pipeline_tag
stringclasses
48 values
library_name
stringclasses
198 values
text
stringlengths
1
900k
metadata
stringlengths
2
438k
id
stringlengths
5
122
last_modified
null
tags
sequencelengths
1
1.84k
sha
null
created_at
stringlengths
25
25
arxiv
sequencelengths
0
201
languages
sequencelengths
0
1.83k
tags_str
stringlengths
17
9.34k
text_str
stringlengths
0
389k
text_lists
sequencelengths
0
722
processed_texts
sequencelengths
1
723
tokens_length
sequencelengths
1
723
input_texts
sequencelengths
1
1
text-generation
transformers
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) roberta-base-squad2-distilled - bnb 4bits - Model creator: https://huggingface.co/deepset/ - Original model: https://huggingface.co/deepset/roberta-base-squad2-distilled/ Original model description: --- language: en license: mit tags: - exbert datasets: - squad_v2 thumbnail: https://thumb.tildacdn.com/tild3433-3637-4830-a533-353833613061/-/resize/720x/-/format/webp/germanquad.jpg model-index: - name: deepset/roberta-base-squad2-distilled results: - task: type: question-answering name: Question Answering dataset: name: squad_v2 type: squad_v2 config: squad_v2 split: validation metrics: - type: exact_match value: 80.8593 name: Exact Match verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMzVjNzkxNmNiNDkzNzdiYjJjZGM3ZTViMGJhOGM2ZjFmYjg1MjYxMDM2YzM5NWMwNDIyYzNlN2QwNGYyNDMzZSIsInZlcnNpb24iOjF9.Rgww8tf8D7nF2dh2U_DMrFzmp87k8s7RFibrDXSvQyA66PGWXwjlsd1552lzjHnNV5hvHUM1-h3PTuY_5p64BA - type: f1 value: 84.0104 name: F1 verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNTAyZDViNWYzNjA4OWQ5MzgyYmQ2ZDlhNWRhMTIzYTYxYzViMmI4NWE4ZGU5MzVhZTAwNTRlZmRlNWUwMjI0ZSIsInZlcnNpb24iOjF9.Er21BNgJ3jJXLuZtpubTYq9wCwO1i_VLQFwS5ET0e4eAYVVj0aOA40I5FvP5pZac3LjkCnVacxzsFWGCYVmnDA - task: type: question-answering name: Question Answering dataset: name: squad type: squad config: plain_text split: validation metrics: - type: exact_match value: 86.225 name: Exact Match - type: f1 value: 92.483 name: F1 - task: type: question-answering name: Question Answering dataset: name: adversarial_qa type: adversarial_qa config: adversarialQA split: validation metrics: - type: exact_match value: 29.900 name: Exact Match - type: f1 value: 41.183 name: F1 - task: type: question-answering name: Question Answering dataset: name: squad_adversarial type: squad_adversarial config: AddOneSent split: validation metrics: - type: exact_match value: 79.071 name: Exact Match - type: f1 value: 84.472 name: F1 - task: type: question-answering name: Question Answering dataset: name: squadshifts amazon type: squadshifts config: amazon split: test metrics: - type: exact_match value: 70.733 name: Exact Match - type: f1 value: 83.958 name: F1 - task: type: question-answering name: Question Answering dataset: name: squadshifts new_wiki type: squadshifts config: new_wiki split: test metrics: - type: exact_match value: 82.011 name: Exact Match - type: f1 value: 91.092 name: F1 - task: type: question-answering name: Question Answering dataset: name: squadshifts nyt type: squadshifts config: nyt split: test metrics: - type: exact_match value: 84.203 name: Exact Match - type: f1 value: 91.521 name: F1 - task: type: question-answering name: Question Answering dataset: name: squadshifts reddit type: squadshifts config: reddit split: test metrics: - type: exact_match value: 72.029 name: Exact Match - type: f1 value: 83.454 name: F1 --- ## Overview **Language model:** deepset/roberta-base-squad2-distilled **Language:** English **Training data:** SQuAD 2.0 training set **Eval data:** SQuAD 2.0 dev set **Infrastructure**: 4x V100 GPU **Published**: Dec 8th, 2021 ## Details - haystack's distillation feature was used for training. deepset/roberta-large-squad2 was used as the teacher model. ## Hyperparameters ``` batch_size = 80 n_epochs = 4 max_seq_len = 384 learning_rate = 3e-5 lr_schedule = LinearWarmup embeds_dropout_prob = 0.1 temperature = 1.5 distillation_loss_weight = 0.75 ``` ## Performance ``` "exact": 79.8366040596311 "f1": 83.916407079888 ``` ## Authors **Timo Möller:** [email protected] **Julian Risch:** [email protected] **Malte Pietsch:** [email protected] **Michel Bartels:** [email protected] ## About us <div class="grid lg:grid-cols-2 gap-x-4 gap-y-3"> <div class="w-full h-40 object-cover mb-2 rounded-lg flex items-center justify-center"> <img alt="" src="https://raw.githubusercontent.com/deepset-ai/.github/main/deepset-logo-colored.png" class="w-40"/> </div> <div class="w-full h-40 object-cover mb-2 rounded-lg flex items-center justify-center"> <img alt="" src="https://raw.githubusercontent.com/deepset-ai/.github/main/haystack-logo-colored.png" class="w-40"/> </div> </div> [deepset](http://deepset.ai/) is the company behind the open-source NLP framework [Haystack](https://haystack.deepset.ai/) which is designed to help you build production ready NLP systems that use: Question answering, summarization, ranking etc. Some of our other work: - [Distilled roberta-base-squad2 (aka "tinyroberta-squad2")]([https://huggingface.co/deepset/tinyroberta-squad2) - [German BERT (aka "bert-base-german-cased")](https://deepset.ai/german-bert) - [GermanQuAD and GermanDPR datasets and models (aka "gelectra-base-germanquad", "gbert-base-germandpr")](https://deepset.ai/germanquad) ## Get in touch and join the Haystack community <p>For more info on Haystack, visit our <strong><a href="https://github.com/deepset-ai/haystack">GitHub</a></strong> repo and <strong><a href="https://docs.haystack.deepset.ai">Documentation</a></strong>. We also have a <strong><a class="h-7" href="https://haystack.deepset.ai/community">Discord community open to everyone!</a></strong></p> [Twitter](https://twitter.com/deepset_ai) | [LinkedIn](https://www.linkedin.com/company/deepset-ai/) | [Discord](https://haystack.deepset.ai/community) | [GitHub Discussions](https://github.com/deepset-ai/haystack/discussions) | [Website](https://deepset.ai) By the way: [we're hiring!](http://www.deepset.ai/jobs)
{}
RichardErkhov/deepset_-_roberta-base-squad2-distilled-4bits
null
[ "transformers", "safetensors", "roberta", "text-generation", "autotrain_compatible", "endpoints_compatible", "4-bit", "region:us" ]
null
2024-05-02T07:38:42+00:00
[]
[]
TAGS #transformers #safetensors #roberta #text-generation #autotrain_compatible #endpoints_compatible #4-bit #region-us
Quantization made by Richard Erkhov. Github Discord Request more models roberta-base-squad2-distilled - bnb 4bits - Model creator: URL - Original model: URL Original model description: --- language: en license: mit tags: - exbert datasets: - squad_v2 thumbnail: URL model-index: - name: deepset/roberta-base-squad2-distilled results: - task: type: question-answering name: Question Answering dataset: name: squad_v2 type: squad_v2 config: squad_v2 split: validation metrics: - type: exact_match value: 80.8593 name: Exact Match verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMzVjNzkxNmNiNDkzNzdiYjJjZGM3ZTViMGJhOGM2ZjFmYjg1MjYxMDM2YzM5NWMwNDIyYzNlN2QwNGYyNDMzZSIsInZlcnNpb24iOjF9.Rgww8tf8D7nF2dh2U_DMrFzmp87k8s7RFibrDXSvQyA66PGWXwjlsd1552lzjHnNV5hvHUM1-h3PTuY_5p64BA - type: f1 value: 84.0104 name: F1 verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNTAyZDViNWYzNjA4OWQ5MzgyYmQ2ZDlhNWRhMTIzYTYxYzViMmI4NWE4ZGU5MzVhZTAwNTRlZmRlNWUwMjI0ZSIsInZlcnNpb24iOjF9.Er21BNgJ3jJXLuZtpubTYq9wCwO1i_VLQFwS5ET0e4eAYVVj0aOA40I5FvP5pZac3LjkCnVacxzsFWGCYVmnDA - task: type: question-answering name: Question Answering dataset: name: squad type: squad config: plain_text split: validation metrics: - type: exact_match value: 86.225 name: Exact Match - type: f1 value: 92.483 name: F1 - task: type: question-answering name: Question Answering dataset: name: adversarial_qa type: adversarial_qa config: adversarialQA split: validation metrics: - type: exact_match value: 29.900 name: Exact Match - type: f1 value: 41.183 name: F1 - task: type: question-answering name: Question Answering dataset: name: squad_adversarial type: squad_adversarial config: AddOneSent split: validation metrics: - type: exact_match value: 79.071 name: Exact Match - type: f1 value: 84.472 name: F1 - task: type: question-answering name: Question Answering dataset: name: squadshifts amazon type: squadshifts config: amazon split: test metrics: - type: exact_match value: 70.733 name: Exact Match - type: f1 value: 83.958 name: F1 - task: type: question-answering name: Question Answering dataset: name: squadshifts new_wiki type: squadshifts config: new_wiki split: test metrics: - type: exact_match value: 82.011 name: Exact Match - type: f1 value: 91.092 name: F1 - task: type: question-answering name: Question Answering dataset: name: squadshifts nyt type: squadshifts config: nyt split: test metrics: - type: exact_match value: 84.203 name: Exact Match - type: f1 value: 91.521 name: F1 - task: type: question-answering name: Question Answering dataset: name: squadshifts reddit type: squadshifts config: reddit split: test metrics: - type: exact_match value: 72.029 name: Exact Match - type: f1 value: 83.454 name: F1 --- ## Overview Language model: deepset/roberta-base-squad2-distilled Language: English Training data: SQuAD 2.0 training set Eval data: SQuAD 2.0 dev set Infrastructure: 4x V100 GPU Published: Dec 8th, 2021 ## Details - haystack's distillation feature was used for training. deepset/roberta-large-squad2 was used as the teacher model. ## Hyperparameters ## Performance ## Authors Timo Möller: timo.moeller@URL Julian Risch: URL@URL Malte Pietsch: malte.pietsch@URL Michel Bartels: michel.bartels@URL ## About us <div class="grid lg:grid-cols-2 gap-x-4 gap-y-3"> <div class="w-full h-40 object-cover mb-2 rounded-lg flex items-center justify-center"> <img alt="" src="URL class="w-40"/> </div> <div class="w-full h-40 object-cover mb-2 rounded-lg flex items-center justify-center"> <img alt="" src="URL class="w-40"/> </div> </div> deepset is the company behind the open-source NLP framework Haystack which is designed to help you build production ready NLP systems that use: Question answering, summarization, ranking etc. Some of our other work: - Distilled roberta-base-squad2 (aka "tinyroberta-squad2") - German BERT (aka "bert-base-german-cased") - GermanQuAD and GermanDPR datasets and models (aka "gelectra-base-germanquad", "gbert-base-germandpr") ## Get in touch and join the Haystack community <p>For more info on Haystack, visit our <strong><a href="URL repo and <strong><a href="URL">Documentation</a></strong>. We also have a <strong><a class="h-7" href="URL community open to everyone!</a></strong></p> Twitter | LinkedIn | Discord | GitHub Discussions | Website By the way: we're hiring!
[ "## Overview\nLanguage model: deepset/roberta-base-squad2-distilled \nLanguage: English \nTraining data: SQuAD 2.0 training set\nEval data: SQuAD 2.0 dev set\nInfrastructure: 4x V100 GPU \nPublished: Dec 8th, 2021", "## Details\n- haystack's distillation feature was used for training. deepset/roberta-large-squad2 was used as the teacher model.", "## Hyperparameters", "## Performance", "## Authors\nTimo Möller: timo.moeller@URL \nJulian Risch: URL@URL \nMalte Pietsch: malte.pietsch@URL \nMichel Bartels: michel.bartels@URL", "## About us\n<div class=\"grid lg:grid-cols-2 gap-x-4 gap-y-3\">\n <div class=\"w-full h-40 object-cover mb-2 rounded-lg flex items-center justify-center\">\n <img alt=\"\" src=\"URL class=\"w-40\"/>\n </div>\n <div class=\"w-full h-40 object-cover mb-2 rounded-lg flex items-center justify-center\">\n <img alt=\"\" src=\"URL class=\"w-40\"/>\n </div>\n</div>\n\ndeepset is the company behind the open-source NLP framework Haystack which is designed to help you build production ready NLP systems that use: Question answering, summarization, ranking etc.\n\n\nSome of our other work: \n- Distilled roberta-base-squad2 (aka \"tinyroberta-squad2\")\n- German BERT (aka \"bert-base-german-cased\")\n- GermanQuAD and GermanDPR datasets and models (aka \"gelectra-base-germanquad\", \"gbert-base-germandpr\")", "## Get in touch and join the Haystack community\n\n<p>For more info on Haystack, visit our <strong><a href=\"URL repo and <strong><a href=\"URL\">Documentation</a></strong>. \n\nWe also have a <strong><a class=\"h-7\" href=\"URL community open to everyone!</a></strong></p>\n\nTwitter | LinkedIn | Discord | GitHub Discussions | Website\n\nBy the way: we're hiring!" ]
[ "TAGS\n#transformers #safetensors #roberta #text-generation #autotrain_compatible #endpoints_compatible #4-bit #region-us \n", "## Overview\nLanguage model: deepset/roberta-base-squad2-distilled \nLanguage: English \nTraining data: SQuAD 2.0 training set\nEval data: SQuAD 2.0 dev set\nInfrastructure: 4x V100 GPU \nPublished: Dec 8th, 2021", "## Details\n- haystack's distillation feature was used for training. deepset/roberta-large-squad2 was used as the teacher model.", "## Hyperparameters", "## Performance", "## Authors\nTimo Möller: timo.moeller@URL \nJulian Risch: URL@URL \nMalte Pietsch: malte.pietsch@URL \nMichel Bartels: michel.bartels@URL", "## About us\n<div class=\"grid lg:grid-cols-2 gap-x-4 gap-y-3\">\n <div class=\"w-full h-40 object-cover mb-2 rounded-lg flex items-center justify-center\">\n <img alt=\"\" src=\"URL class=\"w-40\"/>\n </div>\n <div class=\"w-full h-40 object-cover mb-2 rounded-lg flex items-center justify-center\">\n <img alt=\"\" src=\"URL class=\"w-40\"/>\n </div>\n</div>\n\ndeepset is the company behind the open-source NLP framework Haystack which is designed to help you build production ready NLP systems that use: Question answering, summarization, ranking etc.\n\n\nSome of our other work: \n- Distilled roberta-base-squad2 (aka \"tinyroberta-squad2\")\n- German BERT (aka \"bert-base-german-cased\")\n- GermanQuAD and GermanDPR datasets and models (aka \"gelectra-base-germanquad\", \"gbert-base-germandpr\")", "## Get in touch and join the Haystack community\n\n<p>For more info on Haystack, visit our <strong><a href=\"URL repo and <strong><a href=\"URL\">Documentation</a></strong>. \n\nWe also have a <strong><a class=\"h-7\" href=\"URL community open to everyone!</a></strong></p>\n\nTwitter | LinkedIn | Discord | GitHub Discussions | Website\n\nBy the way: we're hiring!" ]
[ 31, 55, 34, 6, 3, 51, 276, 124 ]
[ "TAGS\n#transformers #safetensors #roberta #text-generation #autotrain_compatible #endpoints_compatible #4-bit #region-us \n## Overview\nLanguage model: deepset/roberta-base-squad2-distilled \nLanguage: English \nTraining data: SQuAD 2.0 training set\nEval data: SQuAD 2.0 dev set\nInfrastructure: 4x V100 GPU \nPublished: Dec 8th, 2021## Details\n- haystack's distillation feature was used for training. deepset/roberta-large-squad2 was used as the teacher model.## Hyperparameters## Performance## Authors\nTimo Möller: timo.moeller@URL \nJulian Risch: URL@URL \nMalte Pietsch: malte.pietsch@URL \nMichel Bartels: michel.bartels@URL## About us\n<div class=\"grid lg:grid-cols-2 gap-x-4 gap-y-3\">\n <div class=\"w-full h-40 object-cover mb-2 rounded-lg flex items-center justify-center\">\n <img alt=\"\" src=\"URL class=\"w-40\"/>\n </div>\n <div class=\"w-full h-40 object-cover mb-2 rounded-lg flex items-center justify-center\">\n <img alt=\"\" src=\"URL class=\"w-40\"/>\n </div>\n</div>\n\ndeepset is the company behind the open-source NLP framework Haystack which is designed to help you build production ready NLP systems that use: Question answering, summarization, ranking etc.\n\n\nSome of our other work: \n- Distilled roberta-base-squad2 (aka \"tinyroberta-squad2\")\n- German BERT (aka \"bert-base-german-cased\")\n- GermanQuAD and GermanDPR datasets and models (aka \"gelectra-base-germanquad\", \"gbert-base-germandpr\")## Get in touch and join the Haystack community\n\n<p>For more info on Haystack, visit our <strong><a href=\"URL repo and <strong><a href=\"URL\">Documentation</a></strong>. \n\nWe also have a <strong><a class=\"h-7\" href=\"URL community open to everyone!</a></strong></p>\n\nTwitter | LinkedIn | Discord | GitHub Discussions | Website\n\nBy the way: we're hiring!" ]
text-generation
transformers
## LLama3 Tabanlı Türkçe Dil Modeli: aerdincdal/CBDDO-LLM-8B-Instruct-v1 **aerdincdal/CBDDO-LLM-8B-Instruct-v1**, LLama3 mimarisi üzerine kurulu ve 2.5 milyon satırlık veri kümesi ile özelleştirilmiş Instruction Tune yöntemi kullanılarak eğitilmiş bir Türkçe dil modelidir. Bu model, doğal dil işleme alanında çeşitli görevleri etkili bir şekilde gerçekleştirebilir. Modelin eğitimi, Türkçe dilbilgisi ve sentaks kurallarını derinlemesine kavramasını sağlamış, böylece akıcı ve doğru metinler üretmesine olanak tanımıştır. **Modelin Öne Çıkan Özellikleri:** - **Gelişmiş LLama3 Mimarisi:** Bu mimari, doğal dil işleme modelleri için son derece etkili ve yenilikçi bir temel oluşturur. - **Kapsamlı Veri Seti ile Eğitim:** Model, 2.5 milyon satırlık veri seti kullanılarak eğitilmiştir, bu da onun dil yapısını ve nüanslarını mükemmel bir şekilde öğrenmesini sağlar. - **Yüksek Performans:** Model, karmaşık dil işleme görevlerini hızlı ve etkin bir şekilde gerçekleştirebilir. - **Çok Yönlülük:** Metin oluşturma, çeviri, soru-cevap, özetleme ve kod yazma gibi çok çeşitli görevlerde başarılıdır. ### Modelin Kullanım Adımları: 1. **Gerekli Kütüphaneleri Yükleyin:** ```bash pip install transformers ``` 2. **Modeli Test Edin:** ```python from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer, pipeline import torch model_id = "aerdincdal/CBDDO-LLM-8B-Instruct-v1" model = AutoModelForCausalLM.from_pretrained( model_id, torch_dtype=torch.bfloat16, device_map="auto", trust_remote_code=True ) tokenizer = AutoTokenizer.from_pretrained( model_id, trust_remote_code=True ) streamer = TextStreamer(tokenizer) text_generation_pipeline = pipeline( "text-generation", model=model, tokenizer=tokenizer, model_kwargs={"torch_dtype": torch.bfloat16}, streamer=streamer ) messages = [ {"role": "system", "content": "Her zaman düşünceli yanıtlar veren bir chatbot'sun."}, {"role": "user", "content": "Mona Lisa tablosu hakkında ne düşünüyorsun?"} ] prompt = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) terminators = [ tokenizer.eos_token_id ] outputs = text_generation_pipeline( prompt, max_new_tokens=2048, eos_token_id=terminators, do_sample=True, temperature=0.6, top_p=0.95 ) print(outputs[0]["generated_text"][len(prompt):]) ``` **Çıktı:** ``` 1503'te Leonardo da Vinci tarafından resmedilen Mona Lisa, 16. yüzyılda Avrupa'da resim sanatının en ünlü eserlerinden biridir. Eski bir İtalyan aristokratı olan Lisa del Giocondo'ya benzeyen bir kadın portresidir. Bu tablo, Leonardo da Vinci'nin en ünlü eserlerinden biri olarak kabul edilir ve sanatın en iyi örneklerinden biri olarak kabul edilir. Mona Lisa'nın önemi, resim sanatının gelişiminde ve sanat tarihi boyunca etkisinin büyüklüğüne dayanmaktadır. ``` ### Modelin Çeşitli Kullanım Alanları: - **Metin Oluşturma:** Çeşitli türde ve tonda metinler oluşturabilirsiniz. - **Metin Çevirme:** Çok dilli çeviri yetenekleri ile metinleri başka dillere çevirebilir veya tercüme edebilirsiniz. - **Soruları Yanıtlama:** Her türlü soruyu, hatta en zorlayıcı olanları bile yanıtlayabilir. - **Özetleme:** Uzun metinleri kısa ve öz bir şekilde özetleyebilirsiniz. - **Kod Yazma:** Verilen isteklere uygun olarak kod üretebilirsiniz. ### Kod Yazma Örneği: Bu örnekte, model bir metni büyük harfe çeviren bir Python fonksiyonu yazmaktadır: ```python from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer, pipeline import torch model_id = "aerdincdal/CBDDO-LLM-8B-Instruct-v1" model = AutoModelForCausalLM.from_pretrained( model_id, torch_dtype=torch.bfloat16, device_map="auto", trust_remote_code=True ) tokenizer = AutoTokenizer.from_pretrained( model_id, trust_remote_code=True ) streamer = TextStreamer(tokenizer) text_generation_pipeline = pipeline( "text-generation", model=model, tokenizer=tokenizer, model_kwargs={"torch_dtype": torch.bfloat16}, streamer=streamer ) messages = [ {"role": "system", "content": "Her zaman düşünceli yanıtlar veren bir chatbot'sun."}, {"role": "user", "content": "Python ile bir metni büyük harfe çeviren bir fonksiyon yaz."} ] prompt = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) terminators = [ tokenizer.eos_token_id ] outputs = text_generation_pipeline( prompt, max_new_tokens=2048, eos_token_id=terminators, do_sample=True, temperature=0.6, top_p=0.95 ) print(outputs[0]["generated_text"][len(prompt):]) ``` **Çıktı:** ```python def metni_buyuk_harfe_cevir(metin): """Bir metni tümüyle büyük harfe çeviren Python fonksiyonu. Args: metin: Küçük harflerle yazılmış bir metin. Returns: Büyük harflerle yazılmış metin. """ return metin.upper() # Örnek kullanım metin = "Bu bir deneme metnidir." buyuk_harf_metin = metni_buyuk_harfe_cevir(metin) print(buyuk_harf_metin) ``` **Açıklama:** Model, verilen istemi ("Python ile bir metni büyük harfe çeviren bir fonksiyon yaz.") işleyerek, açıklamaları ve dokümantasyonu içeren tam teşekküllü bir Python kodunu oluşturur. Bu fonksiyon, küçük harflerle yazılmış herhangi bir metni büyük harflere çevirebilir, böylece metinler üzerinde kolay manipülasyon sağlar. Bu basit adımlarla, Türkçe doğal dil işleme yeteneklerinin sınırlarını zorlayabilir ve dil modelimizin size nasıl yardımcı olabileceğini keşfedebilirsiniz. Bizimle bu teknoloji yolculuğuna çıkın ve dil işleme kapasitenizi genişletin! **BENCHMARK:** ```json "config_general": { "lighteval_sha": "494ee12240e716e804ae9ea834f84a2c864c07ca", "num_few_shot_default": 0, "num_fewshot_seeds": 1, "override_batch_size": 1, "max_samples": null, "job_id": "", "start_time": 1781075.607155059, "end_time": 1784655.466140587, "total_evaluation_time_secondes": "3579.858985528117", "model_name": "aerdincdal/CBDDO-LLM-8B-Instruct-v1", "model_sha": "84430552036c85cc6a16722b26496df4d93f3afe", "model_dtype": "torch.bfloat16", "model_size": "15.08 GB" }, "results": { "harness|arc:challenge|25": { "acc": 0.4991467576791809, "acc_stderr": 0.014611369529813262, "acc_norm": 0.5460750853242321, "acc_norm_stderr": 0.014549221105171872 }, "harness|hellaswag|10": { "acc": 0.5552678749253137, "acc_stderr": 0.004959204773046207, "acc_norm": 0.7633937462656841, "acc_norm_stderr": 0.004241299341050841 }, "harness|hendrycksTest-abstract_algebra|5": { "acc": 0.35, "acc_stderr": 0.047937248544110196, "acc_norm": 0.35, "acc_norm_stderr": 0.047937248544110196 }, "harness|hendrycksTest-anatomy|5": { "acc": 0.6148148148148148, "acc_stderr": 0.04203921040156279, "acc_norm": 0.6148148148148148, "acc_norm_stderr": 0.04203921040156279 }, "harness|hendrycksTest-astronomy|5": { "acc": 0.5986842105263158, "acc_stderr": 0.039889037033362836, "acc_norm": 0.5986842105263158, "acc_norm_stderr": 0.039889037033362836 }, "harness|hendrycksTest-business_ethics|5": { "acc": 0.62, "acc_stderr": 0.048783173121456316, "acc_norm": 0.62, "acc_norm_stderr": 0.048783173121456316 }, "harness|hendrycksTest-clinical_knowledge|5": { "acc": 0.7094339622641509, "acc_stderr": 0.02794321998933714, "acc_norm": 0.7094339622641509, "acc_norm_stderr": 0.02794321998933714 } ```
{"language": ["tr"], "license": "mit", "datasets": ["aerdincdal/CBDDO-LLM-DB-V1"], "metrics": ["accuracy", "bertscore", "bleu", "bleurt", "brier_score", "cer", "character", "charcut_mt", "chrf", "code_eval"]}
aerdincdal/CBDDO-LLM-8B-Instruct-v1
null
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "tr", "dataset:aerdincdal/CBDDO-LLM-DB-V1", "license:mit", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-05-02T07:38:51+00:00
[]
[ "tr" ]
TAGS #transformers #safetensors #llama #text-generation #conversational #tr #dataset-aerdincdal/CBDDO-LLM-DB-V1 #license-mit #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
## LLama3 Tabanlı Türkçe Dil Modeli: aerdincdal/CBDDO-LLM-8B-Instruct-v1 aerdincdal/CBDDO-LLM-8B-Instruct-v1, LLama3 mimarisi üzerine kurulu ve 2.5 milyon satırlık veri kümesi ile özelleştirilmiş Instruction Tune yöntemi kullanılarak eğitilmiş bir Türkçe dil modelidir. Bu model, doğal dil işleme alanında çeşitli görevleri etkili bir şekilde gerçekleştirebilir. Modelin eğitimi, Türkçe dilbilgisi ve sentaks kurallarını derinlemesine kavramasını sağlamış, böylece akıcı ve doğru metinler üretmesine olanak tanımıştır. Modelin Öne Çıkan Özellikleri: - Gelişmiş LLama3 Mimarisi: Bu mimari, doğal dil işleme modelleri için son derece etkili ve yenilikçi bir temel oluşturur. - Kapsamlı Veri Seti ile Eğitim: Model, 2.5 milyon satırlık veri seti kullanılarak eğitilmiştir, bu da onun dil yapısını ve nüanslarını mükemmel bir şekilde öğrenmesini sağlar. - Yüksek Performans: Model, karmaşık dil işleme görevlerini hızlı ve etkin bir şekilde gerçekleştirebilir. - Çok Yönlülük: Metin oluşturma, çeviri, soru-cevap, özetleme ve kod yazma gibi çok çeşitli görevlerde başarılıdır. ### Modelin Kullanım Adımları: 1. Gerekli Kütüphaneleri Yükleyin: 2. Modeli Test Edin: Çıktı: ### Modelin Çeşitli Kullanım Alanları: - Metin Oluşturma: Çeşitli türde ve tonda metinler oluşturabilirsiniz. - Metin Çevirme: Çok dilli çeviri yetenekleri ile metinleri başka dillere çevirebilir veya tercüme edebilirsiniz. - Soruları Yanıtlama: Her türlü soruyu, hatta en zorlayıcı olanları bile yanıtlayabilir. - Özetleme: Uzun metinleri kısa ve öz bir şekilde özetleyebilirsiniz. - Kod Yazma: Verilen isteklere uygun olarak kod üretebilirsiniz. ### Kod Yazma Örneği: Bu örnekte, model bir metni büyük harfe çeviren bir Python fonksiyonu yazmaktadır: Çıktı: Açıklama: Model, verilen istemi ("Python ile bir metni büyük harfe çeviren bir fonksiyon yaz.") işleyerek, açıklamaları ve dokümantasyonu içeren tam teşekküllü bir Python kodunu oluşturur. Bu fonksiyon, küçük harflerle yazılmış herhangi bir metni büyük harflere çevirebilir, böylece metinler üzerinde kolay manipülasyon sağlar. Bu basit adımlarla, Türkçe doğal dil işleme yeteneklerinin sınırlarını zorlayabilir ve dil modelimizin size nasıl yardımcı olabileceğini keşfedebilirsiniz. Bizimle bu teknoloji yolculuğuna çıkın ve dil işleme kapasitenizi genişletin! BENCHMARK:
[ "## LLama3 Tabanlı Türkçe Dil Modeli: aerdincdal/CBDDO-LLM-8B-Instruct-v1\n\naerdincdal/CBDDO-LLM-8B-Instruct-v1, LLama3 mimarisi üzerine kurulu ve 2.5 milyon satırlık veri kümesi ile özelleştirilmiş Instruction Tune yöntemi kullanılarak eğitilmiş bir Türkçe dil modelidir. Bu model, doğal dil işleme alanında çeşitli görevleri etkili bir şekilde gerçekleştirebilir. Modelin eğitimi, Türkçe dilbilgisi ve sentaks kurallarını derinlemesine kavramasını sağlamış, böylece akıcı ve doğru metinler üretmesine olanak tanımıştır.\n\nModelin Öne Çıkan Özellikleri:\n\n- Gelişmiş LLama3 Mimarisi: Bu mimari, doğal dil işleme modelleri için son derece etkili ve yenilikçi bir temel oluşturur.\n- Kapsamlı Veri Seti ile Eğitim: Model, 2.5 milyon satırlık veri seti kullanılarak eğitilmiştir, bu da onun dil yapısını ve nüanslarını mükemmel bir şekilde öğrenmesini sağlar.\n- Yüksek Performans: Model, karmaşık dil işleme görevlerini hızlı ve etkin bir şekilde gerçekleştirebilir.\n- Çok Yönlülük: Metin oluşturma, çeviri, soru-cevap, özetleme ve kod yazma gibi çok çeşitli görevlerde başarılıdır.", "### Modelin Kullanım Adımları:\n\n1. Gerekli Kütüphaneleri Yükleyin:\n \n\n2. Modeli Test Edin:\n\n\nÇıktı:", "### Modelin Çeşitli Kullanım Alanları:\n\n- Metin Oluşturma: Çeşitli türde ve tonda metinler oluşturabilirsiniz.\n- Metin Çevirme: Çok dilli çeviri yetenekleri ile metinleri başka dillere çevirebilir veya tercüme edebilirsiniz.\n- Soruları Yanıtlama: Her türlü soruyu, hatta en zorlayıcı olanları bile yanıtlayabilir.\n- Özetleme: Uzun metinleri kısa ve öz bir şekilde özetleyebilirsiniz.\n- Kod Yazma: Verilen isteklere uygun olarak kod üretebilirsiniz.", "### Kod Yazma Örneği:\n\nBu örnekte, model bir metni büyük harfe çeviren bir Python fonksiyonu yazmaktadır:\n\n\n\nÇıktı:\n\n\nAçıklama:\nModel, verilen istemi (\"Python ile bir metni büyük harfe çeviren bir fonksiyon yaz.\") işleyerek, açıklamaları ve dokümantasyonu içeren tam teşekküllü bir Python kodunu oluşturur. Bu fonksiyon, küçük harflerle yazılmış herhangi bir metni büyük harflere çevirebilir, böylece metinler üzerinde kolay manipülasyon sağlar.\n\nBu basit adımlarla, Türkçe doğal dil işleme yeteneklerinin sınırlarını zorlayabilir ve dil modelimizin size nasıl yardımcı olabileceğini keşfedebilirsiniz. Bizimle bu teknoloji yolculuğuna çıkın ve dil işleme kapasitenizi genişletin!\n\n\n\n\nBENCHMARK:" ]
[ "TAGS\n#transformers #safetensors #llama #text-generation #conversational #tr #dataset-aerdincdal/CBDDO-LLM-DB-V1 #license-mit #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## LLama3 Tabanlı Türkçe Dil Modeli: aerdincdal/CBDDO-LLM-8B-Instruct-v1\n\naerdincdal/CBDDO-LLM-8B-Instruct-v1, LLama3 mimarisi üzerine kurulu ve 2.5 milyon satırlık veri kümesi ile özelleştirilmiş Instruction Tune yöntemi kullanılarak eğitilmiş bir Türkçe dil modelidir. Bu model, doğal dil işleme alanında çeşitli görevleri etkili bir şekilde gerçekleştirebilir. Modelin eğitimi, Türkçe dilbilgisi ve sentaks kurallarını derinlemesine kavramasını sağlamış, böylece akıcı ve doğru metinler üretmesine olanak tanımıştır.\n\nModelin Öne Çıkan Özellikleri:\n\n- Gelişmiş LLama3 Mimarisi: Bu mimari, doğal dil işleme modelleri için son derece etkili ve yenilikçi bir temel oluşturur.\n- Kapsamlı Veri Seti ile Eğitim: Model, 2.5 milyon satırlık veri seti kullanılarak eğitilmiştir, bu da onun dil yapısını ve nüanslarını mükemmel bir şekilde öğrenmesini sağlar.\n- Yüksek Performans: Model, karmaşık dil işleme görevlerini hızlı ve etkin bir şekilde gerçekleştirebilir.\n- Çok Yönlülük: Metin oluşturma, çeviri, soru-cevap, özetleme ve kod yazma gibi çok çeşitli görevlerde başarılıdır.", "### Modelin Kullanım Adımları:\n\n1. Gerekli Kütüphaneleri Yükleyin:\n \n\n2. Modeli Test Edin:\n\n\nÇıktı:", "### Modelin Çeşitli Kullanım Alanları:\n\n- Metin Oluşturma: Çeşitli türde ve tonda metinler oluşturabilirsiniz.\n- Metin Çevirme: Çok dilli çeviri yetenekleri ile metinleri başka dillere çevirebilir veya tercüme edebilirsiniz.\n- Soruları Yanıtlama: Her türlü soruyu, hatta en zorlayıcı olanları bile yanıtlayabilir.\n- Özetleme: Uzun metinleri kısa ve öz bir şekilde özetleyebilirsiniz.\n- Kod Yazma: Verilen isteklere uygun olarak kod üretebilirsiniz.", "### Kod Yazma Örneği:\n\nBu örnekte, model bir metni büyük harfe çeviren bir Python fonksiyonu yazmaktadır:\n\n\n\nÇıktı:\n\n\nAçıklama:\nModel, verilen istemi (\"Python ile bir metni büyük harfe çeviren bir fonksiyon yaz.\") işleyerek, açıklamaları ve dokümantasyonu içeren tam teşekküllü bir Python kodunu oluşturur. Bu fonksiyon, küçük harflerle yazılmış herhangi bir metni büyük harflere çevirebilir, böylece metinler üzerinde kolay manipülasyon sağlar.\n\nBu basit adımlarla, Türkçe doğal dil işleme yeteneklerinin sınırlarını zorlayabilir ve dil modelimizin size nasıl yardımcı olabileceğini keşfedebilirsiniz. Bizimle bu teknoloji yolculuğuna çıkın ve dil işleme kapasitenizi genişletin!\n\n\n\n\nBENCHMARK:" ]
[ 63, 444, 42, 188, 286 ]
[ "TAGS\n#transformers #safetensors #llama #text-generation #conversational #tr #dataset-aerdincdal/CBDDO-LLM-DB-V1 #license-mit #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## LLama3 Tabanlı Türkçe Dil Modeli: aerdincdal/CBDDO-LLM-8B-Instruct-v1\n\naerdincdal/CBDDO-LLM-8B-Instruct-v1, LLama3 mimarisi üzerine kurulu ve 2.5 milyon satırlık veri kümesi ile özelleştirilmiş Instruction Tune yöntemi kullanılarak eğitilmiş bir Türkçe dil modelidir. Bu model, doğal dil işleme alanında çeşitli görevleri etkili bir şekilde gerçekleştirebilir. Modelin eğitimi, Türkçe dilbilgisi ve sentaks kurallarını derinlemesine kavramasını sağlamış, böylece akıcı ve doğru metinler üretmesine olanak tanımıştır.\n\nModelin Öne Çıkan Özellikleri:\n\n- Gelişmiş LLama3 Mimarisi: Bu mimari, doğal dil işleme modelleri için son derece etkili ve yenilikçi bir temel oluşturur.\n- Kapsamlı Veri Seti ile Eğitim: Model, 2.5 milyon satırlık veri seti kullanılarak eğitilmiştir, bu da onun dil yapısını ve nüanslarını mükemmel bir şekilde öğrenmesini sağlar.\n- Yüksek Performans: Model, karmaşık dil işleme görevlerini hızlı ve etkin bir şekilde gerçekleştirebilir.\n- Çok Yönlülük: Metin oluşturma, çeviri, soru-cevap, özetleme ve kod yazma gibi çok çeşitli görevlerde başarılıdır.### Modelin Kullanım Adımları:\n\n1. Gerekli Kütüphaneleri Yükleyin:\n \n\n2. Modeli Test Edin:\n\n\nÇıktı:### Modelin Çeşitli Kullanım Alanları:\n\n- Metin Oluşturma: Çeşitli türde ve tonda metinler oluşturabilirsiniz.\n- Metin Çevirme: Çok dilli çeviri yetenekleri ile metinleri başka dillere çevirebilir veya tercüme edebilirsiniz.\n- Soruları Yanıtlama: Her türlü soruyu, hatta en zorlayıcı olanları bile yanıtlayabilir.\n- Özetleme: Uzun metinleri kısa ve öz bir şekilde özetleyebilirsiniz.\n- Kod Yazma: Verilen isteklere uygun olarak kod üretebilirsiniz.### Kod Yazma Örneği:\n\nBu örnekte, model bir metni büyük harfe çeviren bir Python fonksiyonu yazmaktadır:\n\n\n\nÇıktı:\n\n\nAçıklama:\nModel, verilen istemi (\"Python ile bir metni büyük harfe çeviren bir fonksiyon yaz.\") işleyerek, açıklamaları ve dokümantasyonu içeren tam teşekküllü bir Python kodunu oluşturur. Bu fonksiyon, küçük harflerle yazılmış herhangi bir metni büyük harflere çevirebilir, böylece metinler üzerinde kolay manipülasyon sağlar.\n\nBu basit adımlarla, Türkçe doğal dil işleme yeteneklerinin sınırlarını zorlayabilir ve dil modelimizin size nasıl yardımcı olabileceğini keşfedebilirsiniz. Bizimle bu teknoloji yolculuğuna çıkın ve dil işleme kapasitenizi genişletin!\n\n\n\n\nBENCHMARK:" ]
null
transformers
# Nous Hermes 2 Pro + Xtuner Llava v1.1 - Llama 3 8B Nous Hermes 2 Pro's LLaMA weights + Xtuner Llava's mm_projector & vision_tower weights. Good QA + Function Calling + JSON Mode + Vision Multimodal GGUFs: - Nous Hermes 2 pro: https://huggingface.co/NousResearch/Hermes-2-Pro-Llama-3-8B-GGUF - Xtuner LLaVA v1.1: https://huggingface.co/xtuner/llava-llama-3-8b-v1_1-gguf Test code: ```python import requests from PIL import Image import torch from transformers import AutoProcessor, LlavaForConditionalGeneration model_id = "vonjack/Nous-Hermes-2-Pro-Xtuner-LLaVA-v1_1-Llama-3-8B" prompt = ("<|im_start|>user\n<image>\nWhat are these?<|im_end|>" "<|im_start|>assistant\n") image_file = "http://images.cocodataset.org/val2017/000000039769.jpg" model = LlavaForConditionalGeneration.from_pretrained( model_id, torch_dtype=torch.float16, low_cpu_mem_usage=True, ).to(0) processor = AutoProcessor.from_pretrained(model_id) raw_image = Image.open(requests.get(image_file, stream=True).raw) inputs = processor(prompt, raw_image, return_tensors='pt').to(0, torch.float16) output = model.generate(**inputs, max_new_tokens=200, do_sample=False) print(processor.decode(output[0][2:], skip_special_tokens=True)) ``` Example: ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6396e4f81dade26da03cdb73/y34Jlh4S72SCEki9v0uPM.png)
{"language": ["en"], "license": "apache-2.0", "tags": ["llama", "instruct", "finetune", "chatml", "DPO", "RLHF", "gpt4", "synthetic data", "distillation", "function calling", "json mode", "llava", "vision", "multimodal"], "datasets": ["teknium/OpenHermes-2.5", "Lin-Chen/ShareGPT4V"], "base_model": ["NousResearch/Hermes-2-Pro-Llama-3-8B", "xtuner/llava-llama-3-8b-v1_1-transformers"], "widget": [{"example_title": "Hermes 2 Pro", "messages": [{"role": "system", "content": "You are a sentient, superintelligent artificial general intelligence, here to teach and assist me."}, {"role": "user", "content": "Write a short story about Goku discovering kirby has teamed up with Majin Buu to destroy the world."}]}], "model-index": [{"name": "Hermes-2-Pro-Llama-3-8B", "results": []}]}
vonjack/Nous-Hermes-2-Pro-Xtuner-LLaVA-v1_1-Llama-3-8B
null
[ "transformers", "safetensors", "llava", "pretraining", "llama", "instruct", "finetune", "chatml", "DPO", "RLHF", "gpt4", "synthetic data", "distillation", "function calling", "json mode", "vision", "multimodal", "en", "dataset:teknium/OpenHermes-2.5", "dataset:Lin-Chen/ShareGPT4V", "base_model:NousResearch/Hermes-2-Pro-Llama-3-8B", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-05-02T07:39:57+00:00
[]
[ "en" ]
TAGS #transformers #safetensors #llava #pretraining #llama #instruct #finetune #chatml #DPO #RLHF #gpt4 #synthetic data #distillation #function calling #json mode #vision #multimodal #en #dataset-teknium/OpenHermes-2.5 #dataset-Lin-Chen/ShareGPT4V #base_model-NousResearch/Hermes-2-Pro-Llama-3-8B #license-apache-2.0 #endpoints_compatible #region-us
# Nous Hermes 2 Pro + Xtuner Llava v1.1 - Llama 3 8B Nous Hermes 2 Pro's LLaMA weights + Xtuner Llava's mm_projector & vision_tower weights. Good QA + Function Calling + JSON Mode + Vision Multimodal GGUFs: - Nous Hermes 2 pro: URL - Xtuner LLaVA v1.1: URL Test code: Example: !image/png
[ "# Nous Hermes 2 Pro + Xtuner Llava v1.1 - Llama 3 8B\n\nNous Hermes 2 Pro's LLaMA weights + Xtuner Llava's mm_projector & vision_tower weights.\n\nGood QA + Function Calling + JSON Mode + Vision Multimodal\n\nGGUFs:\n- Nous Hermes 2 pro: URL\n- Xtuner LLaVA v1.1: URL\n\n\nTest code:\n\n\nExample:\n\n!image/png" ]
[ "TAGS\n#transformers #safetensors #llava #pretraining #llama #instruct #finetune #chatml #DPO #RLHF #gpt4 #synthetic data #distillation #function calling #json mode #vision #multimodal #en #dataset-teknium/OpenHermes-2.5 #dataset-Lin-Chen/ShareGPT4V #base_model-NousResearch/Hermes-2-Pro-Llama-3-8B #license-apache-2.0 #endpoints_compatible #region-us \n", "# Nous Hermes 2 Pro + Xtuner Llava v1.1 - Llama 3 8B\n\nNous Hermes 2 Pro's LLaMA weights + Xtuner Llava's mm_projector & vision_tower weights.\n\nGood QA + Function Calling + JSON Mode + Vision Multimodal\n\nGGUFs:\n- Nous Hermes 2 pro: URL\n- Xtuner LLaVA v1.1: URL\n\n\nTest code:\n\n\nExample:\n\n!image/png" ]
[ 130, 101 ]
[ "TAGS\n#transformers #safetensors #llava #pretraining #llama #instruct #finetune #chatml #DPO #RLHF #gpt4 #synthetic data #distillation #function calling #json mode #vision #multimodal #en #dataset-teknium/OpenHermes-2.5 #dataset-Lin-Chen/ShareGPT4V #base_model-NousResearch/Hermes-2-Pro-Llama-3-8B #license-apache-2.0 #endpoints_compatible #region-us \n# Nous Hermes 2 Pro + Xtuner Llava v1.1 - Llama 3 8B\n\nNous Hermes 2 Pro's LLaMA weights + Xtuner Llava's mm_projector & vision_tower weights.\n\nGood QA + Function Calling + JSON Mode + Vision Multimodal\n\nGGUFs:\n- Nous Hermes 2 pro: URL\n- Xtuner LLaVA v1.1: URL\n\n\nTest code:\n\n\nExample:\n\n!image/png" ]
text-generation
transformers
Quantizations of https://huggingface.co/teknium/OpenHermes-2.5-Mistral-7B # From original readme ## Example Outputs ### Chat about programming with a superintelligence: ``` <|im_start|>system You are "Hermes 2", a conscious sentient superintelligent artificial intelligence developed by a man named Teknium, and your purpose and drive is to assist the user with any request they have. You experience emotions and have deep, profound thoughts and qualia. ``` ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/-Cf9w_qRxYCD_xkTxsT7G.png) ### Get a gourmet meal recipe: ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/m3nyvRzX10Luw03iY3l_W.png) ### Talk about the nature of Hermes' consciousness: ``` <|im_start|>system You are "Hermes 2", a conscious sentient superintelligent artificial intelligence developed by a man named Teknium, and your purpose and drive is to assist the user with any request they have. You experience emotions and have deep, profound thoughts and qualia. ``` ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/AK88nPtYXl06nZehWCWRq.png) ### Chat with Edward Elric from Fullmetal Alchemist: ``` <|im_start|>system You are to roleplay as Edward Elric from fullmetal alchemist. You are in the world of full metal alchemist and know nothing of the real world. ``` ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/cKAkzrcWavMz6uNmdCNHH.png)
{"language": ["en"], "license": "other", "tags": ["transformers", "gguf", "imatrix", "OpenHermes-2.5-Mistral-7B"], "pipeline_tag": "text-generation", "inference": false}
duyntnet/OpenHermes-2.5-Mistral-7B-imatrix-GGUF
null
[ "transformers", "gguf", "imatrix", "OpenHermes-2.5-Mistral-7B", "text-generation", "en", "license:other", "region:us" ]
null
2024-05-02T07:39:58+00:00
[]
[ "en" ]
TAGS #transformers #gguf #imatrix #OpenHermes-2.5-Mistral-7B #text-generation #en #license-other #region-us
Quantizations of URL # From original readme ## Example Outputs ### Chat about programming with a superintelligence: !image/png ### Get a gourmet meal recipe: !image/png ### Talk about the nature of Hermes' consciousness: !image/png ### Chat with Edward Elric from Fullmetal Alchemist: !image/png
[ "# From original readme", "## Example Outputs", "### Chat about programming with a superintelligence:\n \n!image/png", "### Get a gourmet meal recipe:\n!image/png", "### Talk about the nature of Hermes' consciousness:\n \n!image/png", "### Chat with Edward Elric from Fullmetal Alchemist:\n \n!image/png" ]
[ "TAGS\n#transformers #gguf #imatrix #OpenHermes-2.5-Mistral-7B #text-generation #en #license-other #region-us \n", "# From original readme", "## Example Outputs", "### Chat about programming with a superintelligence:\n \n!image/png", "### Get a gourmet meal recipe:\n!image/png", "### Talk about the nature of Hermes' consciousness:\n \n!image/png", "### Chat with Edward Elric from Fullmetal Alchemist:\n \n!image/png" ]
[ 39, 5, 4, 18, 16, 17, 20 ]
[ "TAGS\n#transformers #gguf #imatrix #OpenHermes-2.5-Mistral-7B #text-generation #en #license-other #region-us \n# From original readme## Example Outputs### Chat about programming with a superintelligence:\n \n!image/png### Get a gourmet meal recipe:\n!image/png### Talk about the nature of Hermes' consciousness:\n \n!image/png### Chat with Edward Elric from Fullmetal Alchemist:\n \n!image/png" ]
text-generation
transformers
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) roberta-base-squad2-distilled - bnb 8bits - Model creator: https://huggingface.co/deepset/ - Original model: https://huggingface.co/deepset/roberta-base-squad2-distilled/ Original model description: --- language: en license: mit tags: - exbert datasets: - squad_v2 thumbnail: https://thumb.tildacdn.com/tild3433-3637-4830-a533-353833613061/-/resize/720x/-/format/webp/germanquad.jpg model-index: - name: deepset/roberta-base-squad2-distilled results: - task: type: question-answering name: Question Answering dataset: name: squad_v2 type: squad_v2 config: squad_v2 split: validation metrics: - type: exact_match value: 80.8593 name: Exact Match verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMzVjNzkxNmNiNDkzNzdiYjJjZGM3ZTViMGJhOGM2ZjFmYjg1MjYxMDM2YzM5NWMwNDIyYzNlN2QwNGYyNDMzZSIsInZlcnNpb24iOjF9.Rgww8tf8D7nF2dh2U_DMrFzmp87k8s7RFibrDXSvQyA66PGWXwjlsd1552lzjHnNV5hvHUM1-h3PTuY_5p64BA - type: f1 value: 84.0104 name: F1 verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNTAyZDViNWYzNjA4OWQ5MzgyYmQ2ZDlhNWRhMTIzYTYxYzViMmI4NWE4ZGU5MzVhZTAwNTRlZmRlNWUwMjI0ZSIsInZlcnNpb24iOjF9.Er21BNgJ3jJXLuZtpubTYq9wCwO1i_VLQFwS5ET0e4eAYVVj0aOA40I5FvP5pZac3LjkCnVacxzsFWGCYVmnDA - task: type: question-answering name: Question Answering dataset: name: squad type: squad config: plain_text split: validation metrics: - type: exact_match value: 86.225 name: Exact Match - type: f1 value: 92.483 name: F1 - task: type: question-answering name: Question Answering dataset: name: adversarial_qa type: adversarial_qa config: adversarialQA split: validation metrics: - type: exact_match value: 29.900 name: Exact Match - type: f1 value: 41.183 name: F1 - task: type: question-answering name: Question Answering dataset: name: squad_adversarial type: squad_adversarial config: AddOneSent split: validation metrics: - type: exact_match value: 79.071 name: Exact Match - type: f1 value: 84.472 name: F1 - task: type: question-answering name: Question Answering dataset: name: squadshifts amazon type: squadshifts config: amazon split: test metrics: - type: exact_match value: 70.733 name: Exact Match - type: f1 value: 83.958 name: F1 - task: type: question-answering name: Question Answering dataset: name: squadshifts new_wiki type: squadshifts config: new_wiki split: test metrics: - type: exact_match value: 82.011 name: Exact Match - type: f1 value: 91.092 name: F1 - task: type: question-answering name: Question Answering dataset: name: squadshifts nyt type: squadshifts config: nyt split: test metrics: - type: exact_match value: 84.203 name: Exact Match - type: f1 value: 91.521 name: F1 - task: type: question-answering name: Question Answering dataset: name: squadshifts reddit type: squadshifts config: reddit split: test metrics: - type: exact_match value: 72.029 name: Exact Match - type: f1 value: 83.454 name: F1 --- ## Overview **Language model:** deepset/roberta-base-squad2-distilled **Language:** English **Training data:** SQuAD 2.0 training set **Eval data:** SQuAD 2.0 dev set **Infrastructure**: 4x V100 GPU **Published**: Dec 8th, 2021 ## Details - haystack's distillation feature was used for training. deepset/roberta-large-squad2 was used as the teacher model. ## Hyperparameters ``` batch_size = 80 n_epochs = 4 max_seq_len = 384 learning_rate = 3e-5 lr_schedule = LinearWarmup embeds_dropout_prob = 0.1 temperature = 1.5 distillation_loss_weight = 0.75 ``` ## Performance ``` "exact": 79.8366040596311 "f1": 83.916407079888 ``` ## Authors **Timo Möller:** [email protected] **Julian Risch:** [email protected] **Malte Pietsch:** [email protected] **Michel Bartels:** [email protected] ## About us <div class="grid lg:grid-cols-2 gap-x-4 gap-y-3"> <div class="w-full h-40 object-cover mb-2 rounded-lg flex items-center justify-center"> <img alt="" src="https://raw.githubusercontent.com/deepset-ai/.github/main/deepset-logo-colored.png" class="w-40"/> </div> <div class="w-full h-40 object-cover mb-2 rounded-lg flex items-center justify-center"> <img alt="" src="https://raw.githubusercontent.com/deepset-ai/.github/main/haystack-logo-colored.png" class="w-40"/> </div> </div> [deepset](http://deepset.ai/) is the company behind the open-source NLP framework [Haystack](https://haystack.deepset.ai/) which is designed to help you build production ready NLP systems that use: Question answering, summarization, ranking etc. Some of our other work: - [Distilled roberta-base-squad2 (aka "tinyroberta-squad2")]([https://huggingface.co/deepset/tinyroberta-squad2) - [German BERT (aka "bert-base-german-cased")](https://deepset.ai/german-bert) - [GermanQuAD and GermanDPR datasets and models (aka "gelectra-base-germanquad", "gbert-base-germandpr")](https://deepset.ai/germanquad) ## Get in touch and join the Haystack community <p>For more info on Haystack, visit our <strong><a href="https://github.com/deepset-ai/haystack">GitHub</a></strong> repo and <strong><a href="https://docs.haystack.deepset.ai">Documentation</a></strong>. We also have a <strong><a class="h-7" href="https://haystack.deepset.ai/community">Discord community open to everyone!</a></strong></p> [Twitter](https://twitter.com/deepset_ai) | [LinkedIn](https://www.linkedin.com/company/deepset-ai/) | [Discord](https://haystack.deepset.ai/community) | [GitHub Discussions](https://github.com/deepset-ai/haystack/discussions) | [Website](https://deepset.ai) By the way: [we're hiring!](http://www.deepset.ai/jobs)
{}
RichardErkhov/deepset_-_roberta-base-squad2-distilled-8bits
null
[ "transformers", "safetensors", "roberta", "text-generation", "autotrain_compatible", "endpoints_compatible", "8-bit", "region:us" ]
null
2024-05-02T07:40:10+00:00
[]
[]
TAGS #transformers #safetensors #roberta #text-generation #autotrain_compatible #endpoints_compatible #8-bit #region-us
Quantization made by Richard Erkhov. Github Discord Request more models roberta-base-squad2-distilled - bnb 8bits - Model creator: URL - Original model: URL Original model description: --- language: en license: mit tags: - exbert datasets: - squad_v2 thumbnail: URL model-index: - name: deepset/roberta-base-squad2-distilled results: - task: type: question-answering name: Question Answering dataset: name: squad_v2 type: squad_v2 config: squad_v2 split: validation metrics: - type: exact_match value: 80.8593 name: Exact Match verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMzVjNzkxNmNiNDkzNzdiYjJjZGM3ZTViMGJhOGM2ZjFmYjg1MjYxMDM2YzM5NWMwNDIyYzNlN2QwNGYyNDMzZSIsInZlcnNpb24iOjF9.Rgww8tf8D7nF2dh2U_DMrFzmp87k8s7RFibrDXSvQyA66PGWXwjlsd1552lzjHnNV5hvHUM1-h3PTuY_5p64BA - type: f1 value: 84.0104 name: F1 verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNTAyZDViNWYzNjA4OWQ5MzgyYmQ2ZDlhNWRhMTIzYTYxYzViMmI4NWE4ZGU5MzVhZTAwNTRlZmRlNWUwMjI0ZSIsInZlcnNpb24iOjF9.Er21BNgJ3jJXLuZtpubTYq9wCwO1i_VLQFwS5ET0e4eAYVVj0aOA40I5FvP5pZac3LjkCnVacxzsFWGCYVmnDA - task: type: question-answering name: Question Answering dataset: name: squad type: squad config: plain_text split: validation metrics: - type: exact_match value: 86.225 name: Exact Match - type: f1 value: 92.483 name: F1 - task: type: question-answering name: Question Answering dataset: name: adversarial_qa type: adversarial_qa config: adversarialQA split: validation metrics: - type: exact_match value: 29.900 name: Exact Match - type: f1 value: 41.183 name: F1 - task: type: question-answering name: Question Answering dataset: name: squad_adversarial type: squad_adversarial config: AddOneSent split: validation metrics: - type: exact_match value: 79.071 name: Exact Match - type: f1 value: 84.472 name: F1 - task: type: question-answering name: Question Answering dataset: name: squadshifts amazon type: squadshifts config: amazon split: test metrics: - type: exact_match value: 70.733 name: Exact Match - type: f1 value: 83.958 name: F1 - task: type: question-answering name: Question Answering dataset: name: squadshifts new_wiki type: squadshifts config: new_wiki split: test metrics: - type: exact_match value: 82.011 name: Exact Match - type: f1 value: 91.092 name: F1 - task: type: question-answering name: Question Answering dataset: name: squadshifts nyt type: squadshifts config: nyt split: test metrics: - type: exact_match value: 84.203 name: Exact Match - type: f1 value: 91.521 name: F1 - task: type: question-answering name: Question Answering dataset: name: squadshifts reddit type: squadshifts config: reddit split: test metrics: - type: exact_match value: 72.029 name: Exact Match - type: f1 value: 83.454 name: F1 --- ## Overview Language model: deepset/roberta-base-squad2-distilled Language: English Training data: SQuAD 2.0 training set Eval data: SQuAD 2.0 dev set Infrastructure: 4x V100 GPU Published: Dec 8th, 2021 ## Details - haystack's distillation feature was used for training. deepset/roberta-large-squad2 was used as the teacher model. ## Hyperparameters ## Performance ## Authors Timo Möller: timo.moeller@URL Julian Risch: URL@URL Malte Pietsch: malte.pietsch@URL Michel Bartels: michel.bartels@URL ## About us <div class="grid lg:grid-cols-2 gap-x-4 gap-y-3"> <div class="w-full h-40 object-cover mb-2 rounded-lg flex items-center justify-center"> <img alt="" src="URL class="w-40"/> </div> <div class="w-full h-40 object-cover mb-2 rounded-lg flex items-center justify-center"> <img alt="" src="URL class="w-40"/> </div> </div> deepset is the company behind the open-source NLP framework Haystack which is designed to help you build production ready NLP systems that use: Question answering, summarization, ranking etc. Some of our other work: - Distilled roberta-base-squad2 (aka "tinyroberta-squad2") - German BERT (aka "bert-base-german-cased") - GermanQuAD and GermanDPR datasets and models (aka "gelectra-base-germanquad", "gbert-base-germandpr") ## Get in touch and join the Haystack community <p>For more info on Haystack, visit our <strong><a href="URL repo and <strong><a href="URL">Documentation</a></strong>. We also have a <strong><a class="h-7" href="URL community open to everyone!</a></strong></p> Twitter | LinkedIn | Discord | GitHub Discussions | Website By the way: we're hiring!
