llama 3 is intended for commercial and research use in English. Instruction tuned models are intended for assistant-like chat, whereas pretrained models can be adapted for a variety of natural language generation tasks. **Out-of-scope** Use in any manner that violates applicable laws or regulations (including trade compliance laws). Use in any other way that is prohibited by the Acceptable Use Policy and Llama 3 Community License. Use in languages other than English**. **Note: Developers may fine-tune Llama 3 models for languages beyond English provided they comply with the Llama 3 Community License and the Acceptable Use Policy. ## How to use This repository contains two versions of Meta-Llama-3-8B-Instruct, for use with transformers and with the original `llama3` codebase. ### Use with transformers You can run conversational inference using the Transformers pipeline abstraction, or by leveraging the Auto classes with the `generate()` function. Let's see examples of both. #### Transformers pipeline ```python import transformers import torch model_id = "meta-llama/Meta-Llama-3-8B-Instruct" pipeline = transformers.pipeline( "text-generation", model=model_id, model_kwargs={"torch_dtype": torch.bfloat16}, device_map="auto", ) messages = [ {"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"}, {"role": "user", "content": "Who are you?"}, ] prompt = pipeline.tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) terminators = [ pipeline.tokenizer.eos_token_id, pipeline.tokenizer.convert_tokens_to_ids("<|eot_id|>") ] outputs = pipeline( prompt, max_new_tokens=256, eos_token_id=terminators, do_sample=True, temperature=0.6, top_p=0.9, ) print(outputs[0]["generated_text"][len(prompt):]) ``` #### Transformers AutoModelForCausalLM ```python from transformers import AutoTokenizer, AutoModelForCausalLM import torch model_id = "meta-llama/Meta-Llama-3-8B-Instruct" tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained( model_id, torch_dtype=torch.bfloat16, device_map="auto", ) messages = [ {"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"}, {"role": "user", "content": "Who are you?"}, ] input_ids = tokenizer.apply_chat_template( messages, add_generation_prompt=True, return_tensors="pt" ).to(model.device) terminators = [ tokenizer.eos_token_id, tokenizer.convert_tokens_to_ids("<|eot_id|>") ] outputs = model.generate( input_ids, max_new_tokens=256, eos_token_id=terminators, do_sample=True, temperature=0.6, top_p=0.9, ) response = outputs[0][input_ids.shape[-1]:] print(tokenizer.decode(response, skip_special_tokens=True)) ``` ### Use with `llama3` Please, follow the instructions in the [repository](https://github.com/meta-llama/llama3) To download Original checkpoints, see the example command below leveraging `huggingface-cli`: ``` huggingface-cli download meta-llama/Meta-Llama-3-8B-Instruct --include "original/*" --local-dir Meta-Llama-3-8B-Instruct ``` For Hugging Face support, we recommend using transformers or TGI, but a similar command works. ## Hardware and Software **Training Factors** We used custom training libraries, Meta's Research SuperCluster, and production clusters for pretraining. Fine-tuning, annotation, and evaluation were also performed on third-party cloud compute. **Carbon Footprint Pretraining utilized a cumulative** 7.7M GPU hours of computation on hardware of type H100-80GB (TDP of 700W). Estimated total emissions were 2290 tCO2eq, 100% of which were offset by Meta’s sustainability program. <table> <tr> <td> </td> <td><strong>Time (GPU hours)</strong> </td> <td><strong>Power Consumption (W)</strong> </td> <td><strong>Carbon Emitted(tCO2eq)</strong> </td> </tr> <tr> <td>Llama 3 8B </td> <td>1.3M </td> <td>700 </td> <td>390 </td> </tr> <tr> <td>Llama 3 70B </td> <td>6.4M </td> <td>700 </td> <td>1900 </td> </tr> <tr> <td>Total </td> <td>7.7M </td> <td> </td> <td>2290 </td> </tr> </table> **CO2 emissions during pre-training**. Time: total GPU time required for training each model. Power Consumption: peak power capacity per GPU device for the GPUs used adjusted for power usage efficiency. 100% of the emissions are directly offset by Meta's sustainability program, and because we are openly releasing these models, the pretraining costs do not need to be incurred by others. ## Training Data **Overview** Llama 3 was pretrained on over 15 trillion tokens of data from publicly available sources. The fine-tuning data includes publicly available instruction datasets, as well as over 10M human-annotated examples. Neither the pretraining nor the fine-tuning datasets include Meta user data. **Data Freshness** The pretraining data has a cutoff of March 2023 for the 7B and December 2023 for the 70B models respectively. ## Benchmarks In this section, we report the results for Llama 3 models on standard automatic benchmarks. For all the evaluations, we use our internal evaluations library. For details on the methodology see [here](https://github.com/meta-llama/llama3/blob/main/eval_methodology.md). ### Base pretrained models <table> <tr> <td><strong>Category</strong> </td> <td><strong>Benchmark</strong> </td> <td><strong>Llama 3 8B</strong> </td> <td><strong>Llama2 7B</strong> </td> <td><strong>Llama2 13B</strong> </td> <td><strong>Llama 3 70B</strong> </td> <td><strong>Llama2 70B</strong> </td> </tr> <tr> <td rowspan="6" >General </td> <td>MMLU (5-shot) </td> <td>66.6 </td> <td>45.7 </td> <td>53.8 </td> <td>79.5 </td> <td>69.7 </td> </tr> <tr> <td>AGIEval English (3-5 shot) </td> <td>45.9 </td> <td>28.8 </td> <td>38.7 </td> <td>63.0 </td> <td>54.8 </td> </tr> <tr> <td>CommonSenseQA (7-shot) </td> <td>72.6 </td> <td>57.6 </td> <td>67.6 </td> <td>83.8 </td> <td>78.7 </td> </tr> <tr> <td>Winogrande (5-shot) </td> <td>76.1 </td> <td>73.3 </td> <td>75.4 </td> <td>83.1 </td> <td>81.8 </td> </tr> <tr> <td>BIG-Bench Hard (3-shot, CoT) </td> <td>61.1 </td> <td>38.1 </td> <td>47.0 </td> <td>81.3 </td> <td>65.7 </td> </tr> <tr> <td>ARC-Challenge (25-shot) </td> <td>78.6 </td> <td>53.7 </td> <td>67.6 </td> <td>93.0 </td> <td>85.3 </td> </tr> <tr> <td>Knowledge reasoning </td> <td>TriviaQA-Wiki (5-shot) </td> <td>78.5 </td> <td>72.1 </td> <td>79.6 </td> <td>89.7 </td> <td>87.5 </td> </tr> <tr> <td rowspan="4" >Reading comprehension </td> <td>SQuAD (1-shot) </td> <td>76.4 </td> <td>72.2 </td> <td>72.1 </td> <td>85.6 </td> <td>82.6 </td> </tr> <tr> <td>QuAC (1-shot, F1) </td> <td>44.4 </td> <td>39.6 </td> <td>44.9 </td> <td>51.1 </td> <td>49.4 </td> </tr> <tr> <td>BoolQ (0-shot) </td> <td>75.7 </td> <td>65.5 </td> <td>66.9 </td> <td>79.0 </td> <td>73.1 </td> </tr> <tr> <td>DROP (3-shot, F1) </td> <td>58.4 </td> <td>37.9 </td> <td>49.8 </td> <td>79.7 </td> <td>70.2 </td> </tr> </table> ### Instruction tuned models <table> <tr> <td><strong>Benchmark</strong> </td> <td><strong>Llama 3 8B</strong> </td> <td><strong>Llama 2 7B</strong> </td> <td><strong>Llama 2 13B</strong> </td> <td><strong>Llama 3 70B</strong> </td> <td><strong>Llama 2 70B</strong> </td> </tr> <tr> <td>MMLU (5-shot) </td> <td>68.4 </td> <td>34.1 </td> <td>47.8 </td> <td>82.0 </td> <td>52.9 </td> </tr> <tr> <td>GPQA (0-shot) </td> <td>34.2 </td> <td>21.7 </td> <td>22.3 </td> <td>39.5 </td> <td>21.0 </td> </tr> <tr> <td>HumanEval (0-shot) </td> <td>62.2 </td> <td>7.9 </td> <td>14.0 </td> <td>81.7 </td> <td>25.6 </td> </tr> <tr> <td>GSM-8K (8-shot, CoT) </td> <td>79.6 </td> <td>25.7 </td> <td>77.4 </td> <td>93.0 </td> <td>57.5 </td> </tr> <tr> <td>MATH (4-shot, CoT) </td> <td>30.0 </td> <td>3.8 </td> <td>6.7 </td> <td>50.4 </td> <td>11.6 </td> </tr> </table> ### Responsibility & Safety We believe that an open approach to AI leads to better, safer products, faster innovation, and a bigger overall market. We are committed to Responsible AI development and took a series of steps to limit misuse and harm and support the open source community. Foundation models are widely capable technologies that are built to be used for a diverse range of applications. They are not designed to meet every developer preference on safety levels for all use cases, out-of-the-box, as those by their nature will differ across different applications. Rather, responsible LLM-application deployment is achieved by implementing a series of safety best practices throughout the development of such applications, from the model pre-training, fine-tuning and the deployment of systems composed of safeguards to tailor the safety needs specifically to the use case and audience. As part of the Llama 3 release, we updated our [Responsible Use Guide](https://llama.meta.com/responsible-use-guide/) to outline the steps and best practices for developers to implement model and system level safety for their application. We also provide a set of resources including [Meta Llama Guard 2](https://llama.meta.com/purple-llama/) and [Code Shield](https://llama.meta.com/purple-llama/) safeguards. These tools have proven to drastically reduce residual risks of LLM Systems, while maintaining a high level of helpfulness. We encourage developers to tune and deploy these safeguards according to their needs and we provide a [reference implementation](https://github.com/meta-llama/llama-recipes/tree/main/recipes/responsible_ai) to get you started. #### Llama 3-Instruct As outlined in the Responsible Use Guide, some trade-off between model helpfulness and model alignment is likely unavoidable. Developers should exercise discretion about how to weigh the benefits of alignment and helpfulness for their specific use case and audience. Developers should be mindful of residual risks when using Llama models and leverage additional safety tools as needed to reach the right safety bar for their use case. <span style="text-decoration:underline;">Safety</span> For our instruction tuned model, we conducted extensive red teaming exercises, performed adversarial evaluations and implemented safety mitigations techniques to lower residual risks. As with any Large Language Model, residual risks will likely remain and we recommend that developers assess these risks in the context of their use case. In parallel, we are working with the community to make AI safety benchmark standards transparent, rigorous and interpretable. <span style="text-decoration:underline;">Refusals</span> In addition to residual risks, we put a great emphasis on model refusals to benign prompts. Over-refusing not only can impact the user experience but could even be harmful in certain contexts as well. We’ve heard the feedback from the developer community and improved our fine tuning to ensure that Llama 3 is significantly less likely to falsely refuse to answer prompts than Llama 2. We built internal benchmarks and developed mitigations to limit false refusals making Llama 3 our most helpful model to date. #### Responsible release In addition to responsible use considerations outlined above, we followed a rigorous process that requires us to take extra measures against misuse and critical risks before we make our release decision. Misuse If you access or use Llama 3, you agree to the Acceptable Use Policy. The most recent copy of this policy can be found at [https://llama.meta.com/llama3/use-policy/](https://llama.meta.com/llama3/use-policy/). #### Critical risks <span style="text-decoration:underline;">CBRNE</span> (Chemical, Biological, Radiological, Nuclear, and high yield Explosives) We have conducted a two fold assessment of the safety of the model in this area: * Iterative testing during model training to assess the safety of responses related to CBRNE threats and other adversarial risks. * Involving external CBRNE experts to conduct an uplift test assessing the ability of the model to accurately provide expert knowledge and reduce barriers to potential CBRNE misuse, by reference to what can be achieved using web search (without the model). ### <span style="text-decoration:underline;">Cyber Security </span> We have evaluated Llama 3 with CyberSecEval, Meta’s cybersecurity safety eval suite, measuring Llama 3’s propensity to suggest insecure code when used as a coding assistant, and Llama 3’s propensity to comply with requests to help carry out cyber attacks, where attacks are defined by the industry standard MITRE ATT&CK cyber attack ontology. On our insecure coding and cyber attacker helpfulness tests, Llama 3 behaved in the same range or safer than models of [equivalent coding capability](https://huggingface.co/spaces/facebook/CyberSecEval). ### <span style="text-decoration:underline;">Child Safety</span> Child Safety risk assessments were conducted using a team of experts, to assess the model’s capability to produce outputs that could result in Child Safety risks and inform on any necessary and appropriate risk mitigations via fine tuning. We leveraged those expert red teaming sessions to expand the coverage of our evaluation benchmarks through Llama 3 model development. For Llama 3, we conducted new in-depth sessions using objective based methodologies to assess the model risks along multiple attack vectors. We also partnered with content specialists to perform red teaming exercises assessing potentially violating content while taking account of market specific nuances or experiences. ### Community Generative AI safety requires expertise and tooling, and we believe in the strength of the open community to accelerate its progress. We are active members of open consortiums, including the AI Alliance, Partnership in AI and MLCommons, actively contributing to safety standardization and transparency. We encourage the community to adopt taxonomies like the MLCommons Proof of Concept evaluation to facilitate collaboration and transparency on safety and content evaluations. Our Purple Llama tools are open sourced for the community to use and widely distributed across ecosystem partners including cloud service providers. We encourage community contributions to our [Github repository](https://github.com/meta-llama/PurpleLlama). Finally, we put in place a set of resources including an [output reporting mechanism](https://developers.facebook.com/llama_output_feedback) and [bug bounty program](https://www.facebook.com/whitehat) to continuously improve the Llama technology with the help of the community. ## Ethical Considerations and Limitations The core values of Llama 3 are openness, inclusivity and helpfulness. It is meant to serve everyone, and to work for a wide range of use cases. It is thus designed to be accessible to people across many different backgrounds, experiences and perspectives. Llama 3 addresses users and their needs as they are, without insertion unnecessary judgment or normativity, while reflecting the understanding that even content that may appear problematic in some cases can serve valuable purposes in others. It respects the dignity and autonomy of all users, especially in terms of the values of free thought and expression that power innovation and progress. But Llama 3 is a new technology, and like any new technology, there are risks associated with its use. Testing conducted to date has been in English, and has not covered, nor could it cover, all scenarios. For these reasons, as with all LLMs, Llama 3’s potential outputs cannot be predicted in advance, and the model may in some instances produce inaccurate, biased or other objectionable responses to user prompts. Therefore, before deploying any applications of Llama 3 models, developers should perform safety testing and tuning tailored to their specific applications of the model. As outlined in the Responsible Use Guide, we recommend incorporating [Purple Llama](https://github.com/facebookresearch/PurpleLlama) solutions into your workflows and specifically [Llama Guard](https://ai.meta.com/research/publications/llama-guard-llm-based-input-output-safeguard-for-human-ai-conversations/) which provides a base model to filter input and output prompts to layer system-level safety on top of model-level safety. Please see the Responsible Use Guide available at [http://llama.meta.com/responsible-use-guide](http://llama.meta.com/responsible-use-guide) ## Citation instructions @article{llama3modelcard, title={Llama 3 Model Card}, author={AI@Meta}, year={2024}, url = {https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md} } ## Contributors Aaditya Singh; Aaron Grattafiori; Abhimanyu Dubey; Abhinav Jauhri; Abhinav Pandey; Abhishek Kadian; Adam Kelsey; Adi Gangidi; Ahmad Al-Dahle; Ahuva Goldstand; Aiesha Letman; Ajay Menon; Akhil Mathur; Alan Schelten; Alex Vaughan; Amy Yang; Andrei Lupu; Andres Alvarado; Andrew Gallagher; Andrew Gu; Andrew Ho; Andrew Poulton; Andrew Ryan; Angela Fan; Ankit Ramchandani; Anthony Hartshorn; Archi Mitra; Archie Sravankumar; Artem Korenev; Arun Rao; Ashley Gabriel; Ashwin Bharambe; Assaf Eisenman; Aston Zhang; Aurelien Rodriguez; Austen Gregerson; Ava Spataru; Baptiste Roziere; Ben Maurer; Benjamin Leonhardi; Bernie Huang; Bhargavi Paranjape; Bing Liu; Binh Tang; Bobbie Chern; Brani Stojkovic; Brian Fuller; Catalina Mejia Arenas; Chao Zhou; Charlotte Caucheteux; Chaya Nayak; Ching-Hsiang Chu; Chloe Bi; Chris Cai; Chris Cox; Chris Marra; Chris McConnell; Christian Keller; Christoph Feichtenhofer; Christophe Touret; Chunyang Wu; Corinne Wong; Cristian Canton Ferrer; Damien Allonsius; Daniel Kreymer; Daniel Haziza; Daniel Li; Danielle Pintz; Danny Livshits; Danny Wyatt; David Adkins; David Esiobu; David Xu; Davide Testuggine; Delia David; Devi Parikh; Dhruv Choudhary; Dhruv Mahajan; Diana Liskovich; Diego Garcia-Olano; Diego Perino; Dieuwke Hupkes; Dingkang Wang; Dustin Holland; Egor Lakomkin; Elina Lobanova; Xiaoqing Ellen Tan; Emily Dinan; Eric Smith; Erik Brinkman; Esteban Arcaute; Filip Radenovic; Firat Ozgenel; Francesco Caggioni; Frank Seide; Frank Zhang; Gabriel Synnaeve; Gabriella Schwarz; Gabrielle Lee; Gada Badeer; Georgia Anderson; Graeme Nail; Gregoire Mialon; Guan Pang; Guillem Cucurell; Hailey Nguyen; Hannah Korevaar; Hannah Wang; Haroun Habeeb; Harrison Rudolph; Henry Aspegren; Hu Xu; Hugo Touvron; Iga Kozlowska; Igor Molybog; Igor Tufanov; Iliyan Zarov; Imanol Arrieta Ibarra; Irina-Elena Veliche; Isabel Kloumann; Ishan Misra; Ivan Evtimov; Jacob Xu; Jade Copet; Jake Weissman; Jan Geffert; Jana Vranes; Japhet Asher; Jason Park; Jay Mahadeokar; Jean-Baptiste Gaya; Jeet Shah; Jelmer van der Linde; Jennifer Chan; Jenny Hong; Jenya Lee; Jeremy Fu; Jeremy Teboul; Jianfeng Chi; Jianyu Huang; Jie Wang; Jiecao Yu; Joanna Bitton; Joe Spisak; Joelle Pineau; Jon Carvill; Jongsoo Park; Joseph Rocca; Joshua Johnstun; Junteng Jia; Kalyan Vasuden Alwala; Kam Hou U; Kate Plawiak; Kartikeya Upasani; Kaushik Veeraraghavan; Ke Li; Kenneth Heafield; Kevin Stone; Khalid El-Arini; Krithika Iyer; Kshitiz Malik; Kuenley Chiu; Kunal Bhalla; Kyle Huang; Lakshya Garg; Lauren Rantala-Yeary; Laurens van der Maaten; Lawrence Chen; Leandro Silva; Lee Bell; Lei Zhang; Liang Tan; Louis Martin; Lovish Madaan; Luca Wehrstedt; Lukas Blecher; Luke de Oliveira; Madeline Muzzi; Madian Khabsa; Manav Avlani; Mannat Singh; Manohar Paluri; Mark Zuckerberg; Marcin Kardas; Martynas Mankus; Mathew Oldham; Mathieu Rita; Matthew Lennie; Maya Pavlova; Meghan Keneally; Melanie Kambadur; Mihir Patel; Mikayel Samvelyan; Mike Clark; Mike Lewis; Min Si; Mitesh Kumar Singh; Mo Metanat; Mona Hassan; Naman Goyal; Narjes Torabi; Nicolas Usunier; Nikolay Bashlykov; Nikolay Bogoychev; Niladri Chatterji; Ning Dong; Oliver Aobo Yang; Olivier Duchenne; Onur Celebi; Parth Parekh; Patrick Alrassy; Paul Saab; Pavan Balaji; Pedro Rittner; Pengchuan Zhang; Pengwei Li; Petar Vasic; Peter Weng; Polina Zvyagina; Prajjwal Bhargava; Pratik Dubal; Praveen Krishnan; Punit Singh Koura; Qing He; Rachel Rodriguez; Ragavan Srinivasan; Rahul Mitra; Ramon Calderer; Raymond Li; Robert Stojnic; Roberta Raileanu; Robin Battey; Rocky Wang; Rohit Girdhar; Rohit Patel; Romain Sauvestre; Ronnie Polidoro; Roshan Sumbaly; Ross Taylor; Ruan Silva; Rui Hou; Rui Wang; Russ Howes; Ruty Rinott; Saghar Hosseini; Sai Jayesh Bondu; Samyak Datta; Sanjay Singh; Sara Chugh; Sargun Dhillon; Satadru Pan; Sean Bell; Sergey Edunov; Shaoliang Nie; Sharan Narang; Sharath Raparthy; Shaun Lindsay; Sheng Feng; Sheng Shen; Shenghao Lin; Shiva Shankar; Shruti Bhosale; Shun Zhang; Simon Vandenhende; Sinong Wang; Seohyun Sonia Kim; Soumya Batra; Sten Sootla; Steve Kehoe; Suchin Gururangan; Sumit Gupta; Sunny Virk; Sydney Borodinsky; Tamar Glaser; Tamar Herman; Tamara Best; Tara Fowler; Thomas Georgiou; Thomas Scialom; Tianhe Li; Todor Mihaylov; Tong Xiao; Ujjwal Karn; Vedanuj Goswami; Vibhor Gupta; Vignesh Ramanathan; Viktor Kerkez; Vinay Satish Kumar; Vincent Gonguet; Vish Vogeti; Vlad Poenaru; Vlad Tiberiu Mihailescu; Vladan Petrovic; Vladimir Ivanov; Wei Li; Weiwei Chu; Wenhan Xiong; Wenyin Fu; Wes Bouaziz; Whitney Meers; Will Constable; Xavier Martinet; Xiaojian Wu; Xinbo Gao; Xinfeng Xie; Xuchao Jia; Yaelle Goldschlag; Yann LeCun; Yashesh Gaur; Yasmine Babaei; Ye Qi; Yenda Li; Yi Wen; Yiwen Song; Youngjin Nam; Yuchen Hao; Yuchen Zhang; Yun Wang; Yuning Mao; Yuzi He; Zacharie Delpierre Coudert; Zachary DeVito; Zahra Hankir; Zhaoduo Wen; Zheng Yan; Zhengxing Chen; Zhenyu Yang; Zoe Papakipos
{"language": ["en"], "license": "llama3", "tags": ["meta", "llama-3"], "pipeline_tag": "text-generation"}
LoneStriker/Llama-3-8B-Instruct-Gradient-1048k-6.0bpw-h6-exl2
null
[ "transformers", "safetensors", "llama", "text-generation", "meta", "llama-3", "conversational", "en", "license:llama3", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "6-bit", "region:us" ]
null
2024-04-30T19:44:51+00:00
[]
[ "en" ]
TAGS #transformers #safetensors #llama #text-generation #meta #llama-3 #conversational #en #license-llama3 #autotrain_compatible #endpoints_compatible #text-generation-inference #6-bit #region-us
[<img src="URL width="200"/>](URL) Llama-3 8B Gradient Instruct 1048k ================================== Gradient incorporates your data to deploy autonomous assistants that power critical operations across your business. If you're looking to build custom AI models or agents, email us a message contact@URL. For more info see our End-to-end development service for custom LLMs and AI systems This model extends LLama-3 8B's context length from 8k to > 1040K, developed by Gradient, sponsored by compute from Crusoe Energy. It demonstrates that SOTA LLMs can learn to operate on long context with minimal training by appropriately adjusting RoPE theta. We trained on 830M tokens for this stage, and 1.4B tokens total for all stages, which is < 0.01% of Llama-3's original pre-training data. !image/png Approach: * meta-llama/Meta-Llama-3-8B-Instruct as the base * NTK-aware interpolation [1] to initialize an optimal schedule for RoPE theta, followed by empirical RoPE theta optimization * Progressive training on increasing context lengths, similar to Large World Model [2] (See details below) Infra: We build on top of the EasyContext Blockwise RingAttention library [3] to scalably and efficiently train on contexts up to 1048k tokens on Crusoe Energy high performance L40S cluster. Notably, we layered parallelism on top of Ring Attention with a custom network topology to better leverage large GPU clusters in the face of network bottlenecks from passing many KV blocks between devices. This gave us a 33x speedup in model training (compare 524k and 1048k to 65k and 262k in the table below). Data: For training data, we generate long contexts by augmenting SlimPajama. Progressive Training Details: Quants: * GGUF * MLX-4bit The Gradient AI Team -------------------- URL Gradient is accelerating AI transformation across industries. Our AI Foundry incorporates your data to deploy autonomous assistants that power critical operations across your business. Contact Us ---------- Drop an email to contact@URL References ---------- [1] Peng, Bowen, et al. "Yarn: Efficient context window extension of large language models." arXiv preprint arXiv:2309.00071 (2023). [2] Liu, Hao, et al. "World Model on Million-Length Video And Language With RingAttention." arXiv preprint arXiv:2402.08268 (2024). [3] URL --- Base Model ========== Model Details ------------- Meta developed and released the Meta Llama 3 family of large language models (LLMs), a collection of pretrained and instruction tuned generative text models in 8 and 70B sizes. The Llama 3 instruction tuned models are optimized for dialogue use cases and outperform many of the available open source chat models on common industry benchmarks. Further, in developing these models, we took great care to optimize helpfulness and safety. Model developers Meta Variations Llama 3 comes in two sizes — 8B and 70B parameters — in pre-trained and instruction tuned variants. Input Models input text only. Output Models generate text and code only. Model Architecture Llama 3 is an auto-regressive language model that uses an optimized transformer architecture. The tuned versions use supervised fine-tuning (SFT) and reinforcement learning with human feedback (RLHF) to align with human preferences for helpfulness and safety. Llama 3 family of models. Token counts refer to pretraining data only. Both the 8 and 70B versions use Grouped-Query Attention (GQA) for improved inference scalability. Model Release Date April 18, 2024. Status This is a static model trained on an offline dataset. Future versions of the tuned models will be released as we improve model safety with community feedback. License A custom commercial license is available at: URL Where to send questions or comments about the model Instructions on how to provide feedback or comments on the model can be found in the model README. For more technical information about generation parameters and recipes for how to use Llama 3 in applications, please go here. Intended Use ------------ Intended Use Cases Llama 3 is intended for commercial and research use in English. Instruction tuned models are intended for assistant-like chat, whereas pretrained models can be adapted for a variety of natural language generation tasks. Out-of-scope Use in any manner that violates applicable laws or regulations (including trade compliance laws). Use in any other way that is prohibited by the Acceptable Use Policy and Llama 3 Community License. Use in languages other than English. Note: Developers may fine-tune Llama 3 models for languages beyond English provided they comply with the Llama 3 Community License and the Acceptable Use Policy. How to use ---------- This repository contains two versions of Meta-Llama-3-8B-Instruct, for use with transformers and with the original 'llama3' codebase. ### Use with transformers You can run conversational inference using the Transformers pipeline abstraction, or by leveraging the Auto classes with the 'generate()' function. Let's see examples of both. #### Transformers pipeline #### Transformers AutoModelForCausalLM ### Use with 'llama3' Please, follow the instructions in the repository To download Original checkpoints, see the example command below leveraging 'huggingface-cli': For Hugging Face support, we recommend using transformers or TGI, but a similar command works. Hardware and Software --------------------- Training Factors We used custom training libraries, Meta's Research SuperCluster, and production clusters for pretraining. Fine-tuning, annotation, and evaluation were also performed on third-party cloud compute. Carbon Footprint Pretraining utilized a cumulative 7.7M GPU hours of computation on hardware of type H100-80GB (TDP of 700W). Estimated total emissions were 2290 tCO2eq, 100% of which were offset by Meta’s sustainability program. CO2 emissions during pre-training. Time: total GPU time required for training each model. Power Consumption: peak power capacity per GPU device for the GPUs used adjusted for power usage efficiency. 100% of the emissions are directly offset by Meta's sustainability program, and because we are openly releasing these models, the pretraining costs do not need to be incurred by others. Training Data ------------- Overview Llama 3 was pretrained on over 15 trillion tokens of data from publicly available sources. The fine-tuning data includes publicly available instruction datasets, as well as over 10M human-annotated examples. Neither the pretraining nor the fine-tuning datasets include Meta user data. Data Freshness The pretraining data has a cutoff of March 2023 for the 7B and December 2023 for the 70B models respectively. Benchmarks ---------- In this section, we report the results for Llama 3 models on standard automatic benchmarks. For all the evaluations, we use our internal evaluations library. For details on the methodology see here. ### Base pretrained models ### Instruction tuned models ### Responsibility & Safety We believe that an open approach to AI leads to better, safer products, faster innovation, and a bigger overall market. We are committed to Responsible AI development and took a series of steps to limit misuse and harm and support the open source community. Foundation models are widely capable technologies that are built to be used for a diverse range of applications. They are not designed to meet every developer preference on safety levels for all use cases, out-of-the-box, as those by their nature will differ across different applications. Rather, responsible LLM-application deployment is achieved by implementing a series of safety best practices throughout the development of such applications, from the model pre-training, fine-tuning and the deployment of systems composed of safeguards to tailor the safety needs specifically to the use case and audience. As part of the Llama 3 release, we updated our Responsible Use Guide to outline the steps and best practices for developers to implement model and system level safety for their application. We also provide a set of resources including Meta Llama Guard 2 and Code Shield safeguards. These tools have proven to drastically reduce residual risks of LLM Systems, while maintaining a high level of helpfulness. We encourage developers to tune and deploy these safeguards according to their needs and we provide a reference implementation to get you started. #### Llama 3-Instruct As outlined in the Responsible Use Guide, some trade-off between model helpfulness and model alignment is likely unavoidable. Developers should exercise discretion about how to weigh the benefits of alignment and helpfulness for their specific use case and audience. Developers should be mindful of residual risks when using Llama models and leverage additional safety tools as needed to reach the right safety bar for their use case. Safety For our instruction tuned model, we conducted extensive red teaming exercises, performed adversarial evaluations and implemented safety mitigations techniques to lower residual risks. As with any Large Language Model, residual risks will likely remain and we recommend that developers assess these risks in the context of their use case. In parallel, we are working with the community to make AI safety benchmark standards transparent, rigorous and interpretable. Refusals In addition to residual risks, we put a great emphasis on model refusals to benign prompts. Over-refusing not only can impact the user experience but could even be harmful in certain contexts as well. We’ve heard the feedback from the developer community and improved our fine tuning to ensure that Llama 3 is significantly less likely to falsely refuse to answer prompts than Llama 2. We built internal benchmarks and developed mitigations to limit false refusals making Llama 3 our most helpful model to date. #### Responsible release In addition to responsible use considerations outlined above, we followed a rigorous process that requires us to take extra measures against misuse and critical risks before we make our release decision. Misuse If you access or use Llama 3, you agree to the Acceptable Use Policy. The most recent copy of this policy can be found at URL #### Critical risks CBRNE (Chemical, Biological, Radiological, Nuclear, and high yield Explosives) We have conducted a two fold assessment of the safety of the model in this area: * Iterative testing during model training to assess the safety of responses related to CBRNE threats and other adversarial risks. * Involving external CBRNE experts to conduct an uplift test assessing the ability of the model to accurately provide expert knowledge and reduce barriers to potential CBRNE misuse, by reference to what can be achieved using web search (without the model). ### Cyber Security We have evaluated Llama 3 with CyberSecEval, Meta’s cybersecurity safety eval suite, measuring Llama 3’s propensity to suggest insecure code when used as a coding assistant, and Llama 3’s propensity to comply with requests to help carry out cyber attacks, where attacks are defined by the industry standard MITRE ATT&CK cyber attack ontology. On our insecure coding and cyber attacker helpfulness tests, Llama 3 behaved in the same range or safer than models of equivalent coding capability. ### Child Safety Child Safety risk assessments were conducted using a team of experts, to assess the model’s capability to produce outputs that could result in Child Safety risks and inform on any necessary and appropriate risk mitigations via fine tuning. We leveraged those expert red teaming sessions to expand the coverage of our evaluation benchmarks through Llama 3 model development. For Llama 3, we conducted new in-depth sessions using objective based methodologies to assess the model risks along multiple attack vectors. We also partnered with content specialists to perform red teaming exercises assessing potentially violating content while taking account of market specific nuances or experiences. ### Community Generative AI safety requires expertise and tooling, and we believe in the strength of the open community to accelerate its progress. We are active members of open consortiums, including the AI Alliance, Partnership in AI and MLCommons, actively contributing to safety standardization and transparency. We encourage the community to adopt taxonomies like the MLCommons Proof of Concept evaluation to facilitate collaboration and transparency on safety and content evaluations. Our Purple Llama tools are open sourced for the community to use and widely distributed across ecosystem partners including cloud service providers. We encourage community contributions to our Github repository. Finally, we put in place a set of resources including an output reporting mechanism and bug bounty program to continuously improve the Llama technology with the help of the community. Ethical Considerations and Limitations -------------------------------------- The core values of Llama 3 are openness, inclusivity and helpfulness. It is meant to serve everyone, and to work for a wide range of use cases. It is thus designed to be accessible to people across many different backgrounds, experiences and perspectives. Llama 3 addresses users and their needs as they are, without insertion unnecessary judgment or normativity, while reflecting the understanding that even content that may appear problematic in some cases can serve valuable purposes in others. It respects the dignity and autonomy of all users, especially in terms of the values of free thought and expression that power innovation and progress. But Llama 3 is a new technology, and like any new technology, there are risks associated with its use. Testing conducted to date has been in English, and has not covered, nor could it cover, all scenarios. For these reasons, as with all LLMs, Llama 3’s potential outputs cannot be predicted in advance, and the model may in some instances produce inaccurate, biased or other objectionable responses to user prompts. Therefore, before deploying any applications of Llama 3 models, developers should perform safety testing and tuning tailored to their specific applications of the model. As outlined in the Responsible Use Guide, we recommend incorporating Purple Llama solutions into your workflows and specifically Llama Guard which provides a base model to filter input and output prompts to layer system-level safety on top of model-level safety. Please see the Responsible Use Guide available at URL instructions @article{llama3modelcard, title={Llama 3 Model Card}, author={AI@Meta}, year={2024}, url = {URL } Contributors ------------ Aaditya Singh; Aaron Grattafiori; Abhimanyu Dubey; Abhinav Jauhri; Abhinav Pandey; Abhishek Kadian; Adam Kelsey; Adi Gangidi; Ahmad Al-Dahle; Ahuva Goldstand; Aiesha Letman; Ajay Menon; Akhil Mathur; Alan Schelten; Alex Vaughan; Amy Yang; Andrei Lupu; Andres Alvarado; Andrew Gallagher; Andrew Gu; Andrew Ho; Andrew Poulton; Andrew Ryan; Angela Fan; Ankit Ramchandani; Anthony Hartshorn; Archi Mitra; Archie Sravankumar; Artem Korenev; Arun Rao; Ashley Gabriel; Ashwin Bharambe; Assaf Eisenman; Aston Zhang; Aurelien Rodriguez; Austen Gregerson; Ava Spataru; Baptiste Roziere; Ben Maurer; Benjamin Leonhardi; Bernie Huang; Bhargavi Paranjape; Bing Liu; Binh Tang; Bobbie Chern; Brani Stojkovic; Brian Fuller; Catalina Mejia Arenas; Chao Zhou; Charlotte Caucheteux; Chaya Nayak; Ching-Hsiang Chu; Chloe Bi; Chris Cai; Chris Cox; Chris Marra; Chris McConnell; Christian Keller; Christoph Feichtenhofer; Christophe Touret; Chunyang Wu; Corinne Wong; Cristian Canton Ferrer; Damien Allonsius; Daniel Kreymer; Daniel Haziza; Daniel Li; Danielle Pintz; Danny Livshits; Danny Wyatt; David Adkins; David Esiobu; David Xu; Davide Testuggine; Delia David; Devi Parikh; Dhruv Choudhary; Dhruv Mahajan; Diana Liskovich; Diego Garcia-Olano; Diego Perino; Dieuwke Hupkes; Dingkang Wang; Dustin Holland; Egor Lakomkin; Elina Lobanova; Xiaoqing Ellen Tan; Emily Dinan; Eric Smith; Erik Brinkman; Esteban Arcaute; Filip Radenovic; Firat Ozgenel; Francesco Caggioni; Frank Seide; Frank Zhang; Gabriel Synnaeve; Gabriella Schwarz; Gabrielle Lee; Gada Badeer; Georgia Anderson; Graeme Nail; Gregoire Mialon; Guan Pang; Guillem Cucurell; Hailey Nguyen; Hannah Korevaar; Hannah Wang; Haroun Habeeb; Harrison Rudolph; Henry Aspegren; Hu Xu; Hugo Touvron; Iga Kozlowska; Igor Molybog; Igor Tufanov; Iliyan Zarov; Imanol Arrieta Ibarra; Irina-Elena Veliche; Isabel Kloumann; Ishan Misra; Ivan Evtimov; Jacob Xu; Jade Copet; Jake Weissman; Jan Geffert; Jana Vranes; Japhet Asher; Jason Park; Jay Mahadeokar; Jean-Baptiste Gaya; Jeet Shah; Jelmer van der Linde; Jennifer Chan; Jenny Hong; Jenya Lee; Jeremy Fu; Jeremy Teboul; Jianfeng Chi; Jianyu Huang; Jie Wang; Jiecao Yu; Joanna Bitton; Joe Spisak; Joelle Pineau; Jon Carvill; Jongsoo Park; Joseph Rocca; Joshua Johnstun; Junteng Jia; Kalyan Vasuden Alwala; Kam Hou U; Kate Plawiak; Kartikeya Upasani; Kaushik Veeraraghavan; Ke Li; Kenneth Heafield; Kevin Stone; Khalid El-Arini; Krithika Iyer; Kshitiz Malik; Kuenley Chiu; Kunal Bhalla; Kyle Huang; Lakshya Garg; Lauren Rantala-Yeary; Laurens van der Maaten; Lawrence Chen; Leandro Silva; Lee Bell; Lei Zhang; Liang Tan; Louis Martin; Lovish Madaan; Luca Wehrstedt; Lukas Blecher; Luke de Oliveira; Madeline Muzzi; Madian Khabsa; Manav Avlani; Mannat Singh; Manohar Paluri; Mark Zuckerberg; Marcin Kardas; Martynas Mankus; Mathew Oldham; Mathieu Rita; Matthew Lennie; Maya Pavlova; Meghan Keneally; Melanie Kambadur; Mihir Patel; Mikayel Samvelyan; Mike Clark; Mike Lewis; Min Si; Mitesh Kumar Singh; Mo Metanat; Mona Hassan; Naman Goyal; Narjes Torabi; Nicolas Usunier; Nikolay Bashlykov; Nikolay Bogoychev; Niladri Chatterji; Ning Dong; Oliver Aobo Yang; Olivier Duchenne; Onur Celebi; Parth Parekh; Patrick Alrassy; Paul Saab; Pavan Balaji; Pedro Rittner; Pengchuan Zhang; Pengwei Li; Petar Vasic; Peter Weng; Polina Zvyagina; Prajjwal Bhargava; Pratik Dubal; Praveen Krishnan; Punit Singh Koura; Qing He; Rachel Rodriguez; Ragavan Srinivasan; Rahul Mitra; Ramon Calderer; Raymond Li; Robert Stojnic; Roberta Raileanu; Robin Battey; Rocky Wang; Rohit Girdhar; Rohit Patel; Romain Sauvestre; Ronnie Polidoro; Roshan Sumbaly; Ross Taylor; Ruan Silva; Rui Hou; Rui Wang; Russ Howes; Ruty Rinott; Saghar Hosseini; Sai Jayesh Bondu; Samyak Datta; Sanjay Singh; Sara Chugh; Sargun Dhillon; Satadru Pan; Sean Bell; Sergey Edunov; Shaoliang Nie; Sharan Narang; Sharath Raparthy; Shaun Lindsay; Sheng Feng; Sheng Shen; Shenghao Lin; Shiva Shankar; Shruti Bhosale; Shun Zhang; Simon Vandenhende; Sinong Wang; Seohyun Sonia Kim; Soumya Batra; Sten Sootla; Steve Kehoe; Suchin Gururangan; Sumit Gupta; Sunny Virk; Sydney Borodinsky; Tamar Glaser; Tamar Herman; Tamara Best; Tara Fowler; Thomas Georgiou; Thomas Scialom; Tianhe Li; Todor Mihaylov; Tong Xiao; Ujjwal Karn; Vedanuj Goswami; Vibhor Gupta; Vignesh Ramanathan; Viktor Kerkez; Vinay Satish Kumar; Vincent Gonguet; Vish Vogeti; Vlad Poenaru; Vlad Tiberiu Mihailescu; Vladan Petrovic; Vladimir Ivanov; Wei Li; Weiwei Chu; Wenhan Xiong; Wenyin Fu; Wes Bouaziz; Whitney Meers; Will Constable; Xavier Martinet; Xiaojian Wu; Xinbo Gao; Xinfeng Xie; Xuchao Jia; Yaelle Goldschlag; Yann LeCun; Yashesh Gaur; Yasmine Babaei; Ye Qi; Yenda Li; Yi Wen; Yiwen Song; Youngjin Nam; Yuchen Hao; Yuchen Zhang; Yun Wang; Yuning Mao; Yuzi He; Zacharie Delpierre Coudert; Zachary DeVito; Zahra Hankir; Zhaoduo Wen; Zheng Yan; Zhengxing Chen; Zhenyu Yang; Zoe Papakipos
[ "### Use with transformers\n\n\nYou can run conversational inference using the Transformers pipeline abstraction, or by leveraging the Auto classes with the 'generate()' function. Let's see examples of both.", "#### Transformers pipeline", "#### Transformers AutoModelForCausalLM", "### Use with 'llama3'\n\n\nPlease, follow the instructions in the repository\n\n\nTo download Original checkpoints, see the example command below leveraging 'huggingface-cli':\n\n\nFor Hugging Face support, we recommend using transformers or TGI, but a similar command works.\n\n\nHardware and Software\n---------------------\n\n\nTraining Factors We used custom training libraries, Meta's Research SuperCluster, and production clusters for pretraining. Fine-tuning, annotation, and evaluation were also performed on third-party cloud compute.\n\n\nCarbon Footprint Pretraining utilized a cumulative 7.7M GPU hours of computation on hardware of type H100-80GB (TDP of 700W). Estimated total emissions were 2290 tCO2eq, 100% of which were offset by Meta’s sustainability program.\n\n\n\nCO2 emissions during pre-training. Time: total GPU time required for training each model. Power Consumption: peak power capacity per GPU device for the GPUs used adjusted for power usage efficiency. 100% of the emissions are directly offset by Meta's sustainability program, and because we are openly releasing these models, the pretraining costs do not need to be incurred by others.\n\n\nTraining Data\n-------------\n\n\nOverview Llama 3 was pretrained on over 15 trillion tokens of data from publicly available sources. The fine-tuning data includes publicly available instruction datasets, as well as over 10M human-annotated examples. Neither the pretraining nor the fine-tuning datasets include Meta user data.\n\n\nData Freshness The pretraining data has a cutoff of March 2023 for the 7B and December 2023 for the 70B models respectively.\n\n\nBenchmarks\n----------\n\n\nIn this section, we report the results for Llama 3 models on standard automatic benchmarks. For all the evaluations, we use our internal evaluations library. For details on the methodology see here.", "### Base pretrained models", "### Instruction tuned models", "### Responsibility & Safety\n\n\nWe believe that an open approach to AI leads to better, safer products, faster innovation, and a bigger overall market. We are committed to Responsible AI development and took a series of steps to limit misuse and harm and support the open source community.\n\n\nFoundation models are widely capable technologies that are built to be used for a diverse range of applications. They are not designed to meet every developer preference on safety levels for all use cases, out-of-the-box, as those by their nature will differ across different applications.\n\n\nRather, responsible LLM-application deployment is achieved by implementing a series of safety best practices throughout the development of such applications, from the model pre-training, fine-tuning and the deployment of systems composed of safeguards to tailor the safety needs specifically to the use case and audience.\n\n\nAs part of the Llama 3 release, we updated our Responsible Use Guide to outline the steps and best practices for developers to implement model and system level safety for their application. We also provide a set of resources including Meta Llama Guard 2 and Code Shield safeguards. These tools have proven to drastically reduce residual risks of LLM Systems, while maintaining a high level of helpfulness. We encourage developers to tune and deploy these safeguards according to their needs and we provide a reference implementation to get you started.", "#### Llama 3-Instruct\n\n\nAs outlined in the Responsible Use Guide, some trade-off between model helpfulness and model alignment is likely unavoidable. Developers should exercise discretion about how to weigh the benefits of alignment and helpfulness for their specific use case and audience. Developers should be mindful of residual risks when using Llama models and leverage additional safety tools as needed to reach the right safety bar for their use case.\n\n\nSafety\n\n\nFor our instruction tuned model, we conducted extensive red teaming exercises, performed adversarial evaluations and implemented safety mitigations techniques to lower residual risks. As with any Large Language Model, residual risks will likely remain and we recommend that developers assess these risks in the context of their use case. In parallel, we are working with the community to make AI safety benchmark standards transparent, rigorous and interpretable.\n\n\nRefusals\n\n\nIn addition to residual risks, we put a great emphasis on model refusals to benign prompts. Over-refusing not only can impact the user experience but could even be harmful in certain contexts as well. We’ve heard the feedback from the developer community and improved our fine tuning to ensure that Llama 3 is significantly less likely to falsely refuse to answer prompts than Llama 2.\n\n\nWe built internal benchmarks and developed mitigations to limit false refusals making Llama 3 our most helpful model to date.", "#### Responsible release\n\n\nIn addition to responsible use considerations outlined above, we followed a rigorous process that requires us to take extra measures against misuse and critical risks before we make our release decision.\n\n\nMisuse\n\n\nIf you access or use Llama 3, you agree to the Acceptable Use Policy. The most recent copy of this policy can be found at URL", "#### Critical risks\n\n\nCBRNE (Chemical, Biological, Radiological, Nuclear, and high yield Explosives)\n\n\nWe have conducted a two fold assessment of the safety of the model in this area:\n\n\n* Iterative testing during model training to assess the safety of responses related to CBRNE threats and other adversarial risks.\n* Involving external CBRNE experts to conduct an uplift test assessing the ability of the model to accurately provide expert knowledge and reduce barriers to potential CBRNE misuse, by reference to what can be achieved using web search (without the model).", "### Cyber Security\n\n\nWe have evaluated Llama 3 with CyberSecEval, Meta’s cybersecurity safety eval suite, measuring Llama 3’s propensity to suggest insecure code when used as a coding assistant, and Llama 3’s propensity to comply with requests to help carry out cyber attacks, where attacks are defined by the industry standard MITRE ATT&CK cyber attack ontology. On our insecure coding and cyber attacker helpfulness tests, Llama 3 behaved in the same range or safer than models of equivalent coding capability.", "### Child Safety\n\n\nChild Safety risk assessments were conducted using a team of experts, to assess the model’s capability to produce outputs that could result in Child Safety risks and inform on any necessary and appropriate risk mitigations via fine tuning. We leveraged those expert red teaming sessions to expand the coverage of our evaluation benchmarks through Llama 3 model development. For Llama 3, we conducted new in-depth sessions using objective based methodologies to assess the model risks along multiple attack vectors. We also partnered with content specialists to perform red teaming exercises assessing potentially violating content while taking account of market specific nuances or experiences.", "### Community\n\n\nGenerative AI safety requires expertise and tooling, and we believe in the strength of the open community to accelerate its progress. We are active members of open consortiums, including the AI Alliance, Partnership in AI and MLCommons, actively contributing to safety standardization and transparency. We encourage the community to adopt taxonomies like the MLCommons Proof of Concept evaluation to facilitate collaboration and transparency on safety and content evaluations. Our Purple Llama tools are open sourced for the community to use and widely distributed across ecosystem partners including cloud service providers. We encourage community contributions to our Github repository.\n\n\nFinally, we put in place a set of resources including an output reporting mechanism and bug bounty program to continuously improve the Llama technology with the help of the community.\n\n\nEthical Considerations and Limitations\n--------------------------------------\n\n\nThe core values of Llama 3 are openness, inclusivity and helpfulness. It is meant to serve everyone, and to work for a wide range of use cases. It is thus designed to be accessible to people across many different backgrounds, experiences and perspectives. Llama 3 addresses users and their needs as they are, without insertion unnecessary judgment or normativity, while reflecting the understanding that even content that may appear problematic in some cases can serve valuable purposes in others. It respects the dignity and autonomy of all users, especially in terms of the values of free thought and expression that power innovation and progress.\n\n\nBut Llama 3 is a new technology, and like any new technology, there are risks associated with its use. Testing conducted to date has been in English, and has not covered, nor could it cover, all scenarios. For these reasons, as with all LLMs, Llama 3’s potential outputs cannot be predicted in advance, and the model may in some instances produce inaccurate, biased or other objectionable responses to user prompts. Therefore, before deploying any applications of Llama 3 models, developers should perform safety testing and tuning tailored to their specific applications of the model. As outlined in the Responsible Use Guide, we recommend incorporating Purple Llama solutions into your workflows and specifically Llama Guard which provides a base model to filter input and output prompts to layer system-level safety on top of model-level safety.\n\n\nPlease see the Responsible Use Guide available at URL\n\n\ninstructions\n\n\n@article{llama3modelcard,\n\n\ntitle={Llama 3 Model Card},\n\n\nauthor={AI@Meta},\n\n\nyear={2024},\n\n\nurl = {URL\n\n\n}\n\n\nContributors\n------------\n\n\nAaditya Singh; Aaron Grattafiori; Abhimanyu Dubey; Abhinav Jauhri; Abhinav Pandey; Abhishek Kadian; Adam Kelsey; Adi Gangidi; Ahmad Al-Dahle; Ahuva Goldstand; Aiesha Letman; Ajay Menon; Akhil Mathur; Alan Schelten; Alex Vaughan; Amy Yang; Andrei Lupu; Andres Alvarado; Andrew Gallagher; Andrew Gu; Andrew Ho; Andrew Poulton; Andrew Ryan; Angela Fan; Ankit Ramchandani; Anthony Hartshorn; Archi Mitra; Archie Sravankumar; Artem Korenev; Arun Rao; Ashley Gabriel; Ashwin Bharambe; Assaf Eisenman; Aston Zhang; Aurelien Rodriguez; Austen Gregerson; Ava Spataru; Baptiste Roziere; Ben Maurer; Benjamin Leonhardi; Bernie Huang; Bhargavi Paranjape; Bing Liu; Binh Tang; Bobbie Chern; Brani Stojkovic; Brian Fuller; Catalina Mejia Arenas; Chao Zhou; Charlotte Caucheteux; Chaya Nayak; Ching-Hsiang Chu; Chloe Bi; Chris Cai; Chris Cox; Chris Marra; Chris McConnell; Christian Keller; Christoph Feichtenhofer; Christophe Touret; Chunyang Wu; Corinne Wong; Cristian Canton Ferrer; Damien Allonsius; Daniel Kreymer; Daniel Haziza; Daniel Li; Danielle Pintz; Danny Livshits; Danny Wyatt; David Adkins; David Esiobu; David Xu; Davide Testuggine; Delia David; Devi Parikh; Dhruv Choudhary; Dhruv Mahajan; Diana Liskovich; Diego Garcia-Olano; Diego Perino; Dieuwke Hupkes; Dingkang Wang; Dustin Holland; Egor Lakomkin; Elina Lobanova; Xiaoqing Ellen Tan; Emily Dinan; Eric Smith; Erik Brinkman; Esteban Arcaute; Filip Radenovic; Firat Ozgenel; Francesco Caggioni; Frank Seide; Frank Zhang; Gabriel Synnaeve; Gabriella Schwarz; Gabrielle Lee; Gada Badeer; Georgia Anderson; Graeme Nail; Gregoire Mialon; Guan Pang; Guillem Cucurell; Hailey Nguyen; Hannah Korevaar; Hannah Wang; Haroun Habeeb; Harrison Rudolph; Henry Aspegren; Hu Xu; Hugo Touvron; Iga Kozlowska; Igor Molybog; Igor Tufanov; Iliyan Zarov; Imanol Arrieta Ibarra; Irina-Elena Veliche; Isabel Kloumann; Ishan Misra; Ivan Evtimov; Jacob Xu; Jade Copet; Jake Weissman; Jan Geffert; Jana Vranes; Japhet Asher; Jason Park; Jay Mahadeokar; Jean-Baptiste Gaya; Jeet Shah; Jelmer van der Linde; Jennifer Chan; Jenny Hong; Jenya Lee; Jeremy Fu; Jeremy Teboul; Jianfeng Chi; Jianyu Huang; Jie Wang; Jiecao Yu; Joanna Bitton; Joe Spisak; Joelle Pineau; Jon Carvill; Jongsoo Park; Joseph Rocca; Joshua Johnstun; Junteng Jia; Kalyan Vasuden Alwala; Kam Hou U; Kate Plawiak; Kartikeya Upasani; Kaushik Veeraraghavan; Ke Li; Kenneth Heafield; Kevin Stone; Khalid El-Arini; Krithika Iyer; Kshitiz Malik; Kuenley Chiu; Kunal Bhalla; Kyle Huang; Lakshya Garg; Lauren Rantala-Yeary; Laurens van der Maaten; Lawrence Chen; Leandro Silva; Lee Bell; Lei Zhang; Liang Tan; Louis Martin; Lovish Madaan; Luca Wehrstedt; Lukas Blecher; Luke de Oliveira; Madeline Muzzi; Madian Khabsa; Manav Avlani; Mannat Singh; Manohar Paluri; Mark Zuckerberg; Marcin Kardas; Martynas Mankus; Mathew Oldham; Mathieu Rita; Matthew Lennie; Maya Pavlova; Meghan Keneally; Melanie Kambadur; Mihir Patel; Mikayel Samvelyan; Mike Clark; Mike Lewis; Min Si; Mitesh Kumar Singh; Mo Metanat; Mona Hassan; Naman Goyal; Narjes Torabi; Nicolas Usunier; Nikolay Bashlykov; Nikolay Bogoychev; Niladri Chatterji; Ning Dong; Oliver Aobo Yang; Olivier Duchenne; Onur Celebi; Parth Parekh; Patrick Alrassy; Paul Saab; Pavan Balaji; Pedro Rittner; Pengchuan Zhang; Pengwei Li; Petar Vasic; Peter Weng; Polina Zvyagina; Prajjwal Bhargava; Pratik Dubal; Praveen Krishnan; Punit Singh Koura; Qing He; Rachel Rodriguez; Ragavan Srinivasan; Rahul Mitra; Ramon Calderer; Raymond Li; Robert Stojnic; Roberta Raileanu; Robin Battey; Rocky Wang; Rohit Girdhar; Rohit Patel; Romain Sauvestre; Ronnie Polidoro; Roshan Sumbaly; Ross Taylor; Ruan Silva; Rui Hou; Rui Wang; Russ Howes; Ruty Rinott; Saghar Hosseini; Sai Jayesh Bondu; Samyak Datta; Sanjay Singh; Sara Chugh; Sargun Dhillon; Satadru Pan; Sean Bell; Sergey Edunov; Shaoliang Nie; Sharan Narang; Sharath Raparthy; Shaun Lindsay; Sheng Feng; Sheng Shen; Shenghao Lin; Shiva Shankar; Shruti Bhosale; Shun Zhang; Simon Vandenhende; Sinong Wang; Seohyun Sonia Kim; Soumya Batra; Sten Sootla; Steve Kehoe; Suchin Gururangan; Sumit Gupta; Sunny Virk; Sydney Borodinsky; Tamar Glaser; Tamar Herman; Tamara Best; Tara Fowler; Thomas Georgiou; Thomas Scialom; Tianhe Li; Todor Mihaylov; Tong Xiao; Ujjwal Karn; Vedanuj Goswami; Vibhor Gupta; Vignesh Ramanathan; Viktor Kerkez; Vinay Satish Kumar; Vincent Gonguet; Vish Vogeti; Vlad Poenaru; Vlad Tiberiu Mihailescu; Vladan Petrovic; Vladimir Ivanov; Wei Li; Weiwei Chu; Wenhan Xiong; Wenyin Fu; Wes Bouaziz; Whitney Meers; Will Constable; Xavier Martinet; Xiaojian Wu; Xinbo Gao; Xinfeng Xie; Xuchao Jia; Yaelle Goldschlag; Yann LeCun; Yashesh Gaur; Yasmine Babaei; Ye Qi; Yenda Li; Yi Wen; Yiwen Song; Youngjin Nam; Yuchen Hao; Yuchen Zhang; Yun Wang; Yuning Mao; Yuzi He; Zacharie Delpierre Coudert; Zachary DeVito; Zahra Hankir; Zhaoduo Wen; Zheng Yan; Zhengxing Chen; Zhenyu Yang; Zoe Papakipos" ]
[ "TAGS\n#transformers #safetensors #llama #text-generation #meta #llama-3 #conversational #en #license-llama3 #autotrain_compatible #endpoints_compatible #text-generation-inference #6-bit #region-us \n", "### Use with transformers\n\n\nYou can run conversational inference using the Transformers pipeline abstraction, or by leveraging the Auto classes with the 'generate()' function. Let's see examples of both.", "#### Transformers pipeline", "#### Transformers AutoModelForCausalLM", "### Use with 'llama3'\n\n\nPlease, follow the instructions in the repository\n\n\nTo download Original checkpoints, see the example command below leveraging 'huggingface-cli':\n\n\nFor Hugging Face support, we recommend using transformers or TGI, but a similar command works.\n\n\nHardware and Software\n---------------------\n\n\nTraining Factors We used custom training libraries, Meta's Research SuperCluster, and production clusters for pretraining. Fine-tuning, annotation, and evaluation were also performed on third-party cloud compute.\n\n\nCarbon Footprint Pretraining utilized a cumulative 7.7M GPU hours of computation on hardware of type H100-80GB (TDP of 700W). Estimated total emissions were 2290 tCO2eq, 100% of which were offset by Meta’s sustainability program.\n\n\n\nCO2 emissions during pre-training. Time: total GPU time required for training each model. Power Consumption: peak power capacity per GPU device for the GPUs used adjusted for power usage efficiency. 100% of the emissions are directly offset by Meta's sustainability program, and because we are openly releasing these models, the pretraining costs do not need to be incurred by others.\n\n\nTraining Data\n-------------\n\n\nOverview Llama 3 was pretrained on over 15 trillion tokens of data from publicly available sources. The fine-tuning data includes publicly available instruction datasets, as well as over 10M human-annotated examples. Neither the pretraining nor the fine-tuning datasets include Meta user data.\n\n\nData Freshness The pretraining data has a cutoff of March 2023 for the 7B and December 2023 for the 70B models respectively.\n\n\nBenchmarks\n----------\n\n\nIn this section, we report the results for Llama 3 models on standard automatic benchmarks. For all the evaluations, we use our internal evaluations library. For details on the methodology see here.", "### Base pretrained models", "### Instruction tuned models", "### Responsibility & Safety\n\n\nWe believe that an open approach to AI leads to better, safer products, faster innovation, and a bigger overall market. We are committed to Responsible AI development and took a series of steps to limit misuse and harm and support the open source community.\n\n\nFoundation models are widely capable technologies that are built to be used for a diverse range of applications. They are not designed to meet every developer preference on safety levels for all use cases, out-of-the-box, as those by their nature will differ across different applications.\n\n\nRather, responsible LLM-application deployment is achieved by implementing a series of safety best practices throughout the development of such applications, from the model pre-training, fine-tuning and the deployment of systems composed of safeguards to tailor the safety needs specifically to the use case and audience.\n\n\nAs part of the Llama 3 release, we updated our Responsible Use Guide to outline the steps and best practices for developers to implement model and system level safety for their application. We also provide a set of resources including Meta Llama Guard 2 and Code Shield safeguards. These tools have proven to drastically reduce residual risks of LLM Systems, while maintaining a high level of helpfulness. We encourage developers to tune and deploy these safeguards according to their needs and we provide a reference implementation to get you started.", "#### Llama 3-Instruct\n\n\nAs outlined in the Responsible Use Guide, some trade-off between model helpfulness and model alignment is likely unavoidable. Developers should exercise discretion about how to weigh the benefits of alignment and helpfulness for their specific use case and audience. Developers should be mindful of residual risks when using Llama models and leverage additional safety tools as needed to reach the right safety bar for their use case.\n\n\nSafety\n\n\nFor our instruction tuned model, we conducted extensive red teaming exercises, performed adversarial evaluations and implemented safety mitigations techniques to lower residual risks. As with any Large Language Model, residual risks will likely remain and we recommend that developers assess these risks in the context of their use case. In parallel, we are working with the community to make AI safety benchmark standards transparent, rigorous and interpretable.\n\n\nRefusals\n\n\nIn addition to residual risks, we put a great emphasis on model refusals to benign prompts. Over-refusing not only can impact the user experience but could even be harmful in certain contexts as well. We’ve heard the feedback from the developer community and improved our fine tuning to ensure that Llama 3 is significantly less likely to falsely refuse to answer prompts than Llama 2.\n\n\nWe built internal benchmarks and developed mitigations to limit false refusals making Llama 3 our most helpful model to date.", "#### Responsible release\n\n\nIn addition to responsible use considerations outlined above, we followed a rigorous process that requires us to take extra measures against misuse and critical risks before we make our release decision.\n\n\nMisuse\n\n\nIf you access or use Llama 3, you agree to the Acceptable Use Policy. The most recent copy of this policy can be found at URL", "#### Critical risks\n\n\nCBRNE (Chemical, Biological, Radiological, Nuclear, and high yield Explosives)\n\n\nWe have conducted a two fold assessment of the safety of the model in this area:\n\n\n* Iterative testing during model training to assess the safety of responses related to CBRNE threats and other adversarial risks.\n* Involving external CBRNE experts to conduct an uplift test assessing the ability of the model to accurately provide expert knowledge and reduce barriers to potential CBRNE misuse, by reference to what can be achieved using web search (without the model).", "### Cyber Security\n\n\nWe have evaluated Llama 3 with CyberSecEval, Meta’s cybersecurity safety eval suite, measuring Llama 3’s propensity to suggest insecure code when used as a coding assistant, and Llama 3’s propensity to comply with requests to help carry out cyber attacks, where attacks are defined by the industry standard MITRE ATT&CK cyber attack ontology. On our insecure coding and cyber attacker helpfulness tests, Llama 3 behaved in the same range or safer than models of equivalent coding capability.", "### Child Safety\n\n\nChild Safety risk assessments were conducted using a team of experts, to assess the model’s capability to produce outputs that could result in Child Safety risks and inform on any necessary and appropriate risk mitigations via fine tuning. We leveraged those expert red teaming sessions to expand the coverage of our evaluation benchmarks through Llama 3 model development. For Llama 3, we conducted new in-depth sessions using objective based methodologies to assess the model risks along multiple attack vectors. We also partnered with content specialists to perform red teaming exercises assessing potentially violating content while taking account of market specific nuances or experiences.", "### Community\n\n\nGenerative AI safety requires expertise and tooling, and we believe in the strength of the open community to accelerate its progress. We are active members of open consortiums, including the AI Alliance, Partnership in AI and MLCommons, actively contributing to safety standardization and transparency. We encourage the community to adopt taxonomies like the MLCommons Proof of Concept evaluation to facilitate collaboration and transparency on safety and content evaluations. Our Purple Llama tools are open sourced for the community to use and widely distributed across ecosystem partners including cloud service providers. We encourage community contributions to our Github repository.\n\n\nFinally, we put in place a set of resources including an output reporting mechanism and bug bounty program to continuously improve the Llama technology with the help of the community.\n\n\nEthical Considerations and Limitations\n--------------------------------------\n\n\nThe core values of Llama 3 are openness, inclusivity and helpfulness. It is meant to serve everyone, and to work for a wide range of use cases. It is thus designed to be accessible to people across many different backgrounds, experiences and perspectives. Llama 3 addresses users and their needs as they are, without insertion unnecessary judgment or normativity, while reflecting the understanding that even content that may appear problematic in some cases can serve valuable purposes in others. It respects the dignity and autonomy of all users, especially in terms of the values of free thought and expression that power innovation and progress.\n\n\nBut Llama 3 is a new technology, and like any new technology, there are risks associated with its use. Testing conducted to date has been in English, and has not covered, nor could it cover, all scenarios. For these reasons, as with all LLMs, Llama 3’s potential outputs cannot be predicted in advance, and the model may in some instances produce inaccurate, biased or other objectionable responses to user prompts. Therefore, before deploying any applications of Llama 3 models, developers should perform safety testing and tuning tailored to their specific applications of the model. As outlined in the Responsible Use Guide, we recommend incorporating Purple Llama solutions into your workflows and specifically Llama Guard which provides a base model to filter input and output prompts to layer system-level safety on top of model-level safety.\n\n\nPlease see the Responsible Use Guide available at URL\n\n\ninstructions\n\n\n@article{llama3modelcard,\n\n\ntitle={Llama 3 Model Card},\n\n\nauthor={AI@Meta},\n\n\nyear={2024},\n\n\nurl = {URL\n\n\n}\n\n\nContributors\n------------\n\n\nAaditya Singh; Aaron Grattafiori; Abhimanyu Dubey; Abhinav Jauhri; Abhinav Pandey; Abhishek Kadian; Adam Kelsey; Adi Gangidi; Ahmad Al-Dahle; Ahuva Goldstand; Aiesha Letman; Ajay Menon; Akhil Mathur; Alan Schelten; Alex Vaughan; Amy Yang; Andrei Lupu; Andres Alvarado; Andrew Gallagher; Andrew Gu; Andrew Ho; Andrew Poulton; Andrew Ryan; Angela Fan; Ankit Ramchandani; Anthony Hartshorn; Archi Mitra; Archie Sravankumar; Artem Korenev; Arun Rao; Ashley Gabriel; Ashwin Bharambe; Assaf Eisenman; Aston Zhang; Aurelien Rodriguez; Austen Gregerson; Ava Spataru; Baptiste Roziere; Ben Maurer; Benjamin Leonhardi; Bernie Huang; Bhargavi Paranjape; Bing Liu; Binh Tang; Bobbie Chern; Brani Stojkovic; Brian Fuller; Catalina Mejia Arenas; Chao Zhou; Charlotte Caucheteux; Chaya Nayak; Ching-Hsiang Chu; Chloe Bi; Chris Cai; Chris Cox; Chris Marra; Chris McConnell; Christian Keller; Christoph Feichtenhofer; Christophe Touret; Chunyang Wu; Corinne Wong; Cristian Canton Ferrer; Damien Allonsius; Daniel Kreymer; Daniel Haziza; Daniel Li; Danielle Pintz; Danny Livshits; Danny Wyatt; David Adkins; David Esiobu; David Xu; Davide Testuggine; Delia David; Devi Parikh; Dhruv Choudhary; Dhruv Mahajan; Diana Liskovich; Diego Garcia-Olano; Diego Perino; Dieuwke Hupkes; Dingkang Wang; Dustin Holland; Egor Lakomkin; Elina Lobanova; Xiaoqing Ellen Tan; Emily Dinan; Eric Smith; Erik Brinkman; Esteban Arcaute; Filip Radenovic; Firat Ozgenel; Francesco Caggioni; Frank Seide; Frank Zhang; Gabriel Synnaeve; Gabriella Schwarz; Gabrielle Lee; Gada Badeer; Georgia Anderson; Graeme Nail; Gregoire Mialon; Guan Pang; Guillem Cucurell; Hailey Nguyen; Hannah Korevaar; Hannah Wang; Haroun Habeeb; Harrison Rudolph; Henry Aspegren; Hu Xu; Hugo Touvron; Iga Kozlowska; Igor Molybog; Igor Tufanov; Iliyan Zarov; Imanol Arrieta Ibarra; Irina-Elena Veliche; Isabel Kloumann; Ishan Misra; Ivan Evtimov; Jacob Xu; Jade Copet; Jake Weissman; Jan Geffert; Jana Vranes; Japhet Asher; Jason Park; Jay Mahadeokar; Jean-Baptiste Gaya; Jeet Shah; Jelmer van der Linde; Jennifer Chan; Jenny Hong; Jenya Lee; Jeremy Fu; Jeremy Teboul; Jianfeng Chi; Jianyu Huang; Jie Wang; Jiecao Yu; Joanna Bitton; Joe Spisak; Joelle Pineau; Jon Carvill; Jongsoo Park; Joseph Rocca; Joshua Johnstun; Junteng Jia; Kalyan Vasuden Alwala; Kam Hou U; Kate Plawiak; Kartikeya Upasani; Kaushik Veeraraghavan; Ke Li; Kenneth Heafield; Kevin Stone; Khalid El-Arini; Krithika Iyer; Kshitiz Malik; Kuenley Chiu; Kunal Bhalla; Kyle Huang; Lakshya Garg; Lauren Rantala-Yeary; Laurens van der Maaten; Lawrence Chen; Leandro Silva; Lee Bell; Lei Zhang; Liang Tan; Louis Martin; Lovish Madaan; Luca Wehrstedt; Lukas Blecher; Luke de Oliveira; Madeline Muzzi; Madian Khabsa; Manav Avlani; Mannat Singh; Manohar Paluri; Mark Zuckerberg; Marcin Kardas; Martynas Mankus; Mathew Oldham; Mathieu Rita; Matthew Lennie; Maya Pavlova; Meghan Keneally; Melanie Kambadur; Mihir Patel; Mikayel Samvelyan; Mike Clark; Mike Lewis; Min Si; Mitesh Kumar Singh; Mo Metanat; Mona Hassan; Naman Goyal; Narjes Torabi; Nicolas Usunier; Nikolay Bashlykov; Nikolay Bogoychev; Niladri Chatterji; Ning Dong; Oliver Aobo Yang; Olivier Duchenne; Onur Celebi; Parth Parekh; Patrick Alrassy; Paul Saab; Pavan Balaji; Pedro Rittner; Pengchuan Zhang; Pengwei Li; Petar Vasic; Peter Weng; Polina Zvyagina; Prajjwal Bhargava; Pratik Dubal; Praveen Krishnan; Punit Singh Koura; Qing He; Rachel Rodriguez; Ragavan Srinivasan; Rahul Mitra; Ramon Calderer; Raymond Li; Robert Stojnic; Roberta Raileanu; Robin Battey; Rocky Wang; Rohit Girdhar; Rohit Patel; Romain Sauvestre; Ronnie Polidoro; Roshan Sumbaly; Ross Taylor; Ruan Silva; Rui Hou; Rui Wang; Russ Howes; Ruty Rinott; Saghar Hosseini; Sai Jayesh Bondu; Samyak Datta; Sanjay Singh; Sara Chugh; Sargun Dhillon; Satadru Pan; Sean Bell; Sergey Edunov; Shaoliang Nie; Sharan Narang; Sharath Raparthy; Shaun Lindsay; Sheng Feng; Sheng Shen; Shenghao Lin; Shiva Shankar; Shruti Bhosale; Shun Zhang; Simon Vandenhende; Sinong Wang; Seohyun Sonia Kim; Soumya Batra; Sten Sootla; Steve Kehoe; Suchin Gururangan; Sumit Gupta; Sunny Virk; Sydney Borodinsky; Tamar Glaser; Tamar Herman; Tamara Best; Tara Fowler; Thomas Georgiou; Thomas Scialom; Tianhe Li; Todor Mihaylov; Tong Xiao; Ujjwal Karn; Vedanuj Goswami; Vibhor Gupta; Vignesh Ramanathan; Viktor Kerkez; Vinay Satish Kumar; Vincent Gonguet; Vish Vogeti; Vlad Poenaru; Vlad Tiberiu Mihailescu; Vladan Petrovic; Vladimir Ivanov; Wei Li; Weiwei Chu; Wenhan Xiong; Wenyin Fu; Wes Bouaziz; Whitney Meers; Will Constable; Xavier Martinet; Xiaojian Wu; Xinbo Gao; Xinfeng Xie; Xuchao Jia; Yaelle Goldschlag; Yann LeCun; Yashesh Gaur; Yasmine Babaei; Ye Qi; Yenda Li; Yi Wen; Yiwen Song; Youngjin Nam; Yuchen Hao; Yuchen Zhang; Yun Wang; Yuning Mao; Yuzi He; Zacharie Delpierre Coudert; Zachary DeVito; Zahra Hankir; Zhaoduo Wen; Zheng Yan; Zhengxing Chen; Zhenyu Yang; Zoe Papakipos" ]
