Search is not available for this dataset
pipeline_tag
stringclasses
48 values
library_name
stringclasses
205 values
text
stringlengths
0
18.3M
metadata
stringlengths
2
1.07B
id
stringlengths
5
122
last_modified
null
tags
listlengths
1
1.84k
sha
null
created_at
stringlengths
25
25
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-finetuned-ynat This model is a fine-tuned version of [klue/bert-base](https://huggingface.co/klue/bert-base) on the klue dataset. It achieves the following results on the evaluation set: - Loss: 0.3741 - F1: 0.8700 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 1.0 | 179 | 0.4458 | 0.8516 | | No log | 2.0 | 358 | 0.3741 | 0.8700 | | 0.385 | 3.0 | 537 | 0.3720 | 0.8693 | | 0.385 | 4.0 | 716 | 0.3744 | 0.8689 | | 0.385 | 5.0 | 895 | 0.3801 | 0.8695 | ### Framework versions - Transformers 4.9.1 - Pytorch 1.9.0+cu102 - Datasets 1.11.0 - Tokenizers 0.10.3
{"tags": ["generated_from_trainer"], "datasets": ["klue"], "metrics": ["f1"], "model_index": [{"name": "bert-base-finetuned-ynat", "results": [{"task": {"name": "Text Classification", "type": "text-classification"}, "dataset": {"name": "klue", "type": "klue", "args": "ynat"}, "metric": {"name": "F1", "type": "f1", "value": 0.8699556378491373}}]}]}
eliza-dukim/bert-base-finetuned-ynat
null
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "dataset:klue", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
question-answering
transformers
## Boostcamp AI Tech Special Mission 01, Multi-lingual BERT for KorQuAD v1 {'exact_match': 69.89954970557672, 'f1': 77.40349093437989, 'epoch': 15.0}
{}
eliza-dukim/bert-base-multilingual-cased_korquad-v1
null
[ "transformers", "pytorch", "bert", "question-answering", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
{}
eliza-dukim/para-kqc-sim
null
[ "transformers", "pytorch", "bert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
eliza-dukim/roberta-large-qaconv-sds-aug
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
{}
eliza-dukim/roberta-large-second
null
[ "transformers", "pytorch", "roberta", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
elliee123/test
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
fill-mask
transformers
Test model to get an idea how this thing works
{}
elliotsmith/dummy-model
null
[ "transformers", "pytorch", "camembert", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
elliotsmith/tmp_trainer
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
ellisvalentiner/layoutlmv2-finetuned-funsd-test
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
ellziez/me
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
eloquentcow69/Hh
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
{}
elozano/bert-base-cased-clickbait-news
null
[ "transformers", "pytorch", "bert", "text-classification", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
{}
elozano/bert-base-cased-fake-news
null
[ "transformers", "pytorch", "bert", "text-classification", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
{}
elozano/bert-base-cased-news-category
null
[ "transformers", "pytorch", "bert", "text-classification", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
{"language": "en", "license": "mit", "datasets": ["tweet_eval"], "widget": [{"text": "Stop sharing which songs did you listen to during this year on Spotify, NOBODY CARES", "example_title": "Anger"}, {"text": "I love that joke HAHAHAHAHA", "example_title": "Joy"}, {"text": "Despite I've not studied a lot for this exam, I think I will pass \ud83d\ude1c", "example_title": "Optimism"}, {"text": "My dog died this morning...", "example_title": "Sadness"}]}
elozano/tweet_emotion_eval
null
[ "transformers", "pytorch", "roberta", "text-classification", "en", "dataset:tweet_eval", "license:mit", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
{"language": "en", "license": "mit", "datasets": ["tweet_eval"], "widget": [{"text": "You're a complete idiot!", "example_title": "Offensive"}, {"text": "I am tired of studying for tomorrow's exam", "example_title": "Non-Offensive"}]}
elozano/tweet_offensive_eval
null
[ "transformers", "pytorch", "roberta", "text-classification", "en", "dataset:tweet_eval", "license:mit", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
{"language": "en", "license": "mit", "datasets": ["tweet_eval"], "widget": [{"text": "I love summer!", "example_title": "Positive"}, {"text": "Does anyone want to play?", "example_title": "Neutral"}, {"text": "This movie is just awful! \ud83d\ude2b", "example_title": "Negative"}]}
elozano/tweet_sentiment_eval
null
[ "transformers", "pytorch", "roberta", "text-classification", "en", "dataset:tweet_eval", "license:mit", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:05+00:00
feature-extraction
transformers
{}
eltoto1219/lxmert-base-uncased
null
[ "transformers", "lxmert", "feature-extraction", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
question-answering
transformers
{}
eltoto1219/lxmert-gqa-untuned
null
[ "transformers", "pytorch", "lxmert", "question-answering", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
fill-mask
transformers
{}
elusive-magnolia/dummy-model
null
[ "transformers", "pytorch", "camembert", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
elverk/elverk
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
emalmi/t5-small-finetuned-jfleg0
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
emalmi/t5-small-finetuned-xsum
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
transformers
# MacBERTh This model is a Historical Language Model for English coming from the [MacBERTh project](https://macberth.netlify.app/). The architecture is based on BERT base uncased from the original BERT pre-training codebase. The training material comes from different sources including: - EEBO - ECCO - COHA - CLMET3.1 - EVANS - Hansard Corpus with a total word count of approximately 3.9B tokens. Details and evaluation can be found in the accompanying publications: - [MacBERTh: Development and Evaluation of a Historically Pre-trained Language Model for English (1450-1950)](https://aclanthology.org/2021.nlp4dh-1.4/) - [Adapting vs. Pre-training Language Models for Historical Languages](https://doi.org/10.46298/jdmdh.9152)
{"language": ["en"], "license": "mit"}
emanjavacas/MacBERTh
null
[ "transformers", "pytorch", "bert", "en", "license:mit", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
emanuelscaglione/performerbert-base-uncased
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
emanuelscaglione/t5-small-finetuned-xsum
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
emdikey/roberta-base-bne-finetuned-amazon_reviews_multi
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
# Model Trained Using AutoNLP - Problem type: Multi-class Classification - Model ID: 607517182 - CO2 Emissions (in grams): 3.842950628218143 ## Validation Metrics - Loss: 0.4033123552799225 - Accuracy: 0.8679706601466992 - Macro F1: 0.719846919916469 - Micro F1: 0.8679706601466993 - Weighted F1: 0.8622411469250695 - Macro Precision: 0.725309168791155 - Micro Precision: 0.8679706601466992 - Weighted Precision: 0.8604370906049568 - Macro Recall: 0.7216672806300003 - Micro Recall: 0.8679706601466992 - Weighted Recall: 0.8679706601466992 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/emekaboris/autonlp-new_tx-607517182 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("emekaboris/autonlp-new_tx-607517182", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("emekaboris/autonlp-new_tx-607517182", use_auth_token=True) inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```
{"language": "unk", "tags": "autonlp", "datasets": ["emekaboris/autonlp-data-new_tx"], "widget": [{"text": "I love AutoNLP \ud83e\udd17"}], "co2_eq_emissions": 3.842950628218143}
emekaboris/autonlp-new_tx-607517182
null
[ "transformers", "pytorch", "roberta", "text-classification", "autonlp", "unk", "dataset:emekaboris/autonlp-data-new_tx", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
# Model Trained Using AutoNLP - Problem type: Multi-class Classification - Model ID: 17923124 - CO2 Emissions (in grams): 133.57087522185148 ## Validation Metrics - Loss: 0.2080804407596588 - Accuracy: 0.9325402190077058 - Macro F1: 0.7283811287183823 - Micro F1: 0.9325402190077058 - Weighted F1: 0.9315711955594153 - Macro Precision: 0.8106599661500661 - Micro Precision: 0.9325402190077058 - Weighted Precision: 0.9324644116921059 - Macro Recall: 0.7020515544343829 - Micro Recall: 0.9325402190077058 - Weighted Recall: 0.9325402190077058 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/emekaboris/autonlp-txc-17923124 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("emekaboris/autonlp-txc-17923124", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("emekaboris/autonlp-txc-17923124", use_auth_token=True) inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```
{"language": "en", "tags": "autonlp", "datasets": ["emekaboris/autonlp-data-txc"], "widget": [{"text": "I love AutoNLP \ud83e\udd17"}], "co2_eq_emissions": 133.57087522185148}
emekaboris/autonlp-txc-17923124
null
[ "transformers", "pytorch", "roberta", "text-classification", "autonlp", "en", "dataset:emekaboris/autonlp-data-txc", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
# Model Trained Using AutoNLP - Problem type: Multi-class Classification - Model ID: 17923129 - CO2 Emissions (in grams): 610.861733873082 ## Validation Metrics - Loss: 0.2319454699754715 - Accuracy: 0.9264228741381642 - Macro F1: 0.6730537318152493 - Micro F1: 0.9264228741381642 - Weighted F1: 0.9251493598895151 - Macro Precision: 0.7767479491141245 - Micro Precision: 0.9264228741381642 - Weighted Precision: 0.9277971545757154 - Macro Recall: 0.6617262519071917 - Micro Recall: 0.9264228741381642 - Weighted Recall: 0.9264228741381642 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/emekaboris/autonlp-txc-17923129 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("emekaboris/autonlp-txc-17923129", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("emekaboris/autonlp-txc-17923129", use_auth_token=True) inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```
{"language": "en", "tags": "autonlp", "datasets": ["emekaboris/autonlp-data-txc"], "widget": [{"text": "I love AutoNLP \ud83e\udd17"}], "co2_eq_emissions": 610.861733873082}
emekaboris/autonlp-txc-17923129
null
[ "transformers", "pytorch", "bert", "text-classification", "autonlp", "en", "dataset:emekaboris/autonlp-data-txc", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
transformers
KcELECTRA([https://github.com/Beomi/KcELECTRA](https://github.com/Beomi/KcELECTRA))의 Tokenizer에서 [UNK]로 대체되는 토큰들을 추가했습니다.
{}
emeraldgoose/bad-korean-tokenizer
null
[ "transformers", "electra", "pretraining", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
fill-mask
transformers
## Data-annotation-nlp-10 (BoostCamp AI) 위키피디아(스포츠) dataset 구축을 진행하면서 얻은 문장을 통해 bert 사전학습을 진행 ## How to use ```python from transformers import AutoTokenizer, BertForMaskedLM model = BertForMaskedLM.from_pretrained("emeraldgoose/bert-base-v1-sports") tokenizer = AutoTokenizer.from_pretrained("emeraldgoose/bert-base-v1-sports") text = "산악 자전거 경기는 상대적으로 새로운 [MASK] 1990년대에 활성화 되었다." inputs = tokenizer.encode(text, return_tensors='pt') model.eval() outputs = model(inputs)['logits'] predict = outputs.argmax(-1)[0] print(tokenizer.decode(predict)) ```
{"language": "ko", "mask_token": "[MASK]", "widget": [{"text": "\uc0b0\uc545 \uc790\uc804\uac70 \uacbd\uae30\ub294 \uc0c1\ub300\uc801\uc73c\ub85c \uc0c8\ub85c\uc6b4 [MASK] 1990\ub144\ub300\uc5d0 \ud65c\uc131\ud654 \ub418\uc5c8\ub2e4."}]}
emeraldgoose/bert-base-v1-sports
null
[ "transformers", "pytorch", "bert", "fill-mask", "ko", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
emeson77/uganda_ASR
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
emeson77/wav2vec2-large-xls-r-300m-lauganda-colab
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
automatic-speech-recognition
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-turkish-colab This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.7214 - Wer: 0.5555 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.4408 | 7.83 | 400 | 0.8109 | 0.7792 | | 0.2469 | 15.68 | 800 | 0.6794 | 0.5975 | | 0.0871 | 23.52 | 1200 | 0.7214 | 0.5555 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["common_voice"], "model-index": [{"name": "wav2vec2-large-xls-r-300m-turkish-colab", "results": []}]}
emeson77/wav2vec2-large-xls-r-300m-turkish-colab
null
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # danish-bert-botxo-danish-finetuned-hatespeech This model is for a university project and is uploaded for sharing between students. It is training on a danish hate speech labeled training set. Feel free to use it, but as of now, we don't promise any good results ;-) This model is a fine-tuned version of [Maltehb/danish-bert-botxo](https://huggingface.co/Maltehb/danish-bert-botxo) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3584 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 315 | 0.3285 | | 0.2879 | 2.0 | 630 | 0.3288 | | 0.2879 | 3.0 | 945 | 0.3178 | | 0.1371 | 4.0 | 1260 | 0.3584 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
{"license": "cc-by-4.0", "tags": ["generated_from_trainer"], "model-index": [{"name": "danish-bert-botxo-danish-finetuned-hatespeech", "results": []}]}
emfa/danish-bert-botxo-danish-finetuned-hatespeech
null
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "license:cc-by-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # danish-roberta-botxo-danish-finetuned-hatespeech This model is for a university project and is uploaded for sharing between students. It is training on a danish hate speech labeled training set. Feel free to use it, but as of now, we don't promise any good results ;-) This model is a fine-tuned version of [flax-community/roberta-base-danish](https://huggingface.co/flax-community/roberta-base-danish) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2849 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 315 | 0.3074 | | 0.3016 | 2.0 | 630 | 0.3152 | | 0.3016 | 3.0 | 945 | 0.2849 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
{"license": "cc-by-4.0", "tags": ["generated_from_trainer"], "model-index": [{"name": "danish-roberta-botxo-danish-finetuned-hatespeech", "results": []}]}
emfa/danish-roberta-botxo-danish-finetuned-hatespeech
null
[ "transformers", "pytorch", "tensorboard", "roberta", "text-classification", "generated_from_trainer", "license:cc-by-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # l-lectra-danish-finetuned-hatespeech This model is for a university project and is uploaded for sharing between students. It is training on a danish hate speech labeled training set. Feel free to use it, but as of now, we don't promise any good results ;-) This model is a fine-tuned version of [Maltehb/-l-ctra-danish-electra-small-uncased](https://huggingface.co/Maltehb/-l-ctra-danish-electra-small-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2608 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 315 | 0.2561 | | 0.291 | 2.0 | 630 | 0.2491 | | 0.291 | 3.0 | 945 | 0.2434 | | 0.2089 | 4.0 | 1260 | 0.2608 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
{"license": "mit", "tags": ["generated_from_trainer"], "model-index": [{"name": "l-lectra-danish-finetuned-hatespeech", "results": []}]}
emfa/l-lectra-danish-finetuned-hatespeech
null
[ "transformers", "pytorch", "tensorboard", "electra", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-generation
transformers
This model aims at being a french conversational agent. This consists of a fine-tuning of Dialo-GPT for french language. The dataset used gathers 36k conversations extracted from books, movies, interviews and dialogues for learning french. More details about the model can be found [there](https://github.com/emil2000dza/DialoGPT-fine-tuned-for-french-language)
{"language": ["fr"], "tags": [{}, {}]}
emil2000/dialogpt-for-french-language
null
[ "transformers", "pytorch", "gpt2", "text-generation", "fr", "autotrain_compatible", "endpoints_compatible", "has_space", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
text2text-generation
transformers
## daT5-base A smaller version of [Google's mt5-base](https://huggingface.co/google/mt5-base) model, where the original model is reduced to only include Danish embeddings. ## How to use ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("emillykkejensen/daT5-base") model = AutoModel.from_pretrained("emillykkejensen/daT5-base") ``` ## Further reading [Gist](https://gist.github.com/emillykkejensen/8bf1b323495efc7252dee966e6bc1b5c) showing (in Danish) how the embeddings are extracted [Article](https://towardsdatascience.com/how-to-adapt-a-multilingual-t5-model-for-a-single-language-b9f94f3d9c90) explaining how to do it by [David Dale](https://huggingface.co/cointegrated) ## Also check out [daT5-large](https://huggingface.co/emillykkejensen/daT5-large)
{"language": ["da"], "license": "apache-2.0"}
emillykkejensen/daT5-base
null
[ "transformers", "pytorch", "mt5", "text2text-generation", "da", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
text2text-generation
transformers
## daT5-large A smaller version of [Google's mt5-large](https://huggingface.co/google/mt5-base) model, where the original model is reduced to only include Danish embeddings. ## How to use ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("emillykkejensen/daT5-large") model = AutoModel.from_pretrained("emillykkejensen/daT5-large") ``` ## Further reading [Gist](https://gist.github.com/emillykkejensen/8bf1b323495efc7252dee966e6bc1b5c) showing (in Danish) how the embeddings are extracted (for mt5-base) [Article](https://towardsdatascience.com/how-to-adapt-a-multilingual-t5-model-for-a-single-language-b9f94f3d9c90) explaining how to do it by [David Dale](https://huggingface.co/cointegrated) ## Also check out [daT5-base](https://huggingface.co/emillykkejensen/daT5-base)
{"language": ["da"], "license": "apache-2.0"}
emillykkejensen/daT5-large
null
[ "transformers", "pytorch", "mt5", "text2text-generation", "da", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
fill-mask
transformers
# ClinicalBERT - Bio + Clinical BERT Model The [Publicly Available Clinical BERT Embeddings](https://arxiv.org/abs/1904.03323) paper contains four unique clinicalBERT models: initialized with BERT-Base (`cased_L-12_H-768_A-12`) or BioBERT (`BioBERT-Base v1.0 + PubMed 200K + PMC 270K`) & trained on either all MIMIC notes or only discharge summaries. This model card describes the Bio+Clinical BERT model, which was initialized from [BioBERT](https://arxiv.org/abs/1901.08746) & trained on all MIMIC notes. ## Pretraining Data The `Bio_ClinicalBERT` model was trained on all notes from [MIMIC III](https://www.nature.com/articles/sdata201635), a database containing electronic health records from ICU patients at the Beth Israel Hospital in Boston, MA. For more details on MIMIC, see [here](https://mimic.physionet.org/). All notes from the `NOTEEVENTS` table were included (~880M words). ## Model Pretraining ### Note Preprocessing Each note in MIMIC was first split into sections using a rules-based section splitter (e.g. discharge summary notes were split into "History of Present Illness", "Family History", "Brief Hospital Course", etc. sections). Then each section was split into sentences using SciSpacy (`en core sci md` tokenizer). ### Pretraining Procedures The model was trained using code from [Google's BERT repository](https://github.com/google-research/bert) on a GeForce GTX TITAN X 12 GB GPU. Model parameters were initialized with BioBERT (`BioBERT-Base v1.0 + PubMed 200K + PMC 270K`). ### Pretraining Hyperparameters We used a batch size of 32, a maximum sequence length of 128, and a learning rate of 5 · 10−5 for pre-training our models. The models trained on all MIMIC notes were trained for 150,000 steps. The dup factor for duplicating input data with different masks was set to 5. All other default parameters were used (specifically, masked language model probability = 0.15 and max predictions per sequence = 20). ## How to use the model Load the model via the transformers library: ``` from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("emilyalsentzer/Bio_ClinicalBERT") model = AutoModel.from_pretrained("emilyalsentzer/Bio_ClinicalBERT") ``` ## More Information Refer to the original paper, [Publicly Available Clinical BERT Embeddings](https://arxiv.org/abs/1904.03323) (NAACL Clinical NLP Workshop 2019) for additional details and performance on NLI and NER tasks. ## Questions? Post a Github issue on the [clinicalBERT repo](https://github.com/EmilyAlsentzer/clinicalBERT) or email [email protected] with any questions.
{"language": "en", "license": "mit", "tags": ["fill-mask"]}
emilyalsentzer/Bio_ClinicalBERT
null
[ "transformers", "pytorch", "tf", "jax", "bert", "fill-mask", "en", "arxiv:1904.03323", "arxiv:1901.08746", "license:mit", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:05+00:00
fill-mask
transformers
# ClinicalBERT - Bio + Discharge Summary BERT Model The [Publicly Available Clinical BERT Embeddings](https://arxiv.org/abs/1904.03323) paper contains four unique clinicalBERT models: initialized with BERT-Base (`cased_L-12_H-768_A-12`) or BioBERT (`BioBERT-Base v1.0 + PubMed 200K + PMC 270K`) & trained on either all MIMIC notes or only discharge summaries. This model card describes the Bio+Discharge Summary BERT model, which was initialized from [BioBERT](https://arxiv.org/abs/1901.08746) & trained on only discharge summaries from MIMIC. ## Pretraining Data The `Bio_Discharge_Summary_BERT` model was trained on all discharge summaries from [MIMIC III](https://www.nature.com/articles/sdata201635), a database containing electronic health records from ICU patients at the Beth Israel Hospital in Boston, MA. For more details on MIMIC, see [here](https://mimic.physionet.org/). All notes from the `NOTEEVENTS` table were included (~880M words). ## Model Pretraining ### Note Preprocessing Each note in MIMIC was first split into sections using a rules-based section splitter (e.g. discharge summary notes were split into "History of Present Illness", "Family History", "Brief Hospital Course", etc. sections). Then each section was split into sentences using SciSpacy (`en core sci md` tokenizer). ### Pretraining Procedures The model was trained using code from [Google's BERT repository](https://github.com/google-research/bert) on a GeForce GTX TITAN X 12 GB GPU. Model parameters were initialized with BioBERT (`BioBERT-Base v1.0 + PubMed 200K + PMC 270K`). ### Pretraining Hyperparameters We used a batch size of 32, a maximum sequence length of 128, and a learning rate of 5 · 10−5 for pre-training our models. The models trained on all MIMIC notes were trained for 150,000 steps. The dup factor for duplicating input data with different masks was set to 5. All other default parameters were used (specifically, masked language model probability = 0.15 and max predictions per sequence = 20). ## How to use the model Load the model via the transformers library: ``` from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("emilyalsentzer/Bio_Discharge_Summary_BERT") model = AutoModel.from_pretrained("emilyalsentzer/Bio_Discharge_Summary_BERT") ``` ## More Information Refer to the original paper, [Publicly Available Clinical BERT Embeddings](https://arxiv.org/abs/1904.03323) (NAACL Clinical NLP Workshop 2019) for additional details and performance on NLI and NER tasks. ## Questions? Post a Github issue on the [clinicalBERT repo](https://github.com/EmilyAlsentzer/clinicalBERT) or email [email protected] with any questions.
