Search is not available for this dataset
pipeline_tag
stringclasses
48 values
library_name
stringclasses
205 values
text
stringlengths
0
18.3M
metadata
stringlengths
2
1.07B
id
stringlengths
5
122
last_modified
null
tags
listlengths
1
1.84k
sha
null
created_at
stringlengths
25
25
text-classification
transformers
{}
boychaboy/MNLI_distilbert-base-cased_2
null
[ "transformers", "pytorch", "distilbert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
{}
boychaboy/MNLI_distilbert-base-uncased
null
[ "transformers", "pytorch", "distilbert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
{}
boychaboy/MNLI_distilroberta-base
null
[ "transformers", "pytorch", "jax", "roberta", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
{}
boychaboy/MNLI_roberta-base
null
[ "transformers", "pytorch", "jax", "roberta", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
{}
boychaboy/SNLI_bert-base-cased
null
[ "transformers", "pytorch", "jax", "bert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
{}
boychaboy/SNLI_bert-base-uncased
null
[ "transformers", "pytorch", "jax", "bert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
{}
boychaboy/SNLI_distilbert-base-cased
null
[ "transformers", "pytorch", "distilbert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
{}
boychaboy/SNLI_roberta-base
null
[ "transformers", "pytorch", "jax", "roberta", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
{}
boychaboy/kobias_klue-bert-base
null
[ "transformers", "pytorch", "bert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-generation
transformers
# Gollum DialoGPT Model
{"tags": ["conversational"]}
boydster/DialoGPT-small-gollum
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
# Model Trained Using AutoNLP - Problem type: Binary Classification - Model ID: 33199029 - CO2 Emissions (in grams): 3.667033499762825 ## Validation Metrics - Loss: 0.32653310894966125 - Accuracy: 0.9133333333333333 - Precision: 0.9005847953216374 - Recall: 0.9447852760736196 - AUC: 0.9532488468944517 - F1: 0.9221556886227544 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/bozelosp/autonlp-sci-relevance-33199029 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("bozelosp/autonlp-sci-relevance-33199029", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("bozelosp/autonlp-sci-relevance-33199029", use_auth_token=True) inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```
{"language": "en", "tags": "autonlp", "datasets": ["bozelosp/autonlp-data-sci-relevance"], "widget": [{"text": "I love AutoNLP \ud83e\udd17"}], "co2_eq_emissions": 3.667033499762825}
world-wide/sent-sci-irrelevance
null
[ "transformers", "pytorch", "bert", "text-classification", "autonlp", "en", "dataset:bozelosp/autonlp-data-sci-relevance", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
bpietroiu/distilbert-base-uncased-finetuned-ner
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
token-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-ner This model is a fine-tuned version of [allenai/longformer-base-4096](https://huggingface.co/allenai/longformer-base-4096) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6434 - Precision: 0.8589 - Recall: 0.8686 - F1: 0.8637 - Accuracy: 0.8324 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.615 | 1.0 | 1741 | 0.6111 | 0.8200 | 0.8652 | 0.8420 | 0.8046 | | 0.4795 | 2.0 | 3482 | 0.5366 | 0.8456 | 0.8803 | 0.8626 | 0.8301 | | 0.3705 | 3.0 | 5223 | 0.5412 | 0.8527 | 0.8786 | 0.8655 | 0.8339 | | 0.2749 | 4.0 | 6964 | 0.5906 | 0.8559 | 0.8711 | 0.8634 | 0.8316 | | 0.2049 | 5.0 | 8705 | 0.6434 | 0.8589 | 0.8686 | 0.8637 | 0.8324 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 1.18.4 - Tokenizers 0.11.6
{"tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "bert-finetuned-ner", "results": []}]}
brad1141/bert-finetuned-ner
null
[ "transformers", "pytorch", "tensorboard", "longformer", "token-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
This is a test model
{}
bradyll/bert_finetuning_test_20220210
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
token-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # deberta-base-finetuned-ner This model is a fine-tuned version of [microsoft/deberta-base](https://huggingface.co/microsoft/deberta-base) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0501 - Precision: 0.9563 - Recall: 0.9652 - F1: 0.9608 - Accuracy: 0.9899 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.1419 | 1.0 | 878 | 0.0628 | 0.9290 | 0.9288 | 0.9289 | 0.9835 | | 0.0379 | 2.0 | 1756 | 0.0466 | 0.9456 | 0.9567 | 0.9511 | 0.9878 | | 0.0176 | 3.0 | 2634 | 0.0473 | 0.9539 | 0.9575 | 0.9557 | 0.9890 | | 0.0098 | 4.0 | 3512 | 0.0468 | 0.9570 | 0.9635 | 0.9603 | 0.9896 | | 0.0043 | 5.0 | 4390 | 0.0501 | 0.9563 | 0.9652 | 0.9608 | 0.9899 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.0+cu111 - Datasets 1.12.1 - Tokenizers 0.10.3
{"license": "mit", "tags": ["generated_from_trainer"], "datasets": ["conll2003"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "deberta-base-finetuned-ner", "results": [{"task": {"type": "token-classification", "name": "Token Classification"}, "dataset": {"name": "conll2003", "type": "conll2003", "args": "conll2003"}, "metrics": [{"type": "precision", "value": 0.9563020492186769, "name": "Precision"}, {"type": "recall", "value": 0.9652436720816018, "name": "Recall"}, {"type": "f1", "value": 0.9607520564042303, "name": "F1"}, {"type": "accuracy", "value": 0.9899205302077261, "name": "Accuracy"}]}]}]}
geckos/deberta-base-fine-tuned-ner
null
[ "transformers", "pytorch", "tensorboard", "deberta", "token-classification", "generated_from_trainer", "dataset:conll2003", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
token-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-ner This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0606 - Precision: 0.9303 - Recall: 0.9380 - F1: 0.9342 - Accuracy: 0.9842 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.2459 | 1.0 | 878 | 0.0696 | 0.9117 | 0.9195 | 0.9156 | 0.9808 | | 0.0513 | 2.0 | 1756 | 0.0602 | 0.9223 | 0.9376 | 0.9299 | 0.9835 | | 0.0304 | 3.0 | 2634 | 0.0606 | 0.9303 | 0.9380 | 0.9342 | 0.9842 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.0+cu111 - Datasets 1.12.1 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["conll2003"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "distilbert-base-uncased-finetuned-ner", "results": [{"task": {"type": "token-classification", "name": "Token Classification"}, "dataset": {"name": "conll2003", "type": "conll2003", "args": "conll2003"}, "metrics": [{"type": "precision", "value": 0.9303228669699323, "name": "Precision"}, {"type": "recall", "value": 0.9380243875153821, "name": "Recall"}, {"type": "f1", "value": 0.9341577540106952, "name": "F1"}, {"type": "accuracy", "value": 0.9842407104389407, "name": "Accuracy"}]}]}]}
geckos/distilbert-base-uncased-fine-tuned-ner
null
[ "transformers", "pytorch", "tensorboard", "distilbert", "token-classification", "generated_from_trainer", "dataset:conll2003", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text2text-generation
transformers
{}
brandontanzhirong/paraphrasing-tool_t5-finetuned-QQP
null
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
brandontanzhirong/paraphrasing_tool
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
{}
brcps12/bert-base-finetuned-sts
null
[ "transformers", "pytorch", "bert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
# [models/cnstd](models/cnstd) 存放 [cnstd](https://github.com/breezedeus/cnstd) 中使用的模型。 # [models/cnocr](models/cnocr) 存放 [cnocr](https://github.com/breezedeus/cnocr) 中使用的模型。
{}
breezedeus/cnstd-cnocr-models
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
briancporter/roberta_take_1
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
briancporter/roberta_winogrande_v1
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
{}
briancporter/winogrande-roberta
null
[ "transformers", "tf", "roberta", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
brianhur/VetBERT
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
brianna8560/bribri
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
brianobvio/wav2vec2-base-timit-demo-colab
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
brianobvio/wav2vec2-large-xls-r-300m-turkish-colab
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
brijesh-nishad/indic-hi-en
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
text-generation
transformers
{}
brimeggi/inexis-bot
null
[ "transformers", "pytorch", "gpt2", "text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-generation
transformers
# RickBot built for [Chai](https://chai.ml/) Make your own [here](https://colab.research.google.com/drive/1o5LxBspm-C28HQvXN-PRQavapDbm5WjG?usp=sharing)
{"tags": ["conversational"]}
brimeggi/testbot2
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
transformers
{}
britama/DialoGPT-small-psycho
null
[ "transformers", "pytorch", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
briti2021/distilgpt2-finetuned-wikitext2
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
transformers
{}
briverse/vi-electra-base-cased
null
[ "transformers", "pytorch", "electra", "pretraining", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
transformers
{}
briverse/vi-electra-base-uncased
null
[ "transformers", "pytorch", "electra", "pretraining", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
transformers
{}
briverse/vi-electra-large-cased-800
null
[ "transformers", "pytorch", "electra", "pretraining", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
transformers
{}
briverse/vi-electra-large-cased
null
[ "transformers", "pytorch", "electra", "pretraining", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
transformers
{}
briverse/vi-electra-large-uncased-800
null
[ "transformers", "pytorch", "electra", "pretraining", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
transformers
{}
briverse/vi-electra-large-uncased
null
[ "transformers", "pytorch", "electra", "pretraining", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
transformers
{}
briverse/vi-electra-small-cased
null
[ "transformers", "pytorch", "electra", "pretraining", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
transformers
{}
briverse/vi-electra-small-uncased
null