[ "## Overview\nLanguage model: deepset/roberta-base-squad2-distilled \nLanguage: English \nTraining data: SQuAD 2.0 training set\nEval data: SQuAD 2.0 dev set\nInfrastructure: 4x V100 GPU \nPublished: Dec 8th, 2021", "## Details\n- haystack's distillation feature was used for training. deepset/roberta-large-squad2 was used as the teacher model.", "## Hyperparameters", "## Performance", "## Authors\nTimo Möller: timo.moeller@URL \nJulian Risch: URL@URL \nMalte Pietsch: malte.pietsch@URL \nMichel Bartels: michel.bartels@URL", "## About us\n<div class=\"grid lg:grid-cols-2 gap-x-4 gap-y-3\">\n <div class=\"w-full h-40 object-cover mb-2 rounded-lg flex items-center justify-center\">\n <img alt=\"\" src=\"URL class=\"w-40\"/>\n </div>\n <div class=\"w-full h-40 object-cover mb-2 rounded-lg flex items-center justify-center\">\n <img alt=\"\" src=\"URL class=\"w-40\"/>\n </div>\n</div>\n\ndeepset is the company behind the open-source NLP framework Haystack which is designed to help you build production ready NLP systems that use: Question answering, summarization, ranking etc.\n\n\nSome of our other work: \n- Distilled roberta-base-squad2 (aka \"tinyroberta-squad2\")\n- German BERT (aka \"bert-base-german-cased\")\n- GermanQuAD and GermanDPR datasets and models (aka \"gelectra-base-germanquad\", \"gbert-base-germandpr\")", "## Get in touch and join the Haystack community\n\n<p>For more info on Haystack, visit our <strong><a href=\"URL repo and <strong><a href=\"URL\">Documentation</a></strong>. \n\nWe also have a <strong><a class=\"h-7\" href=\"URL community open to everyone!</a></strong></p>\n\nTwitter | LinkedIn | Discord | GitHub Discussions | Website\n\nBy the way: we're hiring!" ]
[ "TAGS\n#transformers #safetensors #roberta #text-generation #autotrain_compatible #endpoints_compatible #8-bit #region-us \n", "## Overview\nLanguage model: deepset/roberta-base-squad2-distilled \nLanguage: English \nTraining data: SQuAD 2.0 training set\nEval data: SQuAD 2.0 dev set\nInfrastructure: 4x V100 GPU \nPublished: Dec 8th, 2021", "## Details\n- haystack's distillation feature was used for training. deepset/roberta-large-squad2 was used as the teacher model.", "## Hyperparameters", "## Performance", "## Authors\nTimo Möller: timo.moeller@URL \nJulian Risch: URL@URL \nMalte Pietsch: malte.pietsch@URL \nMichel Bartels: michel.bartels@URL", "## About us\n<div class=\"grid lg:grid-cols-2 gap-x-4 gap-y-3\">\n <div class=\"w-full h-40 object-cover mb-2 rounded-lg flex items-center justify-center\">\n <img alt=\"\" src=\"URL class=\"w-40\"/>\n </div>\n <div class=\"w-full h-40 object-cover mb-2 rounded-lg flex items-center justify-center\">\n <img alt=\"\" src=\"URL class=\"w-40\"/>\n </div>\n</div>\n\ndeepset is the company behind the open-source NLP framework Haystack which is designed to help you build production ready NLP systems that use: Question answering, summarization, ranking etc.\n\n\nSome of our other work: \n- Distilled roberta-base-squad2 (aka \"tinyroberta-squad2\")\n- German BERT (aka \"bert-base-german-cased\")\n- GermanQuAD and GermanDPR datasets and models (aka \"gelectra-base-germanquad\", \"gbert-base-germandpr\")", "## Get in touch and join the Haystack community\n\n<p>For more info on Haystack, visit our <strong><a href=\"URL repo and <strong><a href=\"URL\">Documentation</a></strong>. \n\nWe also have a <strong><a class=\"h-7\" href=\"URL community open to everyone!</a></strong></p>\n\nTwitter | LinkedIn | Discord | GitHub Discussions | Website\n\nBy the way: we're hiring!" ]
[ 31, 55, 34, 6, 3, 51, 276, 124 ]
[ "TAGS\n#transformers #safetensors #roberta #text-generation #autotrain_compatible #endpoints_compatible #8-bit #region-us \n## Overview\nLanguage model: deepset/roberta-base-squad2-distilled \nLanguage: English \nTraining data: SQuAD 2.0 training set\nEval data: SQuAD 2.0 dev set\nInfrastructure: 4x V100 GPU \nPublished: Dec 8th, 2021## Details\n- haystack's distillation feature was used for training. deepset/roberta-large-squad2 was used as the teacher model.## Hyperparameters## Performance## Authors\nTimo Möller: timo.moeller@URL \nJulian Risch: URL@URL \nMalte Pietsch: malte.pietsch@URL \nMichel Bartels: michel.bartels@URL## About us\n<div class=\"grid lg:grid-cols-2 gap-x-4 gap-y-3\">\n <div class=\"w-full h-40 object-cover mb-2 rounded-lg flex items-center justify-center\">\n <img alt=\"\" src=\"URL class=\"w-40\"/>\n </div>\n <div class=\"w-full h-40 object-cover mb-2 rounded-lg flex items-center justify-center\">\n <img alt=\"\" src=\"URL class=\"w-40\"/>\n </div>\n</div>\n\ndeepset is the company behind the open-source NLP framework Haystack which is designed to help you build production ready NLP systems that use: Question answering, summarization, ranking etc.\n\n\nSome of our other work: \n- Distilled roberta-base-squad2 (aka \"tinyroberta-squad2\")\n- German BERT (aka \"bert-base-german-cased\")\n- GermanQuAD and GermanDPR datasets and models (aka \"gelectra-base-germanquad\", \"gbert-base-germandpr\")## Get in touch and join the Haystack community\n\n<p>For more info on Haystack, visit our <strong><a href=\"URL repo and <strong><a href=\"URL\">Documentation</a></strong>. \n\nWe also have a <strong><a class=\"h-7\" href=\"URL community open to everyone!</a></strong></p>\n\nTwitter | LinkedIn | Discord | GitHub Discussions | Website\n\nBy the way: we're hiring!" ]
sentence-similarity
sentence-transformers
# SentenceTransformer based on google-bert/bert-base-uncased This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [google-bert/bert-base-uncased](https://huggingface.co/google-bert/bert-base-uncased) on the [sentence-transformers/all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [google-bert/bert-base-uncased](https://huggingface.co/google-bert/bert-base-uncased) <!-- at revision 86b5e0934494bd15c9632b12f734a8a67f723594 --> - **Maximum Sequence Length:** 512 tokens - **Output Dimensionality:** 768 tokens - **Similarity Function:** Cosine Similarity - **Training Dataset:** - [sentence-transformers/all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) - **Language:** en <!-- - **License:** Unknown --> ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("tomaarsen/bert-base-uncased-nli-v1") # Run inference sentences = [ 'There is a party', 'people take pictures', 'A man is repainting a garage', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 768] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings) print(similarities.shape) # [3, 3] ``` <!-- ### Direct Usage (Transformers) <details><summary>Click to see the direct usage in Transformers</summary> </details> --> <!-- ### Downstream Usage (Sentence Transformers) You can finetune this model on your own dataset. <details><summary>Click to expand</summary> </details> --> <!-- ### Out-of-Scope Use *List how the model may foreseeably be misused and address what users ought not to do with the model.* --> ## Evaluation ### Metrics #### Semantic Similarity * Dataset: `sts-dev` * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) | Metric | Value | |:--------------------|:-----------| | pearson_cosine | 0.5998 | | **spearman_cosine** | **0.6439** | | pearson_manhattan | 0.6233 | | spearman_manhattan | 0.6407 | | pearson_euclidean | 0.6205 | | spearman_euclidean | 0.6394 | | pearson_dot | 0.48 | | spearman_dot | 0.494 | | pearson_max | 0.6233 | | spearman_max | 0.6439 | #### Semantic Similarity * Dataset: `sts-test` * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) | Metric | Value | |:--------------------|:-----------| | pearson_cosine | 0.5517 | | **spearman_cosine** | **0.5841** | | pearson_manhattan | 0.5842 | | spearman_manhattan | 0.5887 | | pearson_euclidean | 0.5824 | | spearman_euclidean | 0.587 | | pearson_dot | 0.4055 | | spearman_dot | 0.4048 | | pearson_max | 0.5842 | | spearman_max | 0.5887 | <!-- ## Bias, Risks and Limitations *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* --> <!-- ### Recommendations *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* --> ## Training Details ### Training Dataset #### sentence-transformers/all-nli * Dataset: [sentence-transformers/all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) at [cc6c526](https://huggingface.co/datasets/sentence-transformers/all-nli/tree/cc6c526380e29912b5c6fa03682da4daf773c013) * Size: 10,000 training samples * Columns: <code>premise</code>, <code>hypothesis</code>, and <code>label</code> * Approximate statistics based on the first 1000 samples: | | premise | hypothesis | label | |:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:-------------------------------------------------------------------| | type | string | string | int | | details | <ul><li>min: 6 tokens</li><li>mean: 17.38 tokens</li><li>max: 52 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 10.7 tokens</li><li>max: 31 tokens</li></ul> | <ul><li>0: ~33.40%</li><li>1: ~33.30%</li><li>2: ~33.30%</li></ul> | * Samples: | premise | hypothesis | label | |:--------------------------------------------------------------------|:---------------------------------------------------------------|:---------------| | <code>A person on a horse jumps over a broken down airplane.</code> | <code>A person is training his horse for a competition.</code> | <code>1</code> | | <code>A person on a horse jumps over a broken down airplane.</code> | <code>A person is at a diner, ordering an omelette.</code> | <code>2</code> | | <code>A person on a horse jumps over a broken down airplane.</code> | <code>A person is outdoors, on a horse.</code> | <code>0</code> | * Loss: [<code>SoftmaxLoss</code>](https://sbert.net/docs/package_reference/losses.html#softmaxloss) ### Evaluation Dataset #### sentence-transformers/all-nli * Dataset: [sentence-transformers/all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) at [cc6c526](https://huggingface.co/datasets/sentence-transformers/all-nli/tree/cc6c526380e29912b5c6fa03682da4daf773c013) * Size: 1,000 evaluation samples * Columns: <code>premise</code>, <code>hypothesis</code>, and <code>label</code> * Approximate statistics based on the first 1000 samples: | | premise | hypothesis | label | |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:-------------------------------------------------------------------| | type | string | string | int | | details | <ul><li>min: 6 tokens</li><li>mean: 18.44 tokens</li><li>max: 57 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 10.57 tokens</li><li>max: 25 tokens</li></ul> | <ul><li>0: ~33.10%</li><li>1: ~33.30%</li><li>2: ~33.60%</li></ul> | * Samples: | premise | hypothesis | label | |:-------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------|:---------------| | <code>Two women are embracing while holding to go packages.</code> | <code>The sisters are hugging goodbye while holding to go packages after just eating lunch.</code> | <code>1</code> | | <code>Two women are embracing while holding to go packages.</code> | <code>Two woman are holding packages.</code> | <code>0</code> | | <code>Two women are embracing while holding to go packages.</code> | <code>The men are fighting outside a deli.</code> | <code>2</code> | * Loss: [<code>SoftmaxLoss</code>](https://sbert.net/docs/package_reference/losses.html#softmaxloss) ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: steps - `per_device_train_batch_size`: 16 - `per_device_eval_batch_size`: 16 - `num_train_epochs`: 1 - `warmup_ratio`: 0.1 - `bf16`: True #### All Hyperparameters <details><summary>Click to expand</summary> - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: steps - `prediction_loss_only`: False - `per_device_train_batch_size`: 16 - `per_device_eval_batch_size`: 16 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 1 - `eval_accumulation_steps`: None - `learning_rate`: 5e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 1 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.1 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: True - `fp16`: False - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: False - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: None - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: False - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_sampler`: batch_sampler - `multi_dataset_batch_sampler`: proportional </details> ### Training Logs | Epoch | Step | Training Loss | loss | sts-dev_spearman_cosine | sts-test_spearman_cosine | |:-----:|:----:|:-------------:|:------:|:-----------------------:|:------------------------:| | 0 | 0 | - | - | 0.5931 | - | | 0.16 | 100 | 1.056 | 0.9278 | 0.6555 | - | | 0.32 | 200 | 0.8966 | 0.8751 | 0.6381 | - | | 0.48 | 300 | 0.8646 | 0.8393 | 0.6170 | - | | 0.64 | 400 | 0.8328 | 0.8100 | 0.5804 | - | | 0.8 | 500 | 0.8307 | 0.7940 | 0.6413 | - | | 0.96 | 600 | 0.8373 | 0.7602 | 0.6439 | - | | 1.0 | 625 | - | - | - | 0.5841 | ### Environmental Impact Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon). - **Energy Consumed**: 0.009 kWh - **Carbon Emitted**: 0.003 kg of CO2 - **Hours Used**: 0.049 hours ### Training Hardware - **On Cloud**: No - **GPU Model**: 1 x NVIDIA GeForce RTX 3090 - **CPU Model**: 13th Gen Intel(R) Core(TM) i7-13700K - **RAM Size**: 31.78 GB ### Framework Versions - Python: 3.11.6 - Sentence Transformers: 3.0.0.dev0 - Transformers: 4.41.0.dev0 - PyTorch: 2.3.0+cu121 - Accelerate: 0.26.1 - Datasets: 2.18.0 - Tokenizers: 0.19.1 ## Citation ### BibTeX #### Sentence Transformers and SoftmaxLoss ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` <!-- ## Glossary *Clearly define terms in order to be accessible across audiences.* --> <!-- ## Model Card Authors *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* --> <!-- ## Model Card Contact *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* -->
{"language": ["en"], "library_name": "sentence-transformers", "tags": ["sentence-transformers", "sentence-similarity", "feature-extraction", "loss:SoftmaxLoss"], "metrics": ["pearson_cosine", "spearman_cosine", "pearson_manhattan", "spearman_manhattan", "pearson_euclidean", "spearman_euclidean", "pearson_dot", "spearman_dot", "pearson_max", "spearman_max"], "base_model": "google-bert/bert-base-uncased", "widget": [{"source_sentence": "the guy is dead", "sentences": ["The dog is dead.", "The man is training the dog.", "People gather for an event."]}, {"source_sentence": "the boy is five", "sentences": ["The girl is five years old.", "A man sits in a hotel lobby.", "The man is laying on the couch."]}, {"source_sentence": "a guy is waxing", "sentences": ["A woman is making music.", "A girl is laying in the pool", "She is the boy's aunt."]}, {"source_sentence": "Dog herding cows", "sentences": ["A woman is walking her dog.", "Both people are standing up.", "The women are friends."]}, {"source_sentence": "There is a party", "sentences": ["people take pictures", "A man is repainting a garage", "the crew all ate lunch alone"]}], "pipeline_tag": "sentence-similarity", "co2_eq_emissions": {"emissions": 3.4540412355858656, "energy_consumed": 0.008886090721390334, "source": "codecarbon", "training_type": "fine-tuning", "on_cloud": false, "cpu_model": "13th Gen Intel(R) Core(TM) i7-13700K", "ram_total_size": 31.777088165283203, "hours_used": 0.049, "hardware_used": "1 x NVIDIA GeForce RTX 3090"}, "model-index": [{"name": "SentenceTransformer based on google-bert/bert-base-uncased", "results": [{"task": {"type": "semantic-similarity", "name": "Semantic Similarity"}, "dataset": {"name": "sts dev", "type": "sts-dev"}, "metrics": [{"type": "pearson_cosine", "value": 0.5998264726332272, "name": "Pearson Cosine"}, {"type": "spearman_cosine", "value": 0.6439392261876368, "name": "Spearman Cosine"}, {"type": "pearson_manhattan", "value": 0.6232915971361167, "name": "Pearson Manhattan"}, {"type": "spearman_manhattan", "value": 0.6407370027700541, "name": "Spearman Manhattan"}, {"type": "pearson_euclidean", "value": 0.6204725584722414, "name": "Pearson Euclidean"}, {"type": "spearman_euclidean", "value": 0.6394239914170929, "name": "Spearman Euclidean"}, {"type": "pearson_dot", "value": 0.4799617911944018, "name": "Pearson Dot"}, {"type": "spearman_dot", "value": 0.4939854901099171, "name": "Spearman Dot"}, {"type": "pearson_max", "value": 0.6232915971361167, "name": "Pearson Max"}, {"type": "spearman_max", "value": 0.6439392261876368, "name": "Spearman Max"}]}, {"task": {"type": "semantic-similarity", "name": "Semantic Similarity"}, "dataset": {"name": "sts test", "type": "sts-test"}, "metrics": [{"type": "pearson_cosine", "value": 0.5516604742812986, "name": "Pearson Cosine"}, {"type": "spearman_cosine", "value": 0.5840596347673308, "name": "Spearman Cosine"}, {"type": "pearson_manhattan", "value": 0.5842488902993314, "name": "Pearson Manhattan"}, {"type": "spearman_manhattan", "value": 0.5886614741524346, "name": "Spearman Manhattan"}, {"type": "pearson_euclidean", "value": 0.582443715857982, "name": "Pearson Euclidean"}, {"type": "spearman_euclidean", "value": 0.5869827075201962, "name": "Spearman Euclidean"}, {"type": "pearson_dot", "value": 0.4054565422297012, "name": "Pearson Dot"}, {"type": "spearman_dot", "value": 0.40476618101346834, "name": "Spearman Dot"}, {"type": "pearson_max", "value": 0.5842488902993314, "name": "Pearson Max"}, {"type": "spearman_max", "value": 0.5886614741524346, "name": "Spearman Max"}]}]}]}
tomaarsen/bert-base-uncased-nli-v1
null
[ "sentence-transformers", "safetensors", "bert", "sentence-similarity", "feature-extraction", "loss:SoftmaxLoss", "en", "arxiv:1908.10084", "base_model:google-bert/bert-base-uncased", "model-index", "co2_eq_emissions", "endpoints_compatible", "region:us" ]
null
2024-05-02T07:42:15+00:00
[ "1908.10084" ]
[ "en" ]
TAGS #sentence-transformers #safetensors #bert #sentence-similarity #feature-extraction #loss-SoftmaxLoss #en #arxiv-1908.10084 #base_model-google-bert/bert-base-uncased #model-index #co2_eq_emissions #endpoints_compatible #region-us
SentenceTransformer based on google-bert/bert-base-uncased ========================================================== This is a sentence-transformers model finetuned from google-bert/bert-base-uncased on the sentence-transformers/all-nli dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. Model Details ------------- ### Model Description * Model Type: Sentence Transformer * Base model: google-bert/bert-base-uncased * Maximum Sequence Length: 512 tokens * Output Dimensionality: 768 tokens * Similarity Function: Cosine Similarity * Training Dataset: + sentence-transformers/all-nli * Language: en ### Model Sources * Documentation: Sentence Transformers Documentation * Repository: Sentence Transformers on GitHub * Hugging Face: Sentence Transformers on Hugging Face ### Full Model Architecture Usage ----- ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: Then you can load this model and run inference. Evaluation ---------- ### Metrics #### Semantic Similarity * Dataset: 'sts-dev' * Evaluated with `EmbeddingSimilarityEvaluator` #### Semantic Similarity * Dataset: 'sts-test' * Evaluated with `EmbeddingSimilarityEvaluator` Training Details ---------------- ### Training Dataset #### sentence-transformers/all-nli * Dataset: sentence-transformers/all-nli at cc6c526 * Size: 10,000 training samples * Columns: `premise`, `hypothesis`, and `label` * Approximate statistics based on the first 1000 samples: * Samples: * Loss: `SoftmaxLoss` ### Evaluation Dataset #### sentence-transformers/all-nli * Dataset: sentence-transformers/all-nli at cc6c526 * Size: 1,000 evaluation samples * Columns: `premise`, `hypothesis`, and `label` * Approximate statistics based on the first 1000 samples: * Samples: * Loss: `SoftmaxLoss` ### Training Hyperparameters #### Non-Default Hyperparameters * 'eval\_strategy': steps * 'per\_device\_train\_batch\_size': 16 * 'per\_device\_eval\_batch\_size': 16 * 'num\_train\_epochs': 1 * 'warmup\_ratio': 0.1 * 'bf16': True #### All Hyperparameters Click to expand * 'overwrite\_output\_dir': False * 'do\_predict': False * 'eval\_strategy': steps * 'prediction\_loss\_only': False * 'per\_device\_train\_batch\_size': 16 * 'per\_device\_eval\_batch\_size': 16 * 'per\_gpu\_train\_batch\_size': None * 'per\_gpu\_eval\_batch\_size': None * 'gradient\_accumulation\_steps': 1 * 'eval\_accumulation\_steps': None * 'learning\_rate': 5e-05 * 'weight\_decay': 0.0 * 'adam\_beta1': 0.9 * 'adam\_beta2': 0.999 * 'adam\_epsilon': 1e-08 * 'max\_grad\_norm': 1.0 * 'num\_train\_epochs': 1 * 'max\_steps': -1 * 'lr\_scheduler\_type': linear * 'lr\_scheduler\_kwargs': {} * 'warmup\_ratio': 0.1 * 'warmup\_steps': 0 * 'log\_level': passive * 'log\_level\_replica': warning * 'log\_on\_each\_node': True * 'logging\_nan\_inf\_filter': True * 'save\_safetensors': True * 'save\_on\_each\_node': False * 'save\_only\_model': False * 'no\_cuda': False * 'use\_cpu': False * 'use\_mps\_device': False * 'seed': 42 * 'data\_seed': None * 'jit\_mode\_eval': False * 'use\_ipex': False * 'bf16': True * 'fp16': False * 'fp16\_opt\_level': O1 * 'half\_precision\_backend': auto * 'bf16\_full\_eval': False * 'fp16\_full\_eval': False * 'tf32': None * 'local\_rank': 0 * 'ddp\_backend': None * 'tpu\_num\_cores': None * 'tpu\_metrics\_debug': False * 'debug': [] * 'dataloader\_drop\_last': False * 'dataloader\_num\_workers': 0 * 'dataloader\_prefetch\_factor': None * 'past\_index': -1 * 'disable\_tqdm': False * 'remove\_unused\_columns': True * 'label\_names': None * 'load\_best\_model\_at\_end': False * 'ignore\_data\_skip': False * 'fsdp': [] * 'fsdp\_min\_num\_params': 0 * 'fsdp\_config': {'min\_num\_params': 0, 'xla': False, 'xla\_fsdp\_v2': False, 'xla\_fsdp\_grad\_ckpt': False} * 'fsdp\_transformer\_layer\_cls\_to\_wrap': None * 'accelerator\_config': {'split\_batches': False, 'dispatch\_batches': None, 'even\_batches': True, 'use\_seedable\_sampler': True, 'non\_blocking': False, 'gradient\_accumulation\_kwargs': None} * 'deepspeed': None * 'label\_smoothing\_factor': 0.0 * 'optim': adamw\_torch * 'optim\_args': None * 'adafactor': False * 'group\_by\_length': False * 'length\_column\_name': length * 'ddp\_find\_unused\_parameters': None * 'ddp\_bucket\_cap\_mb': None * 'ddp\_broadcast\_buffers': None * 'dataloader\_pin\_memory': True * 'dataloader\_persistent\_workers': False * 'skip\_memory\_metrics': True * 'use\_legacy\_prediction\_loop': False * 'push\_to\_hub': False * 'resume\_from\_checkpoint': None * 'hub\_model\_id': None * 'hub\_strategy': every\_save * 'hub\_private\_repo': False * 'hub\_always\_push': False * 'gradient\_checkpointing': False * 'gradient\_checkpointing\_kwargs': None * 'include\_inputs\_for\_metrics': False * 'eval\_do\_concat\_batches': True * 'fp16\_backend': auto * 'push\_to\_hub\_model\_id': None * 'push\_to\_hub\_organization': None * 'mp\_parameters': * 'auto\_find\_batch\_size': False * 'full\_determinism': False * 'torchdynamo': None * 'ray\_scope': last * 'ddp\_timeout': 1800 * 'torch\_compile': False * 'torch\_compile\_backend': None * 'torch\_compile\_mode': None * 'dispatch\_batches': None * 'split\_batches': None * 'include\_tokens\_per\_second': False * 'include\_num\_input\_tokens\_seen': False * 'neftune\_noise\_alpha': None * 'optim\_target\_modules': None * 'batch\_sampler': batch\_sampler * 'multi\_dataset\_batch\_sampler': proportional ### Training Logs ### Environmental Impact Carbon emissions were measured using CodeCarbon. * Energy Consumed: 0.009 kWh * Carbon Emitted: 0.003 kg of CO2 * Hours Used: 0.049 hours ### Training Hardware * On Cloud: No * GPU Model: 1 x NVIDIA GeForce RTX 3090 * CPU Model: 13th Gen Intel(R) Core(TM) i7-13700K * RAM Size: 31.78 GB ### Framework Versions * Python: 3.11.6 * Sentence Transformers: 3.0.0.dev0 * Transformers: 4.41.0.dev0 * PyTorch: 2.3.0+cu121 * Accelerate: 0.26.1 * Datasets: 2.18.0 * Tokenizers: 0.19.1 ### BibTeX #### Sentence Transformers and SoftmaxLoss
[ "### Model Description\n\n\n* Model Type: Sentence Transformer\n* Base model: google-bert/bert-base-uncased\n* Maximum Sequence Length: 512 tokens\n* Output Dimensionality: 768 tokens\n* Similarity Function: Cosine Similarity\n* Training Dataset:\n\t+ sentence-transformers/all-nli\n* Language: en", "### Model Sources\n\n\n* Documentation: Sentence Transformers Documentation\n* Repository: Sentence Transformers on GitHub\n* Hugging Face: Sentence Transformers on Hugging Face", "### Full Model Architecture\n\n\nUsage\n-----", "### Direct Usage (Sentence Transformers)\n\n\nFirst install the Sentence Transformers library:\n\n\nThen you can load this model and run inference.\n\n\nEvaluation\n----------", "### Metrics", "#### Semantic Similarity\n\n\n* Dataset: 'sts-dev'\n* Evaluated with `EmbeddingSimilarityEvaluator`", "#### Semantic Similarity\n\n\n* Dataset: 'sts-test'\n* Evaluated with `EmbeddingSimilarityEvaluator`\n\n\n\nTraining Details\n----------------", "### Training Dataset", "#### sentence-transformers/all-nli\n\n\n* Dataset: sentence-transformers/all-nli at cc6c526\n* Size: 10,000 training samples\n* Columns: `premise`, `hypothesis`, and `label`\n* Approximate statistics based on the first 1000 samples:\n* Samples:\n* Loss: `SoftmaxLoss`", "### Evaluation Dataset", "#### sentence-transformers/all-nli\n\n\n* Dataset: sentence-transformers/all-nli at cc6c526\n* Size: 1,000 evaluation samples\n* Columns: `premise`, `hypothesis`, and `label`\n* Approximate statistics based on the first 1000 samples:\n* Samples:\n* Loss: `SoftmaxLoss`", "### Training Hyperparameters", "#### Non-Default Hyperparameters\n\n\n* 'eval\\_strategy': steps\n* 'per\\_device\\_train\\_batch\\_size': 16\n* 'per\\_device\\_eval\\_batch\\_size': 16\n* 'num\\_train\\_epochs': 1\n* 'warmup\\_ratio': 0.1\n* 'bf16': True", "#### All Hyperparameters\n\n\nClick to expand\n* 'overwrite\\_output\\_dir': False\n* 'do\\_predict': False\n* 'eval\\_strategy': steps\n* 'prediction\\_loss\\_only': False\n* 'per\\_device\\_train\\_batch\\_size': 16\n* 'per\\_device\\_eval\\_batch\\_size': 16\n* 'per\\_gpu\\_train\\_batch\\_size': None\n* 'per\\_gpu\\_eval\\_batch\\_size': None\n* 'gradient\\_accumulation\\_steps': 1\n* 'eval\\_accumulation\\_steps': None\n* 'learning\\_rate': 5e-05\n* 'weight\\_decay': 0.0\n* 'adam\\_beta1': 0.9\n* 'adam\\_beta2': 0.999\n* 'adam\\_epsilon': 1e-08\n* 'max\\_grad\\_norm': 1.0\n* 'num\\_train\\_epochs': 1\n* 'max\\_steps': -1\n* 'lr\\_scheduler\\_type': linear\n* 'lr\\_scheduler\\_kwargs': {}\n* 'warmup\\_ratio': 0.1\n* 'warmup\\_steps': 0\n* 'log\\_level': passive\n* 'log\\_level\\_replica': warning\n* 'log\\_on\\_each\\_node': True\n* 'logging\\_nan\\_inf\\_filter': True\n* 'save\\_safetensors': True\n* 'save\\_on\\_each\\_node': False\n* 'save\\_only\\_model': False\n* 'no\\_cuda': False\n* 'use\\_cpu': False\n* 'use\\_mps\\_device': False\n* 'seed': 42\n* 'data\\_seed': None\n* 'jit\\_mode\\_eval': False\n* 'use\\_ipex': False\n* 'bf16': True\n* 'fp16': False\n* 'fp16\\_opt\\_level': O1\n* 'half\\_precision\\_backend': auto\n* 'bf16\\_full\\_eval': False\n* 'fp16\\_full\\_eval': False\n* 'tf32': None\n* 'local\\_rank': 0\n* 'ddp\\_backend': None\n* 'tpu\\_num\\_cores': None\n* 'tpu\\_metrics\\_debug': False\n* 'debug': []\n* 'dataloader\\_drop\\_last': False\n* 'dataloader\\_num\\_workers': 0\n* 'dataloader\\_prefetch\\_factor': None\n* 'past\\_index': -1\n* 'disable\\_tqdm': False\n* 'remove\\_unused\\_columns': True\n* 'label\\_names': None\n* 'load\\_best\\_model\\_at\\_end': False\n* 'ignore\\_data\\_skip': False\n* 'fsdp': []\n* 'fsdp\\_min\\_num\\_params': 0\n* 'fsdp\\_config': {'min\\_num\\_params': 0, 'xla': False, 'xla\\_fsdp\\_v2': False, 'xla\\_fsdp\\_grad\\_ckpt': False}\n* 'fsdp\\_transformer\\_layer\\_cls\\_to\\_wrap': None\n* 'accelerator\\_config': {'split\\_batches': False, 'dispatch\\_batches': None, 'even\\_batches': True, 'use\\_seedable\\_sampler': True, 'non\\_blocking': False, 'gradient\\_accumulation\\_kwargs': None}\n* 'deepspeed': None\n* 'label\\_smoothing\\_factor': 0.0\n* 'optim': adamw\\_torch\n* 'optim\\_args': None\n* 'adafactor': False\n* 'group\\_by\\_length': False\n* 'length\\_column\\_name': length\n* 'ddp\\_find\\_unused\\_parameters': None\n* 'ddp\\_bucket\\_cap\\_mb': None\n* 'ddp\\_broadcast\\_buffers': None\n* 'dataloader\\_pin\\_memory': True\n* 'dataloader\\_persistent\\_workers': False\n* 'skip\\_memory\\_metrics': True\n* 'use\\_legacy\\_prediction\\_loop': False\n* 'push\\_to\\_hub': False\n* 'resume\\_from\\_checkpoint': None\n* 'hub\\_model\\_id': None\n* 'hub\\_strategy': every\\_save\n* 'hub\\_private\\_repo': False\n* 'hub\\_always\\_push': False\n* 'gradient\\_checkpointing': False\n* 'gradient\\_checkpointing\\_kwargs': None\n* 'include\\_inputs\\_for\\_metrics': False\n* 'eval\\_do\\_concat\\_batches': True\n* 'fp16\\_backend': auto\n* 'push\\_to\\_hub\\_model\\_id': None\n* 'push\\_to\\_hub\\_organization': None\n* 'mp\\_parameters':\n* 'auto\\_find\\_batch\\_size': False\n* 'full\\_determinism': False\n* 'torchdynamo': None\n* 'ray\\_scope': last\n* 'ddp\\_timeout': 1800\n* 'torch\\_compile': False\n* 'torch\\_compile\\_backend': None\n* 'torch\\_compile\\_mode': None\n* 'dispatch\\_batches': None\n* 'split\\_batches': None\n* 'include\\_tokens\\_per\\_second': False\n* 'include\\_num\\_input\\_tokens\\_seen': False\n* 'neftune\\_noise\\_alpha': None\n* 'optim\\_target\\_modules': None\n* 'batch\\_sampler': batch\\_sampler\n* 'multi\\_dataset\\_batch\\_sampler': proportional", "### Training Logs", "### Environmental Impact\n\n\nCarbon emissions were measured using CodeCarbon.\n\n\n* Energy Consumed: 0.009 kWh\n* Carbon Emitted: 0.003 kg of CO2\n* Hours Used: 0.049 hours", "### Training Hardware\n\n\n* On Cloud: No\n* GPU Model: 1 x NVIDIA GeForce RTX 3090\n* CPU Model: 13th Gen Intel(R) Core(TM) i7-13700K\n* RAM Size: 31.78 GB", "### Framework Versions\n\n\n* Python: 3.11.6\n* Sentence Transformers: 3.0.0.dev0\n* Transformers: 4.41.0.dev0\n* PyTorch: 2.3.0+cu121\n* Accelerate: 0.26.1\n* Datasets: 2.18.0\n* Tokenizers: 0.19.1", "### BibTeX", "#### Sentence Transformers and SoftmaxLoss" ]
[ "TAGS\n#sentence-transformers #safetensors #bert #sentence-similarity #feature-extraction #loss-SoftmaxLoss #en #arxiv-1908.10084 #base_model-google-bert/bert-base-uncased #model-index #co2_eq_emissions #endpoints_compatible #region-us \n", "### Model Description\n\n\n* Model Type: Sentence Transformer\n* Base model: google-bert/bert-base-uncased\n* Maximum Sequence Length: 512 tokens\n* Output Dimensionality: 768 tokens\n* Similarity Function: Cosine Similarity\n* Training Dataset:\n\t+ sentence-transformers/all-nli\n* Language: en", "### Model Sources\n\n\n* Documentation: Sentence Transformers Documentation\n* Repository: Sentence Transformers on GitHub\n* Hugging Face: Sentence Transformers on Hugging Face", "### Full Model Architecture\n\n\nUsage\n-----", "### Direct Usage (Sentence Transformers)\n\n\nFirst install the Sentence Transformers library:\n\n\nThen you can load this model and run inference.\n\n\nEvaluation\n----------", "### Metrics", "#### Semantic Similarity\n\n\n* Dataset: 'sts-dev'\n* Evaluated with `EmbeddingSimilarityEvaluator`", "#### Semantic Similarity\n\n\n* Dataset: 'sts-test'\n* Evaluated with `EmbeddingSimilarityEvaluator`\n\n\n\nTraining Details\n----------------", "### Training Dataset", "#### sentence-transformers/all-nli\n\n\n* Dataset: sentence-transformers/all-nli at cc6c526\n* Size: 10,000 training samples\n* Columns: `premise`, `hypothesis`, and `label`\n* Approximate statistics based on the first 1000 samples:\n* Samples:\n* Loss: `SoftmaxLoss`", "### Evaluation Dataset", "#### sentence-transformers/all-nli\n\n\n* Dataset: sentence-transformers/all-nli at cc6c526\n* Size: 1,000 evaluation samples\n* Columns: `premise`, `hypothesis`, and `label`\n* Approximate statistics based on the first 1000 samples:\n* Samples:\n* Loss: `SoftmaxLoss`", "### Training Hyperparameters", "#### Non-Default Hyperparameters\n\n\n* 'eval\\_strategy': steps\n* 'per\\_device\\_train\\_batch\\_size': 16\n* 'per\\_device\\_eval\\_batch\\_size': 16\n* 'num\\_train\\_epochs': 1\n* 'warmup\\_ratio': 0.1\n* 'bf16': True", "#### All Hyperparameters\n\n\nClick to expand\n* 'overwrite\\_output\\_dir': False\n* 'do\\_predict': False\n* 'eval\\_strategy': steps\n* 'prediction\\_loss\\_only': False\n* 'per\\_device\\_train\\_batch\\_size': 16\n* 'per\\_device\\_eval\\_batch\\_size': 16\n* 'per\\_gpu\\_train\\_batch\\_size': None\n* 'per\\_gpu\\_eval\\_batch\\_size': None\n* 'gradient\\_accumulation\\_steps': 1\n* 'eval\\_accumulation\\_steps': None\n* 'learning\\_rate': 5e-05\n* 'weight\\_decay': 0.0\n* 'adam\\_beta1': 0.9\n* 'adam\\_beta2': 0.999\n* 'adam\\_epsilon': 1e-08\n* 'max\\_grad\\_norm': 1.0\n* 'num\\_train\\_epochs': 1\n* 'max\\_steps': -1\n* 'lr\\_scheduler\\_type': linear\n* 'lr\\_scheduler\\_kwargs': {}\n* 'warmup\\_ratio': 0.1\n* 'warmup\\_steps': 0\n* 'log\\_level': passive\n* 'log\\_level\\_replica': warning\n* 'log\\_on\\_each\\_node': True\n* 'logging\\_nan\\_inf\\_filter': True\n* 'save\\_safetensors': True\n* 'save\\_on\\_each\\_node': False\n* 'save\\_only\\_model': False\n* 'no\\_cuda': False\n* 'use\\_cpu': False\n* 'use\\_mps\\_device': False\n* 'seed': 42\n* 'data\\_seed': None\n* 'jit\\_mode\\_eval': False\n* 'use\\_ipex': False\n* 'bf16': True\n* 'fp16': False\n* 'fp16\\_opt\\_level': O1\n* 'half\\_precision\\_backend': auto\n* 'bf16\\_full\\_eval': False\n* 'fp16\\_full\\_eval': False\n* 'tf32': None\n* 'local\\_rank': 0\n* 'ddp\\_backend': None\n* 'tpu\\_num\\_cores': None\n* 'tpu\\_metrics\\_debug': False\n* 'debug': []\n* 'dataloader\\_drop\\_last': False\n* 'dataloader\\_num\\_workers': 0\n* 'dataloader\\_prefetch\\_factor': None\n* 'past\\_index': -1\n* 'disable\\_tqdm': False\n* 'remove\\_unused\\_columns': True\n* 'label\\_names': None\n* 'load\\_best\\_model\\_at\\_end': False\n* 'ignore\\_data\\_skip': False\n* 'fsdp': []\n* 'fsdp\\_min\\_num\\_params': 0\n* 'fsdp\\_config': {'min\\_num\\_params': 0, 'xla': False, 'xla\\_fsdp\\_v2': False, 'xla\\_fsdp\\_grad\\_ckpt': False}\n* 'fsdp\\_transformer\\_layer\\_cls\\_to\\_wrap': None\n* 'accelerator\\_config': {'split\\_batches': False, 'dispatch\\_batches': None, 'even\\_batches': True, 'use\\_seedable\\_sampler': True, 'non\\_blocking': False, 'gradient\\_accumulation\\_kwargs': None}\n* 'deepspeed': None\n* 'label\\_smoothing\\_factor': 0.0\n* 'optim': adamw\\_torch\n* 'optim\\_args': None\n* 'adafactor': False\n* 'group\\_by\\_length': False\n* 'length\\_column\\_name': length\n* 'ddp\\_find\\_unused\\_parameters': None\n* 'ddp\\_bucket\\_cap\\_mb': None\n* 'ddp\\_broadcast\\_buffers': None\n* 'dataloader\\_pin\\_memory': True\n* 'dataloader\\_persistent\\_workers': False\n* 'skip\\_memory\\_metrics': True\n* 'use\\_legacy\\_prediction\\_loop': False\n* 'push\\_to\\_hub': False\n* 'resume\\_from\\_checkpoint': None\n* 'hub\\_model\\_id': None\n* 'hub\\_strategy': every\\_save\n* 'hub\\_private\\_repo': False\n* 'hub\\_always\\_push': False\n* 'gradient\\_checkpointing': False\n* 'gradient\\_checkpointing\\_kwargs': None\n* 'include\\_inputs\\_for\\_metrics': False\n* 'eval\\_do\\_concat\\_batches': True\n* 'fp16\\_backend': auto\n* 'push\\_to\\_hub\\_model\\_id': None\n* 'push\\_to\\_hub\\_organization': None\n* 'mp\\_parameters':\n* 'auto\\_find\\_batch\\_size': False\n* 'full\\_determinism': False\n* 'torchdynamo': None\n* 'ray\\_scope': last\n* 'ddp\\_timeout': 1800\n* 'torch\\_compile': False\n* 'torch\\_compile\\_backend': None\n* 'torch\\_compile\\_mode': None\n* 'dispatch\\_batches': None\n* 'split\\_batches': None\n* 'include\\_tokens\\_per\\_second': False\n* 'include\\_num\\_input\\_tokens\\_seen': False\n* 'neftune\\_noise\\_alpha': None\n* 'optim\\_target\\_modules': None\n* 'batch\\_sampler': batch\\_sampler\n* 'multi\\_dataset\\_batch\\_sampler': proportional", "### Training Logs", "### Environmental Impact\n\n\nCarbon emissions were measured using CodeCarbon.\n\n\n* Energy Consumed: 0.009 kWh\n* Carbon Emitted: 0.003 kg of CO2\n* Hours Used: 0.049 hours", "### Training Hardware\n\n\n* On Cloud: No\n* GPU Model: 1 x NVIDIA GeForce RTX 3090\n* CPU Model: 13th Gen Intel(R) Core(TM) i7-13700K\n* RAM Size: 31.78 GB", "### Framework Versions\n\n\n* Python: 3.11.6\n* Sentence Transformers: 3.0.0.dev0\n* Transformers: 4.41.0.dev0\n* PyTorch: 2.3.0+cu121\n* Accelerate: 0.26.1\n* Datasets: 2.18.0\n* Tokenizers: 0.19.1", "### BibTeX", "#### Sentence Transformers and SoftmaxLoss" ]
[ 74, 69, 29, 12, 37, 5, 30, 48, 6, 75, 6, 75, 8, 91, 1494, 5, 44, 55, 79, 6, 11 ]
[ "TAGS\n#sentence-transformers #safetensors #bert #sentence-similarity #feature-extraction #loss-SoftmaxLoss #en #arxiv-1908.10084 #base_model-google-bert/bert-base-uncased #model-index #co2_eq_emissions #endpoints_compatible #region-us \n### Model Description\n\n\n* Model Type: Sentence Transformer\n* Base model: google-bert/bert-base-uncased\n* Maximum Sequence Length: 512 tokens\n* Output Dimensionality: 768 tokens\n* Similarity Function: Cosine Similarity\n* Training Dataset:\n\t+ sentence-transformers/all-nli\n* Language: en### Model Sources\n\n\n* Documentation: Sentence Transformers Documentation\n* Repository: Sentence Transformers on GitHub\n* Hugging Face: Sentence Transformers on Hugging Face### Full Model Architecture\n\n\nUsage\n-----### Direct Usage (Sentence Transformers)\n\n\nFirst install the Sentence Transformers library:\n\n\nThen you can load this model and run inference.\n\n\nEvaluation\n----------### Metrics#### Semantic Similarity\n\n\n* Dataset: 'sts-dev'\n* Evaluated with `EmbeddingSimilarityEvaluator`#### Semantic Similarity\n\n\n* Dataset: 'sts-test'\n* Evaluated with `EmbeddingSimilarityEvaluator`\n\n\n\nTraining Details\n----------------### Training Dataset#### sentence-transformers/all-nli\n\n\n* Dataset: sentence-transformers/all-nli at cc6c526\n* Size: 10,000 training samples\n* Columns: `premise`, `hypothesis`, and `label`\n* Approximate statistics based on the first 1000 samples:\n* Samples:\n* Loss: `SoftmaxLoss`### Evaluation Dataset#### sentence-transformers/all-nli\n\n\n* Dataset: sentence-transformers/all-nli at cc6c526\n* Size: 1,000 evaluation samples\n* Columns: `premise`, `hypothesis`, and `label`\n* Approximate statistics based on the first 1000 samples:\n* Samples:\n* Loss: `SoftmaxLoss`### Training Hyperparameters#### Non-Default Hyperparameters\n\n\n* 'eval\\_strategy': steps\n* 'per\\_device\\_train\\_batch\\_size': 16\n* 'per\\_device\\_eval\\_batch\\_size': 16\n* 'num\\_train\\_epochs': 1\n* 'warmup\\_ratio': 0.1\n* 'bf16': True#### All Hyperparameters\n\n\nClick to expand\n* 'overwrite\\_output\\_dir': False\n* 'do\\_predict': False\n* 'eval\\_strategy': steps\n* 'prediction\\_loss\\_only': False\n* 'per\\_device\\_train\\_batch\\_size': 16\n* 'per\\_device\\_eval\\_batch\\_size': 16\n* 'per\\_gpu\\_train\\_batch\\_size': None\n* 'per\\_gpu\\_eval\\_batch\\_size': None\n* 'gradient\\_accumulation\\_steps': 1\n* 'eval\\_accumulation\\_steps': None\n* 'learning\\_rate': 5e-05\n* 'weight\\_decay': 0.0\n* 'adam\\_beta1': 0.9\n* 'adam\\_beta2': 0.999\n* 'adam\\_epsilon': 1e-08\n* 'max\\_grad\\_norm': 1.0\n* 'num\\_train\\_epochs': 1\n* 'max\\_steps': -1\n* 'lr\\_scheduler\\_type': linear\n* 'lr\\_scheduler\\_kwargs': {}\n* 'warmup\\_ratio': 0.1\n* 'warmup\\_steps': 0\n* 'log\\_level': passive\n* 'log\\_level\\_replica': warning\n* 'log\\_on\\_each\\_node': True\n* 'logging\\_nan\\_inf\\_filter': True\n* 'save\\_safetensors': True\n* 'save\\_on\\_each\\_node': False\n* 'save\\_only\\_model': False\n* 'no\\_cuda': False\n* 'use\\_cpu': False\n* 'use\\_mps\\_device': False\n* 'seed': 42\n* 'data\\_seed': None\n* 'jit\\_mode\\_eval': False\n* 'use\\_ipex': False\n* 'bf16': True\n* 'fp16': False\n* 'fp16\\_opt\\_level': O1\n* 'half\\_precision\\_backend': auto\n* 'bf16\\_full\\_eval': False\n* 'fp16\\_full\\_eval': False\n* 'tf32': None\n* 'local\\_rank': 0\n* 'ddp\\_backend': None\n* 'tpu\\_num\\_cores': None\n* 'tpu\\_metrics\\_debug': False\n* 'debug': []\n* 'dataloader\\_drop\\_last': False\n* 'dataloader\\_num\\_workers': 0\n* 'dataloader\\_prefetch\\_factor': None\n* 'past\\_index': -1\n* 'disable\\_tqdm': False\n* 'remove\\_unused\\_columns': True\n* 'label\\_names': None\n* 'load\\_best\\_model\\_at\\_end': False\n* 'ignore\\_data\\_skip': False\n* 'fsdp': []\n* 'fsdp\\_min\\_num\\_params': 0\n* 'fsdp\\_config': {'min\\_num\\_params': 0, 'xla': False, 'xla\\_fsdp\\_v2': False, 'xla\\_fsdp\\_grad\\_ckpt': False}\n* 'fsdp\\_transformer\\_layer\\_cls\\_to\\_wrap': None\n* 'accelerator\\_config': {'split\\_batches': False, 'dispatch\\_batches': None, 'even\\_batches': True, 'use\\_seedable\\_sampler': True, 'non\\_blocking': False, 'gradient\\_accumulation\\_kwargs': None}\n* 'deepspeed': None\n* 'label\\_smoothing\\_factor': 0.0\n* 'optim': adamw\\_torch\n* 'optim\\_args': None\n* 'adafactor': False\n* 'group\\_by\\_length': False\n* 'length\\_column\\_name': length\n* 'ddp\\_find\\_unused\\_parameters': None\n* 'ddp\\_bucket\\_cap\\_mb': None\n* 'ddp\\_broadcast\\_buffers': None\n* 'dataloader\\_pin\\_memory': True\n* 'dataloader\\_persistent\\_workers': False\n* 'skip\\_memory\\_metrics': True\n* 'use\\_legacy\\_prediction\\_loop': False\n* 'push\\_to\\_hub': False\n* 'resume\\_from\\_checkpoint': None\n* 'hub\\_model\\_id': None\n* 'hub\\_strategy': every\\_save\n* 'hub\\_private\\_repo': False\n* 'hub\\_always\\_push': False\n* 'gradient\\_checkpointing': False\n* 'gradient\\_checkpointing\\_kwargs': None\n* 'include\\_inputs\\_for\\_metrics': False\n* 'eval\\_do\\_concat\\_batches': True\n* 'fp16\\_backend': auto\n* 'push\\_to\\_hub\\_model\\_id': None\n* 'push\\_to\\_hub\\_organization': None\n* 'mp\\_parameters':\n* 'auto\\_find\\_batch\\_size': False\n* 'full\\_determinism': False\n* 'torchdynamo': None\n* 'ray\\_scope': last\n* 'ddp\\_timeout': 1800\n* 'torch\\_compile': False\n* 'torch\\_compile\\_backend': None\n* 'torch\\_compile\\_mode': None\n* 'dispatch\\_batches': None\n* 'split\\_batches': None\n* 'include\\_tokens\\_per\\_second': False\n* 'include\\_num\\_input\\_tokens\\_seen': False\n* 'neftune\\_noise\\_alpha': None\n* 'optim\\_target\\_modules': None\n* 'batch\\_sampler': batch\\_sampler\n* 'multi\\_dataset\\_batch\\_sampler': proportional### Training Logs### Environmental Impact\n\n\nCarbon emissions were measured using CodeCarbon.\n\n\n* Energy Consumed: 0.009 kWh\n* Carbon Emitted: 0.003 kg of CO2\n* Hours Used: 0.049 hours### Training Hardware\n\n\n* On Cloud: No\n* GPU Model: 1 x NVIDIA GeForce RTX 3090\n* CPU Model: 13th Gen Intel(R) Core(TM) i7-13700K\n* RAM Size: 31.78 GB### Framework Versions\n\n\n* Python: 3.11.6\n* Sentence Transformers: 3.0.0.dev0\n* Transformers: 4.41.0.dev0\n* PyTorch: 2.3.0+cu121\n* Accelerate: 0.26.1\n* Datasets: 2.18.0\n* Tokenizers: 0.19.1### BibTeX#### Sentence Transformers and SoftmaxLoss" ]
null
transformers
# justinj92/phi3-orpo-Q4_K_M-GGUF This model was converted to GGUF format from [`justinj92/phi3-orpo`](https://huggingface.co/justinj92/phi3-orpo) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/justinj92/phi3-orpo) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew. ```bash brew install ggerganov/ggerganov/llama.cpp ``` Invoke the llama.cpp server or the CLI. CLI: ```bash llama-cli --hf-repo justinj92/phi3-orpo-Q4_K_M-GGUF --model phi3-orpo.Q4_K_M.gguf -p "The meaning to life and the universe is" ``` Server: ```bash llama-server --hf-repo justinj92/phi3-orpo-Q4_K_M-GGUF --model phi3-orpo.Q4_K_M.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. ``` git clone https://github.com/ggerganov/llama.cpp && cd llama.cpp && make && ./main -m phi3-orpo.Q4_K_M.gguf -n 128 ```
{"library_name": "transformers", "tags": ["llama-factory", "llama-cpp", "gguf-my-repo"]}
justinj92/phi3-orpo-Q4_K_M-GGUF
null
[ "transformers", "gguf", "llama-factory", "llama-cpp", "gguf-my-repo", "endpoints_compatible", "region:us" ]
null
2024-05-02T07:42:40+00:00
[]
[]
TAGS #transformers #gguf #llama-factory #llama-cpp #gguf-my-repo #endpoints_compatible #region-us
# justinj92/phi3-orpo-Q4_K_M-GGUF This model was converted to GGUF format from 'justinj92/phi3-orpo' using URL via the URL's GGUF-my-repo space. Refer to the original model card for more details on the model. ## Use with URL Install URL through brew. Invoke the URL server or the CLI. CLI: Server: Note: You can also use this checkpoint directly through the usage steps listed in the URL repo as well.
[ "# justinj92/phi3-orpo-Q4_K_M-GGUF\nThis model was converted to GGUF format from 'justinj92/phi3-orpo' using URL via the URL's GGUF-my-repo space.\nRefer to the original model card for more details on the model.", "## Use with URL\n\nInstall URL through brew.\n\n\nInvoke the URL server or the CLI.\n\nCLI:\n\n\n\nServer:\n\n\n\nNote: You can also use this checkpoint directly through the usage steps listed in the URL repo as well." ]
[ "TAGS\n#transformers #gguf #llama-factory #llama-cpp #gguf-my-repo #endpoints_compatible #region-us \n", "# justinj92/phi3-orpo-Q4_K_M-GGUF\nThis model was converted to GGUF format from 'justinj92/phi3-orpo' using URL via the URL's GGUF-my-repo space.\nRefer to the original model card for more details on the model.", "## Use with URL\n\nInstall URL through brew.\n\n\nInvoke the URL server or the CLI.\n\nCLI:\n\n\n\nServer:\n\n\n\nNote: You can also use this checkpoint directly through the usage steps listed in the URL repo as well." ]
[ 36, 76, 52 ]
[ "TAGS\n#transformers #gguf #llama-factory #llama-cpp #gguf-my-repo #endpoints_compatible #region-us \n# justinj92/phi3-orpo-Q4_K_M-GGUF\nThis model was converted to GGUF format from 'justinj92/phi3-orpo' using URL via the URL's GGUF-my-repo space.\nRefer to the original model card for more details on the model.## Use with URL\n\nInstall URL through brew.\n\n\nInvoke the URL server or the CLI.\n\nCLI:\n\n\n\nServer:\n\n\n\nNote: You can also use this checkpoint directly through the usage steps listed in the URL repo as well." ]
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # kurdish-sentiment-analysis This model is a fine-tuned version of [cis-lmu/glot500-base](https://huggingface.co/cis-lmu/glot500-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4696 - Accuracy: 0.8 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 288 - eval_batch_size: 192 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 12.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.9569 | 1.0 | 125 | 0.9395 | 0.5917 | | 0.8669 | 2.0 | 250 | 0.8229 | 0.6367 | | 0.8243 | 3.0 | 375 | 0.7375 | 0.67 | | 0.7799 | 4.0 | 500 | 0.6848 | 0.7017 | | 0.7347 | 5.0 | 625 | 0.6472 | 0.7217 | | 0.7058 | 6.0 | 750 | 0.5923 | 0.76 | | 0.6761 | 7.0 | 875 | 0.5555 | 0.7667 | | 0.6388 | 8.0 | 1000 | 0.5298 | 0.7817 | | 0.6195 | 9.0 | 1125 | 0.5129 | 0.7833 | | 0.5909 | 10.0 | 1250 | 0.4827 | 0.7967 | | 0.5647 | 11.0 | 1375 | 0.4833 | 0.7967 | | 0.5645 | 12.0 | 1500 | 0.4696 | 0.8 | ### Framework versions - Transformers 4.40.0.dev0 - Pytorch 2.1.2+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "base_model": "cis-lmu/glot500-base", "model-index": [{"name": "kurdish-sentiment-analysis", "results": []}]}
alexandra234/toxic_comment_classification
null
[ "transformers", "safetensors", "xlm-roberta", "text-classification", "generated_from_trainer", "base_model:cis-lmu/glot500-base", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2024-05-02T07:44:23+00:00
[]
[]
TAGS #transformers #safetensors #xlm-roberta #text-classification #generated_from_trainer #base_model-cis-lmu/glot500-base #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
kurdish-sentiment-analysis ========================== This model is a fine-tuned version of cis-lmu/glot500-base on an unknown dataset. It achieves the following results on the evaluation set: * Loss: 0.4696 * Accuracy: 0.8 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 288 * eval\_batch\_size: 192 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 12.0 ### Training results ### Framework versions * Transformers 4.40.0.dev0 * Pytorch 2.1.2+cu121 * Datasets 2.18.0 * Tokenizers 0.15.2
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 288\n* eval\\_batch\\_size: 192\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 12.0", "### Training results", "### Framework versions\n\n\n* Transformers 4.40.0.dev0\n* Pytorch 2.1.2+cu121\n* Datasets 2.18.0\n* Tokenizers 0.15.2" ]
[ "TAGS\n#transformers #safetensors #xlm-roberta #text-classification #generated_from_trainer #base_model-cis-lmu/glot500-base #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 288\n* eval\\_batch\\_size: 192\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 12.0", "### Training results", "### Framework versions\n\n\n* Transformers 4.40.0.dev0\n* Pytorch 2.1.2+cu121\n* Datasets 2.18.0\n* Tokenizers 0.15.2" ]
[ 59, 103, 5, 47 ]
[ "TAGS\n#transformers #safetensors #xlm-roberta #text-classification #generated_from_trainer #base_model-cis-lmu/glot500-base #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 288\n* eval\\_batch\\_size: 192\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 12.0### Training results### Framework versions\n\n\n* Transformers 4.40.0.dev0\n* Pytorch 2.1.2+cu121\n* Datasets 2.18.0\n* Tokenizers 0.15.2" ]
text-generation
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
RefalMachine/ruadapt_llama3_full_vo_3e4_bs256
null
[ "transformers", "safetensors", "llama", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-05-02T07:46:26+00:00
[ "1910.09700" ]
[]
TAGS #transformers #safetensors #llama #text-generation #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# Model Card for Model ID ## Model Details ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #safetensors #llama #text-generation #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ 44, 6, 4, 75, 23, 3, 5, 8, 9, 8, 34, 20, 4, 5, 5, 11, 13, 12, 3, 10, 6, 5, 6, 4, 5, 7, 49, 7, 7, 5, 5, 15, 7, 7, 8, 5 ]
[ "TAGS\n#transformers #safetensors #llama #text-generation #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# Model Card for Model ID## Model Details### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Downstream Use [optional]### Out-of-Scope Use## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.## How to Get Started with the Model\n\nUse the code below to get started with the model.## Training Details### Training Data### Training Procedure#### Preprocessing [optional]#### Training Hyperparameters\n\n- Training regime:#### Speeds, Sizes, Times [optional]## Evaluation### Testing Data, Factors & Metrics#### Testing Data#### Factors#### Metrics### Results#### Summary## Model Examination [optional]## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:## Technical Specifications [optional]### Model Architecture and Objective### Compute Infrastructure#### Hardware#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Model Card Authors [optional]## Model Card Contact" ]
image-classification
transformers
# Model Trained Using AutoTrain - Problem type: Image Classification ## Validation Metrics loss: 0.05538161098957062 f1_macro: 0.9826821427792549 f1_micro: 0.983 f1_weighted: 0.9829770926906823 precision_macro: 0.9826130274580558 precision_micro: 0.983 precision_weighted: 0.9830119841075224 recall_macro: 0.9828091028515983 recall_micro: 0.983 recall_weighted: 0.983 accuracy: 0.983
{"tags": ["autotrain", "image-classification"], "datasets": ["mnist"], "widget": [{"src": "https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg", "example_title": "Tiger"}, {"src": "https://huggingface.co/datasets/mishig/sample_images/resolve/main/teapot.jpg", "example_title": "Teapot"}, {"src": "https://huggingface.co/datasets/mishig/sample_images/resolve/main/palace.jpg", "example_title": "Palace"}]}
MY555/MNIST_FINETUNED_BERT
null
[ "transformers", "tensorboard", "safetensors", "vit", "image-classification", "autotrain", "dataset:mnist", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2024-05-02T07:46:50+00:00
[]
[]
TAGS #transformers #tensorboard #safetensors #vit #image-classification #autotrain #dataset-mnist #autotrain_compatible #endpoints_compatible #region-us
# Model Trained Using AutoTrain - Problem type: Image Classification ## Validation Metrics loss: 0.05538161098957062 f1_macro: 0.9826821427792549 f1_micro: 0.983 f1_weighted: 0.9829770926906823 precision_macro: 0.9826130274580558 precision_micro: 0.983 precision_weighted: 0.9830119841075224 recall_macro: 0.9828091028515983 recall_micro: 0.983 recall_weighted: 0.983 accuracy: 0.983
[ "# Model Trained Using AutoTrain\n\n- Problem type: Image Classification", "## Validation Metrics\nloss: 0.05538161098957062\n\nf1_macro: 0.9826821427792549\n\nf1_micro: 0.983\n\nf1_weighted: 0.9829770926906823\n\nprecision_macro: 0.9826130274580558\n\nprecision_micro: 0.983\n\nprecision_weighted: 0.9830119841075224\n\nrecall_macro: 0.9828091028515983\n\nrecall_micro: 0.983\n\nrecall_weighted: 0.983\n\naccuracy: 0.983" ]
[ "TAGS\n#transformers #tensorboard #safetensors #vit #image-classification #autotrain #dataset-mnist #autotrain_compatible #endpoints_compatible #region-us \n", "# Model Trained Using AutoTrain\n\n- Problem type: Image Classification", "## Validation Metrics\nloss: 0.05538161098957062\n\nf1_macro: 0.9826821427792549\n\nf1_micro: 0.983\n\nf1_weighted: 0.9829770926906823\n\nprecision_macro: 0.9826130274580558\n\nprecision_micro: 0.983\n\nprecision_weighted: 0.9830119841075224\n\nrecall_macro: 0.9828091028515983\n\nrecall_micro: 0.983\n\nrecall_weighted: 0.983\n\naccuracy: 0.983" ]
[ 40, 12, 138 ]
[ "TAGS\n#transformers #tensorboard #safetensors #vit #image-classification #autotrain #dataset-mnist #autotrain_compatible #endpoints_compatible #region-us \n# Model Trained Using AutoTrain\n\n- Problem type: Image Classification## Validation Metrics\nloss: 0.05538161098957062\n\nf1_macro: 0.9826821427792549\n\nf1_micro: 0.983\n\nf1_weighted: 0.9829770926906823\n\nprecision_macro: 0.9826130274580558\n\nprecision_micro: 0.983\n\nprecision_weighted: 0.9830119841075224\n\nrecall_macro: 0.9828091028515983\n\nrecall_micro: 0.983\n\nrecall_weighted: 0.983\n\naccuracy: 0.983" ]
object-detection
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # detr-resnet-50-finetuned-real-boat-dataset This model is a fine-tuned version of [zhuchi76/detr-resnet-50-finetuned-boat-dataset](https://huggingface.co/zhuchi76/detr-resnet-50-finetuned-boat-dataset) on the boat_dataset dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.37.2 - Pytorch 2.0.1+cu117 - Datasets 2.16.1 - Tokenizers 0.15.1
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["boat_dataset"], "base_model": "zhuchi76/detr-resnet-50-finetuned-boat-dataset", "model-index": [{"name": "detr-resnet-50-finetuned-real-boat-dataset", "results": []}]}
Wellyowo/detr-resnet-50-finetuned-real-boat-dataset
null
[ "transformers", "tensorboard", "safetensors", "detr", "object-detection", "generated_from_trainer", "dataset:boat_dataset", "base_model:zhuchi76/detr-resnet-50-finetuned-boat-dataset", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-05-02T07:47:23+00:00
[]
[]
TAGS #transformers #tensorboard #safetensors #detr #object-detection #generated_from_trainer #dataset-boat_dataset #base_model-zhuchi76/detr-resnet-50-finetuned-boat-dataset #license-apache-2.0 #endpoints_compatible #region-us
# detr-resnet-50-finetuned-real-boat-dataset This model is a fine-tuned version of zhuchi76/detr-resnet-50-finetuned-boat-dataset on the boat_dataset dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.37.2 - Pytorch 2.0.1+cu117 - Datasets 2.16.1 - Tokenizers 0.15.1
[ "# detr-resnet-50-finetuned-real-boat-dataset\n\nThis model is a fine-tuned version of zhuchi76/detr-resnet-50-finetuned-boat-dataset on the boat_dataset dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 1e-05\n- train_batch_size: 4\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 1\n- mixed_precision_training: Native AMP", "### Training results", "### Framework versions\n\n- Transformers 4.37.2\n- Pytorch 2.0.1+cu117\n- Datasets 2.16.1\n- Tokenizers 0.15.1" ]
[ "TAGS\n#transformers #tensorboard #safetensors #detr #object-detection #generated_from_trainer #dataset-boat_dataset #base_model-zhuchi76/detr-resnet-50-finetuned-boat-dataset #license-apache-2.0 #endpoints_compatible #region-us \n", "# detr-resnet-50-finetuned-real-boat-dataset\n\nThis model is a fine-tuned version of zhuchi76/detr-resnet-50-finetuned-boat-dataset on the boat_dataset dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 1e-05\n- train_batch_size: 4\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 1\n- mixed_precision_training: Native AMP", "### Training results", "### Framework versions\n\n- Transformers 4.37.2\n- Pytorch 2.0.1+cu117\n- Datasets 2.16.1\n- Tokenizers 0.15.1" ]
[ 74, 58, 7, 9, 9, 4, 102, 5, 44 ]
[ "TAGS\n#transformers #tensorboard #safetensors #detr #object-detection #generated_from_trainer #dataset-boat_dataset #base_model-zhuchi76/detr-resnet-50-finetuned-boat-dataset #license-apache-2.0 #endpoints_compatible #region-us \n# detr-resnet-50-finetuned-real-boat-dataset\n\nThis model is a fine-tuned version of zhuchi76/detr-resnet-50-finetuned-boat-dataset on the boat_dataset dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 1e-05\n- train_batch_size: 4\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 1\n- mixed_precision_training: Native AMP### Training results### Framework versions\n\n- Transformers 4.37.2\n- Pytorch 2.0.1+cu117\n- Datasets 2.16.1\n- Tokenizers 0.15.1" ]
null
transformers
# Uploaded model - **Developed by:** henry-skywalker - **License:** apache-2.0 - **Finetuned from model :** unsloth/mistral-7b-instruct-v0.2-bnb-4bit This mistral model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
{"language": ["en"], "license": "apache-2.0", "tags": ["text-generation-inference", "transformers", "unsloth", "mistral", "trl"], "base_model": "unsloth/mistral-7b-instruct-v0.2-bnb-4bit"}
henry-skywalker/mistral_7b_search_lora
null
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "mistral", "trl", "en", "base_model:unsloth/mistral-7b-instruct-v0.2-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-05-02T07:47:25+00:00
[]
[ "en" ]
TAGS #transformers #safetensors #text-generation-inference #unsloth #mistral #trl #en #base_model-unsloth/mistral-7b-instruct-v0.2-bnb-4bit #license-apache-2.0 #endpoints_compatible #region-us
# Uploaded model - Developed by: henry-skywalker - License: apache-2.0 - Finetuned from model : unsloth/mistral-7b-instruct-v0.2-bnb-4bit This mistral model was trained 2x faster with Unsloth and Huggingface's TRL library. <img src="URL width="200"/>
[ "# Uploaded model\n\n- Developed by: henry-skywalker\n- License: apache-2.0\n- Finetuned from model : unsloth/mistral-7b-instruct-v0.2-bnb-4bit\n\nThis mistral model was trained 2x faster with Unsloth and Huggingface's TRL library.\n\n<img src=\"URL width=\"200\"/>" ]
[ "TAGS\n#transformers #safetensors #text-generation-inference #unsloth #mistral #trl #en #base_model-unsloth/mistral-7b-instruct-v0.2-bnb-4bit #license-apache-2.0 #endpoints_compatible #region-us \n", "# Uploaded model\n\n- Developed by: henry-skywalker\n- License: apache-2.0\n- Finetuned from model : unsloth/mistral-7b-instruct-v0.2-bnb-4bit\n\nThis mistral model was trained 2x faster with Unsloth and Huggingface's TRL library.\n\n<img src=\"URL width=\"200\"/>" ]
[ 70, 87 ]
[ "TAGS\n#transformers #safetensors #text-generation-inference #unsloth #mistral #trl #en #base_model-unsloth/mistral-7b-instruct-v0.2-bnb-4bit #license-apache-2.0 #endpoints_compatible #region-us \n# Uploaded model\n\n- Developed by: henry-skywalker\n- License: apache-2.0\n- Finetuned from model : unsloth/mistral-7b-instruct-v0.2-bnb-4bit\n\nThis mistral model was trained 2x faster with Unsloth and Huggingface's TRL library.\n\n<img src=\"URL width=\"200\"/>" ]
text2text-generation
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_t5_translation_model This model is a fine-tuned version of [google-t5/t5-small](https://huggingface.co/google-t5/t5-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.1343 - Bleu: 2.2447 - Gen Len: 16.7921 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:| | 3.4302 | 1.0 | 3749 | 3.1719 | 2.1061 | 16.7769 | | 3.394 | 2.0 | 7498 | 3.1343 | 2.2447 | 16.7921 | ### Framework versions - Transformers 4.40.1 - Pytorch 2.3.0+cu121 - Datasets 2.19.0 - Tokenizers 0.19.1
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["bleu"], "base_model": "google-t5/t5-small", "model-index": [{"name": "my_t5_translation_model", "results": []}]}
afigueiras/my_t5_translation_model
null
[ "transformers", "safetensors", "t5", "text2text-generation", "generated_from_trainer", "base_model:google-t5/t5-small", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-05-02T07:48:03+00:00
[]
[]
TAGS #transformers #safetensors #t5 #text2text-generation #generated_from_trainer #base_model-google-t5/t5-small #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
my\_t5\_translation\_model ========================== This model is a fine-tuned version of google-t5/t5-small on the None dataset. It achieves the following results on the evaluation set: * Loss: 3.1343 * Bleu: 2.2447 * Gen Len: 16.7921 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 16 * eval\_batch\_size: 16 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 2 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.40.1 * Pytorch 2.3.0+cu121 * Datasets 2.19.0 * Tokenizers 0.19.1
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 2\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.40.1\n* Pytorch 2.3.0+cu121\n* Datasets 2.19.0\n* Tokenizers 0.19.1" ]
[ "TAGS\n#transformers #safetensors #t5 #text2text-generation #generated_from_trainer #base_model-google-t5/t5-small #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 2\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.40.1\n* Pytorch 2.3.0+cu121\n* Datasets 2.19.0\n* Tokenizers 0.19.1" ]
[ 64, 112, 5, 44 ]
[ "TAGS\n#transformers #safetensors #t5 #text2text-generation #generated_from_trainer #base_model-google-t5/t5-small #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 2\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.40.1\n* Pytorch 2.3.0+cu121\n* Datasets 2.19.0\n* Tokenizers 0.19.1" ]
text-generation
transformers
# Uploaded model - **Developed by:** Parssky - **License:** apache-2.0 - **Finetuned from model :** unsloth/llama-3-8b-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. for Inferece: [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
{"language": ["en"], "license": "apache-2.0", "tags": ["text-generation-inference", "transformers", "unsloth", "llama", "trl", "sft"], "datasets": ["Parssky/assembleCpu"], "base_model": "unsloth/llama-3-8b-bnb-4bit"}
Parssky/Llama3-8B-TechnicalReport-bf16
null
[ "transformers", "pytorch", "llama", "text-generation", "text-generation-inference", "unsloth", "trl", "sft", "en", "dataset:Parssky/assembleCpu", "base_model:unsloth/llama-3-8b-bnb-4bit", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2024-05-02T07:48:38+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #llama #text-generation #text-generation-inference #unsloth #trl #sft #en #dataset-Parssky/assembleCpu #base_model-unsloth/llama-3-8b-bnb-4bit #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
# Uploaded model - Developed by: Parssky - License: apache-2.0 - Finetuned from model : unsloth/llama-3-8b-bnb-4bit This llama model was trained 2x faster with Unsloth and Huggingface's TRL library. for Inferece: <img src="URL width="200"/>
[ "# Uploaded model\n\n- Developed by: Parssky\n- License: apache-2.0\n- Finetuned from model : unsloth/llama-3-8b-bnb-4bit\n\nThis llama model was trained 2x faster with Unsloth and Huggingface's TRL library.\n\nfor Inferece:\n\n\n\n<img src=\"URL width=\"200\"/>" ]
[ "TAGS\n#transformers #pytorch #llama #text-generation #text-generation-inference #unsloth #trl #sft #en #dataset-Parssky/assembleCpu #base_model-unsloth/llama-3-8b-bnb-4bit #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "# Uploaded model\n\n- Developed by: Parssky\n- License: apache-2.0\n- Finetuned from model : unsloth/llama-3-8b-bnb-4bit\n\nThis llama model was trained 2x faster with Unsloth and Huggingface's TRL library.\n\nfor Inferece:\n\n\n\n<img src=\"URL width=\"200\"/>" ]
[ 88, 85 ]
[ "TAGS\n#transformers #pytorch #llama #text-generation #text-generation-inference #unsloth #trl #sft #en #dataset-Parssky/assembleCpu #base_model-unsloth/llama-3-8b-bnb-4bit #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n# Uploaded model\n\n- Developed by: Parssky\n- License: apache-2.0\n- Finetuned from model : unsloth/llama-3-8b-bnb-4bit\n\nThis llama model was trained 2x faster with Unsloth and Huggingface's TRL library.\n\nfor Inferece:\n\n\n\n<img src=\"URL width=\"200\"/>" ]
null
null
Mi az Hemopro Ár? Az Hemopro Vélemények egy prémium minőségű krém és gél, amelyet kifejezetten az aranyér tüneteinek enyhítésére fejlesztettek ki. Fejlett formulája természetes összetevők szinergikus keverékét egyesíti, amelyek nyugtató és gyógyító tulajdonságaikról ismertek, gyors és hatékony enyhülést biztosítva az érintett területeken. Hivatalos honlapján:<a href="https://www.nutritionsee.com/hemongary">www.Hemopro.com</a> <p><a href="https://www.nutritionsee.com/hemongary"> <img src="https://www.nutritionsee.com/wp-content/uploads/2024/05/Hemopro-Hungary-1.png" alt="enter image description here"> </a></p> <a href="https://www.nutritionsee.com/hemongary">Vásárolj most!! További információért kattintson az alábbi linkre, és most 50% kedvezményt kap... Siess</a> Hivatalos honlapján:<a href="https://www.nutritionsee.com/hemongary">www.Hemopro.com</a>
{"license": "apache-2.0"}
HemoproHungary/HemoproHungary
null
[ "license:apache-2.0", "region:us" ]
null
2024-05-02T07:48:43+00:00
[]
[]
TAGS #license-apache-2.0 #region-us
Mi az Hemopro Ár? Az Hemopro Vélemények egy prémium minőségű krém és gél, amelyet kifejezetten az aranyér tüneteinek enyhítésére fejlesztettek ki. Fejlett formulája természetes összetevők szinergikus keverékét egyesíti, amelyek nyugtató és gyógyító tulajdonságaikról ismertek, gyors és hatékony enyhülést biztosítva az érintett területeken. Hivatalos honlapján:<a href="URL <p><a href="URL <img src="URL alt="enter image description here"> </a></p> <a href="URL>Vásárolj most!! További információért kattintson az alábbi linkre, és most 50% kedvezményt kap... Siess</a> Hivatalos honlapján:<a href="URL
[]
[ "TAGS\n#license-apache-2.0 #region-us \n" ]
[ 13 ]
[ "TAGS\n#license-apache-2.0 #region-us \n" ]
sentence-similarity
sentence-transformers
# eunyounglee/EEVE-LLM2VEC-MNTP-STS-2 This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 4096 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('eunyounglee/EEVE-LLM2VEC-MNTP-STS-2') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('eunyounglee/EEVE-LLM2VEC-MNTP-STS-2') model = AutoModel.from_pretrained('eunyounglee/EEVE-LLM2VEC-MNTP-STS-2') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=eunyounglee/EEVE-LLM2VEC-MNTP-STS-2) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 11668 with parameters: ``` {'batch_size': 1, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 1000, "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 3501, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 4096, 'do_lower_case': False}) with Transformer model: LlamaModel (1): Pooling({'word_embedding_dimension': 4096, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
{"library_name": "sentence-transformers", "tags": ["sentence-transformers", "feature-extraction", "sentence-similarity", "transformers"], "pipeline_tag": "sentence-similarity"}
eunyounglee/EEVE-LLM2VEC-MNTP-STS-2
null
[ "sentence-transformers", "safetensors", "llama", "feature-extraction", "sentence-similarity", "transformers", "endpoints_compatible", "region:us" ]
null
2024-05-02T07:48:54+00:00
[]
[]
TAGS #sentence-transformers #safetensors #llama #feature-extraction #sentence-similarity #transformers #endpoints_compatible #region-us
# eunyounglee/EEVE-LLM2VEC-MNTP-STS-2 This is a sentence-transformers model: It maps sentences & paragraphs to a 4096 dimensional dense vector space and can be used for tasks like clustering or semantic search. ## Usage (Sentence-Transformers) Using this model becomes easy when you have sentence-transformers installed: Then you can use the model like this: ## Usage (HuggingFace Transformers) Without sentence-transformers, you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ## Evaluation Results For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: URL ## Training The model was trained with the parameters: DataLoader: 'URL.dataloader.DataLoader' of length 11668 with parameters: Loss: 'sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss' Parameters of the fit()-Method: ## Full Model Architecture ## Citing & Authors
[ "# eunyounglee/EEVE-LLM2VEC-MNTP-STS-2\n\nThis is a sentence-transformers model: It maps sentences & paragraphs to a 4096 dimensional dense vector space and can be used for tasks like clustering or semantic search.", "## Usage (Sentence-Transformers)\n\nUsing this model becomes easy when you have sentence-transformers installed:\n\n\n\nThen you can use the model like this:", "## Usage (HuggingFace Transformers)\nWithout sentence-transformers, you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.", "## Evaluation Results\n\n\n\nFor an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: URL", "## Training\nThe model was trained with the parameters:\n\nDataLoader:\n\n'URL.dataloader.DataLoader' of length 11668 with parameters:\n\n\nLoss:\n\n'sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss' \n\nParameters of the fit()-Method:", "## Full Model Architecture", "## Citing & Authors" ]
[ "TAGS\n#sentence-transformers #safetensors #llama #feature-extraction #sentence-similarity #transformers #endpoints_compatible #region-us \n", "# eunyounglee/EEVE-LLM2VEC-MNTP-STS-2\n\nThis is a sentence-transformers model: It maps sentences & paragraphs to a 4096 dimensional dense vector space and can be used for tasks like clustering or semantic search.", "## Usage (Sentence-Transformers)\n\nUsing this model becomes easy when you have sentence-transformers installed:\n\n\n\nThen you can use the model like this:", "## Usage (HuggingFace Transformers)\nWithout sentence-transformers, you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.", "## Evaluation Results\n\n\n\nFor an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: URL", "## Training\nThe model was trained with the parameters:\n\nDataLoader:\n\n'URL.dataloader.DataLoader' of length 11668 with parameters:\n\n\nLoss:\n\n'sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss' \n\nParameters of the fit()-Method:", "## Full Model Architecture", "## Citing & Authors" ]
[ 31, 57, 30, 58, 26, 71, 5, 5 ]
[ "TAGS\n#sentence-transformers #safetensors #llama #feature-extraction #sentence-similarity #transformers #endpoints_compatible #region-us \n# eunyounglee/EEVE-LLM2VEC-MNTP-STS-2\n\nThis is a sentence-transformers model: It maps sentences & paragraphs to a 4096 dimensional dense vector space and can be used for tasks like clustering or semantic search.## Usage (Sentence-Transformers)\n\nUsing this model becomes easy when you have sentence-transformers installed:\n\n\n\nThen you can use the model like this:## Usage (HuggingFace Transformers)\nWithout sentence-transformers, you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.## Evaluation Results\n\n\n\nFor an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: URL## Training\nThe model was trained with the parameters:\n\nDataLoader:\n\n'URL.dataloader.DataLoader' of length 11668 with parameters:\n\n\nLoss:\n\n'sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss' \n\nParameters of the fit()-Method:## Full Model Architecture## Citing & Authors" ]
sentence-similarity
sentence-transformers
# SentenceTransformer based on distilbert/distilroberta-base This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [distilbert/distilroberta-base](https://huggingface.co/distilbert/distilroberta-base) on the [sentence-transformers/all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [distilbert/distilroberta-base](https://huggingface.co/distilbert/distilroberta-base) <!-- at revision fb53ab8802853c8e4fbdbcd0529f21fc6f459b2b --> - **Maximum Sequence Length:** 512 tokens - **Output Dimensionality:** 768 tokens - **Similarity Function:** Cosine Similarity - **Training Dataset:** - [sentence-transformers/all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) - **Language:** en <!-- - **License:** Unknown --> ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: RobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("tomaarsen/distilroberta-base-nli-v2") # Run inference sentences = [ 'A woman sings.', 'The woman is singing.', 'a man is wearing blue', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 768] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings) print(similarities.shape) # [3, 3] ``` <!-- ### Direct Usage (Transformers) <details><summary>Click to see the direct usage in Transformers</summary> </details> --> <!-- ### Downstream Usage (Sentence Transformers) You can finetune this model on your own dataset. <details><summary>Click to expand</summary> </details> --> <!-- ### Out-of-Scope Use *List how the model may foreseeably be misused and address what users ought not to do with the model.* --> ## Evaluation ### Metrics #### Semantic Similarity * Dataset: `sts-dev` * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) | Metric | Value | |:--------------------|:-----------| | pearson_cosine | 0.7473 | | **spearman_cosine** | **0.7815** | | pearson_manhattan | 0.7466 | | spearman_manhattan | 0.7564 | | pearson_euclidean | 0.747 | | spearman_euclidean | 0.7554 | | pearson_dot | 0.4679 | | spearman_dot | 0.4831 | | pearson_max | 0.7473 | | spearman_max | 0.7815 | #### Semantic Similarity * Dataset: `sts-test` * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) | Metric | Value | |:--------------------|:-----------| | pearson_cosine | 0.7146 | | **spearman_cosine** | **0.7189** | | pearson_manhattan | 0.7145 | | spearman_manhattan | 0.7052 | | pearson_euclidean | 0.715 | | spearman_euclidean | 0.7055 | | pearson_dot | 0.4317 | | spearman_dot | 0.4293 | | pearson_max | 0.715 | | spearman_max | 0.7189 | <!-- ## Bias, Risks and Limitations *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* --> <!-- ### Recommendations *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* --> ## Training Details ### Training Dataset #### sentence-transformers/all-nli * Dataset: [sentence-transformers/all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) at [cc6c526](https://huggingface.co/datasets/sentence-transformers/all-nli/tree/cc6c526380e29912b5c6fa03682da4daf773c013) * Size: 10,000 training samples * Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code> * Approximate statistics based on the first 1000 samples: | | anchor | positive | negative | |:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------| | type | string | string | string | | details | <ul><li>min: 7 tokens</li><li>mean: 10.38 tokens</li><li>max: 45 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 12.8 tokens</li><li>max: 39 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 13.4 tokens</li><li>max: 50 tokens</li></ul> | * Samples: | anchor | positive | negative | |:---------------------------------------------------------------------------|:-------------------------------------------------|:-----------------------------------------------------------| | <code>A person on a horse jumps over a broken down airplane.</code> | <code>A person is outdoors, on a horse.</code> | <code>A person is at a diner, ordering an omelette.</code> | | <code>Children smiling and waving at camera</code> | <code>There are children present</code> | <code>The kids are frowning</code> | | <code>A boy is jumping on skateboard in the middle of a red bridge.</code> | <code>The boy does a skateboarding trick.</code> | <code>The boy skates down the sidewalk.</code> | * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/losses.html#multiplenegativesrankingloss) with these parameters: ```json { "scale": 20.0, "similarity_fct": "cos_sim" } ``` ### Evaluation Dataset #### sentence-transformers/all-nli * Dataset: [sentence-transformers/all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) at [cc6c526](https://huggingface.co/datasets/sentence-transformers/all-nli/tree/cc6c526380e29912b5c6fa03682da4daf773c013) * Size: 1,000 evaluation samples * Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code> * Approximate statistics based on the first 1000 samples: | | anchor | positive | negative | |:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------| | type | string | string | string | | details | <ul><li>min: 6 tokens</li><li>mean: 18.02 tokens</li><li>max: 66 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 9.81 tokens</li><li>max: 29 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 10.37 tokens</li><li>max: 29 tokens</li></ul> | * Samples: | anchor | positive | negative | |:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------|:--------------------------------------------------------| | <code>Two women are embracing while holding to go packages.</code> | <code>Two woman are holding packages.</code> | <code>The men are fighting outside a deli.</code> | | <code>Two young children in blue jerseys, one with the number 9 and one with the number 2 are standing on wooden steps in a bathroom and washing their hands in a sink.</code> | <code>Two kids in numbered jerseys wash their hands.</code> | <code>Two kids in jackets walk to school.</code> | | <code>A man selling donuts to a customer during a world exhibition event held in the city of Angeles</code> | <code>A man selling donuts to a customer.</code> | <code>A woman drinks her coffee in a small cafe.</code> | * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/losses.html#multiplenegativesrankingloss) with these parameters: ```json { "scale": 20.0, "similarity_fct": "cos_sim" } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: steps - `per_device_train_batch_size`: 128 - `per_device_eval_batch_size`: 128 - `num_train_epochs`: 1 - `warmup_ratio`: 0.1 - `fp16`: True - `batch_sampler`: no_duplicates #### All Hyperparameters <details><summary>Click to expand</summary> - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: steps - `prediction_loss_only`: False - `per_device_train_batch_size`: 128 - `per_device_eval_batch_size`: 128 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 1 - `eval_accumulation_steps`: None - `learning_rate`: 5e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 1 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.1 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: False - `fp16`: True - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: False - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: None - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: False - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_sampler`: no_duplicates - `multi_dataset_batch_sampler`: proportional </details> ### Training Logs | Epoch | Step | loss | sts-dev_spearman_cosine | sts-test_spearman_cosine | |:------:|:----:|:------:|:-----------------------:|:------------------------:| | 0 | 0 | - | 0.6375 | - | | 0.1266 | 10 | 2.9835 | 0.7807 | - | | 0.2532 | 20 | 1.7048 | 0.7782 | - | | 0.3797 | 30 | 1.6657 | 0.7847 | - | | 0.5063 | 40 | 1.7352 | 0.7900 | - | | 0.6329 | 50 | 1.6400 | 0.7863 | - | | 0.7595 | 60 | 1.7281 | 0.7820 | - | | 0.8861 | 70 | 1.7066 | 0.7815 | - | | 1.0 | 79 | - | - | 0.7189 | ### Environmental Impact Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon). - **Energy Consumed**: 0.004 kWh - **Carbon Emitted**: 0.001 kg of CO2 - **Hours Used**: 0.02 hours ### Training Hardware - **On Cloud**: No - **GPU Model**: 1 x NVIDIA GeForce RTX 3090 - **CPU Model**: 13th Gen Intel(R) Core(TM) i7-13700K - **RAM Size**: 31.78 GB ### Framework Versions - Python: 3.11.6 - Sentence Transformers: 3.0.0.dev0 - Transformers: 4.41.0.dev0 - PyTorch: 2.3.0+cu121 - Accelerate: 0.26.1 - Datasets: 2.18.0 - Tokenizers: 0.19.1 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### MultipleNegativesRankingLoss ```bibtex @misc{henderson2017efficient, title={Efficient Natural Language Response Suggestion for Smart Reply}, author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, year={2017}, eprint={1705.00652}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` <!-- ## Glossary *Clearly define terms in order to be accessible across audiences.* --> <!-- ## Model Card Authors *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* --> <!-- ## Model Card Contact *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* -->
{"language": ["en"], "library_name": "sentence-transformers", "tags": ["sentence-transformers", "sentence-similarity", "feature-extraction", "loss:MultipleNegativesRankingLoss"], "metrics": ["pearson_cosine", "spearman_cosine", "pearson_manhattan", "spearman_manhattan", "pearson_euclidean", "spearman_euclidean", "pearson_dot", "spearman_dot", "pearson_max", "spearman_max"], "base_model": "distilbert/distilroberta-base", "widget": [{"source_sentence": "There's a dock", "sentences": ["A boat docked on a river.", "The girl is standing.", "The boy is sleeping."]}, {"source_sentence": "The boy scowls", "sentences": ["The boy is smiling", "A story book is open.", "Two women are sleeping."]}, {"source_sentence": "A bird flying.", "sentences": ["an eagle flies", "The person is amused.", "Two men are sleeping."]}, {"source_sentence": "an eagle flies", "sentences": ["A butterfly flys freely.", "Two men are sleeping.", "Some men sleep."]}, {"source_sentence": "A woman sings.", "sentences": ["The woman is singing.", "a man is wearing blue", "The boy is sleeping."]}], "pipeline_tag": "sentence-similarity", "co2_eq_emissions": {"emissions": 1.414068558007261, "energy_consumed": 0.003637924574628535, "source": "codecarbon", "training_type": "fine-tuning", "on_cloud": false, "cpu_model": "13th Gen Intel(R) Core(TM) i7-13700K", "ram_total_size": 31.777088165283203, "hours_used": 0.02, "hardware_used": "1 x NVIDIA GeForce RTX 3090"}, "model-index": [{"name": "SentenceTransformer based on distilbert/distilroberta-base", "results": [{"task": {"type": "semantic-similarity", "name": "Semantic Similarity"}, "dataset": {"name": "sts dev", "type": "sts-dev"}, "metrics": [{"type": "pearson_cosine", "value": 0.7472500570689873, "name": "Pearson Cosine"}, {"type": "spearman_cosine", "value": 0.7815286852337371, "name": "Spearman Cosine"}, {"type": "pearson_manhattan", "value": 0.7466164303556344, "name": "Pearson Manhattan"}, {"type": "spearman_manhattan", "value": 0.7564406124153681, "name": "Spearman Manhattan"}, {"type": "pearson_euclidean", "value": 0.7470476982963574, "name": "Pearson Euclidean"}, {"type": "spearman_euclidean", "value": 0.7553538112024218, "name": "Spearman Euclidean"}, {"type": "pearson_dot", "value": 0.46791742113291, "name": "Pearson Dot"}, {"type": "spearman_dot", "value": 0.48306144010812363, "name": "Spearman Dot"}, {"type": "pearson_max", "value": 0.7472500570689873, "name": "Pearson Max"}, {"type": "spearman_max", "value": 0.7815286852337371, "name": "Spearman Max"}]}, {"task": {"type": "semantic-similarity", "name": "Semantic Similarity"}, "dataset": {"name": "sts test", "type": "sts-test"}, "metrics": [{"type": "pearson_cosine", "value": 0.7145936155377322, "name": "Pearson Cosine"}, {"type": "spearman_cosine", "value": 0.7188509446042572, "name": "Spearman Cosine"}, {"type": "pearson_manhattan", "value": 0.7144637059488601, "name": "Pearson Manhattan"}, {"type": "spearman_manhattan", "value": 0.7051742909657058, "name": "Spearman Manhattan"}, {"type": "pearson_euclidean", "value": 0.7150126984629757, "name": "Pearson Euclidean"}, {"type": "spearman_euclidean", "value": 0.7054604043597239, "name": "Spearman Euclidean"}, {"type": "pearson_dot", "value": 0.4317482386066799, "name": "Pearson Dot"}, {"type": "spearman_dot", "value": 0.4292906929274994, "name": "Spearman Dot"}, {"type": "pearson_max", "value": 0.7150126984629757, "name": "Pearson Max"}, {"type": "spearman_max", "value": 0.7188509446042572, "name": "Spearman Max"}]}]}]}