[ 56, 42, 6, 13, 429, 8, 6, 270, 280, 72, 115, 118, 126, 2136 ]
[ "TAGS\n#transformers #safetensors #llama #text-generation #meta #llama-3 #conversational #en #license-llama3 #autotrain_compatible #endpoints_compatible #text-generation-inference #6-bit #region-us \n### Use with transformers\n\n\nYou can run conversational inference using the Transformers pipeline abstraction, or by leveraging the Auto classes with the 'generate()' function. Let's see examples of both.#### Transformers pipeline#### Transformers AutoModelForCausalLM### Use with 'llama3'\n\n\nPlease, follow the instructions in the repository\n\n\nTo download Original checkpoints, see the example command below leveraging 'huggingface-cli':\n\n\nFor Hugging Face support, we recommend using transformers or TGI, but a similar command works.\n\n\nHardware and Software\n---------------------\n\n\nTraining Factors We used custom training libraries, Meta's Research SuperCluster, and production clusters for pretraining. Fine-tuning, annotation, and evaluation were also performed on third-party cloud compute.\n\n\nCarbon Footprint Pretraining utilized a cumulative 7.7M GPU hours of computation on hardware of type H100-80GB (TDP of 700W). Estimated total emissions were 2290 tCO2eq, 100% of which were offset by Meta’s sustainability program.\n\n\n\nCO2 emissions during pre-training. Time: total GPU time required for training each model. Power Consumption: peak power capacity per GPU device for the GPUs used adjusted for power usage efficiency. 100% of the emissions are directly offset by Meta's sustainability program, and because we are openly releasing these models, the pretraining costs do not need to be incurred by others.\n\n\nTraining Data\n-------------\n\n\nOverview Llama 3 was pretrained on over 15 trillion tokens of data from publicly available sources. The fine-tuning data includes publicly available instruction datasets, as well as over 10M human-annotated examples. Neither the pretraining nor the fine-tuning datasets include Meta user data.\n\n\nData Freshness The pretraining data has a cutoff of March 2023 for the 7B and December 2023 for the 70B models respectively.\n\n\nBenchmarks\n----------\n\n\nIn this section, we report the results for Llama 3 models on standard automatic benchmarks. For all the evaluations, we use our internal evaluations library. For details on the methodology see here.### Base pretrained models### Instruction tuned models### Responsibility & Safety\n\n\nWe believe that an open approach to AI leads to better, safer products, faster innovation, and a bigger overall market. We are committed to Responsible AI development and took a series of steps to limit misuse and harm and support the open source community.\n\n\nFoundation models are widely capable technologies that are built to be used for a diverse range of applications. They are not designed to meet every developer preference on safety levels for all use cases, out-of-the-box, as those by their nature will differ across different applications.\n\n\nRather, responsible LLM-application deployment is achieved by implementing a series of safety best practices throughout the development of such applications, from the model pre-training, fine-tuning and the deployment of systems composed of safeguards to tailor the safety needs specifically to the use case and audience.\n\n\nAs part of the Llama 3 release, we updated our Responsible Use Guide to outline the steps and best practices for developers to implement model and system level safety for their application. We also provide a set of resources including Meta Llama Guard 2 and Code Shield safeguards. These tools have proven to drastically reduce residual risks of LLM Systems, while maintaining a high level of helpfulness. We encourage developers to tune and deploy these safeguards according to their needs and we provide a reference implementation to get you started.#### Llama 3-Instruct\n\n\nAs outlined in the Responsible Use Guide, some trade-off between model helpfulness and model alignment is likely unavoidable. Developers should exercise discretion about how to weigh the benefits of alignment and helpfulness for their specific use case and audience. Developers should be mindful of residual risks when using Llama models and leverage additional safety tools as needed to reach the right safety bar for their use case.\n\n\nSafety\n\n\nFor our instruction tuned model, we conducted extensive red teaming exercises, performed adversarial evaluations and implemented safety mitigations techniques to lower residual risks. As with any Large Language Model, residual risks will likely remain and we recommend that developers assess these risks in the context of their use case. In parallel, we are working with the community to make AI safety benchmark standards transparent, rigorous and interpretable.\n\n\nRefusals\n\n\nIn addition to residual risks, we put a great emphasis on model refusals to benign prompts. Over-refusing not only can impact the user experience but could even be harmful in certain contexts as well. We’ve heard the feedback from the developer community and improved our fine tuning to ensure that Llama 3 is significantly less likely to falsely refuse to answer prompts than Llama 2.\n\n\nWe built internal benchmarks and developed mitigations to limit false refusals making Llama 3 our most helpful model to date.#### Responsible release\n\n\nIn addition to responsible use considerations outlined above, we followed a rigorous process that requires us to take extra measures against misuse and critical risks before we make our release decision.\n\n\nMisuse\n\n\nIf you access or use Llama 3, you agree to the Acceptable Use Policy. The most recent copy of this policy can be found at URL#### Critical risks\n\n\nCBRNE (Chemical, Biological, Radiological, Nuclear, and high yield Explosives)\n\n\nWe have conducted a two fold assessment of the safety of the model in this area:\n\n\n* Iterative testing during model training to assess the safety of responses related to CBRNE threats and other adversarial risks.\n* Involving external CBRNE experts to conduct an uplift test assessing the ability of the model to accurately provide expert knowledge and reduce barriers to potential CBRNE misuse, by reference to what can be achieved using web search (without the model).### Cyber Security\n\n\nWe have evaluated Llama 3 with CyberSecEval, Meta’s cybersecurity safety eval suite, measuring Llama 3’s propensity to suggest insecure code when used as a coding assistant, and Llama 3’s propensity to comply with requests to help carry out cyber attacks, where attacks are defined by the industry standard MITRE ATT&CK cyber attack ontology. On our insecure coding and cyber attacker helpfulness tests, Llama 3 behaved in the same range or safer than models of equivalent coding capability.### Child Safety\n\n\nChild Safety risk assessments were conducted using a team of experts, to assess the model’s capability to produce outputs that could result in Child Safety risks and inform on any necessary and appropriate risk mitigations via fine tuning. We leveraged those expert red teaming sessions to expand the coverage of our evaluation benchmarks through Llama 3 model development. For Llama 3, we conducted new in-depth sessions using objective based methodologies to assess the model risks along multiple attack vectors. We also partnered with content specialists to perform red teaming exercises assessing potentially violating content while taking account of market specific nuances or experiences.### Community\n\n\nGenerative AI safety requires expertise and tooling, and we believe in the strength of the open community to accelerate its progress. We are active members of open consortiums, including the AI Alliance, Partnership in AI and MLCommons, actively contributing to safety standardization and transparency. We encourage the community to adopt taxonomies like the MLCommons Proof of Concept evaluation to facilitate collaboration and transparency on safety and content evaluations. Our Purple Llama tools are open sourced for the community to use and widely distributed across ecosystem partners including cloud service providers. We encourage community contributions to our Github repository.\n\n\nFinally, we put in place a set of resources including an output reporting mechanism and bug bounty program to continuously improve the Llama technology with the help of the community.\n\n\nEthical Considerations and Limitations\n--------------------------------------\n\n\nThe core values of Llama 3 are openness, inclusivity and helpfulness. It is meant to serve everyone, and to work for a wide range of use cases. It is thus designed to be accessible to people across many different backgrounds, experiences and perspectives. Llama 3 addresses users and their needs as they are, without insertion unnecessary judgment or normativity, while reflecting the understanding that even content that may appear problematic in some cases can serve valuable purposes in others. It respects the dignity and autonomy of all users, especially in terms of the values of free thought and expression that power innovation and progress.\n\n\nBut Llama 3 is a new technology, and like any new technology, there are risks associated with its use. Testing conducted to date has been in English, and has not covered, nor could it cover, all scenarios. For these reasons, as with all LLMs, Llama 3’s potential outputs cannot be predicted in advance, and the model may in some instances produce inaccurate, biased or other objectionable responses to user prompts. Therefore, before deploying any applications of Llama 3 models, developers should perform safety testing and tuning tailored to their specific applications of the model. As outlined in the Responsible Use Guide, we recommend incorporating Purple Llama solutions into your workflows and specifically Llama Guard which provides a base model to filter input and output prompts to layer system-level safety on top of model-level safety.\n\n\nPlease see the Responsible Use Guide available at URL\n\n\ninstructions\n\n\n@article{llama3modelcard,\n\n\ntitle={Llama 3 Model Card},\n\n\nauthor={AI@Meta},\n\n\nyear={2024},\n\n\nurl = {URL\n\n\n}\n\n\nContributors\n------------\n\n\nAaditya Singh; Aaron Grattafiori; Abhimanyu Dubey; Abhinav Jauhri; Abhinav Pandey; Abhishek Kadian; Adam Kelsey; Adi Gangidi; Ahmad Al-Dahle; Ahuva Goldstand; Aiesha Letman; Ajay Menon; Akhil Mathur; Alan Schelten; Alex Vaughan; Amy Yang; Andrei Lupu; Andres Alvarado; Andrew Gallagher; Andrew Gu; Andrew Ho; Andrew Poulton; Andrew Ryan; Angela Fan; Ankit Ramchandani; Anthony Hartshorn; Archi Mitra; Archie Sravankumar; Artem Korenev; Arun Rao; Ashley Gabriel; Ashwin Bharambe; Assaf Eisenman; Aston Zhang; Aurelien Rodriguez; Austen Gregerson; Ava Spataru; Baptiste Roziere; Ben Maurer; Benjamin Leonhardi; Bernie Huang; Bhargavi Paranjape; Bing Liu; Binh Tang; Bobbie Chern; Brani Stojkovic; Brian Fuller; Catalina Mejia Arenas; Chao Zhou; Charlotte Caucheteux; Chaya Nayak; Ching-Hsiang Chu; Chloe Bi; Chris Cai; Chris Cox; Chris Marra; Chris McConnell; Christian Keller; Christoph Feichtenhofer; Christophe Touret; Chunyang Wu; Corinne Wong; Cristian Canton Ferrer; Damien Allonsius; Daniel Kreymer; Daniel Haziza; Daniel Li; Danielle Pintz; Danny Livshits; Danny Wyatt; David Adkins; David Esiobu; David Xu; Davide Testuggine; Delia David; Devi Parikh; Dhruv Choudhary; Dhruv Mahajan; Diana Liskovich; Diego Garcia-Olano; Diego Perino; Dieuwke Hupkes; Dingkang Wang; Dustin Holland; Egor Lakomkin; Elina Lobanova; Xiaoqing Ellen Tan; Emily Dinan; Eric Smith; Erik Brinkman; Esteban Arcaute; Filip Radenovic; Firat Ozgenel; Francesco Caggioni; Frank Seide; Frank Zhang; Gabriel Synnaeve; Gabriella Schwarz; Gabrielle Lee; Gada Badeer; Georgia Anderson; Graeme Nail; Gregoire Mialon; Guan Pang; Guillem Cucurell; Hailey Nguyen; Hannah Korevaar; Hannah Wang; Haroun Habeeb; Harrison Rudolph; Henry Aspegren; Hu Xu; Hugo Touvron; Iga Kozlowska; Igor Molybog; Igor Tufanov; Iliyan Zarov; Imanol Arrieta Ibarra; Irina-Elena Veliche; Isabel Kloumann; Ishan Misra; Ivan Evtimov; Jacob Xu; Jade Copet; Jake Weissman; Jan Geffert; Jana Vranes; Japhet Asher; Jason Park; Jay Mahadeokar; Jean-Baptiste Gaya; Jeet Shah; Jelmer van der Linde; Jennifer Chan; Jenny Hong; Jenya Lee; Jeremy Fu; Jeremy Teboul; Jianfeng Chi; Jianyu Huang; Jie Wang; Jiecao Yu; Joanna Bitton; Joe Spisak; Joelle Pineau; Jon Carvill; Jongsoo Park; Joseph Rocca; Joshua Johnstun; Junteng Jia; Kalyan Vasuden Alwala; Kam Hou U; Kate Plawiak; Kartikeya Upasani; Kaushik Veeraraghavan; Ke Li; Kenneth Heafield; Kevin Stone; Khalid El-Arini; Krithika Iyer; Kshitiz Malik; Kuenley Chiu; Kunal Bhalla; Kyle Huang; Lakshya Garg; Lauren Rantala-Yeary; Laurens van der Maaten; Lawrence Chen; Leandro Silva; Lee Bell; Lei Zhang; Liang Tan; Louis Martin; Lovish Madaan; Luca Wehrstedt; Lukas Blecher; Luke de Oliveira; Madeline Muzzi; Madian Khabsa; Manav Avlani; Mannat Singh; Manohar Paluri; Mark Zuckerberg; Marcin Kardas; Martynas Mankus; Mathew Oldham; Mathieu Rita; Matthew Lennie; Maya Pavlova; Meghan Keneally; Melanie Kambadur; Mihir Patel; Mikayel Samvelyan; Mike Clark; Mike Lewis; Min Si; Mitesh Kumar Singh; Mo Metanat; Mona Hassan; Naman Goyal; Narjes Torabi; Nicolas Usunier; Nikolay Bashlykov; Nikolay Bogoychev; Niladri Chatterji; Ning Dong; Oliver Aobo Yang; Olivier Duchenne; Onur Celebi; Parth Parekh; Patrick Alrassy; Paul Saab; Pavan Balaji; Pedro Rittner; Pengchuan Zhang; Pengwei Li; Petar Vasic; Peter Weng; Polina Zvyagina; Prajjwal Bhargava; Pratik Dubal; Praveen Krishnan; Punit Singh Koura; Qing He; Rachel Rodriguez; Ragavan Srinivasan; Rahul Mitra; Ramon Calderer; Raymond Li; Robert Stojnic; Roberta Raileanu; Robin Battey; Rocky Wang; Rohit Girdhar; Rohit Patel; Romain Sauvestre; Ronnie Polidoro; Roshan Sumbaly; Ross Taylor; Ruan Silva; Rui Hou; Rui Wang; Russ Howes; Ruty Rinott; Saghar Hosseini; Sai Jayesh Bondu; Samyak Datta; Sanjay Singh; Sara Chugh; Sargun Dhillon; Satadru Pan; Sean Bell; Sergey Edunov; Shaoliang Nie; Sharan Narang; Sharath Raparthy; Shaun Lindsay; Sheng Feng; Sheng Shen; Shenghao Lin; Shiva Shankar; Shruti Bhosale; Shun Zhang; Simon Vandenhende; Sinong Wang; Seohyun Sonia Kim; Soumya Batra; Sten Sootla; Steve Kehoe; Suchin Gururangan; Sumit Gupta; Sunny Virk; Sydney Borodinsky; Tamar Glaser; Tamar Herman; Tamara Best; Tara Fowler; Thomas Georgiou; Thomas Scialom; Tianhe Li; Todor Mihaylov; Tong Xiao; Ujjwal Karn; Vedanuj Goswami; Vibhor Gupta; Vignesh Ramanathan; Viktor Kerkez; Vinay Satish Kumar; Vincent Gonguet; Vish Vogeti; Vlad Poenaru; Vlad Tiberiu Mihailescu; Vladan Petrovic; Vladimir Ivanov; Wei Li; Weiwei Chu; Wenhan Xiong; Wenyin Fu; Wes Bouaziz; Whitney Meers; Will Constable; Xavier Martinet; Xiaojian Wu; Xinbo Gao; Xinfeng Xie; Xuchao Jia; Yaelle Goldschlag; Yann LeCun; Yashesh Gaur; Yasmine Babaei; Ye Qi; Yenda Li; Yi Wen; Yiwen Song; Youngjin Nam; Yuchen Hao; Yuchen Zhang; Yun Wang; Yuning Mao; Yuzi He; Zacharie Delpierre Coudert; Zachary DeVito; Zahra Hankir; Zhaoduo Wen; Zheng Yan; Zhengxing Chen; Zhenyu Yang; Zoe Papakipos" ]
null
transformers
# Uploaded model - **Developed by:** HoneyBadger2989 - **License:** apache-2.0 - **Finetuned from model :** unsloth/llama-3-8b-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
{"language": ["en"], "license": "apache-2.0", "tags": ["text-generation-inference", "transformers", "unsloth", "llama", "trl", "sft"], "base_model": "unsloth/llama-3-8b-bnb-4bit"}
HoneyBadger2989/badger-llama3-8b-4bit
null
[ "transformers", "pytorch", "safetensors", "gguf", "llama", "text-generation-inference", "unsloth", "trl", "sft", "en", "base_model:unsloth/llama-3-8b-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-04-30T19:44:56+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #safetensors #gguf #llama #text-generation-inference #unsloth #trl #sft #en #base_model-unsloth/llama-3-8b-bnb-4bit #license-apache-2.0 #endpoints_compatible #region-us
# Uploaded model - Developed by: HoneyBadger2989 - License: apache-2.0 - Finetuned from model : unsloth/llama-3-8b-bnb-4bit This llama model was trained 2x faster with Unsloth and Huggingface's TRL library. <img src="URL width="200"/>
[ "# Uploaded model\n\n- Developed by: HoneyBadger2989\n- License: apache-2.0\n- Finetuned from model : unsloth/llama-3-8b-bnb-4bit\n\nThis llama model was trained 2x faster with Unsloth and Huggingface's TRL library.\n\n<img src=\"URL width=\"200\"/>" ]
[ "TAGS\n#transformers #pytorch #safetensors #gguf #llama #text-generation-inference #unsloth #trl #sft #en #base_model-unsloth/llama-3-8b-bnb-4bit #license-apache-2.0 #endpoints_compatible #region-us \n", "# Uploaded model\n\n- Developed by: HoneyBadger2989\n- License: apache-2.0\n- Finetuned from model : unsloth/llama-3-8b-bnb-4bit\n\nThis llama model was trained 2x faster with Unsloth and Huggingface's TRL library.\n\n<img src=\"URL width=\"200\"/>" ]
[ 76, 83 ]
[ "TAGS\n#transformers #pytorch #safetensors #gguf #llama #text-generation-inference #unsloth #trl #sft #en #base_model-unsloth/llama-3-8b-bnb-4bit #license-apache-2.0 #endpoints_compatible #region-us \n# Uploaded model\n\n- Developed by: HoneyBadger2989\n- License: apache-2.0\n- Finetuned from model : unsloth/llama-3-8b-bnb-4bit\n\nThis llama model was trained 2x faster with Unsloth and Huggingface's TRL library.\n\n<img src=\"URL width=\"200\"/>" ]
null
peft
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.0` ```yaml base_model: mistralai/Mistral-7B-Instruct-v0.2 model_type: MistralForCausalLM tokenizer_type: LlamaTokenizer load_in_8bit: false load_in_4bit: true strict: false datasets: - path: data.jsonl ds_type: json type: alpaca dataset_prepared_path: last_run_prepared val_set_size: 0.1 output_dir: ./mistral-out adapter: qlora lora_model_dir: hub_model_id: Burhan02/Mistral-7B-Instruct-v0.2-ft hub_strategy: every_save hf_use_auth_token: true sequence_len: 8192 sample_packing: true eval_sample_packing: false pad_to_sequence_len: true lora_r: 32 lora_alpha: 16 lora_dropout: 0.05 lora_target_linear: true lora_fan_in_fan_out: lora_target_modules: - gate_proj - down_proj - up_proj - q_proj - v_proj - k_proj - o_proj wandb_project: wandb_entity: wandb_watch: wandb_name: wandb_log_model: gradient_accumulation_steps: 4 micro_batch_size: 2 num_epochs: 18 optimizer: adamw_bnb_8bit lr_scheduler: cosine learning_rate: 0.0002 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true loss_watchdog_threshold: 5.0 loss_watchdog_patience: 3 warmup_steps: 10 evals_per_epoch: 4 eval_table_size: eval_max_new_tokens: 128 saves_per_epoch: 1 debug: deepspeed: weight_decay: 0.0 fsdp: fsdp_config: special_tokens: ``` </details><br> # Mistral-7B-Instruct-v0.2-ft This model is a fine-tuned version of [mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1573 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 18 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.2077 | 1.0 | 1 | 0.3832 | | 0.1985 | 2.0 | 2 | 0.3782 | | 0.1979 | 2.0 | 3 | 0.3553 | | 0.1901 | 3.0 | 4 | 0.3147 | | 0.1624 | 3.0 | 5 | 0.2756 | | 0.1489 | 4.0 | 6 | 0.2525 | | 0.1342 | 4.0 | 7 | 0.2383 | | 0.1137 | 5.0 | 8 | 0.2228 | | 0.1026 | 5.0 | 9 | 0.2040 | | 0.1001 | 6.0 | 10 | 0.1905 | | 0.0828 | 6.0 | 11 | 0.1816 | | 0.0746 | 7.0 | 12 | 0.1751 | | 0.0687 | 7.0 | 13 | 0.1707 | | 0.0544 | 8.0 | 14 | 0.1654 | | 0.0526 | 8.0 | 15 | 0.1620 | | 0.0469 | 9.0 | 16 | 0.1591 | | 0.048 | 9.0 | 17 | 0.1575 | | 0.0392 | 10.0 | 18 | 0.1573 | ### Framework versions - PEFT 0.10.0 - Transformers 4.40.0.dev0 - Pytorch 2.1.2+cu121 - Datasets 2.15.0 - Tokenizers 0.15.0
{"license": "apache-2.0", "library_name": "peft", "tags": ["axolotl", "generated_from_trainer"], "base_model": "mistralai/Mistral-7B-Instruct-v0.2", "model-index": [{"name": "Mistral-7B-Instruct-v0.2-ft", "results": []}]}
Burhan02/Mistral-7B-Instruct-v0.2-ft
null
[ "peft", "tensorboard", "safetensors", "mistral", "axolotl", "generated_from_trainer", "base_model:mistralai/Mistral-7B-Instruct-v0.2", "license:apache-2.0", "4-bit", "region:us" ]
null
2024-04-30T19:46:21+00:00
[]
[]
TAGS #peft #tensorboard #safetensors #mistral #axolotl #generated_from_trainer #base_model-mistralai/Mistral-7B-Instruct-v0.2 #license-apache-2.0 #4-bit #region-us
<img src="URL alt="Built with Axolotl" width="200" height="32"/> See axolotl config axolotl version: '0.4.0' Mistral-7B-Instruct-v0.2-ft =========================== This model is a fine-tuned version of mistralai/Mistral-7B-Instruct-v0.2 on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.1573 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 0.0002 * train\_batch\_size: 2 * eval\_batch\_size: 2 * seed: 42 * gradient\_accumulation\_steps: 4 * total\_train\_batch\_size: 8 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: cosine * lr\_scheduler\_warmup\_steps: 10 * num\_epochs: 18 ### Training results ### Framework versions * PEFT 0.10.0 * Transformers 4.40.0.dev0 * Pytorch 2.1.2+cu121 * Datasets 2.15.0 * Tokenizers 0.15.0
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0002\n* train\\_batch\\_size: 2\n* eval\\_batch\\_size: 2\n* seed: 42\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 8\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: cosine\n* lr\\_scheduler\\_warmup\\_steps: 10\n* num\\_epochs: 18", "### Training results", "### Framework versions\n\n\n* PEFT 0.10.0\n* Transformers 4.40.0.dev0\n* Pytorch 2.1.2+cu121\n* Datasets 2.15.0\n* Tokenizers 0.15.0" ]
[ "TAGS\n#peft #tensorboard #safetensors #mistral #axolotl #generated_from_trainer #base_model-mistralai/Mistral-7B-Instruct-v0.2 #license-apache-2.0 #4-bit #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0002\n* train\\_batch\\_size: 2\n* eval\\_batch\\_size: 2\n* seed: 42\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 8\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: cosine\n* lr\\_scheduler\\_warmup\\_steps: 10\n* num\\_epochs: 18", "### Training results", "### Framework versions\n\n\n* PEFT 0.10.0\n* Transformers 4.40.0.dev0\n* Pytorch 2.1.2+cu121\n* Datasets 2.15.0\n* Tokenizers 0.15.0" ]
[ 62, 142, 5, 55 ]
[ "TAGS\n#peft #tensorboard #safetensors #mistral #axolotl #generated_from_trainer #base_model-mistralai/Mistral-7B-Instruct-v0.2 #license-apache-2.0 #4-bit #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0002\n* train\\_batch\\_size: 2\n* eval\\_batch\\_size: 2\n* seed: 42\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 8\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: cosine\n* lr\\_scheduler\\_warmup\\_steps: 10\n* num\\_epochs: 18### Training results### Framework versions\n\n\n* PEFT 0.10.0\n* Transformers 4.40.0.dev0\n* Pytorch 2.1.2+cu121\n* Datasets 2.15.0\n* Tokenizers 0.15.0" ]
text-generation
transformers
<a href="https://www.gradient.ai" target="_blank"><img src="https://cdn-uploads.huggingface.co/production/uploads/655bb613e8a8971e89944f3e/TSa3V8YpoVagnTYgxiLaO.png" width="200"/></a> # Llama-3 8B Gradient Instruct 1048k Gradient incorporates your data to deploy autonomous assistants that power critical operations across your business. If you're looking to build custom AI models or agents, email us a message [email protected]. For more info see our [End-to-end development service for custom LLMs and AI systems](https://gradient.ai/development-lab) This model extends LLama-3 8B's context length from 8k to > 1040K, developed by Gradient, sponsored by compute from [Crusoe Energy](https://huggingface.co/crusoeai). It demonstrates that SOTA LLMs can learn to operate on long context with minimal training by appropriately adjusting RoPE theta. We trained on 830M tokens for this stage, and 1.4B tokens total for all stages, which is < 0.01% of Llama-3's original pre-training data. ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6585dc9be92bc5f258156bd6/6MKLoX2ruLIaREiyb6coO.png) **Approach:** - [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) as the base - NTK-aware interpolation [1] to initialize an optimal schedule for RoPE theta, followed by empirical RoPE theta optimization - Progressive training on increasing context lengths, similar to [Large World Model](https://huggingface.co/LargeWorldModel) [2] (See details below) **Infra:** We build on top of the EasyContext Blockwise RingAttention library [3] to scalably and efficiently train on contexts up to 1048k tokens on [Crusoe Energy](https://huggingface.co/crusoeai) high performance L40S cluster. Notably, we layered parallelism on top of Ring Attention with a custom network topology to better leverage large GPU clusters in the face of network bottlenecks from passing many KV blocks between devices. This gave us a 33x speedup in model training (compare 524k and 1048k to 65k and 262k in the table below). **Data:** For training data, we generate long contexts by augmenting [SlimPajama](https://huggingface.co/datasets/cerebras/SlimPajama-627B). **Progressive Training Details:** | | 65K | 262K | 524k | 1048k | |------------------------|-----------|-----------|-----------|-----------| | Initialize From | LLaMA-3 8B| 65K | 262K | 524k | | Sequence Length 2^N | 16 | 18 | 19 | 20 | | RoPE theta | 15.3 M | 207.1 M | 1.06B | 2.80B | | Batch Size | 1 | 1 | 16 | 16 | | Gradient Accumulation Steps | 32 | 16 | 1 | 1 | | Steps | 30 | 24 | 50 | 50 | | Total Tokens | 62914560 | 100663296 | 419430400 | 838860800 | | Learning Rate | 2.00E-05 | 2.00E-05 | 2.00E-05 | 2.00E-05 | | # GPUs | 8 | 32 | 512 | 512 | | GPU Type | NVIDIA L40S | NVIDIA L40S | NVIDIA L40S | NVIDIA L40S | | Minutes to Train (Wall)| 202 | 555 | 61 | 87 | **Quants**: - [GGUF](https://huggingface.co/crusoeai/Llama-3-8B-Instruct-1048k-GGUF) - [MLX-4bit](https://huggingface.co/mlx-community/Llama-3-8B-Instruct-1048k-4bit) ## The Gradient AI Team https://gradient.ai/ Gradient is accelerating AI transformation across industries. Our AI Foundry incorporates your data to deploy autonomous assistants that power critical operations across your business. ## Contact Us Drop an email to [[email protected]](mailto:[email protected]) ## References [1] Peng, Bowen, et al. "Yarn: Efficient context window extension of large language models." arXiv preprint arXiv:2309.00071 (2023). [2] Liu, Hao, et al. "World Model on Million-Length Video And Language With RingAttention." arXiv preprint arXiv:2402.08268 (2024). [3] https://github.com/jzhang38/EasyContext ---- # Base Model ## Model Details Meta developed and released the Meta Llama 3 family of large language models (LLMs), a collection of pretrained and instruction tuned generative text models in 8 and 70B sizes. The Llama 3 instruction tuned models are optimized for dialogue use cases and outperform many of the available open source chat models on common industry benchmarks. Further, in developing these models, we took great care to optimize helpfulness and safety. **Model developers** Meta **Variations** Llama 3 comes in two sizes — 8B and 70B parameters — in pre-trained and instruction tuned variants. **Input** Models input text only. **Output** Models generate text and code only. **Model Architecture** Llama 3 is an auto-regressive language model that uses an optimized transformer architecture. The tuned versions use supervised fine-tuning (SFT) and reinforcement learning with human feedback (RLHF) to align with human preferences for helpfulness and safety. <table> <tr> <td> </td> <td><strong>Training Data</strong> </td> <td><strong>Params</strong> </td> <td><strong>Context length</strong> </td> <td><strong>GQA</strong> </td> <td><strong>Token count</strong> </td> <td><strong>Knowledge cutoff</strong> </td> </tr> <tr> <td rowspan="2" >Llama 3 </td> <td rowspan="2" >A new mix of publicly available online data. </td> <td>8B </td> <td>8k </td> <td>Yes </td> <td rowspan="2" >15T+ </td> <td>March, 2023 </td> </tr> <tr> <td>70B </td> <td>8k </td> <td>Yes </td> <td>December, 2023 </td> </tr> </table> **Llama 3 family of models**. Token counts refer to pretraining data only. Both the 8 and 70B versions use Grouped-Query Attention (GQA) for improved inference scalability. **Model Release Date** April 18, 2024. **Status** This is a static model trained on an offline dataset. Future versions of the tuned models will be released as we improve model safety with community feedback. **License** A custom commercial license is available at: [https://llama.meta.com/llama3/license](https://llama.meta.com/llama3/license) Where to send questions or comments about the model Instructions on how to provide feedback or comments on the model can be found in the model [README](https://github.com/meta-llama/llama3). For more technical information about generation parameters and recipes for how to use Llama 3 in applications, please go [here](https://github.com/meta-llama/llama-recipes). ## Intended Use **Intended Use Cases** Llama 3 is intended for commercial and research use in English. Instruction tuned models are intended for assistant-like chat, whereas pretrained models can be adapted for a variety of natural language generation tasks. **Out-of-scope** Use in any manner that violates applicable laws or regulations (including trade compliance laws). Use in any other way that is prohibited by the Acceptable Use Policy and Llama 3 Community License. Use in languages other than English**. **Note: Developers may fine-tune Llama 3 models for languages beyond English provided they comply with the Llama 3 Community License and the Acceptable Use Policy. ## How to use This repository contains two versions of Meta-Llama-3-8B-Instruct, for use with transformers and with the original `llama3` codebase. ### Use with transformers You can run conversational inference using the Transformers pipeline abstraction, or by leveraging the Auto classes with the `generate()` function. Let's see examples of both. #### Transformers pipeline ```python import transformers import torch model_id = "meta-llama/Meta-Llama-3-8B-Instruct" pipeline = transformers.pipeline( "text-generation", model=model_id, model_kwargs={"torch_dtype": torch.bfloat16}, device_map="auto", ) messages = [ {"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"}, {"role": "user", "content": "Who are you?"}, ] prompt = pipeline.tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) terminators = [ pipeline.tokenizer.eos_token_id, pipeline.tokenizer.convert_tokens_to_ids("<|eot_id|>") ] outputs = pipeline( prompt, max_new_tokens=256, eos_token_id=terminators, do_sample=True, temperature=0.6, top_p=0.9, ) print(outputs[0]["generated_text"][len(prompt):]) ``` #### Transformers AutoModelForCausalLM ```python from transformers import AutoTokenizer, AutoModelForCausalLM import torch model_id = "meta-llama/Meta-Llama-3-8B-Instruct" tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained( model_id, torch_dtype=torch.bfloat16, device_map="auto", ) messages = [ {"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"}, {"role": "user", "content": "Who are you?"}, ] input_ids = tokenizer.apply_chat_template( messages, add_generation_prompt=True, return_tensors="pt" ).to(model.device) terminators = [ tokenizer.eos_token_id, tokenizer.convert_tokens_to_ids("<|eot_id|>") ] outputs = model.generate( input_ids, max_new_tokens=256, eos_token_id=terminators, do_sample=True, temperature=0.6, top_p=0.9, ) response = outputs[0][input_ids.shape[-1]:] print(tokenizer.decode(response, skip_special_tokens=True)) ``` ### Use with `llama3` Please, follow the instructions in the [repository](https://github.com/meta-llama/llama3) To download Original checkpoints, see the example command below leveraging `huggingface-cli`: ``` huggingface-cli download meta-llama/Meta-Llama-3-8B-Instruct --include "original/*" --local-dir Meta-Llama-3-8B-Instruct ``` For Hugging Face support, we recommend using transformers or TGI, but a similar command works. ## Hardware and Software **Training Factors** We used custom training libraries, Meta's Research SuperCluster, and production clusters for pretraining. Fine-tuning, annotation, and evaluation were also performed on third-party cloud compute. **Carbon Footprint Pretraining utilized a cumulative** 7.7M GPU hours of computation on hardware of type H100-80GB (TDP of 700W). Estimated total emissions were 2290 tCO2eq, 100% of which were offset by Meta’s sustainability program. <table> <tr> <td> </td> <td><strong>Time (GPU hours)</strong> </td> <td><strong>Power Consumption (W)</strong> </td> <td><strong>Carbon Emitted(tCO2eq)</strong> </td> </tr> <tr> <td>Llama 3 8B </td> <td>1.3M </td> <td>700 </td> <td>390 </td> </tr> <tr> <td>Llama 3 70B </td> <td>6.4M </td> <td>700 </td> <td>1900 </td> </tr> <tr> <td>Total </td> <td>7.7M </td> <td> </td> <td>2290 </td> </tr> </table> **CO2 emissions during pre-training**. Time: total GPU time required for training each model. Power Consumption: peak power capacity per GPU device for the GPUs used adjusted for power usage efficiency. 100% of the emissions are directly offset by Meta's sustainability program, and because we are openly releasing these models, the pretraining costs do not need to be incurred by others. ## Training Data **Overview** Llama 3 was pretrained on over 15 trillion tokens of data from publicly available sources. The fine-tuning data includes publicly available instruction datasets, as well as over 10M human-annotated examples. Neither the pretraining nor the fine-tuning datasets include Meta user data. **Data Freshness** The pretraining data has a cutoff of March 2023 for the 7B and December 2023 for the 70B models respectively. ## Benchmarks In this section, we report the results for Llama 3 models on standard automatic benchmarks. For all the evaluations, we use our internal evaluations library. For details on the methodology see [here](https://github.com/meta-llama/llama3/blob/main/eval_methodology.md). ### Base pretrained models <table> <tr> <td><strong>Category</strong> </td> <td><strong>Benchmark</strong> </td> <td><strong>Llama 3 8B</strong> </td> <td><strong>Llama2 7B</strong> </td> <td><strong>Llama2 13B</strong> </td> <td><strong>Llama 3 70B</strong> </td> <td><strong>Llama2 70B</strong> </td> </tr> <tr> <td rowspan="6" >General </td> <td>MMLU (5-shot) </td> <td>66.6 </td> <td>45.7 </td> <td>53.8 </td> <td>79.5 </td> <td>69.7 </td> </tr> <tr> <td>AGIEval English (3-5 shot) </td> <td>45.9 </td> <td>28.8 </td> <td>38.7 </td> <td>63.0 </td> <td>54.8 </td> </tr> <tr> <td>CommonSenseQA (7-shot) </td> <td>72.6 </td> <td>57.6 </td> <td>67.6 </td> <td>83.8 </td> <td>78.7 </td> </tr> <tr> <td>Winogrande (5-shot) </td> <td>76.1 </td> <td>73.3 </td> <td>75.4 </td> <td>83.1 </td> <td>81.8 </td> </tr> <tr> <td>BIG-Bench Hard (3-shot, CoT) </td> <td>61.1 </td> <td>38.1 </td> <td>47.0 </td> <td>81.3 </td> <td>65.7 </td> </tr> <tr> <td>ARC-Challenge (25-shot) </td> <td>78.6 </td> <td>53.7 </td> <td>67.6 </td> <td>93.0 </td> <td>85.3 </td> </tr> <tr> <td>Knowledge reasoning </td> <td>TriviaQA-Wiki (5-shot) </td> <td>78.5 </td> <td>72.1 </td> <td>79.6 </td> <td>89.7 </td> <td>87.5 </td> </tr> <tr> <td rowspan="4" >Reading comprehension </td> <td>SQuAD (1-shot) </td> <td>76.4 </td> <td>72.2 </td> <td>72.1 </td> <td>85.6 </td> <td>82.6 </td> </tr> <tr> <td>QuAC (1-shot, F1) </td> <td>44.4 </td> <td>39.6 </td> <td>44.9 </td> <td>51.1 </td> <td>49.4 </td> </tr> <tr> <td>BoolQ (0-shot) </td> <td>75.7 </td> <td>65.5 </td> <td>66.9 </td> <td>79.0 </td> <td>73.1 </td> </tr> <tr> <td>DROP (3-shot, F1) </td> <td>58.4 </td> <td>37.9 </td> <td>49.8 </td> <td>79.7 </td> <td>70.2 </td> </tr> </table> ### Instruction tuned models <table> <tr> <td><strong>Benchmark</strong> </td> <td><strong>Llama 3 8B</strong> </td> <td><strong>Llama 2 7B</strong> </td> <td><strong>Llama 2 13B</strong> </td> <td><strong>Llama 3 70B</strong> </td> <td><strong>Llama 2 70B</strong> </td> </tr> <tr> <td>MMLU (5-shot) </td> <td>68.4 </td> <td>34.1 </td> <td>47.8 </td> <td>82.0 </td> <td>52.9 </td> </tr> <tr> <td>GPQA (0-shot) </td> <td>34.2 </td> <td>21.7 </td> <td>22.3 </td> <td>39.5 </td> <td>21.0 </td> </tr> <tr> <td>HumanEval (0-shot) </td> <td>62.2 </td> <td>7.9 </td> <td>14.0 </td> <td>81.7 </td> <td>25.6 </td> </tr> <tr> <td>GSM-8K (8-shot, CoT) </td> <td>79.6 </td> <td>25.7 </td> <td>77.4 </td> <td>93.0 </td> <td>57.5 </td> </tr> <tr> <td>MATH (4-shot, CoT) </td> <td>30.0 </td> <td>3.8 </td> <td>6.7 </td> <td>50.4 </td> <td>11.6 </td> </tr> </table> ### Responsibility & Safety We believe that an open approach to AI leads to better, safer products, faster innovation, and a bigger overall market. We are committed to Responsible AI development and took a series of steps to limit misuse and harm and support the open source community. Foundation models are widely capable technologies that are built to be used for a diverse range of applications. They are not designed to meet every developer preference on safety levels for all use cases, out-of-the-box, as those by their nature will differ across different applications. Rather, responsible LLM-application deployment is achieved by implementing a series of safety best practices throughout the development of such applications, from the model pre-training, fine-tuning and the deployment of systems composed of safeguards to tailor the safety needs specifically to the use case and audience. As part of the Llama 3 release, we updated our [Responsible Use Guide](https://llama.meta.com/responsible-use-guide/) to outline the steps and best practices for developers to implement model and system level safety for their application. We also provide a set of resources including [Meta Llama Guard 2](https://llama.meta.com/purple-llama/) and [Code Shield](https://llama.meta.com/purple-llama/) safeguards. These tools have proven to drastically reduce residual risks of LLM Systems, while maintaining a high level of helpfulness. We encourage developers to tune and deploy these safeguards according to their needs and we provide a [reference implementation](https://github.com/meta-llama/llama-recipes/tree/main/recipes/responsible_ai) to get you started. #### Llama 3-Instruct As outlined in the Responsible Use Guide, some trade-off between model helpfulness and model alignment is likely unavoidable. Developers should exercise discretion about how to weigh the benefits of alignment and helpfulness for their specific use case and audience. Developers should be mindful of residual risks when using Llama models and leverage additional safety tools as needed to reach the right safety bar for their use case. <span style="text-decoration:underline;">Safety</span> For our instruction tuned model, we conducted extensive red teaming exercises, performed adversarial evaluations and implemented safety mitigations techniques to lower residual risks. As with any Large Language Model, residual risks will likely remain and we recommend that developers assess these risks in the context of their use case. In parallel, we are working with the community to make AI safety benchmark standards transparent, rigorous and interpretable. <span style="text-decoration:underline;">Refusals</span> In addition to residual risks, we put a great emphasis on model refusals to benign prompts. Over-refusing not only can impact the user experience but could even be harmful in certain contexts as well. We’ve heard the feedback from the developer community and improved our fine tuning to ensure that Llama 3 is significantly less likely to falsely refuse to answer prompts than Llama 2. We built internal benchmarks and developed mitigations to limit false refusals making Llama 3 our most helpful model to date. #### Responsible release In addition to responsible use considerations outlined above, we followed a rigorous process that requires us to take extra measures against misuse and critical risks before we make our release decision. Misuse If you access or use Llama 3, you agree to the Acceptable Use Policy. The most recent copy of this policy can be found at [https://llama.meta.com/llama3/use-policy/](https://llama.meta.com/llama3/use-policy/). #### Critical risks <span style="text-decoration:underline;">CBRNE</span> (Chemical, Biological, Radiological, Nuclear, and high yield Explosives) We have conducted a two fold assessment of the safety of the model in this area: * Iterative testing during model training to assess the safety of responses related to CBRNE threats and other adversarial risks. * Involving external CBRNE experts to conduct an uplift test assessing the ability of the model to accurately provide expert knowledge and reduce barriers to potential CBRNE misuse, by reference to what can be achieved using web search (without the model). ### <span style="text-decoration:underline;">Cyber Security </span> We have evaluated Llama 3 with CyberSecEval, Meta’s cybersecurity safety eval suite, measuring Llama 3’s propensity to suggest insecure code when used as a coding assistant, and Llama 3’s propensity to comply with requests to help carry out cyber attacks, where attacks are defined by the industry standard MITRE ATT&CK cyber attack ontology. On our insecure coding and cyber attacker helpfulness tests, Llama 3 behaved in the same range or safer than models of [equivalent coding capability](https://huggingface.co/spaces/facebook/CyberSecEval). ### <span style="text-decoration:underline;">Child Safety</span> Child Safety risk assessments were conducted using a team of experts, to assess the model’s capability to produce outputs that could result in Child Safety risks and inform on any necessary and appropriate risk mitigations via fine tuning. We leveraged those expert red teaming sessions to expand the coverage of our evaluation benchmarks through Llama 3 model development. For Llama 3, we conducted new in-depth sessions using objective based methodologies to assess the model risks along multiple attack vectors. We also partnered with content specialists to perform red teaming exercises assessing potentially violating content while taking account of market specific nuances or experiences. ### Community Generative AI safety requires expertise and tooling, and we believe in the strength of the open community to accelerate its progress. We are active members of open consortiums, including the AI Alliance, Partnership in AI and MLCommons, actively contributing to safety standardization and transparency. We encourage the community to adopt taxonomies like the MLCommons Proof of Concept evaluation to facilitate collaboration and transparency on safety and content evaluations. Our Purple Llama tools are open sourced for the community to use and widely distributed across ecosystem partners including cloud service providers. We encourage community contributions to our [Github repository](https://github.com/meta-llama/PurpleLlama). Finally, we put in place a set of resources including an [output reporting mechanism](https://developers.facebook.com/llama_output_feedback) and [bug bounty program](https://www.facebook.com/whitehat) to continuously improve the Llama technology with the help of the community. ## Ethical Considerations and Limitations The core values of Llama 3 are openness, inclusivity and helpfulness. It is meant to serve everyone, and to work for a wide range of use cases. It is thus designed to be accessible to people across many different backgrounds, experiences and perspectives. Llama 3 addresses users and their needs as they are, without insertion unnecessary judgment or normativity, while reflecting the understanding that even content that may appear problematic in some cases can serve valuable purposes in others. It respects the dignity and autonomy of all users, especially in terms of the values of free thought and expression that power innovation and progress. But Llama 3 is a new technology, and like any new technology, there are risks associated with its use. Testing conducted to date has been in English, and has not covered, nor could it cover, all scenarios. For these reasons, as with all LLMs, Llama 3’s potential outputs cannot be predicted in advance, and the model may in some instances produce inaccurate, biased or other objectionable responses to user prompts. Therefore, before deploying any applications of Llama 3 models, developers should perform safety testing and tuning tailored to their specific applications of the model. As outlined in the Responsible Use Guide, we recommend incorporating [Purple Llama](https://github.com/facebookresearch/PurpleLlama) solutions into your workflows and specifically [Llama Guard](https://ai.meta.com/research/publications/llama-guard-llm-based-input-output-safeguard-for-human-ai-conversations/) which provides a base model to filter input and output prompts to layer system-level safety on top of model-level safety. Please see the Responsible Use Guide available at [http://llama.meta.com/responsible-use-guide](http://llama.meta.com/responsible-use-guide) ## Citation instructions @article{llama3modelcard, title={Llama 3 Model Card}, author={AI@Meta}, year={2024}, url = {https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md} } ## Contributors Aaditya Singh; Aaron Grattafiori; Abhimanyu Dubey; Abhinav Jauhri; Abhinav Pandey; Abhishek Kadian; Adam Kelsey; Adi Gangidi; Ahmad Al-Dahle; Ahuva Goldstand; Aiesha Letman; Ajay Menon; Akhil Mathur; Alan Schelten; Alex Vaughan; Amy Yang; Andrei Lupu; Andres Alvarado; Andrew Gallagher; Andrew Gu; Andrew Ho; Andrew Poulton; Andrew Ryan; Angela Fan; Ankit Ramchandani; Anthony Hartshorn; Archi Mitra; Archie Sravankumar; Artem Korenev; Arun Rao; Ashley Gabriel; Ashwin Bharambe; Assaf Eisenman; Aston Zhang; Aurelien Rodriguez; Austen Gregerson; Ava Spataru; Baptiste Roziere; Ben Maurer; Benjamin Leonhardi; Bernie Huang; Bhargavi Paranjape; Bing Liu; Binh Tang; Bobbie Chern; Brani Stojkovic; Brian Fuller; Catalina Mejia Arenas; Chao Zhou; Charlotte Caucheteux; Chaya Nayak; Ching-Hsiang Chu; Chloe Bi; Chris Cai; Chris Cox; Chris Marra; Chris McConnell; Christian Keller; Christoph Feichtenhofer; Christophe Touret; Chunyang Wu; Corinne Wong; Cristian Canton Ferrer; Damien Allonsius; Daniel Kreymer; Daniel Haziza; Daniel Li; Danielle Pintz; Danny Livshits; Danny Wyatt; David Adkins; David Esiobu; David Xu; Davide Testuggine; Delia David; Devi Parikh; Dhruv Choudhary; Dhruv Mahajan; Diana Liskovich; Diego Garcia-Olano; Diego Perino; Dieuwke Hupkes; Dingkang Wang; Dustin Holland; Egor Lakomkin; Elina Lobanova; Xiaoqing Ellen Tan; Emily Dinan; Eric Smith; Erik Brinkman; Esteban Arcaute; Filip Radenovic; Firat Ozgenel; Francesco Caggioni; Frank Seide; Frank Zhang; Gabriel Synnaeve; Gabriella Schwarz; Gabrielle Lee; Gada Badeer; Georgia Anderson; Graeme Nail; Gregoire Mialon; Guan Pang; Guillem Cucurell; Hailey Nguyen; Hannah Korevaar; Hannah Wang; Haroun Habeeb; Harrison Rudolph; Henry Aspegren; Hu Xu; Hugo Touvron; Iga Kozlowska; Igor Molybog; Igor Tufanov; Iliyan Zarov; Imanol Arrieta Ibarra; Irina-Elena Veliche; Isabel Kloumann; Ishan Misra; Ivan Evtimov; Jacob Xu; Jade Copet; Jake Weissman; Jan Geffert; Jana Vranes; Japhet Asher; Jason Park; Jay Mahadeokar; Jean-Baptiste Gaya; Jeet Shah; Jelmer van der Linde; Jennifer Chan; Jenny Hong; Jenya Lee; Jeremy Fu; Jeremy Teboul; Jianfeng Chi; Jianyu Huang; Jie Wang; Jiecao Yu; Joanna Bitton; Joe Spisak; Joelle Pineau; Jon Carvill; Jongsoo Park; Joseph Rocca; Joshua Johnstun; Junteng Jia; Kalyan Vasuden Alwala; Kam Hou U; Kate Plawiak; Kartikeya Upasani; Kaushik Veeraraghavan; Ke Li; Kenneth Heafield; Kevin Stone; Khalid El-Arini; Krithika Iyer; Kshitiz Malik; Kuenley Chiu; Kunal Bhalla; Kyle Huang; Lakshya Garg; Lauren Rantala-Yeary; Laurens van der Maaten; Lawrence Chen; Leandro Silva; Lee Bell; Lei Zhang; Liang Tan; Louis Martin; Lovish Madaan; Luca Wehrstedt; Lukas Blecher; Luke de Oliveira; Madeline Muzzi; Madian Khabsa; Manav Avlani; Mannat Singh; Manohar Paluri; Mark Zuckerberg; Marcin Kardas; Martynas Mankus; Mathew Oldham; Mathieu Rita; Matthew Lennie; Maya Pavlova; Meghan Keneally; Melanie Kambadur; Mihir Patel; Mikayel Samvelyan; Mike Clark; Mike Lewis; Min Si; Mitesh Kumar Singh; Mo Metanat; Mona Hassan; Naman Goyal; Narjes Torabi; Nicolas Usunier; Nikolay Bashlykov; Nikolay Bogoychev; Niladri Chatterji; Ning Dong; Oliver Aobo Yang; Olivier Duchenne; Onur Celebi; Parth Parekh; Patrick Alrassy; Paul Saab; Pavan Balaji; Pedro Rittner; Pengchuan Zhang; Pengwei Li; Petar Vasic; Peter Weng; Polina Zvyagina; Prajjwal Bhargava; Pratik Dubal; Praveen Krishnan; Punit Singh Koura; Qing He; Rachel Rodriguez; Ragavan Srinivasan; Rahul Mitra; Ramon Calderer; Raymond Li; Robert Stojnic; Roberta Raileanu; Robin Battey; Rocky Wang; Rohit Girdhar; Rohit Patel; Romain Sauvestre; Ronnie Polidoro; Roshan Sumbaly; Ross Taylor; Ruan Silva; Rui Hou; Rui Wang; Russ Howes; Ruty Rinott; Saghar Hosseini; Sai Jayesh Bondu; Samyak Datta; Sanjay Singh; Sara Chugh; Sargun Dhillon; Satadru Pan; Sean Bell; Sergey Edunov; Shaoliang Nie; Sharan Narang; Sharath Raparthy; Shaun Lindsay; Sheng Feng; Sheng Shen; Shenghao Lin; Shiva Shankar; Shruti Bhosale; Shun Zhang; Simon Vandenhende; Sinong Wang; Seohyun Sonia Kim; Soumya Batra; Sten Sootla; Steve Kehoe; Suchin Gururangan; Sumit Gupta; Sunny Virk; Sydney Borodinsky; Tamar Glaser; Tamar Herman; Tamara Best; Tara Fowler; Thomas Georgiou; Thomas Scialom; Tianhe Li; Todor Mihaylov; Tong Xiao; Ujjwal Karn; Vedanuj Goswami; Vibhor Gupta; Vignesh Ramanathan; Viktor Kerkez; Vinay Satish Kumar; Vincent Gonguet; Vish Vogeti; Vlad Poenaru; Vlad Tiberiu Mihailescu; Vladan Petrovic; Vladimir Ivanov; Wei Li; Weiwei Chu; Wenhan Xiong; Wenyin Fu; Wes Bouaziz; Whitney Meers; Will Constable; Xavier Martinet; Xiaojian Wu; Xinbo Gao; Xinfeng Xie; Xuchao Jia; Yaelle Goldschlag; Yann LeCun; Yashesh Gaur; Yasmine Babaei; Ye Qi; Yenda Li; Yi Wen; Yiwen Song; Youngjin Nam; Yuchen Hao; Yuchen Zhang; Yun Wang; Yuning Mao; Yuzi He; Zacharie Delpierre Coudert; Zachary DeVito; Zahra Hankir; Zhaoduo Wen; Zheng Yan; Zhengxing Chen; Zhenyu Yang; Zoe Papakipos
{"language": ["en"], "license": "llama3", "tags": ["meta", "llama-3"], "pipeline_tag": "text-generation"}
LoneStriker/Llama-3-8B-Instruct-Gradient-1048k-8.0bpw-h8-exl2
null
[ "transformers", "safetensors", "llama", "text-generation", "meta", "llama-3", "conversational", "en", "license:llama3", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "8-bit", "region:us" ]
null
2024-04-30T19:47:44+00:00
[]
[ "en" ]
TAGS #transformers #safetensors #llama #text-generation #meta #llama-3 #conversational #en #license-llama3 #autotrain_compatible #endpoints_compatible #text-generation-inference #8-bit #region-us
[<img src="URL width="200"/>](URL) Llama-3 8B Gradient Instruct 1048k ================================== Gradient incorporates your data to deploy autonomous assistants that power critical operations across your business. If you're looking to build custom AI models or agents, email us a message contact@URL. For more info see our End-to-end development service for custom LLMs and AI systems This model extends LLama-3 8B's context length from 8k to > 1040K, developed by Gradient, sponsored by compute from Crusoe Energy. It demonstrates that SOTA LLMs can learn to operate on long context with minimal training by appropriately adjusting RoPE theta. We trained on 830M tokens for this stage, and 1.4B tokens total for all stages, which is < 0.01% of Llama-3's original pre-training data. !image/png Approach: * meta-llama/Meta-Llama-3-8B-Instruct as the base * NTK-aware interpolation [1] to initialize an optimal schedule for RoPE theta, followed by empirical RoPE theta optimization * Progressive training on increasing context lengths, similar to Large World Model [2] (See details below) Infra: We build on top of the EasyContext Blockwise RingAttention library [3] to scalably and efficiently train on contexts up to 1048k tokens on Crusoe Energy high performance L40S cluster. Notably, we layered parallelism on top of Ring Attention with a custom network topology to better leverage large GPU clusters in the face of network bottlenecks from passing many KV blocks between devices. This gave us a 33x speedup in model training (compare 524k and 1048k to 65k and 262k in the table below). Data: For training data, we generate long contexts by augmenting SlimPajama. Progressive Training Details: Quants: * GGUF * MLX-4bit The Gradient AI Team -------------------- URL Gradient is accelerating AI transformation across industries. Our AI Foundry incorporates your data to deploy autonomous assistants that power critical operations across your business. Contact Us ---------- Drop an email to contact@URL References ---------- [1] Peng, Bowen, et al. "Yarn: Efficient context window extension of large language models." arXiv preprint arXiv:2309.00071 (2023). [2] Liu, Hao, et al. "World Model on Million-Length Video And Language With RingAttention." arXiv preprint arXiv:2402.08268 (2024). [3] URL --- Base Model ========== Model Details ------------- Meta developed and released the Meta Llama 3 family of large language models (LLMs), a collection of pretrained and instruction tuned generative text models in 8 and 70B sizes. The Llama 3 instruction tuned models are optimized for dialogue use cases and outperform many of the available open source chat models on common industry benchmarks. Further, in developing these models, we took great care to optimize helpfulness and safety. Model developers Meta Variations Llama 3 comes in two sizes — 8B and 70B parameters — in pre-trained and instruction tuned variants. Input Models input text only. Output Models generate text and code only. Model Architecture Llama 3 is an auto-regressive language model that uses an optimized transformer architecture. The tuned versions use supervised fine-tuning (SFT) and reinforcement learning with human feedback (RLHF) to align with human preferences for helpfulness and safety. Llama 3 family of models. Token counts refer to pretraining data only. Both the 8 and 70B versions use Grouped-Query Attention (GQA) for improved inference scalability. Model Release Date April 18, 2024. Status This is a static model trained on an offline dataset. Future versions of the tuned models will be released as we improve model safety with community feedback. License A custom commercial license is available at: URL Where to send questions or comments about the model Instructions on how to provide feedback or comments on the model can be found in the model README. For more technical information about generation parameters and recipes for how to use Llama 3 in applications, please go here. Intended Use ------------ Intended Use Cases Llama 3 is intended for commercial and research use in English. Instruction tuned models are intended for assistant-like chat, whereas pretrained models can be adapted for a variety of natural language generation tasks. Out-of-scope Use in any manner that violates applicable laws or regulations (including trade compliance laws). Use in any other way that is prohibited by the Acceptable Use Policy and Llama 3 Community License. Use in languages other than English. Note: Developers may fine-tune Llama 3 models for languages beyond English provided they comply with the Llama 3 Community License and the Acceptable Use Policy. How to use ---------- This repository contains two versions of Meta-Llama-3-8B-Instruct, for use with transformers and with the original 'llama3' codebase. ### Use with transformers You can run conversational inference using the Transformers pipeline abstraction, or by leveraging the Auto classes with the 'generate()' function. Let's see examples of both. #### Transformers pipeline #### Transformers AutoModelForCausalLM ### Use with 'llama3' Please, follow the instructions in the repository To download Original checkpoints, see the example command below leveraging 'huggingface-cli': For Hugging Face support, we recommend using transformers or TGI, but a similar command works. Hardware and Software --------------------- Training Factors We used custom training libraries, Meta's Research SuperCluster, and production clusters for pretraining. Fine-tuning, annotation, and evaluation were also performed on third-party cloud compute. Carbon Footprint Pretraining utilized a cumulative 7.7M GPU hours of computation on hardware of type H100-80GB (TDP of 700W). Estimated total emissions were 2290 tCO2eq, 100% of which were offset by Meta’s sustainability program. CO2 emissions during pre-training. Time: total GPU time required for training each model. Power Consumption: peak power capacity per GPU device for the GPUs used adjusted for power usage efficiency. 100% of the emissions are directly offset by Meta's sustainability program, and because we are openly releasing these models, the pretraining costs do not need to be incurred by others. Training Data ------------- Overview Llama 3 was pretrained on over 15 trillion tokens of data from publicly available sources. The fine-tuning data includes publicly available instruction datasets, as well as over 10M human-annotated examples. Neither the pretraining nor the fine-tuning datasets include Meta user data. Data Freshness The pretraining data has a cutoff of March 2023 for the 7B and December 2023 for the 70B models respectively. Benchmarks ---------- In this section, we report the results for Llama 3 models on standard automatic benchmarks. For all the evaluations, we use our internal evaluations library. For details on the methodology see here. ### Base pretrained models ### Instruction tuned models ### Responsibility & Safety We believe that an open approach to AI leads to better, safer products, faster innovation, and a bigger overall market. We are committed to Responsible AI development and took a series of steps to limit misuse and harm and support the open source community. Foundation models are widely capable technologies that are built to be used for a diverse range of applications. They are not designed to meet every developer preference on safety levels for all use cases, out-of-the-box, as those by their nature will differ across different applications. Rather, responsible LLM-application deployment is achieved by implementing a series of safety best practices throughout the development of such applications, from the model pre-training, fine-tuning and the deployment of systems composed of safeguards to tailor the safety needs specifically to the use case and audience. As part of the Llama 3 release, we updated our Responsible Use Guide to outline the steps and best practices for developers to implement model and system level safety for their application. We also provide a set of resources including Meta Llama Guard 2 and Code Shield safeguards. These tools have proven to drastically reduce residual risks of LLM Systems, while maintaining a high level of helpfulness. We encourage developers to tune and deploy these safeguards according to their needs and we provide a reference implementation to get you started. #### Llama 3-Instruct As outlined in the Responsible Use Guide, some trade-off between model helpfulness and model alignment is likely unavoidable. Developers should exercise discretion about how to weigh the benefits of alignment and helpfulness for their specific use case and audience. Developers should be mindful of residual risks when using Llama models and leverage additional safety tools as needed to reach the right safety bar for their use case. Safety For our instruction tuned model, we conducted extensive red teaming exercises, performed adversarial evaluations and implemented safety mitigations techniques to lower residual risks. As with any Large Language Model, residual risks will likely remain and we recommend that developers assess these risks in the context of their use case. In parallel, we are working with the community to make AI safety benchmark standards transparent, rigorous and interpretable. Refusals In addition to residual risks, we put a great emphasis on model refusals to benign prompts. Over-refusing not only can impact the user experience but could even be harmful in certain contexts as well. We’ve heard the feedback from the developer community and improved our fine tuning to ensure that Llama 3 is significantly less likely to falsely refuse to answer prompts than Llama 2. We built internal benchmarks and developed mitigations to limit false refusals making Llama 3 our most helpful model to date. #### Responsible release In addition to responsible use considerations outlined above, we followed a rigorous process that requires us to take extra measures against misuse and critical risks before we make our release decision. Misuse If you access or use Llama 3, you agree to the Acceptable Use Policy. The most recent copy of this policy can be found at URL #### Critical risks CBRNE (Chemical, Biological, Radiological, Nuclear, and high yield Explosives) We have conducted a two fold assessment of the safety of the model in this area: * Iterative testing during model training to assess the safety of responses related to CBRNE threats and other adversarial risks. * Involving external CBRNE experts to conduct an uplift test assessing the ability of the model to accurately provide expert knowledge and reduce barriers to potential CBRNE misuse, by reference to what can be achieved using web search (without the model). ### Cyber Security We have evaluated Llama 3 with CyberSecEval, Meta’s cybersecurity safety eval suite, measuring Llama 3’s propensity to suggest insecure code when used as a coding assistant, and Llama 3’s propensity to comply with requests to help carry out cyber attacks, where attacks are defined by the industry standard MITRE ATT&CK cyber attack ontology. On our insecure coding and cyber attacker helpfulness tests, Llama 3 behaved in the same range or safer than models of equivalent coding capability. ### Child Safety Child Safety risk assessments were conducted using a team of experts, to assess the model’s capability to produce outputs that could result in Child Safety risks and inform on any necessary and appropriate risk mitigations via fine tuning. We leveraged those expert red teaming sessions to expand the coverage of our evaluation benchmarks through Llama 3 model development. For Llama 3, we conducted new in-depth sessions using objective based methodologies to assess the model risks along multiple attack vectors. We also partnered with content specialists to perform red teaming exercises assessing potentially violating content while taking account of market specific nuances or experiences. ### Community Generative AI safety requires expertise and tooling, and we believe in the strength of the open community to accelerate its progress. We are active members of open consortiums, including the AI Alliance, Partnership in AI and MLCommons, actively contributing to safety standardization and transparency. We encourage the community to adopt taxonomies like the MLCommons Proof of Concept evaluation to facilitate collaboration and transparency on safety and content evaluations. Our Purple Llama tools are open sourced for the community to use and widely distributed across ecosystem partners including cloud service providers. We encourage community contributions to our Github repository. Finally, we put in place a set of resources including an output reporting mechanism and bug bounty program to continuously improve the Llama technology with the help of the community. Ethical Considerations and Limitations -------------------------------------- The core values of Llama 3 are openness, inclusivity and helpfulness. It is meant to serve everyone, and to work for a wide range of use cases. It is thus designed to be accessible to people across many different backgrounds, experiences and perspectives. Llama 3 addresses users and their needs as they are, without insertion unnecessary judgment or normativity, while reflecting the understanding that even content that may appear problematic in some cases can serve valuable purposes in others. It respects the dignity and autonomy of all users, especially in terms of the values of free thought and expression that power innovation and progress. But Llama 3 is a new technology, and like any new technology, there are risks associated with its use. Testing conducted to date has been in English, and has not covered, nor could it cover, all scenarios. For these reasons, as with all LLMs, Llama 3’s potential outputs cannot be predicted in advance, and the model may in some instances produce inaccurate, biased or other objectionable responses to user prompts. Therefore, before deploying any applications of Llama 3 models, developers should perform safety testing and tuning tailored to their specific applications of the model. As outlined in the Responsible Use Guide, we recommend incorporating Purple Llama solutions into your workflows and specifically Llama Guard which provides a base model to filter input and output prompts to layer system-level safety on top of model-level safety. Please see the Responsible Use Guide available at URL instructions @article{llama3modelcard, title={Llama 3 Model Card}, author={AI@Meta}, year={2024}, url = {URL } Contributors ------------ Aaditya Singh; Aaron Grattafiori; Abhimanyu Dubey; Abhinav Jauhri; Abhinav Pandey; Abhishek Kadian; Adam Kelsey; Adi Gangidi; Ahmad Al-Dahle; Ahuva Goldstand; Aiesha Letman; Ajay Menon; Akhil Mathur; Alan Schelten; Alex Vaughan; Amy Yang; Andrei Lupu; Andres Alvarado; Andrew Gallagher; Andrew Gu; Andrew Ho; Andrew Poulton; Andrew Ryan; Angela Fan; Ankit Ramchandani; Anthony Hartshorn; Archi Mitra; Archie Sravankumar; Artem Korenev; Arun Rao; Ashley Gabriel; Ashwin Bharambe; Assaf Eisenman; Aston Zhang; Aurelien Rodriguez; Austen Gregerson; Ava Spataru; Baptiste Roziere; Ben Maurer; Benjamin Leonhardi; Bernie Huang; Bhargavi Paranjape; Bing Liu; Binh Tang; Bobbie Chern; Brani Stojkovic; Brian Fuller; Catalina Mejia Arenas; Chao Zhou; Charlotte Caucheteux; Chaya Nayak; Ching-Hsiang Chu; Chloe Bi; Chris Cai; Chris Cox; Chris Marra; Chris McConnell; Christian Keller; Christoph Feichtenhofer; Christophe Touret; Chunyang Wu; Corinne Wong; Cristian Canton Ferrer; Damien Allonsius; Daniel Kreymer; Daniel Haziza; Daniel Li; Danielle Pintz; Danny Livshits; Danny Wyatt; David Adkins; David Esiobu; David Xu; Davide Testuggine; Delia David; Devi Parikh; Dhruv Choudhary; Dhruv Mahajan; Diana Liskovich; Diego Garcia-Olano; Diego Perino; Dieuwke Hupkes; Dingkang Wang; Dustin Holland; Egor Lakomkin; Elina Lobanova; Xiaoqing Ellen Tan; Emily Dinan; Eric Smith; Erik Brinkman; Esteban Arcaute; Filip Radenovic; Firat Ozgenel; Francesco Caggioni; Frank Seide; Frank Zhang; Gabriel Synnaeve; Gabriella Schwarz; Gabrielle Lee; Gada Badeer; Georgia Anderson; Graeme Nail; Gregoire Mialon; Guan Pang; Guillem Cucurell; Hailey Nguyen; Hannah Korevaar; Hannah Wang; Haroun Habeeb; Harrison Rudolph; Henry Aspegren; Hu Xu; Hugo Touvron; Iga Kozlowska; Igor Molybog; Igor Tufanov; Iliyan Zarov; Imanol Arrieta Ibarra; Irina-Elena Veliche; Isabel Kloumann; Ishan Misra; Ivan Evtimov; Jacob Xu; Jade Copet; Jake Weissman; Jan Geffert; Jana Vranes; Japhet Asher; Jason Park; Jay Mahadeokar; Jean-Baptiste Gaya; Jeet Shah; Jelmer van der Linde; Jennifer Chan; Jenny Hong; Jenya Lee; Jeremy Fu; Jeremy Teboul; Jianfeng Chi; Jianyu Huang; Jie Wang; Jiecao Yu; Joanna Bitton; Joe Spisak; Joelle Pineau; Jon Carvill; Jongsoo Park; Joseph Rocca; Joshua Johnstun; Junteng Jia; Kalyan Vasuden Alwala; Kam Hou U; Kate Plawiak; Kartikeya Upasani; Kaushik Veeraraghavan; Ke Li; Kenneth Heafield; Kevin Stone; Khalid El-Arini; Krithika Iyer; Kshitiz Malik; Kuenley Chiu; Kunal Bhalla; Kyle Huang; Lakshya Garg; Lauren Rantala-Yeary; Laurens van der Maaten; Lawrence Chen; Leandro Silva; Lee Bell; Lei Zhang; Liang Tan; Louis Martin; Lovish Madaan; Luca Wehrstedt; Lukas Blecher; Luke de Oliveira; Madeline Muzzi; Madian Khabsa; Manav Avlani; Mannat Singh; Manohar Paluri; Mark Zuckerberg; Marcin Kardas; Martynas Mankus; Mathew Oldham; Mathieu Rita; Matthew Lennie; Maya Pavlova; Meghan Keneally; Melanie Kambadur; Mihir Patel; Mikayel Samvelyan; Mike Clark; Mike Lewis; Min Si; Mitesh Kumar Singh; Mo Metanat; Mona Hassan; Naman Goyal; Narjes Torabi; Nicolas Usunier; Nikolay Bashlykov; Nikolay Bogoychev; Niladri Chatterji; Ning Dong; Oliver Aobo Yang; Olivier Duchenne; Onur Celebi; Parth Parekh; Patrick Alrassy; Paul Saab; Pavan Balaji; Pedro Rittner; Pengchuan Zhang; Pengwei Li; Petar Vasic; Peter Weng; Polina Zvyagina; Prajjwal Bhargava; Pratik Dubal; Praveen Krishnan; Punit Singh Koura; Qing He; Rachel Rodriguez; Ragavan Srinivasan; Rahul Mitra; Ramon Calderer; Raymond Li; Robert Stojnic; Roberta Raileanu; Robin Battey; Rocky Wang; Rohit Girdhar; Rohit Patel; Romain Sauvestre; Ronnie Polidoro; Roshan Sumbaly; Ross Taylor; Ruan Silva; Rui Hou; Rui Wang; Russ Howes; Ruty Rinott; Saghar Hosseini; Sai Jayesh Bondu; Samyak Datta; Sanjay Singh; Sara Chugh; Sargun Dhillon; Satadru Pan; Sean Bell; Sergey Edunov; Shaoliang Nie; Sharan Narang; Sharath Raparthy; Shaun Lindsay; Sheng Feng; Sheng Shen; Shenghao Lin; Shiva Shankar; Shruti Bhosale; Shun Zhang; Simon Vandenhende; Sinong Wang; Seohyun Sonia Kim; Soumya Batra; Sten Sootla; Steve Kehoe; Suchin Gururangan; Sumit Gupta; Sunny Virk; Sydney Borodinsky; Tamar Glaser; Tamar Herman; Tamara Best; Tara Fowler; Thomas Georgiou; Thomas Scialom; Tianhe Li; Todor Mihaylov; Tong Xiao; Ujjwal Karn; Vedanuj Goswami; Vibhor Gupta; Vignesh Ramanathan; Viktor Kerkez; Vinay Satish Kumar; Vincent Gonguet; Vish Vogeti; Vlad Poenaru; Vlad Tiberiu Mihailescu; Vladan Petrovic; Vladimir Ivanov; Wei Li; Weiwei Chu; Wenhan Xiong; Wenyin Fu; Wes Bouaziz; Whitney Meers; Will Constable; Xavier Martinet; Xiaojian Wu; Xinbo Gao; Xinfeng Xie; Xuchao Jia; Yaelle Goldschlag; Yann LeCun; Yashesh Gaur; Yasmine Babaei; Ye Qi; Yenda Li; Yi Wen; Yiwen Song; Youngjin Nam; Yuchen Hao; Yuchen Zhang; Yun Wang; Yuning Mao; Yuzi He; Zacharie Delpierre Coudert; Zachary DeVito; Zahra Hankir; Zhaoduo Wen; Zheng Yan; Zhengxing Chen; Zhenyu Yang; Zoe Papakipos
