Search is not available for this dataset
pipeline_tag
stringclasses
48 values
library_name
stringclasses
205 values
text
stringlengths
0
18.3M
metadata
stringlengths
2
1.07B
id
stringlengths
5
122
last_modified
null
tags
listlengths
1
1.84k
sha
null
created_at
stringlengths
25
25
null
null
{}
bigscience/tr4c-1B3-rotary-oscar-logs
null
[ "tensorboard", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
bigscience/tr5a-1B3-multilingual-mt5tok-checkpoints
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
bigscience/tr5a-1B3-multilingual-mt5tok-logs
null
[ "tensorboard", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
bigscience/tr5b-1B3-multilingual-alpha-checkpoints
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
bigscience/tr5b-1B3-multilingual-alpha-logs
null
[ "tensorboard", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
bigscience/tr5c-1B3-multilingual-alpha-alibi-logs
null
[ "tensorboard", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
bigscience/tr6-1B3-prefix-lm-tensorboard
null
[ "tensorboard", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
bigscience/tr6-1B3-prefix-lm-unbiased-loss-logs
null
[ "tensorboard", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
bigscience/tr6b-350M-prefix-lm-tensorboard
null
[ "tensorboard", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
bigscience/tr6c-350M-prefix-lm-reset-attention-mask-tensorboard
null
[ "tensorboard", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
bigscience/tr6d-350M-prefix-lm-pile-logs
null
[ "tensorboard", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
bigscience/tr6e-1B3-pile-logs
null
[ "tensorboard", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
bigscience/tr6f-1B3-oscar-no-loss-on-targets-only-logs
null
[ "tensorboard", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
bigscience/tr6g-1B3-oscar-loss-reweighting-logs
null
[ "tensorboard", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
bigscience/tr7a-1B3-alibi-checkpoints
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
bigscience/tr7a-1B3-alibi-logs
null
[ "tensorboard", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
bigscience/tr7b-350M-alibi-tensorboard
null
[ "tensorboard", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
bigscience/tr7b-350M-validation-alibi-tensorboard
null
[ "tensorboard", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
bigscience/tr7c-1B3-alibi-checkpoints
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
bigscience/tr7c-1B3-alibi-logs
null
[ "tensorboard", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
bigscience/tr7d-1B3-alibi-logs
null
[ "tensorboard", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
bigscience/tr7d-a100-debug
null
[ "tensorboard", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
bigscience/tr8-104B-data
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
bigscience/tr8-104B-logs
null
[ "tensorboard", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
bigscience/tr8b-104B-debug
null
[ "tensorboard", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
bigscience/tr8b-104B-debug2
null
[ "tensorboard", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
bigscience/tr8b-104B-debug4
null
[ "tensorboard", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
bigscience/tr8b-104B-debug5
null
[ "tensorboard", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
bigscience/tr8b-104B-debug6
null
[ "tensorboard", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
bigscience/tr8b-104B-debug7
null
[ "tensorboard", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
bigscience/tr8b-104B-logs
null
[ "tensorboard", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
bigscience/tr8b-104B-pile-logs
null
[ "tensorboard", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
bigscience/tr9-1B3-swiglu-logs
null
[ "tensorboard", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
bigscience/tr9b-350M-swiglu-logs
null
[ "tensorboard", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
bigscience/tr9c-1B3-swiglu-pile-logs
null
[ "tensorboard", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
bigscience-bot/tr5-1B3-multilingual-logs
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
bigscience-catalogue-data-dev/byte-level-bpe-tokenizer-nfkc-250k
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
You need a custom version of the `tokenizers` library to use this tokenizer. To install this custom version you can: ```bash pip install transformers git clone https://github.com/huggingface/tokenizers.git cd tokenizers git checkout bigscience_fork cd bindings/python pip install setuptools_rust pip install -e . ``` and then to load it, do: ```python from transformers import AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("bigscience-catalogue-data-dev/byte-level-bpe-tokenizer-no-norm-250k-whitespace-and-eos-regex-alpha-v3-dedup-lines-articles") ```
{}
bigscience-catalogue-data-dev/byte-level-bpe-tokenizer-no-norm-250k-whitespace-and-eos-regex-alpha-v3-dedup-lines-articles
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
bigscience-catalogue-data-dev/byte-level-bpe-tokenizer-no-norm-250k
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
bigscience-catalogue-data-dev/test_fix_empty_string_replacement
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
bigscience-data/tokenizer_alpha_NFKC_250k
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
bigscience-data/tokenizer_alpha_nfkc_24M
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
bigscience-data/tokenizer_alpha_weight_NFKC
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
bigscience-data/tokenizer_equal_NFKC_250k
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
bigscience-data/tokenizer_equal_nfkc_24M
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
bigscience-data/tokenizer_equal_weight_NFKC_v1
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
bigscience-data/tokenizer_v0
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
question-answering
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # sapbert-from-pubmedbert-squad2 This model is a fine-tuned version of [cambridgeltl/SapBERT-from-PubMedBERT-fulltext](https://huggingface.co/cambridgeltl/SapBERT-from-PubMedBERT-fulltext) on the squad_v2 dataset. It achieves the following results on the evaluation set: - Loss: 1.2582 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.035 | 1.0 | 8298 | 0.9545 | | 0.8053 | 2.0 | 16596 | 0.9988 | | 0.5949 | 3.0 | 24894 | 0.9909 | | 0.4878 | 4.0 | 33192 | 1.1428 | | 0.3932 | 5.0 | 41490 | 1.2582 | ### Framework versions - Transformers 4.7.0 - Pytorch 1.8.0 - Datasets 1.4.1 - Tokenizers 0.10.2
{"datasets": ["squad_v2"], "model_index": [{"name": "sapbert-from-pubmedbert-squad2", "results": [{"task": {"name": "Question Answering", "type": "question-answering"}, "dataset": {"name": "squad_v2", "type": "squad_v2", "args": "squad_v2"}}]}]}
bigwiz83/sapbert-from-pubmedbert-squad2
null
[ "transformers", "pytorch", "bert", "question-answering", "dataset:squad_v2", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
biinii/1
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
fill-mask
transformers
{}
bill/bert_finetuning_test1
null
[ "transformers", "pytorch", "bert", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
bill/bert_finetuning_test2
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
billji/jingli
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
billpr/v1
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
bilzjkhan/model1
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
binarymax/roberta-base-squad2-outdoors
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
bingogo/test_torch_model
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
test1
{}
bingzhen/test1
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
fill-mask
transformers
{}
binwang/bert-base-nli-stsb
null
[ "transformers", "pytorch", "jax", "safetensors", "bert", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
fill-mask
transformers
{}
binwang/bert-base-nli
null
[ "transformers", "pytorch", "jax", "bert", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
fill-mask
transformers
{}
binwang/bert-base-uncased
null
[ "transformers", "pytorch", "jax", "bert", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
fill-mask
transformers
{}
binwang/bert-large-nli-stsb
null
[ "transformers", "pytorch", "jax", "bert", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
fill-mask
transformers
{}
binwang/bert-large-nli
null
[ "transformers", "pytorch", "jax", "bert", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
fill-mask
transformers
{}
binwang/roberta-base
null
[ "transformers", "pytorch", "jax", "roberta", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-generation
transformers
This model is pre-trained **XLNET** with 12 layers. It comes with paper: SBERT-WK: A Sentence Embedding Method By Dissecting BERT-based Word Models Project Page: [SBERT-WK](https://github.com/BinWang28/SBERT-WK-Sentence-Embedding)
{}
binwang/xlnet-base-cased
null
[ "transformers", "pytorch", "safetensors", "xlnet", "text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
token-classification
transformers
[bioformer-8L](https://huggingface.co/bioformers/bioformer-8L) fined-tuned on the [BC2GM](https://doi.org/10.1186/gb-2008-9-s2-s2) dataset for 10 epochs. This fine-tuned model can be used for NER for genes/proteins.
{"language": ["en"], "license": "apache-2.0", "pipeline_tag": "token-classification"}
bioformers/bioformer-8L-bc2gm
null
[ "transformers", "pytorch", "safetensors", "bert", "token-classification", "en", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
[bioformer-cased-v1.0](https://huggingface.co/bioformers/bioformer-cased-v1.0) fined-tuned on the [MNLI](https://cims.nyu.edu/~sbowman/multinli/) dataset for 2 epochs. The fine-tuning process was performed on two NVIDIA GeForce GTX 1080 Ti GPUs (11GB). The parameters are: ``` max_seq_length=512 per_device_train_batch_size=16 total train batch size (w. parallel, distributed & accumulation) = 32 learning_rate=3e-5 ``` ## Evaluation results eval_accuracy = 0.803973 ## Speed In our experiments, the inference speed of Bioformer is 3x as fast as BERT-base/BioBERT/PubMedBERT, and is 40% faster than DistilBERT. ## More information The Multi-Genre Natural Language Inference Corpus is a crowdsourced collection of sentence pairs with textual entailment annotations. Given a premise sentence and a hypothesis sentence, the task is to predict whether the premise entails the hypothesis (entailment), contradicts the hypothesis (contradiction), or neither (neutral). The premise sentences are gathered from ten different sources, including transcribed speech, fiction, and government reports. The authors of the benchmark use the standard test set, for which they obtained private labels from the RTE authors, and evaluate on both the matched (in-domain) and mismatched (cross-domain) section. They also uses and recommend the SNLI corpus as 550k examples of auxiliary training data. (source: https://huggingface.co/datasets/glue)
{}
bioformers/bioformer-8L-mnli
null
[ "transformers", "pytorch", "safetensors", "bert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
token-classification
transformers
[bioformer-8L](https://huggingface.co/bioformers/bioformer-8L) fined-tuned on the [NCBI Disease](https://doi.org/10.1016/j.jbi.2013.12.006) dataset for 10 epochs. This fine-tuned model can be used for NER for diseases.
{"language": ["en"], "license": "apache-2.0"}
bioformers/bioformer-8L-ncbi-disease
null
[ "transformers", "pytorch", "safetensors", "bert", "token-classification", "en", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
[bioformer-8L](https://huggingface.co/bioformers/bioformer-8L) fined-tuned on the [QNLI](https://huggingface.co/datasets/glue) dataset for 2 epochs. The fine-tuning process was performed on two NVIDIA GeForce GTX 1080 Ti GPUs (11GB). The parameters are: ``` max_seq_length=512 per_device_train_batch_size=16 total train batch size (w. parallel, distributed & accumulation) = 32 learning_rate=3e-5 ``` ## Evaluation results eval_accuracy = 0.883397 ## More information The QNLI (Question-answering NLI) dataset is a Natural Language Inference dataset automatically derived from the Stanford Question Answering Dataset v1.1 (SQuAD). SQuAD v1.1 consists of question-paragraph pairs, where one of the sentences in the paragraph (drawn from Wikipedia) contains the answer to the corresponding question (written by an annotator). The dataset was converted into sentence pair classification by forming a pair between each question and each sentence in the corresponding context, and filtering out pairs with low lexical overlap between the question and the context sentence. The task is to determine whether the context sentence contains the answer to the question. This modified version of the original task removes the requirement that the model select the exact answer, but also removes the simplifying assumptions that the answer is always present in the input and that lexical overlap is a reliable cue. The QNLI dataset is part of GLEU benchmark. (source: https://paperswithcode.com/dataset/qnli) Original GLUE paper: https://arxiv.org/abs/1804.07461
{"language": ["en"], "license": "apache-2.0"}
bioformers/bioformer-8L-qnli
null
[ "transformers", "pytorch", "safetensors", "bert", "text-classification", "en", "arxiv:1804.07461", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
question-answering
transformers
[bioformer-8L](https://huggingface.co/bioformers/bioformer-8L) fined-tuned on the [SQuAD1](https://rajpurkar.github.io/SQuAD-explorer) dataset for 3 epochs. The fine-tuning process was performed on a single P100 GPUs (16GB). The hyperparameters are: ``` max_seq_length=512 per_device_train_batch_size=16 gradient_accumulation_steps=1 total train batch size (w. parallel, distributed & accumulation) = 16 learning_rate=3e-5 num_train_epochs=3 ``` ## Evaluation results ``` "eval_exact_match": 78.55250709555345 "eval_f1": 85.91482799690257 ``` Bioformer's performance is on par with [DistilBERT](https://arxiv.org/pdf/1910.01108.pdf) (EM/F1: 77.7/85.8), although Bioformer was pretrained only on biomedical texts. ## Speed In our experiments, the inference speed of Bioformer is 3x as fast as BERT-base/BioBERT/PubMedBERT, and is 40% faster than DistilBERT.
{"language": ["en"], "license": "apache-2.0", "pipeline_tag": "question-answering"}
bioformers/bioformer-8L-squad1
null
[ "transformers", "pytorch", "safetensors", "bert", "question-answering", "en", "arxiv:1910.01108", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
fill-mask
transformers
**_NOTE: `bioformer-cased-v1.0` has been renamed to `bioformer-8L`. All links to `bioformer-cased-v1.0` will automatically redirect to `bioformer-8L`, including git operations. However, to avoid confusion, we recommend updating any existing local clones to point to the new repository URL._** Bioformer-8L is a lightweight BERT model for biomedical text mining. Bioformer-8L uses a biomedical vocabulary and is pre-trained from scratch only on biomedical domain corpora. Our experiments show that Bioformer-8L is 3x as fast as BERT-base, and achieves comparable or even better performance than BioBERT/PubMedBERT on downstream NLP tasks. Bioformer-8L has 8 layers (transformer blocks) with a hidden embedding size of 512, and the number of self-attention heads is 8. Its total number of parameters is 42,820,610. **The usage of Bioformer-8L is the same as a standard BERT model. The documentation of BERT can be found [here](https://huggingface.co/docs/transformers/model_doc/bert).** ## Vocabulary of Bioformer-8L Bioformer-8L uses a cased WordPiece vocabulary trained from a biomedical corpus, which included all PubMed abstracts (33 million, as of Feb 1, 2021) and 1 million PMC full-text articles. PMC has 3.6 million articles but we down-sampled them to 1 million such that the total size of PubMed abstracts and PMC full-text articles are approximately equal. To mitigate the out-of-vocabulary issue and include special symbols (e.g. male and female symbols) in biomedical literature, we trained Bioformer’s vocabulary from the Unicode text of the two resources. The vocabulary size of Bioformer-8L is 32768 (2^15), which is similar to that of the original BERT. ## Pre-training of Bioformer-8L Bioformer-8L was pre-trained from scratch on the same corpus as the vocabulary (33 million PubMed abstracts + 1 million PMC full-text articles). For the masked language modeling (MLM) objective, we used whole-word masking with a masking rate of 15%. There are debates on whether the next sentence prediction (NSP) objective could improve the performance on downstream tasks. We include it in our pre-training experiment in case the prediction of the next sentence is needed by end-users. Sentence segmentation of all training text was performed using [SciSpacy](https://allenai.github.io/scispacy/). Pre-training of Bioformer-8L was performed on a single Cloud TPU device (TPUv2, 8 cores, 8GB memory per core). The maximum input sequence length was fixed to 512, and the batch size was set to 256. We pre-trained Bioformer-8L for 2 million steps, which took about 8.3 days. ## Usage Prerequisites: python3, pytorch, transformers and datasets We have tested the following commands on Python v3.9.16, PyTorch v1.13.1+cu117, Datasets v2.9.0 and Transformers v4.26. To install pytorch, please refer to instructions [here](https://pytorch.org/get-started/locally). To install the `transformers` and `datasets` library: ``` pip install transformers pip install datasets ``` ### Filling mask ``` from transformers import pipeline unmasker8L = pipeline('fill-mask', model='bioformers/bioformer-8L') unmasker8L("[MASK] refers to a group of diseases that affect how the body uses blood sugar (glucose)") unmasker16L = pipeline('fill-mask', model='bioformers/bioformer-16L') unmasker16L("[MASK] refers to a group of diseases that affect how the body uses blood sugar (glucose)") ``` Output of `bioformer-8L`: ``` [{'score': 0.3207533359527588, 'token': 13473, 'token_str': 'Diabetes', 'sequence': 'Diabetes refers to a group of diseases that affect how the body uses blood sugar ( glucose )'}, {'score': 0.19234347343444824, 'token': 17740, 'token_str': 'Obesity', 'sequence': 'Obesity refers to a group of diseases that affect how the body uses blood sugar ( glucose )'}, {'score': 0.09200277179479599, 'token': 10778, 'token_str': 'T2DM', 'sequence': 'T2DM refers to a group of diseases that affect how the body uses blood sugar ( glucose )'}, {'score': 0.08494312316179276, 'token': 2228, 'token_str': 'It', 'sequence': 'It refers to a group of diseases that affect how the body uses blood sugar ( glucose )'}, {'score': 0.0412776917219162, 'token': 22263, 'token_str': 'Hypertension', 'sequence': 'Hypertension refers to a group of diseases that affect how the body uses blood sugar ( glucose )'}] ``` Output of `bioformer-16L`: ``` [{'score': 0.7262957692146301, 'token': 13473, 'token_str': 'Diabetes', 'sequence': 'Diabetes refers to a group of diseases that affect how the body uses blood sugar ( glucose )'}, {'score': 0.124954953789711, 'token': 10778, 'token_str': 'T2DM', 'sequence': 'T2DM refers to a group of diseases that affect how the body uses blood sugar ( glucose )'}, {'score': 0.04062706232070923, 'token': 2228, 'token_str': 'It', 'sequence': 'It refers to a group of diseases that affect how the body uses blood sugar ( glucose )'}, {'score': 0.022694870829582214, 'token': 17740, 'token_str': 'Obesity', 'sequence': 'Obesity refers to a group of diseases that affect how the body uses blood sugar ( glucose )'}, {'score': 0.009743048809468746, 'token': 13960, 'token_str': 'T2D', 'sequence': 'T2D refers to a group of diseases that affect how the body uses blood sugar ( glucose )'}] ``` ## Awards Bioformer-8L achieved top performance (highest micro-F1 score) in the BioCreative VII COVID-19 multi-label topic classification challenge (https://doi.org/10.1093/database/baac069) ## Links [Bioformer-16L](https://huggingface.co/bioformers/bioformer-16L) ## Acknowledgment Training and evaluation of Bioformer-8L is supported by the Google TPU Research Cloud (TRC) program, the Intramural Research Program of the National Library of Medicine (NLM), National Institutes of Health (NIH), and NIH/NLM grants LM012895 and 1K99LM014024-01. ## Questions If you have any questions, please submit an issue here: https://github.com/WGLab/bioformer/issues You can also send an email to Li Fang ([email protected], https://fangli80.github.io/). ## Citation You can cite our preprint on arXiv: Fang L, Chen Q, Wei C-H, Lu Z, Wang K: Bioformer: an efficient transformer language model for biomedical text mining. arXiv preprint arXiv:2302.01588 (2023). DOI: https://doi.org/10.48550/arXiv.2302.01588 BibTeX format: ``` @ARTICLE{fangli2023bioformer, author = {{Fang}, Li and {Chen}, Qingyu and {Wei}, Chih-Hsuan and {Lu}, Zhiyong and {Wang}, Kai}, title = "{Bioformer: an efficient transformer language model for biomedical text mining}", journal = {arXiv preprint arXiv:2302.01588}, year = {2023} } ```
{"language": ["en"], "license": "apache-2.0", "pipeline_tag": "fill-mask"}
bioformers/bioformer-8L
null
[ "transformers", "pytorch", "tf", "safetensors", "bert", "fill-mask", "en", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
transformers
# BlueBert-Base, Uncased, PubMed and MIMIC-III ## Model description A BERT model pre-trained on PubMed abstracts and clinical notes ([MIMIC-III](https://mimic.physionet.org/)). ## Intended uses & limitations #### How to use Please see https://github.com/ncbi-nlp/bluebert ## Training data We provide [preprocessed PubMed texts](https://ftp.ncbi.nlm.nih.gov/pub/lu/Suppl/NCBI-BERT/pubmed_uncased_sentence_nltk.txt.tar.gz) that were used to pre-train the BlueBERT models. The corpus contains ~4000M words extracted from the [PubMed ASCII code version](https://www.ncbi.nlm.nih.gov/research/bionlp/APIs/BioC-PubMed/). Pre-trained model: https://huggingface.co/bert-base-uncased ## Training procedure * lowercasing the text * removing speical chars `\x00`-`\x7F` * tokenizing the text using the [NLTK Treebank tokenizer](https://www.nltk.org/_modules/nltk/tokenize/treebank.html) Below is a code snippet for more details. ```python value = value.lower() value = re.sub(r'[\r\n]+', ' ', value) value = re.sub(r'[^\x00-\x7F]+', ' ', value) tokenized = TreebankWordTokenizer().tokenize(value) sentence = ' '.join(tokenized) sentence = re.sub(r"\s's\b", "'s", sentence) ``` ### BibTeX entry and citation info ```bibtex @InProceedings{peng2019transfer, author = {Yifan Peng and Shankai Yan and Zhiyong Lu}, title = {Transfer Learning in Biomedical Natural Language Processing: An Evaluation of BERT and ELMo on Ten Benchmarking Datasets}, booktitle = {Proceedings of the 2019 Workshop on Biomedical Natural Language Processing (BioNLP 2019)}, year = {2019}, pages = {58--65}, } ``` ### Acknowledgments This work was supported by the Intramural Research Programs of the National Institutes of Health, National Library of Medicine and Clinical Center. This work was supported by the National Library of Medicine of the National Institutes of Health under award number 4R00LM013001-01. We are also grateful to the authors of BERT and ELMo to make the data and codes publicly available. We would like to thank Dr Sun Kim for processing the PubMed texts. ### Disclaimer This tool shows the results of research conducted in the Computational Biology Branch, NCBI. The information produced on this website is not intended for direct diagnostic use or medical decision-making without review and oversight by a clinical professional. Individuals should not change their health behavior solely on the basis of information produced on this website. NIH does not independently verify the validity or utility of the information produced by this tool. If you have questions about the information produced on this website, please see a health care professional. More information about NCBI's disclaimer policy is available.