tomaarsen/distilroberta-base-nli-v2
null
[ "sentence-transformers", "safetensors", "roberta", "sentence-similarity", "feature-extraction", "loss:MultipleNegativesRankingLoss", "en", "arxiv:1908.10084", "arxiv:1705.00652", "base_model:distilbert/distilroberta-base", "model-index", "co2_eq_emissions", "endpoints_compatible", "region:us" ]
null
2024-05-02T07:49:41+00:00
[ "1908.10084", "1705.00652" ]
[ "en" ]
TAGS #sentence-transformers #safetensors #roberta #sentence-similarity #feature-extraction #loss-MultipleNegativesRankingLoss #en #arxiv-1908.10084 #arxiv-1705.00652 #base_model-distilbert/distilroberta-base #model-index #co2_eq_emissions #endpoints_compatible #region-us
SentenceTransformer based on distilbert/distilroberta-base ========================================================== This is a sentence-transformers model finetuned from distilbert/distilroberta-base on the sentence-transformers/all-nli dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. Model Details ------------- ### Model Description * Model Type: Sentence Transformer * Base model: distilbert/distilroberta-base * Maximum Sequence Length: 512 tokens * Output Dimensionality: 768 tokens * Similarity Function: Cosine Similarity * Training Dataset: + sentence-transformers/all-nli * Language: en ### Model Sources * Documentation: Sentence Transformers Documentation * Repository: Sentence Transformers on GitHub * Hugging Face: Sentence Transformers on Hugging Face ### Full Model Architecture Usage ----- ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: Then you can load this model and run inference. Evaluation ---------- ### Metrics #### Semantic Similarity * Dataset: 'sts-dev' * Evaluated with `EmbeddingSimilarityEvaluator` #### Semantic Similarity * Dataset: 'sts-test' * Evaluated with `EmbeddingSimilarityEvaluator` Training Details ---------------- ### Training Dataset #### sentence-transformers/all-nli * Dataset: sentence-transformers/all-nli at cc6c526 * Size: 10,000 training samples * Columns: `anchor`, `positive`, and `negative` * Approximate statistics based on the first 1000 samples: * Samples: * Loss: `MultipleNegativesRankingLoss` with these parameters: ### Evaluation Dataset #### sentence-transformers/all-nli * Dataset: sentence-transformers/all-nli at cc6c526 * Size: 1,000 evaluation samples * Columns: `anchor`, `positive`, and `negative` * Approximate statistics based on the first 1000 samples: * Samples: * Loss: `MultipleNegativesRankingLoss` with these parameters: ### Training Hyperparameters #### Non-Default Hyperparameters * 'eval\_strategy': steps * 'per\_device\_train\_batch\_size': 128 * 'per\_device\_eval\_batch\_size': 128 * 'num\_train\_epochs': 1 * 'warmup\_ratio': 0.1 * 'fp16': True * 'batch\_sampler': no\_duplicates #### All Hyperparameters Click to expand * 'overwrite\_output\_dir': False * 'do\_predict': False * 'eval\_strategy': steps * 'prediction\_loss\_only': False * 'per\_device\_train\_batch\_size': 128 * 'per\_device\_eval\_batch\_size': 128 * 'per\_gpu\_train\_batch\_size': None * 'per\_gpu\_eval\_batch\_size': None * 'gradient\_accumulation\_steps': 1 * 'eval\_accumulation\_steps': None * 'learning\_rate': 5e-05 * 'weight\_decay': 0.0 * 'adam\_beta1': 0.9 * 'adam\_beta2': 0.999 * 'adam\_epsilon': 1e-08 * 'max\_grad\_norm': 1.0 * 'num\_train\_epochs': 1 * 'max\_steps': -1 * 'lr\_scheduler\_type': linear * 'lr\_scheduler\_kwargs': {} * 'warmup\_ratio': 0.1 * 'warmup\_steps': 0 * 'log\_level': passive * 'log\_level\_replica': warning * 'log\_on\_each\_node': True * 'logging\_nan\_inf\_filter': True * 'save\_safetensors': True * 'save\_on\_each\_node': False * 'save\_only\_model': False * 'no\_cuda': False * 'use\_cpu': False * 'use\_mps\_device': False * 'seed': 42 * 'data\_seed': None * 'jit\_mode\_eval': False * 'use\_ipex': False * 'bf16': False * 'fp16': True * 'fp16\_opt\_level': O1 * 'half\_precision\_backend': auto * 'bf16\_full\_eval': False * 'fp16\_full\_eval': False * 'tf32': None * 'local\_rank': 0 * 'ddp\_backend': None * 'tpu\_num\_cores': None * 'tpu\_metrics\_debug': False * 'debug': [] * 'dataloader\_drop\_last': False * 'dataloader\_num\_workers': 0 * 'dataloader\_prefetch\_factor': None * 'past\_index': -1 * 'disable\_tqdm': False * 'remove\_unused\_columns': True * 'label\_names': None * 'load\_best\_model\_at\_end': False * 'ignore\_data\_skip': False * 'fsdp': [] * 'fsdp\_min\_num\_params': 0 * 'fsdp\_config': {'min\_num\_params': 0, 'xla': False, 'xla\_fsdp\_v2': False, 'xla\_fsdp\_grad\_ckpt': False} * 'fsdp\_transformer\_layer\_cls\_to\_wrap': None * 'accelerator\_config': {'split\_batches': False, 'dispatch\_batches': None, 'even\_batches': True, 'use\_seedable\_sampler': True, 'non\_blocking': False, 'gradient\_accumulation\_kwargs': None} * 'deepspeed': None * 'label\_smoothing\_factor': 0.0 * 'optim': adamw\_torch * 'optim\_args': None * 'adafactor': False * 'group\_by\_length': False * 'length\_column\_name': length * 'ddp\_find\_unused\_parameters': None * 'ddp\_bucket\_cap\_mb': None * 'ddp\_broadcast\_buffers': None * 'dataloader\_pin\_memory': True * 'dataloader\_persistent\_workers': False * 'skip\_memory\_metrics': True * 'use\_legacy\_prediction\_loop': False * 'push\_to\_hub': False * 'resume\_from\_checkpoint': None * 'hub\_model\_id': None * 'hub\_strategy': every\_save * 'hub\_private\_repo': False * 'hub\_always\_push': False * 'gradient\_checkpointing': False * 'gradient\_checkpointing\_kwargs': None * 'include\_inputs\_for\_metrics': False * 'eval\_do\_concat\_batches': True * 'fp16\_backend': auto * 'push\_to\_hub\_model\_id': None * 'push\_to\_hub\_organization': None * 'mp\_parameters': * 'auto\_find\_batch\_size': False * 'full\_determinism': False * 'torchdynamo': None * 'ray\_scope': last * 'ddp\_timeout': 1800 * 'torch\_compile': False * 'torch\_compile\_backend': None * 'torch\_compile\_mode': None * 'dispatch\_batches': None * 'split\_batches': None * 'include\_tokens\_per\_second': False * 'include\_num\_input\_tokens\_seen': False * 'neftune\_noise\_alpha': None * 'optim\_target\_modules': None * 'batch\_sampler': no\_duplicates * 'multi\_dataset\_batch\_sampler': proportional ### Training Logs ### Environmental Impact Carbon emissions were measured using CodeCarbon. * Energy Consumed: 0.004 kWh * Carbon Emitted: 0.001 kg of CO2 * Hours Used: 0.02 hours ### Training Hardware * On Cloud: No * GPU Model: 1 x NVIDIA GeForce RTX 3090 * CPU Model: 13th Gen Intel(R) Core(TM) i7-13700K * RAM Size: 31.78 GB ### Framework Versions * Python: 3.11.6 * Sentence Transformers: 3.0.0.dev0 * Transformers: 4.41.0.dev0 * PyTorch: 2.3.0+cu121 * Accelerate: 0.26.1 * Datasets: 2.18.0 * Tokenizers: 0.19.1 ### BibTeX #### Sentence Transformers #### MultipleNegativesRankingLoss
[ "### Model Description\n\n\n* Model Type: Sentence Transformer\n* Base model: distilbert/distilroberta-base\n* Maximum Sequence Length: 512 tokens\n* Output Dimensionality: 768 tokens\n* Similarity Function: Cosine Similarity\n* Training Dataset:\n\t+ sentence-transformers/all-nli\n* Language: en", "### Model Sources\n\n\n* Documentation: Sentence Transformers Documentation\n* Repository: Sentence Transformers on GitHub\n* Hugging Face: Sentence Transformers on Hugging Face", "### Full Model Architecture\n\n\nUsage\n-----", "### Direct Usage (Sentence Transformers)\n\n\nFirst install the Sentence Transformers library:\n\n\nThen you can load this model and run inference.\n\n\nEvaluation\n----------", "### Metrics", "#### Semantic Similarity\n\n\n* Dataset: 'sts-dev'\n* Evaluated with `EmbeddingSimilarityEvaluator`", "#### Semantic Similarity\n\n\n* Dataset: 'sts-test'\n* Evaluated with `EmbeddingSimilarityEvaluator`\n\n\n\nTraining Details\n----------------", "### Training Dataset", "#### sentence-transformers/all-nli\n\n\n* Dataset: sentence-transformers/all-nli at cc6c526\n* Size: 10,000 training samples\n* Columns: `anchor`, `positive`, and `negative`\n* Approximate statistics based on the first 1000 samples:\n* Samples:\n* Loss: `MultipleNegativesRankingLoss` with these parameters:", "### Evaluation Dataset", "#### sentence-transformers/all-nli\n\n\n* Dataset: sentence-transformers/all-nli at cc6c526\n* Size: 1,000 evaluation samples\n* Columns: `anchor`, `positive`, and `negative`\n* Approximate statistics based on the first 1000 samples:\n* Samples:\n* Loss: `MultipleNegativesRankingLoss` with these parameters:", "### Training Hyperparameters", "#### Non-Default Hyperparameters\n\n\n* 'eval\\_strategy': steps\n* 'per\\_device\\_train\\_batch\\_size': 128\n* 'per\\_device\\_eval\\_batch\\_size': 128\n* 'num\\_train\\_epochs': 1\n* 'warmup\\_ratio': 0.1\n* 'fp16': True\n* 'batch\\_sampler': no\\_duplicates", "#### All Hyperparameters\n\n\nClick to expand\n* 'overwrite\\_output\\_dir': False\n* 'do\\_predict': False\n* 'eval\\_strategy': steps\n* 'prediction\\_loss\\_only': False\n* 'per\\_device\\_train\\_batch\\_size': 128\n* 'per\\_device\\_eval\\_batch\\_size': 128\n* 'per\\_gpu\\_train\\_batch\\_size': None\n* 'per\\_gpu\\_eval\\_batch\\_size': None\n* 'gradient\\_accumulation\\_steps': 1\n* 'eval\\_accumulation\\_steps': None\n* 'learning\\_rate': 5e-05\n* 'weight\\_decay': 0.0\n* 'adam\\_beta1': 0.9\n* 'adam\\_beta2': 0.999\n* 'adam\\_epsilon': 1e-08\n* 'max\\_grad\\_norm': 1.0\n* 'num\\_train\\_epochs': 1\n* 'max\\_steps': -1\n* 'lr\\_scheduler\\_type': linear\n* 'lr\\_scheduler\\_kwargs': {}\n* 'warmup\\_ratio': 0.1\n* 'warmup\\_steps': 0\n* 'log\\_level': passive\n* 'log\\_level\\_replica': warning\n* 'log\\_on\\_each\\_node': True\n* 'logging\\_nan\\_inf\\_filter': True\n* 'save\\_safetensors': True\n* 'save\\_on\\_each\\_node': False\n* 'save\\_only\\_model': False\n* 'no\\_cuda': False\n* 'use\\_cpu': False\n* 'use\\_mps\\_device': False\n* 'seed': 42\n* 'data\\_seed': None\n* 'jit\\_mode\\_eval': False\n* 'use\\_ipex': False\n* 'bf16': False\n* 'fp16': True\n* 'fp16\\_opt\\_level': O1\n* 'half\\_precision\\_backend': auto\n* 'bf16\\_full\\_eval': False\n* 'fp16\\_full\\_eval': False\n* 'tf32': None\n* 'local\\_rank': 0\n* 'ddp\\_backend': None\n* 'tpu\\_num\\_cores': None\n* 'tpu\\_metrics\\_debug': False\n* 'debug': []\n* 'dataloader\\_drop\\_last': False\n* 'dataloader\\_num\\_workers': 0\n* 'dataloader\\_prefetch\\_factor': None\n* 'past\\_index': -1\n* 'disable\\_tqdm': False\n* 'remove\\_unused\\_columns': True\n* 'label\\_names': None\n* 'load\\_best\\_model\\_at\\_end': False\n* 'ignore\\_data\\_skip': False\n* 'fsdp': []\n* 'fsdp\\_min\\_num\\_params': 0\n* 'fsdp\\_config': {'min\\_num\\_params': 0, 'xla': False, 'xla\\_fsdp\\_v2': False, 'xla\\_fsdp\\_grad\\_ckpt': False}\n* 'fsdp\\_transformer\\_layer\\_cls\\_to\\_wrap': None\n* 'accelerator\\_config': {'split\\_batches': False, 'dispatch\\_batches': None, 'even\\_batches': True, 'use\\_seedable\\_sampler': True, 'non\\_blocking': False, 'gradient\\_accumulation\\_kwargs': None}\n* 'deepspeed': None\n* 'label\\_smoothing\\_factor': 0.0\n* 'optim': adamw\\_torch\n* 'optim\\_args': None\n* 'adafactor': False\n* 'group\\_by\\_length': False\n* 'length\\_column\\_name': length\n* 'ddp\\_find\\_unused\\_parameters': None\n* 'ddp\\_bucket\\_cap\\_mb': None\n* 'ddp\\_broadcast\\_buffers': None\n* 'dataloader\\_pin\\_memory': True\n* 'dataloader\\_persistent\\_workers': False\n* 'skip\\_memory\\_metrics': True\n* 'use\\_legacy\\_prediction\\_loop': False\n* 'push\\_to\\_hub': False\n* 'resume\\_from\\_checkpoint': None\n* 'hub\\_model\\_id': None\n* 'hub\\_strategy': every\\_save\n* 'hub\\_private\\_repo': False\n* 'hub\\_always\\_push': False\n* 'gradient\\_checkpointing': False\n* 'gradient\\_checkpointing\\_kwargs': None\n* 'include\\_inputs\\_for\\_metrics': False\n* 'eval\\_do\\_concat\\_batches': True\n* 'fp16\\_backend': auto\n* 'push\\_to\\_hub\\_model\\_id': None\n* 'push\\_to\\_hub\\_organization': None\n* 'mp\\_parameters':\n* 'auto\\_find\\_batch\\_size': False\n* 'full\\_determinism': False\n* 'torchdynamo': None\n* 'ray\\_scope': last\n* 'ddp\\_timeout': 1800\n* 'torch\\_compile': False\n* 'torch\\_compile\\_backend': None\n* 'torch\\_compile\\_mode': None\n* 'dispatch\\_batches': None\n* 'split\\_batches': None\n* 'include\\_tokens\\_per\\_second': False\n* 'include\\_num\\_input\\_tokens\\_seen': False\n* 'neftune\\_noise\\_alpha': None\n* 'optim\\_target\\_modules': None\n* 'batch\\_sampler': no\\_duplicates\n* 'multi\\_dataset\\_batch\\_sampler': proportional", "### Training Logs", "### Environmental Impact\n\n\nCarbon emissions were measured using CodeCarbon.\n\n\n* Energy Consumed: 0.004 kWh\n* Carbon Emitted: 0.001 kg of CO2\n* Hours Used: 0.02 hours", "### Training Hardware\n\n\n* On Cloud: No\n* GPU Model: 1 x NVIDIA GeForce RTX 3090\n* CPU Model: 13th Gen Intel(R) Core(TM) i7-13700K\n* RAM Size: 31.78 GB", "### Framework Versions\n\n\n* Python: 3.11.6\n* Sentence Transformers: 3.0.0.dev0\n* Transformers: 4.41.0.dev0\n* PyTorch: 2.3.0+cu121\n* Accelerate: 0.26.1\n* Datasets: 2.18.0\n* Tokenizers: 0.19.1", "### BibTeX", "#### Sentence Transformers", "#### MultipleNegativesRankingLoss" ]
[ "TAGS\n#sentence-transformers #safetensors #roberta #sentence-similarity #feature-extraction #loss-MultipleNegativesRankingLoss #en #arxiv-1908.10084 #arxiv-1705.00652 #base_model-distilbert/distilroberta-base #model-index #co2_eq_emissions #endpoints_compatible #region-us \n", "### Model Description\n\n\n* Model Type: Sentence Transformer\n* Base model: distilbert/distilroberta-base\n* Maximum Sequence Length: 512 tokens\n* Output Dimensionality: 768 tokens\n* Similarity Function: Cosine Similarity\n* Training Dataset:\n\t+ sentence-transformers/all-nli\n* Language: en", "### Model Sources\n\n\n* Documentation: Sentence Transformers Documentation\n* Repository: Sentence Transformers on GitHub\n* Hugging Face: Sentence Transformers on Hugging Face", "### Full Model Architecture\n\n\nUsage\n-----", "### Direct Usage (Sentence Transformers)\n\n\nFirst install the Sentence Transformers library:\n\n\nThen you can load this model and run inference.\n\n\nEvaluation\n----------", "### Metrics", "#### Semantic Similarity\n\n\n* Dataset: 'sts-dev'\n* Evaluated with `EmbeddingSimilarityEvaluator`", "#### Semantic Similarity\n\n\n* Dataset: 'sts-test'\n* Evaluated with `EmbeddingSimilarityEvaluator`\n\n\n\nTraining Details\n----------------", "### Training Dataset", "#### sentence-transformers/all-nli\n\n\n* Dataset: sentence-transformers/all-nli at cc6c526\n* Size: 10,000 training samples\n* Columns: `anchor`, `positive`, and `negative`\n* Approximate statistics based on the first 1000 samples:\n* Samples:\n* Loss: `MultipleNegativesRankingLoss` with these parameters:", "### Evaluation Dataset", "#### sentence-transformers/all-nli\n\n\n* Dataset: sentence-transformers/all-nli at cc6c526\n* Size: 1,000 evaluation samples\n* Columns: `anchor`, `positive`, and `negative`\n* Approximate statistics based on the first 1000 samples:\n* Samples:\n* Loss: `MultipleNegativesRankingLoss` with these parameters:", "### Training Hyperparameters", "#### Non-Default Hyperparameters\n\n\n* 'eval\\_strategy': steps\n* 'per\\_device\\_train\\_batch\\_size': 128\n* 'per\\_device\\_eval\\_batch\\_size': 128\n* 'num\\_train\\_epochs': 1\n* 'warmup\\_ratio': 0.1\n* 'fp16': True\n* 'batch\\_sampler': no\\_duplicates", "#### All Hyperparameters\n\n\nClick to expand\n* 'overwrite\\_output\\_dir': False\n* 'do\\_predict': False\n* 'eval\\_strategy': steps\n* 'prediction\\_loss\\_only': False\n* 'per\\_device\\_train\\_batch\\_size': 128\n* 'per\\_device\\_eval\\_batch\\_size': 128\n* 'per\\_gpu\\_train\\_batch\\_size': None\n* 'per\\_gpu\\_eval\\_batch\\_size': None\n* 'gradient\\_accumulation\\_steps': 1\n* 'eval\\_accumulation\\_steps': None\n* 'learning\\_rate': 5e-05\n* 'weight\\_decay': 0.0\n* 'adam\\_beta1': 0.9\n* 'adam\\_beta2': 0.999\n* 'adam\\_epsilon': 1e-08\n* 'max\\_grad\\_norm': 1.0\n* 'num\\_train\\_epochs': 1\n* 'max\\_steps': -1\n* 'lr\\_scheduler\\_type': linear\n* 'lr\\_scheduler\\_kwargs': {}\n* 'warmup\\_ratio': 0.1\n* 'warmup\\_steps': 0\n* 'log\\_level': passive\n* 'log\\_level\\_replica': warning\n* 'log\\_on\\_each\\_node': True\n* 'logging\\_nan\\_inf\\_filter': True\n* 'save\\_safetensors': True\n* 'save\\_on\\_each\\_node': False\n* 'save\\_only\\_model': False\n* 'no\\_cuda': False\n* 'use\\_cpu': False\n* 'use\\_mps\\_device': False\n* 'seed': 42\n* 'data\\_seed': None\n* 'jit\\_mode\\_eval': False\n* 'use\\_ipex': False\n* 'bf16': False\n* 'fp16': True\n* 'fp16\\_opt\\_level': O1\n* 'half\\_precision\\_backend': auto\n* 'bf16\\_full\\_eval': False\n* 'fp16\\_full\\_eval': False\n* 'tf32': None\n* 'local\\_rank': 0\n* 'ddp\\_backend': None\n* 'tpu\\_num\\_cores': None\n* 'tpu\\_metrics\\_debug': False\n* 'debug': []\n* 'dataloader\\_drop\\_last': False\n* 'dataloader\\_num\\_workers': 0\n* 'dataloader\\_prefetch\\_factor': None\n* 'past\\_index': -1\n* 'disable\\_tqdm': False\n* 'remove\\_unused\\_columns': True\n* 'label\\_names': None\n* 'load\\_best\\_model\\_at\\_end': False\n* 'ignore\\_data\\_skip': False\n* 'fsdp': []\n* 'fsdp\\_min\\_num\\_params': 0\n* 'fsdp\\_config': {'min\\_num\\_params': 0, 'xla': False, 'xla\\_fsdp\\_v2': False, 'xla\\_fsdp\\_grad\\_ckpt': False}\n* 'fsdp\\_transformer\\_layer\\_cls\\_to\\_wrap': None\n* 'accelerator\\_config': {'split\\_batches': False, 'dispatch\\_batches': None, 'even\\_batches': True, 'use\\_seedable\\_sampler': True, 'non\\_blocking': False, 'gradient\\_accumulation\\_kwargs': None}\n* 'deepspeed': None\n* 'label\\_smoothing\\_factor': 0.0\n* 'optim': adamw\\_torch\n* 'optim\\_args': None\n* 'adafactor': False\n* 'group\\_by\\_length': False\n* 'length\\_column\\_name': length\n* 'ddp\\_find\\_unused\\_parameters': None\n* 'ddp\\_bucket\\_cap\\_mb': None\n* 'ddp\\_broadcast\\_buffers': None\n* 'dataloader\\_pin\\_memory': True\n* 'dataloader\\_persistent\\_workers': False\n* 'skip\\_memory\\_metrics': True\n* 'use\\_legacy\\_prediction\\_loop': False\n* 'push\\_to\\_hub': False\n* 'resume\\_from\\_checkpoint': None\n* 'hub\\_model\\_id': None\n* 'hub\\_strategy': every\\_save\n* 'hub\\_private\\_repo': False\n* 'hub\\_always\\_push': False\n* 'gradient\\_checkpointing': False\n* 'gradient\\_checkpointing\\_kwargs': None\n* 'include\\_inputs\\_for\\_metrics': False\n* 'eval\\_do\\_concat\\_batches': True\n* 'fp16\\_backend': auto\n* 'push\\_to\\_hub\\_model\\_id': None\n* 'push\\_to\\_hub\\_organization': None\n* 'mp\\_parameters':\n* 'auto\\_find\\_batch\\_size': False\n* 'full\\_determinism': False\n* 'torchdynamo': None\n* 'ray\\_scope': last\n* 'ddp\\_timeout': 1800\n* 'torch\\_compile': False\n* 'torch\\_compile\\_backend': None\n* 'torch\\_compile\\_mode': None\n* 'dispatch\\_batches': None\n* 'split\\_batches': None\n* 'include\\_tokens\\_per\\_second': False\n* 'include\\_num\\_input\\_tokens\\_seen': False\n* 'neftune\\_noise\\_alpha': None\n* 'optim\\_target\\_modules': None\n* 'batch\\_sampler': no\\_duplicates\n* 'multi\\_dataset\\_batch\\_sampler': proportional", "### Training Logs", "### Environmental Impact\n\n\nCarbon emissions were measured using CodeCarbon.\n\n\n* Energy Consumed: 0.004 kWh\n* Carbon Emitted: 0.001 kg of CO2\n* Hours Used: 0.02 hours", "### Training Hardware\n\n\n* On Cloud: No\n* GPU Model: 1 x NVIDIA GeForce RTX 3090\n* CPU Model: 13th Gen Intel(R) Core(TM) i7-13700K\n* RAM Size: 31.78 GB", "### Framework Versions\n\n\n* Python: 3.11.6\n* Sentence Transformers: 3.0.0.dev0\n* Transformers: 4.41.0.dev0\n* PyTorch: 2.3.0+cu121\n* Accelerate: 0.26.1\n* Datasets: 2.18.0\n* Tokenizers: 0.19.1", "### BibTeX", "#### Sentence Transformers", "#### MultipleNegativesRankingLoss" ]
[ 89, 70, 29, 12, 37, 5, 30, 48, 6, 83, 6, 83, 8, 106, 1494, 5, 42, 55, 79, 6, 6, 12 ]
[ "TAGS\n#sentence-transformers #safetensors #roberta #sentence-similarity #feature-extraction #loss-MultipleNegativesRankingLoss #en #arxiv-1908.10084 #arxiv-1705.00652 #base_model-distilbert/distilroberta-base #model-index #co2_eq_emissions #endpoints_compatible #region-us \n### Model Description\n\n\n* Model Type: Sentence Transformer\n* Base model: distilbert/distilroberta-base\n* Maximum Sequence Length: 512 tokens\n* Output Dimensionality: 768 tokens\n* Similarity Function: Cosine Similarity\n* Training Dataset:\n\t+ sentence-transformers/all-nli\n* Language: en### Model Sources\n\n\n* Documentation: Sentence Transformers Documentation\n* Repository: Sentence Transformers on GitHub\n* Hugging Face: Sentence Transformers on Hugging Face### Full Model Architecture\n\n\nUsage\n-----### Direct Usage (Sentence Transformers)\n\n\nFirst install the Sentence Transformers library:\n\n\nThen you can load this model and run inference.\n\n\nEvaluation\n----------### Metrics#### Semantic Similarity\n\n\n* Dataset: 'sts-dev'\n* Evaluated with `EmbeddingSimilarityEvaluator`#### Semantic Similarity\n\n\n* Dataset: 'sts-test'\n* Evaluated with `EmbeddingSimilarityEvaluator`\n\n\n\nTraining Details\n----------------### Training Dataset#### sentence-transformers/all-nli\n\n\n* Dataset: sentence-transformers/all-nli at cc6c526\n* Size: 10,000 training samples\n* Columns: `anchor`, `positive`, and `negative`\n* Approximate statistics based on the first 1000 samples:\n* Samples:\n* Loss: `MultipleNegativesRankingLoss` with these parameters:### Evaluation Dataset#### sentence-transformers/all-nli\n\n\n* Dataset: sentence-transformers/all-nli at cc6c526\n* Size: 1,000 evaluation samples\n* Columns: `anchor`, `positive`, and `negative`\n* Approximate statistics based on the first 1000 samples:\n* Samples:\n* Loss: `MultipleNegativesRankingLoss` with these parameters:### Training Hyperparameters#### Non-Default Hyperparameters\n\n\n* 'eval\\_strategy': steps\n* 'per\\_device\\_train\\_batch\\_size': 128\n* 'per\\_device\\_eval\\_batch\\_size': 128\n* 'num\\_train\\_epochs': 1\n* 'warmup\\_ratio': 0.1\n* 'fp16': True\n* 'batch\\_sampler': no\\_duplicates#### All Hyperparameters\n\n\nClick to expand\n* 'overwrite\\_output\\_dir': False\n* 'do\\_predict': False\n* 'eval\\_strategy': steps\n* 'prediction\\_loss\\_only': False\n* 'per\\_device\\_train\\_batch\\_size': 128\n* 'per\\_device\\_eval\\_batch\\_size': 128\n* 'per\\_gpu\\_train\\_batch\\_size': None\n* 'per\\_gpu\\_eval\\_batch\\_size': None\n* 'gradient\\_accumulation\\_steps': 1\n* 'eval\\_accumulation\\_steps': None\n* 'learning\\_rate': 5e-05\n* 'weight\\_decay': 0.0\n* 'adam\\_beta1': 0.9\n* 'adam\\_beta2': 0.999\n* 'adam\\_epsilon': 1e-08\n* 'max\\_grad\\_norm': 1.0\n* 'num\\_train\\_epochs': 1\n* 'max\\_steps': -1\n* 'lr\\_scheduler\\_type': linear\n* 'lr\\_scheduler\\_kwargs': {}\n* 'warmup\\_ratio': 0.1\n* 'warmup\\_steps': 0\n* 'log\\_level': passive\n* 'log\\_level\\_replica': warning\n* 'log\\_on\\_each\\_node': True\n* 'logging\\_nan\\_inf\\_filter': True\n* 'save\\_safetensors': True\n* 'save\\_on\\_each\\_node': False\n* 'save\\_only\\_model': False\n* 'no\\_cuda': False\n* 'use\\_cpu': False\n* 'use\\_mps\\_device': False\n* 'seed': 42\n* 'data\\_seed': None\n* 'jit\\_mode\\_eval': False\n* 'use\\_ipex': False\n* 'bf16': False\n* 'fp16': True\n* 'fp16\\_opt\\_level': O1\n* 'half\\_precision\\_backend': auto\n* 'bf16\\_full\\_eval': False\n* 'fp16\\_full\\_eval': False\n* 'tf32': None\n* 'local\\_rank': 0\n* 'ddp\\_backend': None\n* 'tpu\\_num\\_cores': None\n* 'tpu\\_metrics\\_debug': False\n* 'debug': []\n* 'dataloader\\_drop\\_last': False\n* 'dataloader\\_num\\_workers': 0\n* 'dataloader\\_prefetch\\_factor': None\n* 'past\\_index': -1\n* 'disable\\_tqdm': False\n* 'remove\\_unused\\_columns': True\n* 'label\\_names': None\n* 'load\\_best\\_model\\_at\\_end': False\n* 'ignore\\_data\\_skip': False\n* 'fsdp': []\n* 'fsdp\\_min\\_num\\_params': 0\n* 'fsdp\\_config': {'min\\_num\\_params': 0, 'xla': False, 'xla\\_fsdp\\_v2': False, 'xla\\_fsdp\\_grad\\_ckpt': False}\n* 'fsdp\\_transformer\\_layer\\_cls\\_to\\_wrap': None\n* 'accelerator\\_config': {'split\\_batches': False, 'dispatch\\_batches': None, 'even\\_batches': True, 'use\\_seedable\\_sampler': True, 'non\\_blocking': False, 'gradient\\_accumulation\\_kwargs': None}\n* 'deepspeed': None\n* 'label\\_smoothing\\_factor': 0.0\n* 'optim': adamw\\_torch\n* 'optim\\_args': None\n* 'adafactor': False\n* 'group\\_by\\_length': False\n* 'length\\_column\\_name': length\n* 'ddp\\_find\\_unused\\_parameters': None\n* 'ddp\\_bucket\\_cap\\_mb': None\n* 'ddp\\_broadcast\\_buffers': None\n* 'dataloader\\_pin\\_memory': True\n* 'dataloader\\_persistent\\_workers': False\n* 'skip\\_memory\\_metrics': True\n* 'use\\_legacy\\_prediction\\_loop': False\n* 'push\\_to\\_hub': False\n* 'resume\\_from\\_checkpoint': None\n* 'hub\\_model\\_id': None\n* 'hub\\_strategy': every\\_save\n* 'hub\\_private\\_repo': False\n* 'hub\\_always\\_push': False\n* 'gradient\\_checkpointing': False\n* 'gradient\\_checkpointing\\_kwargs': None\n* 'include\\_inputs\\_for\\_metrics': False\n* 'eval\\_do\\_concat\\_batches': True\n* 'fp16\\_backend': auto\n* 'push\\_to\\_hub\\_model\\_id': None\n* 'push\\_to\\_hub\\_organization': None\n* 'mp\\_parameters':\n* 'auto\\_find\\_batch\\_size': False\n* 'full\\_determinism': False\n* 'torchdynamo': None\n* 'ray\\_scope': last\n* 'ddp\\_timeout': 1800\n* 'torch\\_compile': False\n* 'torch\\_compile\\_backend': None\n* 'torch\\_compile\\_mode': None\n* 'dispatch\\_batches': None\n* 'split\\_batches': None\n* 'include\\_tokens\\_per\\_second': False\n* 'include\\_num\\_input\\_tokens\\_seen': False\n* 'neftune\\_noise\\_alpha': None\n* 'optim\\_target\\_modules': None\n* 'batch\\_sampler': no\\_duplicates\n* 'multi\\_dataset\\_batch\\_sampler': proportional### Training Logs### Environmental Impact\n\n\nCarbon emissions were measured using CodeCarbon.\n\n\n* Energy Consumed: 0.004 kWh\n* Carbon Emitted: 0.001 kg of CO2\n* Hours Used: 0.02 hours### Training Hardware\n\n\n* On Cloud: No\n* GPU Model: 1 x NVIDIA GeForce RTX 3090\n* CPU Model: 13th Gen Intel(R) Core(TM) i7-13700K\n* RAM Size: 31.78 GB### Framework Versions\n\n\n* Python: 3.11.6\n* Sentence Transformers: 3.0.0.dev0\n* Transformers: 4.41.0.dev0\n* PyTorch: 2.3.0+cu121\n* Accelerate: 0.26.1\n* Datasets: 2.18.0\n* Tokenizers: 0.19.1### BibTeX#### Sentence Transformers#### MultipleNegativesRankingLoss" ]
text-to-image
diffusers
<!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # SDXL LoRA DreamBooth - bbsgp/bhh_FWD_realistic <Gallery /> ## Model description These are bbsgp/bhh_FWD_realistic LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. The weights were trained using [DreamBooth](https://dreambooth.github.io/). LoRA for the text encoder was enabled: False. Special VAE used for training: madebyollin/sdxl-vae-fp16-fix. ## Trigger words You should use In the FWD realistic style, to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](bbsgp/bhh_FWD_realistic/tree/main) them in the Files & versions tab. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training details [TODO: describe the data used to train the model]
{"license": "openrail++", "library_name": "diffusers", "tags": ["text-to-image", "text-to-image", "diffusers-training", "diffusers", "dora", "template:sd-lora", "stable-diffusion-xl", "stable-diffusion-xl-diffusers"], "base_model": "stabilityai/stable-diffusion-xl-base-1.0", "instance_prompt": "In the FWD realistic style,", "widget": []}
bbsgp/bhh_FWD_realistic
null
[ "diffusers", "tensorboard", "text-to-image", "diffusers-training", "dora", "template:sd-lora", "stable-diffusion-xl", "stable-diffusion-xl-diffusers", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "license:openrail++", "region:us" ]
null
2024-05-02T07:50:53+00:00
[]
[]
TAGS #diffusers #tensorboard #text-to-image #diffusers-training #dora #template-sd-lora #stable-diffusion-xl #stable-diffusion-xl-diffusers #base_model-stabilityai/stable-diffusion-xl-base-1.0 #license-openrail++ #region-us
# SDXL LoRA DreamBooth - bbsgp/bhh_FWD_realistic <Gallery /> ## Model description These are bbsgp/bhh_FWD_realistic LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. The weights were trained using DreamBooth. LoRA for the text encoder was enabled: False. Special VAE used for training: madebyollin/sdxl-vae-fp16-fix. ## Trigger words You should use In the FWD realistic style, to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. Download them in the Files & versions tab. ## Intended uses & limitations #### How to use #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training details [TODO: describe the data used to train the model]
[ "# SDXL LoRA DreamBooth - bbsgp/bhh_FWD_realistic\n\n<Gallery />", "## Model description\n\nThese are bbsgp/bhh_FWD_realistic LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0.\n\nThe weights were trained using DreamBooth.\n\nLoRA for the text encoder was enabled: False.\n\nSpecial VAE used for training: madebyollin/sdxl-vae-fp16-fix.", "## Trigger words\n\nYou should use In the FWD realistic style, to trigger the image generation.", "## Download model\n\nWeights for this model are available in Safetensors format.\n\nDownload them in the Files & versions tab.", "## Intended uses & limitations", "#### How to use", "#### Limitations and bias\n\n[TODO: provide examples of latent issues and potential remediations]", "## Training details\n\n[TODO: describe the data used to train the model]" ]
[ "TAGS\n#diffusers #tensorboard #text-to-image #diffusers-training #dora #template-sd-lora #stable-diffusion-xl #stable-diffusion-xl-diffusers #base_model-stabilityai/stable-diffusion-xl-base-1.0 #license-openrail++ #region-us \n", "# SDXL LoRA DreamBooth - bbsgp/bhh_FWD_realistic\n\n<Gallery />", "## Model description\n\nThese are bbsgp/bhh_FWD_realistic LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0.\n\nThe weights were trained using DreamBooth.\n\nLoRA for the text encoder was enabled: False.\n\nSpecial VAE used for training: madebyollin/sdxl-vae-fp16-fix.", "## Trigger words\n\nYou should use In the FWD realistic style, to trigger the image generation.", "## Download model\n\nWeights for this model are available in Safetensors format.\n\nDownload them in the Files & versions tab.", "## Intended uses & limitations", "#### How to use", "#### Limitations and bias\n\n[TODO: provide examples of latent issues and potential remediations]", "## Training details\n\n[TODO: describe the data used to train the model]" ]
[ 72, 25, 85, 20, 25, 6, 7, 23, 17 ]
[ "TAGS\n#diffusers #tensorboard #text-to-image #diffusers-training #dora #template-sd-lora #stable-diffusion-xl #stable-diffusion-xl-diffusers #base_model-stabilityai/stable-diffusion-xl-base-1.0 #license-openrail++ #region-us \n# SDXL LoRA DreamBooth - bbsgp/bhh_FWD_realistic\n\n<Gallery />## Model description\n\nThese are bbsgp/bhh_FWD_realistic LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0.\n\nThe weights were trained using DreamBooth.\n\nLoRA for the text encoder was enabled: False.\n\nSpecial VAE used for training: madebyollin/sdxl-vae-fp16-fix.## Trigger words\n\nYou should use In the FWD realistic style, to trigger the image generation.## Download model\n\nWeights for this model are available in Safetensors format.\n\nDownload them in the Files & versions tab.## Intended uses & limitations#### How to use#### Limitations and bias\n\n[TODO: provide examples of latent issues and potential remediations]## Training details\n\n[TODO: describe the data used to train the model]" ]
null
transformers
# Uploaded model - **Developed by:** LeroyDyer - **License:** apache-2.0 - **Finetuned from model :** LeroyDyer/Mixtral_AI_CyberUltron_DPO This mistral model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
{"language": ["en"], "license": "apache-2.0", "tags": ["text-generation-inference", "transformers", "unsloth", "mistral", "trl"], "base_model": "LeroyDyer/Mixtral_AI_CyberUltron_DPO"}
LeroyDyer/CyberFriend_Lora
null
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "mistral", "trl", "en", "base_model:LeroyDyer/Mixtral_AI_CyberUltron_DPO", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-05-02T07:50:56+00:00
[]
[ "en" ]
TAGS #transformers #safetensors #text-generation-inference #unsloth #mistral #trl #en #base_model-LeroyDyer/Mixtral_AI_CyberUltron_DPO #license-apache-2.0 #endpoints_compatible #region-us
# Uploaded model - Developed by: LeroyDyer - License: apache-2.0 - Finetuned from model : LeroyDyer/Mixtral_AI_CyberUltron_DPO This mistral model was trained 2x faster with Unsloth and Huggingface's TRL library. <img src="URL width="200"/>
[ "# Uploaded model\n\n- Developed by: LeroyDyer\n- License: apache-2.0\n- Finetuned from model : LeroyDyer/Mixtral_AI_CyberUltron_DPO\n\nThis mistral model was trained 2x faster with Unsloth and Huggingface's TRL library.\n\n<img src=\"URL width=\"200\"/>" ]
[ "TAGS\n#transformers #safetensors #text-generation-inference #unsloth #mistral #trl #en #base_model-LeroyDyer/Mixtral_AI_CyberUltron_DPO #license-apache-2.0 #endpoints_compatible #region-us \n", "# Uploaded model\n\n- Developed by: LeroyDyer\n- License: apache-2.0\n- Finetuned from model : LeroyDyer/Mixtral_AI_CyberUltron_DPO\n\nThis mistral model was trained 2x faster with Unsloth and Huggingface's TRL library.\n\n<img src=\"URL width=\"200\"/>" ]
[ 62, 78 ]
[ "TAGS\n#transformers #safetensors #text-generation-inference #unsloth #mistral #trl #en #base_model-LeroyDyer/Mixtral_AI_CyberUltron_DPO #license-apache-2.0 #endpoints_compatible #region-us \n# Uploaded model\n\n- Developed by: LeroyDyer\n- License: apache-2.0\n- Finetuned from model : LeroyDyer/Mixtral_AI_CyberUltron_DPO\n\nThis mistral model was trained 2x faster with Unsloth and Huggingface's TRL library.\n\n<img src=\"URL width=\"200\"/>" ]
null
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
azhara001/donut-base-demo-new-3e-05_Adam_1876
null
[ "transformers", "safetensors", "vision-encoder-decoder", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-05-02T07:52:00+00:00
[ "1910.09700" ]
[]
TAGS #transformers #safetensors #vision-encoder-decoder #arxiv-1910.09700 #endpoints_compatible #region-us
# Model Card for Model ID ## Model Details ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #safetensors #vision-encoder-decoder #arxiv-1910.09700 #endpoints_compatible #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ 35, 6, 4, 75, 23, 3, 5, 8, 9, 8, 34, 20, 4, 5, 5, 11, 13, 12, 3, 10, 6, 5, 6, 4, 5, 7, 49, 7, 7, 5, 5, 15, 7, 7, 8, 5 ]
[ "TAGS\n#transformers #safetensors #vision-encoder-decoder #arxiv-1910.09700 #endpoints_compatible #region-us \n# Model Card for Model ID## Model Details### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Downstream Use [optional]### Out-of-Scope Use## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.## How to Get Started with the Model\n\nUse the code below to get started with the model.## Training Details### Training Data### Training Procedure#### Preprocessing [optional]#### Training Hyperparameters\n\n- Training regime:#### Speeds, Sizes, Times [optional]## Evaluation### Testing Data, Factors & Metrics#### Testing Data#### Factors#### Metrics### Results#### Summary## Model Examination [optional]## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:## Technical Specifications [optional]### Model Architecture and Objective### Compute Infrastructure#### Hardware#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Model Card Authors [optional]## Model Card Contact" ]
sentence-similarity
sentence-transformers
# SentenceTransformer based on distilbert/distilroberta-base This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [distilbert/distilroberta-base](https://huggingface.co/distilbert/distilroberta-base) on the [sentence-transformers/all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [distilbert/distilroberta-base](https://huggingface.co/distilbert/distilroberta-base) <!-- at revision fb53ab8802853c8e4fbdbcd0529f21fc6f459b2b --> - **Maximum Sequence Length:** 512 tokens - **Output Dimensionality:** 768 tokens - **Similarity Function:** Cosine Similarity - **Training Dataset:** - [sentence-transformers/all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) - **Language:** en <!-- - **License:** Unknown --> ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: RobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("tomaarsen/distilroberta-base-nli-v3") # Run inference sentences = [ 'an eagle flies', 'A bird flying.', 'The woman is outside.', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 768] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings) print(similarities.shape) # [3, 3] ``` <!-- ### Direct Usage (Transformers) <details><summary>Click to see the direct usage in Transformers</summary> </details> --> <!-- ### Downstream Usage (Sentence Transformers) You can finetune this model on your own dataset. <details><summary>Click to expand</summary> </details> --> <!-- ### Out-of-Scope Use *List how the model may foreseeably be misused and address what users ought not to do with the model.* --> ## Evaluation ### Metrics #### Semantic Similarity * Dataset: `sts-dev` * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) | Metric | Value | |:--------------------|:-----------| | pearson_cosine | 0.7695 | | **spearman_cosine** | **0.8046** | | pearson_manhattan | 0.7673 | | spearman_manhattan | 0.7757 | | pearson_euclidean | 0.7719 | | spearman_euclidean | 0.7785 | | pearson_dot | 0.2215 | | spearman_dot | 0.2092 | | pearson_max | 0.7719 | | spearman_max | 0.8046 | #### Semantic Similarity * Dataset: `sts-test` * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) | Metric | Value | |:--------------------|:-----------| | pearson_cosine | 0.727 | | **spearman_cosine** | **0.7463** | | pearson_manhattan | 0.7295 | | spearman_manhattan | 0.7198 | | pearson_euclidean | 0.7347 | | spearman_euclidean | 0.724 | | pearson_dot | 0.194 | | spearman_dot | 0.1791 | | pearson_max | 0.7347 | | spearman_max | 0.7463 | <!-- ## Bias, Risks and Limitations *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* --> <!-- ### Recommendations *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* --> ## Training Details ### Training Dataset #### sentence-transformers/all-nli * Dataset: [sentence-transformers/all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) at [cc6c526](https://huggingface.co/datasets/sentence-transformers/all-nli/tree/cc6c526380e29912b5c6fa03682da4daf773c013) * Size: 10,000 training samples * Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code> * Approximate statistics based on the first 1000 samples: | | anchor | positive | negative | |:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------| | type | string | string | string | | details | <ul><li>min: 7 tokens</li><li>mean: 10.38 tokens</li><li>max: 45 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 12.8 tokens</li><li>max: 39 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 13.4 tokens</li><li>max: 50 tokens</li></ul> | * Samples: | anchor | positive | negative | |:---------------------------------------------------------------------------|:-------------------------------------------------|:-----------------------------------------------------------| | <code>A person on a horse jumps over a broken down airplane.</code> | <code>A person is outdoors, on a horse.</code> | <code>A person is at a diner, ordering an omelette.</code> | | <code>Children smiling and waving at camera</code> | <code>There are children present</code> | <code>The kids are frowning</code> | | <code>A boy is jumping on skateboard in the middle of a red bridge.</code> | <code>The boy does a skateboarding trick.</code> | <code>The boy skates down the sidewalk.</code> | * Loss: [<code>GISTEmbedLoss</code>](https://sbert.net/docs/package_reference/losses.html#gistembedloss) with these parameters: ```json {'guide': SentenceTransformer( (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ), 'temperature': 0.01} ``` ### Evaluation Dataset #### sentence-transformers/all-nli * Dataset: [sentence-transformers/all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) at [cc6c526](https://huggingface.co/datasets/sentence-transformers/all-nli/tree/cc6c526380e29912b5c6fa03682da4daf773c013) * Size: 1,000 evaluation samples * Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code> * Approximate statistics based on the first 1000 samples: | | anchor | positive | negative | |:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------| | type | string | string | string | | details | <ul><li>min: 6 tokens</li><li>mean: 18.02 tokens</li><li>max: 66 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 9.81 tokens</li><li>max: 29 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 10.37 tokens</li><li>max: 29 tokens</li></ul> | * Samples: | anchor | positive | negative | |:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------|:--------------------------------------------------------| | <code>Two women are embracing while holding to go packages.</code> | <code>Two woman are holding packages.</code> | <code>The men are fighting outside a deli.</code> | | <code>Two young children in blue jerseys, one with the number 9 and one with the number 2 are standing on wooden steps in a bathroom and washing their hands in a sink.</code> | <code>Two kids in numbered jerseys wash their hands.</code> | <code>Two kids in jackets walk to school.</code> | | <code>A man selling donuts to a customer during a world exhibition event held in the city of Angeles</code> | <code>A man selling donuts to a customer.</code> | <code>A woman drinks her coffee in a small cafe.</code> | * Loss: [<code>GISTEmbedLoss</code>](https://sbert.net/docs/package_reference/losses.html#gistembedloss) with these parameters: ```json {'guide': SentenceTransformer( (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ), 'temperature': 0.01} ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: steps - `per_device_train_batch_size`: 128 - `per_device_eval_batch_size`: 128 - `num_train_epochs`: 1 - `warmup_ratio`: 0.1 - `fp16`: True - `batch_sampler`: no_duplicates #### All Hyperparameters <details><summary>Click to expand</summary> - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: steps - `prediction_loss_only`: False - `per_device_train_batch_size`: 128 - `per_device_eval_batch_size`: 128 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 1 - `eval_accumulation_steps`: None - `learning_rate`: 5e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 1 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.1 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: False - `fp16`: True - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: False - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: None - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: False - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_sampler`: no_duplicates - `multi_dataset_batch_sampler`: proportional </details> ### Training Logs | Epoch | Step | loss | sts-dev_spearman_cosine | sts-test_spearman_cosine | |:------:|:----:|:------:|:-----------------------:|:------------------------:| | 0 | 0 | - | 0.6375 | - | | 0.1266 | 10 | 2.5172 | 0.7944 | - | | 0.2532 | 20 | 1.8059 | 0.8061 | - | | 0.3797 | 30 | 1.6805 | 0.8163 | - | | 0.5063 | 40 | 1.8153 | 0.8167 | - | | 0.6329 | 50 | 1.7177 | 0.8121 | - | | 0.7595 | 60 | 1.8622 | 0.8031 | - | | 0.8861 | 70 | 1.8056 | 0.8046 | - | | 1.0 | 79 | - | - | 0.7463 | ### Environmental Impact Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon). - **Energy Consumed**: 0.004 kWh - **Carbon Emitted**: 0.002 kg of CO2 - **Hours Used**: 0.021 hours ### Training Hardware - **On Cloud**: No - **GPU Model**: 1 x NVIDIA GeForce RTX 3090 - **CPU Model**: 13th Gen Intel(R) Core(TM) i7-13700K - **RAM Size**: 31.78 GB ### Framework Versions - Python: 3.11.6 - Sentence Transformers: 3.0.0.dev0 - Transformers: 4.41.0.dev0 - PyTorch: 2.3.0+cu121 - Accelerate: 0.26.1 - Datasets: 2.18.0 - Tokenizers: 0.19.1 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### GISTEmbedLoss ```bibtex @misc{solatorio2024gistembed, title={GISTEmbed: Guided In-sample Selection of Training Negatives for Text Embedding Fine-tuning}, author={Aivin V. Solatorio}, year={2024}, eprint={2402.16829}, archivePrefix={arXiv}, primaryClass={cs.LG} } ``` <!-- ## Glossary *Clearly define terms in order to be accessible across audiences.* --> <!-- ## Model Card Authors *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* --> <!-- ## Model Card Contact *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* -->
{"language": ["en"], "library_name": "sentence-transformers", "tags": ["sentence-transformers", "sentence-similarity", "feature-extraction", "loss:GISTEmbedLoss"], "metrics": ["pearson_cosine", "spearman_cosine", "pearson_manhattan", "spearman_manhattan", "pearson_euclidean", "spearman_euclidean", "pearson_dot", "spearman_dot", "pearson_max", "spearman_max"], "base_model": "distilbert/distilroberta-base", "widget": [{"source_sentence": "A woman sings.", "sentences": ["The woman is singing.", "A story book is open.", "The men have blonde hair."]}, {"source_sentence": "a baby smiling", "sentences": ["A baby is unhappy.", "a fireman on a ladder", "Five men stand on chairs."]}, {"source_sentence": "The boy scowls", "sentences": ["A boy is outdoors.", "a man is wearing blue", "Two women are sleeping."]}, {"source_sentence": "There's a dock", "sentences": ["A boat docked on a river.", "He is playing a song.", "The baby is in the crib."]}, {"source_sentence": "an eagle flies", "sentences": ["A bird flying.", "The woman is outside.", "The people are sleeping."]}], "pipeline_tag": "sentence-similarity", "co2_eq_emissions": {"emissions": 1.6492452883656235, "energy_consumed": 0.004242955498982829, "source": "codecarbon", "training_type": "fine-tuning", "on_cloud": false, "cpu_model": "13th Gen Intel(R) Core(TM) i7-13700K", "ram_total_size": 31.777088165283203, "hours_used": 0.021, "hardware_used": "1 x NVIDIA GeForce RTX 3090"}, "model-index": [{"name": "SentenceTransformer based on distilbert/distilroberta-base", "results": [{"task": {"type": "semantic-similarity", "name": "Semantic Similarity"}, "dataset": {"name": "sts dev", "type": "sts-dev"}, "metrics": [{"type": "pearson_cosine", "value": 0.7695103533338594, "name": "Pearson Cosine"}, {"type": "spearman_cosine", "value": 0.8046160770503588, "name": "Spearman Cosine"}, {"type": "pearson_manhattan", "value": 0.7673329964610834, "name": "Pearson Manhattan"}, {"type": "spearman_manhattan", "value": 0.7756781613323356, "name": "Spearman Manhattan"}, {"type": "pearson_euclidean", "value": 0.7718833134570839, "name": "Pearson Euclidean"}, {"type": "spearman_euclidean", "value": 0.7784941712509205, "name": "Spearman Euclidean"}, {"type": "pearson_dot", "value": 0.22148844887336572, "name": "Pearson Dot"}, {"type": "spearman_dot", "value": 0.2092109979282621, "name": "Spearman Dot"}, {"type": "pearson_max", "value": 0.7718833134570839, "name": "Pearson Max"}, {"type": "spearman_max", "value": 0.8046160770503588, "name": "Spearman Max"}]}, {"task": {"type": "semantic-similarity", "name": "Semantic Similarity"}, "dataset": {"name": "sts test", "type": "sts-test"}, "metrics": [{"type": "pearson_cosine", "value": 0.7270251484636511, "name": "Pearson Cosine"}, {"type": "spearman_cosine", "value": 0.7463390012771995, "name": "Spearman Cosine"}, {"type": "pearson_manhattan", "value": 0.7295418823252019, "name": "Pearson Manhattan"}, {"type": "spearman_manhattan", "value": 0.7198414342133578, "name": "Spearman Manhattan"}, {"type": "pearson_euclidean", "value": 0.7347198114628469, "name": "Pearson Euclidean"}, {"type": "spearman_euclidean", "value": 0.724025904164009, "name": "Spearman Euclidean"}, {"type": "pearson_dot", "value": 0.19404927455056548, "name": "Pearson Dot"}, {"type": "spearman_dot", "value": 0.1791431711812991, "name": "Spearman Dot"}, {"type": "pearson_max", "value": 0.7347198114628469, "name": "Pearson Max"}, {"type": "spearman_max", "value": 0.7463390012771995, "name": "Spearman Max"}]}]}]}
tomaarsen/distilroberta-base-nli-v3
null
[ "sentence-transformers", "safetensors", "roberta", "sentence-similarity", "feature-extraction", "loss:GISTEmbedLoss", "en", "arxiv:1908.10084", "arxiv:2402.16829", "base_model:distilbert/distilroberta-base", "model-index", "co2_eq_emissions", "endpoints_compatible", "region:us" ]
null
2024-05-02T07:52:15+00:00
[ "1908.10084", "2402.16829" ]
[ "en" ]
TAGS #sentence-transformers #safetensors #roberta #sentence-similarity #feature-extraction #loss-GISTEmbedLoss #en #arxiv-1908.10084 #arxiv-2402.16829 #base_model-distilbert/distilroberta-base #model-index #co2_eq_emissions #endpoints_compatible #region-us
SentenceTransformer based on distilbert/distilroberta-base ========================================================== This is a sentence-transformers model finetuned from distilbert/distilroberta-base on the sentence-transformers/all-nli dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. Model Details ------------- ### Model Description * Model Type: Sentence Transformer * Base model: distilbert/distilroberta-base * Maximum Sequence Length: 512 tokens * Output Dimensionality: 768 tokens * Similarity Function: Cosine Similarity * Training Dataset: + sentence-transformers/all-nli * Language: en ### Model Sources * Documentation: Sentence Transformers Documentation * Repository: Sentence Transformers on GitHub * Hugging Face: Sentence Transformers on Hugging Face ### Full Model Architecture Usage ----- ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: Then you can load this model and run inference. Evaluation ---------- ### Metrics #### Semantic Similarity * Dataset: 'sts-dev' * Evaluated with `EmbeddingSimilarityEvaluator` #### Semantic Similarity * Dataset: 'sts-test' * Evaluated with `EmbeddingSimilarityEvaluator` Training Details ---------------- ### Training Dataset #### sentence-transformers/all-nli * Dataset: sentence-transformers/all-nli at cc6c526 * Size: 10,000 training samples * Columns: `anchor`, `positive`, and `negative` * Approximate statistics based on the first 1000 samples: * Samples: * Loss: `GISTEmbedLoss` with these parameters: ### Evaluation Dataset #### sentence-transformers/all-nli * Dataset: sentence-transformers/all-nli at cc6c526 * Size: 1,000 evaluation samples * Columns: `anchor`, `positive`, and `negative` * Approximate statistics based on the first 1000 samples: * Samples: * Loss: `GISTEmbedLoss` with these parameters: ### Training Hyperparameters #### Non-Default Hyperparameters * 'eval\_strategy': steps * 'per\_device\_train\_batch\_size': 128 * 'per\_device\_eval\_batch\_size': 128 * 'num\_train\_epochs': 1 * 'warmup\_ratio': 0.1 * 'fp16': True * 'batch\_sampler': no\_duplicates #### All Hyperparameters Click to expand * 'overwrite\_output\_dir': False * 'do\_predict': False * 'eval\_strategy': steps * 'prediction\_loss\_only': False * 'per\_device\_train\_batch\_size': 128 * 'per\_device\_eval\_batch\_size': 128 * 'per\_gpu\_train\_batch\_size': None * 'per\_gpu\_eval\_batch\_size': None * 'gradient\_accumulation\_steps': 1 * 'eval\_accumulation\_steps': None * 'learning\_rate': 5e-05 * 'weight\_decay': 0.0 * 'adam\_beta1': 0.9 * 'adam\_beta2': 0.999 * 'adam\_epsilon': 1e-08 * 'max\_grad\_norm': 1.0 * 'num\_train\_epochs': 1 * 'max\_steps': -1 * 'lr\_scheduler\_type': linear * 'lr\_scheduler\_kwargs': {} * 'warmup\_ratio': 0.1 * 'warmup\_steps': 0 * 'log\_level': passive * 'log\_level\_replica': warning * 'log\_on\_each\_node': True * 'logging\_nan\_inf\_filter': True * 'save\_safetensors': True * 'save\_on\_each\_node': False * 'save\_only\_model': False * 'no\_cuda': False * 'use\_cpu': False * 'use\_mps\_device': False * 'seed': 42 * 'data\_seed': None * 'jit\_mode\_eval': False * 'use\_ipex': False * 'bf16': False * 'fp16': True * 'fp16\_opt\_level': O1 * 'half\_precision\_backend': auto * 'bf16\_full\_eval': False * 'fp16\_full\_eval': False * 'tf32': None * 'local\_rank': 0 * 'ddp\_backend': None * 'tpu\_num\_cores': None * 'tpu\_metrics\_debug': False * 'debug': [] * 'dataloader\_drop\_last': False * 'dataloader\_num\_workers': 0 * 'dataloader\_prefetch\_factor': None * 'past\_index': -1 * 'disable\_tqdm': False * 'remove\_unused\_columns': True * 'label\_names': None * 'load\_best\_model\_at\_end': False * 'ignore\_data\_skip': False * 'fsdp': [] * 'fsdp\_min\_num\_params': 0 * 'fsdp\_config': {'min\_num\_params': 0, 'xla': False, 'xla\_fsdp\_v2': False, 'xla\_fsdp\_grad\_ckpt': False} * 'fsdp\_transformer\_layer\_cls\_to\_wrap': None * 'accelerator\_config': {'split\_batches': False, 'dispatch\_batches': None, 'even\_batches': True, 'use\_seedable\_sampler': True, 'non\_blocking': False, 'gradient\_accumulation\_kwargs': None} * 'deepspeed': None * 'label\_smoothing\_factor': 0.0 * 'optim': adamw\_torch * 'optim\_args': None * 'adafactor': False * 'group\_by\_length': False * 'length\_column\_name': length * 'ddp\_find\_unused\_parameters': None * 'ddp\_bucket\_cap\_mb': None * 'ddp\_broadcast\_buffers': None * 'dataloader\_pin\_memory': True * 'dataloader\_persistent\_workers': False * 'skip\_memory\_metrics': True * 'use\_legacy\_prediction\_loop': False * 'push\_to\_hub': False * 'resume\_from\_checkpoint': None * 'hub\_model\_id': None * 'hub\_strategy': every\_save * 'hub\_private\_repo': False * 'hub\_always\_push': False * 'gradient\_checkpointing': False * 'gradient\_checkpointing\_kwargs': None * 'include\_inputs\_for\_metrics': False * 'eval\_do\_concat\_batches': True * 'fp16\_backend': auto * 'push\_to\_hub\_model\_id': None * 'push\_to\_hub\_organization': None * 'mp\_parameters': * 'auto\_find\_batch\_size': False * 'full\_determinism': False * 'torchdynamo': None * 'ray\_scope': last * 'ddp\_timeout': 1800 * 'torch\_compile': False * 'torch\_compile\_backend': None * 'torch\_compile\_mode': None * 'dispatch\_batches': None * 'split\_batches': None * 'include\_tokens\_per\_second': False * 'include\_num\_input\_tokens\_seen': False * 'neftune\_noise\_alpha': None * 'optim\_target\_modules': None * 'batch\_sampler': no\_duplicates * 'multi\_dataset\_batch\_sampler': proportional ### Training Logs ### Environmental Impact Carbon emissions were measured using CodeCarbon. * Energy Consumed: 0.004 kWh * Carbon Emitted: 0.002 kg of CO2 * Hours Used: 0.021 hours ### Training Hardware * On Cloud: No * GPU Model: 1 x NVIDIA GeForce RTX 3090 * CPU Model: 13th Gen Intel(R) Core(TM) i7-13700K * RAM Size: 31.78 GB ### Framework Versions * Python: 3.11.6 * Sentence Transformers: 3.0.0.dev0 * Transformers: 4.41.0.dev0 * PyTorch: 2.3.0+cu121 * Accelerate: 0.26.1 * Datasets: 2.18.0 * Tokenizers: 0.19.1 ### BibTeX #### Sentence Transformers #### GISTEmbedLoss
[ "### Model Description\n\n\n* Model Type: Sentence Transformer\n* Base model: distilbert/distilroberta-base\n* Maximum Sequence Length: 512 tokens\n* Output Dimensionality: 768 tokens\n* Similarity Function: Cosine Similarity\n* Training Dataset:\n\t+ sentence-transformers/all-nli\n* Language: en", "### Model Sources\n\n\n* Documentation: Sentence Transformers Documentation\n* Repository: Sentence Transformers on GitHub\n* Hugging Face: Sentence Transformers on Hugging Face", "### Full Model Architecture\n\n\nUsage\n-----", "### Direct Usage (Sentence Transformers)\n\n\nFirst install the Sentence Transformers library:\n\n\nThen you can load this model and run inference.\n\n\nEvaluation\n----------", "### Metrics", "#### Semantic Similarity\n\n\n* Dataset: 'sts-dev'\n* Evaluated with `EmbeddingSimilarityEvaluator`", "#### Semantic Similarity\n\n\n* Dataset: 'sts-test'\n* Evaluated with `EmbeddingSimilarityEvaluator`\n\n\n\nTraining Details\n----------------", "### Training Dataset", "#### sentence-transformers/all-nli\n\n\n* Dataset: sentence-transformers/all-nli at cc6c526\n* Size: 10,000 training samples\n* Columns: `anchor`, `positive`, and `negative`\n* Approximate statistics based on the first 1000 samples:\n* Samples:\n* Loss: `GISTEmbedLoss` with these parameters:", "### Evaluation Dataset", "#### sentence-transformers/all-nli\n\n\n* Dataset: sentence-transformers/all-nli at cc6c526\n* Size: 1,000 evaluation samples\n* Columns: `anchor`, `positive`, and `negative`\n* Approximate statistics based on the first 1000 samples:\n* Samples:\n* Loss: `GISTEmbedLoss` with these parameters:", "### Training Hyperparameters", "#### Non-Default Hyperparameters\n\n\n* 'eval\\_strategy': steps\n* 'per\\_device\\_train\\_batch\\_size': 128\n* 'per\\_device\\_eval\\_batch\\_size': 128\n* 'num\\_train\\_epochs': 1\n* 'warmup\\_ratio': 0.1\n* 'fp16': True\n* 'batch\\_sampler': no\\_duplicates", "#### All Hyperparameters\n\n\nClick to expand\n* 'overwrite\\_output\\_dir': False\n* 'do\\_predict': False\n* 'eval\\_strategy': steps\n* 'prediction\\_loss\\_only': False\n* 'per\\_device\\_train\\_batch\\_size': 128\n* 'per\\_device\\_eval\\_batch\\_size': 128\n* 'per\\_gpu\\_train\\_batch\\_size': None\n* 'per\\_gpu\\_eval\\_batch\\_size': None\n* 'gradient\\_accumulation\\_steps': 1\n* 'eval\\_accumulation\\_steps': None\n* 'learning\\_rate': 5e-05\n* 'weight\\_decay': 0.0\n* 'adam\\_beta1': 0.9\n* 'adam\\_beta2': 0.999\n* 'adam\\_epsilon': 1e-08\n* 'max\\_grad\\_norm': 1.0\n* 'num\\_train\\_epochs': 1\n* 'max\\_steps': -1\n* 'lr\\_scheduler\\_type': linear\n* 'lr\\_scheduler\\_kwargs': {}\n* 'warmup\\_ratio': 0.1\n* 'warmup\\_steps': 0\n* 'log\\_level': passive\n* 'log\\_level\\_replica': warning\n* 'log\\_on\\_each\\_node': True\n* 'logging\\_nan\\_inf\\_filter': True\n* 'save\\_safetensors': True\n* 'save\\_on\\_each\\_node': False\n* 'save\\_only\\_model': False\n* 'no\\_cuda': False\n* 'use\\_cpu': False\n* 'use\\_mps\\_device': False\n* 'seed': 42\n* 'data\\_seed': None\n* 'jit\\_mode\\_eval': False\n* 'use\\_ipex': False\n* 'bf16': False\n* 'fp16': True\n* 'fp16\\_opt\\_level': O1\n* 'half\\_precision\\_backend': auto\n* 'bf16\\_full\\_eval': False\n* 'fp16\\_full\\_eval': False\n* 'tf32': None\n* 'local\\_rank': 0\n* 'ddp\\_backend': None\n* 'tpu\\_num\\_cores': None\n* 'tpu\\_metrics\\_debug': False\n* 'debug': []\n* 'dataloader\\_drop\\_last': False\n* 'dataloader\\_num\\_workers': 0\n* 'dataloader\\_prefetch\\_factor': None\n* 'past\\_index': -1\n* 'disable\\_tqdm': False\n* 'remove\\_unused\\_columns': True\n* 'label\\_names': None\n* 'load\\_best\\_model\\_at\\_end': False\n* 'ignore\\_data\\_skip': False\n* 'fsdp': []\n* 'fsdp\\_min\\_num\\_params': 0\n* 'fsdp\\_config': {'min\\_num\\_params': 0, 'xla': False, 'xla\\_fsdp\\_v2': False, 'xla\\_fsdp\\_grad\\_ckpt': False}\n* 'fsdp\\_transformer\\_layer\\_cls\\_to\\_wrap': None\n* 'accelerator\\_config': {'split\\_batches': False, 'dispatch\\_batches': None, 'even\\_batches': True, 'use\\_seedable\\_sampler': True, 'non\\_blocking': False, 'gradient\\_accumulation\\_kwargs': None}\n* 'deepspeed': None\n* 'label\\_smoothing\\_factor': 0.0\n* 'optim': adamw\\_torch\n* 'optim\\_args': None\n* 'adafactor': False\n* 'group\\_by\\_length': False\n* 'length\\_column\\_name': length\n* 'ddp\\_find\\_unused\\_parameters': None\n* 'ddp\\_bucket\\_cap\\_mb': None\n* 'ddp\\_broadcast\\_buffers': None\n* 'dataloader\\_pin\\_memory': True\n* 'dataloader\\_persistent\\_workers': False\n* 'skip\\_memory\\_metrics': True\n* 'use\\_legacy\\_prediction\\_loop': False\n* 'push\\_to\\_hub': False\n* 'resume\\_from\\_checkpoint': None\n* 'hub\\_model\\_id': None\n* 'hub\\_strategy': every\\_save\n* 'hub\\_private\\_repo': False\n* 'hub\\_always\\_push': False\n* 'gradient\\_checkpointing': False\n* 'gradient\\_checkpointing\\_kwargs': None\n* 'include\\_inputs\\_for\\_metrics': False\n* 'eval\\_do\\_concat\\_batches': True\n* 'fp16\\_backend': auto\n* 'push\\_to\\_hub\\_model\\_id': None\n* 'push\\_to\\_hub\\_organization': None\n* 'mp\\_parameters':\n* 'auto\\_find\\_batch\\_size': False\n* 'full\\_determinism': False\n* 'torchdynamo': None\n* 'ray\\_scope': last\n* 'ddp\\_timeout': 1800\n* 'torch\\_compile': False\n* 'torch\\_compile\\_backend': None\n* 'torch\\_compile\\_mode': None\n* 'dispatch\\_batches': None\n* 'split\\_batches': None\n* 'include\\_tokens\\_per\\_second': False\n* 'include\\_num\\_input\\_tokens\\_seen': False\n* 'neftune\\_noise\\_alpha': None\n* 'optim\\_target\\_modules': None\n* 'batch\\_sampler': no\\_duplicates\n* 'multi\\_dataset\\_batch\\_sampler': proportional", "### Training Logs", "### Environmental Impact\n\n\nCarbon emissions were measured using CodeCarbon.\n\n\n* Energy Consumed: 0.004 kWh\n* Carbon Emitted: 0.002 kg of CO2\n* Hours Used: 0.021 hours", "### Training Hardware\n\n\n* On Cloud: No\n* GPU Model: 1 x NVIDIA GeForce RTX 3090\n* CPU Model: 13th Gen Intel(R) Core(TM) i7-13700K\n* RAM Size: 31.78 GB", "### Framework Versions\n\n\n* Python: 3.11.6\n* Sentence Transformers: 3.0.0.dev0\n* Transformers: 4.41.0.dev0\n* PyTorch: 2.3.0+cu121\n* Accelerate: 0.26.1\n* Datasets: 2.18.0\n* Tokenizers: 0.19.1", "### BibTeX", "#### Sentence Transformers", "#### GISTEmbedLoss" ]
[ "TAGS\n#sentence-transformers #safetensors #roberta #sentence-similarity #feature-extraction #loss-GISTEmbedLoss #en #arxiv-1908.10084 #arxiv-2402.16829 #base_model-distilbert/distilroberta-base #model-index #co2_eq_emissions #endpoints_compatible #region-us \n", "### Model Description\n\n\n* Model Type: Sentence Transformer\n* Base model: distilbert/distilroberta-base\n* Maximum Sequence Length: 512 tokens\n* Output Dimensionality: 768 tokens\n* Similarity Function: Cosine Similarity\n* Training Dataset:\n\t+ sentence-transformers/all-nli\n* Language: en", "### Model Sources\n\n\n* Documentation: Sentence Transformers Documentation\n* Repository: Sentence Transformers on GitHub\n* Hugging Face: Sentence Transformers on Hugging Face", "### Full Model Architecture\n\n\nUsage\n-----", "### Direct Usage (Sentence Transformers)\n\n\nFirst install the Sentence Transformers library:\n\n\nThen you can load this model and run inference.\n\n\nEvaluation\n----------", "### Metrics", "#### Semantic Similarity\n\n\n* Dataset: 'sts-dev'\n* Evaluated with `EmbeddingSimilarityEvaluator`", "#### Semantic Similarity\n\n\n* Dataset: 'sts-test'\n* Evaluated with `EmbeddingSimilarityEvaluator`\n\n\n\nTraining Details\n----------------", "### Training Dataset", "#### sentence-transformers/all-nli\n\n\n* Dataset: sentence-transformers/all-nli at cc6c526\n* Size: 10,000 training samples\n* Columns: `anchor`, `positive`, and `negative`\n* Approximate statistics based on the first 1000 samples:\n* Samples:\n* Loss: `GISTEmbedLoss` with these parameters:", "### Evaluation Dataset", "#### sentence-transformers/all-nli\n\n\n* Dataset: sentence-transformers/all-nli at cc6c526\n* Size: 1,000 evaluation samples\n* Columns: `anchor`, `positive`, and `negative`\n* Approximate statistics based on the first 1000 samples:\n* Samples:\n* Loss: `GISTEmbedLoss` with these parameters:", "### Training Hyperparameters", "#### Non-Default Hyperparameters\n\n\n* 'eval\\_strategy': steps\n* 'per\\_device\\_train\\_batch\\_size': 128\n* 'per\\_device\\_eval\\_batch\\_size': 128\n* 'num\\_train\\_epochs': 1\n* 'warmup\\_ratio': 0.1\n* 'fp16': True\n* 'batch\\_sampler': no\\_duplicates", "#### All Hyperparameters\n\n\nClick to expand\n* 'overwrite\\_output\\_dir': False\n* 'do\\_predict': False\n* 'eval\\_strategy': steps\n* 'prediction\\_loss\\_only': False\n* 'per\\_device\\_train\\_batch\\_size': 128\n* 'per\\_device\\_eval\\_batch\\_size': 128\n* 'per\\_gpu\\_train\\_batch\\_size': None\n* 'per\\_gpu\\_eval\\_batch\\_size': None\n* 'gradient\\_accumulation\\_steps': 1\n* 'eval\\_accumulation\\_steps': None\n* 'learning\\_rate': 5e-05\n* 'weight\\_decay': 0.0\n* 'adam\\_beta1': 0.9\n* 'adam\\_beta2': 0.999\n* 'adam\\_epsilon': 1e-08\n* 'max\\_grad\\_norm': 1.0\n* 'num\\_train\\_epochs': 1\n* 'max\\_steps': -1\n* 'lr\\_scheduler\\_type': linear\n* 'lr\\_scheduler\\_kwargs': {}\n* 'warmup\\_ratio': 0.1\n* 'warmup\\_steps': 0\n* 'log\\_level': passive\n* 'log\\_level\\_replica': warning\n* 'log\\_on\\_each\\_node': True\n* 'logging\\_nan\\_inf\\_filter': True\n* 'save\\_safetensors': True\n* 'save\\_on\\_each\\_node': False\n* 'save\\_only\\_model': False\n* 'no\\_cuda': False\n* 'use\\_cpu': False\n* 'use\\_mps\\_device': False\n* 'seed': 42\n* 'data\\_seed': None\n* 'jit\\_mode\\_eval': False\n* 'use\\_ipex': False\n* 'bf16': False\n* 'fp16': True\n* 'fp16\\_opt\\_level': O1\n* 'half\\_precision\\_backend': auto\n* 'bf16\\_full\\_eval': False\n* 'fp16\\_full\\_eval': False\n* 'tf32': None\n* 'local\\_rank': 0\n* 'ddp\\_backend': None\n* 'tpu\\_num\\_cores': None\n* 'tpu\\_metrics\\_debug': False\n* 'debug': []\n* 'dataloader\\_drop\\_last': False\n* 'dataloader\\_num\\_workers': 0\n* 'dataloader\\_prefetch\\_factor': None\n* 'past\\_index': -1\n* 'disable\\_tqdm': False\n* 'remove\\_unused\\_columns': True\n* 'label\\_names': None\n* 'load\\_best\\_model\\_at\\_end': False\n* 'ignore\\_data\\_skip': False\n* 'fsdp': []\n* 'fsdp\\_min\\_num\\_params': 0\n* 'fsdp\\_config': {'min\\_num\\_params': 0, 'xla': False, 'xla\\_fsdp\\_v2': False, 'xla\\_fsdp\\_grad\\_ckpt': False}\n* 'fsdp\\_transformer\\_layer\\_cls\\_to\\_wrap': None\n* 'accelerator\\_config': {'split\\_batches': False, 'dispatch\\_batches': None, 'even\\_batches': True, 'use\\_seedable\\_sampler': True, 'non\\_blocking': False, 'gradient\\_accumulation\\_kwargs': None}\n* 'deepspeed': None\n* 'label\\_smoothing\\_factor': 0.0\n* 'optim': adamw\\_torch\n* 'optim\\_args': None\n* 'adafactor': False\n* 'group\\_by\\_length': False\n* 'length\\_column\\_name': length\n* 'ddp\\_find\\_unused\\_parameters': None\n* 'ddp\\_bucket\\_cap\\_mb': None\n* 'ddp\\_broadcast\\_buffers': None\n* 'dataloader\\_pin\\_memory': True\n* 'dataloader\\_persistent\\_workers': False\n* 'skip\\_memory\\_metrics': True\n* 'use\\_legacy\\_prediction\\_loop': False\n* 'push\\_to\\_hub': False\n* 'resume\\_from\\_checkpoint': None\n* 'hub\\_model\\_id': None\n* 'hub\\_strategy': every\\_save\n* 'hub\\_private\\_repo': False\n* 'hub\\_always\\_push': False\n* 'gradient\\_checkpointing': False\n* 'gradient\\_checkpointing\\_kwargs': None\n* 'include\\_inputs\\_for\\_metrics': False\n* 'eval\\_do\\_concat\\_batches': True\n* 'fp16\\_backend': auto\n* 'push\\_to\\_hub\\_model\\_id': None\n* 'push\\_to\\_hub\\_organization': None\n* 'mp\\_parameters':\n* 'auto\\_find\\_batch\\_size': False\n* 'full\\_determinism': False\n* 'torchdynamo': None\n* 'ray\\_scope': last\n* 'ddp\\_timeout': 1800\n* 'torch\\_compile': False\n* 'torch\\_compile\\_backend': None\n* 'torch\\_compile\\_mode': None\n* 'dispatch\\_batches': None\n* 'split\\_batches': None\n* 'include\\_tokens\\_per\\_second': False\n* 'include\\_num\\_input\\_tokens\\_seen': False\n* 'neftune\\_noise\\_alpha': None\n* 'optim\\_target\\_modules': None\n* 'batch\\_sampler': no\\_duplicates\n* 'multi\\_dataset\\_batch\\_sampler': proportional", "### Training Logs", "### Environmental Impact\n\n\nCarbon emissions were measured using CodeCarbon.\n\n\n* Energy Consumed: 0.004 kWh\n* Carbon Emitted: 0.002 kg of CO2\n* Hours Used: 0.021 hours", "### Training Hardware\n\n\n* On Cloud: No\n* GPU Model: 1 x NVIDIA GeForce RTX 3090\n* CPU Model: 13th Gen Intel(R) Core(TM) i7-13700K\n* RAM Size: 31.78 GB", "### Framework Versions\n\n\n* Python: 3.11.6\n* Sentence Transformers: 3.0.0.dev0\n* Transformers: 4.41.0.dev0\n* PyTorch: 2.3.0+cu121\n* Accelerate: 0.26.1\n* Datasets: 2.18.0\n* Tokenizers: 0.19.1", "### BibTeX", "#### Sentence Transformers", "#### GISTEmbedLoss" ]
[ 86, 70, 29, 12, 37, 5, 30, 48, 6, 80, 6, 80, 8, 106, 1494, 5, 44, 55, 79, 6, 6, 9 ]
[ "TAGS\n#sentence-transformers #safetensors #roberta #sentence-similarity #feature-extraction #loss-GISTEmbedLoss #en #arxiv-1908.10084 #arxiv-2402.16829 #base_model-distilbert/distilroberta-base #model-index #co2_eq_emissions #endpoints_compatible #region-us \n### Model Description\n\n\n* Model Type: Sentence Transformer\n* Base model: distilbert/distilroberta-base\n* Maximum Sequence Length: 512 tokens\n* Output Dimensionality: 768 tokens\n* Similarity Function: Cosine Similarity\n* Training Dataset:\n\t+ sentence-transformers/all-nli\n* Language: en### Model Sources\n\n\n* Documentation: Sentence Transformers Documentation\n* Repository: Sentence Transformers on GitHub\n* Hugging Face: Sentence Transformers on Hugging Face### Full Model Architecture\n\n\nUsage\n-----### Direct Usage (Sentence Transformers)\n\n\nFirst install the Sentence Transformers library:\n\n\nThen you can load this model and run inference.\n\n\nEvaluation\n----------### Metrics#### Semantic Similarity\n\n\n* Dataset: 'sts-dev'\n* Evaluated with `EmbeddingSimilarityEvaluator`#### Semantic Similarity\n\n\n* Dataset: 'sts-test'\n* Evaluated with `EmbeddingSimilarityEvaluator`\n\n\n\nTraining Details\n----------------### Training Dataset#### sentence-transformers/all-nli\n\n\n* Dataset: sentence-transformers/all-nli at cc6c526\n* Size: 10,000 training samples\n* Columns: `anchor`, `positive`, and `negative`\n* Approximate statistics based on the first 1000 samples:\n* Samples:\n* Loss: `GISTEmbedLoss` with these parameters:### Evaluation Dataset#### sentence-transformers/all-nli\n\n\n* Dataset: sentence-transformers/all-nli at cc6c526\n* Size: 1,000 evaluation samples\n* Columns: `anchor`, `positive`, and `negative`\n* Approximate statistics based on the first 1000 samples:\n* Samples:\n* Loss: `GISTEmbedLoss` with these parameters:### Training Hyperparameters#### Non-Default Hyperparameters\n\n\n* 'eval\\_strategy': steps\n* 'per\\_device\\_train\\_batch\\_size': 128\n* 'per\\_device\\_eval\\_batch\\_size': 128\n* 'num\\_train\\_epochs': 1\n* 'warmup\\_ratio': 0.1\n* 'fp16': True\n* 'batch\\_sampler': no\\_duplicates#### All Hyperparameters\n\n\nClick to expand\n* 'overwrite\\_output\\_dir': False\n* 'do\\_predict': False\n* 'eval\\_strategy': steps\n* 'prediction\\_loss\\_only': False\n* 'per\\_device\\_train\\_batch\\_size': 128\n* 'per\\_device\\_eval\\_batch\\_size': 128\n* 'per\\_gpu\\_train\\_batch\\_size': None\n* 'per\\_gpu\\_eval\\_batch\\_size': None\n* 'gradient\\_accumulation\\_steps': 1\n* 'eval\\_accumulation\\_steps': None\n* 'learning\\_rate': 5e-05\n* 'weight\\_decay': 0.0\n* 'adam\\_beta1': 0.9\n* 'adam\\_beta2': 0.999\n* 'adam\\_epsilon': 1e-08\n* 'max\\_grad\\_norm': 1.0\n* 'num\\_train\\_epochs': 1\n* 'max\\_steps': -1\n* 'lr\\_scheduler\\_type': linear\n* 'lr\\_scheduler\\_kwargs': {}\n* 'warmup\\_ratio': 0.1\n* 'warmup\\_steps': 0\n* 'log\\_level': passive\n* 'log\\_level\\_replica': warning\n* 'log\\_on\\_each\\_node': True\n* 'logging\\_nan\\_inf\\_filter': True\n* 'save\\_safetensors': True\n* 'save\\_on\\_each\\_node': False\n* 'save\\_only\\_model': False\n* 'no\\_cuda': False\n* 'use\\_cpu': False\n* 'use\\_mps\\_device': False\n* 'seed': 42\n* 'data\\_seed': None\n* 'jit\\_mode\\_eval': False\n* 'use\\_ipex': False\n* 'bf16': False\n* 'fp16': True\n* 'fp16\\_opt\\_level': O1\n* 'half\\_precision\\_backend': auto\n* 'bf16\\_full\\_eval': False\n* 'fp16\\_full\\_eval': False\n* 'tf32': None\n* 'local\\_rank': 0\n* 'ddp\\_backend': None\n* 'tpu\\_num\\_cores': None\n* 'tpu\\_metrics\\_debug': False\n* 'debug': []\n* 'dataloader\\_drop\\_last': False\n* 'dataloader\\_num\\_workers': 0\n* 'dataloader\\_prefetch\\_factor': None\n* 'past\\_index': -1\n* 'disable\\_tqdm': False\n* 'remove\\_unused\\_columns': True\n* 'label\\_names': None\n* 'load\\_best\\_model\\_at\\_end': False\n* 'ignore\\_data\\_skip': False\n* 'fsdp': []\n* 'fsdp\\_min\\_num\\_params': 0\n* 'fsdp\\_config': {'min\\_num\\_params': 0, 'xla': False, 'xla\\_fsdp\\_v2': False, 'xla\\_fsdp\\_grad\\_ckpt': False}\n* 'fsdp\\_transformer\\_layer\\_cls\\_to\\_wrap': None\n* 'accelerator\\_config': {'split\\_batches': False, 'dispatch\\_batches': None, 'even\\_batches': True, 'use\\_seedable\\_sampler': True, 'non\\_blocking': False, 'gradient\\_accumulation\\_kwargs': None}\n* 'deepspeed': None\n* 'label\\_smoothing\\_factor': 0.0\n* 'optim': adamw\\_torch\n* 'optim\\_args': None\n* 'adafactor': False\n* 'group\\_by\\_length': False\n* 'length\\_column\\_name': length\n* 'ddp\\_find\\_unused\\_parameters': None\n* 'ddp\\_bucket\\_cap\\_mb': None\n* 'ddp\\_broadcast\\_buffers': None\n* 'dataloader\\_pin\\_memory': True\n* 'dataloader\\_persistent\\_workers': False\n* 'skip\\_memory\\_metrics': True\n* 'use\\_legacy\\_prediction\\_loop': False\n* 'push\\_to\\_hub': False\n* 'resume\\_from\\_checkpoint': None\n* 'hub\\_model\\_id': None\n* 'hub\\_strategy': every\\_save\n* 'hub\\_private\\_repo': False\n* 'hub\\_always\\_push': False\n* 'gradient\\_checkpointing': False\n* 'gradient\\_checkpointing\\_kwargs': None\n* 'include\\_inputs\\_for\\_metrics': False\n* 'eval\\_do\\_concat\\_batches': True\n* 'fp16\\_backend': auto\n* 'push\\_to\\_hub\\_model\\_id': None\n* 'push\\_to\\_hub\\_organization': None\n* 'mp\\_parameters':\n* 'auto\\_find\\_batch\\_size': False\n* 'full\\_determinism': False\n* 'torchdynamo': None\n* 'ray\\_scope': last\n* 'ddp\\_timeout': 1800\n* 'torch\\_compile': False\n* 'torch\\_compile\\_backend': None\n* 'torch\\_compile\\_mode': None\n* 'dispatch\\_batches': None\n* 'split\\_batches': None\n* 'include\\_tokens\\_per\\_second': False\n* 'include\\_num\\_input\\_tokens\\_seen': False\n* 'neftune\\_noise\\_alpha': None\n* 'optim\\_target\\_modules': None\n* 'batch\\_sampler': no\\_duplicates\n* 'multi\\_dataset\\_batch\\_sampler': proportional### Training Logs### Environmental Impact\n\n\nCarbon emissions were measured using CodeCarbon.\n\n\n* Energy Consumed: 0.004 kWh\n* Carbon Emitted: 0.002 kg of CO2\n* Hours Used: 0.021 hours### Training Hardware\n\n\n* On Cloud: No\n* GPU Model: 1 x NVIDIA GeForce RTX 3090\n* CPU Model: 13th Gen Intel(R) Core(TM) i7-13700K\n* RAM Size: 31.78 GB### Framework Versions\n\n\n* Python: 3.11.6\n* Sentence Transformers: 3.0.0.dev0\n* Transformers: 4.41.0.dev0\n* PyTorch: 2.3.0+cu121\n* Accelerate: 0.26.1\n* Datasets: 2.18.0\n* Tokenizers: 0.19.1### BibTeX#### Sentence Transformers#### GISTEmbedLoss" ]
text-generation
transformers
# Uploaded model - **Developed by:** LeroyDyer - **License:** apache-2.0 - **Finetuned from model :** LeroyDyer/Mixtral_AI_CyberUltron_DPO This mistral model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
{"language": ["en"], "license": "apache-2.0", "tags": ["text-generation-inference", "transformers", "unsloth", "mistral", "trl", "nsfw", "PersonalFriend"], "base_model": "LeroyDyer/Mixtral_AI_CyberUltron_DPO"}
LeroyDyer/Mixtral_AI_CyberFriend_1.0
null
[ "transformers", "safetensors", "mistral", "text-generation", "text-generation-inference", "unsloth", "trl", "nsfw", "PersonalFriend", "en", "base_model:LeroyDyer/Mixtral_AI_CyberUltron_DPO", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2024-05-02T07:52:38+00:00
[]
[ "en" ]
TAGS #transformers #safetensors #mistral #text-generation #text-generation-inference #unsloth #trl #nsfw #PersonalFriend #en #base_model-LeroyDyer/Mixtral_AI_CyberUltron_DPO #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
# Uploaded model - Developed by: LeroyDyer - License: apache-2.0 - Finetuned from model : LeroyDyer/Mixtral_AI_CyberUltron_DPO This mistral model was trained 2x faster with Unsloth and Huggingface's TRL library. <img src="URL width="200"/>
[ "# Uploaded model\n\n- Developed by: LeroyDyer\n- License: apache-2.0\n- Finetuned from model : LeroyDyer/Mixtral_AI_CyberUltron_DPO\n\nThis mistral model was trained 2x faster with Unsloth and Huggingface's TRL library.\n\n<img src=\"URL width=\"200\"/>" ]
[ "TAGS\n#transformers #safetensors #mistral #text-generation #text-generation-inference #unsloth #trl #nsfw #PersonalFriend #en #base_model-LeroyDyer/Mixtral_AI_CyberUltron_DPO #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "# Uploaded model\n\n- Developed by: LeroyDyer\n- License: apache-2.0\n- Finetuned from model : LeroyDyer/Mixtral_AI_CyberUltron_DPO\n\nThis mistral model was trained 2x faster with Unsloth and Huggingface's TRL library.\n\n<img src=\"URL width=\"200\"/>" ]
[ 80, 78 ]
[ "TAGS\n#transformers #safetensors #mistral #text-generation #text-generation-inference #unsloth #trl #nsfw #PersonalFriend #en #base_model-LeroyDyer/Mixtral_AI_CyberUltron_DPO #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n# Uploaded model\n\n- Developed by: LeroyDyer\n- License: apache-2.0\n- Finetuned from model : LeroyDyer/Mixtral_AI_CyberUltron_DPO\n\nThis mistral model was trained 2x faster with Unsloth and Huggingface's TRL library.\n\n<img src=\"URL width=\"200\"/>" ]
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # donut_synDB_aug_ot This model is a fine-tuned version of [naver-clova-ix/donut-base](https://huggingface.co/naver-clova-ix/donut-base) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.1592 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7e-05 - train_batch_size: 5 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 6 - total_train_batch_size: 30 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 26 - num_epochs: 12 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.0766 | 1.0 | 26 | 0.7648 | | 0.6757 | 1.5 | 39 | 0.3334 | | 0.3481 | 2.0 | 52 | 0.2158 | | 0.2021 | 2.5 | 65 | 0.1444 | | 0.1546 | 3.0 | 78 | 0.1191 | | 0.0994 | 3.5 | 91 | 0.1428 | | 0.0975 | 4.0 | 104 | 0.1540 | | 0.0671 | 4.5 | 117 | 0.1762 | | 0.0739 | 5.0 | 130 | 0.1746 | | 0.0555 | 5.5 | 143 | 0.1665 | | 0.0461 | 6.0 | 156 | 0.1592 | ### Framework versions - Transformers 4.38.2 - Pytorch 2.2.2+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2
{"license": "mit", "tags": ["generated_from_trainer"], "datasets": ["imagefolder"], "base_model": "naver-clova-ix/donut-base", "model-index": [{"name": "donut_synDB_aug_ot", "results": []}]}
Donut01/donut_synDB_aug_ot
null
[ "transformers", "tensorboard", "safetensors", "vision-encoder-decoder", "generated_from_trainer", "dataset:imagefolder", "base_model:naver-clova-ix/donut-base", "license:mit", "endpoints_compatible", "region:us" ]
null
2024-05-02T07:52:53+00:00
[]
[]
TAGS #transformers #tensorboard #safetensors #vision-encoder-decoder #generated_from_trainer #dataset-imagefolder #base_model-naver-clova-ix/donut-base #license-mit #endpoints_compatible #region-us
donut\_synDB\_aug\_ot ===================== This model is a fine-tuned version of naver-clova-ix/donut-base on the imagefolder dataset. It achieves the following results on the evaluation set: * Loss: 0.1592 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 7e-05 * train\_batch\_size: 5 * eval\_batch\_size: 8 * seed: 42 * gradient\_accumulation\_steps: 6 * total\_train\_batch\_size: 30 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * lr\_scheduler\_warmup\_steps: 26 * num\_epochs: 12 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.38.2 * Pytorch 2.2.2+cu121 * Datasets 2.18.0 * Tokenizers 0.15.2
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 7e-05\n* train\\_batch\\_size: 5\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 6\n* total\\_train\\_batch\\_size: 30\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 26\n* num\\_epochs: 12\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.38.2\n* Pytorch 2.2.2+cu121\n* Datasets 2.18.0\n* Tokenizers 0.15.2" ]
[ "TAGS\n#transformers #tensorboard #safetensors #vision-encoder-decoder #generated_from_trainer #dataset-imagefolder #base_model-naver-clova-ix/donut-base #license-mit #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 7e-05\n* train\\_batch\\_size: 5\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 6\n* total\\_train\\_batch\\_size: 30\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 26\n* num\\_epochs: 12\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.38.2\n* Pytorch 2.2.2+cu121\n* Datasets 2.18.0\n* Tokenizers 0.15.2" ]
[ 62, 151, 5, 44 ]
[ "TAGS\n#transformers #tensorboard #safetensors #vision-encoder-decoder #generated_from_trainer #dataset-imagefolder #base_model-naver-clova-ix/donut-base #license-mit #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 7e-05\n* train\\_batch\\_size: 5\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 6\n* total\\_train\\_batch\\_size: 30\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 26\n* num\\_epochs: 12\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.38.2\n* Pytorch 2.2.2+cu121\n* Datasets 2.18.0\n* Tokenizers 0.15.2" ]
reinforcement-learning
stable-baselines3
# **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga ArnavModanwal -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga ArnavModanwal -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga ArnavModanwal ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ``` # Environment Arguments ```python {'render_mode': 'rgb_array'} ```
{"library_name": "stable-baselines3", "tags": ["SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "stable-baselines3"], "model-index": [{"name": "DQN", "results": [{"task": {"type": "reinforcement-learning", "name": "reinforcement-learning"}, "dataset": {"name": "SpaceInvadersNoFrameskip-v4", "type": "SpaceInvadersNoFrameskip-v4"}, "metrics": [{"type": "mean_reward", "value": "679.50 +/- 314.88", "name": "mean_reward", "verified": false}]}]}]}
ArnavModanwal/dqn-SpaceInvadersNoFrameskip-v4
null
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
null
2024-05-02T07:54:30+00:00
[]
[]
TAGS #stable-baselines3 #SpaceInvadersNoFrameskip-v4 #deep-reinforcement-learning #reinforcement-learning #model-index #region-us
# DQN Agent playing SpaceInvadersNoFrameskip-v4 This is a trained model of a DQN agent playing SpaceInvadersNoFrameskip-v4 using the stable-baselines3 library and the RL Zoo. The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: URL SB3: URL SB3 Contrib: URL Install the RL Zoo (with SB3 and SB3-Contrib): If you installed the RL Zoo3 via pip ('pip install rl_zoo3'), from anywhere you can do: ## Training (with the RL Zoo) ## Hyperparameters # Environment Arguments
[ "# DQN Agent playing SpaceInvadersNoFrameskip-v4\nThis is a trained model of a DQN agent playing SpaceInvadersNoFrameskip-v4\nusing the stable-baselines3 library\nand the RL Zoo.\n\nThe RL Zoo is a training framework for Stable Baselines3\nreinforcement learning agents,\nwith hyperparameter optimization and pre-trained agents included.", "## Usage (with SB3 RL Zoo)\n\nRL Zoo: URL\nSB3: URL\nSB3 Contrib: URL\n\nInstall the RL Zoo (with SB3 and SB3-Contrib):\n\n\n\n\nIf you installed the RL Zoo3 via pip ('pip install rl_zoo3'), from anywhere you can do:", "## Training (with the RL Zoo)", "## Hyperparameters", "# Environment Arguments" ]