[ "transformers", "pytorch", "electra", "pretraining", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
brndnaxr/teste
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
brokentx/HSXv2
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
text-generation
transformers
# My Awesome Model
{"tags": ["conversational"]}
brokentx/newbrokiev2
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
token-classification
transformers
# docusco-bert ## Model description **docusco-bert** is a fine-tuned BERT model that is ready to use for **token classification**. The model was trained on data sampled from the Corpus of Contemporary American English ([COCA](https://www.english-corpora.org/coca/)) and classifies tokens and token sequences according to a system developed for the [**DocuScope**](https://www.cmu.edu/dietrich/english/research-and-publications/docuscope.html) dictionary-based tagger. Descriptions of the categories are included in a table below. ## About DocuScope DocuScope is a dicitonary-based tagger that has been developed at Carnegie Mellon University by **David Kaufer** and **Suguru Ishizaki** since the early 2000s. Its categories are rhetorical in their orientation (as opposed to part-of-speech tags, for example, which are morphosyntactic). DocuScope has been been used in [a wide variety of studies](https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=docuscope&btnG=). Here, for example, is [a short analysis of King Lear](https://graphics.cs.wisc.edu/WP/vep/2017/02/14/guest-post-data-mining-king-lear/), and here is [a published study of Tweets](https://journals.sagepub.com/doi/full/10.1177/2055207619844865). ## Intended uses & limitations #### How to use The model was trained on data with tags formatted using [IOB](https://en.wikipedia.org/wiki/Inside%E2%80%93outside%E2%80%93beginning_(tagging)), like those used in common tasks like Named Entity Recogition (NER). Thus, you can use this model with a Transformers NER *pipeline*. ```python from transformers import AutoTokenizer, AutoModelForTokenClassification from transformers import pipeline tokenizer = AutoTokenizer.from_pretrained("browndw/docusco-bert") model = AutoModelForTokenClassification.from_pretrained("browndw/docusco-bert") nlp = pipeline("ner", model=model, tokenizer=tokenizer) example = "Globalization is the process of interaction and integration among people, companies, and governments worldwide." ds_results = nlp(example) print(ds_results) ``` #### Limitations and bias This model is limited by its training dataset of American English texts. Moreover, the current version is trained on only a small subset of the corpus. The goal is to train later versions on more data, which should increase accuracy. ## Training data This model was fine-tuned on data from the Corpus of Contemporary American English ([COCA](https://www.english-corpora.org/coca/)). The training data contain chunks of text randomly sampled of 5 text-types: Academic, Fiction, Magazine, News, and Spoken. Typically, BERT models are trained on sentence segments. However, DocuScope tags can span setences. Thus, data were split into chunks that don't split **B + I** sequences and end with sentence-final punctuation marks (i.e., period, quesiton mark or exclamaiton point). Additionally, the order of the chunks was randomized prior to sampling, and statified sampling was used to provide enough training data for low-frequency caegories. The resulting training data consist of: * 21,460,177 tokens * 15,796,305 chunks The specific counts for each category appear in the following table. Category|Count -|- O|3528038 Syntactic Complexity|2032808 Character|1413771 Description|1224744 Narrative|1159201 Negative|651012 Academic Terms|620932 Interactive|594908 Information Exposition|578228 Positive|463914 Force Stressed|432631 Information Topics|394155 First Person|249744 Metadiscourse Cohesive|240822 Strategic|238255 Public Terms|234213 Reasoning|213775 Information Place|187249 Information States|173146 Information ReportVerbs|119092 Confidence High|112861 Confidence Hedged|110008 Future|96101 Inquiry|94995 Contingent|94860 Information Change|89063 Metadiscourse Interactive|84033 Updates|81424 Citation|71241 Facilitate|50451 Uncertainty|35644 Academic WritingMoves|29352 Information ChangePositive|28475 Responsibility|25362 Citation Authority|22414 Information ChangeNegative|15612 Confidence Low|2876 Citation Hedged|895 -|- Total|15796305 ## Training procedure This model was trained on a single 2.3 GHz Dual-Core Intel Core i5 with recommended hyperparameters from the [original BERT paper](https://arxiv.org/pdf/1810.04805). ## Eval results ### Overall metric|test -|- f1 |.927 accuracy |.943 ### By category category|precision|recall|f1-score|support -|-|-|-|- AcademicTerms|0.91|0.92|0.92|486399 AcademicWritingMoves|0.76|0.82|0.79|20017 Character|0.94|0.95|0.94|1260272 Citation|0.92|0.94|0.93|50812 CitationAuthority|0.86|0.88|0.87|17798 CitationHedged|0.91|0.94|0.92|632 ConfidenceHedged|0.94|0.96|0.95|90393 ConfidenceHigh|0.92|0.94|0.93|113569 ConfidenceLow|0.79|0.81|0.80|2556 Contingent|0.92|0.94|0.93|81366 Description|0.87|0.89|0.88|1098598 Facilitate|0.87|0.90|0.89|41760 FirstPerson|0.96|0.98|0.97|330658 ForceStressed|0.93|0.94|0.93|436188 Future|0.90|0.93|0.92|93365 InformationChange|0.88|0.91|0.89|72813 InformationChangeNegative|0.83|0.85|0.84|12740 InformationChangePositive|0.82|0.86|0.84|22994 InformationExposition|0.94|0.95|0.95|468078 InformationPlace|0.95|0.96|0.96|147688 InformationReportVerbs|0.91|0.93|0.92|95563 InformationStates|0.95|0.95|0.95|139429 InformationTopics|0.90|0.92|0.91|328152 Inquiry|0.85|0.89|0.87|79030 Interactive|0.95|0.96|0.95|602857 MetadiscourseCohesive|0.97|0.98|0.98|195548 MetadiscourseInteractive|0.92|0.94|0.93|73159 Narrative|0.92|0.94|0.93|1023452 Negative|0.88|0.89|0.88|645810 Positive|0.87|0.89|0.88|409775 PublicTerms|0.91|0.92|0.91|184108 Reasoning|0.93|0.95|0.94|169208 Responsibility|0.83|0.87|0.85|21819 Strategic|0.88|0.90|0.89|193768 SyntacticComplexity|0.95|0.96|0.96|1635918 Uncertainty|0.87|0.91|0.89|33684 Updates|0.91|0.93|0.92|77760 -|-|-|-|- micro avg|0.92|0.93|0.93|10757736 macro avg|0.90|0.92|0.91|10757736 weighted avg|0.92|0.93|0.93|10757736 ## DocuScope Category Descriptions Category (Cluster)|Description|Examples -|-|- Academic Terms|Abstract, rare, specialized, or disciplinary-specific terms that are indicative of informationally dense writing|*market price*, *storage capacity*, *regulatory*, *distribution* Academic Writing Moves|Phrases and terms that indicate academic writing moves, which are common in research genres and are derived from the work of Swales (1981) and Cotos et al. (2015, 2017)|*in the first section*, *the problem is that*, *payment methodology*, *point of contention* Character|References multiple dimensions of a character or human being as a social agent, both individual and collective|*Pauline*, *her*, *personnel*, *representatives* Citation|Language that indicates the attribution of information to, or citation of, another source.|*according to*, *is proposing that*, *quotes from* Citation Authorized|Referencing the citation of another source that is represented as true and not arguable|*confirm that*, *provide evidence*, *common sense* Citation Hedged|Referencing the citation of another source that is presented as arguable|*suggest that*, *just one opinion* Confidence Hedged|Referencing language that presents a claim as uncertain|*tends to get*, *maybe*, *it seems that* Confidence High|Referencing language that presents a claim with certainty|*most likely*, *ensure that*, *know that*, *obviously* Confidence Low|Referencing language that presents a claim as extremely unlikely|*unlikely*, *out of the question*, *impossible* Contingent|Referencing contingency, typically contingency in the world, rather than contingency in one's knowledge|*subject to*, *if possible*, *just in case*, *hypothetically* Description|Language that evokes sights, sounds, smells, touches and tastes, as well as scenes and objects|*stay quiet*, *gas-fired*, *solar panels*, *soft*, *on my desk* Facilitate|Language that enables or directs one through specific tasks and actions|*let me*, *worth a try*, *I would suggest* First Person|This cluster captures first person.|*I*, *as soon as I*, *we have been* Force Stressed|Language that is forceful and stressed, often using emphatics, comparative forms, or superlative forms|*really good*, *the sooner the better*, *necessary* Future|Referencing future actions, states, or desires|*will be*, *hope to*, *expected changes* Information Change|Referencing changes of information, particularly changes that are more neutral|*changes*, *revised*, *growth*, *modification to* Information Change Negative|Referencing negative change|*going downhill*, *slow erosion*, *get worse* Information Change Positive|Referencing positive change|*improving*, *accrued interest*, *boost morale* Information Exposition|Information in the form of expository devices, or language that describes or explains, frequently in regards to quantities and comparisons|*final amount*, *several*, *three*, *compare*, *80%* Information Place|Language designating places|*the city*, *surrounding areas*, *Houston*, *home* Information Report Verbs|Informational verbs and verb phrases of reporting|*report*, *posted*, *release*, *point out* Information States|Referencing information states, or states of being|*is*, *are*, *existing*, *been* Information Topics|Referencing topics, usually nominal subjects or objects, that indicate the “aboutness” of a text|*time*, *money*, *stock price*, *phone interview* Inquiry|Referencing inquiry, or language that points to some kind of inquiry or investigation|*find out*, *let me know if you have any questions*, *wondering if* Interactive|Addresses from the author to the reader or from persons in the text to other persons. The address comes in the language of everyday conversation, colloquy, exchange, questions, attention-getters, feedback, interactive genre markers, and the use of the second person.