{"language": ["en"], "license": "cc0-1.0", "tags": ["bert", "bluebert"], "datasets": ["PubMed", "MIMIC-III"]}
bionlp/bluebert_pubmed_mimic_uncased_L-12_H-768_A-12
null
[ "transformers", "pytorch", "jax", "bert", "bluebert", "en", "dataset:PubMed", "dataset:MIMIC-III", "license:cc0-1.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
transformers
# BlueBert-Base, Uncased, PubMed and MIMIC-III ## Model description A BERT model pre-trained on PubMed abstracts and clinical notes ([MIMIC-III](https://mimic.physionet.org/)). ## Intended uses & limitations #### How to use Please see https://github.com/ncbi-nlp/bluebert ## Training data We provide [preprocessed PubMed texts](https://ftp.ncbi.nlm.nih.gov/pub/lu/Suppl/NCBI-BERT/pubmed_uncased_sentence_nltk.txt.tar.gz) that were used to pre-train the BlueBERT models. The corpus contains ~4000M words extracted from the [PubMed ASCII code version](https://www.ncbi.nlm.nih.gov/research/bionlp/APIs/BioC-PubMed/). Pre-trained model: https://huggingface.co/bert-large-uncased ## Training procedure * lowercasing the text * removing speical chars `\x00`-`\x7F` * tokenizing the text using the [NLTK Treebank tokenizer](https://www.nltk.org/_modules/nltk/tokenize/treebank.html) Below is a code snippet for more details. ```python value = value.lower() value = re.sub(r'[\r\n]+', ' ', value) value = re.sub(r'[^\x00-\x7F]+', ' ', value) tokenized = TreebankWordTokenizer().tokenize(value) sentence = ' '.join(tokenized) sentence = re.sub(r"\s's\b", "'s", sentence) ``` ### BibTeX entry and citation info ```bibtex @InProceedings{peng2019transfer, author = {Yifan Peng and Shankai Yan and Zhiyong Lu}, title = {Transfer Learning in Biomedical Natural Language Processing: An Evaluation of BERT and ELMo on Ten Benchmarking Datasets}, booktitle = {Proceedings of the 2019 Workshop on Biomedical Natural Language Processing (BioNLP 2019)}, year = {2019}, pages = {58--65}, } ``` ### Acknowledgments This work was supported by the Intramural Research Programs of the National Institutes of Health, National Library of Medicine and Clinical Center. This work was supported by the National Library of Medicine of the National Institutes of Health under award number 4R00LM013001-01. We are also grateful to the authors of BERT and ELMo to make the data and codes publicly available. We would like to thank Dr Sun Kim for processing the PubMed texts. ### Disclaimer This tool shows the results of research conducted in the Computational Biology Branch, NCBI. The information produced on this website is not intended for direct diagnostic use or medical decision-making without review and oversight by a clinical professional. Individuals should not change their health behavior solely on the basis of information produced on this website. NIH does not independently verify the validity or utility of the information produced by this tool. If you have questions about the information produced on this website, please see a health care professional. More information about NCBI's disclaimer policy is available.
{"language": ["en"], "license": "cc0-1.0", "tags": ["bert", "bluebert"], "datasets": ["PubMed", "MIMIC-III"]}
bionlp/bluebert_pubmed_mimic_uncased_L-24_H-1024_A-16
null
[ "transformers", "pytorch", "jax", "bert", "bluebert", "en", "dataset:PubMed", "dataset:MIMIC-III", "license:cc0-1.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
transformers
# BlueBert-Base, Uncased, PubMed ## Model description A BERT model pre-trained on PubMed abstracts ## Intended uses & limitations #### How to use Please see https://github.com/ncbi-nlp/bluebert ## Training data We provide [preprocessed PubMed texts](https://ftp.ncbi.nlm.nih.gov/pub/lu/Suppl/NCBI-BERT/pubmed_uncased_sentence_nltk.txt.tar.gz) that were used to pre-train the BlueBERT models. The corpus contains ~4000M words extracted from the [PubMed ASCII code version](https://www.ncbi.nlm.nih.gov/research/bionlp/APIs/BioC-PubMed/). Pre-trained model: https://huggingface.co/bert-base-uncased ## Training procedure * lowercasing the text * removing speical chars `\x00`-`\x7F` * tokenizing the text using the [NLTK Treebank tokenizer](https://www.nltk.org/_modules/nltk/tokenize/treebank.html) Below is a code snippet for more details. ```python value = value.lower() value = re.sub(r'[\r\n]+', ' ', value) value = re.sub(r'[^\x00-\x7F]+', ' ', value) tokenized = TreebankWordTokenizer().tokenize(value) sentence = ' '.join(tokenized) sentence = re.sub(r"\s's\b", "'s", sentence) ``` ### BibTeX entry and citation info ```bibtex @InProceedings{peng2019transfer, author = {Yifan Peng and Shankai Yan and Zhiyong Lu}, title = {Transfer Learning in Biomedical Natural Language Processing: An Evaluation of BERT and ELMo on Ten Benchmarking Datasets}, booktitle = {Proceedings of the 2019 Workshop on Biomedical Natural Language Processing (BioNLP 2019)}, year = {2019}, pages = {58--65}, } ```
{"language": ["en"], "license": "cc0-1.0", "tags": ["bluebert"], "datasets": ["pubmed"]}
bionlp/bluebert_pubmed_uncased_L-12_H-768_A-12
null
[ "transformers", "pytorch", "bluebert", "en", "dataset:pubmed", "license:cc0-1.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
transformers
# BlueBert-Base, Uncased, PubMed ## Model description A BERT model pre-trained on PubMed abstracts. ## Intended uses & limitations #### How to use Please see https://github.com/ncbi-nlp/bluebert ## Training data We provide [preprocessed PubMed texts](https://ftp.ncbi.nlm.nih.gov/pub/lu/Suppl/NCBI-BERT/pubmed_uncased_sentence_nltk.txt.tar.gz) that were used to pre-train the BlueBERT models. The corpus contains ~4000M words extracted from the [PubMed ASCII code version](https://www.ncbi.nlm.nih.gov/research/bionlp/APIs/BioC-PubMed/). Pre-trained model: https://huggingface.co/bert-large-uncased ## Training procedure * lowercasing the text * removing speical chars `\x00`-`\x7F` * tokenizing the text using the [NLTK Treebank tokenizer](https://www.nltk.org/_modules/nltk/tokenize/treebank.html) Below is a code snippet for more details. ```python value = value.lower() value = re.sub(r'[\r\n]+', ' ', value) value = re.sub(r'[^\x00-\x7F]+', ' ', value) tokenized = TreebankWordTokenizer().tokenize(value) sentence = ' '.join(tokenized) sentence = re.sub(r"\s's\b", "'s", sentence) ``` ### BibTeX entry and citation info ```bibtex @InProceedings{peng2019transfer, author = {Yifan Peng and Shankai Yan and Zhiyong Lu}, title = {Transfer Learning in Biomedical Natural Language Processing: An Evaluation of BERT and ELMo on Ten Benchmarking Datasets}, booktitle = {Proceedings of the 2019 Workshop on Biomedical Natural Language Processing (BioNLP 2019)}, year = {2019}, pages = {58--65}, } ``` ### Acknowledgments This work was supported by the Intramural Research Programs of the National Institutes of Health, National Library of Medicine and Clinical Center. This work was supported by the National Library of Medicine of the National Institutes of Health under award number 4R00LM013001-01. We are also grateful to the authors of BERT and ELMo to make the data and codes publicly available. We would like to thank Dr Sun Kim for processing the PubMed texts. ### Disclaimer This tool shows the results of research conducted in the Computational Biology Branch, NCBI. The information produced on this website is not intended for direct diagnostic use or medical decision-making without review and oversight by a clinical professional. Individuals should not change their health behavior solely on the basis of information produced on this website. NIH does not independently verify the validity or utility of the information produced by this tool. If you have questions about the information produced on this website, please see a health care professional. More information about NCBI's disclaimer policy is available.
{"language": ["en"], "license": "cc0-1.0", "tags": ["bert", "bluebert"], "datasets": ["PubMed"]}
bionlp/bluebert_pubmed_uncased_L-24_H-1024_A-16
null
[ "transformers", "pytorch", "jax", "bert", "bluebert", "en", "dataset:PubMed", "license:cc0-1.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
## Malayalam news classifier ### Overview This model is trained on top of [MalayalamBert](https://huggingface.co/eliasedwin7/MalayalamBERT) for the task of classifying malayalam news headlines. Presently, the following news categories are supported: * Business * Sports * Entertainment ### Dataset The dataset used for training this model can be found [here](https://www.kaggle.com/disisbig/malyalam-news-dataset). ### Using the model with HF pipeline ```python from transformers import pipeline news_headline = "ക്രിപ്‌റ്റോ ഇടപാടുകളുടെ വിവരങ്ങൾ ആവശ്യപ്പെട്ട് ആദായനികുതി വകുപ്പ് നോട്ടീസയച്ചു" model = pipeline(task="text-classification", model="bipin/malayalam-news-classifier") model(news_headline) # Output # [{'label': 'business', 'score': 0.9979357123374939}] ``` ### Contact For feedback and questions, feel free to contact via twitter [@bkrish_](https://twitter.com/bkrish_)
{"license": "mit", "tags": ["text-classification", "roberta", "malayalam", "pytorch"], "widget": [{"text": "2032 \u0d12\u0d33\u0d3f\u0d2e\u0d4d\u0d2a\u0d3f\u0d15\u0d4d\u200c\u0d38\u0d3f\u0d28\u0d4d \u0d2c\u0d4d\u0d30\u0d3f\u0d38\u0d4d\u200c\u0d2c\u0d46\u0d2f\u0d4d\u0d28\u0d4d\u200d \u0d35\u0d47\u0d26\u0d3f\u0d2f\u0d3e\u0d15\u0d41\u0d02; \u0d17\u0d46\u0d2f\u0d3f\u0d02\u0d38\u0d3f\u0d28\u0d4d \u0d35\u0d47\u0d26\u0d3f\u0d2f\u0d3e\u0d15\u0d41\u0d28\u0d4d\u0d28 \u0d2e\u0d42\u0d28\u0d4d\u0d28\u0d3e\u0d2e\u0d24\u0d4d\u0d24\u0d46 \u0d13\u0d38\u0d4d\u200c\u0d1f\u0d4d\u0d30\u0d47\u0d32\u0d3f\u0d2f\u0d28\u0d4d\u200d \u0d28\u0d17\u0d30\u0d02"}]}
bipin/malayalam-news-classifier
null
[ "transformers", "pytorch", "roberta", "text-classification", "malayalam", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
birdwatcher/DialoGPT-small-KIWI
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
automatic-speech-recognition
transformers
# Wav2vec 2.0 large VoxRex Swedish (C) Experiment with LM model. **Disclaimer:** This is a work in progress. See [VoxRex](https://huggingface.co/KBLab/wav2vec2-large-voxrex) for more details. **Update 2022-01-10:** Updated to VoxRex-C version. Finetuned version of KBs [VoxRex large](https://huggingface.co/KBLab/wav2vec2-large-voxrex) model using Swedish radio broadcasts, NST and Common Voice data. Evalutation without a language model gives the following: WER for NST + Common Voice test set (2% of total sentences) is **2.5%**. WER for Common Voice test set is **8.49%** directly and **7.37%** with a 4-gram language model. When using this model, make sure that your speech input is sampled at 16kHz. # Performance\* ![Comparison](comparison.png "Comparison") <center><del>*<i>Chart shows performance without the additional 20k steps of Common Voice fine-tuning</i></del></center> ## Training This model has been fine-tuned for 120000 updates on NST + CommonVoice<del> and then for an additional 20000 updates on CommonVoice only. The additional fine-tuning on CommonVoice hurts performance on the NST+CommonVoice test set somewhat and, unsurprisingly, improves it on the CommonVoice test set. It seems to perform generally better though [citation needed]</del>. ![WER during training](chart_1.svg "WER") ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "sv-SE", split="test[:2%]"). processor = Wav2Vec2Processor.from_pretrained("KBLab/wav2vec2-large-voxrex-swedish") model = Wav2Vec2ForCTC.from_pretrained("KBLab/wav2vec2-large-voxrex-swedish") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ```
{"language": "sv", "license": "cc0-1.0", "tags": ["audio", "automatic-speech-recognition", "speech"], "datasets": ["common_voice", "NST Swedish ASR Database", "P4"], "metrics": ["wer"], "model-index": [{"name": "Wav2vec 2.0 large VoxRex Swedish", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice", "type": "common_voice", "args": "sv-SE"}, "metrics": [{"type": "wer", "value": 9.914, "name": "Test WER"}]}]}]}
birgermoell/lm-swedish
null
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "audio", "speech", "sv", "license:cc0-1.0", "model-index", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
token-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ner-swedish-wikiann This model is a fine-tuned version of [nordic-roberta-wiki](hhttps://huggingface.co/flax-community/nordic-roberta-wiki) trained for NER on the wikiann dataset. eval F1-Score: **83,78** test F1-Score: **83,76** ## Model Usage ```python from transformers import AutoTokenizer, AutoModelForTokenClassification from transformers import pipeline tokenizer = AutoTokenizer.from_pretrained("birgermoell/ner-swedish-wikiann") model = AutoModelForTokenClassification.from_pretrained("birgermoell/ner-swedish-wikiann") nlp = pipeline("ner", model=model, tokenizer=tokenizer) example = "Jag heter Per och jag jobbar på KTH" nlp(example) ``` <!-- ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4.9086903597787154e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 - mixed_precision_training: Native AMP ### Training results It achieves the following results on the evaluation set: - Loss: 0.3156 - Precision: 0.8332 from transformers import AutoTokenizer, AutoModelForTokenClassification from transformers import pipeline tokenizer = AutoTokenizer.from_pretrained("birgermoell/ner-swedish-wikiann") model = AutoModelForTokenClassification.from_pretrained("birgermoell/ner-swedish-wikiann") nlp = pipeline("ner", model=model, tokenizer=tokenizer) example = "Jag heter Per och jag jobbar på KTH" nlp(example) - F1: 0.8378 - Accuracy: 0.9193 It achieves the following results on the test set: - Loss: 0.3023 - Precision: 0.8301 - Recall: 0.8452 - F1: 0.8376 - Accuracy: 0.92 ### Framework versions - Transformers 4.6.1 - Pytorch 1.8.1+cu101 - Datasets 1.6.2 - Tokenizers 0.10.2 -->
{"license": "apache-2.0", "tags": ["token-classification"], "datasets": ["wikiann"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "ner-swedish-wikiann", "results": [{"task": {"type": "token-classification", "name": "Token Classification"}, "dataset": {"name": "wikiann", "type": "wikiann"}, "metrics": [{"type": "precision", "value": 0.8331921416757433, "name": "Precision"}, {"type": "recall", "value": 0.84243586083126, "name": "Recall"}, {"type": "f1", "value": 0.8377885044416501, "name": "F1"}, {"type": "accuracy", "value": 0.91930707459758, "name": "Accuracy"}]}]}]}
birgermoell/ner-swedish-wikiann
null
[ "transformers", "pytorch", "roberta", "token-classification", "dataset:wikiann", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
feature-extraction
transformers
# Svensk Roberta ## Description Swedish Roberta model trained on the MC4 dataset. The model performance needs to be assessed ## Model series This model is part of a series of models training on TPU with Flax Jax during Huggingface Flax/Jax challenge. ## Gpt models ## Swedish Gpt https://huggingface.co/birgermoell/swedish-gpt/ ## Swedish gpt wiki https://huggingface.co/flax-community/swe-gpt-wiki # Nordic gpt wiki https://huggingface.co/flax-community/nordic-gpt-wiki ## Dansk gpt wiki https://huggingface.co/flax-community/dansk-gpt-wiki ## Norsk gpt wiki https://huggingface.co/flax-community/norsk-gpt-wiki ## Roberta models ## Nordic Roberta Wiki https://huggingface.co/flax-community/nordic-roberta-wiki ## Swe Roberta Wiki Oscar https://huggingface.co/flax-community/swe-roberta-wiki-oscar ## Roberta Swedish Scandi https://huggingface.co/birgermoell/roberta-swedish-scandi ## Roberta Swedish https://huggingface.co/birgermoell/roberta-swedish ## Swedish T5 model https://huggingface.co/birgermoell/t5-base-swedish
{"language": "sv", "license": "cc-by-4.0", "tags": ["translate"], "datasets": ["mc4"], "widget": [{"text": "Meningen med livet \u00e4r <mask>"}]}
birgermoell/roberta-swedish-scandi
null
[ "transformers", "pytorch", "jax", "tensorboard", "roberta", "feature-extraction", "translate", "sv", "dataset:mc4", "license:cc-by-4.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