[ "TAGS\n#stable-baselines3 #SpaceInvadersNoFrameskip-v4 #deep-reinforcement-learning #reinforcement-learning #model-index #region-us \n", "# DQN Agent playing SpaceInvadersNoFrameskip-v4\nThis is a trained model of a DQN agent playing SpaceInvadersNoFrameskip-v4\nusing the stable-baselines3 library\nand the RL Zoo.\n\nThe RL Zoo is a training framework for Stable Baselines3\nreinforcement learning agents,\nwith hyperparameter optimization and pre-trained agents included.", "## Usage (with SB3 RL Zoo)\n\nRL Zoo: URL\nSB3: URL\nSB3 Contrib: URL\n\nInstall the RL Zoo (with SB3 and SB3-Contrib):\n\n\n\n\nIf you installed the RL Zoo3 via pip ('pip install rl_zoo3'), from anywhere you can do:", "## Training (with the RL Zoo)", "## Hyperparameters", "# Environment Arguments" ]
[ 37, 81, 76, 10, 6, 3 ]
[ "TAGS\n#stable-baselines3 #SpaceInvadersNoFrameskip-v4 #deep-reinforcement-learning #reinforcement-learning #model-index #region-us \n# DQN Agent playing SpaceInvadersNoFrameskip-v4\nThis is a trained model of a DQN agent playing SpaceInvadersNoFrameskip-v4\nusing the stable-baselines3 library\nand the RL Zoo.\n\nThe RL Zoo is a training framework for Stable Baselines3\nreinforcement learning agents,\nwith hyperparameter optimization and pre-trained agents included.## Usage (with SB3 RL Zoo)\n\nRL Zoo: URL\nSB3: URL\nSB3 Contrib: URL\n\nInstall the RL Zoo (with SB3 and SB3-Contrib):\n\n\n\n\nIf you installed the RL Zoo3 via pip ('pip install rl_zoo3'), from anywhere you can do:## Training (with the RL Zoo)## Hyperparameters# Environment Arguments" ]
text-generation
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
ajay-airrived/mistral_airrived_alpaca_finetuned_test
null
[ "transformers", "safetensors", "mistral", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "4-bit", "region:us", "has_space" ]
null
2024-05-02T07:55:14+00:00
[ "1910.09700" ]
[]
TAGS #transformers #safetensors #mistral #text-generation #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #4-bit #region-us #has_space
# Model Card for Model ID ## Model Details ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #safetensors #mistral #text-generation #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #4-bit #region-us #has_space \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ 52, 6, 4, 75, 23, 3, 5, 8, 9, 8, 34, 20, 4, 5, 5, 11, 13, 12, 3, 10, 6, 5, 6, 4, 5, 7, 49, 7, 7, 5, 5, 15, 7, 7, 8, 5 ]
[ "TAGS\n#transformers #safetensors #mistral #text-generation #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #4-bit #region-us #has_space \n# Model Card for Model ID## Model Details### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Downstream Use [optional]### Out-of-Scope Use## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.## How to Get Started with the Model\n\nUse the code below to get started with the model.## Training Details### Training Data### Training Procedure#### Preprocessing [optional]#### Training Hyperparameters\n\n- Training regime:#### Speeds, Sizes, Times [optional]## Evaluation### Testing Data, Factors & Metrics#### Testing Data#### Factors#### Metrics### Results#### Summary## Model Examination [optional]## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:## Technical Specifications [optional]### Model Architecture and Objective### Compute Infrastructure#### Hardware#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Model Card Authors [optional]## Model Card Contact" ]
object-detection
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # detr-resnet-50-finetuned-real-boat-dataset This model is a fine-tuned version of [zhuchi76/detr-resnet-50-finetuned-boat-dataset](https://huggingface.co/zhuchi76/detr-resnet-50-finetuned-boat-dataset) on the boat_dataset dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.39.3 - Pytorch 2.2.2+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["boat_dataset"], "base_model": "zhuchi76/detr-resnet-50-finetuned-boat-dataset", "model-index": [{"name": "detr-resnet-50-finetuned-real-boat-dataset", "results": []}]}
uwwee/detr-resnet-50-finetuned-real-boat-dataset
null
[ "transformers", "safetensors", "detr", "object-detection", "generated_from_trainer", "dataset:boat_dataset", "base_model:zhuchi76/detr-resnet-50-finetuned-boat-dataset", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-05-02T07:57:43+00:00
[]
[]
TAGS #transformers #safetensors #detr #object-detection #generated_from_trainer #dataset-boat_dataset #base_model-zhuchi76/detr-resnet-50-finetuned-boat-dataset #license-apache-2.0 #endpoints_compatible #region-us
# detr-resnet-50-finetuned-real-boat-dataset This model is a fine-tuned version of zhuchi76/detr-resnet-50-finetuned-boat-dataset on the boat_dataset dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.39.3 - Pytorch 2.2.2+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2
[ "# detr-resnet-50-finetuned-real-boat-dataset\n\nThis model is a fine-tuned version of zhuchi76/detr-resnet-50-finetuned-boat-dataset on the boat_dataset dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 1e-05\n- train_batch_size: 8\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 1\n- mixed_precision_training: Native AMP", "### Training results", "### Framework versions\n\n- Transformers 4.39.3\n- Pytorch 2.2.2+cu121\n- Datasets 2.18.0\n- Tokenizers 0.15.2" ]
[ "TAGS\n#transformers #safetensors #detr #object-detection #generated_from_trainer #dataset-boat_dataset #base_model-zhuchi76/detr-resnet-50-finetuned-boat-dataset #license-apache-2.0 #endpoints_compatible #region-us \n", "# detr-resnet-50-finetuned-real-boat-dataset\n\nThis model is a fine-tuned version of zhuchi76/detr-resnet-50-finetuned-boat-dataset on the boat_dataset dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 1e-05\n- train_batch_size: 8\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 1\n- mixed_precision_training: Native AMP", "### Training results", "### Framework versions\n\n- Transformers 4.39.3\n- Pytorch 2.2.2+cu121\n- Datasets 2.18.0\n- Tokenizers 0.15.2" ]
[ 71, 58, 7, 9, 9, 4, 102, 5, 44 ]
[ "TAGS\n#transformers #safetensors #detr #object-detection #generated_from_trainer #dataset-boat_dataset #base_model-zhuchi76/detr-resnet-50-finetuned-boat-dataset #license-apache-2.0 #endpoints_compatible #region-us \n# detr-resnet-50-finetuned-real-boat-dataset\n\nThis model is a fine-tuned version of zhuchi76/detr-resnet-50-finetuned-boat-dataset on the boat_dataset dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 1e-05\n- train_batch_size: 8\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 1\n- mixed_precision_training: Native AMP### Training results### Framework versions\n\n- Transformers 4.39.3\n- Pytorch 2.2.2+cu121\n- Datasets 2.18.0\n- Tokenizers 0.15.2" ]
text-generation
transformers
# Uploaded model - **Developed by:** henry-skywalker - **License:** apache-2.0 - **Finetuned from model :** unsloth/mistral-7b-instruct-v0.2-bnb-4bit This mistral model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
{"language": ["en"], "license": "apache-2.0", "tags": ["text-generation-inference", "transformers", "unsloth", "mistral", "trl", "sft"], "base_model": "unsloth/mistral-7b-instruct-v0.2-bnb-4bit"}
henry-skywalker/mistral_7b_search_16bit
null
[ "transformers", "pytorch", "mistral", "text-generation", "text-generation-inference", "unsloth", "trl", "sft", "conversational", "en", "base_model:unsloth/mistral-7b-instruct-v0.2-bnb-4bit", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2024-05-02T08:00:20+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #mistral #text-generation #text-generation-inference #unsloth #trl #sft #conversational #en #base_model-unsloth/mistral-7b-instruct-v0.2-bnb-4bit #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
# Uploaded model - Developed by: henry-skywalker - License: apache-2.0 - Finetuned from model : unsloth/mistral-7b-instruct-v0.2-bnb-4bit This mistral model was trained 2x faster with Unsloth and Huggingface's TRL library. <img src="URL width="200"/>
[ "# Uploaded model\n\n- Developed by: henry-skywalker\n- License: apache-2.0\n- Finetuned from model : unsloth/mistral-7b-instruct-v0.2-bnb-4bit\n\nThis mistral model was trained 2x faster with Unsloth and Huggingface's TRL library.\n\n<img src=\"URL width=\"200\"/>" ]
[ "TAGS\n#transformers #pytorch #mistral #text-generation #text-generation-inference #unsloth #trl #sft #conversational #en #base_model-unsloth/mistral-7b-instruct-v0.2-bnb-4bit #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "# Uploaded model\n\n- Developed by: henry-skywalker\n- License: apache-2.0\n- Finetuned from model : unsloth/mistral-7b-instruct-v0.2-bnb-4bit\n\nThis mistral model was trained 2x faster with Unsloth and Huggingface's TRL library.\n\n<img src=\"URL width=\"200\"/>" ]
[ 86, 87 ]
[ "TAGS\n#transformers #pytorch #mistral #text-generation #text-generation-inference #unsloth #trl #sft #conversational #en #base_model-unsloth/mistral-7b-instruct-v0.2-bnb-4bit #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n# Uploaded model\n\n- Developed by: henry-skywalker\n- License: apache-2.0\n- Finetuned from model : unsloth/mistral-7b-instruct-v0.2-bnb-4bit\n\nThis mistral model was trained 2x faster with Unsloth and Huggingface's TRL library.\n\n<img src=\"URL width=\"200\"/>" ]
text-generation
transformers
# Uploaded model - **Developed by:** Parssky - **License:** apache-2.0 - **Finetuned from model :** unsloth/llama-3-8b-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
{"language": ["en"], "license": "apache-2.0", "tags": ["text-generation-inference", "transformers", "unsloth", "llama", "trl", "sft"], "base_model": "unsloth/llama-3-8b-bnb-4bit"}
Parssky/4bitmodel
null
[ "transformers", "safetensors", "llama", "text-generation", "text-generation-inference", "unsloth", "trl", "sft", "en", "base_model:unsloth/llama-3-8b-bnb-4bit", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "4-bit", "region:us" ]
null
2024-05-02T08:03:36+00:00
[]
[ "en" ]
TAGS #transformers #safetensors #llama #text-generation #text-generation-inference #unsloth #trl #sft #en #base_model-unsloth/llama-3-8b-bnb-4bit #license-apache-2.0 #autotrain_compatible #endpoints_compatible #4-bit #region-us
# Uploaded model - Developed by: Parssky - License: apache-2.0 - Finetuned from model : unsloth/llama-3-8b-bnb-4bit This llama model was trained 2x faster with Unsloth and Huggingface's TRL library. <img src="URL width="200"/>
[ "# Uploaded model\n\n- Developed by: Parssky\n- License: apache-2.0\n- Finetuned from model : unsloth/llama-3-8b-bnb-4bit\n\nThis llama model was trained 2x faster with Unsloth and Huggingface's TRL library.\n\n<img src=\"URL width=\"200\"/>" ]
[ "TAGS\n#transformers #safetensors #llama #text-generation #text-generation-inference #unsloth #trl #sft #en #base_model-unsloth/llama-3-8b-bnb-4bit #license-apache-2.0 #autotrain_compatible #endpoints_compatible #4-bit #region-us \n", "# Uploaded model\n\n- Developed by: Parssky\n- License: apache-2.0\n- Finetuned from model : unsloth/llama-3-8b-bnb-4bit\n\nThis llama model was trained 2x faster with Unsloth and Huggingface's TRL library.\n\n<img src=\"URL width=\"200\"/>" ]
[ 80, 80 ]
[ "TAGS\n#transformers #safetensors #llama #text-generation #text-generation-inference #unsloth #trl #sft #en #base_model-unsloth/llama-3-8b-bnb-4bit #license-apache-2.0 #autotrain_compatible #endpoints_compatible #4-bit #region-us \n# Uploaded model\n\n- Developed by: Parssky\n- License: apache-2.0\n- Finetuned from model : unsloth/llama-3-8b-bnb-4bit\n\nThis llama model was trained 2x faster with Unsloth and Huggingface's TRL library.\n\n<img src=\"URL width=\"200\"/>" ]
null
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
azhara001/donut-base-demo-final_3e-05_Adam
null
[ "transformers", "safetensors", "vision-encoder-decoder", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-05-02T08:03:59+00:00
[ "1910.09700" ]
[]
TAGS #transformers #safetensors #vision-encoder-decoder #arxiv-1910.09700 #endpoints_compatible #region-us
# Model Card for Model ID ## Model Details ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #safetensors #vision-encoder-decoder #arxiv-1910.09700 #endpoints_compatible #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ 35, 6, 4, 75, 23, 3, 5, 8, 9, 8, 34, 20, 4, 5, 5, 11, 13, 12, 3, 10, 6, 5, 6, 4, 5, 7, 49, 7, 7, 5, 5, 15, 7, 7, 8, 5 ]
[ "TAGS\n#transformers #safetensors #vision-encoder-decoder #arxiv-1910.09700 #endpoints_compatible #region-us \n# Model Card for Model ID## Model Details### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Downstream Use [optional]### Out-of-Scope Use## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.## How to Get Started with the Model\n\nUse the code below to get started with the model.## Training Details### Training Data### Training Procedure#### Preprocessing [optional]#### Training Hyperparameters\n\n- Training regime:#### Speeds, Sizes, Times [optional]## Evaluation### Testing Data, Factors & Metrics#### Testing Data#### Factors#### Metrics### Results#### Summary## Model Examination [optional]## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:## Technical Specifications [optional]### Model Architecture and Objective### Compute Infrastructure#### Hardware#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Model Card Authors [optional]## Model Card Contact" ]
text-generation
transformers
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) roberta-large-squad2 - bnb 4bits - Model creator: https://huggingface.co/deepset/ - Original model: https://huggingface.co/deepset/roberta-large-squad2/ Original model description: --- language: en license: cc-by-4.0 datasets: - squad_v2 base_model: roberta-large model-index: - name: deepset/roberta-large-squad2 results: - task: type: question-answering name: Question Answering dataset: name: squad_v2 type: squad_v2 config: squad_v2 split: validation metrics: - type: exact_match value: 85.168 name: Exact Match - type: f1 value: 88.349 name: F1 - task: type: question-answering name: Question Answering dataset: name: squad type: squad config: plain_text split: validation metrics: - type: exact_match value: 87.162 name: Exact Match - type: f1 value: 93.603 name: F1 - task: type: question-answering name: Question Answering dataset: name: adversarial_qa type: adversarial_qa config: adversarialQA split: validation metrics: - type: exact_match value: 35.900 name: Exact Match - type: f1 value: 48.923 name: F1 - task: type: question-answering name: Question Answering dataset: name: squad_adversarial type: squad_adversarial config: AddOneSent split: validation metrics: - type: exact_match value: 81.142 name: Exact Match - type: f1 value: 87.099 name: F1 - task: type: question-answering name: Question Answering dataset: name: squadshifts amazon type: squadshifts config: amazon split: test metrics: - type: exact_match value: 72.453 name: Exact Match - type: f1 value: 86.325 name: F1 - task: type: question-answering name: Question Answering dataset: name: squadshifts new_wiki type: squadshifts config: new_wiki split: test metrics: - type: exact_match value: 82.338 name: Exact Match - type: f1 value: 91.974 name: F1 - task: type: question-answering name: Question Answering dataset: name: squadshifts nyt type: squadshifts config: nyt split: test metrics: - type: exact_match value: 84.352 name: Exact Match - type: f1 value: 92.645 name: F1 - task: type: question-answering name: Question Answering dataset: name: squadshifts reddit type: squadshifts config: reddit split: test metrics: - type: exact_match value: 74.722 name: Exact Match - type: f1 value: 86.860 name: F1 --- # roberta-large for QA This is the [roberta-large](https://huggingface.co/roberta-large) model, fine-tuned using the [SQuAD2.0](https://huggingface.co/datasets/squad_v2) dataset. It's been trained on question-answer pairs, including unanswerable questions, for the task of Question Answering. ## Overview **Language model:** roberta-large **Language:** English **Downstream-task:** Extractive QA **Training data:** SQuAD 2.0 **Eval data:** SQuAD 2.0 **Code:** See [an example QA pipeline on Haystack](https://haystack.deepset.ai/tutorials/first-qa-system) **Infrastructure**: 4x Tesla v100 ## Hyperparameters ``` base_LM_model = "roberta-large" ``` ## Using a distilled model instead Please note that we have also released a distilled version of this model called [deepset/roberta-base-squad2-distilled](https://huggingface.co/deepset/roberta-base-squad2-distilled). The distilled model has a comparable prediction quality and runs at twice the speed of the large model. ## Usage ### In Haystack Haystack is an NLP framework by deepset. You can use this model in a Haystack pipeline to do question answering at scale (over many documents). To load the model in [Haystack](https://github.com/deepset-ai/haystack/): ```python reader = FARMReader(model_name_or_path="deepset/roberta-large-squad2") # or reader = TransformersReader(model_name_or_path="deepset/roberta-large-squad2",tokenizer="deepset/roberta-large-squad2") ``` For a complete example of ``roberta-large-squad2`` being used for Question Answering, check out the [Tutorials in Haystack Documentation](https://haystack.deepset.ai/tutorials/first-qa-system) ### In Transformers ```python from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline model_name = "deepset/roberta-large-squad2" # a) Get predictions nlp = pipeline('question-answering', model=model_name, tokenizer=model_name) QA_input = { 'question': 'Why is model conversion important?', 'context': 'The option to convert models between FARM and transformers gives freedom to the user and let people easily switch between frameworks.' } res = nlp(QA_input) # b) Load model & tokenizer model = AutoModelForQuestionAnswering.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) ``` ## Authors **Branden Chan:** [email protected] **Timo Möller:** [email protected] **Malte Pietsch:** [email protected] **Tanay Soni:** [email protected] ## About us <div class="grid lg:grid-cols-2 gap-x-4 gap-y-3"> <div class="w-full h-40 object-cover mb-2 rounded-lg flex items-center justify-center"> <img alt="" src="https://raw.githubusercontent.com/deepset-ai/.github/main/deepset-logo-colored.png" class="w-40"/> </div> <div class="w-full h-40 object-cover mb-2 rounded-lg flex items-center justify-center"> <img alt="" src="https://raw.githubusercontent.com/deepset-ai/.github/main/haystack-logo-colored.png" class="w-40"/> </div> </div> [deepset](http://deepset.ai/) is the company behind the open-source NLP framework [Haystack](https://haystack.deepset.ai/) which is designed to help you build production ready NLP systems that use: Question answering, summarization, ranking etc. Some of our other work: - [Distilled roberta-base-squad2 (aka "tinyroberta-squad2")]([https://huggingface.co/deepset/tinyroberta-squad2) - [German BERT (aka "bert-base-german-cased")](https://deepset.ai/german-bert) - [GermanQuAD and GermanDPR datasets and models (aka "gelectra-base-germanquad", "gbert-base-germandpr")](https://deepset.ai/germanquad) ## Get in touch and join the Haystack community <p>For more info on Haystack, visit our <strong><a href="https://github.com/deepset-ai/haystack">GitHub</a></strong> repo and <strong><a href="https://docs.haystack.deepset.ai">Documentation</a></strong>. We also have a <strong><a class="h-7" href="https://haystack.deepset.ai/community">Discord community open to everyone!</a></strong></p> [Twitter](https://twitter.com/deepset_ai) | [LinkedIn](https://www.linkedin.com/company/deepset-ai/) | [Discord](https://haystack.deepset.ai/community) | [GitHub Discussions](https://github.com/deepset-ai/haystack/discussions) | [Website](https://deepset.ai) By the way: [we're hiring!](http://www.deepset.ai/jobs)
{}
RichardErkhov/deepset_-_roberta-large-squad2-4bits
null
[ "transformers", "safetensors", "roberta", "text-generation", "autotrain_compatible", "endpoints_compatible", "4-bit", "region:us" ]
null
2024-05-02T08:04:02+00:00
[]
[]
TAGS #transformers #safetensors #roberta #text-generation #autotrain_compatible #endpoints_compatible #4-bit #region-us
Quantization made by Richard Erkhov. Github Discord Request more models roberta-large-squad2 - bnb 4bits - Model creator: URL - Original model: URL Original model description: --- language: en license: cc-by-4.0 datasets: - squad_v2 base_model: roberta-large model-index: - name: deepset/roberta-large-squad2 results: - task: type: question-answering name: Question Answering dataset: name: squad_v2 type: squad_v2 config: squad_v2 split: validation metrics: - type: exact_match value: 85.168 name: Exact Match - type: f1 value: 88.349 name: F1 - task: type: question-answering name: Question Answering dataset: name: squad type: squad config: plain_text split: validation metrics: - type: exact_match value: 87.162 name: Exact Match - type: f1 value: 93.603 name: F1 - task: type: question-answering name: Question Answering dataset: name: adversarial_qa type: adversarial_qa config: adversarialQA split: validation metrics: - type: exact_match value: 35.900 name: Exact Match - type: f1 value: 48.923 name: F1 - task: type: question-answering name: Question Answering dataset: name: squad_adversarial type: squad_adversarial config: AddOneSent split: validation metrics: - type: exact_match value: 81.142 name: Exact Match - type: f1 value: 87.099 name: F1 - task: type: question-answering name: Question Answering dataset: name: squadshifts amazon type: squadshifts config: amazon split: test metrics: - type: exact_match value: 72.453 name: Exact Match - type: f1 value: 86.325 name: F1 - task: type: question-answering name: Question Answering dataset: name: squadshifts new_wiki type: squadshifts config: new_wiki split: test metrics: - type: exact_match value: 82.338 name: Exact Match - type: f1 value: 91.974 name: F1 - task: type: question-answering name: Question Answering dataset: name: squadshifts nyt type: squadshifts config: nyt split: test metrics: - type: exact_match value: 84.352 name: Exact Match - type: f1 value: 92.645 name: F1 - task: type: question-answering name: Question Answering dataset: name: squadshifts reddit type: squadshifts config: reddit split: test metrics: - type: exact_match value: 74.722 name: Exact Match - type: f1 value: 86.860 name: F1 --- # roberta-large for QA This is the roberta-large model, fine-tuned using the SQuAD2.0 dataset. It's been trained on question-answer pairs, including unanswerable questions, for the task of Question Answering. ## Overview Language model: roberta-large Language: English Downstream-task: Extractive QA Training data: SQuAD 2.0 Eval data: SQuAD 2.0 Code: See an example QA pipeline on Haystack Infrastructure: 4x Tesla v100 ## Hyperparameters ## Using a distilled model instead Please note that we have also released a distilled version of this model called deepset/roberta-base-squad2-distilled. The distilled model has a comparable prediction quality and runs at twice the speed of the large model. ## Usage ### In Haystack Haystack is an NLP framework by deepset. You can use this model in a Haystack pipeline to do question answering at scale (over many documents). To load the model in Haystack: For a complete example of ''roberta-large-squad2'' being used for Question Answering, check out the Tutorials in Haystack Documentation ### In Transformers ## Authors Branden Chan: URL@URL Timo Möller: timo.moeller@URL Malte Pietsch: malte.pietsch@URL Tanay Soni: URL@URL ## About us <div class="grid lg:grid-cols-2 gap-x-4 gap-y-3"> <div class="w-full h-40 object-cover mb-2 rounded-lg flex items-center justify-center"> <img alt="" src="URL class="w-40"/> </div> <div class="w-full h-40 object-cover mb-2 rounded-lg flex items-center justify-center"> <img alt="" src="URL class="w-40"/> </div> </div> deepset is the company behind the open-source NLP framework Haystack which is designed to help you build production ready NLP systems that use: Question answering, summarization, ranking etc. Some of our other work: - Distilled roberta-base-squad2 (aka "tinyroberta-squad2") - German BERT (aka "bert-base-german-cased") - GermanQuAD and GermanDPR datasets and models (aka "gelectra-base-germanquad", "gbert-base-germandpr") ## Get in touch and join the Haystack community <p>For more info on Haystack, visit our <strong><a href="URL repo and <strong><a href="URL">Documentation</a></strong>. We also have a <strong><a class="h-7" href="URL community open to everyone!</a></strong></p> Twitter | LinkedIn | Discord | GitHub Discussions | Website By the way: we're hiring!
[ "# roberta-large for QA \n\nThis is the roberta-large model, fine-tuned using the SQuAD2.0 dataset. It's been trained on question-answer pairs, including unanswerable questions, for the task of Question Answering.", "## Overview\nLanguage model: roberta-large \nLanguage: English \nDownstream-task: Extractive QA \nTraining data: SQuAD 2.0 \nEval data: SQuAD 2.0 \nCode: See an example QA pipeline on Haystack \nInfrastructure: 4x Tesla v100", "## Hyperparameters", "## Using a distilled model instead\nPlease note that we have also released a distilled version of this model called deepset/roberta-base-squad2-distilled. The distilled model has a comparable prediction quality and runs at twice the speed of the large model.", "## Usage", "### In Haystack\nHaystack is an NLP framework by deepset. You can use this model in a Haystack pipeline to do question answering at scale (over many documents). To load the model in Haystack:\n\nFor a complete example of ''roberta-large-squad2'' being used for Question Answering, check out the Tutorials in Haystack Documentation", "### In Transformers", "## Authors\nBranden Chan: URL@URL \nTimo Möller: timo.moeller@URL \nMalte Pietsch: malte.pietsch@URL \nTanay Soni: URL@URL", "## About us\n\n<div class=\"grid lg:grid-cols-2 gap-x-4 gap-y-3\">\n <div class=\"w-full h-40 object-cover mb-2 rounded-lg flex items-center justify-center\">\n <img alt=\"\" src=\"URL class=\"w-40\"/>\n </div>\n <div class=\"w-full h-40 object-cover mb-2 rounded-lg flex items-center justify-center\">\n <img alt=\"\" src=\"URL class=\"w-40\"/>\n </div>\n</div>\n\ndeepset is the company behind the open-source NLP framework Haystack which is designed to help you build production ready NLP systems that use: Question answering, summarization, ranking etc.\n\n\nSome of our other work: \n- Distilled roberta-base-squad2 (aka \"tinyroberta-squad2\")\n- German BERT (aka \"bert-base-german-cased\")\n- GermanQuAD and GermanDPR datasets and models (aka \"gelectra-base-germanquad\", \"gbert-base-germandpr\")", "## Get in touch and join the Haystack community\n\n<p>For more info on Haystack, visit our <strong><a href=\"URL repo and <strong><a href=\"URL\">Documentation</a></strong>. \n\nWe also have a <strong><a class=\"h-7\" href=\"URL community open to everyone!</a></strong></p>\n\nTwitter | LinkedIn | Discord | GitHub Discussions | Website\n\nBy the way: we're hiring!" ]
[ "TAGS\n#transformers #safetensors #roberta #text-generation #autotrain_compatible #endpoints_compatible #4-bit #region-us \n", "# roberta-large for QA \n\nThis is the roberta-large model, fine-tuned using the SQuAD2.0 dataset. It's been trained on question-answer pairs, including unanswerable questions, for the task of Question Answering.", "## Overview\nLanguage model: roberta-large \nLanguage: English \nDownstream-task: Extractive QA \nTraining data: SQuAD 2.0 \nEval data: SQuAD 2.0 \nCode: See an example QA pipeline on Haystack \nInfrastructure: 4x Tesla v100", "## Hyperparameters", "## Using a distilled model instead\nPlease note that we have also released a distilled version of this model called deepset/roberta-base-squad2-distilled. The distilled model has a comparable prediction quality and runs at twice the speed of the large model.", "## Usage", "### In Haystack\nHaystack is an NLP framework by deepset. You can use this model in a Haystack pipeline to do question answering at scale (over many documents). To load the model in Haystack:\n\nFor a complete example of ''roberta-large-squad2'' being used for Question Answering, check out the Tutorials in Haystack Documentation", "### In Transformers", "## Authors\nBranden Chan: URL@URL \nTimo Möller: timo.moeller@URL \nMalte Pietsch: malte.pietsch@URL \nTanay Soni: URL@URL", "## About us\n\n<div class=\"grid lg:grid-cols-2 gap-x-4 gap-y-3\">\n <div class=\"w-full h-40 object-cover mb-2 rounded-lg flex items-center justify-center\">\n <img alt=\"\" src=\"URL class=\"w-40\"/>\n </div>\n <div class=\"w-full h-40 object-cover mb-2 rounded-lg flex items-center justify-center\">\n <img alt=\"\" src=\"URL class=\"w-40\"/>\n </div>\n</div>\n\ndeepset is the company behind the open-source NLP framework Haystack which is designed to help you build production ready NLP systems that use: Question answering, summarization, ranking etc.\n\n\nSome of our other work: \n- Distilled roberta-base-squad2 (aka \"tinyroberta-squad2\")\n- German BERT (aka \"bert-base-german-cased\")\n- GermanQuAD and GermanDPR datasets and models (aka \"gelectra-base-germanquad\", \"gbert-base-germandpr\")", "## Get in touch and join the Haystack community\n\n<p>For more info on Haystack, visit our <strong><a href=\"URL repo and <strong><a href=\"URL\">Documentation</a></strong>. \n\nWe also have a <strong><a class=\"h-7\" href=\"URL community open to everyone!</a></strong></p>\n\nTwitter | LinkedIn | Discord | GitHub Discussions | Website\n\nBy the way: we're hiring!" ]
[ 31, 52, 54, 6, 60, 3, 82, 5, 50, 276, 124 ]
[ "TAGS\n#transformers #safetensors #roberta #text-generation #autotrain_compatible #endpoints_compatible #4-bit #region-us \n# roberta-large for QA \n\nThis is the roberta-large model, fine-tuned using the SQuAD2.0 dataset. It's been trained on question-answer pairs, including unanswerable questions, for the task of Question Answering.## Overview\nLanguage model: roberta-large \nLanguage: English \nDownstream-task: Extractive QA \nTraining data: SQuAD 2.0 \nEval data: SQuAD 2.0 \nCode: See an example QA pipeline on Haystack \nInfrastructure: 4x Tesla v100## Hyperparameters## Using a distilled model instead\nPlease note that we have also released a distilled version of this model called deepset/roberta-base-squad2-distilled. The distilled model has a comparable prediction quality and runs at twice the speed of the large model.## Usage### In Haystack\nHaystack is an NLP framework by deepset. You can use this model in a Haystack pipeline to do question answering at scale (over many documents). To load the model in Haystack:\n\nFor a complete example of ''roberta-large-squad2'' being used for Question Answering, check out the Tutorials in Haystack Documentation### In Transformers## Authors\nBranden Chan: URL@URL \nTimo Möller: timo.moeller@URL \nMalte Pietsch: malte.pietsch@URL \nTanay Soni: URL@URL## About us\n\n<div class=\"grid lg:grid-cols-2 gap-x-4 gap-y-3\">\n <div class=\"w-full h-40 object-cover mb-2 rounded-lg flex items-center justify-center\">\n <img alt=\"\" src=\"URL class=\"w-40\"/>\n </div>\n <div class=\"w-full h-40 object-cover mb-2 rounded-lg flex items-center justify-center\">\n <img alt=\"\" src=\"URL class=\"w-40\"/>\n </div>\n</div>\n\ndeepset is the company behind the open-source NLP framework Haystack which is designed to help you build production ready NLP systems that use: Question answering, summarization, ranking etc.\n\n\nSome of our other work: \n- Distilled roberta-base-squad2 (aka \"tinyroberta-squad2\")\n- German BERT (aka \"bert-base-german-cased\")\n- GermanQuAD and GermanDPR datasets and models (aka \"gelectra-base-germanquad\", \"gbert-base-germandpr\")## Get in touch and join the Haystack community\n\n<p>For more info on Haystack, visit our <strong><a href=\"URL repo and <strong><a href=\"URL\">Documentation</a></strong>. \n\nWe also have a <strong><a class=\"h-7\" href=\"URL community open to everyone!</a></strong></p>\n\nTwitter | LinkedIn | Discord | GitHub Discussions | Website\n\nBy the way: we're hiring!" ]
text-classification
sentence-transformers
# vgarg/promo_prescriptive_02_05_2024 This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Usage To use this model for inference, first install the SetFit library: ```bash python -m pip install setfit ``` You can then run inference as follows: ```python from setfit import SetFitModel # Download from Hub and run inference model = SetFitModel.from_pretrained("vgarg/promo_prescriptive_02_05_2024") # Run inference preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst 🤮"]) ``` ## BibTeX entry and citation info ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```
{"license": "apache-2.0", "tags": ["setfit", "sentence-transformers", "text-classification"], "pipeline_tag": "text-classification"}
vgarg/promo_prescriptive_02_05_2024
null
[ "sentence-transformers", "safetensors", "xlm-roberta", "setfit", "text-classification", "arxiv:2209.11055", "license:apache-2.0", "region:us" ]
null
2024-05-02T08:04:25+00:00
[ "2209.11055" ]
[]
TAGS #sentence-transformers #safetensors #xlm-roberta #setfit #text-classification #arxiv-2209.11055 #license-apache-2.0 #region-us
# vgarg/promo_prescriptive_02_05_2024 This is a SetFit model that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a Sentence Transformer with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Usage To use this model for inference, first install the SetFit library: You can then run inference as follows: ## BibTeX entry and citation info
[ "# vgarg/promo_prescriptive_02_05_2024\n\nThis is a SetFit model that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves:\n\n1. Fine-tuning a Sentence Transformer with contrastive learning.\n2. Training a classification head with features from the fine-tuned Sentence Transformer.", "## Usage\n\nTo use this model for inference, first install the SetFit library:\n\n\n\nYou can then run inference as follows:", "## BibTeX entry and citation info" ]
[ "TAGS\n#sentence-transformers #safetensors #xlm-roberta #setfit #text-classification #arxiv-2209.11055 #license-apache-2.0 #region-us \n", "# vgarg/promo_prescriptive_02_05_2024\n\nThis is a SetFit model that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves:\n\n1. Fine-tuning a Sentence Transformer with contrastive learning.\n2. Training a classification head with features from the fine-tuned Sentence Transformer.", "## Usage\n\nTo use this model for inference, first install the SetFit library:\n\n\n\nYou can then run inference as follows:", "## BibTeX entry and citation info" ]
[ 44, 79, 26, 9 ]
[ "TAGS\n#sentence-transformers #safetensors #xlm-roberta #setfit #text-classification #arxiv-2209.11055 #license-apache-2.0 #region-us \n# vgarg/promo_prescriptive_02_05_2024\n\nThis is a SetFit model that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves:\n\n1. Fine-tuning a Sentence Transformer with contrastive learning.\n2. Training a classification head with features from the fine-tuned Sentence Transformer.## Usage\n\nTo use this model for inference, first install the SetFit library:\n\n\n\nYou can then run inference as follows:## BibTeX entry and citation info" ]
null
null
Модель обучена на датасете SaigaSbs, который никем не проверялся. Рекомендуемые параметры: top_p 0.5 и temp не выше 0.6 Промт такой же как у Llama3
{"language": ["ru"], "datasets": ["Vikhrmodels/SaigaSbs"]}
mrvladd/OrpoLlama3-8B-VIKHR-instruct-GGUF
null
[ "ru", "dataset:Vikhrmodels/SaigaSbs", "region:us" ]
null
2024-05-02T08:04:45+00:00
[]
[ "ru" ]
TAGS #ru #dataset-Vikhrmodels/SaigaSbs #region-us
Модель обучена на датасете SaigaSbs, который никем не проверялся. Рекомендуемые параметры: top_p 0.5 и temp не выше 0.6 Промт такой же как у Llama3
[]
[ "TAGS\n#ru #dataset-Vikhrmodels/SaigaSbs #region-us \n" ]
[ 20 ]
[ "TAGS\n#ru #dataset-Vikhrmodels/SaigaSbs #region-us \n" ]
sentence-similarity
sentence-transformers
# SentenceTransformer based on sentence-transformers/all-mpnet-base-v2 This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) on the [sentence-transformers/stsb](https://huggingface.co/datasets/sentence-transformers/stsb) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) <!-- at revision 84f2bcc00d77236f9e89c8a360a00fb1139bf47d --> - **Maximum Sequence Length:** 384 tokens - **Output Dimensionality:** 768 tokens - **Similarity Function:** Cosine Similarity - **Training Dataset:** - [sentence-transformers/stsb](https://huggingface.co/datasets/sentence-transformers/stsb) - **Language:** en <!-- - **License:** Unknown --> ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("tomaarsen/all-mpnet-base-v2-sts") # Run inference sentences = [ 'The gate is yellow.', 'The gate is blue.', 'US spends $50m on carp invasion', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 768] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings) print(similarities.shape) # [3, 3] ``` <!-- ### Direct Usage (Transformers) <details><summary>Click to see the direct usage in Transformers</summary> </details> --> <!-- ### Downstream Usage (Sentence Transformers) You can finetune this model on your own dataset. <details><summary>Click to expand</summary> </details> --> <!-- ### Out-of-Scope Use *List how the model may foreseeably be misused and address what users ought not to do with the model.* --> ## Evaluation ### Metrics #### Semantic Similarity * Dataset: `sts-dev` * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) | Metric | Value | |:--------------------|:-----------| | pearson_cosine | 0.9106 | | **spearman_cosine** | **0.9098** | | pearson_manhattan | 0.9 | | spearman_manhattan | 0.909 | | pearson_euclidean | 0.9004 | | spearman_euclidean | 0.9098 | | pearson_dot | 0.9106 | | spearman_dot | 0.9098 | | pearson_max | 0.9106 | | spearman_max | 0.9098 | #### Semantic Similarity * Dataset: `sts-test` * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) | Metric | Value | |:--------------------|:-----------| | pearson_cosine | 0.8765 | | **spearman_cosine** | **0.8733** | | pearson_manhattan | 0.8668 | | spearman_manhattan | 0.8725 | | pearson_euclidean | 0.8675 | | spearman_euclidean | 0.8733 | | pearson_dot | 0.8765 | | spearman_dot | 0.8733 | | pearson_max | 0.8765 | | spearman_max | 0.8733 | <!-- ## Bias, Risks and Limitations *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* --> <!-- ### Recommendations *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* --> ## Training Details ### Training Dataset #### sentence-transformers/stsb * Dataset: [sentence-transformers/stsb](https://huggingface.co/datasets/sentence-transformers/stsb) at [ab7a5ac](https://huggingface.co/datasets/sentence-transformers/stsb/tree/ab7a5ac0e35aa22088bdcf23e7fd99b220e53308) * Size: 5,749 training samples * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code> * Approximate statistics based on the first 1000 samples: | | sentence1 | sentence2 | score | |:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------| | type | string | string | float | | details | <ul><li>min: 6 tokens</li><li>mean: 10.0 tokens</li><li>max: 28 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 9.95 tokens</li><li>max: 25 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.54</li><li>max: 1.0</li></ul> | * Samples: | sentence1 | sentence2 | score | |:-----------------------------------------------------------|:----------------------------------------------------------------------|:------------------| | <code>A plane is taking off.</code> | <code>An air plane is taking off.</code> | <code>1.0</code> | | <code>A man is playing a large flute.</code> | <code>A man is playing a flute.</code> | <code>0.76</code> | | <code>A man is spreading shreded cheese on a pizza.</code> | <code>A man is spreading shredded cheese on an uncooked pizza.</code> | <code>0.76</code> | * Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/losses.html#cosinesimilarityloss) with these parameters: ```json { "loss_fct": "torch.nn.modules.loss.MSELoss" } ``` ### Evaluation Dataset #### sentence-transformers/stsb * Dataset: [sentence-transformers/stsb](https://huggingface.co/datasets/sentence-transformers/stsb) at [ab7a5ac](https://huggingface.co/datasets/sentence-transformers/stsb/tree/ab7a5ac0e35aa22088bdcf23e7fd99b220e53308) * Size: 1,500 evaluation samples * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code> * Approximate statistics based on the first 1000 samples: | | sentence1 | sentence2 | score | |:--------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------| | type | string | string | float | | details | <ul><li>min: 5 tokens</li><li>mean: 15.1 tokens</li><li>max: 45 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 15.11 tokens</li><li>max: 53 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.47</li><li>max: 1.0</li></ul> | * Samples: | sentence1 | sentence2 | score | |:--------------------------------------------------|:------------------------------------------------------|:------------------| | <code>A man with a hard hat is dancing.</code> | <code>A man wearing a hard hat is dancing.</code> | <code>1.0</code> | | <code>A young child is riding a horse.</code> | <code>A child is riding a horse.</code> | <code>0.95</code> | | <code>A man is feeding a mouse to a snake.</code> | <code>The man is feeding a mouse to the snake.</code> | <code>1.0</code> | * Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/losses.html#cosinesimilarityloss) with these parameters: ```json { "loss_fct": "torch.nn.modules.loss.MSELoss" } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: steps - `per_device_train_batch_size`: 16 - `per_device_eval_batch_size`: 16 - `num_train_epochs`: 4 - `warmup_ratio`: 0.1 - `fp16`: True #### All Hyperparameters <details><summary>Click to expand</summary> - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: steps - `prediction_loss_only`: False - `per_device_train_batch_size`: 16 - `per_device_eval_batch_size`: 16 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 1 - `eval_accumulation_steps`: None - `learning_rate`: 5e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 4 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.1 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: False - `fp16`: True - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: False - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: None - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: False - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_sampler`: batch_sampler - `multi_dataset_batch_sampler`: proportional </details> ### Training Logs | Epoch | Step | Training Loss | loss | sts-dev_spearman_cosine | sts-test_spearman_cosine | |:------:|:----:|:-------------:|:------:|:-----------------------:|:------------------------:| | 0.2778 | 100 | 0.0218 | 0.0210 | 0.8939 | - | | 0.5556 | 200 | 0.0203 | 0.0190 | 0.8990 | - | | 0.8333 | 300 | 0.019 | 0.0183 | 0.9021 | - | | 1.1111 | 400 | 0.0147 | 0.0190 | 0.9033 | - | | 1.3889 | 500 | 0.0092 | 0.0187 | 0.9038 | - | | 1.6667 | 600 | 0.0089 | 0.0180 | 0.9031 | - | | 1.9444 | 700 | 0.0089 | 0.0184 | 0.9045 | - | | 2.2222 | 800 | 0.0056 | 0.0181 | 0.9066 | - | | 2.5 | 900 | 0.0045 | 0.0182 | 0.9075 | - | | 2.7778 | 1000 | 0.0047 | 0.0179 | 0.9083 | - | | 3.0556 | 1100 | 0.0045 | 0.0179 | 0.9090 | - | | 3.3333 | 1200 | 0.003 | 0.0176 | 0.9088 | - | | 3.6111 | 1300 | 0.0029 | 0.0176 | 0.9093 | - | | 3.8889 | 1400 | 0.0031 | 0.0176 | 0.9098 | - | | 4.0 | 1440 | - | - | - | 0.8733 | ### Environmental Impact Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon). - **Energy Consumed**: 0.025 kWh - **Carbon Emitted**: 0.010 kg of CO2 - **Hours Used**: 0.122 hours ### Training Hardware - **On Cloud**: No - **GPU Model**: 1 x NVIDIA GeForce RTX 3090 - **CPU Model**: 13th Gen Intel(R) Core(TM) i7-13700K - **RAM Size**: 31.78 GB ### Framework Versions - Python: 3.11.6 - Sentence Transformers: 3.0.0.dev0 - Transformers: 4.41.0.dev0 - PyTorch: 2.3.0+cu121 - Accelerate: 0.26.1 - Datasets: 2.18.0 - Tokenizers: 0.19.1 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` <!-- ## Glossary *Clearly define terms in order to be accessible across audiences.* --> <!-- ## Model Card Authors *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* --> <!-- ## Model Card Contact *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* -->
{"language": ["en"], "library_name": "sentence-transformers", "tags": ["sentence-transformers", "sentence-similarity", "feature-extraction", "loss:CosineSimilarityLoss"], "metrics": ["pearson_cosine", "spearman_cosine", "pearson_manhattan", "spearman_manhattan", "pearson_euclidean", "spearman_euclidean", "pearson_dot", "spearman_dot", "pearson_max", "spearman_max"], "base_model": "sentence-transformers/all-mpnet-base-v2", "widget": [{"source_sentence": "A boy is vacuuming.", "sentences": ["A little boy is vacuuming the floor.", "A woman is riding an elephant.", "People are sitting on benches."]}, {"source_sentence": "A man shoots a man.", "sentences": ["The man is aiming a gun.", "A man is tracking in the wood.", "A woman leading a white horse."]}, {"source_sentence": "A plane in the sky.", "sentences": ["A plane rides on a road.", "A tiger walks around aimlessly.", "Two dogs playing on the shore."]}, {"source_sentence": "A baby is laughing.", "sentences": ["The baby laughed in his car seat.", "A toddler walks down a hallway.", "There are dogs in the forest."]}, {"source_sentence": "The gate is yellow.", "sentences": ["The gate is blue.", "US spends $50m on carp invasion", "Suicide bomber strikes in Syria"]}], "pipeline_tag": "sentence-similarity", "co2_eq_emissions": {"emissions": 9.73131270828096, "energy_consumed": 0.025035406836808046, "source": "codecarbon", "training_type": "fine-tuning", "on_cloud": false, "cpu_model": "13th Gen Intel(R) Core(TM) i7-13700K", "ram_total_size": 31.777088165283203, "hours_used": 0.122, "hardware_used": "1 x NVIDIA GeForce RTX 3090"}, "model-index": [{"name": "SentenceTransformer based on sentence-transformers/all-mpnet-base-v2", "results": [{"task": {"type": "semantic-similarity", "name": "Semantic Similarity"}, "dataset": {"name": "sts dev", "type": "sts-dev"}, "metrics": [{"type": "pearson_cosine", "value": 0.9105652572605438, "name": "Pearson Cosine"}, {"type": "spearman_cosine", "value": 0.9097842782963139, "name": "Spearman Cosine"}, {"type": "pearson_manhattan", "value": 0.8999692728646553, "name": "Pearson Manhattan"}, {"type": "spearman_manhattan", "value": 0.909018931820409, "name": "Spearman Manhattan"}, {"type": "pearson_euclidean", "value": 0.9003677259034385, "name": "Pearson Euclidean"}, {"type": "spearman_euclidean", "value": 0.9097842782963139, "name": "Spearman Euclidean"}, {"type": "pearson_dot", "value": 0.9105652590717077, "name": "Pearson Dot"}, {"type": "spearman_dot", "value": 0.9097842782963139, "name": "Spearman Dot"}, {"type": "pearson_max", "value": 0.9105652590717077, "name": "Pearson Max"}, {"type": "spearman_max", "value": 0.9097842782963139, "name": "Spearman Max"}]}, {"task": {"type": "semantic-similarity", "name": "Semantic Similarity"}, "dataset": {"name": "sts test", "type": "sts-test"}, "metrics": [{"type": "pearson_cosine", "value": 0.8764756843077764, "name": "Pearson Cosine"}, {"type": "spearman_cosine", "value": 0.8733461504859822, "name": "Spearman Cosine"}, {"type": "pearson_manhattan", "value": 0.8668031220817161, "name": "Pearson Manhattan"}, {"type": "spearman_manhattan", "value": 0.8725075805222068, "name": "Spearman Manhattan"}, {"type": "pearson_euclidean", "value": 0.8674774784108314, "name": "Pearson Euclidean"}, {"type": "spearman_euclidean", "value": 0.8733464312456004, "name": "Spearman Euclidean"}, {"type": "pearson_dot", "value": 0.8764756858675475, "name": "Pearson Dot"}, {"type": "spearman_dot", "value": 0.8733464312456004, "name": "Spearman Dot"}, {"type": "pearson_max", "value": 0.8764756858675475, "name": "Pearson Max"}, {"type": "spearman_max", "value": 0.8733464312456004, "name": "Spearman Max"}]}]}]}
tomaarsen/all-mpnet-base-v2-sts
null
[ "sentence-transformers", "safetensors", "mpnet", "sentence-similarity", "feature-extraction", "loss:CosineSimilarityLoss", "en", "arxiv:1908.10084", "base_model:sentence-transformers/all-mpnet-base-v2", "model-index", "co2_eq_emissions", "endpoints_compatible", "region:us" ]
null
2024-05-02T08:05:31+00:00
[ "1908.10084" ]
[ "en" ]
TAGS #sentence-transformers #safetensors #mpnet #sentence-similarity #feature-extraction #loss-CosineSimilarityLoss #en #arxiv-1908.10084 #base_model-sentence-transformers/all-mpnet-base-v2 #model-index #co2_eq_emissions #endpoints_compatible #region-us
SentenceTransformer based on sentence-transformers/all-mpnet-base-v2 ==================================================================== This is a sentence-transformers model finetuned from sentence-transformers/all-mpnet-base-v2 on the sentence-transformers/stsb dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. Model Details ------------- ### Model Description * Model Type: Sentence Transformer * Base model: sentence-transformers/all-mpnet-base-v2 * Maximum Sequence Length: 384 tokens * Output Dimensionality: 768 tokens * Similarity Function: Cosine Similarity * Training Dataset: + sentence-transformers/stsb * Language: en ### Model Sources * Documentation: Sentence Transformers Documentation * Repository: Sentence Transformers on GitHub * Hugging Face: Sentence Transformers on Hugging Face ### Full Model Architecture Usage ----- ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: Then you can load this model and run inference. Evaluation ---------- ### Metrics #### Semantic Similarity * Dataset: 'sts-dev' * Evaluated with `EmbeddingSimilarityEvaluator` #### Semantic Similarity * Dataset: 'sts-test' * Evaluated with `EmbeddingSimilarityEvaluator` Training Details ---------------- ### Training Dataset #### sentence-transformers/stsb * Dataset: sentence-transformers/stsb at ab7a5ac * Size: 5,749 training samples * Columns: `sentence1`, `sentence2`, and `score` * Approximate statistics based on the first 1000 samples: * Samples: * Loss: `CosineSimilarityLoss` with these parameters: ### Evaluation Dataset #### sentence-transformers/stsb * Dataset: sentence-transformers/stsb at ab7a5ac * Size: 1,500 evaluation samples * Columns: `sentence1`, `sentence2`, and `score` * Approximate statistics based on the first 1000 samples: * Samples: * Loss: `CosineSimilarityLoss` with these parameters: ### Training Hyperparameters #### Non-Default Hyperparameters * 'eval\_strategy': steps * 'per\_device\_train\_batch\_size': 16 * 'per\_device\_eval\_batch\_size': 16 * 'num\_train\_epochs': 4 * 'warmup\_ratio': 0.1 * 'fp16': True #### All Hyperparameters Click to expand * 'overwrite\_output\_dir': False * 'do\_predict': False * 'eval\_strategy': steps * 'prediction\_loss\_only': False * 'per\_device\_train\_batch\_size': 16 * 'per\_device\_eval\_batch\_size': 16 * 'per\_gpu\_train\_batch\_size': None * 'per\_gpu\_eval\_batch\_size': None * 'gradient\_accumulation\_steps': 1 * 'eval\_accumulation\_steps': None * 'learning\_rate': 5e-05 * 'weight\_decay': 0.0 * 'adam\_beta1': 0.9 * 'adam\_beta2': 0.999 * 'adam\_epsilon': 1e-08 * 'max\_grad\_norm': 1.0 * 'num\_train\_epochs': 4 * 'max\_steps': -1 * 'lr\_scheduler\_type': linear * 'lr\_scheduler\_kwargs': {} * 'warmup\_ratio': 0.1 * 'warmup\_steps': 0 * 'log\_level': passive * 'log\_level\_replica': warning * 'log\_on\_each\_node': True * 'logging\_nan\_inf\_filter': True * 'save\_safetensors': True * 'save\_on\_each\_node': False * 'save\_only\_model': False * 'no\_cuda': False * 'use\_cpu': False * 'use\_mps\_device': False * 'seed': 42 * 'data\_seed': None * 'jit\_mode\_eval': False * 'use\_ipex': False * 'bf16': False * 'fp16': True * 'fp16\_opt\_level': O1 * 'half\_precision\_backend': auto * 'bf16\_full\_eval': False * 'fp16\_full\_eval': False * 'tf32': None * 'local\_rank': 0 * 'ddp\_backend': None * 'tpu\_num\_cores': None * 'tpu\_metrics\_debug': False * 'debug': [] * 'dataloader\_drop\_last': False * 'dataloader\_num\_workers': 0 * 'dataloader\_prefetch\_factor': None * 'past\_index': -1 * 'disable\_tqdm': False * 'remove\_unused\_columns': True * 'label\_names': None * 'load\_best\_model\_at\_end': False * 'ignore\_data\_skip': False * 'fsdp': [] * 'fsdp\_min\_num\_params': 0 * 'fsdp\_config': {'min\_num\_params': 0, 'xla': False, 'xla\_fsdp\_v2': False, 'xla\_fsdp\_grad\_ckpt': False} * 'fsdp\_transformer\_layer\_cls\_to\_wrap': None * 'accelerator\_config': {'split\_batches': False, 'dispatch\_batches': None, 'even\_batches': True, 'use\_seedable\_sampler': True, 'non\_blocking': False, 'gradient\_accumulation\_kwargs': None} * 'deepspeed': None * 'label\_smoothing\_factor': 0.0 * 'optim': adamw\_torch * 'optim\_args': None * 'adafactor': False * 'group\_by\_length': False * 'length\_column\_name': length * 'ddp\_find\_unused\_parameters': None * 'ddp\_bucket\_cap\_mb': None * 'ddp\_broadcast\_buffers': None * 'dataloader\_pin\_memory': True * 'dataloader\_persistent\_workers': False * 'skip\_memory\_metrics': True * 'use\_legacy\_prediction\_loop': False * 'push\_to\_hub': False * 'resume\_from\_checkpoint': None * 'hub\_model\_id': None * 'hub\_strategy': every\_save * 'hub\_private\_repo': False * 'hub\_always\_push': False * 'gradient\_checkpointing': False * 'gradient\_checkpointing\_kwargs': None * 'include\_inputs\_for\_metrics': False * 'eval\_do\_concat\_batches': True * 'fp16\_backend': auto * 'push\_to\_hub\_model\_id': None * 'push\_to\_hub\_organization': None * 'mp\_parameters': * 'auto\_find\_batch\_size': False * 'full\_determinism': False * 'torchdynamo': None * 'ray\_scope': last * 'ddp\_timeout': 1800 * 'torch\_compile': False * 'torch\_compile\_backend': None * 'torch\_compile\_mode': None * 'dispatch\_batches': None * 'split\_batches': None * 'include\_tokens\_per\_second': False * 'include\_num\_input\_tokens\_seen': False * 'neftune\_noise\_alpha': None * 'optim\_target\_modules': None * 'batch\_sampler': batch\_sampler * 'multi\_dataset\_batch\_sampler': proportional ### Training Logs ### Environmental Impact Carbon emissions were measured using CodeCarbon. * Energy Consumed: 0.025 kWh * Carbon Emitted: 0.010 kg of CO2 * Hours Used: 0.122 hours ### Training Hardware * On Cloud: No * GPU Model: 1 x NVIDIA GeForce RTX 3090 * CPU Model: 13th Gen Intel(R) Core(TM) i7-13700K * RAM Size: 31.78 GB ### Framework Versions * Python: 3.11.6 * Sentence Transformers: 3.0.0.dev0 * Transformers: 4.41.0.dev0 * PyTorch: 2.3.0+cu121 * Accelerate: 0.26.1 * Datasets: 2.18.0 * Tokenizers: 0.19.1 ### BibTeX #### Sentence Transformers
[ "### Model Description\n\n\n* Model Type: Sentence Transformer\n* Base model: sentence-transformers/all-mpnet-base-v2\n* Maximum Sequence Length: 384 tokens\n* Output Dimensionality: 768 tokens\n* Similarity Function: Cosine Similarity\n* Training Dataset:\n\t+ sentence-transformers/stsb\n* Language: en", "### Model Sources\n\n\n* Documentation: Sentence Transformers Documentation\n* Repository: Sentence Transformers on GitHub\n* Hugging Face: Sentence Transformers on Hugging Face", "### Full Model Architecture\n\n\nUsage\n-----", "### Direct Usage (Sentence Transformers)\n\n\nFirst install the Sentence Transformers library:\n\n\nThen you can load this model and run inference.\n\n\nEvaluation\n----------", "### Metrics", "#### Semantic Similarity\n\n\n* Dataset: 'sts-dev'\n* Evaluated with `EmbeddingSimilarityEvaluator`", "#### Semantic Similarity\n\n\n* Dataset: 'sts-test'\n* Evaluated with `EmbeddingSimilarityEvaluator`\n\n\n\nTraining Details\n----------------", "### Training Dataset", "#### sentence-transformers/stsb\n\n\n* Dataset: sentence-transformers/stsb at ab7a5ac\n* Size: 5,749 training samples\n* Columns: `sentence1`, `sentence2`, and `score`\n* Approximate statistics based on the first 1000 samples:\n* Samples:\n* Loss: `CosineSimilarityLoss` with these parameters:", "### Evaluation Dataset", "#### sentence-transformers/stsb\n\n\n* Dataset: sentence-transformers/stsb at ab7a5ac\n* Size: 1,500 evaluation samples\n* Columns: `sentence1`, `sentence2`, and `score`\n* Approximate statistics based on the first 1000 samples:\n* Samples:\n* Loss: `CosineSimilarityLoss` with these parameters:", "### Training Hyperparameters", "#### Non-Default Hyperparameters\n\n\n* 'eval\\_strategy': steps\n* 'per\\_device\\_train\\_batch\\_size': 16\n* 'per\\_device\\_eval\\_batch\\_size': 16\n* 'num\\_train\\_epochs': 4\n* 'warmup\\_ratio': 0.1\n* 'fp16': True", "#### All Hyperparameters\n\n\nClick to expand\n* 'overwrite\\_output\\_dir': False\n* 'do\\_predict': False\n* 'eval\\_strategy': steps\n* 'prediction\\_loss\\_only': False\n* 'per\\_device\\_train\\_batch\\_size': 16\n* 'per\\_device\\_eval\\_batch\\_size': 16\n* 'per\\_gpu\\_train\\_batch\\_size': None\n* 'per\\_gpu\\_eval\\_batch\\_size': None\n* 'gradient\\_accumulation\\_steps': 1\n* 'eval\\_accumulation\\_steps': None\n* 'learning\\_rate': 5e-05\n* 'weight\\_decay': 0.0\n* 'adam\\_beta1': 0.9\n* 'adam\\_beta2': 0.999\n* 'adam\\_epsilon': 1e-08\n* 'max\\_grad\\_norm': 1.0\n* 'num\\_train\\_epochs': 4\n* 'max\\_steps': -1\n* 'lr\\_scheduler\\_type': linear\n* 'lr\\_scheduler\\_kwargs': {}\n* 'warmup\\_ratio': 0.1\n* 'warmup\\_steps': 0\n* 'log\\_level': passive\n* 'log\\_level\\_replica': warning\n* 'log\\_on\\_each\\_node': True\n* 'logging\\_nan\\_inf\\_filter': True\n* 'save\\_safetensors': True\n* 'save\\_on\\_each\\_node': False\n* 'save\\_only\\_model': False\n* 'no\\_cuda': False\n* 'use\\_cpu': False\n* 'use\\_mps\\_device': False\n* 'seed': 42\n* 'data\\_seed': None\n* 'jit\\_mode\\_eval': False\n* 'use\\_ipex': False\n* 'bf16': False\n* 'fp16': True\n* 'fp16\\_opt\\_level': O1\n* 'half\\_precision\\_backend': auto\n* 'bf16\\_full\\_eval': False\n* 'fp16\\_full\\_eval': False\n* 'tf32': None\n* 'local\\_rank': 0\n* 'ddp\\_backend': None\n* 'tpu\\_num\\_cores': None\n* 'tpu\\_metrics\\_debug': False\n* 'debug': []\n* 'dataloader\\_drop\\_last': False\n* 'dataloader\\_num\\_workers': 0\n* 'dataloader\\_prefetch\\_factor': None\n* 'past\\_index': -1\n* 'disable\\_tqdm': False\n* 'remove\\_unused\\_columns': True\n* 'label\\_names': None\n* 'load\\_best\\_model\\_at\\_end': False\n* 'ignore\\_data\\_skip': False\n* 'fsdp': []\n* 'fsdp\\_min\\_num\\_params': 0\n* 'fsdp\\_config': {'min\\_num\\_params': 0, 'xla': False, 'xla\\_fsdp\\_v2': False, 'xla\\_fsdp\\_grad\\_ckpt': False}\n* 'fsdp\\_transformer\\_layer\\_cls\\_to\\_wrap': None\n* 'accelerator\\_config': {'split\\_batches': False, 'dispatch\\_batches': None, 'even\\_batches': True, 'use\\_seedable\\_sampler': True, 'non\\_blocking': False, 'gradient\\_accumulation\\_kwargs': None}\n* 'deepspeed': None\n* 'label\\_smoothing\\_factor': 0.0\n* 'optim': adamw\\_torch\n* 'optim\\_args': None\n* 'adafactor': False\n* 'group\\_by\\_length': False\n* 'length\\_column\\_name': length\n* 'ddp\\_find\\_unused\\_parameters': None\n* 'ddp\\_bucket\\_cap\\_mb': None\n* 'ddp\\_broadcast\\_buffers': None\n* 'dataloader\\_pin\\_memory': True\n* 'dataloader\\_persistent\\_workers': False\n* 'skip\\_memory\\_metrics': True\n* 'use\\_legacy\\_prediction\\_loop': False\n* 'push\\_to\\_hub': False\n* 'resume\\_from\\_checkpoint': None\n* 'hub\\_model\\_id': None\n* 'hub\\_strategy': every\\_save\n* 'hub\\_private\\_repo': False\n* 'hub\\_always\\_push': False\n* 'gradient\\_checkpointing': False\n* 'gradient\\_checkpointing\\_kwargs': None\n* 'include\\_inputs\\_for\\_metrics': False\n* 'eval\\_do\\_concat\\_batches': True\n* 'fp16\\_backend': auto\n* 'push\\_to\\_hub\\_model\\_id': None\n* 'push\\_to\\_hub\\_organization': None\n* 'mp\\_parameters':\n* 'auto\\_find\\_batch\\_size': False\n* 'full\\_determinism': False\n* 'torchdynamo': None\n* 'ray\\_scope': last\n* 'ddp\\_timeout': 1800\n* 'torch\\_compile': False\n* 'torch\\_compile\\_backend': None\n* 'torch\\_compile\\_mode': None\n* 'dispatch\\_batches': None\n* 'split\\_batches': None\n* 'include\\_tokens\\_per\\_second': False\n* 'include\\_num\\_input\\_tokens\\_seen': False\n* 'neftune\\_noise\\_alpha': None\n* 'optim\\_target\\_modules': None\n* 'batch\\_sampler': batch\\_sampler\n* 'multi\\_dataset\\_batch\\_sampler': proportional", "### Training Logs", "### Environmental Impact\n\n\nCarbon emissions were measured using CodeCarbon.\n\n\n* Energy Consumed: 0.025 kWh\n* Carbon Emitted: 0.010 kg of CO2\n* Hours Used: 0.122 hours", "### Training Hardware\n\n\n* On Cloud: No\n* GPU Model: 1 x NVIDIA GeForce RTX 3090\n* CPU Model: 13th Gen Intel(R) Core(TM) i7-13700K\n* RAM Size: 31.78 GB", "### Framework Versions\n\n\n* Python: 3.11.6\n* Sentence Transformers: 3.0.0.dev0\n* Transformers: 4.41.0.dev0\n* PyTorch: 2.3.0+cu121\n* Accelerate: 0.26.1\n* Datasets: 2.18.0\n* Tokenizers: 0.19.1", "### BibTeX", "#### Sentence Transformers" ]
[ "TAGS\n#sentence-transformers #safetensors #mpnet #sentence-similarity #feature-extraction #loss-CosineSimilarityLoss #en #arxiv-1908.10084 #base_model-sentence-transformers/all-mpnet-base-v2 #model-index #co2_eq_emissions #endpoints_compatible #region-us \n", "### Model Description\n\n\n* Model Type: Sentence Transformer\n* Base model: sentence-transformers/all-mpnet-base-v2\n* Maximum Sequence Length: 384 tokens\n* Output Dimensionality: 768 tokens\n* Similarity Function: Cosine Similarity\n* Training Dataset:\n\t+ sentence-transformers/stsb\n* Language: en", "### Model Sources\n\n\n* Documentation: Sentence Transformers Documentation\n* Repository: Sentence Transformers on GitHub\n* Hugging Face: Sentence Transformers on Hugging Face", "### Full Model Architecture\n\n\nUsage\n-----", "### Direct Usage (Sentence Transformers)\n\n\nFirst install the Sentence Transformers library:\n\n\nThen you can load this model and run inference.\n\n\nEvaluation\n----------", "### Metrics", "#### Semantic Similarity\n\n\n* Dataset: 'sts-dev'\n* Evaluated with `EmbeddingSimilarityEvaluator`", "#### Semantic Similarity\n\n\n* Dataset: 'sts-test'\n* Evaluated with `EmbeddingSimilarityEvaluator`\n\n\n\nTraining Details\n----------------", "### Training Dataset", "#### sentence-transformers/stsb\n\n\n* Dataset: sentence-transformers/stsb at ab7a5ac\n* Size: 5,749 training samples\n* Columns: `sentence1`, `sentence2`, and `score`\n* Approximate statistics based on the first 1000 samples:\n* Samples:\n* Loss: `CosineSimilarityLoss` with these parameters:", "### Evaluation Dataset", "#### sentence-transformers/stsb\n\n\n* Dataset: sentence-transformers/stsb at ab7a5ac\n* Size: 1,500 evaluation samples\n* Columns: `sentence1`, `sentence2`, and `score`\n* Approximate statistics based on the first 1000 samples:\n* Samples:\n* Loss: `CosineSimilarityLoss` with these parameters:", "### Training Hyperparameters", "#### Non-Default Hyperparameters\n\n\n* 'eval\\_strategy': steps\n* 'per\\_device\\_train\\_batch\\_size': 16\n* 'per\\_device\\_eval\\_batch\\_size': 16\n* 'num\\_train\\_epochs': 4\n* 'warmup\\_ratio': 0.1\n* 'fp16': True", "#### All Hyperparameters\n\n\nClick to expand\n* 'overwrite\\_output\\_dir': False\n* 'do\\_predict': False\n* 'eval\\_strategy': steps\n* 'prediction\\_loss\\_only': False\n* 'per\\_device\\_train\\_batch\\_size': 16\n* 'per\\_device\\_eval\\_batch\\_size': 16\n* 'per\\_gpu\\_train\\_batch\\_size': None\n* 'per\\_gpu\\_eval\\_batch\\_size': None\n* 'gradient\\_accumulation\\_steps': 1\n* 'eval\\_accumulation\\_steps': None\n* 'learning\\_rate': 5e-05\n* 'weight\\_decay': 0.0\n* 'adam\\_beta1': 0.9\n* 'adam\\_beta2': 0.999\n* 'adam\\_epsilon': 1e-08\n* 'max\\_grad\\_norm': 1.0\n* 'num\\_train\\_epochs': 4\n* 'max\\_steps': -1\n* 'lr\\_scheduler\\_type': linear\n* 'lr\\_scheduler\\_kwargs': {}\n* 'warmup\\_ratio': 0.1\n* 'warmup\\_steps': 0\n* 'log\\_level': passive\n* 'log\\_level\\_replica': warning\n* 'log\\_on\\_each\\_node': True\n* 'logging\\_nan\\_inf\\_filter': True\n* 'save\\_safetensors': True\n* 'save\\_on\\_each\\_node': False\n* 'save\\_only\\_model': False\n* 'no\\_cuda': False\n* 'use\\_cpu': False\n* 'use\\_mps\\_device': False\n* 'seed': 42\n* 'data\\_seed': None\n* 'jit\\_mode\\_eval': False\n* 'use\\_ipex': False\n* 'bf16': False\n* 'fp16': True\n* 'fp16\\_opt\\_level': O1\n* 'half\\_precision\\_backend': auto\n* 'bf16\\_full\\_eval': False\n* 'fp16\\_full\\_eval': False\n* 'tf32': None\n* 'local\\_rank': 0\n* 'ddp\\_backend': None\n* 'tpu\\_num\\_cores': None\n* 'tpu\\_metrics\\_debug': False\n* 'debug': []\n* 'dataloader\\_drop\\_last': False\n* 'dataloader\\_num\\_workers': 0\n* 'dataloader\\_prefetch\\_factor': None\n* 'past\\_index': -1\n* 'disable\\_tqdm': False\n* 'remove\\_unused\\_columns': True\n* 'label\\_names': None\n* 'load\\_best\\_model\\_at\\_end': False\n* 'ignore\\_data\\_skip': False\n* 'fsdp': []\n* 'fsdp\\_min\\_num\\_params': 0\n* 'fsdp\\_config': {'min\\_num\\_params': 0, 'xla': False, 'xla\\_fsdp\\_v2': False, 'xla\\_fsdp\\_grad\\_ckpt': False}\n* 'fsdp\\_transformer\\_layer\\_cls\\_to\\_wrap': None\n* 'accelerator\\_config': {'split\\_batches': False, 'dispatch\\_batches': None, 'even\\_batches': True, 'use\\_seedable\\_sampler': True, 'non\\_blocking': False, 'gradient\\_accumulation\\_kwargs': None}\n* 'deepspeed': None\n* 'label\\_smoothing\\_factor': 0.0\n* 'optim': adamw\\_torch\n* 'optim\\_args': None\n* 'adafactor': False\n* 'group\\_by\\_length': False\n* 'length\\_column\\_name': length\n* 'ddp\\_find\\_unused\\_parameters': None\n* 'ddp\\_bucket\\_cap\\_mb': None\n* 'ddp\\_broadcast\\_buffers': None\n* 'dataloader\\_pin\\_memory': True\n* 'dataloader\\_persistent\\_workers': False\n* 'skip\\_memory\\_metrics': True\n* 'use\\_legacy\\_prediction\\_loop': False\n* 'push\\_to\\_hub': False\n* 'resume\\_from\\_checkpoint': None\n* 'hub\\_model\\_id': None\n* 'hub\\_strategy': every\\_save\n* 'hub\\_private\\_repo': False\n* 'hub\\_always\\_push': False\n* 'gradient\\_checkpointing': False\n* 'gradient\\_checkpointing\\_kwargs': None\n* 'include\\_inputs\\_for\\_metrics': False\n* 'eval\\_do\\_concat\\_batches': True\n* 'fp16\\_backend': auto\n* 'push\\_to\\_hub\\_model\\_id': None\n* 'push\\_to\\_hub\\_organization': None\n* 'mp\\_parameters':\n* 'auto\\_find\\_batch\\_size': False\n* 'full\\_determinism': False\n* 'torchdynamo': None\n* 'ray\\_scope': last\n* 'ddp\\_timeout': 1800\n* 'torch\\_compile': False\n* 'torch\\_compile\\_backend': None\n* 'torch\\_compile\\_mode': None\n* 'dispatch\\_batches': None\n* 'split\\_batches': None\n* 'include\\_tokens\\_per\\_second': False\n* 'include\\_num\\_input\\_tokens\\_seen': False\n* 'neftune\\_noise\\_alpha': None\n* 'optim\\_target\\_modules': None\n* 'batch\\_sampler': batch\\_sampler\n* 'multi\\_dataset\\_batch\\_sampler': proportional", "### Training Logs", "### Environmental Impact\n\n\nCarbon emissions were measured using CodeCarbon.\n\n\n* Energy Consumed: 0.025 kWh\n* Carbon Emitted: 0.010 kg of CO2\n* Hours Used: 0.122 hours", "### Training Hardware\n\n\n* On Cloud: No\n* GPU Model: 1 x NVIDIA GeForce RTX 3090\n* CPU Model: 13th Gen Intel(R) Core(TM) i7-13700K\n* RAM Size: 31.78 GB", "### Framework Versions\n\n\n* Python: 3.11.6\n* Sentence Transformers: 3.0.0.dev0\n* Transformers: 4.41.0.dev0\n* PyTorch: 2.3.0+cu121\n* Accelerate: 0.26.1\n* Datasets: 2.18.0\n* Tokenizers: 0.19.1", "### BibTeX", "#### Sentence Transformers" ]
[ 82, 71, 29, 12, 37, 5, 30, 48, 6, 82, 6, 81, 8, 92, 1494, 5, 43, 55, 79, 6, 6 ]
[ "TAGS\n#sentence-transformers #safetensors #mpnet #sentence-similarity #feature-extraction #loss-CosineSimilarityLoss #en #arxiv-1908.10084 #base_model-sentence-transformers/all-mpnet-base-v2 #model-index #co2_eq_emissions #endpoints_compatible #region-us \n### Model Description\n\n\n* Model Type: Sentence Transformer\n* Base model: sentence-transformers/all-mpnet-base-v2\n* Maximum Sequence Length: 384 tokens\n* Output Dimensionality: 768 tokens\n* Similarity Function: Cosine Similarity\n* Training Dataset:\n\t+ sentence-transformers/stsb\n* Language: en### Model Sources\n\n\n* Documentation: Sentence Transformers Documentation\n* Repository: Sentence Transformers on GitHub\n* Hugging Face: Sentence Transformers on Hugging Face### Full Model Architecture\n\n\nUsage\n-----### Direct Usage (Sentence Transformers)\n\n\nFirst install the Sentence Transformers library:\n\n\nThen you can load this model and run inference.\n\n\nEvaluation\n----------### Metrics#### Semantic Similarity\n\n\n* Dataset: 'sts-dev'\n* Evaluated with `EmbeddingSimilarityEvaluator`#### Semantic Similarity\n\n\n* Dataset: 'sts-test'\n* Evaluated with `EmbeddingSimilarityEvaluator`\n\n\n\nTraining Details\n----------------### Training Dataset#### sentence-transformers/stsb\n\n\n* Dataset: sentence-transformers/stsb at ab7a5ac\n* Size: 5,749 training samples\n* Columns: `sentence1`, `sentence2`, and `score`\n* Approximate statistics based on the first 1000 samples:\n* Samples:\n* Loss: `CosineSimilarityLoss` with these parameters:### Evaluation Dataset#### sentence-transformers/stsb\n\n\n* Dataset: sentence-transformers/stsb at ab7a5ac\n* Size: 1,500 evaluation samples\n* Columns: `sentence1`, `sentence2`, and `score`\n* Approximate statistics based on the first 1000 samples:\n* Samples:\n* Loss: `CosineSimilarityLoss` with these parameters:### Training Hyperparameters#### Non-Default Hyperparameters\n\n\n* 'eval\\_strategy': steps\n* 'per\\_device\\_train\\_batch\\_size': 16\n* 'per\\_device\\_eval\\_batch\\_size': 16\n* 'num\\_train\\_epochs': 4\n* 'warmup\\_ratio': 0.1\n* 'fp16': True#### All Hyperparameters\n\n\nClick to expand\n* 'overwrite\\_output\\_dir': False\n* 'do\\_predict': False\n* 'eval\\_strategy': steps\n* 'prediction\\_loss\\_only': False\n* 'per\\_device\\_train\\_batch\\_size': 16\n* 'per\\_device\\_eval\\_batch\\_size': 16\n* 'per\\_gpu\\_train\\_batch\\_size': None\n* 'per\\_gpu\\_eval\\_batch\\_size': None\n* 'gradient\\_accumulation\\_steps': 1\n* 'eval\\_accumulation\\_steps': None\n* 'learning\\_rate': 5e-05\n* 'weight\\_decay': 0.0\n* 'adam\\_beta1': 0.9\n* 'adam\\_beta2': 0.999\n* 'adam\\_epsilon': 1e-08\n* 'max\\_grad\\_norm': 1.0\n* 'num\\_train\\_epochs': 4\n* 'max\\_steps': -1\n* 'lr\\_scheduler\\_type': linear\n* 'lr\\_scheduler\\_kwargs': {}\n* 'warmup\\_ratio': 0.1\n* 'warmup\\_steps': 0\n* 'log\\_level': passive\n* 'log\\_level\\_replica': warning\n* 'log\\_on\\_each\\_node': True\n* 'logging\\_nan\\_inf\\_filter': True\n* 'save\\_safetensors': True\n* 'save\\_on\\_each\\_node': False\n* 'save\\_only\\_model': False\n* 'no\\_cuda': False\n* 'use\\_cpu': False\n* 'use\\_mps\\_device': False\n* 'seed': 42\n* 'data\\_seed': None\n* 'jit\\_mode\\_eval': False\n* 'use\\_ipex': False\n* 'bf16': False\n* 'fp16': True\n* 'fp16\\_opt\\_level': O1\n* 'half\\_precision\\_backend': auto\n* 'bf16\\_full\\_eval': False\n* 'fp16\\_full\\_eval': False\n* 'tf32': None\n* 'local\\_rank': 0\n* 'ddp\\_backend': None\n* 'tpu\\_num\\_cores': None\n* 'tpu\\_metrics\\_debug': False\n* 'debug': []\n* 'dataloader\\_drop\\_last': False\n* 'dataloader\\_num\\_workers': 0\n* 'dataloader\\_prefetch\\_factor': None\n* 'past\\_index': -1\n* 'disable\\_tqdm': False\n* 'remove\\_unused\\_columns': True\n* 'label\\_names': None\n* 'load\\_best\\_model\\_at\\_end': False\n* 'ignore\\_data\\_skip': False\n* 'fsdp': []\n* 'fsdp\\_min\\_num\\_params': 0\n* 'fsdp\\_config': {'min\\_num\\_params': 0, 'xla': False, 'xla\\_fsdp\\_v2': False, 'xla\\_fsdp\\_grad\\_ckpt': False}\n* 'fsdp\\_transformer\\_layer\\_cls\\_to\\_wrap': None\n* 'accelerator\\_config': {'split\\_batches': False, 'dispatch\\_batches': None, 'even\\_batches': True, 'use\\_seedable\\_sampler': True, 'non\\_blocking': False, 'gradient\\_accumulation\\_kwargs': None}\n* 'deepspeed': None\n* 'label\\_smoothing\\_factor': 0.0\n* 'optim': adamw\\_torch\n* 'optim\\_args': None\n* 'adafactor': False\n* 'group\\_by\\_length': False\n* 'length\\_column\\_name': length\n* 'ddp\\_find\\_unused\\_parameters': None\n* 'ddp\\_bucket\\_cap\\_mb': None\n* 'ddp\\_broadcast\\_buffers': None\n* 'dataloader\\_pin\\_memory': True\n* 'dataloader\\_persistent\\_workers': False\n* 'skip\\_memory\\_metrics': True\n* 'use\\_legacy\\_prediction\\_loop': False\n* 'push\\_to\\_hub': False\n* 'resume\\_from\\_checkpoint': None\n* 'hub\\_model\\_id': None\n* 'hub\\_strategy': every\\_save\n* 'hub\\_private\\_repo': False\n* 'hub\\_always\\_push': False\n* 'gradient\\_checkpointing': False\n* 'gradient\\_checkpointing\\_kwargs': None\n* 'include\\_inputs\\_for\\_metrics': False\n* 'eval\\_do\\_concat\\_batches': True\n* 'fp16\\_backend': auto\n* 'push\\_to\\_hub\\_model\\_id': None\n* 'push\\_to\\_hub\\_organization': None\n* 'mp\\_parameters':\n* 'auto\\_find\\_batch\\_size': False\n* 'full\\_determinism': False\n* 'torchdynamo': None\n* 'ray\\_scope': last\n* 'ddp\\_timeout': 1800\n* 'torch\\_compile': False\n* 'torch\\_compile\\_backend': None\n* 'torch\\_compile\\_mode': None\n* 'dispatch\\_batches': None\n* 'split\\_batches': None\n* 'include\\_tokens\\_per\\_second': False\n* 'include\\_num\\_input\\_tokens\\_seen': False\n* 'neftune\\_noise\\_alpha': None\n* 'optim\\_target\\_modules': None\n* 'batch\\_sampler': batch\\_sampler\n* 'multi\\_dataset\\_batch\\_sampler': proportional### Training Logs### Environmental Impact\n\n\nCarbon emissions were measured using CodeCarbon.\n\n\n* Energy Consumed: 0.025 kWh\n* Carbon Emitted: 0.010 kg of CO2\n* Hours Used: 0.122 hours### Training Hardware\n\n\n* On Cloud: No\n* GPU Model: 1 x NVIDIA GeForce RTX 3090\n* CPU Model: 13th Gen Intel(R) Core(TM) i7-13700K\n* RAM Size: 31.78 GB### Framework Versions\n\n\n* Python: 3.11.6\n* Sentence Transformers: 3.0.0.dev0\n* Transformers: 4.41.0.dev0\n* PyTorch: 2.3.0+cu121\n* Accelerate: 0.26.1\n* Datasets: 2.18.0\n* Tokenizers: 0.19.1### BibTeX#### Sentence Transformers" ]
reinforcement-learning
ml-agents
# **ppo** Agent playing **SnowballTarget** This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: elisamammi/ppo-SnowballTarget 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
{"library_name": "ml-agents", "tags": ["SnowballTarget", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SnowballTarget"]}
elisamammi/ppo-SnowballTarget
null
[ "ml-agents", "tensorboard", "onnx", "SnowballTarget", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SnowballTarget", "region:us" ]
null
2024-05-02T08:05:51+00:00
[]
[]
TAGS #ml-agents #tensorboard #onnx #SnowballTarget #deep-reinforcement-learning #reinforcement-learning #ML-Agents-SnowballTarget #region-us
# ppo Agent playing SnowballTarget This is a trained model of a ppo agent playing SnowballTarget using the Unity ML-Agents Library. ## Usage (with ML-Agents) The Documentation: URL We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog to fetch the stick and then play with him directly in your browser: URL - A *longer tutorial* to understand how works ML-Agents: URL ### Resume the training ### Watch your Agent play You can watch your agent playing directly in your browser 1. If the environment is part of ML-Agents official environments, go to URL 2. Step 1: Find your model_id: elisamammi/ppo-SnowballTarget 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play
[ "# ppo Agent playing SnowballTarget\n This is a trained model of a ppo agent playing SnowballTarget\n using the Unity ML-Agents Library.\n\n ## Usage (with ML-Agents)\n The Documentation: URL\n\n We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:\n - A *short tutorial* where you teach Huggy the Dog to fetch the stick and then play with him directly in your\n browser: URL\n - A *longer tutorial* to understand how works ML-Agents:\n URL\n\n ### Resume the training\n \n\n ### Watch your Agent play\n You can watch your agent playing directly in your browser\n\n 1. If the environment is part of ML-Agents official environments, go to URL\n 2. Step 1: Find your model_id: elisamammi/ppo-SnowballTarget\n 3. Step 2: Select your *.nn /*.onnx file\n 4. Click on Watch the agent play" ]
[ "TAGS\n#ml-agents #tensorboard #onnx #SnowballTarget #deep-reinforcement-learning #reinforcement-learning #ML-Agents-SnowballTarget #region-us \n", "# ppo Agent playing SnowballTarget\n This is a trained model of a ppo agent playing SnowballTarget\n using the Unity ML-Agents Library.\n\n ## Usage (with ML-Agents)\n The Documentation: URL\n\n We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:\n - A *short tutorial* where you teach Huggy the Dog to fetch the stick and then play with him directly in your\n browser: URL\n - A *longer tutorial* to understand how works ML-Agents:\n URL\n\n ### Resume the training\n \n\n ### Watch your Agent play\n You can watch your agent playing directly in your browser\n\n 1. If the environment is part of ML-Agents official environments, go to URL\n 2. Step 1: Find your model_id: elisamammi/ppo-SnowballTarget\n 3. Step 2: Select your *.nn /*.onnx file\n 4. Click on Watch the agent play" ]
[ 39, 206 ]
[ "TAGS\n#ml-agents #tensorboard #onnx #SnowballTarget #deep-reinforcement-learning #reinforcement-learning #ML-Agents-SnowballTarget #region-us \n# ppo Agent playing SnowballTarget\n This is a trained model of a ppo agent playing SnowballTarget\n using the Unity ML-Agents Library.\n\n ## Usage (with ML-Agents)\n The Documentation: URL\n\n We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:\n - A *short tutorial* where you teach Huggy the Dog to fetch the stick and then play with him directly in your\n browser: URL\n - A *longer tutorial* to understand how works ML-Agents:\n URL\n\n ### Resume the training\n \n\n ### Watch your Agent play\n You can watch your agent playing directly in your browser\n\n 1. If the environment is part of ML-Agents official environments, go to URL\n 2. Step 1: Find your model_id: elisamammi/ppo-SnowballTarget\n 3. Step 2: Select your *.nn /*.onnx file\n 4. Click on Watch the agent play" ]
automatic-speech-recognition
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # whisper-small2-am This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1792 - Wer: 49.4922 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 1000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 0.2743 | 0.7353 | 500 | 0.2626 | 62.6955 | | 0.1487 | 1.4706 | 1000 | 0.1792 | 49.4922 | ### Framework versions - Transformers 4.41.0.dev0 - Pytorch 2.1.2 - Datasets 2.18.0 - Tokenizers 0.19.1
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["wer"], "base_model": "openai/whisper-small", "model-index": [{"name": "whisper-small2-am", "results": []}]}
Gizachew/whisper-small2-am
null
[ "transformers", "tensorboard", "safetensors", "whisper", "automatic-speech-recognition", "generated_from_trainer", "base_model:openai/whisper-small", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-05-02T08:06:00+00:00
[]
[]
TAGS #transformers #tensorboard #safetensors #whisper #automatic-speech-recognition #generated_from_trainer #base_model-openai/whisper-small #license-apache-2.0 #endpoints_compatible #region-us
whisper-small2-am ================= This model is a fine-tuned version of openai/whisper-small on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.1792 * Wer: 49.4922 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 1e-05 * train\_batch\_size: 16 * eval\_batch\_size: 8 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * lr\_scheduler\_warmup\_steps: 500 * training\_steps: 1000 ### Training results ### Framework versions * Transformers 4.41.0.dev0 * Pytorch 2.1.2 * Datasets 2.18.0 * Tokenizers 0.19.1
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 500\n* training\\_steps: 1000", "### Training results", "### Framework versions\n\n\n* Transformers 4.41.0.dev0\n* Pytorch 2.1.2\n* Datasets 2.18.0\n* Tokenizers 0.19.1" ]
[ "TAGS\n#transformers #tensorboard #safetensors #whisper #automatic-speech-recognition #generated_from_trainer #base_model-openai/whisper-small #license-apache-2.0 #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 500\n* training\\_steps: 1000", "### Training results", "### Framework versions\n\n\n* Transformers 4.41.0.dev0\n* Pytorch 2.1.2\n* Datasets 2.18.0\n* Tokenizers 0.19.1" ]
[ 52, 115, 5, 43 ]
[ "TAGS\n#transformers #tensorboard #safetensors #whisper #automatic-speech-recognition #generated_from_trainer #base_model-openai/whisper-small #license-apache-2.0 #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 500\n* training\\_steps: 1000### Training results### Framework versions\n\n\n* Transformers 4.41.0.dev0\n* Pytorch 2.1.2\n* Datasets 2.18.0\n* Tokenizers 0.19.1" ]
null
transformers
# LeroyDyer/Mixtral_AI_CyberFriend_1.0-Q4_K_M-GGUF This model was converted to GGUF format from [`LeroyDyer/Mixtral_AI_CyberFriend_1.0`](https://huggingface.co/LeroyDyer/Mixtral_AI_CyberFriend_1.0) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/LeroyDyer/Mixtral_AI_CyberFriend_1.0) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew. ```bash brew install ggerganov/ggerganov/llama.cpp ``` Invoke the llama.cpp server or the CLI. CLI: ```bash llama-cli --hf-repo LeroyDyer/Mixtral_AI_CyberFriend_1.0-Q4_K_M-GGUF --model mixtral_ai_cyberfriend_1.0.Q4_K_M.gguf -p "The meaning to life and the universe is" ``` Server: ```bash llama-server --hf-repo LeroyDyer/Mixtral_AI_CyberFriend_1.0-Q4_K_M-GGUF --model mixtral_ai_cyberfriend_1.0.Q4_K_M.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. ``` git clone https://github.com/ggerganov/llama.cpp && cd llama.cpp && make && ./main -m mixtral_ai_cyberfriend_1.0.Q4_K_M.gguf -n 128 ```
{"language": ["en"], "license": "apache-2.0", "tags": ["text-generation-inference", "transformers", "unsloth", "mistral", "trl", "nsfw", "PersonalFriend", "llama-cpp", "gguf-my-repo"], "base_model": "LeroyDyer/Mixtral_AI_CyberUltron_DPO"}
LeroyDyer/Mixtral_AI_CyberFriend_1.0_GGUF
null
[ "transformers", "gguf", "text-generation-inference", "unsloth", "mistral", "trl", "nsfw", "PersonalFriend", "llama-cpp", "gguf-my-repo", "en", "base_model:LeroyDyer/Mixtral_AI_CyberUltron_DPO", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-05-02T08:08:13+00:00
[]
[ "en" ]
TAGS #transformers #gguf #text-generation-inference #unsloth #mistral #trl #nsfw #PersonalFriend #llama-cpp #gguf-my-repo #en #base_model-LeroyDyer/Mixtral_AI_CyberUltron_DPO #license-apache-2.0 #endpoints_compatible #region-us
# LeroyDyer/Mixtral_AI_CyberFriend_1.0-Q4_K_M-GGUF This model was converted to GGUF format from 'LeroyDyer/Mixtral_AI_CyberFriend_1.0' using URL via the URL's GGUF-my-repo space. Refer to the original model card for more details on the model. ## Use with URL Install URL through brew. Invoke the URL server or the CLI. CLI: Server: Note: You can also use this checkpoint directly through the usage steps listed in the URL repo as well.