{"language": "en", "license": "mit", "tags": ["fill-mask"]}
emilyalsentzer/Bio_Discharge_Summary_BERT
null
[ "transformers", "pytorch", "jax", "bert", "fill-mask", "en", "arxiv:1904.03323", "arxiv:1901.08746", "license:mit", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
emix111/k2t-test3
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
emix111/modello
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
automatic-speech-recognition
espnet
## ESPnet2 ASR model ### `eml914/streaming_transformer_asr_librispeech` This model was trained by Emiru Tsunoo using librispeech recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```bash cd espnet git checkout 12eb132418a1f69548f7998e53273cd05d989ed9 pip install -e . cd egs2/librispeech/asr1 ./run.sh --skip_data_prep false --skip_train true --download_model eml914/streaming_transformer_asr_librispeech ``` <!-- Generated by scripts/utils/show_asr_result.sh --> # RESULTS ## Environments - date: `Wed Nov 17 18:18:46 JST 2021` - python version: `3.8.11 (default, Aug 3 2021, 15:09:35) [GCC 7.5.0]` - espnet version: `espnet 0.10.5a1` - pytorch version: `pytorch 1.4.0` - Git hash: `12eb132418a1f69548f7998e53273cd05d989ed9` - Commit date: `Tue Nov 16 10:12:21 2021 +0900` ## asr_train_asr_streaming_fbank_pitch_en_bpe5000_sp ### WER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_asr_streaming_lm_lm_train_lm_adam_en_bpe5000_valid.loss.ave_asr_model_valid.acc.ave/dev_clean|2703|54402|97.6|2.2|0.3|0.3|2.7|31.9| |decode_asr_streaming_lm_lm_train_lm_adam_en_bpe5000_valid.loss.ave_asr_model_valid.acc.ave/dev_other|2864|50948|93.5|5.8|0.7|0.9|7.4|50.4| |decode_asr_streaming_lm_lm_train_lm_adam_en_bpe5000_valid.loss.ave_asr_model_valid.acc.ave/test_clean|2620|52576|97.5|2.3|0.3|0.3|2.9|33.1| |decode_asr_streaming_lm_lm_train_lm_adam_en_bpe5000_valid.loss.ave_asr_model_valid.acc.ave/test_clean_dbg|2620|62|96.8|3.2|0.0|0.0|3.2|0.0| |decode_asr_streaming_lm_lm_train_lm_adam_en_bpe5000_valid.loss.ave_asr_model_valid.acc.ave/test_other|2939|52343|93.5|5.7|0.8|0.9|7.4|53.7| ### CER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_asr_streaming_lm_lm_train_lm_adam_en_bpe5000_valid.loss.ave_asr_model_valid.acc.ave/dev_clean|2703|288456|99.2|0.4|0.4|0.3|1.1|31.9| |decode_asr_streaming_lm_lm_train_lm_adam_en_bpe5000_valid.loss.ave_asr_model_valid.acc.ave/dev_other|2864|265951|97.2|1.6|1.2|0.9|3.7|50.4| |decode_asr_streaming_lm_lm_train_lm_adam_en_bpe5000_valid.loss.ave_asr_model_valid.acc.ave/test_clean|2620|281530|99.2|0.4|0.4|0.3|1.1|33.1| |decode_asr_streaming_lm_lm_train_lm_adam_en_bpe5000_valid.loss.ave_asr_model_valid.acc.ave/test_clean_dbg|2620|367|99.5|0.0|0.5|0.8|1.4|0.0| |decode_asr_streaming_lm_lm_train_lm_adam_en_bpe5000_valid.loss.ave_asr_model_valid.acc.ave/test_other|2939|272758|97.3|1.5|1.3|0.9|3.6|53.7| ### TER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_asr_streaming_lm_lm_train_lm_adam_en_bpe5000_valid.loss.ave_asr_model_valid.acc.ave/dev_clean|2703|68010|96.8|2.1|1.1|0.4|3.6|31.9| |decode_asr_streaming_lm_lm_train_lm_adam_en_bpe5000_valid.loss.ave_asr_model_valid.acc.ave/dev_other|2864|63110|91.9|5.9|2.2|1.5|9.6|50.4| |decode_asr_streaming_lm_lm_train_lm_adam_en_bpe5000_valid.loss.ave_asr_model_valid.acc.ave/test_clean|2620|65818|96.7|2.2|1.1|0.4|3.7|33.1| |decode_asr_streaming_lm_lm_train_lm_adam_en_bpe5000_valid.loss.ave_asr_model_valid.acc.ave/test_clean_dbg|2620|94|97.9|2.1|0.0|1.1|3.2|0.0| |decode_asr_streaming_lm_lm_train_lm_adam_en_bpe5000_valid.loss.ave_asr_model_valid.acc.ave/test_other|2939|65101|91.8|5.5|2.7|1.2|9.4|53.7| ## ASR config <details><summary>expand</summary> ``` config: conf/tuning/train_asr_streaming.yaml print_config: false log_level: INFO dry_run: false iterator_type: sequence output_dir: exp/asr_train_asr_streaming_fbank_pitch_en_bpe5000_sp ngpu: 1 seed: 0 num_workers: 1 num_att_plot: 0 dist_backend: nccl dist_init_method: env:// dist_world_size: 4 dist_rank: 0 local_rank: 0 dist_master_addr: localhost dist_master_port: 33851 dist_launcher: null multiprocessing_distributed: true cudnn_enabled: true cudnn_benchmark: false cudnn_deterministic: true collect_stats: false write_collected_feats: false max_epoch: 50 patience: null val_scheduler_criterion: - valid - loss early_stopping_criterion: - valid - loss - min best_model_criterion: - - valid - acc - max keep_nbest_models: 10 grad_clip: 5.0 grad_clip_type: 2.0 grad_noise: false accum_grad: 4 no_forward_run: false resume: true train_dtype: float32 use_amp: false log_interval: null unused_parameters: false use_tensorboard: true use_wandb: false wandb_project: null wandb_id: null pretrain_path: null init_param: [] freeze_param: [] num_iters_per_epoch: null batch_size: 20 valid_batch_size: null batch_bins: 16000000 valid_batch_bins: null train_shape_file: - exp/asr_stats_fbank_pitch_en_bpe5000_sp/train/speech_shape - exp/asr_stats_fbank_pitch_en_bpe5000_sp/train/text_shape.bpe valid_shape_file: - exp/asr_stats_fbank_pitch_en_bpe5000_sp/valid/speech_shape - exp/asr_stats_fbank_pitch_en_bpe5000_sp/valid/text_shape.bpe batch_type: numel valid_batch_type: null fold_length: - 800 - 150 sort_in_batch: descending sort_batch: descending multiple_iterator: false chunk_length: 500 chunk_shift_ratio: 0.5 num_cache_chunks: 1024 train_data_path_and_name_and_type: - - dump/fbank_pitch/train_960_sp/feats.scp - speech - kaldi_ark - - dump/fbank_pitch/train_960_sp/text - text - text valid_data_path_and_name_and_type: - - dump/fbank_pitch/dev/feats.scp - speech - kaldi_ark - - dump/fbank_pitch/dev/text - text - text allow_variable_data_keys: false max_cache_size: 0.0 max_cache_fd: 32 valid_max_cache_size: null optim: adam optim_conf: lr: 0.002 scheduler: warmuplr scheduler_conf: warmup_steps: 25000 token_list: - <blank> - <unk> - ▁THE - S - ▁AND - ▁OF - ▁TO - ▁A - ▁IN - ▁I - ▁HE - ▁THAT - ▁WAS - ED - ▁IT - '''' - ▁HIS - ING - ▁YOU - ▁WITH - ▁FOR - ▁HAD - T - ▁AS - ▁HER - ▁IS - ▁BE - ▁BUT - ▁NOT - ▁SHE - D - ▁AT - ▁ON - LY - ▁HIM - ▁THEY - ▁ALL - ▁HAVE - ▁BY - ▁SO - ▁THIS - ▁MY - ▁WHICH - ▁ME - ▁SAID - ▁FROM - ▁ONE - Y - E - ▁WERE - ▁WE - ▁NO - N - ▁THERE - ▁OR - ER - ▁AN - ▁WHEN - ▁ARE - ▁THEIR - ▁WOULD - ▁IF - ▁WHAT - ▁THEM - ▁WHO - ▁OUT - M - ▁DO - ▁WILL - ▁UP - ▁BEEN - P - R - ▁MAN - ▁THEN - ▁COULD - ▁MORE - C - ▁INTO - ▁NOW - ▁VERY - ▁YOUR - ▁SOME - ▁LITTLE - ES - ▁TIME - RE - ▁CAN - ▁LIKE - LL - ▁ABOUT - ▁HAS - ▁THAN - ▁DID - ▁UPON - ▁OVER - IN - ▁ANY - ▁WELL - ▁ONLY - B - ▁SEE - ▁GOOD - ▁OTHER - ▁TWO - L - ▁KNOW - ▁GO - ▁DOWN - ▁BEFORE - A - AL - ▁OUR - ▁OLD - ▁SHOULD - ▁MADE - ▁AFTER - ▁GREAT - ▁DAY - ▁MUST - ▁COME - ▁HOW - ▁SUCH - ▁CAME - LE - ▁WHERE - ▁US - ▁NEVER - ▁THESE - ▁MUCH - ▁DE - ▁MISTER - ▁WAY - G - ▁S - ▁MAY - ATION - ▁LONG - OR - ▁AM - ▁FIRST - ▁BACK - ▁OWN - ▁RE - ▁AGAIN - ▁SAY - ▁MEN - ▁WENT - ▁HIMSELF - ▁HERE - NESS - ▁THINK - V - IC - ▁EVEN - ▁THOUGHT - ▁HAND - ▁JUST - ▁O - ▁UN - VE - ION - ▁ITS - 'ON' - ▁MAKE - ▁MIGHT - ▁TOO - K - ▁AWAY - ▁LIFE - TH - ▁WITHOUT - ST - ▁THROUGH - ▁MOST - ▁TAKE - ▁DON - ▁EVERY - F - O - ▁SHALL - ▁THOSE - ▁EYES - AR - ▁STILL - ▁LAST - ▁HOUSE - ▁HEAD - ABLE - ▁NOTHING - ▁NIGHT - ITY - ▁LET - ▁MANY - ▁OFF - ▁BEING - ▁FOUND - ▁WHILE - EN - ▁SAW - ▁GET - ▁PEOPLE - ▁FACE - ▁YOUNG - CH - ▁UNDER - ▁ONCE - ▁TELL - AN - ▁THREE - ▁PLACE - ▁ROOM - ▁YET - ▁SAME - IL - US - U - ▁FATHER - ▁RIGHT - EL - ▁THOUGH - ▁ANOTHER - LI - RI - ▁HEART - IT - ▁PUT - ▁TOOK - ▁GIVE - ▁EVER - ▁E - ▁PART - ▁WORK - ERS - ▁LOOK - ▁NEW - ▁KING - ▁MISSUS - ▁SIR - ▁LOVE - ▁MIND - ▁LOOKED - W - RY - ▁ASKED - ▁LEFT - ET - ▁LIGHT - CK - ▁DOOR - ▁MOMENT - RO - ▁WORLD - ▁THINGS - ▁HOME - UL - ▁THING - LA - ▁WHY - ▁MOTHER - ▁ALWAYS - ▁FAR - FUL - ▁WATER - CE - IVE - UR - ▁HEARD - ▁SOMETHING - ▁SEEMED - I - LO - ▁BECAUSE - OL - ▁END - ▁TOLD - ▁CON - ▁YES - ▁GOING - ▁GOT - RA - IR - ▁WOMAN - ▁GOD - EST - TED - ▁FIND - ▁KNEW - ▁SOON - ▁EACH - ▁SIDE - H - TON - MENT - ▁OH - NE - Z - LING - ▁AGAINST - TER - ▁NAME - ▁MISS - ▁QUITE - ▁WANT - ▁YEARS - ▁FEW - ▁BETTER - ENT - ▁HALF - ▁DONE - ▁ALSO - ▁BEGAN - ▁HAVING - ▁ENOUGH - IS - ▁LADY - ▁WHOLE - LESS - ▁BOTH - ▁SEEN - ▁SET - ▁WHITE - ▁COURSE - IES - ▁VOICE - ▁CALLED - ▁D - ▁EX - ATE - ▁TURNED - ▁GAVE - ▁C - ▁POOR - MAN - UT - NA - ▁DEAR - ISH - ▁GIRL - ▁MORNING - ▁BETWEEN - LED - ▁NOR - IA - ▁AMONG - MA - ▁ - ▁SMALL - ▁REST - ▁WHOM - ▁FELT - ▁HANDS - ▁MYSELF - ▁HIGH - ▁M - ▁HOWEVER - ▁HERSELF - ▁P - CO - ▁STOOD - ID - ▁KIND - ▁HUNDRED - AS - ▁ROUND - ▁ALMOST - TY - ▁SINCE - ▁G - AM - ▁LA - SE - ▁BOY - ▁MA - ▁PERHAPS - ▁WORDS - ATED - ▁HO - X - ▁MO - ▁SAT - ▁REPLIED - ▁FOUR - ▁ANYTHING - ▁TILL - ▁UNTIL - ▁BLACK - TION - ▁CRIED - RU - TE - ▁FACT - ▁HELP - ▁NEXT - ▁LOOKING - ▁DOES - ▁FRIEND - ▁LAY - ANCE - ▁POWER - ▁BROUGHT - VER - ▁FIRE - ▁KEEP - PO - FF - ▁COUNTRY - ▁SEA - ▁WORD - ▁CAR - ▁DAYS - ▁TOGETHER - ▁IMP - ▁REASON - KE - ▁INDEED - TING - ▁MATTER - ▁FULL - ▁TEN - TIC - ▁LAND - ▁RATHER - ▁AIR - ▁HOPE - ▁DA - ▁OPEN - ▁FEET - ▁EN - ▁FIVE - ▁POINT - ▁CO - OM - ▁LARGE - ▁B - ▁CL - ME - ▁GONE - ▁CHILD - INE - GG - ▁BEST - ▁DIS - UM - ▁HARD - ▁LORD - OUS - ▁WIFE - ▁SURE - ▁FORM - DE - ▁DEATH - ANT - ▁NATURE - ▁BA - ▁CARE - ▁BELIEVE - PP - ▁NEAR - ▁RO - ▁RED - ▁WAR - IE - ▁SPEAK - ▁FEAR - ▁CASE - ▁TAKEN - ▁ALONG - ▁CANNOT - ▁HEAR - ▁THEMSELVES - CI - ▁PRESENT - AD - ▁MASTER - ▁SON - ▁THUS - ▁LI - ▁LESS - ▁SUN - ▁TRUE - IM - IOUS - ▁THOUSAND - ▁MONEY - ▁W - ▁BEHIND - ▁CHILDREN - ▁DOCTOR - AC - ▁TWENTY - ▁WISH - ▁SOUND - ▁WHOSE - ▁LEAVE - ▁ANSWERED - ▁THOU - ▁DUR - ▁HA - ▁CERTAIN - ▁PO - ▁PASSED - GE - TO - ▁ARM - ▁LO - ▁STATE - ▁ALONE - TA - ▁SHOW - ▁NEED - ▁LIVE - ND - ▁DEAD - ENCE - ▁STRONG - ▁PRE - ▁TI - ▁GROUND - SH - TI - ▁SHORT - IAN - UN - ▁PRO - ▁HORSE - MI - ▁PRINCE - ARD - ▁FELL - ▁ORDER - ▁CALL - AT - ▁GIVEN - ▁DARK - ▁THEREFORE - ▁CLOSE - ▁BODY - ▁OTHERS - ▁SENT - ▁SECOND - ▁OFTEN - ▁CA - ▁MANNER - MO - NI - ▁BRING - ▁QUESTION - ▁HOUR - ▁BO - AGE - ▁ST - ▁TURN - ▁TABLE - ▁GENERAL - ▁EARTH - ▁BED - ▁REALLY - ▁SIX - 'NO' - IST - ▁BECOME - ▁USE - ▁READ - ▁SE - ▁VI - ▁COMING - ▁EVERYTHING - ▁EM - ▁ABOVE - ▁EVENING - ▁BEAUTIFUL - ▁FEEL - ▁RAN - ▁LEAST - ▁LAW - ▁ALREADY - ▁MEAN - ▁ROSE - WARD - ▁ITSELF - ▁SOUL - ▁SUDDENLY - ▁AROUND - RED - ▁ANSWER - ICAL - ▁RA - ▁WIND - ▁FINE - ▁WON - ▁WHETHER - ▁KNOWN - BER - NG - ▁TA - ▁CAPTAIN - ▁EYE - ▁PERSON - ▁WOMEN - ▁SORT - ▁ASK - ▁BROTHER - ▁USED - ▁HELD - ▁BIG - ▁RETURNED - ▁STRANGE - ▁BU - ▁PER - ▁FREE - ▁EITHER - ▁WITHIN - ▁DOUBT - ▁YEAR - ▁CLEAR - ▁SIGHT - ▁GRA - ▁LOST - ▁KEPT - ▁F - PE - ▁BAR - ▁TOWN - ▁SLEEP - ARY - ▁HAIR - ▁FRIENDS - ▁DREAM - ▁FELLOW - PER - ▁DEEP - QUE - ▁BECAME - ▁REAL - ▁PAST - ▁MAKING - RING - ▁COMP - ▁ACT - ▁BAD - HO - STER - ▁YE - ▁MEANS - ▁RUN - MEN - ▁DAUGHTER - ▁SENSE - ▁CITY - ▁SOMETIMES - ▁TOWARDS - ▁ROAD - ▁SP - ▁LU - ▁READY - ▁FOOT - ▁COLD - ▁SA - ▁LETTER - ▁ELSE - ▁MAR - ▁STA - BE - ▁TRUTH - ▁LE - BO - ▁BUSINESS - CHE - ▁JOHN - ▁SUBJECT - ▁COURT - ▁IDEA - ILY - ▁RIVER - ATING - ▁FAMILY - HE - ▁DIDN - ▁GLAD - ▁SEVERAL - IAL - ▁UNDERSTAND - ▁SC - ▁POSSIBLE - ▁DIFFERENT - ▁RETURN - ▁ARMS - ▁LOW - ▁HOLD - ▁TALK - ▁RU - ▁WINDOW - ▁INTEREST - ▁SISTER - SON - ▁SH - ▁BLOOD - ▁SAYS - ▁CAP - ▁DI - ▁HUMAN - ▁CAUSE - NCE - ▁THANK - ▁LATE - GO - ▁CUT - ▁ACROSS - ▁STORY - NT - ▁COUNT - ▁ABLE - DY - LEY - ▁NUMBER - ▁STAND - ▁CHURCH - ▁THY - ▁SUPPOSE - LES - BLE - OP - ▁EFFECT - BY - ▁K - ▁NA - ▁SPOKE - ▁MET - ▁GREEN - ▁HUSBAND - ▁RESPECT - ▁PA - ▁FOLLOWED - ▁REMEMBER - ▁LONGER - ▁AGE - ▁TAKING - ▁LINE - ▁SEEM - ▁HAPPY - LAND - EM - ▁STAY - ▁PLAY - ▁COMMON - ▁GA - ▁BOOK - ▁TIMES - ▁OBJECT - ▁SEVEN - QUI - DO - UND - ▁FL - ▁PRETTY - ▁FAIR - WAY - ▁WOOD - ▁REACHED - ▁APPEARED - ▁SWEET - ▁FALL - BA - ▁PASS - ▁SIGN - ▁TREE - IONS - ▁GARDEN - ▁ILL - ▁ART - ▁REMAIN - ▁OPENED - ▁BRIGHT - ▁STREET - ▁TROUBLE - ▁PAIN - ▁CONTINUED - ▁SCHOOL - OUR - ▁CARRIED - ▁SAYING - HA - ▁CHANGE - ▁FOLLOW - ▁GOLD - ▁SW - ▁FEELING - ▁COMMAND - ▁BEAR - ▁CERTAINLY - ▁BLUE - ▁NE - CA - ▁WILD - ▁ACCOUNT - ▁OUGHT - UD - ▁T - ▁BREATH - ▁WANTED - ▁RI - ▁HEAVEN - ▁PURPOSE - ▁CHARACTER - ▁RICH - ▁PE - ▁DRESS - OS - FA - ▁TH - ▁ENGLISH - ▁CHANCE - ▁SHIP - ▁VIEW - ▁TOWARD - AK - ▁JOY - ▁JA - ▁HAR - ▁NEITHER - ▁FORCE - ▁UNCLE - DER - ▁PLAN - ▁PRINCESS - DI - ▁CHIEF - ▁HAT - ▁LIVED - ▁AB - ▁VISIT - ▁MOR - TEN - ▁WALL - UC - ▁MINE - ▁PLEASURE - ▁SMILE - ▁FRONT - ▁HU - ▁DEAL - OW - ▁FURTHER - GED - ▁TRIED - DA - VA - ▁NONE - ▁ENTERED - ▁QUEEN - ▁PAY - ▁EL - ▁EXCEPT - ▁SHA - ▁FORWARD - ▁EIGHT - ▁ADDED - ▁PUBLIC - ▁EIGHTEEN - ▁STAR - ▁HAPPENED - ▁LED - ▁WALKED - ▁ALTHOUGH - ▁LATER - ▁SPIRIT - ▁WALK - ▁BIT - ▁MEET - LIN - ▁FI - LT - ▁MOUTH - ▁WAIT - ▁HOURS - ▁LIVING - ▁YOURSELF - ▁FAST - ▁CHA - ▁HALL - ▁BEYOND - ▁BOAT - ▁SECRET - ENS - ▁CHAIR - RN - ▁RECEIVED - ▁CAT - RESS - ▁DESIRE - ▁GENTLEMAN - UGH - ▁LAID - EVER - ▁OCCASION - ▁WONDER - ▁GU - ▁PARTY - DEN - ▁FISH - ▁SEND - ▁NEARLY - ▁TRY - CON - ▁SEEMS - RS - ▁BELL - ▁BRA - ▁SILENCE - IG - ▁GUARD - ▁DIE - ▁DOING - ▁TU - ▁COR - ▁EARLY - ▁BANK - ▁FIGURE - IF - ▁ENGLAND - ▁MARY - ▁AFRAID - LER - ▁FO - ▁WATCH - ▁FA - ▁VA - ▁GRE - ▁AUNT - PED - ▁SERVICE - ▁JE - ▁PEN - ▁MINUTES - ▁PAN - ▁TREES - NED - ▁GLASS - ▁TONE - ▁PLEASE - ▁FORTH - ▁CROSS - ▁EXCLAIMED - ▁DREW - ▁EAT - ▁AH - ▁GRAVE - ▁CUR - PA - URE - CENT - ▁MILES - ▁SOFT - ▁AGO - ▁POSITION - ▁WARM - ▁LENGTH - ▁NECESSARY - ▁THINKING - ▁PICTURE - ▁PI - SHIP - IBLE - ▁HEAVY - ▁ATTENTION - ▁DOG - ABLY - ▁STANDING - ▁NATURAL - ▁APPEAR - OV - ▁CAUGHT - VO - ISM - ▁SPRING - ▁EXPERIENCE - ▁PAT - OT - ▁STOPPED - ▁REGARD - ▁HARDLY - ▁SELF - ▁STRENGTH - ▁GREW - ▁KNIGHT - ▁OPINION - ▁WIDE - ▁INSTEAD - ▁SOUTH - ▁TRANS - ▁CORNER - ▁LEARN - ▁ISLAND - ▁MI - ▁THIRD - ▁STE - ▁STRAIGHT - ▁TEA - ▁BOUND - ▁SEEING - ▁JU - ▁DINNER - ▁BEAUTY - ▁PEACE - AH - ▁REP - ▁SILENT - ▁CRE - ALLY - RIC - ▁STEP - ▁VER - ▁JO - GER - ▁SITTING - ▁THIRTY - ▁SAVE - ENED - ▁GLANCE - ▁REACH - ▁ACTION - ▁SAL - ▁SAD - ▁STONE - ITIES - ▁FRENCH - ▁STRUCK - ▁PAPER - ▁WHATEVER - ▁SUB - ▁DISTANCE - ▁WRONG - ▁KNOWLEDGE - ▁SAFE - ▁SNOW - ▁MUSIC - ▁FIFTY - RON - ▁ATTEMPT - ▁GOVERNMENT - TU - ▁CROWD - ▁BESIDES - ▁LOVED - ▁BOX - ▁DIRECTION - ▁TRAIN - ▁NORTH - ▁THICK - ▁GETTING - AV - ▁FLOOR - ▁COMPANY - ▁BLOW - ▁PLAIN - TRO - ▁BESIDE - ▁ROCK - ▁IMMEDIATELY - FI - ▁SHADOW - ▁SIT - ORS - ILE - ▁DRINK - ▁SPOT - ▁DANGER - ▁AL - ▁SAINT - ▁SLOWLY - ▁PALACE - IER - ▁RESULT - ▁PETER - ▁FOREST - ▁BELONG - ▁SU - ▁PAR - RIS - ▁TEARS - ▁APPEARANCE - ▁GATE - BU - ITION - ▁QUICKLY - ▁QUIET - ▁LONDON - ▁START - ▁BROWN - TRA - KIN - ▁CONSIDER - ▁BATTLE - ▁ANNE - ▁PIECE - ▁DIED - ▁SUCCESS - ▁LIPS - ▁FILLED - ▁FORGET - ▁POST - IFIED - ▁MARGARET - ▁FOOD - HAM - ▁PLEASANT - ▁FE - ▁EXPRESSION - ▁POCKET - ▁FRESH - ▁WEAR - TRI - ▁BROKEN - ▁LAUGHED - GING - ▁FOLLOWING - WN - IP - ▁TOUCH - ▁YOUTH - ATIVE - ▁LEG - ▁WEEK - ▁REMAINED - ▁EASY - NER - RK - ▁ENTER - ▁FIGHT - ▁PLACED - ▁TRAVEL - ▁SIMPLE - ▁GIRLS - ▁WAITING - ▁STOP - ▁WAVE - AU - ▁WISE - ▁CAMP - TURE - UB - ▁VE - ▁OFFICE - ▁GRAND - ▁FIT - ▁JUDGE - UP - MENTS - ▁QUICK - HI - ▁FLO - RIES - VAL - ▁COMFORT - ▁PARTICULAR - ▁STARTED - ▁SUIT - ▁NI - ▁PALE - ▁IMPOSSIBLE - ▁HOT - ▁CONVERSATION - ▁SCENE - ▁BOYS - ▁WIN - ▁BRE - ▁SOCIETY - ▁OUTSIDE - ▁WRITE - ▁EFFORT - ▁TALKING - ▁FORTUNE - ▁NINE - ▁WA - ▁SINGLE - ▁RULE - ▁PORT - ▁WINTER - ▁CAST - ▁CRA - ▁HAPPEN - ▁CRO - ▁SHUT - NING - ▁GUN - ▁NOBLE - ▁BEGIN - ▁PATH - ▁SKY - ▁WONDERFUL - ▁SUDDEN - ▁ARMY - ▁CHE - ▁WORTH - ▁MOUNTAIN - ▁MIN - AG - ▁FLU - ▁GRACE - ▁CHAPTER - ▁BELOW - ▁RING - ▁TURNING - ▁IRON - ▁TOP - ▁AFTERNOON - ORY - ▁EVIL - ▁TRUST - ▁BOW - ▁TRI - ▁SAIL - ▁CONTENT - ▁HORSES - ITE - ▁SILVER - AP - ▁LAD - ▁RUNNING - ▁HILL - ▁BEGINNING - ▁MAD - ▁HABIT - GRA - ▁CLOTHES - ▁MORROW - ▁CRY - ▁FASHION - ▁PRESENCE - ▁Z - FE - ▁ARRIVED - ▁QUARTER - ▁PERFECT - ▁WO - ▁TRA - ▁USUAL - ▁NECK - ▁MARRIED - ▁SEAT - ▁WI - ▁GAR - ▁SAND - ▁SHORE - ▁GIVING - NY - ▁PROBABLY - ▁MINUTE - ▁EXPECT - ▁DU - ▁SHOT - ▁INSTANT - ▁DEGREE - ▁COLOR - ▁WEST - RT - ▁MARCH - ▁BIRD - ▁SHOWED - ▁GREATER - ▁SERIOUS - ▁CARRY - ▁COVERED - ▁FORMER - ▁LOUD - ▁MOVED - ▁MASS - ▁SEEK - ▁CHO - GEN - ▁ROMAN - IB - ▁MOON - ▁BOARD - ▁STREAM - ▁EASILY - ▁WISHED - ▁SEARCH - ▁COULDN - ▁MONTHS - ▁SICK - LIE - ▁DUTY - ▁TWELVE - ▁FAINT - ▁STRANGER - ▁SURPRISE - ▁KILL - ▁LEAVING - ▁JOURNEY - ▁SCARCELY - ▁RAISED - ▁SPEAKING - ▁TERRIBLE - ▁TOM - ▁FIELD - ▁GAME - ▁QUA - ▁PROMISE - ▁LIE - ▁CONDITION - ▁TRO - ▁PERSONAL - ▁TALL - ▁STICK - ▁THREW - ▁MARRY - ▁VAN - ▁BURN - ▁ACCORDING - ▁RISE - ▁ATTACK - ▁SWORD - ▁GUESS - ▁THOUGHTS - ▁THIN - ▁THROW - ▁CALM - SIDE - ▁VILLAGE - ▁DEN - ▁ANXIOUS - ▁MER - GI - ▁EXPECTED - ▁BALL - ▁ESPECIALLY - ▁CHARGE - ▁MEASURE - ISE - ▁NICE - ▁TRYING - ▁ALLOW - ▁SHARP - ▁BREAD - ▁HONOUR - ▁HONOR - ▁ENTIRELY - ▁BILL - ▁BRI - ▁WRITTEN - ▁AR - ▁BROKE - ▁KILLED - ▁MARK - ▁VEN - ▁LADIES - ▁LEARNED - ▁FLOWERS - PLE - ▁FORTY - ▁OFFER - ▁HAPPINESS - ▁PRAY - ▁CLASS - ▁FER - ▁PRINCIPLE - GU - ▁BOOKS - ▁SHAPE - ▁SUMMER - ▁JACK - ▁DRAW - ▁GOLDEN - ▁DECIDED - ▁LEAD - ▁UNLESS - ▁HARM - ▁LISTEN - HER - ▁SHOOK - ▁INFLUENCE - ▁PERFECTLY - ▁MARRIAGE - ▁BROAD - ▁ESCAPE - ▁STATES - ▁MIDDLE - ▁PLANT - ▁MIL - ▁MOVEMENT - ▁NOISE - ▁ENEMY - ▁HISTORY - ▁BREAK - ROUS - ▁UNDERSTOOD - ▁LATTER - FER - ▁COMES - ▁MERELY - ▁SIMPLY - WI - ▁IMAGINE - ▁LOWER - ▁CONDUCT - ▁BORN - WA - ▁YARD - ▁KA - ▁CLOSED - ▁NOTE - GA - ▁STRA - RAN - ▁EXIST - EV - ▁SPEECH - ▁BITTER - JO - ▁MAKES - ▁GRASS - ▁REPLY - ▁CHANGED - ▁MON - ▁LYING - ▁DANCE - ▁FINALLY - ▁AMERICAN - ▁ENJOY - ▁CONTAIN - ▁MEANT - USE - ▁OBSERVED - THER - ▁LAUGH - ▁AFTERWARDS - ▁BEAT - ▁RACE - ▁EQUAL - ▁RAIN - PS - ▁STEPS - ▁BENEATH - ▁TAIL - ▁TASTE - IO - EY - ▁CHAR - ▁GE - GN - TIN - ▁GROW - ▁TE - IANS - ▁MOVE - ▁REPEATED - ▁DRIVE - TUR - ▁SI - CLOCK - ▁BRAVE - ▁MADAME - ▁LOT - ▁CASTLE - ▁HI - AND - ▁FUTURE - ▁RELATION - ▁SORRY - ▁HEALTH - ▁DICK - ▁R - ▁BUILDING - ▁EDGE - ▁BLESS - ▁SPITE - WE - ▁MIS - ▁PRISONER - ▁ALLOWED - ▁PH - ▁CATCH - MER - ETH - ▁COAT - ▁COMPLETE - ▁WOULDN - ▁CREATURE - ▁YELLOW - ▁IMPORTANT - ▁ADD - ▁PASSING - ▁DARKNESS - ▁CARRIAGE - ▁MILL - ▁FIFTEEN - NCY - ▁HUNG - ▁OB - ▁PLEASED - ▁SPREAD - ▁CURIOUS - ▁WORSE - ▁CIRCUMSTANCES - ▁GI - LAR - ▁CAL - ▁HY - ▁MERE - ▁JANE - ▁EAST - BI - ▁CUP - ▁BLIND - ▁PASSION - ▁DISCOVERED - ▁NOTICE - ▁REPORT - ▁SPACE - ▁PRESENTLY - ▁SORROW - ▁PACK - ▁DIN - CY - ▁DRY - ▁ANCIENT - ▁DRESSED - ▁COVER - ▁VO - ▁EXISTENCE - ▁EXACTLY - ▁BEAST - ▁PROPER - ▁DROPPED - ▁CLEAN - ▁COLOUR - ▁HOST - ▁CHAMBER - ▁FAITH - LET - ▁DETERMINED - ▁PRIEST - ▁STORM - ▁SKIN - ▁DARE - ▁PERSONS - ▁PICK - ▁NARROW - ▁SUPPORT - ▁PRIVATE - ▁SMILED - ▁COUSIN - ▁DRAWING - ▁ATTEND - ▁COOK - ▁PREVENT - ▁VARIOUS - ▁BLA - ▁FIXED - ▁WEAK - THE - ▁HOLE - ▁BOTTOM - ▁NOBODY - ADE - ▁LEGS - ITCH - ▁INDIVIDUAL - ▁EARS - LIKE - ▁ADVANTAGE - ▁FRANCE - ▁BON - ▁WINE - ▁LIVES - OD - ▁WALLS - ▁TIRED - ▁SHOP - ▁ANIMAL - ▁CRU - ▁WROTE - ▁ROYAL - ▁CONSIDERED - ▁MORAL - ▁COMPANION - ▁LOSE - ▁ISN - ▁BAG - ▁LAKE - ▁INTER - ▁COM - ▁LETTERS - ▁LUCK - ▁EAR - ▁GERMAN - ▁PET - ▁SAKE - ▁DROP - ▁PAID - ▁BREAKFAST - ▁LABOR - ▁DESERT - ▁DECLARED - ▁HUM - ▁STUDY - ▁INSTANCE - ONE - ▁SOMEWHAT - ▁CLOTH - ▁SPECIAL - ▁COLONEL - ▁SONG - ▁MAIN - ▁VALUE - ▁PROUD - ▁EXPRESS - ▁NATION - ▁HANDSOME - ▁CONFESS - ▁PU - ▁PASSAGE - ▁PERIOD - ▁CUSTOM - ▁HURT - ▁SHOULDER - ▁CHRIST - ZA - ▁RECEIVE - ▁DIFFICULT - ▁DEPEND - ▁MEETING - ▁CHI - ▁GEN - LIGHT - ▁BELIEVED - ▁SOCIAL - ▁DIFFICULTY - ▁GREATEST - ▁DRAWN - ▁GRANT - ▁BIRDS - ▁ANGRY - ▁HEAT - UFF - ▁DUE - ▁PLACES - ▁SIN - ▁COURAGE - ▁EVIDENTLY - ▁GENTLE - ▁CRUEL - ▁GEORGE - ▁GRI - ▁SERVANT - ▁U - ▁PURE - OOK - ▁KNOWS - ▁KNOWING - LF - ▁WRITING - ▁REMEMBERED - ▁CU - ▁HOLDING - ▁TENDER - ▁QUI - ▁BURST - ▁SURELY - IGN - ▁VALLEY - ▁FU - ▁BUTTER - ▁SPOKEN - ▁STORE - ▁DISC - ▁CHRISTIAN - ▁PARIS - ▁HENRY - ▁FINISHED - ▁PROVE - ▁FOOL - ▁SOLDIERS - ▁LANGUAGE - ▁INSIDE - ▁BAN - ▁FALLEN - ROW - ▁MAL - ▁BABY - ▁SITUATION - ▁WATCHED - ANS - ▁RUIN - ▁GENTLEMEN - ▁FRO - ▁FANCY - ▁ACCEPT - ▁SEASON - ▁OURSELVES - ▁SAN - ▁SPEED - IZED - ▁COOL - ▁SERVE - ▁VESSEL - ▁WILLIAM - ▁OBLIGED - ▁GROUP - FORM - ▁GOES - UOUS - ▁LEAVES - ▁PECULIAR - ▁NEWS - ▁VAIN - ▁EVERYBODY - ▁PIN - UG - ▁FORGOTTEN - ▁FRA - GAN - ▁CAREFULLY - ▁FLASH - UCH - ▁FUR - ▁MURDER - ▁DELIGHT - ▁WAITED - ▁RENDER - ▁PROPERTY - ▁NOTICED - ▁ROLL - ▁KNOCK - ▁EARNEST - KI - ▁HONEST - ▁PROMISED - ▁BAL - AW - ▁WALKING - ANG - ▁SQUARE - ▁QUIETLY - ▁CLOUD - WOOD - ▁FORMED - ▁HIGHER - ▁BUILT - ▁FATE - ▁TEACH - MY - ▁FALSE - ▁YORK - ▁DUST - ▁CLIMB - ▁FOND - ▁GROWN - ▁DESCEND - ▁RAG - ▁FRUIT - ▁GENERALLY - ▁OFFERED - ▁ER - ▁NURSE - POSE - ▁SPENT - ▁JOIN - ▁STATION - ▁MEANING - ▁SMOKE - HOOD - ▁ROUGH - JU - ▁LIKELY - ▁SURFACE - ▁KE - ▁MONTH - ▁POSSESSION - ▁TONGUE - ▁DUKE - ▁NOSE - ▁LAUGHING - ▁WEATHER - ▁WHISPERED - ▁SYSTEM - ▁LAWS - DDLE - ▁TOUCHED - ▁TRADE - LD - ▁SURPRISED - RIN - ▁ARCH - ▁WEALTH - FOR - ▁TEMPER - ▁FRANK - ▁GAL - ▁BARE - ▁OPPORTUNITY - ▁CLAIM - ▁ANIMALS - ▁REV - ▁COST - ▁WASH - ZE - ▁CORN - ▁OPPOSITE - ▁POLICE - ▁IDEAS - LON - ▁KEY - ▁READING - ▁COLLECT - CHED - ▁H - ▁CROWN - ▁TAR - ▁SWIFT - ▁SHOULDERS - ▁ICE - ▁GRAY - ▁SHARE - ▁PREPARED - ▁GRO - ▁UND - ▁TER - ▁EMPTY - CING - ▁SMILING - ▁AVOID - ▁DIFFERENCE - ▁EXPLAIN - ▁POUR - ▁ATTRACT - ▁OPENING - ▁WHEEL - ▁MATERIAL - ▁BREAST - ▁SUFFERING - ▁DISTINCT - ▁BOOT - ▁ROW - ▁FINGERS - HAN - ▁ALTOGETHER - ▁FAT - ▁PAPA - ▁BRAIN - ▁ASLEEP - ▁GREY - ▁SUM - ▁GAS - ▁WINDOWS - ▁ALIVE - ▁PROCEED - ▁FLOWER - ▁LEAP - ▁PUR - ▁PIECES - ▁ALTER - ▁MEMORY - IENT - ▁FILL - ▁CLO - ▁THROWN - ▁KINGDOM - ▁RODE - IUS - ▁MAID - ▁DIM - ▁BAND - ▁VIRTUE - ▁DISH - ▁GUEST - ▁LOSS - ▁CAUSED - ▁MOTION - ▁POT - ▁MILLION - ▁FAULT - ▁LOVELY - ▁HERO - PPING - ▁UNITED - ▁SPI - SOME - BRA - ▁MOUNTAINS - ▁NU - ▁SATISFIED - ▁DOLLARS - ▁LOVER - ▁CONCEAL - ▁VAST - ▁PULL - ▁HATH - ▁RUSH - ▁J - ▁DESPAIR - EX - ▁HEIGHT - ▁CE - ▁BENT - ▁PITY - ▁RISING - ATH - ▁PRIDE - ▁HURRY - KA - ▁SETTLED - ▁JUSTICE - ▁LIFTED - PEN - ▁SOLDIER - ▁FINDING - ▁REMARK - ▁REGULAR - ▁STRUGGLE - ▁MACHINE - ▁SING - ▁HURRIED - ▁SUFFICIENT - ▁REPRESENT - ▁DOUBLE - ▁ALARM - ▁SUPPER - ▁DREADFUL - ▁FORE - ATOR - ▁STOCK - ▁TIN - ▁EXAMPLE - ▁ROOF - ▁FLOW - ▁SUPPOSED - ▁PRESERV - ▁L - ▁LISTENED - OC - ▁STO - ▁SECURE - ▁FRIGHTENED - ▁DISTURB - ▁EMOTION - ▁SERVANTS - ▁YO - ▁BUY - ▁FORCED - ▁KITCHEN - ▁TERROR - ▁STAIRS - ▁SIXTY - KER - ▁ORDINARY - ▁DIRECTLY - ▁HEADS - ▁METHOD - ▁FORGIVE - ▁AWFUL - ▁REFLECT - ▁GREATLY - ▁TALKED - ▁RIDE - STONE - ▁FAVOUR - ▁WELCOME - ▁SEIZED - OU - ▁CONTROL - ▁ORDERED - ▁ANGEL - ▁USUALLY - ▁POET - ▁BOLD - LINE - ▁ADVENTURE - ▁WATCHING - ▁FOLK - ▁MISTRESS - IZE - ▁GROWING - ▁CAVE - ▁EVIDENCE - ▁FINGER - ▁SEVENTEEN - ▁MOVING - EOUS - ▁DOESN - ▁COW - ▁TYPE - ▁BOIL - ▁TALE - ▁DELIVER - ▁FARM - ▁MONSIEUR - ▁GATHERED - ▁FEELINGS - ▁RATE - ▁REMARKED - ▁PUTTING - ▁MAT - ▁CONTRARY - ▁CRIME - ▁PLA - ▁COL - ▁NEARER - TES - ▁CIVIL - ▁SHAME - ▁LOOSE - ▁DISCOVER - ▁FLAT - ▁TWICE - ▁FAIL - VIS - ▁UNC - EA - ▁EUROPE - ▁PATIENT - ▁UNTO - ▁SUFFER - ▁PAIR - ▁TREASURE - OSE - ▁EAGER - ▁FLY - ▁N - ▁VAL - ▁DAN - ▁SALT - ▁BORE - BBE - ▁ARTHUR - ▁AFFAIRS - ▁SLOW - ▁CONSIST - ▁DEVIL - LAN - ▁AFFECTION - ▁ENGAGED - ▁KISS - ▁YA - ▁OFFICER - IFICATION - ▁LAMP - ▁PARTS - HEN - ▁MILK - ▁PROCESS - ▁GIFT - ▁PULLED - ▁HID - ▁RAY - ▁EXCELLENT - ▁IMPRESSION - ▁AUTHORITY - ▁PROVED - ▁TELLING - TTE - ▁TOWER - ▁CONSEQUENCE - ▁FAVOR - ▁FLEW - ▁CHARLES - ISTS - ▁ADDRESS - ▁FAMILIAR - ▁LIMIT - ▁CONFIDENCE - ▁RARE - ▁WEEKS - ▁WOODS - ▁INTENTION - ▁DIRECT - ▁PERFORM - ▁SOLEMN - ▁DISTANT - ▁IMAGE - ▁PRESIDENT - ▁FIRM - ▁INDIAN - ▁RANK - ▁LIKED - ▁AGREE - ▁HOUSES - ▁WIL - ▁MATTERS - ▁PRISON - ▁MODE - ▁MAJOR - ▁WORKING - ▁SLIP - ▁WEIGHT - ▁AWARE - ▁BUSY - ▁LOOKS - ▁WOUND - ▁THOR - ▁BATH - ▁EXERCISE - ▁SIMILAR - ▁WORE - ▁AMOUNT - ▁QUESTIONS - ▁VIOLENT - ▁EXCUSE - ▁ASIDE - ▁TUR - ▁DULL - OF - ▁EMPEROR - ▁NEVERTHELESS - ▁SHOUT - ▁EXPLAINED - ▁SIZE - ▁ACCOMPLISH - FORD - CAN - ▁MISTAKE - ▁INSTANTLY - ▁SMOOTH - ▁STRIKE - ▁BOB - ISED - ▁HORROR - ▁SCIENCE - ▁PROTEST - ▁MANAGE - ▁OBEY - ▁NECESSITY - ▁SPLENDID - ▁PRESS - ▁INTERESTING - ▁RELIGION - ▁UNKNOWN - ▁FIERCE - ▁DISAPPEARED - ▁HOLY - ▁HATE - ▁PLAYED - ▁LIN - ▁NATURALLY - ▁DROVE - ▁LOUIS - TIES - ▁BRAND - INESS - RIE - ▁SHOOT - ▁CONSENT - ▁SEATED - ▁LINES - GUE - ▁AGREED - ▁CIRCLE - ▁STIR - ▁STREETS - ▁TASK - ▁RID - ▁PRODUCED - ▁ACCIDENT - ▁WITNESS - ▁LIBERTY - ▁DETAIL - ▁MINISTER - ▁POWERFUL - ▁SAVAGE - ▁SIXTEEN - ▁PRETEND - ▁COAST - ▁SQU - ▁UTTER - ▁NAMED - ▁CLEVER - ▁ADMIT - ▁COUPLE - ▁WICKED - ▁MESSAGE - ▁TEMPLE - ▁STONES - ▁YESTERDAY - ▁HILLS - DAY - ▁SLIGHT - ▁DIAMOND - ▁POSSIBLY - ▁AFFAIR - ▁ORIGINAL - ▁HEARING - ▁WORTHY - ▁SELL - NEY - ICK - ▁COTTAGE - ▁SACRIFICE - ▁PROGRESS - ▁SHOCK - ▁DESIGN - ▁SOUGHT - ▁PIT - ▁SUNDAY - ▁OTHERWISE - ▁CABIN - ▁PRAYER - ▁DWELL - ▁GAIN - ▁BRIDGE - ▁PARTICULARLY - ▁YIELD - ▁TREAT - RIGHT - ▁OAK - ▁ROPE - WIN - ▁ORDERS - ▁SUSPECT - ▁EDWARD - AB - ▁ELEVEN - ▁TEETH - ▁OCCURRED - DDING - ▁AMERICA - ▁FALLING - ▁LION - ▁DEPART - ▁KEEPING - ▁DEMAND - ▁PAUSED - ▁CEASED - INA - ▁FUN - ▁CHEER - ▁PARDON - ▁NATIVE - LUS - LOW - ▁DOGS - ▁REQUIRED - ILITY - ▁ELECT - ▁ENTERTAIN - ITUDE - ▁HUGE - ▁CARRYING - ▁BLU - ▁INSIST - ▁SATISFACTION - ▁HUNT - ▁COUNTENANCE - ▁UPPER - ▁MAIDEN - ▁FAILED - ▁JAMES - ▁FOREIGN - ▁GATHER - ▁TEST - BOARD - ▁TERMS - ▁SILK - ▁BEG - ▁BROTHERS - ▁PAGE - ▁KNEES - ▁SHOWN - ▁PROFESSOR - ▁MIGHTY - ▁DEFI - ▁CHARM - ▁REQUIRE - ▁LOG - MORE - ▁PROOF - ▁POSSESSED - ▁SOFTLY - ▁UNFORTUNATE - ▁PRICE - ▁SEVERE - ▁SINGING - ▁STAGE - ▁FREEDOM - ▁SHOUTED - ▁FARTHER - ▁MAJESTY - ▁PREVIOUS - ▁GUIDE - ▁MATCH - ▁CHEST - ▁INTENDED - ▁BI - ▁EXCITEMENT - ▁OFFICERS - ▁SUR - ▁SHAKE - ▁SENTIMENT - ▁GENTLY - ▁SUCCEEDED - ▁MENTION - ▁LOCK - ▁ACQUAINTANCE - ▁IMAGINATION - ▁PHYSICAL - ▁LEADING - ▁SLAVE - ▁CART - ▁POINTED - ▁STEAM - ▁SHADE - ▁PIPE - ▁BASE - ▁INVENT - ▁ALAS - ▁WORKED - ▁REGRET - ▁BUR - ▁FAITHFUL - ▁MENTIONED - ▁RECORD - ▁COMPLAIN - ▁SUPERIOR - ▁BAY - ▁PAL - EMENT - UE - ▁SEVENTY - ▁HOTEL - ▁SHEEP - ▁MEAL - ▁ADVICE - ▁HIDDEN - ▁DEMANDED - ▁CONSCIOUS - ▁BROW - ▁POSSESS - ▁FOURTH - ▁EVENTS - ▁FRI - ▁PRAISE - ▁ADVANCED - ▁RESOLVED - ▁STUFF - ▁CHEERFUL - ▁BIRTH - ▁GRIEF - ▁AFFORD - ▁FAIRY - ▁WAKE - ▁SIDES - ▁SUBSTANCE - ▁ARTICLE - ▁LEVEL - ▁MIST - ▁JOINED - ▁PRACTICAL - ▁CLEARLY - ▁TRACE - ▁AWAKE - ▁OBSERVE - ▁BASKET - ▁LACK - VILLE - ▁SPIRITS - ▁EXCITED - ▁ABANDON - ▁SHINING - ▁FULLY - ▁CALLING - ▁CONSIDERABLE - ▁SPRANG - ▁MILE - ▁DOZEN - ▁PEA - ▁DANGEROUS - ▁WIT - ▁JEW - ▁POUNDS - ▁FOX - ▁INFORMATION - ▁LIES - ▁DECK - NNY - ▁PAUL - ▁STARS - ▁ANGER - ▁SETTLE - ▁WILLING - ▁ADAM - ▁FACES - ▁SMITH - ▁IMPORTANCE - ▁STRAIN - WAR - ▁SAM - ▁FEATHER - ▁SERVED - ▁AUTHOR - ▁PERCEIVED - ▁FLAME - ▁DIVINE - ▁TRAIL - ▁ANYBODY - ▁SIGH - ▁DELICATE - KY - ▁FOLD - ▁HAVEN - ▁DESIRED - ▁CURIOSITY - ▁PRACTICE - ▁CONSIDERATION - ▁ABSOLUTELY - ▁CITIZEN - ▁BOTTLE - ▁INTERESTED - ▁MEAT - ▁OCCUPIED - ▁CHOOSE - ▁THROAT - ETTE - ▁CANDLE - ▁DAWN - ▁PROTECT - ▁SENTENCE - IED - ▁ROCKS - ▁PORTION - ▁APPARENTLY - ▁PRESENTED - ▁TIGHT - ▁ACTUALLY - ▁DYING - ▁HAM - ▁DAILY - ▁SUFFERED - ▁POLITICAL - ▁BODIES - ▁MODERN - ▁COMPLETELY - ▁SOONER - TAN - ▁PROP - ▁ADVANCE - ▁REFUSED - ▁FARMER - ▁POLITE - ▁THUNDER - ▁BRIEF - ▁ELSIE - ▁SAILOR - ▁SUGGESTED - ▁PLATE - ▁AID - ▁FLESH - ▁WEEP - ▁BUCK - ▁ANTI - ▁OCEAN - ▁SPEND - WELL - ▁ODD - ▁GOVERNOR - ▁ENTRANCE - ▁SUSPICION - ▁STEPPED - ▁RAPIDLY - ▁CHECK - ▁HIDE - ▁FLIGHT - ▁CLUB - ▁ENTIRE - ▁INDIANS - ASH - ▁CAPITAL - ▁MAMMA - HAR - ▁CORRECT - ▁CRACK - ▁SENSATION - ▁WORST - ▁PACE - ▁MIDST - ▁AUGUST - ▁PROPORTION - ▁INNOCENT - LINESS - ▁REGARDED - ▁DRIVEN - ORD - ▁HASTE - ▁EDUCATION - ▁EMPLOY - ▁TRULY - ▁INSTRUMENT - ▁MAG - ▁FRAME - ▁FOOLISH - ▁TAUGHT - ▁HANG - ▁ARGUMENT - ▁NINETEEN - ▁ELDER - ▁NAY - ▁NEEDED - ▁NEIGHBOR - ▁INSTRUCT - ▁PAPERS - ▁REWARD - ▁EQUALLY - ▁FIELDS - ▁DIG - HIN - ▁CONDITIONS - JA - ▁SPAR - ▁REQUEST - ▁WORN - ▁REMARKABLE - ▁LOAD - ▁WORSHIP - ▁PARK - ▁KI - ▁INTERRUPTED - ▁SKILL - ▁TERM - LAC - ▁CRITIC - ▁DISTRESS - ▁BELIEF - ▁STERN - IGHT - ▁TRACK - ▁HUNTING - ▁JEWEL - ▁GRADUALLY - ▁GLOW - ▁RUSHED - ▁MENTAL - ▁VISITOR - ▁PICKED - ▁BEHOLD - ▁EXPRESSED - ▁RUB - ▁SKI - ARTAGNAN - ▁MOREOVER - ▁OPERATION - ▁CAREFUL - ▁KEEN - ▁ASSERT - ▁WANDER - ▁ENEMIES - ▁MYSTERIOUS - ▁DEPTH - ▁PREFER - ▁CROSSED - ▁CHARMING - ▁DREAD - ▁FLOUR - ▁ROBIN - ▁TRE - ▁RELIEF - ▁INQUIRED - ▁APPLE - ▁HENCE - ▁WINGS - ▁CHOICE - ▁JUD - OO - ▁SPECIES - ▁DELIGHTED - IUM - ▁RAPID - ▁APPEAL - ▁FAMOUS - ▁USEFUL - ▁HELEN - ▁NEWSPAPER - ▁PLENTY - ▁BEARING - ▁NERVOUS - ▁PARA - ▁URGE - ▁ROAR - ▁WOUNDED - ▁CHAIN - ▁PRODUCE - ▁REFLECTION - ▁MERCHANT - ▁QUARREL - ▁GLORY - ▁BEGUN - ▁BARON - CUS - ▁QUEER - ▁MIX - ▁GAZE - ▁WHISPER - ▁BURIED - ▁DIV - ▁CARD - ▁FREQUENTLY - ▁TIP - ▁KNEE - ▁REGION - ▁ROOT - ▁LEST - ▁JEALOUS - CTOR - ▁SAVED - ▁ASKING - ▁TRIP - QUA - ▁UNION - HY - ▁COMPANIONS - ▁SHIPS - ▁HALE - ▁APPROACHED - ▁HARRY - ▁DRUNK - ▁ARRIVAL - ▁SLEPT - ▁FURNISH - HEAD - ▁PIG - ▁ABSENCE - ▁PHIL - ▁HEAP - ▁SHOES - ▁CONSCIOUSNESS - ▁KINDLY - ▁EVIDENT - ▁SCAR - ▁DETERMIN - ▁GRASP - ▁STEAL - ▁OWE - ▁KNIFE - ▁PRECIOUS - ▁ELEMENT - ▁PROCEEDED - ▁FEVER - ▁LEADER - ▁RISK - ▁EASE - ▁GRIM - ▁MOUNT - ▁MEANWHILE - ▁CENTURY - OON - ▁JUDGMENT - ▁AROSE - ▁VISION - ▁SPARE - ▁EXTREME - ▁CONSTANT - ▁OBSERVATION - ▁THRUST - ▁DELAY - ▁CENT - ▁INCLUD - ▁LIFT - ▁ADMIRE - ▁ISSUE - ▁FRIENDSHIP - ▁LESSON - ▁PRINCIPAL - ▁MOURN - ▁ACCEPTED - ▁BURNING - ▁CAPABLE - ▁EXTRAORDINARY - ▁SANG - ▁REMOVED - ▁HOPED - ▁HORN - ▁ALICE - ▁MUD - ▁APARTMENT - ▁FIGHTING - ▁BLAME - ▁TREMBLING - ▁SOMEBODY - ▁ANYONE - ▁BRIDE - ▁READER - ▁ROB - ▁EVERYWHERE - ▁LABOUR - ▁RECALL - ▁BULL - ▁HIT - ▁COUNCIL - ▁POPULAR - ▁CHAP - ▁TRIAL - ▁DUN - ▁WISHES - ▁BRILLIANT - ▁ASSURED - ▁FORGOT - ▁CONTINUE - ▁ACKNOWLEDG - ▁RETREAT - ▁INCREASED - ▁CONTEMPT - ▁GRANDFATHER - ▁SYMPATHY - ▁GHOST - ▁STRETCHED - ▁CREATURES - ▁CAB - ▁HIND - ▁PLAYING - ▁MISERABLE - ▁MEMBERS - ▁KINDNESS - ▁HIGHEST - ▁PRIM - ▁KISSED - ▁DESERVE - ▁HUT - ▁BEGGED - ▁EIGHTY - ▁CLOSELY - ▁WONDERED - ▁MILITARY - ▁REMIND - ▁ACCORDINGLY - ▁LARGER - ▁MAINTAIN - ▁ENGINE - ▁MOTIVE - ▁DESTROY - ▁STRIP - ▁HANS - ▁AHEAD - ▁INFINITE - ▁PROMPT - ▁INFORMED - TTLE - ▁PEER - ▁PRESSED - ▁TRAP - ▁SOMEWHERE - ▁BOUGHT - ▁VISIBLE - ▁ASHAMED - ▁TEAR - ▁NEIGHBOUR - ▁CONSTITUTION - ▁INTELLIGENCE - ▁PROFESSION - ▁HUNGRY - RIDGE - ▁SMELL - ▁STORIES - ▁LISTENING - ▁APPROACH - ▁STRING - ▁EXPLANATION - ▁IMMENSE - ▁RELIGIOUS - ▁THROUGHOUT - ▁HOLLOW - ▁AWAIT - ▁FLYING - ▁SCREAM - ▁ACTIVE - ▁RUM - ▁PRODUCT - ▁UNHAPPY - ▁VAGUE - ARIES - ▁ELIZABETH - ▁STUPID - ▁DIGNITY - ▁ISABEL - GAR - ▁BRO - ▁PITCH - ▁COMRADE - ▁STIFF - ▁RECKON - ▁SOLD - ▁SPARK - ▁STRO - ▁CRYING - ▁MAGIC - ▁REPEAT - PORT - ▁MARKED - ▁COMFORTABLE - ▁PROJECT - ▁BECOMING - ▁PARENTS - ▁SHELTER - ▁STOLE - ▁HINT - ▁NEST - ▁TRICK - ▁THOROUGHLY - ▁HOSPITAL - ▁WEAPON - ▁ROME - ▁STYLE - ▁ADMITTED - ▁SAFETY - FIELD - ▁UNDERSTANDING - ▁TREMBLE - ▁PRINT - ▁SLAVES - ▁WEARY - ▁ARTIST - ▁CREDIT - BURG - ▁CONCLUSION - ▁SELDOM - ▁UNUSUAL - ▁CLOUDS - ▁UNABLE - ▁GAY - ▁HANGING - ▁SCR - ▁BOWED - ▁DAVID - ▁VOL - ▁PUSHED - ▁ESCAPED - MOND - ▁WARN - ▁BETRAY - ▁EGGS - ▁PLAINLY - ▁EXHIBIT - ▁DISPLAY - ▁MEMBER - ▁GRIN - ▁PROSPECT - ▁BRUSH - ▁BID - ▁SUCCESSFUL - ▁EXTENT - ▁PERSUADE - ▁MID - ▁MOOD - ▁ARRANGED - ▁UNIVERSAL - ▁JIM - ▁SIGNAL - ▁WHILST - ▁PHILIP - ▁WOLF - RATE - ▁EAGERLY - ▁BILLY - ▁RETURNING - ▁CONSCIENCE - ▁FORTUNATE - ▁FEMALE - ▁GLEAM - ▁HASTILY - ▁PROVIDED - ▁OBTAIN - ▁INSTINCT - ▁CONCERNED - ▁CONCERNING - ▁SOMEHOW - ▁PINK - ▁RAGE - ▁ACCUSTOMED - ▁UNCONSCIOUS - ▁ADVISE - ▁BRANCHES - ▁TINY - ▁REFUSE - ▁BISHOP - ▁SUPPLY - ▁PEASANT - ▁LAWYER - ▁WASTE - ▁CONNECTION - ▁DEVELOP - ▁CORRESPOND - ▁PLUM - ▁NODDED - ▁SLIPPED - ▁EU - ▁CONSTANTLY - CUM - MMED - ▁FAIRLY - HOUSE - ▁KIT - ▁RANG - ▁FEATURES - ▁PAUSE - ▁PAINFUL - ▁JOE - ▁WHENCE - ▁LAUGHTER - ▁COACH - ▁CHRISTMAS - ▁EATING - ▁WHOLLY - ▁APART - ▁SUPER - ▁REVOLUTION - ▁LONELY - ▁CHEEKS - ▁THRONE - ▁CREW - ▁ATTAIN - ▁ESTABLISHED - TIME - ▁DASH - ▁FRIENDLY - ▁OPERA - ▁EARL - ▁EXHAUST - ▁CLIFF - ▁REVEAL - ▁ADOPT - ▁CENTRE - ▁MERRY - ▁SYLVIA - ▁IDEAL - ▁MISFORTUNE - ▁FEAST - ▁ARAB - ▁NUT - ▁FETCH - ▁FOUGHT - ▁PILE - ▁SETTING - ▁SOURCE - ▁PERSIST - ▁MERCY - ▁BARK - ▁LUC - ▁DEEPLY - ▁COMPARE - ▁ATTITUDE - ▁ENDURE - ▁DELIGHTFUL - ▁BEARD - ▁PATIENCE - ▁LOCAL - ▁UTTERED - ▁VICTORY - ▁TREATED - ▁SEPARATE - ▁WAG - ▁DRAGG - ▁TITLE - ▁TROOPS - ▁TRIUMPH - ▁REAR - ▁GAINED - ▁SINK - ▁DEFEND - ▁TIED - ▁FLED - ▁DARED - ▁INCREASE - ▁POND - ▁CONQUER - ▁FOREHEAD - ▁FAN - ▁ANXIETY - ▁ENCOUNTER - ▁SEX - ▁HALT - ▁SANK - ▁CHEEK - ▁HUMBLE - ▁WRITER - ▁EMPLOYED - ▁DISTINGUISHED - ▁RAISE - ▁WHIP - ▁GIANT - ▁RANGE - ▁OBTAINED - ▁FLAG - ▁MAC - ▁JUMPED - ▁DISCOVERY - ▁NATIONAL - ▁COMMISSION - ▁POSITIVE - ▁LOVING - ▁EXACT - ▁MURMURED - ▁GAZED - ▁REFER - ▁COLLEGE - ▁ENCOURAGE - ▁NOVEL - ▁CLOCK - ▁MORTAL - ▁ROLLED - ▁RAT - IZING - ▁GUILTY - ▁VICTOR - WORTH - ▁PRA - ▁APPROACHING - ▁RELATIVE - ▁ESTATE - ▁UGLY - ▁METAL - ▁ROBERT - ▁TENT - ▁ADMIRATION - ▁FOURTEEN - ▁BARBAR - ▁WITCH - ELLA - ▁CAKE - ▁SHONE - ▁MANAGED - ▁VOLUME - ▁GREEK - ▁DANCING - ▁WRETCHED - ▁CONDEMN - ▁MAGNIFICENT - ▁CONSULT - J - ▁ORGAN - ▁FLEET - ▁ARRANGEMENT - ▁INCIDENT - ▁MISERY - ▁ARROW - ▁STROKE - ▁ASSIST - ▁BUILD - ▁SUCCEED - ▁DESPERATE - ▁WIDOW - UDE - ▁MARKET - ▁WISDOM - ▁PRECISE - ▁CURRENT - ▁SPOIL - ▁BADE - ▁WOODEN - ▁RESIST - ▁OBVIOUS - ▁SENSIBLE - FALL - ▁ADDRESSED - ▁GIL - ▁COUNSEL - ▁PURCHASE - ▁SELECT - ▁USELESS - ▁STARED - ▁ARREST - ▁POISON - ▁FIN - ▁SWALLOW - ▁BLOCK - ▁SLID - ▁NINETY - ▁SPORT - ▁PROVIDE - ▁ANNA - ▁LAMB - ▁INTERVAL - ▁JUMP - ▁DESCRIBED - ▁STRIKING - ▁PROVISION - ▁PROPOSED - ▁MELANCHOLY - ▁WARRIOR - ▁SUGGEST - ▁DEPARTURE - ▁BURDEN - ▁LIMB - ▁TROUBLED - ▁MEADOW - ▁SACRED - ▁SOLID - ▁TRU - ▁LUCY - ▁RECOVER - ▁ENERGY - ▁POWDER - ▁RESUMED - ▁INTENSE - ▁BRITISH - ▁STRAW - ▁AGREEABLE - ▁EVERYONE - ▁CONCERN - ▁VOYAGE - ▁SOUTHERN - ▁BOSOM - ▁UTTERLY - ▁FEED - ▁ESSENTIAL - ▁CONFINE - ▁HOUSEHOLD - ▁EXTREMELY - ▁WONDERING - ▁LIST - ▁PINE - PHA - ▁EXPERIMENT - ▁JOSEPH - ▁MYSTERY - ▁RESTORE - ▁BLUSH - FOLD - ▁CHOSEN - ▁INTELLECT - ▁CURTAIN - OLOGY - ▁MOUNTED - ▁LAP - ▁EPI - ▁PUNISH - ▁WEDDING - ▁RECOGNIZED - ▁DRIFT - ▁PREPARATION - ▁RESOLUTION - ▁OPPRESS - ▁FIX - ▁VICTIM - OGRAPH - ▁SUMMON - ▁JULIA - ▁FLOOD - ▁WAL - ULATION - ▁SLIGHTLY - ▁LODGE - ▁WIRE - ▁CONFUSION - ▁UNEXPECTED - ▁CONCEIVE - ▁PRIZE - ▁JESUS - ▁ADDITION - ▁RUDE - ▁FATAL - ▁CARELESS - ▁PATCH - ▁KO - ▁CATHERINE - ▁PARLIAMENT - ▁PROFOUND - ▁ALOUD - ▁RELIEVE - ▁PUSH - ABILITY - ▁ACCOMPANIED - ▁SOVEREIGN - ▁SINGULAR - ▁ECHO - ▁COMPOSED - ▁SHAKING - ATORY - ▁ASSISTANCE - ▁TEACHER - ▁HORRIBLE - ▁STRICT - ▁VERSE - ▁PUNISHMENT - ▁GOWN - ▁MISTAKEN - ▁VARI - ▁SWEPT - ▁GESTURE - ▁BUSH - ▁STEEL - ▁AFFECTED - ▁DIRECTED - ▁SURROUNDED - ▁ABSURD - ▁SUGAR - ▁SCRAP - ▁IMMEDIATE - ▁SADDLE - ▁TY - ▁ARISE - ▁SIGHED - ▁EXCHANGE - ▁IMPATIENT - ▁SNAP - ▁EMBRACE - ▁DISEASE - ▁PROFIT - ▁RIDING - ▁RECOVERED - ▁GOVERN - ▁STRETCH - ▁CONVINCED - ▁LEANING - ▁DOMESTIC - ▁COMPLEX - ▁MANIFEST - ▁INDULGE - ▁GENIUS - ▁AGENT - ▁VEIL - ▁DESCRIPTION - ▁INCLINED - ▁DECEIVE - ▁DARLING - ▁REIGN - HU - ▁ENORMOUS - ▁RESTRAIN - ▁DUTIES - BURY - TTERED - ▁POLE - ▁ENABLE - ▁EXCEPTION - ▁INTIMATE - ▁COUNTESS - ▁TRIBE - ▁HANDKERCHIEF - ▁MIDNIGHT - ▁PROBLEM - ▁TRAMP - ▁OIL - CAST - ▁CRUSH - ▁DISCUSS - ▁RAM - ▁TROT - ▁UNRE - ▁WHIRL - ▁LOCKED - ▁HORIZON - ▁OFFICIAL - ▁SCHEME - ▁DROWN - ▁PIERRE - ▁PERMITTED - ▁CONNECTED - ▁ASSURE - ▁COCK - ▁UTMOST - ▁DEVOTED - ▁RELI - ▁SUFFICIENTLY - ▁INTELLECTUAL - ▁CARPET - ▁OBJECTION - ▁AFTERWARD - ▁REALITY - ▁NEGRO - ▁RETAIN - ▁ASCEND - ▁CEASE - ▁KATE - ▁MARVEL - KO - ▁BOND - MOST - ▁COAL - GATE - ▁IGNORANT - ▁BREAKING - ▁TWIN - ▁ASTONISHMENT - ▁COFFEE - ▁JAR - ▁CITIES - ▁ORIGIN - ▁EXECUT - ▁FINAL - ▁INHABITANTS - ▁STABLE - ▁CHIN - ▁PARTIES - ▁PLUNGE - ▁GENEROUS - ▁DESCRIBE - ▁ANNOUNCED - ▁MERIT - ▁REVERE - ▁ERE - ACIOUS - ZI - ▁DISAPPOINT - ▁SUGGESTION - ▁DOUBTLESS - ▁TRUNK - ▁STAMP - ▁JOB - ▁APPOINTED - ▁DIVIDED - ▁ACQUAINTED - CHI - ▁ABSOLUTE - ▁FEARFUL - ▁PRIVILEGE - ▁CRAFT - ▁STEEP - ▁HUNTER - ▁FORBID - ▁MODEST - ▁ENDEAVOUR - ▁SWEEP - ▁BEHELD - ▁ABSORB - ▁CONSTRUCT - ▁EMPIRE - ▁EXPEDITION - ▁ERECT - ▁OFFEND - ▁INTEND - ▁PERMIT - ▁DESTROYED - ▁CONTRACT - ▁THIRST - ▁WAGON - ▁EVA - ▁GLOOM - ▁ATMOSPHERE - ▁RESERVE - ▁VOTE - ▁GER - ▁NONSENSE - ▁PREVAIL - ▁QUALITY - ▁CLASP - ▁CONCLUDED - ▁RAP - ▁KATY - ▁ETERNAL - ▁MUTTERED - ▁NEGLECT - ▁SQUIRE - ▁CREEP - LOCK - ▁ELECTRIC - ▁HAY - ▁EXPENSE - ▁SCORN - ▁RETIRED - ▁STOUT - ▁MURMUR - ▁SHARPLY - ▁DISTRICT - ▁LEAF - ▁FAILURE - WICK - ▁JEAN - ▁NUMEROUS - ▁INFANT - ▁REALIZED - ▁TRAVELLER - ▁HUNGER - ▁JUNE - ▁MUN - ▁RECOMMEND - ▁CREP - ZZLE - ▁RICHARD - WORK - ▁MONTE - ▁PREACH - ▁PALM - AVI - ▁ANYWHERE - ▁DISPOSITION - ▁MIRROR - ▁VENTURE - ▁POUND - ▁CIGAR - ▁INVITED - ▁BENCH - ▁PROTECTION - ▁BENEFIT - ▁THOMAS - ▁CLERK - ▁REPROACH - ▁UNIFORM - ▁GENERATION - ▁SEAL - ▁COMPASS - ▁WARNING - ▁EXTENDED - ▁DIFFICULTIES - ▁MAYBE - ▁GROAN - ▁AFFECT - ▁COMB - ▁EARN - ▁WESTERN - ▁IDLE - ▁SCORE - ▁TAP - ▁ASTONISHED - ▁INTRODUCED - ▁LEISURE - ▁LIEUTENANT - ▁VIOLENCE - ▁FIRMLY - ▁MONSTER - ▁UR - ▁PROPERLY - ▁TWIST - ▁PIRATE - ▁ROBBER - ▁BATTER - ▁WEPT - ▁LEANED - ▁FOG - ▁ORNAMENT - ▁ANDREW - ▁BUSHES - ▁REPUBLIC - ▁CONFIDENT - ▁LEAN - ▁DART - ▁STOOP - ▁CURL - ▁COUNTER - ▁NORTHERN - ▁PEARL - ▁NEAREST - ▁FRANCIS - ▁WANDERING - ▁FREQUENT - ▁STARTLED - ▁STATEMENT - ▁OCCUR - ▁BLOOM - ▁NERVE - ▁INSPECT - ▁INDUCE - ▁FLATTER - ▁DATE - ▁AMBITION - ▁SLOPE - ▁MALE - ▁MADAM - ▁MONK - ▁RENT - ▁CONFIRM - ▁INVESTIGAT - ▁RABBIT - ▁REGIMENT - ▁SUBMIT - ▁SPELL - ▁FURIOUS - ▁RAIL - ▁BESTOW - ▁RALPH - ▁SCATTERED - ▁COMPELLED - ▁THREAD - ▁CHILL - ▁DENY - ▁PRONOUNC - ▁MANKIND - ▁CATTLE - ▁EXECUTION - ▁REBEL - ▁SUPREME - ▁VALUABLE - ▁LIKEWISE - ▁CONVEY - ▁TIDE - ▁GLOOMY - ▁COIN - ▁ACTUAL - ▁TAX - ▁PROVINCE - ▁GRATEFUL - ▁SPIRITUAL - ▁VANISHED - ▁DIANA - ▁HAUNT - ▁DRAGON - ▁CRAWL - ▁CHINA - ▁GRATITUDE - ▁NEAT - ▁FINISH - ▁INTENT - ▁FRIGHT - ▁EMBARRASS - ▁THIRTEEN - ▁RUTH - ▁SLIGHTEST - ▁DEVELOPMENT - ▁INTERVIEW - ▁SPECTACLE - ▁BROOK - VIE - ▁WEAKNESS - ▁AUDIENCE - ▁CONSEQUENTLY - ▁ABROAD - ▁ASPECT - ▁PAINTED - ▁RELEASE - ▁INSULT - ▁SOOTH - ▁DISAPPOINTMENT - ▁EMERG - ▁BRIG - ▁ESTEEM - ▁INVITATION - ▁PASSENGER - ▁PUBLISH - ▁PIANO - ▁IRISH - ▁DESK - ▁BEATEN - ▁FIFTH - ▁IMPULSE - ▁SWEAR - ▁EATEN - ▁PURPLE - ▁COMMITTED - ▁COUNTRIES - ▁PERCEIVE - ISON - ▁CELEBRAT - ▁GRANDMOTHER - ▁SHUDDER - ▁SUNSHINE - ▁SPANISH - ▁HITHERTO - ▁MARILLA - ▁SNAKE - ▁MOCK - ▁INTERFERE - ▁WALTER - ▁AMID - ▁MARBLE - ▁MISSION - TERIOR - ▁DRIVING - ▁FURNITURE - ▁STEADY - ▁CIRCUMSTANCE - ▁INTERPRET - ▁ENCHANT - ▁ERROR - ▁CONVICTION - ▁HELPLESS - ▁MEDICINE - ▁QUALITIES - ▁ITALIAN - ▁HASTENED - ▁OCCASIONALLY - ▁PURSUED - ▁HESITATED - ▁INDEPENDENT - ▁OLIVER - ▁LINGER - UX - ▁EXAMINED - ▁REPENT - ▁PHYSICIAN - ▁CHASE - ▁BELOVED - ▁ATTACHED - ▁FLORENCE - ▁HONEY - ▁MOUSE - ▁CRIES - ▁BAKE - ▁POEM - ▁DESTRUCTION - ▁FULFIL - ▁MESSENGER - ▁TRISTRAM - ▁FANCIED - ▁EXCESS - ▁CURSE - ▁CHU - ▁QUANTITY - ▁THORNTON - ▁CREATED - ▁CONTINUALLY - ▁LIGHTNING - ▁BORNE - ▁TOTAL - ▁DISPOSED - ▁RIFLE - ▁POLLY - ▁GOAT - ▁BACKWARD - ▁VIRGINIA - ▁KICK - ▁PERIL - ▁QUO - ▁GLORIOUS - ▁MULTITUDE - ▁LEATHER - ▁ABSENT - ▁DEMON - ▁DEBT - ▁TORTURE - ▁ACCORD - ▁MATE - ▁CATHOLIC - ▁PILL - ▁LIBRARY - ▁PURSUIT - ▁SHIRT - ▁DEAREST - ▁COLLAR - ▁BEACH - ▁ROBE - ▁DECLARE - ▁BRANCH - ▁TEMPT - ▁STEADILY - ▁DISGUST - ▁SILLY - ▁ARRIVE - ▁DRANK - ▁LEVI - ▁COMMUNICAT - ▁RACHEL - ▁WASHINGTON - ▁RESIGN - ▁MEANTIME - ▁LACE - ▁ENGAGEMENT - ▁QUIVER - ▁SEPARATED - ▁DISCUSSION - ▁VENTURED - ▁SURROUNDING - ▁POLISH - ▁NAIL - ▁SWELL - ▁JOKE - ▁LINCOLN - ▁STUDENT - ▁GLITTER - ▁RUSSIAN - ▁READILY - ▁CHRIS - ▁POVERTY - ▁DISGRACE - ▁CHEESE - ▁HEAVILY - ▁SCALE - ▁STAFF - ▁ENTREAT - ▁FAREWELL - ▁LUNCH - ▁PEEP - ▁MULE - ▁SOMEONE - ▁DISAPPEAR - ▁DECISION - ▁PISTOL - ▁PUN - ▁SPUR - ▁ASSUMED - ▁EXTEND - ▁ENTHUSIASM - ▁DEFINITE - ▁UNDERTAKE - ▁COMMITTEE - ▁SIMON - ▁FENCE - ▁APPLIED - ▁RELATED - ▁VICE - ▁UNPLEASANT - ▁PROBABLE - ▁PROCURE - ▁FROWN - ▁CLOAK - ▁HUMANITY - ▁FAMILIES - ▁PHILOSOPHER - ▁DWARF - ▁OVERCOME - ▁DEFEAT - ▁FASTENED - ▁MARSH - ▁CLASSES - ▁TOMB - ▁GRACIOUS - ▁REMOTE - ▁CELL - ▁SHRIEK - ▁RESCUE - ▁POOL - ▁ORGANIZ - ▁CHOSE - ▁CUTTING - ▁COWARD - ▁BORDER - ▁DIRTY - ▁MONKEY - ▁HOOK - ▁CHUCK - ▁EMILY - ▁JEST - ▁PLAC - ▁WEIGH - ▁ASSOCIATE - ▁GLIMPSE - ▁STUCK - ▁BOLT - ▁MURDERER - ▁PONY - ▁DISTINGUISH - ▁INSTITUTION - ▁CUNNING - ▁COMPLIMENT - ▁APPETITE - ▁REPUTATION - ▁FEEBLE - ▁KIN - ▁SERIES - ▁GRACEFUL - ▁PLATFORM - ▁BREEZE - ▁PHRASE - ▁CLAY - MONT - ▁RATTL - ▁OPPOSITION - ▁LANE - ▁BOAST - ▁GROWTH - ▁INCLINATION - ▁BEHAVE - ▁SUSAN - ▁DISTINCTION - ▁DISLIKE - ▁NICHOLAS - ▁SATISFY - ▁DRAMA - ▁ELBOW - ▁GAZING - ▁CONSUM - ▁SPIN - ▁OATH - ▁CHANNEL - ▁CHARACTERISTIC - ▁SPEAR - ▁SLAIN - ▁SAUCE - ▁FROG - ▁CONCEPTION - ▁TIMID - ▁ZEAL - ▁APPARENT - SHIRE - ▁CENTER - ▁VARIETY - ▁DUSK - ▁APT - ▁COLUMN - ▁REVENGE - ▁RIVAL - ▁IMITAT - ▁PASSIONATE - ▁SELFISH - ▁NORMAN - ▁REPAIR - ▁THRILL - ▁TREATMENT - ▁ROSA - ▁MARTIN - ▁INDIFFERENT - ▁THITHER - ▁GALLANT - ▁PEPPER - ▁RECOLLECT - ▁VINE - ▁SCARCE - ▁SHIELD - ▁MINGLED - CLOSE - ▁HARSH - ▁BRICK - ▁HUMOR - ▁MISCHIEF - ▁TREMENDOUS - ▁FUNCTION - ▁SMART - ▁SULTAN - ▁DISMISS - ▁THREATENED - ▁CHEAP - ▁FLOCK - ▁ENDEAVOR - ▁WHISK - ▁ITALY - ▁WAIST - ▁FLUTTER - ▁SMOKING - ▁MONARCH - ▁AFRICA - ▁ACCUSE - ▁HERBERT - ▁REFRESH - ▁REJOICE - ▁PILLOW - ▁EXPECTATION - ▁POETRY - ▁HOPELESS - ▁PERISH - ▁PHILOSOPHY - ▁WHISTLE - ▁BERNARD - ▁LAMENT - ▁IMPROVE - ▁SUP - ▁PERPLEX - ▁FOUNTAIN - ▁LEAGUE - ▁DESPISE - ▁IGNORANCE - ▁REFERENCE - ▁DUCK - ▁GROVE - ▁PURSE - ▁PARTNER - ▁PROPHET - ▁SHIVER - ▁NEIGHBOURHOOD - ▁REPRESENTATIVE - SAIL - ▁WIP - ▁ACQUIRED - ▁CHIMNEY - ▁DOCTRINE - ▁MAXIM - ▁ANGLE - ▁MAJORITY - ▁AUTUMN - ▁CONFUSED - ▁CRISTO - ▁ACHIEVE - ▁DISGUISE - ▁REDUCED - ▁EARLIER - ▁THEATRE - ▁DECIDE - MINATED - OLOGICAL - ▁OCCUPATION - ▁VIGOROUS - ▁CONTINENT - ▁DECLINE - ▁COMMUNITY - ▁MOTIONLESS - ▁HATRED - ▁COMMUNICATION - ▁BOWL - ▁COMMENT - ▁APPROVE - ▁CEREMONY - ▁CRIMINAL - ▁SCIENTIFIC - ▁DUCHESS - ▁VIVID - ▁SHIFT - ▁AVAIL - ▁DAMP - ▁JOHNSON - ▁SLENDER - ▁CONTRAST - ▁AMUSEMENT - ▁PLOT - ▁LYN - ▁ASSOCIATION - ▁SNATCH - ▁UNCERTAIN - ▁PRESSURE - ▁PERCH - ▁APPLY - ▁PLANET - ▁NOTWITHSTANDING - ▁SWUNG - ▁STIRRED - ▁ATTENDANT - ▁ENJOYMENT - ▁WORRY - ▁ALBERT - ▁NAKED - ▁TALENT - ▁MARIAN - ▁REFORM - ▁DELIBERATE - ▁INTELLIGENT - ▁SENSITIVE - ▁YONDER - ▁PUPIL - ▁FRIGHTFUL - ▁DOUBTFUL - ▁STANDARD - ▁MAGISTRATE - ▁SHEPHERD - ▁STOMACH - ▁DEPOSIT - ▁RENEW - ▁HEDGE - ▁FRANCS - ▁POSSIBILITY - ▁RESEMBLE - ▁FATIGUE - ▁PORTRAIT - ▁FAVORITE - ▁CREAM - ▁BURG - ▁SECRETARY - ▁DIVERS - ▁ACTIVITY - ▁SPECULAT - ▁HUMOUR - ▁FITTED - ▁EXTERNAL - ▁CETERA - ▁WRAPPED - ▁WHIT - ▁FRED - ▁EXAMINATION - ▁LODGING - ▁OWING - ▁JAW - ▁CROW - ▁BALANCE - ▁PUFF - ▁TENDERNESS - ▁PORTHOS - ▁ANCHOR - ▁INTERRUPT - ▁NECESSARILY - ▁PERPETUAL - ▁AGONY - ▁POPE - ▁SCHOLAR - ▁SCOTLAND - ▁SUPPRESS - ▁WRATH - ▁WRECK - ▁EXCEED - ▁PERFECTION - ▁INDIA - ▁TRADITION - ▁SECTION - ▁EASTERN - ▁DOORWAY - ▁WIVES - ▁CONVENTION - ▁ANNOUNC - ▁EGYPT - ▁CONTRADICT - ▁SCRATCH - ▁CENTRAL - ▁GLOVE - ▁WAX - ▁PREPARE - ▁ACCOMPANY - ▁INCREASING - ▁LIBERAL - ▁RAISING - ▁ORANGE - ▁SHOE - ▁ATTRIBUTE - ▁LITERATURE - ▁PUZZLED - ▁WITHDRAW - ▁WHITHER - ▁HAWK - ▁MOONLIGHT - ▁EXAMINE - ▁HAPPILY - ▁PRECEDE - ▁DETECTIVE - ▁INCHES - ▁SOLITARY - ▁DUTCH - ▁NAPOLEON - ▁UNEASY - ▁CARDINAL - ▁BLEW - ▁FOWL - ▁DECORAT - ▁CHILDHOOD - ▁TORMENT - ▁LOSING - ▁PERMISSION - ▁BLANK - ▁UPSTAIRS - ▁CAPACITY - ▁TRIFLE - ▁FOLLY - ▁RECOGNIZE - ▁REMOVE - ▁VENGEANCE - ▁ENTERPRISE - ▁BEDROOM - ▁ANYHOW - ▁INQUIRY - ▁ASHES - ▁DRAG - ▁HUSH - ▁AWKWARD - ▁SATURDAY - ▁GENUINE - ▁SURVIV - ▁SKIRT - ▁AFFECTIONATE - ▁TANG - ▁MUTUAL - ▁DISPUTE - ▁EAGLE - ▁INCOME - ▁BIND - ▁FAME - ▁IMPROVEMENT - ROVING - ▁DIFFER - ▁AWOKE - ▁SLEEVE - ▁SOLITUDE - ▁FAVOURITE - JI - ▁DETECT - ▁COMPREHEND - ▁PREPARING - ▁SERPENT - ▁SUMMIT - ▁KNOT - ▁KNIT - ▁COPY - ▁STOPPING - ▁FADED - ▁HIDEOUS - ▁JULIE - STEAD - ▁SHINE - ▁CONFLICT - ▁PROPOSITION - ▁REFUGE - ▁GALLERY - ▁BUNDLE - ▁AXE - ▁SLAVERY - ▁MASK - ▁ALYOSHA - ▁LADDER - ▁DEPARTMENT - ▁DISCHARGE - ▁DEPRESS - ▁GALLOP - ▁SCARLET - ▁KITTY - ▁RECEIVING - ▁SURRENDER - ▁SUSTAIN - ▁TWILIGHT - ▁CONGRESS - ▁IRELAND - ▁FUNNY - ▁LEND - ▁CONSTITUTE - ▁FUNERAL - ▁CRYSTAL - ▁SPAIN - ▁EXCEEDINGLY - ▁DAMN - ▁COMMUN - ▁CIVILIZATION - ▁PREJUDICE - ▁PORCH - ▁ASSISTANT - ▁INDUSTRY - ▁TUMBLE - ▁DEFENCE - ▁HITHER - ▁SMOT - ▁COLONI - ▁AMAZEMENT - ▁MARGUERITE - ▁MIRACLE - ▁INHERIT - ▁BEGGAR - ▁ENVELOPE - ▁INDIGNATION - ▁NATASHA - ▁PROPOSAL - ▁FRAGMENT - ▁ROUSED - ▁ROAST - ENCIES - ▁COMMENCED - ▁RESOURCE - ▁POPULATION - ▁QUOTH - ▁PURSUE - ▁EDUCAT - ▁AFFLICT - ▁CONTACT - ▁CRIMSON - ▁DIVISION - ▁DISORDER - ▁COPPER - ▁SOLICIT - ▁MODERATE - ▁DRUM - ▁SWIM - ▁SALUTE - ▁ASSUME - ▁MUSCLE - ▁OVERWHELM - ▁SHAKESPEARE - ▁STRUGGLING - ▁TRANQUIL - ▁CHICKEN - ▁TREAD - ▁CLAW - ▁BIBLE - ▁RIDGE - ▁THREAT - ▁VELVET - ▁EXPOSED - ▁IDIOT - ▁BARREL - ▁PENNY - ▁TEMPTATION - ▁DANGLARS - ▁CENTURIES - ▁DISTRIBUT - ▁REJECT - ▁RETORTED - ▁CONCENTRAT - ▁CORDIAL - ▁MOTOR - ▁CANNON - KEEP - ▁WRETCH - ▁ASSURANCE - ▁THIEF - ▁SURVEY - ▁VITAL - ▁RAILWAY - ▁JACKSON - ▁CRASH - ▁GROWL - ▁COMBAT - ▁RECOLLECTION - ▁SECURITY - ▁JACOB - ▁CLUTCH - ▁BLANKET - ▁NANCY - ▁CELLAR - ▁CONVENIENT - ▁INDIGNANT - ▁COARSE - ▁WORM - ▁SCREEN - ▁TRANSPORT - ▁BULLET - ▁APPRECIATE - ▁DEVOTION - ▁INVISIBLE - ▁DRIED - ▁MIXTURE - ▁CANDID - ▁PERFORMANCE - ▁RIPE - ▁EXQUISITE - ▁BARGAIN - ▁TOBACCO - ▁LOYAL - ▁MOULD - ▁ATTENTIVE - ▁DOROTHY - ▁BRUTE - ▁ESTABLISHMENT - ▁ABILITY - ▁INHABIT - ▁OBSCURE - ▁BORROW - ▁ESSENCE - ▁DISMAY - ▁FLEE - ▁BLADE - ▁PLUCK - ▁COFFIN - ▁SUNSET - ▁STEPHEN - ▁ECONOMIC - ▁HOLIDAY - ▁MECHANICAL - ▁COTTON - ▁AWAKENED - ▁SEIZE - ▁RIDICULOUS - ▁SANCHO - ▁HESITATION - ▁CORPSE - ▁SAVING - HOLD - FOOT - ▁ELDEST - ▁DESPITE - ▁EDITH - ▁CHERISH - ▁RESISTANCE - ▁WILSON - ▁ARGUE - ▁INQUIRE - ▁APPREHENSION - ▁AVENUE - ▁DRAKE - ▁PROPOSE - HURST - ▁INFERIOR - ▁STAIRCASE - ▁WHEREFORE - ▁CARLYLE - ▁COUCH - ▁ROUTE - ▁POLITICS - ▁TOMORROW - ▁THRONG - ▁NAUGHT - ▁SUNLIGHT - ▁INDIFFERENCE - ▁OBEDIENCE - ▁RECEPTION - ▁VEGETABLE - ▁IMPERFECT - ▁RESIDENCE - ▁TURKEY - ▁VIOLET - ▁SARAH - ▁ALTAR - ▁GRIEVE - ▁JERK - ▁ENSU - ▁MAGICIAN - ▁BLOSSOM - ▁LANTERN - ▁RESOLUTE - ▁THOUGHTFULLY - ▁FORTNIGHT - ▁TRUMPET - ▁VALJEAN - ▁UNWILLING - ▁LECTURE - ▁WHEREUPON - ▁HOLLAND - ▁CHANGING - ▁CREEK - ▁SLICE - ▁NORMAL - ▁ANNIE - ▁ACCENT - ▁FREDERICK - ▁DISAGREEABLE - ▁RUBBED - ▁DUMB - ▁ESTABLISH - ▁IMPORT - ▁AFFIRM - ▁MATTHEW - ▁BRISK - ▁CONVERT - ▁BENDING - ▁IVAN - ▁MADEMOISELLE - ▁MICHAEL - ▁EASIER - ▁JONES - ▁FACING - ▁EXCELLENCY - ▁LITERARY - ▁GOSSIP - ▁DEVOUR - ▁STAGGER - ▁PENCIL - ▁AVERAGE - ▁HAMMER - ▁TRIUMPHANT - ▁PREFERRED - ▁APPLICATION - ▁OCCUPY - ▁AUTHORITIES - BURN - ▁ASCERTAIN - ▁CORRIDOR - ▁DELICIOUS - ▁PRACTISE - ▁UNIVERSE - ▁SHILLING - ▁CONTEST - ▁ASHORE - ▁COMMIT - ▁ADMINISTRATION - ▁STUDIED - ▁RIGID - ▁ADORN - ▁ELSEWHERE - ▁INNOCENCE - ▁JOURNAL - ▁LANDSCAPE - ▁TELEGRAPH - ▁ANGRILY - ▁CAMPAIGN - ▁UNJUST - ▁CHALLENGE - ▁TORRENT - ▁RELATE - ▁ASSEMBLED - ▁IMPRESSED - ▁CANOE - ▁CONCLUD - ▁QUIXOTE - ▁SATISFACTORY - ▁NIECE - ▁DEAF - ▁RAFT - ▁JIMMY - ▁GLID - ▁REGULAT - ▁CHATTER - ▁GLACIER - ▁ENVY - ▁STATUE - ▁BOSTON - ▁RICHMOND - ▁DENIED - ▁FANNY - ▁SOLOMON - ▁VULGAR - ▁STALK - ▁REPLACE - ▁SPOON - ▁BASIN - ▁FEATURE - ▁CONVICT - ▁ARCHITECT - ▁ADMIRAL - ▁RIBBON - ▁PERMANENT - ▁APRIL - ▁JOLLY - ▁NEIGHBORHOOD - ▁IMPART - BOROUGH - CAMP - ▁HORRID - ▁IMMORTAL - ▁PRUDENCE - ▁SPANIARD - ▁SUPPOSING - ▁TELEPHONE - ▁TEMPERATURE - ▁PENETRATE - ▁OYSTER - ▁APPOINTMENT - ▁EGYPTIAN - ▁DWELT - ▁NEPHEW - ▁RAILROAD - ▁SEPTEMBER - ▁DEVICE - ▁WHEAT - ▁GILBERT - ▁ELEGANT - ▁ADVERTISE - ▁RATIONAL - ▁TURTLE - ▁BROOD - ▁ASSEMBLY - ▁CULTIVATE - ▁EDITOR - ▁SPECIMEN - ▁UNDOUBTEDLY - ▁WHALE - ▁DROPPING - ▁BALLOON - ▁MEDICAL - COMB - ▁COMPOSITION - ▁FOOTSTEPS - ▁LAUNCELOT - ▁DISCOURSE - ▁ERRAND - ▁CONVERSE - ▁ADVANCING - ▁DOWNSTAIRS - ▁TUMULT - ▁CORRUPT - ▁SUFFICE - ▁ANGUISH - ▁SHAGGY - ▁RETIRE - ▁TIMBER - ▁BLAZE - ▁ABSTRACT - ▁EMBROIDER - ▁PHOTOGRAPH - ▁PROSPERITY - ▁TERRIBLY - ▁TERRITORY - ▁THRESHOLD - ▁PAVEMENT - ▁INJURED - ▁LIMP - ▁AGITATION - ▁RASCAL - ▁PRESUME - ▁OBSERVING - ▁OBSTACLE - ▁SIMPLICITY - ▁SLUMBER - ▁SUPPLIED - ▁COMBINATION - ▁DRAIN - ▁WILDERNESS - ▁BELIEVING - ▁VILLAIN - ▁RECKLESS - ▁INJURY - ▁CLAPP - ▁FRIDAY - ▁HERCULES - ▁KENNEDY - ▁SYMPTOM - ▁SLEDGE - ▁CEILING - ▁LEMON - ▁PLAGUE - ▁MONDAY - ▁CANVAS - ▁IMPATIENCE - ▁UNCOMFORTABLE - ▁ACCESS - ▁FROZEN - ▁SENATOR - ▁FRANZ - ▁SWIMMING - ▁BARRIER - ▁ADJUST - ▁COMPARISON - ▁PROCLAIM - ▁WRINKL - ▁OVERLOOK - ▁MITYA - ▁GUILT - ▁PERCEPTION - ▁PRECAUTION - ▁SPECTATOR - ▁SURPRISING - ▁DISTRACT - ▁DISDAIN - ▁BONNET - ▁MAGNET - ▁PROFESS - ▁CONFOUND - ▁NARRATIVE - ▁STRUCTURE - ▁SKETCH - ▁ULTIMATE - ▁GLOBE - ▁INSECT - FICIENCY - ▁ORCHARD - ▁AMIABLE - ▁DESCENT - ▁INDEPENDENCE - ▁MANUFACTURE - ▁SPRINKLE - ▁NIGHTINGALE - ▁CUSHION - ▁EMINENT - ▁SCOTT - ▁ARRAY - ▁COSETTE - ▁WAVING - ▁EXTRACT - ▁IRREGULAR - ▁PERSECUT - ▁DERIVED - ▁WITHDREW - ▁CAUTION - ▁SUSPICIOUS - ▁MEMORIES - ▁NOWHERE - ▁SUBTLE - ▁THOROUGH - Q - ▁APPROPRIATE - ▁SLAUGHTER - ▁YOURSELVES - ▁THUMB - ▁TWAS - ▁ABODE - ▁BIDDING - ▁CONSPICUOUS - ▁REBECCA - ▁SERGEANT - ▁APRON - ▁ANTICIPATE - ▁DISCIPLINE - ▁GLANCING - ▁PILGRIM - ▁SULLEN - ▁CONTRIBUTE - ▁PRAIRIE - ▁CARVED - ▁COMMERCE - ▁EXCLAMATION - ▁MUSCULAR - ▁NOVEMBER - ▁PHENOMENA - ▁SYMBOL - ▁UMBRELLA - ▁DIMINISH - ▁PARLOUR - ▁THREATENING - ▁STUMP - ▁EXTENSIVE - ▁PLEASING - ▁REMEMBRANCE - ▁COMBINED - ▁SHERIFF - ▁SHAFT - ▁LAURA - ▁INTERCOURSE - ▁STRICKEN - ▁SUPPLIES - ▁LANDLORD - ▁SHRINK - ▁PRICK - ▁CAESAR - ▁DRUG - ▁BEWILDERED - ▁NAUTILUS - ▁BRUTAL - ▁COMMERCIAL - ▁MAGGIE - ▁SPHERE - ▁VIRGIN - ▁BRETHREN - ▁DESTINY - ▁POLICY - ▁TERRIFIED - ▁HOUSEKEEPER - ▁CRAZY - ▁ARDENT - ▁DISCERN - ▁WRAP - ▁MARQUIS - ▁RUSSIA - MOUTH - ▁BRITAIN - ▁HARBOUR - ▁CONCERT - ▁DONKEY - ▁DAMAGE - ▁SLIM - ABOUT - ▁LUXURY - ▁MONSTROUS - ▁TENDENCY - ▁PARADISE - ▁CULTURE - ▁JULIUS - ▁RAOUL - ▁REMEDY - ▁DECAY - ▁SCOLD - ▁SPLIT - ▁ASSAULT - ▁DECEMBER - ▁MOSCOW - ▁EXPLORE - ▁TROUSERS - ▁WRIST - PIECE - ▁MUSKET - ▁VALENTINE - ▁TYRANT - ▁ABRAHAM - ▁MEDIUM - ▁ARTIFICIAL - ▁FACULTY - ▁OBLIGATION - ▁RESEMBLANCE - ▁INQUIRIES - ▁DETAIN - ▁SWARM - ▁PLEDGE - ▁ADMIRABLE - ▁DEFECT - ▁SUPERINTEND - ▁PATRIOT - ▁CLUNG - ▁DISMAL - ▁RECIT - ▁IGNOR - ▁AMELIA - ▁JUSTIFY - ▁ELEPHANT - ▁ESTIMATE - ▁KNELT - ▁SERVING - ▁WHIM - ▁SHRILL - ▁STUDIO - ▁TEXT - ▁ALEXANDER - ▁WROUGHT - ▁ABUNDANT - ▁SITUATED - ▁REGAIN - ▁FIERY - ▁SNEER - ▁SWEAT - ▁GLARE - ▁NIGH - ▁ESCORT - ▁INEVITABLE - ▁PSMITH - ▁RELUCTANT - ▁PRECEDING - ▁RESORT - ▁OUTRAGE - ▁AMBASSADOR - ▁CONSOLATION - ▁RECOGNITION - ▁REMORSE - ▁BEHALF - ▁FORMIDABLE - ▁GRAVITY - ▁DIVIDE - ▁CONFRONT - ▁GIGANTIC - ▁OCTOBER - ▁FLANK - ▁SLEW - ▁CLARA - ▁FILM - ▁BULK - ▁POMP - ▁ELEANOR - ▁EMPHASIS - ▁JAPANESE - ▁CAVALRY - ▁EXCLUSIVE - ▁PERFUME - ▁BRONZE - ▁FEDERAL - ▁LIQUID - ▁RUBBING - ▁OVEN - DOLPH - ▁CONVULS - ▁DEPRIVED - ▁RESPONSIBILITY - ▁SIGNIFICANT - ▁WAISTCOAT - ▁CLUSTER - ▁MARTHA - ▁REVERSE - ▁ATTORNEY - ▁DROOP - ▁SKILFUL - ▁HABITUAL - ▁PUMP - ▁INTERVEN - ▁OWL - ▁CONJECTURE - ▁FANTASTIC - ▁RESPONSIBLE - ▁DESTINED - ▁DOCUMENT - ▁THEREUPON - ▁GODDESS - ▁PACIFIC - ▁WARRANT - ▁COSTUME - ▁BRIDLE - ▁CALIFORNIA - ▁DEMOCRATIC - ▁EUSTACE - ▁SQUIRREL - ▁UNCOMMON - ▁MARVELLOUS - ▁PLOUGH - ▁TRAGEDY - ▁VAULT - ▁HESITATE - ▁REFRAIN - ▁ADMIRING - ▁CORPORAL - ▁ENTITLED - ▁SHREWD - ▁SQUEEZ - ▁ACCURATE - ▁TEMPEST - ▁MONUMENT - ▁SIEGE - ▁CHINESE - ▁RAVEN - ▁LOUNG - ▁ASSASSIN - ▁INFLICT - ▁AGITATED - ▁DESIRABLE - ▁EARLIEST - ▁LAUNCH - ▁PILOT - ▁PULSE - ▁MUTE - LEIGH - ▁LIQUOR - ▁SCARECROW - ▁SKULL - ▁DESOLATE - ▁SUBLIME - ▁SERENE - ▁RECESS - ▁WAKING - ▁CHARLOTTE - ▁CIRCULAR - ▁INJUSTICE - ▁PINOCCHIO - ▁PRISCILLA - ▁THYSELF - ▁OCCURRENCE - ▁CASUAL - ▁FRANTIC - ▁LEGEND - ▁FERTIL - ▁BACKGROUND - ▁DELICACY - ▁ESTRALLA - ▁MANUSCRIPT - ▁RESPONSE - ▁UNIVERSITY - ▁WOLVES - ▁SCANDAL - ▁STUMBLE - ▁HOARSE - ▁BODILY - ▁CONVENT - ▁EXAMINING - ▁INCAPABLE - ▁PERCEIVING - ▁PHILADELPHIA - ▁SUBSEQUENT - ▁THIEVES - ▁ACCUMULAT - ▁DAMSEL - ▁SCOTCH - ▁UNDERNEATH - ▁NOBILITY - ▁SMASH - ▁REVOLT - ▁ENGAGE - ▁CATHEDRAL - ▁CHAMPION - ▁DESPATCH - ▁ETERNITY - ▁JANUARY - ▁PLEADED - ▁PROBABILITY - ▁JIMMIE - ▁PARALLEL - ▁FISHERMAN - ▁JERRY - ▁SWORE - ▁DRAUGHT - ▁OPPONENT - ▁PRIMITIVE - ▁SIGNIFICANCE - ▁SUBSTANTIAL - ▁AMAZED - ▁DUNBAR - ▁COMMEND - ▁CONTEMPLATE - ▁TESTIMONY - ▁IMPERIAL - ▁ADAPT - ▁JUICE - ▁CALAMIT - CULAR - ▁CHATEAU - ▁PHOENIX - ▁PRUDENT - ▁SOLUTION - ▁VILLEFORT - ▁REACTION - ▁RELAX - ▁YU - ▁PROHIBIT - ▁DISTRUST - ▁PLUNDER - ▁WELFARE - ▁NAVIGAT - ▁PARLOR - ▁LAZY - ▁DETACH - OMETER - ▁PRIV - ▁DISCOURAGE - ▁OBSTINATE - ▁REJOICING - ▁SERMON - ▁VEHICLE - ▁FANCIES - ▁ENLIGHTEN - ▁ACUTE - ▁ILLUSION - ▁ANTHEA - ▁MARTIAN - ▁EXCITE - ▁GENEROSITY - OLOGIST - ▁AMAZING - ▁UNWORTHY - ▁INTERNAL - ▁INCENSE - ▁VIBRAT - ▁ADHERE - ROACH - ▁FEBRUARY - ▁MEXICAN - ▁POTATOES - ▁INCESSANT - ▁INTERPOSED - ▁PARCEL - ▁VEXED - ▁PROMOTE - MIDST - ▁ARISTOCRAT - ▁CYRIL - ▁EMBARK - ▁ABUNDANCE - ▁LITERALLY - ▁SURGEON - ▁TERRACE - ▁ATLANTIC - ▁MARTYR - ▁SPECK - ▁SENATE - ▁LOAF - ▁ADMINISTER - ▁APPREHEND - ▁SUBDUED - ▁TEMPORARY - ▁DOMINION - ▁ELABORATE - ▁DIGNIFIED - ▁ELIZA - ▁SPLASH - ▁CONSEIL - ▁DEXTER - ▁UNSEEN - ▁TRAGIC - VOCATION - ▁GRATIFY - ▁BACHELOR - ▁DEFENSE - ▁EXCURSION - ▁FACULTIES - ▁PROPRIETOR - ▁SYMPATHETIC - ▁UNNECESSARY - ▁RADIANT - ▁VACANT - ▁OUNCE - ▁SCREW - ▁PHENOMENON - ▁PROMINENT - ▁WORRIED - ▁STUDIES - ▁CLIMATE - ▁KEITH - ▁ARAMIS - ▁BLISS - ▁CONTINUAL - ▁SURPASS - ▁HEBREW - ▁IDENTITY - ▁PROVOKE - ▁TEMPERAMENT - ▁CHARIOT - ▁HARBOR - ▁NINTH - ▁PRIOR - ▁DESIROUS - ▁JERUSALEM - ▁UNDERTAKING - ▁EDISON - ▁MIRTH - ▁SCOUT - ▁APPARATUS - ▁ILLUSTRATION - ▁INTELLIGIBLE - ▁INVARIABLY - ▁PIERCED - ▁REVIEW - ▁FLICKER - ▁HAZARD - ▁REVELATION - ▁DIXON - ▁EXCITING - ▁GOSPEL - ▁CONSTANCE - ▁OVERTAKE - ▁GUINEA - ▁ALADDIN - ▁CHICAGO - ▁TULLIVER - ▁HAMILTON - ▁GARRISON - ▁DISCIPLE - ▁INTENSITY - ▁TRAITOR - ▁CHANCELLOR - ▁PROVERB - ▁DAGGER - ▁FORESEE - ▁CONFIDE - ▁GLIMMER - ▁CHAUVELIN - ▁ILLUSTRATE - ▁VOLUNTEER - ▁JUNGLE - ▁STREAK - ▁SUNRISE - ▁DISSOLV - ▁QUEST - ▁AWHILE - ▁FELICITY - ▁LEGISLATURE - ▁LEONORA - ▁MAGAZINE - ▁PITIFUL - ▁COLONY - ▁SHAWL - ▁ARRIVING - ▁FUNDAMENTAL - ▁CARPENTER - ▁OVERFLOW - ▁EXPAND - ▁HARVEST - ▁FEMININE - ▁INNUMERABLE - ▁SCRAMBLE - ▁TWENTIETH - ▁TRIFLING - ▁GHASTL - ▁CONQUEST - ▁DANIEL - ▁FACILIT - ▁FORSAKE - ▁BEHAVIOUR - ▁GORGEOUS - ▁PRODUCING - ▁HAPPIER - ▁PROMISING - ▁RAINBOW - ▁INSTINCTIVELY - ▁DECREE - ▁EYEBROWS - ▁IRRESISTIBLE - ▁PHARAOH - ▁SCROOGE - ▁UNNATURAL - ▁CRUMBS - ▁REFINED - ▁DREARY - ▁TRENCH - ▁CONVINCE - ▁FRINGE - ▁EXTREMITY - ▁INTIMACY - ▁SCOUNDREL - ▁SUFFRAGE - ▁UNEASINESS - ▁BARRICADE - ▁CIRCULAT - ▁SAMUEL - ▁BRUCE - ▁DARCY - <sos/eos> init: xavier_uniform input_size: 83 ctc_conf: dropout_rate: 0.0 ctc_type: builtin reduce: true ignore_nan_grad: false model_conf: ctc_weight: 0.3 lsm_weight: 0.1 length_normalized_loss: false use_preprocessor: true token_type: bpe bpemodel: data/en_token_list/bpe_unigram5000/bpe.model non_linguistic_symbols: null cleaner: null g2p: null speech_volume_normalize: null rir_scp: null rir_apply_prob: 1.0 noise_scp: null noise_apply_prob: 1.0 noise_db_range: '13_15' frontend: null frontend_conf: {} specaug: specaug specaug_conf: apply_time_warp: true time_warp_window: 5 time_warp_mode: bicubic apply_freq_mask: true freq_mask_width_range: - 0 - 30 num_freq_mask: 2 apply_time_mask: true time_mask_width_range: - 0 - 40 num_time_mask: 2 normalize: global_mvn normalize_conf: stats_file: exp/asr_stats_fbank_pitch_en_bpe5000_sp/train/feats_stats.npz preencoder: null preencoder_conf: {} encoder: contextual_block_transformer encoder_conf: output_size: 256 attention_heads: 4 linear_units: 2048 num_blocks: 12 dropout_rate: 0.1 positional_dropout_rate: 0.1 attention_dropout_rate: 0.0 input_layer: conv2d normalize_before: true block_size: 40 hop_size: 16 look_ahead: 16 init_average: true ctx_pos_enc: true decoder: transformer decoder_conf: attention_heads: 4 linear_units: 2048 num_blocks: 6 dropout_rate: 0.1 positional_dropout_rate: 0.1 self_attention_dropout_rate: 0.0 src_attention_dropout_rate: 0.0 required: - output_dir - token_list version: 0.9.7 distributed: true ``` </details> ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
{"language": "en", "license": "cc-by-4.0", "tags": ["espnet", "audio", "automatic-speech-recognition"], "datasets": ["librispeech"]}
eml914/streaming_transformer_asr_librispeech
null
[ "espnet", "audio", "automatic-speech-recognition", "en", "dataset:librispeech", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
emma19/speech-recognition
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
text-generation
transformers
{}
empushy/gpt2-alerts
null
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-generation
transformers
{}
empushy/gpt2-emulator
null
[ "transformers", "pytorch", "gpt2", "text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
emranmdanas/asr_model
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
emranmdanas/wav2vec2-large-xls-r-300m-tr-colab
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
summarization
transformers
# arxiv27k-t5-abst-title-gen/ This model is a fine-tuned version of mt5-small on the arxiv-abstract-title dataset. It achieves the following results on the evaluation set: - Loss: 1.6002 - Rouge1: 32.8 - Rouge2: 21.9 - Rougel: 34.8 - ## Model description Model has been trained with a colab-pro notebook in 4 hours. ## Intended uses & limitations Can be used for generating journal titles from given abstracts ### Training args model_args = T5Args() model_args.max_seq_length = 256 model_args.train_batch_size = 8 model_args.eval_batch_size = 8 model_args.num_train_epochs = 6 model_args.evaluate_during_training = False model_args.use_multiprocessing = False model_args.fp16 = False model_args.save_steps = 40000 model_args.save_eval_checkpoints = False model_args.save_model_every_epoch = True model_args.output_dir = OUTPUT_DIR model_args.no_cache = True model_args.reprocess_input_data = True model_args.overwrite_output_dir = True model_args.num_return_sequences = 1 ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu111 - Datasets 1.15.1 - Tokenizers 0.10.3 ### Contact [email protected] Davut Emre Taşar
{"license": "apache-2.0", "tags": ["generated_from_trainer", "summarization"], "metrics": ["rouge"], "model-index": [{"name": "arxiv27k-t5-abst-title-gen/", "results": []}]}
emre/arxiv27k-t5-abst-title-gen
null
[ "transformers", "pytorch", "safetensors", "mt5", "text2text-generation", "generated_from_trainer", "summarization", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
question-answering
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 1.1620 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.2256 | 1.0 | 5533 | 1.1620 | | 0.9551 | 2.0 | 11066 | 1.1237 | | 0.7726 | 3.0 | 16599 | 1.1620 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["squad"], "base_model": "distilbert-base-uncased", "model-index": [{"name": "distilbert-base-uncased-finetuned-squad", "results": []}]}
emre/distilbert-base-uncased-finetuned-squad
null
[ "transformers", "pytorch", "tensorboard", "distilbert", "question-answering", "generated_from_trainer", "dataset:squad", "base_model:distilbert-base-uncased", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
question-answering
transformers
# Turkish SQuAD Model : Question Answering Fine-tuned Loodos-Turkish-Bert-Model for Question-Answering problem with TQuAD dataset * Loodos-BERT-base: https://huggingface.co/loodos/bert-base-turkish-uncased * TQuAD dataset: https://github.com/TQuad/turkish-nlp-qa-dataset # Training Code ``` !python3 Turkish-QA.py \ --model_type bert \ --model_name_or_path loodos/bert-base-turkish-uncased --do_train \ --do_eval \ --train_file trainQ.json \ --predict_file dev1.json \ --per_gpu_train_batch_size 8 \ --learning_rate 5e-5 \ --num_train_epochs 10 \ --max_seq_length 384 \ --output_dir "./model" ``` # Example Usage > Load Model ``` from transformers import AutoTokenizer, AutoModelForQuestionAnswering tokenizer = AutoTokenizer.from_pretrained("emre/distilbert-tr-q-a") model = AutoModelForQuestionAnswering.from_pretrained("emre/distilbert-tr-q-a") nlp = pipeline('question-answering', model=model, tokenizer=tokenizer) ``` > Apply the model ``` def ask(question,context): temp = nlp(question=question, context=context) start_idx = temp["start"] end_idx = temp["end"] return context[start_idx:end_idx] izmir="İzmir, Türkiye'de Ege Bölgesi'nde yer alan şehir ve ülkenin 81 ilinden biridir. Ülkenin nüfus bakımından en kalabalık üçüncü şehridir. Ekonomik, tarihi ve sosyo-kültürel açıdan önde gelen şehirlerden biridir. Nüfusu 2021 itibarıyla 4.425.789 kişidir. Yüzölçümü olarak ülkenin yirmi üçüncü büyük ilidir." soru1 = "İzmir'in nüfusu kaçtır?" print(ask(soru1,izmir)) soru2 = "İzmir hangi bölgede bulunur?" print(ask(soru2,izmir)) ```
{"language": "tr", "tags": ["question-answering", "loodos-bert-base", "TQuAD", "tr"], "datasets": ["TQuAD"]}
emre/distilbert-tr-q-a
null
[ "transformers", "pytorch", "bert", "question-answering", "loodos-bert-base", "TQuAD", "tr", "dataset:TQuAD", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
transformers
# jurisprudence-textgen-gpt-2 Pretrained model on Turkish language using a causal language modeling (CLM) objective. ## Model description of Original GPT-2 GPT-2 is a transformers model pretrained on a very large corpus of English data in a self-supervised fashion. This means it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it was trained to guess the next word in sentences. More precisely, inputs are sequences of continuous text of a certain length and the targets are the same sequence, shifted one token (word or piece of word) to the right. The model uses internally a mask-mechanism to make sure the predictions for the token i only uses the inputs from 1 to i but not the future tokens. This way, the model learns an inner representation of the English language that can then be used to extract features useful for downstream tasks. The model is best at what it was pretrained for however, which is generating texts from a prompt. ## Model description of jurisprudence-textgen-gpt-2 Jurisprudence-textgen-gpt-2 is a transformers model for tensorflow pretrained with 18950 Turkish court Jurisprudence text data which has been obtained from [Bilirkisi GITHUB REPO TRAIN DATA] (https://github.com/Bilirkisi/Bilirkisi/tree/main/train) with 5 epochs. Model Training results are: Epoch 1/5 4986/4986 - 2770s 552ms/step - loss: 4.0122 - output_1_loss: 4.0122 - output_1_accuracy: 0.4544 Epoch 2/5 4986/4986 - 2753s 552ms/step - loss: 2.7074 - output_1_loss: 2.7074 - output_1_accuracy: 0.5843 Epoch 3/5 4986/4986 - 2754s 552ms/step - loss: 2.3411 - output_1_loss: 2.3411 - output_1_accuracy: 0.6214 Epoch 4/5 4986/4986 - 2754s 552ms/step - loss: 2.1241 - output_1_loss: 2.1241 - output_1_accuracy: 0.6431 Epoch 5/5 4986/4986 - 2754s 552ms/step - loss: 1.9647 - output_1_loss: 1.9647 - output_1_accuracy: 0.6597 ## Intended uses & limitations You can use the raw model for text generation or fine-tune it to a turkish law included downstream task. See the [model hub](https://huggingface.co/models?filter=gpt2) to look for fine-tuned versions on a task that interests you. ### How to use You can use this model directly with a pipeline for text generation. Here is how to use this model to get the features of a given text in Tensorflow: ```python >>> from transformers import GPT2Tokenizer , TFGPT2LMHeadModel >>> tokenizer = GPT2Tokenizer.from_pretrained('emre/jurisprudence-textgen-gpt-2') >>> model = TFGPT2LMHeadModel.from_pretrained('emre/jurisprudence-textgen-gpt-2') >>> text = "Tarafların karşılıklı iddia ve savunmalarına," #Translation: "Mutual claims and defenses of the parties," >>> # encoding the input text >>> input_ids = tokenizer.encode(text, return_tensors='tf') >>> # getting out output >>> beam_output = model.generate( >>> input_ids, >>> max_length = 250, >>> num_beams = 5, >>> temperature = 0.7, >>> no_repeat_ngram_size=2, >>> num_return_sequences=5 >>> ) >>> for i in range(5): >>> print(tokenizer.decode(beam_output[i])) [{'generated_text': "Tarafların karşılıklı iddia ve savunmalarına, dayandıkları belgelere, temyiz olunan kararda yazılı gerekçelere göre yerinde bulunmayan temyiz sebeplerinin reddiyle usul ve kanuna uygun mahkeme kararının İİK. 366. ve HUMK. 438. maddeleri uyarınca (ONANMASINA), 13.10 YTL onama harcı temyiz edenden alındığından başkaca harç alınmasına mahal olmadığına, 25.12.2007 gününde oybirliğiyle karar verildi."}, {'generated_text': "Tarafların karşılıklı iddia ve savunmalarına, dayandıkları belgelere, temyiz olunan kararda yazılı gerekçelere göre yerinde bulunmayan temyiz itirazlarının reddiyle usul ve kanuna uygun mahkeme kararının İİK. 366. ve HUMK. 438. maddeleri uyarınca (ONANMASINA), 15,60 TL onama harcı temyiz edenden alındığından başkaca harç alınmasına mahal olmadığına, 30/12/2009 gününde oybirliğiyle karar verildi."}, {'generated_text': "Tarafların karşılıklı iddia ve savunmalarına, dayandıkları belgelere, temyiz olunan kararda yazılı gerekçelere göre yerinde bulunmayan temyiz sebeplerinin reddiyle usul ve kanuna uygun mahkeme kararının İİK. 366. ve HUMK. 438. maddeleri uyarınca (ONANMASINA), 15,60 TL onama harcı temyiz edenden alındığından başkaca harç alınmasına mahal olmadığına, 30/12/2009 gününde oybirliğiyle karar verildi."}, {'generated_text': "Tarafların karşılıklı iddia ve savunmalarına, dayandıkları belgelere, temyiz olunan kararda yazılı gerekçelere göre yerinde bulunmayan temyiz sebeplerinin reddiyle usul ve kanuna uygun mahkeme kararının İİK. 366. ve HUMK. 438. maddeleri uyarınca (ONANMASINA), 13.10 YTL onama harcı temyiz edenden alındığından başkaca harç alınmasına mahal olmadığına, 25/12/2007 gününde oybirliğiyle karar verildi."}, {'generated_text': "Tarafların karşılıklı iddia ve savunmalarına, dayandıkları belgelere, temyiz olunan kararda yazılı gerekçelere göre yerinde bulunmayan temyiz sebeplerinin reddiyle usul ve kanuna uygun mahkeme kararının İİK. 366. ve HUMK. 438. maddeleri uyarınca (ONANMASINA), 13.10 YTL onama harcı temyiz edenden alındığından başkaca harç alınmasına mahal olmadığına, 27/12/2007 gününde oybirliğiyle karar verildi."}] ``` ### BibTeX entry and citation info soon will be defined..
{"language": "tr", "license": "mit"}
emre/jurisprudence-textgen-gpt-2
null
[ "transformers", "tf", "gpt2", "tr", "license:mit", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
automatic-speech-recognition
transformers
# wav2vec-tr-lite-AG ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "tr", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("emre/wav2vec-tr-lite-AG") model = Wav2Vec2ForCTC.from_pretrained("emre/wav2vec-tr-lite-AG") resampler = torchaudio.transforms.Resample(48_000, 16_000) ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.00005 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 2 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - total_eval_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.4388 | 3.7 | 400 | 1.366 | 0.9701 | | 0.3766 | 7.4 | 800 | 0.4914 | 0.5374 | | 0.2295 | 11.11 | 1200 | 0.3934 | 0.4125 | | 0.1121 | 14.81 | 1600 | 0.3264 | 0.2904 | | 0.1473 | 18.51 | 2000 | 0.3103 | 0.2671 | | 0.1013 | 22.22 | 2400 | 0.2589 | 0.2324 | | 0.0704 | 25.92 | 2800 | 0.2826 | 0.2339 | | 0.0537 | 29.63 | 3200 | 0.2704 | 0.2309 | ### Framework versions - Transformers 4.12.0.dev0 - Pytorch 1.8.1 - Datasets 1.14.1.dev0 - Tokenizers 0.10.3
{"language": "tr", "license": "apache-2.0", "tags": ["audio", "automatic-speech-recognition", "speech"], "datasets": ["common_voice"], "metrics": ["wer"]}
emre/wav2vec-tr-lite-AG
null
[ "transformers", "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "audio", "speech", "tr", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
automatic-speech-recognition