fill-mask
transformers
Swedish RoBERTa ## Model series This model is part of a series of models training on TPU with Flax Jax during Huggingface Flax/Jax challenge. ## Gpt models ## Swedish Gpt https://huggingface.co/birgermoell/swedish-gpt/ ## Swedish gpt wiki https://huggingface.co/flax-community/swe-gpt-wiki # Nordic gpt wiki https://huggingface.co/flax-community/nordic-gpt-wiki ## Dansk gpt wiki https://huggingface.co/flax-community/dansk-gpt-wiki ## Norsk gpt wiki https://huggingface.co/flax-community/norsk-gpt-wiki ## Roberta models ## Nordic Roberta Wiki https://huggingface.co/flax-community/nordic-roberta-wiki ## Swe Roberta Wiki Oscar https://huggingface.co/flax-community/swe-roberta-wiki-oscar ## Roberta Swedish Scandi https://huggingface.co/birgermoell/roberta-swedish-scandi ## Roberta Swedish https://huggingface.co/birgermoell/roberta-swedish ## Swedish T5 model https://huggingface.co/birgermoell/t5-base-swedish
{"widget": [{"text": "Var kan jag hitta n\u00e5gon <mask> talar engelska?"}]}
birgermoell/roberta-swedish
null
[ "transformers", "pytorch", "jax", "tensorboard", "roberta", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
automatic-speech-recognition
transformers
# common-voice-vox-populi-swedish Fine-tuned [facebook/wav2vec2-large-sv-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) in Swedish using the [Common Voice](https://huggingface.co/datasets/common_voice) When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "sv-SE", split="test[:2%]"). processor = Wav2Vec2Processor.from_pretrained("birgermoell/birgermoell/common-voice-vox-populi-swedish") model = Wav2Vec2ForCTC.from_pretrained("birgermoell/common-voice-vox-populi-swedish") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\tspeech_array, sampling_rate = torchaudio.load(batch["path"]) \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\tbatch["speech"] = resampler(speech_array).squeeze().numpy() \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\treturn batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\tlogits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Swedish test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "sv-SE", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("birgermoell/common-voice-vox-populi-swedish") model = Wav2Vec2ForCTC.from_pretrained("birgermoell/common-voice-vox-populi-swedish") model.to("cuda") chars_to_ignore_regex = '[\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\,\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\?\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\.\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\!\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\;\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\:\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\"\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\“]' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\tbatch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\tspeech_array, sampling_rate = torchaudio.load(batch["path"]) \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\tbatch["speech"] = resampler(speech_array).squeeze().numpy() \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\treturn batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\tinputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\twith torch.no_grad(): \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\t\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\tlogits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\tbatch["pred_strings"] = processor.batch_decode(pred_ids) \\\\\\\\\\\\\\\\\\\\ ``` **Test Result**: WER: 22.684600
{"language": "et", "license": "apache-2.0", "tags": ["audio", "automatic-speech-recognition", "speech", "xlsr-fine-tuning-week"], "datasets": ["common_voice"], "model-index": [{"name": "common-voice-vox-populi-swedish by Birger Moell", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice Vox Populi Swedish", "type": "common_voice", "args": "et"}, "metrics": [{"type": "wer", "value": 36.951816, "name": "Test WER"}]}]}]}
birgermoell/swedish-common-voice-vox-voxpopuli
null
[ "transformers", "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "audio", "speech", "xlsr-fine-tuning-week", "et", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-generation
transformers
## Model series This model is part of a series of models training on TPU with Flax Jax during Huggingface Flax/Jax challenge. ## Gpt models ## Swedish Gpt https://huggingface.co/birgermoell/swedish-gpt/ ## Swedish gpt wiki https://huggingface.co/flax-community/swe-gpt-wiki # Nordic gpt wiki https://huggingface.co/flax-community/nordic-gpt-wiki ## Dansk gpt wiki https://huggingface.co/flax-community/dansk-gpt-wiki ## Norsk gpt wiki https://huggingface.co/flax-community/norsk-gpt-wiki ## Roberta models ## Nordic Roberta Wiki https://huggingface.co/flax-community/nordic-roberta-wiki ## Swe Roberta Wiki Oscar https://huggingface.co/flax-community/swe-roberta-wiki-oscar ## Roberta Swedish Scandi https://huggingface.co/birgermoell/roberta-swedish-scandi ## Roberta Swedish https://huggingface.co/birgermoell/roberta-swedish ## Swedish T5 model https://huggingface.co/birgermoell/t5-base-swedish # GPT-svenska-wikipedia A swedish GPT2 style model trained using Flax CLM pipeline on the Swedish part of the wiki40b dataset and the Oscar dataset. https://huggingface.co/datasets/wiki40b The model was trained for around 22600 steps (42 hours) as part of the Huggingface Jax/Flax challenge with the following loss and learning rate Loss: 3.1715331077575684, Learning Rate: 0.0024816440418362617) The model could likely be trained for longer. ## Data cleaning and preprocessing The data was cleaned and preprocessed using the following script. Make sure to install depencies for beam_runner to make the dataset work. ```python from datasets import load_dataset def load_and_clean_wiki(): dataset = load_dataset('wiki40b', 'sv', beam_runner='DirectRunner', split="train") #dataset = load_dataset('wiki40b', 'sv', beam_runner='DirectRunner') dataset = dataset.remove_columns(['wikidata_id', 'version_id']) filtered_dataset = dataset.map(filter_wikipedia) # filtered_dataset[:3] # print(filtered_dataset[:3]) return filtered_dataset def filter_wikipedia(batch): batch["text"] = " ".join(batch["text"].split("\ _START_SECTION_\ ")) batch["text"] = " ".join(batch["text"].split("\ _START_ARTICLE_\ ")) batch["text"] = " ".join(batch["text"].split("\ _START_ARTICLE_\ ")) batch["text"] = " ".join(batch["text"].split("\ _START_PARAGRAPH_\ ")) batch["text"] = " ".join(batch["text"].split("_NEWLINE_")) batch["text"] = " ".join(batch["text"].split("\xa0")) return batch ``` ## Training script The following training script was used to train the model. ```bash ./run_clm_flax.py --output_dir="${MODEL_DIR}" --model_type="gpt2" --config_name="${MODEL_DIR}" --tokenizer_name="${MODEL_DIR}" --dataset_name="wiki40b" --dataset_config_name="sv" --do_train --do_eval --block_size="512" --per_device_train_batch_size="64" --per_device_eval_batch_size="64" --learning_rate="5e-3" --warmup_steps="1000" --adam_beta1="0.9" --adam_beta2="0.98" --weight_decay="0.01" --overwrite_output_dir --num_train_epochs="20" --logging_steps="500" --save_steps="1000" --eval_steps="2500" --push_to_hub ```
{"language": "sv", "widget": [{"text": "Jag \u00e4r en svensk spr\u00e5kmodell."}]}
birgermoell/swedish-gpt
null
[ "transformers", "pytorch", "jax", "tensorboard", "gpt2", "text-generation", "sv", "autotrain_compatible", "endpoints_compatible", "has_space", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
translation
transformers
[Google's T5](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html) Pretraining Dataset: [C4](https://huggingface.co/datasets/oscar) Paper: [Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer](https://arxiv.org/pdf/1910.10683.pdf) Authors: *Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, Peter J. Liu* ## Abstract Transfer learning, where a model is first pre-trained on a data-rich task before being fine-tuned on a downstream task, has emerged as a powerful technique in natural language processing (NLP). The effectiveness of transfer learning has given rise to a diversity of approaches, methodology, and practice. In this paper, we explore the landscape of transfer learning techniques for NLP by introducing a unified framework that converts every language problem into a text-to-text format. Our systematic study compares pre-training objectives, architectures, unlabeled datasets, transfer approaches, and other factors on dozens of language understanding tasks. By combining the insights from our exploration with scale and our new “Colossal Clean Crawled Corpus”, we achieve state-of-the-art results on many benchmarks covering summarization, question answering, text classification, and more. To facilitate future work on transfer learning for NLP, we release our dataset, pre-trained models, and code. ![model image](https://camo.githubusercontent.com/623b4dea0b653f2ad3f36c71ebfe749a677ac0a1/68747470733a2f2f6d69726f2e6d656469756d2e636f6d2f6d61782f343030362f312a44304a31674e51663876727255704b657944387750412e706e67) ## Model series This model is part of a series of models training on TPU with Flax Jax during Huggingface Flax/Jax challenge. ## Gpt models ## Swedish Gpt https://huggingface.co/birgermoell/swedish-gpt/ ## Swedish gpt wiki https://huggingface.co/flax-community/swe-gpt-wiki # Nordic gpt wiki https://huggingface.co/flax-community/nordic-gpt-wiki ## Dansk gpt wiki https://huggingface.co/flax-community/dansk-gpt-wiki ## Norsk gpt wiki https://huggingface.co/flax-community/norsk-gpt-wiki ## Roberta models ## Nordic Roberta Wiki https://huggingface.co/flax-community/nordic-roberta-wiki ## Swe Roberta Wiki Oscar https://huggingface.co/flax-community/swe-roberta-wiki-oscar ## Roberta Swedish Scandi https://huggingface.co/birgermoell/roberta-swedish-scandi ## Roberta Swedish https://huggingface.co/birgermoell/roberta-swedish ## Swedish T5 model https://huggingface.co/birgermoell/t5-base-swedish
{"language": ["sv"], "license": "apache-2.0", "tags": ["summarization", "translation"], "datasets": ["oscar"]}
birgermoell/t5-base-swedish
null
[ "transformers", "pytorch", "jax", "tensorboard", "t5", "feature-extraction", "summarization", "translation", "sv", "dataset:oscar", "arxiv:1910.10683", "license:apache-2.0", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
automatic-speech-recognition
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-common_voice-tr-demo This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the COMMON_VOICE - SV-SE dataset. It achieves the following results on the evaluation set: - Loss: 0.5528 - Wer: 0.3811 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 15.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 0.74 | 100 | 3.4444 | 1.0 | | No log | 1.47 | 200 | 2.9421 | 1.0 | | No log | 2.21 | 300 | 2.2802 | 1.0137 | | No log | 2.94 | 400 | 0.9683 | 0.7611 | | 3.7264 | 3.68 | 500 | 0.7941 | 0.6594 | | 3.7264 | 4.41 | 600 | 0.6695 | 0.5751 | | 3.7264 | 5.15 | 700 | 0.6507 | 0.5314 | | 3.7264 | 5.88 | 800 | 0.5731 | 0.4927 | | 3.7264 | 6.62 | 900 | 0.5723 | 0.4580 | | 0.4592 | 7.35 | 1000 | 0.5913 | 0.4479 | | 0.4592 | 8.09 | 1100 | 0.5562 | 0.4423 | | 0.4592 | 8.82 | 1200 | 0.5566 | 0.4292 | | 0.4592 | 9.56 | 1300 | 0.5492 | 0.4303 | | 0.4592 | 10.29 | 1400 | 0.5665 | 0.4331 | | 0.2121 | 11.03 | 1500 | 0.5610 | 0.4084 | | 0.2121 | 11.76 | 1600 | 0.5703 | 0.4014 | | 0.2121 | 12.5 | 1700 | 0.5669 | 0.3898 | | 0.2121 | 13.24 | 1800 | 0.5586 | 0.3962 | | 0.2121 | 13.97 | 1900 | 0.5656 | 0.3897 | | 0.1326 | 14.71 | 2000 | 0.5565 | 0.3813 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu113 - Datasets 1.18.0 - Tokenizers 0.10.3
{"language": ["sv-SE"], "license": "apache-2.0", "tags": ["automatic-speech-recognition", "common_voice", "generated_from_trainer"], "datasets": ["common_voice"], "model-index": [{"name": "wav2vec2-common_voice-tr-demo", "results": []}]}
birgermoell/wav2vec2-common_voice-tr-demo
null
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "common_voice", "generated_from_trainer", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
automatic-speech-recognition
transformers
# Wav2Vec2-Large-XLSR-53-Estonian Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) in Luganda using the [Common Voice](https://huggingface.co/datasets/common_voice) When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "et", split="test[:2%]"). processor = Wav2Vec2Processor.from_pretrained("birgermoell/wav2vec2-large-xlrs-estonian") model = Wav2Vec2ForCTC.from_pretrained("birgermoell/wav2vec2-large-xlrs-estonian") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\tspeech_array, sampling_rate = torchaudio.load(batch["path"]) \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\tbatch["speech"] = resampler(speech_array).squeeze().numpy() \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\treturn batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\tlogits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Luganda test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "fi", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("birgermoell/wav2vec2-large-xlrs-estonian") model = Wav2Vec2ForCTC.from_pretrained("birgermoell/wav2vec2-large-xlrs-estonian") model.to("cuda") chars_to_ignore_regex = '[\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\,\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\?\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\.\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\!\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\;\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\:\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\"\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\“]' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\tbatch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\tspeech_array, sampling_rate = torchaudio.load(batch["path"]) \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\tbatch["speech"] = resampler(speech_array).squeeze().numpy() \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\treturn batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\tinputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\twith torch.no_grad(): \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\t\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\tlogits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\tbatch["pred_strings"] = processor.batch_decode(pred_ids) \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\treturn batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: WER: 36.951816 ## Training The Common Voice `train` and `validation` datasets were used for training. The script used for training can be found here https://colab.research.google.com/drive/1VcWT92vBCwVn-5d-mkYxhgILPr11OHfR?usp=sharing
{"language": "et", "license": "apache-2.0", "tags": ["audio", "automatic-speech-recognition", "speech", "xlsr-fine-tuning-week"], "datasets": ["common_voice"], "model-index": [{"name": "XLSR Wav2Vec2 Estonian by Birger Moell", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice Estonian", "type": "common_voice", "args": "et"}, "metrics": [{"type": "wer", "value": 36.951816, "name": "Test WER"}]}]}]}
birgermoell/wav2vec2-large-xlrs-estonian
null
[ "transformers", "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "audio", "speech", "xlsr-fine-tuning-week", "et", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
automatic-speech-recognition
transformers