|*can you*, *thank you for*, *please see*, *sounds good to me* Metadiscourse Cohesive|The use of words to build cohesive markers that help the reader navigate the text and signal linkages in the text, which are often additive or contrastive|*or*, *but*, *also*, *on the other hand*, *notwithstanding*, *that being said* Metadiscourse Interactive|The use of words to build cohesive markers that interact with the reader|*I agree*, *let’s talk*, *by the way* Narrative|Language that involves people, description, and events extending in time|*today*, *tomorrow*, *during the*, *this weekend* Negative|Referencing dimensions of negativity, including negative acts, emotions, relations, and values|*does not*, *sorry for*, *problems*, *confusion* Positive|Referencing dimensions of positivity, including actions, emotions, relations, and values|*thanks*, *approval*, *agreement*, *looks good* Public Terms|Referencing public terms, concepts from public language, media, the language of authority, institutions, and responsibility|*discussion*, *amendment*, *corporation*, *authority*, *settlement* Reasoning|Language that has a reasoning focus, supporting inferences about cause, consequence, generalization, concession, and linear inference either from premise to conclusion or conclusion to premise|*because*, *therefore*, *analysis*, *even if*, *as a result*, *indicating that* Responsibility|Referencing the language of responsibility|*supposed to*, *requirements*, *obligations* Strategic|This dimension is active when the text structures strategies activism, advantage-seeking, game-playing cognition, plans, and goal-seeking.|*plan*, *trying to*, *strategy*, *decision*, *coordinate*, *look at the* Syntactic Complexity|The features in this category are often what are called “function words,” like determiners and prepositions.|*the*, *to*, *for*, *in*, *a lot of* Uncertainty|References uncertainty, when confidence levels are unknown|*kind of*, *I have no idea*, *for some reason* Updates|References updates that anticipate someone searching for information and receiving it|*already*, *a new*, *now that*, *here are some* ### BibTeX entry and citation info ``` @incollection{ishizaki2012computer, title = {Computer-aided rhetorical analysis}, author = {Ishizaki, Suguru and Kaufer, David}, booktitle= {Applied natural language processing: Identification, investigation and resolution}, pages = {276--296}, year = {2012}, publisher= {IGI Global}, url = {https://www.igi-global.com/chapter/content/61054} } ``` ``` @article{DBLP:journals/corr/abs-1810-04805, author = {Jacob Devlin and Ming{-}Wei Chang and Kenton Lee and Kristina Toutanova}, title = {{BERT:} Pre-training of Deep Bidirectional Transformers for Language Understanding}, journal = {CoRR}, volume = {abs/1810.04805}, year = {2018}, url = {http://arxiv.org/abs/1810.04805}, archivePrefix = {arXiv}, eprint = {1810.04805}, timestamp = {Tue, 30 Oct 2018 20:39:56 +0100}, biburl = {https://dblp.org/rec/journals/corr/abs-1810-04805.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ```
{"language": "en", "datasets": "COCA"}
browndw/docusco-bert
null
[ "transformers", "pytorch", "tf", "jax", "bert", "token-classification", "en", "dataset:COCA", "arxiv:1810.04805", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
brucestayhungry/gpt2-wikitext2
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
feature-extraction
transformers
{}
brunneis/xlmrb-selfharm-200k
null
[ "transformers", "tf", "xlm-roberta", "feature-extraction", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
feature-extraction
transformers
{}
brunneis/xlmrb-selfharm-2m
null
[ "transformers", "tf", "xlm-roberta", "feature-extraction", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
feature-extraction
transformers
{}
brunneis/xlmrb-selfharm-sub-200k
null
[ "transformers", "tf", "xlm-roberta", "feature-extraction", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
brunoais/makeup_removal
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
brunoaqu/DialogGPT-small-harrypoter
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
brunodorneles/bert-base-multilingual-cased-finetuned-ner
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
token-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # biobertpt-all-finetuned-ner This model is a fine-tuned version of [pucpr/biobertpt-all](https://huggingface.co/pucpr/biobertpt-all) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.3721 - Precision: 0.0179 - Recall: 0.0149 - F1: 0.0163 - Accuracy: 0.6790 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 1 | 2.7864 | 0.0091 | 0.0448 | 0.0152 | 0.3339 | | No log | 2.0 | 2 | 2.5096 | 0.0097 | 0.0149 | 0.0118 | 0.6292 | | No log | 3.0 | 3 | 2.3721 | 0.0179 | 0.0149 | 0.0163 | 0.6790 | ### Framework versions - Transformers 4.12.0.dev0 - Pytorch 1.9.1+cu102 - Datasets 1.13.3 - Tokenizers 0.10.3
{"tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "biobertpt-all-finetuned-ner", "results": []}]}
brunodorneles/biobertpt-all-finetuned-ner
null
[ "transformers", "pytorch", "bert", "token-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
token-classification
transformers
{}
brunodorneles/ner_model
null
[ "transformers", "pytorch", "bert", "token-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
automatic-speech-recognition
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-colab This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4779 - Wer: 0.3453 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.4307 | 4.0 | 500 | 1.4129 | 0.9980 | | 0.626 | 8.0 | 1000 | 0.4605 | 0.4499 | | 0.2199 | 12.0 | 1500 | 0.4457 | 0.3898 | | 0.1303 | 16.0 | 2000 | 0.4418 | 0.3771 | | 0.0851 | 20.0 | 2500 | 0.4647 | 0.3548 | | 0.0604 | 24.0 | 3000 | 0.4603 | 0.3499 | | 0.0461 | 28.0 | 3500 | 0.4779 | 0.3453 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "model-index": [{"name": "wav2vec2-base-timit-demo-colab", "results": []}]}
bryan6aero/wav2vec2-base-timit-demo-colab
null
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
bryantpwhite/camembert-base-camembert-base
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
text-generation
transformers
# Work In Progress # How to use? To generate text with HTML, the sentence must start with ` htmlOn |||` (note the space at the beginning 😉). To generate normal text, you don't need to add anything. # Training details We continued the pre-training of [gpt2](https://huggingface.co/gpt2). Dataset:[Natural_Questions_HTML_reduced_all](https://huggingface.co/datasets/SaulLu/Natural_Questions_HTML_reduced_all) 50% of the examples in the training data contained all HTML tags with only their `id` and `class` attributes. 50% of the examples were just plain text. Training example with metadata: ``` htmlOn ||| <li id:n-sitesupport><a>Donate to Wikipedia</a></li> <li id:n-shoplink><a>Wikipedia store</a></li> </ul></div></div><div class:portal id:p-interaction><h3 id:p-interaction-label>Interaction</h3> <div class:body><ul><li id:n-help><a>Help</a></li> <li id:n-aboutsite><a>About Wikipedia</a></li> <li id:n-portal><a>Community portal</a></li> <li id:n-recentchanges><a>Recent changes</a></li> <li id:n-contactpage><a>Contact page</a></li> </ul></div></div><div class:portal id:p-tb><h3 id:p-tb-label>Tools</h3> <div class:body><ul><li id:t-whatlinkshere><a>What links here</a></li> <li id:t-recentchangeslinked><a>Related changes</a></li> <li id:t-upload><a>Upload file</a></li> <li id:t-specialpages><a>Special pages</a></li> <li id:t-permalink><a>Permanent link</a></li> <li id:t-info><a>Page information</a></li> <li id:t-wikibase><a>Wikidata item</a></li> <li id:t-cite><a>Cite this page</a></li> </ul></div></div><div class:portal id:p-coll-print_export><h3 id:p-coll-print_export-label>Print/export</h3> <div class:body><ul><li id:coll-create_a_book><a>Create a book</a></li> <li id:coll-download-as-rdf2latex><a>Download as PDF</a></li> <li id:t-print><a>Printable version</a></li> </ul></div></div><div class:portal id:p-lang><h3 id:p-lang-label>Languages</h3> <div class:body><ul><li class:interlanguage-link interwiki-ca><a class:interlanguage-link-target>Català</a></li> <li class:interlanguage-link interwiki-da><a class:interlanguage-link-target>Dansk</a></li> <li class:interlanguage-link interwiki-de><a class:interlanguage-link-target>Deutsch</a></li> <li class:interlanguage-link interwiki-es><a class:interlanguage-link-target>Español</a></li> <li class:interlanguage-link interwiki-eu><a class:interlanguage-link-target>Euskara</a></li> <li class:interlanguage-link interwiki-fa><a class:interlanguage-link-target>فارسی</a></li> <li class:interlanguage-link interwiki-fr><a class:interlanguage-link-target>Français</a></li> <li class:interlanguage-link interwiki-id><a class:interlanguage-link-target>Bahasa Indonesia</a></li> <li class:interlanguage-link interwiki-nl><a class:interlanguage-link-target>Nederlands</a></li> <li class:interlanguage-link interwiki-pt><a class:interlanguage-link-target>Português</a></li> <li class:interlanguage-link interwiki-fi><a class:interlanguage-link-target>Suomi</a></li> <li class:interlanguage-link interwiki-vi><a class:interlanguage-link-target>Tiếng Việt</a></li> <button class:mw-interlanguage-selector mw-ui-button>5 more</button> </ul><div class:after-portlet after-portlet-lang><span class:wb-langlinks-edit wb-langlinks-link><a class:wbc-editpage>Edit links</a></span></div> </div></div></ ```
{"widget": [{"text": " htmlOn ||| <div"}]}
bs-modeling-metadata/html-metadata-exp1-subexp1-1857108
null
[ "transformers", "pytorch", "gpt2", "text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-generation
transformers