[ "### Use with transformers\n\n\nYou can run conversational inference using the Transformers pipeline abstraction, or by leveraging the Auto classes with the 'generate()' function. Let's see examples of both.", "#### Transformers pipeline", "#### Transformers AutoModelForCausalLM", "### Use with 'llama3'\n\n\nPlease, follow the instructions in the repository\n\n\nTo download Original checkpoints, see the example command below leveraging 'huggingface-cli':\n\n\nFor Hugging Face support, we recommend using transformers or TGI, but a similar command works.\n\n\nHardware and Software\n---------------------\n\n\nTraining Factors We used custom training libraries, Meta's Research SuperCluster, and production clusters for pretraining. Fine-tuning, annotation, and evaluation were also performed on third-party cloud compute.\n\n\nCarbon Footprint Pretraining utilized a cumulative 7.7M GPU hours of computation on hardware of type H100-80GB (TDP of 700W). Estimated total emissions were 2290 tCO2eq, 100% of which were offset by Meta’s sustainability program.\n\n\n\nCO2 emissions during pre-training. Time: total GPU time required for training each model. Power Consumption: peak power capacity per GPU device for the GPUs used adjusted for power usage efficiency. 100% of the emissions are directly offset by Meta's sustainability program, and because we are openly releasing these models, the pretraining costs do not need to be incurred by others.\n\n\nTraining Data\n-------------\n\n\nOverview Llama 3 was pretrained on over 15 trillion tokens of data from publicly available sources. The fine-tuning data includes publicly available instruction datasets, as well as over 10M human-annotated examples. Neither the pretraining nor the fine-tuning datasets include Meta user data.\n\n\nData Freshness The pretraining data has a cutoff of March 2023 for the 7B and December 2023 for the 70B models respectively.\n\n\nBenchmarks\n----------\n\n\nIn this section, we report the results for Llama 3 models on standard automatic benchmarks. For all the evaluations, we use our internal evaluations library. For details on the methodology see here.", "### Base pretrained models", "### Instruction tuned models", "### Responsibility & Safety\n\n\nWe believe that an open approach to AI leads to better, safer products, faster innovation, and a bigger overall market. We are committed to Responsible AI development and took a series of steps to limit misuse and harm and support the open source community.\n\n\nFoundation models are widely capable technologies that are built to be used for a diverse range of applications. They are not designed to meet every developer preference on safety levels for all use cases, out-of-the-box, as those by their nature will differ across different applications.\n\n\nRather, responsible LLM-application deployment is achieved by implementing a series of safety best practices throughout the development of such applications, from the model pre-training, fine-tuning and the deployment of systems composed of safeguards to tailor the safety needs specifically to the use case and audience.\n\n\nAs part of the Llama 3 release, we updated our Responsible Use Guide to outline the steps and best practices for developers to implement model and system level safety for their application. We also provide a set of resources including Meta Llama Guard 2 and Code Shield safeguards. These tools have proven to drastically reduce residual risks of LLM Systems, while maintaining a high level of helpfulness. We encourage developers to tune and deploy these safeguards according to their needs and we provide a reference implementation to get you started.", "#### Llama 3-Instruct\n\n\nAs outlined in the Responsible Use Guide, some trade-off between model helpfulness and model alignment is likely unavoidable. Developers should exercise discretion about how to weigh the benefits of alignment and helpfulness for their specific use case and audience. Developers should be mindful of residual risks when using Llama models and leverage additional safety tools as needed to reach the right safety bar for their use case.\n\n\nSafety\n\n\nFor our instruction tuned model, we conducted extensive red teaming exercises, performed adversarial evaluations and implemented safety mitigations techniques to lower residual risks. As with any Large Language Model, residual risks will likely remain and we recommend that developers assess these risks in the context of their use case. In parallel, we are working with the community to make AI safety benchmark standards transparent, rigorous and interpretable.\n\n\nRefusals\n\n\nIn addition to residual risks, we put a great emphasis on model refusals to benign prompts. Over-refusing not only can impact the user experience but could even be harmful in certain contexts as well. We’ve heard the feedback from the developer community and improved our fine tuning to ensure that Llama 3 is significantly less likely to falsely refuse to answer prompts than Llama 2.\n\n\nWe built internal benchmarks and developed mitigations to limit false refusals making Llama 3 our most helpful model to date.", "#### Responsible release\n\n\nIn addition to responsible use considerations outlined above, we followed a rigorous process that requires us to take extra measures against misuse and critical risks before we make our release decision.\n\n\nMisuse\n\n\nIf you access or use Llama 3, you agree to the Acceptable Use Policy. The most recent copy of this policy can be found at URL", "#### Critical risks\n\n\nCBRNE (Chemical, Biological, Radiological, Nuclear, and high yield Explosives)\n\n\nWe have conducted a two fold assessment of the safety of the model in this area:\n\n\n* Iterative testing during model training to assess the safety of responses related to CBRNE threats and other adversarial risks.\n* Involving external CBRNE experts to conduct an uplift test assessing the ability of the model to accurately provide expert knowledge and reduce barriers to potential CBRNE misuse, by reference to what can be achieved using web search (without the model).", "### Cyber Security\n\n\nWe have evaluated Llama 3 with CyberSecEval, Meta’s cybersecurity safety eval suite, measuring Llama 3’s propensity to suggest insecure code when used as a coding assistant, and Llama 3’s propensity to comply with requests to help carry out cyber attacks, where attacks are defined by the industry standard MITRE ATT&CK cyber attack ontology. On our insecure coding and cyber attacker helpfulness tests, Llama 3 behaved in the same range or safer than models of equivalent coding capability.", "### Child Safety\n\n\nChild Safety risk assessments were conducted using a team of experts, to assess the model’s capability to produce outputs that could result in Child Safety risks and inform on any necessary and appropriate risk mitigations via fine tuning. We leveraged those expert red teaming sessions to expand the coverage of our evaluation benchmarks through Llama 3 model development. For Llama 3, we conducted new in-depth sessions using objective based methodologies to assess the model risks along multiple attack vectors. We also partnered with content specialists to perform red teaming exercises assessing potentially violating content while taking account of market specific nuances or experiences.", "### Community\n\n\nGenerative AI safety requires expertise and tooling, and we believe in the strength of the open community to accelerate its progress. We are active members of open consortiums, including the AI Alliance, Partnership in AI and MLCommons, actively contributing to safety standardization and transparency. We encourage the community to adopt taxonomies like the MLCommons Proof of Concept evaluation to facilitate collaboration and transparency on safety and content evaluations. Our Purple Llama tools are open sourced for the community to use and widely distributed across ecosystem partners including cloud service providers. We encourage community contributions to our Github repository.\n\n\nFinally, we put in place a set of resources including an output reporting mechanism and bug bounty program to continuously improve the Llama technology with the help of the community.\n\n\nEthical Considerations and Limitations\n--------------------------------------\n\n\nThe core values of Llama 3 are openness, inclusivity and helpfulness. It is meant to serve everyone, and to work for a wide range of use cases. It is thus designed to be accessible to people across many different backgrounds, experiences and perspectives. Llama 3 addresses users and their needs as they are, without insertion unnecessary judgment or normativity, while reflecting the understanding that even content that may appear problematic in some cases can serve valuable purposes in others. It respects the dignity and autonomy of all users, especially in terms of the values of free thought and expression that power innovation and progress.\n\n\nBut Llama 3 is a new technology, and like any new technology, there are risks associated with its use. Testing conducted to date has been in English, and has not covered, nor could it cover, all scenarios. For these reasons, as with all LLMs, Llama 3’s potential outputs cannot be predicted in advance, and the model may in some instances produce inaccurate, biased or other objectionable responses to user prompts. Therefore, before deploying any applications of Llama 3 models, developers should perform safety testing and tuning tailored to their specific applications of the model. As outlined in the Responsible Use Guide, we recommend incorporating Purple Llama solutions into your workflows and specifically Llama Guard which provides a base model to filter input and output prompts to layer system-level safety on top of model-level safety.\n\n\nPlease see the Responsible Use Guide available at URL\n\n\ninstructions\n\n\n@article{llama3modelcard,\n\n\ntitle={Llama 3 Model Card},\n\n\nauthor={AI@Meta},\n\n\nyear={2024},\n\n\nurl = {URL\n\n\n}\n\n\nContributors\n------------\n\n\nAaditya Singh; Aaron Grattafiori; Abhimanyu Dubey; Abhinav Jauhri; Abhinav Pandey; Abhishek Kadian; Adam Kelsey; Adi Gangidi; Ahmad Al-Dahle; Ahuva Goldstand; Aiesha Letman; Ajay Menon; Akhil Mathur; Alan Schelten; Alex Vaughan; Amy Yang; Andrei Lupu; Andres Alvarado; Andrew Gallagher; Andrew Gu; Andrew Ho; Andrew Poulton; Andrew Ryan; Angela Fan; Ankit Ramchandani; Anthony Hartshorn; Archi Mitra; Archie Sravankumar; Artem Korenev; Arun Rao; Ashley Gabriel; Ashwin Bharambe; Assaf Eisenman; Aston Zhang; Aurelien Rodriguez; Austen Gregerson; Ava Spataru; Baptiste Roziere; Ben Maurer; Benjamin Leonhardi; Bernie Huang; Bhargavi Paranjape; Bing Liu; Binh Tang; Bobbie Chern; Brani Stojkovic; Brian Fuller; Catalina Mejia Arenas; Chao Zhou; Charlotte Caucheteux; Chaya Nayak; Ching-Hsiang Chu; Chloe Bi; Chris Cai; Chris Cox; Chris Marra; Chris McConnell; Christian Keller; Christoph Feichtenhofer; Christophe Touret; Chunyang Wu; Corinne Wong; Cristian Canton Ferrer; Damien Allonsius; Daniel Kreymer; Daniel Haziza; Daniel Li; Danielle Pintz; Danny Livshits; Danny Wyatt; David Adkins; David Esiobu; David Xu; Davide Testuggine; Delia David; Devi Parikh; Dhruv Choudhary; Dhruv Mahajan; Diana Liskovich; Diego Garcia-Olano; Diego Perino; Dieuwke Hupkes; Dingkang Wang; Dustin Holland; Egor Lakomkin; Elina Lobanova; Xiaoqing Ellen Tan; Emily Dinan; Eric Smith; Erik Brinkman; Esteban Arcaute; Filip Radenovic; Firat Ozgenel; Francesco Caggioni; Frank Seide; Frank Zhang; Gabriel Synnaeve; Gabriella Schwarz; Gabrielle Lee; Gada Badeer; Georgia Anderson; Graeme Nail; Gregoire Mialon; Guan Pang; Guillem Cucurell; Hailey Nguyen; Hannah Korevaar; Hannah Wang; Haroun Habeeb; Harrison Rudolph; Henry Aspegren; Hu Xu; Hugo Touvron; Iga Kozlowska; Igor Molybog; Igor Tufanov; Iliyan Zarov; Imanol Arrieta Ibarra; Irina-Elena Veliche; Isabel Kloumann; Ishan Misra; Ivan Evtimov; Jacob Xu; Jade Copet; Jake Weissman; Jan Geffert; Jana Vranes; Japhet Asher; Jason Park; Jay Mahadeokar; Jean-Baptiste Gaya; Jeet Shah; Jelmer van der Linde; Jennifer Chan; Jenny Hong; Jenya Lee; Jeremy Fu; Jeremy Teboul; Jianfeng Chi; Jianyu Huang; Jie Wang; Jiecao Yu; Joanna Bitton; Joe Spisak; Joelle Pineau; Jon Carvill; Jongsoo Park; Joseph Rocca; Joshua Johnstun; Junteng Jia; Kalyan Vasuden Alwala; Kam Hou U; Kate Plawiak; Kartikeya Upasani; Kaushik Veeraraghavan; Ke Li; Kenneth Heafield; Kevin Stone; Khalid El-Arini; Krithika Iyer; Kshitiz Malik; Kuenley Chiu; Kunal Bhalla; Kyle Huang; Lakshya Garg; Lauren Rantala-Yeary; Laurens van der Maaten; Lawrence Chen; Leandro Silva; Lee Bell; Lei Zhang; Liang Tan; Louis Martin; Lovish Madaan; Luca Wehrstedt; Lukas Blecher; Luke de Oliveira; Madeline Muzzi; Madian Khabsa; Manav Avlani; Mannat Singh; Manohar Paluri; Mark Zuckerberg; Marcin Kardas; Martynas Mankus; Mathew Oldham; Mathieu Rita; Matthew Lennie; Maya Pavlova; Meghan Keneally; Melanie Kambadur; Mihir Patel; Mikayel Samvelyan; Mike Clark; Mike Lewis; Min Si; Mitesh Kumar Singh; Mo Metanat; Mona Hassan; Naman Goyal; Narjes Torabi; Nicolas Usunier; Nikolay Bashlykov; Nikolay Bogoychev; Niladri Chatterji; Ning Dong; Oliver Aobo Yang; Olivier Duchenne; Onur Celebi; Parth Parekh; Patrick Alrassy; Paul Saab; Pavan Balaji; Pedro Rittner; Pengchuan Zhang; Pengwei Li; Petar Vasic; Peter Weng; Polina Zvyagina; Prajjwal Bhargava; Pratik Dubal; Praveen Krishnan; Punit Singh Koura; Qing He; Rachel Rodriguez; Ragavan Srinivasan; Rahul Mitra; Ramon Calderer; Raymond Li; Robert Stojnic; Roberta Raileanu; Robin Battey; Rocky Wang; Rohit Girdhar; Rohit Patel; Romain Sauvestre; Ronnie Polidoro; Roshan Sumbaly; Ross Taylor; Ruan Silva; Rui Hou; Rui Wang; Russ Howes; Ruty Rinott; Saghar Hosseini; Sai Jayesh Bondu; Samyak Datta; Sanjay Singh; Sara Chugh; Sargun Dhillon; Satadru Pan; Sean Bell; Sergey Edunov; Shaoliang Nie; Sharan Narang; Sharath Raparthy; Shaun Lindsay; Sheng Feng; Sheng Shen; Shenghao Lin; Shiva Shankar; Shruti Bhosale; Shun Zhang; Simon Vandenhende; Sinong Wang; Seohyun Sonia Kim; Soumya Batra; Sten Sootla; Steve Kehoe; Suchin Gururangan; Sumit Gupta; Sunny Virk; Sydney Borodinsky; Tamar Glaser; Tamar Herman; Tamara Best; Tara Fowler; Thomas Georgiou; Thomas Scialom; Tianhe Li; Todor Mihaylov; Tong Xiao; Ujjwal Karn; Vedanuj Goswami; Vibhor Gupta; Vignesh Ramanathan; Viktor Kerkez; Vinay Satish Kumar; Vincent Gonguet; Vish Vogeti; Vlad Poenaru; Vlad Tiberiu Mihailescu; Vladan Petrovic; Vladimir Ivanov; Wei Li; Weiwei Chu; Wenhan Xiong; Wenyin Fu; Wes Bouaziz; Whitney Meers; Will Constable; Xavier Martinet; Xiaojian Wu; Xinbo Gao; Xinfeng Xie; Xuchao Jia; Yaelle Goldschlag; Yann LeCun; Yashesh Gaur; Yasmine Babaei; Ye Qi; Yenda Li; Yi Wen; Yiwen Song; Youngjin Nam; Yuchen Hao; Yuchen Zhang; Yun Wang; Yuning Mao; Yuzi He; Zacharie Delpierre Coudert; Zachary DeVito; Zahra Hankir; Zhaoduo Wen; Zheng Yan; Zhengxing Chen; Zhenyu Yang; Zoe Papakipos" ]
[ "TAGS\n#transformers #safetensors #llama #text-generation #meta #llama-3 #conversational #en #license-llama3 #autotrain_compatible #endpoints_compatible #text-generation-inference #8-bit #region-us \n", "### Use with transformers\n\n\nYou can run conversational inference using the Transformers pipeline abstraction, or by leveraging the Auto classes with the 'generate()' function. Let's see examples of both.", "#### Transformers pipeline", "#### Transformers AutoModelForCausalLM", "### Use with 'llama3'\n\n\nPlease, follow the instructions in the repository\n\n\nTo download Original checkpoints, see the example command below leveraging 'huggingface-cli':\n\n\nFor Hugging Face support, we recommend using transformers or TGI, but a similar command works.\n\n\nHardware and Software\n---------------------\n\n\nTraining Factors We used custom training libraries, Meta's Research SuperCluster, and production clusters for pretraining. Fine-tuning, annotation, and evaluation were also performed on third-party cloud compute.\n\n\nCarbon Footprint Pretraining utilized a cumulative 7.7M GPU hours of computation on hardware of type H100-80GB (TDP of 700W). Estimated total emissions were 2290 tCO2eq, 100% of which were offset by Meta’s sustainability program.\n\n\n\nCO2 emissions during pre-training. Time: total GPU time required for training each model. Power Consumption: peak power capacity per GPU device for the GPUs used adjusted for power usage efficiency. 100% of the emissions are directly offset by Meta's sustainability program, and because we are openly releasing these models, the pretraining costs do not need to be incurred by others.\n\n\nTraining Data\n-------------\n\n\nOverview Llama 3 was pretrained on over 15 trillion tokens of data from publicly available sources. The fine-tuning data includes publicly available instruction datasets, as well as over 10M human-annotated examples. Neither the pretraining nor the fine-tuning datasets include Meta user data.\n\n\nData Freshness The pretraining data has a cutoff of March 2023 for the 7B and December 2023 for the 70B models respectively.\n\n\nBenchmarks\n----------\n\n\nIn this section, we report the results for Llama 3 models on standard automatic benchmarks. For all the evaluations, we use our internal evaluations library. For details on the methodology see here.", "### Base pretrained models", "### Instruction tuned models", "### Responsibility & Safety\n\n\nWe believe that an open approach to AI leads to better, safer products, faster innovation, and a bigger overall market. We are committed to Responsible AI development and took a series of steps to limit misuse and harm and support the open source community.\n\n\nFoundation models are widely capable technologies that are built to be used for a diverse range of applications. They are not designed to meet every developer preference on safety levels for all use cases, out-of-the-box, as those by their nature will differ across different applications.\n\n\nRather, responsible LLM-application deployment is achieved by implementing a series of safety best practices throughout the development of such applications, from the model pre-training, fine-tuning and the deployment of systems composed of safeguards to tailor the safety needs specifically to the use case and audience.\n\n\nAs part of the Llama 3 release, we updated our Responsible Use Guide to outline the steps and best practices for developers to implement model and system level safety for their application. We also provide a set of resources including Meta Llama Guard 2 and Code Shield safeguards. These tools have proven to drastically reduce residual risks of LLM Systems, while maintaining a high level of helpfulness. We encourage developers to tune and deploy these safeguards according to their needs and we provide a reference implementation to get you started.", "#### Llama 3-Instruct\n\n\nAs outlined in the Responsible Use Guide, some trade-off between model helpfulness and model alignment is likely unavoidable. Developers should exercise discretion about how to weigh the benefits of alignment and helpfulness for their specific use case and audience. Developers should be mindful of residual risks when using Llama models and leverage additional safety tools as needed to reach the right safety bar for their use case.\n\n\nSafety\n\n\nFor our instruction tuned model, we conducted extensive red teaming exercises, performed adversarial evaluations and implemented safety mitigations techniques to lower residual risks. As with any Large Language Model, residual risks will likely remain and we recommend that developers assess these risks in the context of their use case. In parallel, we are working with the community to make AI safety benchmark standards transparent, rigorous and interpretable.\n\n\nRefusals\n\n\nIn addition to residual risks, we put a great emphasis on model refusals to benign prompts. Over-refusing not only can impact the user experience but could even be harmful in certain contexts as well. We’ve heard the feedback from the developer community and improved our fine tuning to ensure that Llama 3 is significantly less likely to falsely refuse to answer prompts than Llama 2.\n\n\nWe built internal benchmarks and developed mitigations to limit false refusals making Llama 3 our most helpful model to date.", "#### Responsible release\n\n\nIn addition to responsible use considerations outlined above, we followed a rigorous process that requires us to take extra measures against misuse and critical risks before we make our release decision.\n\n\nMisuse\n\n\nIf you access or use Llama 3, you agree to the Acceptable Use Policy. The most recent copy of this policy can be found at URL", "#### Critical risks\n\n\nCBRNE (Chemical, Biological, Radiological, Nuclear, and high yield Explosives)\n\n\nWe have conducted a two fold assessment of the safety of the model in this area:\n\n\n* Iterative testing during model training to assess the safety of responses related to CBRNE threats and other adversarial risks.\n* Involving external CBRNE experts to conduct an uplift test assessing the ability of the model to accurately provide expert knowledge and reduce barriers to potential CBRNE misuse, by reference to what can be achieved using web search (without the model).", "### Cyber Security\n\n\nWe have evaluated Llama 3 with CyberSecEval, Meta’s cybersecurity safety eval suite, measuring Llama 3’s propensity to suggest insecure code when used as a coding assistant, and Llama 3’s propensity to comply with requests to help carry out cyber attacks, where attacks are defined by the industry standard MITRE ATT&CK cyber attack ontology. On our insecure coding and cyber attacker helpfulness tests, Llama 3 behaved in the same range or safer than models of equivalent coding capability.", "### Child Safety\n\n\nChild Safety risk assessments were conducted using a team of experts, to assess the model’s capability to produce outputs that could result in Child Safety risks and inform on any necessary and appropriate risk mitigations via fine tuning. We leveraged those expert red teaming sessions to expand the coverage of our evaluation benchmarks through Llama 3 model development. For Llama 3, we conducted new in-depth sessions using objective based methodologies to assess the model risks along multiple attack vectors. We also partnered with content specialists to perform red teaming exercises assessing potentially violating content while taking account of market specific nuances or experiences.", "### Community\n\n\nGenerative AI safety requires expertise and tooling, and we believe in the strength of the open community to accelerate its progress. We are active members of open consortiums, including the AI Alliance, Partnership in AI and MLCommons, actively contributing to safety standardization and transparency. We encourage the community to adopt taxonomies like the MLCommons Proof of Concept evaluation to facilitate collaboration and transparency on safety and content evaluations. Our Purple Llama tools are open sourced for the community to use and widely distributed across ecosystem partners including cloud service providers. We encourage community contributions to our Github repository.\n\n\nFinally, we put in place a set of resources including an output reporting mechanism and bug bounty program to continuously improve the Llama technology with the help of the community.\n\n\nEthical Considerations and Limitations\n--------------------------------------\n\n\nThe core values of Llama 3 are openness, inclusivity and helpfulness. It is meant to serve everyone, and to work for a wide range of use cases. It is thus designed to be accessible to people across many different backgrounds, experiences and perspectives. Llama 3 addresses users and their needs as they are, without insertion unnecessary judgment or normativity, while reflecting the understanding that even content that may appear problematic in some cases can serve valuable purposes in others. It respects the dignity and autonomy of all users, especially in terms of the values of free thought and expression that power innovation and progress.\n\n\nBut Llama 3 is a new technology, and like any new technology, there are risks associated with its use. Testing conducted to date has been in English, and has not covered, nor could it cover, all scenarios. For these reasons, as with all LLMs, Llama 3’s potential outputs cannot be predicted in advance, and the model may in some instances produce inaccurate, biased or other objectionable responses to user prompts. Therefore, before deploying any applications of Llama 3 models, developers should perform safety testing and tuning tailored to their specific applications of the model. As outlined in the Responsible Use Guide, we recommend incorporating Purple Llama solutions into your workflows and specifically Llama Guard which provides a base model to filter input and output prompts to layer system-level safety on top of model-level safety.\n\n\nPlease see the Responsible Use Guide available at URL\n\n\ninstructions\n\n\n@article{llama3modelcard,\n\n\ntitle={Llama 3 Model Card},\n\n\nauthor={AI@Meta},\n\n\nyear={2024},\n\n\nurl = {URL\n\n\n}\n\n\nContributors\n------------\n\n\nAaditya Singh; Aaron Grattafiori; Abhimanyu Dubey; Abhinav Jauhri; Abhinav Pandey; Abhishek Kadian; Adam Kelsey; Adi Gangidi; Ahmad Al-Dahle; Ahuva Goldstand; Aiesha Letman; Ajay Menon; Akhil Mathur; Alan Schelten; Alex Vaughan; Amy Yang; Andrei Lupu; Andres Alvarado; Andrew Gallagher; Andrew Gu; Andrew Ho; Andrew Poulton; Andrew Ryan; Angela Fan; Ankit Ramchandani; Anthony Hartshorn; Archi Mitra; Archie Sravankumar; Artem Korenev; Arun Rao; Ashley Gabriel; Ashwin Bharambe; Assaf Eisenman; Aston Zhang; Aurelien Rodriguez; Austen Gregerson; Ava Spataru; Baptiste Roziere; Ben Maurer; Benjamin Leonhardi; Bernie Huang; Bhargavi Paranjape; Bing Liu; Binh Tang; Bobbie Chern; Brani Stojkovic; Brian Fuller; Catalina Mejia Arenas; Chao Zhou; Charlotte Caucheteux; Chaya Nayak; Ching-Hsiang Chu; Chloe Bi; Chris Cai; Chris Cox; Chris Marra; Chris McConnell; Christian Keller; Christoph Feichtenhofer; Christophe Touret; Chunyang Wu; Corinne Wong; Cristian Canton Ferrer; Damien Allonsius; Daniel Kreymer; Daniel Haziza; Daniel Li; Danielle Pintz; Danny Livshits; Danny Wyatt; David Adkins; David Esiobu; David Xu; Davide Testuggine; Delia David; Devi Parikh; Dhruv Choudhary; Dhruv Mahajan; Diana Liskovich; Diego Garcia-Olano; Diego Perino; Dieuwke Hupkes; Dingkang Wang; Dustin Holland; Egor Lakomkin; Elina Lobanova; Xiaoqing Ellen Tan; Emily Dinan; Eric Smith; Erik Brinkman; Esteban Arcaute; Filip Radenovic; Firat Ozgenel; Francesco Caggioni; Frank Seide; Frank Zhang; Gabriel Synnaeve; Gabriella Schwarz; Gabrielle Lee; Gada Badeer; Georgia Anderson; Graeme Nail; Gregoire Mialon; Guan Pang; Guillem Cucurell; Hailey Nguyen; Hannah Korevaar; Hannah Wang; Haroun Habeeb; Harrison Rudolph; Henry Aspegren; Hu Xu; Hugo Touvron; Iga Kozlowska; Igor Molybog; Igor Tufanov; Iliyan Zarov; Imanol Arrieta Ibarra; Irina-Elena Veliche; Isabel Kloumann; Ishan Misra; Ivan Evtimov; Jacob Xu; Jade Copet; Jake Weissman; Jan Geffert; Jana Vranes; Japhet Asher; Jason Park; Jay Mahadeokar; Jean-Baptiste Gaya; Jeet Shah; Jelmer van der Linde; Jennifer Chan; Jenny Hong; Jenya Lee; Jeremy Fu; Jeremy Teboul; Jianfeng Chi; Jianyu Huang; Jie Wang; Jiecao Yu; Joanna Bitton; Joe Spisak; Joelle Pineau; Jon Carvill; Jongsoo Park; Joseph Rocca; Joshua Johnstun; Junteng Jia; Kalyan Vasuden Alwala; Kam Hou U; Kate Plawiak; Kartikeya Upasani; Kaushik Veeraraghavan; Ke Li; Kenneth Heafield; Kevin Stone; Khalid El-Arini; Krithika Iyer; Kshitiz Malik; Kuenley Chiu; Kunal Bhalla; Kyle Huang; Lakshya Garg; Lauren Rantala-Yeary; Laurens van der Maaten; Lawrence Chen; Leandro Silva; Lee Bell; Lei Zhang; Liang Tan; Louis Martin; Lovish Madaan; Luca Wehrstedt; Lukas Blecher; Luke de Oliveira; Madeline Muzzi; Madian Khabsa; Manav Avlani; Mannat Singh; Manohar Paluri; Mark Zuckerberg; Marcin Kardas; Martynas Mankus; Mathew Oldham; Mathieu Rita; Matthew Lennie; Maya Pavlova; Meghan Keneally; Melanie Kambadur; Mihir Patel; Mikayel Samvelyan; Mike Clark; Mike Lewis; Min Si; Mitesh Kumar Singh; Mo Metanat; Mona Hassan; Naman Goyal; Narjes Torabi; Nicolas Usunier; Nikolay Bashlykov; Nikolay Bogoychev; Niladri Chatterji; Ning Dong; Oliver Aobo Yang; Olivier Duchenne; Onur Celebi; Parth Parekh; Patrick Alrassy; Paul Saab; Pavan Balaji; Pedro Rittner; Pengchuan Zhang; Pengwei Li; Petar Vasic; Peter Weng; Polina Zvyagina; Prajjwal Bhargava; Pratik Dubal; Praveen Krishnan; Punit Singh Koura; Qing He; Rachel Rodriguez; Ragavan Srinivasan; Rahul Mitra; Ramon Calderer; Raymond Li; Robert Stojnic; Roberta Raileanu; Robin Battey; Rocky Wang; Rohit Girdhar; Rohit Patel; Romain Sauvestre; Ronnie Polidoro; Roshan Sumbaly; Ross Taylor; Ruan Silva; Rui Hou; Rui Wang; Russ Howes; Ruty Rinott; Saghar Hosseini; Sai Jayesh Bondu; Samyak Datta; Sanjay Singh; Sara Chugh; Sargun Dhillon; Satadru Pan; Sean Bell; Sergey Edunov; Shaoliang Nie; Sharan Narang; Sharath Raparthy; Shaun Lindsay; Sheng Feng; Sheng Shen; Shenghao Lin; Shiva Shankar; Shruti Bhosale; Shun Zhang; Simon Vandenhende; Sinong Wang; Seohyun Sonia Kim; Soumya Batra; Sten Sootla; Steve Kehoe; Suchin Gururangan; Sumit Gupta; Sunny Virk; Sydney Borodinsky; Tamar Glaser; Tamar Herman; Tamara Best; Tara Fowler; Thomas Georgiou; Thomas Scialom; Tianhe Li; Todor Mihaylov; Tong Xiao; Ujjwal Karn; Vedanuj Goswami; Vibhor Gupta; Vignesh Ramanathan; Viktor Kerkez; Vinay Satish Kumar; Vincent Gonguet; Vish Vogeti; Vlad Poenaru; Vlad Tiberiu Mihailescu; Vladan Petrovic; Vladimir Ivanov; Wei Li; Weiwei Chu; Wenhan Xiong; Wenyin Fu; Wes Bouaziz; Whitney Meers; Will Constable; Xavier Martinet; Xiaojian Wu; Xinbo Gao; Xinfeng Xie; Xuchao Jia; Yaelle Goldschlag; Yann LeCun; Yashesh Gaur; Yasmine Babaei; Ye Qi; Yenda Li; Yi Wen; Yiwen Song; Youngjin Nam; Yuchen Hao; Yuchen Zhang; Yun Wang; Yuning Mao; Yuzi He; Zacharie Delpierre Coudert; Zachary DeVito; Zahra Hankir; Zhaoduo Wen; Zheng Yan; Zhengxing Chen; Zhenyu Yang; Zoe Papakipos" ]
[ 56, 42, 6, 13, 429, 8, 6, 270, 280, 72, 115, 118, 126, 2136 ]
[ "TAGS\n#transformers #safetensors #llama #text-generation #meta #llama-3 #conversational #en #license-llama3 #autotrain_compatible #endpoints_compatible #text-generation-inference #8-bit #region-us \n### Use with transformers\n\n\nYou can run conversational inference using the Transformers pipeline abstraction, or by leveraging the Auto classes with the 'generate()' function. Let's see examples of both.#### Transformers pipeline#### Transformers AutoModelForCausalLM### Use with 'llama3'\n\n\nPlease, follow the instructions in the repository\n\n\nTo download Original checkpoints, see the example command below leveraging 'huggingface-cli':\n\n\nFor Hugging Face support, we recommend using transformers or TGI, but a similar command works.\n\n\nHardware and Software\n---------------------\n\n\nTraining Factors We used custom training libraries, Meta's Research SuperCluster, and production clusters for pretraining. Fine-tuning, annotation, and evaluation were also performed on third-party cloud compute.\n\n\nCarbon Footprint Pretraining utilized a cumulative 7.7M GPU hours of computation on hardware of type H100-80GB (TDP of 700W). Estimated total emissions were 2290 tCO2eq, 100% of which were offset by Meta’s sustainability program.\n\n\n\nCO2 emissions during pre-training. Time: total GPU time required for training each model. Power Consumption: peak power capacity per GPU device for the GPUs used adjusted for power usage efficiency. 100% of the emissions are directly offset by Meta's sustainability program, and because we are openly releasing these models, the pretraining costs do not need to be incurred by others.\n\n\nTraining Data\n-------------\n\n\nOverview Llama 3 was pretrained on over 15 trillion tokens of data from publicly available sources. The fine-tuning data includes publicly available instruction datasets, as well as over 10M human-annotated examples. Neither the pretraining nor the fine-tuning datasets include Meta user data.\n\n\nData Freshness The pretraining data has a cutoff of March 2023 for the 7B and December 2023 for the 70B models respectively.\n\n\nBenchmarks\n----------\n\n\nIn this section, we report the results for Llama 3 models on standard automatic benchmarks. For all the evaluations, we use our internal evaluations library. For details on the methodology see here.### Base pretrained models### Instruction tuned models### Responsibility & Safety\n\n\nWe believe that an open approach to AI leads to better, safer products, faster innovation, and a bigger overall market. We are committed to Responsible AI development and took a series of steps to limit misuse and harm and support the open source community.\n\n\nFoundation models are widely capable technologies that are built to be used for a diverse range of applications. They are not designed to meet every developer preference on safety levels for all use cases, out-of-the-box, as those by their nature will differ across different applications.\n\n\nRather, responsible LLM-application deployment is achieved by implementing a series of safety best practices throughout the development of such applications, from the model pre-training, fine-tuning and the deployment of systems composed of safeguards to tailor the safety needs specifically to the use case and audience.\n\n\nAs part of the Llama 3 release, we updated our Responsible Use Guide to outline the steps and best practices for developers to implement model and system level safety for their application. We also provide a set of resources including Meta Llama Guard 2 and Code Shield safeguards. These tools have proven to drastically reduce residual risks of LLM Systems, while maintaining a high level of helpfulness. We encourage developers to tune and deploy these safeguards according to their needs and we provide a reference implementation to get you started.#### Llama 3-Instruct\n\n\nAs outlined in the Responsible Use Guide, some trade-off between model helpfulness and model alignment is likely unavoidable. Developers should exercise discretion about how to weigh the benefits of alignment and helpfulness for their specific use case and audience. Developers should be mindful of residual risks when using Llama models and leverage additional safety tools as needed to reach the right safety bar for their use case.\n\n\nSafety\n\n\nFor our instruction tuned model, we conducted extensive red teaming exercises, performed adversarial evaluations and implemented safety mitigations techniques to lower residual risks. As with any Large Language Model, residual risks will likely remain and we recommend that developers assess these risks in the context of their use case. In parallel, we are working with the community to make AI safety benchmark standards transparent, rigorous and interpretable.\n\n\nRefusals\n\n\nIn addition to residual risks, we put a great emphasis on model refusals to benign prompts. Over-refusing not only can impact the user experience but could even be harmful in certain contexts as well. We’ve heard the feedback from the developer community and improved our fine tuning to ensure that Llama 3 is significantly less likely to falsely refuse to answer prompts than Llama 2.\n\n\nWe built internal benchmarks and developed mitigations to limit false refusals making Llama 3 our most helpful model to date.#### Responsible release\n\n\nIn addition to responsible use considerations outlined above, we followed a rigorous process that requires us to take extra measures against misuse and critical risks before we make our release decision.\n\n\nMisuse\n\n\nIf you access or use Llama 3, you agree to the Acceptable Use Policy. The most recent copy of this policy can be found at URL#### Critical risks\n\n\nCBRNE (Chemical, Biological, Radiological, Nuclear, and high yield Explosives)\n\n\nWe have conducted a two fold assessment of the safety of the model in this area:\n\n\n* Iterative testing during model training to assess the safety of responses related to CBRNE threats and other adversarial risks.\n* Involving external CBRNE experts to conduct an uplift test assessing the ability of the model to accurately provide expert knowledge and reduce barriers to potential CBRNE misuse, by reference to what can be achieved using web search (without the model).### Cyber Security\n\n\nWe have evaluated Llama 3 with CyberSecEval, Meta’s cybersecurity safety eval suite, measuring Llama 3’s propensity to suggest insecure code when used as a coding assistant, and Llama 3’s propensity to comply with requests to help carry out cyber attacks, where attacks are defined by the industry standard MITRE ATT&CK cyber attack ontology. On our insecure coding and cyber attacker helpfulness tests, Llama 3 behaved in the same range or safer than models of equivalent coding capability.### Child Safety\n\n\nChild Safety risk assessments were conducted using a team of experts, to assess the model’s capability to produce outputs that could result in Child Safety risks and inform on any necessary and appropriate risk mitigations via fine tuning. We leveraged those expert red teaming sessions to expand the coverage of our evaluation benchmarks through Llama 3 model development. For Llama 3, we conducted new in-depth sessions using objective based methodologies to assess the model risks along multiple attack vectors. We also partnered with content specialists to perform red teaming exercises assessing potentially violating content while taking account of market specific nuances or experiences.### Community\n\n\nGenerative AI safety requires expertise and tooling, and we believe in the strength of the open community to accelerate its progress. We are active members of open consortiums, including the AI Alliance, Partnership in AI and MLCommons, actively contributing to safety standardization and transparency. We encourage the community to adopt taxonomies like the MLCommons Proof of Concept evaluation to facilitate collaboration and transparency on safety and content evaluations. Our Purple Llama tools are open sourced for the community to use and widely distributed across ecosystem partners including cloud service providers. We encourage community contributions to our Github repository.\n\n\nFinally, we put in place a set of resources including an output reporting mechanism and bug bounty program to continuously improve the Llama technology with the help of the community.\n\n\nEthical Considerations and Limitations\n--------------------------------------\n\n\nThe core values of Llama 3 are openness, inclusivity and helpfulness. It is meant to serve everyone, and to work for a wide range of use cases. It is thus designed to be accessible to people across many different backgrounds, experiences and perspectives. Llama 3 addresses users and their needs as they are, without insertion unnecessary judgment or normativity, while reflecting the understanding that even content that may appear problematic in some cases can serve valuable purposes in others. It respects the dignity and autonomy of all users, especially in terms of the values of free thought and expression that power innovation and progress.\n\n\nBut Llama 3 is a new technology, and like any new technology, there are risks associated with its use. Testing conducted to date has been in English, and has not covered, nor could it cover, all scenarios. For these reasons, as with all LLMs, Llama 3’s potential outputs cannot be predicted in advance, and the model may in some instances produce inaccurate, biased or other objectionable responses to user prompts. Therefore, before deploying any applications of Llama 3 models, developers should perform safety testing and tuning tailored to their specific applications of the model. As outlined in the Responsible Use Guide, we recommend incorporating Purple Llama solutions into your workflows and specifically Llama Guard which provides a base model to filter input and output prompts to layer system-level safety on top of model-level safety.\n\n\nPlease see the Responsible Use Guide available at URL\n\n\ninstructions\n\n\n@article{llama3modelcard,\n\n\ntitle={Llama 3 Model Card},\n\n\nauthor={AI@Meta},\n\n\nyear={2024},\n\n\nurl = {URL\n\n\n}\n\n\nContributors\n------------\n\n\nAaditya Singh; Aaron Grattafiori; Abhimanyu Dubey; Abhinav Jauhri; Abhinav Pandey; Abhishek Kadian; Adam Kelsey; Adi Gangidi; Ahmad Al-Dahle; Ahuva Goldstand; Aiesha Letman; Ajay Menon; Akhil Mathur; Alan Schelten; Alex Vaughan; Amy Yang; Andrei Lupu; Andres Alvarado; Andrew Gallagher; Andrew Gu; Andrew Ho; Andrew Poulton; Andrew Ryan; Angela Fan; Ankit Ramchandani; Anthony Hartshorn; Archi Mitra; Archie Sravankumar; Artem Korenev; Arun Rao; Ashley Gabriel; Ashwin Bharambe; Assaf Eisenman; Aston Zhang; Aurelien Rodriguez; Austen Gregerson; Ava Spataru; Baptiste Roziere; Ben Maurer; Benjamin Leonhardi; Bernie Huang; Bhargavi Paranjape; Bing Liu; Binh Tang; Bobbie Chern; Brani Stojkovic; Brian Fuller; Catalina Mejia Arenas; Chao Zhou; Charlotte Caucheteux; Chaya Nayak; Ching-Hsiang Chu; Chloe Bi; Chris Cai; Chris Cox; Chris Marra; Chris McConnell; Christian Keller; Christoph Feichtenhofer; Christophe Touret; Chunyang Wu; Corinne Wong; Cristian Canton Ferrer; Damien Allonsius; Daniel Kreymer; Daniel Haziza; Daniel Li; Danielle Pintz; Danny Livshits; Danny Wyatt; David Adkins; David Esiobu; David Xu; Davide Testuggine; Delia David; Devi Parikh; Dhruv Choudhary; Dhruv Mahajan; Diana Liskovich; Diego Garcia-Olano; Diego Perino; Dieuwke Hupkes; Dingkang Wang; Dustin Holland; Egor Lakomkin; Elina Lobanova; Xiaoqing Ellen Tan; Emily Dinan; Eric Smith; Erik Brinkman; Esteban Arcaute; Filip Radenovic; Firat Ozgenel; Francesco Caggioni; Frank Seide; Frank Zhang; Gabriel Synnaeve; Gabriella Schwarz; Gabrielle Lee; Gada Badeer; Georgia Anderson; Graeme Nail; Gregoire Mialon; Guan Pang; Guillem Cucurell; Hailey Nguyen; Hannah Korevaar; Hannah Wang; Haroun Habeeb; Harrison Rudolph; Henry Aspegren; Hu Xu; Hugo Touvron; Iga Kozlowska; Igor Molybog; Igor Tufanov; Iliyan Zarov; Imanol Arrieta Ibarra; Irina-Elena Veliche; Isabel Kloumann; Ishan Misra; Ivan Evtimov; Jacob Xu; Jade Copet; Jake Weissman; Jan Geffert; Jana Vranes; Japhet Asher; Jason Park; Jay Mahadeokar; Jean-Baptiste Gaya; Jeet Shah; Jelmer van der Linde; Jennifer Chan; Jenny Hong; Jenya Lee; Jeremy Fu; Jeremy Teboul; Jianfeng Chi; Jianyu Huang; Jie Wang; Jiecao Yu; Joanna Bitton; Joe Spisak; Joelle Pineau; Jon Carvill; Jongsoo Park; Joseph Rocca; Joshua Johnstun; Junteng Jia; Kalyan Vasuden Alwala; Kam Hou U; Kate Plawiak; Kartikeya Upasani; Kaushik Veeraraghavan; Ke Li; Kenneth Heafield; Kevin Stone; Khalid El-Arini; Krithika Iyer; Kshitiz Malik; Kuenley Chiu; Kunal Bhalla; Kyle Huang; Lakshya Garg; Lauren Rantala-Yeary; Laurens van der Maaten; Lawrence Chen; Leandro Silva; Lee Bell; Lei Zhang; Liang Tan; Louis Martin; Lovish Madaan; Luca Wehrstedt; Lukas Blecher; Luke de Oliveira; Madeline Muzzi; Madian Khabsa; Manav Avlani; Mannat Singh; Manohar Paluri; Mark Zuckerberg; Marcin Kardas; Martynas Mankus; Mathew Oldham; Mathieu Rita; Matthew Lennie; Maya Pavlova; Meghan Keneally; Melanie Kambadur; Mihir Patel; Mikayel Samvelyan; Mike Clark; Mike Lewis; Min Si; Mitesh Kumar Singh; Mo Metanat; Mona Hassan; Naman Goyal; Narjes Torabi; Nicolas Usunier; Nikolay Bashlykov; Nikolay Bogoychev; Niladri Chatterji; Ning Dong; Oliver Aobo Yang; Olivier Duchenne; Onur Celebi; Parth Parekh; Patrick Alrassy; Paul Saab; Pavan Balaji; Pedro Rittner; Pengchuan Zhang; Pengwei Li; Petar Vasic; Peter Weng; Polina Zvyagina; Prajjwal Bhargava; Pratik Dubal; Praveen Krishnan; Punit Singh Koura; Qing He; Rachel Rodriguez; Ragavan Srinivasan; Rahul Mitra; Ramon Calderer; Raymond Li; Robert Stojnic; Roberta Raileanu; Robin Battey; Rocky Wang; Rohit Girdhar; Rohit Patel; Romain Sauvestre; Ronnie Polidoro; Roshan Sumbaly; Ross Taylor; Ruan Silva; Rui Hou; Rui Wang; Russ Howes; Ruty Rinott; Saghar Hosseini; Sai Jayesh Bondu; Samyak Datta; Sanjay Singh; Sara Chugh; Sargun Dhillon; Satadru Pan; Sean Bell; Sergey Edunov; Shaoliang Nie; Sharan Narang; Sharath Raparthy; Shaun Lindsay; Sheng Feng; Sheng Shen; Shenghao Lin; Shiva Shankar; Shruti Bhosale; Shun Zhang; Simon Vandenhende; Sinong Wang; Seohyun Sonia Kim; Soumya Batra; Sten Sootla; Steve Kehoe; Suchin Gururangan; Sumit Gupta; Sunny Virk; Sydney Borodinsky; Tamar Glaser; Tamar Herman; Tamara Best; Tara Fowler; Thomas Georgiou; Thomas Scialom; Tianhe Li; Todor Mihaylov; Tong Xiao; Ujjwal Karn; Vedanuj Goswami; Vibhor Gupta; Vignesh Ramanathan; Viktor Kerkez; Vinay Satish Kumar; Vincent Gonguet; Vish Vogeti; Vlad Poenaru; Vlad Tiberiu Mihailescu; Vladan Petrovic; Vladimir Ivanov; Wei Li; Weiwei Chu; Wenhan Xiong; Wenyin Fu; Wes Bouaziz; Whitney Meers; Will Constable; Xavier Martinet; Xiaojian Wu; Xinbo Gao; Xinfeng Xie; Xuchao Jia; Yaelle Goldschlag; Yann LeCun; Yashesh Gaur; Yasmine Babaei; Ye Qi; Yenda Li; Yi Wen; Yiwen Song; Youngjin Nam; Yuchen Hao; Yuchen Zhang; Yun Wang; Yuning Mao; Yuzi He; Zacharie Delpierre Coudert; Zachary DeVito; Zahra Hankir; Zhaoduo Wen; Zheng Yan; Zhengxing Chen; Zhenyu Yang; Zoe Papakipos" ]
text-generation
transformers
# llama3-8B-slerp-med-chinese llama3-8B-slerp-med-chinese is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [winninghealth/WiNGPT2-Llama-3-8B-Base](https://huggingface.co/winninghealth/WiNGPT2-Llama-3-8B-Base) * [johnsnowlabs/JSL-MedLlama-3-8B-v1.0](https://huggingface.co/johnsnowlabs/JSL-MedLlama-3-8B-v1.0) ## 🧩 Configuration ```yaml slices: - sources: - model: winninghealth/WiNGPT2-Llama-3-8B-Base layer_range: [0,32] - model: johnsnowlabs/JSL-MedLlama-3-8B-v1.0 layer_range: [0,32] merge_method: slerp base_model: winninghealth/WiNGPT2-Llama-3-8B-Base parameters: t: - filter: self_attn value: [0, 0.5, 0.5, 0.5, 1] - filter: mlp value: [1, 0.5, 0.5, 0.5, 0] - value: 0.5 dtype: bfloat16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "shanchen/llama3-8B-slerp-med-chinese" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```
{"language": ["zh", "en", "fr"], "license": "llama3", "tags": ["merge", "mergekit", "lazymergekit", "winninghealth/WiNGPT2-Llama-3-8B-Base", "johnsnowlabs/JSL-MedLlama-3-8B-v1.0"], "base_model": ["winninghealth/WiNGPT2-Llama-3-8B-Base", "johnsnowlabs/JSL-MedLlama-3-8B-v1.0"]}
shanchen/llama3-8B-slerp-med-chinese
null
[ "transformers", "safetensors", "llama", "text-generation", "merge", "mergekit", "lazymergekit", "winninghealth/WiNGPT2-Llama-3-8B-Base", "johnsnowlabs/JSL-MedLlama-3-8B-v1.0", "zh", "en", "fr", "base_model:winninghealth/WiNGPT2-Llama-3-8B-Base", "base_model:johnsnowlabs/JSL-MedLlama-3-8B-v1.0", "license:llama3", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-04-30T19:48:40+00:00
[]
[ "zh", "en", "fr" ]
TAGS #transformers #safetensors #llama #text-generation #merge #mergekit #lazymergekit #winninghealth/WiNGPT2-Llama-3-8B-Base #johnsnowlabs/JSL-MedLlama-3-8B-v1.0 #zh #en #fr #base_model-winninghealth/WiNGPT2-Llama-3-8B-Base #base_model-johnsnowlabs/JSL-MedLlama-3-8B-v1.0 #license-llama3 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# llama3-8B-slerp-med-chinese llama3-8B-slerp-med-chinese is a merge of the following models using LazyMergekit: * winninghealth/WiNGPT2-Llama-3-8B-Base * johnsnowlabs/JSL-MedLlama-3-8B-v1.0 ## Configuration ## Usage
[ "# llama3-8B-slerp-med-chinese\n\nllama3-8B-slerp-med-chinese is a merge of the following models using LazyMergekit:\n* winninghealth/WiNGPT2-Llama-3-8B-Base\n* johnsnowlabs/JSL-MedLlama-3-8B-v1.0", "## Configuration", "## Usage" ]
[ "TAGS\n#transformers #safetensors #llama #text-generation #merge #mergekit #lazymergekit #winninghealth/WiNGPT2-Llama-3-8B-Base #johnsnowlabs/JSL-MedLlama-3-8B-v1.0 #zh #en #fr #base_model-winninghealth/WiNGPT2-Llama-3-8B-Base #base_model-johnsnowlabs/JSL-MedLlama-3-8B-v1.0 #license-llama3 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# llama3-8B-slerp-med-chinese\n\nllama3-8B-slerp-med-chinese is a merge of the following models using LazyMergekit:\n* winninghealth/WiNGPT2-Llama-3-8B-Base\n* johnsnowlabs/JSL-MedLlama-3-8B-v1.0", "## Configuration", "## Usage" ]
[ 145, 82, 3, 3 ]
[ "TAGS\n#transformers #safetensors #llama #text-generation #merge #mergekit #lazymergekit #winninghealth/WiNGPT2-Llama-3-8B-Base #johnsnowlabs/JSL-MedLlama-3-8B-v1.0 #zh #en #fr #base_model-winninghealth/WiNGPT2-Llama-3-8B-Base #base_model-johnsnowlabs/JSL-MedLlama-3-8B-v1.0 #license-llama3 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# llama3-8B-slerp-med-chinese\n\nllama3-8B-slerp-med-chinese is a merge of the following models using LazyMergekit:\n* winninghealth/WiNGPT2-Llama-3-8B-Base\n* johnsnowlabs/JSL-MedLlama-3-8B-v1.0## Configuration## Usage" ]
text-generation
transformers
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) Qwen1.5-14B - bnb 8bits - Model creator: https://huggingface.co/Qwen/ - Original model: https://huggingface.co/Qwen/Qwen1.5-14B/ Original model description: --- license: other license_name: tongyi-qianwen license_link: >- https://huggingface.co/Qwen/Qwen1.5-14B/blob/main/LICENSE language: - en pipeline_tag: text-generation tags: - pretrained --- # Qwen1.5-14B ## Introduction Qwen1.5 is the beta version of Qwen2, a transformer-based decoder-only language model pretrained on a large amount of data. In comparison with the previous released Qwen, the improvements include: * 8 model sizes, including 0.5B, 1.8B, 4B, 7B, 14B, 32B and 72B dense models, and an MoE model of 14B with 2.7B activated; * Significant performance improvement in Chat models; * Multilingual support of both base and chat models; * Stable support of 32K context length for models of all sizes * No need of `trust_remote_code`. For more details, please refer to our [blog post](https://qwenlm.github.io/blog/qwen1.5/) and [GitHub repo](https://github.com/QwenLM/Qwen1.5). ## Model Details Qwen1.5 is a language model series including decoder language models of different model sizes. For each size, we release the base language model and the aligned chat model. It is based on the Transformer architecture with SwiGLU activation, attention QKV bias, group query attention, mixture of sliding window attention and full attention, etc. Additionally, we have an improved tokenizer adaptive to multiple natural languages and codes. For the beta version, temporarily we did not include GQA (except for 32B) and the mixture of SWA and full attention. ## Requirements The code of Qwen1.5 has been in the latest Hugging face transformers and we advise you to install `transformers>=4.37.0`, or you might encounter the following error: ``` KeyError: 'qwen2'. ``` ## Usage We do not advise you to use base language models for text generation. Instead, you can apply post-training, e.g., SFT, RLHF, continued pretraining, etc., on this model. ## Citation If you find our work helpful, feel free to give us a cite. ``` @article{qwen, title={Qwen Technical Report}, author={Jinze Bai and Shuai Bai and Yunfei Chu and Zeyu Cui and Kai Dang and Xiaodong Deng and Yang Fan and Wenbin Ge and Yu Han and Fei Huang and Binyuan Hui and Luo Ji and Mei Li and Junyang Lin and Runji Lin and Dayiheng Liu and Gao Liu and Chengqiang Lu and Keming Lu and Jianxin Ma and Rui Men and Xingzhang Ren and Xuancheng Ren and Chuanqi Tan and Sinan Tan and Jianhong Tu and Peng Wang and Shijie Wang and Wei Wang and Shengguang Wu and Benfeng Xu and Jin Xu and An Yang and Hao Yang and Jian Yang and Shusheng Yang and Yang Yao and Bowen Yu and Hongyi Yuan and Zheng Yuan and Jianwei Zhang and Xingxuan Zhang and Yichang Zhang and Zhenru Zhang and Chang Zhou and Jingren Zhou and Xiaohuan Zhou and Tianhang Zhu}, journal={arXiv preprint arXiv:2309.16609}, year={2023} } ```
{}
RichardErkhov/Qwen_-_Qwen1.5-14B-8bits
null
[ "transformers", "safetensors", "qwen2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "8-bit", "region:us" ]
null
2024-04-30T19:49:10+00:00
[]
[]
TAGS #transformers #safetensors #qwen2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #8-bit #region-us
Quantization made by Richard Erkhov. Github Discord Request more models Qwen1.5-14B - bnb 8bits - Model creator: URL - Original model: URL Original model description: --- license: other license_name: tongyi-qianwen license_link: >- URL language: - en pipeline_tag: text-generation tags: - pretrained --- # Qwen1.5-14B ## Introduction Qwen1.5 is the beta version of Qwen2, a transformer-based decoder-only language model pretrained on a large amount of data. In comparison with the previous released Qwen, the improvements include: * 8 model sizes, including 0.5B, 1.8B, 4B, 7B, 14B, 32B and 72B dense models, and an MoE model of 14B with 2.7B activated; * Significant performance improvement in Chat models; * Multilingual support of both base and chat models; * Stable support of 32K context length for models of all sizes * No need of 'trust_remote_code'. For more details, please refer to our blog post and GitHub repo. ## Model Details Qwen1.5 is a language model series including decoder language models of different model sizes. For each size, we release the base language model and the aligned chat model. It is based on the Transformer architecture with SwiGLU activation, attention QKV bias, group query attention, mixture of sliding window attention and full attention, etc. Additionally, we have an improved tokenizer adaptive to multiple natural languages and codes. For the beta version, temporarily we did not include GQA (except for 32B) and the mixture of SWA and full attention. ## Requirements The code of Qwen1.5 has been in the latest Hugging face transformers and we advise you to install 'transformers>=4.37.0', or you might encounter the following error: ## Usage We do not advise you to use base language models for text generation. Instead, you can apply post-training, e.g., SFT, RLHF, continued pretraining, etc., on this model. If you find our work helpful, feel free to give us a cite.
[ "# Qwen1.5-14B", "## Introduction\n\nQwen1.5 is the beta version of Qwen2, a transformer-based decoder-only language model pretrained on a large amount of data. In comparison with the previous released Qwen, the improvements include:\n\n* 8 model sizes, including 0.5B, 1.8B, 4B, 7B, 14B, 32B and 72B dense models, and an MoE model of 14B with 2.7B activated;\n* Significant performance improvement in Chat models;\n* Multilingual support of both base and chat models;\n* Stable support of 32K context length for models of all sizes\n* No need of 'trust_remote_code'.\n\nFor more details, please refer to our blog post and GitHub repo.", "## Model Details\nQwen1.5 is a language model series including decoder language models of different model sizes. For each size, we release the base language model and the aligned chat model. It is based on the Transformer architecture with SwiGLU activation, attention QKV bias, group query attention, mixture of sliding window attention and full attention, etc. Additionally, we have an improved tokenizer adaptive to multiple natural languages and codes. For the beta version, temporarily we did not include GQA (except for 32B) and the mixture of SWA and full attention.", "## Requirements\nThe code of Qwen1.5 has been in the latest Hugging face transformers and we advise you to install 'transformers>=4.37.0', or you might encounter the following error:", "## Usage\n\nWe do not advise you to use base language models for text generation. Instead, you can apply post-training, e.g., SFT, RLHF, continued pretraining, etc., on this model.\n\n\nIf you find our work helpful, feel free to give us a cite." ]
[ "TAGS\n#transformers #safetensors #qwen2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #8-bit #region-us \n", "# Qwen1.5-14B", "## Introduction\n\nQwen1.5 is the beta version of Qwen2, a transformer-based decoder-only language model pretrained on a large amount of data. In comparison with the previous released Qwen, the improvements include:\n\n* 8 model sizes, including 0.5B, 1.8B, 4B, 7B, 14B, 32B and 72B dense models, and an MoE model of 14B with 2.7B activated;\n* Significant performance improvement in Chat models;\n* Multilingual support of both base and chat models;\n* Stable support of 32K context length for models of all sizes\n* No need of 'trust_remote_code'.\n\nFor more details, please refer to our blog post and GitHub repo.", "## Model Details\nQwen1.5 is a language model series including decoder language models of different model sizes. For each size, we release the base language model and the aligned chat model. It is based on the Transformer architecture with SwiGLU activation, attention QKV bias, group query attention, mixture of sliding window attention and full attention, etc. Additionally, we have an improved tokenizer adaptive to multiple natural languages and codes. For the beta version, temporarily we did not include GQA (except for 32B) and the mixture of SWA and full attention.", "## Requirements\nThe code of Qwen1.5 has been in the latest Hugging face transformers and we advise you to install 'transformers>=4.37.0', or you might encounter the following error:", "## Usage\n\nWe do not advise you to use base language models for text generation. Instead, you can apply post-training, e.g., SFT, RLHF, continued pretraining, etc., on this model.\n\n\nIf you find our work helpful, feel free to give us a cite." ]
[ 42, 9, 160, 119, 44, 66 ]
[ "TAGS\n#transformers #safetensors #qwen2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #8-bit #region-us \n# Qwen1.5-14B## Introduction\n\nQwen1.5 is the beta version of Qwen2, a transformer-based decoder-only language model pretrained on a large amount of data. In comparison with the previous released Qwen, the improvements include:\n\n* 8 model sizes, including 0.5B, 1.8B, 4B, 7B, 14B, 32B and 72B dense models, and an MoE model of 14B with 2.7B activated;\n* Significant performance improvement in Chat models;\n* Multilingual support of both base and chat models;\n* Stable support of 32K context length for models of all sizes\n* No need of 'trust_remote_code'.\n\nFor more details, please refer to our blog post and GitHub repo.## Model Details\nQwen1.5 is a language model series including decoder language models of different model sizes. For each size, we release the base language model and the aligned chat model. It is based on the Transformer architecture with SwiGLU activation, attention QKV bias, group query attention, mixture of sliding window attention and full attention, etc. Additionally, we have an improved tokenizer adaptive to multiple natural languages and codes. For the beta version, temporarily we did not include GQA (except for 32B) and the mixture of SWA and full attention.## Requirements\nThe code of Qwen1.5 has been in the latest Hugging face transformers and we advise you to install 'transformers>=4.37.0', or you might encounter the following error:## Usage\n\nWe do not advise you to use base language models for text generation. Instead, you can apply post-training, e.g., SFT, RLHF, continued pretraining, etc., on this model.\n\n\nIf you find our work helpful, feel free to give us a cite." ]
text-generation
transformers
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) Qwen1.5-1.8B-Chat - bnb 4bits - Model creator: https://huggingface.co/Qwen/ - Original model: https://huggingface.co/Qwen/Qwen1.5-1.8B-Chat/ Original model description: --- license: other license_name: tongyi-qianwen-research license_link: >- https://huggingface.co/Qwen/Qwen1.5-1.8B-Chat/blob/main/LICENSE language: - en pipeline_tag: text-generation tags: - chat --- # Qwen1.5-1.8B-Chat ## Introduction Qwen1.5 is the beta version of Qwen2, a transformer-based decoder-only language model pretrained on a large amount of data. In comparison with the previous released Qwen, the improvements include: * 8 model sizes, including 0.5B, 1.8B, 4B, 7B, 14B, 32B and 72B dense models, and an MoE model of 14B with 2.7B activated; * Significant performance improvement in human preference for chat models; * Multilingual support of both base and chat models; * Stable support of 32K context length for models of all sizes * No need of `trust_remote_code`. For more details, please refer to our [blog post](https://qwenlm.github.io/blog/qwen1.5/) and [GitHub repo](https://github.com/QwenLM/Qwen1.5). <br> ## Model Details Qwen1.5 is a language model series including decoder language models of different model sizes. For each size, we release the base language model and the aligned chat model. It is based on the Transformer architecture with SwiGLU activation, attention QKV bias, group query attention, mixture of sliding window attention and full attention, etc. Additionally, we have an improved tokenizer adaptive to multiple natural languages and codes. For the beta version, temporarily we did not include GQA (except for 32B) and the mixture of SWA and full attention. ## Training details We pretrained the models with a large amount of data, and we post-trained the models with both supervised finetuning and direct preference optimization. ## Requirements The code of Qwen1.5 has been in the latest Hugging face transformers and we advise you to install `transformers>=4.37.0`, or you might encounter the following error: ``` KeyError: 'qwen2' ``` ## Quickstart Here provides a code snippet with `apply_chat_template` to show you how to load the tokenizer and model and how to generate contents. ```python from transformers import AutoModelForCausalLM, AutoTokenizer device = "cuda" # the device to load the model onto model = AutoModelForCausalLM.from_pretrained( "Qwen/Qwen1.5-1.8B-Chat", torch_dtype="auto", device_map="auto" ) tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen1.5-1.8B-Chat") prompt = "Give me a short introduction to large language model." messages = [ {"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": prompt} ] text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) model_inputs = tokenizer([text], return_tensors="pt").to(device) generated_ids = model.generate( model_inputs.input_ids, max_new_tokens=512 ) generated_ids = [ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) ] response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] ``` For quantized models, we advise you to use the GPTQ, AWQ, and GGUF correspondents, namely `Qwen1.5-1.8B-Chat-GPTQ-Int4`, `Qwen1.5-1.8B-Chat-GPTQ-Int8`, `Qwen1.5-1.8B-Chat-AWQ`, and `Qwen1.5-1.8B-Chat-GGUF`. ## Tips * If you encounter code switching or other bad cases, we advise you to use our provided hyper-parameters in `generation_config.json`. ## Citation If you find our work helpful, feel free to give us a cite. ``` @article{qwen, title={Qwen Technical Report}, author={Jinze Bai and Shuai Bai and Yunfei Chu and Zeyu Cui and Kai Dang and Xiaodong Deng and Yang Fan and Wenbin Ge and Yu Han and Fei Huang and Binyuan Hui and Luo Ji and Mei Li and Junyang Lin and Runji Lin and Dayiheng Liu and Gao Liu and Chengqiang Lu and Keming Lu and Jianxin Ma and Rui Men and Xingzhang Ren and Xuancheng Ren and Chuanqi Tan and Sinan Tan and Jianhong Tu and Peng Wang and Shijie Wang and Wei Wang and Shengguang Wu and Benfeng Xu and Jin Xu and An Yang and Hao Yang and Jian Yang and Shusheng Yang and Yang Yao and Bowen Yu and Hongyi Yuan and Zheng Yuan and Jianwei Zhang and Xingxuan Zhang and Yichang Zhang and Zhenru Zhang and Chang Zhou and Jingren Zhou and Xiaohuan Zhou and Tianhang Zhu}, journal={arXiv preprint arXiv:2309.16609}, year={2023} } ```
{}
RichardErkhov/Qwen_-_Qwen1.5-1.8B-Chat-4bits
null
[ "transformers", "safetensors", "qwen2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "4-bit", "region:us" ]
null
2024-04-30T19:49:18+00:00
[]
[]
TAGS #transformers #safetensors #qwen2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #4-bit #region-us
Quantization made by Richard Erkhov. Github Discord Request more models Qwen1.5-1.8B-Chat - bnb 4bits - Model creator: URL - Original model: URL Original model description: --- license: other license_name: tongyi-qianwen-research license_link: >- URL language: - en pipeline_tag: text-generation tags: - chat --- # Qwen1.5-1.8B-Chat ## Introduction Qwen1.5 is the beta version of Qwen2, a transformer-based decoder-only language model pretrained on a large amount of data. In comparison with the previous released Qwen, the improvements include: * 8 model sizes, including 0.5B, 1.8B, 4B, 7B, 14B, 32B and 72B dense models, and an MoE model of 14B with 2.7B activated; * Significant performance improvement in human preference for chat models; * Multilingual support of both base and chat models; * Stable support of 32K context length for models of all sizes * No need of 'trust_remote_code'. For more details, please refer to our blog post and GitHub repo. <br> ## Model Details Qwen1.5 is a language model series including decoder language models of different model sizes. For each size, we release the base language model and the aligned chat model. It is based on the Transformer architecture with SwiGLU activation, attention QKV bias, group query attention, mixture of sliding window attention and full attention, etc. Additionally, we have an improved tokenizer adaptive to multiple natural languages and codes. For the beta version, temporarily we did not include GQA (except for 32B) and the mixture of SWA and full attention. ## Training details We pretrained the models with a large amount of data, and we post-trained the models with both supervised finetuning and direct preference optimization. ## Requirements The code of Qwen1.5 has been in the latest Hugging face transformers and we advise you to install 'transformers>=4.37.0', or you might encounter the following error: ## Quickstart Here provides a code snippet with 'apply_chat_template' to show you how to load the tokenizer and model and how to generate contents. For quantized models, we advise you to use the GPTQ, AWQ, and GGUF correspondents, namely 'Qwen1.5-1.8B-Chat-GPTQ-Int4', 'Qwen1.5-1.8B-Chat-GPTQ-Int8', 'Qwen1.5-1.8B-Chat-AWQ', and 'Qwen1.5-1.8B-Chat-GGUF'. ## Tips * If you encounter code switching or other bad cases, we advise you to use our provided hyper-parameters in 'generation_config.json'. If you find our work helpful, feel free to give us a cite.