# Wav2Vec2-Large-XLSR-53-Finnish Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) in Finnish using the [Common Voice](https://huggingface.co/datasets/common_voice) When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "fi", split="test[:2%]"). processor = Wav2Vec2Processor.from_pretrained("birgermoell/wav2vec2-large-xlsr-finnish") model = Wav2Vec2ForCTC.from_pretrained("birgermoell/wav2vec2-large-xlsr-finnish") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): \\tspeech_array, sampling_rate = torchaudio.load(batch["path"]) \\tbatch["speech"] = resampler(speech_array).squeeze().numpy() \\treturn batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): \\tlogits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Finnish test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "fi", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("birgermoell/wav2vec2-large-xlsr-finnish") model = Wav2Vec2ForCTC.from_pretrained("birgermoell/wav2vec2-large-xlsr-finnish") model.to("cuda") chars_to_ignore_regex = '[\\\\,\\\\?\\\\.\\\\!\\\\-\\\\;\\\\:\\\\"\\\\“]' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): \\tbatch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() \\tspeech_array, sampling_rate = torchaudio.load(batch["path"]) \\tbatch["speech"] = resampler(speech_array).squeeze().numpy() \\treturn batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): \\tinputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) \\twith torch.no_grad(): \\t\\tlogits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) \\tbatch["pred_strings"] = processor.batch_decode(pred_ids) \\treturn batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: The WER is 55.097365 ## Training The Common Voice `train` and `validation` datasets were used for training. The script used for training can be found here https://colab.research.google.com/drive/16AyzqMWU_aWNe3IA-NxrhskB1WLPHG-Q?usp=sharing
{"language": "fi", "license": "apache-2.0", "tags": ["audio", "automatic-speech-recognition", "speech", "xlsr-fine-tuning-week"], "datasets": ["common_voice"], "model-index": [{"name": "XLSR Wav2Vec2 Finnish by Birger Moell", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice fi", "type": "common_voice", "args": "fi"}, "metrics": [{"type": "wer", "value": 55.097365, "name": "Test WER"}]}]}]}
birgermoell/wav2vec2-large-xlsr-finnish
null
[ "transformers", "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "audio", "speech", "xlsr-fine-tuning-week", "fi", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
automatic-speech-recognition
transformers
# Wav2Vec2-Large-XLSR-53-Hungarian Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) in Hungarian using the [Common Voice](https://huggingface.co/datasets/common_voice) When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "hu", split="test[:2%]"). processor = Wav2Vec2Processor.from_pretrained("birgermoell/wav2vec2-large-xlsr-hungarian") model = Wav2Vec2ForCTC.from_pretrained("birgermoell/wav2vec2-large-xlsr-hungarian") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): \tspeech_array, sampling_rate = torchaudio.load(batch["path"]) \tbatch["speech"] = resampler(speech_array).squeeze().numpy() \treturn batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): \tlogits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Hungarian test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "hu", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("birgermoell/wav2vec2-large-xlsr-hungarian") model = Wav2Vec2ForCTC.from_pretrained("birgermoell/wav2vec2-large-xlsr-hungarian") model.to("cuda") chars_to_ignore_regex = '[\\,\\?\\.\\!\\-\\;\\:\\"\\“]' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): \tbatch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() \tspeech_array, sampling_rate = torchaudio.load(batch["path"]) \tbatch["speech"] = resampler(speech_array).squeeze().numpy() \treturn batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): \tinputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) \twith torch.no_grad(): \t\tlogits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) \tbatch["pred_strings"] = processor.batch_decode(pred_ids) \treturn batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 46.97 % ## Training The Common Voice `train` and `validation` datasets were used for training. The script used for training can be found [here](https://colab.research.google.com/drive/1c8LS-RP-RMukvXkpqJ9kLXRWmRKFjevs?usp=sharing)
{"language": "hu", "license": "apache-2.0", "tags": ["audio", "automatic-speech-recognition", "speech", "xlsr-fine-tuning-week"], "datasets": ["common_voice"], "model-index": [{"name": "XLSR Wav2Vec2 Hugarian by Birger Moell", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice hu", "type": "common_voice", "args": "hu"}, "metrics": [{"type": "wer", "value": 46.97, "name": "Test WER"}]}]}]}
birgermoell/wav2vec2-large-xlsr-hungarian
null
[ "transformers", "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "audio", "speech", "xlsr-fine-tuning-week", "hu", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
automatic-speech-recognition
transformers
# Wav2Vec2-Large-XLSR-53-Luganda Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) in Luganda using the [Common Voice](https://huggingface.co/datasets/common_voice) When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "lg", split="test[:2%]"). processor = Wav2Vec2Processor.from_pretrained("birgermoell/wav2vec2-luganda") model = Wav2Vec2ForCTC.from_pretrained("birgermoell/wav2vec2-luganda") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): \\\\\\\\\\\\\\\\tspeech_array, sampling_rate = torchaudio.load(batch["path"]) \\\\\\\\\\\\\\\\tbatch["speech"] = resampler(speech_array).squeeze().numpy() \\\\\\\\\\\\\\\\treturn batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): \\\\\\\\\\\\\\\\tlogits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Luganda test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "fi", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("birgermoell/wav2vec2-luganda") model = Wav2Vec2ForCTC.from_pretrained("birgermoell/wav2vec2-luganda") model.to("cuda") chars_to_ignore_regex = '[\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\,\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\?\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\.\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\!\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\;\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\:\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\"\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\“]' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): \\\\\\\\\\\\\\\\tbatch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() \\\\\\\\\\\\\\\\tspeech_array, sampling_rate = torchaudio.load(batch["path"]) \\\\\\\\\\\\\\\\tbatch["speech"] = resampler(speech_array).squeeze().numpy() \\\\\\\\\\\\\\\\treturn batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): \\\\\\\\\\\\\\\\tinputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) \\\\\\\\\\\\\\\\twith torch.no_grad(): \\\\\\\\\\\\\\\\t\\\\\\\\\\\\\\\\tlogits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) \\\\\\\\\\\\\\\\tbatch["pred_strings"] = processor.batch_decode(pred_ids) \\\\\\\\\\\\\\\\treturn batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: WER: 48.314356 ## Training The Common Voice `train` and `validation` datasets were used for training. The script used for training can be found here https://colab.research.google.com/drive/1ZeII36LZ5IpBrTV7kBaTVfhDqygznlmC?usp=sharing
{"language": "lg", "license": "apache-2.0", "tags": ["audio", "automatic-speech-recognition", "speech", "xlsr-fine-tuning-week"], "datasets": ["common_voice"], "model-index": [{"name": "XLSR Wav2Vec2 Luganda by Birger Moell", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice Luganda", "type": "common_voice", "args": "lg"}, "metrics": [{"type": "wer", "value": 48.31, "name": "Test WER"}]}]}]}
birgermoell/wav2vec2-luganda
null
[ "transformers", "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "audio", "speech", "xlsr-fine-tuning-week", "lg", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
automatic-speech-recognition
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-speechdat This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the COMMON_VOICE - SV-SE dataset. It achieves the following results on the evaluation set: - Loss: 0.4578 - Wer: 0.2927 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 15.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:------:|:---------------:|:------:| | No log | 0.01 | 100 | 3.6252 | 1.0 | | No log | 0.02 | 200 | 3.1906 | 1.0 | | No log | 0.03 | 300 | 3.1090 | 1.0 | | No log | 0.04 | 400 | 1.8796 | 0.9955 | | 6.2575 | 0.05 | 500 | 1.3515 | 0.9058 | | 6.2575 | 0.06 | 600 | 1.1209 | 0.8328 | | 6.2575 | 0.07 | 700 | 1.1404 | 0.8309 | | 6.2575 | 0.09 | 800 | 1.0599 | 0.8021 | | 6.2575 | 0.1 | 900 | 0.9901 | 0.8335 | | 0.7737 | 0.11 | 1000 | 0.8846 | 0.7400 | | 0.7737 | 0.12 | 1100 | 0.9971 | 0.7820 | | 0.7737 | 0.13 | 1200 | 0.8665 | 0.7123 | | 0.7737 | 0.14 | 1300 | 0.8490 | 0.7366 | | 0.7737 | 0.15 | 1400 | 0.8250 | 0.6765 | | 0.6183 | 0.16 | 1500 | 0.8291 | 0.6965 | | 0.6183 | 0.17 | 1600 | 0.7946 | 0.6823 | | 0.6183 | 0.18 | 1700 | 0.8239 | 0.6894 | | 0.6183 | 0.19 | 1800 | 0.8282 | 0.6796 | | 0.6183 | 0.2 | 1900 | 0.7645 | 0.6518 | | 0.561 | 0.21 | 2000 | 0.7530 | 0.6367 | | 0.561 | 0.22 | 2100 | 0.7296 | 0.6177 | | 0.561 | 0.24 | 2200 | 0.7527 | 0.6498 | | 0.561 | 0.25 | 2300 | 0.7210 | 0.6316 | | 0.561 | 0.26 | 2400 | 0.7938 | 0.6757 | | 0.5402 | 0.27 | 2500 | 0.7485 | 0.6372 | | 0.5402 | 0.28 | 2600 | 0.7146 | 0.6133 | | 0.5402 | 0.29 | 2700 | 0.7308 | 0.6626 | | 0.5402 | 0.3 | 2800 | 0.7078 | 0.5949 | | 0.5402 | 0.31 | 2900 | 0.7679 | 0.6373 | | 0.5303 | 0.32 | 3000 | 0.7263 | 0.6502 | | 0.5303 | 0.33 | 3100 | 0.6613 | 0.5846 | | 0.5303 | 0.34 | 3200 | 0.6784 | 0.5783 | | 0.5303 | 0.35 | 3300 | 0.6908 | 0.5833 | | 0.5303 | 0.36 | 3400 | 0.6595 | 0.5826 | | 0.503 | 0.37 | 3500 | 0.6717 | 0.5938 | | 0.503 | 0.39 | 3600 | 0.6938 | 0.5791 | | 0.503 | 0.4 | 3700 | 0.6677 | 0.6052 | | 0.503 | 0.41 | 3800 | 0.6544 | 0.5554 | | 0.503 | 0.42 | 3900 | 0.6514 | 0.5728 | | 0.4959 | 0.43 | 4000 | 0.6847 | 0.6188 | | 0.4959 | 0.44 | 4100 | 0.6626 | 0.5869 | | 0.4959 | 0.45 | 4200 | 0.6670 | 0.5700 | | 0.4959 | 0.46 | 4300 | 0.6596 | 0.5846 | | 0.4959 | 0.47 | 4400 | 0.6523 | 0.5468 | | 0.4824 | 0.48 | 4500 | 0.6392 | 0.5688 | | 0.4824 | 0.49 | 4600 | 0.6561 | 0.5687 | | 0.4824 | 0.5 | 4700 | 0.6697 | 0.5817 | | 0.4824 | 0.51 | 4800 | 0.6348 | 0.5608 | | 0.4824 | 0.52 | 4900 | 0.6561 | 0.5600 | | 0.4714 | 0.54 | 5000 | 0.6522 | 0.6181 | | 0.4714 | 0.55 | 5100 | 0.6858 | 0.5921 | | 0.4714 | 0.56 | 5200 | 0.6706 | 0.5497 | | 0.4714 | 0.57 | 5300 | 0.7123 | 0.5768 | | 0.4714 | 0.58 | 5400 | 0.6599 | 0.6100 | | 0.471 | 0.59 | 5500 | 0.6421 | 0.5626 | | 0.471 | 0.6 | 5600 | 0.6395 | 0.5753 | | 0.471 | 0.61 | 5700 | 0.6788 | 0.5481 | | 0.471 | 0.62 | 5800 | 0.6386 | 0.5516 | | 0.471 | 0.63 | 5900 | 0.6694 | 0.5913 | | 0.4707 | 0.64 | 6000 | 0.6251 | 0.5699 | | 0.4707 | 0.65 | 6100 | 0.6243 | 0.5567 | | 0.4707 | 0.66 | 6200 | 0.6645 | 0.5629 | | 0.4707 | 0.67 | 6300 | 0.6296 | 0.5895 | | 0.4707 | 0.69 | 6400 | 0.6078 | 0.5183 | | 0.4632 | 0.7 | 6500 | 0.6270 | 0.5619 | | 0.4632 | 0.71 | 6600 | 0.6050 | 0.5336 | | 0.4632 | 0.72 | 6700 | 0.6185 | 0.5449 | | 0.4632 | 0.73 | 6800 | 0.6281 | 0.5645 | | 0.4632 | 0.74 | 6900 | 0.5877 | 0.5084 | | 0.4514 | 0.75 | 7000 | 0.6199 | 0.5403 | | 0.4514 | 0.76 | 7100 | 0.6293 | 0.5275 | | 0.4514 | 0.77 | 7200 | 0.6290 | 0.5447 | | 0.4514 | 0.78 | 7300 | 0.6130 | 0.5373 | | 0.4514 | 0.79 | 7400 | 0.6138 | 0.5285 | | 0.4457 | 0.8 | 7500 | 0.6040 | 0.5259 | | 0.4457 | 0.81 | 7600 | 0.6220 | 0.5686 | | 0.4457 | 0.82 | 7700 | 0.5915 | 0.5164 | | 0.4457 | 0.84 | 7800 | 0.6270 | 0.5289 | | 0.4457 | 0.85 | 7900 | 0.6224 | 0.5515 | | 0.4458 | 0.86 | 8000 | 0.6161 | 0.5323 | | 0.4458 | 0.87 | 8100 | 0.5827 | 0.5122 | | 0.4458 | 0.88 | 8200 | 0.6067 | 0.5202 | | 0.4458 | 0.89 | 8300 | 0.6087 | 0.5192 | | 0.4458 | 0.9 | 8400 | 0.6859 | 0.5796 | | 0.4409 | 0.91 | 8500 | 0.6180 | 0.5131 | | 0.4409 | 0.92 | 8600 | 0.5945 | 0.4948 | | 0.4409 | 0.93 | 8700 | 0.5967 | 0.5532 | | 0.4409 | 0.94 | 8800 | 0.5770 | 0.4961 | | 0.4409 | 0.95 | 8900 | 0.5809 | 0.5203 | | 0.4305 | 0.96 | 9000 | 0.5805 | 0.5039 | | 0.4305 | 0.97 | 9100 | 0.5873 | 0.5188 | | 0.4305 | 0.98 | 9200 | 0.6277 | 0.5516 | | 0.4305 | 1.0 | 9300 | 0.5727 | 0.5052 | | 0.4305 | 1.01 | 9400 | 0.5858 | 0.5123 | | 0.4264 | 1.02 | 9500 | 0.5692 | 0.4968 | | 0.4264 | 1.03 | 9600 | 0.5954 | 0.5117 | | 0.4264 | 1.04 | 9700 | 0.5904 | 0.5076 | | 0.4264 | 1.05 | 9800 | 0.6046 | 0.5101 | | 0.4264 | 1.06 | 9900 | 0.5616 | 0.4926 | | 0.4176 | 1.07 | 10000 | 0.5971 | 0.5368 | | 0.4176 | 1.08 | 10100 | 0.5706 | 0.4940 | | 0.4176 | 1.09 | 10200 | 0.5612 | 0.5032 | | 0.4176 | 1.1 | 10300 | 0.5672 | 0.4944 | | 0.4176 | 1.11 | 10400 | 0.5915 | 0.5218 | | 0.4033 | 1.12 | 10500 | 0.5706 | 0.5051 | | 0.4033 | 1.13 | 10600 | 0.5661 | 0.4934 | | 0.4033 | 1.15 | 10700 | 0.5724 | 0.4903 | | 0.4033 | 1.16 | 10800 | 0.5792 | 0.4940 | | 0.4033 | 1.17 | 10900 | 0.5744 | 0.4911 | | 0.392 | 1.18 | 11000 | 0.5767 | 0.5162 | | 0.392 | 1.19 | 11100 | 0.5588 | 0.4835 | | 0.392 | 1.2 | 11200 | 0.5609 | 0.4922 | | 0.392 | 1.21 | 11300 | 0.5890 | 0.4914 | | 0.392 | 1.22 | 11400 | 0.5525 | 0.4897 | | 0.387 | 1.23 | 11500 | 0.5704 | 0.5051 | | 0.387 | 1.24 | 11600 | 0.5539 | 0.5014 | | 0.387 | 1.25 | 11700 | 0.5473 | 0.4882 | | 0.387 | 1.26 | 11800 | 0.5662 | 0.5004 | | 0.387 | 1.27 | 11900 | 0.5785 | 0.5220 | | 0.3956 | 1.28 | 12000 | 0.5990 | 0.5114 | | 0.3956 | 1.3 | 12100 | 0.5497 | 0.4895 | | 0.3956 | 1.31 | 12200 | 0.5538 | 0.4895 | | 0.3956 | 1.32 | 12300 | 0.5652 | 0.4913 | | 0.3956 | 1.33 | 12400 | 0.5682 | 0.5128 | | 0.4043 | 1.34 | 12500 | 0.5830 | 0.4999 | | 0.4043 | 1.35 | 12600 | 0.5686 | 0.4865 | | 0.4043 | 1.36 | 12700 | 0.5688 | 0.4937 | | 0.4043 | 1.37 | 12800 | 0.5753 | 0.5034 | | 0.4043 | 1.38 | 12900 | 0.5898 | 0.4865 | | 0.3997 | 1.39 | 13000 | 0.5723 | 0.4963 | | 0.3997 | 1.4 | 13100 | 0.5767 | 0.4986 | | 0.3997 | 1.41 | 13200 | 0.5960 | 0.5084 | | 0.3997 | 1.42 | 13300 | 0.5859 | 0.5096 | | 0.3997 | 1.43 | 13400 | 0.5491 | 0.4784 | | 0.3997 | 1.45 | 13500 | 0.5636 | 0.5049 | | 0.3997 | 1.46 | 13600 | 0.5667 | 0.4708 | | 0.3997 | 1.47 | 13700 | 0.5757 | 0.4862 | | 0.3997 | 1.48 | 13800 | 0.5444 | 0.4816 | | 0.3997 | 1.49 | 13900 | 0.5557 | 0.4792 | | 0.3954 | 1.5 | 14000 | 0.5437 | 0.4810 | | 0.3954 | 1.51 | 14100 | 0.5489 | 0.4674 | | 0.3954 | 1.52 | 14200 | 0.5415 | 0.4674 | | 0.3954 | 1.53 | 14300 | 0.5481 | 0.4902 | | 0.3954 | 1.54 | 14400 | 0.5474 | 0.4763 | | 0.3814 | 1.55 | 14500 | 0.5588 | 0.4731 | | 0.3814 | 1.56 | 14600 | 0.5746 | 0.4820 | | 0.3814 | 1.57 | 14700 | 0.5676 | 0.4884 | | 0.3814 | 1.58 | 14800 | 0.5495 | 0.4711 | | 0.3814 | 1.6 | 14900 | 0.5565 | 0.4782 | | 0.3877 | 1.61 | 15000 | 0.5671 | 0.5135 | | 0.3877 | 1.62 | 15100 | 0.5512 | 0.4868 | | 0.3877 | 1.63 | 15200 | 0.5683 | 0.4650 | | 0.3877 | 1.64 | 15300 | 0.5427 | 0.4717 | | 0.3877 | 1.65 | 15400 | 0.5519 | 0.4651 | | 0.387 | 1.66 | 15500 | 0.5327 | 0.4456 | | 0.387 | 1.67 | 15600 | 0.5371 | 0.4673 | | 0.387 | 1.68 | 15700 | 0.5337 | 0.4705 | | 0.387 | 1.69 | 15800 | 0.5606 | 0.4992 | | 0.387 | 1.7 | 15900 | 0.5254 | 0.4613 | | 0.3877 | 1.71 | 16000 | 0.5619 | 0.4882 | | 0.3877 | 1.72 | 16100 | 0.5212 | 0.4560 | | 0.3877 | 1.73 | 16200 | 0.5369 | 0.4696 | | 0.3877 | 1.75 | 16300 | 0.5392 | 0.4677 | | 0.3877 | 1.76 | 16400 | 0.5353 | 0.4768 | | 0.3739 | 1.77 | 16500 | 0.5435 | 0.4777 | | 0.3739 | 1.78 | 16600 | 0.5343 | 0.4884 | | 0.3739 | 1.79 | 16700 | 0.5309 | 0.4942 | | 0.3739 | 1.8 | 16800 | 0.5373 | 0.4727 | | 0.3739 | 1.81 | 16900 | 0.5550 | 0.4686 | | 0.3884 | 1.82 | 17000 | 0.5486 | 0.4826 | | 0.3884 | 1.83 | 17100 | 0.5508 | 0.4862 | | 0.3884 | 1.84 | 17200 | 0.5423 | 0.4855 | | 0.3884 | 1.85 | 17300 | 0.5478 | 0.4730 | | 0.3884 | 1.86 | 17400 | 0.5438 | 0.4938 | | 0.3842 | 1.87 | 17500 | 0.5571 | 0.4818 | | 0.3842 | 1.88 | 17600 | 0.5402 | 0.4753 | | 0.3842 | 1.9 | 17700 | 0.5679 | 0.4827 | | 0.3842 | 1.91 | 17800 | 0.5385 | 0.4642 | | 0.3842 | 