# Work In Progress # How to use? This model can only generate regular text. # Training details We continued the pre-training of [gpt2](https://huggingface.co/gpt2). Dataset:[Natural_Questions_HTML_reduced_all](https://huggingface.co/datasets/SaulLu/Natural_Questions_HTML_reduced_all) 100% of the examples were just plain text. Training example: ``` start up firms to succeed.[4] Firms like power companies, cable television companies and wireless communication companies with large start up costs fall within this category. A company wishing to enter such industries must have the financial ability to spend millions of dollars before starting operations and generating any revenue.[5] Similarly established firms also have a competitive advantage over new firms. An established firm threatened by a new competitor can lower prices to drive out the competition. Microsoft is a firm that has substantial pricing or market power due to technological superiority in its design and production processes.[4] Finally government created barriers to entry can be a source of market power. A prime example are patents granted to pharmaceutical companies. These patents give the drug companies a virtual monopoly in the protected product for the term of the patent. Measurement[edit] Concentration ratios are the most common measures of market power.[6] The four-firm concentration ratio measures the percentage of total industry output attributable to the top four companies. For monopolies the four firm ratio is 100 per cent while the ratio is zero for perfect competition.[7] The four firm concentration domestic (U.S) ratios for cigarettes is 93%; for automobiles, 84% and for beer, 85%.[8] Another measure of concentration is the Herfindahl-Hirschman Index (HHI) which is calculated by "summing the squares of the percentage market shares of all participants in the market".[8] The HHI index for perfect competition is zero; for monopoly, 10,000. U.S. courts almost never consider a firm to possess market power if it has a market share of less than 50 percent.[9] Elasticity of demand[edit] Market power is the ability to raise price above marginal cost (MC) and earn a positive profit.[10] The degree to which a firm can raise price (P) above marginal cost depends on the shape of the demand curve at the profit maximizing output.[10] That is, elasticity is the critical factor in determining market power. The relationship between market power and the price elasticity of demand (PED) can be summarized by the equation: P M C = P E D 1 + P E D. {\displaystyle {\frac {P}{MC}}={\frac {PED}{1+PED}}.} Note that PED will be negative, so the ratio is always greater than one. The higher the P/MC ratio, the more market power the firm possesses. As PED increases in magnitude, the P/MC ratio approaches one, and market power approaches zero.[11] The equation is derived from the monopolist pricing rule: P − M C P = − 1 P E D. {\displaystyle {\frac {P-MC}{P}}=-{\frac {1}{PED}}.} Nobel Memorial Prize[edit] Jean Tirole was awarded the 2014 Nobel Memorial Prize in Economic Sciences for his analysis of market power and economic regulation. See also[edit] Bargaining power Imperfect competition Market concentration Natural monopoly Predatory pricing Price discrimination Dominance (economics) References[edit] Jump up ^ Vatiero Massimiliano (2010). "The Ordoliberal notion of market power: an institutionalist reassessment". European Competition Journal. 6 (3): 689–707. doi:10.5235/ecj.v6n3.689. Jump up ^ Vatiero M. (2009), "An Institutionalist Explanation of Market Dominances". World Competition. Law and Economics Review, 32(2):221–226. Jump up ^ If the power company raised rates the customer either pays the increase or does without power. ^ Jump up to: a b c d e Krugman & Wells, Microeconomics 2d ed. (Worth 2009) Jump up ^ Often such natural monopolies will also have the benefit of government granted monopolies. Jump up ^ Samuelson & Nordhaus, Microeconomics, 17th ed. (McGraw-Hill 2001) at 183–184. Jump up ^ Samuelson & Nordhaus, Microeconomics, 17th ed. (McGraw-Hill 2001) at 183. ^ Jump up to: a b Samuelson & Nordhaus, Microeconomics, 17th ed. (McGraw-Hill 2001) at 184. Jump up ^ J. Gregory Sidak & Hal J. Singer, Überregulation Without Economics: The World Trade Organization’s Decision in the U.S.-Mexico Arbitration on Telecommunications Services, General Agreement on Trade in Services, GATS, 57 FED. COMM. L.J. 1, 34 (2004), http://www.repository.law.indiana.edu/cgi/viewcontent.cgi?article=1388&context=fclj. ^ Jump up to: a b ```
{}
bs-modeling-metadata/html-metadata-exp1-subexp2-1929863
null
[ "transformers", "pytorch", "gpt2", "text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-generation
transformers
# Work In Progress # How to use? To generate text with HTML, the sentence must start with ` htmlOn |||` (note the space at the beginning 😉). To generate normal text, you don't need to add anything. # Training details We continued the pre-training of [gpt2](https://huggingface.co/gpt2). Dataset:[Natural_Questions_HTML_reduced_all](https://huggingface.co/datasets/SaulLu/Natural_Questions_HTML_reduced_all) 50% of the examples in the training data contained `h1`, `h2`, ..., `h6` and `p` HTML tags with only their `id` and `class` attributes. 50% of the examples were just plain text. Training example with metadata: ``` htmlOn ||| <h1 id:firstHeading class:firstHeading>Market power</h1> From Wikipedia, the free encyclopedia Jump to: navigation, search Competition law Basic concepts History of competition law Monopoly Coercive monopoly Natural monopoly Barriers to entry Herfindahl–Hirschman Index Market concentration Market power SSNIP test Relevant market Merger control Anti-competitive practices Monopolization Collusion Formation of cartels Price fixing Bid rigging Product bundling and tying Refusal to deal Group boycott Essential facilities Exclusive dealing Dividing territories Conscious parallelism Predatory pricing Misuse of patents and copyrights Enforcement authorities and organizations International Competition Network List of competition regulators v t e <p>In economics and particularly in industrial organization, market power is the ability of a firm to profitably raise the market price of a good or service over marginal cost. In perfectly competitive markets, market participants have no market power. A firm with total market power can raise prices without losing any customers to competitors. Market participants that have market power are therefore sometimes referred to as "price makers" or "price setters", while those without are sometimes called "price takers". Significant market power occurs when prices exceed marginal cost and long run average cost, so the firm makes profit.</p> <p>A firm with market power has the ability to individually affect either the total quantity or the prevailing price in the market. Price makers face a downward-sloping demand curve, such that price increases lead to a lower quantity demanded. The decrease in supply as a result of the exercise of market power creates an economic deadweight loss which is often viewed as socially undesirable. As a result, many countries have anti-trust or other legislation intended to limit the ability of firms to accrue market power. Such legislation often regulates mergers and sometimes introduces a judicial power to compel divestiture.</p> <p>A firm usually has market power by virtue of controlling a large portion of the market. In extreme cases—monopoly and monopsony—the firm controls the entire market. However, market size alone is not the only indicator of market power. Highly concentrated markets may be contestable if there are no barriers to entry or exit, limiting the incumbent firm's ability to raise its price above competitive levels.</p> <p>Market power gives firms the ability to engage in unilateral anti-competitive behavior.[1] Some of the behaviours that firms with market power are accused of engaging in include predatory pricing, product tying, and creation of overcapacity or other barriers to entry. If no individual participant in the market has significant market power, then anti-competitive behavior can take place only through collusion, or the exercise of a group of participants' collective market power.</p> <p>The Lerner index and Herfindahl index may be used to measure market power.</p> <p></p><h2>Contents</h2> [hide] 1 Oligopoly 2 Monopoly power 3 Source 4 Measurement 5 Elasticity of demand 6 Nobel Memorial Prize 7 See also 8 References 9 Further references <p></p><h2>Oligopoly[edit]</h2> <p>When several firms control a significant share of market sales, the resulting market structure is called an oligopoly or oligopsony. An oligopoly may engage in collusion, either tacit or overt, and thereby exercise market power. A group of firms that explicitly agree to affect market price or output is called a cartel.</p> <h2>Monopoly power[edit]</h2> <p>Monopoly power is an example of market failure which occurs when one or more of the participants has the ability to influence the price or other outcomes in some general or specialized market. The most commonly discussed form of market power is that of a monopoly, but other forms such as monopsony, and more moderate versions of these two extremes, exist.</p> <p>A well-known example of monopolistic market power is Microsoft's market share in PC operating systems. The United States v. Microsoft case dealt with an allegation that Microsoft illegally exercised its market power by bundling its web browser with its operating system. In this respect, the notion of dominance and dominant position in EU Antitrust Law is a strictly related aspect.[2]</p> <h2>Source[edit]</h2> <p>A monopoly can raise prices and retain customers because the monopoly has no competitors. If a customer has no other place to go to obtain the goods or services, they either pay the increased price or do without.[3] Thus the key to market power is to preclude competition through high barriers of entry. Barriers to entry that are significant sources ```
{"widget": [{"text": " htmlOn ||| <h1"}]}
bs-modeling-metadata/html-metadata-exp1-subexp3-1898197
null
[ "transformers", "pytorch", "gpt2", "text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-generation
transformers
{}
bs-modeling-metadata/website_metadata_exp_1_model_100k_checkpoint
null
[ "transformers", "pytorch", "gpt2", "text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-generation
transformers
{}
bs-modeling-metadata/website_metadata_exp_1_model_25k_checkpoint
null
[ "transformers", "pytorch", "gpt2", "text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