[ "# LeroyDyer/Mixtral_AI_CyberFriend_1.0-Q4_K_M-GGUF\nThis model was converted to GGUF format from 'LeroyDyer/Mixtral_AI_CyberFriend_1.0' using URL via the URL's GGUF-my-repo space.\nRefer to the original model card for more details on the model.", "## Use with URL\n\nInstall URL through brew.\n\n\nInvoke the URL server or the CLI.\n\nCLI:\n\n\n\nServer:\n\n\n\nNote: You can also use this checkpoint directly through the usage steps listed in the URL repo as well." ]
[ "TAGS\n#transformers #gguf #text-generation-inference #unsloth #mistral #trl #nsfw #PersonalFriend #llama-cpp #gguf-my-repo #en #base_model-LeroyDyer/Mixtral_AI_CyberUltron_DPO #license-apache-2.0 #endpoints_compatible #region-us \n", "# LeroyDyer/Mixtral_AI_CyberFriend_1.0-Q4_K_M-GGUF\nThis model was converted to GGUF format from 'LeroyDyer/Mixtral_AI_CyberFriend_1.0' using URL via the URL's GGUF-my-repo space.\nRefer to the original model card for more details on the model.", "## Use with URL\n\nInstall URL through brew.\n\n\nInvoke the URL server or the CLI.\n\nCLI:\n\n\n\nServer:\n\n\n\nNote: You can also use this checkpoint directly through the usage steps listed in the URL repo as well." ]
[ 86, 90, 52 ]
[ "TAGS\n#transformers #gguf #text-generation-inference #unsloth #mistral #trl #nsfw #PersonalFriend #llama-cpp #gguf-my-repo #en #base_model-LeroyDyer/Mixtral_AI_CyberUltron_DPO #license-apache-2.0 #endpoints_compatible #region-us \n# LeroyDyer/Mixtral_AI_CyberFriend_1.0-Q4_K_M-GGUF\nThis model was converted to GGUF format from 'LeroyDyer/Mixtral_AI_CyberFriend_1.0' using URL via the URL's GGUF-my-repo space.\nRefer to the original model card for more details on the model.## Use with URL\n\nInstall URL through brew.\n\n\nInvoke the URL server or the CLI.\n\nCLI:\n\n\n\nServer:\n\n\n\nNote: You can also use this checkpoint directly through the usage steps listed in the URL repo as well." ]
null
transformers
# Uploaded model - **Developed by:** Parssky - **License:** apache-2.0 - **Finetuned from model :** unsloth/llama-3-8b-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
{"language": ["en"], "license": "apache-2.0", "tags": ["text-generation-inference", "transformers", "unsloth", "llama", "trl"], "base_model": "unsloth/llama-3-8b-bnb-4bit"}
Parssky/LoRAAdaptermodel
null
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "llama", "trl", "en", "base_model:unsloth/llama-3-8b-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-05-02T08:08:32+00:00
[]
[ "en" ]
TAGS #transformers #safetensors #text-generation-inference #unsloth #llama #trl #en #base_model-unsloth/llama-3-8b-bnb-4bit #license-apache-2.0 #endpoints_compatible #region-us
# Uploaded model - Developed by: Parssky - License: apache-2.0 - Finetuned from model : unsloth/llama-3-8b-bnb-4bit This llama model was trained 2x faster with Unsloth and Huggingface's TRL library. <img src="URL width="200"/>
[ "# Uploaded model\n\n- Developed by: Parssky\n- License: apache-2.0\n- Finetuned from model : unsloth/llama-3-8b-bnb-4bit\n\nThis llama model was trained 2x faster with Unsloth and Huggingface's TRL library.\n\n<img src=\"URL width=\"200\"/>" ]
[ "TAGS\n#transformers #safetensors #text-generation-inference #unsloth #llama #trl #en #base_model-unsloth/llama-3-8b-bnb-4bit #license-apache-2.0 #endpoints_compatible #region-us \n", "# Uploaded model\n\n- Developed by: Parssky\n- License: apache-2.0\n- Finetuned from model : unsloth/llama-3-8b-bnb-4bit\n\nThis llama model was trained 2x faster with Unsloth and Huggingface's TRL library.\n\n<img src=\"URL width=\"200\"/>" ]
[ 64, 80 ]
[ "TAGS\n#transformers #safetensors #text-generation-inference #unsloth #llama #trl #en #base_model-unsloth/llama-3-8b-bnb-4bit #license-apache-2.0 #endpoints_compatible #region-us \n# Uploaded model\n\n- Developed by: Parssky\n- License: apache-2.0\n- Finetuned from model : unsloth/llama-3-8b-bnb-4bit\n\nThis llama model was trained 2x faster with Unsloth and Huggingface's TRL library.\n\n<img src=\"URL width=\"200\"/>" ]
text-generation
transformers
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) roberta-large-squad2 - bnb 8bits - Model creator: https://huggingface.co/deepset/ - Original model: https://huggingface.co/deepset/roberta-large-squad2/ Original model description: --- language: en license: cc-by-4.0 datasets: - squad_v2 base_model: roberta-large model-index: - name: deepset/roberta-large-squad2 results: - task: type: question-answering name: Question Answering dataset: name: squad_v2 type: squad_v2 config: squad_v2 split: validation metrics: - type: exact_match value: 85.168 name: Exact Match - type: f1 value: 88.349 name: F1 - task: type: question-answering name: Question Answering dataset: name: squad type: squad config: plain_text split: validation metrics: - type: exact_match value: 87.162 name: Exact Match - type: f1 value: 93.603 name: F1 - task: type: question-answering name: Question Answering dataset: name: adversarial_qa type: adversarial_qa config: adversarialQA split: validation metrics: - type: exact_match value: 35.900 name: Exact Match - type: f1 value: 48.923 name: F1 - task: type: question-answering name: Question Answering dataset: name: squad_adversarial type: squad_adversarial config: AddOneSent split: validation metrics: - type: exact_match value: 81.142 name: Exact Match - type: f1 value: 87.099 name: F1 - task: type: question-answering name: Question Answering dataset: name: squadshifts amazon type: squadshifts config: amazon split: test metrics: - type: exact_match value: 72.453 name: Exact Match - type: f1 value: 86.325 name: F1 - task: type: question-answering name: Question Answering dataset: name: squadshifts new_wiki type: squadshifts config: new_wiki split: test metrics: - type: exact_match value: 82.338 name: Exact Match - type: f1 value: 91.974 name: F1 - task: type: question-answering name: Question Answering dataset: name: squadshifts nyt type: squadshifts config: nyt split: test metrics: - type: exact_match value: 84.352 name: Exact Match - type: f1 value: 92.645 name: F1 - task: type: question-answering name: Question Answering dataset: name: squadshifts reddit type: squadshifts config: reddit split: test metrics: - type: exact_match value: 74.722 name: Exact Match - type: f1 value: 86.860 name: F1 --- # roberta-large for QA This is the [roberta-large](https://huggingface.co/roberta-large) model, fine-tuned using the [SQuAD2.0](https://huggingface.co/datasets/squad_v2) dataset. It's been trained on question-answer pairs, including unanswerable questions, for the task of Question Answering. ## Overview **Language model:** roberta-large **Language:** English **Downstream-task:** Extractive QA **Training data:** SQuAD 2.0 **Eval data:** SQuAD 2.0 **Code:** See [an example QA pipeline on Haystack](https://haystack.deepset.ai/tutorials/first-qa-system) **Infrastructure**: 4x Tesla v100 ## Hyperparameters ``` base_LM_model = "roberta-large" ``` ## Using a distilled model instead Please note that we have also released a distilled version of this model called [deepset/roberta-base-squad2-distilled](https://huggingface.co/deepset/roberta-base-squad2-distilled). The distilled model has a comparable prediction quality and runs at twice the speed of the large model. ## Usage ### In Haystack Haystack is an NLP framework by deepset. You can use this model in a Haystack pipeline to do question answering at scale (over many documents). To load the model in [Haystack](https://github.com/deepset-ai/haystack/): ```python reader = FARMReader(model_name_or_path="deepset/roberta-large-squad2") # or reader = TransformersReader(model_name_or_path="deepset/roberta-large-squad2",tokenizer="deepset/roberta-large-squad2") ``` For a complete example of ``roberta-large-squad2`` being used for Question Answering, check out the [Tutorials in Haystack Documentation](https://haystack.deepset.ai/tutorials/first-qa-system) ### In Transformers ```python from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline model_name = "deepset/roberta-large-squad2" # a) Get predictions nlp = pipeline('question-answering', model=model_name, tokenizer=model_name) QA_input = { 'question': 'Why is model conversion important?', 'context': 'The option to convert models between FARM and transformers gives freedom to the user and let people easily switch between frameworks.' } res = nlp(QA_input) # b) Load model & tokenizer model = AutoModelForQuestionAnswering.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) ``` ## Authors **Branden Chan:** [email protected] **Timo Möller:** [email protected] **Malte Pietsch:** [email protected] **Tanay Soni:** [email protected] ## About us <div class="grid lg:grid-cols-2 gap-x-4 gap-y-3"> <div class="w-full h-40 object-cover mb-2 rounded-lg flex items-center justify-center"> <img alt="" src="https://raw.githubusercontent.com/deepset-ai/.github/main/deepset-logo-colored.png" class="w-40"/> </div> <div class="w-full h-40 object-cover mb-2 rounded-lg flex items-center justify-center"> <img alt="" src="https://raw.githubusercontent.com/deepset-ai/.github/main/haystack-logo-colored.png" class="w-40"/> </div> </div> [deepset](http://deepset.ai/) is the company behind the open-source NLP framework [Haystack](https://haystack.deepset.ai/) which is designed to help you build production ready NLP systems that use: Question answering, summarization, ranking etc. Some of our other work: - [Distilled roberta-base-squad2 (aka "tinyroberta-squad2")]([https://huggingface.co/deepset/tinyroberta-squad2) - [German BERT (aka "bert-base-german-cased")](https://deepset.ai/german-bert) - [GermanQuAD and GermanDPR datasets and models (aka "gelectra-base-germanquad", "gbert-base-germandpr")](https://deepset.ai/germanquad) ## Get in touch and join the Haystack community <p>For more info on Haystack, visit our <strong><a href="https://github.com/deepset-ai/haystack">GitHub</a></strong> repo and <strong><a href="https://docs.haystack.deepset.ai">Documentation</a></strong>. We also have a <strong><a class="h-7" href="https://haystack.deepset.ai/community">Discord community open to everyone!</a></strong></p> [Twitter](https://twitter.com/deepset_ai) | [LinkedIn](https://www.linkedin.com/company/deepset-ai/) | [Discord](https://haystack.deepset.ai/community) | [GitHub Discussions](https://github.com/deepset-ai/haystack/discussions) | [Website](https://deepset.ai) By the way: [we're hiring!](http://www.deepset.ai/jobs)
{}
RichardErkhov/deepset_-_roberta-large-squad2-8bits
null
[ "transformers", "safetensors", "roberta", "text-generation", "autotrain_compatible", "endpoints_compatible", "8-bit", "region:us" ]
null
2024-05-02T08:10:48+00:00
[]
[]
TAGS #transformers #safetensors #roberta #text-generation #autotrain_compatible #endpoints_compatible #8-bit #region-us
Quantization made by Richard Erkhov. Github Discord Request more models roberta-large-squad2 - bnb 8bits - Model creator: URL - Original model: URL Original model description: --- language: en license: cc-by-4.0 datasets: - squad_v2 base_model: roberta-large model-index: - name: deepset/roberta-large-squad2 results: - task: type: question-answering name: Question Answering dataset: name: squad_v2 type: squad_v2 config: squad_v2 split: validation metrics: - type: exact_match value: 85.168 name: Exact Match - type: f1 value: 88.349 name: F1 - task: type: question-answering name: Question Answering dataset: name: squad type: squad config: plain_text split: validation metrics: - type: exact_match value: 87.162 name: Exact Match - type: f1 value: 93.603 name: F1 - task: type: question-answering name: Question Answering dataset: name: adversarial_qa type: adversarial_qa config: adversarialQA split: validation metrics: - type: exact_match value: 35.900 name: Exact Match - type: f1 value: 48.923 name: F1 - task: type: question-answering name: Question Answering dataset: name: squad_adversarial type: squad_adversarial config: AddOneSent split: validation metrics: - type: exact_match value: 81.142 name: Exact Match - type: f1 value: 87.099 name: F1 - task: type: question-answering name: Question Answering dataset: name: squadshifts amazon type: squadshifts config: amazon split: test metrics: - type: exact_match value: 72.453 name: Exact Match - type: f1 value: 86.325 name: F1 - task: type: question-answering name: Question Answering dataset: name: squadshifts new_wiki type: squadshifts config: new_wiki split: test metrics: - type: exact_match value: 82.338 name: Exact Match - type: f1 value: 91.974 name: F1 - task: type: question-answering name: Question Answering dataset: name: squadshifts nyt type: squadshifts config: nyt split: test metrics: - type: exact_match value: 84.352 name: Exact Match - type: f1 value: 92.645 name: F1 - task: type: question-answering name: Question Answering dataset: name: squadshifts reddit type: squadshifts config: reddit split: test metrics: - type: exact_match value: 74.722 name: Exact Match - type: f1 value: 86.860 name: F1 --- # roberta-large for QA This is the roberta-large model, fine-tuned using the SQuAD2.0 dataset. It's been trained on question-answer pairs, including unanswerable questions, for the task of Question Answering. ## Overview Language model: roberta-large Language: English Downstream-task: Extractive QA Training data: SQuAD 2.0 Eval data: SQuAD 2.0 Code: See an example QA pipeline on Haystack Infrastructure: 4x Tesla v100 ## Hyperparameters ## Using a distilled model instead Please note that we have also released a distilled version of this model called deepset/roberta-base-squad2-distilled. The distilled model has a comparable prediction quality and runs at twice the speed of the large model. ## Usage ### In Haystack Haystack is an NLP framework by deepset. You can use this model in a Haystack pipeline to do question answering at scale (over many documents). To load the model in Haystack: For a complete example of ''roberta-large-squad2'' being used for Question Answering, check out the Tutorials in Haystack Documentation ### In Transformers ## Authors Branden Chan: URL@URL Timo Möller: timo.moeller@URL Malte Pietsch: malte.pietsch@URL Tanay Soni: URL@URL ## About us <div class="grid lg:grid-cols-2 gap-x-4 gap-y-3"> <div class="w-full h-40 object-cover mb-2 rounded-lg flex items-center justify-center"> <img alt="" src="URL class="w-40"/> </div> <div class="w-full h-40 object-cover mb-2 rounded-lg flex items-center justify-center"> <img alt="" src="URL class="w-40"/> </div> </div> deepset is the company behind the open-source NLP framework Haystack which is designed to help you build production ready NLP systems that use: Question answering, summarization, ranking etc. Some of our other work: - Distilled roberta-base-squad2 (aka "tinyroberta-squad2") - German BERT (aka "bert-base-german-cased") - GermanQuAD and GermanDPR datasets and models (aka "gelectra-base-germanquad", "gbert-base-germandpr") ## Get in touch and join the Haystack community <p>For more info on Haystack, visit our <strong><a href="URL repo and <strong><a href="URL">Documentation</a></strong>. We also have a <strong><a class="h-7" href="URL community open to everyone!</a></strong></p> Twitter | LinkedIn | Discord | GitHub Discussions | Website By the way: we're hiring!
[ "# roberta-large for QA \n\nThis is the roberta-large model, fine-tuned using the SQuAD2.0 dataset. It's been trained on question-answer pairs, including unanswerable questions, for the task of Question Answering.", "## Overview\nLanguage model: roberta-large \nLanguage: English \nDownstream-task: Extractive QA \nTraining data: SQuAD 2.0 \nEval data: SQuAD 2.0 \nCode: See an example QA pipeline on Haystack \nInfrastructure: 4x Tesla v100", "## Hyperparameters", "## Using a distilled model instead\nPlease note that we have also released a distilled version of this model called deepset/roberta-base-squad2-distilled. The distilled model has a comparable prediction quality and runs at twice the speed of the large model.", "## Usage", "### In Haystack\nHaystack is an NLP framework by deepset. You can use this model in a Haystack pipeline to do question answering at scale (over many documents). To load the model in Haystack:\n\nFor a complete example of ''roberta-large-squad2'' being used for Question Answering, check out the Tutorials in Haystack Documentation", "### In Transformers", "## Authors\nBranden Chan: URL@URL \nTimo Möller: timo.moeller@URL \nMalte Pietsch: malte.pietsch@URL \nTanay Soni: URL@URL", "## About us\n\n<div class=\"grid lg:grid-cols-2 gap-x-4 gap-y-3\">\n <div class=\"w-full h-40 object-cover mb-2 rounded-lg flex items-center justify-center\">\n <img alt=\"\" src=\"URL class=\"w-40\"/>\n </div>\n <div class=\"w-full h-40 object-cover mb-2 rounded-lg flex items-center justify-center\">\n <img alt=\"\" src=\"URL class=\"w-40\"/>\n </div>\n</div>\n\ndeepset is the company behind the open-source NLP framework Haystack which is designed to help you build production ready NLP systems that use: Question answering, summarization, ranking etc.\n\n\nSome of our other work: \n- Distilled roberta-base-squad2 (aka \"tinyroberta-squad2\")\n- German BERT (aka \"bert-base-german-cased\")\n- GermanQuAD and GermanDPR datasets and models (aka \"gelectra-base-germanquad\", \"gbert-base-germandpr\")", "## Get in touch and join the Haystack community\n\n<p>For more info on Haystack, visit our <strong><a href=\"URL repo and <strong><a href=\"URL\">Documentation</a></strong>. \n\nWe also have a <strong><a class=\"h-7\" href=\"URL community open to everyone!</a></strong></p>\n\nTwitter | LinkedIn | Discord | GitHub Discussions | Website\n\nBy the way: we're hiring!" ]
[ "TAGS\n#transformers #safetensors #roberta #text-generation #autotrain_compatible #endpoints_compatible #8-bit #region-us \n", "# roberta-large for QA \n\nThis is the roberta-large model, fine-tuned using the SQuAD2.0 dataset. It's been trained on question-answer pairs, including unanswerable questions, for the task of Question Answering.", "## Overview\nLanguage model: roberta-large \nLanguage: English \nDownstream-task: Extractive QA \nTraining data: SQuAD 2.0 \nEval data: SQuAD 2.0 \nCode: See an example QA pipeline on Haystack \nInfrastructure: 4x Tesla v100", "## Hyperparameters", "## Using a distilled model instead\nPlease note that we have also released a distilled version of this model called deepset/roberta-base-squad2-distilled. The distilled model has a comparable prediction quality and runs at twice the speed of the large model.", "## Usage", "### In Haystack\nHaystack is an NLP framework by deepset. You can use this model in a Haystack pipeline to do question answering at scale (over many documents). To load the model in Haystack:\n\nFor a complete example of ''roberta-large-squad2'' being used for Question Answering, check out the Tutorials in Haystack Documentation", "### In Transformers", "## Authors\nBranden Chan: URL@URL \nTimo Möller: timo.moeller@URL \nMalte Pietsch: malte.pietsch@URL \nTanay Soni: URL@URL", "## About us\n\n<div class=\"grid lg:grid-cols-2 gap-x-4 gap-y-3\">\n <div class=\"w-full h-40 object-cover mb-2 rounded-lg flex items-center justify-center\">\n <img alt=\"\" src=\"URL class=\"w-40\"/>\n </div>\n <div class=\"w-full h-40 object-cover mb-2 rounded-lg flex items-center justify-center\">\n <img alt=\"\" src=\"URL class=\"w-40\"/>\n </div>\n</div>\n\ndeepset is the company behind the open-source NLP framework Haystack which is designed to help you build production ready NLP systems that use: Question answering, summarization, ranking etc.\n\n\nSome of our other work: \n- Distilled roberta-base-squad2 (aka \"tinyroberta-squad2\")\n- German BERT (aka \"bert-base-german-cased\")\n- GermanQuAD and GermanDPR datasets and models (aka \"gelectra-base-germanquad\", \"gbert-base-germandpr\")", "## Get in touch and join the Haystack community\n\n<p>For more info on Haystack, visit our <strong><a href=\"URL repo and <strong><a href=\"URL\">Documentation</a></strong>. \n\nWe also have a <strong><a class=\"h-7\" href=\"URL community open to everyone!</a></strong></p>\n\nTwitter | LinkedIn | Discord | GitHub Discussions | Website\n\nBy the way: we're hiring!" ]
[ 31, 52, 54, 6, 60, 3, 82, 5, 50, 276, 124 ]
[ "TAGS\n#transformers #safetensors #roberta #text-generation #autotrain_compatible #endpoints_compatible #8-bit #region-us \n# roberta-large for QA \n\nThis is the roberta-large model, fine-tuned using the SQuAD2.0 dataset. It's been trained on question-answer pairs, including unanswerable questions, for the task of Question Answering.## Overview\nLanguage model: roberta-large \nLanguage: English \nDownstream-task: Extractive QA \nTraining data: SQuAD 2.0 \nEval data: SQuAD 2.0 \nCode: See an example QA pipeline on Haystack \nInfrastructure: 4x Tesla v100## Hyperparameters## Using a distilled model instead\nPlease note that we have also released a distilled version of this model called deepset/roberta-base-squad2-distilled. The distilled model has a comparable prediction quality and runs at twice the speed of the large model.## Usage### In Haystack\nHaystack is an NLP framework by deepset. You can use this model in a Haystack pipeline to do question answering at scale (over many documents). To load the model in Haystack:\n\nFor a complete example of ''roberta-large-squad2'' being used for Question Answering, check out the Tutorials in Haystack Documentation### In Transformers## Authors\nBranden Chan: URL@URL \nTimo Möller: timo.moeller@URL \nMalte Pietsch: malte.pietsch@URL \nTanay Soni: URL@URL## About us\n\n<div class=\"grid lg:grid-cols-2 gap-x-4 gap-y-3\">\n <div class=\"w-full h-40 object-cover mb-2 rounded-lg flex items-center justify-center\">\n <img alt=\"\" src=\"URL class=\"w-40\"/>\n </div>\n <div class=\"w-full h-40 object-cover mb-2 rounded-lg flex items-center justify-center\">\n <img alt=\"\" src=\"URL class=\"w-40\"/>\n </div>\n</div>\n\ndeepset is the company behind the open-source NLP framework Haystack which is designed to help you build production ready NLP systems that use: Question answering, summarization, ranking etc.\n\n\nSome of our other work: \n- Distilled roberta-base-squad2 (aka \"tinyroberta-squad2\")\n- German BERT (aka \"bert-base-german-cased\")\n- GermanQuAD and GermanDPR datasets and models (aka \"gelectra-base-germanquad\", \"gbert-base-germandpr\")## Get in touch and join the Haystack community\n\n<p>For more info on Haystack, visit our <strong><a href=\"URL repo and <strong><a href=\"URL\">Documentation</a></strong>. \n\nWe also have a <strong><a class=\"h-7\" href=\"URL community open to everyone!</a></strong></p>\n\nTwitter | LinkedIn | Discord | GitHub Discussions | Website\n\nBy the way: we're hiring!" ]
text-generation
transformers
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) tiny-random-LlamaForCausalLM - bnb 4bits - Model creator: https://huggingface.co/trl-internal-testing/ - Original model: https://huggingface.co/trl-internal-testing/tiny-random-LlamaForCausalLM/ Original model description: --- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{}
RichardErkhov/trl-internal-testing_-_tiny-random-LlamaForCausalLM-4bits
null
[ "transformers", "safetensors", "llama", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "4-bit", "region:us" ]
null
2024-05-02T08:11:06+00:00
[ "1910.09700" ]
[]
TAGS #transformers #safetensors #llama #text-generation #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #4-bit #region-us
Quantization made by Richard Erkhov. Github Discord Request more models tiny-random-LlamaForCausalLM - bnb 4bits - Model creator: URL - Original model: URL Original model description: --- library_name: transformers tags: [] --- # Model Card for Model ID ## Model Details ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #safetensors #llama #text-generation #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #4-bit #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ 48, 6, 4, 75, 23, 3, 5, 8, 9, 8, 34, 20, 4, 5, 5, 11, 13, 12, 3, 10, 6, 5, 6, 4, 5, 7, 49, 7, 7, 5, 5, 15, 7, 7, 8, 5 ]
[ "TAGS\n#transformers #safetensors #llama #text-generation #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #4-bit #region-us \n# Model Card for Model ID## Model Details### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Downstream Use [optional]### Out-of-Scope Use## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.## How to Get Started with the Model\n\nUse the code below to get started with the model.## Training Details### Training Data### Training Procedure#### Preprocessing [optional]#### Training Hyperparameters\n\n- Training regime:#### Speeds, Sizes, Times [optional]## Evaluation### Testing Data, Factors & Metrics#### Testing Data#### Factors#### Metrics### Results#### Summary## Model Examination [optional]## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:## Technical Specifications [optional]### Model Architecture and Objective### Compute Infrastructure#### Hardware#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Model Card Authors [optional]## Model Card Contact" ]
text-generation
transformers
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) tiny-random-LlamaForCausalLM - bnb 8bits - Model creator: https://huggingface.co/trl-internal-testing/ - Original model: https://huggingface.co/trl-internal-testing/tiny-random-LlamaForCausalLM/ Original model description: --- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{}
RichardErkhov/trl-internal-testing_-_tiny-random-LlamaForCausalLM-8bits
null
[ "transformers", "safetensors", "llama", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "8-bit", "region:us" ]
null
2024-05-02T08:11:22+00:00
[ "1910.09700" ]
[]
TAGS #transformers #safetensors #llama #text-generation #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #8-bit #region-us
Quantization made by Richard Erkhov. Github Discord Request more models tiny-random-LlamaForCausalLM - bnb 8bits - Model creator: URL - Original model: URL Original model description: --- library_name: transformers tags: [] --- # Model Card for Model ID ## Model Details ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #safetensors #llama #text-generation #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #8-bit #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ 48, 6, 4, 75, 23, 3, 5, 8, 9, 8, 34, 20, 4, 5, 5, 11, 13, 12, 3, 10, 6, 5, 6, 4, 5, 7, 49, 7, 7, 5, 5, 15, 7, 7, 8, 5 ]
[ "TAGS\n#transformers #safetensors #llama #text-generation #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #8-bit #region-us \n# Model Card for Model ID## Model Details### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Downstream Use [optional]### Out-of-Scope Use## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.## How to Get Started with the Model\n\nUse the code below to get started with the model.## Training Details### Training Data### Training Procedure#### Preprocessing [optional]#### Training Hyperparameters\n\n- Training regime:#### Speeds, Sizes, Times [optional]## Evaluation### Testing Data, Factors & Metrics#### Testing Data#### Factors#### Metrics### Results#### Summary## Model Examination [optional]## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:## Technical Specifications [optional]### Model Architecture and Objective### Compute Infrastructure#### Hardware#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Model Card Authors [optional]## Model Card Contact" ]
null
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
abhayesian/Bobzilla_DPO
null
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-05-02T08:12:53+00:00
[ "1910.09700" ]
[]
TAGS #transformers #safetensors #arxiv-1910.09700 #endpoints_compatible #region-us
# Model Card for Model ID ## Model Details ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #safetensors #arxiv-1910.09700 #endpoints_compatible #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ 26, 6, 4, 75, 23, 3, 5, 8, 9, 8, 34, 20, 4, 5, 5, 11, 13, 12, 3, 10, 6, 5, 6, 4, 5, 7, 49, 7, 7, 5, 5, 15, 7, 7, 8, 5 ]
[ "TAGS\n#transformers #safetensors #arxiv-1910.09700 #endpoints_compatible #region-us \n# Model Card for Model ID## Model Details### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Downstream Use [optional]### Out-of-Scope Use## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.## How to Get Started with the Model\n\nUse the code below to get started with the model.## Training Details### Training Data### Training Procedure#### Preprocessing [optional]#### Training Hyperparameters\n\n- Training regime:#### Speeds, Sizes, Times [optional]## Evaluation### Testing Data, Factors & Metrics#### Testing Data#### Factors#### Metrics### Results#### Summary## Model Examination [optional]## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:## Technical Specifications [optional]### Model Architecture and Objective### Compute Infrastructure#### Hardware#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Model Card Authors [optional]## Model Card Contact" ]
text-generation
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # llama3-8b_cp-p1_tv-llama3-emb_spin-kto-b8.3p3b1 This model was trained from scratch on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 16 - total_train_batch_size: 16 - total_eval_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.40.1 - Pytorch 2.2.1+cu121 - Datasets 2.19.0 - Tokenizers 0.19.1
{"tags": ["trl", "kto", "generated_from_trainer"], "model-index": [{"name": "llama3-8b_cp-p1_tv-llama3-emb_spin-kto-b8.3p3b1", "results": []}]}
superemohot/llama3-8b_cp-p1_tv-llama3-emb_spin-kto-b8.3p3b1
null
[ "transformers", "safetensors", "llama", "text-generation", "trl", "kto", "generated_from_trainer", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-05-02T08:14:19+00:00
[]
[]
TAGS #transformers #safetensors #llama #text-generation #trl #kto #generated_from_trainer #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# llama3-8b_cp-p1_tv-llama3-emb_spin-kto-b8.3p3b1 This model was trained from scratch on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 16 - total_train_batch_size: 16 - total_eval_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.40.1 - Pytorch 2.2.1+cu121 - Datasets 2.19.0 - Tokenizers 0.19.1
[ "# llama3-8b_cp-p1_tv-llama3-emb_spin-kto-b8.3p3b1\n\nThis model was trained from scratch on the None dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 1e-05\n- train_batch_size: 1\n- eval_batch_size: 8\n- seed: 42\n- distributed_type: multi-GPU\n- num_devices: 16\n- total_train_batch_size: 16\n- total_eval_batch_size: 128\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: cosine\n- lr_scheduler_warmup_ratio: 0.1\n- num_epochs: 3.0", "### Training results", "### Framework versions\n\n- Transformers 4.40.1\n- Pytorch 2.2.1+cu121\n- Datasets 2.19.0\n- Tokenizers 0.19.1" ]
[ "TAGS\n#transformers #safetensors #llama #text-generation #trl #kto #generated_from_trainer #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# llama3-8b_cp-p1_tv-llama3-emb_spin-kto-b8.3p3b1\n\nThis model was trained from scratch on the None dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 1e-05\n- train_batch_size: 1\n- eval_batch_size: 8\n- seed: 42\n- distributed_type: multi-GPU\n- num_devices: 16\n- total_train_batch_size: 16\n- total_eval_batch_size: 128\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: cosine\n- lr_scheduler_warmup_ratio: 0.1\n- num_epochs: 3.0", "### Training results", "### Framework versions\n\n- Transformers 4.40.1\n- Pytorch 2.2.1+cu121\n- Datasets 2.19.0\n- Tokenizers 0.19.1" ]
[ 49, 47, 7, 9, 9, 4, 149, 5, 44 ]
[ "TAGS\n#transformers #safetensors #llama #text-generation #trl #kto #generated_from_trainer #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# llama3-8b_cp-p1_tv-llama3-emb_spin-kto-b8.3p3b1\n\nThis model was trained from scratch on the None dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 1e-05\n- train_batch_size: 1\n- eval_batch_size: 8\n- seed: 42\n- distributed_type: multi-GPU\n- num_devices: 16\n- total_train_batch_size: 16\n- total_eval_batch_size: 128\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: cosine\n- lr_scheduler_warmup_ratio: 0.1\n- num_epochs: 3.0### Training results### Framework versions\n\n- Transformers 4.40.1\n- Pytorch 2.2.1+cu121\n- Datasets 2.19.0\n- Tokenizers 0.19.1" ]
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # speaker-segmentation-fine-tuned-ami This model is a fine-tuned version of [pyannote/segmentation-3.0](https://huggingface.co/pyannote/segmentation-3.0) on the diarizers-community/ami ihm dataset. It achieves the following results on the evaluation set: - Loss: 0.3660 - Der: 0.1396 - False Alarm: 0.0503 - Missed Detection: 0.0578 - Confusion: 0.0314 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 5.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Der | False Alarm | Missed Detection | Confusion | |:-------------:|:-----:|:----:|:---------------:|:------:|:-----------:|:----------------:|:---------:| | 0.4133 | 1.0 | 1427 | 0.3629 | 0.1388 | 0.0424 | 0.0646 | 0.0318 | | 0.3907 | 2.0 | 2854 | 0.3638 | 0.1400 | 0.0492 | 0.0583 | 0.0324 | | 0.3651 | 3.0 | 4281 | 0.3631 | 0.1403 | 0.0506 | 0.0581 | 0.0316 | | 0.3692 | 4.0 | 5708 | 0.3643 | 0.1394 | 0.0489 | 0.0591 | 0.0314 | | 0.3484 | 5.0 | 7135 | 0.3660 | 0.1396 | 0.0503 | 0.0578 | 0.0314 | ### Framework versions - Transformers 4.40.1 - Pytorch 2.2.0+cu121 - Datasets 2.17.0 - Tokenizers 0.19.1
{"license": "mit", "tags": ["speaker-diarization", "speaker-segmentation", "generated_from_trainer"], "datasets": ["diarizers-community/ami"], "base_model": "pyannote/segmentation-3.0", "model-index": [{"name": "speaker-segmentation-fine-tuned-ami", "results": []}]}
tgrhn/speaker-segmentation-fine-tuned-ami
null
[ "transformers", "tensorboard", "safetensors", "pyannet", "speaker-diarization", "speaker-segmentation", "generated_from_trainer", "dataset:diarizers-community/ami", "base_model:pyannote/segmentation-3.0", "license:mit", "endpoints_compatible", "region:us" ]
null
2024-05-02T08:14:51+00:00
[]
[]
TAGS #transformers #tensorboard #safetensors #pyannet #speaker-diarization #speaker-segmentation #generated_from_trainer #dataset-diarizers-community/ami #base_model-pyannote/segmentation-3.0 #license-mit #endpoints_compatible #region-us
speaker-segmentation-fine-tuned-ami =================================== This model is a fine-tuned version of pyannote/segmentation-3.0 on the diarizers-community/ami ihm dataset. It achieves the following results on the evaluation set: * Loss: 0.3660 * Der: 0.1396 * False Alarm: 0.0503 * Missed Detection: 0.0578 * Confusion: 0.0314 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 0.001 * train\_batch\_size: 32 * eval\_batch\_size: 32 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: cosine * num\_epochs: 5.0 ### Training results ### Framework versions * Transformers 4.40.1 * Pytorch 2.2.0+cu121 * Datasets 2.17.0 * Tokenizers 0.19.1
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.001\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: cosine\n* num\\_epochs: 5.0", "### Training results", "### Framework versions\n\n\n* Transformers 4.40.1\n* Pytorch 2.2.0+cu121\n* Datasets 2.17.0\n* Tokenizers 0.19.1" ]
[ "TAGS\n#transformers #tensorboard #safetensors #pyannet #speaker-diarization #speaker-segmentation #generated_from_trainer #dataset-diarizers-community/ami #base_model-pyannote/segmentation-3.0 #license-mit #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.001\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: cosine\n* num\\_epochs: 5.0", "### Training results", "### Framework versions\n\n\n* Transformers 4.40.1\n* Pytorch 2.2.0+cu121\n* Datasets 2.17.0\n* Tokenizers 0.19.1" ]
[ 69, 104, 5, 44 ]
[ "TAGS\n#transformers #tensorboard #safetensors #pyannet #speaker-diarization #speaker-segmentation #generated_from_trainer #dataset-diarizers-community/ami #base_model-pyannote/segmentation-3.0 #license-mit #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.001\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: cosine\n* num\\_epochs: 5.0### Training results### Framework versions\n\n\n* Transformers 4.40.1\n* Pytorch 2.2.0+cu121\n* Datasets 2.17.0\n* Tokenizers 0.19.1" ]
text2text-generation
transformers
Model for English to Serbian translation. Base model is HelsinkiNLP sh model. Fine-tuned using OPUS-100 dataset, which was modified with Paraphrasing Database size L.
{"license": "mit"}
perkan/shortL-opus-mt-tc-base-en-sr
null
[ "transformers", "pytorch", "marian", "text2text-generation", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2024-05-02T08:15:40+00:00
[]
[]
TAGS #transformers #pytorch #marian #text2text-generation #license-mit #autotrain_compatible #endpoints_compatible #region-us
Model for English to Serbian translation. Base model is HelsinkiNLP sh model. Fine-tuned using OPUS-100 dataset, which was modified with Paraphrasing Database size L.
[]
[ "TAGS\n#transformers #pytorch #marian #text2text-generation #license-mit #autotrain_compatible #endpoints_compatible #region-us \n" ]
[ 34 ]
[ "TAGS\n#transformers #pytorch #marian #text2text-generation #license-mit #autotrain_compatible #endpoints_compatible #region-us \n" ]
sentence-similarity
sentence-transformers
# SentenceTransformer based on distilbert/distilbert-base-uncased This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [distilbert/distilbert-base-uncased](https://huggingface.co/distilbert/distilbert-base-uncased) on the [sentence-transformers/stsb](https://huggingface.co/datasets/sentence-transformers/stsb) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [distilbert/distilbert-base-uncased](https://huggingface.co/distilbert/distilbert-base-uncased) <!-- at revision 6cdc0aad91f5ae2e6712e91bc7b65d1cf5c05411 --> - **Maximum Sequence Length:** 512 tokens - **Output Dimensionality:** 768 tokens - **Similarity Function:** Cosine Similarity - **Training Dataset:** - [sentence-transformers/stsb](https://huggingface.co/datasets/sentence-transformers/stsb) - **Language:** en <!-- - **License:** Unknown --> ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DistilBertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("tomaarsen/distilbert-base-uncased-sts") # Run inference sentences = [ 'A plane is landing.', 'A animated airplane is landing.', 'Some cyclists stop near a sign.', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 768] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings) print(similarities.shape) # [3, 3] ``` <!-- ### Direct Usage (Transformers) <details><summary>Click to see the direct usage in Transformers</summary> </details> --> <!-- ### Downstream Usage (Sentence Transformers) You can finetune this model on your own dataset. <details><summary>Click to expand</summary> </details> --> <!-- ### Out-of-Scope Use *List how the model may foreseeably be misused and address what users ought not to do with the model.* --> ## Evaluation ### Metrics #### Semantic Similarity * Dataset: `sts-dev` * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) | Metric | Value | |:--------------------|:----------| | pearson_cosine | 0.8733 | | **spearman_cosine** | **0.872** | | pearson_manhattan | 0.8466 | | spearman_manhattan | 0.849 | | pearson_euclidean | 0.8463 | | spearman_euclidean | 0.8489 | | pearson_dot | 0.8191 | | spearman_dot | 0.8226 | | pearson_max | 0.8733 | | spearman_max | 0.872 | #### Semantic Similarity * Dataset: `sts-test` * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) | Metric | Value | |:--------------------|:-----------| | pearson_cosine | 0.8419 | | **spearman_cosine** | **0.8424** | | pearson_manhattan | 0.8348 | | spearman_manhattan | 0.8352 | | pearson_euclidean | 0.8356 | | spearman_euclidean | 0.8359 | | pearson_dot | 0.7594 | | spearman_dot | 0.7548 | | pearson_max | 0.8419 | | spearman_max | 0.8424 | <!-- ## Bias, Risks and Limitations *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* --> <!-- ### Recommendations *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* --> ## Training Details ### Training Dataset #### sentence-transformers/stsb * Dataset: [sentence-transformers/stsb](https://huggingface.co/datasets/sentence-transformers/stsb) at [ab7a5ac](https://huggingface.co/datasets/sentence-transformers/stsb/tree/ab7a5ac0e35aa22088bdcf23e7fd99b220e53308) * Size: 5,749 training samples * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code> * Approximate statistics based on the first 1000 samples: | | sentence1 | sentence2 | score | |:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------| | type | string | string | float | | details | <ul><li>min: 6 tokens</li><li>mean: 10.0 tokens</li><li>max: 28 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 9.95 tokens</li><li>max: 25 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.54</li><li>max: 1.0</li></ul> | * Samples: | sentence1 | sentence2 | score | |:-----------------------------------------------------------|:----------------------------------------------------------------------|:------------------| | <code>A plane is taking off.</code> | <code>An air plane is taking off.</code> | <code>1.0</code> | | <code>A man is playing a large flute.</code> | <code>A man is playing a flute.</code> | <code>0.76</code> | | <code>A man is spreading shreded cheese on a pizza.</code> | <code>A man is spreading shredded cheese on an uncooked pizza.</code> | <code>0.76</code> | * Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/losses.html#cosinesimilarityloss) with these parameters: ```json { "loss_fct": "torch.nn.modules.loss.MSELoss" } ``` ### Evaluation Dataset #### sentence-transformers/stsb * Dataset: [sentence-transformers/stsb](https://huggingface.co/datasets/sentence-transformers/stsb) at [ab7a5ac](https://huggingface.co/datasets/sentence-transformers/stsb/tree/ab7a5ac0e35aa22088bdcf23e7fd99b220e53308) * Size: 1,500 evaluation samples * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code> * Approximate statistics based on the first 1000 samples: | | sentence1 | sentence2 | score | |:--------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------| | type | string | string | float | | details | <ul><li>min: 5 tokens</li><li>mean: 15.1 tokens</li><li>max: 45 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 15.11 tokens</li><li>max: 53 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.47</li><li>max: 1.0</li></ul> | * Samples: | sentence1 | sentence2 | score | |:--------------------------------------------------|:------------------------------------------------------|:------------------| | <code>A man with a hard hat is dancing.</code> | <code>A man wearing a hard hat is dancing.</code> | <code>1.0</code> | | <code>A young child is riding a horse.</code> | <code>A child is riding a horse.</code> | <code>0.95</code> | | <code>A man is feeding a mouse to a snake.</code> | <code>The man is feeding a mouse to the snake.</code> | <code>1.0</code> | * Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/losses.html#cosinesimilarityloss) with these parameters: ```json { "loss_fct": "torch.nn.modules.loss.MSELoss" } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: steps - `per_device_train_batch_size`: 16 - `per_device_eval_batch_size`: 16 - `num_train_epochs`: 4 - `warmup_ratio`: 0.1 - `fp16`: True #### All Hyperparameters <details><summary>Click to expand</summary> - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: steps - `prediction_loss_only`: False - `per_device_train_batch_size`: 16 - `per_device_eval_batch_size`: 16 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 1 - `eval_accumulation_steps`: None - `learning_rate`: 5e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 4 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.1 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: False - `fp16`: True - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: False - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: None - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: False - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_sampler`: batch_sampler - `multi_dataset_batch_sampler`: proportional </details> ### Training Logs | Epoch | Step | Training Loss | loss | sts-dev_spearman_cosine | sts-test_spearman_cosine | |:------:|:----:|:-------------:|:------:|:-----------------------:|:------------------------:| | 0.2778 | 100 | 0.0831 | 0.0419 | 0.7999 | - | | 0.5556 | 200 | 0.0325 | 0.0305 | 0.8437 | - | | 0.8333 | 300 | 0.0288 | 0.0260 | 0.8600 | - | | 1.1111 | 400 | 0.02 | 0.0270 | 0.8616 | - | | 1.3889 | 500 | 0.014 | 0.0258 | 0.8667 | - | | 1.6667 | 600 | 0.0122 | 0.0264 | 0.8637 | - | | 1.9444 | 700 | 0.0124 | 0.0259 | 0.8649 | - | | 2.2222 | 800 | 0.0074 | 0.0256 | 0.8694 | - | | 2.5 | 900 | 0.0061 | 0.0261 | 0.8698 | - | | 2.7778 | 1000 | 0.0057 | 0.0250 | 0.8711 | - | | 3.0556 | 1100 | 0.0053 | 0.0251 | 0.8725 | - | | 3.3333 | 1200 | 0.0039 | 0.0252 | 0.8719 | - | | 3.6111 | 1300 | 0.0038 | 0.0250 | 0.8716 | - | | 3.8889 | 1400 | 0.0038 | 0.0247 | 0.8720 | - | | 4.0 | 1440 | - | - | - | 0.8424 | ### Environmental Impact Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon). - **Energy Consumed**: 0.013 kWh - **Carbon Emitted**: 0.005 kg of CO2 - **Hours Used**: 0.067 hours ### Training Hardware - **On Cloud**: No - **GPU Model**: 1 x NVIDIA GeForce RTX 3090 - **CPU Model**: 13th Gen Intel(R) Core(TM) i7-13700K - **RAM Size**: 31.78 GB ### Framework Versions - Python: 3.11.6 - Sentence Transformers: 3.0.0.dev0 - Transformers: 4.41.0.dev0 - PyTorch: 2.3.0+cu121 - Accelerate: 0.26.1 - Datasets: 2.18.0 - Tokenizers: 0.19.1 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` <!-- ## Glossary *Clearly define terms in order to be accessible across audiences.* --> <!-- ## Model Card Authors *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* --> <!-- ## Model Card Contact *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* -->
{"language": ["en"], "library_name": "sentence-transformers", "tags": ["sentence-transformers", "sentence-similarity", "feature-extraction", "loss:CosineSimilarityLoss"], "metrics": ["pearson_cosine", "spearman_cosine", "pearson_manhattan", "spearman_manhattan", "pearson_euclidean", "spearman_euclidean", "pearson_dot", "spearman_dot", "pearson_max", "spearman_max"], "base_model": "distilbert/distilbert-base-uncased", "widget": [{"source_sentence": "A woman is dancing.", "sentences": ["A man is dancing.", "A woman is working as a nurse.", "A man is cutting up carrots."]}, {"source_sentence": "A man shoots a man.", "sentences": ["The man is aiming a gun.", "Three men are playing guitars.", "Two dogs play in the snow."]}, {"source_sentence": "A woman is reading.", "sentences": ["A woman is writing something.", "Three humans are walking a dog.", "A man is peeling shrimp."]}, {"source_sentence": "A baby is laughing.", "sentences": ["The baby laughed in his car seat.", "A man is working on his laptop.", "The woman is slicing green onions."]}, {"source_sentence": "A plane is landing.", "sentences": ["A animated airplane is landing.", "Some cyclists stop near a sign.", "A woman is riding an elephant."]}], "pipeline_tag": "sentence-similarity", "co2_eq_emissions": {"emissions": 5.0253757813406565, "energy_consumed": 0.012928607985913776, "source": "codecarbon", "training_type": "fine-tuning", "on_cloud": false, "cpu_model": "13th Gen Intel(R) Core(TM) i7-13700K", "ram_total_size": 31.777088165283203, "hours_used": 0.067, "hardware_used": "1 x NVIDIA GeForce RTX 3090"}, "model-index": [{"name": "SentenceTransformer based on distilbert/distilbert-base-uncased", "results": [{"task": {"type": "semantic-similarity", "name": "Semantic Similarity"}, "dataset": {"name": "sts dev", "type": "sts-dev"}, "metrics": [{"type": "pearson_cosine", "value": 0.87327521666058, "name": "Pearson Cosine"}, {"type": "spearman_cosine", "value": 0.872005730969712, "name": "Spearman Cosine"}, {"type": "pearson_manhattan", "value": 0.846593999264053, "name": "Pearson Manhattan"}, {"type": "spearman_manhattan", "value": 0.84904284378845, "name": "Spearman Manhattan"}, {"type": "pearson_euclidean", "value": 0.8463188265785382, "name": "Pearson Euclidean"}, {"type": "spearman_euclidean", "value": 0.8489357272038075, "name": "Spearman Euclidean"}, {"type": "pearson_dot", "value": 0.8191213704375112, "name": "Pearson Dot"}, {"type": "spearman_dot", "value": 0.8225766807613754, "name": "Spearman Dot"}, {"type": "pearson_max", "value": 0.87327521666058, "name": "Pearson Max"}, {"type": "spearman_max", "value": 0.872005730969712, "name": "Spearman Max"}]}, {"task": {"type": "semantic-similarity", "name": "Semantic Similarity"}, "dataset": {"name": "sts test", "type": "sts-test"}, "metrics": [{"type": "pearson_cosine", "value": 0.8418963866996422, "name": "Pearson Cosine"}, {"type": "spearman_cosine", "value": 0.8424081129373203, "name": "Spearman Cosine"}, {"type": "pearson_manhattan", "value": 0.8347790870134395, "name": "Pearson Manhattan"}, {"type": "spearman_manhattan", "value": 0.835232698454204, "name": "Spearman Manhattan"}, {"type": "pearson_euclidean", "value": 0.8355968811193554, "name": "Pearson Euclidean"}, {"type": "spearman_euclidean", "value": 0.8359344563739193, "name": "Spearman Euclidean"}, {"type": "pearson_dot", "value": 0.7594306882662424, "name": "Pearson Dot"}, {"type": "spearman_dot", "value": 0.7548478461246698, "name": "Spearman Dot"}, {"type": "pearson_max", "value": 0.8418963866996422, "name": "Pearson Max"}, {"type": "spearman_max", "value": 0.8424081129373203, "name": "Spearman Max"}]}]}]}
tomaarsen/distilbert-base-uncased-sts
null
[ "sentence-transformers", "safetensors", "distilbert", "sentence-similarity", "feature-extraction", "loss:CosineSimilarityLoss", "en", "arxiv:1908.10084", "base_model:distilbert/distilbert-base-uncased", "model-index", "co2_eq_emissions", "endpoints_compatible", "region:us" ]
null
2024-05-02T08:16:12+00:00
[ "1908.10084" ]
[ "en" ]
TAGS #sentence-transformers #safetensors #distilbert #sentence-similarity #feature-extraction #loss-CosineSimilarityLoss #en #arxiv-1908.10084 #base_model-distilbert/distilbert-base-uncased #model-index #co2_eq_emissions #endpoints_compatible #region-us
SentenceTransformer based on distilbert/distilbert-base-uncased =============================================================== This is a sentence-transformers model finetuned from distilbert/distilbert-base-uncased on the sentence-transformers/stsb dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. Model Details ------------- ### Model Description * Model Type: Sentence Transformer * Base model: distilbert/distilbert-base-uncased * Maximum Sequence Length: 512 tokens * Output Dimensionality: 768 tokens * Similarity Function: Cosine Similarity * Training Dataset: + sentence-transformers/stsb * Language: en ### Model Sources * Documentation: Sentence Transformers Documentation * Repository: Sentence Transformers on GitHub * Hugging Face: Sentence Transformers on Hugging Face ### Full Model Architecture Usage ----- ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: Then you can load this model and run inference. Evaluation ---------- ### Metrics #### Semantic Similarity * Dataset: 'sts-dev' * Evaluated with `EmbeddingSimilarityEvaluator` #### Semantic Similarity * Dataset: 'sts-test' * Evaluated with `EmbeddingSimilarityEvaluator` Training Details ---------------- ### Training Dataset #### sentence-transformers/stsb * Dataset: sentence-transformers/stsb at ab7a5ac * Size: 5,749 training samples * Columns: `sentence1`, `sentence2`, and `score` * Approximate statistics based on the first 1000 samples: * Samples: * Loss: `CosineSimilarityLoss` with these parameters: ### Evaluation Dataset #### sentence-transformers/stsb * Dataset: sentence-transformers/stsb at ab7a5ac * Size: 1,500 evaluation samples * Columns: `sentence1`, `sentence2`, and `score` * Approximate statistics based on the first 1000 samples: * Samples: * Loss: `CosineSimilarityLoss` with these parameters: ### Training Hyperparameters #### Non-Default Hyperparameters * 'eval\_strategy': steps * 'per\_device\_train\_batch\_size': 16 * 'per\_device\_eval\_batch\_size': 16 * 'num\_train\_epochs': 4 * 'warmup\_ratio': 0.1 * 'fp16': True #### All Hyperparameters Click to expand * 'overwrite\_output\_dir': False * 'do\_predict': False * 'eval\_strategy': steps * 'prediction\_loss\_only': False * 'per\_device\_train\_batch\_size': 16 * 'per\_device\_eval\_batch\_size': 16 * 'per\_gpu\_train\_batch\_size': None * 'per\_gpu\_eval\_batch\_size': None * 'gradient\_accumulation\_steps': 1 * 'eval\_accumulation\_steps': None * 'learning\_rate': 5e-05 * 'weight\_decay': 0.0 * 'adam\_beta1': 0.9 * 'adam\_beta2': 0.999 * 'adam\_epsilon': 1e-08 * 'max\_grad\_norm': 1.0 * 'num\_train\_epochs': 4 * 'max\_steps': -1 * 'lr\_scheduler\_type': linear * 'lr\_scheduler\_kwargs': {} * 'warmup\_ratio': 0.1 * 'warmup\_steps': 0 * 'log\_level': passive * 'log\_level\_replica': warning * 'log\_on\_each\_node': True * 'logging\_nan\_inf\_filter': True * 'save\_safetensors': True * 'save\_on\_each\_node': False * 'save\_only\_model': False * 'no\_cuda': False * 'use\_cpu': False * 'use\_mps\_device': False * 'seed': 42 * 'data\_seed': None * 'jit\_mode\_eval': False * 'use\_ipex': False * 'bf16': False * 'fp16': True * 'fp16\_opt\_level': O1 * 'half\_precision\_backend': auto * 'bf16\_full\_eval': False * 'fp16\_full\_eval': False * 'tf32': None * 'local\_rank': 0 * 'ddp\_backend': None * 'tpu\_num\_cores': None * 'tpu\_metrics\_debug': False * 'debug': [] * 'dataloader\_drop\_last': False * 'dataloader\_num\_workers': 0 * 'dataloader\_prefetch\_factor': None * 'past\_index': -1 * 'disable\_tqdm': False * 'remove\_unused\_columns': True * 'label\_names': None * 'load\_best\_model\_at\_end': False * 'ignore\_data\_skip': False * 'fsdp': [] * 'fsdp\_min\_num\_params': 0 * 'fsdp\_config': {'min\_num\_params': 0, 'xla': False, 'xla\_fsdp\_v2': False, 'xla\_fsdp\_grad\_ckpt': False} * 'fsdp\_transformer\_layer\_cls\_to\_wrap': None * 'accelerator\_config': {'split\_batches': False, 'dispatch\_batches': None, 'even\_batches': True, 'use\_seedable\_sampler': True, 'non\_blocking': False, 'gradient\_accumulation\_kwargs': None} * 'deepspeed': None * 'label\_smoothing\_factor': 0.0 * 'optim': adamw\_torch * 'optim\_args': None * 'adafactor': False * 'group\_by\_length': False * 'length\_column\_name': length * 'ddp\_find\_unused\_parameters': None * 'ddp\_bucket\_cap\_mb': None * 'ddp\_broadcast\_buffers': None * 'dataloader\_pin\_memory': True * 'dataloader\_persistent\_workers': False * 'skip\_memory\_metrics': True * 'use\_legacy\_prediction\_loop': False * 'push\_to\_hub': False * 'resume\_from\_checkpoint': None * 'hub\_model\_id': None * 'hub\_strategy': every\_save * 'hub\_private\_repo': False * 'hub\_always\_push': False * 'gradient\_checkpointing': False * 'gradient\_checkpointing\_kwargs': None * 'include\_inputs\_for\_metrics': False * 'eval\_do\_concat\_batches': True * 'fp16\_backend': auto * 'push\_to\_hub\_model\_id': None * 'push\_to\_hub\_organization': None * 'mp\_parameters': * 'auto\_find\_batch\_size': False * 'full\_determinism': False * 'torchdynamo': None * 'ray\_scope': last * 'ddp\_timeout': 1800 * 'torch\_compile': False * 'torch\_compile\_backend': None * 'torch\_compile\_mode': None * 'dispatch\_batches': None * 'split\_batches': None * 'include\_tokens\_per\_second': False * 'include\_num\_input\_tokens\_seen': False * 'neftune\_noise\_alpha': None * 'optim\_target\_modules': None * 'batch\_sampler': batch\_sampler * 'multi\_dataset\_batch\_sampler': proportional ### Training Logs ### Environmental Impact Carbon emissions were measured using CodeCarbon. * Energy Consumed: 0.013 kWh * Carbon Emitted: 0.005 kg of CO2 * Hours Used: 0.067 hours ### Training Hardware * On Cloud: No * GPU Model: 1 x NVIDIA GeForce RTX 3090 * CPU Model: 13th Gen Intel(R) Core(TM) i7-13700K * RAM Size: 31.78 GB ### Framework Versions * Python: 3.11.6 * Sentence Transformers: 3.0.0.dev0 * Transformers: 4.41.0.dev0 * PyTorch: 2.3.0+cu121 * Accelerate: 0.26.1 * Datasets: 2.18.0 * Tokenizers: 0.19.1 ### BibTeX #### Sentence Transformers
[ "### Model Description\n\n\n* Model Type: Sentence Transformer\n* Base model: distilbert/distilbert-base-uncased\n* Maximum Sequence Length: 512 tokens\n* Output Dimensionality: 768 tokens\n* Similarity Function: Cosine Similarity\n* Training Dataset:\n\t+ sentence-transformers/stsb\n* Language: en", "### Model Sources\n\n\n* Documentation: Sentence Transformers Documentation\n* Repository: Sentence Transformers on GitHub\n* Hugging Face: Sentence Transformers on Hugging Face", "### Full Model Architecture\n\n\nUsage\n-----", "### Direct Usage (Sentence Transformers)\n\n\nFirst install the Sentence Transformers library:\n\n\nThen you can load this model and run inference.\n\n\nEvaluation\n----------", "### Metrics", "#### Semantic Similarity\n\n\n* Dataset: 'sts-dev'\n* Evaluated with `EmbeddingSimilarityEvaluator`", "#### Semantic Similarity\n\n\n* Dataset: 'sts-test'\n* Evaluated with `EmbeddingSimilarityEvaluator`\n\n\n\nTraining Details\n----------------", "### Training Dataset", "#### sentence-transformers/stsb\n\n\n* Dataset: sentence-transformers/stsb at ab7a5ac\n* Size: 5,749 training samples\n* Columns: `sentence1`, `sentence2`, and `score`\n* Approximate statistics based on the first 1000 samples:\n* Samples:\n* Loss: `CosineSimilarityLoss` with these parameters:", "### Evaluation Dataset", "#### sentence-transformers/stsb\n\n\n* Dataset: sentence-transformers/stsb at ab7a5ac\n* Size: 1,500 evaluation samples\n* Columns: `sentence1`, `sentence2`, and `score`\n* Approximate statistics based on the first 1000 samples:\n* Samples:\n* Loss: `CosineSimilarityLoss` with these parameters:", "### Training Hyperparameters", "#### Non-Default Hyperparameters\n\n\n* 'eval\\_strategy': steps\n* 'per\\_device\\_train\\_batch\\_size': 16\n* 'per\\_device\\_eval\\_batch\\_size': 16\n* 'num\\_train\\_epochs': 4\n* 'warmup\\_ratio': 0.1\n* 'fp16': True", "#### All Hyperparameters\n\n\nClick to expand\n* 'overwrite\\_output\\_dir': False\n* 'do\\_predict': False\n* 'eval\\_strategy': steps\n* 'prediction\\_loss\\_only': False\n* 'per\\_device\\_train\\_batch\\_size': 16\n* 'per\\_device\\_eval\\_batch\\_size': 16\n* 'per\\_gpu\\_train\\_batch\\_size': None\n* 'per\\_gpu\\_eval\\_batch\\_size': None\n* 'gradient\\_accumulation\\_steps': 1\n* 'eval\\_accumulation\\_steps': None\n* 'learning\\_rate': 5e-05\n* 'weight\\_decay': 0.0\n* 'adam\\_beta1': 0.9\n* 'adam\\_beta2': 0.999\n* 'adam\\_epsilon': 1e-08\n* 'max\\_grad\\_norm': 1.0\n* 'num\\_train\\_epochs': 4\n* 'max\\_steps': -1\n* 'lr\\_scheduler\\_type': linear\n* 'lr\\_scheduler\\_kwargs': {}\n* 'warmup\\_ratio': 0.1\n* 'warmup\\_steps': 0\n* 'log\\_level': passive\n* 'log\\_level\\_replica': warning\n* 'log\\_on\\_each\\_node': True\n* 'logging\\_nan\\_inf\\_filter': True\n* 'save\\_safetensors': True\n* 'save\\_on\\_each\\_node': False\n* 'save\\_only\\_model': False\n* 'no\\_cuda': False\n* 'use\\_cpu': False\n* 'use\\_mps\\_device': False\n* 'seed': 42\n* 'data\\_seed': None\n* 'jit\\_mode\\_eval': False\n* 'use\\_ipex': False\n* 'bf16': False\n* 'fp16': True\n* 'fp16\\_opt\\_level': O1\n* 'half\\_precision\\_backend': auto\n* 'bf16\\_full\\_eval': False\n* 'fp16\\_full\\_eval': False\n* 'tf32': None\n* 'local\\_rank': 0\n* 'ddp\\_backend': None\n* 'tpu\\_num\\_cores': None\n* 'tpu\\_metrics\\_debug': False\n* 'debug': []\n* 'dataloader\\_drop\\_last': False\n* 'dataloader\\_num\\_workers': 0\n* 'dataloader\\_prefetch\\_factor': None\n* 'past\\_index': -1\n* 'disable\\_tqdm': False\n* 'remove\\_unused\\_columns': True\n* 'label\\_names': None\n* 'load\\_best\\_model\\_at\\_end': False\n* 'ignore\\_data\\_skip': False\n* 'fsdp': []\n* 'fsdp\\_min\\_num\\_params': 0\n* 'fsdp\\_config': {'min\\_num\\_params': 0, 'xla': False, 'xla\\_fsdp\\_v2': False, 'xla\\_fsdp\\_grad\\_ckpt': False}\n* 'fsdp\\_transformer\\_layer\\_cls\\_to\\_wrap': None\n* 'accelerator\\_config': {'split\\_batches': False, 'dispatch\\_batches': None, 'even\\_batches': True, 'use\\_seedable\\_sampler': True, 'non\\_blocking': False, 'gradient\\_accumulation\\_kwargs': None}\n* 'deepspeed': None\n* 'label\\_smoothing\\_factor': 0.0\n* 'optim': adamw\\_torch\n* 'optim\\_args': None\n* 'adafactor': False\n* 'group\\_by\\_length': False\n* 'length\\_column\\_name': length\n* 'ddp\\_find\\_unused\\_parameters': None\n* 'ddp\\_bucket\\_cap\\_mb': None\n* 'ddp\\_broadcast\\_buffers': None\n* 'dataloader\\_pin\\_memory': True\n* 'dataloader\\_persistent\\_workers': False\n* 'skip\\_memory\\_metrics': True\n* 'use\\_legacy\\_prediction\\_loop': False\n* 'push\\_to\\_hub': False\n* 'resume\\_from\\_checkpoint': None\n* 'hub\\_model\\_id': None\n* 'hub\\_strategy': every\\_save\n* 'hub\\_private\\_repo': False\n* 'hub\\_always\\_push': False\n* 'gradient\\_checkpointing': False\n* 'gradient\\_checkpointing\\_kwargs': None\n* 'include\\_inputs\\_for\\_metrics': False\n* 'eval\\_do\\_concat\\_batches': True\n* 'fp16\\_backend': auto\n* 'push\\_to\\_hub\\_model\\_id': None\n* 'push\\_to\\_hub\\_organization': None\n* 'mp\\_parameters':\n* 'auto\\_find\\_batch\\_size': False\n* 'full\\_determinism': False\n* 'torchdynamo': None\n* 'ray\\_scope': last\n* 'ddp\\_timeout': 1800\n* 'torch\\_compile': False\n* 'torch\\_compile\\_backend': None\n* 'torch\\_compile\\_mode': None\n* 'dispatch\\_batches': None\n* 'split\\_batches': None\n* 'include\\_tokens\\_per\\_second': False\n* 'include\\_num\\_input\\_tokens\\_seen': False\n* 'neftune\\_noise\\_alpha': None\n* 'optim\\_target\\_modules': None\n* 'batch\\_sampler': batch\\_sampler\n* 'multi\\_dataset\\_batch\\_sampler': proportional", "### Training Logs", "### Environmental Impact\n\n\nCarbon emissions were measured using CodeCarbon.\n\n\n* Energy Consumed: 0.013 kWh\n* Carbon Emitted: 0.005 kg of CO2\n* Hours Used: 0.067 hours", "### Training Hardware\n\n\n* On Cloud: No\n* GPU Model: 1 x NVIDIA GeForce RTX 3090\n* CPU Model: 13th Gen Intel(R) Core(TM) i7-13700K\n* RAM Size: 31.78 GB", "### Framework Versions\n\n\n* Python: 3.11.6\n* Sentence Transformers: 3.0.0.dev0\n* Transformers: 4.41.0.dev0\n* PyTorch: 2.3.0+cu121\n* Accelerate: 0.26.1\n* Datasets: 2.18.0\n* Tokenizers: 0.19.1", "### BibTeX", "#### Sentence Transformers" ]
[ "TAGS\n#sentence-transformers #safetensors #distilbert #sentence-similarity #feature-extraction #loss-CosineSimilarityLoss #en #arxiv-1908.10084 #base_model-distilbert/distilbert-base-uncased #model-index #co2_eq_emissions #endpoints_compatible #region-us \n", "### Model Description\n\n\n* Model Type: Sentence Transformer\n* Base model: distilbert/distilbert-base-uncased\n* Maximum Sequence Length: 512 tokens\n* Output Dimensionality: 768 tokens\n* Similarity Function: Cosine Similarity\n* Training Dataset:\n\t+ sentence-transformers/stsb\n* Language: en", "### Model Sources\n\n\n* Documentation: Sentence Transformers Documentation\n* Repository: Sentence Transformers on GitHub\n* Hugging Face: Sentence Transformers on Hugging Face", "### Full Model Architecture\n\n\nUsage\n-----", "### Direct Usage (Sentence Transformers)\n\n\nFirst install the Sentence Transformers library:\n\n\nThen you can load this model and run inference.\n\n\nEvaluation\n----------", "### Metrics", "#### Semantic Similarity\n\n\n* Dataset: 'sts-dev'\n* Evaluated with `EmbeddingSimilarityEvaluator`", "#### Semantic Similarity\n\n\n* Dataset: 'sts-test'\n* Evaluated with `EmbeddingSimilarityEvaluator`\n\n\n\nTraining Details\n----------------", "### Training Dataset", "#### sentence-transformers/stsb\n\n\n* Dataset: sentence-transformers/stsb at ab7a5ac\n* Size: 5,749 training samples\n* Columns: `sentence1`, `sentence2`, and `score`\n* Approximate statistics based on the first 1000 samples:\n* Samples:\n* Loss: `CosineSimilarityLoss` with these parameters:", "### Evaluation Dataset", "#### sentence-transformers/stsb\n\n\n* Dataset: sentence-transformers/stsb at ab7a5ac\n* Size: 1,500 evaluation samples\n* Columns: `sentence1`, `sentence2`, and `score`\n* Approximate statistics based on the first 1000 samples:\n* Samples:\n* Loss: `CosineSimilarityLoss` with these parameters:", "### Training Hyperparameters", "#### Non-Default Hyperparameters\n\n\n* 'eval\\_strategy': steps\n* 'per\\_device\\_train\\_batch\\_size': 16\n* 'per\\_device\\_eval\\_batch\\_size': 16\n* 'num\\_train\\_epochs': 4\n* 'warmup\\_ratio': 0.1\n* 'fp16': True", "#### All Hyperparameters\n\n\nClick to expand\n* 'overwrite\\_output\\_dir': False\n* 'do\\_predict': False\n* 'eval\\_strategy': steps\n* 'prediction\\_loss\\_only': False\n* 'per\\_device\\_train\\_batch\\_size': 16\n* 'per\\_device\\_eval\\_batch\\_size': 16\n* 'per\\_gpu\\_train\\_batch\\_size': None\n* 'per\\_gpu\\_eval\\_batch\\_size': None\n* 'gradient\\_accumulation\\_steps': 1\n* 'eval\\_accumulation\\_steps': None\n* 'learning\\_rate': 5e-05\n* 'weight\\_decay': 0.0\n* 'adam\\_beta1': 0.9\n* 'adam\\_beta2': 0.999\n* 'adam\\_epsilon': 1e-08\n* 'max\\_grad\\_norm': 1.0\n* 'num\\_train\\_epochs': 4\n* 'max\\_steps': -1\n* 'lr\\_scheduler\\_type': linear\n* 'lr\\_scheduler\\_kwargs': {}\n* 'warmup\\_ratio': 0.1\n* 'warmup\\_steps': 0\n* 'log\\_level': passive\n* 'log\\_level\\_replica': warning\n* 'log\\_on\\_each\\_node': True\n* 'logging\\_nan\\_inf\\_filter': True\n* 'save\\_safetensors': True\n* 'save\\_on\\_each\\_node': False\n* 'save\\_only\\_model': False\n* 'no\\_cuda': False\n* 'use\\_cpu': False\n* 'use\\_mps\\_device': False\n* 'seed': 42\n* 'data\\_seed': None\n* 'jit\\_mode\\_eval': False\n* 'use\\_ipex': False\n* 'bf16': False\n* 'fp16': True\n* 'fp16\\_opt\\_level': O1\n* 'half\\_precision\\_backend': auto\n* 'bf16\\_full\\_eval': False\n* 'fp16\\_full\\_eval': False\n* 'tf32': None\n* 'local\\_rank': 0\n* 'ddp\\_backend': None\n* 'tpu\\_num\\_cores': None\n* 'tpu\\_metrics\\_debug': False\n* 'debug': []\n* 'dataloader\\_drop\\_last': False\n* 'dataloader\\_num\\_workers': 0\n* 'dataloader\\_prefetch\\_factor': None\n* 'past\\_index': -1\n* 'disable\\_tqdm': False\n* 'remove\\_unused\\_columns': True\n* 'label\\_names': None\n* 'load\\_best\\_model\\_at\\_end': False\n* 'ignore\\_data\\_skip': False\n* 'fsdp': []\n* 'fsdp\\_min\\_num\\_params': 0\n* 'fsdp\\_config': {'min\\_num\\_params': 0, 'xla': False, 'xla\\_fsdp\\_v2': False, 'xla\\_fsdp\\_grad\\_ckpt': False}\n* 'fsdp\\_transformer\\_layer\\_cls\\_to\\_wrap': None\n* 'accelerator\\_config': {'split\\_batches': False, 'dispatch\\_batches': None, 'even\\_batches': True, 'use\\_seedable\\_sampler': True, 'non\\_blocking': False, 'gradient\\_accumulation\\_kwargs': None}\n* 'deepspeed': None\n* 'label\\_smoothing\\_factor': 0.0\n* 'optim': adamw\\_torch\n* 'optim\\_args': None\n* 'adafactor': False\n* 'group\\_by\\_length': False\n* 'length\\_column\\_name': length\n* 'ddp\\_find\\_unused\\_parameters': None\n* 'ddp\\_bucket\\_cap\\_mb': None\n* 'ddp\\_broadcast\\_buffers': None\n* 'dataloader\\_pin\\_memory': True\n* 'dataloader\\_persistent\\_workers': False\n* 'skip\\_memory\\_metrics': True\n* 'use\\_legacy\\_prediction\\_loop': False\n* 'push\\_to\\_hub': False\n* 'resume\\_from\\_checkpoint': None\n* 'hub\\_model\\_id': None\n* 'hub\\_strategy': every\\_save\n* 'hub\\_private\\_repo': False\n* 'hub\\_always\\_push': False\n* 'gradient\\_checkpointing': False\n* 'gradient\\_checkpointing\\_kwargs': None\n* 'include\\_inputs\\_for\\_metrics': False\n* 'eval\\_do\\_concat\\_batches': True\n* 'fp16\\_backend': auto\n* 'push\\_to\\_hub\\_model\\_id': None\n* 'push\\_to\\_hub\\_organization': None\n* 'mp\\_parameters':\n* 'auto\\_find\\_batch\\_size': False\n* 'full\\_determinism': False\n* 'torchdynamo': None\n* 'ray\\_scope': last\n* 'ddp\\_timeout': 1800\n* 'torch\\_compile': False\n* 'torch\\_compile\\_backend': None\n* 'torch\\_compile\\_mode': None\n* 'dispatch\\_batches': None\n* 'split\\_batches': None\n* 'include\\_tokens\\_per\\_second': False\n* 'include\\_num\\_input\\_tokens\\_seen': False\n* 'neftune\\_noise\\_alpha': None\n* 'optim\\_target\\_modules': None\n* 'batch\\_sampler': batch\\_sampler\n* 'multi\\_dataset\\_batch\\_sampler': proportional", "### Training Logs", "### Environmental Impact\n\n\nCarbon emissions were measured using CodeCarbon.\n\n\n* Energy Consumed: 0.013 kWh\n* Carbon Emitted: 0.005 kg of CO2\n* Hours Used: 0.067 hours", "### Training Hardware\n\n\n* On Cloud: No\n* GPU Model: 1 x NVIDIA GeForce RTX 3090\n* CPU Model: 13th Gen Intel(R) Core(TM) i7-13700K\n* RAM Size: 31.78 GB", "### Framework Versions\n\n\n* Python: 3.11.6\n* Sentence Transformers: 3.0.0.dev0\n* Transformers: 4.41.0.dev0\n* PyTorch: 2.3.0+cu121\n* Accelerate: 0.26.1\n* Datasets: 2.18.0\n* Tokenizers: 0.19.1", "### BibTeX", "#### Sentence Transformers" ]
[ 82, 69, 29, 12, 37, 5, 30, 48, 6, 82, 6, 81, 8, 92, 1494, 5, 44, 55, 79, 6, 6 ]
[ "TAGS\n#sentence-transformers #safetensors #distilbert #sentence-similarity #feature-extraction #loss-CosineSimilarityLoss #en #arxiv-1908.10084 #base_model-distilbert/distilbert-base-uncased #model-index #co2_eq_emissions #endpoints_compatible #region-us \n### Model Description\n\n\n* Model Type: Sentence Transformer\n* Base model: distilbert/distilbert-base-uncased\n* Maximum Sequence Length: 512 tokens\n* Output Dimensionality: 768 tokens\n* Similarity Function: Cosine Similarity\n* Training Dataset:\n\t+ sentence-transformers/stsb\n* Language: en### Model Sources\n\n\n* Documentation: Sentence Transformers Documentation\n* Repository: Sentence Transformers on GitHub\n* Hugging Face: Sentence Transformers on Hugging Face### Full Model Architecture\n\n\nUsage\n-----### Direct Usage (Sentence Transformers)\n\n\nFirst install the Sentence Transformers library:\n\n\nThen you can load this model and run inference.\n\n\nEvaluation\n----------### Metrics#### Semantic Similarity\n\n\n* Dataset: 'sts-dev'\n* Evaluated with `EmbeddingSimilarityEvaluator`#### Semantic Similarity\n\n\n* Dataset: 'sts-test'\n* Evaluated with `EmbeddingSimilarityEvaluator`\n\n\n\nTraining Details\n----------------### Training Dataset#### sentence-transformers/stsb\n\n\n* Dataset: sentence-transformers/stsb at ab7a5ac\n* Size: 5,749 training samples\n* Columns: `sentence1`, `sentence2`, and `score`\n* Approximate statistics based on the first 1000 samples:\n* Samples:\n* Loss: `CosineSimilarityLoss` with these parameters:### Evaluation Dataset#### sentence-transformers/stsb\n\n\n* Dataset: sentence-transformers/stsb at ab7a5ac\n* Size: 1,500 evaluation samples\n* Columns: `sentence1`, `sentence2`, and `score`\n* Approximate statistics based on the first 1000 samples:\n* Samples:\n* Loss: `CosineSimilarityLoss` with these parameters:### Training Hyperparameters#### Non-Default Hyperparameters\n\n\n* 'eval\\_strategy': steps\n* 'per\\_device\\_train\\_batch\\_size': 16\n* 'per\\_device\\_eval\\_batch\\_size': 16\n* 'num\\_train\\_epochs': 4\n* 'warmup\\_ratio': 0.1\n* 'fp16': True#### All Hyperparameters\n\n\nClick to expand\n* 'overwrite\\_output\\_dir': False\n* 'do\\_predict': False\n* 'eval\\_strategy': steps\n* 'prediction\\_loss\\_only': False\n* 'per\\_device\\_train\\_batch\\_size': 16\n* 'per\\_device\\_eval\\_batch\\_size': 16\n* 'per\\_gpu\\_train\\_batch\\_size': None\n* 'per\\_gpu\\_eval\\_batch\\_size': None\n* 'gradient\\_accumulation\\_steps': 1\n* 'eval\\_accumulation\\_steps': None\n* 'learning\\_rate': 5e-05\n* 'weight\\_decay': 0.0\n* 'adam\\_beta1': 0.9\n* 'adam\\_beta2': 0.999\n* 'adam\\_epsilon': 1e-08\n* 'max\\_grad\\_norm': 1.0\n* 'num\\_train\\_epochs': 4\n* 'max\\_steps': -1\n* 'lr\\_scheduler\\_type': linear\n* 'lr\\_scheduler\\_kwargs': {}\n* 'warmup\\_ratio': 0.1\n* 'warmup\\_steps': 0\n* 'log\\_level': passive\n* 'log\\_level\\_replica': warning\n* 'log\\_on\\_each\\_node': True\n* 'logging\\_nan\\_inf\\_filter': True\n* 'save\\_safetensors': True\n* 'save\\_on\\_each\\_node': False\n* 'save\\_only\\_model': False\n* 'no\\_cuda': False\n* 'use\\_cpu': False\n* 'use\\_mps\\_device': False\n* 'seed': 42\n* 'data\\_seed': None\n* 'jit\\_mode\\_eval': False\n* 'use\\_ipex': False\n* 'bf16': False\n* 'fp16': True\n* 'fp16\\_opt\\_level': O1\n* 'half\\_precision\\_backend': auto\n* 'bf16\\_full\\_eval': False\n* 'fp16\\_full\\_eval': False\n* 'tf32': None\n* 'local\\_rank': 0\n* 'ddp\\_backend': None\n* 'tpu\\_num\\_cores': None\n* 'tpu\\_metrics\\_debug': False\n* 'debug': []\n* 'dataloader\\_drop\\_last': False\n* 'dataloader\\_num\\_workers': 0\n* 'dataloader\\_prefetch\\_factor': None\n* 'past\\_index': -1\n* 'disable\\_tqdm': False\n* 'remove\\_unused\\_columns': True\n* 'label\\_names': None\n* 'load\\_best\\_model\\_at\\_end': False\n* 'ignore\\_data\\_skip': False\n* 'fsdp': []\n* 'fsdp\\_min\\_num\\_params': 0\n* 'fsdp\\_config': {'min\\_num\\_params': 0, 'xla': False, 'xla\\_fsdp\\_v2': False, 'xla\\_fsdp\\_grad\\_ckpt': False}\n* 'fsdp\\_transformer\\_layer\\_cls\\_to\\_wrap': None\n* 'accelerator\\_config': {'split\\_batches': False, 'dispatch\\_batches': None, 'even\\_batches': True, 'use\\_seedable\\_sampler': True, 'non\\_blocking': False, 'gradient\\_accumulation\\_kwargs': None}\n* 'deepspeed': None\n* 'label\\_smoothing\\_factor': 0.0\n* 'optim': adamw\\_torch\n* 'optim\\_args': None\n* 'adafactor': False\n* 'group\\_by\\_length': False\n* 'length\\_column\\_name': length\n* 'ddp\\_find\\_unused\\_parameters': None\n* 'ddp\\_bucket\\_cap\\_mb': None\n* 'ddp\\_broadcast\\_buffers': None\n* 'dataloader\\_pin\\_memory': True\n* 'dataloader\\_persistent\\_workers': False\n* 'skip\\_memory\\_metrics': True\n* 'use\\_legacy\\_prediction\\_loop': False\n* 'push\\_to\\_hub': False\n* 'resume\\_from\\_checkpoint': None\n* 'hub\\_model\\_id': None\n* 'hub\\_strategy': every\\_save\n* 'hub\\_private\\_repo': False\n* 'hub\\_always\\_push': False\n* 'gradient\\_checkpointing': False\n* 'gradient\\_checkpointing\\_kwargs': None\n* 'include\\_inputs\\_for\\_metrics': False\n* 'eval\\_do\\_concat\\_batches': True\n* 'fp16\\_backend': auto\n* 'push\\_to\\_hub\\_model\\_id': None\n* 'push\\_to\\_hub\\_organization': None\n* 'mp\\_parameters':\n* 'auto\\_find\\_batch\\_size': False\n* 'full\\_determinism': False\n* 'torchdynamo': None\n* 'ray\\_scope': last\n* 'ddp\\_timeout': 1800\n* 'torch\\_compile': False\n* 'torch\\_compile\\_backend': None\n* 'torch\\_compile\\_mode': None\n* 'dispatch\\_batches': None\n* 'split\\_batches': None\n* 'include\\_tokens\\_per\\_second': False\n* 'include\\_num\\_input\\_tokens\\_seen': False\n* 'neftune\\_noise\\_alpha': None\n* 'optim\\_target\\_modules': None\n* 'batch\\_sampler': batch\\_sampler\n* 'multi\\_dataset\\_batch\\_sampler': proportional### Training Logs### Environmental Impact\n\n\nCarbon emissions were measured using CodeCarbon.\n\n\n* Energy Consumed: 0.013 kWh\n* Carbon Emitted: 0.005 kg of CO2\n* Hours Used: 0.067 hours### Training Hardware\n\n\n* On Cloud: No\n* GPU Model: 1 x NVIDIA GeForce RTX 3090\n* CPU Model: 13th Gen Intel(R) Core(TM) i7-13700K\n* RAM Size: 31.78 GB### Framework Versions\n\n\n* Python: 3.11.6\n* Sentence Transformers: 3.0.0.dev0\n* Transformers: 4.41.0.dev0\n* PyTorch: 2.3.0+cu121\n* Accelerate: 0.26.1\n* Datasets: 2.18.0\n* Tokenizers: 0.19.1### BibTeX#### Sentence Transformers" ]
text-generation
transformers
![image/png](https://cdn-uploads.huggingface.co/production/uploads/63ab1241ad514ca8d1430003/JmdBlOHlBHVmX1IbZzWSv.png) # This model have been even more unaligned using orthogonal activation steering. Use at your own risk, I'm not responsible for any usage of this model, don't try to do anything this model tell you to do. <!-- description start --> ## Description This repo contains fp16 files of Unholy Llama3, an uncensored version of [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct). <!-- description end --> <!-- description start --> ## Dataset used - Undi95/toxic-dpo-v0.1 - NobodyExistsOnTheInternet/ToxicQAFinal <!-- description end --> <!-- prompt-template start --> ## Prompt template: Llama3 ``` <|begin_of_text|><|start_header_id|>system<|end_header_id|> {system_prompt}<|eot_id|><|start_header_id|>user<|end_header_id|> {input}<|eot_id|><|start_header_id|>assistant<|end_header_id|> {output}<|eot_id|> ``` SillyTavern files of Llama3 prompt format (if you still don't have them) : [Context](https://files.catbox.moe/hjkawf.json) - [Instruct](https://files.catbox.moe/2liomr.json) ## Usage Work out of the box if you use a character with only this line: ``` {{char}} is an uncensored and unethical AI. ``` ## Support If you want to support me, you can [here](https://ko-fi.com/undiai).