1.92 | 17900 | 0.5519 | 0.4942 | | 0.3953 | 1.93 | 18000 | 0.5559 | 0.4745 | | 0.3953 | 1.94 | 18100 | 0.5657 | 0.4963 | | 0.3953 | 1.95 | 18200 | 0.5296 | 0.4642 | | 0.3953 | 1.96 | 18300 | 0.5529 | 0.4907 | | 0.3953 | 1.97 | 18400 | 0.5380 | 0.4536 | | 0.3745 | 1.98 | 18500 | 0.5276 | 0.4678 | | 0.3745 | 1.99 | 18600 | 0.5544 | 0.4854 | | 0.3745 | 2.0 | 18700 | 0.5195 | 0.4535 | | 0.3745 | 2.01 | 18800 | 0.5165 | 0.4635 | | 0.3745 | 2.02 | 18900 | 0.5062 | 0.4431 | | 0.3538 | 2.03 | 19000 | 0.5255 | 0.4509 | | 0.3538 | 2.04 | 19100 | 0.5125 | 0.4512 | | 0.3538 | 2.06 | 19200 | 0.5105 | 0.4504 | | 0.3538 | 2.07 | 19300 | 0.5000 | 0.4490 | | 0.3538 | 2.08 | 19400 | 0.5150 | 0.4520 | | 0.356 | 2.09 | 19500 | 0.5053 | 0.4383 | | 0.356 | 2.1 | 19600 | 0.5085 | 0.4417 | | 0.356 | 2.11 | 19700 | 0.5229 | 0.4490 | | 0.356 | 2.12 | 19800 | 0.5326 | 0.4492 | | 0.356 | 2.13 | 19900 | 0.5139 | 0.4491 | | 0.3474 | 2.14 | 20000 | 0.5134 | 0.4384 | | 0.3474 | 2.15 | 20100 | 0.5498 | 0.4606 | | 0.3474 | 2.16 | 20200 | 0.5324 | 0.4540 | | 0.3474 | 2.17 | 20300 | 0.5338 | 0.4548 | | 0.3474 | 2.18 | 20400 | 0.5076 | 0.4425 | | 0.345 | 2.19 | 20500 | 0.5253 | 0.4550 | | 0.345 | 2.21 | 20600 | 0.5125 | 0.4618 | | 0.345 | 2.22 | 20700 | 0.5171 | 0.4487 | | 0.345 | 2.23 | 20800 | 0.5232 | 0.4464 | | 0.345 | 2.24 | 20900 | 0.5298 | 0.4588 | | 0.341 | 2.25 | 21000 | 0.5342 | 0.4576 | | 0.341 | 2.26 | 21100 | 0.5515 | 0.4678 | | 0.341 | 2.27 | 21200 | 0.5041 | 0.4495 | | 0.341 | 2.28 | 21300 | 0.5169 | 0.4473 | | 0.341 | 2.29 | 21400 | 0.5227 | 0.4494 | | 0.354 | 2.3 | 21500 | 0.5214 | 0.4458 | | 0.354 | 2.31 | 21600 | 0.5303 | 0.4587 | | 0.354 | 2.32 | 21700 | 0.5237 | 0.4597 | | 0.354 | 2.33 | 21800 | 0.5067 | 0.4460 | | 0.354 | 2.34 | 21900 | 0.5117 | 0.4560 | | 0.3333 | 2.36 | 22000 | 0.5104 | 0.4359 | | 0.3333 | 2.37 | 22100 | 0.5326 | 0.4679 | | 0.3333 | 2.38 | 22200 | 0.5098 | 0.4510 | | 0.3333 | 2.39 | 22300 | 0.5044 | 0.4445 | | 0.3333 | 2.4 | 22400 | 0.5219 | 0.4489 | | 0.3514 | 2.41 | 22500 | 0.4987 | 0.4433 | | 0.3514 | 2.42 | 22600 | 0.5009 | 0.4338 | | 0.3514 | 2.43 | 22700 | 0.5252 | 0.4444 | | 0.3514 | 2.44 | 22800 | 0.4861 | 0.4269 | | 0.3514 | 2.45 | 22900 | 0.5157 | 0.4421 | | 0.3444 | 2.46 | 23000 | 0.5277 | 0.4426 | | 0.3444 | 2.47 | 23100 | 0.5213 | 0.4378 | | 0.3444 | 2.48 | 23200 | 0.5172 | 0.4482 | | 0.3444 | 2.49 | 23300 | 0.5142 | 0.4376 | | 0.3444 | 2.51 | 23400 | 0.5044 | 0.4231 | | 0.3536 | 2.52 | 23500 | 0.5268 | 0.4496 | | 0.3536 | 2.53 | 23600 | 0.5176 | 0.4326 | | 0.3536 | 2.54 | 23700 | 0.5032 | 0.4296 | | 0.3536 | 2.55 | 23800 | 0.5211 | 0.4460 | | 0.3536 | 2.56 | 23900 | 0.5093 | 0.4379 | | 0.337 | 2.57 | 24000 | 0.4990 | 0.4311 | | 0.337 | 2.58 | 24100 | 0.4962 | 0.4329 | | 0.337 | 2.59 | 24200 | 0.5033 | 0.4289 | | 0.337 | 2.6 | 24300 | 0.5260 | 0.4534 | | 0.337 | 2.61 | 24400 | 0.5309 | 0.4441 | | 0.3393 | 2.62 | 24500 | 0.5132 | 0.4346 | | 0.3393 | 2.63 | 24600 | 0.5189 | 0.4233 | | 0.3393 | 2.64 | 24700 | 0.5074 | 0.4326 | | 0.3393 | 2.66 | 24800 | 0.5111 | 0.4254 | | 0.3393 | 2.67 | 24900 | 0.4933 | 0.4254 | | 0.3334 | 2.68 | 25000 | 0.5046 | 0.4407 | | 0.3334 | 2.69 | 25100 | 0.5010 | 0.4404 | | 0.3334 | 2.7 | 25200 | 0.5045 | 0.4236 | | 0.3334 | 2.71 | 25300 | 0.4938 | 0.4305 | | 0.3334 | 2.72 | 25400 | 0.5021 | 0.4383 | | 0.3366 | 2.73 | 25500 | 0.4953 | 0.4202 | | 0.3366 | 2.74 | 25600 | 0.4985 | 0.4338 | | 0.3366 | 2.75 | 25700 | 0.4765 | 0.4161 | | 0.3366 | 2.76 | 25800 | 0.4873 | 0.4292 | | 0.3366 | 2.77 | 25900 | 0.4998 | 0.4189 | | 0.3359 | 2.78 | 26000 | 0.4991 | 0.4248 | | 0.3359 | 2.79 | 26100 | 0.5012 | 0.4307 | | 0.3359 | 2.81 | 26200 | 0.5081 | 0.4151 | | 0.3359 | 2.82 | 26300 | 0.4997 | 0.4305 | | 0.3359 | 2.83 | 26400 | 0.4969 | 0.4302 | | 0.3396 | 2.84 | 26500 | 0.4784 | 0.4271 | | 0.3396 | 2.85 | 26600 | 0.4804 | 0.4149 | | 0.3396 | 2.86 | 26700 | 0.4900 | 0.4192 | | 0.3396 | 2.87 | 26800 | 0.5044 | 0.4325 | | 0.3396 | 2.88 | 26900 | 0.4935 | 0.4376 | | 0.3356 | 2.89 | 27000 | 0.5007 | 0.4269 | | 0.3356 | 2.9 | 27100 | 0.4887 | 0.4178 | | 0.3356 | 2.91 | 27200 | 0.4770 | 0.4170 | | 0.3356 | 2.92 | 27300 | 0.4847 | 0.4167 | | 0.3356 | 2.93 | 27400 | 0.4861 | 0.4139 | | 0.3395 | 2.94 | 27500 | 0.4975 | 0.4291 | | 0.3395 | 2.95 | 27600 | 0.5056 | 0.4471 | | 0.3395 | 2.97 | 27700 | 0.5111 | 0.4375 | | 0.3395 | 2.98 | 27800 | 0.5327 | 0.4577 | | 0.3395 | 2.99 | 27900 | 0.5067 | 0.4393 | | 0.3332 | 3.0 | 28000 | 0.4898 | 0.4188 | | 0.3332 | 3.01 | 28100 | 0.4790 | 0.4093 | | 0.3332 | 3.02 | 28200 | 0.4828 | 0.4202 | | 0.3332 | 3.03 | 28300 | 0.4836 | 0.4146 | | 0.3332 | 3.04 | 28400 | 0.4901 | 0.4242 | | 0.2984 | 3.05 | 28500 | 0.4772 | 0.4118 | | 0.2984 | 3.06 | 28600 | 0.5055 | 0.4213 | | 0.2984 | 3.07 | 28700 | 0.4911 | 0.4100 | | 0.2984 | 3.08 | 28800 | 0.4737 | 0.4087 | | 0.2984 | 3.09 | 28900 | 0.4930 | 0.4216 | | 0.3056 | 3.1 | 29000 | 0.4736 | 0.4109 | | 0.3056 | 3.12 | 29100 | 0.4863 | 0.4058 | | 0.3056 | 3.13 | 29200 | 0.4784 | 0.4184 | | 0.3056 | 3.14 | 29300 | 0.4923 | 0.4240 | | 0.3056 | 3.15 | 29400 | 0.4846 | 0.4226 | | 0.2995 | 3.16 | 29500 | 0.4829 | 0.4086 | | 0.2995 | 3.17 | 29600 | 0.4934 | 0.4240 | | 0.2995 | 3.18 | 29700 | 0.4893 | 0.4152 | | 0.2995 | 3.19 | 29800 | 0.4730 | 0.4227 | | 0.2995 | 3.2 | 29900 | 0.5027 | 0.4330 | | 0.2926 | 3.21 | 30000 | 0.4903 | 0.4112 | | 0.2926 | 3.22 | 30100 | 0.4961 | 0.4157 | | 0.2926 | 3.23 | 30200 | 0.4980 | 0.4269 | | 0.2926 | 3.24 | 30300 | 0.4896 | 0.4126 | | 0.2926 | 3.25 | 30400 | 0.4726 | 0.4062 | | 0.301 | 3.27 | 30500 | 0.4733 | 0.3985 | | 0.301 | 3.28 | 30600 | 0.4772 | 0.4047 | | 0.301 | 3.29 | 30700 | 0.4806 | 0.4082 | | 0.301 | 3.3 | 30800 | 0.4683 | 0.4011 | | 0.301 | 3.31 | 30900 | 0.4775 | 0.4079 | | 0.2933 | 3.32 | 31000 | 0.4729 | 0.4083 | | 0.2933 | 3.33 | 31100 | 0.4628 | 0.4016 | | 0.2933 | 3.34 | 31200 | 0.4753 | 0.4192 | | 0.2933 | 3.35 | 31300 | 0.4687 | 0.4185 | | 0.2933 | 3.36 | 31400 | 0.4806 | 0.4106 | | 0.2957 | 3.37 | 31500 | 0.4889 | 0.4240 | | 0.2957 | 3.38 | 31600 | 0.4882 | 0.4182 | | 0.2957 | 3.39 | 31700 | 0.4798 | 0.4162 | | 0.2957 | 3.4 | 31800 | 0.4718 | 0.4108 | | 0.2957 | 3.42 | 31900 | 0.4685 | 0.4101 | | 0.3039 | 3.43 | 32000 | 0.4816 | 0.4188 | | 0.3039 | 3.44 | 32100 | 0.4874 | 0.4139 | | 0.3039 | 3.45 | 32200 | 0.4899 | 0.4115 | | 0.3039 | 3.46 | 32300 | 0.4852 | 0.4180 | | 0.3039 | 3.47 | 32400 | 0.5074 | 0.4129 | | 0.3006 | 3.48 | 32500 | 0.4837 | 0.4076 | | 0.3006 | 3.49 | 32600 | 0.4927 | 0.4098 | | 0.3006 | 3.5 | 32700 | 0.4999 | 0.4172 | | 0.3006 | 3.51 | 32800 | 0.4773 | 0.4194 | | 0.3006 | 3.52 | 32900 | 0.4859 | 0.4058 | | 0.3089 | 3.53 | 33000 | 0.4783 | 0.4104 | | 0.3089 | 3.54 | 33100 | 0.4622 | 0.4020 | | 0.3089 | 3.55 | 33200 | 0.4840 | 0.4065 | | 0.3089 | 3.57 | 33300 | 0.4756 | 0.4241 | | 0.3089 | 3.58 | 33400 | 0.4831 | 0.4170 | | 0.3061 | 3.59 | 33500 | 0.4794 | 0.4068 | | 0.3061 | 3.6 | 33600 | 0.4730 | 0.4037 | | 0.3061 | 3.61 | 33700 | 0.4808 | 0.4138 | | 0.3061 | 3.62 | 33800 | 0.4924 | 0.4248 | | 0.3061 | 3.63 | 33900 | 0.4749 | 0.4112 | | 0.3047 | 3.64 | 34000 | 0.4924 | 0.4326 | | 0.3047 | 3.65 | 34100 | 0.4745 | 0.4104 | | 0.3047 | 3.66 | 34200 | 0.4760 | 0.4123 | | 0.3047 | 3.67 | 34300 | 0.4788 | 0.4066 | | 0.3047 | 3.68 | 34400 | 0.4627 | 0.4158 | | 0.3042 | 3.69 | 34500 | 0.4974 | 0.4131 | | 0.3042 | 3.7 | 34600 | 0.4593 | 0.4063 | | 0.3042 | 3.72 | 34700 | 0.4549 | 0.3928 | | 0.3042 | 3.73 | 34800 | 0.4690 | 0.3898 | | 0.3042 | 3.74 | 34900 | 0.4560 | 0.4007 | | 0.2963 | 3.75 | 35000 | 0.4606 | 0.3959 | | 0.2963 | 3.76 | 35100 | 0.4762 | 0.4057 | | 0.2963 | 3.77 | 35200 | 0.4750 | 0.4034 | | 0.2963 | 3.78 | 35300 | 0.4772 | 0.4114 | | 0.2963 | 3.79 | 35400 | 0.4669 | 0.3995 | | 0.3012 | 3.8 | 35500 | 0.4709 | 0.4090 | | 0.3012 | 3.81 | 35600 | 0.4722 | 0.4123 | | 0.3012 | 3.82 | 35700 | 0.4913 | 0.4165 | | 0.3012 | 3.83 | 35800 | 0.4814 | 0.4063 | | 0.3012 | 3.84 | 35900 | 0.4869 | 0.4171 | | 0.3015 | 3.85 | 36000 | 0.4791 | 0.4059 | | 0.3015 | 3.87 | 36100 | 0.4535 | 0.3976 | | 0.3015 | 3.88 | 36200 | 0.4706 | 0.4009 | | 0.3015 | 3.89 | 36300 | 0.4679 | 0.4012 | | 0.3015 | 3.9 | 36400 | 0.4736 | 0.4096 | | 0.2965 | 3.91 | 36500 | 0.4756 | 0.4106 | | 0.2965 | 3.92 | 36600 | 0.4669 | 0.4085 | | 0.2965 | 3.93 | 36700 | 0.4796 | 0.4054 | | 0.2965 | 3.94 | 36800 | 0.4583 | 0.3932 | | 0.2965 | 3.95 | 36900 | 0.4430 | 0.3969 | | 0.2993 | 3.96 | 37000 | 0.4560 | 0.3914 | | 0.2993 | 3.97 | 37100 | 0.4739 | 0.4002 | | 0.2993 | 3.98 | 37200 | 0.4598 | 0.3912 | | 0.2993 | 3.99 | 37300 | 0.4607 | 0.3907 | | 0.2993 | 4.0 | 37400 | 0.4709 | 0.3986 | | 0.2886 | 4.01 | 37500 | 0.4642 | 0.4067 | | 0.2886 | 4.03 | 37600 | 0.4684 | 0.3984 | | 0.2886 | 4.04 | 37700 | 0.4690 | 0.3979 | | 0.2886 | 4.05 | 37800 | 0.4722 | 0.3980 | | 0.2886 | 4.06 | 37900 | 0.4734 | 0.3927 | | 0.2534 | 4.07 | 38000 | 0.4724 | 0.3988 | | 0.2534 | 4.08 | 38100 | 0.4665 | 0.3986 | | 0.2534 | 4.09 | 38200 | 0.4659 | 0.4036 | | 0.2534 | 4.1 | 38300 | 0.4694 | 0.3952 | | 0.2534 | 4.11 | 38400 | 0.4719 | 0.3891 | | 0.2596 | 4.12 | 38500 | 0.4687 | 0.3994 | | 0.2596 | 4.13 | 38600 | 0.4705 | 0.3903 | | 0.2596 | 4.14 | 38700 | 0.4601 | 0.3975 | | 0.2596 | 4.15 | 38800 | 0.4666 | 0.3971 | | 0.2596 | 4.16 | 38900 | 0.4772 | 0.3892 | | 0.2643 | 4.18 | 39000 | 0.4810 | 0.4071 | | 0.2643 | 4.19 | 39100 | 0.4980 | 0.4167 | | 0.2643 | 4.2 | 39200 | 0.4657 | 0.3996 | | 0.2643 | 4.21 | 39300 | 0.4869 | 0.4002 | | 0.2643 | 4.22 | 39400 | 0.4656 | 0.3913 | | 0.265 | 4.23 | 39500 | 0.4720 | 0.3947 | | 0.265 | 4.24 | 39600 | 0.4711 | 0.3970 | | 0.265 | 4.25 | 39700 | 0.4689 | 0.3933 | | 0.265 | 4.26 | 39800 | 0.4728 | 0.4017 | | 0.265 | 4.27 | 39900 | 0.4673 | 0.3847 | | 0.2644 | 4.28 | 40000 | 0.4636 | 0.3960 | | 0.2644 | 4.29 | 40100 | 0.4699 | 0.3864 | | 0.2644 | 4.3 | 40200 | 0.4580 | 0.3874 | | 0.2644 | 4.31 | 40300 | 0.4763 | 0.3951 | | 0.2644 | 4.33 | 40400 | 0.4752 | 0.4141 | | 0.2633 | 4.34 | 40500 | 0.4918 | 0.3994 | | 0.2633 | 4.35 | 40600 | 0.4783 | 0.4026 | | 0.2633 | 4.36 | 40700 | 0.4739 | 0.4034 | | 0.2633 | 4.37 | 40800 | 0.4750 | 0.4000 | | 0.2633 | 4.38 | 40900 | 0.4608 | 0.3943 | | 0.2679 | 4.39 | 41000 | 0.4615 | 0.3891 | | 0.2679 | 4.4 | 41100 | 0.4730 | 0.3984 | | 0.2679 | 4.41 | 41200 | 0.4728 | 0.4011 | | 0.2679 | 4.42 | 41300 | 0.4675 | 0.3932 | | 0.2679 | 4.43 | 41400 | 0.4662 | 0.3929 | | 0.2682 | 4.44 | 41500 | 0.4490 | 0.3837 | | 0.2682 | 4.45 | 41600 | 0.4611 | 0.3838 | | 0.2682 | 4.46 | 41700 | 0.4605 | 0.3945 | | 0.2682 | 4.48 | 41800 | 0.4730 | 0.3938 | | 0.2682 | 4.49 | 41900 | 0.4567 | 0.3874 | | 0.2658 | 4.5 | 42000 | 0.4715 | 0.3869 | | 0.2658 | 4.51 | 42100 | 0.4514 | 0.3833 | | 0.2658 | 4.52 | 42200 | 0.4602 | 0.3898 | | 0.2658 | 4.53 | 42300 | 0.4846 | 0.4022 | | 0.2658 | 4.54 | 42400 | 0.4474 | 0.3810 | | 0.2676 | 4.55 | 42500 | 0.4513 | 0.3820 | | 0.2676 | 4.56 | 42600 | 0.4588 | 0.3928 | | 0.2676 | 4.57 | 42700 | 0.4601 | 0.3894 | | 0.2676 | 4.58 | 42800 | 0.4516 | 0.3792 | | 0.2676 | 4.59 | 42900 | 0.4482 | 0.3848 | | 0.2693 | 4.6 | 43000 | 0.4695 | 0.4008 | | 0.2693 | 4.61 | 43100 | 0.4580 | 0.3871 | | 0.2693 | 4.63 | 43200 | 0.4419 | 0.3857 | | 0.2693 | 4.64 | 43300 | 0.4534 | 0.3796 | | 0.2693 | 4.65 | 43400 | 0.4532 | 0.3856 | | 0.2641 | 4.66 | 43500 | 0.4421 | 0.3809 | | 0.2641 | 4.67 | 43600 | 0.4400 | 0.3844 | | 0.2641 | 4.68 | 43700 | 0.4515 | 0.3833 | | 0.2641 | 4.69 | 43800 | 0.4462 | 0.3808 | | 0.2641 | 4.7 | 43900 | 0.4741 | 0.3926 | | 0.2626 | 4.71 | 44000 | 0.4542 | 0.3931 | | 0.2626 | 4.72 | 44100 | 0.4555 | 0.3885 | | 0.2626 | 4.73 | 44200 | 0.4505 | 0.3845 | | 0.2626 | 4.74 | 44300 | 0.4593 | 0.3871 | | 0.2626 | 4.75 | 44400 | 0.4359 | 0.3830 | | 0.2648 | 4.76 | 44500 | 0.4387 | 0.3736 | | 0.2648 | 4.78 | 44600 | 0.4529 | 0.3807 | | 0.2648 | 4.79 | 44700 | 0.4566 | 0.3837 | | 0.2648 | 4.8 | 44800 | 0.4557 | 0.4067 | | 0.2648 | 4.81 | 44900 | 0.4609 | 0.3852 | | 0.2603 | 4.82 | 45000 | 0.4667 | 0.4005 | | 0.2603 | 4.83 | 45100 | 0.4666 | 0.3836 | | 0.2603 | 4.84 | 45200 | 0.4775 | 0.3946 | | 0.2603 | 4.85 | 45300 | 0.4701 | 0.3925 | | 0.2603 | 4.86 | 45400 | 0.4579 | 0.3889 | | 0.2626 | 4.87 | 45500 | 0.4516 | 0.3884 | | 0.2626 | 4.88 | 45600 | 0.4605 | 0.3878 | | 0.2626 | 4.89 | 45700 | 0.4576 | 0.3802 | | 0.2626 | 4.9 | 45800 | 0.4553 | 0.3780 | | 0.2626 | 4.91 | 45900 | 0.4336 | 0.3752 | | 0.2602 | 4.93 | 46000 | 0.4419 | 0.3881 | | 0.2602 | 4.94 | 46100 | 0.4601 | 0.3843 | | 0.2602 | 4.95 | 46200 | 0.4437 | 0.3956 | | 0.2602 | 4.96 | 46300 | 0.4524 | 0.3844 | | 0.2602 | 4.97 | 46400 | 0.4709 | 0.4031 | | 0.2609 | 4.98 | 46500 | 0.4500 | 0.3872 | | 0.2609 | 4.99 | 46600 | 0.4366 | 0.3846 | | 0.2609 | 5.0 | 46700 | 0.4653 | 0.3884 | | 0.2609 | 5.01 | 46800 | 0.4602 | 0.3932 | | 0.2609 | 5.02 | 46900 | 0.4668 | 0.3854 | | 0.2472 | 5.03 | 47000 | 0.4616 | 0.3891 | | 0.2472 | 5.04 | 47100 | 0.4543 | 0.3836 | | 0.2472 | 5.05 | 47200 | 0.4526 | 0.3822 | | 0.2472 | 5.06 | 47300 | 0.4539 | 0.3741 | | 0.2472 | 5.07 | 47400 | 0.4776 | 0.3818 | | 0.2278 | 5.09 | 47500 | 0.4771 | 0.3794 | | 0.2278 | 5.1 | 47600 | 0.4662 | 0.3831 | | 0.2278 | 5.11 | 47700 | 0.4558 | 0.4032 | | 0.2278 | 5.12 | 47800 | 0.4904 | 0.3918 | | 0.2278 | 5.13 | 47900 | 0.4765 | 0.3890 | | 0.2311 | 5.14 | 48000 | 0.4674 | 0.3882 | | 0.2311 | 5.15 | 48100 | 0.4609 | 0.3947 | | 0.2311 | 5.16 | 48200 | 0.4588 | 0.3837 | | 0.2311 | 5.17 | 48300 | 0.4827 | 0.3845 | | 0.2311 | 5.18 | 48400 | 0.4711 | 0.3839 | | 0.229 | 5.19 | 48500 | 0.4583 | 0.3873 | | 0.229 | 5.2 | 48600 | 0.4800 | 0.3858 | | 0.229 | 5.21 | 48700 | 0.4611 | 0.3800 | | 0.229 | 5.22 | 48800 | 0.4504 | 0.3889 | | 0.229 | 5.24 | 48900 | 0.4569 | 0.3761 | | 0.2313 | 5.25 | 49000 | 0.4732 | 0.3915 | | 0.2313 | 5.26 | 49100 | 0.4728 | 0.3832 | | 0.2313 | 5.27 | 49200 | 0.4667 | 0.3815 | | 0.2313 | 5.28 | 49300 | 0.4912 | 0.3856 | | 0.2313 | 5.29 | 49400 | 0.4790 | 0.3946 | | 0.2266 | 5.3 | 49500 | 0.4597 | 0.3763 | | 0.2266 | 5.31 | 49600 | 0.4580 | 0.3778 | | 0.2266 | 5.32 | 49700 | 0.4439 | 0.3721 | | 0.2266 | 5.33 | 49800 | 0.4611 | 0.3704 | | 0.2266 | 5.34 | 49900 | 0.4599 | 0.3769 | | 0.235 | 5.35 | 50000 | 0.4543 | 0.3808 | | 0.235 | 5.36 | 50100 | 0.4555 | 0.3773 | | 0.235 | 5.37 | 50200 | 0.4525 | 0.3815 | | 0.235 | 5.39 | 50300 | 0.4557 | 0.3814 | | 0.235 | 5.4 | 50400 | 0.4604 | 0.3754 | | 0.2299 | 5.41 | 50500 | 0.4658 | 0.3770 | | 0.2299 | 5.42 | 50600 | 0.4658 | 0.3884 | | 0.2299 | 5.43 | 50700 | 0.4701 | 0.3919 | | 0.2299 | 5.44 | 50800 | 0.4495 | 0.3818 | | 0.2299 | 5.45 | 50900 | 0.4703 | 0.3886 | | 0.2307 | 5.46 | 51000 | 0.4395 | 0.3743 | | 0.2307 | 5.47 | 51100 | 0.4487 | 0.3751 | | 0.2307 | 5.48 | 51200 | 0.4355 | 0.3733 | | 0.2307 | 5.49 | 51300 | 0.4622 | 0.3811 | | 0.2307 | 5.5 | 51400 | 0.4443 | 0.3801 | | 0.2383 | 5.51 | 51500 | 0.4411 | 0.3743 | | 0.2383 | 5.52 | 51600 | 0.4438 | 0.3778 | | 0.2383 | 5.54 | 51700 | 0.4559 | 0.3784 | | 0.2383 | 5.55 | 51800 | 0.4309 | 0.3656 | | 0.2383 | 5.56 | 51900 | 0.4455 | 0.3660 | | 0.23 | 5.57 | 52000 | 0.4436 | 0.3598 | | 0.23 | 5.58 | 52100 | 0.4344 | 0.3685 | | 0.23 | 5.59 | 52200 | 0.4282 | 0.3690 | | 0.23 | 5.6 | 52300 | 0.4464 | 0.3800 | | 0.23 | 5.61 | 52400 | 0.4458 | 0.3909 | | 0.2305 | 5.62 | 52500 | 0.4483 | 0.3756 | | 0.2305 | 5.63 | 52600 | 0.4547 | 0.3785 | | 0.2305 | 5.64 | 52700 | 0.4671 | 0.3820 | | 0.2305 | 5.65 | 52800 | 0.4449 | 0.3658 | | 0.2305 | 5.66 | 52900 | 0.4596 | 0.3716 | | 0.2237 | 5.67 | 53000 | 0.4399 | 0.3669 | | 0.2237 | 5.69 | 53100 | 0.4410 | 0.3719 | | 0.2237 | 5.7 | 53200 | 0.4574 | 0.3619 | | 0.2237 | 5.71 | 53300 | 0.4443 | 0.3690 | | 0.2237 | 5.72 | 53400 | 0.4381 | 0.3678 | | 0.2337 | 5.73 | 53500 | 0.4490 | 0.3687 | | 0.2337 | 5.74 | 53600 | 0.4427 | 0.3752 | | 0.2337 | 5.75 | 53700 | 0.4423 | 0.3858 | | 0.2337 | 5.76 | 53800 | 0.4702 | 0.3825 | | 0.2337 | 5.77 | 53900 | 0.4724 | 0.3800 | | 0.23 | 5.78 | 54000 | 0.4476 | 0.3827 | | 0.23 | 5.79 | 54100 | 0.4508 | 0.3919 | | 0.23 | 5.8 | 54200 | 0.4564 | 0.3788 | | 0.23 | 5.81 | 54300 | 0.4602 | 0.3888 | | 