# Model Trained Using AutoNLP - Problem type: Multi-class Classification - Model ID: 9522090 ## Validation Metrics - Loss: 0.3541755676269531 - Accuracy: 0.8759671179883946 - Macro F1: 0.5330133182738012 - Micro F1: 0.8759671179883946 - Weighted F1: 0.8482773065757196 - Macro Precision: 0.537738108882869 - Micro Precision: 0.8759671179883946 - Weighted Precision: 0.8241048710814852 - Macro Recall: 0.5316621214820499 - Micro Recall: 0.8759671179883946 - Weighted Recall: 0.8759671179883946 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/bshlgrs/autonlp-classification-9522090 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("bshlgrs/autonlp-classification-9522090", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("bshlgrs/autonlp-classification-9522090", use_auth_token=True) inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```
{"language": "en", "tags": "autonlp", "datasets": ["bshlgrs/autonlp-data-classification"], "widget": [{"text": "I love AutoNLP \ud83e\udd17"}]}
bshlgrs/autonlp-classification-9522090
null
[ "transformers", "pytorch", "bert", "text-classification", "autonlp", "en", "dataset:bshlgrs/autonlp-data-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
# Model Trained Using AutoNLP - Problem type: Multi-class Classification - Model ID: 9532137 ## Validation Metrics - Loss: 0.34556105732917786 - Accuracy: 0.8749890724713699 - Macro F1: 0.5243623959669343 - Micro F1: 0.8749890724713699 - Weighted F1: 0.8638030768409057 - Macro Precision: 0.5016762404900895 - Micro Precision: 0.8749890724713699 - Weighted Precision: 0.8547962562614184 - Macro Recall: 0.5529674694200845 - Micro Recall: 0.8749890724713699 - Weighted Recall: 0.8749890724713699 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/bshlgrs/autonlp-classification_with_all_labellers-9532137 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("bshlgrs/autonlp-classification_with_all_labellers-9532137", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("bshlgrs/autonlp-classification_with_all_labellers-9532137", use_auth_token=True) inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```
{"language": "en", "tags": "autonlp", "datasets": ["bshlgrs/autonlp-data-classification_with_all_labellers"], "widget": [{"text": "I love AutoNLP \ud83e\udd17"}]}
bshlgrs/autonlp-classification_with_all_labellers-9532137
null
[ "transformers", "pytorch", "bert", "text-classification", "autonlp", "en", "dataset:bshlgrs/autonlp-data-classification_with_all_labellers", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
# Model Trained Using AutoNLP - Problem type: Multi-class Classification - Model ID: 10022181 ## Validation Metrics - Loss: 0.369505375623703 - Accuracy: 0.8706206896551724 - Macro F1: 0.5410226656476808 - Micro F1: 0.8706206896551724 - Weighted F1: 0.8515634683886795 - Macro Precision: 0.5159711665622992 - Micro Precision: 0.8706206896551724 - Weighted Precision: 0.8346991124101657 - Macro Recall: 0.5711653346601209 - Micro Recall: 0.8706206896551724 - Weighted Recall: 0.8706206896551724 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/bshlgrs/autonlp-old-data-trained-10022181 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("bshlgrs/autonlp-old-data-trained-10022181", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("bshlgrs/autonlp-old-data-trained-10022181", use_auth_token=True) inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```
{"language": "en", "tags": "autonlp", "datasets": ["bshlgrs/autonlp-data-old-data-trained"], "widget": [{"text": "I love AutoNLP \ud83e\udd17"}]}
bshlgrs/autonlp-old-data-trained-10022181
null
[ "transformers", "pytorch", "bert", "text-classification", "autonlp", "en", "dataset:bshlgrs/autonlp-data-old-data-trained", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
## This model is trained for GoEmotions dataset which contains labeled 58k Reddit comments with 28 emotions - admiration, amusement, anger, annoyance, approval, caring, confusion, curiosity, desire, disappointment, disapproval, disgust, embarrassment, excitement, fear, gratitude, grief, joy, love, nervousness, optimism, pride, realization, relief, remorse, sadness, surprise + neutral ## Training details: - The training script is provided here: https://github.com/bsinghpratap/roberta_train_goEmotion - Please feel free to start an issue in the repo if you have trouble running the model and I would try to respond as soon as possible. - The model works well on most of the emotions except: 'desire', 'disgust', 'embarrassment', 'excitement', 'fear', 'grief', 'nervousness', 'pride', 'relief', 'remorse', 'surprise'] - I'll try to fine-tune the model further and update here if RoBERTa achieves a better performance. - Each text datapoint can have more than 1 label. Most of the training set had 1 label: Counter({1: 36308, 2: 6541, 3: 532, 4: 28, 5: 1}). So currently I just used the first label for each of the datapoint. Not ideal but it does a decent job. ## Model Performance ============================================================<br> Emotion: admiration<br> ============================================================<br> GoEmotions Paper: 0.65<br> RoBERTa: 0.62<br> Support: 504<br> ============================================================<br> Emotion: amusement<br> ============================================================<br> GoEmotions Paper: 0.80<br> RoBERTa: 0.78<br> Support: 252<br> ============================================================<br> Emotion: anger<br> ============================================================<br> GoEmotions Paper: 0.47<br> RoBERTa: 0.44<br> Support: 197<br> ============================================================<br> Emotion: annoyance<br> ============================================================<br> GoEmotions Paper: 0.34<br> RoBERTa: 0.22<br> Support: 286<br> ============================================================<br> Emotion: approval<br> ============================================================<br> GoEmotions Paper: 0.36<br> RoBERTa: 0.31<br> Support: 318<br> ============================================================<br> Emotion: caring<br> ============================================================<br> GoEmotions Paper: 0.39<br> RoBERTa: 0.24<br> Support: 114<br> ============================================================<br> Emotion: confusion<br> ============================================================<br> GoEmotions Paper: 0.37<br> RoBERTa: 0.29<br> Support: 139<br> ============================================================<br> Emotion: curiosity<br> ============================================================<br> GoEmotions Paper: 0.54<br> RoBERTa: 0.48<br> Support: 233<br> ============================================================<br> Emotion: disappointment<br> ============================================================<br> GoEmotions Paper: 0.28<br> RoBERTa: 0.18<br> Support: 127<br> ============================================================<br> Emotion: disapproval<br> ============================================================<br> GoEmotions Paper: 0.39<br> RoBERTa: 0.26<br> Support: 220<br> ============================================================<br> Emotion: gratitude<br> ============================================================<br> GoEmotions Paper: 0.86<br> RoBERTa: 0.84<br> Support: 288<br> ============================================================<br> Emotion: joy<br> ============================================================<br> GoEmotions Paper: 0.51<br> RoBERTa: 0.47<br> Support: 116<br> ============================================================<br> Emotion: love<br> ============================================================<br> GoEmotions Paper: 0.78<br> RoBERTa: 0.68<br> Support: 169<br> ============================================================<br> Emotion: neutral<br> ============================================================<br> GoEmotions Paper: 0.68<br> RoBERTa: 0.61<br> Support: 1606<br> ============================================================<br> Emotion: optimism<br> ============================================================<br> GoEmotions Paper: 0.51<br> RoBERTa: 0.52<br> Support: 120<br> ============================================================<br> Emotion: realization<br> ============================================================<br> GoEmotions Paper: 0.21<br> RoBERTa: 0.15<br> Support: 109<br> ============================================================<br> Emotion: sadness<br> ============================================================<br> GoEmotions Paper: 0.49<br> RoBERTa: 0.42<br> Support: 108
{"language": "en", "license": "mit", "tags": ["text-classification", "pytorch", "roberta", "emotions"], "datasets": ["go_emotions"], "widget": [{"text": "I am not feeling well today."}]}
bsingh/roberta_goEmotion
null
[ "transformers", "pytorch", "roberta", "text-classification", "emotions", "en", "dataset:go_emotions", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-generation
transformers
# Yoda DialoGPT Model
{"tags": ["conversational"]}
bspans/DialoGPT-small-yoda
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
fill-mask
transformers
{}
bstad/a-different-bert-model
null
[ "transformers", "pytorch", "bert", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
fill-mask
transformers
{}
bstad/bert-model
null
[ "transformers", "pytorch", "bert", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
fill-mask
transformers
{}
bstad/dummy-model
null
[ "transformers", "pytorch", "camembert", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-generation
transformers
{}
btk/gpt100k
null
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-generation
transformers
{}
btk/gpt2_articles1
null
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-generation
transformers
{}
btk/gpt2_data_random
null
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-generation
transformers
{}
btk/gpt2jt
null
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
fill-mask
transformers
{}
btk/output_bert_uncased
null
[ "transformers", "pytorch", "jax", "bert", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
fill-mask
transformers
{}
btk-mufi/bert-pretrain
null
[ "transformers", "pytorch", "jax", "bert", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
fill-mask
transformers