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-tr This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - TR dataset. It achieves the following results on the evaluation set: - Loss: 0.2224 - Wer: 0.2869 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 100.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 6.8222 | 0.64 | 500 | 3.5026 | 1.0 | | 3.2136 | 1.28 | 1000 | 3.0593 | 1.0000 | | 2.8882 | 1.91 | 1500 | 2.4670 | 0.9939 | | 2.3743 | 2.55 | 2000 | 1.1844 | 0.8657 | | 1.9456 | 3.19 | 2500 | 0.8228 | 0.7397 | | 1.7781 | 3.83 | 3000 | 0.6826 | 0.6753 | | 1.6848 | 4.46 | 3500 | 0.5885 | 0.6140 | | 1.6228 | 5.1 | 4000 | 0.5274 | 0.5789 | | 1.5768 | 5.74 | 4500 | 0.4900 | 0.5519 | | 1.5431 | 6.38 | 5000 | 0.4508 | 0.5238 | | 1.5019 | 7.02 | 5500 | 0.4248 | 0.5021 | | 1.4684 | 7.65 | 6000 | 0.4009 | 0.4827 | | 1.4635 | 8.29 | 6500 | 0.3830 | 0.4700 | | 1.4291 | 8.93 | 7000 | 0.3707 | 0.4595 | | 1.4271 | 9.57 | 7500 | 0.3570 | 0.4514 | | 1.3938 | 10.2 | 8000 | 0.3479 | 0.4378 | | 1.3914 | 10.84 | 8500 | 0.3396 | 0.4368 | | 1.3767 | 11.48 | 9000 | 0.3253 | 0.4262 | | 1.3641 | 12.12 | 9500 | 0.3251 | 0.4178 | | 1.355 | 12.76 | 10000 | 0.3138 | 0.4136 | | 1.336 | 13.39 | 10500 | 0.3121 | 0.4069 | | 1.3292 | 14.03 | 11000 | 0.3041 | 0.4014 | | 1.3249 | 14.67 | 11500 | 0.3014 | 0.3931 | | 1.3156 | 15.31 | 12000 | 0.3014 | 0.3929 | | 1.313 | 15.94 | 12500 | 0.2969 | 0.3968 | | 1.3068 | 16.58 | 13000 | 0.2965 | 0.3966 | | 1.2785 | 17.22 | 13500 | 0.2943 | 0.3850 | | 1.2867 | 17.86 | 14000 | 0.2912 | 0.3782 | | 1.2714 | 18.49 | 14500 | 0.2819 | 0.3747 | | 1.2844 | 19.13 | 15000 | 0.2840 | 0.3740 | | 1.2684 | 19.77 | 15500 | 0.2913 | 0.3828 | | 1.26 | 20.41 | 16000 | 0.2739 | 0.3674 | | 1.2543 | 21.05 | 16500 | 0.2740 | 0.3691 | | 1.2532 | 21.68 | 17000 | 0.2709 | 0.3756 | | 1.2409 | 22.32 | 17500 | 0.2669 | 0.3593 | | 1.2404 | 22.96 | 18000 | 0.2673 | 0.3576 | | 1.2347 | 23.6 | 18500 | 0.2678 | 0.3643 | | 1.2351 | 24.23 | 19000 | 0.2715 | 0.3650 | | 1.2409 | 24.87 | 19500 | 0.2637 | 0.3571 | | 1.2152 | 25.51 | 20000 | 0.2785 | 0.3609 | | 1.2046 | 26.15 | 20500 | 0.2610 | 0.3508 | | 1.2082 | 26.79 | 21000 | 0.2619 | 0.3461 | | 1.2109 | 27.42 | 21500 | 0.2597 | 0.3502 | | 1.2014 | 28.06 | 22000 | 0.2608 | 0.3468 | | 1.1948 | 28.7 | 22500 | 0.2573 | 0.3457 | | 1.205 | 29.34 | 23000 | 0.2619 | 0.3464 | | 1.2019 | 29.97 | 23500 | 0.2559 | 0.3474 | | 1.1917 | 30.61 | 24000 | 0.2601 | 0.3462 | | 1.1939 | 31.25 | 24500 | 0.2575 | 0.3387 | | 1.1882 | 31.89 | 25000 | 0.2535 | 0.3368 | | 1.191 | 32.53 | 25500 | 0.2489 | 0.3365 | | 1.1767 | 33.16 | 26000 | 0.2501 | 0.3347 | | 1.167 | 33.8 | 26500 | 0.2504 | 0.3347 | | 1.1678 | 34.44 | 27000 | 0.2480 | 0.3378 | | 1.1803 | 35.08 | 27500 | 0.2487 | 0.3345 | | 1.167 | 35.71 | 28000 | 0.2442 | 0.3319 | | 1.1661 | 36.35 | 28500 | 0.2495 | 0.3334 | | 1.164 | 36.99 | 29000 | 0.2472 | 0.3292 | | 1.1578 | 37.63 | 29500 | 0.2442 | 0.3242 | | 1.1584 | 38.27 | 30000 | 0.2431 | 0.3314 | | 1.1526 | 38.9 | 30500 | 0.2441 | 0.3347 | | 1.1542 | 39.54 | 31000 | 0.2437 | 0.3330 | | 1.1508 | 40.18 | 31500 | 0.2433 | 0.3294 | | 1.1406 | 40.82 | 32000 | 0.2434 | 0.3271 | | 1.1514 | 41.45 | 32500 | 0.2426 | 0.3255 | | 1.1418 | 42.09 | 33000 | 0.2432 | 0.3233 | | 1.1365 | 42.73 | 33500 | 0.2436 | 0.3240 | | 1.1348 | 43.37 | 34000 | 0.2483 | 0.3257 | | 1.1301 | 44.01 | 34500 | 0.2420 | 0.3271 | | 1.1268 | 44.64 | 35000 | 0.2472 | 0.3225 | | 1.1224 | 45.28 | 35500 | 0.2382 | 0.3205 | | 1.1224 | 45.92 | 36000 | 0.2388 | 0.3184 | | 1.1198 | 46.56 | 36500 | 0.2382 | 0.3202 | | 1.1274 | 47.19 | 37000 | 0.2404 | 0.3172 | | 1.1147 | 47.83 | 37500 | 0.2394 | 0.3164 | | 1.121 | 48.47 | 38000 | 0.2406 | 0.3202 | | 1.1109 | 49.11 | 38500 | 0.2384 | 0.3154 | | 1.1164 | 49.74 | 39000 | 0.2375 | 0.3169 | | 1.1105 | 50.38 | 39500 | 0.2387 | 0.3173 | | 1.1054 | 51.02 | 40000 | 0.2362 | 0.3120 | | 1.0893 | 51.66 | 40500 | 0.2399 | 0.3130 | | 1.0913 | 52.3 | 41000 | 0.2357 | 0.3088 | | 1.1017 | 52.93 | 41500 | 0.2345 | 0.3084 | | 1.0937 | 53.57 | 42000 | 0.2330 | 0.3140 | | 1.0945 | 54.21 | 42500 | 0.2399 | 0.3107 | | 1.0933 | 54.85 | 43000 | 0.2383 | 0.3134 | | 1.0912 | 55.48 | 43500 | 0.2372 | 0.3077 | | 1.0898 | 56.12 | 44000 | 0.2339 | 0.3083 | | 1.0903 | 56.76 | 44500 | 0.2367 | 0.3065 | | 1.0947 | 57.4 | 45000 | 0.2352 | 0.3104 | | 1.0751 | 58.04 | 45500 | 0.2334 | 0.3084 | | 1.09 | 58.67 | 46000 | 0.2328 | 0.3100 | | 1.0876 | 59.31 | 46500 | 0.2276 | 0.3050 | | 1.076 | 59.95 | 47000 | 0.2309 | 0.3047 | | 1.086 | 60.59 | 47500 | 0.2293 | 0.3047 | | 1.082 | 61.22 | 48000 | 0.2328 | 0.3027 | | 1.0714 | 61.86 | 48500 | 0.2290 | 0.3020 | | 1.0746 | 62.5 | 49000 | 0.2313 | 0.3059 | | 1.076 | 63.14 | 49500 | 0.2342 | 0.3050 | | 1.0648 | 63.78 | 50000 | 0.2286 | 0.3025 | | 1.0586 | 64.41 | 50500 | 0.2338 | 0.3044 | | 1.0753 | 65.05 | 51000 | 0.2308 | 0.3045 | | 1.0664 | 65.69 | 51500 | 0.2273 | 0.3009 | | 1.0739 | 66.33 | 52000 | 0.2298 | 0.3027 | | 1.0695 | 66.96 | 52500 | 0.2247 | 0.2996 | | 1.06 | 67.6 | 53000 | 0.2276 | 0.3015 | | 1.0742 | 68.24 | 53500 | 0.2280 | 0.2974 | | 1.0618 | 68.88 | 54000 | 0.2291 | 0.2989 | | 1.062 | 69.52 | 54500 | 0.2302 | 0.2971 | | 1.0572 | 70.15 | 55000 | 0.2280 | 0.2990 | | 1.055 | 70.79 | 55500 | 0.2278 | 0.2983 | | 1.0553 | 71.43 | 56000 | 0.2282 | 0.2991 | | 1.0509 | 72.07 | 56500 | 0.2261 | 0.2959 | | 1.0469 | 72.7 | 57000 | 0.2216 | 0.2919 | | 1.0476 | 73.34 | 57500 | 0.2267 | 0.2989 | | 1.0494 | 73.98 | 58000 | 0.2260 | 0.2960 | | 1.0517 | 74.62 | 58500 | 0.2297 | 0.2989 | | 1.0458 | 75.26 | 59000 | 0.2246 | 0.2923 | | 1.0382 | 75.89 | 59500 | 0.2255 | 0.2922 | | 1.0462 | 76.53 | 60000 | 0.2258 | 0.2954 | | 1.0375 | 77.17 | 60500 | 0.2251 | 0.2929 | | 1.0332 | 77.81 | 61000 | 0.2277 | 0.2940 | | 1.0423 | 78.44 | 61500 | 0.2243 | 0.2896 | | 1.0379 | 79.08 | 62000 | 0.2274 | 0.2928 | | 1.0398 | 79.72 | 62500 | 0.2237 | 0.2928 | | 1.0395 | 80.36 | 63000 | 0.2265 | 0.2956 | | 1.0397 | 80.99 | 63500 | 0.2240 | 0.2920 | | 1.0262 | 81.63 | 64000 | 0.2244 | 0.2934 | | 1.0335 | 82.27 | 64500 | 0.2265 | 0.2936 | | 1.0385 | 82.91 | 65000 | 0.2238 | 0.2928 | | 1.0289 | 83.55 | 65500 | 0.2219 | 0.2912 | | 1.0372 | 84.18 | 66000 | 0.2236 | 0.2898 | | 1.0279 | 84.82 | 66500 | 0.2219 | 0.2902 | | 1.0325 | 85.46 | 67000 | 0.2240 | 0.2908 | | 1.0202 | 86.1 | 67500 | 0.2206 | 0.2886 | | 1.0166 | 86.73 | 68000 | 0.2219 | 0.2886 | | 1.0259 | 87.37 | 68500 | 0.2235 | 0.2897 | | 1.0337 | 88.01 | 69000 | 0.2210 | 0.2873 | | 1.0264 | 88.65 | 69500 | 0.2216 | 0.2882 | | 1.0231 | 89.29 | 70000 | 0.2223 | 0.2899 | | 1.0281 | 89.92 | 70500 | 0.2214 | 0.2872 | | 1.0135 | 90.56 | 71000 | 0.2218 | 0.2868 | | 1.0291 | 91.2 | 71500 | 0.2209 | 0.2863 | | 1.0321 | 91.84 | 72000 | 0.2199 | 0.2876 | | 1.028 | 92.47 | 72500 | 0.2214 | 0.2858 | | 1.0213 | 93.11 | 73000 | 0.2219 | 0.2875 | | 1.0261 | 93.75 | 73500 | 0.2232 | 0.2869 | | 1.0197 | 94.39 | 74000 | 0.2227 | 0.2866 | | 1.0298 | 95.03 | 74500 | 0.2228 | 0.2868 | | 1.0192 | 95.66 | 75000 | 0.2230 | 0.2865 | | 1.0156 | 96.3 | 75500 | 0.2220 | 0.2869 | | 1.0075 | 96.94 | 76000 | 0.2223 | 0.2866 | | 1.0201 | 97.58 | 76500 | 0.2219 | 0.2866 | | 1.0159 | 98.21 | 77000 | 0.2219 | 0.2876 | | 1.0087 | 98.85 | 77500 | 0.2219 | 0.2873 | | 1.0159 | 99.49 | 78000 | 0.2223 | 0.2867 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0
{"language": "tr", "license": "apache-2.0", "tags": ["automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "mozilla-foundation/common_voice_8_0", "robust-speech-event"], "datasets": ["mozilla-foundation/common_voice_8_0"], "base_model": "facebook/wav2vec2-xls-r-300m", "model-index": [{"name": "wav2vec2-large-xls-r-300m-tr", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice tr", "type": "common_voice_8_0", "args": "tr"}, "metrics": [{"type": "wer", "value": 28.69, "name": "Test WER"}]}]}]}
emre/wav2vec2-large-xls-r-300m-tr
null
[ "transformers", "pytorch", "safetensors", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "mozilla-foundation/common_voice_8_0", "robust-speech-event", "tr", "dataset:mozilla-foundation/common_voice_8_0", "base_model:facebook/wav2vec2-xls-r-300m", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
automatic-speech-recognition
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xlsr-53-W2V2-TATAR-SMALL This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.4714 - Wer: 0.5316 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 6.2446 | 1.17 | 400 | 3.2621 | 1.0 | | 1.739 | 2.35 | 800 | 0.5832 | 0.7688 | | 0.4718 | 3.52 | 1200 | 0.4785 | 0.6824 | | 0.3574 | 4.69 | 1600 | 0.4814 | 0.6792 | | 0.2946 | 5.86 | 2000 | 0.4484 | 0.6506 | | 0.2674 | 7.04 | 2400 | 0.4612 | 0.6225 | | 0.2349 | 8.21 | 2800 | 0.4600 | 0.6050 | | 0.2206 | 9.38 | 3200 | 0.4772 | 0.6048 | | 0.2072 | 10.56 | 3600 | 0.4676 | 0.6106 | | 0.1984 | 11.73 | 4000 | 0.4816 | 0.6079 | | 0.1793 | 12.9 | 4400 | 0.4616 | 0.5836 | | 0.172 | 14.08 | 4800 | 0.4808 | 0.5860 | | 0.1624 | 15.25 | 5200 | 0.4854 | 0.5820 | | 0.156 | 16.42 | 5600 | 0.4609 | 0.5656 | | 0.1448 | 17.59 | 6000 | 0.4926 | 0.5817 | | 0.1406 | 18.77 | 6400 | 0.4638 | 0.5654 | | 0.1337 | 19.94 | 6800 | 0.4731 | 0.5652 | | 0.1317 | 21.11 | 7200 | 0.4861 | 0.5639 | | 0.1179 | 22.29 | 7600 | 0.4766 | 0.5521 | | 0.1197 | 23.46 | 8000 | 0.4824 | 0.5584 | | 0.1096 | 24.63 | 8400 | 0.5006 | 0.5559 | | 0.1038 | 25.81 | 8800 | 0.4994 | 0.5440 | | 0.0992 | 26.98 | 9200 | 0.4867 | 0.5405 | | 0.0984 | 28.15 | 9600 | 0.4798 | 0.5361 | | 0.0943 | 29.33 | 10000 | 0.4714 | 0.5316 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.14.0 - Tokenizers 0.10.3
{"language": "tt", "license": "apache-2.0", "tags": ["automatic-speech-recognition", "common_voice", "generated_from_trainer", "hf-asr-leaderboard", "robust-speech-event", "tt"], "datasets": ["common_voice"], "base_model": "facebook/wav2vec2-large-xlsr-53", "model-index": [{"name": "wav2vec2-large-xlsr-53-W2V2-TATAR-SMALL", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Common Voice 8", "type": "mozilla-foundation/common_voice_8_0", "args": "tt"}, "metrics": [{"type": "wer", "value": 53.16, "name": "Test WER"}]}]}]}
emre/wav2vec2-large-xlsr-53-W2V2-TATAR-SMALL
null
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "common_voice", "generated_from_trainer", "hf-asr-leaderboard", "robust-speech-event", "tt", "dataset:common_voice", "base_model:facebook/wav2vec2-large-xlsr-53", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
automatic-speech-recognition
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xlsr-53-W2V2-TR-MED This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.4467 - Wer: 0.4598 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 60 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 5.1343 | 4.21 | 400 | 2.3674 | 1.0372 | | 0.8075 | 8.42 | 800 | 0.4583 | 0.6308 | | 0.3209 | 12.63 | 1200 | 0.4291 | 0.5531 | | 0.2273 | 16.84 | 1600 | 0.4348 | 0.5378 | | 0.1764 | 21.05 | 2000 | 0.4550 | 0.5326 | | 0.148 | 25.26 | 2400 | 0.4839 | 0.5319 | | 0.1268 | 29.47 | 2800 | 0.4515 | 0.5070 | | 0.1113 | 33.68 | 3200 | 0.4590 | 0.4930 | | 0.1025 | 37.89 | 3600 | 0.4546 | 0.4888 | | 0.0922 | 42.11 | 4000 | 0.4782 | 0.4852 | | 0.082 | 46.32 | 4400 | 0.4605 | 0.4752 | | 0.0751 | 50.53 | 4800 | 0.4358 | 0.4689 | | 0.0699 | 54.74 | 5200 | 0.4359 | 0.4629 | | 0.0633 | 58.95 | 5600 | 0.4467 | 0.4598 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.14.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer", "robust-speech-event"], "datasets": ["common_voice"], "model-index": [{"name": "wav2vec2-large-xlsr-53-W2V2-TR-MED", "results": []}]}
emre/wav2vec2-large-xlsr-53-W2V2-TR-MED
null
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "robust-speech-event", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
automatic-speech-recognition
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xlsr-53-demo-colab This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.3966 - Wer: 0.4834 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 5.1516 | 4.21 | 400 | 2.7673 | 1.0 | | 0.9134 | 8.42 | 800 | 0.4618 | 0.6418 | | 0.3273 | 12.63 | 1200 | 0.4188 | 0.5535 | | 0.2252 | 16.84 | 1600 | 0.4144 | 0.5232 | | 0.1692 | 21.05 | 2000 | 0.3995 | 0.5030 | | 0.1355 | 25.26 | 2400 | 0.4073 | 0.4920 | | 0.1172 | 29.47 | 2800 | 0.3966 | 0.4834 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.14.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer", "robust-speech-event"], "datasets": ["common_voice"], "model-index": [{"name": "wav2vec2-large-xlsr-53-demo-colab", "results": []}]}
emre/wav2vec2-large-xlsr-53-demo-colab
null
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "robust-speech-event", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
automatic-speech-recognition
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xlsr-53-sah-CV8 This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.5089 - Wer: 0.5606 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 300 - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 4.6849 | 16.67 | 500 | 1.1135 | 0.9344 | | 0.8223 | 33.33 | 1000 | 0.5148 | 0.5686 | | 0.5477 | 50.0 | 1500 | 0.5089 | 0.5606 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.18.1 - Tokenizers 0.10.3
{"language": "sah", "license": "apache-2.0", "tags": ["generated_from_trainer", "robust-speech-event", "hf-asr-leaderboard"], "datasets": ["common_voice"], "model-index": [{"name": "wav2vec2-large-xlsr-53-sah-CV8", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice sah", "type": "common_voice", "args": "sah"}, "metrics": [{"type": "wer", "value": 56.06, "name": "Test WER"}]}, {"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Common Voice 8.0", "type": "mozilla-foundation/common_voice_8_0", "args": "sah"}, "metrics": [{"type": "wer", "value": 43.75, "name": "Test WER"}]}]}]}
emre/wav2vec2-large-xlsr-53-sah-CV8
null
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "robust-speech-event", "hf-asr-leaderboard", "sah", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
automatic-speech-recognition
transformers
# wav2vec2-xls-r-300m-Br-small This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 1.0573 - Wer: 0.6675 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 5.7464 | 2.79 | 400 | 1.7474 | 1.1018 | | 1.1117 | 5.59 | 800 | 0.9434 | 0.8697 | | 0.6481 | 8.39 | 1200 | 0.9251 | 0.7910 | | 0.4754 | 11.19 | 1600 | 0.9208 | 0.7412 | | 0.3602 | 13.98 | 2000 | 0.9284 | 0.7232 | | 0.2873 | 16.78 | 2400 | 0.9299 | 0.6940 | | 0.2386 | 19.58 | 2800 | 1.0182 | 0.6927 | | 0.1971 | 22.38 | 3200 | 1.0456 | 0.6898 | | 0.1749 | 25.17 | 3600 | 1.0208 | 0.6769 | | 0.1487 | 27.97 | 4000 | 1.0573 | 0.6675 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.14.0 - Tokenizers 0.10.3
{"language": "br", "license": "apache-2.0", "tags": ["generated_from_trainer", "robust-speech-event", "hf-asr-leaderboard"], "datasets": ["common_voice"], "model-index": [{"name": "wav2vec2-xls-r-300m-Br-small", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice br", "type": "common_voice", "args": "br"}, "metrics": [{"type": "wer", "value": 66.75, "name": "Test WER"}]}]}]}
emre/wav2vec2-xls-r-300m-Br-small
null
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "robust-speech-event", "hf-asr-leaderboard", "br", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
automatic-speech-recognition
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xls-r-300m-Russian-small This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.3514 - Wer: 0.4838 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 5.512 | 1.32 | 400 | 3.2207 | 1.0 | | 3.1562 | 2.65 | 800 | 3.0166 | 1.0 | | 1.5211 | 3.97 | 1200 | 0.7134 | 0.8275 | | 0.6724 | 5.3 | 1600 | 0.4713 | 0.6402 | | 0.4693 | 6.62 | 2000 | 0.3904 | 0.5668 | | 0.3693 | 7.95 | 2400 | 0.3609 | 0.5121 | | 0.3004 | 9.27 | 2800 | 0.3514 | 0.4838 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.14.0 - Tokenizers 0.10.3
{"language": ["ru"], "license": "apache-2.0", "tags": ["generated_from_trainer", "hf-asr-leaderboard", "robust-speech-event"], "datasets": ["common_voice"], "model-index": [{"name": "wav2vec2-xls-r-300m-Russian-small", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice ru", "type": "common_voice", "args": "ru"}, "metrics": [{"type": "wer", "value": 48.38, "name": "Test WER"}]}, {"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Robust Speech Event - Dev Data", "type": "speech-recognition-community-v2/dev_data", "args": "ru"}, "metrics": [{"type": "wer", "value": 58.25, "name": "Test WER"}]}, {"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Robust Speech Event - Test Data", "type": "speech-recognition-community-v2/eval_data", "args": "ru"}, "metrics": [{"type": "wer", "value": 56.83, "name": "Test WER"}]}]}]}
emre/wav2vec2-xls-r-300m-Russian-small
null
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "robust-speech-event", "ru", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
automatic-speech-recognition