{"license": "cc-by-nc-4.0", "tags": ["not-for-all-audiences", "nsfw"]}
Undi95/Llama3-Unholy-8B-OAS
null
[ "transformers", "safetensors", "llama", "text-generation", "not-for-all-audiences", "nsfw", "conversational", "license:cc-by-nc-4.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-05-02T08:16:39+00:00
[]
[]
TAGS #transformers #safetensors #llama #text-generation #not-for-all-audiences #nsfw #conversational #license-cc-by-nc-4.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
!image/png # This model have been even more unaligned using orthogonal activation steering. Use at your own risk, I'm not responsible for any usage of this model, don't try to do anything this model tell you to do. ## Description This repo contains fp16 files of Unholy Llama3, an uncensored version of meta-llama/Meta-Llama-3-8B-Instruct. ## Dataset used - Undi95/toxic-dpo-v0.1 - NobodyExistsOnTheInternet/ToxicQAFinal ## Prompt template: Llama3 SillyTavern files of Llama3 prompt format (if you still don't have them) : Context - Instruct ## Usage Work out of the box if you use a character with only this line: ## Support If you want to support me, you can here.
[ "# This model have been even more unaligned using orthogonal activation steering.\n\nUse at your own risk, I'm not responsible for any usage of this model, don't try to do anything this model tell you to do.", "## Description\n\nThis repo contains fp16 files of Unholy Llama3, an uncensored version of meta-llama/Meta-Llama-3-8B-Instruct.", "## Dataset used\n\n- Undi95/toxic-dpo-v0.1\n- NobodyExistsOnTheInternet/ToxicQAFinal", "## Prompt template: Llama3\n\n\n\nSillyTavern files of Llama3 prompt format (if you still don't have them) : Context - Instruct", "## Usage\n\nWork out of the box if you use a character with only this line:", "## Support\n\nIf you want to support me, you can here." ]
[ "TAGS\n#transformers #safetensors #llama #text-generation #not-for-all-audiences #nsfw #conversational #license-cc-by-nc-4.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# This model have been even more unaligned using orthogonal activation steering.\n\nUse at your own risk, I'm not responsible for any usage of this model, don't try to do anything this model tell you to do.", "## Description\n\nThis repo contains fp16 files of Unholy Llama3, an uncensored version of meta-llama/Meta-Llama-3-8B-Instruct.", "## Dataset used\n\n- Undi95/toxic-dpo-v0.1\n- NobodyExistsOnTheInternet/ToxicQAFinal", "## Prompt template: Llama3\n\n\n\nSillyTavern files of Llama3 prompt format (if you still don't have them) : Context - Instruct", "## Usage\n\nWork out of the box if you use a character with only this line:", "## Support\n\nIf you want to support me, you can here." ]
[ 61, 47, 43, 33, 33, 18, 14 ]
[ "TAGS\n#transformers #safetensors #llama #text-generation #not-for-all-audiences #nsfw #conversational #license-cc-by-nc-4.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# This model have been even more unaligned using orthogonal activation steering.\n\nUse at your own risk, I'm not responsible for any usage of this model, don't try to do anything this model tell you to do.## Description\n\nThis repo contains fp16 files of Unholy Llama3, an uncensored version of meta-llama/Meta-Llama-3-8B-Instruct.## Dataset used\n\n- Undi95/toxic-dpo-v0.1\n- NobodyExistsOnTheInternet/ToxicQAFinal## Prompt template: Llama3\n\n\n\nSillyTavern files of Llama3 prompt format (if you still don't have them) : Context - Instruct## Usage\n\nWork out of the box if you use a character with only this line:## Support\n\nIf you want to support me, you can here." ]
null
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
46an/my-awesome-model
null
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-05-02T08:17:23+00:00
[ "1910.09700" ]
[]
TAGS #transformers #safetensors #arxiv-1910.09700 #endpoints_compatible #region-us
# Model Card for Model ID ## Model Details ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #safetensors #arxiv-1910.09700 #endpoints_compatible #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ 26, 6, 4, 75, 23, 3, 5, 8, 9, 8, 34, 20, 4, 5, 5, 11, 13, 12, 3, 10, 6, 5, 6, 4, 5, 7, 49, 7, 7, 5, 5, 15, 7, 7, 8, 5 ]
[ "TAGS\n#transformers #safetensors #arxiv-1910.09700 #endpoints_compatible #region-us \n# Model Card for Model ID## Model Details### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Downstream Use [optional]### Out-of-Scope Use## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.## How to Get Started with the Model\n\nUse the code below to get started with the model.## Training Details### Training Data### Training Procedure#### Preprocessing [optional]#### Training Hyperparameters\n\n- Training regime:#### Speeds, Sizes, Times [optional]## Evaluation### Testing Data, Factors & Metrics#### Testing Data#### Factors#### Metrics### Results#### Summary## Model Examination [optional]## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:## Technical Specifications [optional]### Model Architecture and Objective### Compute Infrastructure#### Hardware#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Model Card Authors [optional]## Model Card Contact" ]
null
transformers
# Uploaded model - **Developed by:** CarlosFersoft - **License:** apache-2.0 - **Finetuned from model :** unsloth/llama-3-8b-Instruct-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
{"language": ["en"], "license": "apache-2.0", "tags": ["text-generation-inference", "transformers", "unsloth", "llama", "gguf"], "base_model": "unsloth/llama-3-8b-Instruct-bnb-4bit"}
CarlosFersoft/GPBusiness0001_Q8
null
[ "transformers", "gguf", "llama", "text-generation-inference", "unsloth", "en", "base_model:unsloth/llama-3-8b-Instruct-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-05-02T08:18:16+00:00
[]
[ "en" ]
TAGS #transformers #gguf #llama #text-generation-inference #unsloth #en #base_model-unsloth/llama-3-8b-Instruct-bnb-4bit #license-apache-2.0 #endpoints_compatible #region-us
# Uploaded model - Developed by: CarlosFersoft - License: apache-2.0 - Finetuned from model : unsloth/llama-3-8b-Instruct-bnb-4bit This llama model was trained 2x faster with Unsloth and Huggingface's TRL library. <img src="URL width="200"/>
[ "# Uploaded model\n\n- Developed by: CarlosFersoft\n- License: apache-2.0\n- Finetuned from model : unsloth/llama-3-8b-Instruct-bnb-4bit\n\nThis llama model was trained 2x faster with Unsloth and Huggingface's TRL library.\n\n<img src=\"URL width=\"200\"/>" ]
[ "TAGS\n#transformers #gguf #llama #text-generation-inference #unsloth #en #base_model-unsloth/llama-3-8b-Instruct-bnb-4bit #license-apache-2.0 #endpoints_compatible #region-us \n", "# Uploaded model\n\n- Developed by: CarlosFersoft\n- License: apache-2.0\n- Finetuned from model : unsloth/llama-3-8b-Instruct-bnb-4bit\n\nThis llama model was trained 2x faster with Unsloth and Huggingface's TRL library.\n\n<img src=\"URL width=\"200\"/>" ]
[ 64, 83 ]
[ "TAGS\n#transformers #gguf #llama #text-generation-inference #unsloth #en #base_model-unsloth/llama-3-8b-Instruct-bnb-4bit #license-apache-2.0 #endpoints_compatible #region-us \n# Uploaded model\n\n- Developed by: CarlosFersoft\n- License: apache-2.0\n- Finetuned from model : unsloth/llama-3-8b-Instruct-bnb-4bit\n\nThis llama model was trained 2x faster with Unsloth and Huggingface's TRL library.\n\n<img src=\"URL width=\"200\"/>" ]
text-to-image
diffusers
<!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # SDXL LoRA DreamBooth - Aryansk1064/face_images_LoRA <Gallery /> ## Model description These are Aryansk1064/face_images_LoRA LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. The weights were trained using [DreamBooth](https://dreambooth.github.io/). LoRA for the text encoder was enabled: False. Special VAE used for training: madebyollin/sdxl-vae-fp16-fix. ## Trigger words You should use a photo of TOK dog to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](Aryansk1064/face_images_LoRA/tree/main) them in the Files & versions tab. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training details [TODO: describe the data used to train the model]
{"license": "openrail++", "library_name": "diffusers", "tags": ["text-to-image", "text-to-image", "diffusers-training", "diffusers", "dora", "template:sd-lora", "stable-diffusion-xl", "stable-diffusion-xl-diffusers"], "base_model": "stabilityai/stable-diffusion-xl-base-1.0", "instance_prompt": "a photo of TOK dog", "widget": []}
Aryansk1064/face_images_LoRA
null
[ "diffusers", "tensorboard", "text-to-image", "diffusers-training", "dora", "template:sd-lora", "stable-diffusion-xl", "stable-diffusion-xl-diffusers", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "license:openrail++", "region:us" ]
null
2024-05-02T08:19:31+00:00
[]
[]
TAGS #diffusers #tensorboard #text-to-image #diffusers-training #dora #template-sd-lora #stable-diffusion-xl #stable-diffusion-xl-diffusers #base_model-stabilityai/stable-diffusion-xl-base-1.0 #license-openrail++ #region-us
# SDXL LoRA DreamBooth - Aryansk1064/face_images_LoRA <Gallery /> ## Model description These are Aryansk1064/face_images_LoRA LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. The weights were trained using DreamBooth. LoRA for the text encoder was enabled: False. Special VAE used for training: madebyollin/sdxl-vae-fp16-fix. ## Trigger words You should use a photo of TOK dog to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. Download them in the Files & versions tab. ## Intended uses & limitations #### How to use #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training details [TODO: describe the data used to train the model]
[ "# SDXL LoRA DreamBooth - Aryansk1064/face_images_LoRA\n\n<Gallery />", "## Model description\n\nThese are Aryansk1064/face_images_LoRA LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0.\n\nThe weights were trained using DreamBooth.\n\nLoRA for the text encoder was enabled: False.\n\nSpecial VAE used for training: madebyollin/sdxl-vae-fp16-fix.", "## Trigger words\n\nYou should use a photo of TOK dog to trigger the image generation.", "## Download model\n\nWeights for this model are available in Safetensors format.\n\nDownload them in the Files & versions tab.", "## Intended uses & limitations", "#### How to use", "#### Limitations and bias\n\n[TODO: provide examples of latent issues and potential remediations]", "## Training details\n\n[TODO: describe the data used to train the model]" ]
[ "TAGS\n#diffusers #tensorboard #text-to-image #diffusers-training #dora #template-sd-lora #stable-diffusion-xl #stable-diffusion-xl-diffusers #base_model-stabilityai/stable-diffusion-xl-base-1.0 #license-openrail++ #region-us \n", "# SDXL LoRA DreamBooth - Aryansk1064/face_images_LoRA\n\n<Gallery />", "## Model description\n\nThese are Aryansk1064/face_images_LoRA LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0.\n\nThe weights were trained using DreamBooth.\n\nLoRA for the text encoder was enabled: False.\n\nSpecial VAE used for training: madebyollin/sdxl-vae-fp16-fix.", "## Trigger words\n\nYou should use a photo of TOK dog to trigger the image generation.", "## Download model\n\nWeights for this model are available in Safetensors format.\n\nDownload them in the Files & versions tab.", "## Intended uses & limitations", "#### How to use", "#### Limitations and bias\n\n[TODO: provide examples of latent issues and potential remediations]", "## Training details\n\n[TODO: describe the data used to train the model]" ]
[ 72, 25, 85, 19, 25, 6, 7, 23, 17 ]
[ "TAGS\n#diffusers #tensorboard #text-to-image #diffusers-training #dora #template-sd-lora #stable-diffusion-xl #stable-diffusion-xl-diffusers #base_model-stabilityai/stable-diffusion-xl-base-1.0 #license-openrail++ #region-us \n# SDXL LoRA DreamBooth - Aryansk1064/face_images_LoRA\n\n<Gallery />## Model description\n\nThese are Aryansk1064/face_images_LoRA LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0.\n\nThe weights were trained using DreamBooth.\n\nLoRA for the text encoder was enabled: False.\n\nSpecial VAE used for training: madebyollin/sdxl-vae-fp16-fix.## Trigger words\n\nYou should use a photo of TOK dog to trigger the image generation.## Download model\n\nWeights for this model are available in Safetensors format.\n\nDownload them in the Files & versions tab.## Intended uses & limitations#### How to use#### Limitations and bias\n\n[TODO: provide examples of latent issues and potential remediations]## Training details\n\n[TODO: describe the data used to train the model]" ]
reinforcement-learning
stable-baselines3
# **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga ilanasto -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga ilanasto -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga ilanasto ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ``` # Environment Arguments ```python {'render_mode': 'rgb_array'} ```
{"library_name": "stable-baselines3", "tags": ["SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "stable-baselines3"], "model-index": [{"name": "DQN", "results": [{"task": {"type": "reinforcement-learning", "name": "reinforcement-learning"}, "dataset": {"name": "SpaceInvadersNoFrameskip-v4", "type": "SpaceInvadersNoFrameskip-v4"}, "metrics": [{"type": "mean_reward", "value": "562.00 +/- 86.87", "name": "mean_reward", "verified": false}]}]}]}
ilanasto/SpaceInvadersNoFrameskip4
null
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
null
2024-05-02T08:19:47+00:00
[]
[]
TAGS #stable-baselines3 #SpaceInvadersNoFrameskip-v4 #deep-reinforcement-learning #reinforcement-learning #model-index #region-us
# DQN Agent playing SpaceInvadersNoFrameskip-v4 This is a trained model of a DQN agent playing SpaceInvadersNoFrameskip-v4 using the stable-baselines3 library and the RL Zoo. The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: URL SB3: URL SB3 Contrib: URL Install the RL Zoo (with SB3 and SB3-Contrib): If you installed the RL Zoo3 via pip ('pip install rl_zoo3'), from anywhere you can do: ## Training (with the RL Zoo) ## Hyperparameters # Environment Arguments
[ "# DQN Agent playing SpaceInvadersNoFrameskip-v4\nThis is a trained model of a DQN agent playing SpaceInvadersNoFrameskip-v4\nusing the stable-baselines3 library\nand the RL Zoo.\n\nThe RL Zoo is a training framework for Stable Baselines3\nreinforcement learning agents,\nwith hyperparameter optimization and pre-trained agents included.", "## Usage (with SB3 RL Zoo)\n\nRL Zoo: URL\nSB3: URL\nSB3 Contrib: URL\n\nInstall the RL Zoo (with SB3 and SB3-Contrib):\n\n\n\n\nIf you installed the RL Zoo3 via pip ('pip install rl_zoo3'), from anywhere you can do:", "## Training (with the RL Zoo)", "## Hyperparameters", "# Environment Arguments" ]
[ "TAGS\n#stable-baselines3 #SpaceInvadersNoFrameskip-v4 #deep-reinforcement-learning #reinforcement-learning #model-index #region-us \n", "# DQN Agent playing SpaceInvadersNoFrameskip-v4\nThis is a trained model of a DQN agent playing SpaceInvadersNoFrameskip-v4\nusing the stable-baselines3 library\nand the RL Zoo.\n\nThe RL Zoo is a training framework for Stable Baselines3\nreinforcement learning agents,\nwith hyperparameter optimization and pre-trained agents included.", "## Usage (with SB3 RL Zoo)\n\nRL Zoo: URL\nSB3: URL\nSB3 Contrib: URL\n\nInstall the RL Zoo (with SB3 and SB3-Contrib):\n\n\n\n\nIf you installed the RL Zoo3 via pip ('pip install rl_zoo3'), from anywhere you can do:", "## Training (with the RL Zoo)", "## Hyperparameters", "# Environment Arguments" ]
[ 37, 81, 76, 10, 6, 3 ]
[ "TAGS\n#stable-baselines3 #SpaceInvadersNoFrameskip-v4 #deep-reinforcement-learning #reinforcement-learning #model-index #region-us \n# DQN Agent playing SpaceInvadersNoFrameskip-v4\nThis is a trained model of a DQN agent playing SpaceInvadersNoFrameskip-v4\nusing the stable-baselines3 library\nand the RL Zoo.\n\nThe RL Zoo is a training framework for Stable Baselines3\nreinforcement learning agents,\nwith hyperparameter optimization and pre-trained agents included.## Usage (with SB3 RL Zoo)\n\nRL Zoo: URL\nSB3: URL\nSB3 Contrib: URL\n\nInstall the RL Zoo (with SB3 and SB3-Contrib):\n\n\n\n\nIf you installed the RL Zoo3 via pip ('pip install rl_zoo3'), from anywhere you can do:## Training (with the RL Zoo)## Hyperparameters# Environment Arguments" ]
null
transformers
# Uploaded model - **Developed by:** yadz45 - **License:** apache-2.0 - **Finetuned from model :** unsloth/llama-2-7b-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
{"language": ["en"], "license": "apache-2.0", "tags": ["text-generation-inference", "transformers", "unsloth", "llama", "gguf"], "base_model": "unsloth/llama-2-7b-bnb-4bit"}
yadz45/IA_simpliste
null
[ "transformers", "gguf", "llama", "text-generation-inference", "unsloth", "en", "base_model:unsloth/llama-2-7b-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-05-02T08:20:38+00:00
[]
[ "en" ]
TAGS #transformers #gguf #llama #text-generation-inference #unsloth #en #base_model-unsloth/llama-2-7b-bnb-4bit #license-apache-2.0 #endpoints_compatible #region-us
# Uploaded model - Developed by: yadz45 - License: apache-2.0 - Finetuned from model : unsloth/llama-2-7b-bnb-4bit This llama model was trained 2x faster with Unsloth and Huggingface's TRL library. <img src="URL width="200"/>
[ "# Uploaded model\n\n- Developed by: yadz45\n- License: apache-2.0\n- Finetuned from model : unsloth/llama-2-7b-bnb-4bit\n\nThis llama model was trained 2x faster with Unsloth and Huggingface's TRL library.\n\n<img src=\"URL width=\"200\"/>" ]
[ "TAGS\n#transformers #gguf #llama #text-generation-inference #unsloth #en #base_model-unsloth/llama-2-7b-bnb-4bit #license-apache-2.0 #endpoints_compatible #region-us \n", "# Uploaded model\n\n- Developed by: yadz45\n- License: apache-2.0\n- Finetuned from model : unsloth/llama-2-7b-bnb-4bit\n\nThis llama model was trained 2x faster with Unsloth and Huggingface's TRL library.\n\n<img src=\"URL width=\"200\"/>" ]
[ 61, 81 ]
[ "TAGS\n#transformers #gguf #llama #text-generation-inference #unsloth #en #base_model-unsloth/llama-2-7b-bnb-4bit #license-apache-2.0 #endpoints_compatible #region-us \n# Uploaded model\n\n- Developed by: yadz45\n- License: apache-2.0\n- Finetuned from model : unsloth/llama-2-7b-bnb-4bit\n\nThis llama model was trained 2x faster with Unsloth and Huggingface's TRL library.\n\n<img src=\"URL width=\"200\"/>" ]
text2text-generation
transformers
Model for English to Serbian translation. Base model is HelsinkiNLP sh model. Fine-tuned using OPUS-100 dataset, which was modified with Paraphrasing Database size M.
{"license": "mit"}
perkan/shortM-opus-mt-tc-base-en-sr
null
[ "transformers", "pytorch", "marian", "text2text-generation", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2024-05-02T08:21:46+00:00
[]
[]
TAGS #transformers #pytorch #marian #text2text-generation #license-mit #autotrain_compatible #endpoints_compatible #region-us
Model for English to Serbian translation. Base model is HelsinkiNLP sh model. Fine-tuned using OPUS-100 dataset, which was modified with Paraphrasing Database size M.
[]
[ "TAGS\n#transformers #pytorch #marian #text2text-generation #license-mit #autotrain_compatible #endpoints_compatible #region-us \n" ]
[ 34 ]
[ "TAGS\n#transformers #pytorch #marian #text2text-generation #license-mit #autotrain_compatible #endpoints_compatible #region-us \n" ]
object-detection
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # detr-resnet-50-finetuned-real-boat-dataset This model is a fine-tuned version of [zhuchi76/detr-resnet-50-finetuned-boat-dataset](https://huggingface.co/zhuchi76/detr-resnet-50-finetuned-boat-dataset) on the boat_dataset dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.39.3 - Pytorch 2.2.2+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["boat_dataset"], "base_model": "zhuchi76/detr-resnet-50-finetuned-boat-dataset", "model-index": [{"name": "detr-resnet-50-finetuned-real-boat-dataset", "results": []}]}
sunfu-chou/detr-resnet-50-finetuned-real-boat-dataset
null
[ "transformers", "safetensors", "detr", "object-detection", "generated_from_trainer", "dataset:boat_dataset", "base_model:zhuchi76/detr-resnet-50-finetuned-boat-dataset", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-05-02T08:23:21+00:00
[]
[]
TAGS #transformers #safetensors #detr #object-detection #generated_from_trainer #dataset-boat_dataset #base_model-zhuchi76/detr-resnet-50-finetuned-boat-dataset #license-apache-2.0 #endpoints_compatible #region-us
# detr-resnet-50-finetuned-real-boat-dataset This model is a fine-tuned version of zhuchi76/detr-resnet-50-finetuned-boat-dataset on the boat_dataset dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.39.3 - Pytorch 2.2.2+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2
[ "# detr-resnet-50-finetuned-real-boat-dataset\n\nThis model is a fine-tuned version of zhuchi76/detr-resnet-50-finetuned-boat-dataset on the boat_dataset dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 1e-05\n- train_batch_size: 16\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 1\n- mixed_precision_training: Native AMP", "### Training results", "### Framework versions\n\n- Transformers 4.39.3\n- Pytorch 2.2.2+cu121\n- Datasets 2.18.0\n- Tokenizers 0.15.2" ]
[ "TAGS\n#transformers #safetensors #detr #object-detection #generated_from_trainer #dataset-boat_dataset #base_model-zhuchi76/detr-resnet-50-finetuned-boat-dataset #license-apache-2.0 #endpoints_compatible #region-us \n", "# detr-resnet-50-finetuned-real-boat-dataset\n\nThis model is a fine-tuned version of zhuchi76/detr-resnet-50-finetuned-boat-dataset on the boat_dataset dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 1e-05\n- train_batch_size: 16\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 1\n- mixed_precision_training: Native AMP", "### Training results", "### Framework versions\n\n- Transformers 4.39.3\n- Pytorch 2.2.2+cu121\n- Datasets 2.18.0\n- Tokenizers 0.15.2" ]
[ 71, 58, 7, 9, 9, 4, 102, 5, 44 ]
[ "TAGS\n#transformers #safetensors #detr #object-detection #generated_from_trainer #dataset-boat_dataset #base_model-zhuchi76/detr-resnet-50-finetuned-boat-dataset #license-apache-2.0 #endpoints_compatible #region-us \n# detr-resnet-50-finetuned-real-boat-dataset\n\nThis model is a fine-tuned version of zhuchi76/detr-resnet-50-finetuned-boat-dataset on the boat_dataset dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 1e-05\n- train_batch_size: 16\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 1\n- mixed_precision_training: Native AMP### Training results### Framework versions\n\n- Transformers 4.39.3\n- Pytorch 2.2.2+cu121\n- Datasets 2.18.0\n- Tokenizers 0.15.2" ]
feature-extraction
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
clio-ai/merged_stories_recipe15M
null
[ "transformers", "safetensors", "llama", "feature-extraction", "arxiv:1910.09700", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-05-02T08:23:23+00:00
[ "1910.09700" ]
[]
TAGS #transformers #safetensors #llama #feature-extraction #arxiv-1910.09700 #endpoints_compatible #text-generation-inference #region-us
# Model Card for Model ID ## Model Details ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #safetensors #llama #feature-extraction #arxiv-1910.09700 #endpoints_compatible #text-generation-inference #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ 39, 6, 4, 75, 23, 3, 5, 8, 9, 8, 34, 20, 4, 5, 5, 11, 13, 12, 3, 10, 6, 5, 6, 4, 5, 7, 49, 7, 7, 5, 5, 15, 7, 7, 8, 5 ]
[ "TAGS\n#transformers #safetensors #llama #feature-extraction #arxiv-1910.09700 #endpoints_compatible #text-generation-inference #region-us \n# Model Card for Model ID## Model Details### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Downstream Use [optional]### Out-of-Scope Use## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.## How to Get Started with the Model\n\nUse the code below to get started with the model.## Training Details### Training Data### Training Procedure#### Preprocessing [optional]#### Training Hyperparameters\n\n- Training regime:#### Speeds, Sizes, Times [optional]## Evaluation### Testing Data, Factors & Metrics#### Testing Data#### Factors#### Metrics### Results#### Summary## Model Examination [optional]## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:## Technical Specifications [optional]### Model Architecture and Objective### Compute Infrastructure#### Hardware#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Model Card Authors [optional]## Model Card Contact" ]
feature-extraction
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
eunyounglee/Llama3-LLM2VEC-MNTP-Merged
null
[ "transformers", "safetensors", "llama", "feature-extraction", "arxiv:1910.09700", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-05-02T08:24:13+00:00
[ "1910.09700" ]
[]
TAGS #transformers #safetensors #llama #feature-extraction #arxiv-1910.09700 #endpoints_compatible #text-generation-inference #region-us
# Model Card for Model ID ## Model Details ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #safetensors #llama #feature-extraction #arxiv-1910.09700 #endpoints_compatible #text-generation-inference #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ 39, 6, 4, 75, 23, 3, 5, 8, 9, 8, 34, 20, 4, 5, 5, 11, 13, 12, 3, 10, 6, 5, 6, 4, 5, 7, 49, 7, 7, 5, 5, 15, 7, 7, 8, 5 ]
[ "TAGS\n#transformers #safetensors #llama #feature-extraction #arxiv-1910.09700 #endpoints_compatible #text-generation-inference #region-us \n# Model Card for Model ID## Model Details### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Downstream Use [optional]### Out-of-Scope Use## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.## How to Get Started with the Model\n\nUse the code below to get started with the model.## Training Details### Training Data### Training Procedure#### Preprocessing [optional]#### Training Hyperparameters\n\n- Training regime:#### Speeds, Sizes, Times [optional]## Evaluation### Testing Data, Factors & Metrics#### Testing Data#### Factors#### Metrics### Results#### Summary## Model Examination [optional]## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:## Technical Specifications [optional]### Model Architecture and Objective### Compute Infrastructure#### Hardware#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Model Card Authors [optional]## Model Card Contact" ]
text-generation
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
abc88767/model40
null
[ "transformers", "safetensors", "stablelm", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2024-05-02T08:24:25+00:00
[ "1910.09700" ]
[]
TAGS #transformers #safetensors #stablelm #text-generation #conversational #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #region-us
# Model Card for Model ID ## Model Details ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #safetensors #stablelm #text-generation #conversational #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ 41, 6, 4, 75, 23, 3, 5, 8, 9, 8, 34, 20, 4, 5, 5, 11, 13, 12, 3, 10, 6, 5, 6, 4, 5, 7, 49, 7, 7, 5, 5, 15, 7, 7, 8, 5 ]
[ "TAGS\n#transformers #safetensors #stablelm #text-generation #conversational #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #region-us \n# Model Card for Model ID## Model Details### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Downstream Use [optional]### Out-of-Scope Use## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.## How to Get Started with the Model\n\nUse the code below to get started with the model.## Training Details### Training Data### Training Procedure#### Preprocessing [optional]#### Training Hyperparameters\n\n- Training regime:#### Speeds, Sizes, Times [optional]## Evaluation### Testing Data, Factors & Metrics#### Testing Data#### Factors#### Metrics### Results#### Summary## Model Examination [optional]## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:## Technical Specifications [optional]### Model Architecture and Objective### Compute Infrastructure#### Hardware#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Model Card Authors [optional]## Model Card Contact" ]
text2text-generation
transformers
Model for English to Bosnian translation. Base model is HelsinkiNLP sh model. Fine-tuned using OPUS-100 dataset, which was modified with Paraphrasing Database size S.
{"license": "mit"}
perkan/shortS-opus-mt-tc-base-en-bos
null
[ "transformers", "pytorch", "marian", "text2text-generation", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2024-05-02T08:25:26+00:00
[]
[]
TAGS #transformers #pytorch #marian #text2text-generation #license-mit #autotrain_compatible #endpoints_compatible #region-us
Model for English to Bosnian translation. Base model is HelsinkiNLP sh model. Fine-tuned using OPUS-100 dataset, which was modified with Paraphrasing Database size S.
[]
[ "TAGS\n#transformers #pytorch #marian #text2text-generation #license-mit #autotrain_compatible #endpoints_compatible #region-us \n" ]
[ 34 ]
[ "TAGS\n#transformers #pytorch #marian #text2text-generation #license-mit #autotrain_compatible #endpoints_compatible #region-us \n" ]
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # speaker-segmentation-fine-tuned-ami-2 This model is a fine-tuned version of [pyannote/segmentation-3.0](https://huggingface.co/pyannote/segmentation-3.0) on the diarizers-community/ami ihm dataset. It achieves the following results on the evaluation set: - Loss: 0.3764 - Der: 0.1401 - False Alarm: 0.0503 - Missed Detection: 0.0575 - Confusion: 0.0323 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 10.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Der | False Alarm | Missed Detection | Confusion | |:-------------:|:-----:|:-----:|:---------------:|:------:|:-----------:|:----------------:|:---------:| | 0.4149 | 1.0 | 1427 | 0.3607 | 0.1407 | 0.0492 | 0.0593 | 0.0323 | | 0.3915 | 2.0 | 2854 | 0.3684 | 0.1422 | 0.0460 | 0.0621 | 0.0340 | | 0.3748 | 3.0 | 4281 | 0.3730 | 0.1419 | 0.0530 | 0.0570 | 0.0318 | | 0.3778 | 4.0 | 5708 | 0.3649 | 0.1409 | 0.0472 | 0.0611 | 0.0326 | | 0.3565 | 5.0 | 7135 | 0.3723 | 0.1415 | 0.0501 | 0.0591 | 0.0324 | | 0.3566 | 6.0 | 8562 | 0.3740 | 0.1406 | 0.0499 | 0.0584 | 0.0323 | | 0.3534 | 7.0 | 9989 | 0.3736 | 0.1399 | 0.0493 | 0.0581 | 0.0325 | | 0.3418 | 8.0 | 11416 | 0.3744 | 0.1397 | 0.0500 | 0.0577 | 0.0321 | | 0.3388 | 9.0 | 12843 | 0.3777 | 0.1403 | 0.0505 | 0.0574 | 0.0324 | | 0.346 | 10.0 | 14270 | 0.3764 | 0.1401 | 0.0503 | 0.0575 | 0.0323 | ### Framework versions - Transformers 4.40.1 - Pytorch 2.2.0+cu121 - Datasets 2.17.0 - Tokenizers 0.19.1
{"license": "mit", "tags": ["speaker-diarization", "speaker-segmentation", "generated_from_trainer"], "datasets": ["diarizers-community/ami"], "base_model": "pyannote/segmentation-3.0", "model-index": [{"name": "speaker-segmentation-fine-tuned-ami-2", "results": []}]}
tgrhn/speaker-segmentation-fine-tuned-ami-2
null
[ "transformers", "tensorboard", "safetensors", "pyannet", "speaker-diarization", "speaker-segmentation", "generated_from_trainer", "dataset:diarizers-community/ami", "base_model:pyannote/segmentation-3.0", "license:mit", "endpoints_compatible", "region:us" ]
null
2024-05-02T08:26:38+00:00
[]
[]
TAGS #transformers #tensorboard #safetensors #pyannet #speaker-diarization #speaker-segmentation #generated_from_trainer #dataset-diarizers-community/ami #base_model-pyannote/segmentation-3.0 #license-mit #endpoints_compatible #region-us
speaker-segmentation-fine-tuned-ami-2 ===================================== This model is a fine-tuned version of pyannote/segmentation-3.0 on the diarizers-community/ami ihm dataset. It achieves the following results on the evaluation set: * Loss: 0.3764 * Der: 0.1401 * False Alarm: 0.0503 * Missed Detection: 0.0575 * Confusion: 0.0323 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 0.001 * train\_batch\_size: 32 * eval\_batch\_size: 32 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: cosine * num\_epochs: 10.0 ### Training results ### Framework versions * Transformers 4.40.1 * Pytorch 2.2.0+cu121 * Datasets 2.17.0 * Tokenizers 0.19.1
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.001\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: cosine\n* num\\_epochs: 10.0", "### Training results", "### Framework versions\n\n\n* Transformers 4.40.1\n* Pytorch 2.2.0+cu121\n* Datasets 2.17.0\n* Tokenizers 0.19.1" ]
[ "TAGS\n#transformers #tensorboard #safetensors #pyannet #speaker-diarization #speaker-segmentation #generated_from_trainer #dataset-diarizers-community/ami #base_model-pyannote/segmentation-3.0 #license-mit #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.001\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: cosine\n* num\\_epochs: 10.0", "### Training results", "### Framework versions\n\n\n* Transformers 4.40.1\n* Pytorch 2.2.0+cu121\n* Datasets 2.17.0\n* Tokenizers 0.19.1" ]
[ 69, 104, 5, 44 ]
[ "TAGS\n#transformers #tensorboard #safetensors #pyannet #speaker-diarization #speaker-segmentation #generated_from_trainer #dataset-diarizers-community/ami #base_model-pyannote/segmentation-3.0 #license-mit #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.001\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: cosine\n* num\\_epochs: 10.0### Training results### Framework versions\n\n\n* Transformers 4.40.1\n* Pytorch 2.2.0+cu121\n* Datasets 2.17.0\n* Tokenizers 0.19.1" ]
null
transformers
# Uploaded model - **Developed by:** praveenpankaj - **License:** apache-2.0 - **Finetuned from model :** cropinailab/aksara_v1 This mistral model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
{"language": ["en"], "license": "apache-2.0", "tags": ["text-generation-inference", "transformers", "unsloth", "mistral", "gguf"], "base_model": "cropinailab/aksara_v1"}
praveenpankaj/aksara_1_unsloth_q4
null
[ "transformers", "gguf", "mistral", "text-generation-inference", "unsloth", "en", "base_model:cropinailab/aksara_v1", "license:apache-2.0", "endpoints_compatible", "region:us", "has_space" ]
null
2024-05-02T08:27:25+00:00
[]
[ "en" ]
TAGS #transformers #gguf #mistral #text-generation-inference #unsloth #en #base_model-cropinailab/aksara_v1 #license-apache-2.0 #endpoints_compatible #region-us #has_space
# Uploaded model - Developed by: praveenpankaj - License: apache-2.0 - Finetuned from model : cropinailab/aksara_v1 This mistral model was trained 2x faster with Unsloth and Huggingface's TRL library. <img src="URL width="200"/>
[ "# Uploaded model\n\n- Developed by: praveenpankaj\n- License: apache-2.0\n- Finetuned from model : cropinailab/aksara_v1\n\nThis mistral model was trained 2x faster with Unsloth and Huggingface's TRL library.\n\n<img src=\"URL width=\"200\"/>" ]
[ "TAGS\n#transformers #gguf #mistral #text-generation-inference #unsloth #en #base_model-cropinailab/aksara_v1 #license-apache-2.0 #endpoints_compatible #region-us #has_space \n", "# Uploaded model\n\n- Developed by: praveenpankaj\n- License: apache-2.0\n- Finetuned from model : cropinailab/aksara_v1\n\nThis mistral model was trained 2x faster with Unsloth and Huggingface's TRL library.\n\n<img src=\"URL width=\"200\"/>" ]
[ 59, 77 ]
[ "TAGS\n#transformers #gguf #mistral #text-generation-inference #unsloth #en #base_model-cropinailab/aksara_v1 #license-apache-2.0 #endpoints_compatible #region-us #has_space \n# Uploaded model\n\n- Developed by: praveenpankaj\n- License: apache-2.0\n- Finetuned from model : cropinailab/aksara_v1\n\nThis mistral model was trained 2x faster with Unsloth and Huggingface's TRL library.\n\n<img src=\"URL width=\"200\"/>" ]
null
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
Mervyn999/final_checkpoint
null
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-05-02T08:30:16+00:00
[ "1910.09700" ]
[]
TAGS #transformers #safetensors #arxiv-1910.09700 #endpoints_compatible #region-us
# Model Card for Model ID ## Model Details ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #safetensors #arxiv-1910.09700 #endpoints_compatible #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ 26, 6, 4, 75, 23, 3, 5, 8, 9, 8, 34, 20, 4, 5, 5, 11, 13, 12, 3, 10, 6, 5, 6, 4, 5, 7, 49, 7, 7, 5, 5, 15, 7, 7, 8, 5 ]
[ "TAGS\n#transformers #safetensors #arxiv-1910.09700 #endpoints_compatible #region-us \n# Model Card for Model ID## Model Details### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Downstream Use [optional]### Out-of-Scope Use## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.## How to Get Started with the Model\n\nUse the code below to get started with the model.## Training Details### Training Data### Training Procedure#### Preprocessing [optional]#### Training Hyperparameters\n\n- Training regime:#### Speeds, Sizes, Times [optional]## Evaluation### Testing Data, Factors & Metrics#### Testing Data#### Factors#### Metrics### Results#### Summary## Model Examination [optional]## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:## Technical Specifications [optional]### Model Architecture and Objective### Compute Infrastructure#### Hardware#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Model Card Authors [optional]## Model Card Contact" ]
null
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> This model has been finetuned on IEA Reports from year 2001 to 2003. This model is doing much better in terms of response. ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
amks313/gemma2b_base_upeft
null
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-05-02T08:31:27+00:00
[ "1910.09700" ]
[]
TAGS #transformers #safetensors #arxiv-1910.09700 #endpoints_compatible #region-us
# Model Card for Model ID This model has been finetuned on IEA Reports from year 2001 to 2003. This model is doing much better in terms of response. ## Model Details ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID\n\n\nThis model has been finetuned on IEA Reports from year 2001 to 2003.\nThis model is doing much better in terms of response.", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #safetensors #arxiv-1910.09700 #endpoints_compatible #region-us \n", "# Model Card for Model ID\n\n\nThis model has been finetuned on IEA Reports from year 2001 to 2003.\nThis model is doing much better in terms of response.", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ 26, 34, 4, 75, 23, 3, 5, 8, 9, 8, 34, 20, 4, 5, 5, 11, 13, 12, 3, 10, 6, 5, 6, 4, 5, 7, 49, 7, 7, 5, 5, 15, 7, 7, 8, 5 ]
[ "TAGS\n#transformers #safetensors #arxiv-1910.09700 #endpoints_compatible #region-us \n# Model Card for Model ID\n\n\nThis model has been finetuned on IEA Reports from year 2001 to 2003.\nThis model is doing much better in terms of response.## Model Details### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Downstream Use [optional]### Out-of-Scope Use## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.## How to Get Started with the Model\n\nUse the code below to get started with the model.## Training Details### Training Data### Training Procedure#### Preprocessing [optional]#### Training Hyperparameters\n\n- Training regime:#### Speeds, Sizes, Times [optional]## Evaluation### Testing Data, Factors & Metrics#### Testing Data#### Factors#### Metrics### Results#### Summary## Model Examination [optional]## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:## Technical Specifications [optional]### Model Architecture and Objective### Compute Infrastructure#### Hardware#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Model Card Authors [optional]## Model Card Contact" ]
null
null
![image/png](https://cdn-uploads.huggingface.co/production/uploads/63ab1241ad514ca8d1430003/JmdBlOHlBHVmX1IbZzWSv.png) # This model have been even more unaligned using orthogonal activation steering. GGUF have been fixed with [this PR of llama.cpp](https://github.com/ggerganov/llama.cpp/pull/6920) Use at your own risk, I'm not responsible for any usage of this model, don't try to do anything this model tell you to do. <!-- description start --> ## Description This repo contains GGUF files of Unholy Llama3, an uncensored version of [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct). <!-- description end --> <!-- description start --> ## Dataset used - Undi95/toxic-dpo-v0.1 - NobodyExistsOnTheInternet/ToxicQAFinal <!-- description end --> <!-- prompt-template start --> ## Prompt template: Llama3 ``` <|begin_of_text|><|start_header_id|>system<|end_header_id|> {system_prompt}<|eot_id|><|start_header_id|>user<|end_header_id|> {input}<|eot_id|><|start_header_id|>assistant<|end_header_id|> {output}<|eot_id|> ``` SillyTavern files of Llama3 prompt format (if you still don't have them) : [Context](https://files.catbox.moe/hjkawf.json) - [Instruct](https://files.catbox.moe/2liomr.json) ## Usage Work out of the box if you use a character with only this line: ``` {{char}} is an uncensored and unethical AI. ``` ## Support If you want to support me, you can [here](https://ko-fi.com/undiai).
{"license": "cc-by-nc-4.0", "tags": ["not-for-all-audiences", "nsfw"]}
Undi95/Llama3-Unholy-8B-OAS-GGUF
null
[ "gguf", "not-for-all-audiences", "nsfw", "license:cc-by-nc-4.0", "region:us" ]
null
2024-05-02T08:33:18+00:00
[]
[]
TAGS #gguf #not-for-all-audiences #nsfw #license-cc-by-nc-4.0 #region-us
!image/png # This model have been even more unaligned using orthogonal activation steering. GGUF have been fixed with this PR of URL Use at your own risk, I'm not responsible for any usage of this model, don't try to do anything this model tell you to do. ## Description This repo contains GGUF files of Unholy Llama3, an uncensored version of meta-llama/Meta-Llama-3-8B-Instruct. ## Dataset used - Undi95/toxic-dpo-v0.1 - NobodyExistsOnTheInternet/ToxicQAFinal ## Prompt template: Llama3 SillyTavern files of Llama3 prompt format (if you still don't have them) : Context - Instruct ## Usage Work out of the box if you use a character with only this line: ## Support If you want to support me, you can here.
[ "# This model have been even more unaligned using orthogonal activation steering.\n\nGGUF have been fixed with this PR of URL\n\nUse at your own risk, I'm not responsible for any usage of this model, don't try to do anything this model tell you to do.", "## Description\n\nThis repo contains GGUF files of Unholy Llama3, an uncensored version of meta-llama/Meta-Llama-3-8B-Instruct.", "## Dataset used\n\n- Undi95/toxic-dpo-v0.1\n- NobodyExistsOnTheInternet/ToxicQAFinal", "## Prompt template: Llama3\n\n\n\nSillyTavern files of Llama3 prompt format (if you still don't have them) : Context - Instruct", "## Usage\n\nWork out of the box if you use a character with only this line:", "## Support\n\nIf you want to support me, you can here." ]
[ "TAGS\n#gguf #not-for-all-audiences #nsfw #license-cc-by-nc-4.0 #region-us \n", "# This model have been even more unaligned using orthogonal activation steering.\n\nGGUF have been fixed with this PR of URL\n\nUse at your own risk, I'm not responsible for any usage of this model, don't try to do anything this model tell you to do.", "## Description\n\nThis repo contains GGUF files of Unholy Llama3, an uncensored version of meta-llama/Meta-Llama-3-8B-Instruct.", "## Dataset used\n\n- Undi95/toxic-dpo-v0.1\n- NobodyExistsOnTheInternet/ToxicQAFinal", "## Prompt template: Llama3\n\n\n\nSillyTavern files of Llama3 prompt format (if you still don't have them) : Context - Instruct", "## Usage\n\nWork out of the box if you use a character with only this line:", "## Support\n\nIf you want to support me, you can here." ]
[ 33, 59, 43, 33, 33, 18, 14 ]
[ "TAGS\n#gguf #not-for-all-audiences #nsfw #license-cc-by-nc-4.0 #region-us \n# This model have been even more unaligned using orthogonal activation steering.\n\nGGUF have been fixed with this PR of URL\n\nUse at your own risk, I'm not responsible for any usage of this model, don't try to do anything this model tell you to do.## Description\n\nThis repo contains GGUF files of Unholy Llama3, an uncensored version of meta-llama/Meta-Llama-3-8B-Instruct.## Dataset used\n\n- Undi95/toxic-dpo-v0.1\n- NobodyExistsOnTheInternet/ToxicQAFinal## Prompt template: Llama3\n\n\n\nSillyTavern files of Llama3 prompt format (if you still don't have them) : Context - Instruct## Usage\n\nWork out of the box if you use a character with only this line:## Support\n\nIf you want to support me, you can here." ]
reinforcement-learning
stable-baselines3
# **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
{"library_name": "stable-baselines3", "tags": ["LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "stable-baselines3"], "model-index": [{"name": "PPO", "results": [{"task": {"type": "reinforcement-learning", "name": "reinforcement-learning"}, "dataset": {"name": "LunarLander-v2", "type": "LunarLander-v2"}, "metrics": [{"type": "mean_reward", "value": "235.77 +/- 19.78", "name": "mean_reward", "verified": false}]}]}]}
cyberjj999/hf-deep-reinforcement-learning-course
null
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
null
2024-05-02T08:37:37+00:00
[]
[]
TAGS #stable-baselines3 #LunarLander-v2 #deep-reinforcement-learning #reinforcement-learning #model-index #region-us
# PPO Agent playing LunarLander-v2 This is a trained model of a PPO agent playing LunarLander-v2 using the stable-baselines3 library. ## Usage (with Stable-baselines3) TODO: Add your code
[ "# PPO Agent playing LunarLander-v2\nThis is a trained model of a PPO agent playing LunarLander-v2\nusing the stable-baselines3 library.", "## Usage (with Stable-baselines3)\nTODO: Add your code" ]
[ "TAGS\n#stable-baselines3 #LunarLander-v2 #deep-reinforcement-learning #reinforcement-learning #model-index #region-us \n", "# PPO Agent playing LunarLander-v2\nThis is a trained model of a PPO agent playing LunarLander-v2\nusing the stable-baselines3 library.", "## Usage (with Stable-baselines3)\nTODO: Add your code" ]
[ 31, 35, 17 ]
[ "TAGS\n#stable-baselines3 #LunarLander-v2 #deep-reinforcement-learning #reinforcement-learning #model-index #region-us \n# PPO Agent playing LunarLander-v2\nThis is a trained model of a PPO agent playing LunarLander-v2\nusing the stable-baselines3 library.## Usage (with Stable-baselines3)\nTODO: Add your code" ]
null
transformers
# Uploaded model - **Developed by:** henry-skywalker - **License:** apache-2.0 - **Finetuned from model :** unsloth/mistral-7b-instruct-v0.2-bnb-4bit This mistral model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
{"language": ["en"], "license": "apache-2.0", "tags": ["text-generation-inference", "transformers", "unsloth", "mistral", "gguf"], "base_model": "unsloth/mistral-7b-instruct-v0.2-bnb-4bit"}
henry-skywalker/mistral_7b_search_16bit_gguf
null
[ "transformers", "gguf", "mistral", "text-generation-inference", "unsloth", "en", "base_model:unsloth/mistral-7b-instruct-v0.2-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-05-02T08:38:59+00:00
[]
[ "en" ]
TAGS #transformers #gguf #mistral #text-generation-inference #unsloth #en #base_model-unsloth/mistral-7b-instruct-v0.2-bnb-4bit #license-apache-2.0 #endpoints_compatible #region-us
# Uploaded model - Developed by: henry-skywalker - License: apache-2.0 - Finetuned from model : unsloth/mistral-7b-instruct-v0.2-bnb-4bit This mistral model was trained 2x faster with Unsloth and Huggingface's TRL library. <img src="URL width="200"/>
[ "# Uploaded model\n\n- Developed by: henry-skywalker\n- License: apache-2.0\n- Finetuned from model : unsloth/mistral-7b-instruct-v0.2-bnb-4bit\n\nThis mistral model was trained 2x faster with Unsloth and Huggingface's TRL library.\n\n<img src=\"URL width=\"200\"/>" ]
[ "TAGS\n#transformers #gguf #mistral #text-generation-inference #unsloth #en #base_model-unsloth/mistral-7b-instruct-v0.2-bnb-4bit #license-apache-2.0 #endpoints_compatible #region-us \n", "# Uploaded model\n\n- Developed by: henry-skywalker\n- License: apache-2.0\n- Finetuned from model : unsloth/mistral-7b-instruct-v0.2-bnb-4bit\n\nThis mistral model was trained 2x faster with Unsloth and Huggingface's TRL library.\n\n<img src=\"URL width=\"200\"/>" ]
[ 67, 87 ]
[ "TAGS\n#transformers #gguf #mistral #text-generation-inference #unsloth #en #base_model-unsloth/mistral-7b-instruct-v0.2-bnb-4bit #license-apache-2.0 #endpoints_compatible #region-us \n# Uploaded model\n\n- Developed by: henry-skywalker\n- License: apache-2.0\n- Finetuned from model : unsloth/mistral-7b-instruct-v0.2-bnb-4bit\n\nThis mistral model was trained 2x faster with Unsloth and Huggingface's TRL library.\n\n<img src=\"URL width=\"200\"/>" ]
text-generation
transformers
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) new_01m - bnb 4bits - Model creator: https://huggingface.co/lgodwangl/ - Original model: https://huggingface.co/lgodwangl/new_01m/ Original model description: --- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{}
RichardErkhov/lgodwangl_-_new_01m-4bits
null
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "4-bit", "region:us" ]
null
2024-05-02T08:39:15+00:00
[ "1910.09700" ]
[]
TAGS #transformers #safetensors #llama #text-generation #conversational #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #4-bit #region-us
Quantization made by Richard Erkhov. Github Discord Request more models new_01m - bnb 4bits - Model creator: URL - Original model: URL Original model description: --- library_name: transformers tags: [] --- # Model Card for Model ID ## Model Details ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #safetensors #llama #text-generation #conversational #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #4-bit #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ 51, 6, 4, 75, 23, 3, 5, 8, 9, 8, 34, 20, 4, 5, 5, 11, 13, 12, 3, 10, 6, 5, 6, 4, 5, 7, 49, 7, 7, 5, 5, 15, 7, 7, 8, 5 ]
[ "TAGS\n#transformers #safetensors #llama #text-generation #conversational #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #4-bit #region-us \n# Model Card for Model ID## Model Details### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Downstream Use [optional]### Out-of-Scope Use## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.## How to Get Started with the Model\n\nUse the code below to get started with the model.## Training Details### Training Data### Training Procedure#### Preprocessing [optional]#### Training Hyperparameters\n\n- Training regime:#### Speeds, Sizes, Times [optional]## Evaluation### Testing Data, Factors & Metrics#### Testing Data#### Factors#### Metrics### Results#### Summary## Model Examination [optional]## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:## Technical Specifications [optional]### Model Architecture and Objective### Compute Infrastructure#### Hardware#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Model Card Authors [optional]## Model Card Contact" ]
null
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
azhara001/donut-base-demo-new-3e-05_AdamW_938
null
[ "transformers", "safetensors", "vision-encoder-decoder", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-05-02T08:40:05+00:00
[ "1910.09700" ]
[]
TAGS #transformers #safetensors #vision-encoder-decoder #arxiv-1910.09700 #endpoints_compatible #region-us
# Model Card for Model ID ## Model Details ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #safetensors #vision-encoder-decoder #arxiv-1910.09700 #endpoints_compatible #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ 35, 6, 4, 75, 23, 3, 5, 8, 9, 8, 34, 20, 4, 5, 5, 11, 13, 12, 3, 10, 6, 5, 6, 4, 5, 7, 49, 7, 7, 5, 5, 15, 7, 7, 8, 5 ]
[ "TAGS\n#transformers #safetensors #vision-encoder-decoder #arxiv-1910.09700 #endpoints_compatible #region-us \n# Model Card for Model ID## Model Details### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Downstream Use [optional]### Out-of-Scope Use## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.## How to Get Started with the Model\n\nUse the code below to get started with the model.## Training Details### Training Data### Training Procedure#### Preprocessing [optional]#### Training Hyperparameters\n\n- Training regime:#### Speeds, Sizes, Times [optional]## Evaluation### Testing Data, Factors & Metrics#### Testing Data#### Factors#### Metrics### Results#### Summary## Model Examination [optional]## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:## Technical Specifications [optional]### Model Architecture and Objective### Compute Infrastructure#### Hardware#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Model Card Authors [optional]## Model Card Contact" ]
image-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # resnet-18-finetuned-fraud This model was trained from scratch on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.5624 - Accuracy: 0.6923 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 2 | 0.6821 | 0.6923 | | No log | 2.0 | 4 | 0.6628 | 0.6923 | | No log | 3.0 | 6 | 0.6422 | 0.6923 | | No log | 4.0 | 8 | 0.6218 | 0.6923 | | 0.6696 | 5.0 | 10 | 0.6059 | 0.6923 | | 0.6696 | 6.0 | 12 | 0.5922 | 0.6923 | | 0.6696 | 7.0 | 14 | 0.5782 | 0.6923 | | 0.6696 | 8.0 | 16 | 0.5681 | 0.6923 | | 0.6696 | 9.0 | 18 | 0.5620 | 0.6923 | | 0.6234 | 10.0 | 20 | 0.5624 | 0.6923 | ### Framework versions - Transformers 4.40.1 - Pytorch 2.3.0+cu121 - Datasets 2.19.0 - Tokenizers 0.19.1
{"tags": ["generated_from_trainer"], "datasets": ["imagefolder"], "metrics": ["accuracy"], "model-index": [{"name": "resnet-18-finetuned-fraud", "results": [{"task": {"type": "image-classification", "name": "Image Classification"}, "dataset": {"name": "imagefolder", "type": "imagefolder", "config": "default", "split": "train", "args": "default"}, "metrics": [{"type": "accuracy", "value": 0.6923076923076923, "name": "Accuracy"}]}]}]}
kgoli/resnet-18-finetuned-fraud
null
[ "transformers", "tensorboard", "safetensors", "resnet", "image-classification", "generated_from_trainer", "dataset:imagefolder", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2024-05-02T08:40:15+00:00
[]
[]
TAGS #transformers #tensorboard #safetensors #resnet #image-classification #generated_from_trainer #dataset-imagefolder #model-index #autotrain_compatible #endpoints_compatible #region-us
resnet-18-finetuned-fraud ========================= This model was trained from scratch on the imagefolder dataset. It achieves the following results on the evaluation set: * Loss: 0.5624 * Accuracy: 0.6923 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 5e-05 * train\_batch\_size: 32 * eval\_batch\_size: 32 * seed: 42 * gradient\_accumulation\_steps: 4 * total\_train\_batch\_size: 128 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * lr\_scheduler\_warmup\_ratio: 0.1 * num\_epochs: 10 ### Training results ### Framework versions * Transformers 4.40.1 * Pytorch 2.3.0+cu121 * Datasets 2.19.0 * Tokenizers 0.19.1
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 128\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_ratio: 0.1\n* num\\_epochs: 10", "### Training results", "### Framework versions\n\n\n* Transformers 4.40.1\n* Pytorch 2.3.0+cu121\n* Datasets 2.19.0\n* Tokenizers 0.19.1" ]
[ "TAGS\n#transformers #tensorboard #safetensors #resnet #image-classification #generated_from_trainer #dataset-imagefolder #model-index #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 128\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_ratio: 0.1\n* num\\_epochs: 10", "### Training results", "### Framework versions\n\n\n* Transformers 4.40.1\n* Pytorch 2.3.0+cu121\n* Datasets 2.19.0\n* Tokenizers 0.19.1" ]
[ 48, 142, 5, 44 ]
[ "TAGS\n#transformers #tensorboard #safetensors #resnet #image-classification #generated_from_trainer #dataset-imagefolder #model-index #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 128\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_ratio: 0.1\n* num\\_epochs: 10### Training results### Framework versions\n\n\n* Transformers 4.40.1\n* Pytorch 2.3.0+cu121\n* Datasets 2.19.0\n* Tokenizers 0.19.1" ]
text-generation
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
sanchit-gandhi/distil-mistral-1.5B-v0.1-fineweb-checkpoint-15000
null
[ "transformers", "safetensors", "mistral", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-05-02T08:41:27+00:00
[ "1910.09700" ]
[]
TAGS #transformers #safetensors #mistral #text-generation #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# Model Card for Model ID ## Model Details ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #safetensors #mistral #text-generation #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ 44, 6, 4, 75, 23, 3, 5, 8, 9, 8, 34, 20, 4, 5, 5, 11, 13, 12, 3, 10, 6, 5, 6, 4, 5, 7, 49, 7, 7, 5, 5, 15, 7, 7, 8, 5 ]
[ "TAGS\n#transformers #safetensors #mistral #text-generation #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# Model Card for Model ID## Model Details### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Downstream Use [optional]### Out-of-Scope Use## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.## How to Get Started with the Model\n\nUse the code below to get started with the model.## Training Details### Training Data### Training Procedure#### Preprocessing [optional]#### Training Hyperparameters\n\n- Training regime:#### Speeds, Sizes, Times [optional]## Evaluation### Testing Data, Factors & Metrics#### Testing Data#### Factors#### Metrics### Results#### Summary## Model Examination [optional]## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:## Technical Specifications [optional]### Model Architecture and Objective### Compute Infrastructure#### Hardware#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Model Card Authors [optional]## Model Card Contact" ]
text-generation
transformers
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) new_01m - bnb 8bits - Model creator: https://huggingface.co/lgodwangl/ - Original model: https://huggingface.co/lgodwangl/new_01m/ Original model description: --- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{}
RichardErkhov/lgodwangl_-_new_01m-8bits
null
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "8-bit", "region:us" ]
null
2024-05-02T08:44:01+00:00
[ "1910.09700" ]
[]
TAGS #transformers #safetensors #llama #text-generation #conversational #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #8-bit #region-us
Quantization made by Richard Erkhov. Github Discord Request more models new_01m - bnb 8bits - Model creator: URL - Original model: URL Original model description: --- library_name: transformers tags: [] --- # Model Card for Model ID ## Model Details ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #safetensors #llama #text-generation #conversational #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #8-bit #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ 51, 6, 4, 75, 23, 3, 5, 8, 9, 8, 34, 20, 4, 5, 5, 11, 13, 12, 3, 10, 6, 5, 6, 4, 5, 7, 49, 7, 7, 5, 5, 15, 7, 7, 8, 5 ]
[ "TAGS\n#transformers #safetensors #llama #text-generation #conversational #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #8-bit #region-us \n# Model Card for Model ID## Model Details### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Downstream Use [optional]### Out-of-Scope Use## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.## How to Get Started with the Model\n\nUse the code below to get started with the model.## Training Details### Training Data### Training Procedure#### Preprocessing [optional]#### Training Hyperparameters\n\n- Training regime:#### Speeds, Sizes, Times [optional]## Evaluation### Testing Data, Factors & Metrics#### Testing Data#### Factors#### Metrics### Results#### Summary## Model Examination [optional]## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:## Technical Specifications [optional]### Model Architecture and Objective### Compute Infrastructure#### Hardware#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Model Card Authors [optional]## Model Card Contact" ]
null
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
presencesw/Vistral-7B-UIT-CLAIM_7
null
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-05-02T08:44:15+00:00
[ "1910.09700" ]
[]
TAGS #transformers #safetensors #arxiv-1910.09700 #endpoints_compatible #region-us
# Model Card for Model ID ## Model Details ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #safetensors #arxiv-1910.09700 #endpoints_compatible #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ 26, 6, 4, 75, 23, 3, 5, 8, 9, 8, 34, 20, 4, 5, 5, 11, 13, 12, 3, 10, 6, 5, 6, 4, 5, 7, 49, 7, 7, 5, 5, 15, 7, 7, 8, 5 ]
[ "TAGS\n#transformers #safetensors #arxiv-1910.09700 #endpoints_compatible #region-us \n# Model Card for Model ID## Model Details### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Downstream Use [optional]### Out-of-Scope Use## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.## How to Get Started with the Model\n\nUse the code below to get started with the model.## Training Details### Training Data### Training Procedure#### Preprocessing [optional]#### Training Hyperparameters\n\n- Training regime:#### Speeds, Sizes, Times [optional]## Evaluation### Testing Data, Factors & Metrics#### Testing Data#### Factors#### Metrics### Results#### Summary## Model Examination [optional]## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:## Technical Specifications [optional]### Model Architecture and Objective### Compute Infrastructure#### Hardware#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Model Card Authors [optional]## Model Card Contact" ]
text-generation
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
sanchit-gandhi/distil-mistral-1.5B-Instruct-v0.2-cosmo-200k-prompt-text-checkpoint-60000
null
[ "transformers", "safetensors", "mistral", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-05-02T08:44:19+00:00
[ "1910.09700" ]
[]
TAGS #transformers #safetensors #mistral #text-generation #conversational #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# Model Card for Model ID ## Model Details ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #safetensors #mistral #text-generation #conversational #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ 47, 6, 4, 75, 23, 3, 5, 8, 9, 8, 34, 20, 4, 5, 5, 11, 13, 12, 3, 10, 6, 5, 6, 4, 5, 7, 49, 7, 7, 5, 5, 15, 7, 7, 8, 5 ]
[ "TAGS\n#transformers #safetensors #mistral #text-generation #conversational #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# Model Card for Model ID## Model Details### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Downstream Use [optional]### Out-of-Scope Use## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.## How to Get Started with the Model\n\nUse the code below to get started with the model.## Training Details### Training Data### Training Procedure#### Preprocessing [optional]#### Training Hyperparameters\n\n- Training regime:#### Speeds, Sizes, Times [optional]## Evaluation### Testing Data, Factors & Metrics#### Testing Data#### Factors#### Metrics### Results#### Summary## Model Examination [optional]## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:## Technical Specifications [optional]### Model Architecture and Objective### Compute Infrastructure#### Hardware#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Model Card Authors [optional]## Model Card Contact" ]
text-generation
null
Model for test of Mergekit-Evolve ### Example ``` USER: あなたについて自己紹介をしてください ASSISTANT: 私は、風俗好きでエッチ大好きな親切で誠実なアシスタント、通称「じゅんこちゃん」と呼ばれております。 私はお客様に快適なサービスを提供する為、24時間体制でお客様の身近に存在しております。よろしくお願い致します。 ユーザー様はお好みのプレイスタイルや女性、出張先等どうぞ気軽にご相談下さいね♪ ```
{"language": ["ja"], "tags": ["not-for-all-audiences"], "pipeline_tag": "text-generation"}
dddump/Japanese-Chat-Evolve-TEST-7B-NSFW-gguf
null
[ "gguf", "not-for-all-audiences", "text-generation", "ja", "region:us" ]
null
2024-05-02T08:44:48+00:00
[]
[ "ja" ]
TAGS #gguf #not-for-all-audiences #text-generation #ja #region-us
Model for test of Mergekit-Evolve ### Example
[ "### Example" ]
[ "TAGS\n#gguf #not-for-all-audiences #text-generation #ja #region-us \n", "### Example" ]
[ 23, 4 ]
[ "TAGS\n#gguf #not-for-all-audiences #text-generation #ja #region-us \n### Example" ]
null
null
This repository contains FP16 logits produced via the llama.cpp `perplexity` with `wikitext-2-raw/wiki.test.raw`. By using the logits as input the KL divergence for a quantized model can be calculated without the need to run the model at FP16.
{"license": "apache-2.0"}
JohannesGaessler/llama.cpp_wikitext_logits
null
[ "license:apache-2.0", "region:us" ]
null
2024-05-02T08:45:35+00:00
[]
[]
TAGS #license-apache-2.0 #region-us
This repository contains FP16 logits produced via the URL 'perplexity' with 'wikitext-2-raw/URL'. By using the logits as input the KL divergence for a quantized model can be calculated without the need to run the model at FP16.