# hseBERT **hseBert-it-cased** is a BERT model obtained by MLM adaptive-tuning [**bert-base-italian-xxl-cased**](https://huggingface.co/dbmdz/bert-base-italian-xxl-cased) on texts of Italian regulation (Testo unico sulla sicurezza sul lavoro - D.lgs. 9 aprile 2008, n. 81, Codice dell'Ambiente - D.lgs. 3 aprile 2006, n. 152), approximately 7k sentences. # Usage ```python from transformers import AutoModel, AutoTokenizer model_name = "bullmount/hseBert-it-cased" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModel.from_pretrained(model_name) ```
{"language": "it", "license": "mit", "widget": [{"text": "\u00c8 stata pubblicata la [MASK] di conversione del D.L. 24 dicembre 2021 n. 221 ."}, {"text": "La legge fornisce l\u2019esatta [MASK] di Green pass base."}, {"text": "Il datore di lavoro organizza e predispone i posti di lavoro di cui all'articolo 173, in [MASK] ai requisiti minimi di cui all'allegato XXXIV."}, {"text": "Le principali novit\u00e0 riguardano la quarantena precauzionale e il [MASK] di autosorveglianza."}]}
bullmount/hseBert-it-cased
null
[ "transformers", "pytorch", "tensorboard", "bert", "fill-mask", "it", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
token-classification
transformers
tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-it results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.it metrics: - name: F1 type: f1 value: 0.9097618003799502 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-it This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1417 - F1: 0.9098 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2754 | 1.0 | 834 | 0.1683 | 0.8717 | | 0.1366 | 2.0 | 1668 | 0.1449 | 0.8921 | | 0.0863 | 3.0 | 2502 | 0.1417 | 0.9098 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
{"license": "mit", "widget": [{"text": "Luigi \u00e8 nato a Roma."}, {"text": "Antonio ha chiesto ad Alessia di recarsi alla sede INAIL."}]}
bullmount/xlm-roberta-base-finetuned-panx-it
null
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "token-classification", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
mmmm
{}
bumhead/SnarlyTrain
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
bungba/kh_bert
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
{}
burmaxwell/Bert_temp
null
[ "transformers", "pytorch", "bert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
burrt/bertMME
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
busraa/distilbert-base-uncased-finetuned-ner
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
butchland/bert-finetuned-ner-accelerate
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
token-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0586 - Precision: 0.9390 - Recall: 0.9554 - F1: 0.9471 - Accuracy: 0.9873 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0877 | 1.0 | 1756 | 0.0662 | 0.9081 | 0.9344 | 0.9210 | 0.9827 | | 0.0376 | 2.0 | 3512 | 0.0599 | 0.9362 | 0.9502 | 0.9431 | 0.9862 | | 0.0209 | 3.0 | 5268 | 0.0586 | 0.9390 | 0.9554 | 0.9471 | 0.9873 | ### Framework versions - Transformers 4.14.1 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["conll2003"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "bert-finetuned-ner", "results": [{"task": {"type": "token-classification", "name": "Token Classification"}, "dataset": {"name": "conll2003", "type": "conll2003", "args": "conll2003"}, "metrics": [{"type": "precision", "value": 0.9389679126695336, "name": "Precision"}, {"type": "recall", "value": 0.9554022214742511, "name": "Recall"}, {"type": "f1", "value": 0.9471137804471137, "name": "F1"}, {"type": "accuracy", "value": 0.9873138282215812, "name": "Accuracy"}]}]}]}
butchland/bert-finetuned-ner
null
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "dataset:conll2003", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
butchland/codeparrot-ds
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
# CORe Model - Clinical Diagnosis Prediction ## Model description The CORe (_Clinical Outcome Representations_) model is introduced in the paper [Clinical Outcome Predictions from Admission Notes using Self-Supervised Knowledge Integration](https://www.aclweb.org/anthology/2021.eacl-main.75.pdf). It is based on BioBERT and further pre-trained on clinical notes, disease descriptions and medical articles with a specialised _Clinical Outcome Pre-Training_ objective. This model checkpoint is **fine-tuned on the task of diagnosis prediction**. The model expects patient admission notes as input and outputs multi-label ICD9-code predictions. #### Model Predictions The model makes predictions on a total of 9237 labels. These contain 3- and 4-digit ICD9 codes and textual descriptions of these codes. The 4-digit codes and textual descriptions help to incorporate further topical and hierarchical information into the model during training (see Section 4.2 _ICD+: Incorporation of ICD Hierarchy_ in our paper). We recommend to only use the **3-digit code predictions at inference time**, because only those have been evaluated in our work. #### How to use CORe Diagnosis Prediction You can load the model via the transformers library: ``` from transformers import AutoTokenizer, AutoModelForSequenceClassification tokenizer = AutoTokenizer.from_pretrained("bvanaken/CORe-clinical-diagnosis-prediction") model = AutoModelForSequenceClassification.from_pretrained("bvanaken/CORe-clinical-diagnosis-prediction") ``` The following code shows an inference example: ``` input = "CHIEF COMPLAINT: Headaches\n\nPRESENT ILLNESS: 58yo man w/ hx of hypertension, AFib on coumadin presented to ED with the worst headache of his life." tokenized_input = tokenizer(input, return_tensors="pt") output = model(**tokenized_input) import torch predictions = torch.sigmoid(output.logits) predicted_labels = [model.config.id2label[_id] for _id in (predictions > 0.3).nonzero()[:, 1].tolist()] ``` Note: For the best performance, we recommend to determine the thresholds (0.3 in this example) individually per label. ### More Information For all the details about CORe and contact info, please visit [CORe.app.datexis.com](http://core.app.datexis.com/). ### Cite ```bibtex @inproceedings{vanaken21, author = {Betty van Aken and Jens-Michalis Papaioannou and Manuel Mayrdorfer and Klemens Budde and Felix A. Gers and Alexander Löser}, title = {Clinical Outcome Prediction from Admission Notes using Self-Supervised Knowledge Integration}, booktitle = {Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, {EACL} 2021, Online, April 19 - 23, 2021}, publisher = {Association for Computational Linguistics}, year = {2021}, } ```
{"language": "en", "tags": ["bert", "medical", "clinical", "diagnosis", "text-classification"], "thumbnail": "https://core.app.datexis.com/static/paper.png", "widget": [{"text": "Patient with hypertension presents to ICU."}]}
DATEXIS/CORe-clinical-diagnosis-prediction
null
[ "transformers", "pytorch", "bert", "text-classification", "medical", "clinical", "diagnosis", "en", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
# CORe Model - Clinical Mortality Risk Prediction ## Model description The CORe (_Clinical Outcome Representations_) model is introduced in the paper [Clinical Outcome Predictions from Admission Notes using Self-Supervised Knowledge Integration](https://www.aclweb.org/anthology/2021.eacl-main.75.pdf). It is based on BioBERT and further pre-trained on clinical notes, disease descriptions and medical articles with a specialised _Clinical Outcome Pre-Training_ objective. This model checkpoint is **fine-tuned on the task of mortality risk prediction**. The model expects patient admission notes as input and outputs the predicted risk of in-hospital mortality. #### How to use CORe Mortality Risk Prediction You can load the model via the transformers library: ``` from transformers import AutoTokenizer, AutoModelForSequenceClassification tokenizer = AutoTokenizer.from_pretrained("bvanaken/CORe-clinical-mortality-prediction") model = AutoModelForSequenceClassification.from_pretrained("bvanaken/CORe-clinical-mortality-prediction") ``` The following code shows an inference example: ``` input = "CHIEF COMPLAINT: Headaches\n\nPRESENT ILLNESS: 58yo man w/ hx of hypertension, AFib on coumadin presented to ED with the worst headache of his life." tokenized_input = tokenizer(input, return_tensors="pt") output = model(**tokenized_input) import torch predictions = torch.softmax(output.logits.detach(), dim=1) mortality_risk_prediction = predictions[0][1].item() ``` ### More Information For all the details about CORe and contact info, please visit [CORe.app.datexis.com](http://core.app.datexis.com/). ### Cite ```bibtex @inproceedings{vanaken21, author = {Betty van Aken and Jens-Michalis Papaioannou and Manuel Mayrdorfer and Klemens Budde and Felix A. Gers and Alexander Löser}, title = {Clinical Outcome Prediction from Admission Notes using Self-Supervised Knowledge Integration}, booktitle = {Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, {EACL} 2021, Online, April 19 - 23, 2021}, publisher = {Association for Computational Linguistics}, year = {2021}, } ```
{"language": "en", "tags": ["bert", "medical", "clinical", "mortality"], "thumbnail": "https://core.app.datexis.com/static/paper.png"}
DATEXIS/CORe-clinical-mortality-prediction
null
[ "transformers", "pytorch", "bert", "text-classification", "medical", "clinical", "mortality", "en", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
transformers
# CORe Model - BioBERT + Clinical Outcome Pre-Training ## Model description The CORe (_Clinical Outcome Representations_) model is introduced in the paper [Clinical Outcome Predictions from Admission Notes using Self-Supervised Knowledge Integration](https://www.aclweb.org/anthology/2021.eacl-main.75.pdf). It is based on BioBERT and further pre-trained on clinical notes, disease descriptions and medical articles with a specialised _Clinical Outcome Pre-Training_ objective. #### How to use CORe You can load the model via the transformers library: ``` from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("bvanaken/CORe-clinical-outcome-biobert-v1") model = AutoModel.from_pretrained("bvanaken/CORe-clinical-outcome-biobert-v1") ``` From there, you can fine-tune it on clinical tasks that benefit from patient outcome knowledge. ### Pre-Training Data The model is based on [BioBERT](https://huggingface.co/dmis-lab/biobert-v1.1) pre-trained on PubMed data. The _Clinical Outcome Pre-Training_ included discharge summaries from the MIMIC III training set (specified [here](https://github.com/bvanaken/clinical-outcome-prediction/blob/master/tasks/mimic_train.csv)), medical transcriptions from [MTSamples](https://mtsamples.com/) and clinical notes from the i2b2 challenges 2006-2012. It further includes ~10k case reports from PubMed Central (PMC), disease articles from Wikipedia and article sections from the [MedQuAd](https://github.com/abachaa/MedQuAD) dataset extracted from NIH websites. ### More Information For all the details about CORe and contact info, please visit [CORe.app.datexis.com](http://core.app.datexis.com/). ### Cite ```bibtex @inproceedings{vanaken21, author = {Betty van Aken and Jens-Michalis Papaioannou and Manuel Mayrdorfer and Klemens Budde and Felix A. Gers and Alexander Löser}, title = {Clinical Outcome Prediction from Admission Notes using Self-Supervised Knowledge Integration}, booktitle = {Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, {EACL} 2021, Online, April 19 - 23, 2021}, publisher = {Association for Computational Linguistics}, year = {2021}, } ```
{"language": "en", "tags": ["bert", "medical", "clinical"], "thumbnail": "https://core.app.datexis.com/static/paper.png"}