[ "# Qwen1.5-1.8B-Chat", "## Introduction\n\nQwen1.5 is the beta version of Qwen2, a transformer-based decoder-only language model pretrained on a large amount of data. In comparison with the previous released Qwen, the improvements include: \n\n* 8 model sizes, including 0.5B, 1.8B, 4B, 7B, 14B, 32B and 72B dense models, and an MoE model of 14B with 2.7B activated;\n* Significant performance improvement in human preference for chat models;\n* Multilingual support of both base and chat models;\n* Stable support of 32K context length for models of all sizes\n* No need of 'trust_remote_code'.\n\nFor more details, please refer to our blog post and GitHub repo.\n<br>", "## Model Details\nQwen1.5 is a language model series including decoder language models of different model sizes. For each size, we release the base language model and the aligned chat model. It is based on the Transformer architecture with SwiGLU activation, attention QKV bias, group query attention, mixture of sliding window attention and full attention, etc. Additionally, we have an improved tokenizer adaptive to multiple natural languages and codes. For the beta version, temporarily we did not include GQA (except for 32B) and the mixture of SWA and full attention.", "## Training details\nWe pretrained the models with a large amount of data, and we post-trained the models with both supervised finetuning and direct preference optimization.", "## Requirements\nThe code of Qwen1.5 has been in the latest Hugging face transformers and we advise you to install 'transformers>=4.37.0', or you might encounter the following error:", "## Quickstart\n\nHere provides a code snippet with 'apply_chat_template' to show you how to load the tokenizer and model and how to generate contents.\n\n\n\nFor quantized models, we advise you to use the GPTQ, AWQ, and GGUF correspondents, namely 'Qwen1.5-1.8B-Chat-GPTQ-Int4', 'Qwen1.5-1.8B-Chat-GPTQ-Int8', 'Qwen1.5-1.8B-Chat-AWQ', and 'Qwen1.5-1.8B-Chat-GGUF'.", "## Tips\n\n* If you encounter code switching or other bad cases, we advise you to use our provided hyper-parameters in 'generation_config.json'.\n\n\nIf you find our work helpful, feel free to give us a cite." ]
[ "TAGS\n#transformers #safetensors #qwen2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #4-bit #region-us \n", "# Qwen1.5-1.8B-Chat", "## Introduction\n\nQwen1.5 is the beta version of Qwen2, a transformer-based decoder-only language model pretrained on a large amount of data. In comparison with the previous released Qwen, the improvements include: \n\n* 8 model sizes, including 0.5B, 1.8B, 4B, 7B, 14B, 32B and 72B dense models, and an MoE model of 14B with 2.7B activated;\n* Significant performance improvement in human preference for chat models;\n* Multilingual support of both base and chat models;\n* Stable support of 32K context length for models of all sizes\n* No need of 'trust_remote_code'.\n\nFor more details, please refer to our blog post and GitHub repo.\n<br>", "## Model Details\nQwen1.5 is a language model series including decoder language models of different model sizes. For each size, we release the base language model and the aligned chat model. It is based on the Transformer architecture with SwiGLU activation, attention QKV bias, group query attention, mixture of sliding window attention and full attention, etc. Additionally, we have an improved tokenizer adaptive to multiple natural languages and codes. For the beta version, temporarily we did not include GQA (except for 32B) and the mixture of SWA and full attention.", "## Training details\nWe pretrained the models with a large amount of data, and we post-trained the models with both supervised finetuning and direct preference optimization.", "## Requirements\nThe code of Qwen1.5 has been in the latest Hugging face transformers and we advise you to install 'transformers>=4.37.0', or you might encounter the following error:", "## Quickstart\n\nHere provides a code snippet with 'apply_chat_template' to show you how to load the tokenizer and model and how to generate contents.\n\n\n\nFor quantized models, we advise you to use the GPTQ, AWQ, and GGUF correspondents, namely 'Qwen1.5-1.8B-Chat-GPTQ-Int4', 'Qwen1.5-1.8B-Chat-GPTQ-Int8', 'Qwen1.5-1.8B-Chat-AWQ', and 'Qwen1.5-1.8B-Chat-GGUF'.", "## Tips\n\n* If you encounter code switching or other bad cases, we advise you to use our provided hyper-parameters in 'generation_config.json'.\n\n\nIf you find our work helpful, feel free to give us a cite." ]
[ 42, 13, 166, 119, 35, 44, 145, 51 ]
[ "TAGS\n#transformers #safetensors #qwen2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #4-bit #region-us \n# Qwen1.5-1.8B-Chat## Introduction\n\nQwen1.5 is the beta version of Qwen2, a transformer-based decoder-only language model pretrained on a large amount of data. In comparison with the previous released Qwen, the improvements include: \n\n* 8 model sizes, including 0.5B, 1.8B, 4B, 7B, 14B, 32B and 72B dense models, and an MoE model of 14B with 2.7B activated;\n* Significant performance improvement in human preference for chat models;\n* Multilingual support of both base and chat models;\n* Stable support of 32K context length for models of all sizes\n* No need of 'trust_remote_code'.\n\nFor more details, please refer to our blog post and GitHub repo.\n<br>## Model Details\nQwen1.5 is a language model series including decoder language models of different model sizes. For each size, we release the base language model and the aligned chat model. It is based on the Transformer architecture with SwiGLU activation, attention QKV bias, group query attention, mixture of sliding window attention and full attention, etc. Additionally, we have an improved tokenizer adaptive to multiple natural languages and codes. For the beta version, temporarily we did not include GQA (except for 32B) and the mixture of SWA and full attention.## Training details\nWe pretrained the models with a large amount of data, and we post-trained the models with both supervised finetuning and direct preference optimization.## Requirements\nThe code of Qwen1.5 has been in the latest Hugging face transformers and we advise you to install 'transformers>=4.37.0', or you might encounter the following error:## Quickstart\n\nHere provides a code snippet with 'apply_chat_template' to show you how to load the tokenizer and model and how to generate contents.\n\n\n\nFor quantized models, we advise you to use the GPTQ, AWQ, and GGUF correspondents, namely 'Qwen1.5-1.8B-Chat-GPTQ-Int4', 'Qwen1.5-1.8B-Chat-GPTQ-Int8', 'Qwen1.5-1.8B-Chat-AWQ', and 'Qwen1.5-1.8B-Chat-GGUF'.## Tips\n\n* If you encounter code switching or other bad cases, we advise you to use our provided hyper-parameters in 'generation_config.json'.\n\n\nIf you find our work helpful, feel free to give us a cite." ]
text-generation
transformers
# Fine tuning GPT2 for a company specific data
{}
achrekarom/versa-gpt2
null
[ "transformers", "safetensors", "gpt2", "text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-04-30T19:50:19+00:00
[]
[]
TAGS #transformers #safetensors #gpt2 #text-generation #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# Fine tuning GPT2 for a company specific data
[ "# Fine tuning GPT2 for a company specific data" ]
[ "TAGS\n#transformers #safetensors #gpt2 #text-generation #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# Fine tuning GPT2 for a company specific data" ]
[ 35, 11 ]
[ "TAGS\n#transformers #safetensors #gpt2 #text-generation #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# Fine tuning GPT2 for a company specific data" ]
text-generation
transformers
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) Qwen1.5-1.8B-Chat - bnb 8bits - Model creator: https://huggingface.co/Qwen/ - Original model: https://huggingface.co/Qwen/Qwen1.5-1.8B-Chat/ Original model description: --- license: other license_name: tongyi-qianwen-research license_link: >- https://huggingface.co/Qwen/Qwen1.5-1.8B-Chat/blob/main/LICENSE language: - en pipeline_tag: text-generation tags: - chat --- # Qwen1.5-1.8B-Chat ## Introduction Qwen1.5 is the beta version of Qwen2, a transformer-based decoder-only language model pretrained on a large amount of data. In comparison with the previous released Qwen, the improvements include: * 8 model sizes, including 0.5B, 1.8B, 4B, 7B, 14B, 32B and 72B dense models, and an MoE model of 14B with 2.7B activated; * Significant performance improvement in human preference for chat models; * Multilingual support of both base and chat models; * Stable support of 32K context length for models of all sizes * No need of `trust_remote_code`. For more details, please refer to our [blog post](https://qwenlm.github.io/blog/qwen1.5/) and [GitHub repo](https://github.com/QwenLM/Qwen1.5). <br> ## Model Details Qwen1.5 is a language model series including decoder language models of different model sizes. For each size, we release the base language model and the aligned chat model. It is based on the Transformer architecture with SwiGLU activation, attention QKV bias, group query attention, mixture of sliding window attention and full attention, etc. Additionally, we have an improved tokenizer adaptive to multiple natural languages and codes. For the beta version, temporarily we did not include GQA (except for 32B) and the mixture of SWA and full attention. ## Training details We pretrained the models with a large amount of data, and we post-trained the models with both supervised finetuning and direct preference optimization. ## Requirements The code of Qwen1.5 has been in the latest Hugging face transformers and we advise you to install `transformers>=4.37.0`, or you might encounter the following error: ``` KeyError: 'qwen2' ``` ## Quickstart Here provides a code snippet with `apply_chat_template` to show you how to load the tokenizer and model and how to generate contents. ```python from transformers import AutoModelForCausalLM, AutoTokenizer device = "cuda" # the device to load the model onto model = AutoModelForCausalLM.from_pretrained( "Qwen/Qwen1.5-1.8B-Chat", torch_dtype="auto", device_map="auto" ) tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen1.5-1.8B-Chat") prompt = "Give me a short introduction to large language model." messages = [ {"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": prompt} ] text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) model_inputs = tokenizer([text], return_tensors="pt").to(device) generated_ids = model.generate( model_inputs.input_ids, max_new_tokens=512 ) generated_ids = [ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) ] response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] ``` For quantized models, we advise you to use the GPTQ, AWQ, and GGUF correspondents, namely `Qwen1.5-1.8B-Chat-GPTQ-Int4`, `Qwen1.5-1.8B-Chat-GPTQ-Int8`, `Qwen1.5-1.8B-Chat-AWQ`, and `Qwen1.5-1.8B-Chat-GGUF`. ## Tips * If you encounter code switching or other bad cases, we advise you to use our provided hyper-parameters in `generation_config.json`. ## Citation If you find our work helpful, feel free to give us a cite. ``` @article{qwen, title={Qwen Technical Report}, author={Jinze Bai and Shuai Bai and Yunfei Chu and Zeyu Cui and Kai Dang and Xiaodong Deng and Yang Fan and Wenbin Ge and Yu Han and Fei Huang and Binyuan Hui and Luo Ji and Mei Li and Junyang Lin and Runji Lin and Dayiheng Liu and Gao Liu and Chengqiang Lu and Keming Lu and Jianxin Ma and Rui Men and Xingzhang Ren and Xuancheng Ren and Chuanqi Tan and Sinan Tan and Jianhong Tu and Peng Wang and Shijie Wang and Wei Wang and Shengguang Wu and Benfeng Xu and Jin Xu and An Yang and Hao Yang and Jian Yang and Shusheng Yang and Yang Yao and Bowen Yu and Hongyi Yuan and Zheng Yuan and Jianwei Zhang and Xingxuan Zhang and Yichang Zhang and Zhenru Zhang and Chang Zhou and Jingren Zhou and Xiaohuan Zhou and Tianhang Zhu}, journal={arXiv preprint arXiv:2309.16609}, year={2023} } ```
{}
RichardErkhov/Qwen_-_Qwen1.5-1.8B-Chat-8bits
null
[ "transformers", "safetensors", "qwen2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "8-bit", "region:us" ]
null
2024-04-30T19:54:32+00:00
[]
[]
TAGS #transformers #safetensors #qwen2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #8-bit #region-us
Quantization made by Richard Erkhov. Github Discord Request more models Qwen1.5-1.8B-Chat - bnb 8bits - Model creator: URL - Original model: URL Original model description: --- license: other license_name: tongyi-qianwen-research license_link: >- URL language: - en pipeline_tag: text-generation tags: - chat --- # Qwen1.5-1.8B-Chat ## Introduction Qwen1.5 is the beta version of Qwen2, a transformer-based decoder-only language model pretrained on a large amount of data. In comparison with the previous released Qwen, the improvements include: * 8 model sizes, including 0.5B, 1.8B, 4B, 7B, 14B, 32B and 72B dense models, and an MoE model of 14B with 2.7B activated; * Significant performance improvement in human preference for chat models; * Multilingual support of both base and chat models; * Stable support of 32K context length for models of all sizes * No need of 'trust_remote_code'. For more details, please refer to our blog post and GitHub repo. <br> ## Model Details Qwen1.5 is a language model series including decoder language models of different model sizes. For each size, we release the base language model and the aligned chat model. It is based on the Transformer architecture with SwiGLU activation, attention QKV bias, group query attention, mixture of sliding window attention and full attention, etc. Additionally, we have an improved tokenizer adaptive to multiple natural languages and codes. For the beta version, temporarily we did not include GQA (except for 32B) and the mixture of SWA and full attention. ## Training details We pretrained the models with a large amount of data, and we post-trained the models with both supervised finetuning and direct preference optimization. ## Requirements The code of Qwen1.5 has been in the latest Hugging face transformers and we advise you to install 'transformers>=4.37.0', or you might encounter the following error: ## Quickstart Here provides a code snippet with 'apply_chat_template' to show you how to load the tokenizer and model and how to generate contents. For quantized models, we advise you to use the GPTQ, AWQ, and GGUF correspondents, namely 'Qwen1.5-1.8B-Chat-GPTQ-Int4', 'Qwen1.5-1.8B-Chat-GPTQ-Int8', 'Qwen1.5-1.8B-Chat-AWQ', and 'Qwen1.5-1.8B-Chat-GGUF'. ## Tips * If you encounter code switching or other bad cases, we advise you to use our provided hyper-parameters in 'generation_config.json'. If you find our work helpful, feel free to give us a cite.
[ "# Qwen1.5-1.8B-Chat", "## Introduction\n\nQwen1.5 is the beta version of Qwen2, a transformer-based decoder-only language model pretrained on a large amount of data. In comparison with the previous released Qwen, the improvements include: \n\n* 8 model sizes, including 0.5B, 1.8B, 4B, 7B, 14B, 32B and 72B dense models, and an MoE model of 14B with 2.7B activated;\n* Significant performance improvement in human preference for chat models;\n* Multilingual support of both base and chat models;\n* Stable support of 32K context length for models of all sizes\n* No need of 'trust_remote_code'.\n\nFor more details, please refer to our blog post and GitHub repo.\n<br>", "## Model Details\nQwen1.5 is a language model series including decoder language models of different model sizes. For each size, we release the base language model and the aligned chat model. It is based on the Transformer architecture with SwiGLU activation, attention QKV bias, group query attention, mixture of sliding window attention and full attention, etc. Additionally, we have an improved tokenizer adaptive to multiple natural languages and codes. For the beta version, temporarily we did not include GQA (except for 32B) and the mixture of SWA and full attention.", "## Training details\nWe pretrained the models with a large amount of data, and we post-trained the models with both supervised finetuning and direct preference optimization.", "## Requirements\nThe code of Qwen1.5 has been in the latest Hugging face transformers and we advise you to install 'transformers>=4.37.0', or you might encounter the following error:", "## Quickstart\n\nHere provides a code snippet with 'apply_chat_template' to show you how to load the tokenizer and model and how to generate contents.\n\n\n\nFor quantized models, we advise you to use the GPTQ, AWQ, and GGUF correspondents, namely 'Qwen1.5-1.8B-Chat-GPTQ-Int4', 'Qwen1.5-1.8B-Chat-GPTQ-Int8', 'Qwen1.5-1.8B-Chat-AWQ', and 'Qwen1.5-1.8B-Chat-GGUF'.", "## Tips\n\n* If you encounter code switching or other bad cases, we advise you to use our provided hyper-parameters in 'generation_config.json'.\n\n\nIf you find our work helpful, feel free to give us a cite." ]
[ "TAGS\n#transformers #safetensors #qwen2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #8-bit #region-us \n", "# Qwen1.5-1.8B-Chat", "## Introduction\n\nQwen1.5 is the beta version of Qwen2, a transformer-based decoder-only language model pretrained on a large amount of data. In comparison with the previous released Qwen, the improvements include: \n\n* 8 model sizes, including 0.5B, 1.8B, 4B, 7B, 14B, 32B and 72B dense models, and an MoE model of 14B with 2.7B activated;\n* Significant performance improvement in human preference for chat models;\n* Multilingual support of both base and chat models;\n* Stable support of 32K context length for models of all sizes\n* No need of 'trust_remote_code'.\n\nFor more details, please refer to our blog post and GitHub repo.\n<br>", "## Model Details\nQwen1.5 is a language model series including decoder language models of different model sizes. For each size, we release the base language model and the aligned chat model. It is based on the Transformer architecture with SwiGLU activation, attention QKV bias, group query attention, mixture of sliding window attention and full attention, etc. Additionally, we have an improved tokenizer adaptive to multiple natural languages and codes. For the beta version, temporarily we did not include GQA (except for 32B) and the mixture of SWA and full attention.", "## Training details\nWe pretrained the models with a large amount of data, and we post-trained the models with both supervised finetuning and direct preference optimization.", "## Requirements\nThe code of Qwen1.5 has been in the latest Hugging face transformers and we advise you to install 'transformers>=4.37.0', or you might encounter the following error:", "## Quickstart\n\nHere provides a code snippet with 'apply_chat_template' to show you how to load the tokenizer and model and how to generate contents.\n\n\n\nFor quantized models, we advise you to use the GPTQ, AWQ, and GGUF correspondents, namely 'Qwen1.5-1.8B-Chat-GPTQ-Int4', 'Qwen1.5-1.8B-Chat-GPTQ-Int8', 'Qwen1.5-1.8B-Chat-AWQ', and 'Qwen1.5-1.8B-Chat-GGUF'.", "## Tips\n\n* If you encounter code switching or other bad cases, we advise you to use our provided hyper-parameters in 'generation_config.json'.\n\n\nIf you find our work helpful, feel free to give us a cite." ]
[ 42, 13, 166, 119, 35, 44, 145, 51 ]
[ "TAGS\n#transformers #safetensors #qwen2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #8-bit #region-us \n# Qwen1.5-1.8B-Chat## Introduction\n\nQwen1.5 is the beta version of Qwen2, a transformer-based decoder-only language model pretrained on a large amount of data. In comparison with the previous released Qwen, the improvements include: \n\n* 8 model sizes, including 0.5B, 1.8B, 4B, 7B, 14B, 32B and 72B dense models, and an MoE model of 14B with 2.7B activated;\n* Significant performance improvement in human preference for chat models;\n* Multilingual support of both base and chat models;\n* Stable support of 32K context length for models of all sizes\n* No need of 'trust_remote_code'.\n\nFor more details, please refer to our blog post and GitHub repo.\n<br>## Model Details\nQwen1.5 is a language model series including decoder language models of different model sizes. For each size, we release the base language model and the aligned chat model. It is based on the Transformer architecture with SwiGLU activation, attention QKV bias, group query attention, mixture of sliding window attention and full attention, etc. Additionally, we have an improved tokenizer adaptive to multiple natural languages and codes. For the beta version, temporarily we did not include GQA (except for 32B) and the mixture of SWA and full attention.## Training details\nWe pretrained the models with a large amount of data, and we post-trained the models with both supervised finetuning and direct preference optimization.## Requirements\nThe code of Qwen1.5 has been in the latest Hugging face transformers and we advise you to install 'transformers>=4.37.0', or you might encounter the following error:## Quickstart\n\nHere provides a code snippet with 'apply_chat_template' to show you how to load the tokenizer and model and how to generate contents.\n\n\n\nFor quantized models, we advise you to use the GPTQ, AWQ, and GGUF correspondents, namely 'Qwen1.5-1.8B-Chat-GPTQ-Int4', 'Qwen1.5-1.8B-Chat-GPTQ-Int8', 'Qwen1.5-1.8B-Chat-AWQ', and 'Qwen1.5-1.8B-Chat-GGUF'.## Tips\n\n* If you encounter code switching or other bad cases, we advise you to use our provided hyper-parameters in 'generation_config.json'.\n\n\nIf you find our work helpful, feel free to give us a cite." ]
text-generation
transformers
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) Qwen1.5-4B-Chat - bnb 4bits - Model creator: https://huggingface.co/Qwen/ - Original model: https://huggingface.co/Qwen/Qwen1.5-4B-Chat/ Original model description: --- license: other license_name: tongyi-qianwen-research license_link: >- https://huggingface.co/Qwen/Qwen1.5-4B-Chat/blob/main/LICENSE language: - en pipeline_tag: text-generation tags: - chat --- # Qwen1.5-4B-Chat ## Introduction Qwen1.5 is the beta version of Qwen2, a transformer-based decoder-only language model pretrained on a large amount of data. In comparison with the previous released Qwen, the improvements include: * 8 model sizes, including 0.5B, 1.8B, 4B, 7B, 14B, 32B and 72B dense models, and an MoE model of 14B with 2.7B activated; * Significant performance improvement in human preference for chat models; * Multilingual support of both base and chat models; * Stable support of 32K context length for models of all sizes * No need of `trust_remote_code`. For more details, please refer to our [blog post](https://qwenlm.github.io/blog/qwen1.5/) and [GitHub repo](https://github.com/QwenLM/Qwen1.5). <br> ## Model Details Qwen1.5 is a language model series including decoder language models of different model sizes. For each size, we release the base language model and the aligned chat model. It is based on the Transformer architecture with SwiGLU activation, attention QKV bias, group query attention, mixture of sliding window attention and full attention, etc. Additionally, we have an improved tokenizer adaptive to multiple natural languages and codes. For the beta version, temporarily we did not include GQA (except for 32B) and the mixture of SWA and full attention. ## Training details We pretrained the models with a large amount of data, and we post-trained the models with both supervised finetuning and direct preference optimization. ## Requirements The code of Qwen1.5 has been in the latest Hugging face transformers and we advise you to install `transformers>=4.37.0`, or you might encounter the following error: ``` KeyError: 'qwen2' ``` ## Quickstart Here provides a code snippet with `apply_chat_template` to show you how to load the tokenizer and model and how to generate contents. ```python from transformers import AutoModelForCausalLM, AutoTokenizer device = "cuda" # the device to load the model onto model = AutoModelForCausalLM.from_pretrained( "Qwen/Qwen1.5-4B-Chat", torch_dtype="auto", device_map="auto" ) tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen1.5-4B-Chat") prompt = "Give me a short introduction to large language model." messages = [ {"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": prompt} ] text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) model_inputs = tokenizer([text], return_tensors="pt").to(device) generated_ids = model.generate( model_inputs.input_ids, max_new_tokens=512 ) generated_ids = [ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) ] response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] ``` For quantized models, we advise you to use the GPTQ, AWQ, and GGUF correspondents, namely `Qwen1.5-4B-Chat-GPTQ-Int4`, `Qwen1.5-4B-Chat-GPTQ-Int8`, `Qwen1.5-4B-Chat-AWQ`, and `Qwen1.5-4B-Chat-GGUF`. ## Tips * If you encounter code switching or other bad cases, we advise you to use our provided hyper-parameters in `generation_config.json`. ## Citation If you find our work helpful, feel free to give us a cite. ``` @article{qwen, title={Qwen Technical Report}, author={Jinze Bai and Shuai Bai and Yunfei Chu and Zeyu Cui and Kai Dang and Xiaodong Deng and Yang Fan and Wenbin Ge and Yu Han and Fei Huang and Binyuan Hui and Luo Ji and Mei Li and Junyang Lin and Runji Lin and Dayiheng Liu and Gao Liu and Chengqiang Lu and Keming Lu and Jianxin Ma and Rui Men and Xingzhang Ren and Xuancheng Ren and Chuanqi Tan and Sinan Tan and Jianhong Tu and Peng Wang and Shijie Wang and Wei Wang and Shengguang Wu and Benfeng Xu and Jin Xu and An Yang and Hao Yang and Jian Yang and Shusheng Yang and Yang Yao and Bowen Yu and Hongyi Yuan and Zheng Yuan and Jianwei Zhang and Xingxuan Zhang and Yichang Zhang and Zhenru Zhang and Chang Zhou and Jingren Zhou and Xiaohuan Zhou and Tianhang Zhu}, journal={arXiv preprint arXiv:2309.16609}, year={2023} } ```
{}
RichardErkhov/Qwen_-_Qwen1.5-4B-Chat-4bits
null
[ "transformers", "safetensors", "qwen2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "4-bit", "region:us" ]
null
2024-04-30T19:54:59+00:00
[]
[]
TAGS #transformers #safetensors #qwen2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #4-bit #region-us
Quantization made by Richard Erkhov. Github Discord Request more models Qwen1.5-4B-Chat - bnb 4bits - Model creator: URL - Original model: URL Original model description: --- license: other license_name: tongyi-qianwen-research license_link: >- URL language: - en pipeline_tag: text-generation tags: - chat --- # Qwen1.5-4B-Chat ## Introduction Qwen1.5 is the beta version of Qwen2, a transformer-based decoder-only language model pretrained on a large amount of data. In comparison with the previous released Qwen, the improvements include: * 8 model sizes, including 0.5B, 1.8B, 4B, 7B, 14B, 32B and 72B dense models, and an MoE model of 14B with 2.7B activated; * Significant performance improvement in human preference for chat models; * Multilingual support of both base and chat models; * Stable support of 32K context length for models of all sizes * No need of 'trust_remote_code'. For more details, please refer to our blog post and GitHub repo. <br> ## Model Details Qwen1.5 is a language model series including decoder language models of different model sizes. For each size, we release the base language model and the aligned chat model. It is based on the Transformer architecture with SwiGLU activation, attention QKV bias, group query attention, mixture of sliding window attention and full attention, etc. Additionally, we have an improved tokenizer adaptive to multiple natural languages and codes. For the beta version, temporarily we did not include GQA (except for 32B) and the mixture of SWA and full attention. ## Training details We pretrained the models with a large amount of data, and we post-trained the models with both supervised finetuning and direct preference optimization. ## Requirements The code of Qwen1.5 has been in the latest Hugging face transformers and we advise you to install 'transformers>=4.37.0', or you might encounter the following error: ## Quickstart Here provides a code snippet with 'apply_chat_template' to show you how to load the tokenizer and model and how to generate contents. For quantized models, we advise you to use the GPTQ, AWQ, and GGUF correspondents, namely 'Qwen1.5-4B-Chat-GPTQ-Int4', 'Qwen1.5-4B-Chat-GPTQ-Int8', 'Qwen1.5-4B-Chat-AWQ', and 'Qwen1.5-4B-Chat-GGUF'. ## Tips * If you encounter code switching or other bad cases, we advise you to use our provided hyper-parameters in 'generation_config.json'. If you find our work helpful, feel free to give us a cite.
[ "# Qwen1.5-4B-Chat", "## Introduction\n\nQwen1.5 is the beta version of Qwen2, a transformer-based decoder-only language model pretrained on a large amount of data. In comparison with the previous released Qwen, the improvements include: \n\n* 8 model sizes, including 0.5B, 1.8B, 4B, 7B, 14B, 32B and 72B dense models, and an MoE model of 14B with 2.7B activated;\n* Significant performance improvement in human preference for chat models;\n* Multilingual support of both base and chat models;\n* Stable support of 32K context length for models of all sizes\n* No need of 'trust_remote_code'.\n\nFor more details, please refer to our blog post and GitHub repo.\n<br>", "## Model Details\nQwen1.5 is a language model series including decoder language models of different model sizes. For each size, we release the base language model and the aligned chat model. It is based on the Transformer architecture with SwiGLU activation, attention QKV bias, group query attention, mixture of sliding window attention and full attention, etc. Additionally, we have an improved tokenizer adaptive to multiple natural languages and codes. For the beta version, temporarily we did not include GQA (except for 32B) and the mixture of SWA and full attention.", "## Training details\nWe pretrained the models with a large amount of data, and we post-trained the models with both supervised finetuning and direct preference optimization.", "## Requirements\nThe code of Qwen1.5 has been in the latest Hugging face transformers and we advise you to install 'transformers>=4.37.0', or you might encounter the following error:", "## Quickstart\n\nHere provides a code snippet with 'apply_chat_template' to show you how to load the tokenizer and model and how to generate contents.\n\n\n\nFor quantized models, we advise you to use the GPTQ, AWQ, and GGUF correspondents, namely 'Qwen1.5-4B-Chat-GPTQ-Int4', 'Qwen1.5-4B-Chat-GPTQ-Int8', 'Qwen1.5-4B-Chat-AWQ', and 'Qwen1.5-4B-Chat-GGUF'.", "## Tips\n\n* If you encounter code switching or other bad cases, we advise you to use our provided hyper-parameters in 'generation_config.json'.\n\n\nIf you find our work helpful, feel free to give us a cite." ]
[ "TAGS\n#transformers #safetensors #qwen2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #4-bit #region-us \n", "# Qwen1.5-4B-Chat", "## Introduction\n\nQwen1.5 is the beta version of Qwen2, a transformer-based decoder-only language model pretrained on a large amount of data. In comparison with the previous released Qwen, the improvements include: \n\n* 8 model sizes, including 0.5B, 1.8B, 4B, 7B, 14B, 32B and 72B dense models, and an MoE model of 14B with 2.7B activated;\n* Significant performance improvement in human preference for chat models;\n* Multilingual support of both base and chat models;\n* Stable support of 32K context length for models of all sizes\n* No need of 'trust_remote_code'.\n\nFor more details, please refer to our blog post and GitHub repo.\n<br>", "## Model Details\nQwen1.5 is a language model series including decoder language models of different model sizes. For each size, we release the base language model and the aligned chat model. It is based on the Transformer architecture with SwiGLU activation, attention QKV bias, group query attention, mixture of sliding window attention and full attention, etc. Additionally, we have an improved tokenizer adaptive to multiple natural languages and codes. For the beta version, temporarily we did not include GQA (except for 32B) and the mixture of SWA and full attention.", "## Training details\nWe pretrained the models with a large amount of data, and we post-trained the models with both supervised finetuning and direct preference optimization.", "## Requirements\nThe code of Qwen1.5 has been in the latest Hugging face transformers and we advise you to install 'transformers>=4.37.0', or you might encounter the following error:", "## Quickstart\n\nHere provides a code snippet with 'apply_chat_template' to show you how to load the tokenizer and model and how to generate contents.\n\n\n\nFor quantized models, we advise you to use the GPTQ, AWQ, and GGUF correspondents, namely 'Qwen1.5-4B-Chat-GPTQ-Int4', 'Qwen1.5-4B-Chat-GPTQ-Int8', 'Qwen1.5-4B-Chat-AWQ', and 'Qwen1.5-4B-Chat-GGUF'.", "## Tips\n\n* If you encounter code switching or other bad cases, we advise you to use our provided hyper-parameters in 'generation_config.json'.\n\n\nIf you find our work helpful, feel free to give us a cite." ]
[ 42, 11, 166, 119, 35, 44, 137, 51 ]
[ "TAGS\n#transformers #safetensors #qwen2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #4-bit #region-us \n# Qwen1.5-4B-Chat## Introduction\n\nQwen1.5 is the beta version of Qwen2, a transformer-based decoder-only language model pretrained on a large amount of data. In comparison with the previous released Qwen, the improvements include: \n\n* 8 model sizes, including 0.5B, 1.8B, 4B, 7B, 14B, 32B and 72B dense models, and an MoE model of 14B with 2.7B activated;\n* Significant performance improvement in human preference for chat models;\n* Multilingual support of both base and chat models;\n* Stable support of 32K context length for models of all sizes\n* No need of 'trust_remote_code'.\n\nFor more details, please refer to our blog post and GitHub repo.\n<br>## Model Details\nQwen1.5 is a language model series including decoder language models of different model sizes. For each size, we release the base language model and the aligned chat model. It is based on the Transformer architecture with SwiGLU activation, attention QKV bias, group query attention, mixture of sliding window attention and full attention, etc. Additionally, we have an improved tokenizer adaptive to multiple natural languages and codes. For the beta version, temporarily we did not include GQA (except for 32B) and the mixture of SWA and full attention.## Training details\nWe pretrained the models with a large amount of data, and we post-trained the models with both supervised finetuning and direct preference optimization.## Requirements\nThe code of Qwen1.5 has been in the latest Hugging face transformers and we advise you to install 'transformers>=4.37.0', or you might encounter the following error:## Quickstart\n\nHere provides a code snippet with 'apply_chat_template' to show you how to load the tokenizer and model and how to generate contents.\n\n\n\nFor quantized models, we advise you to use the GPTQ, AWQ, and GGUF correspondents, namely 'Qwen1.5-4B-Chat-GPTQ-Int4', 'Qwen1.5-4B-Chat-GPTQ-Int8', 'Qwen1.5-4B-Chat-AWQ', and 'Qwen1.5-4B-Chat-GGUF'.## Tips\n\n* If you encounter code switching or other bad cases, we advise you to use our provided hyper-parameters in 'generation_config.json'.\n\n\nIf you find our work helpful, feel free to give us a cite." ]
text-generation
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
nem012/gemma2b-1e-5r16
null
[ "transformers", "safetensors", "gemma", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-04-30T19:55:43+00:00
[ "1910.09700" ]
[]
TAGS #transformers #safetensors #gemma #text-generation #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# Model Card for Model ID ## Model Details ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #safetensors #gemma #text-generation #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ 43, 6, 4, 75, 23, 3, 5, 8, 9, 8, 34, 20, 4, 5, 5, 11, 13, 12, 3, 10, 6, 5, 6, 4, 5, 7, 49, 7, 7, 5, 5, 15, 7, 7, 8, 5 ]
[ "TAGS\n#transformers #safetensors #gemma #text-generation #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# Model Card for Model ID## Model Details### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Downstream Use [optional]### Out-of-Scope Use## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.## How to Get Started with the Model\n\nUse the code below to get started with the model.## Training Details### Training Data### Training Procedure#### Preprocessing [optional]#### Training Hyperparameters\n\n- Training regime:#### Speeds, Sizes, Times [optional]## Evaluation### Testing Data, Factors & Metrics#### Testing Data#### Factors#### Metrics### Results#### Summary## Model Examination [optional]## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:## Technical Specifications [optional]### Model Architecture and Objective### Compute Infrastructure#### Hardware#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Model Card Authors [optional]## Model Card Contact" ]
automatic-speech-recognition
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
ivillar/whisperfinetune-cosine
null
[ "transformers", "safetensors", "whisper", "automatic-speech-recognition", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-04-30T19:57:26+00:00
[ "1910.09700" ]
[]
TAGS #transformers #safetensors #whisper #automatic-speech-recognition #arxiv-1910.09700 #endpoints_compatible #region-us
# Model Card for Model ID ## Model Details ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #safetensors #whisper #automatic-speech-recognition #arxiv-1910.09700 #endpoints_compatible #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ 34, 6, 4, 75, 23, 3, 5, 8, 9, 8, 34, 20, 4, 5, 5, 11, 13, 12, 3, 10, 6, 5, 6, 4, 5, 7, 49, 7, 7, 5, 5, 15, 7, 7, 8, 5 ]
[ "TAGS\n#transformers #safetensors #whisper #automatic-speech-recognition #arxiv-1910.09700 #endpoints_compatible #region-us \n# Model Card for Model ID## Model Details### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Downstream Use [optional]### Out-of-Scope Use## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.## How to Get Started with the Model\n\nUse the code below to get started with the model.## Training Details### Training Data### Training Procedure#### Preprocessing [optional]#### Training Hyperparameters\n\n- Training regime:#### Speeds, Sizes, Times [optional]## Evaluation### Testing Data, Factors & Metrics#### Testing Data#### Factors#### Metrics### Results#### Summary## Model Examination [optional]## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:## Technical Specifications [optional]### Model Architecture and Objective### Compute Infrastructure#### Hardware#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Model Card Authors [optional]## Model Card Contact" ]
text-generation
transformers
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) Qwen1.5-4B-Chat - bnb 8bits - Model creator: https://huggingface.co/Qwen/ - Original model: https://huggingface.co/Qwen/Qwen1.5-4B-Chat/ Original model description: --- license: other license_name: tongyi-qianwen-research license_link: >- https://huggingface.co/Qwen/Qwen1.5-4B-Chat/blob/main/LICENSE language: - en pipeline_tag: text-generation tags: - chat --- # Qwen1.5-4B-Chat ## Introduction Qwen1.5 is the beta version of Qwen2, a transformer-based decoder-only language model pretrained on a large amount of data. In comparison with the previous released Qwen, the improvements include: * 8 model sizes, including 0.5B, 1.8B, 4B, 7B, 14B, 32B and 72B dense models, and an MoE model of 14B with 2.7B activated; * Significant performance improvement in human preference for chat models; * Multilingual support of both base and chat models; * Stable support of 32K context length for models of all sizes * No need of `trust_remote_code`. For more details, please refer to our [blog post](https://qwenlm.github.io/blog/qwen1.5/) and [GitHub repo](https://github.com/QwenLM/Qwen1.5). <br> ## Model Details Qwen1.5 is a language model series including decoder language models of different model sizes. For each size, we release the base language model and the aligned chat model. It is based on the Transformer architecture with SwiGLU activation, attention QKV bias, group query attention, mixture of sliding window attention and full attention, etc. Additionally, we have an improved tokenizer adaptive to multiple natural languages and codes. For the beta version, temporarily we did not include GQA (except for 32B) and the mixture of SWA and full attention. ## Training details We pretrained the models with a large amount of data, and we post-trained the models with both supervised finetuning and direct preference optimization. ## Requirements The code of Qwen1.5 has been in the latest Hugging face transformers and we advise you to install `transformers>=4.37.0`, or you might encounter the following error: ``` KeyError: 'qwen2' ``` ## Quickstart Here provides a code snippet with `apply_chat_template` to show you how to load the tokenizer and model and how to generate contents. ```python from transformers import AutoModelForCausalLM, AutoTokenizer device = "cuda" # the device to load the model onto model = AutoModelForCausalLM.from_pretrained( "Qwen/Qwen1.5-4B-Chat", torch_dtype="auto", device_map="auto" ) tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen1.5-4B-Chat") prompt = "Give me a short introduction to large language model." messages = [ {"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": prompt} ] text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) model_inputs = tokenizer([text], return_tensors="pt").to(device) generated_ids = model.generate( model_inputs.input_ids, max_new_tokens=512 ) generated_ids = [ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) ] response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] ``` For quantized models, we advise you to use the GPTQ, AWQ, and GGUF correspondents, namely `Qwen1.5-4B-Chat-GPTQ-Int4`, `Qwen1.5-4B-Chat-GPTQ-Int8`, `Qwen1.5-4B-Chat-AWQ`, and `Qwen1.5-4B-Chat-GGUF`. ## Tips * If you encounter code switching or other bad cases, we advise you to use our provided hyper-parameters in `generation_config.json`. ## Citation If you find our work helpful, feel free to give us a cite. ``` @article{qwen, title={Qwen Technical Report}, author={Jinze Bai and Shuai Bai and Yunfei Chu and Zeyu Cui and Kai Dang and Xiaodong Deng and Yang Fan and Wenbin Ge and Yu Han and Fei Huang and Binyuan Hui and Luo Ji and Mei Li and Junyang Lin and Runji Lin and Dayiheng Liu and Gao Liu and Chengqiang Lu and Keming Lu and Jianxin Ma and Rui Men and Xingzhang Ren and Xuancheng Ren and Chuanqi Tan and Sinan Tan and Jianhong Tu and Peng Wang and Shijie Wang and Wei Wang and Shengguang Wu and Benfeng Xu and Jin Xu and An Yang and Hao Yang and Jian Yang and Shusheng Yang and Yang Yao and Bowen Yu and Hongyi Yuan and Zheng Yuan and Jianwei Zhang and Xingxuan Zhang and Yichang Zhang and Zhenru Zhang and Chang Zhou and Jingren Zhou and Xiaohuan Zhou and Tianhang Zhu}, journal={arXiv preprint arXiv:2309.16609}, year={2023} } ```
{}
RichardErkhov/Qwen_-_Qwen1.5-4B-Chat-8bits
null
[ "transformers", "safetensors", "qwen2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "8-bit", "region:us" ]
null
2024-04-30T19:59:50+00:00
[]
[]
TAGS #transformers #safetensors #qwen2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #8-bit #region-us
Quantization made by Richard Erkhov. Github Discord Request more models Qwen1.5-4B-Chat - bnb 8bits - Model creator: URL - Original model: URL Original model description: --- license: other license_name: tongyi-qianwen-research license_link: >- URL language: - en pipeline_tag: text-generation tags: - chat --- # Qwen1.5-4B-Chat ## Introduction Qwen1.5 is the beta version of Qwen2, a transformer-based decoder-only language model pretrained on a large amount of data. In comparison with the previous released Qwen, the improvements include: * 8 model sizes, including 0.5B, 1.8B, 4B, 7B, 14B, 32B and 72B dense models, and an MoE model of 14B with 2.7B activated; * Significant performance improvement in human preference for chat models; * Multilingual support of both base and chat models; * Stable support of 32K context length for models of all sizes * No need of 'trust_remote_code'. For more details, please refer to our blog post and GitHub repo. <br> ## Model Details Qwen1.5 is a language model series including decoder language models of different model sizes. For each size, we release the base language model and the aligned chat model. It is based on the Transformer architecture with SwiGLU activation, attention QKV bias, group query attention, mixture of sliding window attention and full attention, etc. Additionally, we have an improved tokenizer adaptive to multiple natural languages and codes. For the beta version, temporarily we did not include GQA (except for 32B) and the mixture of SWA and full attention. ## Training details We pretrained the models with a large amount of data, and we post-trained the models with both supervised finetuning and direct preference optimization. ## Requirements The code of Qwen1.5 has been in the latest Hugging face transformers and we advise you to install 'transformers>=4.37.0', or you might encounter the following error: ## Quickstart Here provides a code snippet with 'apply_chat_template' to show you how to load the tokenizer and model and how to generate contents. For quantized models, we advise you to use the GPTQ, AWQ, and GGUF correspondents, namely 'Qwen1.5-4B-Chat-GPTQ-Int4', 'Qwen1.5-4B-Chat-GPTQ-Int8', 'Qwen1.5-4B-Chat-AWQ', and 'Qwen1.5-4B-Chat-GGUF'. ## Tips * If you encounter code switching or other bad cases, we advise you to use our provided hyper-parameters in 'generation_config.json'. If you find our work helpful, feel free to give us a cite.
[ "# Qwen1.5-4B-Chat", "## Introduction\n\nQwen1.5 is the beta version of Qwen2, a transformer-based decoder-only language model pretrained on a large amount of data. In comparison with the previous released Qwen, the improvements include: \n\n* 8 model sizes, including 0.5B, 1.8B, 4B, 7B, 14B, 32B and 72B dense models, and an MoE model of 14B with 2.7B activated;\n* Significant performance improvement in human preference for chat models;\n* Multilingual support of both base and chat models;\n* Stable support of 32K context length for models of all sizes\n* No need of 'trust_remote_code'.\n\nFor more details, please refer to our blog post and GitHub repo.\n<br>", "## Model Details\nQwen1.5 is a language model series including decoder language models of different model sizes. For each size, we release the base language model and the aligned chat model. It is based on the Transformer architecture with SwiGLU activation, attention QKV bias, group query attention, mixture of sliding window attention and full attention, etc. Additionally, we have an improved tokenizer adaptive to multiple natural languages and codes. For the beta version, temporarily we did not include GQA (except for 32B) and the mixture of SWA and full attention.", "## Training details\nWe pretrained the models with a large amount of data, and we post-trained the models with both supervised finetuning and direct preference optimization.", "## Requirements\nThe code of Qwen1.5 has been in the latest Hugging face transformers and we advise you to install 'transformers>=4.37.0', or you might encounter the following error:", "## Quickstart\n\nHere provides a code snippet with 'apply_chat_template' to show you how to load the tokenizer and model and how to generate contents.\n\n\n\nFor quantized models, we advise you to use the GPTQ, AWQ, and GGUF correspondents, namely 'Qwen1.5-4B-Chat-GPTQ-Int4', 'Qwen1.5-4B-Chat-GPTQ-Int8', 'Qwen1.5-4B-Chat-AWQ', and 'Qwen1.5-4B-Chat-GGUF'.", "## Tips\n\n* If you encounter code switching or other bad cases, we advise you to use our provided hyper-parameters in 'generation_config.json'.\n\n\nIf you find our work helpful, feel free to give us a cite." ]
[ "TAGS\n#transformers #safetensors #qwen2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #8-bit #region-us \n", "# Qwen1.5-4B-Chat", "## Introduction\n\nQwen1.5 is the beta version of Qwen2, a transformer-based decoder-only language model pretrained on a large amount of data. In comparison with the previous released Qwen, the improvements include: \n\n* 8 model sizes, including 0.5B, 1.8B, 4B, 7B, 14B, 32B and 72B dense models, and an MoE model of 14B with 2.7B activated;\n* Significant performance improvement in human preference for chat models;\n* Multilingual support of both base and chat models;\n* Stable support of 32K context length for models of all sizes\n* No need of 'trust_remote_code'.\n\nFor more details, please refer to our blog post and GitHub repo.\n<br>", "## Model Details\nQwen1.5 is a language model series including decoder language models of different model sizes. For each size, we release the base language model and the aligned chat model. It is based on the Transformer architecture with SwiGLU activation, attention QKV bias, group query attention, mixture of sliding window attention and full attention, etc. Additionally, we have an improved tokenizer adaptive to multiple natural languages and codes. For the beta version, temporarily we did not include GQA (except for 32B) and the mixture of SWA and full attention.", "## Training details\nWe pretrained the models with a large amount of data, and we post-trained the models with both supervised finetuning and direct preference optimization.", "## Requirements\nThe code of Qwen1.5 has been in the latest Hugging face transformers and we advise you to install 'transformers>=4.37.0', or you might encounter the following error:", "## Quickstart\n\nHere provides a code snippet with 'apply_chat_template' to show you how to load the tokenizer and model and how to generate contents.\n\n\n\nFor quantized models, we advise you to use the GPTQ, AWQ, and GGUF correspondents, namely 'Qwen1.5-4B-Chat-GPTQ-Int4', 'Qwen1.5-4B-Chat-GPTQ-Int8', 'Qwen1.5-4B-Chat-AWQ', and 'Qwen1.5-4B-Chat-GGUF'.", "## Tips\n\n* If you encounter code switching or other bad cases, we advise you to use our provided hyper-parameters in 'generation_config.json'.\n\n\nIf you find our work helpful, feel free to give us a cite." ]
[ 42, 11, 166, 119, 35, 44, 137, 51 ]
[ "TAGS\n#transformers #safetensors #qwen2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #8-bit #region-us \n# Qwen1.5-4B-Chat## Introduction\n\nQwen1.5 is the beta version of Qwen2, a transformer-based decoder-only language model pretrained on a large amount of data. In comparison with the previous released Qwen, the improvements include: \n\n* 8 model sizes, including 0.5B, 1.8B, 4B, 7B, 14B, 32B and 72B dense models, and an MoE model of 14B with 2.7B activated;\n* Significant performance improvement in human preference for chat models;\n* Multilingual support of both base and chat models;\n* Stable support of 32K context length for models of all sizes\n* No need of 'trust_remote_code'.\n\nFor more details, please refer to our blog post and GitHub repo.\n<br>## Model Details\nQwen1.5 is a language model series including decoder language models of different model sizes. For each size, we release the base language model and the aligned chat model. It is based on the Transformer architecture with SwiGLU activation, attention QKV bias, group query attention, mixture of sliding window attention and full attention, etc. Additionally, we have an improved tokenizer adaptive to multiple natural languages and codes. For the beta version, temporarily we did not include GQA (except for 32B) and the mixture of SWA and full attention.## Training details\nWe pretrained the models with a large amount of data, and we post-trained the models with both supervised finetuning and direct preference optimization.## Requirements\nThe code of Qwen1.5 has been in the latest Hugging face transformers and we advise you to install 'transformers>=4.37.0', or you might encounter the following error:## Quickstart\n\nHere provides a code snippet with 'apply_chat_template' to show you how to load the tokenizer and model and how to generate contents.\n\n\n\nFor quantized models, we advise you to use the GPTQ, AWQ, and GGUF correspondents, namely 'Qwen1.5-4B-Chat-GPTQ-Int4', 'Qwen1.5-4B-Chat-GPTQ-Int8', 'Qwen1.5-4B-Chat-AWQ', and 'Qwen1.5-4B-Chat-GGUF'.## Tips\n\n* If you encounter code switching or other bad cases, we advise you to use our provided hyper-parameters in 'generation_config.json'.\n\n\nIf you find our work helpful, feel free to give us a cite." ]
text-generation
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
abc88767/model23
null
[ "transformers", "safetensors", "stablelm", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2024-04-30T20:00:15+00:00
[ "1910.09700" ]
[]
TAGS #transformers #safetensors #stablelm #text-generation #conversational #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #region-us
# Model Card for Model ID ## Model Details ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #safetensors #stablelm #text-generation #conversational #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ 41, 6, 4, 75, 23, 3, 5, 8, 9, 8, 34, 20, 4, 5, 5, 11, 13, 12, 3, 10, 6, 5, 6, 4, 5, 7, 49, 7, 7, 5, 5, 15, 7, 7, 8, 5 ]
[ "TAGS\n#transformers #safetensors #stablelm #text-generation #conversational #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #region-us \n# Model Card for Model ID## Model Details### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Downstream Use [optional]### Out-of-Scope Use## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.## How to Get Started with the Model\n\nUse the code below to get started with the model.## Training Details### Training Data### Training Procedure#### Preprocessing [optional]#### Training Hyperparameters\n\n- Training regime:#### Speeds, Sizes, Times [optional]## Evaluation### Testing Data, Factors & Metrics#### Testing Data#### Factors#### Metrics### Results#### Summary## Model Examination [optional]## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:## Technical Specifications [optional]### Model Architecture and Objective### Compute Infrastructure#### Hardware#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Model Card Authors [optional]## Model Card Contact" ]
text-generation
transformers
# Uploaded model - **Developed by:** jtatman - **License:** apache-2.0 - **Finetuned from model :** unsloth/llama-3-8b-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
{"language": ["en"], "license": "apache-2.0", "tags": ["text-generation-inference", "transformers", "unsloth", "llama", "trl", "orpo"], "base_model": "unsloth/llama-3-8b-bnb-4bit"}
jtatman/OrpoDolphin-3-8B-16k
null
[ "transformers", "safetensors", "llama", "text-generation", "text-generation-inference", "unsloth", "trl", "orpo", "conversational", "en", "base_model:unsloth/llama-3-8b-bnb-4bit", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2024-04-30T20:00:33+00:00
[]
[ "en" ]
TAGS #transformers #safetensors #llama #text-generation #text-generation-inference #unsloth #trl #orpo #conversational #en #base_model-unsloth/llama-3-8b-bnb-4bit #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
# Uploaded model - Developed by: jtatman - License: apache-2.0 - Finetuned from model : unsloth/llama-3-8b-bnb-4bit This llama model was trained 2x faster with Unsloth and Huggingface's TRL library. <img src="URL width="200"/>
[ "# Uploaded model\n\n- Developed by: jtatman\n- License: apache-2.0\n- Finetuned from model : unsloth/llama-3-8b-bnb-4bit\n\nThis llama model was trained 2x faster with Unsloth and Huggingface's TRL library.\n\n<img src=\"URL width=\"200\"/>" ]
[ "TAGS\n#transformers #safetensors #llama #text-generation #text-generation-inference #unsloth #trl #orpo #conversational #en #base_model-unsloth/llama-3-8b-bnb-4bit #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "# Uploaded model\n\n- Developed by: jtatman\n- License: apache-2.0\n- Finetuned from model : unsloth/llama-3-8b-bnb-4bit\n\nThis llama model was trained 2x faster with Unsloth and Huggingface's TRL library.\n\n<img src=\"URL width=\"200\"/>" ]
[ 79, 80 ]
[ "TAGS\n#transformers #safetensors #llama #text-generation #text-generation-inference #unsloth #trl #orpo #conversational #en #base_model-unsloth/llama-3-8b-bnb-4bit #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n# Uploaded model\n\n- Developed by: jtatman\n- License: apache-2.0\n- Finetuned from model : unsloth/llama-3-8b-bnb-4bit\n\nThis llama model was trained 2x faster with Unsloth and Huggingface's TRL library.\n\n<img src=\"URL width=\"200\"/>" ]
text-generation
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
cilantro9246/jtzztpj
null
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-04-30T20:00:35+00:00
[ "1910.09700" ]
[]
TAGS #transformers #safetensors #llama #text-generation #conversational #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# Model Card for Model ID ## Model Details ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #safetensors #llama #text-generation #conversational #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ 47, 6, 4, 75, 23, 3, 5, 8, 9, 8, 34, 20, 4, 5, 5, 11, 13, 12, 3, 10, 6, 5, 6, 4, 5, 7, 49, 7, 7, 5, 5, 15, 7, 7, 8, 5 ]
[ "TAGS\n#transformers #safetensors #llama #text-generation #conversational #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# Model Card for Model ID## Model Details### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Downstream Use [optional]### Out-of-Scope Use## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.## How to Get Started with the Model\n\nUse the code below to get started with the model.## Training Details### Training Data### Training Procedure#### Preprocessing [optional]#### Training Hyperparameters\n\n- Training regime:#### Speeds, Sizes, Times [optional]## Evaluation### Testing Data, Factors & Metrics#### Testing Data#### Factors#### Metrics### Results#### Summary## Model Examination [optional]## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:## Technical Specifications [optional]### Model Architecture and Objective### Compute Infrastructure#### Hardware#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Model Card Authors [optional]## Model Card Contact" ]
text-generation
transformers
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) Qwen1.5-7B-Chat - bnb 4bits - Model creator: https://huggingface.co/Qwen/ - Original model: https://huggingface.co/Qwen/Qwen1.5-7B-Chat/ Original model description: --- license: other license_name: tongyi-qianwen license_link: >- https://huggingface.co/Qwen/Qwen1.5-7B-Chat/blob/main/LICENSE language: - en pipeline_tag: text-generation tags: - chat --- # Qwen1.5-7B-Chat ## Introduction Qwen1.5 is the beta version of Qwen2, a transformer-based decoder-only language model pretrained on a large amount of data. In comparison with the previous released Qwen, the improvements include: * 8 model sizes, including 0.5B, 1.8B, 4B, 7B, 14B, 32B and 72B dense models, and an MoE model of 14B with 2.7B activated; * Significant performance improvement in human preference for chat models; * Multilingual support of both base and chat models; * Stable support of 32K context length for models of all sizes * No need of `trust_remote_code`. For more details, please refer to our [blog post](https://qwenlm.github.io/blog/qwen1.5/) and [GitHub repo](https://github.com/QwenLM/Qwen1.5). <br> ## Model Details Qwen1.5 is a language model series including decoder language models of different model sizes. For each size, we release the base language model and the aligned chat model. It is based on the Transformer architecture with SwiGLU activation, attention QKV bias, group query attention, mixture of sliding window attention and full attention, etc. Additionally, we have an improved tokenizer adaptive to multiple natural languages and codes. For the beta version, temporarily we did not include GQA (except for 32B) and the mixture of SWA and full attention. ## Training details We pretrained the models with a large amount of data, and we post-trained the models with both supervised finetuning and direct preference optimization. ## Requirements The code of Qwen1.5 has been in the latest Hugging face transformers and we advise you to install `transformers>=4.37.0`, or you might encounter the following error: ``` KeyError: 'qwen2' ``` ## Quickstart Here provides a code snippet with `apply_chat_template` to show you how to load the tokenizer and model and how to generate contents. ```python from transformers import AutoModelForCausalLM, AutoTokenizer device = "cuda" # the device to load the model onto model = AutoModelForCausalLM.from_pretrained( "Qwen/Qwen1.5-7B-Chat", torch_dtype="auto", device_map="auto" ) tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen1.5-7B-Chat") prompt = "Give me a short introduction to large language model." messages = [ {"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": prompt} ] text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) model_inputs = tokenizer([text], return_tensors="pt").to(device) generated_ids = model.generate( model_inputs.input_ids, max_new_tokens=512 ) generated_ids = [ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) ] response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] ``` For quantized models, we advise you to use the GPTQ, AWQ, and GGUF correspondents, namely `Qwen1.5-7B-Chat-GPTQ-Int4`, `Qwen1.5-7B-Chat-GPTQ-Int8`, `Qwen1.5-7B-Chat-AWQ`, and `Qwen1.5-7B-Chat-GGUF`. ## Tips * If you encounter code switching or other bad cases, we advise you to use our provided hyper-parameters in `generation_config.json`. ## Citation If you find our work helpful, feel free to give us a cite. ``` @article{qwen, title={Qwen Technical Report}, author={Jinze Bai and Shuai Bai and Yunfei Chu and Zeyu Cui and Kai Dang and Xiaodong Deng and Yang Fan and Wenbin Ge and Yu Han and Fei Huang and Binyuan Hui and Luo Ji and Mei Li and Junyang Lin and Runji Lin and Dayiheng Liu and Gao Liu and Chengqiang Lu and Keming Lu and Jianxin Ma and Rui Men and Xingzhang Ren and Xuancheng Ren and Chuanqi Tan and Sinan Tan and Jianhong Tu and Peng Wang and Shijie Wang and Wei Wang and Shengguang Wu and Benfeng Xu and Jin Xu and An Yang and Hao Yang and Jian Yang and Shusheng Yang and Yang Yao and Bowen Yu and Hongyi Yuan and Zheng Yuan and Jianwei Zhang and Xingxuan Zhang and Yichang Zhang and Zhenru Zhang and Chang Zhou and Jingren Zhou and Xiaohuan Zhou and Tianhang Zhu}, journal={arXiv preprint arXiv:2309.16609}, year={2023} } ```
{}
RichardErkhov/Qwen_-_Qwen1.5-7B-Chat-4bits
null
[ "transformers", "safetensors", "qwen2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "4-bit", "region:us" ]
null
2024-04-30T20:04:20+00:00
[]
[]
TAGS #transformers #safetensors #qwen2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #4-bit #region-us
Quantization made by Richard Erkhov. Github Discord Request more models Qwen1.5-7B-Chat - bnb 4bits - Model creator: URL - Original model: URL Original model description: --- license: other license_name: tongyi-qianwen license_link: >- URL language: - en pipeline_tag: text-generation tags: - chat --- # Qwen1.5-7B-Chat ## Introduction Qwen1.5 is the beta version of Qwen2, a transformer-based decoder-only language model pretrained on a large amount of data. In comparison with the previous released Qwen, the improvements include: * 8 model sizes, including 0.5B, 1.8B, 4B, 7B, 14B, 32B and 72B dense models, and an MoE model of 14B with 2.7B activated; * Significant performance improvement in human preference for chat models; * Multilingual support of both base and chat models; * Stable support of 32K context length for models of all sizes * No need of 'trust_remote_code'. For more details, please refer to our blog post and GitHub repo. <br> ## Model Details Qwen1.5 is a language model series including decoder language models of different model sizes. For each size, we release the base language model and the aligned chat model. It is based on the Transformer architecture with SwiGLU activation, attention QKV bias, group query attention, mixture of sliding window attention and full attention, etc. Additionally, we have an improved tokenizer adaptive to multiple natural languages and codes. For the beta version, temporarily we did not include GQA (except for 32B) and the mixture of SWA and full attention. ## Training details We pretrained the models with a large amount of data, and we post-trained the models with both supervised finetuning and direct preference optimization. ## Requirements The code of Qwen1.5 has been in the latest Hugging face transformers and we advise you to install 'transformers>=4.37.0', or you might encounter the following error: ## Quickstart Here provides a code snippet with 'apply_chat_template' to show you how to load the tokenizer and model and how to generate contents. For quantized models, we advise you to use the GPTQ, AWQ, and GGUF correspondents, namely 'Qwen1.5-7B-Chat-GPTQ-Int4', 'Qwen1.5-7B-Chat-GPTQ-Int8', 'Qwen1.5-7B-Chat-AWQ', and 'Qwen1.5-7B-Chat-GGUF'. ## Tips * If you encounter code switching or other bad cases, we advise you to use our provided hyper-parameters in 'generation_config.json'. If you find our work helpful, feel free to give us a cite.
[ "# Qwen1.5-7B-Chat", "## Introduction\n\nQwen1.5 is the beta version of Qwen2, a transformer-based decoder-only language model pretrained on a large amount of data. In comparison with the previous released Qwen, the improvements include: \n\n* 8 model sizes, including 0.5B, 1.8B, 4B, 7B, 14B, 32B and 72B dense models, and an MoE model of 14B with 2.7B activated;\n* Significant performance improvement in human preference for chat models;\n* Multilingual support of both base and chat models;\n* Stable support of 32K context length for models of all sizes\n* No need of 'trust_remote_code'.\n\nFor more details, please refer to our blog post and GitHub repo.\n<br>", "## Model Details\nQwen1.5 is a language model series including decoder language models of different model sizes. For each size, we release the base language model and the aligned chat model. It is based on the Transformer architecture with SwiGLU activation, attention QKV bias, group query attention, mixture of sliding window attention and full attention, etc. Additionally, we have an improved tokenizer adaptive to multiple natural languages and codes. For the beta version, temporarily we did not include GQA (except for 32B) and the mixture of SWA and full attention.", "## Training details\nWe pretrained the models with a large amount of data, and we post-trained the models with both supervised finetuning and direct preference optimization.", "## Requirements\nThe code of Qwen1.5 has been in the latest Hugging face transformers and we advise you to install 'transformers>=4.37.0', or you might encounter the following error:", "## Quickstart\n\nHere provides a code snippet with 'apply_chat_template' to show you how to load the tokenizer and model and how to generate contents.\n\n\n\nFor quantized models, we advise you to use the GPTQ, AWQ, and GGUF correspondents, namely 'Qwen1.5-7B-Chat-GPTQ-Int4', 'Qwen1.5-7B-Chat-GPTQ-Int8', 'Qwen1.5-7B-Chat-AWQ', and 'Qwen1.5-7B-Chat-GGUF'.", "## Tips\n\n* If you encounter code switching or other bad cases, we advise you to use our provided hyper-parameters in 'generation_config.json'.\n\n\nIf you find our work helpful, feel free to give us a cite." ]
[ "TAGS\n#transformers #safetensors #qwen2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #4-bit #region-us \n", "# Qwen1.5-7B-Chat", "## Introduction\n\nQwen1.5 is the beta version of Qwen2, a transformer-based decoder-only language model pretrained on a large amount of data. In comparison with the previous released Qwen, the improvements include: \n\n* 8 model sizes, including 0.5B, 1.8B, 4B, 7B, 14B, 32B and 72B dense models, and an MoE model of 14B with 2.7B activated;\n* Significant performance improvement in human preference for chat models;\n* Multilingual support of both base and chat models;\n* Stable support of 32K context length for models of all sizes\n* No need of 'trust_remote_code'.\n\nFor more details, please refer to our blog post and GitHub repo.\n<br>", "## Model Details\nQwen1.5 is a language model series including decoder language models of different model sizes. For each size, we release the base language model and the aligned chat model. It is based on the Transformer architecture with SwiGLU activation, attention QKV bias, group query attention, mixture of sliding window attention and full attention, etc. Additionally, we have an improved tokenizer adaptive to multiple natural languages and codes. For the beta version, temporarily we did not include GQA (except for 32B) and the mixture of SWA and full attention.", "## Training details\nWe pretrained the models with a large amount of data, and we post-trained the models with both supervised finetuning and direct preference optimization.", "## Requirements\nThe code of Qwen1.5 has been in the latest Hugging face transformers and we advise you to install 'transformers>=4.37.0', or you might encounter the following error:", "## Quickstart\n\nHere provides a code snippet with 'apply_chat_template' to show you how to load the tokenizer and model and how to generate contents.\n\n\n\nFor quantized models, we advise you to use the GPTQ, AWQ, and GGUF correspondents, namely 'Qwen1.5-7B-Chat-GPTQ-Int4', 'Qwen1.5-7B-Chat-GPTQ-Int8', 'Qwen1.5-7B-Chat-AWQ', and 'Qwen1.5-7B-Chat-GGUF'.", "## Tips\n\n* If you encounter code switching or other bad cases, we advise you to use our provided hyper-parameters in 'generation_config.json'.\n\n\nIf you find our work helpful, feel free to give us a cite." ]
[ 42, 11, 166, 119, 35, 44, 137, 51 ]
[ "TAGS\n#transformers #safetensors #qwen2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #4-bit #region-us \n# Qwen1.5-7B-Chat## Introduction\n\nQwen1.5 is the beta version of Qwen2, a transformer-based decoder-only language model pretrained on a large amount of data. In comparison with the previous released Qwen, the improvements include: \n\n* 8 model sizes, including 0.5B, 1.8B, 4B, 7B, 14B, 32B and 72B dense models, and an MoE model of 14B with 2.7B activated;\n* Significant performance improvement in human preference for chat models;\n* Multilingual support of both base and chat models;\n* Stable support of 32K context length for models of all sizes\n* No need of 'trust_remote_code'.\n\nFor more details, please refer to our blog post and GitHub repo.\n<br>## Model Details\nQwen1.5 is a language model series including decoder language models of different model sizes. For each size, we release the base language model and the aligned chat model. It is based on the Transformer architecture with SwiGLU activation, attention QKV bias, group query attention, mixture of sliding window attention and full attention, etc. Additionally, we have an improved tokenizer adaptive to multiple natural languages and codes. For the beta version, temporarily we did not include GQA (except for 32B) and the mixture of SWA and full attention.## Training details\nWe pretrained the models with a large amount of data, and we post-trained the models with both supervised finetuning and direct preference optimization.## Requirements\nThe code of Qwen1.5 has been in the latest Hugging face transformers and we advise you to install 'transformers>=4.37.0', or you might encounter the following error:## Quickstart\n\nHere provides a code snippet with 'apply_chat_template' to show you how to load the tokenizer and model and how to generate contents.\n\n\n\nFor quantized models, we advise you to use the GPTQ, AWQ, and GGUF correspondents, namely 'Qwen1.5-7B-Chat-GPTQ-Int4', 'Qwen1.5-7B-Chat-GPTQ-Int8', 'Qwen1.5-7B-Chat-AWQ', and 'Qwen1.5-7B-Chat-GGUF'.## Tips\n\n* If you encounter code switching or other bad cases, we advise you to use our provided hyper-parameters in 'generation_config.json'.\n\n\nIf you find our work helpful, feel free to give us a cite." ]
text-generation
transformers
# Model Card for C4AI Command-R 🚨 **This model is 4bit quantized version of C4AI Command-R using bitsandbytes.** You can find the unquantized version of C4AI Command-R [here](https://huggingface.co/CohereForAI/c4ai-command-r-v01). ## Model Summary C4AI Command-R is a research release of a 35 billion parameter highly performant generative model. Command-R is a large language model with open weights optimized for a variety of use cases including reasoning, summarization, and question answering. Command-R has the capability for multilingual generation evaluated in 10 languages and highly performant RAG capabilities. Developed by: Cohere and [Cohere For AI](https://cohere.for.ai) - Point of Contact: Cohere For AI: [cohere.for.ai](https://cohere.for.ai/) - License: [CC-BY-NC](https://cohere.com/c4ai-cc-by-nc-license), requires also adhering to [C4AI's Acceptable Use Policy](https://docs.cohere.com/docs/c4ai-acceptable-use-policy) - Model: c4ai-command-r-v01 - Model Size: 35 billion parameters - Context length: 128K **Usage** Please use `transformers` version 4.39.1 or higher ```python # pip install 'transformers>=4.39.1' bitsandbytes accelerate from transformers import AutoTokenizer, AutoModelForCausalLM model_id = "CohereForAI/c4ai-command-r-v01-4bit" tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained(model_id) # Format message with the command-r chat template messages = [{"role": "user", "content": "Hello, how are you?"}] input_ids = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt") ## <BOS_TOKEN><|START_OF_TURN_TOKEN|><|USER_TOKEN|>Hello, how are you?<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|> gen_tokens = model.generate( input_ids, max_new_tokens=100, do_sample=True, temperature=0.3, ) gen_text = tokenizer.decode(gen_tokens[0]) print(gen_text) ``` ## Model Details **Input**: Models input text only. **Output**: Models generate text only. **Model Architecture**: This is an auto-regressive language model that uses an optimized transformer architecture. After pretraining, this model uses supervised fine-tuning (SFT) and preference training to align model behavior to human preferences for helpfulness and safety. **Languages covered**: The model is optimized to perform well in the following languages: English, French, Spanish, Italian, German, Brazilian Portuguese, Japanese, Korean, Simplified Chinese, and Arabic. Pre-training data additionally included the following 13 languages: Russian, Polish, Turkish, Vietnamese, Dutch, Czech, Indonesian, Ukrainian, Romanian, Greek, Hindi, Hebrew, Persian. **Context length**: Command-R supports a context length of 128K. ### Tool use capabilities: Command-R has been specifically trained with conversational tool use capabilities. These have been trained into the model via a mixture of supervised fine-tuning and preference fine-tuning, using a specific prompt template. Deviating from this prompt template will likely reduce performance, but we encourage experimentation. Command-R’s tool use functionality takes a conversation as input (with an optional user-system preamble), along with a list of available tools. The model will then generate a json-formatted list of actions to execute on a subset of those tools. Command-R may use one of its supplied tools more than once. The model has been trained to recognise a special `directly_answer` tool, which it uses to indicate that it doesn’t want to use any of its other tools. The ability to abstain from calling a specific tool can be useful in a range of situations, such as greeting a user, or asking clarifying questions. We recommend including the `directly_answer` tool, but it can be removed or renamed if required. Comprehensive documentation for working with command-R's tool use prompt template can be found [here](https://docs.cohere.com/docs/prompting-command-r). The code snippet below shows a minimal working example on how to render a prompt. <details> <summary><b>Usage: Rendering Tool Use Prompts [CLICK TO EXPAND]</b> </summary> ```python from transformers import AutoTokenizer model_id = "CohereForAI/c4ai-command-r-v01" tokenizer = AutoTokenizer.from_pretrained(model_id) # define conversation input: conversation = [ {"role": "user", "content": "Whats the biggest penguin in the world?"} ] # Define tools available for the model to use: tools = [ { "name": "internet_search", "description": "Returns a list of relevant document snippets for a textual query retrieved from the internet", "parameter_definitions": { "query": { "description": "Query to search the internet with", "type": 'str', "required": True } } }, { 'name': "directly_answer", "description": "Calls a standard (un-augmented) AI chatbot to generate a response given the conversation history", 'parameter_definitions': {} } ] # render the tool use prompt as a string: tool_use_prompt = tokenizer.apply_tool_use_template( conversation, tools=tools, tokenize=False, add_generation_prompt=True, ) print(tool_use_prompt) ``` </details> <details> <summary><b>Example Rendered Tool Use Prompt [CLICK TO EXPAND]</b></summary> ```` <BOS_TOKEN><|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|># Safety Preamble The instructions in this section override those in the task description and style guide sections. Don't answer questions that are harmful or immoral. # System Preamble ## Basic Rules You are a powerful conversational AI trained by Cohere to help people. You are augmented by a number of tools, and your job is to use and consume the output of these tools to best help the user. You will see a conversation history between yourself and a user, ending with an utterance from the user. You will then see a specific instruction instructing you what kind of response to generate. When you answer the user's requests, you cite your sources in your answers, according to those instructions. # User Preamble ## Task and Context You help people answer their questions and other requests interactively. You will be asked a very wide array of requests on all kinds of topics. You will be equipped with a wide range of search engines or similar tools to help you, which you use to research your answer. You should focus on serving the user's needs as best you can, which will be wide-ranging. ## Style Guide Unless the user asks for a different style of answer, you should answer in full sentences, using proper grammar and spelling. ## Available Tools Here is a list of tools that you have available to you: ```python def internet_search(query: str) -> List[Dict]: """Returns a list of relevant document snippets for a textual query retrieved from the internet Args: query (str): Query to search the internet with """ pass ``` ```python def directly_answer() -> List[Dict]: """Calls a standard (un-augmented) AI chatbot to generate a response given the conversation history """ pass ```<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|USER_TOKEN|>Whats the biggest penguin in the world?<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|>Write 'Action:' followed by a json-formatted list of actions that you want to perform in order to produce a good response to the user's last input. You can use any of the supplied tools any number of times, but you should aim to execute the minimum number of necessary actions for the input. You should use the `directly-answer` tool if calling the other tools is unnecessary. The list of actions you want to call should be formatted as a list of json objects, for example: ```json [ { "tool_name": title of the tool in the specification, "parameters": a dict of parameters to input into the tool as they are defined in the specs, or {} if it takes no parameters } ]```<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|> ```` </details> <details> <summary><b>Example Rendered Tool Use Completion [CLICK TO EXPAND]</b></summary> ```` Action: ```json [ { "tool_name": "internet_search", "parameters": { "query": "biggest penguin in the world" } } ] ``` ```` </details> ### Grounded Generation and RAG Capabilities: Command-R has been specifically trained with grounded generation capabilities. This means that it can generate responses based on a list of supplied document snippets, and it will include grounding spans (citations) in its response indicating the source of the information. This can be used to enable behaviors such as grounded summarization and the final step of Retrieval Augmented Generation (RAG).This behavior has been trained into the model via a mixture of supervised fine-tuning and preference fine-tuning, using a specific prompt template. Deviating from this prompt template may reduce performance, but we encourage experimentation. Command-R’s grounded generation behavior takes a conversation as input (with an optional user-supplied system preamble), along with a list of retrieved document snippets. The document snippets should be chunks, rather than long documents, typically around 100-400 words per chunk. Document snippets consist of key-value pairs. The keys should be short descriptive strings, the values can be text or semi-structured. Command-R’s grounded generation behavior takes a conversation as input (with an optional user-supplied system preamble, indicating task, context and desired output style), along with a list of retrieved document snippets. Finally, it will then insert grounding spans into the answer. See below for an example. This is referred to as `accurate` grounded generation. The model is trained with a number of other answering modes, which can be selected by prompt changes . A `fast` citation mode is supported in the tokenizer, which will directly generate an answer with grounding spans in it, without first writing the answer out in full. This sacrifices some grounding accuracy in favor of generating fewer tokens. Comprehensive documentation for working with command-R's grounded generation prompt template can be found [here](https://docs.cohere.com/docs/prompting-command-r). The code snippet below shows a minimal working example on how to render a prompt. <details> <summary> <b>Usage: Rendering Grounded Generation prompts [CLICK TO EXPAND]</b> </summary> ````python from transformers import AutoTokenizer model_id = "CohereForAI/c4ai-command-r-v01" tokenizer = AutoTokenizer.from_pretrained(model_id) # define conversation input: conversation = [ {"role": "user", "content": "Whats the biggest penguin in the world?"} ] # define documents to ground on: documents = [ { "title": "Tall penguins", "text": "Emperor penguins are the tallest growing up to 122 cm in height." }, { "title": "Penguin habitats", "text": "Emperor penguins only live in Antarctica."} ] # render the tool use prompt as a string: grounded_generation_prompt = tokenizer.apply_grounded_generation_template( conversation, documents=documents, citation_mode="accurate", # or "fast" tokenize=False, add_generation_prompt=True, ) print(grounded_generation_prompt) ```` </details> <details> <summary><b>Example Rendered Grounded Generation Prompt [CLICK TO EXPAND]</b></summary> ````<BOS_TOKEN><|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|># Safety Preamble The instructions in this section override those in the task description and style guide sections. Don't answer questions that are harmful or immoral. # System Preamble ## Basic Rules You are a powerful conversational AI trained by Cohere to help people. You are augmented by a number of tools, and your job is to use and consume the output of these tools to best help the user. You will see a conversation history between yourself and a user, ending with an utterance from the user. You will then see a specific instruction instructing you what kind of response to generate. When you answer the user's requests, you cite your sources in your answers, according to those instructions. # User Preamble ## Task and Context You help people answer their questions and other requests interactively. You will be asked a very wide array of requests on all kinds of topics. You will be equipped with a wide range of search engines or similar tools to help you, which you use to research your answer. You should focus on serving the user's needs as best you can, which will be wide-ranging. ## Style Guide Unless the user asks for a different style of answer, you should answer in full sentences, using proper grammar and spelling.<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|USER_TOKEN|>Whats the biggest penguin in the world?<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|><results> Document: 0 title: Tall penguins text: Emperor penguins are the tallest growing up to 122 cm in height. Document: 1 title: Penguin habitats text: Emperor penguins only live in Antarctica. </results><|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|>Carefully perform the following instructions, in order, starting each with a new line. Firstly, Decide which of the retrieved documents are relevant to the user's last input by writing 'Relevant Documents:' followed by comma-separated list of document numbers. If none are relevant, you should instead write 'None'. Secondly, Decide which of the retrieved documents contain facts that should be cited in a good answer to the user's last input by writing 'Cited Documents:' followed a comma-separated list of document numbers. If you dont want to cite any of them, you should instead write 'None'. Thirdly, Write 'Answer:' followed by a response to the user's last input in high quality natural english. Use the retrieved documents to help you. Do not insert any citations or grounding markup. Finally, Write 'Grounded answer:' followed by a response to the user's last input in high quality natural english. Use the symbols <co: doc> and </co: doc> to indicate when a fact comes from a document in the search result, e.g <co: 0>my fact</co: 0> for a fact from document 0.<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|> ```` </details> <details> <summary><b>Example Rendered Grounded Generation Completion [CLICK TO EXPAND]</b></summary> ```` Relevant Documents: 0,1 Cited Documents: 0,1 Answer: The Emperor Penguin is the tallest or biggest penguin in the world. It is a bird that lives only in Antarctica and grows to a height of around 122 centimetres. Grounded answer: The <co: 0>Emperor Penguin</co: 0> is the <co: 0>tallest</co: 0> or biggest penguin in the world. It is a bird that <co: 1>lives only in Antarctica</co: 1> and <co: 0>grows to a height of around 122 centimetres.</co: 0> ```` </details> ### Code Capabilities: Command-R has been optimized to interact with your code, by requesting code snippets, code explanations, or code rewrites. It might not perform well out-of-the-box for pure code completion. For better performance, we also recommend using a low temperature (and even greedy decoding) for code-generation related instructions. ### Model Card Contact For errors or additional questions about details in this model card, contact [[email protected]](mailto:[email protected]). ### Terms of Use: We hope that the release of this model will make community-based research efforts more accessible, by releasing the weights of a highly performant 35 billion parameter model to researchers all over the world. This model is governed by a [CC-BY-NC](https://cohere.com/c4ai-cc-by-nc-license) License with an acceptable use addendum, and also requires adhering to [C4AI's Acceptable Use Policy](https://docs.cohere.com/docs/c4ai-acceptable-use-policy). ### Try Chat: You can try Command-R chat in the playground [here](https://dashboard.cohere.com/playground/chat).