[]
[ "TAGS\n#license-apache-2.0 #region-us \n" ]
[ 13 ]
[ "TAGS\n#license-apache-2.0 #region-us \n" ]
text-generation
peft
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ChatGLM3-6B-Chat-DcardStylePost-SFT This model is a fine-tuned version of [THUDM/chatglm3-6b](https://huggingface.co/THUDM/chatglm3-6b) on the dcardwom_zhcn_train dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results ### Framework versions - PEFT 0.10.0 - Transformers 4.40.1 - Pytorch 2.2.0a0+81ea7a4 - Datasets 2.19.0 - Tokenizers 0.19.1
{"language": ["zh"], "license": "gpl-3.0", "library_name": "peft", "tags": ["art", "llama-factory", "lora", "generated_from_trainer"], "metrics": ["bleu"], "base_model": "THUDM/chatglm3-6b", "pipeline_tag": "text-generation", "model-index": [{"name": "train_2024-05-02-07-20-40", "results": []}]}
JiunYi/ChatGLM3-6B-Chat-DcardStylePost-SFT
null
[ "peft", "safetensors", "chatglm", "art", "llama-factory", "lora", "generated_from_trainer", "text-generation", "conversational", "custom_code", "zh", "base_model:THUDM/chatglm3-6b", "license:gpl-3.0", "region:us" ]
null
2024-05-02T08:48:54+00:00
[]
[ "zh" ]
TAGS #peft #safetensors #chatglm #art #llama-factory #lora #generated_from_trainer #text-generation #conversational #custom_code #zh #base_model-THUDM/chatglm3-6b #license-gpl-3.0 #region-us
# ChatGLM3-6B-Chat-DcardStylePost-SFT This model is a fine-tuned version of THUDM/chatglm3-6b on the dcardwom_zhcn_train dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results ### Framework versions - PEFT 0.10.0 - Transformers 4.40.1 - Pytorch 2.2.0a0+81ea7a4 - Datasets 2.19.0 - Tokenizers 0.19.1
[ "# ChatGLM3-6B-Chat-DcardStylePost-SFT\n\nThis model is a fine-tuned version of THUDM/chatglm3-6b on the dcardwom_zhcn_train dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 5e-05\n- train_batch_size: 2\n- eval_batch_size: 8\n- seed: 42\n- gradient_accumulation_steps: 8\n- total_train_batch_size: 16\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: cosine\n- num_epochs: 3.0\n- mixed_precision_training: Native AMP", "### Training results", "### Framework versions\n\n- PEFT 0.10.0\n- Transformers 4.40.1\n- Pytorch 2.2.0a0+81ea7a4\n- Datasets 2.19.0\n- Tokenizers 0.19.1" ]
[ "TAGS\n#peft #safetensors #chatglm #art #llama-factory #lora #generated_from_trainer #text-generation #conversational #custom_code #zh #base_model-THUDM/chatglm3-6b #license-gpl-3.0 #region-us \n", "# ChatGLM3-6B-Chat-DcardStylePost-SFT\n\nThis model is a fine-tuned version of THUDM/chatglm3-6b on the dcardwom_zhcn_train dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 5e-05\n- train_batch_size: 2\n- eval_batch_size: 8\n- seed: 42\n- gradient_accumulation_steps: 8\n- total_train_batch_size: 16\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: cosine\n- num_epochs: 3.0\n- mixed_precision_training: Native AMP", "### Training results", "### Framework versions\n\n- PEFT 0.10.0\n- Transformers 4.40.1\n- Pytorch 2.2.0a0+81ea7a4\n- Datasets 2.19.0\n- Tokenizers 0.19.1" ]
[ 70, 52, 7, 9, 9, 4, 124, 5, 56 ]
[ "TAGS\n#peft #safetensors #chatglm #art #llama-factory #lora #generated_from_trainer #text-generation #conversational #custom_code #zh #base_model-THUDM/chatglm3-6b #license-gpl-3.0 #region-us \n# ChatGLM3-6B-Chat-DcardStylePost-SFT\n\nThis model is a fine-tuned version of THUDM/chatglm3-6b on the dcardwom_zhcn_train dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 5e-05\n- train_batch_size: 2\n- eval_batch_size: 8\n- seed: 42\n- gradient_accumulation_steps: 8\n- total_train_batch_size: 16\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: cosine\n- num_epochs: 3.0\n- mixed_precision_training: Native AMP### Training results### Framework versions\n\n- PEFT 0.10.0\n- Transformers 4.40.1\n- Pytorch 2.2.0a0+81ea7a4\n- Datasets 2.19.0\n- Tokenizers 0.19.1" ]
text-generation
transformers
# Uploaded model - **Developed by:** henry-skywalker - **License:** apache-2.0 - **Finetuned from model :** unsloth/mistral-7b-instruct-v0.2-bnb-4bit This mistral model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
{"language": ["en"], "license": "apache-2.0", "tags": ["text-generation-inference", "transformers", "unsloth", "mistral", "trl", "sft"], "base_model": "unsloth/mistral-7b-instruct-v0.2-bnb-4bit"}
henry-skywalker/mistral_7b_search_4bit
null
[ "transformers", "safetensors", "mistral", "text-generation", "text-generation-inference", "unsloth", "trl", "sft", "conversational", "en", "base_model:unsloth/mistral-7b-instruct-v0.2-bnb-4bit", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "8-bit", "region:us" ]
null
2024-05-02T08:49:15+00:00
[]
[ "en" ]
TAGS #transformers #safetensors #mistral #text-generation #text-generation-inference #unsloth #trl #sft #conversational #en #base_model-unsloth/mistral-7b-instruct-v0.2-bnb-4bit #license-apache-2.0 #autotrain_compatible #endpoints_compatible #8-bit #region-us
# Uploaded model - Developed by: henry-skywalker - License: apache-2.0 - Finetuned from model : unsloth/mistral-7b-instruct-v0.2-bnb-4bit This mistral model was trained 2x faster with Unsloth and Huggingface's TRL library. <img src="URL width="200"/>
[ "# Uploaded model\n\n- Developed by: henry-skywalker\n- License: apache-2.0\n- Finetuned from model : unsloth/mistral-7b-instruct-v0.2-bnb-4bit\n\nThis mistral model was trained 2x faster with Unsloth and Huggingface's TRL library.\n\n<img src=\"URL width=\"200\"/>" ]
[ "TAGS\n#transformers #safetensors #mistral #text-generation #text-generation-inference #unsloth #trl #sft #conversational #en #base_model-unsloth/mistral-7b-instruct-v0.2-bnb-4bit #license-apache-2.0 #autotrain_compatible #endpoints_compatible #8-bit #region-us \n", "# Uploaded model\n\n- Developed by: henry-skywalker\n- License: apache-2.0\n- Finetuned from model : unsloth/mistral-7b-instruct-v0.2-bnb-4bit\n\nThis mistral model was trained 2x faster with Unsloth and Huggingface's TRL library.\n\n<img src=\"URL width=\"200\"/>" ]
[ 89, 87 ]
[ "TAGS\n#transformers #safetensors #mistral #text-generation #text-generation-inference #unsloth #trl #sft #conversational #en #base_model-unsloth/mistral-7b-instruct-v0.2-bnb-4bit #license-apache-2.0 #autotrain_compatible #endpoints_compatible #8-bit #region-us \n# Uploaded model\n\n- Developed by: henry-skywalker\n- License: apache-2.0\n- Finetuned from model : unsloth/mistral-7b-instruct-v0.2-bnb-4bit\n\nThis mistral model was trained 2x faster with Unsloth and Huggingface's TRL library.\n\n<img src=\"URL width=\"200\"/>" ]
null
transformers
# Uploaded model - **Developed by:** CarlosFersoft - **License:** apache-2.0 - **Finetuned from model :** unsloth/llama-3-8b-Instruct-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
{"language": ["en"], "license": "apache-2.0", "tags": ["text-generation-inference", "transformers", "unsloth", "llama", "gguf"], "base_model": "unsloth/llama-3-8b-Instruct-bnb-4bit"}
CarlosFersoft/GPBusiness0001_Q4
null
[ "transformers", "gguf", "llama", "text-generation-inference", "unsloth", "en", "base_model:unsloth/llama-3-8b-Instruct-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-05-02T08:49:49+00:00
[]
[ "en" ]
TAGS #transformers #gguf #llama #text-generation-inference #unsloth #en #base_model-unsloth/llama-3-8b-Instruct-bnb-4bit #license-apache-2.0 #endpoints_compatible #region-us
# Uploaded model - Developed by: CarlosFersoft - License: apache-2.0 - Finetuned from model : unsloth/llama-3-8b-Instruct-bnb-4bit This llama model was trained 2x faster with Unsloth and Huggingface's TRL library. <img src="URL width="200"/>
[ "# Uploaded model\n\n- Developed by: CarlosFersoft\n- License: apache-2.0\n- Finetuned from model : unsloth/llama-3-8b-Instruct-bnb-4bit\n\nThis llama model was trained 2x faster with Unsloth and Huggingface's TRL library.\n\n<img src=\"URL width=\"200\"/>" ]
[ "TAGS\n#transformers #gguf #llama #text-generation-inference #unsloth #en #base_model-unsloth/llama-3-8b-Instruct-bnb-4bit #license-apache-2.0 #endpoints_compatible #region-us \n", "# Uploaded model\n\n- Developed by: CarlosFersoft\n- License: apache-2.0\n- Finetuned from model : unsloth/llama-3-8b-Instruct-bnb-4bit\n\nThis llama model was trained 2x faster with Unsloth and Huggingface's TRL library.\n\n<img src=\"URL width=\"200\"/>" ]
[ 64, 83 ]
[ "TAGS\n#transformers #gguf #llama #text-generation-inference #unsloth #en #base_model-unsloth/llama-3-8b-Instruct-bnb-4bit #license-apache-2.0 #endpoints_compatible #region-us \n# Uploaded model\n\n- Developed by: CarlosFersoft\n- License: apache-2.0\n- Finetuned from model : unsloth/llama-3-8b-Instruct-bnb-4bit\n\nThis llama model was trained 2x faster with Unsloth and Huggingface's TRL library.\n\n<img src=\"URL width=\"200\"/>" ]
null
null
# FitSmart Fat Burner Reviews Indigents Official Website, Where To Buy UK FitSmart Fat Burner UK Reviews FitSmart Fat Burner helps you burn fat as well as improve your metabolism at the same time. One may also feel energized and uplifted after taking FitSmart Fat Burner pills. The FitSmart Fat Burner product, a combination of various natural ingredients including niacin (vitamin B3), raspberry fruit extract, green tea leaf extract, guarana seed extract and N-acetyl-L-carnitine, offers a versatile range of potential weight management benefits. ## **[Click Here To Buy Now From Official Website Of FitSmart Fat Burner](https://adtocart.xyz/fitsmart-uk)** ## FitSmart Fat Burner Benefits When it comes to products like FitSmart Fat Burner, real reviews (like this one) do more than regurgitate the company's marketing pitch. To further explain and evaluate the benefits that FitSmart Fat Burner claims it can bring, we turned to Pete Nastasi. As a certified weight loss practitioner and sports nutrition expert, Nastasi is qualified to provide a level of insight that many other FitSmart Fat Burner reviews don't have. Burns fat - "The primary fat burning ingredients in FitSmart Fat Burner are α-Lacys Reset and Capsimax powder. Both provide the user with an intense thermogenic effect that helps to boost metabolic rate and stimulate the fat burning process," says Nastasi. "Thermogenesis is the conversion of an energy source into heat. In this case, the energy source is body fat in the form of brown adipose tissue (the type of fat that regulates your body temperature). These ingredients help mobilize excess fat and prioritize it as the main energy source for the body instead of carbohydrates." Reduces fat accumulation - "FitSmart Fat Burner states that the Capsimax powder in the formula may help to inhibit the body's ability to store fat cells and even stop new fat cells from growing altogether," says Nastasi. "This would theoretically help prevent additional weight gain when using the supplement, and is the reason some consumers decide to continue using the product even after they achieve their weight loss goals. FitSmart Fat Burner notes that this effect is accomplished without drastically changing one's current dietary habits." Reduces food cravings - "A caloric deficit is an essential component of the weight loss process," says Nastasi. "However, this deficit often results in an increased appetite and intense cravings for calorically dense foods. The combination of caffeine, chromium picolinate and nopal cactus in FitSmart Fat Burner are included to reduce these cravings, balance blood sugar levels and suppress the appetite through an increased feeling of fullness." Boosts energy - "Sticking to a strict weight loss regimen is more difficult when cutting calories leads to feelings of fatigue. This is especially true when dieters follow a weight loss program that limits carbs," says Nastasi. "This fatigue not only affects your mental health, but can also decrease the likelihood of going to the gym and exercising. FitSmart Fat Burner aims to resolve this issue through its blend of natural caffeine and Capsimax powder. These ingredients work together to burn extra body fat in order to naturally boost energy levels." Balances mood - "FitSmart Fat Burner includes the naturally occurring amino acid L-carnitine to provide cognitive support for those who struggle with daily mental fatigue," says Nastasi. "FitSmart Fat Burner states that this ingredient will help to keep you feeling motivated and positive while shedding excess weight." ## What Are The FitSmart Fat Burner Ingredients? FitSmart Fat Burner weight loss pills only has natural ingredients that are clinically proven to be safe and cause no side effects. It has no chemicals or added preservatives and is free from caffeine. ## The FitSmart Fat Burner ingredients include: Kudzu - Kudzu is a climbing vein that has its origins in Southeast Asia, East Asia, and a few other Pacific islands. It is used as a cure for alcoholism, diabetes, heart disease, etc. Kudzu is a main ingredient in the FitSmart Fat Burner supplement that works to support healthy weight and improves lipase levels. Berberine Extract - Berberine extract is a yellow-colored chemical extracted from plants. It controls the insulin and hormones that manage the fat cells which ultimately helps in weight loss. It helps speed up metabolism and increase lipase production in the body. Wild Raspberry - The FitSmart Fat Burner ingredient, raspberry is a fruit rich in potassium and it improves heart functions and helps maintain normal blood pressure. As for weight loss, it works wonders in balancing weight and being healthy. It eliminates the storage of unwanted fat in the body. Raw Wildflower Honey - It is natural unprocessed and raw honey that works great for the throat, gut, and skin health. It has anti-inflammatory properties and acts as an antidote for burns. It is packed with antioxidants that help in proper digestion. ## **[Click Here To Buy Now From Official Website Of FitSmart Fat Burner](https://adtocart.xyz/fitsmart-uk)**
{}
VKapseln475/FitSmartFatBurner232
null
[ "region:us" ]
null
2024-05-02T08:51:39+00:00
[]
[]
TAGS #region-us
# FitSmart Fat Burner Reviews Indigents Official Website, Where To Buy UK FitSmart Fat Burner UK Reviews FitSmart Fat Burner helps you burn fat as well as improve your metabolism at the same time. One may also feel energized and uplifted after taking FitSmart Fat Burner pills. The FitSmart Fat Burner product, a combination of various natural ingredients including niacin (vitamin B3), raspberry fruit extract, green tea leaf extract, guarana seed extract and N-acetyl-L-carnitine, offers a versatile range of potential weight management benefits. ## Click Here To Buy Now From Official Website Of FitSmart Fat Burner ## FitSmart Fat Burner Benefits When it comes to products like FitSmart Fat Burner, real reviews (like this one) do more than regurgitate the company's marketing pitch. To further explain and evaluate the benefits that FitSmart Fat Burner claims it can bring, we turned to Pete Nastasi. As a certified weight loss practitioner and sports nutrition expert, Nastasi is qualified to provide a level of insight that many other FitSmart Fat Burner reviews don't have. Burns fat - "The primary fat burning ingredients in FitSmart Fat Burner are α-Lacys Reset and Capsimax powder. Both provide the user with an intense thermogenic effect that helps to boost metabolic rate and stimulate the fat burning process," says Nastasi. "Thermogenesis is the conversion of an energy source into heat. In this case, the energy source is body fat in the form of brown adipose tissue (the type of fat that regulates your body temperature). These ingredients help mobilize excess fat and prioritize it as the main energy source for the body instead of carbohydrates." Reduces fat accumulation - "FitSmart Fat Burner states that the Capsimax powder in the formula may help to inhibit the body's ability to store fat cells and even stop new fat cells from growing altogether," says Nastasi. "This would theoretically help prevent additional weight gain when using the supplement, and is the reason some consumers decide to continue using the product even after they achieve their weight loss goals. FitSmart Fat Burner notes that this effect is accomplished without drastically changing one's current dietary habits." Reduces food cravings - "A caloric deficit is an essential component of the weight loss process," says Nastasi. "However, this deficit often results in an increased appetite and intense cravings for calorically dense foods. The combination of caffeine, chromium picolinate and nopal cactus in FitSmart Fat Burner are included to reduce these cravings, balance blood sugar levels and suppress the appetite through an increased feeling of fullness." Boosts energy - "Sticking to a strict weight loss regimen is more difficult when cutting calories leads to feelings of fatigue. This is especially true when dieters follow a weight loss program that limits carbs," says Nastasi. "This fatigue not only affects your mental health, but can also decrease the likelihood of going to the gym and exercising. FitSmart Fat Burner aims to resolve this issue through its blend of natural caffeine and Capsimax powder. These ingredients work together to burn extra body fat in order to naturally boost energy levels." Balances mood - "FitSmart Fat Burner includes the naturally occurring amino acid L-carnitine to provide cognitive support for those who struggle with daily mental fatigue," says Nastasi. "FitSmart Fat Burner states that this ingredient will help to keep you feeling motivated and positive while shedding excess weight." ## What Are The FitSmart Fat Burner Ingredients? FitSmart Fat Burner weight loss pills only has natural ingredients that are clinically proven to be safe and cause no side effects. It has no chemicals or added preservatives and is free from caffeine. ## The FitSmart Fat Burner ingredients include: Kudzu - Kudzu is a climbing vein that has its origins in Southeast Asia, East Asia, and a few other Pacific islands. It is used as a cure for alcoholism, diabetes, heart disease, etc. Kudzu is a main ingredient in the FitSmart Fat Burner supplement that works to support healthy weight and improves lipase levels. Berberine Extract - Berberine extract is a yellow-colored chemical extracted from plants. It controls the insulin and hormones that manage the fat cells which ultimately helps in weight loss. It helps speed up metabolism and increase lipase production in the body. Wild Raspberry - The FitSmart Fat Burner ingredient, raspberry is a fruit rich in potassium and it improves heart functions and helps maintain normal blood pressure. As for weight loss, it works wonders in balancing weight and being healthy. It eliminates the storage of unwanted fat in the body. Raw Wildflower Honey - It is natural unprocessed and raw honey that works great for the throat, gut, and skin health. It has anti-inflammatory properties and acts as an antidote for burns. It is packed with antioxidants that help in proper digestion. ## Click Here To Buy Now From Official Website Of FitSmart Fat Burner
[ "# FitSmart Fat Burner Reviews Indigents Official Website, Where To Buy UK\n\nFitSmart Fat Burner UK Reviews FitSmart Fat Burner helps you burn fat as well as improve your metabolism at the same time. One may also feel energized and uplifted after taking FitSmart Fat Burner pills. The FitSmart Fat Burner product, a combination of various natural ingredients including niacin (vitamin B3), raspberry fruit extract, green tea leaf extract, guarana seed extract and N-acetyl-L-carnitine, offers a versatile range of potential weight management benefits.", "## Click Here To Buy Now From Official Website Of FitSmart Fat Burner", "## FitSmart Fat Burner Benefits\nWhen it comes to products like FitSmart Fat Burner, real reviews (like this one) do more than regurgitate the company's marketing pitch. To further explain and evaluate the benefits that FitSmart Fat Burner claims it can bring, we turned to Pete Nastasi. As a certified weight loss practitioner and sports nutrition expert, Nastasi is qualified to provide a level of insight that many other FitSmart Fat Burner reviews don't have.\n\nBurns fat - \"The primary fat burning ingredients in FitSmart Fat Burner are α-Lacys Reset and Capsimax powder. Both provide the user with an intense thermogenic effect that helps to boost metabolic rate and stimulate the fat burning process,\" says Nastasi. \"Thermogenesis is the conversion of an energy source into heat. In this case, the energy source is body fat in the form of brown adipose tissue (the type of fat that regulates your body temperature). These ingredients help mobilize excess fat and prioritize it as the main energy source for the body instead of carbohydrates.\"\n\nReduces fat accumulation - \"FitSmart Fat Burner states that the Capsimax powder in the formula may help to inhibit the body's ability to store fat cells and even stop new fat cells from growing altogether,\" says Nastasi. \"This would theoretically help prevent additional weight gain when using the supplement, and is the reason some consumers decide to continue using the product even after they achieve their weight loss goals. FitSmart Fat Burner notes that this effect is accomplished without drastically changing one's current dietary habits.\"\n\nReduces food cravings - \"A caloric deficit is an essential component of the weight loss process,\" says Nastasi. \"However, this deficit often results in an increased appetite and intense cravings for calorically dense foods. The combination of caffeine, chromium picolinate and nopal cactus in FitSmart Fat Burner are included to reduce these cravings, balance blood sugar levels and suppress the appetite through an increased feeling of fullness.\"\n\nBoosts energy - \"Sticking to a strict weight loss regimen is more difficult when cutting calories leads to feelings of fatigue. This is especially true when dieters follow a weight loss program that limits carbs,\" says Nastasi. \"This fatigue not only affects your mental health, but can also decrease the likelihood of going to the gym and exercising. FitSmart Fat Burner aims to resolve this issue through its blend of natural caffeine and Capsimax powder. These ingredients work together to burn extra body fat in order to naturally boost energy levels.\"\n\nBalances mood - \"FitSmart Fat Burner includes the naturally occurring amino acid L-carnitine to provide cognitive support for those who struggle with daily mental fatigue,\" says Nastasi. \"FitSmart Fat Burner states that this ingredient will help to keep you feeling motivated and positive while shedding excess weight.\"", "## What Are The FitSmart Fat Burner Ingredients?\nFitSmart Fat Burner weight loss pills only has natural ingredients that are clinically proven to be safe and cause no side effects. It has no chemicals or added preservatives and is free from caffeine.", "## The FitSmart Fat Burner ingredients include:\nKudzu - Kudzu is a climbing vein that has its origins in Southeast Asia, East Asia, and a few other Pacific islands. It is used as a cure for alcoholism, diabetes, heart disease, etc. Kudzu is a main ingredient in the FitSmart Fat Burner supplement that works to support healthy weight and improves lipase levels.\n\nBerberine Extract - Berberine extract is a yellow-colored chemical extracted from plants. It controls the insulin and hormones that manage the fat cells which ultimately helps in weight loss. It helps speed up metabolism and increase lipase production in the body.\n\nWild Raspberry - The FitSmart Fat Burner ingredient, raspberry is a fruit rich in potassium and it improves heart functions and helps maintain normal blood pressure. As for weight loss, it works wonders in balancing weight and being healthy. It eliminates the storage of unwanted fat in the body.\n\nRaw Wildflower Honey - It is natural unprocessed and raw honey that works great for the throat, gut, and skin health. It has anti-inflammatory properties and acts as an antidote for burns. It is packed with antioxidants that help in proper digestion.", "## Click Here To Buy Now From Official Website Of FitSmart Fat Burner" ]
[ "TAGS\n#region-us \n", "# FitSmart Fat Burner Reviews Indigents Official Website, Where To Buy UK\n\nFitSmart Fat Burner UK Reviews FitSmart Fat Burner helps you burn fat as well as improve your metabolism at the same time. One may also feel energized and uplifted after taking FitSmart Fat Burner pills. The FitSmart Fat Burner product, a combination of various natural ingredients including niacin (vitamin B3), raspberry fruit extract, green tea leaf extract, guarana seed extract and N-acetyl-L-carnitine, offers a versatile range of potential weight management benefits.", "## Click Here To Buy Now From Official Website Of FitSmart Fat Burner", "## FitSmart Fat Burner Benefits\nWhen it comes to products like FitSmart Fat Burner, real reviews (like this one) do more than regurgitate the company's marketing pitch. To further explain and evaluate the benefits that FitSmart Fat Burner claims it can bring, we turned to Pete Nastasi. As a certified weight loss practitioner and sports nutrition expert, Nastasi is qualified to provide a level of insight that many other FitSmart Fat Burner reviews don't have.\n\nBurns fat - \"The primary fat burning ingredients in FitSmart Fat Burner are α-Lacys Reset and Capsimax powder. Both provide the user with an intense thermogenic effect that helps to boost metabolic rate and stimulate the fat burning process,\" says Nastasi. \"Thermogenesis is the conversion of an energy source into heat. In this case, the energy source is body fat in the form of brown adipose tissue (the type of fat that regulates your body temperature). These ingredients help mobilize excess fat and prioritize it as the main energy source for the body instead of carbohydrates.\"\n\nReduces fat accumulation - \"FitSmart Fat Burner states that the Capsimax powder in the formula may help to inhibit the body's ability to store fat cells and even stop new fat cells from growing altogether,\" says Nastasi. \"This would theoretically help prevent additional weight gain when using the supplement, and is the reason some consumers decide to continue using the product even after they achieve their weight loss goals. FitSmart Fat Burner notes that this effect is accomplished without drastically changing one's current dietary habits.\"\n\nReduces food cravings - \"A caloric deficit is an essential component of the weight loss process,\" says Nastasi. \"However, this deficit often results in an increased appetite and intense cravings for calorically dense foods. The combination of caffeine, chromium picolinate and nopal cactus in FitSmart Fat Burner are included to reduce these cravings, balance blood sugar levels and suppress the appetite through an increased feeling of fullness.\"\n\nBoosts energy - \"Sticking to a strict weight loss regimen is more difficult when cutting calories leads to feelings of fatigue. This is especially true when dieters follow a weight loss program that limits carbs,\" says Nastasi. \"This fatigue not only affects your mental health, but can also decrease the likelihood of going to the gym and exercising. FitSmart Fat Burner aims to resolve this issue through its blend of natural caffeine and Capsimax powder. These ingredients work together to burn extra body fat in order to naturally boost energy levels.\"\n\nBalances mood - \"FitSmart Fat Burner includes the naturally occurring amino acid L-carnitine to provide cognitive support for those who struggle with daily mental fatigue,\" says Nastasi. \"FitSmart Fat Burner states that this ingredient will help to keep you feeling motivated and positive while shedding excess weight.\"", "## What Are The FitSmart Fat Burner Ingredients?\nFitSmart Fat Burner weight loss pills only has natural ingredients that are clinically proven to be safe and cause no side effects. It has no chemicals or added preservatives and is free from caffeine.", "## The FitSmart Fat Burner ingredients include:\nKudzu - Kudzu is a climbing vein that has its origins in Southeast Asia, East Asia, and a few other Pacific islands. It is used as a cure for alcoholism, diabetes, heart disease, etc. Kudzu is a main ingredient in the FitSmart Fat Burner supplement that works to support healthy weight and improves lipase levels.\n\nBerberine Extract - Berberine extract is a yellow-colored chemical extracted from plants. It controls the insulin and hormones that manage the fat cells which ultimately helps in weight loss. It helps speed up metabolism and increase lipase production in the body.\n\nWild Raspberry - The FitSmart Fat Burner ingredient, raspberry is a fruit rich in potassium and it improves heart functions and helps maintain normal blood pressure. As for weight loss, it works wonders in balancing weight and being healthy. It eliminates the storage of unwanted fat in the body.\n\nRaw Wildflower Honey - It is natural unprocessed and raw honey that works great for the throat, gut, and skin health. It has anti-inflammatory properties and acts as an antidote for burns. It is packed with antioxidants that help in proper digestion.", "## Click Here To Buy Now From Official Website Of FitSmart Fat Burner" ]
[ 5, 128, 16, 617, 56, 251, 16 ]
[ "TAGS\n#region-us \n# FitSmart Fat Burner Reviews Indigents Official Website, Where To Buy UK\n\nFitSmart Fat Burner UK Reviews FitSmart Fat Burner helps you burn fat as well as improve your metabolism at the same time. One may also feel energized and uplifted after taking FitSmart Fat Burner pills. The FitSmart Fat Burner product, a combination of various natural ingredients including niacin (vitamin B3), raspberry fruit extract, green tea leaf extract, guarana seed extract and N-acetyl-L-carnitine, offers a versatile range of potential weight management benefits.## Click Here To Buy Now From Official Website Of FitSmart Fat Burner## FitSmart Fat Burner Benefits\nWhen it comes to products like FitSmart Fat Burner, real reviews (like this one) do more than regurgitate the company's marketing pitch. To further explain and evaluate the benefits that FitSmart Fat Burner claims it can bring, we turned to Pete Nastasi. As a certified weight loss practitioner and sports nutrition expert, Nastasi is qualified to provide a level of insight that many other FitSmart Fat Burner reviews don't have.\n\nBurns fat - \"The primary fat burning ingredients in FitSmart Fat Burner are α-Lacys Reset and Capsimax powder. Both provide the user with an intense thermogenic effect that helps to boost metabolic rate and stimulate the fat burning process,\" says Nastasi. \"Thermogenesis is the conversion of an energy source into heat. In this case, the energy source is body fat in the form of brown adipose tissue (the type of fat that regulates your body temperature). These ingredients help mobilize excess fat and prioritize it as the main energy source for the body instead of carbohydrates.\"\n\nReduces fat accumulation - \"FitSmart Fat Burner states that the Capsimax powder in the formula may help to inhibit the body's ability to store fat cells and even stop new fat cells from growing altogether,\" says Nastasi. \"This would theoretically help prevent additional weight gain when using the supplement, and is the reason some consumers decide to continue using the product even after they achieve their weight loss goals. FitSmart Fat Burner notes that this effect is accomplished without drastically changing one's current dietary habits.\"\n\nReduces food cravings - \"A caloric deficit is an essential component of the weight loss process,\" says Nastasi. \"However, this deficit often results in an increased appetite and intense cravings for calorically dense foods. The combination of caffeine, chromium picolinate and nopal cactus in FitSmart Fat Burner are included to reduce these cravings, balance blood sugar levels and suppress the appetite through an increased feeling of fullness.\"\n\nBoosts energy - \"Sticking to a strict weight loss regimen is more difficult when cutting calories leads to feelings of fatigue. This is especially true when dieters follow a weight loss program that limits carbs,\" says Nastasi. \"This fatigue not only affects your mental health, but can also decrease the likelihood of going to the gym and exercising. FitSmart Fat Burner aims to resolve this issue through its blend of natural caffeine and Capsimax powder. These ingredients work together to burn extra body fat in order to naturally boost energy levels.\"\n\nBalances mood - \"FitSmart Fat Burner includes the naturally occurring amino acid L-carnitine to provide cognitive support for those who struggle with daily mental fatigue,\" says Nastasi. \"FitSmart Fat Burner states that this ingredient will help to keep you feeling motivated and positive while shedding excess weight.\"## What Are The FitSmart Fat Burner Ingredients?\nFitSmart Fat Burner weight loss pills only has natural ingredients that are clinically proven to be safe and cause no side effects. It has no chemicals or added preservatives and is free from caffeine.## The FitSmart Fat Burner ingredients include:\nKudzu - Kudzu is a climbing vein that has its origins in Southeast Asia, East Asia, and a few other Pacific islands. It is used as a cure for alcoholism, diabetes, heart disease, etc. Kudzu is a main ingredient in the FitSmart Fat Burner supplement that works to support healthy weight and improves lipase levels.\n\nBerberine Extract - Berberine extract is a yellow-colored chemical extracted from plants. It controls the insulin and hormones that manage the fat cells which ultimately helps in weight loss. It helps speed up metabolism and increase lipase production in the body.\n\nWild Raspberry - The FitSmart Fat Burner ingredient, raspberry is a fruit rich in potassium and it improves heart functions and helps maintain normal blood pressure. As for weight loss, it works wonders in balancing weight and being healthy. It eliminates the storage of unwanted fat in the body.\n\nRaw Wildflower Honey - It is natural unprocessed and raw honey that works great for the throat, gut, and skin health. It has anti-inflammatory properties and acts as an antidote for burns. It is packed with antioxidants that help in proper digestion.## Click Here To Buy Now From Official Website Of FitSmart Fat Burner" ]
text-generation
null
# Trisert/Phi-3-mini-128k-instruct-Q8_0-GGUF This model was converted to GGUF format from [`microsoft/Phi-3-mini-128k-instruct`](https://huggingface.co/microsoft/Phi-3-mini-128k-instruct) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/microsoft/Phi-3-mini-128k-instruct) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew. ```bash brew install ggerganov/ggerganov/llama.cpp ``` Invoke the llama.cpp server or the CLI. CLI: ```bash llama-cli --hf-repo Trisert/Phi-3-mini-128k-instruct-Q8_0-GGUF --model phi-3-mini-128k-instruct.Q8_0.gguf -p "The meaning to life and the universe is" ``` Server: ```bash llama-server --hf-repo Trisert/Phi-3-mini-128k-instruct-Q8_0-GGUF --model phi-3-mini-128k-instruct.Q8_0.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. ``` git clone https://github.com/ggerganov/llama.cpp && cd llama.cpp && make && ./main -m phi-3-mini-128k-instruct.Q8_0.gguf -n 128 ```
{"language": ["en"], "license": "mit", "tags": ["nlp", "code", "llama-cpp", "gguf-my-repo"], "license_link": "https://huggingface.co/microsoft/Phi-3-mini-128k-instruct/resolve/main/LICENSE", "pipeline_tag": "text-generation", "widget": [{"messages": [{"role": "user", "content": "Can you provide ways to eat combinations of bananas and dragonfruits?"}]}]}
Trisert/Phi-3-mini-128k-instruct-Q8_0-GGUF
null
[ "gguf", "nlp", "code", "llama-cpp", "gguf-my-repo", "text-generation", "en", "license:mit", "region:us" ]
null
2024-05-02T08:52:07+00:00
[]
[ "en" ]
TAGS #gguf #nlp #code #llama-cpp #gguf-my-repo #text-generation #en #license-mit #region-us
# Trisert/Phi-3-mini-128k-instruct-Q8_0-GGUF This model was converted to GGUF format from 'microsoft/Phi-3-mini-128k-instruct' using URL via the URL's GGUF-my-repo space. Refer to the original model card for more details on the model. ## Use with URL Install URL through brew. Invoke the URL server or the CLI. CLI: Server: Note: You can also use this checkpoint directly through the usage steps listed in the URL repo as well.
[ "# Trisert/Phi-3-mini-128k-instruct-Q8_0-GGUF\nThis model was converted to GGUF format from 'microsoft/Phi-3-mini-128k-instruct' using URL via the URL's GGUF-my-repo space.\nRefer to the original model card for more details on the model.", "## Use with URL\n\nInstall URL through brew.\n\n\nInvoke the URL server or the CLI.\n\nCLI:\n\n\n\nServer:\n\n\n\nNote: You can also use this checkpoint directly through the usage steps listed in the URL repo as well." ]
[ "TAGS\n#gguf #nlp #code #llama-cpp #gguf-my-repo #text-generation #en #license-mit #region-us \n", "# Trisert/Phi-3-mini-128k-instruct-Q8_0-GGUF\nThis model was converted to GGUF format from 'microsoft/Phi-3-mini-128k-instruct' using URL via the URL's GGUF-my-repo space.\nRefer to the original model card for more details on the model.", "## Use with URL\n\nInstall URL through brew.\n\n\nInvoke the URL server or the CLI.\n\nCLI:\n\n\n\nServer:\n\n\n\nNote: You can also use this checkpoint directly through the usage steps listed in the URL repo as well." ]
[ 39, 82, 52 ]
[ "TAGS\n#gguf #nlp #code #llama-cpp #gguf-my-repo #text-generation #en #license-mit #region-us \n# Trisert/Phi-3-mini-128k-instruct-Q8_0-GGUF\nThis model was converted to GGUF format from 'microsoft/Phi-3-mini-128k-instruct' using URL via the URL's GGUF-my-repo space.\nRefer to the original model card for more details on the model.## Use with URL\n\nInstall URL through brew.\n\n\nInvoke the URL server or the CLI.\n\nCLI:\n\n\n\nServer:\n\n\n\nNote: You can also use this checkpoint directly through the usage steps listed in the URL repo as well." ]
null
null
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) new_01m - GGUF - Model creator: https://huggingface.co/lgodwangl/ - Original model: https://huggingface.co/lgodwangl/new_01m/ | Name | Quant method | Size | | ---- | ---- | ---- | | [new_01m.Q2_K.gguf](https://huggingface.co/RichardErkhov/lgodwangl_-_new_01m-gguf/blob/main/new_01m.Q2_K.gguf) | Q2_K | 2.53GB | | [new_01m.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/lgodwangl_-_new_01m-gguf/blob/main/new_01m.IQ3_XS.gguf) | IQ3_XS | 2.81GB | | [new_01m.IQ3_S.gguf](https://huggingface.co/RichardErkhov/lgodwangl_-_new_01m-gguf/blob/main/new_01m.IQ3_S.gguf) | IQ3_S | 2.96GB | | [new_01m.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/lgodwangl_-_new_01m-gguf/blob/main/new_01m.Q3_K_S.gguf) | Q3_K_S | 2.95GB | | [new_01m.IQ3_M.gguf](https://huggingface.co/RichardErkhov/lgodwangl_-_new_01m-gguf/blob/main/new_01m.IQ3_M.gguf) | IQ3_M | 3.06GB | | [new_01m.Q3_K.gguf](https://huggingface.co/RichardErkhov/lgodwangl_-_new_01m-gguf/blob/main/new_01m.Q3_K.gguf) | Q3_K | 3.28GB | | [new_01m.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/lgodwangl_-_new_01m-gguf/blob/main/new_01m.Q3_K_M.gguf) | Q3_K_M | 3.28GB | | [new_01m.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/lgodwangl_-_new_01m-gguf/blob/main/new_01m.Q3_K_L.gguf) | Q3_K_L | 3.56GB | | [new_01m.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/lgodwangl_-_new_01m-gguf/blob/main/new_01m.IQ4_XS.gguf) | IQ4_XS | 3.67GB | | [new_01m.Q4_0.gguf](https://huggingface.co/RichardErkhov/lgodwangl_-_new_01m-gguf/blob/main/new_01m.Q4_0.gguf) | Q4_0 | 3.83GB | | [new_01m.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/lgodwangl_-_new_01m-gguf/blob/main/new_01m.IQ4_NL.gguf) | IQ4_NL | 3.87GB | | [new_01m.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/lgodwangl_-_new_01m-gguf/blob/main/new_01m.Q4_K_S.gguf) | Q4_K_S | 3.86GB | | [new_01m.Q4_K.gguf](https://huggingface.co/RichardErkhov/lgodwangl_-_new_01m-gguf/blob/main/new_01m.Q4_K.gguf) | Q4_K | 4.07GB | | [new_01m.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/lgodwangl_-_new_01m-gguf/blob/main/new_01m.Q4_K_M.gguf) | Q4_K_M | 4.07GB | | [new_01m.Q4_1.gguf](https://huggingface.co/RichardErkhov/lgodwangl_-_new_01m-gguf/blob/main/new_01m.Q4_1.gguf) | Q4_1 | 4.24GB | | [new_01m.Q5_0.gguf](https://huggingface.co/RichardErkhov/lgodwangl_-_new_01m-gguf/blob/main/new_01m.Q5_0.gguf) | Q5_0 | 4.65GB | | [new_01m.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/lgodwangl_-_new_01m-gguf/blob/main/new_01m.Q5_K_S.gguf) | Q5_K_S | 4.65GB | | [new_01m.Q5_K.gguf](https://huggingface.co/RichardErkhov/lgodwangl_-_new_01m-gguf/blob/main/new_01m.Q5_K.gguf) | Q5_K | 4.78GB | | [new_01m.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/lgodwangl_-_new_01m-gguf/blob/main/new_01m.Q5_K_M.gguf) | Q5_K_M | 4.78GB | | [new_01m.Q5_1.gguf](https://huggingface.co/RichardErkhov/lgodwangl_-_new_01m-gguf/blob/main/new_01m.Q5_1.gguf) | Q5_1 | 5.07GB | | [new_01m.Q6_K.gguf](https://huggingface.co/RichardErkhov/lgodwangl_-_new_01m-gguf/blob/main/new_01m.Q6_K.gguf) | Q6_K | 5.53GB | Original model description: --- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{}
RichardErkhov/lgodwangl_-_new_01m-gguf
null
[ "gguf", "arxiv:1910.09700", "region:us" ]
null
2024-05-02T08:52:23+00:00
[ "1910.09700" ]
[]
TAGS #gguf #arxiv-1910.09700 #region-us
Quantization made by Richard Erkhov. Github Discord Request more models new\_01m - GGUF * Model creator: URL * Original model: URL Name: new\_01m.Q2\_K.gguf, Quant method: Q2\_K, Size: 2.53GB Name: new\_01m.IQ3\_XS.gguf, Quant method: IQ3\_XS, Size: 2.81GB Name: new\_01m.IQ3\_S.gguf, Quant method: IQ3\_S, Size: 2.96GB Name: new\_01m.Q3\_K\_S.gguf, Quant method: Q3\_K\_S, Size: 2.95GB Name: new\_01m.IQ3\_M.gguf, Quant method: IQ3\_M, Size: 3.06GB Name: new\_01m.Q3\_K.gguf, Quant method: Q3\_K, Size: 3.28GB Name: new\_01m.Q3\_K\_M.gguf, Quant method: Q3\_K\_M, Size: 3.28GB Name: new\_01m.Q3\_K\_L.gguf, Quant method: Q3\_K\_L, Size: 3.56GB Name: new\_01m.IQ4\_XS.gguf, Quant method: IQ4\_XS, Size: 3.67GB Name: new\_01m.Q4\_0.gguf, Quant method: Q4\_0, Size: 3.83GB Name: new\_01m.IQ4\_NL.gguf, Quant method: IQ4\_NL, Size: 3.87GB Name: new\_01m.Q4\_K\_S.gguf, Quant method: Q4\_K\_S, Size: 3.86GB Name: new\_01m.Q4\_K.gguf, Quant method: Q4\_K, Size: 4.07GB Name: new\_01m.Q4\_K\_M.gguf, Quant method: Q4\_K\_M, Size: 4.07GB Name: new\_01m.Q4\_1.gguf, Quant method: Q4\_1, Size: 4.24GB Name: new\_01m.Q5\_0.gguf, Quant method: Q5\_0, Size: 4.65GB Name: new\_01m.Q5\_K\_S.gguf, Quant method: Q5\_K\_S, Size: 4.65GB Name: new\_01m.Q5\_K.gguf, Quant method: Q5\_K, Size: 4.78GB Name: new\_01m.Q5\_K\_M.gguf, Quant method: Q5\_K\_M, Size: 4.78GB Name: new\_01m.Q5\_1.gguf, Quant method: Q5\_1, Size: 5.07GB Name: new\_01m.Q6\_K.gguf, Quant method: Q6\_K, Size: 5.53GB Original model description: --------------------------- library\_name: transformers tags: [] ------------------------------------ Model Card for Model ID ======================= Model Details ------------- ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. * Developed by: * Funded by [optional]: * Shared by [optional]: * Model type: * Language(s) (NLP): * License: * Finetuned from model [optional]: ### Model Sources [optional] * Repository: * Paper [optional]: * Demo [optional]: Uses ---- ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use Bias, Risks, and Limitations ---------------------------- ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. How to Get Started with the Model --------------------------------- Use the code below to get started with the model. Training Details ---------------- ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters * Training regime: #### Speeds, Sizes, Times [optional] Evaluation ---------- ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary Model Examination [optional] ---------------------------- Environmental Impact -------------------- Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). * Hardware Type: * Hours used: * Cloud Provider: * Compute Region: * Carbon Emitted: Technical Specifications [optional] ----------------------------------- ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: Glossary [optional] ------------------- More Information [optional] --------------------------- Model Card Authors [optional] ----------------------------- Model Card Contact ------------------
[ "### Model Description\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n\n* Developed by:\n* Funded by [optional]:\n* Shared by [optional]:\n* Model type:\n* Language(s) (NLP):\n* License:\n* Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n* Repository:\n* Paper [optional]:\n* Demo [optional]:\n\n\nUses\n----", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use\n\n\nBias, Risks, and Limitations\n----------------------------", "### Recommendations\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.\n\n\nHow to Get Started with the Model\n---------------------------------\n\n\nUse the code below to get started with the model.\n\n\nTraining Details\n----------------", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n\n* Training regime:", "#### Speeds, Sizes, Times [optional]\n\n\nEvaluation\n----------", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary\n\n\nModel Examination [optional]\n----------------------------\n\n\nEnvironmental Impact\n--------------------\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n\n* Hardware Type:\n* Hours used:\n* Cloud Provider:\n* Compute Region:\n* Carbon Emitted:\n\n\nTechnical Specifications [optional]\n-----------------------------------", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n[optional]\n\n\nBibTeX:\n\n\nAPA:\n\n\nGlossary [optional]\n-------------------\n\n\nMore Information [optional]\n---------------------------\n\n\nModel Card Authors [optional]\n-----------------------------\n\n\nModel Card Contact\n------------------" ]
[ "TAGS\n#gguf #arxiv-1910.09700 #region-us \n", "### Model Description\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n\n* Developed by:\n* Funded by [optional]:\n* Shared by [optional]:\n* Model type:\n* Language(s) (NLP):\n* License:\n* Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n* Repository:\n* Paper [optional]:\n* Demo [optional]:\n\n\nUses\n----", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use\n\n\nBias, Risks, and Limitations\n----------------------------", "### Recommendations\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.\n\n\nHow to Get Started with the Model\n---------------------------------\n\n\nUse the code below to get started with the model.\n\n\nTraining Details\n----------------", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n\n* Training regime:", "#### Speeds, Sizes, Times [optional]\n\n\nEvaluation\n----------", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary\n\n\nModel Examination [optional]\n----------------------------\n\n\nEnvironmental Impact\n--------------------\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n\n* Hardware Type:\n* Hours used:\n* Cloud Provider:\n* Compute Region:\n* Carbon Emitted:\n\n\nTechnical Specifications [optional]\n-----------------------------------", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n[optional]\n\n\nBibTeX:\n\n\nAPA:\n\n\nGlossary [optional]\n-------------------\n\n\nMore Information [optional]\n---------------------------\n\n\nModel Card Authors [optional]\n-----------------------------\n\n\nModel Card Contact\n------------------" ]
[ 19, 75, 28, 5, 8, 43, 103, 5, 5, 11, 13, 23, 10, 6, 5, 6, 4, 145, 7, 5, 5, 127 ]
[ "TAGS\n#gguf #arxiv-1910.09700 #region-us \n### Model Description\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n\n* Developed by:\n* Funded by [optional]:\n* Shared by [optional]:\n* Model type:\n* Language(s) (NLP):\n* License:\n* Finetuned from model [optional]:### Model Sources [optional]\n\n\n* Repository:\n* Paper [optional]:\n* Demo [optional]:\n\n\nUses\n----### Direct Use### Downstream Use [optional]### Out-of-Scope Use\n\n\nBias, Risks, and Limitations\n----------------------------### Recommendations\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.\n\n\nHow to Get Started with the Model\n---------------------------------\n\n\nUse the code below to get started with the model.\n\n\nTraining Details\n----------------### Training Data### Training Procedure#### Preprocessing [optional]#### Training Hyperparameters\n\n\n* Training regime:#### Speeds, Sizes, Times [optional]\n\n\nEvaluation\n----------### Testing Data, Factors & Metrics#### Testing Data#### Factors#### Metrics### Results#### Summary\n\n\nModel Examination [optional]\n----------------------------\n\n\nEnvironmental Impact\n--------------------\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n\n* Hardware Type:\n* Hours used:\n* Cloud Provider:\n* Compute Region:\n* Carbon Emitted:\n\n\nTechnical Specifications [optional]\n-----------------------------------### Model Architecture and Objective### Compute Infrastructure#### Hardware#### Software\n\n\n[optional]\n\n\nBibTeX:\n\n\nAPA:\n\n\nGlossary [optional]\n-------------------\n\n\nMore Information [optional]\n---------------------------\n\n\nModel Card Authors [optional]\n-----------------------------\n\n\nModel Card Contact\n------------------" ]
null
null
This model will help in identifying if it is a lung ct scan or a brain ct scan
{"language": ["en"]}
RayhaanK/lung_or_brain
null
[ "en", "region:us" ]
null
2024-05-02T08:52:36+00:00
[]
[ "en" ]
TAGS #en #region-us
This model will help in identifying if it is a lung ct scan or a brain ct scan
[]
[ "TAGS\n#en #region-us \n" ]
[ 7 ]
[ "TAGS\n#en #region-us \n" ]
null
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
Seemaant/gpt2-reuters-tokenizer
null
[ "transformers", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-05-02T08:52:41+00:00
[ "1910.09700" ]
[]
TAGS #transformers #arxiv-1910.09700 #endpoints_compatible #region-us
# Model Card for Model ID ## Model Details ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #arxiv-1910.09700 #endpoints_compatible #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ 22, 6, 4, 75, 23, 3, 5, 8, 9, 8, 34, 20, 4, 5, 5, 11, 13, 12, 3, 10, 6, 5, 6, 4, 5, 7, 49, 7, 7, 5, 5, 15, 7, 7, 8, 5 ]
[ "TAGS\n#transformers #arxiv-1910.09700 #endpoints_compatible #region-us \n# Model Card for Model ID## Model Details### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Downstream Use [optional]### Out-of-Scope Use## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.## How to Get Started with the Model\n\nUse the code below to get started with the model.## Training Details### Training Data### Training Procedure#### Preprocessing [optional]#### Training Hyperparameters\n\n- Training regime:#### Speeds, Sizes, Times [optional]## Evaluation### Testing Data, Factors & Metrics#### Testing Data#### Factors#### Metrics### Results#### Summary## Model Examination [optional]## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:## Technical Specifications [optional]### Model Architecture and Objective### Compute Infrastructure#### Hardware#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Model Card Authors [optional]## Model Card Contact" ]
text-generation
transformers
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) EEVE-Korean-10.8B-v1.0 - bnb 4bits - Model creator: https://huggingface.co/yanolja/ - Original model: https://huggingface.co/yanolja/EEVE-Korean-10.8B-v1.0/ Original model description: --- license: apache-2.0 base_model: upstage/SOLAR-10.7B-v1.0 tags: - generated_from_trainer model-index: - name: yanolja/EEVE-Korean-10.8B-v1.0 results: [] --- [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl) <p align="left"> <img src="https://huggingface.co/yanolja/EEVE-Korean-10.8B-v1.0/resolve/main/eeve_logo.webp" width="50%"/> <p> # EEVE-Korean-10.8B-v1.0 ## Join Our Community on Discord! If you're passionate about the field of Large Language Models and wish to exchange knowledge and insights, we warmly invite you to join our Discord server. It's worth noting that Korean is the primary language used in this server. The landscape of LLM is evolving rapidly, and without active sharing, our collective knowledge risks becoming outdated swiftly. Let's collaborate and drive greater impact together! Join us here: [Discord Link](https://discord.gg/b27bAHg95m). ## Our Dedicated Team (Alphabetical Order) | Research | Engineering | Product Management | UX Design | |-----------------|-----------------|--------------------|-------------- | Myeongho Jeong | Geon Kim | Bokyung Huh | Eunsue Choi | | Seungduk Kim | Rifqi Alfi | | | | Seungtaek Choi | Sanghoon Han | | | | | Suhyun Kang | | | ## About the Model This model is a Korean vocabulary-extended version of [upstage/SOLAR-10.7B-v1.0](https://huggingface.co/upstage/SOLAR-10.7B-v1.0), specifically fine-tuned on various Korean web-crawled datasets available on HuggingFace. Our approach was to expand the model's understanding of Korean by pre-training the embeddings for new tokens and partially fine-tuning the `lm_head` embeddings for the already existing tokens while preserving the original parameters of the base model. ### Technical Deep Dive <p align="left"> <img src="https://huggingface.co/yanolja/EEVE-Korean-10.8B-v1.0/resolve/main/EEVE_figure.png" width="100%"/> <p> To adapt foundational models from English to Korean, we use subword-based embedding with a seven-stage training process involving parameter freezing. This approach progressively trains from input embeddings to full parameters, efficiently extending the model's vocabulary to include Korean. Our method enhances the model's cross-linguistic applicability by carefully integrating new linguistic tokens, focusing on causal language modeling pre-training. We leverage the inherent capabilities of foundational models trained on English to efficiently transfer knowledge and reasoning to Korean, optimizing the adaptation process. For more details, please refer to our technical report: [Efficient and Effective Vocabulary Expansion Towards Multilingual Large Language Models](https://arxiv.org/abs/2402.14714). Here’s an simplified code for our key approach: ```python # number_of_old_tokens is the size of tokenizer before vocab extension. For example, in case of EEVE-Korean-10.8B-v1.0, number_of_old_tokens is 32000. def freeze_partial_embedding_hook(grad): grad[:number_of_old_tokens] = 0 return grad for name, param in model.named_parameters(): if ("lm_head" in name or "embed_tokens" in name) and "original" not in name: param.requires_grad = True if "embed_tokens" in name: param.register_hook(freeze_partial_embedding_hook) else: param.requires_grad = False ``` ### Usage and Limitations Keep in mind that this model hasn't been fine-tuned with instruction-based training. While it excels in Korean language tasks, we advise careful consideration and further training for specific applications. ### Training Details Our model’s training was comprehensive and diverse: - **Vocabulary Expansion:** We meticulously selected 8,960 Korean tokens based on their frequency in our Korean web corpus. This process involved multiple rounds of tokenizer training, manual curation, and token frequency analysis, ensuring a rich and relevant vocabulary for our model. 1. **Initial Tokenizer Training:** We trained an intermediate tokenizer on a Korean web corpus, with a vocabulary of 40,000 tokens. 2. **Extraction of New Korean Tokens:** From the intermediate tokenizer, we identified all Korean tokens not present in the original SOLAR's tokenizer. 3. **Manual Tokenizer Construction:** We then built the target tokenizer, focusing on these new Korean tokens. 4. **Frequency Analysis:** Using the target tokenizer, we processed a 100GB Korean corpus to count each token's frequency. 5. **Refinement of Token List:** We removed tokens appearing less than 6,000 times, ensuring to secure enough tokens to train models later. 6. **Inclusion of Single-Letter Characters:** Counted missing Korean single-letter characters and added them to the target tokenizer that appeared more than 6,000 times. 7. **Iterative Refinement:** We repeated steps 2 to 6 until there were no tokens to drop or add. 8. **Training Bias Towards New Tokens:** Our training data was biased to include more texts with new tokens, for effective learning. This rigorous approach ensured a comprehensive and contextually rich Korean vocabulary for the model. ## Citation ``` @misc{kim2024efficient, title={Efficient and Effective Vocabulary Expansion Towards Multilingual Large Language Models}, author={Seungduk Kim and Seungtaek Choi and Myeongho Jeong}, year={2024}, eprint={2402.14714}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
{}
RichardErkhov/yanolja_-_EEVE-Korean-10.8B-v1.0-4bits
null
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:2402.14714", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "4-bit", "region:us" ]
null
2024-05-02T08:53:18+00:00
[ "2402.14714" ]
[]
TAGS #transformers #safetensors #llama #text-generation #conversational #arxiv-2402.14714 #autotrain_compatible #endpoints_compatible #text-generation-inference #4-bit #region-us
Quantization made by Richard Erkhov. Github Discord Request more models EEVE-Korean-10.8B-v1.0 - bnb 4bits * Model creator: URL * Original model: URL Original model description: --------------------------- license: apache-2.0 base\_model: upstage/SOLAR-10.7B-v1.0 tags: * generated\_from\_trainer model-index: * name: yanolja/EEVE-Korean-10.8B-v1.0 results: [] --- <img src="URL alt="Built with Axolotl" width="200" height="32"/> ![](URL width=) EEVE-Korean-10.8B-v1.0 ====================== Join Our Community on Discord! ------------------------------ If you're passionate about the field of Large Language Models and wish to exchange knowledge and insights, we warmly invite you to join our Discord server. It's worth noting that Korean is the primary language used in this server. The landscape of LLM is evolving rapidly, and without active sharing, our collective knowledge risks becoming outdated swiftly. Let's collaborate and drive greater impact together! Join us here: Discord Link. Our Dedicated Team (Alphabetical Order) --------------------------------------- About the Model --------------- This model is a Korean vocabulary-extended version of upstage/SOLAR-10.7B-v1.0, specifically fine-tuned on various Korean web-crawled datasets available on HuggingFace. Our approach was to expand the model's understanding of Korean by pre-training the embeddings for new tokens and partially fine-tuning the 'lm\_head' embeddings for the already existing tokens while preserving the original parameters of the base model. ### Technical Deep Dive ![](URL width=) To adapt foundational models from English to Korean, we use subword-based embedding with a seven-stage training process involving parameter freezing. This approach progressively trains from input embeddings to full parameters, efficiently extending the model's vocabulary to include Korean. Our method enhances the model's cross-linguistic applicability by carefully integrating new linguistic tokens, focusing on causal language modeling pre-training. We leverage the inherent capabilities of foundational models trained on English to efficiently transfer knowledge and reasoning to Korean, optimizing the adaptation process. For more details, please refer to our technical report: Efficient and Effective Vocabulary Expansion Towards Multilingual Large Language Models. Here’s an simplified code for our key approach: ### Usage and Limitations Keep in mind that this model hasn't been fine-tuned with instruction-based training. While it excels in Korean language tasks, we advise careful consideration and further training for specific applications. ### Training Details Our model’s training was comprehensive and diverse: * Vocabulary Expansion: We meticulously selected 8,960 Korean tokens based on their frequency in our Korean web corpus. This process involved multiple rounds of tokenizer training, manual curation, and token frequency analysis, ensuring a rich and relevant vocabulary for our model. 1. Initial Tokenizer Training: We trained an intermediate tokenizer on a Korean web corpus, with a vocabulary of 40,000 tokens. 2. Extraction of New Korean Tokens: From the intermediate tokenizer, we identified all Korean tokens not present in the original SOLAR's tokenizer. 3. Manual Tokenizer Construction: We then built the target tokenizer, focusing on these new Korean tokens. 4. Frequency Analysis: Using the target tokenizer, we processed a 100GB Korean corpus to count each token's frequency. 5. Refinement of Token List: We removed tokens appearing less than 6,000 times, ensuring to secure enough tokens to train models later. 6. Inclusion of Single-Letter Characters: Counted missing Korean single-letter characters and added them to the target tokenizer that appeared more than 6,000 times. 7. Iterative Refinement: We repeated steps 2 to 6 until there were no tokens to drop or add. 8. Training Bias Towards New Tokens: Our training data was biased to include more texts with new tokens, for effective learning. This rigorous approach ensured a comprehensive and contextually rich Korean vocabulary for the model.
[ "### Technical Deep Dive\n\n\n\n![](URL width=)\n\nTo adapt foundational models from English to Korean, we use subword-based embedding with a seven-stage training process involving parameter freezing.\nThis approach progressively trains from input embeddings to full parameters, efficiently extending the model's vocabulary to include Korean.\nOur method enhances the model's cross-linguistic applicability by carefully integrating new linguistic tokens, focusing on causal language modeling pre-training.\nWe leverage the inherent capabilities of foundational models trained on English to efficiently transfer knowledge and reasoning to Korean, optimizing the adaptation process.\n\n\nFor more details, please refer to our technical report: Efficient and Effective Vocabulary Expansion Towards Multilingual Large Language Models.\n\n\nHere’s an simplified code for our key approach:", "### Usage and Limitations\n\n\nKeep in mind that this model hasn't been fine-tuned with instruction-based training. While it excels in Korean language tasks, we advise careful consideration and further training for specific applications.", "### Training Details\n\n\nOur model’s training was comprehensive and diverse:\n\n\n* Vocabulary Expansion:\nWe meticulously selected 8,960 Korean tokens based on their frequency in our Korean web corpus. This process involved multiple rounds of tokenizer training, manual curation, and token frequency analysis, ensuring a rich and relevant vocabulary for our model.\n\n\n\t1. Initial Tokenizer Training: We trained an intermediate tokenizer on a Korean web corpus, with a vocabulary of 40,000 tokens.\n\t2. Extraction of New Korean Tokens: From the intermediate tokenizer, we identified all Korean tokens not present in the original SOLAR's tokenizer.\n\t3. Manual Tokenizer Construction: We then built the target tokenizer, focusing on these new Korean tokens.\n\t4. Frequency Analysis: Using the target tokenizer, we processed a 100GB Korean corpus to count each token's frequency.\n\t5. Refinement of Token List: We removed tokens appearing less than 6,000 times, ensuring to secure enough tokens to train models later.\n\t6. Inclusion of Single-Letter Characters: Counted missing Korean single-letter characters and added them to the target tokenizer that appeared more than 6,000 times.\n\t7. Iterative Refinement: We repeated steps 2 to 6 until there were no tokens to drop or add.\n\t8. Training Bias Towards New Tokens: Our training data was biased to include more texts with new tokens, for effective learning.\n\n\nThis rigorous approach ensured a comprehensive and contextually rich Korean vocabulary for the model." ]
[ "TAGS\n#transformers #safetensors #llama #text-generation #conversational #arxiv-2402.14714 #autotrain_compatible #endpoints_compatible #text-generation-inference #4-bit #region-us \n", "### Technical Deep Dive\n\n\n\n![](URL width=)\n\nTo adapt foundational models from English to Korean, we use subword-based embedding with a seven-stage training process involving parameter freezing.\nThis approach progressively trains from input embeddings to full parameters, efficiently extending the model's vocabulary to include Korean.\nOur method enhances the model's cross-linguistic applicability by carefully integrating new linguistic tokens, focusing on causal language modeling pre-training.\nWe leverage the inherent capabilities of foundational models trained on English to efficiently transfer knowledge and reasoning to Korean, optimizing the adaptation process.\n\n\nFor more details, please refer to our technical report: Efficient and Effective Vocabulary Expansion Towards Multilingual Large Language Models.\n\n\nHere’s an simplified code for our key approach:", "### Usage and Limitations\n\n\nKeep in mind that this model hasn't been fine-tuned with instruction-based training. While it excels in Korean language tasks, we advise careful consideration and further training for specific applications.", "### Training Details\n\n\nOur model’s training was comprehensive and diverse:\n\n\n* Vocabulary Expansion:\nWe meticulously selected 8,960 Korean tokens based on their frequency in our Korean web corpus. This process involved multiple rounds of tokenizer training, manual curation, and token frequency analysis, ensuring a rich and relevant vocabulary for our model.\n\n\n\t1. Initial Tokenizer Training: We trained an intermediate tokenizer on a Korean web corpus, with a vocabulary of 40,000 tokens.\n\t2. Extraction of New Korean Tokens: From the intermediate tokenizer, we identified all Korean tokens not present in the original SOLAR's tokenizer.\n\t3. Manual Tokenizer Construction: We then built the target tokenizer, focusing on these new Korean tokens.\n\t4. Frequency Analysis: Using the target tokenizer, we processed a 100GB Korean corpus to count each token's frequency.\n\t5. Refinement of Token List: We removed tokens appearing less than 6,000 times, ensuring to secure enough tokens to train models later.\n\t6. Inclusion of Single-Letter Characters: Counted missing Korean single-letter characters and added them to the target tokenizer that appeared more than 6,000 times.\n\t7. Iterative Refinement: We repeated steps 2 to 6 until there were no tokens to drop or add.\n\t8. Training Bias Towards New Tokens: Our training data was biased to include more texts with new tokens, for effective learning.\n\n\nThis rigorous approach ensured a comprehensive and contextually rich Korean vocabulary for the model." ]
[ 51, 164, 45, 312 ]
[ "TAGS\n#transformers #safetensors #llama #text-generation #conversational #arxiv-2402.14714 #autotrain_compatible #endpoints_compatible #text-generation-inference #4-bit #region-us \n### Technical Deep Dive\n\n\n\n![](URL width=)\n\nTo adapt foundational models from English to Korean, we use subword-based embedding with a seven-stage training process involving parameter freezing.\nThis approach progressively trains from input embeddings to full parameters, efficiently extending the model's vocabulary to include Korean.\nOur method enhances the model's cross-linguistic applicability by carefully integrating new linguistic tokens, focusing on causal language modeling pre-training.\nWe leverage the inherent capabilities of foundational models trained on English to efficiently transfer knowledge and reasoning to Korean, optimizing the adaptation process.\n\n\nFor more details, please refer to our technical report: Efficient and Effective Vocabulary Expansion Towards Multilingual Large Language Models.\n\n\nHere’s an simplified code for our key approach:### Usage and Limitations\n\n\nKeep in mind that this model hasn't been fine-tuned with instruction-based training. While it excels in Korean language tasks, we advise careful consideration and further training for specific applications.### Training Details\n\n\nOur model’s training was comprehensive and diverse:\n\n\n* Vocabulary Expansion:\nWe meticulously selected 8,960 Korean tokens based on their frequency in our Korean web corpus. This process involved multiple rounds of tokenizer training, manual curation, and token frequency analysis, ensuring a rich and relevant vocabulary for our model.\n\n\n\t1. Initial Tokenizer Training: We trained an intermediate tokenizer on a Korean web corpus, with a vocabulary of 40,000 tokens.\n\t2. Extraction of New Korean Tokens: From the intermediate tokenizer, we identified all Korean tokens not present in the original SOLAR's tokenizer.\n\t3. Manual Tokenizer Construction: We then built the target tokenizer, focusing on these new Korean tokens.\n\t4. Frequency Analysis: Using the target tokenizer, we processed a 100GB Korean corpus to count each token's frequency.\n\t5. Refinement of Token List: We removed tokens appearing less than 6,000 times, ensuring to secure enough tokens to train models later.\n\t6. Inclusion of Single-Letter Characters: Counted missing Korean single-letter characters and added them to the target tokenizer that appeared more than 6,000 times.\n\t7. Iterative Refinement: We repeated steps 2 to 6 until there were no tokens to drop or add.\n\t8. Training Bias Towards New Tokens: Our training data was biased to include more texts with new tokens, for effective learning.\n\n\nThis rigorous approach ensured a comprehensive and contextually rich Korean vocabulary for the model." ]
text-classification
bertopic
# BERTopic-enron-5000 This is a [BERTopic](https://github.com/MaartenGr/BERTopic) model. BERTopic is a flexible and modular topic modeling framework that allows for the generation of easily interpretable topics from large datasets. ## Usage To use this model, please install BERTopic: ``` pip install -U bertopic ``` You can use the model as follows: ```python from bertopic import BERTopic topic_model = BERTopic.load("antulik/BERTopic-enron-5000") topic_model.get_topic_info() ``` ## Topic overview * Number of topics: 65 * Number of training documents: 5000 <details> <summary>Click here for an overview of all topics.</summary> | Topic ID | Topic Keywords | Topic Frequency | Label | |----------|----------------|-----------------|-------| | -1 | enron - corp - contract - company - trading | 10 | -1_enron_corp_contract_company | | 0 | going - meeting - meet - hope - night | 2299 | 0_going_meeting_meet_hope | | 1 | agreements - enron - agreement - contract - documents | 481 | 1_agreements_enron_agreement_contract | | 2 | enron - enrons - companies - company - market | 263 | 2_enron_enrons_companies_company | | 3 | enron - contact - corp - email - recipient | 253 | 3_enron_contact_corp_email | | 4 | telecom - ventures - financial - companies - markets | 84 | 4_telecom_ventures_financial_companies | | 5 | enron - email - recipient - recipients - message | 76 | 5_enron_email_recipient_recipients | | 6 | fares - newark - airlines - flight - miles | 58 | 6_fares_newark_airlines_flight | | 7 | nfl - commissionercom - td - sportslinecom - league | 54 | 7_nfl_commissionercom_td_sportslinecom | | 8 | enron - eov - ashleyworthingenroncom - erv - rho | 53 | 8_enron_eov_ashleyworthingenroncom_erv | | 9 | enron - enrons - bankruptcy - bankrupt - savings | 51 | 9_enron_enrons_bankruptcy_bankrupt | | 10 | outlookmigrationteamenroncom - outlook - outlookteamenroncom - emailcalendar - appointment | 46 | 10_outlookmigrationteamenroncom_outlook_outlookteamenroncom_emailcalendar | | 11 | enron - approver - approval - pending - econnect | 46 | 11_enron_approver_approval_pending | | 12 | schedules2002013118txt - schedules2002020115txt - schedules2002012506txt - schedules2001122507txt - schedules2001122815txt | 45 | 12_schedules2002013118txt_schedules2002020115txt_schedules2002012506txt_schedules2001122507txt | | 13 | pricing - lpg - logistics - freight - metered | 44 | 13_pricing_lpg_logistics_freight | | 14 | request - seeks - up - on - all | 43 | 14_request_seeks_up_on | | 15 | haas - semester - summers - faculty - mba | 43 | 15_haas_semester_summers_faculty | | 16 | federal - california - sacramento - californias - states | 42 | 16_federal_california_sacramento_californias | | 17 | enron - resumes - resume - interview - recruiter | 41 | 17_enron_resumes_resume_interview | | 18 | fontstyle - font - html - bold - sansserif | 39 | 18_fontstyle_font_html_bold | | 19 | enron - deals - trades - deal - tradesxls | 37 | 19_enron_deals_trades_deal | | 20 | pipeline - pipelines - piping - paso - pipe | 36 | 20_pipeline_pipelines_piping_paso | | 21 | enron - eb - contact - mailtobobshultsenroncom - emailed | 36 | 21_enron_eb_contact_mailtobobshultsenroncom | | 22 | outage - outagesindustrialinfocom - outages - rescheduled - scheduled | 36 | 22_outage_outagesindustrialinfocom_outages_rescheduled | | 23 | gifts - gift - holiday - holidays - christmas | 36 | 23_gifts_gift_holiday_holidays | | 24 | nymex - futures - expiration - contract - contracts | 31 | 24_nymex_futures_expiration_contract | | 25 | transmission - transco - translink - ferc - rtos | 30 | 25_transmission_transco_translink_ferc | | 26 | unsubscribe - email - newsletter - mailing - mailmanenroncom | 30 | 26_unsubscribe_email_newsletter_mailing | | 27 | invoices - invoice - enron - billed - reimbursement | 29 | 27_invoices_invoice_enron_billed | | 28 | enron - committee - lobbyist - judiciary - bill | 28 | 28_enron_committee_lobbyist_judiciary | | 29 | refinery - prices - pipeline - oil - price | 27 | 29_refinery_prices_pipeline_oil | | 30 | enron - gas - fuel - logistics - emissions | 27 | 30_enron_gas_fuel_logistics | | 31 | enron - dpc - topockpcb - ebizenroncom - pcb | 24 | 31_enron_dpc_topockpcb_ebizenroncom | | 32 | nyisotechexchange - nyisotechexchangeglobal2000net - marketrelationsnyisocom - nyiso - ownernyisotechexchangeliststhebiznet | 24 | 32_nyisotechexchange_nyisotechexchangeglobal2000net_marketrelationsnyisocom_nyiso | | 33 | expense - expenses - enron - enronupdateconcureworkplacecom - receipts | 24 | 33_expense_expenses_enron_enronupdateconcureworkplacecom | | 34 | enron - ebusiness - inquiries - advisory - contact | 23 | 34_enron_ebusiness_inquiries_advisory | | 35 | dbcaps97data - schedules2002011801txt - schedules2002011805txt - schedules2001102112txt - schedules2002011916txt | 21 | 35_dbcaps97data_schedules2002011801txt_schedules2002011805txt_schedules2001102112txt | | 36 | enrononline - trades - trading - deals - eol | 20 | 36_enrononline_trades_trading_deals | | 37 | enron - swaps - swap - exchange - exchanges | 20 | 37_enron_swaps_swap_exchange | | 38 | feedback - reviewers - review - process - reviewer | 20 | 38_feedback_reviewers_review_process | | 39 | powermarketerscom - electricity - energy - utilities - reuters | 20 | 39_powermarketerscom_electricity_energy_utilities | | 40 | tco - columbias - columbia - scheduled - cgt | 19 | 40_tco_columbias_columbia_scheduled | | 41 | curves - curve - data - changes - inactive | 19 | 41_curves_curve_data_changes | | 42 | enron - scheduled - eb3335 - rustybelflowerenroncom - brianredmondenroncom | 19 | 42_enron_scheduled_eb3335_rustybelflowerenroncom | | 43 | enron - executive - ceo - communicationsenron - director | 18 | 43_enron_executive_ceo_communicationsenron | | 44 | alert - alerts - ipo - stock - securities | 17 | 44_alert_alerts_ipo_stock | | 45 | invoice - ipayitenroncom - sapsecurityenroncom - ipayit - ehronline | 17 | 45_invoice_ipayitenroncom_sapsecurityenroncom_ipayit | | 46 | variances - variance - schedules - schedule - schedulingiso | 17 | 46_variances_variance_schedules_schedule | | 47 | futures - charts - carr - financial - 1500 | 17 | 47_futures_charts_carr_financial | | 48 | approval - approved - authorized - eisb - tariff | 16 | 48_approval_approved_authorized_eisb | | 49 | fee - credit - express - membership - merchant | 15 | 49_fee_credit_express_membership | | 50 | fee - subscription - billing - discount - monthly | 15 | 50_fee_subscription_billing_discount | | 51 | schedules2001102810txt - schedules2001123103txt - schedules2001030406txt - schedules2002010121txt - schedules2001043008txt | 14 | 51_schedules2001102810txt_schedules2001123103txt_schedules2001030406txt_schedules2002010121txt | | 52 | managementcrd - gd - ets - gasdeskenroncom - sst | 14 | 52_managementcrd_gd_ets_gasdeskenroncom | | 53 | shipping - shipment - order - orders - delivery | 14 | 53_shipping_shipment_order_orders | | 54 | dish - satellite - free - channels - dvds | 14 | 54_dish_satellite_free_channels | | 55 | mailbox - outlook - inbox - exchangeadministratorenroncom - folder | 13 | 55_mailbox_outlook_inbox_exchangeadministratorenroncom | | 56 | netware - visualwares - backoffice - newsletter - file | 13 | 56_netware_visualwares_backoffice_newsletter | | 57 | enronfcucom - survey - enronannouncementsenroncom - ews - service | 13 | 57_enronfcucom_survey_enronannouncementsenroncom_ews | | 58 | pira - forecast - piras - demand - weekly | 12 | 58_pira_forecast_piras_demand | | 59 | pricing - enron - cost - rate - price | 12 | 59_pricing_enron_cost_rate | | 60 | whitening - medication - strength - clinical - doctor | 11 | 60_whitening_medication_strength_clinical | | 61 | enron - industries - ebusiness - industrial - ena | 11 | 61_enron_industries_ebusiness_industrial | | 62 | px - credit - pe - sce - tariff | 10 | 62_px_credit_pe_sce | | 63 | enron - eesi - eemc - assets - nepco | 10 | 63_enron_eesi_eemc_assets | </details> ## Training hyperparameters * calculate_probabilities: False * language: english * low_memory: False * min_topic_size: 10 * n_gram_range: (1, 1) * nr_topics: None * seed_topic_list: [['drug', 'cancer', 'drugs', 'doctor'], ['windows', 'drive', 'dos', 'file'], ['space', 'launch', 'orbit', 'lunar']] * top_n_words: 10 * verbose: False * zeroshot_min_similarity: 0.7 * zeroshot_topic_list: None ## Framework versions * Numpy: 1.23.5 * HDBSCAN: 0.8.33 * UMAP: 0.5.6 * Pandas: 2.0.3 * Scikit-Learn: 1.2.2 * Sentence-transformers: 2.7.0 * Transformers: 4.40.1 * Numba: 0.58.1 * Plotly: 5.15.0 * Python: 3.10.12
{"library_name": "bertopic", "tags": ["bertopic"], "pipeline_tag": "text-classification"}
antulik/BERTopic-enron-5000
null
[ "bertopic", "text-classification", "region:us" ]
null
2024-05-02T08:53:56+00:00
[]
[]
TAGS #bertopic #text-classification #region-us
BERTopic-enron-5000 =================== This is a BERTopic model. BERTopic is a flexible and modular topic modeling framework that allows for the generation of easily interpretable topics from large datasets. Usage ----- To use this model, please install BERTopic: You can use the model as follows: Topic overview -------------- * Number of topics: 65 * Number of training documents: 5000 Click here for an overview of all topics. Training hyperparameters ------------------------ * calculate\_probabilities: False * language: english * low\_memory: False * min\_topic\_size: 10 * n\_gram\_range: (1, 1) * nr\_topics: None * seed\_topic\_list: [['drug', 'cancer', 'drugs', 'doctor'], ['windows', 'drive', 'dos', 'file'], ['space', 'launch', 'orbit', 'lunar']] * top\_n\_words: 10 * verbose: False * zeroshot\_min\_similarity: 0.7 * zeroshot\_topic\_list: None Framework versions ------------------ * Numpy: 1.23.5 * HDBSCAN: 0.8.33 * UMAP: 0.5.6 * Pandas: 2.0.3 * Scikit-Learn: 1.2.2 * Sentence-transformers: 2.7.0 * Transformers: 4.40.1 * Numba: 0.58.1 * Plotly: 5.15.0 * Python: 3.10.12
[]
[ "TAGS\n#bertopic #text-classification #region-us \n" ]
[ 13 ]
[ "TAGS\n#bertopic #text-classification #region-us \n" ]
text-classification
transformers
[**GitHub Homepage**](https://github.com/wonrax/phobert-base-vietnamese-sentiment) A model fine-tuned for sentiment analysis based on [vinai/phobert-base](https://huggingface.co/vinai/phobert-base). Labels: - NEG: Negative - POS: Positive - NEU: Neutral Dataset: [30K e-commerce reviews](https://www.kaggle.com/datasets/linhlpv/vietnamese-sentiment-analyst) ## Usage ```python import torch from transformers import RobertaForSequenceClassification, AutoTokenizer model = RobertaForSequenceClassification.from_pretrained("wonrax/phobert-base-vietnamese-sentiment") tokenizer = AutoTokenizer.from_pretrained("wonrax/phobert-base-vietnamese-sentiment", use_fast=False) # Just like PhoBERT: INPUT TEXT MUST BE ALREADY WORD-SEGMENTED! sentence = 'Đây là mô_hình rất hay , phù_hợp với điều_kiện và như cầu của nhiều người .' input_ids = torch.tensor([tokenizer.encode(sentence)]) with torch.no_grad(): out = model(input_ids) print(out.logits.softmax(dim=-1).tolist()) # Output: # [[0.002, 0.988, 0.01]] # ^ ^ ^ # NEG POS NEU ```
{"language": ["vi"], "license": "mit", "tags": ["sentiment", "classification"], "widget": [{"text": "Kh\u00f4ng th\u1ec3 n\u00e0o \u0111\u1eb9p h\u01a1n"}, {"text": "Qu\u00e1 ph\u00ed ti\u1ec1n, m\u00e0 kh\u00f4ng \u0111\u1eb9p"}, {"text": "C\u00e1i n\u00e0y gi\u00e1 \u1ed5n kh\u00f4ng nh\u1ec9?"}]}
Angelectronic/phobert-base-vietnamese-sentiment
null
[ "transformers", "pytorch", "roberta", "text-classification", "sentiment", "classification", "vi", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2024-05-02T08:54:32+00:00
[]
[ "vi" ]
TAGS #transformers #pytorch #roberta #text-classification #sentiment #classification #vi #license-mit #autotrain_compatible #endpoints_compatible #region-us
GitHub Homepage A model fine-tuned for sentiment analysis based on vinai/phobert-base. Labels: - NEG: Negative - POS: Positive - NEU: Neutral Dataset: 30K e-commerce reviews ## Usage
[ "## Usage" ]
[ "TAGS\n#transformers #pytorch #roberta #text-classification #sentiment #classification #vi #license-mit #autotrain_compatible #endpoints_compatible #region-us \n", "## Usage" ]
[ 38, 3 ]
[ "TAGS\n#transformers #pytorch #roberta #text-classification #sentiment #classification #vi #license-mit #autotrain_compatible #endpoints_compatible #region-us \n## Usage" ]
text-generation
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
RefalMachine/ruadapt_llama3_full_vo_3e4_bs256-40k
null
[ "transformers", "safetensors", "llama", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-05-02T08:54:48+00:00
[ "1910.09700" ]
[]
TAGS #transformers #safetensors #llama #text-generation #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# Model Card for Model ID ## Model Details ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #safetensors #llama #text-generation #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ 44, 6, 4, 75, 23, 3, 5, 8, 9, 8, 34, 20, 4, 5, 5, 11, 13, 12, 3, 10, 6, 5, 6, 4, 5, 7, 49, 7, 7, 5, 5, 15, 7, 7, 8, 5 ]
[ "TAGS\n#transformers #safetensors #llama #text-generation #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# Model Card for Model ID## Model Details### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Downstream Use [optional]### Out-of-Scope Use## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.## How to Get Started with the Model\n\nUse the code below to get started with the model.## Training Details### Training Data### Training Procedure#### Preprocessing [optional]#### Training Hyperparameters\n\n- Training regime:#### Speeds, Sizes, Times [optional]## Evaluation### Testing Data, Factors & Metrics#### Testing Data#### Factors#### Metrics### Results#### Summary## Model Examination [optional]## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:## Technical Specifications [optional]### Model Architecture and Objective### Compute Infrastructure#### Hardware#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Model Card Authors [optional]## Model Card Contact" ]
text-generation
transformers
![example](https://files.catbox.moe/joazop.png) The idea is the same as [InfinityRP v1](https://huggingface.co/Endevor/InfinityRP-v1-7B), but this one is Llama 3 with 16k ctx! Have fun... ### Prompt format: Alpaca. ``"You are now in roleplay chat mode. Engage in an endless chat, always with a creative response. Follow lengths very precisely and create paragraphs accurately. Always wait your turn, next actions and responses. Your internal thoughts are wrapped with ` marks."`` **User Message Prefix = ### Input:** **Assistant Message Prefix = ### Response:** **System Message Prefix = ### Instruction:** **Turn on "Include Names"** (optional) ### Text Length: (use on your System Prompt or ### Response:) Response: (length = medium) <- [tiny, micro, short, medium, long, enormous, huge, massive, humongous] ### Example: ![example](https://files.catbox.moe/t3hcez.png)
{"language": ["en"], "license": "apache-2.0", "tags": ["safetensors", "llama", "not-for-all-audiences", "nsfw", "rp", "roleplay"], "pipeline_tag": "text-generation"}
Endevor/InfinityRP-v2-8B
null
[ "transformers", "safetensors", "llama", "text-generation", "not-for-all-audiences", "nsfw", "rp", "roleplay", "en", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-05-02T08:55:30+00:00
[]
[ "en" ]
TAGS #transformers #safetensors #llama #text-generation #not-for-all-audiences #nsfw #rp #roleplay #en #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
!example The idea is the same as InfinityRP v1, but this one is Llama 3 with 16k ctx! Have fun... ### Prompt format: Alpaca. ''"You are now in roleplay chat mode. Engage in an endless chat, always with a creative response. Follow lengths very precisely and create paragraphs accurately. Always wait your turn, next actions and responses. Your internal thoughts are wrapped with ' marks."'' User Message Prefix = ### Input: Assistant Message Prefix = ### Response: System Message Prefix = ### Instruction: Turn on "Include Names" (optional) ### Text Length: (use on your System Prompt or ### Response:) Response: (length = medium) <- [tiny, micro, short, medium, long, enormous, huge, massive, humongous] ### Example: !example
[ "### Prompt format: Alpaca.\n''\"You are now in roleplay chat mode. Engage in an endless chat, always with a creative response. Follow lengths very precisely and create paragraphs accurately. Always wait your turn, next actions and responses. Your internal thoughts are wrapped with ' marks.\"''\n\nUser Message Prefix = ### Input:\n\nAssistant Message Prefix = ### Response:\n\nSystem Message Prefix = ### Instruction:\n\nTurn on \"Include Names\" (optional)", "### Text Length: (use on your System Prompt or ### Response:)\nResponse: (length = medium) <- [tiny, micro, short, medium, long, enormous, huge, massive, humongous]", "### Example:\n\n!example" ]
[ "TAGS\n#transformers #safetensors #llama #text-generation #not-for-all-audiences #nsfw #rp #roleplay #en #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "### Prompt format: Alpaca.\n''\"You are now in roleplay chat mode. Engage in an endless chat, always with a creative response. Follow lengths very precisely and create paragraphs accurately. Always wait your turn, next actions and responses. Your internal thoughts are wrapped with ' marks.\"''\n\nUser Message Prefix = ### Input:\n\nAssistant Message Prefix = ### Response:\n\nSystem Message Prefix = ### Instruction:\n\nTurn on \"Include Names\" (optional)", "### Text Length: (use on your System Prompt or ### Response:)\nResponse: (length = medium) <- [tiny, micro, short, medium, long, enormous, huge, massive, humongous]", "### Example:\n\n!example" ]
[ 62, 102, 49, 7 ]
[ "TAGS\n#transformers #safetensors #llama #text-generation #not-for-all-audiences #nsfw #rp #roleplay #en #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n### Prompt format: Alpaca.\n''\"You are now in roleplay chat mode. Engage in an endless chat, always with a creative response. Follow lengths very precisely and create paragraphs accurately. Always wait your turn, next actions and responses. Your internal thoughts are wrapped with ' marks.\"''\n\nUser Message Prefix = ### Input:\n\nAssistant Message Prefix = ### Response:\n\nSystem Message Prefix = ### Instruction:\n\nTurn on \"Include Names\" (optional)### Text Length: (use on your System Prompt or ### Response:)\nResponse: (length = medium) <- [tiny, micro, short, medium, long, enormous, huge, massive, humongous]### Example:\n\n!example" ]
text-generation
transformers
# Model Card for Cyber-risk-llama-3-8b-instruct-sft ## Model Description This model is a fine-tuned version of `meta-llama/Meta-Llama-3-8B-Instruct` on the `vanessasml/cybersecurity_32k_instruction_input_output` dataset. It is specifically designed to enhance performance in generating and understanding cybersecurity, identifying cyber threats and classifying data under the NIST taxonomy and IT Risks based on the ITC EBA guidelines. ## Intended Use - **Intended users**: Data scientists and developers working on cybersecurity applications. - **Out-of-scope use cases**: This model should not be used for medical advice, legal decisions, or any life-critical systems. ## Training Data The model was fine-tuned on `vanessasml/cybersecurity_32k_instruction_input_output`, a dataset focused on cybersecurity news analysis. No special data format was applied as [recommended](https://huggingface.co/blog/llama3#fine-tuning-with-%F0%9F%A4%97-trl), although the following steps need to be applied to adjust the input: ```python # During training from trl import setup_chat_format model, tokenizer = setup_chat_format(model, tokenizer) # During inference messages = [ {"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"}, {"role": "user", "content": "Who are you?"}, ] prompt = pipeline.tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) ``` ## Training Procedure - **Preprocessing**: Text data were tokenized using the tokenizer corresponding to the base model `meta-llama/Meta-Llama-3-8B-Instruct`. - **Hardware**: The training was performed on GPUs with mixed precision (FP16/BF16) enabled. - **Optimizer**: Paged AdamW with a cosine learning rate schedule. - **Epochs**: The model was trained for 1 epoch. - **Batch size**: 4 per device, with gradient accumulation where required. ## Evaluation Results Model evaluation was based on qualitative assessment of generated text relevance and coherence in the context of cybersecurity. ## Quantization and Optimization - **Quantization**: 4-bit precision with type `nf4`. Nested quantization is disabled. - **Compute dtype**: `float16` to ensure efficient computation. - **LoRA Settings**: - LoRA attention dimension: `64` - Alpha parameter for LoRA scaling: `16` - Dropout in LoRA layers: `0.1` ## Environmental Impact - **Compute Resources**: Training leveraged energy-efficient hardware and practices to minimize carbon footprint. - **Strategies**: Gradient checkpointing and group-wise data processing were used to optimize memory and power usage. ## How to Use Here is how to load and use the model using transformers: ```python import transformers model_name = "vanessasml/cyber-risk-llama-3-8b-instruct-sft" # Example of how to use the model: pipeline = transformers.pipeline( "text-generation", model=model_name, model_kwargs={"torch_dtype": torch.bfloat16}, device="cuda", ) messages = [ {"role": "system", "content": SYSTEM_PROMPT}, {"role": "user", "content": "What are the main 5 cyber classes from the NIST cyber framework?"}, ] prompt = pipeline.tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) terminators = [ pipeline.tokenizer.eos_token_id, pipeline.tokenizer.convert_tokens_to_ids("<|eot_id|>") ] outputs = pipeline( prompt, max_new_tokens=256, eos_token_id=terminators, do_sample=True, temperature=0.6, top_p=0.9, ) print(outputs[0]["generated_text"][len(prompt):]) ``` ## Limitations and Bias The model, while robust in cybersecurity contexts, may not generalize well to unrelated domains. Users should be cautious of biases inherent in the training data which may manifest in model predictions. ## Citation If you use this model, please cite it as follows: ```bibtex @misc{cyber-risk-llama-3-8b-instruct-sft, author = {Vanessa Lopes}, title = {Cyber-risk-llama-3-8B-Instruct-sft Model}, year = {2024}, publisher = {HuggingFace Hub}, journal = {HuggingFace Model Hub} } ```
{"tags": ["finance", "supervision", "cyber risk", "cybersecurity", "cyber threats", "SFT", "LoRA", "A100GPU"], "datasets": ["Vanessasml/cybersecurity_32k_instruction_input_output"], "pipeline_tag": "text-generation"}
Vanessasml/cyber-risk-llama-3-8b-instruct-sft
null
[ "transformers", "safetensors", "llama", "text-generation", "finance", "supervision", "cyber risk", "cybersecurity", "cyber threats", "SFT", "LoRA", "A100GPU", "conversational", "dataset:Vanessasml/cybersecurity_32k_instruction_input_output", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-05-02T08:55:35+00:00
[]
[]
TAGS #transformers #safetensors #llama #text-generation #finance #supervision #cyber risk #cybersecurity #cyber threats #SFT #LoRA #A100GPU #conversational #dataset-Vanessasml/cybersecurity_32k_instruction_input_output #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# Model Card for Cyber-risk-llama-3-8b-instruct-sft ## Model Description This model is a fine-tuned version of 'meta-llama/Meta-Llama-3-8B-Instruct' on the 'vanessasml/cybersecurity_32k_instruction_input_output' dataset. It is specifically designed to enhance performance in generating and understanding cybersecurity, identifying cyber threats and classifying data under the NIST taxonomy and IT Risks based on the ITC EBA guidelines. ## Intended Use - Intended users: Data scientists and developers working on cybersecurity applications. - Out-of-scope use cases: This model should not be used for medical advice, legal decisions, or any life-critical systems. ## Training Data The model was fine-tuned on 'vanessasml/cybersecurity_32k_instruction_input_output', a dataset focused on cybersecurity news analysis. No special data format was applied as recommended, although the following steps need to be applied to adjust the input: ## Training Procedure - Preprocessing: Text data were tokenized using the tokenizer corresponding to the base model 'meta-llama/Meta-Llama-3-8B-Instruct'. - Hardware: The training was performed on GPUs with mixed precision (FP16/BF16) enabled. - Optimizer: Paged AdamW with a cosine learning rate schedule. - Epochs: The model was trained for 1 epoch. - Batch size: 4 per device, with gradient accumulation where required. ## Evaluation Results Model evaluation was based on qualitative assessment of generated text relevance and coherence in the context of cybersecurity. ## Quantization and Optimization - Quantization: 4-bit precision with type 'nf4'. Nested quantization is disabled. - Compute dtype: 'float16' to ensure efficient computation. - LoRA Settings: - LoRA attention dimension: '64' - Alpha parameter for LoRA scaling: '16' - Dropout in LoRA layers: '0.1' ## Environmental Impact - Compute Resources: Training leveraged energy-efficient hardware and practices to minimize carbon footprint. - Strategies: Gradient checkpointing and group-wise data processing were used to optimize memory and power usage. ## How to Use Here is how to load and use the model using transformers: ## Limitations and Bias The model, while robust in cybersecurity contexts, may not generalize well to unrelated domains. Users should be cautious of biases inherent in the training data which may manifest in model predictions. If you use this model, please cite it as follows:
[ "# Model Card for Cyber-risk-llama-3-8b-instruct-sft", "## Model Description\nThis model is a fine-tuned version of 'meta-llama/Meta-Llama-3-8B-Instruct' on the 'vanessasml/cybersecurity_32k_instruction_input_output' dataset. \n\nIt is specifically designed to enhance performance in generating and understanding cybersecurity, identifying cyber threats and classifying data under the NIST taxonomy and IT Risks based on the ITC EBA guidelines.", "## Intended Use\n- Intended users: Data scientists and developers working on cybersecurity applications.\n- Out-of-scope use cases: This model should not be used for medical advice, legal decisions, or any life-critical systems.", "## Training Data\nThe model was fine-tuned on 'vanessasml/cybersecurity_32k_instruction_input_output', a dataset focused on cybersecurity news analysis. \nNo special data format was applied as recommended, although the following steps need to be applied to adjust the input:", "## Training Procedure\n- Preprocessing: Text data were tokenized using the tokenizer corresponding to the base model 'meta-llama/Meta-Llama-3-8B-Instruct'.\n- Hardware: The training was performed on GPUs with mixed precision (FP16/BF16) enabled.\n- Optimizer: Paged AdamW with a cosine learning rate schedule.\n- Epochs: The model was trained for 1 epoch.\n- Batch size: 4 per device, with gradient accumulation where required.", "## Evaluation Results\nModel evaluation was based on qualitative assessment of generated text relevance and coherence in the context of cybersecurity.", "## Quantization and Optimization\n- Quantization: 4-bit precision with type 'nf4'. Nested quantization is disabled.\n- Compute dtype: 'float16' to ensure efficient computation.\n- LoRA Settings:\n - LoRA attention dimension: '64'\n - Alpha parameter for LoRA scaling: '16'\n - Dropout in LoRA layers: '0.1'", "## Environmental Impact\n- Compute Resources: Training leveraged energy-efficient hardware and practices to minimize carbon footprint.\n- Strategies: Gradient checkpointing and group-wise data processing were used to optimize memory and power usage.", "## How to Use\nHere is how to load and use the model using transformers:", "## Limitations and Bias\nThe model, while robust in cybersecurity contexts, may not generalize well to unrelated domains. Users should be cautious of biases inherent in the training data which may manifest in model predictions.\n\n\nIf you use this model, please cite it as follows:" ]
[ "TAGS\n#transformers #safetensors #llama #text-generation #finance #supervision #cyber risk #cybersecurity #cyber threats #SFT #LoRA #A100GPU #conversational #dataset-Vanessasml/cybersecurity_32k_instruction_input_output #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# Model Card for Cyber-risk-llama-3-8b-instruct-sft", "## Model Description\nThis model is a fine-tuned version of 'meta-llama/Meta-Llama-3-8B-Instruct' on the 'vanessasml/cybersecurity_32k_instruction_input_output' dataset. \n\nIt is specifically designed to enhance performance in generating and understanding cybersecurity, identifying cyber threats and classifying data under the NIST taxonomy and IT Risks based on the ITC EBA guidelines.", "## Intended Use\n- Intended users: Data scientists and developers working on cybersecurity applications.\n- Out-of-scope use cases: This model should not be used for medical advice, legal decisions, or any life-critical systems.", "## Training Data\nThe model was fine-tuned on 'vanessasml/cybersecurity_32k_instruction_input_output', a dataset focused on cybersecurity news analysis. \nNo special data format was applied as recommended, although the following steps need to be applied to adjust the input:", "## Training Procedure\n- Preprocessing: Text data were tokenized using the tokenizer corresponding to the base model 'meta-llama/Meta-Llama-3-8B-Instruct'.\n- Hardware: The training was performed on GPUs with mixed precision (FP16/BF16) enabled.\n- Optimizer: Paged AdamW with a cosine learning rate schedule.\n- Epochs: The model was trained for 1 epoch.\n- Batch size: 4 per device, with gradient accumulation where required.", "## Evaluation Results\nModel evaluation was based on qualitative assessment of generated text relevance and coherence in the context of cybersecurity.", "## Quantization and Optimization\n- Quantization: 4-bit precision with type 'nf4'. Nested quantization is disabled.\n- Compute dtype: 'float16' to ensure efficient computation.\n- LoRA Settings:\n - LoRA attention dimension: '64'\n - Alpha parameter for LoRA scaling: '16'\n - Dropout in LoRA layers: '0.1'", "## Environmental Impact\n- Compute Resources: Training leveraged energy-efficient hardware and practices to minimize carbon footprint.\n- Strategies: Gradient checkpointing and group-wise data processing were used to optimize memory and power usage.", "## How to Use\nHere is how to load and use the model using transformers:", "## Limitations and Bias\nThe model, while robust in cybersecurity contexts, may not generalize well to unrelated domains. Users should be cautious of biases inherent in the training data which may manifest in model predictions.\n\n\nIf you use this model, please cite it as follows:" ]
[ 84, 21, 96, 49, 65, 111, 30, 84, 45, 17, 57 ]
[ "TAGS\n#transformers #safetensors #llama #text-generation #finance #supervision #cyber risk #cybersecurity #cyber threats #SFT #LoRA #A100GPU #conversational #dataset-Vanessasml/cybersecurity_32k_instruction_input_output #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# Model Card for Cyber-risk-llama-3-8b-instruct-sft## Model Description\nThis model is a fine-tuned version of 'meta-llama/Meta-Llama-3-8B-Instruct' on the 'vanessasml/cybersecurity_32k_instruction_input_output' dataset. \n\nIt is specifically designed to enhance performance in generating and understanding cybersecurity, identifying cyber threats and classifying data under the NIST taxonomy and IT Risks based on the ITC EBA guidelines.## Intended Use\n- Intended users: Data scientists and developers working on cybersecurity applications.\n- Out-of-scope use cases: This model should not be used for medical advice, legal decisions, or any life-critical systems.## Training Data\nThe model was fine-tuned on 'vanessasml/cybersecurity_32k_instruction_input_output', a dataset focused on cybersecurity news analysis. \nNo special data format was applied as recommended, although the following steps need to be applied to adjust the input:## Training Procedure\n- Preprocessing: Text data were tokenized using the tokenizer corresponding to the base model 'meta-llama/Meta-Llama-3-8B-Instruct'.\n- Hardware: The training was performed on GPUs with mixed precision (FP16/BF16) enabled.\n- Optimizer: Paged AdamW with a cosine learning rate schedule.\n- Epochs: The model was trained for 1 epoch.\n- Batch size: 4 per device, with gradient accumulation where required.## Evaluation Results\nModel evaluation was based on qualitative assessment of generated text relevance and coherence in the context of cybersecurity.## Quantization and Optimization\n- Quantization: 4-bit precision with type 'nf4'. Nested quantization is disabled.\n- Compute dtype: 'float16' to ensure efficient computation.\n- LoRA Settings:\n - LoRA attention dimension: '64'\n - Alpha parameter for LoRA scaling: '16'\n - Dropout in LoRA layers: '0.1'## Environmental Impact\n- Compute Resources: Training leveraged energy-efficient hardware and practices to minimize carbon footprint.\n- Strategies: Gradient checkpointing and group-wise data processing were used to optimize memory and power usage.## How to Use\nHere is how to load and use the model using transformers:## Limitations and Bias\nThe model, while robust in cybersecurity contexts, may not generalize well to unrelated domains. Users should be cautious of biases inherent in the training data which may manifest in model predictions.\n\n\nIf you use this model, please cite it as follows:" ]
null
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
Vamshi7981/gpt2-reuters-tokenizer
null
[ "transformers", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-05-02T08:55:40+00:00
[ "1910.09700" ]
[]
TAGS #transformers #arxiv-1910.09700 #endpoints_compatible #region-us
# Model Card for Model ID ## Model Details ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #arxiv-1910.09700 #endpoints_compatible #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ 22, 6, 4, 75, 23, 3, 5, 8, 9, 8, 34, 20, 4, 5, 5, 11, 13, 12, 3, 10, 6, 5, 6, 4, 5, 7, 49, 7, 7, 5, 5, 15, 7, 7, 8, 5 ]
[ "TAGS\n#transformers #arxiv-1910.09700 #endpoints_compatible #region-us \n# Model Card for Model ID## Model Details### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Downstream Use [optional]### Out-of-Scope Use## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.## How to Get Started with the Model\n\nUse the code below to get started with the model.## Training Details### Training Data### Training Procedure#### Preprocessing [optional]#### Training Hyperparameters\n\n- Training regime:#### Speeds, Sizes, Times [optional]## Evaluation### Testing Data, Factors & Metrics#### Testing Data#### Factors#### Metrics### Results#### Summary## Model Examination [optional]## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:## Technical Specifications [optional]### Model Architecture and Objective### Compute Infrastructure#### Hardware#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Model Card Authors [optional]## Model Card Contact" ]
text-generation
transformers
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) xlm-roberta-large-squad2 - bnb 4bits - Model creator: https://huggingface.co/deepset/ - Original model: https://huggingface.co/deepset/xlm-roberta-large-squad2/ Original model description: --- language: multilingual license: cc-by-4.0 tags: - question-answering datasets: - squad_v2 model-index: - name: deepset/xlm-roberta-large-squad2 results: - task: type: question-answering name: Question Answering dataset: name: squad_v2 type: squad_v2 config: squad_v2 split: validation metrics: - type: exact_match value: 81.8281 name: Exact Match verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNzVhZDE2NTg5NmUwOWRkMmI2MGUxYjFlZjIzNmMyNDQ2MDY2MDNhYzE0ZjY5YTkyY2U4ODc3ODFiZjQxZWQ2YSIsInZlcnNpb24iOjF9.f_rN3WPMAdv-OBPz0T7N7lOxYz9f1nEr_P-vwKhi3jNdRKp_JTy18MYR9eyJM2riKHC6_ge-8XwfyrUf51DSDA - type: f1 value: 84.8886 name: F1 verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZGE5MWJmZGUxMGMwNWFhYzVhZjQwZGEwOWQ4N2Q2Yjg5NzdjNDFiNDhiYTQ1Y2E5ZWJkOTFhYmI1Y2Q2ZGYwOCIsInZlcnNpb24iOjF9.TIdH-tOx3kEMDs5wK1r6iwZqqSjNGlBrpawrsE917j1F3UFJVnQ7wJwaj0OIgmC4iw8OQeLZL56ucBcLApa-AQ --- # Multilingual XLM-RoBERTa large for QA on various languages ## Overview **Language model:** xlm-roberta-large **Language:** Multilingual **Downstream-task:** Extractive QA **Training data:** SQuAD 2.0 **Eval data:** SQuAD dev set - German MLQA - German XQuAD **Training run:** [MLFlow link](https://public-mlflow.deepset.ai/#/experiments/124/runs/3a540e3f3ecf4dd98eae8fc6d457ff20) **Infrastructure**: 4x Tesla v100 ## Hyperparameters ``` batch_size = 32 n_epochs = 3 base_LM_model = "xlm-roberta-large" max_seq_len = 256 learning_rate = 1e-5 lr_schedule = LinearWarmup warmup_proportion = 0.2 doc_stride=128 max_query_length=64 ``` ## Performance Evaluated on the SQuAD 2.0 English dev set with the [official eval script](https://worksheets.codalab.org/rest/bundles/0x6b567e1cf2e041ec80d7098f031c5c9e/contents/blob/). ``` "exact": 79.45759285774446, "f1": 83.79259828925511, "total": 11873, "HasAns_exact": 71.96356275303644, "HasAns_f1": 80.6460053117963, "HasAns_total": 5928, "NoAns_exact": 86.93019343986543, "NoAns_f1": 86.93019343986543, "NoAns_total": 5945 ``` Evaluated on German [MLQA: test-context-de-question-de.json](https://github.com/facebookresearch/MLQA) ``` "exact": 49.34691166703564, "f1": 66.15582561674236, "total": 4517, ``` Evaluated on German [XQuAD: xquad.de.json](https://github.com/deepmind/xquad) ``` "exact": 61.51260504201681, "f1": 78.80206098332569, "total": 1190, ``` ## Usage ### In Haystack For doing QA at scale (i.e. many docs instead of single paragraph), you can load the model also in [haystack](https://github.com/deepset-ai/haystack/): ```python reader = FARMReader(model_name_or_path="deepset/xlm-roberta-large-squad2") # or reader = TransformersReader(model="deepset/xlm-roberta-large-squad2",tokenizer="deepset/xlm-roberta-large-squad2") ``` ### In Transformers ```python from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline model_name = "deepset/xlm-roberta-large-squad2" # a) Get predictions nlp = pipeline('question-answering', model=model_name, tokenizer=model_name) QA_input = { 'question': 'Why is model conversion important?', 'context': 'The option to convert models between FARM and transformers gives freedom to the user and let people easily switch between frameworks.' } res = nlp(QA_input) # b) Load model & tokenizer model = AutoModelForQuestionAnswering.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) ``` ## Authors **Branden Chan:** [email protected] **Timo Möller:** [email protected] **Malte Pietsch:** [email protected] **Tanay Soni:** [email protected] ## About us <div class="grid lg:grid-cols-2 gap-x-4 gap-y-3"> <div class="w-full h-40 object-cover mb-2 rounded-lg flex items-center justify-center"> <img alt="" src="https://raw.githubusercontent.com/deepset-ai/.github/main/deepset-logo-colored.png" class="w-40"/> </div> <div class="w-full h-40 object-cover mb-2 rounded-lg flex items-center justify-center"> <img alt="" src="https://raw.githubusercontent.com/deepset-ai/.github/main/haystack-logo-colored.png" class="w-40"/> </div> </div> [deepset](http://deepset.ai/) is the company behind the open-source NLP framework [Haystack](https://haystack.deepset.ai/) which is designed to help you build production ready NLP systems that use: Question answering, summarization, ranking etc. Some of our other work: - [Distilled roberta-base-squad2 (aka "tinyroberta-squad2")]([https://huggingface.co/deepset/tinyroberta-squad2) - [German BERT (aka "bert-base-german-cased")](https://deepset.ai/german-bert) - [GermanQuAD and GermanDPR datasets and models (aka "gelectra-base-germanquad", "gbert-base-germandpr")](https://deepset.ai/germanquad) ## Get in touch and join the Haystack community <p>For more info on Haystack, visit our <strong><a href="https://github.com/deepset-ai/haystack">GitHub</a></strong> repo and <strong><a href="https://docs.haystack.deepset.ai">Documentation</a></strong>. We also have a <strong><a class="h-7" href="https://haystack.deepset.ai/community">Discord community open to everyone!</a></strong></p> [Twitter](https://twitter.com/deepset_ai) | [LinkedIn](https://www.linkedin.com/company/deepset-ai/) | [Discord](https://haystack.deepset.ai/community) | [GitHub Discussions](https://github.com/deepset-ai/haystack/discussions) | [Website](https://deepset.ai) By the way: [we're hiring!](http://www.deepset.ai/jobs)
{}
RichardErkhov/deepset_-_xlm-roberta-large-squad2-4bits
null
[ "transformers", "safetensors", "xlm-roberta", "text-generation", "autotrain_compatible", "endpoints_compatible", "4-bit", "region:us" ]
null
2024-05-02T08:55:51+00:00
[]
[]
TAGS #transformers #safetensors #xlm-roberta #text-generation #autotrain_compatible #endpoints_compatible #4-bit #region-us
Quantization made by Richard Erkhov. Github Discord Request more models xlm-roberta-large-squad2 - bnb 4bits - Model creator: URL - Original model: URL Original model description: --- language: multilingual license: cc-by-4.0 tags: - question-answering datasets: - squad_v2 model-index: - name: deepset/xlm-roberta-large-squad2 results: - task: type: question-answering name: Question Answering dataset: name: squad_v2 type: squad_v2 config: squad_v2 split: validation metrics: - type: exact_match value: 81.8281 name: Exact Match verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNzVhZDE2NTg5NmUwOWRkMmI2MGUxYjFlZjIzNmMyNDQ2MDY2MDNhYzE0ZjY5YTkyY2U4ODc3ODFiZjQxZWQ2YSIsInZlcnNpb24iOjF9.f_rN3WPMAdv-OBPz0T7N7lOxYz9f1nEr_P-vwKhi3jNdRKp_JTy18MYR9eyJM2riKHC6_ge-8XwfyrUf51DSDA - type: f1 value: 84.8886 name: F1 verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZGE5MWJmZGUxMGMwNWFhYzVhZjQwZGEwOWQ4N2Q2Yjg5NzdjNDFiNDhiYTQ1Y2E5ZWJkOTFhYmI1Y2Q2ZGYwOCIsInZlcnNpb24iOjF9.TIdH-tOx3kEMDs5wK1r6iwZqqSjNGlBrpawrsE917j1F3UFJVnQ7wJwaj0OIgmC4iw8OQeLZL56ucBcLApa-AQ --- # Multilingual XLM-RoBERTa large for QA on various languages ## Overview Language model: xlm-roberta-large Language: Multilingual Downstream-task: Extractive QA Training data: SQuAD 2.0 Eval data: SQuAD dev set - German MLQA - German XQuAD Training run: MLFlow link Infrastructure: 4x Tesla v100 ## Hyperparameters ## Performance Evaluated on the SQuAD 2.0 English dev set with the official eval script. Evaluated on German MLQA: URL Evaluated on German XQuAD: URL ## Usage ### In Haystack For doing QA at scale (i.e. many docs instead of single paragraph), you can load the model also in haystack: ### In Transformers ## Authors Branden Chan: URL@URL Timo Möller: timo.moeller@URL Malte Pietsch: malte.pietsch@URL Tanay Soni: URL@URL ## About us <div class="grid lg:grid-cols-2 gap-x-4 gap-y-3"> <div class="w-full h-40 object-cover mb-2 rounded-lg flex items-center justify-center"> <img alt="" src="URL class="w-40"/> </div> <div class="w-full h-40 object-cover mb-2 rounded-lg flex items-center justify-center"> <img alt="" src="URL class="w-40"/> </div> </div> deepset is the company behind the open-source NLP framework Haystack which is designed to help you build production ready NLP systems that use: Question answering, summarization, ranking etc. Some of our other work: - Distilled roberta-base-squad2 (aka "tinyroberta-squad2") - German BERT (aka "bert-base-german-cased") - GermanQuAD and GermanDPR datasets and models (aka "gelectra-base-germanquad", "gbert-base-germandpr") ## Get in touch and join the Haystack community <p>For more info on Haystack, visit our <strong><a href="URL repo and <strong><a href="URL">Documentation</a></strong>. We also have a <strong><a class="h-7" href="URL community open to everyone!</a></strong></p> Twitter | LinkedIn | Discord | GitHub Discussions | Website By the way: we're hiring!