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xls-r-300m-Tr-med-CommonVoice8-Tr-med-CommonVoice8 This model is a fine-tuned version of [emre/wav2vec2-xls-r-300m-Tr-med-CommonVoice8](https://huggingface.co/emre/wav2vec2-xls-r-300m-Tr-med-CommonVoice8) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.2708 - Wer: 0.5010 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 300 - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 2.0402 | 0.67 | 500 | 0.3354 | 0.5681 | | 0.7265 | 1.33 | 1000 | 0.3181 | 0.5444 | | 0.6858 | 2.0 | 1500 | 0.3044 | 0.5322 | | 0.6537 | 2.66 | 2000 | 0.2911 | 0.5217 | | 0.6337 | 3.33 | 2500 | 0.2874 | 0.5164 | | 0.6111 | 3.99 | 3000 | 0.2758 | 0.5059 | | 0.5815 | 4.66 | 3500 | 0.2708 | 0.5010 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.18.1 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["common_voice"], "model-index": [{"name": "wav2vec2-xls-r-300m-Tr-med-CommonVoice8-Tr-med-CommonVoice8", "results": []}]}
emre/wav2vec2-xls-r-300m-Tr-med-CommonVoice8-Tr-med-CommonVoice8
null
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
automatic-speech-recognition
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xls-r-300m-Tr-med-CommonVoice8 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.2556 - Wer: 0.4914 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 300 - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 1.4876 | 6.66 | 5000 | 0.3252 | 0.5784 | | 0.6919 | 13.32 | 10000 | 0.2720 | 0.5172 | | 0.5919 | 19.97 | 15000 | 0.2556 | 0.4914 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.18.1 - Tokenizers 0.10.3
{"language": "tr", "license": "apache-2.0", "tags": ["generated_from_trainer", "hf-asr-leaderboard", "robust-speech-event"], "datasets": ["common_voice"], "model-index": [{"name": "wav2vec2-xls-r-300m-Tr-med-CommonVoice8", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice tr", "type": "common_voice", "args": "tr"}, "metrics": [{"type": "wer", "value": 49.14, "name": "Test WER"}]}]}]}
emre/wav2vec2-xls-r-300m-Tr-med-CommonVoice8
null
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "robust-speech-event", "tr", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
automatic-speech-recognition
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xls-r-300m-Turkish-Tr-med This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.4727 - Wer: 0.4677 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 60 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 4.8093 | 4.21 | 400 | 2.7831 | 1.0 | | 0.9881 | 8.42 | 800 | 0.5088 | 0.6681 | | 0.3519 | 12.63 | 1200 | 0.4496 | 0.6007 | | 0.2436 | 16.84 | 1600 | 0.4993 | 0.5654 | | 0.1874 | 21.05 | 2000 | 0.4793 | 0.5530 | | 0.1561 | 25.26 | 2400 | 0.5187 | 0.5589 | | 0.1336 | 29.47 | 2800 | 0.5135 | 0.5311 | | 0.1163 | 33.68 | 3200 | 0.4960 | 0.5143 | | 0.1056 | 37.89 | 3600 | 0.4795 | 0.5045 | | 0.0959 | 42.11 | 4000 | 0.4883 | 0.4987 | | 0.0819 | 46.32 | 4400 | 0.4799 | 0.4903 | | 0.0756 | 50.53 | 4800 | 0.4822 | 0.4831 | | 0.0692 | 54.74 | 5200 | 0.4621 | 0.4762 | | 0.062 | 58.95 | 5600 | 0.4727 | 0.4677 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.14.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer", "robust-speech-event"], "datasets": ["common_voice"], "model-index": [{"name": "wav2vec2-xls-r-300m-Turkish-Tr-med", "results": []}]}
emre/wav2vec2-xls-r-300m-Turkish-Tr-med
null
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "robust-speech-event", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
automatic-speech-recognition
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xls-r-300m-Turkish-Tr-small-CommonVoice8 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.4813 - Wer: 0.7207 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 5.2 | 0.53 | 400 | 3.1949 | 0.9964 | | 2.9387 | 1.07 | 800 | 2.5015 | 1.0337 | | 1.5975 | 1.6 | 1200 | 1.0928 | 0.9945 | | 1.0688 | 2.13 | 1600 | 0.8388 | 0.9390 | | 0.8977 | 2.66 | 2000 | 0.7106 | 0.8889 | | 0.789 | 3.2 | 2400 | 0.6051 | 0.8273 | | 0.7116 | 3.73 | 2800 | 0.5580 | 0.7855 | | 0.6576 | 4.26 | 3200 | 0.5033 | 0.7433 | | 0.6002 | 4.79 | 3600 | 0.4813 | 0.7207 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.18.1 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer", "robust-speech-event"], "datasets": ["common_voice"], "model-index": [{"name": "wav2vec2-xls-r-300m-Turkish-Tr-small-CommonVoice8", "results": []}]}
emre/wav2vec2-xls-r-300m-Turkish-Tr-small-CommonVoice8
null
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "robust-speech-event", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
automatic-speech-recognition
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xls-r-300m-Turkish-Tr-small This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.4375 - Wer: 0.5050 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 4.8735 | 4.21 | 400 | 2.8173 | 1.0002 | | 1.0073 | 8.42 | 800 | 0.4981 | 0.6717 | | 0.3395 | 12.63 | 1200 | 0.4470 | 0.5866 | | 0.2254 | 16.84 | 1600 | 0.4349 | 0.5491 | | 0.1648 | 21.05 | 2000 | 0.4454 | 0.5284 | | 0.1325 | 25.26 | 2400 | 0.4552 | 0.5131 | | 0.1102 | 29.47 | 2800 | 0.4375 | 0.5050 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.14.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer", "robust-speech-event"], "datasets": ["common_voice"], "model-index": [{"name": "wav2vec2-xls-r-300m-Turkish-Tr-small", "results": []}]}
emre/wav2vec2-xls-r-300m-Turkish-Tr-small
null
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "robust-speech-event", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
automatic-speech-recognition
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xls-r-300m-W2V2-XLSR-300M-YAKUT-SMALL This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.9068 - Wer: 0.7900 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 4.6926 | 19.05 | 400 | 2.7538 | 1.0 | | 0.7031 | 38.1 | 800 | 0.9068 | 0.7900 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.14.0 - Tokenizers 0.10.3
{"language": "sah", "license": "apache-2.0", "tags": ["generated_from_trainer", "robust-speech-event", "hf-asr-leaderboard"], "datasets": ["common_voice"], "model-index": [{"name": "wav2vec2-xls-r-300m-W2V2-XLSR-300M-YAKUT-SMALL", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice sah", "type": "common_voice", "args": "sah"}, "metrics": [{"type": "wer", "value": 79.0, "name": "Test WER"}]}]}]}
emre/wav2vec2-xls-r-300m-W2V2-XLSR-300M-YAKUT-SMALL
null
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "robust-speech-event", "hf-asr-leaderboard", "sah", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
automatic-speech-recognition
transformers
# wav2vec2-xls-r-300m-ab-CV8 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.2105 - Wer: 0.5474 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 300 - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 4.7729 | 0.63 | 500 | 3.0624 | 1.0021 | | 2.7348 | 1.26 | 1000 | 1.0460 | 0.9815 | | 1.2756 | 1.9 | 1500 | 0.4618 | 0.8309 | | 1.0419 | 2.53 | 2000 | 0.3725 | 0.7449 | | 0.9491 | 3.16 | 2500 | 0.3368 | 0.7345 | | 0.9006 | 3.79 | 3000 | 0.3014 | 0.6936 | | 0.8519 | 4.42 | 3500 | 0.2852 | 0.6767 | | 0.8243 | 5.06 | 4000 | 0.2701 | 0.6504 | | 0.7902 | 5.69 | 4500 | 0.2641 | 0.6221 | | 0.7767 | 6.32 | 5000 | 0.2549 | 0.6192 | | 0.7516 | 6.95 | 5500 | 0.2515 | 0.6179 | | 0.737 | 7.59 | 6000 | 0.2408 | 0.5963 | | 0.7217 | 8.22 | 6500 | 0.2429 | 0.6261 | | 0.7101 | 8.85 | 7000 | 0.2366 | 0.5687 | | 0.6922 | 9.48 | 7500 | 0.2277 | 0.5680 | | 0.6866 | 10.11 | 8000 | 0.2242 | 0.5847 | | 0.6703 | 10.75 | 8500 | 0.2222 | 0.5803 | | 0.6649 | 11.38 | 9000 | 0.2247 | 0.5765 | | 0.6513 | 12.01 | 9500 | 0.2182 | 0.5644 | | 0.6369 | 12.64 | 10000 | 0.2128 | 0.5508 | | 0.6425 | 13.27 | 10500 | 0.2132 | 0.5514 | | 0.6399 | 13.91 | 11000 | 0.2116 | 0.5495 | | 0.6208 | 14.54 | 11500 | 0.2105 | 0.5474 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.18.1 - Tokenizers 0.10.3
{"language": "ab", "license": "apache-2.0", "tags": ["generated_from_trainer", "hf-asr-leaderboard", "robust-speech-event"], "datasets": ["common_voice"], "model-index": [{"name": "wav2vec2-xls-r-300m-ab-CV8", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Common Voice 8", "type": "mozilla-foundation/common_voice_8_0", "args": "ab"}, "metrics": [{"type": "wer", "value": 44.9, "name": "Test WER"}]}]}]}
emre/wav2vec2-xls-r-300m-ab-CV8
null
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "robust-speech-event", "ab", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
automatic-speech-recognition
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xls-r-300m-as-CV8-v1 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 300 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.10.3
{"language": "as", "license": "apache-2.0", "tags": ["generated_from_trainer", "robust-speech-event", "hf-asr-leaderboard"], "datasets": ["common_voice"], "model-index": [{"name": "wav2vec2-xls-r-300m-as-CV8-v1", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Common Voice 8.0", "type": "mozilla-foundation/common_voice_8_0", "args": "as"}, "metrics": [{"type": "wer", "value": 100.0, "name": "Test WER"}]}]}]}
emre/wav2vec2-xls-r-300m-as-CV8-v1
null
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "robust-speech-event", "hf-asr-leaderboard", "as", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
automatic-speech-recognition
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xls-r-300m-bas-CV8-v2 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.6121 - Wer: 0.5697 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 300 - num_epochs: 90 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 6.5211 | 16.13 | 500 | 1.2661 | 0.9153 | | 0.7026 | 32.25 | 1000 | 0.6245 | 0.6516 | | 0.3752 | 48.38 | 1500 | 0.6039 | 0.6148 | | 0.2752 | 64.51 | 2000 | 0.6080 | 0.5808 | | 0.2155 | 80.63 | 2500 | 0.6121 | 0.5697 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.10.3
{"language": "bas", "license": "apache-2.0", "tags": ["automatic-speech-recognition", "common_voice", "generated_from_trainer", "bas", "robust-speech-event", "hf-asr-leaderboard"], "datasets": ["mozilla-foundation/common_voice_8_0"], "model-index": [{"name": "wav2vec2-xls-r-300m-bas-CV8-v2", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Common Voice 8", "type": "mozilla-foundation/common_voice_8_0", "args": "bas"}, "metrics": [{"type": "wer", "value": 56.97, "name": "Test WER"}]}]}]}
emre/wav2vec2-xls-r-300m-bas-CV8-v2
null
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "common_voice", "generated_from_trainer", "bas", "robust-speech-event", "hf-asr-leaderboard", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
automatic-speech-recognition
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xls-r-300m-gl-CV8 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.2151 - Wer: 0.2080 --- ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 300 - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 4.9427 | 4.9 | 500 | 2.8801 | 1.0 | | 2.1594 | 9.8 | 1000 | 0.4092 | 0.4001 | | 0.7332 | 14.71 | 1500 | 0.2151 | 0.2080 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.18.1 - Tokenizers 0.10.3
{"language": "gl", "license": "apache-2.0", "tags": ["generated_from_trainer", "hf-asr-leaderboard", "robust-speech-event"], "datasets": ["common_voice"], "model-index": [{"name": "wav2vec2-xls-r-300m-gl-CV8", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice gl", "type": "common_voice", "args": "gl"}, "metrics": [{"type": "wer", "value": 0.208, "name": "Test WER"}]}, {"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Common Voice 8.0", "type": "mozilla-foundation/common_voice_8_0", "args": "gl"}, "metrics": [{"type": "wer", "value": 22.94, "name": "Test WER"}]}, {"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Robust Speech Event - Dev Data", "type": "speech-recognition-community-v2/dev_data", "args": "gl"}, "metrics": [{"type": "wer", "value": 47.82, "name": "Test WER"}]}, {"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Robust Speech Event - Test Data", "type": "speech-recognition-community-v2/eval_data", "args": "gl"}, "metrics": [{"type": "wer", "value": 50.8, "name": "Test WER"}]}]}]}
emre/wav2vec2-xls-r-300m-gl-CV8
null
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "robust-speech-event", "gl", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
automatic-speech-recognition
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xls-r-300m-hy-AM-CV8-v1 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.9145 - Wer: 0.9598 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 300 - num_epochs: 170 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 5.7132 | 83.31 | 500 | 1.9274 | 1.0523 | | 1.017 | 166.62 | 1000 | 0.9145 | 0.9598 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer", "robust-speech-event"], "datasets": ["common_voice"], "model-index": [{"name": "wav2vec2-xls-r-300m-hy-AM-CV8-v1", "results": []}]}
emre/wav2vec2-xls-r-300m-hy-AM-CV8-v1
null
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "robust-speech-event", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
zero-shot-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-multilingual-cased_allnli_tr This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6144 - Accuracy: 0.7662 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.8623 | 0.03 | 1000 | 0.9076 | 0.5917 | | 0.7528 | 0.07 | 2000 | 0.8587 | 0.6119 | | 0.7074 | 0.1 | 3000 | 0.7867 | 0.6647 | | 0.6949 | 0.14 | 4000 | 0.7474 | 0.6772 | | 0.6681 | 0.17 | 5000 | 0.7661 | 0.6814 | | 0.6597 | 0.2 | 6000 | 0.7264 | 0.6943 | | 0.6495 | 0.24 | 7000 | 0.7841 | 0.6781 | | 0.6323 | 0.27 | 8000 | 0.7256 | 0.6952 | | 0.6308 | 0.31 | 9000 | 0.7319 | 0.6958 | | 0.6254 | 0.34 | 10000 | 0.7054 | 0.7004 | | 0.6233 | 0.37 | 11000 | 0.7069 | 0.7085 | | 0.6165 | 0.41 | 12000 | 0.6880 | 0.7181 | | 0.6033 | 0.44 | 13000 | 0.6844 | 0.7197 | | 0.6014 | 0.48 | 14000 | 0.6753 | 0.7129 | | 0.5947 | 0.51 | 15000 | 0.7000 | 0.7039 | | 0.5965 | 0.54 | 16000 | 0.6708 | 0.7263 | | 0.5979 | 0.58 | 17000 | 0.6562 | 0.7285 | | 0.5787 | 0.61 | 18000 | 0.6554 | 0.7297 | | 0.58 | 0.65 | 19000 | 0.6544 | 0.7315 | | 0.574 | 0.68 | 20000 | 0.6549 | 0.7339 | | 0.5751 | 0.71 | 21000 | 0.6545 | 0.7289 | | 0.5659 | 0.75 | 22000 | 0.6467 | 0.7371 | | 0.5732 | 0.78 | 23000 | 0.6448 | 0.7362 | | 0.5637 | 0.82 | 24000 | 0.6520 | 0.7355 | | 0.5648 | 0.85 | 25000 | 0.6412 | 0.7345 | | 0.5622 | 0.88 | 26000 | 0.6350 | 0.7358 | | 0.5579 | 0.92 | 27000 | 0.6347 | 0.7393 | | 0.5518 | 0.95 | 28000 | 0.6417 | 0.7392 | | 0.5547 | 0.99 | 29000 | 0.6321 | 0.7437 | | 0.524 | 1.02 | 30000 | 0.6430 | 0.7412 | | 0.4982 | 1.05 | 31000 | 0.6253 | 0.7458 | | 0.5002 | 1.09 | 32000 | 0.6316 | 0.7418 | | 0.4993 | 1.12 | 33000 | 0.6197 | 0.7487 | | 0.4963 | 1.15 | 34000 | 0.6307 | 0.7462 | | 0.504 | 1.19 | 35000 | 0.6272 | 0.7480 | | 0.4922 | 1.22 | 36000 | 0.6410 | 0.7433 | | 0.5016 | 1.26 | 37000 | 0.6295 | 0.7461 | | 0.4957 | 1.29 | 38000 | 0.6183 | 0.7506 | | 0.4883 | 1.32 | 39000 | 0.6261 | 0.7502 | | 0.4985 | 1.36 | 40000 | 0.6315 | 0.7496 | | 0.4885 | 1.39 | 41000 | 0.6189 | 0.7529 | | 0.4909 | 1.43 | 42000 | 0.6189 | 0.7473 | | 0.4894 | 1.46 | 43000 | 0.6314 | 0.7433 | | 0.4912 | 1.49 | 44000 | 0.6184 | 0.7446 | | 0.4851 | 1.53 | 45000 | 0.6258 | 0.7461 | | 0.4879 | 1.56 | 46000 | 0.6286 | 0.7480 | | 0.4907 | 1.6 | 47000 | 0.6196 | 0.7512 | | 0.4884 | 1.63 | 48000 | 0.6157 | 0.7526 | | 0.4755 | 1.66 | 49000 | 0.6056 | 0.7591 | | 0.4811 | 1.7 | 50000 | 0.5977 | 0.7582 | | 0.4787 | 1.73 | 51000 | 0.5915 | 0.7621 | | 0.4779 | 1.77 | 52000 | 0.6014 | 0.7583 | | 0.4767 | 1.8 | 53000 | 0.6041 | 0.7623 | | 0.4737 | 1.83 | 54000 | 0.6093 | 0.7563 | | 0.4836 | 1.87 | 55000 | 0.6001 | 0.7568 | | 0.4765 | 1.9 | 56000 | 0.6109 | 0.7601 | | 0.4776 | 1.94 | 57000 | 0.6046 | 0.7599 | | 0.4769 | 1.97 | 58000 | 0.5970 | 0.7568 | | 0.4654 | 2.0 | 59000 | 0.6147 | 0.7614 | | 0.4144 | 2.04 | 60000 | 0.6439 | 0.7566 | | 0.4101 | 2.07 | 61000 | 0.6373 | 0.7527 | | 0.4192 | 2.11 | 62000 | 0.6136 | 0.7575 | | 0.4128 | 2.14 | 63000 | 0.6283 | 0.7560 | | 0.4204 | 2.17 | 64000 | 0.6187 | 0.7625 | | 0.4114 | 2.21 | 65000 | 0.6127 | 0.7621 | | 0.4097 | 2.24 | 66000 | 0.6188 | 0.7626 | | 0.4129 | 2.28 | 67000 | 0.6156 | 0.7639 | | 0.4085 | 2.31 | 68000 | 0.6232 | 0.7616 | | 0.4074 | 2.34 | 69000 | 0.6240 | 0.7605 | | 0.409 | 2.38 | 70000 | 0.6153 | 0.7591 | | 0.4046 | 2.41 | 71000 | 0.6375 | 0.7587 | | 0.4117 | 2.45 | 72000 | 0.6145 | 0.7629 | | 0.4002 | 2.48 | 73000 | 0.6279 | 0.7610 | | 0.4042 | 2.51 | 74000 | 0.6176 | 0.7646 | | 0.4055 | 2.55 | 75000 | 0.6277 | 0.7643 | | 0.4021 | 2.58 | 76000 | 0.6196 | 0.7642 | | 0.4081 | 2.62 | 77000 | 0.6127 | 0.7659 | | 0.408 | 2.65 | 78000 | 0.6237 | 0.7638 | | 0.3997 | 2.68 | 79000 | 0.6190 | 0.7636 | | 0.4093 | 2.72 | 80000 | 0.6152 | 0.7648 | | 0.4095 | 2.75 | 81000 | 0.6155 | 0.7627 | | 0.4088 | 2.79 | 82000 | 0.6130 | 0.7641 | | 0.4063 | 2.82 | 83000 | 0.6072 | 0.7646 | | 0.3978 | 2.85 | 84000 | 0.6128 | 0.7662 | | 0.4034 | 2.89 | 85000 | 0.6157 | 0.7627 | | 0.4044 | 2.92 | 86000 | 0.6127 | 0.7661 | | 0.403 | 2.96 | 87000 | 0.6126 | 0.7664 | | 0.4033 | 2.99 | 88000 | 0.6144 | 0.7662 | ### Framework versions - Transformers 4.12.3 - Pytorch 1.10.0+cu102 - Datasets 1.15.1 - Tokenizers 0.10.3