0.23 | 5.82 | 54400 | 0.4538 | 0.3732 | | 0.2334 | 5.84 | 54500 | 0.4500 | 0.3808 | | 0.2334 | 5.85 | 54600 | 0.4475 | 0.3705 | | 0.2334 | 5.86 | 54700 | 0.4415 | 0.3772 | | 0.2334 | 5.87 | 54800 | 0.4515 | 0.3771 | | 0.2334 | 5.88 | 54900 | 0.4410 | 0.3677 | | 0.2259 | 5.89 | 55000 | 0.4555 | 0.3702 | | 0.2259 | 5.9 | 55100 | 0.4509 | 0.3894 | | 0.2259 | 5.91 | 55200 | 0.4472 | 0.3692 | | 0.2259 | 5.92 | 55300 | 0.4438 | 0.3754 | | 0.2259 | 5.93 | 55400 | 0.4399 | 0.3698 | | 0.2289 | 5.94 | 55500 | 0.4496 | 0.3753 | | 0.2289 | 5.95 | 55600 | 0.4506 | 0.3752 | | 0.2289 | 5.96 | 55700 | 0.4482 | 0.3766 | | 0.2289 | 5.97 | 55800 | 0.4415 | 0.3772 | | 0.2289 | 5.98 | 55900 | 0.4447 | 0.3750 | | 0.2281 | 6.0 | 56000 | 0.4566 | 0.3842 | | 0.2281 | 6.01 | 56100 | 0.4694 | 0.3774 | | 0.2281 | 6.02 | 56200 | 0.4454 | 0.3788 | | 0.2281 | 6.03 | 56300 | 0.4676 | 0.3718 | | 0.2281 | 6.04 | 56400 | 0.4650 | 0.3751 | | 0.1979 | 6.05 | 56500 | 0.4601 | 0.3765 | | 0.1979 | 6.06 | 56600 | 0.4647 | 0.3840 | | 0.1979 | 6.07 | 56700 | 0.4782 | 0.3756 | | 0.1979 | 6.08 | 56800 | 0.4709 | 0.3736 | | 0.1979 | 6.09 | 56900 | 0.4707 | 0.3734 | | 0.1923 | 6.1 | 57000 | 0.4704 | 0.3751 | | 0.1923 | 6.11 | 57100 | 0.4542 | 0.3721 | | 0.1923 | 6.12 | 57200 | 0.4542 | 0.3735 | | 0.1923 | 6.13 | 57300 | 0.4587 | 0.3804 | | 0.1923 | 6.15 | 57400 | 0.4428 | 0.3687 | | 0.2012 | 6.16 | 57500 | 0.4456 | 0.3748 | | 0.2012 | 6.17 | 57600 | 0.4578 | 0.3762 | | 0.2012 | 6.18 | 57700 | 0.4699 | 0.3722 | | 0.2012 | 6.19 | 57800 | 0.4499 | 0.3756 | | 0.2012 | 6.2 | 57900 | 0.4633 | 0.3680 | | 0.1951 | 6.21 | 58000 | 0.4548 | 0.3712 | | 0.1951 | 6.22 | 58100 | 0.4520 | 0.3759 | | 0.1951 | 6.23 | 58200 | 0.4458 | 0.3616 | | 0.1951 | 6.24 | 58300 | 0.4307 | 0.3637 | | 0.1951 | 6.25 | 58400 | 0.4546 | 0.3621 | | 0.1967 | 6.26 | 58500 | 0.4459 | 0.3623 | | 0.1967 | 6.27 | 58600 | 0.4535 | 0.3690 | | 0.1967 | 6.28 | 58700 | 0.4574 | 0.3771 | | 0.1967 | 6.3 | 58800 | 0.4493 | 0.3744 | | 0.1967 | 6.31 | 58900 | 0.4494 | 0.3769 | | 0.1998 | 6.32 | 59000 | 0.4529 | 0.3644 | | 0.1998 | 6.33 | 59100 | 0.4416 | 0.3662 | | 0.1998 | 6.34 | 59200 | 0.4468 | 0.3785 | | 0.1998 | 6.35 | 59300 | 0.4377 | 0.3664 | | 0.1998 | 6.36 | 59400 | 0.4647 | 0.3755 | | 0.2009 | 6.37 | 59500 | 0.4700 | 0.3824 | | 0.2009 | 6.38 | 59600 | 0.4488 | 0.3685 | | 0.2009 | 6.39 | 59700 | 0.4649 | 0.3804 | | 0.2009 | 6.4 | 59800 | 0.4389 | 0.3689 | | 0.2009 | 6.41 | 59900 | 0.4456 | 0.3531 | | 0.2007 | 6.42 | 60000 | 0.4572 | 0.3658 | | 0.2007 | 6.43 | 60100 | 0.4464 | 0.3669 | | 0.2007 | 6.45 | 60200 | 0.4666 | 0.3711 | | 0.2007 | 6.46 | 60300 | 0.4399 | 0.3660 | | 0.2007 | 6.47 | 60400 | 0.4445 | 0.3631 | | 0.2005 | 6.48 | 60500 | 0.4450 | 0.3621 | | 0.2005 | 6.49 | 60600 | 0.4346 | 0.3571 | | 0.2005 | 6.5 | 60700 | 0.4358 | 0.3581 | | 0.2005 | 6.51 | 60800 | 0.4344 | 0.3646 | | 0.2005 | 6.52 | 60900 | 0.4377 | 0.3621 | | 0.2038 | 6.53 | 61000 | 0.4262 | 0.3570 | | 0.2038 | 6.54 | 61100 | 0.4269 | 0.3614 | | 0.2038 | 6.55 | 61200 | 0.4297 | 0.3592 | | 0.2038 | 6.56 | 61300 | 0.4433 | 0.3682 | | 0.2038 | 6.57 | 61400 | 0.4474 | 0.3644 | | 0.199 | 6.58 | 61500 | 0.4464 | 0.3678 | | 0.199 | 6.6 | 61600 | 0.4397 | 0.3562 | | 0.199 | 6.61 | 61700 | 0.4415 | 0.3612 | | 0.199 | 6.62 | 61800 | 0.4362 | 0.3601 | | 0.199 | 6.63 | 61900 | 0.4442 | 0.3623 | | 0.1995 | 6.64 | 62000 | 0.4558 | 0.3662 | | 0.1995 | 6.65 | 62100 | 0.4477 | 0.3647 | | 0.1995 | 6.66 | 62200 | 0.4542 | 0.3699 | | 0.1995 | 6.67 | 62300 | 0.4411 | 0.3632 | | 0.1995 | 6.68 | 62400 | 0.4408 | 0.3658 | | 0.2014 | 6.69 | 62500 | 0.4426 | 0.3691 | | 0.2014 | 6.7 | 62600 | 0.4246 | 0.3645 | | 0.2014 | 6.71 | 62700 | 0.4466 | 0.3676 | | 0.2014 | 6.72 | 62800 | 0.4493 | 0.3566 | | 0.2014 | 6.73 | 62900 | 0.4336 | 0.3621 | | 0.2015 | 6.75 | 63000 | 0.4367 | 0.3604 | | 0.2015 | 6.76 | 63100 | 0.4424 | 0.3754 | | 0.2015 | 6.77 | 63200 | 0.4679 | 0.3733 | | 0.2015 | 6.78 | 63300 | 0.4483 | 0.3752 | | 0.2015 | 6.79 | 63400 | 0.4746 | 0.3822 | | 0.2048 | 6.8 | 63500 | 0.4340 | 0.3731 | | 0.2048 | 6.81 | 63600 | 0.4346 | 0.3631 | | 0.2048 | 6.82 | 63700 | 0.4525 | 0.3680 | | 0.2048 | 6.83 | 63800 | 0.4360 | 0.3641 | | 0.2048 | 6.84 | 63900 | 0.4299 | 0.3558 | | 0.2017 | 6.85 | 64000 | 0.4370 | 0.3533 | | 0.2017 | 6.86 | 64100 | 0.4293 | 0.3617 | | 0.2017 | 6.87 | 64200 | 0.4431 | 0.3660 | | 0.2017 | 6.88 | 64300 | 0.4362 | 0.3688 | | 0.2017 | 6.9 | 64400 | 0.4507 | 0.3648 | | 0.2045 | 6.91 | 64500 | 0.4439 | 0.3613 | | 0.2045 | 6.92 | 64600 | 0.4249 | 0.3493 | | 0.2045 | 6.93 | 64700 | 0.4362 | 0.3612 | | 0.2045 | 6.94 | 64800 | 0.4336 | 0.3585 | | 0.2045 | 6.95 | 64900 | 0.4387 | 0.3568 | | 0.1977 | 6.96 | 65000 | 0.4313 | 0.3542 | | 0.1977 | 6.97 | 65100 | 0.4287 | 0.3552 | | 0.1977 | 6.98 | 65200 | 0.4372 | 0.3586 | | 0.1977 | 6.99 | 65300 | 0.4378 | 0.3629 | | 0.1977 | 7.0 | 65400 | 0.4518 | 0.3640 | | 0.1971 | 7.01 | 65500 | 0.4480 | 0.3557 | | 0.1971 | 7.02 | 65600 | 0.4530 | 0.3560 | | 0.1971 | 7.03 | 65700 | 0.4581 | 0.3582 | | 0.1971 | 7.04 | 65800 | 0.4492 | 0.3543 | | 0.1971 | 7.06 | 65900 | 0.4448 | 0.3608 | | 0.1672 | 7.07 | 66000 | 0.4469 | 0.3543 | | 0.1672 | 7.08 | 66100 | 0.4262 | 0.3488 | | 0.1672 | 7.09 | 66200 | 0.4289 | 0.3570 | | 0.1672 | 7.1 | 66300 | 0.4455 | 0.3545 | | 0.1672 | 7.11 | 66400 | 0.4449 | 0.3563 | | 0.169 | 7.12 | 66500 | 0.4555 | 0.3565 | | 0.169 | 7.13 | 66600 | 0.4432 | 0.3656 | | 0.169 | 7.14 | 66700 | 0.4399 | 0.3610 | | 0.169 | 7.15 | 66800 | 0.4383 | 0.3554 | | 0.169 | 7.16 | 66900 | 0.4376 | 0.3536 | | 0.1724 | 7.17 | 67000 | 0.4383 | 0.3572 | | 0.1724 | 7.18 | 67100 | 0.4452 | 0.3535 | | 0.1724 | 7.19 | 67200 | 0.4610 | 0.3668 | | 0.1724 | 7.21 | 67300 | 0.4534 | 0.3546 | | 0.1724 | 7.22 | 67400 | 0.4506 | 0.3604 | | 0.1729 | 7.23 | 67500 | 0.4463 | 0.3507 | | 0.1729 | 7.24 | 67600 | 0.4440 | 0.3630 | | 0.1729 | 7.25 | 67700 | 0.4361 | 0.3550 | | 0.1729 | 7.26 | 67800 | 0.4397 | 0.3643 | | 0.1729 | 7.27 | 67900 | 0.4328 | 0.3548 | | 0.1736 | 7.28 | 68000 | 0.4546 | 0.3614 | | 0.1736 | 7.29 | 68100 | 0.4506 | 0.3558 | | 0.1736 | 7.3 | 68200 | 0.4361 | 0.3513 | | 0.1736 | 7.31 | 68300 | 0.4223 | 0.3500 | | 0.1736 | 7.32 | 68400 | 0.4474 | 0.3497 | | 0.1733 | 7.33 | 68500 | 0.4303 | 0.3549 | | 0.1733 | 7.34 | 68600 | 0.4265 | 0.3483 | | 0.1733 | 7.36 | 68700 | 0.4339 | 0.3558 | | 0.1733 | 7.37 | 68800 | 0.4266 | 0.3491 | | 0.1733 | 7.38 | 68900 | 0.4423 | 0.3565 | | 0.1764 | 7.39 | 69000 | 0.4410 | 0.3554 | | 0.1764 | 7.4 | 69100 | 0.4482 | 0.3703 | | 0.1764 | 7.41 | 69200 | 0.4480 | 0.3641 | | 0.1764 | 7.42 | 69300 | 0.4361 | 0.3500 | | 0.1764 | 7.43 | 69400 | 0.4399 | 0.3632 | | 0.1711 | 7.44 | 69500 | 0.4383 | 0.3591 | | 0.1711 | 7.45 | 69600 | 0.4523 | 0.3636 | | 0.1711 | 7.46 | 69700 | 0.4388 | 0.3502 | | 0.1711 | 7.47 | 69800 | 0.4305 | 0.3565 | | 0.1711 | 7.48 | 69900 | 0.4290 | 0.3538 | | 0.1748 | 7.49 | 70000 | 0.4359 | 0.3511 | | 0.1748 | 7.51 | 70100 | 0.4315 | 0.3460 | | 0.1748 | 7.52 | 70200 | 0.4268 | 0.3555 | | 0.1748 | 7.53 | 70300 | 0.4267 | 0.3455 | | 0.1748 | 7.54 | 70400 | 0.4359 | 0.3517 | | 0.1739 | 7.55 | 70500 | 0.4299 | 0.3491 | | 0.1739 | 7.56 | 70600 | 0.4423 | 0.3409 | | 0.1739 | 7.57 | 70700 | 0.4251 | 0.3420 | | 0.1739 | 7.58 | 70800 | 0.4300 | 0.3414 | | 0.1739 | 7.59 | 70900 | 0.4349 | 0.3422 | | 0.1763 | 7.6 | 71000 | 0.4328 | 0.3418 | | 0.1763 | 7.61 | 71100 | 0.4313 | 0.3452 | | 0.1763 | 7.62 | 71200 | 0.4240 | 0.3534 | | 0.1763 | 7.63 | 71300 | 0.4274 | 0.3474 | | 0.1763 | 7.64 | 71400 | 0.4304 | 0.3467 | | 0.171 | 7.66 | 71500 | 0.4331 | 0.3510 | | 0.171 | 7.67 | 71600 | 0.4263 | 0.3478 | | 0.171 | 7.68 | 71700 | 0.4301 | 0.3447 | | 0.171 | 7.69 | 71800 | 0.4046 | 0.3452 | | 0.171 | 7.7 | 71900 | 0.4300 | 0.3528 | | 0.1792 | 7.71 | 72000 | 0.4253 | 0.3492 | | 0.1792 | 7.72 | 72100 | 0.4296 | 0.3491 | | 0.1792 | 7.73 | 72200 | 0.4118 | 0.3451 | | 0.1792 | 7.74 | 72300 | 0.4348 | 0.3345 | | 0.1792 | 7.75 | 72400 | 0.4283 | 0.3447 | | 0.1801 | 7.76 | 72500 | 0.4232 | 0.3449 | | 0.1801 | 7.77 | 72600 | 0.4491 | 0.3486 | | 0.1801 | 7.78 | 72700 | 0.4261 | 0.3343 | | 0.1801 | 7.79 | 72800 | 0.4382 | 0.3455 | | 0.1801 | 7.81 | 72900 | 0.4301 | 0.3415 | | 0.1731 | 7.82 | 73000 | 0.4236 | 0.3438 | | 0.1731 | 7.83 | 73100 | 0.4257 | 0.3419 | | 0.1731 | 7.84 | 73200 | 0.4368 | 0.3410 | | 0.1731 | 7.85 | 73300 | 0.4207 | 0.3398 | | 0.1731 | 7.86 | 73400 | 0.4118 | 0.3418 | | 0.1748 | 7.87 | 73500 | 0.4357 | 0.3429 | | 0.1748 | 7.88 | 73600 | 0.4277 | 0.3452 | | 0.1748 | 7.89 | 73700 | 0.4173 | 0.3476 | | 0.1748 | 7.9 | 73800 | 0.4191 | 0.3478 | | 0.1748 | 7.91 | 73900 | 0.4197 | 0.3457 | | 0.1745 | 7.92 | 74000 | 0.4197 | 0.3436 | | 0.1745 | 7.93 | 74100 | 0.4253 | 0.3512 | | 0.1745 | 7.94 | 74200 | 0.4217 | 0.3463 | | 0.1745 | 7.95 | 74300 | 0.4305 | 0.3473 | | 0.1745 | 7.97 | 74400 | 0.4215 | 0.3507 | | 0.1743 | 7.98 | 74500 | 0.4127 | 0.3408 | | 0.1743 | 7.99 | 74600 | 0.4191 | 0.3468 | | 0.1743 | 8.0 | 74700 | 0.4381 | 0.3491 | | 0.1743 | 8.01 | 74800 | 0.4510 | 0.3477 | | 0.1743 | 8.02 | 74900 | 0.4482 | 0.3471 | | 0.1588 | 8.03 | 75000 | 0.4471 | 0.3430 | | 0.1588 | 8.04 | 75100 | 0.4296 | 0.3393 | | 0.1588 | 8.05 | 75200 | 0.4480 | 0.3398 | | 0.1588 | 8.06 | 75300 | 0.4302 | 0.3452 | | 0.1588 | 8.07 | 75400 | 0.4410 | 0.3431 | | 0.144 | 8.08 | 75500 | 0.4263 | 0.3455 | | 0.144 | 8.09 | 75600 | 0.4523 | 0.3495 | | 0.144 | 8.1 | 75700 | 0.4455 | 0.3511 | | 0.144 | 8.12 | 75800 | 0.4379 | 0.3445 | | 0.144 | 8.13 | 75900 | 0.4418 | 0.3411 | | 0.1483 | 8.14 | 76000 | 0.4491 | 0.3463 | | 0.1483 | 8.15 | 76100 | 0.4386 | 0.3467 | | 0.1483 | 8.16 | 76200 | 0.4327 | 0.3524 | | 0.1483 | 8.17 | 76300 | 0.4360 | 0.3613 | | 0.1483 | 8.18 | 76400 | 0.4352 | 0.3498 | | 0.1541 | 8.19 | 76500 | 0.4376 | 0.3414 | | 0.1541 | 8.2 | 76600 | 0.4408 | 0.3464 | | 0.1541 | 8.21 | 76700 | 0.4415 | 0.3445 | | 0.1541 | 8.22 | 76800 | 0.4455 | 0.3482 | | 0.1541 | 8.23 | 76900 | 0.4542 | 0.3415 | | 0.1479 | 8.24 | 77000 | 0.4462 | 0.3426 | | 0.1479 | 8.25 | 77100 | 0.4460 | 0.3413 | | 0.1479 | 8.27 | 77200 | 0.4434 | 0.3375 | | 0.1479 | 8.28 | 77300 | 0.4397 | 0.3473 | | 0.1479 | 8.29 | 77400 | 0.4379 | 0.3484 | | 0.1479 | 8.3 | 77500 | 0.4441 | 0.3494 | | 0.1479 | 8.31 | 77600 | 0.4301 | 0.3466 | | 0.1479 | 8.32 | 77700 | 0.4420 | 0.3474 | | 0.1479 | 8.33 | 77800 | 0.4520 | 0.3589 | | 0.1479 | 8.34 | 77900 | 0.4283 | 0.3482 | | 0.1531 | 8.35 | 78000 | 0.4325 | 0.3446 | | 0.1531 | 8.36 | 78100 | 0.4380 | 0.3469 | | 0.1531 | 8.37 | 78200 | 0.4463 | 0.3503 | | 0.1531 | 8.38 | 78300 | 0.4479 | 0.3499 | | 0.1531 | 8.39 | 78400 | 0.4477 | 0.3529 | | 0.1507 | 8.4 | 78500 | 0.4709 | 0.3551 | | 0.1507 | 8.42 | 78600 | 0.4533 | 0.3531 | | 0.1507 | 8.43 | 78700 | 0.4507 | 0.3522 | | 0.1507 | 8.44 | 78800 | 0.4562 | 0.3583 | | 0.1507 | 8.45 | 78900 | 0.4421 | 0.3577 | | 0.1545 | 8.46 | 79000 | 0.4485 | 0.3547 | | 0.1545 | 8.47 | 79100 | 0.4389 | 0.3465 | | 0.1545 | 8.48 | 79200 | 0.4397 | 0.3502 | | 0.1545 | 8.49 | 79300 | 0.4403 | 0.3471 | | 0.1545 | 8.5 | 79400 | 0.4394 | 0.3482 | | 0.153 | 8.51 | 79500 | 0.4393 | 0.3474 | | 0.153 | 8.52 | 79600 | 0.4343 | 0.3495 | | 0.153 | 8.53 | 79700 | 0.4395 | 0.3539 | | 0.153 | 8.54 | 79800 | 0.4497 | 0.3535 | | 0.153 | 8.55 | 79900 | 0.4443 | 0.3540 | | 0.1558 | 8.57 | 80000 | 0.4495 | 0.3554 | | 0.1558 | 8.58 | 80100 | 0.4387 | 0.3460 | | 0.1558 | 8.59 | 80200 | 0.4378 | 0.3520 | | 0.1558 | 8.6 | 80300 | 0.4446 | 0.3527 | | 0.1558 | 8.61 | 80400 | 0.4513 | 0.3508 | | 0.1527 | 8.62 | 80500 | 0.4396 | 0.3537 | | 0.1527 | 8.63 | 80600 | 0.4405 | 0.3507 | | 0.1527 | 8.64 | 80700 | 0.4398 | 0.3450 | | 0.1527 | 8.65 | 80800 | 0.4458 | 0.3508 | | 0.1527 | 8.66 | 80900 | 0.4380 | 0.3465 | | 0.1522 | 8.67 | 81000 | 0.4373 | 0.3482 | | 0.1522 | 8.68 | 81100 | 0.4363 | 0.3410 | | 0.1522 | 8.69 | 81200 | 0.4290 | 0.3447 | | 0.1522 | 8.7 | 81300 | 0.4409 | 0.3515 | | 0.1522 | 8.72 | 81400 | 0.4363 | 0.3433 | | 0.1502 | 8.73 | 81500 | 0.4313 | 0.3429 | | 0.1502 | 8.74 | 81600 | 0.4263 | 0.3451 | | 0.1502 | 8.75 | 81700 | 0.4297 | 0.3452 | | 0.1502 | 8.76 | 81800 | 0.4449 | 0.3411 | | 0.1502 | 8.77 | 81900 | 0.4465 | 0.3455 | | 0.151 | 8.78 | 82000 | 0.4274 | 0.3425 | | 0.151 | 8.79 | 82100 | 0.4525 | 0.3532 | | 0.151 | 8.8 | 82200 | 0.4282 | 0.3502 | | 0.151 | 8.81 | 82300 | 0.4189 | 0.3507 | | 0.151 | 8.82 | 82400 | 0.4379 | 0.3451 | | 0.1529 | 8.83 | 82500 | 0.4378 | 0.3419 | | 0.1529 | 8.84 | 82600 | 0.4283 | 0.3392 | | 0.1529 | 8.85 | 82700 | 0.4359 | 0.3399 | | 0.1529 | 8.87 | 82800 | 0.4308 | 0.3358 | | 0.1529 | 8.88 | 82900 | 0.4296 | 0.3335 | | 0.151 | 8.89 | 83000 | 0.4387 | 0.3372 | | 0.151 | 8.9 | 83100 | 0.4335 | 0.3420 | | 0.151 | 8.91 | 83200 | 0.4329 | 0.3374 | | 0.151 | 8.92 | 83300 | 0.4353 | 0.3404 | | 0.151 | 8.93 | 83400 | 0.4384 | 0.3447 | | 0.1522 | 8.94 | 83500 | 0.4444 | 0.3353 | | 0.1522 | 8.95 | 83600 | 0.4413 | 0.3481 | | 0.1522 | 8.96 | 83700 | 0.4247 | 0.3474 | | 0.1522 | 8.97 | 83800 | 0.4197 | 0.3386 | | 0.1522 | 8.98 | 83900 | 0.4216 | 0.3384 | | 0.1511 | 8.99 | 84000 | 0.4159 | 0.3396 | | 0.1511 | 9.0 | 84100 | 0.4213 | 0.3416 | | 0.1511 | 9.01 | 84200 | 0.4399 | 0.3379 | | 0.1511 | 9.03 | 84300 | 0.4318 | 0.3437 | | 0.1511 | 9.04 | 84400 | 0.4356 | 0.3371 | | 0.1336 | 9.05 | 84500 | 0.4403 | 0.3373 | | 0.1336 | 9.06 | 84600 | 0.4545 | 0.3381 | | 0.1336 | 9.07 | 84700 | 0.4313 | 0.3331 | | 0.1336 | 9.08 | 84800 | 0.4257 | 0.3360 | | 0.1336 | 9.09 | 84900 | 0.4285 | 0.3372 | | 0.1315 | 9.1 | 85000 | 0.4378 | 0.3332 | | 0.1315 | 9.11 | 85100 | 0.4352 | 0.3282 | | 0.1315 | 9.12 | 85200 | 0.4360 | 0.3339 | | 0.1315 | 9.13 | 85300 | 0.4404 | 0.3365 | | 0.1315 | 9.14 | 85400 | 0.4345 | 0.3356 | | 0.1272 | 9.15 | 85500 | 0.4468 | 0.3375 | | 0.1272 | 9.16 | 85600 | 0.4331 | 0.3363 | | 0.1272 | 9.18 | 85700 | 0.4330 | 0.3309 | | 0.1272 | 9.19 | 85800 | 0.4424 | 0.3301 | | 0.1272 | 9.2 | 85900 | 0.4520 | 0.3326 | | 0.1289 | 9.21 | 86000 | 0.4421 | 0.3326 | | 0.1289 | 9.22 | 86100 | 0.4480 | 0.3335 | | 0.1289 | 9.23 | 86200 | 0.4351 | 0.3380 | | 0.1289 | 9.24 | 86300 | 0.4350 | 0.3427 | | 0.1289 | 9.25 | 86400 | 0.4362 | 0.3320 | | 0.1333 | 9.26 | 86500 | 0.4260 | 0.3342 | | 0.1333 | 9.27 | 86600 | 0.4357 | 0.3360 | | 0.1333 | 9.28 | 86700 | 0.4505 | 0.3372 | | 0.1333 | 9.29 | 86800 | 0.4342 | 0.3359 | | 0.1333 | 9.3 | 86900 | 0.4295 | 0.3367 | | 0.1318 | 9.31 | 87000 | 0.4320 | 0.3335 | | 0.1318 | 9.33 | 87100 | 0.4332 | 0.3344 | | 0.1318 | 9.34 | 87200 | 0.4373 | 0.3330 | | 0.1318 | 9.35 | 87300 | 0.4490 | 0.3316 | | 0.1318 | 9.36 | 87400 | 0.4188 | 0.3429 | | 0.1275 | 9.37 | 87500 | 0.4502 | 0.3383 | | 0.1275 | 9.38 | 87600 | 0.4463 | 0.3387 | | 0.1275 | 9.39 | 87700 | 0.4385 | 0.3308 | | 0.1275 | 9.4 | 87800 | 0.4464 | 0.3414 | | 0.1275 | 9.41 | 87900 | 0.4563 | 0.3405 | | 0.1331 | 9.42 | 88000 | 0.4286 | 0.3374 | | 0.1331 | 9.43 | 88100 | 0.4389 | 0.3352 | | 0.1331 | 9.44 | 88200 | 0.4301 | 0.3340 | | 0.1331 | 9.45 | 88300 | 0.4417 | 0.3373 | | 0.1331 | 9.46 | 88400 | 0.4450 | 0.3425 | | 0.1266 | 9.48 | 88500 | 0.4456 | 0.3451 | | 0.1266 | 9.49 | 88600 | 0.4517 | 0.3403 | | 0.1266 | 9.5 | 88700 | 0.4447 | 0.3419 | | 0.1266 | 9.51 | 88800 | 0.4486 | 0.3428 | | 0.1266 | 9.52 | 88900 | 0.4591 | 0.3411 | | 0.1316 | 9.53 | 89000 | 0.4481 | 0.3387 | | 0.1316 | 9.54 | 89100 | 0.4308 | 0.3349 | | 0.1316 | 9.55 | 89200 | 0.4411 | 0.3405 | | 0.1316 | 9.56 | 89300 | 0.4378 | 0.3390 | | 0.1316 | 9.57 | 89400 | 0.4448 | 0.3365 | | 0.1325 | 9.58 | 89500 | 0.4575 | 0.3416 | | 0.1325 | 9.59 | 89600 | 0.4608 | 0.3422 | | 0.1325 | 9.6 | 89700 | 0.4396 | 0.3350 | | 0.1325 | 9.61 | 89800 | 0.4380 | 0.3398 | | 0.1325 | 9.63 | 89900 | 0.4337 | 0.3388 | | 0.1324 | 9.64 | 90000 | 0.4376 | 0.3388 | | 0.1324 | 9.65 | 90100 | 0.4185 | 0.3380 | | 0.1324 | 9.66 | 90200 | 0.4394 | 0.3384 | | 0.1324 | 9.67 | 90300 | 0.4472 | 0.3400 | | 0.1324 | 9.68 | 90400 | 0.4523 | 0.3390 | | 0.1361 | 9.69 | 90500 | 0.4466 | 0.3389 | | 0.1361 | 9.7 | 90600 | 0.4414 | 0.3383 | | 0.1361 | 9.71 | 90700 | 0.4288 | 0.3348 | | 0.1361 | 