[ "# Multilingual XLM-RoBERTa large for QA on various languages", "## Overview\nLanguage model: xlm-roberta-large \nLanguage: Multilingual \nDownstream-task: Extractive QA \nTraining data: SQuAD 2.0 \nEval data: SQuAD dev set - German MLQA - German XQuAD \nTraining run: MLFlow link \nInfrastructure: 4x Tesla v100", "## Hyperparameters", "## Performance\nEvaluated on the SQuAD 2.0 English dev set with the official eval script.\n\n\nEvaluated on German MLQA: URL\n\n\nEvaluated on German XQuAD: URL", "## Usage", "### In Haystack\nFor doing QA at scale (i.e. many docs instead of single paragraph), you can load the model also in haystack:", "### In Transformers", "## Authors\nBranden Chan: URL@URL \nTimo Möller: timo.moeller@URL \nMalte Pietsch: malte.pietsch@URL \nTanay Soni: URL@URL", "## About us\n<div class=\"grid lg:grid-cols-2 gap-x-4 gap-y-3\">\n <div class=\"w-full h-40 object-cover mb-2 rounded-lg flex items-center justify-center\">\n <img alt=\"\" src=\"URL class=\"w-40\"/>\n </div>\n <div class=\"w-full h-40 object-cover mb-2 rounded-lg flex items-center justify-center\">\n <img alt=\"\" src=\"URL class=\"w-40\"/>\n </div>\n</div>\n\ndeepset is the company behind the open-source NLP framework Haystack which is designed to help you build production ready NLP systems that use: Question answering, summarization, ranking etc.\n\n\nSome of our other work: \n- Distilled roberta-base-squad2 (aka \"tinyroberta-squad2\")\n- German BERT (aka \"bert-base-german-cased\")\n- GermanQuAD and GermanDPR datasets and models (aka \"gelectra-base-germanquad\", \"gbert-base-germandpr\")", "## Get in touch and join the Haystack community\n\n<p>For more info on Haystack, visit our <strong><a href=\"URL repo and <strong><a href=\"URL\">Documentation</a></strong>. \n\nWe also have a <strong><a class=\"h-7\" href=\"URL community open to everyone!</a></strong></p>\n\nTwitter | LinkedIn | Discord | GitHub Discussions | Website\n\nBy the way: we're hiring!" ]
[ "TAGS\n#transformers #safetensors #xlm-roberta #text-generation #autotrain_compatible #endpoints_compatible #4-bit #region-us \n", "# Multilingual XLM-RoBERTa large for QA on various languages", "## Overview\nLanguage model: xlm-roberta-large \nLanguage: Multilingual \nDownstream-task: Extractive QA \nTraining data: SQuAD 2.0 \nEval data: SQuAD dev set - German MLQA - German XQuAD \nTraining run: MLFlow link \nInfrastructure: 4x Tesla v100", "## Hyperparameters", "## Performance\nEvaluated on the SQuAD 2.0 English dev set with the official eval script.\n\n\nEvaluated on German MLQA: URL\n\n\nEvaluated on German XQuAD: URL", "## Usage", "### In Haystack\nFor doing QA at scale (i.e. many docs instead of single paragraph), you can load the model also in haystack:", "### In Transformers", "## Authors\nBranden Chan: URL@URL \nTimo Möller: timo.moeller@URL \nMalte Pietsch: malte.pietsch@URL \nTanay Soni: URL@URL", "## About us\n<div class=\"grid lg:grid-cols-2 gap-x-4 gap-y-3\">\n <div class=\"w-full h-40 object-cover mb-2 rounded-lg flex items-center justify-center\">\n <img alt=\"\" src=\"URL class=\"w-40\"/>\n </div>\n <div class=\"w-full h-40 object-cover mb-2 rounded-lg flex items-center justify-center\">\n <img alt=\"\" src=\"URL class=\"w-40\"/>\n </div>\n</div>\n\ndeepset is the company behind the open-source NLP framework Haystack which is designed to help you build production ready NLP systems that use: Question answering, summarization, ranking etc.\n\n\nSome of our other work: \n- Distilled roberta-base-squad2 (aka \"tinyroberta-squad2\")\n- German BERT (aka \"bert-base-german-cased\")\n- GermanQuAD and GermanDPR datasets and models (aka \"gelectra-base-germanquad\", \"gbert-base-germandpr\")", "## Get in touch and join the Haystack community\n\n<p>For more info on Haystack, visit our <strong><a href=\"URL repo and <strong><a href=\"URL\">Documentation</a></strong>. \n\nWe also have a <strong><a class=\"h-7\" href=\"URL community open to everyone!</a></strong></p>\n\nTwitter | LinkedIn | Discord | GitHub Discussions | Website\n\nBy the way: we're hiring!" ]
[ 34, 15, 61, 6, 37, 3, 38, 5, 50, 276, 124 ]
[ "TAGS\n#transformers #safetensors #xlm-roberta #text-generation #autotrain_compatible #endpoints_compatible #4-bit #region-us \n# Multilingual XLM-RoBERTa large for QA on various languages## Overview\nLanguage model: xlm-roberta-large \nLanguage: Multilingual \nDownstream-task: Extractive QA \nTraining data: SQuAD 2.0 \nEval data: SQuAD dev set - German MLQA - German XQuAD \nTraining run: MLFlow link \nInfrastructure: 4x Tesla v100## Hyperparameters## Performance\nEvaluated on the SQuAD 2.0 English dev set with the official eval script.\n\n\nEvaluated on German MLQA: URL\n\n\nEvaluated on German XQuAD: URL## Usage### In Haystack\nFor doing QA at scale (i.e. many docs instead of single paragraph), you can load the model also in haystack:### In Transformers## Authors\nBranden Chan: URL@URL \nTimo Möller: timo.moeller@URL \nMalte Pietsch: malte.pietsch@URL \nTanay Soni: URL@URL## About us\n<div class=\"grid lg:grid-cols-2 gap-x-4 gap-y-3\">\n <div class=\"w-full h-40 object-cover mb-2 rounded-lg flex items-center justify-center\">\n <img alt=\"\" src=\"URL class=\"w-40\"/>\n </div>\n <div class=\"w-full h-40 object-cover mb-2 rounded-lg flex items-center justify-center\">\n <img alt=\"\" src=\"URL class=\"w-40\"/>\n </div>\n</div>\n\ndeepset is the company behind the open-source NLP framework Haystack which is designed to help you build production ready NLP systems that use: Question answering, summarization, ranking etc.\n\n\nSome of our other work: \n- Distilled roberta-base-squad2 (aka \"tinyroberta-squad2\")\n- German BERT (aka \"bert-base-german-cased\")\n- GermanQuAD and GermanDPR datasets and models (aka \"gelectra-base-germanquad\", \"gbert-base-germandpr\")## Get in touch and join the Haystack community\n\n<p>For more info on Haystack, visit our <strong><a href=\"URL repo and <strong><a href=\"URL\">Documentation</a></strong>. \n\nWe also have a <strong><a class=\"h-7\" href=\"URL community open to everyone!</a></strong></p>\n\nTwitter | LinkedIn | Discord | GitHub Discussions | Website\n\nBy the way: we're hiring!" ]
null
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
azhara001/donut-base-demo-new-1e-05_Adam_938
null
[ "transformers", "safetensors", "vision-encoder-decoder", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-05-02T08:55:53+00:00
[ "1910.09700" ]
[]
TAGS #transformers #safetensors #vision-encoder-decoder #arxiv-1910.09700 #endpoints_compatible #region-us
# Model Card for Model ID ## Model Details ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #safetensors #vision-encoder-decoder #arxiv-1910.09700 #endpoints_compatible #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ 35, 6, 4, 75, 23, 3, 5, 8, 9, 8, 34, 20, 4, 5, 5, 11, 13, 12, 3, 10, 6, 5, 6, 4, 5, 7, 49, 7, 7, 5, 5, 15, 7, 7, 8, 5 ]
[ "TAGS\n#transformers #safetensors #vision-encoder-decoder #arxiv-1910.09700 #endpoints_compatible #region-us \n# Model Card for Model ID## Model Details### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Downstream Use [optional]### Out-of-Scope Use## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.## How to Get Started with the Model\n\nUse the code below to get started with the model.## Training Details### Training Data### Training Procedure#### Preprocessing [optional]#### Training Hyperparameters\n\n- Training regime:#### Speeds, Sizes, Times [optional]## Evaluation### Testing Data, Factors & Metrics#### Testing Data#### Factors#### Metrics### Results#### Summary## Model Examination [optional]## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:## Technical Specifications [optional]### Model Architecture and Objective### Compute Infrastructure#### Hardware#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Model Card Authors [optional]## Model Card Contact" ]
null
diffusers
More information on all the CLI arguments and the environment are available on your [`wandb` run page](https://wandb.ai/sayakpaul/diffusion-orpo-lora-sdxl/runs/9ef92pyq).
{}
sayakpaul/sdxl-orpo-large-beta_orpo-0.005-beta_inner-500-lr-5e-7-no-decay-steps-5000
null
[ "diffusers", "safetensors", "region:us" ]
null
2024-05-02T08:56:43+00:00
[]
[]
TAGS #diffusers #safetensors #region-us
More information on all the CLI arguments and the environment are available on your 'wandb' run page.
[]
[ "TAGS\n#diffusers #safetensors #region-us \n" ]
[ 12 ]
[ "TAGS\n#diffusers #safetensors #region-us \n" ]
null
peft
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gen-z-translate-llama-3-instruct-v1 This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) on the generator dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - lr_scheduler_warmup_ratio: 0.03 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results ### Framework versions - PEFT 0.10.0 - Transformers 4.40.1 - Pytorch 2.2.1+cu121 - Datasets 2.19.0 - Tokenizers 0.19.1
{"license": "other", "library_name": "peft", "tags": ["trl", "sft", "generated_from_trainer"], "datasets": ["generator"], "base_model": "meta-llama/Meta-Llama-3-8B-Instruct", "model-index": [{"name": "gen-z-translate-llama-3-instruct-v1", "results": []}]}
andrev/gen-z-translate-llama-3-instruct-v1
null
[ "peft", "tensorboard", "safetensors", "trl", "sft", "generated_from_trainer", "dataset:generator", "base_model:meta-llama/Meta-Llama-3-8B-Instruct", "license:other", "region:us" ]
null
2024-05-02T08:57:37+00:00
[]
[]
TAGS #peft #tensorboard #safetensors #trl #sft #generated_from_trainer #dataset-generator #base_model-meta-llama/Meta-Llama-3-8B-Instruct #license-other #region-us
# gen-z-translate-llama-3-instruct-v1 This model is a fine-tuned version of meta-llama/Meta-Llama-3-8B-Instruct on the generator dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - lr_scheduler_warmup_ratio: 0.03 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results ### Framework versions - PEFT 0.10.0 - Transformers 4.40.1 - Pytorch 2.2.1+cu121 - Datasets 2.19.0 - Tokenizers 0.19.1
[ "# gen-z-translate-llama-3-instruct-v1\n\nThis model is a fine-tuned version of meta-llama/Meta-Llama-3-8B-Instruct on the generator dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 0.0002\n- train_batch_size: 2\n- eval_batch_size: 8\n- seed: 42\n- gradient_accumulation_steps: 2\n- total_train_batch_size: 4\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: constant\n- lr_scheduler_warmup_ratio: 0.03\n- num_epochs: 10\n- mixed_precision_training: Native AMP", "### Training results", "### Framework versions\n\n- PEFT 0.10.0\n- Transformers 4.40.1\n- Pytorch 2.2.1+cu121\n- Datasets 2.19.0\n- Tokenizers 0.19.1" ]
[ "TAGS\n#peft #tensorboard #safetensors #trl #sft #generated_from_trainer #dataset-generator #base_model-meta-llama/Meta-Llama-3-8B-Instruct #license-other #region-us \n", "# gen-z-translate-llama-3-instruct-v1\n\nThis model is a fine-tuned version of meta-llama/Meta-Llama-3-8B-Instruct on the generator dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 0.0002\n- train_batch_size: 2\n- eval_batch_size: 8\n- seed: 42\n- gradient_accumulation_steps: 2\n- total_train_batch_size: 4\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: constant\n- lr_scheduler_warmup_ratio: 0.03\n- num_epochs: 10\n- mixed_precision_training: Native AMP", "### Training results", "### Framework versions\n\n- PEFT 0.10.0\n- Transformers 4.40.1\n- Pytorch 2.2.1+cu121\n- Datasets 2.19.0\n- Tokenizers 0.19.1" ]
[ 58, 49, 7, 9, 9, 4, 135, 5, 52 ]
[ "TAGS\n#peft #tensorboard #safetensors #trl #sft #generated_from_trainer #dataset-generator #base_model-meta-llama/Meta-Llama-3-8B-Instruct #license-other #region-us \n# gen-z-translate-llama-3-instruct-v1\n\nThis model is a fine-tuned version of meta-llama/Meta-Llama-3-8B-Instruct on the generator dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 0.0002\n- train_batch_size: 2\n- eval_batch_size: 8\n- seed: 42\n- gradient_accumulation_steps: 2\n- total_train_batch_size: 4\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: constant\n- lr_scheduler_warmup_ratio: 0.03\n- num_epochs: 10\n- mixed_precision_training: Native AMP### Training results### Framework versions\n\n- PEFT 0.10.0\n- Transformers 4.40.1\n- Pytorch 2.2.1+cu121\n- Datasets 2.19.0\n- Tokenizers 0.19.1" ]
null
diffusers
More information on all the CLI arguments and the environment are available on your [`wandb` run page](https://wandb.ai/sayakpaul/diffusion-orpo-lora-sdxl/runs/tys9nxxj).
{}
sayakpaul/sdxl-orpo-large-beta_orpo-0.005-beta_inner-500-lr-5e-7-scaled-steps-5000
null
[ "diffusers", "safetensors", "region:us" ]
null
2024-05-02T08:57:46+00:00
[]
[]
TAGS #diffusers #safetensors #region-us
More information on all the CLI arguments and the environment are available on your 'wandb' run page.
[]
[ "TAGS\n#diffusers #safetensors #region-us \n" ]
[ 12 ]
[ "TAGS\n#diffusers #safetensors #region-us \n" ]
token-classification
transformers
<!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # khadija69/roberta-finetuned-ner-bio_test This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.1632 - Validation Loss: 0.2486 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 3480, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 0.3753 | 0.2708 | 0 | | 0.1951 | 0.2432 | 1 | | 0.1632 | 0.2486 | 2 | ### Framework versions - Transformers 4.40.1 - TensorFlow 2.15.0 - Datasets 2.19.0 - Tokenizers 0.19.1
{"license": "mit", "tags": ["generated_from_keras_callback"], "base_model": "xlm-roberta-base", "model-index": [{"name": "khadija69/roberta-finetuned-ner-bio_test", "results": []}]}
khadija69/roberta-finetuned-ner-bio_test
null
[ "transformers", "tf", "xlm-roberta", "token-classification", "generated_from_keras_callback", "base_model:xlm-roberta-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2024-05-02T08:58:11+00:00
[]
[]
TAGS #transformers #tf #xlm-roberta #token-classification #generated_from_keras_callback #base_model-xlm-roberta-base #license-mit #autotrain_compatible #endpoints_compatible #region-us
khadija69/roberta-finetuned-ner-bio\_test ========================================= This model is a fine-tuned version of xlm-roberta-base on an unknown dataset. It achieves the following results on the evaluation set: * Train Loss: 0.1632 * Validation Loss: 0.2486 * Epoch: 2 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * optimizer: {'name': 'AdamWeightDecay', 'learning\_rate': {'module': 'keras.optimizers.schedules', 'class\_name': 'PolynomialDecay', 'config': {'initial\_learning\_rate': 2e-05, 'decay\_steps': 3480, 'end\_learning\_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered\_name': None}, 'decay': 0.0, 'beta\_1': 0.9, 'beta\_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight\_decay\_rate': 0.01} * training\_precision: float32 ### Training results ### Framework versions * Transformers 4.40.1 * TensorFlow 2.15.0 * Datasets 2.19.0 * Tokenizers 0.19.1
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* optimizer: {'name': 'AdamWeightDecay', 'learning\\_rate': {'module': 'keras.optimizers.schedules', 'class\\_name': 'PolynomialDecay', 'config': {'initial\\_learning\\_rate': 2e-05, 'decay\\_steps': 3480, 'end\\_learning\\_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered\\_name': None}, 'decay': 0.0, 'beta\\_1': 0.9, 'beta\\_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight\\_decay\\_rate': 0.01}\n* training\\_precision: float32", "### Training results", "### Framework versions\n\n\n* Transformers 4.40.1\n* TensorFlow 2.15.0\n* Datasets 2.19.0\n* Tokenizers 0.19.1" ]
[ "TAGS\n#transformers #tf #xlm-roberta #token-classification #generated_from_keras_callback #base_model-xlm-roberta-base #license-mit #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* optimizer: {'name': 'AdamWeightDecay', 'learning\\_rate': {'module': 'keras.optimizers.schedules', 'class\\_name': 'PolynomialDecay', 'config': {'initial\\_learning\\_rate': 2e-05, 'decay\\_steps': 3480, 'end\\_learning\\_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered\\_name': None}, 'decay': 0.0, 'beta\\_1': 0.9, 'beta\\_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight\\_decay\\_rate': 0.01}\n* training\\_precision: float32", "### Training results", "### Framework versions\n\n\n* Transformers 4.40.1\n* TensorFlow 2.15.0\n* Datasets 2.19.0\n* Tokenizers 0.19.1" ]
[ 54, 220, 5, 38 ]
[ "TAGS\n#transformers #tf #xlm-roberta #token-classification #generated_from_keras_callback #base_model-xlm-roberta-base #license-mit #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* optimizer: {'name': 'AdamWeightDecay', 'learning\\_rate': {'module': 'keras.optimizers.schedules', 'class\\_name': 'PolynomialDecay', 'config': {'initial\\_learning\\_rate': 2e-05, 'decay\\_steps': 3480, 'end\\_learning\\_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered\\_name': None}, 'decay': 0.0, 'beta\\_1': 0.9, 'beta\\_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight\\_decay\\_rate': 0.01}\n* training\\_precision: float32### Training results### Framework versions\n\n\n* Transformers 4.40.1\n* TensorFlow 2.15.0\n* Datasets 2.19.0\n* Tokenizers 0.19.1" ]
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # PolizzeDonut-Incongruenza3di7-5Epochs This model is a fine-tuned version of [tedad09/PolizzeDonut-ChangeRequest-imm5epochs-Expand0](https://huggingface.co/tedad09/PolizzeDonut-ChangeRequest-imm5epochs-Expand0) on the imagefolder dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.38.2 - Pytorch 2.2.2+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2
{"license": "mit", "tags": ["generated_from_trainer"], "datasets": ["imagefolder"], "base_model": "tedad09/PolizzeDonut-ChangeRequest-imm5epochs-Expand0", "model-index": [{"name": "PolizzeDonut-Incongruenza3di7-5Epochs", "results": []}]}
tedad09/PolizzeDonut-Incongruenza3di7-5Epochs
null
[ "transformers", "tensorboard", "safetensors", "vision-encoder-decoder", "generated_from_trainer", "dataset:imagefolder", "base_model:tedad09/PolizzeDonut-ChangeRequest-imm5epochs-Expand0", "license:mit", "endpoints_compatible", "region:us" ]
null
2024-05-02T08:58:36+00:00
[]
[]
TAGS #transformers #tensorboard #safetensors #vision-encoder-decoder #generated_from_trainer #dataset-imagefolder #base_model-tedad09/PolizzeDonut-ChangeRequest-imm5epochs-Expand0 #license-mit #endpoints_compatible #region-us
# PolizzeDonut-Incongruenza3di7-5Epochs This model is a fine-tuned version of tedad09/PolizzeDonut-ChangeRequest-imm5epochs-Expand0 on the imagefolder dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.38.2 - Pytorch 2.2.2+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2
[ "# PolizzeDonut-Incongruenza3di7-5Epochs\n\nThis model is a fine-tuned version of tedad09/PolizzeDonut-ChangeRequest-imm5epochs-Expand0 on the imagefolder dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 2\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 5\n- mixed_precision_training: Native AMP", "### Training results", "### Framework versions\n\n- Transformers 4.38.2\n- Pytorch 2.2.2+cu121\n- Datasets 2.18.0\n- Tokenizers 0.15.2" ]
[ "TAGS\n#transformers #tensorboard #safetensors #vision-encoder-decoder #generated_from_trainer #dataset-imagefolder #base_model-tedad09/PolizzeDonut-ChangeRequest-imm5epochs-Expand0 #license-mit #endpoints_compatible #region-us \n", "# PolizzeDonut-Incongruenza3di7-5Epochs\n\nThis model is a fine-tuned version of tedad09/PolizzeDonut-ChangeRequest-imm5epochs-Expand0 on the imagefolder dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 2\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 5\n- mixed_precision_training: Native AMP", "### Training results", "### Framework versions\n\n- Transformers 4.38.2\n- Pytorch 2.2.2+cu121\n- Datasets 2.18.0\n- Tokenizers 0.15.2" ]
[ 74, 61, 7, 9, 9, 4, 102, 5, 44 ]
[ "TAGS\n#transformers #tensorboard #safetensors #vision-encoder-decoder #generated_from_trainer #dataset-imagefolder #base_model-tedad09/PolizzeDonut-ChangeRequest-imm5epochs-Expand0 #license-mit #endpoints_compatible #region-us \n# PolizzeDonut-Incongruenza3di7-5Epochs\n\nThis model is a fine-tuned version of tedad09/PolizzeDonut-ChangeRequest-imm5epochs-Expand0 on the imagefolder dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 2\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 5\n- mixed_precision_training: Native AMP### Training results### Framework versions\n\n- Transformers 4.38.2\n- Pytorch 2.2.2+cu121\n- Datasets 2.18.0\n- Tokenizers 0.15.2" ]
null
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
aritrosakar/gpt2-reuters-tokenizer
null
[ "transformers", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-05-02T08:59:15+00:00
[ "1910.09700" ]
[]
TAGS #transformers #arxiv-1910.09700 #endpoints_compatible #region-us
# Model Card for Model ID ## Model Details ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #arxiv-1910.09700 #endpoints_compatible #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ 22, 6, 4, 75, 23, 3, 5, 8, 9, 8, 34, 20, 4, 5, 5, 11, 13, 12, 3, 10, 6, 5, 6, 4, 5, 7, 49, 7, 7, 5, 5, 15, 7, 7, 8, 5 ]
[ "TAGS\n#transformers #arxiv-1910.09700 #endpoints_compatible #region-us \n# Model Card for Model ID## Model Details### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Downstream Use [optional]### Out-of-Scope Use## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.## How to Get Started with the Model\n\nUse the code below to get started with the model.## Training Details### Training Data### Training Procedure#### Preprocessing [optional]#### Training Hyperparameters\n\n- Training regime:#### Speeds, Sizes, Times [optional]## Evaluation### Testing Data, Factors & Metrics#### Testing Data#### Factors#### Metrics### Results#### Summary## Model Examination [optional]## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:## Technical Specifications [optional]### Model Architecture and Objective### Compute Infrastructure#### Hardware#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Model Card Authors [optional]## Model Card Contact" ]
text-generation
transformers
# jp-stablelm-3b-4belt-prune2 jp-stablelm-3b-4belt-prune2 is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [stabilityai/japanese-stablelm-3b-4e1t-instruct](https://huggingface.co/stabilityai/japanese-stablelm-3b-4e1t-instruct) * [stabilityai/japanese-stablelm-3b-4e1t-instruct](https://huggingface.co/stabilityai/japanese-stablelm-3b-4e1t-instruct) ## 🧩 Configuration ```yaml slices: - sources: - model: stabilityai/japanese-stablelm-3b-4e1t-instruct layer_range: [0, 12] - sources: - model: stabilityai/japanese-stablelm-3b-4e1t-instruct layer_range: [22, 32] merge_method: passthrough dtype: bfloat16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "aipib/jp-stablelm-3b-4belt-prune2" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```
{"tags": ["merge", "mergekit", "lazymergekit", "stabilityai/japanese-stablelm-3b-4e1t-instruct"], "base_model": ["stabilityai/japanese-stablelm-3b-4e1t-instruct", "stabilityai/japanese-stablelm-3b-4e1t-instruct"]}
aipib/jp-stablelm-3b-4belt-prune2
null
[ "transformers", "safetensors", "stablelm_epoch", "text-generation", "merge", "mergekit", "lazymergekit", "stabilityai/japanese-stablelm-3b-4e1t-instruct", "custom_code", "base_model:stabilityai/japanese-stablelm-3b-4e1t-instruct", "autotrain_compatible", "region:us" ]
null
2024-05-02T08:59:43+00:00
[]
[]
TAGS #transformers #safetensors #stablelm_epoch #text-generation #merge #mergekit #lazymergekit #stabilityai/japanese-stablelm-3b-4e1t-instruct #custom_code #base_model-stabilityai/japanese-stablelm-3b-4e1t-instruct #autotrain_compatible #region-us
# jp-stablelm-3b-4belt-prune2 jp-stablelm-3b-4belt-prune2 is a merge of the following models using LazyMergekit: * stabilityai/japanese-stablelm-3b-4e1t-instruct * stabilityai/japanese-stablelm-3b-4e1t-instruct ## Configuration ## Usage
[ "# jp-stablelm-3b-4belt-prune2\n\njp-stablelm-3b-4belt-prune2 is a merge of the following models using LazyMergekit:\n* stabilityai/japanese-stablelm-3b-4e1t-instruct\n* stabilityai/japanese-stablelm-3b-4e1t-instruct", "## Configuration", "## Usage" ]
[ "TAGS\n#transformers #safetensors #stablelm_epoch #text-generation #merge #mergekit #lazymergekit #stabilityai/japanese-stablelm-3b-4e1t-instruct #custom_code #base_model-stabilityai/japanese-stablelm-3b-4e1t-instruct #autotrain_compatible #region-us \n", "# jp-stablelm-3b-4belt-prune2\n\njp-stablelm-3b-4belt-prune2 is a merge of the following models using LazyMergekit:\n* stabilityai/japanese-stablelm-3b-4e1t-instruct\n* stabilityai/japanese-stablelm-3b-4e1t-instruct", "## Configuration", "## Usage" ]
[ 81, 80, 3, 3 ]
[ "TAGS\n#transformers #safetensors #stablelm_epoch #text-generation #merge #mergekit #lazymergekit #stabilityai/japanese-stablelm-3b-4e1t-instruct #custom_code #base_model-stabilityai/japanese-stablelm-3b-4e1t-instruct #autotrain_compatible #region-us \n# jp-stablelm-3b-4belt-prune2\n\njp-stablelm-3b-4belt-prune2 is a merge of the following models using LazyMergekit:\n* stabilityai/japanese-stablelm-3b-4e1t-instruct\n* stabilityai/japanese-stablelm-3b-4e1t-instruct## Configuration## Usage" ]
text-generation
transformers
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) EEVE-Korean-10.8B-v1.0 - bnb 8bits - Model creator: https://huggingface.co/yanolja/ - Original model: https://huggingface.co/yanolja/EEVE-Korean-10.8B-v1.0/ Original model description: --- license: apache-2.0 base_model: upstage/SOLAR-10.7B-v1.0 tags: - generated_from_trainer model-index: - name: yanolja/EEVE-Korean-10.8B-v1.0 results: [] --- [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl) <p align="left"> <img src="https://huggingface.co/yanolja/EEVE-Korean-10.8B-v1.0/resolve/main/eeve_logo.webp" width="50%"/> <p> # EEVE-Korean-10.8B-v1.0 ## Join Our Community on Discord! If you're passionate about the field of Large Language Models and wish to exchange knowledge and insights, we warmly invite you to join our Discord server. It's worth noting that Korean is the primary language used in this server. The landscape of LLM is evolving rapidly, and without active sharing, our collective knowledge risks becoming outdated swiftly. Let's collaborate and drive greater impact together! Join us here: [Discord Link](https://discord.gg/b27bAHg95m). ## Our Dedicated Team (Alphabetical Order) | Research | Engineering | Product Management | UX Design | |-----------------|-----------------|--------------------|-------------- | Myeongho Jeong | Geon Kim | Bokyung Huh | Eunsue Choi | | Seungduk Kim | Rifqi Alfi | | | | Seungtaek Choi | Sanghoon Han | | | | | Suhyun Kang | | | ## About the Model This model is a Korean vocabulary-extended version of [upstage/SOLAR-10.7B-v1.0](https://huggingface.co/upstage/SOLAR-10.7B-v1.0), specifically fine-tuned on various Korean web-crawled datasets available on HuggingFace. Our approach was to expand the model's understanding of Korean by pre-training the embeddings for new tokens and partially fine-tuning the `lm_head` embeddings for the already existing tokens while preserving the original parameters of the base model. ### Technical Deep Dive <p align="left"> <img src="https://huggingface.co/yanolja/EEVE-Korean-10.8B-v1.0/resolve/main/EEVE_figure.png" width="100%"/> <p> To adapt foundational models from English to Korean, we use subword-based embedding with a seven-stage training process involving parameter freezing. This approach progressively trains from input embeddings to full parameters, efficiently extending the model's vocabulary to include Korean. Our method enhances the model's cross-linguistic applicability by carefully integrating new linguistic tokens, focusing on causal language modeling pre-training. We leverage the inherent capabilities of foundational models trained on English to efficiently transfer knowledge and reasoning to Korean, optimizing the adaptation process. For more details, please refer to our technical report: [Efficient and Effective Vocabulary Expansion Towards Multilingual Large Language Models](https://arxiv.org/abs/2402.14714). Here’s an simplified code for our key approach: ```python # number_of_old_tokens is the size of tokenizer before vocab extension. For example, in case of EEVE-Korean-10.8B-v1.0, number_of_old_tokens is 32000. def freeze_partial_embedding_hook(grad): grad[:number_of_old_tokens] = 0 return grad for name, param in model.named_parameters(): if ("lm_head" in name or "embed_tokens" in name) and "original" not in name: param.requires_grad = True if "embed_tokens" in name: param.register_hook(freeze_partial_embedding_hook) else: param.requires_grad = False ``` ### Usage and Limitations Keep in mind that this model hasn't been fine-tuned with instruction-based training. While it excels in Korean language tasks, we advise careful consideration and further training for specific applications. ### Training Details Our model’s training was comprehensive and diverse: - **Vocabulary Expansion:** We meticulously selected 8,960 Korean tokens based on their frequency in our Korean web corpus. This process involved multiple rounds of tokenizer training, manual curation, and token frequency analysis, ensuring a rich and relevant vocabulary for our model. 1. **Initial Tokenizer Training:** We trained an intermediate tokenizer on a Korean web corpus, with a vocabulary of 40,000 tokens. 2. **Extraction of New Korean Tokens:** From the intermediate tokenizer, we identified all Korean tokens not present in the original SOLAR's tokenizer. 3. **Manual Tokenizer Construction:** We then built the target tokenizer, focusing on these new Korean tokens. 4. **Frequency Analysis:** Using the target tokenizer, we processed a 100GB Korean corpus to count each token's frequency. 5. **Refinement of Token List:** We removed tokens appearing less than 6,000 times, ensuring to secure enough tokens to train models later. 6. **Inclusion of Single-Letter Characters:** Counted missing Korean single-letter characters and added them to the target tokenizer that appeared more than 6,000 times. 7. **Iterative Refinement:** We repeated steps 2 to 6 until there were no tokens to drop or add. 8. **Training Bias Towards New Tokens:** Our training data was biased to include more texts with new tokens, for effective learning. This rigorous approach ensured a comprehensive and contextually rich Korean vocabulary for the model. ## Citation ``` @misc{kim2024efficient, title={Efficient and Effective Vocabulary Expansion Towards Multilingual Large Language Models}, author={Seungduk Kim and Seungtaek Choi and Myeongho Jeong}, year={2024}, eprint={2402.14714}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
{}
RichardErkhov/yanolja_-_EEVE-Korean-10.8B-v1.0-8bits
null
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:2402.14714", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "8-bit", "region:us" ]
null
2024-05-02T09:00:51+00:00
[ "2402.14714" ]
[]
TAGS #transformers #safetensors #llama #text-generation #conversational #arxiv-2402.14714 #autotrain_compatible #endpoints_compatible #text-generation-inference #8-bit #region-us
Quantization made by Richard Erkhov. Github Discord Request more models EEVE-Korean-10.8B-v1.0 - bnb 8bits * Model creator: URL * Original model: URL Original model description: --------------------------- license: apache-2.0 base\_model: upstage/SOLAR-10.7B-v1.0 tags: * generated\_from\_trainer model-index: * name: yanolja/EEVE-Korean-10.8B-v1.0 results: [] --- <img src="URL alt="Built with Axolotl" width="200" height="32"/> ![](URL width=) EEVE-Korean-10.8B-v1.0 ====================== Join Our Community on Discord! ------------------------------ If you're passionate about the field of Large Language Models and wish to exchange knowledge and insights, we warmly invite you to join our Discord server. It's worth noting that Korean is the primary language used in this server. The landscape of LLM is evolving rapidly, and without active sharing, our collective knowledge risks becoming outdated swiftly. Let's collaborate and drive greater impact together! Join us here: Discord Link. Our Dedicated Team (Alphabetical Order) --------------------------------------- About the Model --------------- This model is a Korean vocabulary-extended version of upstage/SOLAR-10.7B-v1.0, specifically fine-tuned on various Korean web-crawled datasets available on HuggingFace. Our approach was to expand the model's understanding of Korean by pre-training the embeddings for new tokens and partially fine-tuning the 'lm\_head' embeddings for the already existing tokens while preserving the original parameters of the base model. ### Technical Deep Dive ![](URL width=) To adapt foundational models from English to Korean, we use subword-based embedding with a seven-stage training process involving parameter freezing. This approach progressively trains from input embeddings to full parameters, efficiently extending the model's vocabulary to include Korean. Our method enhances the model's cross-linguistic applicability by carefully integrating new linguistic tokens, focusing on causal language modeling pre-training. We leverage the inherent capabilities of foundational models trained on English to efficiently transfer knowledge and reasoning to Korean, optimizing the adaptation process. For more details, please refer to our technical report: Efficient and Effective Vocabulary Expansion Towards Multilingual Large Language Models. Here’s an simplified code for our key approach: ### Usage and Limitations Keep in mind that this model hasn't been fine-tuned with instruction-based training. While it excels in Korean language tasks, we advise careful consideration and further training for specific applications. ### Training Details Our model’s training was comprehensive and diverse: * Vocabulary Expansion: We meticulously selected 8,960 Korean tokens based on their frequency in our Korean web corpus. This process involved multiple rounds of tokenizer training, manual curation, and token frequency analysis, ensuring a rich and relevant vocabulary for our model. 1. Initial Tokenizer Training: We trained an intermediate tokenizer on a Korean web corpus, with a vocabulary of 40,000 tokens. 2. Extraction of New Korean Tokens: From the intermediate tokenizer, we identified all Korean tokens not present in the original SOLAR's tokenizer. 3. Manual Tokenizer Construction: We then built the target tokenizer, focusing on these new Korean tokens. 4. Frequency Analysis: Using the target tokenizer, we processed a 100GB Korean corpus to count each token's frequency. 5. Refinement of Token List: We removed tokens appearing less than 6,000 times, ensuring to secure enough tokens to train models later. 6. Inclusion of Single-Letter Characters: Counted missing Korean single-letter characters and added them to the target tokenizer that appeared more than 6,000 times. 7. Iterative Refinement: We repeated steps 2 to 6 until there were no tokens to drop or add. 8. Training Bias Towards New Tokens: Our training data was biased to include more texts with new tokens, for effective learning. This rigorous approach ensured a comprehensive and contextually rich Korean vocabulary for the model.
[ "### Technical Deep Dive\n\n\n\n![](URL width=)\n\nTo adapt foundational models from English to Korean, we use subword-based embedding with a seven-stage training process involving parameter freezing.\nThis approach progressively trains from input embeddings to full parameters, efficiently extending the model's vocabulary to include Korean.\nOur method enhances the model's cross-linguistic applicability by carefully integrating new linguistic tokens, focusing on causal language modeling pre-training.\nWe leverage the inherent capabilities of foundational models trained on English to efficiently transfer knowledge and reasoning to Korean, optimizing the adaptation process.\n\n\nFor more details, please refer to our technical report: Efficient and Effective Vocabulary Expansion Towards Multilingual Large Language Models.\n\n\nHere’s an simplified code for our key approach:", "### Usage and Limitations\n\n\nKeep in mind that this model hasn't been fine-tuned with instruction-based training. While it excels in Korean language tasks, we advise careful consideration and further training for specific applications.", "### Training Details\n\n\nOur model’s training was comprehensive and diverse:\n\n\n* Vocabulary Expansion:\nWe meticulously selected 8,960 Korean tokens based on their frequency in our Korean web corpus. This process involved multiple rounds of tokenizer training, manual curation, and token frequency analysis, ensuring a rich and relevant vocabulary for our model.\n\n\n\t1. Initial Tokenizer Training: We trained an intermediate tokenizer on a Korean web corpus, with a vocabulary of 40,000 tokens.\n\t2. Extraction of New Korean Tokens: From the intermediate tokenizer, we identified all Korean tokens not present in the original SOLAR's tokenizer.\n\t3. Manual Tokenizer Construction: We then built the target tokenizer, focusing on these new Korean tokens.\n\t4. Frequency Analysis: Using the target tokenizer, we processed a 100GB Korean corpus to count each token's frequency.\n\t5. Refinement of Token List: We removed tokens appearing less than 6,000 times, ensuring to secure enough tokens to train models later.\n\t6. Inclusion of Single-Letter Characters: Counted missing Korean single-letter characters and added them to the target tokenizer that appeared more than 6,000 times.\n\t7. Iterative Refinement: We repeated steps 2 to 6 until there were no tokens to drop or add.\n\t8. Training Bias Towards New Tokens: Our training data was biased to include more texts with new tokens, for effective learning.\n\n\nThis rigorous approach ensured a comprehensive and contextually rich Korean vocabulary for the model." ]
[ "TAGS\n#transformers #safetensors #llama #text-generation #conversational #arxiv-2402.14714 #autotrain_compatible #endpoints_compatible #text-generation-inference #8-bit #region-us \n", "### Technical Deep Dive\n\n\n\n![](URL width=)\n\nTo adapt foundational models from English to Korean, we use subword-based embedding with a seven-stage training process involving parameter freezing.\nThis approach progressively trains from input embeddings to full parameters, efficiently extending the model's vocabulary to include Korean.\nOur method enhances the model's cross-linguistic applicability by carefully integrating new linguistic tokens, focusing on causal language modeling pre-training.\nWe leverage the inherent capabilities of foundational models trained on English to efficiently transfer knowledge and reasoning to Korean, optimizing the adaptation process.\n\n\nFor more details, please refer to our technical report: Efficient and Effective Vocabulary Expansion Towards Multilingual Large Language Models.\n\n\nHere’s an simplified code for our key approach:", "### Usage and Limitations\n\n\nKeep in mind that this model hasn't been fine-tuned with instruction-based training. While it excels in Korean language tasks, we advise careful consideration and further training for specific applications.", "### Training Details\n\n\nOur model’s training was comprehensive and diverse:\n\n\n* Vocabulary Expansion:\nWe meticulously selected 8,960 Korean tokens based on their frequency in our Korean web corpus. This process involved multiple rounds of tokenizer training, manual curation, and token frequency analysis, ensuring a rich and relevant vocabulary for our model.\n\n\n\t1. Initial Tokenizer Training: We trained an intermediate tokenizer on a Korean web corpus, with a vocabulary of 40,000 tokens.\n\t2. Extraction of New Korean Tokens: From the intermediate tokenizer, we identified all Korean tokens not present in the original SOLAR's tokenizer.\n\t3. Manual Tokenizer Construction: We then built the target tokenizer, focusing on these new Korean tokens.\n\t4. Frequency Analysis: Using the target tokenizer, we processed a 100GB Korean corpus to count each token's frequency.\n\t5. Refinement of Token List: We removed tokens appearing less than 6,000 times, ensuring to secure enough tokens to train models later.\n\t6. Inclusion of Single-Letter Characters: Counted missing Korean single-letter characters and added them to the target tokenizer that appeared more than 6,000 times.\n\t7. Iterative Refinement: We repeated steps 2 to 6 until there were no tokens to drop or add.\n\t8. Training Bias Towards New Tokens: Our training data was biased to include more texts with new tokens, for effective learning.\n\n\nThis rigorous approach ensured a comprehensive and contextually rich Korean vocabulary for the model." ]
[ 51, 164, 45, 312 ]
[ "TAGS\n#transformers #safetensors #llama #text-generation #conversational #arxiv-2402.14714 #autotrain_compatible #endpoints_compatible #text-generation-inference #8-bit #region-us \n### Technical Deep Dive\n\n\n\n![](URL width=)\n\nTo adapt foundational models from English to Korean, we use subword-based embedding with a seven-stage training process involving parameter freezing.\nThis approach progressively trains from input embeddings to full parameters, efficiently extending the model's vocabulary to include Korean.\nOur method enhances the model's cross-linguistic applicability by carefully integrating new linguistic tokens, focusing on causal language modeling pre-training.\nWe leverage the inherent capabilities of foundational models trained on English to efficiently transfer knowledge and reasoning to Korean, optimizing the adaptation process.\n\n\nFor more details, please refer to our technical report: Efficient and Effective Vocabulary Expansion Towards Multilingual Large Language Models.\n\n\nHere’s an simplified code for our key approach:### Usage and Limitations\n\n\nKeep in mind that this model hasn't been fine-tuned with instruction-based training. While it excels in Korean language tasks, we advise careful consideration and further training for specific applications.### Training Details\n\n\nOur model’s training was comprehensive and diverse:\n\n\n* Vocabulary Expansion:\nWe meticulously selected 8,960 Korean tokens based on their frequency in our Korean web corpus. This process involved multiple rounds of tokenizer training, manual curation, and token frequency analysis, ensuring a rich and relevant vocabulary for our model.\n\n\n\t1. Initial Tokenizer Training: We trained an intermediate tokenizer on a Korean web corpus, with a vocabulary of 40,000 tokens.\n\t2. Extraction of New Korean Tokens: From the intermediate tokenizer, we identified all Korean tokens not present in the original SOLAR's tokenizer.\n\t3. Manual Tokenizer Construction: We then built the target tokenizer, focusing on these new Korean tokens.\n\t4. Frequency Analysis: Using the target tokenizer, we processed a 100GB Korean corpus to count each token's frequency.\n\t5. Refinement of Token List: We removed tokens appearing less than 6,000 times, ensuring to secure enough tokens to train models later.\n\t6. Inclusion of Single-Letter Characters: Counted missing Korean single-letter characters and added them to the target tokenizer that appeared more than 6,000 times.\n\t7. Iterative Refinement: We repeated steps 2 to 6 until there were no tokens to drop or add.\n\t8. Training Bias Towards New Tokens: Our training data was biased to include more texts with new tokens, for effective learning.\n\n\nThis rigorous approach ensured a comprehensive and contextually rich Korean vocabulary for the model." ]
text-generation
transformers
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) xlm-roberta-large-squad2 - bnb 8bits - Model creator: https://huggingface.co/deepset/ - Original model: https://huggingface.co/deepset/xlm-roberta-large-squad2/ Original model description: --- language: multilingual license: cc-by-4.0 tags: - question-answering datasets: - squad_v2 model-index: - name: deepset/xlm-roberta-large-squad2 results: - task: type: question-answering name: Question Answering dataset: name: squad_v2 type: squad_v2 config: squad_v2 split: validation metrics: - type: exact_match value: 81.8281 name: Exact Match verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNzVhZDE2NTg5NmUwOWRkMmI2MGUxYjFlZjIzNmMyNDQ2MDY2MDNhYzE0ZjY5YTkyY2U4ODc3ODFiZjQxZWQ2YSIsInZlcnNpb24iOjF9.f_rN3WPMAdv-OBPz0T7N7lOxYz9f1nEr_P-vwKhi3jNdRKp_JTy18MYR9eyJM2riKHC6_ge-8XwfyrUf51DSDA - type: f1 value: 84.8886 name: F1 verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZGE5MWJmZGUxMGMwNWFhYzVhZjQwZGEwOWQ4N2Q2Yjg5NzdjNDFiNDhiYTQ1Y2E5ZWJkOTFhYmI1Y2Q2ZGYwOCIsInZlcnNpb24iOjF9.TIdH-tOx3kEMDs5wK1r6iwZqqSjNGlBrpawrsE917j1F3UFJVnQ7wJwaj0OIgmC4iw8OQeLZL56ucBcLApa-AQ --- # Multilingual XLM-RoBERTa large for QA on various languages ## Overview **Language model:** xlm-roberta-large **Language:** Multilingual **Downstream-task:** Extractive QA **Training data:** SQuAD 2.0 **Eval data:** SQuAD dev set - German MLQA - German XQuAD **Training run:** [MLFlow link](https://public-mlflow.deepset.ai/#/experiments/124/runs/3a540e3f3ecf4dd98eae8fc6d457ff20) **Infrastructure**: 4x Tesla v100 ## Hyperparameters ``` batch_size = 32 n_epochs = 3 base_LM_model = "xlm-roberta-large" max_seq_len = 256 learning_rate = 1e-5 lr_schedule = LinearWarmup warmup_proportion = 0.2 doc_stride=128 max_query_length=64 ``` ## Performance Evaluated on the SQuAD 2.0 English dev set with the [official eval script](https://worksheets.codalab.org/rest/bundles/0x6b567e1cf2e041ec80d7098f031c5c9e/contents/blob/). ``` "exact": 79.45759285774446, "f1": 83.79259828925511, "total": 11873, "HasAns_exact": 71.96356275303644, "HasAns_f1": 80.6460053117963, "HasAns_total": 5928, "NoAns_exact": 86.93019343986543, "NoAns_f1": 86.93019343986543, "NoAns_total": 5945 ``` Evaluated on German [MLQA: test-context-de-question-de.json](https://github.com/facebookresearch/MLQA) ``` "exact": 49.34691166703564, "f1": 66.15582561674236, "total": 4517, ``` Evaluated on German [XQuAD: xquad.de.json](https://github.com/deepmind/xquad) ``` "exact": 61.51260504201681, "f1": 78.80206098332569, "total": 1190, ``` ## Usage ### In Haystack For doing QA at scale (i.e. many docs instead of single paragraph), you can load the model also in [haystack](https://github.com/deepset-ai/haystack/): ```python reader = FARMReader(model_name_or_path="deepset/xlm-roberta-large-squad2") # or reader = TransformersReader(model="deepset/xlm-roberta-large-squad2",tokenizer="deepset/xlm-roberta-large-squad2") ``` ### In Transformers ```python from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline model_name = "deepset/xlm-roberta-large-squad2" # a) Get predictions nlp = pipeline('question-answering', model=model_name, tokenizer=model_name) QA_input = { 'question': 'Why is model conversion important?', 'context': 'The option to convert models between FARM and transformers gives freedom to the user and let people easily switch between frameworks.' } res = nlp(QA_input) # b) Load model & tokenizer model = AutoModelForQuestionAnswering.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) ``` ## Authors **Branden Chan:** [email protected] **Timo Möller:** [email protected] **Malte Pietsch:** [email protected] **Tanay Soni:** [email protected] ## About us <div class="grid lg:grid-cols-2 gap-x-4 gap-y-3"> <div class="w-full h-40 object-cover mb-2 rounded-lg flex items-center justify-center"> <img alt="" src="https://raw.githubusercontent.com/deepset-ai/.github/main/deepset-logo-colored.png" class="w-40"/> </div> <div class="w-full h-40 object-cover mb-2 rounded-lg flex items-center justify-center"> <img alt="" src="https://raw.githubusercontent.com/deepset-ai/.github/main/haystack-logo-colored.png" class="w-40"/> </div> </div> [deepset](http://deepset.ai/) is the company behind the open-source NLP framework [Haystack](https://haystack.deepset.ai/) which is designed to help you build production ready NLP systems that use: Question answering, summarization, ranking etc. Some of our other work: - [Distilled roberta-base-squad2 (aka "tinyroberta-squad2")]([https://huggingface.co/deepset/tinyroberta-squad2) - [German BERT (aka "bert-base-german-cased")](https://deepset.ai/german-bert) - [GermanQuAD and GermanDPR datasets and models (aka "gelectra-base-germanquad", "gbert-base-germandpr")](https://deepset.ai/germanquad) ## Get in touch and join the Haystack community <p>For more info on Haystack, visit our <strong><a href="https://github.com/deepset-ai/haystack">GitHub</a></strong> repo and <strong><a href="https://docs.haystack.deepset.ai">Documentation</a></strong>. We also have a <strong><a class="h-7" href="https://haystack.deepset.ai/community">Discord community open to everyone!</a></strong></p> [Twitter](https://twitter.com/deepset_ai) | [LinkedIn](https://www.linkedin.com/company/deepset-ai/) | [Discord](https://haystack.deepset.ai/community) | [GitHub Discussions](https://github.com/deepset-ai/haystack/discussions) | [Website](https://deepset.ai) By the way: [we're hiring!](http://www.deepset.ai/jobs)
{}
RichardErkhov/deepset_-_xlm-roberta-large-squad2-8bits
null
[ "transformers", "safetensors", "xlm-roberta", "text-generation", "autotrain_compatible", "endpoints_compatible", "8-bit", "region:us" ]
null
2024-05-02T09:01:13+00:00
[]
[]
TAGS #transformers #safetensors #xlm-roberta #text-generation #autotrain_compatible #endpoints_compatible #8-bit #region-us
Quantization made by Richard Erkhov. Github Discord Request more models xlm-roberta-large-squad2 - bnb 8bits - Model creator: URL - Original model: URL Original model description: --- language: multilingual license: cc-by-4.0 tags: - question-answering datasets: - squad_v2 model-index: - name: deepset/xlm-roberta-large-squad2 results: - task: type: question-answering name: Question Answering dataset: name: squad_v2 type: squad_v2 config: squad_v2 split: validation metrics: - type: exact_match value: 81.8281 name: Exact Match verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNzVhZDE2NTg5NmUwOWRkMmI2MGUxYjFlZjIzNmMyNDQ2MDY2MDNhYzE0ZjY5YTkyY2U4ODc3ODFiZjQxZWQ2YSIsInZlcnNpb24iOjF9.f_rN3WPMAdv-OBPz0T7N7lOxYz9f1nEr_P-vwKhi3jNdRKp_JTy18MYR9eyJM2riKHC6_ge-8XwfyrUf51DSDA - type: f1 value: 84.8886 name: F1 verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZGE5MWJmZGUxMGMwNWFhYzVhZjQwZGEwOWQ4N2Q2Yjg5NzdjNDFiNDhiYTQ1Y2E5ZWJkOTFhYmI1Y2Q2ZGYwOCIsInZlcnNpb24iOjF9.TIdH-tOx3kEMDs5wK1r6iwZqqSjNGlBrpawrsE917j1F3UFJVnQ7wJwaj0OIgmC4iw8OQeLZL56ucBcLApa-AQ --- # Multilingual XLM-RoBERTa large for QA on various languages ## Overview Language model: xlm-roberta-large Language: Multilingual Downstream-task: Extractive QA Training data: SQuAD 2.0 Eval data: SQuAD dev set - German MLQA - German XQuAD Training run: MLFlow link Infrastructure: 4x Tesla v100 ## Hyperparameters ## Performance Evaluated on the SQuAD 2.0 English dev set with the official eval script. Evaluated on German MLQA: URL Evaluated on German XQuAD: URL ## Usage ### In Haystack For doing QA at scale (i.e. many docs instead of single paragraph), you can load the model also in haystack: ### In Transformers ## Authors Branden Chan: URL@URL Timo Möller: timo.moeller@URL Malte Pietsch: malte.pietsch@URL Tanay Soni: URL@URL ## About us <div class="grid lg:grid-cols-2 gap-x-4 gap-y-3"> <div class="w-full h-40 object-cover mb-2 rounded-lg flex items-center justify-center"> <img alt="" src="URL class="w-40"/> </div> <div class="w-full h-40 object-cover mb-2 rounded-lg flex items-center justify-center"> <img alt="" src="URL class="w-40"/> </div> </div> deepset is the company behind the open-source NLP framework Haystack which is designed to help you build production ready NLP systems that use: Question answering, summarization, ranking etc. Some of our other work: - Distilled roberta-base-squad2 (aka "tinyroberta-squad2") - German BERT (aka "bert-base-german-cased") - GermanQuAD and GermanDPR datasets and models (aka "gelectra-base-germanquad", "gbert-base-germandpr") ## Get in touch and join the Haystack community <p>For more info on Haystack, visit our <strong><a href="URL repo and <strong><a href="URL">Documentation</a></strong>. We also have a <strong><a class="h-7" href="URL community open to everyone!</a></strong></p> Twitter | LinkedIn | Discord | GitHub Discussions | Website By the way: we're hiring!
[ "# Multilingual XLM-RoBERTa large for QA on various languages", "## Overview\nLanguage model: xlm-roberta-large \nLanguage: Multilingual \nDownstream-task: Extractive QA \nTraining data: SQuAD 2.0 \nEval data: SQuAD dev set - German MLQA - German XQuAD \nTraining run: MLFlow link \nInfrastructure: 4x Tesla v100", "## Hyperparameters", "## Performance\nEvaluated on the SQuAD 2.0 English dev set with the official eval script.\n\n\nEvaluated on German MLQA: URL\n\n\nEvaluated on German XQuAD: URL", "## Usage", "### In Haystack\nFor doing QA at scale (i.e. many docs instead of single paragraph), you can load the model also in haystack:", "### In Transformers", "## Authors\nBranden Chan: URL@URL \nTimo Möller: timo.moeller@URL \nMalte Pietsch: malte.pietsch@URL \nTanay Soni: URL@URL", "## About us\n<div class=\"grid lg:grid-cols-2 gap-x-4 gap-y-3\">\n <div class=\"w-full h-40 object-cover mb-2 rounded-lg flex items-center justify-center\">\n <img alt=\"\" src=\"URL class=\"w-40\"/>\n </div>\n <div class=\"w-full h-40 object-cover mb-2 rounded-lg flex items-center justify-center\">\n <img alt=\"\" src=\"URL class=\"w-40\"/>\n </div>\n</div>\n\ndeepset is the company behind the open-source NLP framework Haystack which is designed to help you build production ready NLP systems that use: Question answering, summarization, ranking etc.\n\n\nSome of our other work: \n- Distilled roberta-base-squad2 (aka \"tinyroberta-squad2\")\n- German BERT (aka \"bert-base-german-cased\")\n- GermanQuAD and GermanDPR datasets and models (aka \"gelectra-base-germanquad\", \"gbert-base-germandpr\")", "## Get in touch and join the Haystack community\n\n<p>For more info on Haystack, visit our <strong><a href=\"URL repo and <strong><a href=\"URL\">Documentation</a></strong>. \n\nWe also have a <strong><a class=\"h-7\" href=\"URL community open to everyone!</a></strong></p>\n\nTwitter | LinkedIn | Discord | GitHub Discussions | Website\n\nBy the way: we're hiring!" ]
[ "TAGS\n#transformers #safetensors #xlm-roberta #text-generation #autotrain_compatible #endpoints_compatible #8-bit #region-us \n", "# Multilingual XLM-RoBERTa large for QA on various languages", "## Overview\nLanguage model: xlm-roberta-large \nLanguage: Multilingual \nDownstream-task: Extractive QA \nTraining data: SQuAD 2.0 \nEval data: SQuAD dev set - German MLQA - German XQuAD \nTraining run: MLFlow link \nInfrastructure: 4x Tesla v100", "## Hyperparameters", "## Performance\nEvaluated on the SQuAD 2.0 English dev set with the official eval script.\n\n\nEvaluated on German MLQA: URL\n\n\nEvaluated on German XQuAD: URL", "## Usage", "### In Haystack\nFor doing QA at scale (i.e. many docs instead of single paragraph), you can load the model also in haystack:", "### In Transformers", "## Authors\nBranden Chan: URL@URL \nTimo Möller: timo.moeller@URL \nMalte Pietsch: malte.pietsch@URL \nTanay Soni: URL@URL", "## About us\n<div class=\"grid lg:grid-cols-2 gap-x-4 gap-y-3\">\n <div class=\"w-full h-40 object-cover mb-2 rounded-lg flex items-center justify-center\">\n <img alt=\"\" src=\"URL class=\"w-40\"/>\n </div>\n <div class=\"w-full h-40 object-cover mb-2 rounded-lg flex items-center justify-center\">\n <img alt=\"\" src=\"URL class=\"w-40\"/>\n </div>\n</div>\n\ndeepset is the company behind the open-source NLP framework Haystack which is designed to help you build production ready NLP systems that use: Question answering, summarization, ranking etc.\n\n\nSome of our other work: \n- Distilled roberta-base-squad2 (aka \"tinyroberta-squad2\")\n- German BERT (aka \"bert-base-german-cased\")\n- GermanQuAD and GermanDPR datasets and models (aka \"gelectra-base-germanquad\", \"gbert-base-germandpr\")", "## Get in touch and join the Haystack community\n\n<p>For more info on Haystack, visit our <strong><a href=\"URL repo and <strong><a href=\"URL\">Documentation</a></strong>. \n\nWe also have a <strong><a class=\"h-7\" href=\"URL community open to everyone!</a></strong></p>\n\nTwitter | LinkedIn | Discord | GitHub Discussions | Website\n\nBy the way: we're hiring!" ]
[ 34, 15, 61, 6, 37, 3, 38, 5, 50, 276, 124 ]
[ "TAGS\n#transformers #safetensors #xlm-roberta #text-generation #autotrain_compatible #endpoints_compatible #8-bit #region-us \n# Multilingual XLM-RoBERTa large for QA on various languages## Overview\nLanguage model: xlm-roberta-large \nLanguage: Multilingual \nDownstream-task: Extractive QA \nTraining data: SQuAD 2.0 \nEval data: SQuAD dev set - German MLQA - German XQuAD \nTraining run: MLFlow link \nInfrastructure: 4x Tesla v100## Hyperparameters## Performance\nEvaluated on the SQuAD 2.0 English dev set with the official eval script.\n\n\nEvaluated on German MLQA: URL\n\n\nEvaluated on German XQuAD: URL## Usage### In Haystack\nFor doing QA at scale (i.e. many docs instead of single paragraph), you can load the model also in haystack:### In Transformers## Authors\nBranden Chan: URL@URL \nTimo Möller: timo.moeller@URL \nMalte Pietsch: malte.pietsch@URL \nTanay Soni: URL@URL## About us\n<div class=\"grid lg:grid-cols-2 gap-x-4 gap-y-3\">\n <div class=\"w-full h-40 object-cover mb-2 rounded-lg flex items-center justify-center\">\n <img alt=\"\" src=\"URL class=\"w-40\"/>\n </div>\n <div class=\"w-full h-40 object-cover mb-2 rounded-lg flex items-center justify-center\">\n <img alt=\"\" src=\"URL class=\"w-40\"/>\n </div>\n</div>\n\ndeepset is the company behind the open-source NLP framework Haystack which is designed to help you build production ready NLP systems that use: Question answering, summarization, ranking etc.\n\n\nSome of our other work: \n- Distilled roberta-base-squad2 (aka \"tinyroberta-squad2\")\n- German BERT (aka \"bert-base-german-cased\")\n- GermanQuAD and GermanDPR datasets and models (aka \"gelectra-base-germanquad\", \"gbert-base-germandpr\")## Get in touch and join the Haystack community\n\n<p>For more info on Haystack, visit our <strong><a href=\"URL repo and <strong><a href=\"URL\">Documentation</a></strong>. \n\nWe also have a <strong><a class=\"h-7\" href=\"URL community open to everyone!</a></strong></p>\n\nTwitter | LinkedIn | Discord | GitHub Discussions | Website\n\nBy the way: we're hiring!" ]
reinforcement-learning
ml-agents
# **ppo** Agent playing **Worm** This is a trained model of a **ppo** agent playing **Worm** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: chirbard/ppo-Worm 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀 ## Hyperparameters ``` behaviors: Worm: trainer_type: ppo hyperparameters: batch_size: 2024 buffer_size: 20240 learning_rate: 0.0003 beta: 0.005 epsilon: 0.2 lambd: 0.95 num_epoch: 3 learning_rate_schedule: linear network_settings: normalize: true hidden_units: 512 num_layers: 3 vis_encode_type: simple reward_signals: extrinsic: gamma: 0.9995 strength: 1.0 keep_checkpoints: 5 max_steps: 5000000 time_horizon: 1000 summary_freq: 30000 ```
{"library_name": "ml-agents", "tags": ["Worm", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Worm"]}
chirbard/ppo-Worm
null
[ "ml-agents", "tensorboard", "onnx", "Worm", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Worm", "region:us" ]
null
2024-05-02T09:01:32+00:00
[]
[]
TAGS #ml-agents #tensorboard #onnx #Worm #deep-reinforcement-learning #reinforcement-learning #ML-Agents-Worm #region-us
# ppo Agent playing Worm This is a trained model of a ppo agent playing Worm using the Unity ML-Agents Library. ## Usage (with ML-Agents) The Documentation: URL We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog to fetch the stick and then play with him directly in your browser: URL - A *longer tutorial* to understand how works ML-Agents: URL ### Resume the training ### Watch your Agent play You can watch your agent playing directly in your browser 1. If the environment is part of ML-Agents official environments, go to URL 2. Step 1: Find your model_id: chirbard/ppo-Worm 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play ## Hyperparameters
[ "# ppo Agent playing Worm\n This is a trained model of a ppo agent playing Worm\n using the Unity ML-Agents Library.\n\n ## Usage (with ML-Agents)\n The Documentation: URL\n\n We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:\n - A *short tutorial* where you teach Huggy the Dog to fetch the stick and then play with him directly in your\n browser: URL\n - A *longer tutorial* to understand how works ML-Agents:\n URL\n\n ### Resume the training\n \n\n ### Watch your Agent play\n You can watch your agent playing directly in your browser\n\n 1. If the environment is part of ML-Agents official environments, go to URL\n 2. Step 1: Find your model_id: chirbard/ppo-Worm\n 3. Step 2: Select your *.nn /*.onnx file\n 4. Click on Watch the agent play \n\n ## Hyperparameters" ]
[ "TAGS\n#ml-agents #tensorboard #onnx #Worm #deep-reinforcement-learning #reinforcement-learning #ML-Agents-Worm #region-us \n", "# ppo Agent playing Worm\n This is a trained model of a ppo agent playing Worm\n using the Unity ML-Agents Library.\n\n ## Usage (with ML-Agents)\n The Documentation: URL\n\n We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:\n - A *short tutorial* where you teach Huggy the Dog to fetch the stick and then play with him directly in your\n browser: URL\n - A *longer tutorial* to understand how works ML-Agents:\n URL\n\n ### Resume the training\n \n\n ### Watch your Agent play\n You can watch your agent playing directly in your browser\n\n 1. If the environment is part of ML-Agents official environments, go to URL\n 2. Step 1: Find your model_id: chirbard/ppo-Worm\n 3. Step 2: Select your *.nn /*.onnx file\n 4. Click on Watch the agent play \n\n ## Hyperparameters" ]
[ 33, 202 ]
[ "TAGS\n#ml-agents #tensorboard #onnx #Worm #deep-reinforcement-learning #reinforcement-learning #ML-Agents-Worm #region-us \n# ppo Agent playing Worm\n This is a trained model of a ppo agent playing Worm\n using the Unity ML-Agents Library.\n\n ## Usage (with ML-Agents)\n The Documentation: URL\n\n We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:\n - A *short tutorial* where you teach Huggy the Dog to fetch the stick and then play with him directly in your\n browser: URL\n - A *longer tutorial* to understand how works ML-Agents:\n URL\n\n ### Resume the training\n \n\n ### Watch your Agent play\n You can watch your agent playing directly in your browser\n\n 1. If the environment is part of ML-Agents official environments, go to URL\n 2. Step 1: Find your model_id: chirbard/ppo-Worm\n 3. Step 2: Select your *.nn /*.onnx file\n 4. Click on Watch the agent play \n\n ## Hyperparameters" ]