{"language": ["en", "fr", "de", "es", "it", "pt", "ja", "ko", "zh", "ar"], "license": "cc-by-nc-4.0", "library_name": "transformers"}
samiyousef/Command-R-4-bit
null
[ "transformers", "safetensors", "cohere", "text-generation", "en", "fr", "de", "es", "it", "pt", "ja", "ko", "zh", "ar", "license:cc-by-nc-4.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "4-bit", "region:us" ]
null
2024-04-30T20:05:18+00:00
[]
[ "en", "fr", "de", "es", "it", "pt", "ja", "ko", "zh", "ar" ]
TAGS #transformers #safetensors #cohere #text-generation #en #fr #de #es #it #pt #ja #ko #zh #ar #license-cc-by-nc-4.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #4-bit #region-us
# Model Card for C4AI Command-R This model is 4bit quantized version of C4AI Command-R using bitsandbytes. You can find the unquantized version of C4AI Command-R here. ## Model Summary C4AI Command-R is a research release of a 35 billion parameter highly performant generative model. Command-R is a large language model with open weights optimized for a variety of use cases including reasoning, summarization, and question answering. Command-R has the capability for multilingual generation evaluated in 10 languages and highly performant RAG capabilities. Developed by: Cohere and Cohere For AI - Point of Contact: Cohere For AI: URL - License: CC-BY-NC, requires also adhering to C4AI's Acceptable Use Policy - Model: c4ai-command-r-v01 - Model Size: 35 billion parameters - Context length: 128K Usage Please use 'transformers' version 4.39.1 or higher ## Model Details Input: Models input text only. Output: Models generate text only. Model Architecture: This is an auto-regressive language model that uses an optimized transformer architecture. After pretraining, this model uses supervised fine-tuning (SFT) and preference training to align model behavior to human preferences for helpfulness and safety. Languages covered: The model is optimized to perform well in the following languages: English, French, Spanish, Italian, German, Brazilian Portuguese, Japanese, Korean, Simplified Chinese, and Arabic. Pre-training data additionally included the following 13 languages: Russian, Polish, Turkish, Vietnamese, Dutch, Czech, Indonesian, Ukrainian, Romanian, Greek, Hindi, Hebrew, Persian. Context length: Command-R supports a context length of 128K. ### Tool use capabilities: Command-R has been specifically trained with conversational tool use capabilities. These have been trained into the model via a mixture of supervised fine-tuning and preference fine-tuning, using a specific prompt template. Deviating from this prompt template will likely reduce performance, but we encourage experimentation. Command-R’s tool use functionality takes a conversation as input (with an optional user-system preamble), along with a list of available tools. The model will then generate a json-formatted list of actions to execute on a subset of those tools. Command-R may use one of its supplied tools more than once. The model has been trained to recognise a special 'directly_answer' tool, which it uses to indicate that it doesn’t want to use any of its other tools. The ability to abstain from calling a specific tool can be useful in a range of situations, such as greeting a user, or asking clarifying questions. We recommend including the 'directly_answer' tool, but it can be removed or renamed if required. Comprehensive documentation for working with command-R's tool use prompt template can be found here. The code snippet below shows a minimal working example on how to render a prompt. <details> <summary><b>Usage: Rendering Tool Use Prompts [CLICK TO EXPAND]</b> </summary> </details> <details> <summary><b>Example Rendered Tool Use Prompt [CLICK TO EXPAND]</b></summary> python def internet_search(query: str) -> List[Dict]: """Returns a list of relevant document snippets for a textual query retrieved from the internet Args: query (str): Query to search the internet with """ pass python def directly_answer() -> List[Dict]: """Calls a standard (un-augmented) AI chatbot to generate a response given the conversation history """ pass json [ { "tool_name": title of the tool in the specification, "parameters": a dict of parameters to input into the tool as they are defined in the specs, or {} if it takes no parameters } ]' </details> <details> <summary><b>Example Rendered Tool Use Completion [CLICK TO EXPAND]</b></summary> json [ { "tool_name": "internet_search", "parameters": { "query": "biggest penguin in the world" } } ] ' </details> ### Grounded Generation and RAG Capabilities: Command-R has been specifically trained with grounded generation capabilities. This means that it can generate responses based on a list of supplied document snippets, and it will include grounding spans (citations) in its response indicating the source of the information. This can be used to enable behaviors such as grounded summarization and the final step of Retrieval Augmented Generation (RAG).This behavior has been trained into the model via a mixture of supervised fine-tuning and preference fine-tuning, using a specific prompt template. Deviating from this prompt template may reduce performance, but we encourage experimentation. Command-R’s grounded generation behavior takes a conversation as input (with an optional user-supplied system preamble), along with a list of retrieved document snippets. The document snippets should be chunks, rather than long documents, typically around 100-400 words per chunk. Document snippets consist of key-value pairs. The keys should be short descriptive strings, the values can be text or semi-structured. Command-R’s grounded generation behavior takes a conversation as input (with an optional user-supplied system preamble, indicating task, context and desired output style), along with a list of retrieved document snippets. Finally, it will then insert grounding spans into the answer. See below for an example. This is referred to as 'accurate' grounded generation. The model is trained with a number of other answering modes, which can be selected by prompt changes . A 'fast' citation mode is supported in the tokenizer, which will directly generate an answer with grounding spans in it, without first writing the answer out in full. This sacrifices some grounding accuracy in favor of generating fewer tokens. Comprehensive documentation for working with command-R's grounded generation prompt template can be found here. The code snippet below shows a minimal working example on how to render a prompt. <details> <summary> <b>Usage: Rendering Grounded Generation prompts [CLICK TO EXPAND]</b> </summary> ' </details> <details> <summary><b>Example Rendered Grounded Generation Prompt [CLICK TO EXPAND]</b></summary> ' </details> <details> <summary><b>Example Rendered Grounded Generation Completion [CLICK TO EXPAND]</b></summary> ' </details> ### Code Capabilities: Command-R has been optimized to interact with your code, by requesting code snippets, code explanations, or code rewrites. It might not perform well out-of-the-box for pure code completion. For better performance, we also recommend using a low temperature (and even greedy decoding) for code-generation related instructions. ### Model Card Contact For errors or additional questions about details in this model card, contact info@URL. ### Terms of Use: We hope that the release of this model will make community-based research efforts more accessible, by releasing the weights of a highly performant 35 billion parameter model to researchers all over the world. This model is governed by a CC-BY-NC License with an acceptable use addendum, and also requires adhering to C4AI's Acceptable Use Policy. ### Try Chat: You can try Command-R chat in the playground here.
[ "# Model Card for C4AI Command-R\n\n This model is 4bit quantized version of C4AI Command-R using bitsandbytes. You can find the unquantized version of C4AI Command-R here.", "## Model Summary\n\nC4AI Command-R is a research release of a 35 billion parameter highly performant generative model. Command-R is a large language model with open weights optimized for a variety of use cases including reasoning, summarization, and question answering. Command-R has the capability for multilingual generation evaluated in 10 languages and highly performant RAG capabilities.\n\nDeveloped by: Cohere and Cohere For AI\n\n- Point of Contact: Cohere For AI: URL\n- License: CC-BY-NC, requires also adhering to C4AI's Acceptable Use Policy\n- Model: c4ai-command-r-v01\n- Model Size: 35 billion parameters\n- Context length: 128K\n\nUsage\n\nPlease use 'transformers' version 4.39.1 or higher", "## Model Details\n\nInput: Models input text only.\n\nOutput: Models generate text only.\n\nModel Architecture: This is an auto-regressive language model that uses an optimized transformer architecture. After pretraining, this model uses supervised fine-tuning (SFT) and preference training to align model behavior to human preferences for helpfulness and safety.\n\nLanguages covered: The model is optimized to perform well in the following languages: English, French, Spanish, Italian, German, Brazilian Portuguese, Japanese, Korean, Simplified Chinese, and Arabic. \n\nPre-training data additionally included the following 13 languages: Russian, Polish, Turkish, Vietnamese, Dutch, Czech, Indonesian, Ukrainian, Romanian, Greek, Hindi, Hebrew, Persian.\n\nContext length: Command-R supports a context length of 128K.", "### Tool use capabilities:\n\nCommand-R has been specifically trained with conversational tool use capabilities. These have been trained into the model via a mixture of supervised fine-tuning and preference fine-tuning, using a specific prompt template. Deviating from this prompt template will likely reduce performance, but we encourage experimentation.\n\nCommand-R’s tool use functionality takes a conversation as input (with an optional user-system preamble), along with a list of available tools. The model will then generate a json-formatted list of actions to execute on a subset of those tools. Command-R may use one of its supplied tools more than once. \n\nThe model has been trained to recognise a special 'directly_answer' tool, which it uses to indicate that it doesn’t want to use any of its other tools. The ability to abstain from calling a specific tool can be useful in a range of situations, such as greeting a user, or asking clarifying questions.\nWe recommend including the 'directly_answer' tool, but it can be removed or renamed if required.\n\nComprehensive documentation for working with command-R's tool use prompt template can be found here.\n\nThe code snippet below shows a minimal working example on how to render a prompt.\n\n<details>\n<summary><b>Usage: Rendering Tool Use Prompts [CLICK TO EXPAND]</b> </summary>\n\n\n\n</details>\n\n<details>\n<summary><b>Example Rendered Tool Use Prompt [CLICK TO EXPAND]</b></summary>\n\npython\ndef internet_search(query: str) -> List[Dict]:\n \"\"\"Returns a list of relevant document snippets for a textual query retrieved from the internet\n\n Args:\n query (str): Query to search the internet with\n \"\"\"\n pass\npython\ndef directly_answer() -> List[Dict]:\n \"\"\"Calls a standard (un-augmented) AI chatbot to generate a response given the conversation history\n \"\"\"\n pass\njson\n[\n {\n \"tool_name\": title of the tool in the specification,\n \"parameters\": a dict of parameters to input into the tool as they are defined in the specs, or {} if it takes no parameters\n }\n]'\n\n</details>\n\n<details>\n<summary><b>Example Rendered Tool Use Completion [CLICK TO EXPAND]</b></summary>\n\njson\n[\n {\n \"tool_name\": \"internet_search\",\n \"parameters\": {\n \"query\": \"biggest penguin in the world\"\n }\n }\n]\n'\n</details>", "### Grounded Generation and RAG Capabilities: \n\nCommand-R has been specifically trained with grounded generation capabilities. This means that it can generate responses based on a list of supplied document snippets, and it will include grounding spans (citations) in its response indicating the source of the information.\nThis can be used to enable behaviors such as grounded summarization and the final step of Retrieval Augmented Generation (RAG).This behavior has been trained into the model via a mixture of supervised fine-tuning and preference fine-tuning, using a specific prompt template.\nDeviating from this prompt template may reduce performance, but we encourage experimentation.\n\nCommand-R’s grounded generation behavior takes a conversation as input (with an optional user-supplied system preamble), along with a list of retrieved document snippets.\nThe document snippets should be chunks, rather than long documents, typically around 100-400 words per chunk. Document snippets consist of key-value pairs. The keys should be short descriptive strings, the values can be text or semi-structured.\n\nCommand-R’s grounded generation behavior takes a conversation as input (with an optional user-supplied system preamble, indicating task, context and desired output style), along with a list of retrieved document snippets.\nFinally, it will then insert grounding spans into the answer. See below for an example. This is referred to as 'accurate' grounded generation.\n\nThe model is trained with a number of other answering modes, which can be selected by prompt changes . A 'fast' citation mode is supported in the tokenizer, which will directly generate an answer with grounding spans in it, without first writing the answer out in full. This sacrifices some grounding accuracy in favor of generating fewer tokens.\n\nComprehensive documentation for working with command-R's grounded generation prompt template can be found here.\n\nThe code snippet below shows a minimal working example on how to render a prompt.\n\n<details>\n<summary> <b>Usage: Rendering Grounded Generation prompts [CLICK TO EXPAND]</b> </summary>\n\n'\n</details>\n\n<details>\n<summary><b>Example Rendered Grounded Generation Prompt [CLICK TO EXPAND]</b></summary>\n \n'\n\n</details>\n\n<details>\n<summary><b>Example Rendered Grounded Generation Completion [CLICK TO EXPAND]</b></summary>\n\n'\n</details>", "### Code Capabilities:\nCommand-R has been optimized to interact with your code, by requesting code snippets, code explanations, or code rewrites. It might not perform well out-of-the-box for pure code completion. For better performance, we also recommend using a low temperature (and even greedy decoding) for code-generation related instructions.", "### Model Card Contact\nFor errors or additional questions about details in this model card, contact info@URL.", "### Terms of Use: \nWe hope that the release of this model will make community-based research efforts more accessible, by releasing the weights of a highly performant 35 billion parameter model to researchers all over the world. This model is governed by a CC-BY-NC License with an acceptable use addendum, and also requires adhering to C4AI's Acceptable Use Policy.", "### Try Chat:\nYou can try Command-R chat in the playground here." ]
[ "TAGS\n#transformers #safetensors #cohere #text-generation #en #fr #de #es #it #pt #ja #ko #zh #ar #license-cc-by-nc-4.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #4-bit #region-us \n", "# Model Card for C4AI Command-R\n\n This model is 4bit quantized version of C4AI Command-R using bitsandbytes. You can find the unquantized version of C4AI Command-R here.", "## Model Summary\n\nC4AI Command-R is a research release of a 35 billion parameter highly performant generative model. Command-R is a large language model with open weights optimized for a variety of use cases including reasoning, summarization, and question answering. Command-R has the capability for multilingual generation evaluated in 10 languages and highly performant RAG capabilities.\n\nDeveloped by: Cohere and Cohere For AI\n\n- Point of Contact: Cohere For AI: URL\n- License: CC-BY-NC, requires also adhering to C4AI's Acceptable Use Policy\n- Model: c4ai-command-r-v01\n- Model Size: 35 billion parameters\n- Context length: 128K\n\nUsage\n\nPlease use 'transformers' version 4.39.1 or higher", "## Model Details\n\nInput: Models input text only.\n\nOutput: Models generate text only.\n\nModel Architecture: This is an auto-regressive language model that uses an optimized transformer architecture. After pretraining, this model uses supervised fine-tuning (SFT) and preference training to align model behavior to human preferences for helpfulness and safety.\n\nLanguages covered: The model is optimized to perform well in the following languages: English, French, Spanish, Italian, German, Brazilian Portuguese, Japanese, Korean, Simplified Chinese, and Arabic. \n\nPre-training data additionally included the following 13 languages: Russian, Polish, Turkish, Vietnamese, Dutch, Czech, Indonesian, Ukrainian, Romanian, Greek, Hindi, Hebrew, Persian.\n\nContext length: Command-R supports a context length of 128K.", "### Tool use capabilities:\n\nCommand-R has been specifically trained with conversational tool use capabilities. These have been trained into the model via a mixture of supervised fine-tuning and preference fine-tuning, using a specific prompt template. Deviating from this prompt template will likely reduce performance, but we encourage experimentation.\n\nCommand-R’s tool use functionality takes a conversation as input (with an optional user-system preamble), along with a list of available tools. The model will then generate a json-formatted list of actions to execute on a subset of those tools. Command-R may use one of its supplied tools more than once. \n\nThe model has been trained to recognise a special 'directly_answer' tool, which it uses to indicate that it doesn’t want to use any of its other tools. The ability to abstain from calling a specific tool can be useful in a range of situations, such as greeting a user, or asking clarifying questions.\nWe recommend including the 'directly_answer' tool, but it can be removed or renamed if required.\n\nComprehensive documentation for working with command-R's tool use prompt template can be found here.\n\nThe code snippet below shows a minimal working example on how to render a prompt.\n\n<details>\n<summary><b>Usage: Rendering Tool Use Prompts [CLICK TO EXPAND]</b> </summary>\n\n\n\n</details>\n\n<details>\n<summary><b>Example Rendered Tool Use Prompt [CLICK TO EXPAND]</b></summary>\n\npython\ndef internet_search(query: str) -> List[Dict]:\n \"\"\"Returns a list of relevant document snippets for a textual query retrieved from the internet\n\n Args:\n query (str): Query to search the internet with\n \"\"\"\n pass\npython\ndef directly_answer() -> List[Dict]:\n \"\"\"Calls a standard (un-augmented) AI chatbot to generate a response given the conversation history\n \"\"\"\n pass\njson\n[\n {\n \"tool_name\": title of the tool in the specification,\n \"parameters\": a dict of parameters to input into the tool as they are defined in the specs, or {} if it takes no parameters\n }\n]'\n\n</details>\n\n<details>\n<summary><b>Example Rendered Tool Use Completion [CLICK TO EXPAND]</b></summary>\n\njson\n[\n {\n \"tool_name\": \"internet_search\",\n \"parameters\": {\n \"query\": \"biggest penguin in the world\"\n }\n }\n]\n'\n</details>", "### Grounded Generation and RAG Capabilities: \n\nCommand-R has been specifically trained with grounded generation capabilities. This means that it can generate responses based on a list of supplied document snippets, and it will include grounding spans (citations) in its response indicating the source of the information.\nThis can be used to enable behaviors such as grounded summarization and the final step of Retrieval Augmented Generation (RAG).This behavior has been trained into the model via a mixture of supervised fine-tuning and preference fine-tuning, using a specific prompt template.\nDeviating from this prompt template may reduce performance, but we encourage experimentation.\n\nCommand-R’s grounded generation behavior takes a conversation as input (with an optional user-supplied system preamble), along with a list of retrieved document snippets.\nThe document snippets should be chunks, rather than long documents, typically around 100-400 words per chunk. Document snippets consist of key-value pairs. The keys should be short descriptive strings, the values can be text or semi-structured.\n\nCommand-R’s grounded generation behavior takes a conversation as input (with an optional user-supplied system preamble, indicating task, context and desired output style), along with a list of retrieved document snippets.\nFinally, it will then insert grounding spans into the answer. See below for an example. This is referred to as 'accurate' grounded generation.\n\nThe model is trained with a number of other answering modes, which can be selected by prompt changes . A 'fast' citation mode is supported in the tokenizer, which will directly generate an answer with grounding spans in it, without first writing the answer out in full. This sacrifices some grounding accuracy in favor of generating fewer tokens.\n\nComprehensive documentation for working with command-R's grounded generation prompt template can be found here.\n\nThe code snippet below shows a minimal working example on how to render a prompt.\n\n<details>\n<summary> <b>Usage: Rendering Grounded Generation prompts [CLICK TO EXPAND]</b> </summary>\n\n'\n</details>\n\n<details>\n<summary><b>Example Rendered Grounded Generation Prompt [CLICK TO EXPAND]</b></summary>\n \n'\n\n</details>\n\n<details>\n<summary><b>Example Rendered Grounded Generation Completion [CLICK TO EXPAND]</b></summary>\n\n'\n</details>", "### Code Capabilities:\nCommand-R has been optimized to interact with your code, by requesting code snippets, code explanations, or code rewrites. It might not perform well out-of-the-box for pure code completion. For better performance, we also recommend using a low temperature (and even greedy decoding) for code-generation related instructions.", "### Model Card Contact\nFor errors or additional questions about details in this model card, contact info@URL.", "### Terms of Use: \nWe hope that the release of this model will make community-based research efforts more accessible, by releasing the weights of a highly performant 35 billion parameter model to researchers all over the world. This model is governed by a CC-BY-NC License with an acceptable use addendum, and also requires adhering to C4AI's Acceptable Use Policy.", "### Try Chat:\nYou can try Command-R chat in the playground here." ]
[ 72, 49, 166, 164, 541, 501, 79, 24, 80, 18 ]
[ "TAGS\n#transformers #safetensors #cohere #text-generation #en #fr #de #es #it #pt #ja #ko #zh #ar #license-cc-by-nc-4.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #4-bit #region-us \n# Model Card for C4AI Command-R\n\n This model is 4bit quantized version of C4AI Command-R using bitsandbytes. You can find the unquantized version of C4AI Command-R here.## Model Summary\n\nC4AI Command-R is a research release of a 35 billion parameter highly performant generative model. Command-R is a large language model with open weights optimized for a variety of use cases including reasoning, summarization, and question answering. Command-R has the capability for multilingual generation evaluated in 10 languages and highly performant RAG capabilities.\n\nDeveloped by: Cohere and Cohere For AI\n\n- Point of Contact: Cohere For AI: URL\n- License: CC-BY-NC, requires also adhering to C4AI's Acceptable Use Policy\n- Model: c4ai-command-r-v01\n- Model Size: 35 billion parameters\n- Context length: 128K\n\nUsage\n\nPlease use 'transformers' version 4.39.1 or higher## Model Details\n\nInput: Models input text only.\n\nOutput: Models generate text only.\n\nModel Architecture: This is an auto-regressive language model that uses an optimized transformer architecture. After pretraining, this model uses supervised fine-tuning (SFT) and preference training to align model behavior to human preferences for helpfulness and safety.\n\nLanguages covered: The model is optimized to perform well in the following languages: English, French, Spanish, Italian, German, Brazilian Portuguese, Japanese, Korean, Simplified Chinese, and Arabic. \n\nPre-training data additionally included the following 13 languages: Russian, Polish, Turkish, Vietnamese, Dutch, Czech, Indonesian, Ukrainian, Romanian, Greek, Hindi, Hebrew, Persian.\n\nContext length: Command-R supports a context length of 128K.### Tool use capabilities:\n\nCommand-R has been specifically trained with conversational tool use capabilities. These have been trained into the model via a mixture of supervised fine-tuning and preference fine-tuning, using a specific prompt template. Deviating from this prompt template will likely reduce performance, but we encourage experimentation.\n\nCommand-R’s tool use functionality takes a conversation as input (with an optional user-system preamble), along with a list of available tools. The model will then generate a json-formatted list of actions to execute on a subset of those tools. Command-R may use one of its supplied tools more than once. \n\nThe model has been trained to recognise a special 'directly_answer' tool, which it uses to indicate that it doesn’t want to use any of its other tools. The ability to abstain from calling a specific tool can be useful in a range of situations, such as greeting a user, or asking clarifying questions.\nWe recommend including the 'directly_answer' tool, but it can be removed or renamed if required.\n\nComprehensive documentation for working with command-R's tool use prompt template can be found here.\n\nThe code snippet below shows a minimal working example on how to render a prompt.\n\n<details>\n<summary><b>Usage: Rendering Tool Use Prompts [CLICK TO EXPAND]</b> </summary>\n\n\n\n</details>\n\n<details>\n<summary><b>Example Rendered Tool Use Prompt [CLICK TO EXPAND]</b></summary>\n\npython\ndef internet_search(query: str) -> List[Dict]:\n \"\"\"Returns a list of relevant document snippets for a textual query retrieved from the internet\n\n Args:\n query (str): Query to search the internet with\n \"\"\"\n pass\npython\ndef directly_answer() -> List[Dict]:\n \"\"\"Calls a standard (un-augmented) AI chatbot to generate a response given the conversation history\n \"\"\"\n pass\njson\n[\n {\n \"tool_name\": title of the tool in the specification,\n \"parameters\": a dict of parameters to input into the tool as they are defined in the specs, or {} if it takes no parameters\n }\n]'\n\n</details>\n\n<details>\n<summary><b>Example Rendered Tool Use Completion [CLICK TO EXPAND]</b></summary>\n\njson\n[\n {\n \"tool_name\": \"internet_search\",\n \"parameters\": {\n \"query\": \"biggest penguin in the world\"\n }\n }\n]\n'\n</details>### Grounded Generation and RAG Capabilities: \n\nCommand-R has been specifically trained with grounded generation capabilities. This means that it can generate responses based on a list of supplied document snippets, and it will include grounding spans (citations) in its response indicating the source of the information.\nThis can be used to enable behaviors such as grounded summarization and the final step of Retrieval Augmented Generation (RAG).This behavior has been trained into the model via a mixture of supervised fine-tuning and preference fine-tuning, using a specific prompt template.\nDeviating from this prompt template may reduce performance, but we encourage experimentation.\n\nCommand-R’s grounded generation behavior takes a conversation as input (with an optional user-supplied system preamble), along with a list of retrieved document snippets.\nThe document snippets should be chunks, rather than long documents, typically around 100-400 words per chunk. Document snippets consist of key-value pairs. The keys should be short descriptive strings, the values can be text or semi-structured.\n\nCommand-R’s grounded generation behavior takes a conversation as input (with an optional user-supplied system preamble, indicating task, context and desired output style), along with a list of retrieved document snippets.\nFinally, it will then insert grounding spans into the answer. See below for an example. This is referred to as 'accurate' grounded generation.\n\nThe model is trained with a number of other answering modes, which can be selected by prompt changes . A 'fast' citation mode is supported in the tokenizer, which will directly generate an answer with grounding spans in it, without first writing the answer out in full. This sacrifices some grounding accuracy in favor of generating fewer tokens.\n\nComprehensive documentation for working with command-R's grounded generation prompt template can be found here.\n\nThe code snippet below shows a minimal working example on how to render a prompt.\n\n<details>\n<summary> <b>Usage: Rendering Grounded Generation prompts [CLICK TO EXPAND]</b> </summary>\n\n'\n</details>\n\n<details>\n<summary><b>Example Rendered Grounded Generation Prompt [CLICK TO EXPAND]</b></summary>\n \n'\n\n</details>\n\n<details>\n<summary><b>Example Rendered Grounded Generation Completion [CLICK TO EXPAND]</b></summary>\n\n'\n</details>### Code Capabilities:\nCommand-R has been optimized to interact with your code, by requesting code snippets, code explanations, or code rewrites. It might not perform well out-of-the-box for pure code completion. For better performance, we also recommend using a low temperature (and even greedy decoding) for code-generation related instructions.### Model Card Contact\nFor errors or additional questions about details in this model card, contact info@URL.### Terms of Use: \nWe hope that the release of this model will make community-based research efforts more accessible, by releasing the weights of a highly performant 35 billion parameter model to researchers all over the world. This model is governed by a CC-BY-NC License with an acceptable use addendum, and also requires adhering to C4AI's Acceptable Use Policy.### Try Chat:\nYou can try Command-R chat in the playground here." ]
sentence-similarity
sentence-transformers
# ai-maker-space/snowflake-ft-camelids-v1 This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('ai-maker-space/snowflake-ft-camelids-v1') embeddings = model.encode(sentences) print(embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=ai-maker-space/snowflake-ft-camelids-v1) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 20 with parameters: ``` {'batch_size': 10, 'sampler': 'torch.utils.data.sampler.SequentialSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters: ``` {'scale': 20.0, 'similarity_fct': 'cos_sim'} ``` Parameters of the fit()-Method: ``` { "epochs": 4, "evaluation_steps": 50, "evaluator": "sentence_transformers.evaluation.InformationRetrievalEvaluator.InformationRetrievalEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 8, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
{"library_name": "sentence-transformers", "tags": ["sentence-transformers", "feature-extraction", "sentence-similarity"], "pipeline_tag": "sentence-similarity"}
ai-maker-space/snowflake-ft-camelids-v1
null
[ "sentence-transformers", "safetensors", "bert", "feature-extraction", "sentence-similarity", "endpoints_compatible", "region:us" ]
null
2024-04-30T20:08:27+00:00
[]
[]
TAGS #sentence-transformers #safetensors #bert #feature-extraction #sentence-similarity #endpoints_compatible #region-us
# ai-maker-space/snowflake-ft-camelids-v1 This is a sentence-transformers model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. ## Usage (Sentence-Transformers) Using this model becomes easy when you have sentence-transformers installed: Then you can use the model like this: ## Evaluation Results For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: URL ## Training The model was trained with the parameters: DataLoader: 'URL.dataloader.DataLoader' of length 20 with parameters: Loss: 'sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss' with parameters: Parameters of the fit()-Method: ## Full Model Architecture ## Citing & Authors
[ "# ai-maker-space/snowflake-ft-camelids-v1\n\nThis is a sentence-transformers model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.", "## Usage (Sentence-Transformers)\n\nUsing this model becomes easy when you have sentence-transformers installed:\n\n\n\nThen you can use the model like this:", "## Evaluation Results\n\n\n\nFor an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: URL", "## Training\nThe model was trained with the parameters:\n\nDataLoader:\n\n'URL.dataloader.DataLoader' of length 20 with parameters:\n\n\nLoss:\n\n'sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss' with parameters:\n \n\nParameters of the fit()-Method:", "## Full Model Architecture", "## Citing & Authors" ]
[ "TAGS\n#sentence-transformers #safetensors #bert #feature-extraction #sentence-similarity #endpoints_compatible #region-us \n", "# ai-maker-space/snowflake-ft-camelids-v1\n\nThis is a sentence-transformers model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.", "## Usage (Sentence-Transformers)\n\nUsing this model becomes easy when you have sentence-transformers installed:\n\n\n\nThen you can use the model like this:", "## Evaluation Results\n\n\n\nFor an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: URL", "## Training\nThe model was trained with the parameters:\n\nDataLoader:\n\n'URL.dataloader.DataLoader' of length 20 with parameters:\n\n\nLoss:\n\n'sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss' with parameters:\n \n\nParameters of the fit()-Method:", "## Full Model Architecture", "## Citing & Authors" ]
[ 28, 53, 30, 26, 72, 5, 5 ]
[ "TAGS\n#sentence-transformers #safetensors #bert #feature-extraction #sentence-similarity #endpoints_compatible #region-us \n# ai-maker-space/snowflake-ft-camelids-v1\n\nThis is a sentence-transformers model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.## Usage (Sentence-Transformers)\n\nUsing this model becomes easy when you have sentence-transformers installed:\n\n\n\nThen you can use the model like this:## Evaluation Results\n\n\n\nFor an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: URL## Training\nThe model was trained with the parameters:\n\nDataLoader:\n\n'URL.dataloader.DataLoader' of length 20 with parameters:\n\n\nLoss:\n\n'sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss' with parameters:\n \n\nParameters of the fit()-Method:## Full Model Architecture## Citing & Authors" ]
reinforcement-learning
null
# PPO Agent Playing LunarLander-v2 This is a trained model of a PPO agent playing LunarLander-v2. # Hyperparameters ```python {'exp_name': 'ppo' 'seed': 1 'torch_deterministic': True 'cuda': True 'track': False 'wandb_project_name': 'cleanRL' 'wandb_entity': None 'capture_video': False 'env_id': 'LunarLander-v2' 'total_timesteps': 50000 'learning_rate': 0.00025 'num_envs': 4 'num_steps': 128 'anneal_lr': True 'gae': True 'gamma': 0.99 'gae_lambda': 0.95 'num_minibatches': 4 'update_epochs': 4 'norm_adv': True 'clip_coef': 0.2 'clip_vloss': True 'ent_coef': 0.01 'vf_coef': 0.5 'max_grad_norm': 0.5 'target_kl': None 'repo_id': 'pdejong/cleanrl-LunarLander-v2' 'batch_size': 512 'minibatch_size': 128} ```
{"tags": ["LunarLander-v2", "ppo", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "deep-rl-course"], "model-index": [{"name": "PPO", "results": [{"task": {"type": "reinforcement-learning", "name": "reinforcement-learning"}, "dataset": {"name": "LunarLander-v2", "type": "LunarLander-v2"}, "metrics": [{"type": "mean_reward", "value": "-159.88 +/- 130.78", "name": "mean_reward", "verified": false}]}]}]}
pdejong/cleanrl-LunarLander-v2
null
[ "tensorboard", "LunarLander-v2", "ppo", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "deep-rl-course", "model-index", "region:us" ]
null
2024-04-30T20:09:47+00:00
[]
[]
TAGS #tensorboard #LunarLander-v2 #ppo #deep-reinforcement-learning #reinforcement-learning #custom-implementation #deep-rl-course #model-index #region-us
# PPO Agent Playing LunarLander-v2 This is a trained model of a PPO agent playing LunarLander-v2. # Hyperparameters
[ "# PPO Agent Playing LunarLander-v2\n\n This is a trained model of a PPO agent playing LunarLander-v2.\n \n # Hyperparameters" ]
[ "TAGS\n#tensorboard #LunarLander-v2 #ppo #deep-reinforcement-learning #reinforcement-learning #custom-implementation #deep-rl-course #model-index #region-us \n", "# PPO Agent Playing LunarLander-v2\n\n This is a trained model of a PPO agent playing LunarLander-v2.\n \n # Hyperparameters" ]
[ 42, 32 ]
[ "TAGS\n#tensorboard #LunarLander-v2 #ppo #deep-reinforcement-learning #reinforcement-learning #custom-implementation #deep-rl-course #model-index #region-us \n# PPO Agent Playing LunarLander-v2\n\n This is a trained model of a PPO agent playing LunarLander-v2.\n \n # Hyperparameters" ]
depth-estimation
transformers
# ZoeDepth (fine-tuned on KITT) ZoeDepth model fine-tuned on the KITTI dataset. It was introduced in the paper [ZoeDepth: Zero-shot Transfer by Combining Relative and Metric Depth](https://arxiv.org/abs/2302.12288) by Shariq et al. and first released in [this repository](https://github.com/isl-org/ZoeDepth). ZoeDepth extends the [DPT](https://huggingface.co/docs/transformers/en/model_doc/dpt) framework for metric (also called absolute) depth estimation, obtaining state-of-the-art results. Disclaimer: The team releasing ZoeDepth did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description ZoeDepth adapts [DPT](https://huggingface.co/docs/transformers/en/model_doc/dpt), a model for relative depth estimation, for so-called metric (also called absolute) depth estimation. This means that the model is able to estimate depth in actual metric values. <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/zoedepth_architecture_bis.png" alt="drawing" width="600"/> <small> ZoeDepth architecture. Taken from the <a href="https://arxiv.org/abs/2302.12288">original paper.</a> </small> ## Intended uses & limitations You can use the raw model for tasks like zero-shot monocular depth estimation. See the [model hub](https://huggingface.co/models?search=Intel/zoedepth) to look for other versions on a task that interests you. ### How to use The easiest is to leverage the pipeline API which abstracts away the complexity for the user: ```python from transformers import pipeline from PIL import Image import requests # load pipe depth_estimator = pipeline(task="depth-estimation", model="Intel/zoedepth-kitti") # load image url = 'http://images.cocodataset.org/val2017/000000039769.jpg' image = Image.open(requests.get(url, stream=True).raw) # inference outputs = depth_estimator(image) depth = outputs.depth ``` For more code examples, we refer to the [documentation](https://huggingface.co/transformers/main/model_doc/zoedepth.html#). ### BibTeX entry and citation info ```bibtex @misc{bhat2023zoedepth, title={ZoeDepth: Zero-shot Transfer by Combining Relative and Metric Depth}, author={Shariq Farooq Bhat and Reiner Birkl and Diana Wofk and Peter Wonka and Matthias Müller}, year={2023}, eprint={2302.12288}, archivePrefix={arXiv}, primaryClass={cs.CV} } ```
{"license": "mit", "tags": ["vision"], "pipeline_tag": "depth-estimation"}
Intel/zoedepth-kitti
null
[ "transformers", "safetensors", "zoedepth", "vision", "depth-estimation", "arxiv:2302.12288", "license:mit", "endpoints_compatible", "region:us" ]
null
2024-04-30T20:11:57+00:00
[ "2302.12288" ]
[]
TAGS #transformers #safetensors #zoedepth #vision #depth-estimation #arxiv-2302.12288 #license-mit #endpoints_compatible #region-us
# ZoeDepth (fine-tuned on KITT) ZoeDepth model fine-tuned on the KITTI dataset. It was introduced in the paper ZoeDepth: Zero-shot Transfer by Combining Relative and Metric Depth by Shariq et al. and first released in this repository. ZoeDepth extends the DPT framework for metric (also called absolute) depth estimation, obtaining state-of-the-art results. Disclaimer: The team releasing ZoeDepth did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description ZoeDepth adapts DPT, a model for relative depth estimation, for so-called metric (also called absolute) depth estimation. This means that the model is able to estimate depth in actual metric values. <img src="URL alt="drawing" width="600"/> <small> ZoeDepth architecture. Taken from the <a href="URL paper.</a> </small> ## Intended uses & limitations You can use the raw model for tasks like zero-shot monocular depth estimation. See the model hub to look for other versions on a task that interests you. ### How to use The easiest is to leverage the pipeline API which abstracts away the complexity for the user: For more code examples, we refer to the documentation. ### BibTeX entry and citation info
[ "# ZoeDepth (fine-tuned on KITT) \n\nZoeDepth model fine-tuned on the KITTI dataset. It was introduced in the paper ZoeDepth: Zero-shot Transfer by Combining Relative and Metric Depth by Shariq et al. and first released in this repository.\n\nZoeDepth extends the DPT framework for metric (also called absolute) depth estimation, obtaining state-of-the-art results.\n\nDisclaimer: The team releasing ZoeDepth did not write a model card for this model so this model card has been written by the Hugging Face team.", "## Model description\n\nZoeDepth adapts DPT, a model for relative depth estimation, for so-called metric (also called absolute) depth estimation.\n\nThis means that the model is able to estimate depth in actual metric values.\n\n<img src=\"URL\nalt=\"drawing\" width=\"600\"/>\n\n<small> ZoeDepth architecture. Taken from the <a href=\"URL paper.</a> </small>", "## Intended uses & limitations\n\nYou can use the raw model for tasks like zero-shot monocular depth estimation. See the model hub to look for\nother versions on a task that interests you.", "### How to use\n\nThe easiest is to leverage the pipeline API which abstracts away the complexity for the user:\n\n\nFor more code examples, we refer to the documentation.", "### BibTeX entry and citation info" ]
[ "TAGS\n#transformers #safetensors #zoedepth #vision #depth-estimation #arxiv-2302.12288 #license-mit #endpoints_compatible #region-us \n", "# ZoeDepth (fine-tuned on KITT) \n\nZoeDepth model fine-tuned on the KITTI dataset. It was introduced in the paper ZoeDepth: Zero-shot Transfer by Combining Relative and Metric Depth by Shariq et al. and first released in this repository.\n\nZoeDepth extends the DPT framework for metric (also called absolute) depth estimation, obtaining state-of-the-art results.\n\nDisclaimer: The team releasing ZoeDepth did not write a model card for this model so this model card has been written by the Hugging Face team.", "## Model description\n\nZoeDepth adapts DPT, a model for relative depth estimation, for so-called metric (also called absolute) depth estimation.\n\nThis means that the model is able to estimate depth in actual metric values.\n\n<img src=\"URL\nalt=\"drawing\" width=\"600\"/>\n\n<small> ZoeDepth architecture. Taken from the <a href=\"URL paper.</a> </small>", "## Intended uses & limitations\n\nYou can use the raw model for tasks like zero-shot monocular depth estimation. See the model hub to look for\nother versions on a task that interests you.", "### How to use\n\nThe easiest is to leverage the pipeline API which abstracts away the complexity for the user:\n\n\nFor more code examples, we refer to the documentation.", "### BibTeX entry and citation info" ]
[ 42, 125, 99, 39, 34, 10 ]
[ "TAGS\n#transformers #safetensors #zoedepth #vision #depth-estimation #arxiv-2302.12288 #license-mit #endpoints_compatible #region-us \n# ZoeDepth (fine-tuned on KITT) \n\nZoeDepth model fine-tuned on the KITTI dataset. It was introduced in the paper ZoeDepth: Zero-shot Transfer by Combining Relative and Metric Depth by Shariq et al. and first released in this repository.\n\nZoeDepth extends the DPT framework for metric (also called absolute) depth estimation, obtaining state-of-the-art results.\n\nDisclaimer: The team releasing ZoeDepth did not write a model card for this model so this model card has been written by the Hugging Face team.## Model description\n\nZoeDepth adapts DPT, a model for relative depth estimation, for so-called metric (also called absolute) depth estimation.\n\nThis means that the model is able to estimate depth in actual metric values.\n\n<img src=\"URL\nalt=\"drawing\" width=\"600\"/>\n\n<small> ZoeDepth architecture. Taken from the <a href=\"URL paper.</a> </small>## Intended uses & limitations\n\nYou can use the raw model for tasks like zero-shot monocular depth estimation. See the model hub to look for\nother versions on a task that interests you.### How to use\n\nThe easiest is to leverage the pipeline API which abstracts away the complexity for the user:\n\n\nFor more code examples, we refer to the documentation.### BibTeX entry and citation info" ]
text-generation
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
lunarsylph/mooncell_v40
null
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-04-30T20:12:07+00:00
[ "1910.09700" ]
[]
TAGS #transformers #safetensors #llama #text-generation #conversational #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# Model Card for Model ID ## Model Details ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #safetensors #llama #text-generation #conversational #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ 47, 6, 4, 75, 23, 3, 5, 8, 9, 8, 34, 20, 4, 5, 5, 11, 13, 12, 3, 10, 6, 5, 6, 4, 5, 7, 49, 7, 7, 5, 5, 15, 7, 7, 8, 5 ]
[ "TAGS\n#transformers #safetensors #llama #text-generation #conversational #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# Model Card for Model ID## Model Details### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Downstream Use [optional]### Out-of-Scope Use## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.## How to Get Started with the Model\n\nUse the code below to get started with the model.## Training Details### Training Data### Training Procedure#### Preprocessing [optional]#### Training Hyperparameters\n\n- Training regime:#### Speeds, Sizes, Times [optional]## Evaluation### Testing Data, Factors & Metrics#### Testing Data#### Factors#### Metrics### Results#### Summary## Model Examination [optional]## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:## Technical Specifications [optional]### Model Architecture and Objective### Compute Infrastructure#### Hardware#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Model Card Authors [optional]## Model Card Contact" ]
text-generation
transformers
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) Qwen1.5-14B-Chat - bnb 4bits - Model creator: https://huggingface.co/Qwen/ - Original model: https://huggingface.co/Qwen/Qwen1.5-14B-Chat/ Original model description: --- license: other license_name: tongyi-qianwen license_link: >- https://huggingface.co/Qwen/Qwen1.5-14B-Chat/blob/main/LICENSE language: - en pipeline_tag: text-generation tags: - chat --- # Qwen1.5-14B-Chat ## Introduction Qwen1.5 is the beta version of Qwen2, a transformer-based decoder-only language model pretrained on a large amount of data. In comparison with the previous released Qwen, the improvements include: * 8 model sizes, including 0.5B, 1.8B, 4B, 7B, 14B, 32B and 72B dense models, and an MoE model of 14B with 2.7B activated; * Significant performance improvement in human preference for chat models; * Multilingual support of both base and chat models; * Stable support of 32K context length for models of all sizes * No need of `trust_remote_code`. For more details, please refer to our [blog post](https://qwenlm.github.io/blog/qwen1.5/) and [GitHub repo](https://github.com/QwenLM/Qwen1.5). <br> ## Model Details Qwen1.5 is a language model series including decoder language models of different model sizes. For each size, we release the base language model and the aligned chat model. It is based on the Transformer architecture with SwiGLU activation, attention QKV bias, group query attention, mixture of sliding window attention and full attention, etc. Additionally, we have an improved tokenizer adaptive to multiple natural languages and codes. For the beta version, temporarily we did not include GQA (except for 32B) and the mixture of SWA and full attention. ## Training details We pretrained the models with a large amount of data, and we post-trained the models with both supervised finetuning and direct preference optimization. ## Requirements The code of Qwen1.5 has been in the latest Hugging face transformers and we advise you to install `transformers>=4.37.0`, or you might encounter the following error: ``` KeyError: 'qwen2' ``` ## Quickstart Here provides a code snippet with `apply_chat_template` to show you how to load the tokenizer and model and how to generate contents. ```python from transformers import AutoModelForCausalLM, AutoTokenizer device = "cuda" # the device to load the model onto model = AutoModelForCausalLM.from_pretrained( "Qwen/Qwen1.5-14B-Chat", torch_dtype="auto", device_map="auto" ) tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen1.5-14B-Chat") prompt = "Give me a short introduction to large language model." messages = [ {"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": prompt} ] text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) model_inputs = tokenizer([text], return_tensors="pt").to(device) generated_ids = model.generate( model_inputs.input_ids, max_new_tokens=512 ) generated_ids = [ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) ] response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] ``` For quantized models, we advise you to use the GPTQ, AWQ, and GGUF correspondents, namely `Qwen1.5-14B-Chat-GPTQ-Int4`, `Qwen1.5-14B-Chat-GPTQ-Int8`, `Qwen1.5-14B-Chat-AWQ`, and `Qwen1.5-14B-Chat-GGUF`. ## Tips * If you encounter code switching or other bad cases, we advise you to use our provided hyper-parameters in `generation_config.json`. ## Citation If you find our work helpful, feel free to give us a cite. ``` @article{qwen, title={Qwen Technical Report}, author={Jinze Bai and Shuai Bai and Yunfei Chu and Zeyu Cui and Kai Dang and Xiaodong Deng and Yang Fan and Wenbin Ge and Yu Han and Fei Huang and Binyuan Hui and Luo Ji and Mei Li and Junyang Lin and Runji Lin and Dayiheng Liu and Gao Liu and Chengqiang Lu and Keming Lu and Jianxin Ma and Rui Men and Xingzhang Ren and Xuancheng Ren and Chuanqi Tan and Sinan Tan and Jianhong Tu and Peng Wang and Shijie Wang and Wei Wang and Shengguang Wu and Benfeng Xu and Jin Xu and An Yang and Hao Yang and Jian Yang and Shusheng Yang and Yang Yao and Bowen Yu and Hongyi Yuan and Zheng Yuan and Jianwei Zhang and Xingxuan Zhang and Yichang Zhang and Zhenru Zhang and Chang Zhou and Jingren Zhou and Xiaohuan Zhou and Tianhang Zhu}, journal={arXiv preprint arXiv:2309.16609}, year={2023} } ```
{}
RichardErkhov/Qwen_-_Qwen1.5-14B-Chat-4bits
null
[ "transformers", "safetensors", "qwen2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "4-bit", "region:us" ]
null
2024-04-30T20:12:13+00:00
[]
[]
TAGS #transformers #safetensors #qwen2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #4-bit #region-us
Quantization made by Richard Erkhov. Github Discord Request more models Qwen1.5-14B-Chat - bnb 4bits - Model creator: URL - Original model: URL Original model description: --- license: other license_name: tongyi-qianwen license_link: >- URL language: - en pipeline_tag: text-generation tags: - chat --- # Qwen1.5-14B-Chat ## Introduction Qwen1.5 is the beta version of Qwen2, a transformer-based decoder-only language model pretrained on a large amount of data. In comparison with the previous released Qwen, the improvements include: * 8 model sizes, including 0.5B, 1.8B, 4B, 7B, 14B, 32B and 72B dense models, and an MoE model of 14B with 2.7B activated; * Significant performance improvement in human preference for chat models; * Multilingual support of both base and chat models; * Stable support of 32K context length for models of all sizes * No need of 'trust_remote_code'. For more details, please refer to our blog post and GitHub repo. <br> ## Model Details Qwen1.5 is a language model series including decoder language models of different model sizes. For each size, we release the base language model and the aligned chat model. It is based on the Transformer architecture with SwiGLU activation, attention QKV bias, group query attention, mixture of sliding window attention and full attention, etc. Additionally, we have an improved tokenizer adaptive to multiple natural languages and codes. For the beta version, temporarily we did not include GQA (except for 32B) and the mixture of SWA and full attention. ## Training details We pretrained the models with a large amount of data, and we post-trained the models with both supervised finetuning and direct preference optimization. ## Requirements The code of Qwen1.5 has been in the latest Hugging face transformers and we advise you to install 'transformers>=4.37.0', or you might encounter the following error: ## Quickstart Here provides a code snippet with 'apply_chat_template' to show you how to load the tokenizer and model and how to generate contents. For quantized models, we advise you to use the GPTQ, AWQ, and GGUF correspondents, namely 'Qwen1.5-14B-Chat-GPTQ-Int4', 'Qwen1.5-14B-Chat-GPTQ-Int8', 'Qwen1.5-14B-Chat-AWQ', and 'Qwen1.5-14B-Chat-GGUF'. ## Tips * If you encounter code switching or other bad cases, we advise you to use our provided hyper-parameters in 'generation_config.json'. If you find our work helpful, feel free to give us a cite.
[ "# Qwen1.5-14B-Chat", "## Introduction\n\nQwen1.5 is the beta version of Qwen2, a transformer-based decoder-only language model pretrained on a large amount of data. In comparison with the previous released Qwen, the improvements include: \n\n* 8 model sizes, including 0.5B, 1.8B, 4B, 7B, 14B, 32B and 72B dense models, and an MoE model of 14B with 2.7B activated;\n* Significant performance improvement in human preference for chat models;\n* Multilingual support of both base and chat models;\n* Stable support of 32K context length for models of all sizes\n* No need of 'trust_remote_code'.\n\nFor more details, please refer to our blog post and GitHub repo.\n<br>", "## Model Details\nQwen1.5 is a language model series including decoder language models of different model sizes. For each size, we release the base language model and the aligned chat model. It is based on the Transformer architecture with SwiGLU activation, attention QKV bias, group query attention, mixture of sliding window attention and full attention, etc. Additionally, we have an improved tokenizer adaptive to multiple natural languages and codes. For the beta version, temporarily we did not include GQA (except for 32B) and the mixture of SWA and full attention.", "## Training details\nWe pretrained the models with a large amount of data, and we post-trained the models with both supervised finetuning and direct preference optimization.", "## Requirements\nThe code of Qwen1.5 has been in the latest Hugging face transformers and we advise you to install 'transformers>=4.37.0', or you might encounter the following error:", "## Quickstart\n\nHere provides a code snippet with 'apply_chat_template' to show you how to load the tokenizer and model and how to generate contents.\n\n\n\nFor quantized models, we advise you to use the GPTQ, AWQ, and GGUF correspondents, namely 'Qwen1.5-14B-Chat-GPTQ-Int4', 'Qwen1.5-14B-Chat-GPTQ-Int8', 'Qwen1.5-14B-Chat-AWQ', and 'Qwen1.5-14B-Chat-GGUF'.", "## Tips\n\n* If you encounter code switching or other bad cases, we advise you to use our provided hyper-parameters in 'generation_config.json'.\n\n\nIf you find our work helpful, feel free to give us a cite." ]
[ "TAGS\n#transformers #safetensors #qwen2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #4-bit #region-us \n", "# Qwen1.5-14B-Chat", "## Introduction\n\nQwen1.5 is the beta version of Qwen2, a transformer-based decoder-only language model pretrained on a large amount of data. In comparison with the previous released Qwen, the improvements include: \n\n* 8 model sizes, including 0.5B, 1.8B, 4B, 7B, 14B, 32B and 72B dense models, and an MoE model of 14B with 2.7B activated;\n* Significant performance improvement in human preference for chat models;\n* Multilingual support of both base and chat models;\n* Stable support of 32K context length for models of all sizes\n* No need of 'trust_remote_code'.\n\nFor more details, please refer to our blog post and GitHub repo.\n<br>", "## Model Details\nQwen1.5 is a language model series including decoder language models of different model sizes. For each size, we release the base language model and the aligned chat model. It is based on the Transformer architecture with SwiGLU activation, attention QKV bias, group query attention, mixture of sliding window attention and full attention, etc. Additionally, we have an improved tokenizer adaptive to multiple natural languages and codes. For the beta version, temporarily we did not include GQA (except for 32B) and the mixture of SWA and full attention.", "## Training details\nWe pretrained the models with a large amount of data, and we post-trained the models with both supervised finetuning and direct preference optimization.", "## Requirements\nThe code of Qwen1.5 has been in the latest Hugging face transformers and we advise you to install 'transformers>=4.37.0', or you might encounter the following error:", "## Quickstart\n\nHere provides a code snippet with 'apply_chat_template' to show you how to load the tokenizer and model and how to generate contents.\n\n\n\nFor quantized models, we advise you to use the GPTQ, AWQ, and GGUF correspondents, namely 'Qwen1.5-14B-Chat-GPTQ-Int4', 'Qwen1.5-14B-Chat-GPTQ-Int8', 'Qwen1.5-14B-Chat-AWQ', and 'Qwen1.5-14B-Chat-GGUF'.", "## Tips\n\n* If you encounter code switching or other bad cases, we advise you to use our provided hyper-parameters in 'generation_config.json'.\n\n\nIf you find our work helpful, feel free to give us a cite." ]
[ 42, 11, 166, 119, 35, 44, 137, 51 ]
[ "TAGS\n#transformers #safetensors #qwen2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #4-bit #region-us \n# Qwen1.5-14B-Chat## Introduction\n\nQwen1.5 is the beta version of Qwen2, a transformer-based decoder-only language model pretrained on a large amount of data. In comparison with the previous released Qwen, the improvements include: \n\n* 8 model sizes, including 0.5B, 1.8B, 4B, 7B, 14B, 32B and 72B dense models, and an MoE model of 14B with 2.7B activated;\n* Significant performance improvement in human preference for chat models;\n* Multilingual support of both base and chat models;\n* Stable support of 32K context length for models of all sizes\n* No need of 'trust_remote_code'.\n\nFor more details, please refer to our blog post and GitHub repo.\n<br>## Model Details\nQwen1.5 is a language model series including decoder language models of different model sizes. For each size, we release the base language model and the aligned chat model. It is based on the Transformer architecture with SwiGLU activation, attention QKV bias, group query attention, mixture of sliding window attention and full attention, etc. Additionally, we have an improved tokenizer adaptive to multiple natural languages and codes. For the beta version, temporarily we did not include GQA (except for 32B) and the mixture of SWA and full attention.## Training details\nWe pretrained the models with a large amount of data, and we post-trained the models with both supervised finetuning and direct preference optimization.## Requirements\nThe code of Qwen1.5 has been in the latest Hugging face transformers and we advise you to install 'transformers>=4.37.0', or you might encounter the following error:## Quickstart\n\nHere provides a code snippet with 'apply_chat_template' to show you how to load the tokenizer and model and how to generate contents.\n\n\n\nFor quantized models, we advise you to use the GPTQ, AWQ, and GGUF correspondents, namely 'Qwen1.5-14B-Chat-GPTQ-Int4', 'Qwen1.5-14B-Chat-GPTQ-Int8', 'Qwen1.5-14B-Chat-AWQ', and 'Qwen1.5-14B-Chat-GGUF'.## Tips\n\n* If you encounter code switching or other bad cases, we advise you to use our provided hyper-parameters in 'generation_config.json'.\n\n\nIf you find our work helpful, feel free to give us a cite." ]
text-generation
transformers
# Uploaded model - **Developed by:** code-endurer - **License:** apache-2.0 - **Finetuned from model :** unsloth/mistral-7b-instruct-v0.2-bnb-4bit This mistral model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
{"language": ["en"], "license": "apache-2.0", "tags": ["text-generation-inference", "transformers", "unsloth", "mistral", "trl", "sft"], "base_model": "unsloth/mistral-7b-instruct-v0.2-bnb-4bit"}
code-endurer/lora_model_1
null
[ "transformers", "safetensors", "mistral", "text-generation", "text-generation-inference", "unsloth", "trl", "sft", "conversational", "en", "base_model:unsloth/mistral-7b-instruct-v0.2-bnb-4bit", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "4-bit", "region:us" ]
null
2024-04-30T20:13:28+00:00
[]
[ "en" ]
TAGS #transformers #safetensors #mistral #text-generation #text-generation-inference #unsloth #trl #sft #conversational #en #base_model-unsloth/mistral-7b-instruct-v0.2-bnb-4bit #license-apache-2.0 #autotrain_compatible #endpoints_compatible #4-bit #region-us
# Uploaded model - Developed by: code-endurer - License: apache-2.0 - Finetuned from model : unsloth/mistral-7b-instruct-v0.2-bnb-4bit This mistral model was trained 2x faster with Unsloth and Huggingface's TRL library. <img src="URL width="200"/>
[ "# Uploaded model\n\n- Developed by: code-endurer\n- License: apache-2.0\n- Finetuned from model : unsloth/mistral-7b-instruct-v0.2-bnb-4bit\n\nThis mistral model was trained 2x faster with Unsloth and Huggingface's TRL library.\n\n<img src=\"URL width=\"200\"/>" ]
[ "TAGS\n#transformers #safetensors #mistral #text-generation #text-generation-inference #unsloth #trl #sft #conversational #en #base_model-unsloth/mistral-7b-instruct-v0.2-bnb-4bit #license-apache-2.0 #autotrain_compatible #endpoints_compatible #4-bit #region-us \n", "# Uploaded model\n\n- Developed by: code-endurer\n- License: apache-2.0\n- Finetuned from model : unsloth/mistral-7b-instruct-v0.2-bnb-4bit\n\nThis mistral model was trained 2x faster with Unsloth and Huggingface's TRL library.\n\n<img src=\"URL width=\"200\"/>" ]
[ 89, 87 ]
[ "TAGS\n#transformers #safetensors #mistral #text-generation #text-generation-inference #unsloth #trl #sft #conversational #en #base_model-unsloth/mistral-7b-instruct-v0.2-bnb-4bit #license-apache-2.0 #autotrain_compatible #endpoints_compatible #4-bit #region-us \n# Uploaded model\n\n- Developed by: code-endurer\n- License: apache-2.0\n- Finetuned from model : unsloth/mistral-7b-instruct-v0.2-bnb-4bit\n\nThis mistral model was trained 2x faster with Unsloth and Huggingface's TRL library.\n\n<img src=\"URL width=\"200\"/>" ]
null
transformers
# Uploaded model - **Developed by:** zeeshanali01 - **License:** apache-2.0 - **Finetuned from model :** unsloth/mistral-7b-bnb-4bit This mistral model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
{"language": ["en"], "license": "apache-2.0", "tags": ["text-generation-inference", "transformers", "unsloth", "mistral", "trl"], "base_model": "unsloth/mistral-7b-bnb-4bit"}
zeeshanali01/midtral-7b-story
null
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "mistral", "trl", "en", "base_model:unsloth/mistral-7b-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-04-30T20:14:10+00:00
[]
[ "en" ]
TAGS #transformers #safetensors #text-generation-inference #unsloth #mistral #trl #en #base_model-unsloth/mistral-7b-bnb-4bit #license-apache-2.0 #endpoints_compatible #region-us
# Uploaded model - Developed by: zeeshanali01 - License: apache-2.0 - Finetuned from model : unsloth/mistral-7b-bnb-4bit This mistral model was trained 2x faster with Unsloth and Huggingface's TRL library. <img src="URL width="200"/>
[ "# Uploaded model\n\n- Developed by: zeeshanali01\n- License: apache-2.0\n- Finetuned from model : unsloth/mistral-7b-bnb-4bit\n\nThis mistral model was trained 2x faster with Unsloth and Huggingface's TRL library.\n\n<img src=\"URL width=\"200\"/>" ]
[ "TAGS\n#transformers #safetensors #text-generation-inference #unsloth #mistral #trl #en #base_model-unsloth/mistral-7b-bnb-4bit #license-apache-2.0 #endpoints_compatible #region-us \n", "# Uploaded model\n\n- Developed by: zeeshanali01\n- License: apache-2.0\n- Finetuned from model : unsloth/mistral-7b-bnb-4bit\n\nThis mistral model was trained 2x faster with Unsloth and Huggingface's TRL library.\n\n<img src=\"URL width=\"200\"/>" ]
[ 62, 79 ]
[ "TAGS\n#transformers #safetensors #text-generation-inference #unsloth #mistral #trl #en #base_model-unsloth/mistral-7b-bnb-4bit #license-apache-2.0 #endpoints_compatible #region-us \n# Uploaded model\n\n- Developed by: zeeshanali01\n- License: apache-2.0\n- Finetuned from model : unsloth/mistral-7b-bnb-4bit\n\nThis mistral model was trained 2x faster with Unsloth and Huggingface's TRL library.\n\n<img src=\"URL width=\"200\"/>" ]
null
peft
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.10.0
{"library_name": "peft", "base_model": "mistralai/Mistral-7B-Instruct-v0.1"}
donbale/ludwig-webinar
null
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:mistralai/Mistral-7B-Instruct-v0.1", "region:us" ]
null
2024-04-30T20:16:26+00:00
[ "1910.09700" ]
[]
TAGS #peft #safetensors #arxiv-1910.09700 #base_model-mistralai/Mistral-7B-Instruct-v0.1 #region-us
# Model Card for Model ID ## Model Details ### Model Description - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact ### Framework versions - PEFT 0.10.0
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\n\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact", "### Framework versions\n\n- PEFT 0.10.0" ]
[ "TAGS\n#peft #safetensors #arxiv-1910.09700 #base_model-mistralai/Mistral-7B-Instruct-v0.1 #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\n\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact", "### Framework versions\n\n- PEFT 0.10.0" ]
[ 44, 6, 4, 50, 23, 3, 5, 8, 9, 8, 34, 20, 4, 5, 5, 11, 13, 12, 3, 10, 6, 5, 6, 4, 5, 7, 49, 7, 7, 5, 5, 15, 7, 7, 8, 5, 13 ]
[ "TAGS\n#peft #safetensors #arxiv-1910.09700 #base_model-mistralai/Mistral-7B-Instruct-v0.1 #region-us \n# Model Card for Model ID## Model Details### Model Description\n\n\n\n\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Downstream Use [optional]### Out-of-Scope Use## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.## How to Get Started with the Model\n\nUse the code below to get started with the model.## Training Details### Training Data### Training Procedure#### Preprocessing [optional]#### Training Hyperparameters\n\n- Training regime:#### Speeds, Sizes, Times [optional]## Evaluation### Testing Data, Factors & Metrics#### Testing Data#### Factors#### Metrics### Results#### Summary## Model Examination [optional]## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:## Technical Specifications [optional]### Model Architecture and Objective### Compute Infrastructure#### Hardware#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Model Card Authors [optional]## Model Card Contact### Framework versions\n\n- PEFT 0.10.0" ]
text-generation
transformers
# llama3-8B-slerp-med-262k llama3-8B-slerp-med-262k is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [gradientai/Llama-3-8B-Instruct-262k](https://huggingface.co/gradientai/Llama-3-8B-Instruct-262k) * [johnsnowlabs/JSL-MedLlama-3-8B-v1.0](https://huggingface.co/johnsnowlabs/JSL-MedLlama-3-8B-v1.0) ## 🧩 Configuration ```yaml slices: - sources: - model: gradientai/Llama-3-8B-Instruct-262k layer_range: [0,32] - model: johnsnowlabs/JSL-MedLlama-3-8B-v1.0 layer_range: [0,32] merge_method: slerp base_model: gradientai/Llama-3-8B-Instruct-262k parameters: t: - filter: self_attn value: [0.3, 0.5, 0.5, 0.7, 1] - filter: mlp value: [1, 0.7, 0.5, 0.5, 0.3] - value: 0.5 dtype: bfloat16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "shanchen/llama3-8B-slerp-med-262k" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```
{"language": ["zh"], "license": "llama3", "tags": ["merge", "mergekit", "lazymergekit", "gradientai/Llama-3-8B-Instruct-262k", "johnsnowlabs/JSL-MedLlama-3-8B-v1.0"], "base_model": ["gradientai/Llama-3-8B-Instruct-262k", "johnsnowlabs/JSL-MedLlama-3-8B-v1.0"]}
shanchen/llama3-8B-slerp-med-262k
null
[ "transformers", "safetensors", "llama", "text-generation", "merge", "mergekit", "lazymergekit", "gradientai/Llama-3-8B-Instruct-262k", "johnsnowlabs/JSL-MedLlama-3-8B-v1.0", "conversational", "zh", "base_model:gradientai/Llama-3-8B-Instruct-262k", "base_model:johnsnowlabs/JSL-MedLlama-3-8B-v1.0", "license:llama3", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-04-30T20:18:23+00:00
[]
[ "zh" ]
TAGS #transformers #safetensors #llama #text-generation #merge #mergekit #lazymergekit #gradientai/Llama-3-8B-Instruct-262k #johnsnowlabs/JSL-MedLlama-3-8B-v1.0 #conversational #zh #base_model-gradientai/Llama-3-8B-Instruct-262k #base_model-johnsnowlabs/JSL-MedLlama-3-8B-v1.0 #license-llama3 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# llama3-8B-slerp-med-262k llama3-8B-slerp-med-262k is a merge of the following models using LazyMergekit: * gradientai/Llama-3-8B-Instruct-262k * johnsnowlabs/JSL-MedLlama-3-8B-v1.0 ## Configuration ## Usage
[ "# llama3-8B-slerp-med-262k\n\nllama3-8B-slerp-med-262k is a merge of the following models using LazyMergekit:\n* gradientai/Llama-3-8B-Instruct-262k\n* johnsnowlabs/JSL-MedLlama-3-8B-v1.0", "## Configuration", "## Usage" ]
[ "TAGS\n#transformers #safetensors #llama #text-generation #merge #mergekit #lazymergekit #gradientai/Llama-3-8B-Instruct-262k #johnsnowlabs/JSL-MedLlama-3-8B-v1.0 #conversational #zh #base_model-gradientai/Llama-3-8B-Instruct-262k #base_model-johnsnowlabs/JSL-MedLlama-3-8B-v1.0 #license-llama3 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# llama3-8B-slerp-med-262k\n\nllama3-8B-slerp-med-262k is a merge of the following models using LazyMergekit:\n* gradientai/Llama-3-8B-Instruct-262k\n* johnsnowlabs/JSL-MedLlama-3-8B-v1.0", "## Configuration", "## Usage" ]
[ 142, 83, 3, 3 ]
[ "TAGS\n#transformers #safetensors #llama #text-generation #merge #mergekit #lazymergekit #gradientai/Llama-3-8B-Instruct-262k #johnsnowlabs/JSL-MedLlama-3-8B-v1.0 #conversational #zh #base_model-gradientai/Llama-3-8B-Instruct-262k #base_model-johnsnowlabs/JSL-MedLlama-3-8B-v1.0 #license-llama3 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# llama3-8B-slerp-med-262k\n\nllama3-8B-slerp-med-262k is a merge of the following models using LazyMergekit:\n* gradientai/Llama-3-8B-Instruct-262k\n* johnsnowlabs/JSL-MedLlama-3-8B-v1.0## Configuration## Usage" ]
text-generation
transformers
# Experimental Model Warning This model is an experimental prototype and should not be considered production-ready. Reasons for Experimental Status Potential for Bias: Due to the experimental nature of the model, it may exhibit biases in its output, which could lead to incorrect or unfair results. ### Precautions to Take **Use with Caution**: Be aware that the model's output may contain factual inaccuracies or biases. **Verify Output**: Always verify the model's output with other sources to ensure its accuracy. **Report Issues**: If you encounter any issues or biases in the model's output, please report them so that they can be addressed in future updates. **Avoid Sensitive Applications**: Do not use the model for applications where accuracy and reliability are critical, such as medical or financial decision-making. By understanding the experimental nature of this model and taking the necessary precautions, you can help ensure that it is used responsibly and effectively **License**: This model is strictly non-commercial (cc-by-nc-4.0) use only. The "Model" is completely free (ie. base model, derivates, merges/mixes) to use for non-commercial purposes as long as the the included cc-by-nc-4.0 license in any parent repository, and the non-commercial use statute remains, regardless of other models' licences. The licence can be changed after new model released. If you are to use this model for commercial purpose, Contact me. **Disclaimer**: By Downloading And/Or using the model, you fully agree to the license (**cc-by-nc-4.0**) and its commercial-use restrictions.
{"language": ["en"], "license": "cc-by-nc-4.0", "library_name": "transformers"}
0ai/0ai-7B-v3
null
[ "transformers", "safetensors", "mistral", "text-generation", "conversational", "en", "license:cc-by-nc-4.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-04-30T20:19:36+00:00
[]
[ "en" ]
TAGS #transformers #safetensors #mistral #text-generation #conversational #en #license-cc-by-nc-4.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# Experimental Model Warning This model is an experimental prototype and should not be considered production-ready. Reasons for Experimental Status Potential for Bias: Due to the experimental nature of the model, it may exhibit biases in its output, which could lead to incorrect or unfair results. ### Precautions to Take Use with Caution: Be aware that the model's output may contain factual inaccuracies or biases. Verify Output: Always verify the model's output with other sources to ensure its accuracy. Report Issues: If you encounter any issues or biases in the model's output, please report them so that they can be addressed in future updates. Avoid Sensitive Applications: Do not use the model for applications where accuracy and reliability are critical, such as medical or financial decision-making. By understanding the experimental nature of this model and taking the necessary precautions, you can help ensure that it is used responsibly and effectively License: This model is strictly non-commercial (cc-by-nc-4.0) use only. The "Model" is completely free (ie. base model, derivates, merges/mixes) to use for non-commercial purposes as long as the the included cc-by-nc-4.0 license in any parent repository, and the non-commercial use statute remains, regardless of other models' licences. The licence can be changed after new model released. If you are to use this model for commercial purpose, Contact me. Disclaimer: By Downloading And/Or using the model, you fully agree to the license (cc-by-nc-4.0) and its commercial-use restrictions.
[ "# Experimental Model Warning\nThis model is an experimental prototype and should not be considered production-ready.\nReasons for Experimental Status\nPotential for Bias: Due to the experimental nature of the model, it may exhibit biases in its output, which could lead to incorrect or unfair results.", "### Precautions to Take\nUse with Caution: Be aware that the model's output may contain factual inaccuracies or biases.\n\n\nVerify Output: Always verify the model's output with other sources to ensure its accuracy.\n\nReport Issues: If you encounter any issues or biases in the model's output, please report them so that they can be addressed in future updates.\n\n\nAvoid Sensitive Applications: Do not use the model for applications where accuracy and reliability are critical, such as medical or financial decision-making.\n\nBy understanding the experimental nature of this model and taking the necessary precautions, you can help ensure that it is used responsibly and effectively\n\nLicense:\nThis model is strictly non-commercial (cc-by-nc-4.0) use only. The \"Model\" is completely free (ie. base model, derivates, merges/mixes) to use for non-commercial purposes as long as the the included cc-by-nc-4.0 license in any parent repository, and the non-commercial use statute remains, regardless of other models' licences. The licence can be changed after new model released. If you are to use this model for commercial purpose, Contact me.\n\nDisclaimer: By Downloading And/Or using the model, you fully agree to the license (cc-by-nc-4.0) and its commercial-use restrictions." ]
[ "TAGS\n#transformers #safetensors #mistral #text-generation #conversational #en #license-cc-by-nc-4.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# Experimental Model Warning\nThis model is an experimental prototype and should not be considered production-ready.\nReasons for Experimental Status\nPotential for Bias: Due to the experimental nature of the model, it may exhibit biases in its output, which could lead to incorrect or unfair results.", "### Precautions to Take\nUse with Caution: Be aware that the model's output may contain factual inaccuracies or biases.\n\n\nVerify Output: Always verify the model's output with other sources to ensure its accuracy.\n\nReport Issues: If you encounter any issues or biases in the model's output, please report them so that they can be addressed in future updates.\n\n\nAvoid Sensitive Applications: Do not use the model for applications where accuracy and reliability are critical, such as medical or financial decision-making.\n\nBy understanding the experimental nature of this model and taking the necessary precautions, you can help ensure that it is used responsibly and effectively\n\nLicense:\nThis model is strictly non-commercial (cc-by-nc-4.0) use only. The \"Model\" is completely free (ie. base model, derivates, merges/mixes) to use for non-commercial purposes as long as the the included cc-by-nc-4.0 license in any parent repository, and the non-commercial use statute remains, regardless of other models' licences. The licence can be changed after new model released. If you are to use this model for commercial purpose, Contact me.\n\nDisclaimer: By Downloading And/Or using the model, you fully agree to the license (cc-by-nc-4.0) and its commercial-use restrictions." ]
[ 51, 54, 285 ]
[ "TAGS\n#transformers #safetensors #mistral #text-generation #conversational #en #license-cc-by-nc-4.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# Experimental Model Warning\nThis model is an experimental prototype and should not be considered production-ready.\nReasons for Experimental Status\nPotential for Bias: Due to the experimental nature of the model, it may exhibit biases in its output, which could lead to incorrect or unfair results.### Precautions to Take\nUse with Caution: Be aware that the model's output may contain factual inaccuracies or biases.\n\n\nVerify Output: Always verify the model's output with other sources to ensure its accuracy.\n\nReport Issues: If you encounter any issues or biases in the model's output, please report them so that they can be addressed in future updates.\n\n\nAvoid Sensitive Applications: Do not use the model for applications where accuracy and reliability are critical, such as medical or financial decision-making.\n\nBy understanding the experimental nature of this model and taking the necessary precautions, you can help ensure that it is used responsibly and effectively\n\nLicense:\nThis model is strictly non-commercial (cc-by-nc-4.0) use only. The \"Model\" is completely free (ie. base model, derivates, merges/mixes) to use for non-commercial purposes as long as the the included cc-by-nc-4.0 license in any parent repository, and the non-commercial use statute remains, regardless of other models' licences. The licence can be changed after new model released. If you are to use this model for commercial purpose, Contact me.\n\nDisclaimer: By Downloading And/Or using the model, you fully agree to the license (cc-by-nc-4.0) and its commercial-use restrictions." ]
null
transformers
# **Introducing Tobias: The Ark's AI LLM Text Assistant** Meet Tobias, the Ark's cutting-edge AI LLM (Large Language Model) text assistant, powered by the LLaMa:8b model. Named after the CEO's beloved dog, Tobias is a testament to the Ark's commitment to innovation and progress. **Tobias' Capabilities** Tobias is designed to assist you in your journey through the Ark, providing expert advice and guidance on various topics, including: - **Survival Skills**: First aid, agriculture, crisis management, and more. - **Education**: Access to a vast knowledge base on various subjects, from science and technology to history and culture. - **Creativity**: Generate custom reports, summaries, and even creative writing with Tobias' advanced language processing capabilities. **Tobias' Features** - **Contextual Understanding**: Tobias' advanced language processing capabilities allow it to understand the context of your queries, providing more accurate and relevant responses. - **Knowledge Graph**: Tobias has access to a vast knowledge graph of the Ark Vault, providing a comprehensive overview of various topics and connections between them. - **Customization**: Tobias can be tailored to your specific needs and goals, allowing you to focus on the information that matters most to you. **Tobias' Integration** Tobias is seamlessly integrated into the Ark's ecosystem, allowing you to access its capabilities from anywhere within the Ark's network. Whether you're working on a project, seeking guidance, or simply looking for entertainment, Tobias is always available to assist you.