9.72 | 90800 | 0.4445 | 0.3374 | | 0.1361 | 9.73 | 90900 | 0.4252 | 0.3322 | | 0.1353 | 9.74 | 91000 | 0.4312 | 0.3338 | | 0.1353 | 9.75 | 91100 | 0.4326 | 0.3319 | | 0.1353 | 9.76 | 91200 | 0.4212 | 0.3400 | | 0.1353 | 9.78 | 91300 | 0.4191 | 0.3374 | | 0.1353 | 9.79 | 91400 | 0.4399 | 0.3332 | | 0.1308 | 9.8 | 91500 | 0.4340 | 0.3349 | | 0.1308 | 9.81 | 91600 | 0.4280 | 0.3379 | | 0.1308 | 9.82 | 91700 | 0.4419 | 0.3376 | | 0.1308 | 9.83 | 91800 | 0.4309 | 0.3333 | | 0.1308 | 9.84 | 91900 | 0.4274 | 0.3352 | | 0.1321 | 9.85 | 92000 | 0.4147 | 0.3337 | | 0.1321 | 9.86 | 92100 | 0.4252 | 0.3316 | | 0.1321 | 9.87 | 92200 | 0.4378 | 0.3381 | | 0.1321 | 9.88 | 92300 | 0.4265 | 0.3355 | | 0.1321 | 9.89 | 92400 | 0.4247 | 0.3331 | | 0.1358 | 9.9 | 92500 | 0.4099 | 0.3379 | | 0.1358 | 9.91 | 92600 | 0.4142 | 0.3356 | | 0.1358 | 9.93 | 92700 | 0.4220 | 0.3332 | | 0.1358 | 9.94 | 92800 | 0.4219 | 0.3369 | | 0.1358 | 9.95 | 92900 | 0.4178 | 0.3332 | | 0.1331 | 9.96 | 93000 | 0.4305 | 0.3353 | | 0.1331 | 9.97 | 93100 | 0.4324 | 0.3307 | | 0.1331 | 9.98 | 93200 | 0.4315 | 0.3344 | | 0.1331 | 9.99 | 93300 | 0.4212 | 0.3314 | | 0.1331 | 10.0 | 93400 | 0.4203 | 0.3332 | | 0.1304 | 10.01 | 93500 | 0.4424 | 0.3351 | | 0.1304 | 10.02 | 93600 | 0.4474 | 0.3341 | | 0.1304 | 10.03 | 93700 | 0.4466 | 0.3378 | | 0.1304 | 10.04 | 93800 | 0.4388 | 0.3327 | | 0.1304 | 10.05 | 93900 | 0.4312 | 0.3360 | | 0.1152 | 10.06 | 94000 | 0.4471 | 0.3307 | | 0.1152 | 10.07 | 94100 | 0.4472 | 0.3316 | | 0.1152 | 10.09 | 94200 | 0.4462 | 0.3324 | | 0.1152 | 10.1 | 94300 | 0.4383 | 0.3344 | | 0.1152 | 10.11 | 94400 | 0.4671 | 0.3365 | | 0.1097 | 10.12 | 94500 | 0.4596 | 0.3307 | | 0.1097 | 10.13 | 94600 | 0.4517 | 0.3382 | | 0.1097 | 10.14 | 94700 | 0.4285 | 0.3380 | | 0.1097 | 10.15 | 94800 | 0.4628 | 0.3363 | | 0.1097 | 10.16 | 94900 | 0.4478 | 0.3365 | | 0.1153 | 10.17 | 95000 | 0.4464 | 0.3346 | | 0.1153 | 10.18 | 95100 | 0.4432 | 0.3392 | | 0.1153 | 10.19 | 95200 | 0.4326 | 0.3330 | | 0.1153 | 10.2 | 95300 | 0.4480 | 0.3327 | | 0.1153 | 10.21 | 95400 | 0.4436 | 0.3260 | | 0.1149 | 10.22 | 95500 | 0.4549 | 0.3311 | | 0.1149 | 10.24 | 95600 | 0.4573 | 0.3353 | | 0.1149 | 10.25 | 95700 | 0.4373 | 0.3369 | | 0.1149 | 10.26 | 95800 | 0.4459 | 0.3358 | | 0.1149 | 10.27 | 95900 | 0.4288 | 0.3270 | | 0.1169 | 10.28 | 96000 | 0.4474 | 0.3330 | | 0.1169 | 10.29 | 96100 | 0.4524 | 0.3298 | | 0.1169 | 10.3 | 96200 | 0.4517 | 0.3258 | | 0.1169 | 10.31 | 96300 | 0.4366 | 0.3288 | | 0.1169 | 10.32 | 96400 | 0.4574 | 0.3324 | | 0.1137 | 10.33 | 96500 | 0.4507 | 0.3343 | | 0.1137 | 10.34 | 96600 | 0.4414 | 0.3301 | | 0.1137 | 10.35 | 96700 | 0.4524 | 0.3366 | | 0.1137 | 10.36 | 96800 | 0.4563 | 0.3435 | | 0.1137 | 10.37 | 96900 | 0.4315 | 0.3375 | | 0.1162 | 10.39 | 97000 | 0.4429 | 0.3365 | | 0.1162 | 10.4 | 97100 | 0.4489 | 0.3380 | | 0.1162 | 10.41 | 97200 | 0.4352 | 0.3357 | | 0.1162 | 10.42 | 97300 | 0.4390 | 0.3319 | | 0.1162 | 10.43 | 97400 | 0.4570 | 0.3303 | | 0.1151 | 10.44 | 97500 | 0.4692 | 0.3344 | | 0.1151 | 10.45 | 97600 | 0.4605 | 0.3332 | | 0.1151 | 10.46 | 97700 | 0.4457 | 0.3238 | | 0.1151 | 10.47 | 97800 | 0.4298 | 0.3304 | | 0.1151 | 10.48 | 97900 | 0.4619 | 0.3274 | | 0.1105 | 10.49 | 98000 | 0.4362 | 0.3244 | | 0.1105 | 10.5 | 98100 | 0.4568 | 0.3289 | | 0.1105 | 10.51 | 98200 | 0.4522 | 0.3336 | | 0.1105 | 10.52 | 98300 | 0.4302 | 0.3257 | | 0.1105 | 10.54 | 98400 | 0.4505 | 0.3238 | | 0.1164 | 10.55 | 98500 | 0.4430 | 0.3301 | | 0.1164 | 10.56 | 98600 | 0.4575 | 0.3283 | | 0.1164 | 10.57 | 98700 | 0.4447 | 0.3277 | | 0.1164 | 10.58 | 98800 | 0.4400 | 0.3301 | | 0.1164 | 10.59 | 98900 | 0.4427 | 0.3288 | | 0.1113 | 10.6 | 99000 | 0.4538 | 0.3248 | | 0.1113 | 10.61 | 99100 | 0.4519 | 0.3298 | | 0.1113 | 10.62 | 99200 | 0.4290 | 0.3249 | | 0.1113 | 10.63 | 99300 | 0.4501 | 0.3220 | | 0.1113 | 10.64 | 99400 | 0.4410 | 0.3218 | | 0.1159 | 10.65 | 99500 | 0.4478 | 0.3211 | | 0.1159 | 10.66 | 99600 | 0.4462 | 0.3250 | | 0.1159 | 10.67 | 99700 | 0.4543 | 0.3302 | | 0.1159 | 10.69 | 99800 | 0.4462 | 0.3301 | | 0.1159 | 10.7 | 99900 | 0.4468 | 0.3229 | | 0.1161 | 10.71 | 100000 | 0.4515 | 0.3241 | | 0.1161 | 10.72 | 100100 | 0.4404 | 0.3276 | | 0.1161 | 10.73 | 100200 | 0.4439 | 0.3222 | | 0.1161 | 10.74 | 100300 | 0.4392 | 0.3257 | | 0.1161 | 10.75 | 100400 | 0.4476 | 0.3314 | | 0.1199 | 10.76 | 100500 | 0.4493 | 0.3270 | | 0.1199 | 10.77 | 100600 | 0.4462 | 0.3224 | | 0.1199 | 10.78 | 100700 | 0.4467 | 0.3311 | | 0.1199 | 10.79 | 100800 | 0.4198 | 0.3228 | | 0.1199 | 10.8 | 100900 | 0.4349 | 0.3225 | | 0.1146 | 10.81 | 101000 | 0.4371 | 0.3272 | | 0.1146 | 10.82 | 101100 | 0.4525 | 0.3210 | | 0.1146 | 10.84 | 101200 | 0.4293 | 0.3219 | | 0.1146 | 10.85 | 101300 | 0.4238 | 0.3216 | | 0.1146 | 10.86 | 101400 | 0.4377 | 0.3252 | | 0.118 | 10.87 | 101500 | 0.4371 | 0.3208 | | 0.118 | 10.88 | 101600 | 0.4216 | 0.3174 | | 0.118 | 10.89 | 101700 | 0.4312 | 0.3189 | | 0.118 | 10.9 | 101800 | 0.4317 | 0.3204 | | 0.118 | 10.91 | 101900 | 0.4303 | 0.3235 | | 0.114 | 10.92 | 102000 | 0.4416 | 0.3158 | | 0.114 | 10.93 | 102100 | 0.4240 | 0.3195 | | 0.114 | 10.94 | 102200 | 0.4340 | 0.3149 | | 0.114 | 10.95 | 102300 | 0.4311 | 0.3215 | | 0.114 | 10.96 | 102400 | 0.4261 | 0.3238 | | 0.1152 | 10.97 | 102500 | 0.4263 | 0.3206 | | 0.1152 | 10.98 | 102600 | 0.4325 | 0.3294 | | 0.1152 | 11.0 | 102700 | 0.4327 | 0.3187 | | 0.1152 | 11.01 | 102800 | 0.4423 | 0.3195 | | 0.1152 | 11.02 | 102900 | 0.4341 | 0.3277 | | 0.1084 | 11.03 | 103000 | 0.4232 | 0.3243 | | 0.1084 | 11.04 | 103100 | 0.4355 | 0.3184 | | 0.1084 | 11.05 | 103200 | 0.4374 | 0.3274 | | 0.1084 | 11.06 | 103300 | 0.4484 | 0.3305 | | 0.1084 | 11.07 | 103400 | 0.4423 | 0.3226 | | 0.1003 | 11.08 | 103500 | 0.4518 | 0.3224 | | 0.1003 | 11.09 | 103600 | 0.4518 | 0.3243 | | 0.1003 | 11.1 | 103700 | 0.4282 | 0.3207 | | 0.1003 | 11.11 | 103800 | 0.4418 | 0.3220 | | 0.1003 | 11.12 | 103900 | 0.4411 | 0.3216 | | 0.1009 | 11.13 | 104000 | 0.4474 | 0.3238 | | 0.1009 | 11.15 | 104100 | 0.4406 | 0.3245 | | 0.1009 | 11.16 | 104200 | 0.4384 | 0.3242 | | 0.1009 | 11.17 | 104300 | 0.4702 | 0.3265 | | 0.1009 | 11.18 | 104400 | 0.4611 | 0.3266 | | 0.0992 | 11.19 | 104500 | 0.4425 | 0.3211 | | 0.0992 | 11.2 | 104600 | 0.4575 | 0.3222 | | 0.0992 | 11.21 | 104700 | 0.4449 | 0.3208 | | 0.0992 | 11.22 | 104800 | 0.4715 | 0.3208 | | 0.0992 | 11.23 | 104900 | 0.4469 | 0.3223 | | 0.1021 | 11.24 | 105000 | 0.4536 | 0.3225 | | 0.1021 | 11.25 | 105100 | 0.4629 | 0.3234 | | 0.1021 | 11.26 | 105200 | 0.4550 | 0.3205 | | 0.1021 | 11.27 | 105300 | 0.4598 | 0.3213 | | 0.1021 | 11.28 | 105400 | 0.4522 | 0.3179 | | 0.1021 | 11.3 | 105500 | 0.4658 | 0.3211 | | 0.1021 | 11.31 | 105600 | 0.4664 | 0.3196 | | 0.1021 | 11.32 | 105700 | 0.4736 | 0.3177 | | 0.1021 | 11.33 | 105800 | 0.4587 | 0.3158 | | 0.1021 | 11.34 | 105900 | 0.4589 | 0.3194 | | 0.1025 | 11.35 | 106000 | 0.4692 | 0.3214 | | 0.1025 | 11.36 | 106100 | 0.4382 | 0.3181 | | 0.1025 | 11.37 | 106200 | 0.4556 | 0.3185 | | 0.1025 | 11.38 | 106300 | 0.4445 | 0.3191 | | 0.1025 | 11.39 | 106400 | 0.4379 | 0.3163 | | 0.104 | 11.4 | 106500 | 0.4454 | 0.3220 | | 0.104 | 11.41 | 106600 | 0.4463 | 0.3201 | | 0.104 | 11.42 | 106700 | 0.4550 | 0.3173 | | 0.104 | 11.43 | 106800 | 0.4404 | 0.3168 | | 0.104 | 11.45 | 106900 | 0.4569 | 0.3170 | | 0.1016 | 11.46 | 107000 | 0.4529 | 0.3168 | | 0.1016 | 11.47 | 107100 | 0.4587 | 0.3173 | | 0.1016 | 11.48 | 107200 | 0.4505 | 0.3172 | | 0.1016 | 11.49 | 107300 | 0.4489 | 0.3159 | | 0.1016 | 11.5 | 107400 | 0.4528 | 0.3130 | | 0.1001 | 11.51 | 107500 | 0.4473 | 0.3181 | | 0.1001 | 11.52 | 107600 | 0.4434 | 0.3176 | | 0.1001 | 11.53 | 107700 | 0.4597 | 0.3186 | | 0.1001 | 11.54 | 107800 | 0.4351 | 0.3159 | | 0.1001 | 11.55 | 107900 | 0.4471 | 0.3185 | | 0.1005 | 11.56 | 108000 | 0.4457 | 0.3191 | | 0.1005 | 11.57 | 108100 | 0.4544 | 0.3293 | | 0.1005 | 11.58 | 108200 | 0.4436 | 0.3221 | | 0.1005 | 11.6 | 108300 | 0.4642 | 0.3270 | | 0.1005 | 11.61 | 108400 | 0.4474 | 0.3270 | | 0.1031 | 11.62 | 108500 | 0.4458 | 0.3196 | | 0.1031 | 11.63 | 108600 | 0.4723 | 0.3205 | | 0.1031 | 11.64 | 108700 | 0.4507 | 0.3226 | | 0.1031 | 11.65 | 108800 | 0.4424 | 0.3213 | | 0.1031 | 11.66 | 108900 | 0.4511 | 0.3213 | | 0.1014 | 11.67 | 109000 | 0.4422 | 0.3205 | | 0.1014 | 11.68 | 109100 | 0.4498 | 0.3180 | | 0.1014 | 11.69 | 109200 | 0.4303 | 0.3167 | | 0.1014 | 11.7 | 109300 | 0.4483 | 0.3108 | | 0.1014 | 11.71 | 109400 | 0.4548 | 0.3169 | | 0.0981 | 11.72 | 109500 | 0.4406 | 0.3122 | | 0.0981 | 11.73 | 109600 | 0.4293 | 0.3114 | | 0.0981 | 11.75 | 109700 | 0.4369 | 0.3159 | | 0.0981 | 11.76 | 109800 | 0.4364 | 0.3164 | | 0.0981 | 11.77 | 109900 | 0.4358 | 0.3189 | | 0.1023 | 11.78 | 110000 | 0.4281 | 0.3183 | | 0.1023 | 11.79 | 110100 | 0.4404 | 0.3159 | | 0.1023 | 11.8 | 110200 | 0.4471 | 0.3135 | | 0.1023 | 11.81 | 110300 | 0.4498 | 0.3201 | | 0.1023 | 11.82 | 110400 | 0.4527 | 0.3161 | | 0.0988 | 11.83 | 110500 | 0.4440 | 0.3173 | | 0.0988 | 11.84 | 110600 | 0.4356 | 0.3136 | | 0.0988 | 11.85 | 110700 | 0.4308 | 0.3135 | | 0.0988 | 11.86 | 110800 | 0.4294 | 0.3192 | | 0.0988 | 11.87 | 110900 | 0.4241 | 0.3168 | | 0.1022 | 11.88 | 111000 | 0.4420 | 0.3157 | | 0.1022 | 11.9 | 111100 | 0.4313 | 0.3125 | | 0.1022 | 11.91 | 111200 | 0.4213 | 0.3168 | | 0.1022 | 11.92 | 111300 | 0.4352 | 0.3135 | | 0.1022 | 11.93 | 111400 | 0.4297 | 0.3116 | | 0.1032 | 11.94 | 111500 | 0.4218 | 0.3137 | | 0.1032 | 11.95 | 111600 | 0.4334 | 0.3123 | | 0.1032 | 11.96 | 111700 | 0.4373 | 0.3175 | | 0.1032 | 11.97 | 111800 | 0.4299 | 0.3160 | | 0.1032 | 11.98 | 111900 | 0.4326 | 0.3189 | | 0.0969 | 11.99 | 112000 | 0.4208 | 0.3186 | | 0.0969 | 12.0 | 112100 | 0.4385 | 0.3169 | | 0.0969 | 12.01 | 112200 | 0.4453 | 0.3156 | | 0.0969 | 12.02 | 112300 | 0.4596 | 0.3133 | | 0.0969 | 12.03 | 112400 | 0.4509 | 0.3093 | | 0.0901 | 12.04 | 112500 | 0.4535 | 0.3138 | | 0.0901 | 12.06 | 112600 | 0.4371 | 0.3144 | | 0.0901 | 12.07 | 112700 | 0.4499 | 0.3154 | | 0.0901 | 12.08 | 112800 | 0.4615 | 0.3198 | | 0.0901 | 12.09 | 112900 | 0.4523 | 0.3177 | | 0.0889 | 12.1 | 113000 | 0.4412 | 0.3130 | | 0.0889 | 12.11 | 113100 | 0.4471 | 0.3181 | | 0.0889 | 12.12 | 113200 | 0.4530 | 0.3169 | | 0.0889 | 12.13 | 113300 | 0.4670 | 0.3149 | | 0.0889 | 12.14 | 113400 | 0.4594 | 0.3141 | | 0.0917 | 12.15 | 113500 | 0.4623 | 0.3127 | | 0.0917 | 12.16 | 113600 | 0.4460 | 0.3133 | | 0.0917 | 12.17 | 113700 | 0.4512 | 0.3191 | | 0.0917 | 12.18 | 113800 | 0.4681 | 0.3136 | | 0.0917 | 12.19 | 113900 | 0.4564 | 0.3129 | | 0.0906 | 12.21 | 114000 | 0.4482 | 0.3107 | | 0.0906 | 12.22 | 114100 | 0.4595 | 0.3133 | | 0.0906 | 12.23 | 114200 | 0.4510 | 0.3118 | | 0.0906 | 12.24 | 114300 | 0.4472 | 0.3131 | | 0.0906 | 12.25 | 114400 | 0.4499 | 0.3130 | | 0.0918 | 12.26 | 114500 | 0.4503 | 0.3138 | | 0.0918 | 12.27 | 114600 | 0.4518 | 0.3135 | | 0.0918 | 12.28 | 114700 | 0.4493 | 0.3114 | | 0.0918 | 12.29 | 114800 | 0.4574 | 0.3133 | | 0.0918 | 12.3 | 114900 | 0.4683 | 0.3200 | | 0.0869 | 12.31 | 115000 | 0.4608 | 0.3165 | | 0.0869 | 12.32 | 115100 | 0.4618 | 0.3183 | | 0.0869 | 12.33 | 115200 | 0.4689 | 0.3173 | | 0.0869 | 12.34 | 115300 | 0.4681 | 0.3224 | | 0.0869 | 12.36 | 115400 | 0.4576 | 0.3231 | | 0.0885 | 12.37 | 115500 | 0.4831 | 0.3176 | | 0.0885 | 12.38 | 115600 | 0.4602 | 0.3181 | | 0.0885 | 12.39 | 115700 | 0.4493 | 0.3168 | | 0.0885 | 12.4 | 115800 | 0.4564 | 0.3149 | | 0.0885 | 12.41 | 115900 | 0.4585 | 0.3158 | | 0.091 | 12.42 | 116000 | 0.4713 | 0.3193 | | 0.091 | 12.43 | 116100 | 0.4581 | 0.3139 | | 0.091 | 12.44 | 116200 | 0.4637 | 0.3131 | | 0.091 | 12.45 | 116300 | 0.4572 | 0.3124 | | 0.091 | 12.46 | 116400 | 0.4489 | 0.3163 | | 0.0886 | 12.47 | 116500 | 0.4679 | 0.3159 | | 0.0886 | 12.48 | 116600 | 0.4712 | 0.3151 | | 0.0886 | 12.49 | 116700 | 0.4750 | 0.3186 | | 0.0886 | 12.51 | 116800 | 0.4673 | 0.3176 | | 0.0886 | 12.52 | 116900 | 0.4601 | 0.3113 | | 0.0917 | 12.53 | 117000 | 0.4341 | 0.3125 | | 0.0917 | 12.54 | 117100 | 0.4462 | 0.3077 | | 0.0917 | 12.55 | 117200 | 0.4502 | 0.3099 | | 0.0917 | 12.56 | 117300 | 0.4482 | 0.3116 | | 0.0917 | 12.57 | 117400 | 0.4459 | 0.3131 | | 0.0881 | 12.58 | 117500 | 0.4464 | 0.3122 | | 0.0881 | 12.59 | 117600 | 0.4471 | 0.3125 | | 0.0881 | 12.6 | 117700 | 0.4319 | 0.3122 | | 0.0881 | 12.61 | 117800 | 0.4421 | 0.3103 | | 0.0881 | 12.62 | 117900 | 0.4326 | 0.3108 | | 0.0913 | 12.63 | 118000 | 0.4414 | 0.3068 | | 0.0913 | 12.64 | 118100 | 0.4421 | 0.3083 | | 0.0913 | 12.66 | 118200 | 0.4449 | 0.3103 | | 0.0913 | 12.67 | 118300 | 0.4380 | 0.3128 | | 0.0913 | 12.68 | 118400 | 0.4390 | 0.3136 | | 0.0921 | 12.69 | 118500 | 0.4452 | 0.3104 | | 0.0921 | 12.7 | 118600 | 0.4378 | 0.3122 | | 0.0921 | 12.71 | 118700 | 0.4459 | 0.3080 | | 0.0921 | 12.72 | 118800 | 0.4369 | 0.3051 | | 0.0921 | 12.73 | 118900 | 0.4474 | 0.3076 | | 0.0886 | 12.74 | 119000 | 0.4508 | 0.3066 | | 0.0886 | 12.75 | 119100 | 0.4456 | 0.3097 | | 0.0886 | 12.76 | 119200 | 0.4503 | 0.3078 | | 0.0886 | 12.77 | 119300 | 0.4460 | 0.3081 | | 0.0886 | 12.78 | 119400 | 0.4404 | 0.3080 | | 0.0897 | 12.79 | 119500 | 0.4351 | 0.3100 | | 0.0897 | 12.81 | 119600 | 0.4446 | 0.3120 | | 0.0897 | 12.82 | 119700 | 0.4407 | 0.3098 | | 0.0897 | 12.83 | 119800 | 0.4406 | 0.3084 | | 0.0897 | 12.84 | 119900 | 0.4492 | 0.3067 | | 0.09 | 12.85 | 120000 | 0.4546 | 0.3098 | | 0.09 | 12.86 | 120100 | 0.4547 | 0.3074 | | 0.09 | 12.87 | 120200 | 0.4517 | 0.3111 | | 0.09 | 12.88 | 120300 | 0.4320 | 0.3064 | | 0.09 | 12.89 | 120400 | 0.4294 | 0.3072 | | 0.0898 | 12.9 | 120500 | 0.4412 | 0.3050 | | 0.0898 | 12.91 | 120600 | 0.4254 | 0.3074 | | 0.0898 | 12.92 | 120700 | 0.4409 | 0.3071 | | 0.0898 | 12.93 | 120800 | 0.4362 | 0.3071 | | 0.0898 | 12.94 | 120900 | 0.4579 | 0.3090 | | 0.0892 | 12.95 | 121000 | 0.4492 | 0.3059 | | 0.0892 | 12.97 | 121100 | 0.4404 | 0.3105 | | 0.0892 | 12.98 | 121200 | 0.4365 | 0.3066 | | 0.0892 | 12.99 | 121300 | 0.4368 | 0.3048 | | 0.0892 | 13.0 | 121400 | 0.4410 | 0.3033 | | 0.085 | 13.01 | 121500 | 0.4450 | 0.3047 | | 0.085 | 13.02 | 121600 | 0.4633 | 0.3013 | | 0.085 | 13.03 | 121700 | 0.4600 | 0.3054 | | 0.085 | 13.04 | 121800 | 0.4541 | 0.3047 | | 0.085 | 13.05 | 121900 | 0.4546 | 0.3058 | | 0.0791 | 13.06 | 122000 | 0.4536 | 0.3045 | | 0.0791 | 13.07 | 122100 | 0.4589 | 0.3066 | | 0.0791 | 13.08 | 122200 | 0.4581 | 0.3057 | | 0.0791 | 13.09 | 122300 | 0.4546 | 0.3048 | | 0.0791 | 13.1 | 122400 | 0.4673 | 0.3006 | | 0.0789 | 13.12 | 122500 | 0.4551 | 0.3019 | | 0.0789 | 13.13 | 122600 | 0.4467 | 0.3025 | | 0.0789 | 13.14 | 122700 | 0.4593 | 0.3015 | | 0.0789 | 13.15 | 122800 | 0.4598 | 0.3037 | | 0.0789 | 13.16 | 122900 | 0.4532 | 0.3038 | | 0.077 | 13.17 | 123000 | 0.4607 | 0.3015 | | 0.077 | 13.18 | 123100 | 0.4385 | 0.3005 | | 0.077 | 13.19 | 123200 | 0.4590 | 0.3041 | | 0.077 | 13.2 | 123300 | 0.4359 | 0.3047 | | 0.077 | 13.21 | 123400 | 0.4458 | 0.3039 | | 0.0771 | 13.22 | 123500 | 0.4506 | 0.3075 | | 0.0771 | 13.23 | 123600 | 0.4457 | 0.3079 | | 0.0771 | 13.24 | 123700 | 0.4448 | 0.3048 | | 0.0771 | 13.25 | 123800 | 0.4398 | 0.3036 | | 0.0771 | 13.27 | 123900 | 0.4510 | 0.3055 | | 0.0804 | 13.28 | 124000 | 0.4507 | 0.3059 | | 0.0804 | 13.29 | 124100 | 0.4544 | 0.3076 | | 0.0804 | 13.3 | 124200 | 0.4534 | 0.3073 | | 0.0804 | 13.31 | 124300 | 0.4441 | 0.3061 | | 0.0804 | 13.32 | 124400 | 0.4391 | 0.3075 | | 0.0774 | 13.33 | 124500 | 0.4527 | 0.3063 | | 0.0774 | 13.34 | 124600 | 0.4638 | 0.3057 | | 0.0774 | 13.35 | 124700 | 0.4541 | 0.3064 | | 0.0774 | 13.36 | 124800 | 0.4617 | 0.3078 | | 0.0774 | 13.37 | 124900 | 0.4584 | 0.3041 | | 0.0795 | 13.38 | 125000 | 0.4663 | 0.3032 | | 0.0795 | 13.39 | 125100 | 0.4546 | 0.3025 | | 0.0795 | 13.4 | 125200 | 0.4616 | 0.3021 | | 0.0795 | 13.42 | 125300 | 0.4603 | 0.3016 | | 0.0795 | 13.43 | 125400 | 0.4616 | 0.3040 | | 0.0791 | 13.44 | 125500 | 0.4548 | 0.3021 | | 0.0791 | 13.45 | 125600 | 0.4560 | 0.3025 | | 0.0791 | 13.46 | 125700 | 0.4516 | 0.3037 | | 0.0791 | 13.47 | 125800 | 0.4500 | 0.3013 | | 0.0791 | 13.48 | 125900 | 0.4540 | 0.3009 | | 0.0776 | 13.49 | 126000 | 0.4581 | 0.3026 | | 0.0776 | 13.5 | 126100 | 0.4598 | 0.3028 | | 0.0776 | 13.51 | 126200 | 0.4587 | 0.3038 | | 0.0776 | 13.52 | 126300 | 0.4514 | 0.3024 | | 0.0776 | 13.53 | 126400 | 0.4495 | 0.3036 | | 0.0793 | 13.54 | 126500 | 0.4556 | 0.3016 | | 0.0793 | 13.55 | 126600 | 0.4603 | 0.3025 | | 0.0793 | 13.57 | 126700 | 0.4496 | 0.2995 | | 0.0793 | 13.58 | 126800 | 0.4483 | 0.2969 | | 0.0793 | 13.59 | 126900 | 0.4462 | 0.2980 | | 0.0816 | 13.6 | 127000 | 0.4521 | 0.2982 | | 0.0816 | 13.61 | 127100 | 0.4580 | 0.3019 | | 0.0816 | 13.62 | 127200 | 0.4669 | 0.3009 | | 0.0816 | 13.63 | 127300 | 0.4513 | 0.3017 | | 0.0816 | 13.64 | 127400 | 0.4602 | 0.3015 | | 0.0779 | 13.65 | 127500 | 0.4592 | 0.2998 | | 0.0779 | 13.66 | 127600 | 0.4700 | 0.2981 | | 0.0779 | 13.67 | 127700 | 0.4727 | 0.2978 | | 0.0779 | 13.68 | 127800 | 0.4600 | 0.2983 | | 0.0779 | 13.69 | 127900 | 0.4472 | 0.2978 | | 0.0779 | 13.7 | 128000 | 0.4483 | 0.2984 | | 0.0779 | 13.72 | 128100 | 0.4512 | 0.2968 | | 0.0779 | 13.73 | 128200 | 0.4549 | 0.2988 | | 0.0779 | 13.74 | 128300 | 0.4576 | 0.2992 | | 0.0779 | 13.75 | 128400 | 0.4400 | 0.2974 | | 0.0793 | 13.76 | 128500 | 0.4433 | 0.3009 | | 0.0793 | 13.77 | 128600 | 0.4456 | 0.2982 | | 0.0793 | 13.78 | 128700 | 0.4560 | 0.3019 | | 0.0793 | 13.79 | 128800 | 0.4551 | 0.3008 | | 0.0793 | 13.8 | 128900 | 0.4513 | 0.3007 | | 0.0769 | 13.81 | 129000 | 0.4518 | 0.3008 | | 0.0769 | 13.82 | 129100 | 0.4567 | 0.2981 | | 0.0769 | 13.83 | 129200 | 0.4437 | 0.2985 | | 0.0769 | 13.84 | 129300 | 0.4424 | 0.2970 | | 0.0769 | 13.85 | 129400 | 0.4423 | 0.3010 | | 0.0785 | 13.87 | 129500 | 0.4495 | 0.2999 | | 0.0785 | 13.88 | 129600 | 0.4483 | 0.2975 | | 0.0785 | 13.89 | 129700 | 0.4485 | 0.2982 | | 0.0785 | 13.9 | 129800 | 0.4429 | 0.2972 | | 0.0785 | 13.91 | 129900 | 0.4430 | 0.2958 | | 0.0792 | 13.92 | 130000 | 0.4495 | 0.2954 | | 0.0792 | 13.93 | 130100 | 0.4485 | 0.2947 | | 0.0792 | 13.94 | 130200 | 0.4395 | 0.2972 | | 0.0792 | 13.95 | 130300 | 0.4379 | 0.2973 | | 0.0792 | 13.96 | 130400 | 0.4428 | 0.2989 | | 0.0795 | 13.97 | 130500 | 0.4385 | 0.3000 | | 0.0795 | 13.98 | 130600 | 0.4490 | 0.2983 | | 0.0795 | 13.99 | 130700 | 0.4568 | 0.2970 | | 0.0795 | 14.0 | 130800 | 0.4482 | 0.2963 | | 0.0795 | 14.01 | 130900 | 0.4479 | 0.2962 | | 0.075 | 14.03 | 131000 | 0.4565 | 0.2968 | | 0.075 | 14.04 | 131100 | 0.4623 | 0.2962 | | 0.075 | 14.05 | 131200 | 0.4617 | 0.2965 | | 0.075 | 14.06 | 131300 | 0.4687 | 0.2949 | | 0.075 | 14.07 | 131400 | 0.4718 | 0.2929 | | 0.0709 | 14.08 | 131500 | 0.4720 | 0.2945 | | 0.0709 | 14.09 | 131600 | 0.4604 | 0.2953 | | 0.0709 | 14.1 | 131700 | 0.4655 | 0.2955 | | 0.0709 | 14.11 | 131800 | 0.4695 | 0.2958 | | 0.0709 | 14.12 | 131900 | 0.4666 | 0.2945 | | 0.0705 | 14.13 | 132000 | 0.4605 | 0.2959 | | 0.0705 | 14.14 | 132100 | 0.4581 | 0.2947 | | 0.0705 | 14.15 | 132200 | 0.4597 | 0.2948 | | 0.0705 | 14.16 | 132300 | 0.4612 | 0.2943 | | 0.0705 | 14.18 | 132400 | 0.4611 | 0.2959 | | 0.0727 | 14.19 | 132500 | 0.4569 | 0.2958 | | 0.0727 | 14.2 | 132600 | 0.4556 | 0.2951 | | 0.0727 | 14.21 | 132700 | 0.4597 | 0.2955 | | 0.0727 | 14.22 | 132800 | 0.4472 | 0.2935 | | 0.0727 | 14.23 | 132900 | 0.4573 | 0.2943 | | 0.0723 | 14.24 | 133000 | 0.4572 | 0.2943 | | 0.0723 | 14.25 | 133100 | 0.4582 | 0.2956 | | 0.0723 | 14.26 | 133200 | 0.4599 | 0.2968 | | 0.0723 | 14.27 | 133300 | 0.4633 | 0.2962 | | 0.0723 | 14.28 | 133400 | 0.4604 | 0.2972 | | 0.071 | 14.29 | 133500 | 0.4587 | 0.2971 | | 0.071 | 14.3 | 133600 | 0.4598 | 0.2973 | | 0.071 | 14.31 | 133700 | 0.4579 | 0.2976 | | 0.071 | 14.33 | 133800 | 0.4539 | 0.2969 | | 0.071 | 14.34 | 133900 | 0.4628 | 0.2961 | | 0.0703 | 14.35 | 134000 | 0.4627 | 0.2974 | | 0.0703 | 14.36 | 134100 | 0.4611 | 0.2974 | | 0.0703 | 14.37 | 134200 | 0.4607 | 0.2977 | | 0.0703 | 14.38 | 134300 | 0.4638 | 0.2983 | | 0.0703 | 14.39 | 134400 | 0.4628 | 0.2969 | | 0.0736 | 14.4 | 134500 | 0.4543 | 0.2965 | | 0.0736 | 14.41 | 134600 | 0.4585 | 0.2963 | | 0.0736 | 14.42 | 134700 | 0.4636 | 0.2950 | | 0.0736 | 14.43 | 134800 | 0.4636 | 0.2964 | | 0.0736 | 14.44 | 134900 | 0.4630 | 0.2958 | | 0.0715 | 14.45 | 135000 | 0.4611 | 0.2968 | | 0.0715 | 14.46 | 135100 | 0.4633 | 0.2966 | | 0.0715 | 14.48 | 135200 | 0.4664 | 0.2954 | | 0.0715 | 14.49 | 135300 | 0.4670 | 0.2945 | | 0.0715 | 14.5 | 135400 | 0.4638 | 0.2961 | | 0.073 | 14.51 | 135500 | 0.4635 | 0.2965 | | 0.073 | 14.52 | 135600 | 0.4639 | 0.2956 | | 0.073 | 14.53 | 135700 | 0.4617 | 0.2948 | | 0.073 | 14.54 | 135800 | 0.4609 | 0.2933 | | 0.073 | 14.55 | 135900 | 0.4614 | 0.2947 | | 0.0717 | 14.56 | 136000 | 0.4567 | 0.2958 | | 0.0717 | 14.57 | 136100 | 0.4615 | 0.2934 | | 0.0717 | 14.58 | 136200 | 0.4606 | 0.2929 | | 0.0717 | 14.59 | 136300 | 0.4652 | 0.2934 | | 0.0717 | 14.6 | 136400 | 0.4664 | 0.2934 | | 0.0717 | 14.61 | 136500 | 0.4657 | 0.2923 | | 0.0717 | 14.63 | 136600 | 0.4633 | 0.2931 | | 0.0717 | 14.64 | 136700 | 0.4624 | 0.2943 | | 0.0717 | 14.65 | 136800 | 0.4615 | 0.2949 | | 0.0717 | 14.66 | 136900 | 0.4619 | 0.2930 | | 0.0707 | 14.67 | 137000 | 0.4608 | 0.2936 | | 0.0707 | 14.68 | 137100 | 0.4615 | 0.2945 | | 0.0707 | 14.69 | 137200 | 0.4605 | 0.2941 | | 0.0707 | 14.7 | 137300 | 0.4598 | 0.2931 | | 0.0707 | 14.71 | 137400 | 0.4596 | 0.2943 | | 0.0694 | 14.72 | 137500 | 0.4624 | 0.2927 | | 0.0694 | 14.73 | 137600 | 0.4614 | 0.2931 | | 0.0694 | 14.74 | 137700 | 0.4621 | 0.2924 | | 0.0694 | 14.75 | 137800 | 0.4589 | 0.2920 | | 0.0694 | 14.76 | 137900 | 0.4590 | 0.2926 | | 0.0706 | 14.78 | 138000 | 0.4588 | 0.2931 | | 0.0706 | 14.79 | 138100 | 0.4583 | 0.2928 | | 0.0706 | 14.8 | 138200 | 0.4552 | 0.2934 | | 0.0706 | 14.81 | 138300 | 0.4551 | 0.2923 | | 0.0706 | 14.82 | 138400 | 0.4555 | 0.2927 | | 0.0717 | 14.83 | 138500 | 0.4547 | 0.2930 | | 0.0717 | 14.84 | 138600 | 0.4546 | 0.2930 | | 0.0717 | 14.85 | 138700 | 0.4553 | 0.2934 | | 0.0717 | 14.86 | 138800 | 0.4554 | 0.2924 | | 0.0717 | 14.87 | 138900 | 0.4573 | 0.2924 | | 0.0722 | 14.88 | 139000 | 0.4582 | 0.2927 | | 0.0722 | 14.89 | 139100 | 0.4586 | 0.2926 | | 0.0722 | 14.9 | 139200 | 0.4570 | 0.2926 | | 0.0722 | 14.91 | 139300 | 0.4571 | 0.2923 | | 0.0722 | 14.93 | 139400 | 0.4564 | 0.2925 | | 0.0698 | 14.94 | 139500 | 0.4573 | 0.2927 | | 0.0698 | 14.95 | 139600 | 0.4574 | 0.2927 | | 0.0698 | 14.96 | 139700 | 0.4573 | 0.2927 | | 0.0698 | 14.97 | 139800 | 0.4576 | 0.2921 | | 0.0698 | 14.98 | 139900 | 0.4578 | 0.2923 | | 0.0705 | 14.99 | 140000 | 0.4579 | 0.2928 | | 0.0705 | 15.0 | 140100 | 0.4578 | 0.2927 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
{"language": ["sv-SE"], "license": "apache-2.0", "tags": ["automatic-speech-recognition", "common_voice", "generated_from_trainer"], "model-index": [{"name": "wav2vec2-speechdat", "results": []}]}
birgermoell/wav2vec2-speechdat
null
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "common_voice", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
birgermoell/wav2vec2-swe-asr-large
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
automatic-speech-recognition
transformers
# Wav2Vec2-Large-XLSR-53-Swedish Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) in Swedish using the [Common Voice](https://huggingface.co/datasets/common_voice). The training data amounts to 402 MB. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "sv-SE", split="test[:2%]"). processor = Wav2Vec2Processor.from_pretrained("birgermoell/wav2vec2-swedish-common-voice") model = Wav2Vec2ForCTC.from_pretrained("birgermoell/wav2vec2-swedish-common-voice") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the {language} test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "sv-SE", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("birgermoell/wav2vec2-swedish-common-voice") model = Wav2Vec2ForCTC.from_pretrained("birgermoell/wav2vec2-swedish-common-voice") model.to("cuda") chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“]' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 36.91 % ## Training The Common Voice `train`, `validation` datasets were used for training. The script used for training can be found [here](https://colab.research.google.com/drive/1KkD4PeZwnIwxxxOP1bUE7XTZMK7-SzRj?usp=sharing)
{"language": "sv", "license": "apache-2.0", "tags": ["audio", "automatic-speech-recognition", "speech", "xlsr-fine-tuning-week"], "datasets": ["common_voice"], "model-index": [{"name": "XLSR Wav2Vec2 Swedish by Birger Moell", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice sv-SE", "type": "common_voice", "args": "sv-SE"}, "metrics": [{"type": "wer", "value": 36.91, "name": "Test WER"}]}]}]}
birgermoell/wav2vec2-swedish-common-voice
null
[ "transformers", "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "audio", "speech", "xlsr-fine-tuning-week", "sv", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
# Model Trained Using AutoNLP - Problem type: Multi-class Classification - Model ID: 530615016 - CO2 Emissions (in grams): 2.2247356264808964 ## Validation Metrics - Loss: 0.7859578132629395 - Accuracy: 0.676854818831649 - Macro F1: 0.3297126297995653 - Micro F1: 0.676854818831649 - Weighted F1: 0.6429522696884535 - Macro Precision: 0.33152557743856437 - Micro Precision: 0.676854818831649 - Weighted Precision: 0.6276125515413322 - Macro Recall: 0.33784302289888885 - Micro Recall: 0.676854818831649 - Weighted Recall: 0.676854818831649 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/bitmorse/autonlp-ks-530615016 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("bitmorse/autonlp-ks-530615016", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("bitmorse/autonlp-ks-530615016", use_auth_token=True) inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```
{"language": "en", "tags": "autonlp", "datasets": ["bitmorse/autonlp-data-ks"], "widget": [{"text": "I love AutoNLP \ud83e\udd17"}], "co2_eq_emissions": 2.2247356264808964}
bitmorse/autonlp-ks-530615016
null
[ "transformers", "pytorch", "distilbert", "text-classification", "autonlp", "en", "dataset:bitmorse/autonlp-data-ks", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
feature-extraction
transformers
<!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # kickstarter-distilbert-model This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set: ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: None - training_precision: float32 ### Training results ### Framework versions - Transformers 4.16.2 - TensorFlow 2.7.0 - Datasets 1.18.2 - Tokenizers 0.11.0
{"tags": ["generated_from_keras_callback"], "model-index": [{"name": "kickstarter-distilbert-model", "results": []}]}
bitmorse/kickstarter-distilbert-model
null
[ "transformers", "pytorch", "tf", "distilbert", "feature-extraction", "generated_from_keras_callback", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
{}
bitsanlp/distilbert-base-uncased-finetuned-emotion
null
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
fill-mask
transformers
# AlephBERT ## Hebrew Language Model State-of-the-art language model for Hebrew. Based on Google's BERT architecture [(Devlin et al. 2018)](https://arxiv.org/abs/1810.04805). #### How to use ```python from transformers import BertModel, BertTokenizerFast alephbert_tokenizer = BertTokenizerFast.from_pretrained('onlplab/alephbert-base') alephbert = BertModel.from_pretrained('onlplab/alephbert-base') # if not finetuning - disable dropout alephbert.eval() ``` ## Training data 1. OSCAR [(Ortiz, 2019)](https://oscar-corpus.com/) Hebrew section (10 GB text, 20 million sentences). 2. Hebrew dump of [Wikipedia](https://dumps.wikimedia.org/hewiki/latest/) (650 MB text, 3 million sentences). 3. Hebrew Tweets collected from the Twitter sample stream (7 GB text, 70 million sentences). ## Training procedure Trained on a DGX machine (8 V100 GPUs) using the standard huggingface training procedure. Since the larger part of our training data is based on tweets we decided to start by optimizing using Masked Language Model loss only. To optimize training time we split the data into 4 sections based on max number of tokens: 1. num tokens < 32 (70M sentences) 2. 32 <= num tokens < 64 (12M sentences) 3. 64 <= num tokens < 128 (10M sentences) 4. 128 <= num tokens < 512 (1.5M sentences) Each section was first trained for 5 epochs with an initial learning rate set to 1e-4. Then each section was trained for another 5 epochs with an initial learning rate set to 1e-5, for a total of 10 epochs. Total training time was 8 days.
{"language": ["he"], "license": "apache-2.0", "tags": ["language model"], "datasets": ["oscar", "wikipedia", "twitter"]}
biu-nlp/alephbert-base
null
[ "transformers", "pytorch", "bert", "fill-mask", "language model", "he", "dataset:oscar", "dataset:wikipedia", "dataset:twitter", "arxiv:1810.04805", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
fill-mask
transformers
# Cross-Document Language Modeling CDLM: Cross-Document Language Modeling. Avi Caciularu, Arman Cohan, Iz Beltagy, Matthew E Peters, Arie Cattan and Ido Dagan. In EMNLP Findings, 2021. [PDF](https://arxiv.org/pdf/2101.00406.pdf) Please note that during our pretraining we used the document and sentence separators, which you might want to add to your data. The document and sentence separators are `<doc-s>`, `</doc-s>` (the last two tokens in the vocabulary), and `<s>`, `</s>`, respectively. ```python from transformers import AutoTokenizer, AutoModel # load model and tokenizer tokenizer = AutoTokenizer.from_pretrained('biu-nlp/cdlm') model = AutoModel.from_pretrained('biu-nlp/cdlm') ``` The original repo is [here](https://github.com/aviclu/CDLM). If you find our work useful, please cite the paper as: ```python @article{caciularu2021cross, title={Cross-Document Language Modeling}, author={Caciularu, Avi and Cohan, Arman and Beltagy, Iz and Peters, Matthew E and Cattan, Arie and Dagan, Ido}, journal={Findings of the Association for Computational Linguistics: EMNLP 2021}, year={2021} } ```
{"language": "en", "license": "apache-2.0", "tags": ["longformer", "cdlm"], "inference": false}
biu-nlp/cdlm
null
[ "transformers", "pytorch", "longformer", "fill-mask", "cdlm", "en", "arxiv:2101.00406", "license:apache-2.0", "autotrain_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
# SuperPAL model Summary-Source Proposition-level Alignment: Task, Datasets and Supervised Baseline Ori Ernst, Ori Shapira, Ramakanth Pasunuru, Michael Lepioshkin, Jacob Goldberger, Mohit Bansal, Ido Dagan, 2021. [PDF](https://arxiv.org/pdf/2009.00590) **How to use?** ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification tokenizer = AutoTokenizer.from_pretrained("biu-nlp/superpal") model = AutoModelForSequenceClassification.from_pretrained("biu-nlp/superpal") ``` The original repo is [here](https://github.com/oriern/SuperPAL). If you find our work useful, please cite the paper as: ```python @inproceedings{ernst-etal-2021-summary, title = "Summary-Source Proposition-level Alignment: Task, Datasets and Supervised Baseline", author = "Ernst, Ori and Shapira, Ori and Pasunuru, Ramakanth and Lepioshkin, Michael and Goldberger, Jacob and Bansal, Mohit and Dagan, Ido", booktitle = "Proceedings of the 25th Conference on Computational Natural Language Learning", month = nov, year = "2021", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.conll-1.25", pages = "310--322" } ```
{"widget": [{"text": "Prime Minister Hun Sen insisted that talks take place in Cambodia. </s><s> Cambodian leader Hun Sen rejected opposition parties' demands for talks outside the country."}]}
biu-nlp/superpal
null
[ "transformers", "pytorch", "roberta", "text-classification", "arxiv:2009.00590", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
bjkim/bert-base-uncased-finetuned-squad
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
bjkim/distilbert-base-uncased-finetuned-squad
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
bjornvandijkman/testing
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00