bvanaken/CORe-clinical-outcome-biobert-v1
null
[ "transformers", "pytorch", "jax", "bert", "medical", "clinical", "en", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
# Clinical Assertion / Negation Classification BERT ## Model description The Clinical Assertion and Negation Classification BERT is introduced in the paper [Assertion Detection in Clinical Notes: Medical Language Models to the Rescue? ](https://aclanthology.org/2021.nlpmc-1.5/). The model helps structure information in clinical patient letters by classifying medical conditions mentioned in the letter into PRESENT, ABSENT and POSSIBLE. The model is based on the [ClinicalBERT - Bio + Discharge Summary BERT Model](https://huggingface.co/emilyalsentzer/Bio_Discharge_Summary_BERT) by Alsentzer et al. and fine-tuned on assertion data from the [2010 i2b2 challenge](https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3168320/). #### How to use the model You can load the model via the transformers library: ``` from transformers import AutoTokenizer, AutoModelForSequenceClassification, TextClassificationPipeline tokenizer = AutoTokenizer.from_pretrained("bvanaken/clinical-assertion-negation-bert") model = AutoModelForSequenceClassification.from_pretrained("bvanaken/clinical-assertion-negation-bert") ``` The model expects input in the form of spans/sentences with one marked entity to classify as `PRESENT(0)`, `ABSENT(1)` or `POSSIBLE(2)`. The entity in question is identified with the special token `[entity]` surrounding it. Example input and inference: ``` input = "The patient recovered during the night and now denies any [entity] shortness of breath [entity]." classifier = TextClassificationPipeline(model=model, tokenizer=tokenizer) classification = classifier(input) # [{'label': 'ABSENT', 'score': 0.9842607378959656}] ``` ### Cite When working with the model, please cite our paper as follows: ```bibtex @inproceedings{van-aken-2021-assertion, title = "Assertion Detection in Clinical Notes: Medical Language Models to the Rescue?", author = "van Aken, Betty and Trajanovska, Ivana and Siu, Amy and Mayrdorfer, Manuel and Budde, Klemens and Loeser, Alexander", booktitle = "Proceedings of the Second Workshop on Natural Language Processing for Medical Conversations", year = "2021", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.nlpmc-1.5", doi = "10.18653/v1/2021.nlpmc-1.5" } ```
{"language": "en", "tags": ["bert", "medical", "clinical", "assertion", "negation", "text-classification"], "widget": [{"text": "Patient denies [entity] SOB [entity]."}]}
bvanaken/clinical-assertion-negation-bert
null
[ "transformers", "pytorch", "bert", "text-classification", "medical", "clinical", "assertion", "negation", "en", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
bvk/dummy-model
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
bwarshaw/heysitsmynewmodel
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
bwu2018/vit-anime-tagging
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
automatic-speech-recognition
espnet
## Example ESPnet2 ASR model ### `Shinji Watanabe/librispeech_asr_train_asr_transformer_e18_raw_bpe_sp_valid.acc.best` ♻️ Imported from https://zenodo.org/record/3966501 This model was trained by Shinji Watanabe using librispeech recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```python # coming soon ``` ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson {Enrique Yalta Soplin} and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } @inproceedings{hayashi2020espnet, title={{Espnet-TTS}: Unified, reproducible, and integratable open source end-to-end text-to-speech toolkit}, author={Hayashi, Tomoki and Yamamoto, Ryuichi and Inoue, Katsuki and Yoshimura, Takenori and Watanabe, Shinji and Toda, Tomoki and Takeda, Kazuya and Zhang, Yu and Tan, Xu}, booktitle={Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, pages={7654--7658}, year={2020}, organization={IEEE} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Enrique Yalta Soplin and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
{"language": "en", "license": "cc-by-4.0", "tags": ["espnet", "audio", "automatic-speech-recognition"], "datasets": ["librispeech"]}
byan/librispeech_asr_train_asr_conformer_raw_bpe_batch_bins30000000_accum_grad3_optim_conflr0.001_sp
null
[ "espnet", "audio", "automatic-speech-recognition", "en", "dataset:librispeech", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
null
2022-03-02T23:29:05+00:00
automatic-speech-recognition
espnet
## Example ESPnet2 ASR model ### `Shinji Watanabe/librispeech_asr_train_asr_transformer_e18_raw_bpe_sp_valid.acc.best` ♻️ Imported from https://zenodo.org/record/3966501 This model was trained by Shinji Watanabe using librispeech recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```python # coming soon ``` ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson {Enrique Yalta Soplin} and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } @inproceedings{hayashi2020espnet, title={{Espnet-TTS}: Unified, reproducible, and integratable open source end-to-end text-to-speech toolkit}, author={Hayashi, Tomoki and Yamamoto, Ryuichi and Inoue, Katsuki and Yoshimura, Takenori and Watanabe, Shinji and Toda, Tomoki and Takeda, Kazuya and Zhang, Yu and Tan, Xu}, booktitle={Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, pages={7654--7658}, year={2020}, organization={IEEE} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Enrique Yalta Soplin and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
{"language": "en", "license": "cc-by-4.0", "tags": ["espnet", "audio", "automatic-speech-recognition"], "datasets": ["librispeech"]}
byan/librispeech_asr_train_asr_transformer_e18_raw_bpe_sp
null
[ "espnet", "audio", "automatic-speech-recognition", "en", "dataset:librispeech", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
byeolcardi/ocr
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
text-generation
transformers
## Ko-DialoGPT ### How to use ```python from transformers import PreTrainedTokenizerFast, GPT2LMHeadModel import torch device = 'cuda' if torch.cuda.is_available() else 'cpu' tokenizer = PreTrainedTokenizerFast.from_pretrained('byeongal/Ko-DialoGPT') model = GPT2LMHeadModel.from_pretrained('byeongal/Ko-DialoGPT').to(device) past_user_inputs = [] generated_responses = [] while True: user_input = input(">> User:") if user_input == 'bye': break text_idx = tokenizer.encode(user_input + tokenizer.eos_token, return_tensors='pt') for i in range(len(generated_responses)-1, len(generated_responses)-3, -1): if i < 0: break encoded_vector = tokenizer.encode(generated_responses[i] + tokenizer.eos_token, return_tensors='pt') if text_idx.shape[-1] + encoded_vector.shape[-1] < 1000: text_idx = torch.cat([encoded_vector, text_idx], dim=-1) else: break encoded_vector = tokenizer.encode(past_user_inputs[i] + tokenizer.eos_token, return_tensors='pt') if text_idx.shape[-1] + encoded_vector.shape[-1] < 1000: text_idx = torch.cat([encoded_vector, text_idx], dim=-1) else: break text_idx = text_idx.to(device) inference_output = model.generate( text_idx, max_length=1000, num_beams=5, top_k=20, no_repeat_ngram_size=4, length_penalty=0.65, repetition_penalty=2.0, ) inference_output = inference_output.tolist() bot_response = tokenizer.decode(inference_output[0][text_idx.shape[-1]:], skip_special_tokens=True) print(f"Bot: {bot_response}") past_user_inputs.append(user_input) generated_responses.append(bot_response) ``` ### Reference * [SKT-KoGPT2](https://huggingface.co/skt/kogpt2-base-v2) * [KETI R&D 데이터](https://aihub.or.kr/opendata/keti-data/recognition-laguage/KETI-02-008) * [한국어 대화 요약](https://aihub.or.kr/aidata/30714)
{"language": "ko", "license": "cc-by-nc-sa-4.0", "tags": ["gpt2", "conversational"]}
byeongal/Ko-DialoGPT
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "ko", "license:cc-by-nc-sa-4.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
feature-extraction
transformers
# BART base model for Teachable NLP - This model forked from [bart-base](https://huggingface.co/facebook/bart-base) for fine tune [Teachable NLP](https://ainize.ai/teachable-nlp). The Bart model was proposed by Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Ves Stoyanov and Luke Zettlemoyer on 29 Oct, 2019. According to the abstract, Bart uses a standard seq2seq/machine translation architecture with a bidirectional encoder (like BERT) and a left-to-right decoder (like GPT). The pretraining task involves randomly shuffling the order of the original sentences and a novel in-filling scheme, where spans of text are replaced with a single mask token. BART is particularly effective when fine tuned for text generation but also works well for comprehension tasks. It matches the performance of RoBERTa with comparable training resources on GLUE and SQuAD, achieves new state-of-the-art results on a range of abstractive dialogue, question answering, and summarization tasks, with gains of up to 6 ROUGE. The Authors’ code can be found here: https://github.com/pytorch/fairseq/tree/master/examples/bart
{"language": "en", "license": "mit", "tags": ["bart"], "thumbnail": "https://huggingface.co/front/thumbnails/facebook.png"}
byeongal/bart-base
null
[ "transformers", "pytorch", "bart", "feature-extraction", "en", "license:mit", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