{"library_name": "transformers", "tags": ["trl", "sft"]}
xandykati98/tobias-0.0.5
null
[ "transformers", "safetensors", "trl", "sft", "endpoints_compatible", "region:us" ]
null
2024-04-30T20:20:48+00:00
[]
[]
TAGS #transformers #safetensors #trl #sft #endpoints_compatible #region-us
# Introducing Tobias: The Ark's AI LLM Text Assistant Meet Tobias, the Ark's cutting-edge AI LLM (Large Language Model) text assistant, powered by the LLaMa:8b model. Named after the CEO's beloved dog, Tobias is a testament to the Ark's commitment to innovation and progress. Tobias' Capabilities Tobias is designed to assist you in your journey through the Ark, providing expert advice and guidance on various topics, including: - Survival Skills: First aid, agriculture, crisis management, and more. - Education: Access to a vast knowledge base on various subjects, from science and technology to history and culture. - Creativity: Generate custom reports, summaries, and even creative writing with Tobias' advanced language processing capabilities. Tobias' Features - Contextual Understanding: Tobias' advanced language processing capabilities allow it to understand the context of your queries, providing more accurate and relevant responses. - Knowledge Graph: Tobias has access to a vast knowledge graph of the Ark Vault, providing a comprehensive overview of various topics and connections between them. - Customization: Tobias can be tailored to your specific needs and goals, allowing you to focus on the information that matters most to you. Tobias' Integration Tobias is seamlessly integrated into the Ark's ecosystem, allowing you to access its capabilities from anywhere within the Ark's network. Whether you're working on a project, seeking guidance, or simply looking for entertainment, Tobias is always available to assist you.
[ "# Introducing Tobias: The Ark's AI LLM Text Assistant\n\nMeet Tobias, the Ark's cutting-edge AI LLM (Large Language Model) text assistant, powered by the LLaMa:8b model. Named after the CEO's beloved dog, Tobias is a testament to the Ark's commitment to innovation and progress.\n\nTobias' Capabilities\n\nTobias is designed to assist you in your journey through the Ark, providing expert advice and guidance on various topics, including:\n\n- Survival Skills: First aid, agriculture, crisis management, and more.\n- Education: Access to a vast knowledge base on various subjects, from science and technology to history and culture.\n- Creativity: Generate custom reports, summaries, and even creative writing with Tobias' advanced language processing capabilities.\n\nTobias' Features\n\n- Contextual Understanding: Tobias' advanced language processing capabilities allow it to understand the context of your queries, providing more accurate and relevant responses.\n- Knowledge Graph: Tobias has access to a vast knowledge graph of the Ark Vault, providing a comprehensive overview of various topics and connections between them.\n- Customization: Tobias can be tailored to your specific needs and goals, allowing you to focus on the information that matters most to you.\n\nTobias' Integration\n\nTobias is seamlessly integrated into the Ark's ecosystem, allowing you to access its capabilities from anywhere within the Ark's network. Whether you're working on a project, seeking guidance, or simply looking for entertainment, Tobias is always available to assist you." ]
[ "TAGS\n#transformers #safetensors #trl #sft #endpoints_compatible #region-us \n", "# Introducing Tobias: The Ark's AI LLM Text Assistant\n\nMeet Tobias, the Ark's cutting-edge AI LLM (Large Language Model) text assistant, powered by the LLaMa:8b model. Named after the CEO's beloved dog, Tobias is a testament to the Ark's commitment to innovation and progress.\n\nTobias' Capabilities\n\nTobias is designed to assist you in your journey through the Ark, providing expert advice and guidance on various topics, including:\n\n- Survival Skills: First aid, agriculture, crisis management, and more.\n- Education: Access to a vast knowledge base on various subjects, from science and technology to history and culture.\n- Creativity: Generate custom reports, summaries, and even creative writing with Tobias' advanced language processing capabilities.\n\nTobias' Features\n\n- Contextual Understanding: Tobias' advanced language processing capabilities allow it to understand the context of your queries, providing more accurate and relevant responses.\n- Knowledge Graph: Tobias has access to a vast knowledge graph of the Ark Vault, providing a comprehensive overview of various topics and connections between them.\n- Customization: Tobias can be tailored to your specific needs and goals, allowing you to focus on the information that matters most to you.\n\nTobias' Integration\n\nTobias is seamlessly integrated into the Ark's ecosystem, allowing you to access its capabilities from anywhere within the Ark's network. Whether you're working on a project, seeking guidance, or simply looking for entertainment, Tobias is always available to assist you." ]
[ 22, 300 ]
[ "TAGS\n#transformers #safetensors #trl #sft #endpoints_compatible #region-us \n# Introducing Tobias: The Ark's AI LLM Text Assistant\n\nMeet Tobias, the Ark's cutting-edge AI LLM (Large Language Model) text assistant, powered by the LLaMa:8b model. Named after the CEO's beloved dog, Tobias is a testament to the Ark's commitment to innovation and progress.\n\nTobias' Capabilities\n\nTobias is designed to assist you in your journey through the Ark, providing expert advice and guidance on various topics, including:\n\n- Survival Skills: First aid, agriculture, crisis management, and more.\n- Education: Access to a vast knowledge base on various subjects, from science and technology to history and culture.\n- Creativity: Generate custom reports, summaries, and even creative writing with Tobias' advanced language processing capabilities.\n\nTobias' Features\n\n- Contextual Understanding: Tobias' advanced language processing capabilities allow it to understand the context of your queries, providing more accurate and relevant responses.\n- Knowledge Graph: Tobias has access to a vast knowledge graph of the Ark Vault, providing a comprehensive overview of various topics and connections between them.\n- Customization: Tobias can be tailored to your specific needs and goals, allowing you to focus on the information that matters most to you.\n\nTobias' Integration\n\nTobias is seamlessly integrated into the Ark's ecosystem, allowing you to access its capabilities from anywhere within the Ark's network. Whether you're working on a project, seeking guidance, or simply looking for entertainment, Tobias is always available to assist you." ]
sentence-similarity
sentence-transformers
# ai-maker-space/snowflake-ft-camelids-l This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 1024 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('ai-maker-space/snowflake-ft-camelids-l') embeddings = model.encode(sentences) print(embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=ai-maker-space/snowflake-ft-camelids-l) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 20 with parameters: ``` {'batch_size': 10, 'sampler': 'torch.utils.data.sampler.SequentialSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters: ``` {'scale': 20.0, 'similarity_fct': 'cos_sim'} ``` Parameters of the fit()-Method: ``` { "epochs": 4, "evaluation_steps": 50, "evaluator": "sentence_transformers.evaluation.InformationRetrievalEvaluator.InformationRetrievalEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 8, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
{"library_name": "sentence-transformers", "tags": ["sentence-transformers", "feature-extraction", "sentence-similarity"], "pipeline_tag": "sentence-similarity"}
ai-maker-space/snowflake-ft-camelids-l
null
[ "sentence-transformers", "safetensors", "bert", "feature-extraction", "sentence-similarity", "endpoints_compatible", "region:us" ]
null
2024-04-30T20:22:17+00:00
[]
[]
TAGS #sentence-transformers #safetensors #bert #feature-extraction #sentence-similarity #endpoints_compatible #region-us
# ai-maker-space/snowflake-ft-camelids-l This is a sentence-transformers model: It maps sentences & paragraphs to a 1024 dimensional dense vector space and can be used for tasks like clustering or semantic search. ## Usage (Sentence-Transformers) Using this model becomes easy when you have sentence-transformers installed: Then you can use the model like this: ## Evaluation Results For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: URL ## Training The model was trained with the parameters: DataLoader: 'URL.dataloader.DataLoader' of length 20 with parameters: Loss: 'sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss' with parameters: Parameters of the fit()-Method: ## Full Model Architecture ## Citing & Authors
[ "# ai-maker-space/snowflake-ft-camelids-l\n\nThis is a sentence-transformers model: It maps sentences & paragraphs to a 1024 dimensional dense vector space and can be used for tasks like clustering or semantic search.", "## Usage (Sentence-Transformers)\n\nUsing this model becomes easy when you have sentence-transformers installed:\n\n\n\nThen you can use the model like this:", "## Evaluation Results\n\n\n\nFor an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: URL", "## Training\nThe model was trained with the parameters:\n\nDataLoader:\n\n'URL.dataloader.DataLoader' of length 20 with parameters:\n\n\nLoss:\n\n'sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss' with parameters:\n \n\nParameters of the fit()-Method:", "## Full Model Architecture", "## Citing & Authors" ]
[ "TAGS\n#sentence-transformers #safetensors #bert #feature-extraction #sentence-similarity #endpoints_compatible #region-us \n", "# ai-maker-space/snowflake-ft-camelids-l\n\nThis is a sentence-transformers model: It maps sentences & paragraphs to a 1024 dimensional dense vector space and can be used for tasks like clustering or semantic search.", "## Usage (Sentence-Transformers)\n\nUsing this model becomes easy when you have sentence-transformers installed:\n\n\n\nThen you can use the model like this:", "## Evaluation Results\n\n\n\nFor an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: URL", "## Training\nThe model was trained with the parameters:\n\nDataLoader:\n\n'URL.dataloader.DataLoader' of length 20 with parameters:\n\n\nLoss:\n\n'sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss' with parameters:\n \n\nParameters of the fit()-Method:", "## Full Model Architecture", "## Citing & Authors" ]
[ 28, 52, 30, 26, 72, 5, 5 ]
[ "TAGS\n#sentence-transformers #safetensors #bert #feature-extraction #sentence-similarity #endpoints_compatible #region-us \n# ai-maker-space/snowflake-ft-camelids-l\n\nThis is a sentence-transformers model: It maps sentences & paragraphs to a 1024 dimensional dense vector space and can be used for tasks like clustering or semantic search.## Usage (Sentence-Transformers)\n\nUsing this model becomes easy when you have sentence-transformers installed:\n\n\n\nThen you can use the model like this:## Evaluation Results\n\n\n\nFor an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: URL## Training\nThe model was trained with the parameters:\n\nDataLoader:\n\n'URL.dataloader.DataLoader' of length 20 with parameters:\n\n\nLoss:\n\n'sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss' with parameters:\n \n\nParameters of the fit()-Method:## Full Model Architecture## Citing & Authors" ]
depth-estimation
transformers
# ZoeDepth (fine-tuned on NYU and KITTI) ZoeDepth model fine-tuned on the NYU and KITTI datasets. It was introduced in the paper [ZoeDepth: Zero-shot Transfer by Combining Relative and Metric Depth](https://arxiv.org/abs/2302.12288) by Shariq et al. and first released in [this repository](https://github.com/isl-org/ZoeDepth). ZoeDepth extends the [DPT](https://huggingface.co/docs/transformers/en/model_doc/dpt) framework for metric (also called absolute) depth estimation, obtaining state-of-the-art results. Disclaimer: The team releasing ZoeDepth did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description ZoeDepth adapts [DPT](https://huggingface.co/docs/transformers/en/model_doc/dpt), a model for relative depth estimation, for so-called metric (also called absolute) depth estimation. This means that the model is able to estimate depth in actual metric values. <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/zoedepth_architecture_bis.png" alt="drawing" width="600"/> <small> ZoeDepth architecture. Taken from the <a href="https://arxiv.org/abs/2302.12288">original paper.</a> </small> ## Intended uses & limitations You can use the raw model for tasks like zero-shot monocular depth estimation. See the [model hub](https://huggingface.co/models?search=Intel/zoedepth) to look for other versions on a task that interests you. ### How to use The easiest is to leverage the pipeline API which abstracts away the complexity for the user: ```python from transformers import pipeline from PIL import Image import requests # load pipe depth_estimator = pipeline(task="depth-estimation", model="Intel/zoedepth-nyu-kitti") # load image url = 'http://images.cocodataset.org/val2017/000000039769.jpg' image = Image.open(requests.get(url, stream=True).raw) # inference outputs = depth_estimator(image) depth = outputs.depth ``` For more code examples, we refer to the [documentation](https://huggingface.co/transformers/main/model_doc/zoedepth.html#). ### BibTeX entry and citation info ```bibtex @misc{bhat2023zoedepth, title={ZoeDepth: Zero-shot Transfer by Combining Relative and Metric Depth}, author={Shariq Farooq Bhat and Reiner Birkl and Diana Wofk and Peter Wonka and Matthias Müller}, year={2023}, eprint={2302.12288}, archivePrefix={arXiv}, primaryClass={cs.CV} } ```
{"license": "mit", "tags": ["vision"], "pipeline_tag": "depth-estimation"}
Intel/zoedepth-nyu-kitti
null
[ "transformers", "safetensors", "zoedepth", "vision", "depth-estimation", "arxiv:2302.12288", "license:mit", "endpoints_compatible", "region:us" ]
null
2024-04-30T20:22:35+00:00
[ "2302.12288" ]
[]
TAGS #transformers #safetensors #zoedepth #vision #depth-estimation #arxiv-2302.12288 #license-mit #endpoints_compatible #region-us
# ZoeDepth (fine-tuned on NYU and KITTI) ZoeDepth model fine-tuned on the NYU and KITTI datasets. It was introduced in the paper ZoeDepth: Zero-shot Transfer by Combining Relative and Metric Depth by Shariq et al. and first released in this repository. ZoeDepth extends the DPT framework for metric (also called absolute) depth estimation, obtaining state-of-the-art results. Disclaimer: The team releasing ZoeDepth did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description ZoeDepth adapts DPT, a model for relative depth estimation, for so-called metric (also called absolute) depth estimation. This means that the model is able to estimate depth in actual metric values. <img src="URL alt="drawing" width="600"/> <small> ZoeDepth architecture. Taken from the <a href="URL paper.</a> </small> ## Intended uses & limitations You can use the raw model for tasks like zero-shot monocular depth estimation. See the model hub to look for other versions on a task that interests you. ### How to use The easiest is to leverage the pipeline API which abstracts away the complexity for the user: For more code examples, we refer to the documentation. ### BibTeX entry and citation info
[ "# ZoeDepth (fine-tuned on NYU and KITTI) \n\nZoeDepth model fine-tuned on the NYU and KITTI datasets. It was introduced in the paper ZoeDepth: Zero-shot Transfer by Combining Relative and Metric Depth by Shariq et al. and first released in this repository.\n\nZoeDepth extends the DPT framework for metric (also called absolute) depth estimation, obtaining state-of-the-art results.\n\nDisclaimer: The team releasing ZoeDepth did not write a model card for this model so this model card has been written by the Hugging Face team.", "## Model description\n\nZoeDepth adapts DPT, a model for relative depth estimation, for so-called metric (also called absolute) depth estimation.\n\nThis means that the model is able to estimate depth in actual metric values.\n\n<img src=\"URL\nalt=\"drawing\" width=\"600\"/>\n\n<small> ZoeDepth architecture. Taken from the <a href=\"URL paper.</a> </small>", "## Intended uses & limitations\n\nYou can use the raw model for tasks like zero-shot monocular depth estimation. See the model hub to look for\nother versions on a task that interests you.", "### How to use\n\nThe easiest is to leverage the pipeline API which abstracts away the complexity for the user:\n\n\nFor more code examples, we refer to the documentation.", "### BibTeX entry and citation info" ]
[ "TAGS\n#transformers #safetensors #zoedepth #vision #depth-estimation #arxiv-2302.12288 #license-mit #endpoints_compatible #region-us \n", "# ZoeDepth (fine-tuned on NYU and KITTI) \n\nZoeDepth model fine-tuned on the NYU and KITTI datasets. It was introduced in the paper ZoeDepth: Zero-shot Transfer by Combining Relative and Metric Depth by Shariq et al. and first released in this repository.\n\nZoeDepth extends the DPT framework for metric (also called absolute) depth estimation, obtaining state-of-the-art results.\n\nDisclaimer: The team releasing ZoeDepth did not write a model card for this model so this model card has been written by the Hugging Face team.", "## Model description\n\nZoeDepth adapts DPT, a model for relative depth estimation, for so-called metric (also called absolute) depth estimation.\n\nThis means that the model is able to estimate depth in actual metric values.\n\n<img src=\"URL\nalt=\"drawing\" width=\"600\"/>\n\n<small> ZoeDepth architecture. Taken from the <a href=\"URL paper.</a> </small>", "## Intended uses & limitations\n\nYou can use the raw model for tasks like zero-shot monocular depth estimation. See the model hub to look for\nother versions on a task that interests you.", "### How to use\n\nThe easiest is to leverage the pipeline API which abstracts away the complexity for the user:\n\n\nFor more code examples, we refer to the documentation.", "### BibTeX entry and citation info" ]
[ 42, 130, 99, 39, 34, 10 ]
[ "TAGS\n#transformers #safetensors #zoedepth #vision #depth-estimation #arxiv-2302.12288 #license-mit #endpoints_compatible #region-us \n# ZoeDepth (fine-tuned on NYU and KITTI) \n\nZoeDepth model fine-tuned on the NYU and KITTI datasets. It was introduced in the paper ZoeDepth: Zero-shot Transfer by Combining Relative and Metric Depth by Shariq et al. and first released in this repository.\n\nZoeDepth extends the DPT framework for metric (also called absolute) depth estimation, obtaining state-of-the-art results.\n\nDisclaimer: The team releasing ZoeDepth did not write a model card for this model so this model card has been written by the Hugging Face team.## Model description\n\nZoeDepth adapts DPT, a model for relative depth estimation, for so-called metric (also called absolute) depth estimation.\n\nThis means that the model is able to estimate depth in actual metric values.\n\n<img src=\"URL\nalt=\"drawing\" width=\"600\"/>\n\n<small> ZoeDepth architecture. Taken from the <a href=\"URL paper.</a> </small>## Intended uses & limitations\n\nYou can use the raw model for tasks like zero-shot monocular depth estimation. See the model hub to look for\nother versions on a task that interests you.### How to use\n\nThe easiest is to leverage the pipeline API which abstracts away the complexity for the user:\n\n\nFor more code examples, we refer to the documentation.### BibTeX entry and citation info" ]
text-generation
transformers
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) Qwen1.5-7B-Chat - bnb 8bits - Model creator: https://huggingface.co/Qwen/ - Original model: https://huggingface.co/Qwen/Qwen1.5-7B-Chat/ Original model description: --- license: other license_name: tongyi-qianwen license_link: >- https://huggingface.co/Qwen/Qwen1.5-7B-Chat/blob/main/LICENSE language: - en pipeline_tag: text-generation tags: - chat --- # Qwen1.5-7B-Chat ## Introduction Qwen1.5 is the beta version of Qwen2, a transformer-based decoder-only language model pretrained on a large amount of data. In comparison with the previous released Qwen, the improvements include: * 8 model sizes, including 0.5B, 1.8B, 4B, 7B, 14B, 32B and 72B dense models, and an MoE model of 14B with 2.7B activated; * Significant performance improvement in human preference for chat models; * Multilingual support of both base and chat models; * Stable support of 32K context length for models of all sizes * No need of `trust_remote_code`. For more details, please refer to our [blog post](https://qwenlm.github.io/blog/qwen1.5/) and [GitHub repo](https://github.com/QwenLM/Qwen1.5). <br> ## Model Details Qwen1.5 is a language model series including decoder language models of different model sizes. For each size, we release the base language model and the aligned chat model. It is based on the Transformer architecture with SwiGLU activation, attention QKV bias, group query attention, mixture of sliding window attention and full attention, etc. Additionally, we have an improved tokenizer adaptive to multiple natural languages and codes. For the beta version, temporarily we did not include GQA (except for 32B) and the mixture of SWA and full attention. ## Training details We pretrained the models with a large amount of data, and we post-trained the models with both supervised finetuning and direct preference optimization. ## Requirements The code of Qwen1.5 has been in the latest Hugging face transformers and we advise you to install `transformers>=4.37.0`, or you might encounter the following error: ``` KeyError: 'qwen2' ``` ## Quickstart Here provides a code snippet with `apply_chat_template` to show you how to load the tokenizer and model and how to generate contents. ```python from transformers import AutoModelForCausalLM, AutoTokenizer device = "cuda" # the device to load the model onto model = AutoModelForCausalLM.from_pretrained( "Qwen/Qwen1.5-7B-Chat", torch_dtype="auto", device_map="auto" ) tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen1.5-7B-Chat") prompt = "Give me a short introduction to large language model." messages = [ {"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": prompt} ] text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) model_inputs = tokenizer([text], return_tensors="pt").to(device) generated_ids = model.generate( model_inputs.input_ids, max_new_tokens=512 ) generated_ids = [ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) ] response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] ``` For quantized models, we advise you to use the GPTQ, AWQ, and GGUF correspondents, namely `Qwen1.5-7B-Chat-GPTQ-Int4`, `Qwen1.5-7B-Chat-GPTQ-Int8`, `Qwen1.5-7B-Chat-AWQ`, and `Qwen1.5-7B-Chat-GGUF`. ## Tips * If you encounter code switching or other bad cases, we advise you to use our provided hyper-parameters in `generation_config.json`. ## Citation If you find our work helpful, feel free to give us a cite. ``` @article{qwen, title={Qwen Technical Report}, author={Jinze Bai and Shuai Bai and Yunfei Chu and Zeyu Cui and Kai Dang and Xiaodong Deng and Yang Fan and Wenbin Ge and Yu Han and Fei Huang and Binyuan Hui and Luo Ji and Mei Li and Junyang Lin and Runji Lin and Dayiheng Liu and Gao Liu and Chengqiang Lu and Keming Lu and Jianxin Ma and Rui Men and Xingzhang Ren and Xuancheng Ren and Chuanqi Tan and Sinan Tan and Jianhong Tu and Peng Wang and Shijie Wang and Wei Wang and Shengguang Wu and Benfeng Xu and Jin Xu and An Yang and Hao Yang and Jian Yang and Shusheng Yang and Yang Yao and Bowen Yu and Hongyi Yuan and Zheng Yuan and Jianwei Zhang and Xingxuan Zhang and Yichang Zhang and Zhenru Zhang and Chang Zhou and Jingren Zhou and Xiaohuan Zhou and Tianhang Zhu}, journal={arXiv preprint arXiv:2309.16609}, year={2023} } ```
{}
RichardErkhov/Qwen_-_Qwen1.5-7B-Chat-8bits
null
[ "transformers", "safetensors", "qwen2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "8-bit", "region:us" ]
null
2024-04-30T20:24:23+00:00
[]
[]
TAGS #transformers #safetensors #qwen2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #8-bit #region-us
Quantization made by Richard Erkhov. Github Discord Request more models Qwen1.5-7B-Chat - bnb 8bits - Model creator: URL - Original model: URL Original model description: --- license: other license_name: tongyi-qianwen license_link: >- URL language: - en pipeline_tag: text-generation tags: - chat --- # Qwen1.5-7B-Chat ## Introduction Qwen1.5 is the beta version of Qwen2, a transformer-based decoder-only language model pretrained on a large amount of data. In comparison with the previous released Qwen, the improvements include: * 8 model sizes, including 0.5B, 1.8B, 4B, 7B, 14B, 32B and 72B dense models, and an MoE model of 14B with 2.7B activated; * Significant performance improvement in human preference for chat models; * Multilingual support of both base and chat models; * Stable support of 32K context length for models of all sizes * No need of 'trust_remote_code'. For more details, please refer to our blog post and GitHub repo. <br> ## Model Details Qwen1.5 is a language model series including decoder language models of different model sizes. For each size, we release the base language model and the aligned chat model. It is based on the Transformer architecture with SwiGLU activation, attention QKV bias, group query attention, mixture of sliding window attention and full attention, etc. Additionally, we have an improved tokenizer adaptive to multiple natural languages and codes. For the beta version, temporarily we did not include GQA (except for 32B) and the mixture of SWA and full attention. ## Training details We pretrained the models with a large amount of data, and we post-trained the models with both supervised finetuning and direct preference optimization. ## Requirements The code of Qwen1.5 has been in the latest Hugging face transformers and we advise you to install 'transformers>=4.37.0', or you might encounter the following error: ## Quickstart Here provides a code snippet with 'apply_chat_template' to show you how to load the tokenizer and model and how to generate contents. For quantized models, we advise you to use the GPTQ, AWQ, and GGUF correspondents, namely 'Qwen1.5-7B-Chat-GPTQ-Int4', 'Qwen1.5-7B-Chat-GPTQ-Int8', 'Qwen1.5-7B-Chat-AWQ', and 'Qwen1.5-7B-Chat-GGUF'. ## Tips * If you encounter code switching or other bad cases, we advise you to use our provided hyper-parameters in 'generation_config.json'. If you find our work helpful, feel free to give us a cite.
[ "# Qwen1.5-7B-Chat", "## Introduction\n\nQwen1.5 is the beta version of Qwen2, a transformer-based decoder-only language model pretrained on a large amount of data. In comparison with the previous released Qwen, the improvements include: \n\n* 8 model sizes, including 0.5B, 1.8B, 4B, 7B, 14B, 32B and 72B dense models, and an MoE model of 14B with 2.7B activated;\n* Significant performance improvement in human preference for chat models;\n* Multilingual support of both base and chat models;\n* Stable support of 32K context length for models of all sizes\n* No need of 'trust_remote_code'.\n\nFor more details, please refer to our blog post and GitHub repo.\n<br>", "## Model Details\nQwen1.5 is a language model series including decoder language models of different model sizes. For each size, we release the base language model and the aligned chat model. It is based on the Transformer architecture with SwiGLU activation, attention QKV bias, group query attention, mixture of sliding window attention and full attention, etc. Additionally, we have an improved tokenizer adaptive to multiple natural languages and codes. For the beta version, temporarily we did not include GQA (except for 32B) and the mixture of SWA and full attention.", "## Training details\nWe pretrained the models with a large amount of data, and we post-trained the models with both supervised finetuning and direct preference optimization.", "## Requirements\nThe code of Qwen1.5 has been in the latest Hugging face transformers and we advise you to install 'transformers>=4.37.0', or you might encounter the following error:", "## Quickstart\n\nHere provides a code snippet with 'apply_chat_template' to show you how to load the tokenizer and model and how to generate contents.\n\n\n\nFor quantized models, we advise you to use the GPTQ, AWQ, and GGUF correspondents, namely 'Qwen1.5-7B-Chat-GPTQ-Int4', 'Qwen1.5-7B-Chat-GPTQ-Int8', 'Qwen1.5-7B-Chat-AWQ', and 'Qwen1.5-7B-Chat-GGUF'.", "## Tips\n\n* If you encounter code switching or other bad cases, we advise you to use our provided hyper-parameters in 'generation_config.json'.\n\n\nIf you find our work helpful, feel free to give us a cite." ]
[ "TAGS\n#transformers #safetensors #qwen2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #8-bit #region-us \n", "# Qwen1.5-7B-Chat", "## Introduction\n\nQwen1.5 is the beta version of Qwen2, a transformer-based decoder-only language model pretrained on a large amount of data. In comparison with the previous released Qwen, the improvements include: \n\n* 8 model sizes, including 0.5B, 1.8B, 4B, 7B, 14B, 32B and 72B dense models, and an MoE model of 14B with 2.7B activated;\n* Significant performance improvement in human preference for chat models;\n* Multilingual support of both base and chat models;\n* Stable support of 32K context length for models of all sizes\n* No need of 'trust_remote_code'.\n\nFor more details, please refer to our blog post and GitHub repo.\n<br>", "## Model Details\nQwen1.5 is a language model series including decoder language models of different model sizes. For each size, we release the base language model and the aligned chat model. It is based on the Transformer architecture with SwiGLU activation, attention QKV bias, group query attention, mixture of sliding window attention and full attention, etc. Additionally, we have an improved tokenizer adaptive to multiple natural languages and codes. For the beta version, temporarily we did not include GQA (except for 32B) and the mixture of SWA and full attention.", "## Training details\nWe pretrained the models with a large amount of data, and we post-trained the models with both supervised finetuning and direct preference optimization.", "## Requirements\nThe code of Qwen1.5 has been in the latest Hugging face transformers and we advise you to install 'transformers>=4.37.0', or you might encounter the following error:", "## Quickstart\n\nHere provides a code snippet with 'apply_chat_template' to show you how to load the tokenizer and model and how to generate contents.\n\n\n\nFor quantized models, we advise you to use the GPTQ, AWQ, and GGUF correspondents, namely 'Qwen1.5-7B-Chat-GPTQ-Int4', 'Qwen1.5-7B-Chat-GPTQ-Int8', 'Qwen1.5-7B-Chat-AWQ', and 'Qwen1.5-7B-Chat-GGUF'.", "## Tips\n\n* If you encounter code switching or other bad cases, we advise you to use our provided hyper-parameters in 'generation_config.json'.\n\n\nIf you find our work helpful, feel free to give us a cite." ]
[ 42, 11, 166, 119, 35, 44, 137, 51 ]
[ "TAGS\n#transformers #safetensors #qwen2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #8-bit #region-us \n# Qwen1.5-7B-Chat## Introduction\n\nQwen1.5 is the beta version of Qwen2, a transformer-based decoder-only language model pretrained on a large amount of data. In comparison with the previous released Qwen, the improvements include: \n\n* 8 model sizes, including 0.5B, 1.8B, 4B, 7B, 14B, 32B and 72B dense models, and an MoE model of 14B with 2.7B activated;\n* Significant performance improvement in human preference for chat models;\n* Multilingual support of both base and chat models;\n* Stable support of 32K context length for models of all sizes\n* No need of 'trust_remote_code'.\n\nFor more details, please refer to our blog post and GitHub repo.\n<br>## Model Details\nQwen1.5 is a language model series including decoder language models of different model sizes. For each size, we release the base language model and the aligned chat model. It is based on the Transformer architecture with SwiGLU activation, attention QKV bias, group query attention, mixture of sliding window attention and full attention, etc. Additionally, we have an improved tokenizer adaptive to multiple natural languages and codes. For the beta version, temporarily we did not include GQA (except for 32B) and the mixture of SWA and full attention.## Training details\nWe pretrained the models with a large amount of data, and we post-trained the models with both supervised finetuning and direct preference optimization.## Requirements\nThe code of Qwen1.5 has been in the latest Hugging face transformers and we advise you to install 'transformers>=4.37.0', or you might encounter the following error:## Quickstart\n\nHere provides a code snippet with 'apply_chat_template' to show you how to load the tokenizer and model and how to generate contents.\n\n\n\nFor quantized models, we advise you to use the GPTQ, AWQ, and GGUF correspondents, namely 'Qwen1.5-7B-Chat-GPTQ-Int4', 'Qwen1.5-7B-Chat-GPTQ-Int8', 'Qwen1.5-7B-Chat-AWQ', and 'Qwen1.5-7B-Chat-GGUF'.## Tips\n\n* If you encounter code switching or other bad cases, we advise you to use our provided hyper-parameters in 'generation_config.json'.\n\n\nIf you find our work helpful, feel free to give us a cite." ]
text-classification
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
sezinarseven/n-s-b
null
[ "transformers", "safetensors", "bert", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2024-04-30T20:29:51+00:00
[ "1910.09700" ]
[]
TAGS #transformers #safetensors #bert #text-classification #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #region-us
# Model Card for Model ID ## Model Details ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #safetensors #bert #text-classification #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ 37, 6, 4, 75, 23, 3, 5, 8, 9, 8, 34, 20, 4, 5, 5, 11, 13, 12, 3, 10, 6, 5, 6, 4, 5, 7, 49, 7, 7, 5, 5, 15, 7, 7, 8, 5 ]
[ "TAGS\n#transformers #safetensors #bert #text-classification #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #region-us \n# Model Card for Model ID## Model Details### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Downstream Use [optional]### Out-of-Scope Use## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.## How to Get Started with the Model\n\nUse the code below to get started with the model.## Training Details### Training Data### Training Procedure#### Preprocessing [optional]#### Training Hyperparameters\n\n- Training regime:#### Speeds, Sizes, Times [optional]## Evaluation### Testing Data, Factors & Metrics#### Testing Data#### Factors#### Metrics### Results#### Summary## Model Examination [optional]## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:## Technical Specifications [optional]### Model Architecture and Objective### Compute Infrastructure#### Hardware#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Model Card Authors [optional]## Model Card Contact" ]
automatic-speech-recognition
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # whisper2 This model is a fine-tuned version of [openai/whisper-tiny.en](https://huggingface.co/openai/whisper-tiny.en) on the tiny dataset. It achieves the following results on the evaluation set: - Loss: 0.5233 - Wer: 31.1083 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 64 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 500 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 3.9553 | 0.1408 | 10 | 3.9646 | 74.8741 | | 3.9548 | 0.2817 | 20 | 3.8794 | 77.6763 | | 3.8127 | 0.4225 | 30 | 3.7405 | 76.4169 | | 3.6178 | 0.5634 | 40 | 3.5547 | 75.3149 | | 3.3992 | 0.7042 | 50 | 3.3235 | 70.2771 | | 3.1416 | 0.8451 | 60 | 3.0402 | 67.8526 | | 2.8052 | 0.9859 | 70 | 2.6852 | 65.9635 | | 2.3513 | 1.1268 | 80 | 2.2235 | 68.3249 | | 1.893 | 1.2676 | 90 | 1.6708 | 63.8224 | | 1.2871 | 1.4085 | 100 | 1.1645 | 63.2557 | | 0.9146 | 1.5493 | 110 | 0.8785 | 56.8325 | | 0.8044 | 1.6901 | 120 | 0.7907 | 46.9773 | | 0.6634 | 1.8310 | 130 | 0.7425 | 47.4811 | | 0.6722 | 1.9718 | 140 | 0.7100 | 45.9068 | | 0.6823 | 2.1127 | 150 | 0.6854 | 42.4118 | | 0.5802 | 2.2535 | 160 | 0.6659 | 40.4282 | | 0.6084 | 2.3944 | 170 | 0.6503 | 40.8375 | | 0.6038 | 2.5352 | 180 | 0.6346 | 41.4987 | | 0.5095 | 2.6761 | 190 | 0.6247 | 42.0340 | | 0.5251 | 2.8169 | 200 | 0.6155 | 39.3577 | | 0.5699 | 2.9577 | 210 | 0.6046 | 38.3501 | | 0.4839 | 3.0986 | 220 | 0.5945 | 37.2796 | | 0.4843 | 3.2394 | 230 | 0.5861 | 48.3942 | | 0.4538 | 3.3803 | 240 | 0.5794 | 34.6662 | | 0.4741 | 3.5211 | 250 | 0.5737 | 33.8161 | | 0.4542 | 3.6620 | 260 | 0.5663 | 41.9710 | | 0.4163 | 3.8028 | 270 | 0.5623 | 46.0957 | | 0.3496 | 3.9437 | 280 | 0.5605 | 42.2544 | | 0.3835 | 4.0845 | 290 | 0.5557 | 41.6562 | | 0.3462 | 4.2254 | 300 | 0.5507 | 36.3980 | | 0.3133 | 4.3662 | 310 | 0.5452 | 42.5693 | | 0.3638 | 4.5070 | 320 | 0.5435 | 35.9572 | | 0.3826 | 4.6479 | 330 | 0.5396 | 31.9584 | | 0.3581 | 4.7887 | 340 | 0.5361 | 33.7846 | | 0.3127 | 4.9296 | 350 | 0.5339 | 37.3426 | | 0.2988 | 5.0704 | 360 | 0.5348 | 38.7280 | | 0.2807 | 5.2113 | 370 | 0.5344 | 35.5164 | | 0.2612 | 5.3521 | 380 | 0.5305 | 34.6662 | | 0.2762 | 5.4930 | 390 | 0.5306 | 32.2733 | | 0.299 | 5.6338 | 400 | 0.5267 | 36.8703 | | 0.2718 | 5.7746 | 410 | 0.5232 | 41.6877 | | 0.2618 | 5.9155 | 420 | 0.5208 | 34.0995 | | 0.2121 | 6.0563 | 430 | 0.5220 | 28.0542 | | 0.1929 | 6.1972 | 440 | 0.5256 | 35.7997 | | 0.2504 | 6.3380 | 450 | 0.5296 | 32.8715 | | 0.2064 | 6.4789 | 460 | 0.5265 | 35.3904 | | 0.2044 | 6.6197 | 470 | 0.5267 | 38.3186 | | 0.1844 | 6.7606 | 480 | 0.5231 | 35.1071 | | 0.1867 | 6.9014 | 490 | 0.5235 | 31.5806 | | 0.1562 | 7.0423 | 500 | 0.5233 | 31.1083 | ### Framework versions - Transformers 4.40.1 - Pytorch 2.2.1+cu121 - Datasets 2.19.1.dev0 - Tokenizers 0.19.1
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["wer"], "base_model": "openai/whisper-tiny.en", "model-index": [{"name": "whisper2", "results": []}]}
khaingsmon/whisper2
null
[ "transformers", "tensorboard", "safetensors", "whisper", "automatic-speech-recognition", "generated_from_trainer", "base_model:openai/whisper-tiny.en", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-04-30T20:32:37+00:00
[]
[]
TAGS #transformers #tensorboard #safetensors #whisper #automatic-speech-recognition #generated_from_trainer #base_model-openai/whisper-tiny.en #license-apache-2.0 #endpoints_compatible #region-us
whisper2 ======== This model is a fine-tuned version of openai/URL on the tiny dataset. It achieves the following results on the evaluation set: * Loss: 0.5233 * Wer: 31.1083 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 1e-05 * train\_batch\_size: 64 * eval\_batch\_size: 8 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * lr\_scheduler\_warmup\_steps: 500 * training\_steps: 500 ### Training results ### Framework versions * Transformers 4.40.1 * Pytorch 2.2.1+cu121 * Datasets 2.19.1.dev0 * Tokenizers 0.19.1
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 500\n* training\\_steps: 500", "### Training results", "### Framework versions\n\n\n* Transformers 4.40.1\n* Pytorch 2.2.1+cu121\n* Datasets 2.19.1.dev0\n* Tokenizers 0.19.1" ]
[ "TAGS\n#transformers #tensorboard #safetensors #whisper #automatic-speech-recognition #generated_from_trainer #base_model-openai/whisper-tiny.en #license-apache-2.0 #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 500\n* training\\_steps: 500", "### Training results", "### Framework versions\n\n\n* Transformers 4.40.1\n* Pytorch 2.2.1+cu121\n* Datasets 2.19.1.dev0\n* Tokenizers 0.19.1" ]
[ 54, 115, 5, 47 ]
[ "TAGS\n#transformers #tensorboard #safetensors #whisper #automatic-speech-recognition #generated_from_trainer #base_model-openai/whisper-tiny.en #license-apache-2.0 #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 500\n* training\\_steps: 500### Training results### Framework versions\n\n\n* Transformers 4.40.1\n* Pytorch 2.2.1+cu121\n* Datasets 2.19.1.dev0\n* Tokenizers 0.19.1" ]
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # robust_llm_pythia-160m_mz-135_WordLength_n-its-10-seed-0 This model is a fine-tuned version of [EleutherAI/pythia-160m](https://huggingface.co/EleutherAI/pythia-160m) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 64 - seed: 0 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results ### Framework versions - Transformers 4.39.3 - Pytorch 2.2.1 - Datasets 2.18.0 - Tokenizers 0.15.2
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "base_model": "EleutherAI/pythia-160m", "model-index": [{"name": "robust_llm_pythia-160m_mz-135_WordLength_n-its-10-seed-0", "results": []}]}
AlignmentResearch/robust_llm_pythia-160m_mz-135_WordLength_n-its-10-seed-0
null
[ "transformers", "tensorboard", "safetensors", "gpt_neox", "text-classification", "generated_from_trainer", "base_model:EleutherAI/pythia-160m", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-04-30T20:32:38+00:00
[]
[]
TAGS #transformers #tensorboard #safetensors #gpt_neox #text-classification #generated_from_trainer #base_model-EleutherAI/pythia-160m #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# robust_llm_pythia-160m_mz-135_WordLength_n-its-10-seed-0 This model is a fine-tuned version of EleutherAI/pythia-160m on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 64 - seed: 0 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results ### Framework versions - Transformers 4.39.3 - Pytorch 2.2.1 - Datasets 2.18.0 - Tokenizers 0.15.2
[ "# robust_llm_pythia-160m_mz-135_WordLength_n-its-10-seed-0\n\nThis model is a fine-tuned version of EleutherAI/pythia-160m on an unknown dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 1e-05\n- train_batch_size: 8\n- eval_batch_size: 64\n- seed: 0\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 1", "### Training results", "### Framework versions\n\n- Transformers 4.39.3\n- Pytorch 2.2.1\n- Datasets 2.18.0\n- Tokenizers 0.15.2" ]
[ "TAGS\n#transformers #tensorboard #safetensors #gpt_neox #text-classification #generated_from_trainer #base_model-EleutherAI/pythia-160m #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# robust_llm_pythia-160m_mz-135_WordLength_n-its-10-seed-0\n\nThis model is a fine-tuned version of EleutherAI/pythia-160m on an unknown dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 1e-05\n- train_batch_size: 8\n- eval_batch_size: 64\n- seed: 0\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 1", "### Training results", "### Framework versions\n\n- Transformers 4.39.3\n- Pytorch 2.2.1\n- Datasets 2.18.0\n- Tokenizers 0.15.2" ]
[ 70, 58, 7, 9, 9, 4, 93, 5, 40 ]
[ "TAGS\n#transformers #tensorboard #safetensors #gpt_neox #text-classification #generated_from_trainer #base_model-EleutherAI/pythia-160m #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# robust_llm_pythia-160m_mz-135_WordLength_n-its-10-seed-0\n\nThis model is a fine-tuned version of EleutherAI/pythia-160m on an unknown dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 1e-05\n- train_batch_size: 8\n- eval_batch_size: 64\n- seed: 0\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 1### Training results### Framework versions\n\n- Transformers 4.39.3\n- Pytorch 2.2.1\n- Datasets 2.18.0\n- Tokenizers 0.15.2" ]
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # robust_llm_pythia-160m_mz-135_WordLength_n-its-10-seed-2 This model is a fine-tuned version of [EleutherAI/pythia-160m](https://huggingface.co/EleutherAI/pythia-160m) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 64 - seed: 2 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results ### Framework versions - Transformers 4.39.3 - Pytorch 2.2.1 - Datasets 2.18.0 - Tokenizers 0.15.2
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "base_model": "EleutherAI/pythia-160m", "model-index": [{"name": "robust_llm_pythia-160m_mz-135_WordLength_n-its-10-seed-2", "results": []}]}
AlignmentResearch/robust_llm_pythia-160m_mz-135_WordLength_n-its-10-seed-2
null
[ "transformers", "tensorboard", "safetensors", "gpt_neox", "text-classification", "generated_from_trainer", "base_model:EleutherAI/pythia-160m", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-04-30T20:35:18+00:00
[]
[]
TAGS #transformers #tensorboard #safetensors #gpt_neox #text-classification #generated_from_trainer #base_model-EleutherAI/pythia-160m #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# robust_llm_pythia-160m_mz-135_WordLength_n-its-10-seed-2 This model is a fine-tuned version of EleutherAI/pythia-160m on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 64 - seed: 2 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results ### Framework versions - Transformers 4.39.3 - Pytorch 2.2.1 - Datasets 2.18.0 - Tokenizers 0.15.2
[ "# robust_llm_pythia-160m_mz-135_WordLength_n-its-10-seed-2\n\nThis model is a fine-tuned version of EleutherAI/pythia-160m on an unknown dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 1e-05\n- train_batch_size: 8\n- eval_batch_size: 64\n- seed: 2\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 1", "### Training results", "### Framework versions\n\n- Transformers 4.39.3\n- Pytorch 2.2.1\n- Datasets 2.18.0\n- Tokenizers 0.15.2" ]
[ "TAGS\n#transformers #tensorboard #safetensors #gpt_neox #text-classification #generated_from_trainer #base_model-EleutherAI/pythia-160m #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# robust_llm_pythia-160m_mz-135_WordLength_n-its-10-seed-2\n\nThis model is a fine-tuned version of EleutherAI/pythia-160m on an unknown dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 1e-05\n- train_batch_size: 8\n- eval_batch_size: 64\n- seed: 2\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 1", "### Training results", "### Framework versions\n\n- Transformers 4.39.3\n- Pytorch 2.2.1\n- Datasets 2.18.0\n- Tokenizers 0.15.2" ]
[ 70, 58, 7, 9, 9, 4, 93, 5, 40 ]
[ "TAGS\n#transformers #tensorboard #safetensors #gpt_neox #text-classification #generated_from_trainer #base_model-EleutherAI/pythia-160m #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# robust_llm_pythia-160m_mz-135_WordLength_n-its-10-seed-2\n\nThis model is a fine-tuned version of EleutherAI/pythia-160m on an unknown dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 1e-05\n- train_batch_size: 8\n- eval_batch_size: 64\n- seed: 2\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 1### Training results### Framework versions\n\n- Transformers 4.39.3\n- Pytorch 2.2.1\n- Datasets 2.18.0\n- Tokenizers 0.15.2" ]
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # robust_llm_pythia-160m_mz-135_WordLength_n-its-10-seed-1 This model is a fine-tuned version of [EleutherAI/pythia-160m](https://huggingface.co/EleutherAI/pythia-160m) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 64 - seed: 1 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results ### Framework versions - Transformers 4.39.3 - Pytorch 2.2.1 - Datasets 2.18.0 - Tokenizers 0.15.2
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "base_model": "EleutherAI/pythia-160m", "model-index": [{"name": "robust_llm_pythia-160m_mz-135_WordLength_n-its-10-seed-1", "results": []}]}
AlignmentResearch/robust_llm_pythia-160m_mz-135_WordLength_n-its-10-seed-1
null
[ "transformers", "tensorboard", "safetensors", "gpt_neox", "text-classification", "generated_from_trainer", "base_model:EleutherAI/pythia-160m", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-04-30T20:36:11+00:00
[]
[]
TAGS #transformers #tensorboard #safetensors #gpt_neox #text-classification #generated_from_trainer #base_model-EleutherAI/pythia-160m #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# robust_llm_pythia-160m_mz-135_WordLength_n-its-10-seed-1 This model is a fine-tuned version of EleutherAI/pythia-160m on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 64 - seed: 1 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results ### Framework versions - Transformers 4.39.3 - Pytorch 2.2.1 - Datasets 2.18.0 - Tokenizers 0.15.2
[ "# robust_llm_pythia-160m_mz-135_WordLength_n-its-10-seed-1\n\nThis model is a fine-tuned version of EleutherAI/pythia-160m on an unknown dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 1e-05\n- train_batch_size: 8\n- eval_batch_size: 64\n- seed: 1\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 1", "### Training results", "### Framework versions\n\n- Transformers 4.39.3\n- Pytorch 2.2.1\n- Datasets 2.18.0\n- Tokenizers 0.15.2" ]
[ "TAGS\n#transformers #tensorboard #safetensors #gpt_neox #text-classification #generated_from_trainer #base_model-EleutherAI/pythia-160m #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# robust_llm_pythia-160m_mz-135_WordLength_n-its-10-seed-1\n\nThis model is a fine-tuned version of EleutherAI/pythia-160m on an unknown dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 1e-05\n- train_batch_size: 8\n- eval_batch_size: 64\n- seed: 1\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 1", "### Training results", "### Framework versions\n\n- Transformers 4.39.3\n- Pytorch 2.2.1\n- Datasets 2.18.0\n- Tokenizers 0.15.2" ]
[ 70, 58, 7, 9, 9, 4, 93, 5, 40 ]
[ "TAGS\n#transformers #tensorboard #safetensors #gpt_neox #text-classification #generated_from_trainer #base_model-EleutherAI/pythia-160m #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# robust_llm_pythia-160m_mz-135_WordLength_n-its-10-seed-1\n\nThis model is a fine-tuned version of EleutherAI/pythia-160m on an unknown dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 1e-05\n- train_batch_size: 8\n- eval_batch_size: 64\n- seed: 1\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 1### Training results### Framework versions\n\n- Transformers 4.39.3\n- Pytorch 2.2.1\n- Datasets 2.18.0\n- Tokenizers 0.15.2" ]
null
peft
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.10.0
{"library_name": "peft", "base_model": "mistralai/Mistral-7B-Instruct-v0.2"}
vaarrun009/Rzolut_Mistral_half
null
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:mistralai/Mistral-7B-Instruct-v0.2", "region:us" ]
null
2024-04-30T20:36:33+00:00
[ "1910.09700" ]
[]
TAGS #peft #safetensors #arxiv-1910.09700 #base_model-mistralai/Mistral-7B-Instruct-v0.2 #region-us
# Model Card for Model ID ## Model Details ### Model Description - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact ### Framework versions - PEFT 0.10.0
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\n\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact", "### Framework versions\n\n- PEFT 0.10.0" ]
[ "TAGS\n#peft #safetensors #arxiv-1910.09700 #base_model-mistralai/Mistral-7B-Instruct-v0.2 #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\n\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact", "### Framework versions\n\n- PEFT 0.10.0" ]
[ 44, 6, 4, 50, 23, 3, 5, 8, 9, 8, 34, 20, 4, 5, 5, 11, 13, 12, 3, 10, 6, 5, 6, 4, 5, 7, 49, 7, 7, 5, 5, 15, 7, 7, 8, 5, 13 ]
[ "TAGS\n#peft #safetensors #arxiv-1910.09700 #base_model-mistralai/Mistral-7B-Instruct-v0.2 #region-us \n# Model Card for Model ID## Model Details### Model Description\n\n\n\n\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Downstream Use [optional]### Out-of-Scope Use## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.## How to Get Started with the Model\n\nUse the code below to get started with the model.## Training Details### Training Data### Training Procedure#### Preprocessing [optional]#### Training Hyperparameters\n\n- Training regime:#### Speeds, Sizes, Times [optional]## Evaluation### Testing Data, Factors & Metrics#### Testing Data#### Factors#### Metrics### Results#### Summary## Model Examination [optional]## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:## Technical Specifications [optional]### Model Architecture and Objective### Compute Infrastructure#### Hardware#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Model Card Authors [optional]## Model Card Contact### Framework versions\n\n- PEFT 0.10.0" ]
feature-extraction
transformers
# fine-tuned/medical-10-10-1-jinaai_jina-embeddings-v2-small-en-50-gpt-3.5-turbo-01_8647177611 ## Model Description fine-tuned/medical-10-10-1-jinaai_jina-embeddings-v2-small-en-50-gpt-3.5-turbo-01_8647177611 is a fine-tuned version of jinaai/jina-embeddings-v2-small-en designed for a specific domain. ## Use Case This model is designed to support various applications in natural language processing and understanding. ## Associated Dataset This the dataset for this model can be found [**here**](https://huggingface.co/datasets/fine-tuned/fine-tuned/medical-10-10-1-jinaai_jina-embeddings-v2-small-en-50-gpt-3.5-turbo-01_8647177611). ## How to Use This model can be easily integrated into your NLP pipeline for tasks such as text classification, sentiment analysis, entity recognition, and more. Here's a simple example to get you started: ```python from transformers import AutoModel, AutoTokenizer llm_name = "fine-tuned/medical-10-10-1-jinaai_jina-embeddings-v2-small-en-50-gpt-3.5-turbo-01_8647177611" tokenizer = AutoTokenizer.from_pretrained(llm_name) model = AutoModel.from_pretrained(llm_name, trust_remote_code=True) tokens = tokenizer("Your text here", return_tensors="pt") embedding = model(**tokens) ```
{}
fine-tuned/medical-10-10-1-jinaai_jina-embeddings-v2-small-en-50-gpt-3.5-turbo-01_8647177611
null
[ "transformers", "safetensors", "bert", "feature-extraction", "custom_code", "region:us" ]
null
2024-04-30T20:38:18+00:00
[]
[]
TAGS #transformers #safetensors #bert #feature-extraction #custom_code #region-us
# fine-tuned/medical-10-10-1-jinaai_jina-embeddings-v2-small-en-50-gpt-3.5-turbo-01_8647177611 ## Model Description fine-tuned/medical-10-10-1-jinaai_jina-embeddings-v2-small-en-50-gpt-3.5-turbo-01_8647177611 is a fine-tuned version of jinaai/jina-embeddings-v2-small-en designed for a specific domain. ## Use Case This model is designed to support various applications in natural language processing and understanding. ## Associated Dataset This the dataset for this model can be found here. ## How to Use This model can be easily integrated into your NLP pipeline for tasks such as text classification, sentiment analysis, entity recognition, and more. Here's a simple example to get you started:
[ "# fine-tuned/medical-10-10-1-jinaai_jina-embeddings-v2-small-en-50-gpt-3.5-turbo-01_8647177611", "## Model Description\n\nfine-tuned/medical-10-10-1-jinaai_jina-embeddings-v2-small-en-50-gpt-3.5-turbo-01_8647177611 is a fine-tuned version of jinaai/jina-embeddings-v2-small-en designed for a specific domain.", "## Use Case\nThis model is designed to support various applications in natural language processing and understanding.", "## Associated Dataset\n\nThis the dataset for this model can be found here.", "## How to Use\n\nThis model can be easily integrated into your NLP pipeline for tasks such as text classification, sentiment analysis, entity recognition, and more. Here's a simple example to get you started:" ]
[ "TAGS\n#transformers #safetensors #bert #feature-extraction #custom_code #region-us \n", "# fine-tuned/medical-10-10-1-jinaai_jina-embeddings-v2-small-en-50-gpt-3.5-turbo-01_8647177611", "## Model Description\n\nfine-tuned/medical-10-10-1-jinaai_jina-embeddings-v2-small-en-50-gpt-3.5-turbo-01_8647177611 is a fine-tuned version of jinaai/jina-embeddings-v2-small-en designed for a specific domain.", "## Use Case\nThis model is designed to support various applications in natural language processing and understanding.", "## Associated Dataset\n\nThis the dataset for this model can be found here.", "## How to Use\n\nThis model can be easily integrated into your NLP pipeline for tasks such as text classification, sentiment analysis, entity recognition, and more. Here's a simple example to get you started:" ]
[ 21, 51, 85, 19, 17, 43 ]
[ "TAGS\n#transformers #safetensors #bert #feature-extraction #custom_code #region-us \n# fine-tuned/medical-10-10-1-jinaai_jina-embeddings-v2-small-en-50-gpt-3.5-turbo-01_8647177611## Model Description\n\nfine-tuned/medical-10-10-1-jinaai_jina-embeddings-v2-small-en-50-gpt-3.5-turbo-01_8647177611 is a fine-tuned version of jinaai/jina-embeddings-v2-small-en designed for a specific domain.## Use Case\nThis model is designed to support various applications in natural language processing and understanding.## Associated Dataset\n\nThis the dataset for this model can be found here.## How to Use\n\nThis model can be easily integrated into your NLP pipeline for tasks such as text classification, sentiment analysis, entity recognition, and more. Here's a simple example to get you started:" ]
text-to-image
diffusers
<!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # DreamBooth - yuffish/blackchair-segmented This is a dreambooth model derived from stabilityai/stable-diffusion-2-1-base. The weights were trained on a photo of sks object using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. DreamBooth for the text encoder was enabled: False. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training details [TODO: describe the data used to train the model]
{"license": "creativeml-openrail-m", "library_name": "diffusers", "tags": ["text-to-image", "dreambooth", "diffusers-training", "stable-diffusion", "stable-diffusion-diffusers"], "inference": true, "base_model": "stabilityai/stable-diffusion-2-1-base", "instance_prompt": "a photo of sks object"}
yuffish/blackchair-segmented
null
[ "diffusers", "tensorboard", "safetensors", "text-to-image", "dreambooth", "diffusers-training", "stable-diffusion", "stable-diffusion-diffusers", "base_model:stabilityai/stable-diffusion-2-1-base", "license:creativeml-openrail-m", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
null
2024-04-30T20:39:46+00:00
[]
[]
TAGS #diffusers #tensorboard #safetensors #text-to-image #dreambooth #diffusers-training #stable-diffusion #stable-diffusion-diffusers #base_model-stabilityai/stable-diffusion-2-1-base #license-creativeml-openrail-m #endpoints_compatible #diffusers-StableDiffusionPipeline #region-us
# DreamBooth - yuffish/blackchair-segmented This is a dreambooth model derived from stabilityai/stable-diffusion-2-1-base. The weights were trained on a photo of sks object using DreamBooth. You can find some example images in the following. DreamBooth for the text encoder was enabled: False. ## Intended uses & limitations #### How to use #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training details [TODO: describe the data used to train the model]
[ "# DreamBooth - yuffish/blackchair-segmented\n\nThis is a dreambooth model derived from stabilityai/stable-diffusion-2-1-base. The weights were trained on a photo of sks object using DreamBooth.\nYou can find some example images in the following. \n\n\n\nDreamBooth for the text encoder was enabled: False.", "## Intended uses & limitations", "#### How to use", "#### Limitations and bias\n\n[TODO: provide examples of latent issues and potential remediations]", "## Training details\n\n[TODO: describe the data used to train the model]" ]
[ "TAGS\n#diffusers #tensorboard #safetensors #text-to-image #dreambooth #diffusers-training #stable-diffusion #stable-diffusion-diffusers #base_model-stabilityai/stable-diffusion-2-1-base #license-creativeml-openrail-m #endpoints_compatible #diffusers-StableDiffusionPipeline #region-us \n", "# DreamBooth - yuffish/blackchair-segmented\n\nThis is a dreambooth model derived from stabilityai/stable-diffusion-2-1-base. The weights were trained on a photo of sks object using DreamBooth.\nYou can find some example images in the following. \n\n\n\nDreamBooth for the text encoder was enabled: False.", "## Intended uses & limitations", "#### How to use", "#### Limitations and bias\n\n[TODO: provide examples of latent issues and potential remediations]", "## Training details\n\n[TODO: describe the data used to train the model]" ]
[ 83, 77, 6, 7, 23, 17 ]
[ "TAGS\n#diffusers #tensorboard #safetensors #text-to-image #dreambooth #diffusers-training #stable-diffusion #stable-diffusion-diffusers #base_model-stabilityai/stable-diffusion-2-1-base #license-creativeml-openrail-m #endpoints_compatible #diffusers-StableDiffusionPipeline #region-us \n# DreamBooth - yuffish/blackchair-segmented\n\nThis is a dreambooth model derived from stabilityai/stable-diffusion-2-1-base. The weights were trained on a photo of sks object using DreamBooth.\nYou can find some example images in the following. \n\n\n\nDreamBooth for the text encoder was enabled: False.## Intended uses & limitations#### How to use#### Limitations and bias\n\n[TODO: provide examples of latent issues and potential remediations]## Training details\n\n[TODO: describe the data used to train the model]" ]
null
transformers
## ✨ Finetune for Free All notebooks are **beginner friendly**! Add your dataset, click "Run All", and you'll get a 2x faster finetuned model which can be exported to GGUF, vLLM or uploaded to Hugging Face. | Unsloth supports | Free Notebooks | Performance | Memory use | |-----------|---------|--------|----------| | **Llama 3 (8B)** | [▶️ Start for free](https://colab.research.google.com/drive/135ced7oHytdxu3N2DNe1Z0kqjyYIkDXp?usp=sharing) | 2x faster | 60% less | | **Mistral (7B)** | [▶️ Start for free](https://colab.research.google.com/drive/1Dyauq4kTZoLewQ1cApceUQVNcnnNTzg_?usp=sharing) | 2.2x faster | 73% less | | **Gemma (7B)** | [▶️ Start for free](https://colab.research.google.com/drive/10NbwlsRChbma1v55m8LAPYG15uQv6HLo?usp=sharing) | 2.4x faster | 71% less | | **ORPO** | [▶️ Start for free](https://colab.research.google.com/drive/11t4njE3c4Lxl-07OD8lJSMKkfyJml3Tn?usp=sharing) | 1.9x faster | 43% less | | **DPO Zephyr** | [▶️ Start for free](https://colab.research.google.com/drive/15vttTpzzVXv_tJwEk-hIcQ0S9FcEWvwP?usp=sharing) | 1.9x faster | 43% less | | **Phi-3 (3.8B)** | [▶️ Start for free](https://colab.research.google.com/drive/1NvkBmkHfucGO3Ve9s1NKZvMNlw5p83ym?usp=sharing) | 2x faster | 50% less | | **TinyLlama** | [▶️ Start for free](https://colab.research.google.com/drive/1AZghoNBQaMDgWJpi4RbffGM1h6raLUj9?usp=sharing) | 3.9x faster | 74% less |
{"license": "apache-2.0"}
kevin-hu-lab/finetuning
null
[ "transformers", "gguf", "llama", "license:apache-2.0", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-04-30T20:42:00+00:00
[]
[]
TAGS #transformers #gguf #llama #license-apache-2.0 #endpoints_compatible #text-generation-inference #region-us
Finetune for Free ----------------- All notebooks are beginner friendly! Add your dataset, click "Run All", and you'll get a 2x faster finetuned model which can be exported to GGUF, vLLM or uploaded to Hugging Face.
[]
[ "TAGS\n#transformers #gguf #llama #license-apache-2.0 #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 33 ]
[ "TAGS\n#transformers #gguf #llama #license-apache-2.0 #endpoints_compatible #text-generation-inference #region-us \n" ]
automatic-speech-recognition
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Base Ko - Dearlie This model is a fine-tuned version of [openai/whisper-base](https://huggingface.co/openai/whisper-base) on the Noise Data dataset. It achieves the following results on the evaluation set: - Loss: 5.4914 - Cer: 81.4735 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - training_steps: 500 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Cer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.0005 | 500.0 | 500 | 5.4914 | 81.4735 | ### Framework versions - Transformers 4.41.0.dev0 - Pytorch 2.3.0+cu121 - Datasets 2.19.0 - Tokenizers 0.19.1
{"language": ["ko"], "license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["AIHub/noise"], "base_model": "openai/whisper-base", "model-index": [{"name": "Whisper Base Ko - Dearlie", "results": []}]}
Dearlie/whisper-base
null
[ "transformers", "tensorboard", "safetensors", "whisper", "automatic-speech-recognition", "generated_from_trainer", "ko", "dataset:AIHub/noise", "base_model:openai/whisper-base", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-04-30T20:42:17+00:00
[]
[ "ko" ]
TAGS #transformers #tensorboard #safetensors #whisper #automatic-speech-recognition #generated_from_trainer #ko #dataset-AIHub/noise #base_model-openai/whisper-base #license-apache-2.0 #endpoints_compatible #region-us
Whisper Base Ko - Dearlie ========================= This model is a fine-tuned version of openai/whisper-base on the Noise Data dataset. It achieves the following results on the evaluation set: * Loss: 5.4914 * Cer: 81.4735 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 1e-05 * train\_batch\_size: 16 * eval\_batch\_size: 8 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * lr\_scheduler\_warmup\_steps: 50 * training\_steps: 500 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.41.0.dev0 * Pytorch 2.3.0+cu121 * Datasets 2.19.0 * Tokenizers 0.19.1
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 50\n* training\\_steps: 500\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.41.0.dev0\n* Pytorch 2.3.0+cu121\n* Datasets 2.19.0\n* Tokenizers 0.19.1" ]
[ "TAGS\n#transformers #tensorboard #safetensors #whisper #automatic-speech-recognition #generated_from_trainer #ko #dataset-AIHub/noise #base_model-openai/whisper-base #license-apache-2.0 #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 50\n* training\\_steps: 500\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.41.0.dev0\n* Pytorch 2.3.0+cu121\n* Datasets 2.19.0\n* Tokenizers 0.19.1" ]
[ 63, 126, 5, 47 ]
[ "TAGS\n#transformers #tensorboard #safetensors #whisper #automatic-speech-recognition #generated_from_trainer #ko #dataset-AIHub/noise #base_model-openai/whisper-base #license-apache-2.0 #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 50\n* training\\_steps: 500\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.41.0.dev0\n* Pytorch 2.3.0+cu121\n* Datasets 2.19.0\n* Tokenizers 0.19.1" ]
reinforcement-learning
stable-baselines3
# **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
{"library_name": "stable-baselines3", "tags": ["LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "stable-baselines3"], "model-index": [{"name": "PPO", "results": [{"task": {"type": "reinforcement-learning", "name": "reinforcement-learning"}, "dataset": {"name": "LunarLander-v2", "type": "LunarLander-v2"}, "metrics": [{"type": "mean_reward", "value": "257.62 +/- 17.43", "name": "mean_reward", "verified": false}]}]}]}
rodeoFlip/ppo-LunarLander-v2
null
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
null
2024-04-30T20:45:31+00:00
[]
[]
TAGS #stable-baselines3 #LunarLander-v2 #deep-reinforcement-learning #reinforcement-learning #model-index #region-us
# PPO Agent playing LunarLander-v2 This is a trained model of a PPO agent playing LunarLander-v2 using the stable-baselines3 library. ## Usage (with Stable-baselines3) TODO: Add your code
[ "# PPO Agent playing LunarLander-v2\nThis is a trained model of a PPO agent playing LunarLander-v2\nusing the stable-baselines3 library.", "## Usage (with Stable-baselines3)\nTODO: Add your code" ]
[ "TAGS\n#stable-baselines3 #LunarLander-v2 #deep-reinforcement-learning #reinforcement-learning #model-index #region-us \n", "# PPO Agent playing LunarLander-v2\nThis is a trained model of a PPO agent playing LunarLander-v2\nusing the stable-baselines3 library.", "## Usage (with Stable-baselines3)\nTODO: Add your code" ]
[ 31, 35, 17 ]
[ "TAGS\n#stable-baselines3 #LunarLander-v2 #deep-reinforcement-learning #reinforcement-learning #model-index #region-us \n# PPO Agent playing LunarLander-v2\nThis is a trained model of a PPO agent playing LunarLander-v2\nusing the stable-baselines3 library.## Usage (with Stable-baselines3)\nTODO: Add your code" ]
text-generation
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
shallow6414/1q31l6l
null
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-04-30T20:48:10+00:00
[ "1910.09700" ]
[]
TAGS #transformers #safetensors #llama #text-generation #conversational #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# Model Card for Model ID ## Model Details ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #safetensors #llama #text-generation #conversational #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ 47, 6, 4, 75, 23, 3, 5, 8, 9, 8, 34, 20, 4, 5, 5, 11, 13, 12, 3, 10, 6, 5, 6, 4, 5, 7, 49, 7, 7, 5, 5, 15, 7, 7, 8, 5 ]
[ "TAGS\n#transformers #safetensors #llama #text-generation #conversational #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# Model Card for Model ID## Model Details### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Downstream Use [optional]### Out-of-Scope Use## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.## How to Get Started with the Model\n\nUse the code below to get started with the model.## Training Details### Training Data### Training Procedure#### Preprocessing [optional]#### Training Hyperparameters\n\n- Training regime:#### Speeds, Sizes, Times [optional]## Evaluation### Testing Data, Factors & Metrics#### Testing Data#### Factors#### Metrics### Results#### Summary## Model Examination [optional]## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:## Technical Specifications [optional]### Model Architecture and Objective### Compute Infrastructure#### Hardware#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Model Card Authors [optional]## Model Card Contact" ]
text-generation
transformers
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) Qwen1.5-0.5B-Chat - bnb 4bits - Model creator: https://huggingface.co/Qwen/ - Original model: https://huggingface.co/Qwen/Qwen1.5-0.5B-Chat/ Original model description: --- license: other license_name: tongyi-qianwen-research license_link: >- https://huggingface.co/Qwen/Qwen1.5-0.5B-Chat/blob/main/LICENSE language: - en pipeline_tag: text-generation tags: - chat --- # Qwen1.5-0.5B-Chat ## Introduction Qwen1.5 is the beta version of Qwen2, a transformer-based decoder-only language model pretrained on a large amount of data. In comparison with the previous released Qwen, the improvements include: * 8 model sizes, including 0.5B, 1.8B, 4B, 7B, 14B, 32B and 72B dense models, and an MoE model of 14B with 2.7B activated; * Significant performance improvement in human preference for chat models; * Multilingual support of both base and chat models; * Stable support of 32K context length for models of all sizes * No need of `trust_remote_code`. For more details, please refer to our [blog post](https://qwenlm.github.io/blog/qwen1.5/) and [GitHub repo](https://github.com/QwenLM/Qwen1.5). <br> ## Model Details Qwen1.5 is a language model series including decoder language models of different model sizes. For each size, we release the base language model and the aligned chat model. It is based on the Transformer architecture with SwiGLU activation, attention QKV bias, group query attention, mixture of sliding window attention and full attention, etc. Additionally, we have an improved tokenizer adaptive to multiple natural languages and codes. For the beta version, temporarily we did not include GQA (except for 32B) and the mixture of SWA and full attention. ## Training details We pretrained the models with a large amount of data, and we post-trained the models with both supervised finetuning and direct preference optimization. ## Requirements The code of Qwen1.5 has been in the latest Hugging face transformers and we advise you to install `transformers>=4.37.0`, or you might encounter the following error: ``` KeyError: 'qwen2' ``` ## Quickstart Here provides a code snippet with `apply_chat_template` to show you how to load the tokenizer and model and how to generate contents. ```python from transformers import AutoModelForCausalLM, AutoTokenizer device = "cuda" # the device to load the model onto model = AutoModelForCausalLM.from_pretrained( "Qwen/Qwen1.5-0.5B-Chat", torch_dtype="auto", device_map="auto" ) tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen1.5-0.5B-Chat") prompt = "Give me a short introduction to large language model." messages = [ {"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": prompt} ] text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) model_inputs = tokenizer([text], return_tensors="pt").to(device) generated_ids = model.generate( model_inputs.input_ids, max_new_tokens=512 ) generated_ids = [ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) ] response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] ``` For quantized models, we advise you to use the GPTQ, AWQ, and GGUF correspondents, namely `Qwen1.5-0.5B-Chat-GPTQ-Int4`, `Qwen1.5-0.5B-Chat-GPTQ-Int8`, `Qwen1.5-0.5B-Chat-AWQ`, and `Qwen1.5-0.5B-Chat-GGUF`. ## Tips * If you encounter code switching or other bad cases, we advise you to use our provided hyper-parameters in `generation_config.json`. ## Citation If you find our work helpful, feel free to give us a cite. ``` @article{qwen, title={Qwen Technical Report}, author={Jinze Bai and Shuai Bai and Yunfei Chu and Zeyu Cui and Kai Dang and Xiaodong Deng and Yang Fan and Wenbin Ge and Yu Han and Fei Huang and Binyuan Hui and Luo Ji and Mei Li and Junyang Lin and Runji Lin and Dayiheng Liu and Gao Liu and Chengqiang Lu and Keming Lu and Jianxin Ma and Rui Men and Xingzhang Ren and Xuancheng Ren and Chuanqi Tan and Sinan Tan and Jianhong Tu and Peng Wang and Shijie Wang and Wei Wang and Shengguang Wu and Benfeng Xu and Jin Xu and An Yang and Hao Yang and Jian Yang and Shusheng Yang and Yang Yao and Bowen Yu and Hongyi Yuan and Zheng Yuan and Jianwei Zhang and Xingxuan Zhang and Yichang Zhang and Zhenru Zhang and Chang Zhou and Jingren Zhou and Xiaohuan Zhou and Tianhang Zhu}, journal={arXiv preprint arXiv:2309.16609}, year={2023} } ```
{}
RichardErkhov/Qwen_-_Qwen1.5-0.5B-Chat-4bits
null
[ "transformers", "safetensors", "qwen2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "4-bit", "region:us" ]
null
2024-04-30T20:48:22+00:00
[]
[]
TAGS #transformers #safetensors #qwen2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #4-bit #region-us
Quantization made by Richard Erkhov. Github Discord Request more models Qwen1.5-0.5B-Chat - bnb 4bits - Model creator: URL - Original model: URL Original model description: --- license: other license_name: tongyi-qianwen-research license_link: >- URL language: - en pipeline_tag: text-generation tags: - chat --- # Qwen1.5-0.5B-Chat ## Introduction Qwen1.5 is the beta version of Qwen2, a transformer-based decoder-only language model pretrained on a large amount of data. In comparison with the previous released Qwen, the improvements include: * 8 model sizes, including 0.5B, 1.8B, 4B, 7B, 14B, 32B and 72B dense models, and an MoE model of 14B with 2.7B activated; * Significant performance improvement in human preference for chat models; * Multilingual support of both base and chat models; * Stable support of 32K context length for models of all sizes * No need of 'trust_remote_code'. For more details, please refer to our blog post and GitHub repo. <br> ## Model Details Qwen1.5 is a language model series including decoder language models of different model sizes. For each size, we release the base language model and the aligned chat model. It is based on the Transformer architecture with SwiGLU activation, attention QKV bias, group query attention, mixture of sliding window attention and full attention, etc. Additionally, we have an improved tokenizer adaptive to multiple natural languages and codes. For the beta version, temporarily we did not include GQA (except for 32B) and the mixture of SWA and full attention. ## Training details We pretrained the models with a large amount of data, and we post-trained the models with both supervised finetuning and direct preference optimization. ## Requirements The code of Qwen1.5 has been in the latest Hugging face transformers and we advise you to install 'transformers>=4.37.0', or you might encounter the following error: ## Quickstart Here provides a code snippet with 'apply_chat_template' to show you how to load the tokenizer and model and how to generate contents. For quantized models, we advise you to use the GPTQ, AWQ, and GGUF correspondents, namely 'Qwen1.5-0.5B-Chat-GPTQ-Int4', 'Qwen1.5-0.5B-Chat-GPTQ-Int8', 'Qwen1.5-0.5B-Chat-AWQ', and 'Qwen1.5-0.5B-Chat-GGUF'. ## Tips * If you encounter code switching or other bad cases, we advise you to use our provided hyper-parameters in 'generation_config.json'. If you find our work helpful, feel free to give us a cite.
[ "# Qwen1.5-0.5B-Chat", "## Introduction\n\nQwen1.5 is the beta version of Qwen2, a transformer-based decoder-only language model pretrained on a large amount of data. In comparison with the previous released Qwen, the improvements include: \n\n* 8 model sizes, including 0.5B, 1.8B, 4B, 7B, 14B, 32B and 72B dense models, and an MoE model of 14B with 2.7B activated;\n* Significant performance improvement in human preference for chat models;\n* Multilingual support of both base and chat models;\n* Stable support of 32K context length for models of all sizes\n* No need of 'trust_remote_code'.\n\nFor more details, please refer to our blog post and GitHub repo.\n<br>", "## Model Details\nQwen1.5 is a language model series including decoder language models of different model sizes. For each size, we release the base language model and the aligned chat model. It is based on the Transformer architecture with SwiGLU activation, attention QKV bias, group query attention, mixture of sliding window attention and full attention, etc. Additionally, we have an improved tokenizer adaptive to multiple natural languages and codes. For the beta version, temporarily we did not include GQA (except for 32B) and the mixture of SWA and full attention.", "## Training details\nWe pretrained the models with a large amount of data, and we post-trained the models with both supervised finetuning and direct preference optimization.", "## Requirements\nThe code of Qwen1.5 has been in the latest Hugging face transformers and we advise you to install 'transformers>=4.37.0', or you might encounter the following error:", "## Quickstart\n\nHere provides a code snippet with 'apply_chat_template' to show you how to load the tokenizer and model and how to generate contents.\n\n\n\nFor quantized models, we advise you to use the GPTQ, AWQ, and GGUF correspondents, namely 'Qwen1.5-0.5B-Chat-GPTQ-Int4', 'Qwen1.5-0.5B-Chat-GPTQ-Int8', 'Qwen1.5-0.5B-Chat-AWQ', and 'Qwen1.5-0.5B-Chat-GGUF'.", "## Tips\n\n* If you encounter code switching or other bad cases, we advise you to use our provided hyper-parameters in 'generation_config.json'.\n\n\nIf you find our work helpful, feel free to give us a cite." ]
[ "TAGS\n#transformers #safetensors #qwen2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #4-bit #region-us \n", "# Qwen1.5-0.5B-Chat", "## Introduction\n\nQwen1.5 is the beta version of Qwen2, a transformer-based decoder-only language model pretrained on a large amount of data. In comparison with the previous released Qwen, the improvements include: \n\n* 8 model sizes, including 0.5B, 1.8B, 4B, 7B, 14B, 32B and 72B dense models, and an MoE model of 14B with 2.7B activated;\n* Significant performance improvement in human preference for chat models;\n* Multilingual support of both base and chat models;\n* Stable support of 32K context length for models of all sizes\n* No need of 'trust_remote_code'.\n\nFor more details, please refer to our blog post and GitHub repo.\n<br>", "## Model Details\nQwen1.5 is a language model series including decoder language models of different model sizes. For each size, we release the base language model and the aligned chat model. It is based on the Transformer architecture with SwiGLU activation, attention QKV bias, group query attention, mixture of sliding window attention and full attention, etc. Additionally, we have an improved tokenizer adaptive to multiple natural languages and codes. For the beta version, temporarily we did not include GQA (except for 32B) and the mixture of SWA and full attention.", "## Training details\nWe pretrained the models with a large amount of data, and we post-trained the models with both supervised finetuning and direct preference optimization.", "## Requirements\nThe code of Qwen1.5 has been in the latest Hugging face transformers and we advise you to install 'transformers>=4.37.0', or you might encounter the following error:", "## Quickstart\n\nHere provides a code snippet with 'apply_chat_template' to show you how to load the tokenizer and model and how to generate contents.\n\n\n\nFor quantized models, we advise you to use the GPTQ, AWQ, and GGUF correspondents, namely 'Qwen1.5-0.5B-Chat-GPTQ-Int4', 'Qwen1.5-0.5B-Chat-GPTQ-Int8', 'Qwen1.5-0.5B-Chat-AWQ', and 'Qwen1.5-0.5B-Chat-GGUF'.", "## Tips\n\n* If you encounter code switching or other bad cases, we advise you to use our provided hyper-parameters in 'generation_config.json'.\n\n\nIf you find our work helpful, feel free to give us a cite." ]
[ 42, 13, 166, 119, 35, 44, 145, 51 ]
[ "TAGS\n#transformers #safetensors #qwen2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #4-bit #region-us \n# Qwen1.5-0.5B-Chat## Introduction\n\nQwen1.5 is the beta version of Qwen2, a transformer-based decoder-only language model pretrained on a large amount of data. In comparison with the previous released Qwen, the improvements include: \n\n* 8 model sizes, including 0.5B, 1.8B, 4B, 7B, 14B, 32B and 72B dense models, and an MoE model of 14B with 2.7B activated;\n* Significant performance improvement in human preference for chat models;\n* Multilingual support of both base and chat models;\n* Stable support of 32K context length for models of all sizes\n* No need of 'trust_remote_code'.\n\nFor more details, please refer to our blog post and GitHub repo.\n<br>## Model Details\nQwen1.5 is a language model series including decoder language models of different model sizes. For each size, we release the base language model and the aligned chat model. It is based on the Transformer architecture with SwiGLU activation, attention QKV bias, group query attention, mixture of sliding window attention and full attention, etc. Additionally, we have an improved tokenizer adaptive to multiple natural languages and codes. For the beta version, temporarily we did not include GQA (except for 32B) and the mixture of SWA and full attention.## Training details\nWe pretrained the models with a large amount of data, and we post-trained the models with both supervised finetuning and direct preference optimization.## Requirements\nThe code of Qwen1.5 has been in the latest Hugging face transformers and we advise you to install 'transformers>=4.37.0', or you might encounter the following error:## Quickstart\n\nHere provides a code snippet with 'apply_chat_template' to show you how to load the tokenizer and model and how to generate contents.\n\n\n\nFor quantized models, we advise you to use the GPTQ, AWQ, and GGUF correspondents, namely 'Qwen1.5-0.5B-Chat-GPTQ-Int4', 'Qwen1.5-0.5B-Chat-GPTQ-Int8', 'Qwen1.5-0.5B-Chat-AWQ', and 'Qwen1.5-0.5B-Chat-GGUF'.## Tips\n\n* If you encounter code switching or other bad cases, we advise you to use our provided hyper-parameters in 'generation_config.json'.\n\n\nIf you find our work helpful, feel free to give us a cite." ]
text-generation
transformers
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) Qwen1.5-0.5B-Chat - bnb 8bits - Model creator: https://huggingface.co/Qwen/ - Original model: https://huggingface.co/Qwen/Qwen1.5-0.5B-Chat/ Original model description: --- license: other license_name: tongyi-qianwen-research license_link: >- https://huggingface.co/Qwen/Qwen1.5-0.5B-Chat/blob/main/LICENSE language: - en pipeline_tag: text-generation tags: - chat --- # Qwen1.5-0.5B-Chat ## Introduction Qwen1.5 is the beta version of Qwen2, a transformer-based decoder-only language model pretrained on a large amount of data. In comparison with the previous released Qwen, the improvements include: * 8 model sizes, including 0.5B, 1.8B, 4B, 7B, 14B, 32B and 72B dense models, and an MoE model of 14B with 2.7B activated; * Significant performance improvement in human preference for chat models; * Multilingual support of both base and chat models; * Stable support of 32K context length for models of all sizes * No need of `trust_remote_code`. For more details, please refer to our [blog post](https://qwenlm.github.io/blog/qwen1.5/) and [GitHub repo](https://github.com/QwenLM/Qwen1.5). <br> ## Model Details Qwen1.5 is a language model series including decoder language models of different model sizes. For each size, we release the base language model and the aligned chat model. It is based on the Transformer architecture with SwiGLU activation, attention QKV bias, group query attention, mixture of sliding window attention and full attention, etc. Additionally, we have an improved tokenizer adaptive to multiple natural languages and codes. For the beta version, temporarily we did not include GQA (except for 32B) and the mixture of SWA and full attention. ## Training details We pretrained the models with a large amount of data, and we post-trained the models with both supervised finetuning and direct preference optimization. ## Requirements The code of Qwen1.5 has been in the latest Hugging face transformers and we advise you to install `transformers>=4.37.0`, or you might encounter the following error: ``` KeyError: 'qwen2' ``` ## Quickstart Here provides a code snippet with `apply_chat_template` to show you how to load the tokenizer and model and how to generate contents. ```python from transformers import AutoModelForCausalLM, AutoTokenizer device = "cuda" # the device to load the model onto model = AutoModelForCausalLM.from_pretrained( "Qwen/Qwen1.5-0.5B-Chat", torch_dtype="auto", device_map="auto" ) tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen1.5-0.5B-Chat") prompt = "Give me a short introduction to large language model." messages = [ {"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": prompt} ] text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) model_inputs = tokenizer([text], return_tensors="pt").to(device) generated_ids = model.generate( model_inputs.input_ids, max_new_tokens=512 ) generated_ids = [ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) ] response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] ``` For quantized models, we advise you to use the GPTQ, AWQ, and GGUF correspondents, namely `Qwen1.5-0.5B-Chat-GPTQ-Int4`, `Qwen1.5-0.5B-Chat-GPTQ-Int8`, `Qwen1.5-0.5B-Chat-AWQ`, and `Qwen1.5-0.5B-Chat-GGUF`. ## Tips * If you encounter code switching or other bad cases, we advise you to use our provided hyper-parameters in `generation_config.json`. ## Citation If you find our work helpful, feel free to give us a cite. ``` @article{qwen, title={Qwen Technical Report}, author={Jinze Bai and Shuai Bai and Yunfei Chu and Zeyu Cui and Kai Dang and Xiaodong Deng and Yang Fan and Wenbin Ge and Yu Han and Fei Huang and Binyuan Hui and Luo Ji and Mei Li and Junyang Lin and Runji Lin and Dayiheng Liu and Gao Liu and Chengqiang Lu and Keming Lu and Jianxin Ma and Rui Men and Xingzhang Ren and Xuancheng Ren and Chuanqi Tan and Sinan Tan and Jianhong Tu and Peng Wang and Shijie Wang and Wei Wang and Shengguang Wu and Benfeng Xu and Jin Xu and An Yang and Hao Yang and Jian Yang and Shusheng Yang and Yang Yao and Bowen Yu and Hongyi Yuan and Zheng Yuan and Jianwei Zhang and Xingxuan Zhang and Yichang Zhang and Zhenru Zhang and Chang Zhou and Jingren Zhou and Xiaohuan Zhou and Tianhang Zhu}, journal={arXiv preprint arXiv:2309.16609}, year={2023} } ```
{}
RichardErkhov/Qwen_-_Qwen1.5-0.5B-Chat-8bits
null
[ "transformers", "safetensors", "qwen2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "8-bit", "region:us" ]
null
2024-04-30T20:49:36+00:00
[]
[]
TAGS #transformers #safetensors #qwen2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #8-bit #region-us
Quantization made by Richard Erkhov. Github Discord Request more models Qwen1.5-0.5B-Chat - bnb 8bits - Model creator: URL - Original model: URL Original model description: --- license: other license_name: tongyi-qianwen-research license_link: >- URL language: - en pipeline_tag: text-generation tags: - chat --- # Qwen1.5-0.5B-Chat ## Introduction Qwen1.5 is the beta version of Qwen2, a transformer-based decoder-only language model pretrained on a large amount of data. In comparison with the previous released Qwen, the improvements include: * 8 model sizes, including 0.5B, 1.8B, 4B, 7B, 14B, 32B and 72B dense models, and an MoE model of 14B with 2.7B activated; * Significant performance improvement in human preference for chat models; * Multilingual support of both base and chat models; * Stable support of 32K context length for models of all sizes * No need of 'trust_remote_code'. For more details, please refer to our blog post and GitHub repo. <br> ## Model Details Qwen1.5 is a language model series including decoder language models of different model sizes. For each size, we release the base language model and the aligned chat model. It is based on the Transformer architecture with SwiGLU activation, attention QKV bias, group query attention, mixture of sliding window attention and full attention, etc. Additionally, we have an improved tokenizer adaptive to multiple natural languages and codes. For the beta version, temporarily we did not include GQA (except for 32B) and the mixture of SWA and full attention. ## Training details We pretrained the models with a large amount of data, and we post-trained the models with both supervised finetuning and direct preference optimization. ## Requirements The code of Qwen1.5 has been in the latest Hugging face transformers and we advise you to install 'transformers>=4.37.0', or you might encounter the following error: ## Quickstart Here provides a code snippet with 'apply_chat_template' to show you how to load the tokenizer and model and how to generate contents. For quantized models, we advise you to use the GPTQ, AWQ, and GGUF correspondents, namely 'Qwen1.5-0.5B-Chat-GPTQ-Int4', 'Qwen1.5-0.5B-Chat-GPTQ-Int8', 'Qwen1.5-0.5B-Chat-AWQ', and 'Qwen1.5-0.5B-Chat-GGUF'. ## Tips * If you encounter code switching or other bad cases, we advise you to use our provided hyper-parameters in 'generation_config.json'. If you find our work helpful, feel free to give us a cite.
[ "# Qwen1.5-0.5B-Chat", "## Introduction\n\nQwen1.5 is the beta version of Qwen2, a transformer-based decoder-only language model pretrained on a large amount of data. In comparison with the previous released Qwen, the improvements include: \n\n* 8 model sizes, including 0.5B, 1.8B, 4B, 7B, 14B, 32B and 72B dense models, and an MoE model of 14B with 2.7B activated;\n* Significant performance improvement in human preference for chat models;\n* Multilingual support of both base and chat models;\n* Stable support of 32K context length for models of all sizes\n* No need of 'trust_remote_code'.\n\nFor more details, please refer to our blog post and GitHub repo.\n<br>", "## Model Details\nQwen1.5 is a language model series including decoder language models of different model sizes. For each size, we release the base language model and the aligned chat model. It is based on the Transformer architecture with SwiGLU activation, attention QKV bias, group query attention, mixture of sliding window attention and full attention, etc. Additionally, we have an improved tokenizer adaptive to multiple natural languages and codes. For the beta version, temporarily we did not include GQA (except for 32B) and the mixture of SWA and full attention.", "## Training details\nWe pretrained the models with a large amount of data, and we post-trained the models with both supervised finetuning and direct preference optimization.", "## Requirements\nThe code of Qwen1.5 has been in the latest Hugging face transformers and we advise you to install 'transformers>=4.37.0', or you might encounter the following error:", "## Quickstart\n\nHere provides a code snippet with 'apply_chat_template' to show you how to load the tokenizer and model and how to generate contents.\n\n\n\nFor quantized models, we advise you to use the GPTQ, AWQ, and GGUF correspondents, namely 'Qwen1.5-0.5B-Chat-GPTQ-Int4', 'Qwen1.5-0.5B-Chat-GPTQ-Int8', 'Qwen1.5-0.5B-Chat-AWQ', and 'Qwen1.5-0.5B-Chat-GGUF'.", "## Tips\n\n* If you encounter code switching or other bad cases, we advise you to use our provided hyper-parameters in 'generation_config.json'.\n\n\nIf you find our work helpful, feel free to give us a cite." ]
[ "TAGS\n#transformers #safetensors #qwen2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #8-bit #region-us \n", "# Qwen1.5-0.5B-Chat", "## Introduction\n\nQwen1.5 is the beta version of Qwen2, a transformer-based decoder-only language model pretrained on a large amount of data. In comparison with the previous released Qwen, the improvements include: \n\n* 8 model sizes, including 0.5B, 1.8B, 4B, 7B, 14B, 32B and 72B dense models, and an MoE model of 14B with 2.7B activated;\n* Significant performance improvement in human preference for chat models;\n* Multilingual support of both base and chat models;\n* Stable support of 32K context length for models of all sizes\n* No need of 'trust_remote_code'.\n\nFor more details, please refer to our blog post and GitHub repo.\n<br>", "## Model Details\nQwen1.5 is a language model series including decoder language models of different model sizes. For each size, we release the base language model and the aligned chat model. It is based on the Transformer architecture with SwiGLU activation, attention QKV bias, group query attention, mixture of sliding window attention and full attention, etc. Additionally, we have an improved tokenizer adaptive to multiple natural languages and codes. For the beta version, temporarily we did not include GQA (except for 32B) and the mixture of SWA and full attention.", "## Training details\nWe pretrained the models with a large amount of data, and we post-trained the models with both supervised finetuning and direct preference optimization.", "## Requirements\nThe code of Qwen1.5 has been in the latest Hugging face transformers and we advise you to install 'transformers>=4.37.0', or you might encounter the following error:", "## Quickstart\n\nHere provides a code snippet with 'apply_chat_template' to show you how to load the tokenizer and model and how to generate contents.\n\n\n\nFor quantized models, we advise you to use the GPTQ, AWQ, and GGUF correspondents, namely 'Qwen1.5-0.5B-Chat-GPTQ-Int4', 'Qwen1.5-0.5B-Chat-GPTQ-Int8', 'Qwen1.5-0.5B-Chat-AWQ', and 'Qwen1.5-0.5B-Chat-GGUF'.", "## Tips\n\n* If you encounter code switching or other bad cases, we advise you to use our provided hyper-parameters in 'generation_config.json'.\n\n\nIf you find our work helpful, feel free to give us a cite." ]
[ 42, 13, 166, 119, 35, 44, 145, 51 ]
[ "TAGS\n#transformers #safetensors #qwen2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #8-bit #region-us \n# Qwen1.5-0.5B-Chat## Introduction\n\nQwen1.5 is the beta version of Qwen2, a transformer-based decoder-only language model pretrained on a large amount of data. In comparison with the previous released Qwen, the improvements include: \n\n* 8 model sizes, including 0.5B, 1.8B, 4B, 7B, 14B, 32B and 72B dense models, and an MoE model of 14B with 2.7B activated;\n* Significant performance improvement in human preference for chat models;\n* Multilingual support of both base and chat models;\n* Stable support of 32K context length for models of all sizes\n* No need of 'trust_remote_code'.\n\nFor more details, please refer to our blog post and GitHub repo.\n<br>## Model Details\nQwen1.5 is a language model series including decoder language models of different model sizes. For each size, we release the base language model and the aligned chat model. It is based on the Transformer architecture with SwiGLU activation, attention QKV bias, group query attention, mixture of sliding window attention and full attention, etc. Additionally, we have an improved tokenizer adaptive to multiple natural languages and codes. For the beta version, temporarily we did not include GQA (except for 32B) and the mixture of SWA and full attention.## Training details\nWe pretrained the models with a large amount of data, and we post-trained the models with both supervised finetuning and direct preference optimization.## Requirements\nThe code of Qwen1.5 has been in the latest Hugging face transformers and we advise you to install 'transformers>=4.37.0', or you might encounter the following error:## Quickstart\n\nHere provides a code snippet with 'apply_chat_template' to show you how to load the tokenizer and model and how to generate contents.\n\n\n\nFor quantized models, we advise you to use the GPTQ, AWQ, and GGUF correspondents, namely 'Qwen1.5-0.5B-Chat-GPTQ-Int4', 'Qwen1.5-0.5B-Chat-GPTQ-Int8', 'Qwen1.5-0.5B-Chat-AWQ', and 'Qwen1.5-0.5B-Chat-GGUF'.## Tips\n\n* If you encounter code switching or other bad cases, we advise you to use our provided hyper-parameters in 'generation_config.json'.\n\n\nIf you find our work helpful, feel free to give us a cite." ]
text-generation
transformers
# Llama-3-8B-Instruct-GPTQ-4-Bit - Original Model creator: [Meta Llama from Meta](https://huggingface.co/meta-llama) - Original model: [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) - Built with Meta Llama 3 - Quantized by [Astronomer](https://astronomer.io) # Important Note About Serving with vLLM & oobabooga/text-generation-webui - For loading this model onto vLLM, make sure all requests have `"stop_token_ids":[128001, 128009]` to temporarily address the non-stop generation issue. - vLLM does not yet respect `generation_config.json`. - vLLM team is working on a a fix for this https://github.com/vllm-project/vllm/issues/4180 - For oobabooga/text-generation-webui - Load the model via AutoGPTQ, with `no_inject_fused_attention` enabled. This is a bug with AutoGPTQ library. - Under `Parameters` -> `Generation` -> `Skip special tokens`: turn this off (deselect) - Under `Parameters` -> `Generation` -> `Custom stopping strings`: add `"<|end_of_text|>","<|eot_id|>"` to the field <!-- description start --> ## Description This repo contains 4 Bit quantized GPTQ model files for [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct). This model can be loaded with less than 6 GB of VRAM (huge reduction from the original 16.07GB model) and can be served lightning fast with the cheapest Nvidia GPUs possible (Nvidia T4, Nvidia K80, RTX 4070, etc). The 4 bit GPTQ quant has small quality degradation from the original `bfloat16` model but can be served on much smaller GPUs with maximum improvement in latency and throughput. <!-- description end --> ## GPTQ Quantization Method - This model is quantized by utilizing the AutoGPTQ library, following best practices noted by [GPTQ paper](https://arxiv.org/abs/2210.17323) - Quantization is calibrated and aligned with random samples from the specified dataset (wikitext for now) for minimum accuracy loss. | Branch | Bits | Group Size | Act Order | Damp % | GPTQ Dataset | Sequence Length | VRAM Size | ExLlama | Description | | ------ | ---- | -- | --------- | ------ | ------------ | ------- | ---- | ------- | ---- | | [main](https://huggingface.co/astronomer-io/Llama-3-8B-Instruct-GPTQ-4-Bit/tree/main) | 4 | 128 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 8192 | 5.74 GB | Yes | 4-bit, with Act Order and group size 128g. Smallest model possible with small accuracy loss | | More variants to come | TBD | TBD | TBD | TBD | TBD | TBD | TBD | TBD | May upload additional variants of GPTQ 4 bit models in the future using different parameters such as 128g group size and etc. | ## Serving this GPTQ model using vLLM Tested serving this model via vLLM using an Nvidia T4 (16GB VRAM). Tested with the below command ``` python -m vllm.entrypoints.openai.api_server --model astronomer-io/Llama-3-8B-Instruct-GPTQ-4-Bit --max-model-len 8192 --dtype float16 ``` For the non-stop token generation bug, make sure to send requests with `stop_token_ids":[128001, 128009]` to vLLM endpoint Example: ```json { "model": "astronomer-io/Llama-3-8B-Instruct-GPTQ-4-Bit", "messages": [ {"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": "Who created Llama 3?"} ], "max_tokens": 2000, "stop_token_ids":[128001,128009] } ``` ### Prompt Template ``` <|begin_of_text|><|start_header_id|>user<|end_header_id|> {{prompt}}<|eot_id|> <|start_header_id|>assistant<|end_header_id|> ``` ### Contributors - Quantized by [David Xue, Machine Learning Engineer from Astronomer](https://www.linkedin.com/in/david-xue-uva/)
{"license": "other", "tags": ["llama", "llama-3", "facebook", "meta", "astronomer", "gptq", "pretrained", "quantized", "finetuned", "autotrain_compatible", "endpoints_compatible"], "datasets": ["wikitext"], "model_name": "Meta-Llama-3-8B-Instruct", "base_model": "meta-llama/Meta-Llama-3-8B-Instruct", "inference": false, "model_creator": "astronomer-io", "model_type": "llama", "pipeline_tag": "text-generation", "prompt_template": "{% set loop_messages = messages %}{% for message in loop_messages %}{% set content = '<|start_header_id|>' + message['role'] + '<|end_header_id|>\n\n'+ message['content'] | trim + '<|eot_id|>' %}{% if loop.index0 == 0 %}{% set content = bos_token + content %}{% endif %}{{ content }}{% endfor %}{% if add_generation_prompt %}{{ '<|start_header_id|>assistant<|end_header_id|>\n\n' }}{% endif %}", "quantized_by": "davidxmle", "license_name": "llama-3-community-license", "license_link": "https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct/blob/main/LICENSE"}
davidxmle/Llama-3-8B-Instruct-GPTQ-4-Bit-Debug
null
[ "transformers", "llama", "text-generation", "llama-3", "facebook", "meta", "astronomer", "gptq", "pretrained", "quantized", "finetuned", "autotrain_compatible", "endpoints_compatible", "conversational", "dataset:wikitext", "arxiv:2210.17323", "base_model:meta-llama/Meta-Llama-3-8B-Instruct", "license:other", "text-generation-inference", "4-bit", "region:us" ]
null
2024-04-30T20:49:56+00:00
[ "2210.17323" ]
[]
TAGS #transformers #llama #text-generation #llama-3 #facebook #meta #astronomer #gptq #pretrained #quantized #finetuned #autotrain_compatible #endpoints_compatible #conversational #dataset-wikitext #arxiv-2210.17323 #base_model-meta-llama/Meta-Llama-3-8B-Instruct #license-other #text-generation-inference #4-bit #region-us
Llama-3-8B-Instruct-GPTQ-4-Bit ============================== * Original Model creator: Meta Llama from Meta * Original model: meta-llama/Meta-Llama-3-8B-Instruct * Built with Meta Llama 3 * Quantized by Astronomer Important Note About Serving with vLLM & oobabooga/text-generation-webui ======================================================================== * For loading this model onto vLLM, make sure all requests have '"stop\_token\_ids":[128001, 128009]' to temporarily address the non-stop generation issue. + vLLM does not yet respect 'generation\_config.json'. + vLLM team is working on a a fix for this URL * For oobabooga/text-generation-webui + Load the model via AutoGPTQ, with 'no\_inject\_fused\_attention' enabled. This is a bug with AutoGPTQ library. + Under 'Parameters' -> 'Generation' -> 'Skip special tokens': turn this off (deselect) + Under 'Parameters' -> 'Generation' -> 'Custom stopping strings': add '"<|end\_of\_text|>","<|eot\_id|>"' to the field Description ----------- This repo contains 4 Bit quantized GPTQ model files for meta-llama/Meta-Llama-3-8B-Instruct. This model can be loaded with less than 6 GB of VRAM (huge reduction from the original 16.07GB model) and can be served lightning fast with the cheapest Nvidia GPUs possible (Nvidia T4, Nvidia K80, RTX 4070, etc). The 4 bit GPTQ quant has small quality degradation from the original 'bfloat16' model but can be served on much smaller GPUs with maximum improvement in latency and throughput. GPTQ Quantization Method ------------------------ * This model is quantized by utilizing the AutoGPTQ library, following best practices noted by GPTQ paper * Quantization is calibrated and aligned with random samples from the specified dataset (wikitext for now) for minimum accuracy loss. Serving this GPTQ model using vLLM ---------------------------------- Tested serving this model via vLLM using an Nvidia T4 (16GB VRAM). Tested with the below command For the non-stop token generation bug, make sure to send requests with 'stop\_token\_ids":[128001, 128009]' to vLLM endpoint Example: ### Prompt Template ### Contributors * Quantized by David Xue, Machine Learning Engineer from Astronomer
[ "### Prompt Template", "### Contributors\n\n\n* Quantized by David Xue, Machine Learning Engineer from Astronomer" ]
[ "TAGS\n#transformers #llama #text-generation #llama-3 #facebook #meta #astronomer #gptq #pretrained #quantized #finetuned #autotrain_compatible #endpoints_compatible #conversational #dataset-wikitext #arxiv-2210.17323 #base_model-meta-llama/Meta-Llama-3-8B-Instruct #license-other #text-generation-inference #4-bit #region-us \n", "### Prompt Template", "### Contributors\n\n\n* Quantized by David Xue, Machine Learning Engineer from Astronomer" ]
[ 107, 5, 17 ]
[ "TAGS\n#transformers #llama #text-generation #llama-3 #facebook #meta #astronomer #gptq #pretrained #quantized #finetuned #autotrain_compatible #endpoints_compatible #conversational #dataset-wikitext #arxiv-2210.17323 #base_model-meta-llama/Meta-Llama-3-8B-Instruct #license-other #text-generation-inference #4-bit #region-us \n### Prompt Template### Contributors\n\n\n* Quantized by David Xue, Machine Learning Engineer from Astronomer" ]
text-to-image
diffusers
<!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # SDXL LoRA DreamBooth - embracellm/sushi07_LoRA <Gallery /> ## Model description These are embracellm/sushi07_LoRA LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. The weights were trained using [DreamBooth](https://dreambooth.github.io/). LoRA for the text encoder was enabled: False. Special VAE used for training: madebyollin/sdxl-vae-fp16-fix. ## Trigger words You should use a photo of sushi to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](embracellm/sushi07_LoRA/tree/main) them in the Files & versions tab. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training details [TODO: describe the data used to train the model]
{"license": "openrail++", "library_name": "diffusers", "tags": ["text-to-image", "text-to-image", "diffusers-training", "diffusers", "dora", "template:sd-lora", "stable-diffusion-xl", "stable-diffusion-xl-diffusers"], "base_model": "stabilityai/stable-diffusion-xl-base-1.0", "instance_prompt": "a photo of sushi", "widget": []}
embracellm/sushi07_LoRA
null
[ "diffusers", "tensorboard", "text-to-image", "diffusers-training", "dora", "template:sd-lora", "stable-diffusion-xl", "stable-diffusion-xl-diffusers", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "license:openrail++", "region:us" ]
null
2024-04-30T20:53:07+00:00
[]
[]
TAGS #diffusers #tensorboard #text-to-image #diffusers-training #dora #template-sd-lora #stable-diffusion-xl #stable-diffusion-xl-diffusers #base_model-stabilityai/stable-diffusion-xl-base-1.0 #license-openrail++ #region-us
# SDXL LoRA DreamBooth - embracellm/sushi07_LoRA <Gallery /> ## Model description These are embracellm/sushi07_LoRA LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. The weights were trained using DreamBooth. LoRA for the text encoder was enabled: False. Special VAE used for training: madebyollin/sdxl-vae-fp16-fix. ## Trigger words You should use a photo of sushi to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. Download them in the Files & versions tab. ## Intended uses & limitations #### How to use #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training details [TODO: describe the data used to train the model]
[ "# SDXL LoRA DreamBooth - embracellm/sushi07_LoRA\n\n<Gallery />", "## Model description\n\nThese are embracellm/sushi07_LoRA LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0.\n\nThe weights were trained using DreamBooth.\n\nLoRA for the text encoder was enabled: False.\n\nSpecial VAE used for training: madebyollin/sdxl-vae-fp16-fix.", "## Trigger words\n\nYou should use a photo of sushi to trigger the image generation.", "## Download model\n\nWeights for this model are available in Safetensors format.\n\nDownload them in the Files & versions tab.", "## Intended uses & limitations", "#### How to use", "#### Limitations and bias\n\n[TODO: provide examples of latent issues and potential remediations]", "## Training details\n\n[TODO: describe the data used to train the model]" ]
[ "TAGS\n#diffusers #tensorboard #text-to-image #diffusers-training #dora #template-sd-lora #stable-diffusion-xl #stable-diffusion-xl-diffusers #base_model-stabilityai/stable-diffusion-xl-base-1.0 #license-openrail++ #region-us \n", "# SDXL LoRA DreamBooth - embracellm/sushi07_LoRA\n\n<Gallery />", "## Model description\n\nThese are embracellm/sushi07_LoRA LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0.\n\nThe weights were trained using DreamBooth.\n\nLoRA for the text encoder was enabled: False.\n\nSpecial VAE used for training: madebyollin/sdxl-vae-fp16-fix.", "## Trigger words\n\nYou should use a photo of sushi to trigger the image generation.", "## Download model\n\nWeights for this model are available in Safetensors format.\n\nDownload them in the Files & versions tab.", "## Intended uses & limitations", "#### How to use", "#### Limitations and bias\n\n[TODO: provide examples of latent issues and potential remediations]", "## Training details\n\n[TODO: describe the data used to train the model]" ]
[ 72, 25, 85, 18, 25, 6, 7, 23, 17 ]
[ "TAGS\n#diffusers #tensorboard #text-to-image #diffusers-training #dora #template-sd-lora #stable-diffusion-xl #stable-diffusion-xl-diffusers #base_model-stabilityai/stable-diffusion-xl-base-1.0 #license-openrail++ #region-us \n# SDXL LoRA DreamBooth - embracellm/sushi07_LoRA\n\n<Gallery />## Model description\n\nThese are embracellm/sushi07_LoRA LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0.\n\nThe weights were trained using DreamBooth.\n\nLoRA for the text encoder was enabled: False.\n\nSpecial VAE used for training: madebyollin/sdxl-vae-fp16-fix.## Trigger words\n\nYou should use a photo of sushi to trigger the image generation.## Download model\n\nWeights for this model are available in Safetensors format.\n\nDownload them in the Files & versions tab.## Intended uses & limitations#### How to use#### Limitations and bias\n\n[TODO: provide examples of latent issues and potential remediations]## Training details\n\n[TODO: describe the data used to train the model]" ]
text-to-image
diffusers
<!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # LoRA text2image fine-tuning - manusehgal/sdxl14finetuningnew These are LoRA adaption weights for runwayml/stable-diffusion-v1-5. The weights were fine-tuned on the YaYaB/onepiece-blip-captions dataset. You can find some example images in the following. ![img_0](./image_0.png) ![img_1](./image_1.png) ![img_2](./image_2.png) ![img_3](./image_3.png) ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training details [TODO: describe the data used to train the model]
{"license": "creativeml-openrail-m", "library_name": "diffusers", "tags": ["stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "diffusers", "diffusers-training", "lora"], "base_model": "runwayml/stable-diffusion-v1-5", "inference": true}
manusehgal/sdxl14finetuningnew
null
[ "diffusers", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "diffusers-training", "lora", "base_model:runwayml/stable-diffusion-v1-5", "license:creativeml-openrail-m", "region:us" ]
null
2024-04-30T21:00:22+00:00
[]
[]
TAGS #diffusers #stable-diffusion #stable-diffusion-diffusers #text-to-image #diffusers-training #lora #base_model-runwayml/stable-diffusion-v1-5 #license-creativeml-openrail-m #region-us
# LoRA text2image fine-tuning - manusehgal/sdxl14finetuningnew These are LoRA adaption weights for runwayml/stable-diffusion-v1-5. The weights were fine-tuned on the YaYaB/onepiece-blip-captions dataset. You can find some example images in the following. !img_0 !img_1 !img_2 !img_3 ## Intended uses & limitations #### How to use #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training details [TODO: describe the data used to train the model]
[ "# LoRA text2image fine-tuning - manusehgal/sdxl14finetuningnew\nThese are LoRA adaption weights for runwayml/stable-diffusion-v1-5. The weights were fine-tuned on the YaYaB/onepiece-blip-captions dataset. You can find some example images in the following. \n\n!img_0\n!img_1\n!img_2\n!img_3", "## Intended uses & limitations", "#### How to use", "#### Limitations and bias\n\n[TODO: provide examples of latent issues and potential remediations]", "## Training details\n\n[TODO: describe the data used to train the model]" ]
[ "TAGS\n#diffusers #stable-diffusion #stable-diffusion-diffusers #text-to-image #diffusers-training #lora #base_model-runwayml/stable-diffusion-v1-5 #license-creativeml-openrail-m #region-us \n", "# LoRA text2image fine-tuning - manusehgal/sdxl14finetuningnew\nThese are LoRA adaption weights for runwayml/stable-diffusion-v1-5. The weights were fine-tuned on the YaYaB/onepiece-blip-captions dataset. You can find some example images in the following. \n\n!img_0\n!img_1\n!img_2\n!img_3", "## Intended uses & limitations", "#### How to use", "#### Limitations and bias\n\n[TODO: provide examples of latent issues and potential remediations]", "## Training details\n\n[TODO: describe the data used to train the model]" ]
[ 59, 98, 6, 7, 23, 17 ]
[ "TAGS\n#diffusers #stable-diffusion #stable-diffusion-diffusers #text-to-image #diffusers-training #lora #base_model-runwayml/stable-diffusion-v1-5 #license-creativeml-openrail-m #region-us \n# LoRA text2image fine-tuning - manusehgal/sdxl14finetuningnew\nThese are LoRA adaption weights for runwayml/stable-diffusion-v1-5. The weights were fine-tuned on the YaYaB/onepiece-blip-captions dataset. You can find some example images in the following. \n\n!img_0\n!img_1\n!img_2\n!img_3## Intended uses & limitations#### How to use#### Limitations and bias\n\n[TODO: provide examples of latent issues and potential remediations]## Training details\n\n[TODO: describe the data used to train the model]" ]
text-generation
transformers
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) Qwen1.5-14B-Chat - bnb 8bits - Model creator: https://huggingface.co/Qwen/ - Original model: https://huggingface.co/Qwen/Qwen1.5-14B-Chat/ Original model description: --- license: other license_name: tongyi-qianwen license_link: >- https://huggingface.co/Qwen/Qwen1.5-14B-Chat/blob/main/LICENSE language: - en pipeline_tag: text-generation tags: - chat --- # Qwen1.5-14B-Chat ## Introduction Qwen1.5 is the beta version of Qwen2, a transformer-based decoder-only language model pretrained on a large amount of data. In comparison with the previous released Qwen, the improvements include: * 8 model sizes, including 0.5B, 1.8B, 4B, 7B, 14B, 32B and 72B dense models, and an MoE model of 14B with 2.7B activated; * Significant performance improvement in human preference for chat models; * Multilingual support of both base and chat models; * Stable support of 32K context length for models of all sizes * No need of `trust_remote_code`. For more details, please refer to our [blog post](https://qwenlm.github.io/blog/qwen1.5/) and [GitHub repo](https://github.com/QwenLM/Qwen1.5). <br> ## Model Details Qwen1.5 is a language model series including decoder language models of different model sizes. For each size, we release the base language model and the aligned chat model. It is based on the Transformer architecture with SwiGLU activation, attention QKV bias, group query attention, mixture of sliding window attention and full attention, etc. Additionally, we have an improved tokenizer adaptive to multiple natural languages and codes. For the beta version, temporarily we did not include GQA (except for 32B) and the mixture of SWA and full attention. ## Training details We pretrained the models with a large amount of data, and we post-trained the models with both supervised finetuning and direct preference optimization. ## Requirements The code of Qwen1.5 has been in the latest Hugging face transformers and we advise you to install `transformers>=4.37.0`, or you might encounter the following error: ``` KeyError: 'qwen2' ``` ## Quickstart Here provides a code snippet with `apply_chat_template` to show you how to load the tokenizer and model and how to generate contents. ```python from transformers import AutoModelForCausalLM, AutoTokenizer device = "cuda" # the device to load the model onto model = AutoModelForCausalLM.from_pretrained( "Qwen/Qwen1.5-14B-Chat", torch_dtype="auto", device_map="auto" ) tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen1.5-14B-Chat") prompt = "Give me a short introduction to large language model." messages = [ {"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": prompt} ] text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) model_inputs = tokenizer([text], return_tensors="pt").to(device) generated_ids = model.generate( model_inputs.input_ids, max_new_tokens=512 ) generated_ids = [ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) ] response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] ``` For quantized models, we advise you to use the GPTQ, AWQ, and GGUF correspondents, namely `Qwen1.5-14B-Chat-GPTQ-Int4`, `Qwen1.5-14B-Chat-GPTQ-Int8`, `Qwen1.5-14B-Chat-AWQ`, and `Qwen1.5-14B-Chat-GGUF`. ## Tips * If you encounter code switching or other bad cases, we advise you to use our provided hyper-parameters in `generation_config.json`. ## Citation If you find our work helpful, feel free to give us a cite. ``` @article{qwen, title={Qwen Technical Report}, author={Jinze Bai and Shuai Bai and Yunfei Chu and Zeyu Cui and Kai Dang and Xiaodong Deng and Yang Fan and Wenbin Ge and Yu Han and Fei Huang and Binyuan Hui and Luo Ji and Mei Li and Junyang Lin and Runji Lin and Dayiheng Liu and Gao Liu and Chengqiang Lu and Keming Lu and Jianxin Ma and Rui Men and Xingzhang Ren and Xuancheng Ren and Chuanqi Tan and Sinan Tan and Jianhong Tu and Peng Wang and Shijie Wang and Wei Wang and Shengguang Wu and Benfeng Xu and Jin Xu and An Yang and Hao Yang and Jian Yang and Shusheng Yang and Yang Yao and Bowen Yu and Hongyi Yuan and Zheng Yuan and Jianwei Zhang and Xingxuan Zhang and Yichang Zhang and Zhenru Zhang and Chang Zhou and Jingren Zhou and Xiaohuan Zhou and Tianhang Zhu}, journal={arXiv preprint arXiv:2309.16609}, year={2023} } ```
{}
RichardErkhov/Qwen_-_Qwen1.5-14B-Chat-8bits
null
[ "transformers", "safetensors", "qwen2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "8-bit", "region:us" ]
null
2024-04-30T21:01:16+00:00
[]
[]
TAGS #transformers #safetensors #qwen2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #8-bit #region-us
Quantization made by Richard Erkhov. Github Discord Request more models Qwen1.5-14B-Chat - bnb 8bits - Model creator: URL - Original model: URL Original model description: --- license: other license_name: tongyi-qianwen license_link: >- URL language: - en pipeline_tag: text-generation tags: - chat --- # Qwen1.5-14B-Chat ## Introduction Qwen1.5 is the beta version of Qwen2, a transformer-based decoder-only language model pretrained on a large amount of data. In comparison with the previous released Qwen, the improvements include: * 8 model sizes, including 0.5B, 1.8B, 4B, 7B, 14B, 32B and 72B dense models, and an MoE model of 14B with 2.7B activated; * Significant performance improvement in human preference for chat models; * Multilingual support of both base and chat models; * Stable support of 32K context length for models of all sizes * No need of 'trust_remote_code'. For more details, please refer to our blog post and GitHub repo. <br> ## Model Details Qwen1.5 is a language model series including decoder language models of different model sizes. For each size, we release the base language model and the aligned chat model. It is based on the Transformer architecture with SwiGLU activation, attention QKV bias, group query attention, mixture of sliding window attention and full attention, etc. Additionally, we have an improved tokenizer adaptive to multiple natural languages and codes. For the beta version, temporarily we did not include GQA (except for 32B) and the mixture of SWA and full attention. ## Training details We pretrained the models with a large amount of data, and we post-trained the models with both supervised finetuning and direct preference optimization. ## Requirements The code of Qwen1.5 has been in the latest Hugging face transformers and we advise you to install 'transformers>=4.37.0', or you might encounter the following error: ## Quickstart Here provides a code snippet with 'apply_chat_template' to show you how to load the tokenizer and model and how to generate contents. For quantized models, we advise you to use the GPTQ, AWQ, and GGUF correspondents, namely 'Qwen1.5-14B-Chat-GPTQ-Int4', 'Qwen1.5-14B-Chat-GPTQ-Int8', 'Qwen1.5-14B-Chat-AWQ', and 'Qwen1.5-14B-Chat-GGUF'. ## Tips * If you encounter code switching or other bad cases, we advise you to use our provided hyper-parameters in 'generation_config.json'. If you find our work helpful, feel free to give us a cite.
[ "# Qwen1.5-14B-Chat", "## Introduction\n\nQwen1.5 is the beta version of Qwen2, a transformer-based decoder-only language model pretrained on a large amount of data. In comparison with the previous released Qwen, the improvements include: \n\n* 8 model sizes, including 0.5B, 1.8B, 4B, 7B, 14B, 32B and 72B dense models, and an MoE model of 14B with 2.7B activated;\n* Significant performance improvement in human preference for chat models;\n* Multilingual support of both base and chat models;\n* Stable support of 32K context length for models of all sizes\n* No need of 'trust_remote_code'.\n\nFor more details, please refer to our blog post and GitHub repo.\n<br>", "## Model Details\nQwen1.5 is a language model series including decoder language models of different model sizes. For each size, we release the base language model and the aligned chat model. It is based on the Transformer architecture with SwiGLU activation, attention QKV bias, group query attention, mixture of sliding window attention and full attention, etc. Additionally, we have an improved tokenizer adaptive to multiple natural languages and codes. For the beta version, temporarily we did not include GQA (except for 32B) and the mixture of SWA and full attention.", "## Training details\nWe pretrained the models with a large amount of data, and we post-trained the models with both supervised finetuning and direct preference optimization.", "## Requirements\nThe code of Qwen1.5 has been in the latest Hugging face transformers and we advise you to install 'transformers>=4.37.0', or you might encounter the following error:", "## Quickstart\n\nHere provides a code snippet with 'apply_chat_template' to show you how to load the tokenizer and model and how to generate contents.\n\n\n\nFor quantized models, we advise you to use the GPTQ, AWQ, and GGUF correspondents, namely 'Qwen1.5-14B-Chat-GPTQ-Int4', 'Qwen1.5-14B-Chat-GPTQ-Int8', 'Qwen1.5-14B-Chat-AWQ', and 'Qwen1.5-14B-Chat-GGUF'.", "## Tips\n\n* If you encounter code switching or other bad cases, we advise you to use our provided hyper-parameters in 'generation_config.json'.\n\n\nIf you find our work helpful, feel free to give us a cite." ]
[ "TAGS\n#transformers #safetensors #qwen2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #8-bit #region-us \n", "# Qwen1.5-14B-Chat", "## Introduction\n\nQwen1.5 is the beta version of Qwen2, a transformer-based decoder-only language model pretrained on a large amount of data. In comparison with the previous released Qwen, the improvements include: \n\n* 8 model sizes, including 0.5B, 1.8B, 4B, 7B, 14B, 32B and 72B dense models, and an MoE model of 14B with 2.7B activated;\n* Significant performance improvement in human preference for chat models;\n* Multilingual support of both base and chat models;\n* Stable support of 32K context length for models of all sizes\n* No need of 'trust_remote_code'.\n\nFor more details, please refer to our blog post and GitHub repo.\n<br>", "## Model Details\nQwen1.5 is a language model series including decoder language models of different model sizes. For each size, we release the base language model and the aligned chat model. It is based on the Transformer architecture with SwiGLU activation, attention QKV bias, group query attention, mixture of sliding window attention and full attention, etc. Additionally, we have an improved tokenizer adaptive to multiple natural languages and codes. For the beta version, temporarily we did not include GQA (except for 32B) and the mixture of SWA and full attention.", "## Training details\nWe pretrained the models with a large amount of data, and we post-trained the models with both supervised finetuning and direct preference optimization.", "## Requirements\nThe code of Qwen1.5 has been in the latest Hugging face transformers and we advise you to install 'transformers>=4.37.0', or you might encounter the following error:", "## Quickstart\n\nHere provides a code snippet with 'apply_chat_template' to show you how to load the tokenizer and model and how to generate contents.\n\n\n\nFor quantized models, we advise you to use the GPTQ, AWQ, and GGUF correspondents, namely 'Qwen1.5-14B-Chat-GPTQ-Int4', 'Qwen1.5-14B-Chat-GPTQ-Int8', 'Qwen1.5-14B-Chat-AWQ', and 'Qwen1.5-14B-Chat-GGUF'.", "## Tips\n\n* If you encounter code switching or other bad cases, we advise you to use our provided hyper-parameters in 'generation_config.json'.\n\n\nIf you find our work helpful, feel free to give us a cite." ]
[ 42, 11, 166, 119, 35, 44, 137, 51 ]
[ "TAGS\n#transformers #safetensors #qwen2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #8-bit #region-us \n# Qwen1.5-14B-Chat## Introduction\n\nQwen1.5 is the beta version of Qwen2, a transformer-based decoder-only language model pretrained on a large amount of data. In comparison with the previous released Qwen, the improvements include: \n\n* 8 model sizes, including 0.5B, 1.8B, 4B, 7B, 14B, 32B and 72B dense models, and an MoE model of 14B with 2.7B activated;\n* Significant performance improvement in human preference for chat models;\n* Multilingual support of both base and chat models;\n* Stable support of 32K context length for models of all sizes\n* No need of 'trust_remote_code'.\n\nFor more details, please refer to our blog post and GitHub repo.\n<br>## Model Details\nQwen1.5 is a language model series including decoder language models of different model sizes. For each size, we release the base language model and the aligned chat model. It is based on the Transformer architecture with SwiGLU activation, attention QKV bias, group query attention, mixture of sliding window attention and full attention, etc. Additionally, we have an improved tokenizer adaptive to multiple natural languages and codes. For the beta version, temporarily we did not include GQA (except for 32B) and the mixture of SWA and full attention.## Training details\nWe pretrained the models with a large amount of data, and we post-trained the models with both supervised finetuning and direct preference optimization.## Requirements\nThe code of Qwen1.5 has been in the latest Hugging face transformers and we advise you to install 'transformers>=4.37.0', or you might encounter the following error:## Quickstart\n\nHere provides a code snippet with 'apply_chat_template' to show you how to load the tokenizer and model and how to generate contents.\n\n\n\nFor quantized models, we advise you to use the GPTQ, AWQ, and GGUF correspondents, namely 'Qwen1.5-14B-Chat-GPTQ-Int4', 'Qwen1.5-14B-Chat-GPTQ-Int8', 'Qwen1.5-14B-Chat-AWQ', and 'Qwen1.5-14B-Chat-GGUF'.## Tips\n\n* If you encounter code switching or other bad cases, we advise you to use our provided hyper-parameters in 'generation_config.json'.\n\n\nIf you find our work helpful, feel free to give us a cite." ]
null
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
samzirbo/mT5.tokenizer.en-es_16K
null
[ "transformers", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-04-30T21:01:36+00:00
[ "1910.09700" ]
[]
TAGS #transformers #arxiv-1910.09700 #endpoints_compatible #region-us
# Model Card for Model ID ## Model Details ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #arxiv-1910.09700 #endpoints_compatible #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ 22, 6, 4, 75, 23, 3, 5, 8, 9, 8, 34, 20, 4, 5, 5, 11, 13, 12, 3, 10, 6, 5, 6, 4, 5, 7, 49, 7, 7, 5, 5, 15, 7, 7, 8, 5 ]
[ "TAGS\n#transformers #arxiv-1910.09700 #endpoints_compatible #region-us \n# Model Card for Model ID## Model Details### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Downstream Use [optional]### Out-of-Scope Use## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.## How to Get Started with the Model\n\nUse the code below to get started with the model.## Training Details### Training Data### Training Procedure#### Preprocessing [optional]#### Training Hyperparameters\n\n- Training regime:#### Speeds, Sizes, Times [optional]## Evaluation### Testing Data, Factors & Metrics#### Testing Data#### Factors#### Metrics### Results#### Summary## Model Examination [optional]## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:## Technical Specifications [optional]### Model Architecture and Objective### Compute Infrastructure#### Hardware#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Model Card Authors [optional]## Model Card Contact" ]
image-text-to-text
xtuner
# mlx-community/llava-llama-3-8b-v1_1-4bit This model was converted to MLX format from [`xtuner/llava-llama-3-8b-v1_1-transformers`]() using mlx-vllm version **0.0.3**. Refer to the [original model card](https://huggingface.co/xtuner/llava-llama-3-8b-v1_1-transformers) for more details on the model. ## Use with mlx ```bash pip install -U mlx-vlm ``` ```bash python -m mlx_vlm.generate --model mlx-community/llava-llama-3-8b-v1_1-4bit --max-tokens 100 --temp 0.0 ```
{"library_name": "xtuner", "tags": ["mlx"], "datasets": ["Lin-Chen/ShareGPT4V"], "pipeline_tag": "image-text-to-text"}
mlx-community/llava-llama-3-8b-v1_1-4bit
null
[ "xtuner", "safetensors", "llava", "mlx", "image-text-to-text", "dataset:Lin-Chen/ShareGPT4V", "region:us" ]
null
2024-04-30T21:04:09+00:00
[]
[]
TAGS #xtuner #safetensors #llava #mlx #image-text-to-text #dataset-Lin-Chen/ShareGPT4V #region-us
# mlx-community/llava-llama-3-8b-v1_1-4bit This model was converted to MLX format from ['xtuner/llava-llama-3-8b-v1_1-transformers']() using mlx-vllm version 0.0.3. Refer to the original model card for more details on the model. ## Use with mlx
[ "# mlx-community/llava-llama-3-8b-v1_1-4bit\nThis model was converted to MLX format from ['xtuner/llava-llama-3-8b-v1_1-transformers']() using mlx-vllm version 0.0.3.\nRefer to the original model card for more details on the model.", "## Use with mlx" ]
[ "TAGS\n#xtuner #safetensors #llava #mlx #image-text-to-text #dataset-Lin-Chen/ShareGPT4V #region-us \n", "# mlx-community/llava-llama-3-8b-v1_1-4bit\nThis model was converted to MLX format from ['xtuner/llava-llama-3-8b-v1_1-transformers']() using mlx-vllm version 0.0.3.\nRefer to the original model card for more details on the model.", "## Use with mlx" ]
[ 40, 87, 6 ]
[ "TAGS\n#xtuner #safetensors #llava #mlx #image-text-to-text #dataset-Lin-Chen/ShareGPT4V #region-us \n# mlx-community/llava-llama-3-8b-v1_1-4bit\nThis model was converted to MLX format from ['xtuner/llava-llama-3-8b-v1_1-transformers']() using mlx-vllm version 0.0.3.\nRefer to the original model card for more details on the model.## Use with mlx" ]
text-to-image
diffusers
<!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # SDXL LoRA DreamBooth - embracellm/sushi08_LoRA <Gallery /> ## Model description These are embracellm/sushi08_LoRA LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. The weights were trained using [DreamBooth](https://dreambooth.github.io/). LoRA for the text encoder was enabled: False. Special VAE used for training: madebyollin/sdxl-vae-fp16-fix. ## Trigger words You should use a photo of Green Veggie Roll to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](embracellm/sushi08_LoRA/tree/main) them in the Files & versions tab. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training details [TODO: describe the data used to train the model]
{"license": "openrail++", "library_name": "diffusers", "tags": ["text-to-image", "text-to-image", "diffusers-training", "diffusers", "dora", "template:sd-lora", "stable-diffusion-xl", "stable-diffusion-xl-diffusers", "text-to-image", "text-to-image", "diffusers-training", "diffusers", "dora", "template:sd-lora", "stable-diffusion-xl", "stable-diffusion-xl-diffusers"], "base_model": "stabilityai/stable-diffusion-xl-base-1.0", "instance_prompt": "a photo of Green Veggie Roll ", "widget": []}
embracellm/sushi08_LoRA
null
[ "diffusers", "tensorboard", "text-to-image", "diffusers-training", "dora", "template:sd-lora", "stable-diffusion-xl", "stable-diffusion-xl-diffusers", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "license:openrail++", "region:us" ]
null
2024-04-30T21:04:31+00:00
[]
[]
TAGS #diffusers #tensorboard #text-to-image #diffusers-training #dora #template-sd-lora #stable-diffusion-xl #stable-diffusion-xl-diffusers #base_model-stabilityai/stable-diffusion-xl-base-1.0 #license-openrail++ #region-us
# SDXL LoRA DreamBooth - embracellm/sushi08_LoRA <Gallery /> ## Model description These are embracellm/sushi08_LoRA LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. The weights were trained using DreamBooth. LoRA for the text encoder was enabled: False. Special VAE used for training: madebyollin/sdxl-vae-fp16-fix. ## Trigger words You should use a photo of Green Veggie Roll to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. Download them in the Files & versions tab. ## Intended uses & limitations #### How to use #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training details [TODO: describe the data used to train the model]
[ "# SDXL LoRA DreamBooth - embracellm/sushi08_LoRA\n\n<Gallery />", "## Model description\n\nThese are embracellm/sushi08_LoRA LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0.\n\nThe weights were trained using DreamBooth.\n\nLoRA for the text encoder was enabled: False.\n\nSpecial VAE used for training: madebyollin/sdxl-vae-fp16-fix.", "## Trigger words\n\nYou should use a photo of Green Veggie Roll to trigger the image generation.", "## Download model\n\nWeights for this model are available in Safetensors format.\n\nDownload them in the Files & versions tab.", "## Intended uses & limitations", "#### How to use", "#### Limitations and bias\n\n[TODO: provide examples of latent issues and potential remediations]", "## Training details\n\n[TODO: describe the data used to train the model]" ]
[ "TAGS\n#diffusers #tensorboard #text-to-image #diffusers-training #dora #template-sd-lora #stable-diffusion-xl #stable-diffusion-xl-diffusers #base_model-stabilityai/stable-diffusion-xl-base-1.0 #license-openrail++ #region-us \n", "# SDXL LoRA DreamBooth - embracellm/sushi08_LoRA\n\n<Gallery />", "## Model description\n\nThese are embracellm/sushi08_LoRA LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0.\n\nThe weights were trained using DreamBooth.\n\nLoRA for the text encoder was enabled: False.\n\nSpecial VAE used for training: madebyollin/sdxl-vae-fp16-fix.", "## Trigger words\n\nYou should use a photo of Green Veggie Roll to trigger the image generation.", "## Download model\n\nWeights for this model are available in Safetensors format.\n\nDownload them in the Files & versions tab.", "## Intended uses & limitations", "#### How to use", "#### Limitations and bias\n\n[TODO: provide examples of latent issues and potential remediations]", "## Training details\n\n[TODO: describe the data used to train the model]" ]
[ 72, 25, 85, 21, 25, 6, 7, 23, 17 ]
[ "TAGS\n#diffusers #tensorboard #text-to-image #diffusers-training #dora #template-sd-lora #stable-diffusion-xl #stable-diffusion-xl-diffusers #base_model-stabilityai/stable-diffusion-xl-base-1.0 #license-openrail++ #region-us \n# SDXL LoRA DreamBooth - embracellm/sushi08_LoRA\n\n<Gallery />## Model description\n\nThese are embracellm/sushi08_LoRA LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0.\n\nThe weights were trained using DreamBooth.\n\nLoRA for the text encoder was enabled: False.\n\nSpecial VAE used for training: madebyollin/sdxl-vae-fp16-fix.## Trigger words\n\nYou should use a photo of Green Veggie Roll to trigger the image generation.## Download model\n\nWeights for this model are available in Safetensors format.\n\nDownload them in the Files & versions tab.## Intended uses & limitations#### How to use#### Limitations and bias\n\n[TODO: provide examples of latent issues and potential remediations]## Training details\n\n[TODO: describe the data used to train the model]" ]
null
peft
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/bohdan-petryshyn/huggingface/runs/5ussv3qq) # codellama-7b-openapi-completion-ctx-lvl-prmt This model is a fine-tuned version of [codellama/CodeLlama-7b-hf](https://huggingface.co/codellama/CodeLlama-7b-hf) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3210 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - training_steps: 1000 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.2732 | 0.1 | 100 | 0.3538 | | 0.3278 | 0.2 | 200 | 0.3442 | | 0.2121 | 0.3 | 300 | 0.3424 | | 0.1887 | 0.4 | 400 | 0.3349 | | 0.1218 | 0.5 | 500 | 0.3509 | | 0.0896 | 0.6 | 600 | 0.3503 | | 0.3471 | 0.7 | 700 | 0.3320 | | 0.2532 | 0.8 | 800 | 0.3259 | | 0.21 | 0.9 | 900 | 0.3226 | | 0.2608 | 1.0 | 1000 | 0.3210 | ### Framework versions - PEFT 0.10.1.dev0 - Transformers 4.41.0.dev0 - Pytorch 2.2.2+cu121 - Datasets 2.19.0 - Tokenizers 0.19.1
{"license": "llama2", "library_name": "peft", "tags": ["generated_from_trainer"], "base_model": "codellama/CodeLlama-7b-hf", "model-index": [{"name": "codellama-7b-openapi-completion-ctx-lvl-prmt", "results": []}]}
BohdanPetryshyn/codellama-7b-openapi-completion-ctx-lvl-prmt
null
[ "peft", "tensorboard", "safetensors", "generated_from_trainer", "base_model:codellama/CodeLlama-7b-hf", "license:llama2", "region:us" ]
null
2024-04-30T21:06:21+00:00
[]
[]
TAGS #peft #tensorboard #safetensors #generated_from_trainer #base_model-codellama/CodeLlama-7b-hf #license-llama2 #region-us
<img src="URL alt="Visualize in Weights & Biases" width="200" height="32"/> codellama-7b-openapi-completion-ctx-lvl-prmt ============================================ This model is a fine-tuned version of codellama/CodeLlama-7b-hf on an unknown dataset. It achieves the following results on the evaluation set: * Loss: 0.3210 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 0.0003 * train\_batch\_size: 4 * eval\_batch\_size: 4 * seed: 42 * gradient\_accumulation\_steps: 4 * total\_train\_batch\_size: 16 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: cosine * lr\_scheduler\_warmup\_ratio: 0.1 * training\_steps: 1000 ### Training results ### Framework versions * PEFT 0.10.1.dev0 * Transformers 4.41.0.dev0 * Pytorch 2.2.2+cu121 * Datasets 2.19.0 * Tokenizers 0.19.1
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0003\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 16\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: cosine\n* lr\\_scheduler\\_warmup\\_ratio: 0.1\n* training\\_steps: 1000", "### Training results", "### Framework versions\n\n\n* PEFT 0.10.1.dev0\n* Transformers 4.41.0.dev0\n* Pytorch 2.2.2+cu121\n* Datasets 2.19.0\n* Tokenizers 0.19.1" ]
[ "TAGS\n#peft #tensorboard #safetensors #generated_from_trainer #base_model-codellama/CodeLlama-7b-hf #license-llama2 #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0003\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 16\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: cosine\n* lr\\_scheduler\\_warmup\\_ratio: 0.1\n* training\\_steps: 1000", "### Training results", "### Framework versions\n\n\n* PEFT 0.10.1.dev0\n* Transformers 4.41.0.dev0\n* Pytorch 2.2.2+cu121\n* Datasets 2.19.0\n* Tokenizers 0.19.1" ]
[ 45, 142, 5, 58 ]
[ "TAGS\n#peft #tensorboard #safetensors #generated_from_trainer #base_model-codellama/CodeLlama-7b-hf #license-llama2 #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0003\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 16\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: cosine\n* lr\\_scheduler\\_warmup\\_ratio: 0.1\n* training\\_steps: 1000### Training results### Framework versions\n\n\n* PEFT 0.10.1.dev0\n* Transformers 4.41.0.dev0\n* Pytorch 2.2.2+cu121\n* Datasets 2.19.0\n* Tokenizers 0.19.1" ]
text-classification
transformers
# merge_out This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the [TIES](https://arxiv.org/abs/2306.01708) merge method using [mllm-dev/merge_diff_data_DROID](https://huggingface.co/mllm-dev/merge_diff_data_DROID) as a base. ### Models Merged The following models were included in the merge: * [mllm-dev/merge_diff_data_YELP](https://huggingface.co/mllm-dev/merge_diff_data_YELP) ### Configuration The following YAML configuration was used to produce this model: ```yaml base_model: mllm-dev/merge_diff_data_DROID dtype: float16 merge_method: ties slices: - sources: - layer_range: [0, 12] model: mllm-dev/merge_diff_data_DROID parameters: weight: 0.5 - layer_range: [0, 12] model: mllm-dev/merge_diff_data_YELP parameters: weight: 0.5 ```
{"library_name": "transformers", "tags": ["mergekit", "merge"], "base_model": ["mllm-dev/merge_diff_data_DROID", "mllm-dev/merge_diff_data_YELP"]}
mllm-dev/merge_yelp_droid_ties_2
null
[ "transformers", "safetensors", "gpt2", "text-classification", "mergekit", "merge", "arxiv:2306.01708", "base_model:mllm-dev/merge_diff_data_DROID", "base_model:mllm-dev/merge_diff_data_YELP", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-04-30T21:09:23+00:00
[ "2306.01708" ]
[]
TAGS #transformers #safetensors #gpt2 #text-classification #mergekit #merge #arxiv-2306.01708 #base_model-mllm-dev/merge_diff_data_DROID #base_model-mllm-dev/merge_diff_data_YELP #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# merge_out This is a merge of pre-trained language models created using mergekit. ## Merge Details ### Merge Method This model was merged using the TIES merge method using mllm-dev/merge_diff_data_DROID as a base. ### Models Merged The following models were included in the merge: * mllm-dev/merge_diff_data_YELP ### Configuration The following YAML configuration was used to produce this model:
[ "# merge_out\n\nThis is a merge of pre-trained language models created using mergekit.", "## Merge Details", "### Merge Method\n\nThis model was merged using the TIES merge method using mllm-dev/merge_diff_data_DROID as a base.", "### Models Merged\n\nThe following models were included in the merge:\n* mllm-dev/merge_diff_data_YELP", "### Configuration\n\nThe following YAML configuration was used to produce this model:" ]
[ "TAGS\n#transformers #safetensors #gpt2 #text-classification #mergekit #merge #arxiv-2306.01708 #base_model-mllm-dev/merge_diff_data_DROID #base_model-mllm-dev/merge_diff_data_YELP #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# merge_out\n\nThis is a merge of pre-trained language models created using mergekit.", "## Merge Details", "### Merge Method\n\nThis model was merged using the TIES merge method using mllm-dev/merge_diff_data_DROID as a base.", "### Models Merged\n\nThe following models were included in the merge:\n* mllm-dev/merge_diff_data_YELP", "### Configuration\n\nThe following YAML configuration was used to produce this model:" ]
[ 89, 19, 4, 33, 29, 16 ]
[ "TAGS\n#transformers #safetensors #gpt2 #text-classification #mergekit #merge #arxiv-2306.01708 #base_model-mllm-dev/merge_diff_data_DROID #base_model-mllm-dev/merge_diff_data_YELP #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# merge_out\n\nThis is a merge of pre-trained language models created using mergekit.## Merge Details### Merge Method\n\nThis model was merged using the TIES merge method using mllm-dev/merge_diff_data_DROID as a base.### Models Merged\n\nThe following models were included in the merge:\n* mllm-dev/merge_diff_data_YELP### Configuration\n\nThe following YAML configuration was used to produce this model:" ]
text-generation
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
lunarsylph/stablecell_v56
null
[ "transformers", "safetensors", "stablelm", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2024-04-30T21:09:44+00:00
[ "1910.09700" ]
[]
TAGS #transformers #safetensors #stablelm #text-generation #conversational #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #region-us
# Model Card for Model ID ## Model Details ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #safetensors #stablelm #text-generation #conversational #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ 41, 6, 4, 75, 23, 3, 5, 8, 9, 8, 34, 20, 4, 5, 5, 11, 13, 12, 3, 10, 6, 5, 6, 4, 5, 7, 49, 7, 7, 5, 5, 15, 7, 7, 8, 5 ]
[ "TAGS\n#transformers #safetensors #stablelm #text-generation #conversational #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #region-us \n# Model Card for Model ID## Model Details### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Downstream Use [optional]### Out-of-Scope Use## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.## How to Get Started with the Model\n\nUse the code below to get started with the model.## Training Details### Training Data### Training Procedure#### Preprocessing [optional]#### Training Hyperparameters\n\n- Training regime:#### Speeds, Sizes, Times [optional]## Evaluation### Testing Data, Factors & Metrics#### Testing Data#### Factors#### Metrics### Results#### Summary## Model Examination [optional]## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:## Technical Specifications [optional]### Model Architecture and Objective### Compute Infrastructure#### Hardware#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Model Card Authors [optional]## Model Card Contact" ]
text-to-image
diffusers
# Real Dream SDXL API Inference ![generated from modelslab.com](https://pub-3626123a908346a7a8be8d9295f44e26.r2.dev/generations/16275139341714511316.png) ## Get API Key Get API key from [ModelsLab API](http://modelslab.com), No Payment needed. Replace Key in below code, change **model_id** to "real-dream-sdxl" Coding in PHP/Node/Java etc? Have a look at docs for more code examples: [View docs](https://modelslab.com/docs) Try model for free: [Generate Images](https://modelslab.com/models/real-dream-sdxl) Model link: [View model](https://modelslab.com/models/real-dream-sdxl) View all models: [View Models](https://modelslab.com/models) import requests import json url = "https://modelslab.com/api/v6/images/text2img" payload = json.dumps({ "key": "your_api_key", "model_id": "real-dream-sdxl", "prompt": "ultra realistic close up portrait ((beautiful pale cyberpunk female with heavy black eyeliner)), blue eyes, shaved side haircut, hyper detail, cinematic lighting, magic neon, dark red city, Canon EOS R3, nikon, f/1.4, ISO 200, 1/160s, 8K, RAW, unedited, symmetrical balance, in-frame, 8K", "negative_prompt": "painting, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, deformed, ugly, blurry, bad anatomy, bad proportions, extra limbs, cloned face, skinny, glitchy, double torso, extra arms, extra hands, mangled fingers, missing lips, ugly face, distorted face, extra legs, anime", "width": "512", "height": "512", "samples": "1", "num_inference_steps": "30", "safety_checker": "no", "enhance_prompt": "yes", "seed": None, "guidance_scale": 7.5, "multi_lingual": "no", "panorama": "no", "self_attention": "no", "upscale": "no", "embeddings": "embeddings_model_id", "lora": "lora_model_id", "webhook": None, "track_id": None }) headers = { 'Content-Type': 'application/json' } response = requests.request("POST", url, headers=headers, data=payload) print(response.text) > Use this coupon code to get 25% off **DMGG0RBN**
{"license": "creativeml-openrail-m", "tags": ["modelslab.com", "stable-diffusion-api", "text-to-image", "ultra-realistic"], "pinned": true}
stablediffusionapi/real-dream-sdxl
null
[ "diffusers", "modelslab.com", "stable-diffusion-api", "text-to-image", "ultra-realistic", "license:creativeml-openrail-m", "endpoints_compatible", "diffusers:StableDiffusionXLPipeline", "region:us" ]
null
2024-04-30T21:11:15+00:00
[]
[]
TAGS #diffusers #modelslab.com #stable-diffusion-api #text-to-image #ultra-realistic #license-creativeml-openrail-m #endpoints_compatible #diffusers-StableDiffusionXLPipeline #region-us
# Real Dream SDXL API Inference !generated from URL ## Get API Key Get API key from ModelsLab API, No Payment needed. Replace Key in below code, change model_id to "real-dream-sdxl" Coding in PHP/Node/Java etc? Have a look at docs for more code examples: View docs Try model for free: Generate Images Model link: View model View all models: View Models import requests import json url = "URL payload = URL({ "key": "your_api_key", "model_id": "real-dream-sdxl", "prompt": "ultra realistic close up portrait ((beautiful pale cyberpunk female with heavy black eyeliner)), blue eyes, shaved side haircut, hyper detail, cinematic lighting, magic neon, dark red city, Canon EOS R3, nikon, f/1.4, ISO 200, 1/160s, 8K, RAW, unedited, symmetrical balance, in-frame, 8K", "negative_prompt": "painting, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, deformed, ugly, blurry, bad anatomy, bad proportions, extra limbs, cloned face, skinny, glitchy, double torso, extra arms, extra hands, mangled fingers, missing lips, ugly face, distorted face, extra legs, anime", "width": "512", "height": "512", "samples": "1", "num_inference_steps": "30", "safety_checker": "no", "enhance_prompt": "yes", "seed": None, "guidance_scale": 7.5, "multi_lingual": "no", "panorama": "no", "self_attention": "no", "upscale": "no", "embeddings": "embeddings_model_id", "lora": "lora_model_id", "webhook": None, "track_id": None }) headers = { 'Content-Type': 'application/json' } response = requests.request("POST", url, headers=headers, data=payload) print(URL) > Use this coupon code to get 25% off DMGG0RBN
[ "# Real Dream SDXL API Inference\n\n!generated from URL", "## Get API Key\n\nGet API key from ModelsLab API, No Payment needed. \n\nReplace Key in below code, change model_id to \"real-dream-sdxl\"\n\nCoding in PHP/Node/Java etc? Have a look at docs for more code examples: View docs\n\nTry model for free: Generate Images\n\nModel link: View model\n\nView all models: View Models\n\n import requests \n import json \n \n url = \"URL \n \n payload = URL({ \n \"key\": \"your_api_key\", \n \"model_id\": \"real-dream-sdxl\", \n \"prompt\": \"ultra realistic close up portrait ((beautiful pale cyberpunk female with heavy black eyeliner)), blue eyes, shaved side haircut, hyper detail, cinematic lighting, magic neon, dark red city, Canon EOS R3, nikon, f/1.4, ISO 200, 1/160s, 8K, RAW, unedited, symmetrical balance, in-frame, 8K\", \n \"negative_prompt\": \"painting, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, deformed, ugly, blurry, bad anatomy, bad proportions, extra limbs, cloned face, skinny, glitchy, double torso, extra arms, extra hands, mangled fingers, missing lips, ugly face, distorted face, extra legs, anime\", \n \"width\": \"512\", \n \"height\": \"512\", \n \"samples\": \"1\", \n \"num_inference_steps\": \"30\", \n \"safety_checker\": \"no\", \n \"enhance_prompt\": \"yes\", \n \"seed\": None, \n \"guidance_scale\": 7.5, \n \"multi_lingual\": \"no\", \n \"panorama\": \"no\", \n \"self_attention\": \"no\", \n \"upscale\": \"no\", \n \"embeddings\": \"embeddings_model_id\", \n \"lora\": \"lora_model_id\", \n \"webhook\": None, \n \"track_id\": None \n }) \n \n headers = { \n 'Content-Type': 'application/json' \n } \n \n response = requests.request(\"POST\", url, headers=headers, data=payload) \n \n print(URL)\n\n> Use this coupon code to get 25% off DMGG0RBN" ]
[ "TAGS\n#diffusers #modelslab.com #stable-diffusion-api #text-to-image #ultra-realistic #license-creativeml-openrail-m #endpoints_compatible #diffusers-StableDiffusionXLPipeline #region-us \n", "# Real Dream SDXL API Inference\n\n!generated from URL", "## Get API Key\n\nGet API key from ModelsLab API, No Payment needed. \n\nReplace Key in below code, change model_id to \"real-dream-sdxl\"\n\nCoding in PHP/Node/Java etc? Have a look at docs for more code examples: View docs\n\nTry model for free: Generate Images\n\nModel link: View model\n\nView all models: View Models\n\n import requests \n import json \n \n url = \"URL \n \n payload = URL({ \n \"key\": \"your_api_key\", \n \"model_id\": \"real-dream-sdxl\", \n \"prompt\": \"ultra realistic close up portrait ((beautiful pale cyberpunk female with heavy black eyeliner)), blue eyes, shaved side haircut, hyper detail, cinematic lighting, magic neon, dark red city, Canon EOS R3, nikon, f/1.4, ISO 200, 1/160s, 8K, RAW, unedited, symmetrical balance, in-frame, 8K\", \n \"negative_prompt\": \"painting, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, deformed, ugly, blurry, bad anatomy, bad proportions, extra limbs, cloned face, skinny, glitchy, double torso, extra arms, extra hands, mangled fingers, missing lips, ugly face, distorted face, extra legs, anime\", \n \"width\": \"512\", \n \"height\": \"512\", \n \"samples\": \"1\", \n \"num_inference_steps\": \"30\", \n \"safety_checker\": \"no\", \n \"enhance_prompt\": \"yes\", \n \"seed\": None, \n \"guidance_scale\": 7.5, \n \"multi_lingual\": \"no\", \n \"panorama\": \"no\", \n \"self_attention\": \"no\", \n \"upscale\": \"no\", \n \"embeddings\": \"embeddings_model_id\", \n \"lora\": \"lora_model_id\", \n \"webhook\": None, \n \"track_id\": None \n }) \n \n headers = { \n 'Content-Type': 'application/json' \n } \n \n response = requests.request(\"POST\", url, headers=headers, data=payload) \n \n print(URL)\n\n> Use this coupon code to get 25% off DMGG0RBN" ]
[ 56, 13, 515 ]
[ "TAGS\n#diffusers #modelslab.com #stable-diffusion-api #text-to-image #ultra-realistic #license-creativeml-openrail-m #endpoints_compatible #diffusers-StableDiffusionXLPipeline #region-us \n# Real Dream SDXL API Inference\n\n!generated from URL## Get API Key\n\nGet API key from ModelsLab API, No Payment needed. \n\nReplace Key in below code, change model_id to \"real-dream-sdxl\"\n\nCoding in PHP/Node/Java etc? Have a look at docs for more code examples: View docs\n\nTry model for free: Generate Images\n\nModel link: View model\n\nView all models: View Models\n\n import requests \n import json \n \n url = \"URL \n \n payload = URL({ \n \"key\": \"your_api_key\", \n \"model_id\": \"real-dream-sdxl\", \n \"prompt\": \"ultra realistic close up portrait ((beautiful pale cyberpunk female with heavy black eyeliner)), blue eyes, shaved side haircut, hyper detail, cinematic lighting, magic neon, dark red city, Canon EOS R3, nikon, f/1.4, ISO 200, 1/160s, 8K, RAW, unedited, symmetrical balance, in-frame, 8K\", \n \"negative_prompt\": \"painting, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, deformed, ugly, blurry, bad anatomy, bad proportions, extra limbs, cloned face, skinny, glitchy, double torso, extra arms, extra hands, mangled fingers, missing lips, ugly face, distorted face, extra legs, anime\", \n \"width\": \"512\", \n \"height\": \"512\", \n \"samples\": \"1\", \n \"num_inference_steps\": \"30\", \n \"safety_checker\": \"no\", \n \"enhance_prompt\": \"yes\", \n \"seed\": None, \n \"guidance_scale\": 7.5, \n \"multi_lingual\": \"no\", \n \"panorama\": \"no\", \n \"self_attention\": \"no\", \n \"upscale\": \"no\", \n \"embeddings\": \"embeddings_model_id\", \n \"lora\": \"lora_model_id\", \n \"webhook\": None, \n \"track_id\": None \n }) \n \n headers = { \n 'Content-Type': 'application/json' \n } \n \n response = requests.request(\"POST\", url, headers=headers, data=payload) \n \n print(URL)\n\n> Use this coupon code to get 25% off DMGG0RBN" ]
feature-extraction
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
claudios/CodeGPT-small-py
null
[ "transformers", "safetensors", "gpt2", "feature-extraction", "arxiv:1910.09700", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-04-30T21:12:55+00:00
[ "1910.09700" ]
[]
TAGS #transformers #safetensors #gpt2 #feature-extraction #arxiv-1910.09700 #endpoints_compatible #text-generation-inference #region-us
# Model Card for Model ID ## Model Details ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #safetensors #gpt2 #feature-extraction #arxiv-1910.09700 #endpoints_compatible #text-generation-inference #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ 40, 6, 4, 75, 23, 3, 5, 8, 9, 8, 34, 20, 4, 5, 5, 11, 13, 12, 3, 10, 6, 5, 6, 4, 5, 7, 49, 7, 7, 5, 5, 15, 7, 7, 8, 5 ]
[ "TAGS\n#transformers #safetensors #gpt2 #feature-extraction #arxiv-1910.09700 #endpoints_compatible #text-generation-inference #region-us \n# Model Card for Model ID## Model Details### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Downstream Use [optional]### Out-of-Scope Use## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.## How to Get Started with the Model\n\nUse the code below to get started with the model.## Training Details### Training Data### Training Procedure#### Preprocessing [optional]#### Training Hyperparameters\n\n- Training regime:#### Speeds, Sizes, Times [optional]## Evaluation### Testing Data, Factors & Metrics#### Testing Data#### Factors#### Metrics### Results#### Summary## Model Examination [optional]## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:## Technical Specifications [optional]### Model Architecture and Objective### Compute Infrastructure#### Hardware#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Model Card Authors [optional]## Model Card Contact" ]
text-generation
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
lunarsylph/moontemp_v1
null
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-04-30T21:16:24+00:00
[ "1910.09700" ]
[]
TAGS #transformers #safetensors #llama #text-generation #conversational #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# Model Card for Model ID ## Model Details ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #safetensors #llama #text-generation #conversational #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ 47, 6, 4, 75, 23, 3, 5, 8, 9, 8, 34, 20, 4, 5, 5, 11, 13, 12, 3, 10, 6, 5, 6, 4, 5, 7, 49, 7, 7, 5, 5, 15, 7, 7, 8, 5 ]
[ "TAGS\n#transformers #safetensors #llama #text-generation #conversational #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# Model Card for Model ID## Model Details### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Downstream Use [optional]### Out-of-Scope Use## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.## How to Get Started with the Model\n\nUse the code below to get started with the model.## Training Details### Training Data### Training Procedure#### Preprocessing [optional]#### Training Hyperparameters\n\n- Training regime:#### Speeds, Sizes, Times [optional]## Evaluation### Testing Data, Factors & Metrics#### Testing Data#### Factors#### Metrics### Results#### Summary## Model Examination [optional]## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:## Technical Specifications [optional]### Model Architecture and Objective### Compute Infrastructure#### Hardware#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Model Card Authors [optional]## Model Card Contact" ]
image-segmentation
pytorch
![](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/models/deeplabv3_plus_mobilenet_quantized/web-assets/model_demo.png) # DeepLabV3-Plus-MobileNet-Quantized: Optimized for Mobile Deployment ## Quantized Deep Convolutional Neural Network model for semantic segmentation DeepLabV3 Quantized is designed for semantic segmentation at multiple scales, trained on various datasets. It uses MobileNet as a backbone. This model is an implementation of DeepLabV3-Plus-MobileNet-Quantized found [here](https://github.com/jfzhang95/pytorch-deeplab-xception). This repository provides scripts to run DeepLabV3-Plus-MobileNet-Quantized on Qualcomm® devices. More details on model performance across various devices, can be found [here](https://aihub.qualcomm.com/models/deeplabv3_plus_mobilenet_quantized). ### Model Details - **Model Type:** Semantic segmentation - **Model Stats:** - Model checkpoint: VOC2012 - Input resolution: 513x513 - Number of parameters: 5.80M - Model size: 6.04 MB | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model | ---|---|---|---|---|---|---|---| | Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 3.523 ms | 0 - 2 MB | INT8 | NPU | [DeepLabV3-Plus-MobileNet-Quantized.tflite](https://huggingface.co/qualcomm/DeepLabV3-Plus-MobileNet-Quantized/blob/main/DeepLabV3-Plus-MobileNet-Quantized.tflite) | Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | QNN Model Library | 5.308 ms | 1 - 9 MB | INT8 | NPU | [DeepLabV3-Plus-MobileNet-Quantized.so](https://huggingface.co/qualcomm/DeepLabV3-Plus-MobileNet-Quantized/blob/main/DeepLabV3-Plus-MobileNet-Quantized.so) ## Installation This model can be installed as a Python package via pip. ```bash pip install qai-hub-models ``` ## Configure Qualcomm® AI Hub to run this model on a cloud-hosted device Sign-in to [Qualcomm® AI Hub](https://app.aihub.qualcomm.com/) with your Qualcomm® ID. Once signed in navigate to `Account -> Settings -> API Token`. With this API token, you can configure your client to run models on the cloud hosted devices. ```bash qai-hub configure --api_token API_TOKEN ``` Navigate to [docs](https://app.aihub.qualcomm.com/docs/) for more information. ## Demo off target The package contains a simple end-to-end demo that downloads pre-trained weights and runs this model on a sample input. ```bash python -m qai_hub_models.models.deeplabv3_plus_mobilenet_quantized.demo ``` The above demo runs a reference implementation of pre-processing, model inference, and post processing. **NOTE**: If you want running in a Jupyter Notebook or Google Colab like environment, please add the following to your cell (instead of the above). ``` %run -m qai_hub_models.models.deeplabv3_plus_mobilenet_quantized.demo ``` ### Run model on a cloud-hosted device In addition to the demo, you can also run the model on a cloud-hosted Qualcomm® device. This script does the following: * Performance check on-device on a cloud-hosted device * Downloads compiled assets that can be deployed on-device for Android. * Accuracy check between PyTorch and on-device outputs. ```bash python -m qai_hub_models.models.deeplabv3_plus_mobilenet_quantized.export ``` ``` Profile Job summary of DeepLabV3-Plus-MobileNet-Quantized -------------------------------------------------- Device: QCS8550 (Proxy) (12) Estimated Inference Time: 3.53 ms Estimated Peak Memory Range: 0.01-16.76 MB Compute Units: NPU (99) | Total (99) Profile Job summary of DeepLabV3-Plus-MobileNet-Quantized -------------------------------------------------- Device: QCS8550 (Proxy) (12) Estimated Inference Time: 5.30 ms Estimated Peak Memory Range: 0.79-13.51 MB Compute Units: NPU (100) | Total (100) ``` ## How does this work? This [export script](https://github.com/quic/ai-hub-models/blob/main/qai_hub_models/models/DeepLabV3-Plus-MobileNet-Quantized/export.py) leverages [Qualcomm® AI Hub](https://aihub.qualcomm.com/) to optimize, validate, and deploy this model on-device. Lets go through each step below in detail: Step 1: **Compile model for on-device deployment** To compile a PyTorch model for on-device deployment, we first trace the model in memory using the `jit.trace` and then call the `submit_compile_job` API. ```python import torch import qai_hub as hub from qai_hub_models.models.deeplabv3_plus_mobilenet_quantized import Model # Load the model torch_model = Model.from_pretrained() torch_model.eval() # Device device = hub.Device("Samsung Galaxy S23") # Trace model input_shape = torch_model.get_input_spec() sample_inputs = torch_model.sample_inputs() pt_model = torch.jit.trace(torch_model, [torch.tensor(data[0]) for _, data in sample_inputs.items()]) # Compile model on a specific device compile_job = hub.submit_compile_job( model=pt_model, device=device, input_specs=torch_model.get_input_spec(), ) # Get target model to run on-device target_model = compile_job.get_target_model() ``` Step 2: **Performance profiling on cloud-hosted device** After compiling models from step 1. Models can be profiled model on-device using the `target_model`. Note that this scripts runs the model on a device automatically provisioned in the cloud. Once the job is submitted, you can navigate to a provided job URL to view a variety of on-device performance metrics. ```python profile_job = hub.submit_profile_job( model=target_model, device=device, ) ``` Step 3: **Verify on-device accuracy** To verify the accuracy of the model on-device, you can run on-device inference on sample input data on the same cloud hosted device. ```python input_data = torch_model.sample_inputs() inference_job = hub.submit_inference_job( model=target_model, device=device, inputs=input_data, ) on_device_output = inference_job.download_output_data() ``` With the output of the model, you can compute like PSNR, relative errors or spot check the output with expected output. **Note**: This on-device profiling and inference requires access to Qualcomm® AI Hub. [Sign up for access](https://myaccount.qualcomm.com/signup). ## Run demo on a cloud-hosted device You can also run the demo on-device. ```bash python -m qai_hub_models.models.deeplabv3_plus_mobilenet_quantized.demo --on-device ``` **NOTE**: If you want running in a Jupyter Notebook or Google Colab like environment, please add the following to your cell (instead of the above). ``` %run -m qai_hub_models.models.deeplabv3_plus_mobilenet_quantized.demo -- --on-device ``` ## Deploying compiled model to Android The models can be deployed using multiple runtimes: - TensorFlow Lite (`.tflite` export): [This tutorial](https://www.tensorflow.org/lite/android/quickstart) provides a guide to deploy the .tflite model in an Android application. - QNN (`.so` export ): This [sample app](https://docs.qualcomm.com/bundle/publicresource/topics/80-63442-50/sample_app.html) provides instructions on how to use the `.so` shared library in an Android application. ## View on Qualcomm® AI Hub Get more details on DeepLabV3-Plus-MobileNet-Quantized's performance across various devices [here](https://aihub.qualcomm.com/models/deeplabv3_plus_mobilenet_quantized). Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/) ## License - The license for the original implementation of DeepLabV3-Plus-MobileNet-Quantized can be found [here](https://github.com/quic/aimet-model-zoo/blob/develop/LICENSE.pdf). - The license for the compiled assets for on-device deployment can be found [here]({deploy_license_url}) ## References * [Rethinking Atrous Convolution for Semantic Image Segmentation](https://arxiv.org/abs/1706.05587) * [Source Model Implementation](https://github.com/jfzhang95/pytorch-deeplab-xception) ## Community * Join [our AI Hub Slack community](https://qualcomm-ai-hub.slack.com/join/shared_invite/zt-2d5zsmas3-Sj0Q9TzslueCjS31eXG2UA#/shared-invite/email) to collaborate, post questions and learn more about on-device AI. * For questions or feedback please [reach out to us](mailto:[email protected]).