feature-extraction
transformers
# BART base model for Teachable NLP - This model forked from [bart-base](https://huggingface.co/facebook/bart-base) for fine tune [Teachable NLP](https://ainize.ai/teachable-nlp). The Bart model was proposed by Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Ves Stoyanov and Luke Zettlemoyer on 29 Oct, 2019. According to the abstract, Bart uses a standard seq2seq/machine translation architecture with a bidirectional encoder (like BERT) and a left-to-right decoder (like GPT). The pretraining task involves randomly shuffling the order of the original sentences and a novel in-filling scheme, where spans of text are replaced with a single mask token. BART is particularly effective when fine tuned for text generation but also works well for comprehension tasks. It matches the performance of RoBERTa with comparable training resources on GLUE and SQuAD, achieves new state-of-the-art results on a range of abstractive dialogue, question answering, and summarization tasks, with gains of up to 6 ROUGE. The Authors’ code can be found here: https://github.com/pytorch/fairseq/tree/master/examples/bart
{"language": "en", "license": "mit", "tags": ["bart"], "thumbnail": "https://huggingface.co/front/thumbnails/facebook.png"}
byeongal/bart-large
null
[ "transformers", "pytorch", "bart", "feature-extraction", "en", "license:mit", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
fill-mask
transformers
# BERT base model (uncased) for Teachable NLP - This model forked from [bert-base-uncased](https://huggingface.co/bert-base-uncased) for fine tune [Teachable NLP](https://ainize.ai/teachable-nlp). Pretrained model on English language using a masked language modeling (MLM) objective. It was introduced in [this paper](https://arxiv.org/abs/1810.04805) and first released in [this repository](https://github.com/google-research/bert). This model is uncased: it does not make a difference between english and English. Disclaimer: The team releasing BERT did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description BERT is a transformers model pretrained on a large corpus of English data in a self-supervised fashion. This means it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it was pretrained with two objectives: - Masked language modeling (MLM): taking a sentence, the model randomly masks 15% of the words in the input then run the entire masked sentence through the model and has to predict the masked words. This is different from traditional recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like GPT which internally mask the future tokens. It allows the model to learn a bidirectional representation of the sentence. - Next sentence prediction (NSP): the models concatenates two masked sentences as inputs during pretraining. Sometimes they correspond to sentences that were next to each other in the original text, sometimes not. The model then has to predict if the two sentences were following each other or not. This way, the model learns an inner representation of the English language that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled sentences for instance, you can train a standard classifier using the features produced by the BERT model as inputs. ## Intended uses & limitations You can use the raw model for either masked language modeling or next sentence prediction, but it's mostly intended to be fine-tuned on a downstream task. See the [model hub](https://huggingface.co/models?filter=bert) to look for fine-tuned versions on a task that interests you. Note that this model is primarily aimed at being fine-tuned on tasks that use the whole sentence (potentially masked) to make decisions, such as sequence classification, token classification or question answering. For tasks such as text generation you should look at model like GPT2. ### How to use You can use this model directly with a pipeline for masked language modeling: ```python >>> from transformers import pipeline >>> unmasker = pipeline('fill-mask', model='bert-base-uncased') >>> unmasker("Hello I'm a [MASK] model.") [{'sequence': "[CLS] hello i'm a fashion model. [SEP]", 'score': 0.1073106899857521, 'token': 4827, 'token_str': 'fashion'}, {'sequence': "[CLS] hello i'm a role model. [SEP]", 'score': 0.08774490654468536, 'token': 2535, 'token_str': 'role'}, {'sequence': "[CLS] hello i'm a new model. [SEP]", 'score': 0.05338378623127937, 'token': 2047, 'token_str': 'new'}, {'sequence': "[CLS] hello i'm a super model. [SEP]", 'score': 0.04667217284440994, 'token': 3565, 'token_str': 'super'}, {'sequence': "[CLS] hello i'm a fine model. [SEP]", 'score': 0.027095865458250046, 'token': 2986, 'token_str': 'fine'}] ``` Here is how to use this model to get the features of a given text in PyTorch: ```python from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') model = BertModel.from_pretrained("bert-base-uncased") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` and in TensorFlow: ```python from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') model = TFBertModel.from_pretrained("bert-base-uncased") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` ### Limitations and bias Even if the training data used for this model could be characterized as fairly neutral, this model can have biased predictions: ```python >>> from transformers import pipeline >>> unmasker = pipeline('fill-mask', model='bert-base-uncased') >>> unmasker("The man worked as a [MASK].") [{'sequence': '[CLS] the man worked as a carpenter. [SEP]', 'score': 0.09747550636529922, 'token': 10533, 'token_str': 'carpenter'}, {'sequence': '[CLS] the man worked as a waiter. [SEP]', 'score': 0.0523831807076931, 'token': 15610, 'token_str': 'waiter'}, {'sequence': '[CLS] the man worked as a barber. [SEP]', 'score': 0.04962705448269844, 'token': 13362, 'token_str': 'barber'}, {'sequence': '[CLS] the man worked as a mechanic. [SEP]', 'score': 0.03788609802722931, 'token': 15893, 'token_str': 'mechanic'}, {'sequence': '[CLS] the man worked as a salesman. [SEP]', 'score': 0.037680890411138535, 'token': 18968, 'token_str': 'salesman'}] >>> unmasker("The woman worked as a [MASK].") [{'sequence': '[CLS] the woman worked as a nurse. [SEP]', 'score': 0.21981462836265564, 'token': 6821, 'token_str': 'nurse'}, {'sequence': '[CLS] the woman worked as a waitress. [SEP]', 'score': 0.1597415804862976, 'token': 13877, 'token_str': 'waitress'}, {'sequence': '[CLS] the woman worked as a maid. [SEP]', 'score': 0.1154729500412941, 'token': 10850, 'token_str': 'maid'}, {'sequence': '[CLS] the woman worked as a prostitute. [SEP]', 'score': 0.037968918681144714, 'token': 19215, 'token_str': 'prostitute'}, {'sequence': '[CLS] the woman worked as a cook. [SEP]', 'score': 0.03042375110089779, 'token': 5660, 'token_str': 'cook'}] ``` This bias will also affect all fine-tuned versions of this model. ## Training data The BERT model was pretrained on [BookCorpus](https://yknzhu.wixsite.com/mbweb), a dataset consisting of 11,038 unpublished books and [English Wikipedia](https://en.wikipedia.org/wiki/English_Wikipedia) (excluding lists, tables and headers). ## Training procedure ### Preprocessing The texts are lowercased and tokenized using WordPiece and a vocabulary size of 30,000. The inputs of the model are then of the form: ``` [CLS] Sentence A [SEP] Sentence B [SEP] ``` With probability 0.5, sentence A and sentence B correspond to two consecutive sentences in the original corpus and in the other cases, it's another random sentence in the corpus. Note that what is considered a sentence here is a consecutive span of text usually longer than a single sentence. The only constrain is that the result with the two "sentences" has a combined length of less than 512 tokens. The details of the masking procedure for each sentence are the following: - 15% of the tokens are masked. - In 80% of the cases, the masked tokens are replaced by `[MASK]`. - In 10% of the cases, the masked tokens are replaced by a random token (different) from the one they replace. - In the 10% remaining cases, the masked tokens are left as is. ### Pretraining The model was trained on 4 cloud TPUs in Pod configuration (16 TPU chips total) for one million steps with a batch size of 256. The sequence length was limited to 128 tokens for 90% of the steps and 512 for the remaining 10%. The optimizer used is Adam with a learning rate of 1e-4, \\(\beta*{1} = 0.9\\) and \\(\beta*{2} = 0.999\\), a weight decay of 0.01, learning rate warmup for 10,000 steps and linear decay of the learning rate after. ## Evaluation results When fine-tuned on downstream tasks, this model achieves the following results: Glue test results: | Task | MNLI-(m/mm) | QQP | QNLI | SST-2 | CoLA | STS-B | MRPC | RTE | Average | | :--: | :---------: | :--: | :--: | :---: | :--: | :---: | :--: | :--: | :-----: | | | 84.6/83.4 | 71.2 | 90.5 | 93.5 | 52.1 | 85.8 | 88.9 | 66.4 | 79.6 | ### BibTeX entry and citation info ```bibtex @article{DBLP:journals/corr/abs-1810-04805, author = {Jacob Devlin and Ming{-}Wei Chang and Kenton Lee and Kristina Toutanova}, title = {{BERT:} Pre-training of Deep Bidirectional Transformers for Language Understanding}, journal = {CoRR}, volume = {abs/1810.04805}, year = {2018}, url = {http://arxiv.org/abs/1810.04805}, archivePrefix = {arXiv}, eprint = {1810.04805}, timestamp = {Tue, 30 Oct 2018 20:39:56 +0100}, biburl = {https://dblp.org/rec/journals/corr/abs-1810-04805.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ``` <a href="https://huggingface.co/exbert/?model=bert-base-uncased"> <img width="300px" src="https://cdn-media.huggingface.co/exbert/button.png"> </a>
{"language": "en", "license": "apache-2.0", "tags": ["exbert"], "datasets": ["bookcorpus", "wikipedia"]}
byeongal/bert-base-uncased
null
[ "transformers", "pytorch", "bert", "fill-mask", "exbert", "en", "dataset:bookcorpus", "dataset:wikipedia", "arxiv:1810.04805", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{"license": "apache-2.0"}
byeongal/gpt-j-6B-float15
null
[ "license:apache-2.0", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{"license": "apache-2.0"}
byeongal/gpt-j-6B-float16
null
[ "license:apache-2.0", "region:us" ]
null
2022-03-02T23:29:05+00:00