{"license": "mit", "library_name": "pytorch", "tags": ["quantized", "android"], "datasets": ["VOC2012"], "pipeline_tag": "image-segmentation"}
qualcomm/DeepLabV3-Plus-MobileNet-Quantized
null
[ "pytorch", "tflite", "quantized", "android", "image-segmentation", "dataset:VOC2012", "arxiv:1706.05587", "license:mit", "region:us" ]
null
2024-04-30T21:16:43+00:00
[ "1706.05587" ]
[]
TAGS #pytorch #tflite #quantized #android #image-segmentation #dataset-VOC2012 #arxiv-1706.05587 #license-mit #region-us
![](URL DeepLabV3-Plus-MobileNet-Quantized: Optimized for Mobile Deployment =================================================================== Quantized Deep Convolutional Neural Network model for semantic segmentation --------------------------------------------------------------------------- DeepLabV3 Quantized is designed for semantic segmentation at multiple scales, trained on various datasets. It uses MobileNet as a backbone. This model is an implementation of DeepLabV3-Plus-MobileNet-Quantized found here. This repository provides scripts to run DeepLabV3-Plus-MobileNet-Quantized on Qualcomm® devices. More details on model performance across various devices, can be found here. ### Model Details * Model Type: Semantic segmentation * Model Stats: + Model checkpoint: VOC2012 + Input resolution: 513x513 + Number of parameters: 5.80M + Model size: 6.04 MB Installation ------------ This model can be installed as a Python package via pip. Configure Qualcomm® AI Hub to run this model on a cloud-hosted device --------------------------------------------------------------------- Sign-in to Qualcomm® AI Hub with your Qualcomm® ID. Once signed in navigate to 'Account -> Settings -> API Token'. With this API token, you can configure your client to run models on the cloud hosted devices. Navigate to docs for more information. Demo off target --------------- The package contains a simple end-to-end demo that downloads pre-trained weights and runs this model on a sample input. The above demo runs a reference implementation of pre-processing, model inference, and post processing. NOTE: If you want running in a Jupyter Notebook or Google Colab like environment, please add the following to your cell (instead of the above). ### Run model on a cloud-hosted device In addition to the demo, you can also run the model on a cloud-hosted Qualcomm® device. This script does the following: * Performance check on-device on a cloud-hosted device * Downloads compiled assets that can be deployed on-device for Android. * Accuracy check between PyTorch and on-device outputs. How does this work? ------------------- This export script leverages Qualcomm® AI Hub to optimize, validate, and deploy this model on-device. Lets go through each step below in detail: Step 1: Compile model for on-device deployment To compile a PyTorch model for on-device deployment, we first trace the model in memory using the 'URL' and then call the 'submit\_compile\_job' API. Step 2: Performance profiling on cloud-hosted device After compiling models from step 1. Models can be profiled model on-device using the 'target\_model'. Note that this scripts runs the model on a device automatically provisioned in the cloud. Once the job is submitted, you can navigate to a provided job URL to view a variety of on-device performance metrics. Step 3: Verify on-device accuracy To verify the accuracy of the model on-device, you can run on-device inference on sample input data on the same cloud hosted device. With the output of the model, you can compute like PSNR, relative errors or spot check the output with expected output. Note: This on-device profiling and inference requires access to Qualcomm® AI Hub. Sign up for access. Run demo on a cloud-hosted device --------------------------------- You can also run the demo on-device. NOTE: If you want running in a Jupyter Notebook or Google Colab like environment, please add the following to your cell (instead of the above). Deploying compiled model to Android ----------------------------------- The models can be deployed using multiple runtimes: * TensorFlow Lite ('.tflite' export): This tutorial provides a guide to deploy the .tflite model in an Android application. * QNN ('.so' export ): This sample app provides instructions on how to use the '.so' shared library in an Android application. View on Qualcomm® AI Hub ------------------------ Get more details on DeepLabV3-Plus-MobileNet-Quantized's performance across various devices here. Explore all available models on Qualcomm® AI Hub License ------- * The license for the original implementation of DeepLabV3-Plus-MobileNet-Quantized can be found here. * The license for the compiled assets for on-device deployment can be found here References ---------- * Rethinking Atrous Convolution for Semantic Image Segmentation * Source Model Implementation Community --------- * Join our AI Hub Slack community to collaborate, post questions and learn more about on-device AI. * For questions or feedback please reach out to us.
[ "### Model Details\n\n\n* Model Type: Semantic segmentation\n* Model Stats:\n\t+ Model checkpoint: VOC2012\n\t+ Input resolution: 513x513\n\t+ Number of parameters: 5.80M\n\t+ Model size: 6.04 MB\n\n\n\nInstallation\n------------\n\n\nThis model can be installed as a Python package via pip.\n\n\nConfigure Qualcomm® AI Hub to run this model on a cloud-hosted device\n---------------------------------------------------------------------\n\n\nSign-in to Qualcomm® AI Hub with your\nQualcomm® ID. Once signed in navigate to 'Account -> Settings -> API Token'.\n\n\nWith this API token, you can configure your client to run models on the cloud\nhosted devices.\n\n\nNavigate to docs for more information.\n\n\nDemo off target\n---------------\n\n\nThe package contains a simple end-to-end demo that downloads pre-trained\nweights and runs this model on a sample input.\n\n\nThe above demo runs a reference implementation of pre-processing, model\ninference, and post processing.\n\n\nNOTE: If you want running in a Jupyter Notebook or Google Colab like\nenvironment, please add the following to your cell (instead of the above).", "### Run model on a cloud-hosted device\n\n\nIn addition to the demo, you can also run the model on a cloud-hosted Qualcomm®\ndevice. This script does the following:\n\n\n* Performance check on-device on a cloud-hosted device\n* Downloads compiled assets that can be deployed on-device for Android.\n* Accuracy check between PyTorch and on-device outputs.\n\n\nHow does this work?\n-------------------\n\n\nThis export script\nleverages Qualcomm® AI Hub to optimize, validate, and deploy this model\non-device. Lets go through each step below in detail:\n\n\nStep 1: Compile model for on-device deployment\n\n\nTo compile a PyTorch model for on-device deployment, we first trace the model\nin memory using the 'URL' and then call the 'submit\\_compile\\_job' API.\n\n\nStep 2: Performance profiling on cloud-hosted device\n\n\nAfter compiling models from step 1. Models can be profiled model on-device using the\n'target\\_model'. Note that this scripts runs the model on a device automatically\nprovisioned in the cloud. Once the job is submitted, you can navigate to a\nprovided job URL to view a variety of on-device performance metrics.\n\n\nStep 3: Verify on-device accuracy\n\n\nTo verify the accuracy of the model on-device, you can run on-device inference\non sample input data on the same cloud hosted device.\n\n\nWith the output of the model, you can compute like PSNR, relative errors or\nspot check the output with expected output.\n\n\nNote: This on-device profiling and inference requires access to Qualcomm®\nAI Hub. Sign up for access.\n\n\nRun demo on a cloud-hosted device\n---------------------------------\n\n\nYou can also run the demo on-device.\n\n\nNOTE: If you want running in a Jupyter Notebook or Google Colab like\nenvironment, please add the following to your cell (instead of the above).\n\n\nDeploying compiled model to Android\n-----------------------------------\n\n\nThe models can be deployed using multiple runtimes:\n\n\n* TensorFlow Lite ('.tflite' export): This\ntutorial provides a\nguide to deploy the .tflite model in an Android application.\n* QNN ('.so' export ): This sample\napp\nprovides instructions on how to use the '.so' shared library in an Android application.\n\n\nView on Qualcomm® AI Hub\n------------------------\n\n\nGet more details on DeepLabV3-Plus-MobileNet-Quantized's performance across various devices here.\nExplore all available models on Qualcomm® AI Hub\n\n\nLicense\n-------\n\n\n* The license for the original implementation of DeepLabV3-Plus-MobileNet-Quantized can be found\nhere.\n* The license for the compiled assets for on-device deployment can be found here\n\n\nReferences\n----------\n\n\n* Rethinking Atrous Convolution for Semantic Image Segmentation\n* Source Model Implementation\n\n\nCommunity\n---------\n\n\n* Join our AI Hub Slack community to collaborate, post questions and learn more about on-device AI.\n* For questions or feedback please reach out to us." ]
[ "TAGS\n#pytorch #tflite #quantized #android #image-segmentation #dataset-VOC2012 #arxiv-1706.05587 #license-mit #region-us \n", "### Model Details\n\n\n* Model Type: Semantic segmentation\n* Model Stats:\n\t+ Model checkpoint: VOC2012\n\t+ Input resolution: 513x513\n\t+ Number of parameters: 5.80M\n\t+ Model size: 6.04 MB\n\n\n\nInstallation\n------------\n\n\nThis model can be installed as a Python package via pip.\n\n\nConfigure Qualcomm® AI Hub to run this model on a cloud-hosted device\n---------------------------------------------------------------------\n\n\nSign-in to Qualcomm® AI Hub with your\nQualcomm® ID. Once signed in navigate to 'Account -> Settings -> API Token'.\n\n\nWith this API token, you can configure your client to run models on the cloud\nhosted devices.\n\n\nNavigate to docs for more information.\n\n\nDemo off target\n---------------\n\n\nThe package contains a simple end-to-end demo that downloads pre-trained\nweights and runs this model on a sample input.\n\n\nThe above demo runs a reference implementation of pre-processing, model\ninference, and post processing.\n\n\nNOTE: If you want running in a Jupyter Notebook or Google Colab like\nenvironment, please add the following to your cell (instead of the above).", "### Run model on a cloud-hosted device\n\n\nIn addition to the demo, you can also run the model on a cloud-hosted Qualcomm®\ndevice. This script does the following:\n\n\n* Performance check on-device on a cloud-hosted device\n* Downloads compiled assets that can be deployed on-device for Android.\n* Accuracy check between PyTorch and on-device outputs.\n\n\nHow does this work?\n-------------------\n\n\nThis export script\nleverages Qualcomm® AI Hub to optimize, validate, and deploy this model\non-device. Lets go through each step below in detail:\n\n\nStep 1: Compile model for on-device deployment\n\n\nTo compile a PyTorch model for on-device deployment, we first trace the model\nin memory using the 'URL' and then call the 'submit\\_compile\\_job' API.\n\n\nStep 2: Performance profiling on cloud-hosted device\n\n\nAfter compiling models from step 1. Models can be profiled model on-device using the\n'target\\_model'. Note that this scripts runs the model on a device automatically\nprovisioned in the cloud. Once the job is submitted, you can navigate to a\nprovided job URL to view a variety of on-device performance metrics.\n\n\nStep 3: Verify on-device accuracy\n\n\nTo verify the accuracy of the model on-device, you can run on-device inference\non sample input data on the same cloud hosted device.\n\n\nWith the output of the model, you can compute like PSNR, relative errors or\nspot check the output with expected output.\n\n\nNote: This on-device profiling and inference requires access to Qualcomm®\nAI Hub. Sign up for access.\n\n\nRun demo on a cloud-hosted device\n---------------------------------\n\n\nYou can also run the demo on-device.\n\n\nNOTE: If you want running in a Jupyter Notebook or Google Colab like\nenvironment, please add the following to your cell (instead of the above).\n\n\nDeploying compiled model to Android\n-----------------------------------\n\n\nThe models can be deployed using multiple runtimes:\n\n\n* TensorFlow Lite ('.tflite' export): This\ntutorial provides a\nguide to deploy the .tflite model in an Android application.\n* QNN ('.so' export ): This sample\napp\nprovides instructions on how to use the '.so' shared library in an Android application.\n\n\nView on Qualcomm® AI Hub\n------------------------\n\n\nGet more details on DeepLabV3-Plus-MobileNet-Quantized's performance across various devices here.\nExplore all available models on Qualcomm® AI Hub\n\n\nLicense\n-------\n\n\n* The license for the original implementation of DeepLabV3-Plus-MobileNet-Quantized can be found\nhere.\n* The license for the compiled assets for on-device deployment can be found here\n\n\nReferences\n----------\n\n\n* Rethinking Atrous Convolution for Semantic Image Segmentation\n* Source Model Implementation\n\n\nCommunity\n---------\n\n\n* Join our AI Hub Slack community to collaborate, post questions and learn more about on-device AI.\n* For questions or feedback please reach out to us." ]
[ 47, 327, 758 ]
[ "TAGS\n#pytorch #tflite #quantized #android #image-segmentation #dataset-VOC2012 #arxiv-1706.05587 #license-mit #region-us \n### Model Details\n\n\n* Model Type: Semantic segmentation\n* Model Stats:\n\t+ Model checkpoint: VOC2012\n\t+ Input resolution: 513x513\n\t+ Number of parameters: 5.80M\n\t+ Model size: 6.04 MB\n\n\n\nInstallation\n------------\n\n\nThis model can be installed as a Python package via pip.\n\n\nConfigure Qualcomm® AI Hub to run this model on a cloud-hosted device\n---------------------------------------------------------------------\n\n\nSign-in to Qualcomm® AI Hub with your\nQualcomm® ID. Once signed in navigate to 'Account -> Settings -> API Token'.\n\n\nWith this API token, you can configure your client to run models on the cloud\nhosted devices.\n\n\nNavigate to docs for more information.\n\n\nDemo off target\n---------------\n\n\nThe package contains a simple end-to-end demo that downloads pre-trained\nweights and runs this model on a sample input.\n\n\nThe above demo runs a reference implementation of pre-processing, model\ninference, and post processing.\n\n\nNOTE: If you want running in a Jupyter Notebook or Google Colab like\nenvironment, please add the following to your cell (instead of the above).### Run model on a cloud-hosted device\n\n\nIn addition to the demo, you can also run the model on a cloud-hosted Qualcomm®\ndevice. This script does the following:\n\n\n* Performance check on-device on a cloud-hosted device\n* Downloads compiled assets that can be deployed on-device for Android.\n* Accuracy check between PyTorch and on-device outputs.\n\n\nHow does this work?\n-------------------\n\n\nThis export script\nleverages Qualcomm® AI Hub to optimize, validate, and deploy this model\non-device. Lets go through each step below in detail:\n\n\nStep 1: Compile model for on-device deployment\n\n\nTo compile a PyTorch model for on-device deployment, we first trace the model\nin memory using the 'URL' and then call the 'submit\\_compile\\_job' API.\n\n\nStep 2: Performance profiling on cloud-hosted device\n\n\nAfter compiling models from step 1. Models can be profiled model on-device using the\n'target\\_model'. Note that this scripts runs the model on a device automatically\nprovisioned in the cloud. Once the job is submitted, you can navigate to a\nprovided job URL to view a variety of on-device performance metrics.\n\n\nStep 3: Verify on-device accuracy\n\n\nTo verify the accuracy of the model on-device, you can run on-device inference\non sample input data on the same cloud hosted device.\n\n\nWith the output of the model, you can compute like PSNR, relative errors or\nspot check the output with expected output.\n\n\nNote: This on-device profiling and inference requires access to Qualcomm®\nAI Hub. Sign up for access.\n\n\nRun demo on a cloud-hosted device\n---------------------------------\n\n\nYou can also run the demo on-device.\n\n\nNOTE: If you want running in a Jupyter Notebook or Google Colab like\nenvironment, please add the following to your cell (instead of the above).\n\n\nDeploying compiled model to Android\n-----------------------------------\n\n\nThe models can be deployed using multiple runtimes:\n\n\n* TensorFlow Lite ('.tflite' export): This\ntutorial provides a\nguide to deploy the .tflite model in an Android application.\n* QNN ('.so' export ): This sample\napp\nprovides instructions on how to use the '.so' shared library in an Android application.\n\n\nView on Qualcomm® AI Hub\n------------------------\n\n\nGet more details on DeepLabV3-Plus-MobileNet-Quantized's performance across various devices here.\nExplore all available models on Qualcomm® AI Hub\n\n\nLicense\n-------\n\n\n* The license for the original implementation of DeepLabV3-Plus-MobileNet-Quantized can be found\nhere.\n* The license for the compiled assets for on-device deployment can be found here\n\n\nReferences\n----------\n\n\n* Rethinking Atrous Convolution for Semantic Image Segmentation\n* Source Model Implementation\n\n\nCommunity\n---------\n\n\n* Join our AI Hub Slack community to collaborate, post questions and learn more about on-device AI.\n* For questions or feedback please reach out to us." ]
feature-extraction
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
claudios/CodeGPT-small-java
null
[ "transformers", "safetensors", "gpt2", "feature-extraction", "arxiv:1910.09700", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-04-30T21:17:12+00:00
[ "1910.09700" ]
[]
TAGS #transformers #safetensors #gpt2 #feature-extraction #arxiv-1910.09700 #endpoints_compatible #text-generation-inference #region-us
# Model Card for Model ID ## Model Details ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #safetensors #gpt2 #feature-extraction #arxiv-1910.09700 #endpoints_compatible #text-generation-inference #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ 40, 6, 4, 75, 23, 3, 5, 8, 9, 8, 34, 20, 4, 5, 5, 11, 13, 12, 3, 10, 6, 5, 6, 4, 5, 7, 49, 7, 7, 5, 5, 15, 7, 7, 8, 5 ]
[ "TAGS\n#transformers #safetensors #gpt2 #feature-extraction #arxiv-1910.09700 #endpoints_compatible #text-generation-inference #region-us \n# Model Card for Model ID## Model Details### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Downstream Use [optional]### Out-of-Scope Use## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.## How to Get Started with the Model\n\nUse the code below to get started with the model.## Training Details### Training Data### Training Procedure#### Preprocessing [optional]#### Training Hyperparameters\n\n- Training regime:#### Speeds, Sizes, Times [optional]## Evaluation### Testing Data, Factors & Metrics#### Testing Data#### Factors#### Metrics### Results#### Summary## Model Examination [optional]## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:## Technical Specifications [optional]### Model Architecture and Objective### Compute Infrastructure#### Hardware#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Model Card Authors [optional]## Model Card Contact" ]
feature-extraction
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
claudios/CodeGPT-Multilingual
null
[ "transformers", "safetensors", "gpt2", "feature-extraction", "arxiv:1910.09700", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-04-30T21:20:43+00:00
[ "1910.09700" ]
[]
TAGS #transformers #safetensors #gpt2 #feature-extraction #arxiv-1910.09700 #endpoints_compatible #text-generation-inference #region-us
# Model Card for Model ID ## Model Details ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #safetensors #gpt2 #feature-extraction #arxiv-1910.09700 #endpoints_compatible #text-generation-inference #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ 40, 6, 4, 75, 23, 3, 5, 8, 9, 8, 34, 20, 4, 5, 5, 11, 13, 12, 3, 10, 6, 5, 6, 4, 5, 7, 49, 7, 7, 5, 5, 15, 7, 7, 8, 5 ]
[ "TAGS\n#transformers #safetensors #gpt2 #feature-extraction #arxiv-1910.09700 #endpoints_compatible #text-generation-inference #region-us \n# Model Card for Model ID## Model Details### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Downstream Use [optional]### Out-of-Scope Use## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.## How to Get Started with the Model\n\nUse the code below to get started with the model.## Training Details### Training Data### Training Procedure#### Preprocessing [optional]#### Training Hyperparameters\n\n- Training regime:#### Speeds, Sizes, Times [optional]## Evaluation### Testing Data, Factors & Metrics#### Testing Data#### Factors#### Metrics### Results#### Summary## Model Examination [optional]## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:## Technical Specifications [optional]### Model Architecture and Objective### Compute Infrastructure#### Hardware#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Model Card Authors [optional]## Model Card Contact" ]
feature-extraction
transformers
## Model Description We introduce Dragon-multiturn, a retriever specifically designed for the conversational QA scenario. It can handle conversational query which combine dialogue history with the current query. It is built on top of the [Dragon](https://huggingface.co/facebook/dragon-plus-query-encoder) retriever. The details of Dragon-multiturn can be found in [here](https://arxiv.org/abs/2401.10225). **Please note that this repository is for the context encoder of Dragon-multiturn, and we use a separate model for the query encoder, which can be found [here](https://huggingface.co/nvidia/dragon-multiturn-query-encoder).** ## Other Resources [Llama3-ChatQA-1.5-8B](https://huggingface.co/nvidia/Llama3-ChatQA-1.5-8B) &ensp; [Llama3-ChatQA-1.5-70B](https://huggingface.co/nvidia/Llama3-ChatQA-1.5-70B) &ensp; [Evaluation Data](https://huggingface.co/datasets/nvidia/ConvRAG-Bench) &ensp; [Training Data](https://huggingface.co/datasets/nvidia/ChatQA-Training-Data) ## Benchmark Results <style type="text/css"> .tg {border:none;border-collapse:collapse;border-spacing:0;} .tg td{border-style:solid;border-width:1px;font-family:Arial, sans-serif;font-size:14px;overflow:hidden; padding:10px 5px;word-break:normal;} .tg th{border-style:solid;border-width:1px;font-family:Arial, sans-serif;font-size:14px;font-weight:normal; overflow:hidden;padding:10px 5px;word-break:normal;} .tg .tg-c3ow{border-color:inherit;text-align:center;vertical-align:center} .tg .tg-0pky{border-color:inherit;text-align:left;vertical-align:center} </style> <table class="tg"> <thead> <tr> <th class="tg-0pky" rowspan="2"></th> <th class="tg-c3ow" colspan="2">Average</th> <th class="tg-c3ow" colspan="2">Doc2Dial</th> <th class="tg-c3ow" colspan="2">QuAC</th> <th class="tg-c3ow" colspan="2">QReCC</th> <th class="tg-c3ow" colspan="2">TopiOCQA</th> <th class="tg-c3ow" colspan="2">INSCIT</th> </tr> <tr> <th class="tg-c3ow">top-1</th> <th class="tg-c3ow">top-5</th> <th class="tg-c3ow">top-1</th> <th class="tg-c3ow">top-5</th> <th class="tg-c3ow">top-1</th> <th class="tg-c3ow">top-5</th> <th class="tg-c3ow">top-1</th> <th class="tg-c3ow">top-5</th> <th class="tg-c3ow">top-5*</th> <th class="tg-c3ow">top-20*</th> <th class="tg-c3ow">top-5*</th> <th class="tg-c3ow">top-20*</th> </tr> </thead> <tbody> <tr> <td class="tg-0pky">Dragon</td> <td class="tg-c3ow">46.3</td> <td class="tg-c3ow">73.1</td> <td class="tg-c3ow">43.3</td> <td class="tg-c3ow">75.6</td> <td class="tg-c3ow">56.8</td> <td class="tg-c3ow">82.9</td> <td class="tg-c3ow">46.2</td> <td class="tg-c3ow">82.0</td> <td class="tg-c3ow">57.7</td> <td class="tg-c3ow">78.8</td> <td class="tg-c3ow">27.5</td> <td class="tg-c3ow">46.2</td> </tr> <tr> <td class="tg-0pky">Dragon-multiturn</td> <td class="tg-c3ow">53.0</td> <td class="tg-c3ow">81.2</td> <td class="tg-c3ow">48.6</td> <td class="tg-c3ow">83.5</td> <td class="tg-c3ow">54.8</td> <td class="tg-c3ow">83.2</td> <td class="tg-c3ow">49.6</td> <td class="tg-c3ow">86.7</td> <td class="tg-c3ow">64.5</td> <td class="tg-c3ow">85.2</td> <td class="tg-c3ow">47.4</td> <td class="tg-c3ow">67.1</td> </tr> </tbody> </table> Retrieval results across five multi-turn QA datasets (Doc2Dial, QuAC, QReCC, TopiOCQA, INSCIT) with the average top-1 and top-5 recall scores. *Since the average context length in TopiOCQA and INSCIT is smaller than in other datasets, we report top-5 and top-20 to roughly match the context lengths of top-1 and top-5, respectively, in those datasets. ## How to use ```python import torch from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained('nvidia/dragon-multiturn-query-encoder') query_encoder = AutoModel.from_pretrained('nvidia/dragon-multiturn-query-encoder') context_encoder = AutoModel.from_pretrained('nvidia/dragon-multiturn-context-encoder') query = [ {"role": "user", "content": "I need help planning my Social Security benefits for my survivors."}, {"role": "agent", "content": "Are you currently planning for your future?"}, {"role": "user", "content": "Yes, I am."} ] contexts = [ "Benefits Planner: Survivors | Planning For Your Survivors \nAs you plan for the future , you'll want to think about what your family would need if you should die now. Social Security can help your family if you have earned enough Social Security credits through your work. You can earn up to four credits each year. In 2019 , for example , you earn one credit for each $1,360 of wages or self - employment income. When you have earned $5,440 , you have earned your four credits for the year. The number of credits needed to provide benefits for your survivors depends on your age when you die. No one needs more than 40 credits 10 years of work to be eligible for any Social Security benefit. But , the younger a person is , the fewer credits they must have for family members to receive survivors benefits. Benefits can be paid to your children and your spouse who is caring for the children even if you don't have the required number of credits. They can get benefits if you have credit for one and one - half years of work 6 credits in the three years just before your death. For Your Widow Or Widower \nThere are about five million widows and widowers receiving monthly Social Security benefits based on their deceased spouse's earnings record.", "Benefits Planner: Retirement \nOther Things to Consider \nWhat Is The Best Age To Start Your Benefits? The answer is that there is no one \" best age \" for everyone and, ultimately, it is your choice. You should make an informed decision about when to apply for benefits based on your individual and family circumstances. Your monthly benefit amount can differ substantially based on the age when you start receiving benefits. If you decide to start benefits : before your full retirement age , your benefit will be smaller but you will receive it for a longer period of time. at your full retirement age or later , you will receive a larger monthly benefit for a shorter period of time. The amount you receive when you first get benefits sets the base for the amount you will receive for the rest of your life. You may want to consider the following when you make that decision : If you plan to continue working , there are limits on how much you can earn each year between age 62 and full retirement age and still get all your benefits. Depending on the amount of your benefit and your earnings for the year , you may have to give up some of your benefits." ] ## convert query into a format as follows: ## user: {user}\nagent: {agent}\nuser: {user} formatted_query = '\n'.join([turn['role'] + ": " + turn['content'] for turn in query]).strip() ## get query and context embeddings query_input = tokenizer(formatted_query, return_tensors='pt') ctx_input = tokenizer(contexts, padding=True, truncation=True, max_length=512, return_tensors='pt') query_emb = query_encoder(**query_input).last_hidden_state[:, 0, :] # (1, emb_dim) ctx_emb = context_encoder(**ctx_input).last_hidden_state[:, 0, :] # (num_ctx, emb_dim) ## Compute similarity scores using dot product similarities = query_emb.matmul(ctx_emb.transpose(0, 1)) # (1, num_ctx) ## rank the similarity (from highest to lowest) ranked_results = torch.argsort(similarities, dim=-1, descending=True) # (1, num_ctx) ``` ## License Dragon-multiturn is built on top of [Dragon](https://arxiv.org/abs/2302.07452). We refer users to the original license of the Dragon model. ## Correspondence to Zihan Liu ([email protected]), Wei Ping ([email protected]) ## Citation <pre> @article{liu2024chatqa, title={ChatQA: Building GPT-4 Level Conversational QA Models}, author={Liu, Zihan and Ping, Wei and Roy, Rajarshi and Xu, Peng and Lee, Chankyu and Shoeybi, Mohammad and Catanzaro, Bryan}, journal={arXiv preprint arXiv:2401.10225}, year={2024}} </pre>
{"language": ["en"], "license": ["other"], "tag": ["dragon", "retriever", "conversation", "multi-turn", "conversational query"]}
nvidia/dragon-multiturn-context-encoder
null
[ "transformers", "pytorch", "bert", "feature-extraction", "en", "arxiv:2401.10225", "arxiv:2302.07452", "license:other", "endpoints_compatible", "region:us" ]
null
2024-04-30T21:21:45+00:00
[ "2401.10225", "2302.07452" ]
[ "en" ]
TAGS #transformers #pytorch #bert #feature-extraction #en #arxiv-2401.10225 #arxiv-2302.07452 #license-other #endpoints_compatible #region-us
## Model Description We introduce Dragon-multiturn, a retriever specifically designed for the conversational QA scenario. It can handle conversational query which combine dialogue history with the current query. It is built on top of the Dragon retriever. The details of Dragon-multiturn can be found in here. Please note that this repository is for the context encoder of Dragon-multiturn, and we use a separate model for the query encoder, which can be found here. ## Other Resources Llama3-ChatQA-1.5-8B &ensp; Llama3-ChatQA-1.5-70B &ensp; Evaluation Data &ensp; Training Data ## Benchmark Results <style type="text/css"> .tg {border:none;border-collapse:collapse;border-spacing:0;} .tg td{border-style:solid;border-width:1px;font-family:Arial, sans-serif;font-size:14px;overflow:hidden; padding:10px 5px;word-break:normal;} .tg th{border-style:solid;border-width:1px;font-family:Arial, sans-serif;font-size:14px;font-weight:normal; overflow:hidden;padding:10px 5px;word-break:normal;} .tg .tg-c3ow{border-color:inherit;text-align:center;vertical-align:center} .tg .tg-0pky{border-color:inherit;text-align:left;vertical-align:center} </style> <table class="tg"> <thead> <tr> <th class="tg-0pky" rowspan="2"></th> <th class="tg-c3ow" colspan="2">Average</th> <th class="tg-c3ow" colspan="2">Doc2Dial</th> <th class="tg-c3ow" colspan="2">QuAC</th> <th class="tg-c3ow" colspan="2">QReCC</th> <th class="tg-c3ow" colspan="2">TopiOCQA</th> <th class="tg-c3ow" colspan="2">INSCIT</th> </tr> <tr> <th class="tg-c3ow">top-1</th> <th class="tg-c3ow">top-5</th> <th class="tg-c3ow">top-1</th> <th class="tg-c3ow">top-5</th> <th class="tg-c3ow">top-1</th> <th class="tg-c3ow">top-5</th> <th class="tg-c3ow">top-1</th> <th class="tg-c3ow">top-5</th> <th class="tg-c3ow">top-5*</th> <th class="tg-c3ow">top-20*</th> <th class="tg-c3ow">top-5*</th> <th class="tg-c3ow">top-20*</th> </tr> </thead> <tbody> <tr> <td class="tg-0pky">Dragon</td> <td class="tg-c3ow">46.3</td> <td class="tg-c3ow">73.1</td> <td class="tg-c3ow">43.3</td> <td class="tg-c3ow">75.6</td> <td class="tg-c3ow">56.8</td> <td class="tg-c3ow">82.9</td> <td class="tg-c3ow">46.2</td> <td class="tg-c3ow">82.0</td> <td class="tg-c3ow">57.7</td> <td class="tg-c3ow">78.8</td> <td class="tg-c3ow">27.5</td> <td class="tg-c3ow">46.2</td> </tr> <tr> <td class="tg-0pky">Dragon-multiturn</td> <td class="tg-c3ow">53.0</td> <td class="tg-c3ow">81.2</td> <td class="tg-c3ow">48.6</td> <td class="tg-c3ow">83.5</td> <td class="tg-c3ow">54.8</td> <td class="tg-c3ow">83.2</td> <td class="tg-c3ow">49.6</td> <td class="tg-c3ow">86.7</td> <td class="tg-c3ow">64.5</td> <td class="tg-c3ow">85.2</td> <td class="tg-c3ow">47.4</td> <td class="tg-c3ow">67.1</td> </tr> </tbody> </table> Retrieval results across five multi-turn QA datasets (Doc2Dial, QuAC, QReCC, TopiOCQA, INSCIT) with the average top-1 and top-5 recall scores. *Since the average context length in TopiOCQA and INSCIT is smaller than in other datasets, we report top-5 and top-20 to roughly match the context lengths of top-1 and top-5, respectively, in those datasets. ## How to use ## License Dragon-multiturn is built on top of Dragon. We refer users to the original license of the Dragon model. ## Correspondence to Zihan Liu (zihanl@URL), Wei Ping (wping@URL) <pre> @article{liu2024chatqa, title={ChatQA: Building GPT-4 Level Conversational QA Models}, author={Liu, Zihan and Ping, Wei and Roy, Rajarshi and Xu, Peng and Lee, Chankyu and Shoeybi, Mohammad and Catanzaro, Bryan}, journal={arXiv preprint arXiv:2401.10225}, year={2024}} </pre>
[ "## Model Description\nWe introduce Dragon-multiturn, a retriever specifically designed for the conversational QA scenario. It can handle conversational query which combine dialogue history with the current query. It is built on top of the Dragon retriever. The details of Dragon-multiturn can be found in here. Please note that this repository is for the context encoder of Dragon-multiturn, and we use a separate model for the query encoder, which can be found here.", "## Other Resources\nLlama3-ChatQA-1.5-8B &ensp; Llama3-ChatQA-1.5-70B &ensp; Evaluation Data &ensp; Training Data", "## Benchmark Results\n<style type=\"text/css\">\n.tg {border:none;border-collapse:collapse;border-spacing:0;}\n.tg td{border-style:solid;border-width:1px;font-family:Arial, sans-serif;font-size:14px;overflow:hidden;\n padding:10px 5px;word-break:normal;}\n.tg th{border-style:solid;border-width:1px;font-family:Arial, sans-serif;font-size:14px;font-weight:normal;\n overflow:hidden;padding:10px 5px;word-break:normal;}\n.tg .tg-c3ow{border-color:inherit;text-align:center;vertical-align:center}\n.tg .tg-0pky{border-color:inherit;text-align:left;vertical-align:center}\n</style>\n<table class=\"tg\">\n<thead>\n <tr>\n <th class=\"tg-0pky\" rowspan=\"2\"></th>\n <th class=\"tg-c3ow\" colspan=\"2\">Average</th>\n <th class=\"tg-c3ow\" colspan=\"2\">Doc2Dial</th>\n <th class=\"tg-c3ow\" colspan=\"2\">QuAC</th>\n <th class=\"tg-c3ow\" colspan=\"2\">QReCC</th>\n <th class=\"tg-c3ow\" colspan=\"2\">TopiOCQA</th>\n <th class=\"tg-c3ow\" colspan=\"2\">INSCIT</th>\n </tr>\n <tr>\n <th class=\"tg-c3ow\">top-1</th>\n <th class=\"tg-c3ow\">top-5</th>\n <th class=\"tg-c3ow\">top-1</th>\n <th class=\"tg-c3ow\">top-5</th>\n <th class=\"tg-c3ow\">top-1</th>\n <th class=\"tg-c3ow\">top-5</th>\n <th class=\"tg-c3ow\">top-1</th>\n <th class=\"tg-c3ow\">top-5</th>\n <th class=\"tg-c3ow\">top-5*</th>\n <th class=\"tg-c3ow\">top-20*</th>\n <th class=\"tg-c3ow\">top-5*</th>\n <th class=\"tg-c3ow\">top-20*</th>\n </tr>\n</thead>\n<tbody>\n <tr>\n <td class=\"tg-0pky\">Dragon</td>\n <td class=\"tg-c3ow\">46.3</td>\n <td class=\"tg-c3ow\">73.1</td>\n <td class=\"tg-c3ow\">43.3</td>\n <td class=\"tg-c3ow\">75.6</td>\n <td class=\"tg-c3ow\">56.8</td>\n <td class=\"tg-c3ow\">82.9</td>\n <td class=\"tg-c3ow\">46.2</td>\n <td class=\"tg-c3ow\">82.0</td>\n <td class=\"tg-c3ow\">57.7</td>\n <td class=\"tg-c3ow\">78.8</td>\n <td class=\"tg-c3ow\">27.5</td>\n <td class=\"tg-c3ow\">46.2</td>\n </tr>\n <tr>\n <td class=\"tg-0pky\">Dragon-multiturn</td>\n <td class=\"tg-c3ow\">53.0</td>\n <td class=\"tg-c3ow\">81.2</td>\n <td class=\"tg-c3ow\">48.6</td>\n <td class=\"tg-c3ow\">83.5</td>\n <td class=\"tg-c3ow\">54.8</td>\n <td class=\"tg-c3ow\">83.2</td>\n <td class=\"tg-c3ow\">49.6</td>\n <td class=\"tg-c3ow\">86.7</td>\n <td class=\"tg-c3ow\">64.5</td>\n <td class=\"tg-c3ow\">85.2</td>\n <td class=\"tg-c3ow\">47.4</td>\n <td class=\"tg-c3ow\">67.1</td>\n </tr>\n</tbody>\n</table>\nRetrieval results across five multi-turn QA datasets (Doc2Dial, QuAC, QReCC, TopiOCQA, INSCIT) with the average top-1 and top-5 recall scores. *Since the average context length in TopiOCQA and INSCIT is smaller than in other datasets, we report top-5 and top-20 to roughly match the context lengths of top-1 and top-5, respectively, in those datasets.", "## How to use", "## License\nDragon-multiturn is built on top of Dragon. We refer users to the original license of the Dragon model.", "## Correspondence to\nZihan Liu (zihanl@URL), Wei Ping (wping@URL)\n\n<pre>\n@article{liu2024chatqa,\n title={ChatQA: Building GPT-4 Level Conversational QA Models},\n author={Liu, Zihan and Ping, Wei and Roy, Rajarshi and Xu, Peng and Lee, Chankyu and Shoeybi, Mohammad and Catanzaro, Bryan},\n journal={arXiv preprint arXiv:2401.10225},\n year={2024}}\n</pre>" ]
[ "TAGS\n#transformers #pytorch #bert #feature-extraction #en #arxiv-2401.10225 #arxiv-2302.07452 #license-other #endpoints_compatible #region-us \n", "## Model Description\nWe introduce Dragon-multiturn, a retriever specifically designed for the conversational QA scenario. It can handle conversational query which combine dialogue history with the current query. It is built on top of the Dragon retriever. The details of Dragon-multiturn can be found in here. Please note that this repository is for the context encoder of Dragon-multiturn, and we use a separate model for the query encoder, which can be found here.", "## Other Resources\nLlama3-ChatQA-1.5-8B &ensp; Llama3-ChatQA-1.5-70B &ensp; Evaluation Data &ensp; Training Data", "## Benchmark Results\n<style type=\"text/css\">\n.tg {border:none;border-collapse:collapse;border-spacing:0;}\n.tg td{border-style:solid;border-width:1px;font-family:Arial, sans-serif;font-size:14px;overflow:hidden;\n padding:10px 5px;word-break:normal;}\n.tg th{border-style:solid;border-width:1px;font-family:Arial, sans-serif;font-size:14px;font-weight:normal;\n overflow:hidden;padding:10px 5px;word-break:normal;}\n.tg .tg-c3ow{border-color:inherit;text-align:center;vertical-align:center}\n.tg .tg-0pky{border-color:inherit;text-align:left;vertical-align:center}\n</style>\n<table class=\"tg\">\n<thead>\n <tr>\n <th class=\"tg-0pky\" rowspan=\"2\"></th>\n <th class=\"tg-c3ow\" colspan=\"2\">Average</th>\n <th class=\"tg-c3ow\" colspan=\"2\">Doc2Dial</th>\n <th class=\"tg-c3ow\" colspan=\"2\">QuAC</th>\n <th class=\"tg-c3ow\" colspan=\"2\">QReCC</th>\n <th class=\"tg-c3ow\" colspan=\"2\">TopiOCQA</th>\n <th class=\"tg-c3ow\" colspan=\"2\">INSCIT</th>\n </tr>\n <tr>\n <th class=\"tg-c3ow\">top-1</th>\n <th class=\"tg-c3ow\">top-5</th>\n <th class=\"tg-c3ow\">top-1</th>\n <th class=\"tg-c3ow\">top-5</th>\n <th class=\"tg-c3ow\">top-1</th>\n <th class=\"tg-c3ow\">top-5</th>\n <th class=\"tg-c3ow\">top-1</th>\n <th class=\"tg-c3ow\">top-5</th>\n <th class=\"tg-c3ow\">top-5*</th>\n <th class=\"tg-c3ow\">top-20*</th>\n <th class=\"tg-c3ow\">top-5*</th>\n <th class=\"tg-c3ow\">top-20*</th>\n </tr>\n</thead>\n<tbody>\n <tr>\n <td class=\"tg-0pky\">Dragon</td>\n <td class=\"tg-c3ow\">46.3</td>\n <td class=\"tg-c3ow\">73.1</td>\n <td class=\"tg-c3ow\">43.3</td>\n <td class=\"tg-c3ow\">75.6</td>\n <td class=\"tg-c3ow\">56.8</td>\n <td class=\"tg-c3ow\">82.9</td>\n <td class=\"tg-c3ow\">46.2</td>\n <td class=\"tg-c3ow\">82.0</td>\n <td class=\"tg-c3ow\">57.7</td>\n <td class=\"tg-c3ow\">78.8</td>\n <td class=\"tg-c3ow\">27.5</td>\n <td class=\"tg-c3ow\">46.2</td>\n </tr>\n <tr>\n <td class=\"tg-0pky\">Dragon-multiturn</td>\n <td class=\"tg-c3ow\">53.0</td>\n <td class=\"tg-c3ow\">81.2</td>\n <td class=\"tg-c3ow\">48.6</td>\n <td class=\"tg-c3ow\">83.5</td>\n <td class=\"tg-c3ow\">54.8</td>\n <td class=\"tg-c3ow\">83.2</td>\n <td class=\"tg-c3ow\">49.6</td>\n <td class=\"tg-c3ow\">86.7</td>\n <td class=\"tg-c3ow\">64.5</td>\n <td class=\"tg-c3ow\">85.2</td>\n <td class=\"tg-c3ow\">47.4</td>\n <td class=\"tg-c3ow\">67.1</td>\n </tr>\n</tbody>\n</table>\nRetrieval results across five multi-turn QA datasets (Doc2Dial, QuAC, QReCC, TopiOCQA, INSCIT) with the average top-1 and top-5 recall scores. *Since the average context length in TopiOCQA and INSCIT is smaller than in other datasets, we report top-5 and top-20 to roughly match the context lengths of top-1 and top-5, respectively, in those datasets.", "## How to use", "## License\nDragon-multiturn is built on top of Dragon. We refer users to the original license of the Dragon model.", "## Correspondence to\nZihan Liu (zihanl@URL), Wei Ping (wping@URL)\n\n<pre>\n@article{liu2024chatqa,\n title={ChatQA: Building GPT-4 Level Conversational QA Models},\n author={Liu, Zihan and Ping, Wei and Roy, Rajarshi and Xu, Peng and Lee, Chankyu and Shoeybi, Mohammad and Catanzaro, Bryan},\n journal={arXiv preprint arXiv:2401.10225},\n year={2024}}\n</pre>" ]
[ 50, 100, 46, 1334, 5, 26, 131 ]
[ "TAGS\n#transformers #pytorch #bert #feature-extraction #en #arxiv-2401.10225 #arxiv-2302.07452 #license-other #endpoints_compatible #region-us \n## Model Description\nWe introduce Dragon-multiturn, a retriever specifically designed for the conversational QA scenario. It can handle conversational query which combine dialogue history with the current query. It is built on top of the Dragon retriever. The details of Dragon-multiturn can be found in here. Please note that this repository is for the context encoder of Dragon-multiturn, and we use a separate model for the query encoder, which can be found here.## Other Resources\nLlama3-ChatQA-1.5-8B &ensp; Llama3-ChatQA-1.5-70B &ensp; Evaluation Data &ensp; Training Data## Benchmark Results\n<style type=\"text/css\">\n.tg {border:none;border-collapse:collapse;border-spacing:0;}\n.tg td{border-style:solid;border-width:1px;font-family:Arial, sans-serif;font-size:14px;overflow:hidden;\n padding:10px 5px;word-break:normal;}\n.tg th{border-style:solid;border-width:1px;font-family:Arial, sans-serif;font-size:14px;font-weight:normal;\n overflow:hidden;padding:10px 5px;word-break:normal;}\n.tg .tg-c3ow{border-color:inherit;text-align:center;vertical-align:center}\n.tg .tg-0pky{border-color:inherit;text-align:left;vertical-align:center}\n</style>\n<table class=\"tg\">\n<thead>\n <tr>\n <th class=\"tg-0pky\" rowspan=\"2\"></th>\n <th class=\"tg-c3ow\" colspan=\"2\">Average</th>\n <th class=\"tg-c3ow\" colspan=\"2\">Doc2Dial</th>\n <th class=\"tg-c3ow\" colspan=\"2\">QuAC</th>\n <th class=\"tg-c3ow\" colspan=\"2\">QReCC</th>\n <th class=\"tg-c3ow\" colspan=\"2\">TopiOCQA</th>\n <th class=\"tg-c3ow\" colspan=\"2\">INSCIT</th>\n </tr>\n <tr>\n <th class=\"tg-c3ow\">top-1</th>\n <th class=\"tg-c3ow\">top-5</th>\n <th class=\"tg-c3ow\">top-1</th>\n <th class=\"tg-c3ow\">top-5</th>\n <th class=\"tg-c3ow\">top-1</th>\n <th class=\"tg-c3ow\">top-5</th>\n <th class=\"tg-c3ow\">top-1</th>\n <th class=\"tg-c3ow\">top-5</th>\n <th class=\"tg-c3ow\">top-5*</th>\n <th class=\"tg-c3ow\">top-20*</th>\n <th class=\"tg-c3ow\">top-5*</th>\n <th class=\"tg-c3ow\">top-20*</th>\n </tr>\n</thead>\n<tbody>\n <tr>\n <td class=\"tg-0pky\">Dragon</td>\n <td class=\"tg-c3ow\">46.3</td>\n <td class=\"tg-c3ow\">73.1</td>\n <td class=\"tg-c3ow\">43.3</td>\n <td class=\"tg-c3ow\">75.6</td>\n <td class=\"tg-c3ow\">56.8</td>\n <td class=\"tg-c3ow\">82.9</td>\n <td class=\"tg-c3ow\">46.2</td>\n <td class=\"tg-c3ow\">82.0</td>\n <td class=\"tg-c3ow\">57.7</td>\n <td class=\"tg-c3ow\">78.8</td>\n <td class=\"tg-c3ow\">27.5</td>\n <td class=\"tg-c3ow\">46.2</td>\n </tr>\n <tr>\n <td class=\"tg-0pky\">Dragon-multiturn</td>\n <td class=\"tg-c3ow\">53.0</td>\n <td class=\"tg-c3ow\">81.2</td>\n <td class=\"tg-c3ow\">48.6</td>\n <td class=\"tg-c3ow\">83.5</td>\n <td class=\"tg-c3ow\">54.8</td>\n <td class=\"tg-c3ow\">83.2</td>\n <td class=\"tg-c3ow\">49.6</td>\n <td class=\"tg-c3ow\">86.7</td>\n <td class=\"tg-c3ow\">64.5</td>\n <td class=\"tg-c3ow\">85.2</td>\n <td class=\"tg-c3ow\">47.4</td>\n <td class=\"tg-c3ow\">67.1</td>\n </tr>\n</tbody>\n</table>\nRetrieval results across five multi-turn QA datasets (Doc2Dial, QuAC, QReCC, TopiOCQA, INSCIT) with the average top-1 and top-5 recall scores. *Since the average context length in TopiOCQA and INSCIT is smaller than in other datasets, we report top-5 and top-20 to roughly match the context lengths of top-1 and top-5, respectively, in those datasets.## How to use## License\nDragon-multiturn is built on top of Dragon. We refer users to the original license of the Dragon model.## Correspondence to\nZihan Liu (zihanl@URL), Wei Ping (wping@URL)\n\n<pre>\n@article{liu2024chatqa,\n title={ChatQA: Building GPT-4 Level Conversational QA Models},\n author={Liu, Zihan and Ping, Wei and Roy, Rajarshi and Xu, Peng and Lee, Chankyu and Shoeybi, Mohammad and Catanzaro, Bryan},\n journal={arXiv preprint arXiv:2401.10225},\n year={2024}}\n</pre>" ]
text-generation
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
OwOOwO/finalupdatec1
null
[ "transformers", "safetensors", "stablelm", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2024-04-30T21:23:02+00:00
[ "1910.09700" ]
[]
TAGS #transformers #safetensors #stablelm #text-generation #conversational #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #region-us
# Model Card for Model ID ## Model Details ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #safetensors #stablelm #text-generation #conversational #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ 41, 6, 4, 75, 23, 3, 5, 8, 9, 8, 34, 20, 4, 5, 5, 11, 13, 12, 3, 10, 6, 5, 6, 4, 5, 7, 49, 7, 7, 5, 5, 15, 7, 7, 8, 5 ]
[ "TAGS\n#transformers #safetensors #stablelm #text-generation #conversational #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #region-us \n# Model Card for Model ID## Model Details### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Downstream Use [optional]### Out-of-Scope Use## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.## How to Get Started with the Model\n\nUse the code below to get started with the model.## Training Details### Training Data### Training Procedure#### Preprocessing [optional]#### Training Hyperparameters\n\n- Training regime:#### Speeds, Sizes, Times [optional]## Evaluation### Testing Data, Factors & Metrics#### Testing Data#### Factors#### Metrics### Results#### Summary## Model Examination [optional]## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:## Technical Specifications [optional]### Model Architecture and Objective### Compute Infrastructure#### Hardware#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Model Card Authors [optional]## Model Card Contact" ]
sentence-similarity
sentence-transformers
# luiz-and-robert-thesis/mpnet-frozen-newtriplets-lr-2e-7-m-1-e-5 This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('luiz-and-robert-thesis/mpnet-frozen-newtriplets-lr-2e-7-m-1-e-5') embeddings = model.encode(sentences) print(embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=luiz-and-robert-thesis/mpnet-frozen-newtriplets-lr-2e-7-m-1-e-5) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 5885 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.TripletLoss.TripletLoss` with parameters: ``` {'distance_metric': 'TripletDistanceMetric.COSINE', 'triplet_margin': 1} ``` Parameters of the fit()-Method: ``` { "epochs": 5, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-07 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 4413, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
{"library_name": "sentence-transformers", "tags": ["sentence-transformers", "feature-extraction", "sentence-similarity"], "pipeline_tag": "sentence-similarity"}
luiz-and-robert-thesis/mpnet-frozen-newtriplets-lr-2e-7-m-1-e-5
null
[ "sentence-transformers", "safetensors", "mpnet", "feature-extraction", "sentence-similarity", "endpoints_compatible", "region:us" ]
null
2024-04-30T21:23:24+00:00
[]
[]
TAGS #sentence-transformers #safetensors #mpnet #feature-extraction #sentence-similarity #endpoints_compatible #region-us
# luiz-and-robert-thesis/mpnet-frozen-newtriplets-lr-2e-7-m-1-e-5 This is a sentence-transformers model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. ## Usage (Sentence-Transformers) Using this model becomes easy when you have sentence-transformers installed: Then you can use the model like this: ## Evaluation Results For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: URL ## Training The model was trained with the parameters: DataLoader: 'URL.dataloader.DataLoader' of length 5885 with parameters: Loss: 'sentence_transformers.losses.TripletLoss.TripletLoss' with parameters: Parameters of the fit()-Method: ## Full Model Architecture ## Citing & Authors
[ "# luiz-and-robert-thesis/mpnet-frozen-newtriplets-lr-2e-7-m-1-e-5\n\nThis is a sentence-transformers model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.", "## Usage (Sentence-Transformers)\n\nUsing this model becomes easy when you have sentence-transformers installed:\n\n\n\nThen you can use the model like this:", "## Evaluation Results\n\n\n\nFor an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: URL", "## Training\nThe model was trained with the parameters:\n\nDataLoader:\n\n'URL.dataloader.DataLoader' of length 5885 with parameters:\n\n\nLoss:\n\n'sentence_transformers.losses.TripletLoss.TripletLoss' with parameters:\n \n\nParameters of the fit()-Method:", "## Full Model Architecture", "## Citing & Authors" ]
[ "TAGS\n#sentence-transformers #safetensors #mpnet #feature-extraction #sentence-similarity #endpoints_compatible #region-us \n", "# luiz-and-robert-thesis/mpnet-frozen-newtriplets-lr-2e-7-m-1-e-5\n\nThis is a sentence-transformers model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.", "## Usage (Sentence-Transformers)\n\nUsing this model becomes easy when you have sentence-transformers installed:\n\n\n\nThen you can use the model like this:", "## Evaluation Results\n\n\n\nFor an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: URL", "## Training\nThe model was trained with the parameters:\n\nDataLoader:\n\n'URL.dataloader.DataLoader' of length 5885 with parameters:\n\n\nLoss:\n\n'sentence_transformers.losses.TripletLoss.TripletLoss' with parameters:\n \n\nParameters of the fit()-Method:", "## Full Model Architecture", "## Citing & Authors" ]
[ 29, 69, 30, 26, 63, 5, 5 ]
[ "TAGS\n#sentence-transformers #safetensors #mpnet #feature-extraction #sentence-similarity #endpoints_compatible #region-us \n# luiz-and-robert-thesis/mpnet-frozen-newtriplets-lr-2e-7-m-1-e-5\n\nThis is a sentence-transformers model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.## Usage (Sentence-Transformers)\n\nUsing this model becomes easy when you have sentence-transformers installed:\n\n\n\nThen you can use the model like this:## Evaluation Results\n\n\n\nFor an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: URL## Training\nThe model was trained with the parameters:\n\nDataLoader:\n\n'URL.dataloader.DataLoader' of length 5885 with parameters:\n\n\nLoss:\n\n'sentence_transformers.losses.TripletLoss.TripletLoss' with parameters:\n \n\nParameters of the fit()-Method:## Full Model Architecture## Citing & Authors" ]