{"language": ["tr"], "license": "mit", "tags": ["zero-shot-classification", "nli", "pytorch"], "datasets": ["nli_tr"], "metrics": ["accuracy"], "pipeline_tag": "zero-shot-classification", "widget": [{"text": "Dolar y\u00fckselmeye devam ediyor.", "candidate_labels": "ekonomi, siyaset, spor"}, {"text": "Senaryo \u00e7ok sa\u00e7mayd\u0131, be\u011fendim diyemem.", "candidate_labels": "olumlu, olumsuz"}]}
emrecan/bert-base-multilingual-cased-allnli_tr
null
[ "transformers", "pytorch", "bert", "text-classification", "zero-shot-classification", "nli", "tr", "dataset:nli_tr", "license:mit", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:05+00:00
zero-shot-classification
transformers
{"language": ["tr"], "license": "apache-2.0", "tags": ["zero-shot-classification", "nli", "pytorch"], "datasets": ["nli_tr"], "pipeline_tag": "zero-shot-classification", "widget": [{"text": "Dolar y\u00fckselmeye devam ediyor.", "candidate_labels": "ekonomi, siyaset, spor"}, {"text": "Senaryo \u00e7ok sa\u00e7mayd\u0131, be\u011fendim diyemem.", "candidate_labels": "olumlu, olumsuz"}]}
emrecan/bert-base-multilingual-cased-multinli_tr
null
[ "transformers", "pytorch", "bert", "text-classification", "zero-shot-classification", "nli", "tr", "dataset:nli_tr", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:05+00:00
zero-shot-classification
transformers
{"language": ["tr"], "license": "apache-2.0", "tags": ["zero-shot-classification", "nli", "pytorch"], "datasets": ["nli_tr"], "pipeline_tag": "zero-shot-classification", "widget": [{"text": "Dolar y\u00fckselmeye devam ediyor.", "candidate_labels": "ekonomi, siyaset, spor"}, {"text": "Senaryo \u00e7ok sa\u00e7mayd\u0131, be\u011fendim diyemem.", "candidate_labels": "olumlu, olumsuz"}]}
emrecan/bert-base-multilingual-cased-snli_tr
null
[ "transformers", "pytorch", "bert", "text-classification", "zero-shot-classification", "nli", "tr", "dataset:nli_tr", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:05+00:00
zero-shot-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-turkish-cased_allnli_tr This model is a fine-tuned version of [dbmdz/bert-base-turkish-cased](https://huggingface.co/dbmdz/bert-base-turkish-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5771 - Accuracy: 0.7978 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.8559 | 0.03 | 1000 | 0.7577 | 0.6798 | | 0.6612 | 0.07 | 2000 | 0.7263 | 0.6958 | | 0.6115 | 0.1 | 3000 | 0.6431 | 0.7364 | | 0.5916 | 0.14 | 4000 | 0.6347 | 0.7407 | | 0.5719 | 0.17 | 5000 | 0.6317 | 0.7483 | | 0.5575 | 0.2 | 6000 | 0.6034 | 0.7544 | | 0.5521 | 0.24 | 7000 | 0.6148 | 0.7568 | | 0.5393 | 0.27 | 8000 | 0.5931 | 0.7610 | | 0.5382 | 0.31 | 9000 | 0.5866 | 0.7665 | | 0.5306 | 0.34 | 10000 | 0.5881 | 0.7594 | | 0.5295 | 0.37 | 11000 | 0.6120 | 0.7632 | | 0.5225 | 0.41 | 12000 | 0.5620 | 0.7759 | | 0.5112 | 0.44 | 13000 | 0.5641 | 0.7769 | | 0.5133 | 0.48 | 14000 | 0.5571 | 0.7798 | | 0.5023 | 0.51 | 15000 | 0.5719 | 0.7722 | | 0.5017 | 0.54 | 16000 | 0.5482 | 0.7844 | | 0.5111 | 0.58 | 17000 | 0.5503 | 0.7800 | | 0.4929 | 0.61 | 18000 | 0.5502 | 0.7836 | | 0.4923 | 0.65 | 19000 | 0.5424 | 0.7843 | | 0.4894 | 0.68 | 20000 | 0.5417 | 0.7851 | | 0.4877 | 0.71 | 21000 | 0.5514 | 0.7841 | | 0.4818 | 0.75 | 22000 | 0.5494 | 0.7848 | | 0.4898 | 0.78 | 23000 | 0.5450 | 0.7859 | | 0.4823 | 0.82 | 24000 | 0.5417 | 0.7878 | | 0.4806 | 0.85 | 25000 | 0.5354 | 0.7875 | | 0.4779 | 0.88 | 26000 | 0.5338 | 0.7848 | | 0.4744 | 0.92 | 27000 | 0.5277 | 0.7934 | | 0.4678 | 0.95 | 28000 | 0.5507 | 0.7871 | | 0.4727 | 0.99 | 29000 | 0.5603 | 0.7789 | | 0.4243 | 1.02 | 30000 | 0.5626 | 0.7894 | | 0.3955 | 1.05 | 31000 | 0.5324 | 0.7939 | | 0.4022 | 1.09 | 32000 | 0.5322 | 0.7925 | | 0.3976 | 1.12 | 33000 | 0.5450 | 0.7920 | | 0.3913 | 1.15 | 34000 | 0.5464 | 0.7948 | | 0.406 | 1.19 | 35000 | 0.5406 | 0.7958 | | 0.3875 | 1.22 | 36000 | 0.5489 | 0.7878 | | 0.4024 | 1.26 | 37000 | 0.5427 | 0.7925 | | 0.3988 | 1.29 | 38000 | 0.5335 | 0.7904 | | 0.393 | 1.32 | 39000 | 0.5415 | 0.7923 | | 0.3988 | 1.36 | 40000 | 0.5385 | 0.7962 | | 0.3912 | 1.39 | 41000 | 0.5383 | 0.7950 | | 0.3949 | 1.43 | 42000 | 0.5415 | 0.7931 | | 0.3902 | 1.46 | 43000 | 0.5438 | 0.7893 | | 0.3948 | 1.49 | 44000 | 0.5348 | 0.7906 | | 0.3921 | 1.53 | 45000 | 0.5361 | 0.7890 | | 0.3944 | 1.56 | 46000 | 0.5419 | 0.7953 | | 0.3959 | 1.6 | 47000 | 0.5402 | 0.7967 | | 0.3926 | 1.63 | 48000 | 0.5429 | 0.7925 | | 0.3854 | 1.66 | 49000 | 0.5346 | 0.7959 | | 0.3864 | 1.7 | 50000 | 0.5241 | 0.7979 | | 0.385 | 1.73 | 51000 | 0.5149 | 0.8002 | | 0.3871 | 1.77 | 52000 | 0.5325 | 0.8002 | | 0.3819 | 1.8 | 53000 | 0.5332 | 0.8022 | | 0.384 | 1.83 | 54000 | 0.5419 | 0.7873 | | 0.3899 | 1.87 | 55000 | 0.5225 | 0.7974 | | 0.3894 | 1.9 | 56000 | 0.5358 | 0.7977 | | 0.3838 | 1.94 | 57000 | 0.5264 | 0.7988 | | 0.3881 | 1.97 | 58000 | 0.5280 | 0.7956 | | 0.3756 | 2.0 | 59000 | 0.5601 | 0.7969 | | 0.3156 | 2.04 | 60000 | 0.5936 | 0.7925 | | 0.3125 | 2.07 | 61000 | 0.5898 | 0.7938 | | 0.3179 | 2.11 | 62000 | 0.5591 | 0.7981 | | 0.315 | 2.14 | 63000 | 0.5853 | 0.7970 | | 0.3122 | 2.17 | 64000 | 0.5802 | 0.7979 | | 0.3105 | 2.21 | 65000 | 0.5758 | 0.7979 | | 0.3076 | 2.24 | 66000 | 0.5685 | 0.7980 | | 0.3117 | 2.28 | 67000 | 0.5799 | 0.7944 | | 0.3108 | 2.31 | 68000 | 0.5742 | 0.7988 | | 0.3047 | 2.34 | 69000 | 0.5907 | 0.7921 | | 0.3114 | 2.38 | 70000 | 0.5723 | 0.7937 | | 0.3035 | 2.41 | 71000 | 0.5944 | 0.7955 | | 0.3129 | 2.45 | 72000 | 0.5838 | 0.7928 | | 0.3071 | 2.48 | 73000 | 0.5929 | 0.7949 | | 0.3061 | 2.51 | 74000 | 0.5794 | 0.7967 | | 0.3068 | 2.55 | 75000 | 0.5892 | 0.7954 | | 0.3053 | 2.58 | 76000 | 0.5796 | 0.7962 | | 0.3117 | 2.62 | 77000 | 0.5763 | 0.7981 | | 0.3062 | 2.65 | 78000 | 0.5852 | 0.7964 | | 0.3004 | 2.68 | 79000 | 0.5793 | 0.7966 | | 0.3146 | 2.72 | 80000 | 0.5693 | 0.7985 | | 0.3146 | 2.75 | 81000 | 0.5788 | 0.7982 | | 0.3079 | 2.79 | 82000 | 0.5726 | 0.7978 | | 0.3058 | 2.82 | 83000 | 0.5677 | 0.7988 | | 0.3055 | 2.85 | 84000 | 0.5701 | 0.7982 | | 0.3049 | 2.89 | 85000 | 0.5809 | 0.7970 | | 0.3044 | 2.92 | 86000 | 0.5741 | 0.7986 | | 0.3057 | 2.96 | 87000 | 0.5743 | 0.7980 | | 0.3081 | 2.99 | 88000 | 0.5771 | 0.7978 | ### Framework versions - Transformers 4.12.3 - Pytorch 1.10.0+cu102 - Datasets 1.15.1 - Tokenizers 0.10.3
{"language": ["tr"], "license": "mit", "tags": ["zero-shot-classification", "nli", "pytorch"], "datasets": ["nli_tr"], "metrics": ["accuracy"], "pipeline_tag": "zero-shot-classification", "widget": [{"text": "Dolar y\u00fckselmeye devam ediyor.", "candidate_labels": "ekonomi, siyaset, spor"}, {"text": "Senaryo \u00e7ok sa\u00e7mayd\u0131, be\u011fendim diyemem.", "candidate_labels": "olumlu, olumsuz"}]}
emrecan/bert-base-turkish-cased-allnli_tr
null
[ "transformers", "pytorch", "bert", "text-classification", "zero-shot-classification", "nli", "tr", "dataset:nli_tr", "license:mit", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:05+00:00
sentence-similarity
sentence-transformers
# emrecan/bert-base-turkish-cased-mean-nli-stsb-tr This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. The model was trained on Turkish machine translated versions of [NLI](https://huggingface.co/datasets/nli_tr) and [STS-b](https://huggingface.co/datasets/emrecan/stsb-mt-turkish) datasets, using example [training scripts]( https://github.com/UKPLab/sentence-transformers/tree/master/examples/training) from sentence-transformers GitHub repository. ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["Bu örnek bir cümle", "Her cümle vektöre çevriliyor"] model = SentenceTransformer('emrecan/bert-base-turkish-cased-mean-nli-stsb-tr') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ["Bu örnek bir cümle", "Her cümle vektöre çevriliyor"] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('emrecan/bert-base-turkish-cased-mean-nli-stsb-tr') model = AutoModel.from_pretrained('emrecan/bert-base-turkish-cased-mean-nli-stsb-tr') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results Evaluation results on test and development sets are given below: | Split | Epoch | cosine_pearson | cosine_spearman | euclidean_pearson | euclidean_spearman | manhattan_pearson | manhattan_spearman | dot_pearson | dot_spearman | |------------|-------|----------------|-----------------|-------------------|--------------------|-------------------|--------------------|-------------|--------------| | test | - | 0.834 | 0.830 | 0.820 | 0.819 | 0.819 | 0.818 | 0.799 | 0.789 | | validation | 1 | 0.850 | 0.848 | 0.831 | 0.835 | 0.83 | 0.83 | 0.80 | 0.806 | | validation | 2 | 0.857 | 0.857 | 0.844 | 0.848 | 0.844 | 0.848 | 0.813 | 0.810 | | validation | 3 | 0.860 | 0.859 | 0.846 | 0.851 | 0.846 | 0.850 | 0.825 | 0.822 | | validation | 4 | 0.859 | 0.860 | 0.846 | 0.851 | 0.846 | 0.851 | 0.825 | 0.823 | ## Training Training scripts [`training_nli_v2.py`](https://github.com/UKPLab/sentence-transformers/blob/master/examples/training/nli/training_nli_v2.py) and [`training_stsbenchmark_continue_training.py`](https://github.com/UKPLab/sentence-transformers/blob/master/examples/training/sts/training_stsbenchmark_continue_training.py) were used to train the model. The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 360 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 4, "evaluation_steps": 200, "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 144, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 75, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
{"language": ["tr"], "license": "apache-2.0", "tags": ["sentence-transformers", "feature-extraction", "sentence-similarity", "transformers"], "datasets": ["nli_tr", "emrecan/stsb-mt-turkish"], "pipeline_tag": "sentence-similarity", "widget": {"source_sentence": "Bu \u00e7ok mutlu bir ki\u015fi", "sentences": ["Bu mutlu bir k\u00f6pek", "Bu sevincinden havalara u\u00e7an bir insan", "\u00c7ok kar ya\u011f\u0131yor"]}}
emrecan/bert-base-turkish-cased-mean-nli-stsb-tr
null
[ "sentence-transformers", "pytorch", "bert", "feature-extraction", "sentence-similarity", "transformers", "tr", "dataset:nli_tr", "dataset:emrecan/stsb-mt-turkish", "license:apache-2.0", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
emrecan/bert-base-turkish-cased-mean-nli
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
zero-shot-classification
transformers
{"language": ["tr"], "license": "apache-2.0", "tags": ["zero-shot-classification", "nli", "pytorch"], "datasets": ["nli_tr"], "pipeline_tag": "zero-shot-classification", "widget": [{"text": "Dolar y\u00fckselmeye devam ediyor.", "candidate_labels": "ekonomi, siyaset, spor"}, {"text": "Senaryo \u00e7ok sa\u00e7mayd\u0131, be\u011fendim diyemem.", "candidate_labels": "olumlu, olumsuz"}]}
emrecan/bert-base-turkish-cased-multinli_tr
null
[ "transformers", "pytorch", "bert", "text-classification", "zero-shot-classification", "nli", "tr", "dataset:nli_tr", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:05+00:00
zero-shot-classification
transformers
{"language": ["tr"], "license": "apache-2.0", "tags": ["zero-shot-classification", "nli", "pytorch"], "datasets": ["nli_tr"], "pipeline_tag": "zero-shot-classification", "widget": [{"text": "Dolar y\u00fckselmeye devam ediyor.", "candidate_labels": "ekonomi, siyaset, spor"}, {"text": "Senaryo \u00e7ok sa\u00e7mayd\u0131, be\u011fendim diyemem.", "candidate_labels": "olumlu, olumsuz"}]}
emrecan/bert-base-turkish-cased-snli_tr
null
[ "transformers", "pytorch", "bert", "text-classification", "zero-shot-classification", "nli", "tr", "dataset:nli_tr", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:05+00:00
zero-shot-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # convbert-base-turkish-mc4-cased_allnli_tr This model is a fine-tuned version of [dbmdz/convbert-base-turkish-mc4-cased](https://huggingface.co/dbmdz/convbert-base-turkish-mc4-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5541 - Accuracy: 0.8111 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.7338 | 0.03 | 1000 | 0.6722 | 0.7236 | | 0.603 | 0.07 | 2000 | 0.6465 | 0.7399 | | 0.5605 | 0.1 | 3000 | 0.5801 | 0.7728 | | 0.55 | 0.14 | 4000 | 0.5994 | 0.7626 | | 0.529 | 0.17 | 5000 | 0.5720 | 0.7697 | | 0.5196 | 0.2 | 6000 | 0.5692 | 0.7769 | | 0.5117 | 0.24 | 7000 | 0.5725 | 0.7785 | | 0.5044 | 0.27 | 8000 | 0.5532 | 0.7787 | | 0.5016 | 0.31 | 9000 | 0.5546 | 0.7812 | | 0.5031 | 0.34 | 10000 | 0.5461 | 0.7870 | | 0.4949 | 0.37 | 11000 | 0.5725 | 0.7826 | | 0.4894 | 0.41 | 12000 | 0.5419 | 0.7933 | | 0.4796 | 0.44 | 13000 | 0.5278 | 0.7914 | | 0.4795 | 0.48 | 14000 | 0.5193 | 0.7953 | | 0.4713 | 0.51 | 15000 | 0.5534 | 0.7771 | | 0.4738 | 0.54 | 16000 | 0.5098 | 0.8039 | | 0.481 | 0.58 | 17000 | 0.5244 | 0.7958 | | 0.4634 | 0.61 | 18000 | 0.5215 | 0.7972 | | 0.465 | 0.65 | 19000 | 0.5129 | 0.7985 | | 0.4624 | 0.68 | 20000 | 0.5062 | 0.8047 | | 0.4597 | 0.71 | 21000 | 0.5114 | 0.8029 | | 0.4571 | 0.75 | 22000 | 0.5070 | 0.8073 | | 0.4602 | 0.78 | 23000 | 0.5115 | 0.7993 | | 0.4552 | 0.82 | 24000 | 0.5085 | 0.8052 | | 0.4538 | 0.85 | 25000 | 0.5118 | 0.7974 | | 0.4517 | 0.88 | 26000 | 0.5036 | 0.8044 | | 0.4517 | 0.92 | 27000 | 0.4930 | 0.8062 | | 0.4413 | 0.95 | 28000 | 0.5307 | 0.7964 | | 0.4483 | 0.99 | 29000 | 0.5195 | 0.7938 | | 0.4036 | 1.02 | 30000 | 0.5238 | 0.8029 | | 0.3724 | 1.05 | 31000 | 0.5125 | 0.8082 | | 0.3777 | 1.09 | 32000 | 0.5099 | 0.8075 | | 0.3753 | 1.12 | 33000 | 0.5172 | 0.8053 | | 0.367 | 1.15 | 34000 | 0.5188 | 0.8053 | | 0.3819 | 1.19 | 35000 | 0.5218 | 0.8046 | | 0.363 | 1.22 | 36000 | 0.5202 | 0.7993 | | 0.3794 | 1.26 | 37000 | 0.5240 | 0.8048 | | 0.3749 | 1.29 | 38000 | 0.5026 | 0.8054 | | 0.367 | 1.32 | 39000 | 0.5198 | 0.8075 | | 0.3759 | 1.36 | 40000 | 0.5298 | 0.7993 | | 0.3701 | 1.39 | 41000 | 0.5072 | 0.8091 | | 0.3742 | 1.43 | 42000 | 0.5071 | 0.8098 | | 0.3706 | 1.46 | 43000 | 0.5317 | 0.8037 | | 0.3716 | 1.49 | 44000 | 0.5034 | 0.8052 | | 0.3717 | 1.53 | 45000 | 0.5258 | 0.8012 | | 0.3714 | 1.56 | 46000 | 0.5195 | 0.8050 | | 0.3781 | 1.6 | 47000 | 0.5004 | 0.8104 | | 0.3725 | 1.63 | 48000 | 0.5124 | 0.8113 | | 0.3624 | 1.66 | 49000 | 0.5040 | 0.8094 | | 0.3657 | 1.7 | 50000 | 0.4979 | 0.8111 | | 0.3669 | 1.73 | 51000 | 0.4968 | 0.8100 | | 0.3636 | 1.77 | 52000 | 0.5075 | 0.8079 | | 0.36 | 1.8 | 53000 | 0.4985 | 0.8110 | | 0.3624 | 1.83 | 54000 | 0.5125 | 0.8070 | | 0.366 | 1.87 | 55000 | 0.4918 | 0.8117 | | 0.3655 | 1.9 | 56000 | 0.5051 | 0.8109 | | 0.3609 | 1.94 | 57000 | 0.5083 | 0.8105 | | 0.3672 | 1.97 | 58000 | 0.5129 | 0.8085 | | 0.3545 | 2.0 | 59000 | 0.5467 | 0.8109 | | 0.2938 | 2.04 | 60000 | 0.5635 | 0.8049 | | 0.29 | 2.07 | 61000 | 0.5781 | 0.8041 | | 0.2992 | 2.11 | 62000 | 0.5470 | 0.8077 | | 0.2957 | 2.14 | 63000 | 0.5765 | 0.8073 | | 0.292 | 2.17 | 64000 | 0.5472 | 0.8106 | | 0.2893 | 2.21 | 65000 | 0.5590 | 0.8085 | | 0.2883 | 2.24 | 66000 | 0.5535 | 0.8064 | | 0.2923 | 2.28 | 67000 | 0.5508 | 0.8095 | | 0.2868 | 2.31 | 68000 | 0.5679 | 0.8098 | | 0.2892 | 2.34 | 69000 | 0.5660 | 0.8057 | | 0.292 | 2.38 | 70000 | 0.5494 | 0.8088 | | 0.286 | 2.41 | 71000 | 0.5653 | 0.8085 | | 0.2939 | 2.45 | 72000 | 0.5673 | 0.8070 | | 0.286 | 2.48 | 73000 | 0.5600 | 0.8092 | | 0.2844 | 2.51 | 74000 | 0.5508 | 0.8095 | | 0.2913 | 2.55 | 75000 | 0.5645 | 0.8088 | | 0.2859 | 2.58 | 76000 | 0.5677 | 0.8095 | | 0.2892 | 2.62 | 77000 | 0.5598 | 0.8113 | | 0.2898 | 2.65 | 78000 | 0.5618 | 0.8096 | | 0.2814 | 2.68 | 79000 | 0.5664 | 0.8103 | | 0.2917 | 2.72 | 80000 | 0.5484 | 0.8122 | | 0.2907 | 2.75 | 81000 | 0.5522 | 0.8116 | | 0.2896 | 2.79 | 82000 | 0.5540 | 0.8093 | | 0.2907 | 2.82 | 83000 | 0.5469 | 0.8104 | | 0.2882 | 2.85 | 84000 | 0.5471 | 0.8122 | | 0.2878 | 2.89 | 85000 | 0.5532 | 0.8108 | | 0.2858 | 2.92 | 86000 | 0.5511 | 0.8115 | | 0.288 | 2.96 | 87000 | 0.5491 | 0.8111 | | 0.2834 | 2.99 | 88000 | 0.5541 | 0.8111 | ### Framework versions - Transformers 4.12.3 - Pytorch 1.10.0+cu102 - Datasets 1.15.1 - Tokenizers 0.10.3
{"language": ["tr"], "license": "apache-2.0", "tags": ["zero-shot-classification", "nli", "pytorch"], "datasets": ["nli_tr"], "metrics": ["accuracy"], "pipeline_tag": "zero-shot-classification", "widget": [{"text": "Dolar y\u00fckselmeye devam ediyor.", "candidate_labels": "ekonomi, siyaset, spor"}, {"text": "Senaryo \u00e7ok sa\u00e7mayd\u0131, be\u011fendim diyemem.", "candidate_labels": "olumlu, olumsuz"}]}
emrecan/convbert-base-turkish-mc4-cased-allnli_tr
null
[ "transformers", "pytorch", "convbert", "text-classification", "zero-shot-classification", "nli", "tr", "dataset:nli_tr", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:05+00:00
zero-shot-classification
transformers
{"language": ["tr"], "license": "apache-2.0", "tags": ["zero-shot-classification", "nli", "pytorch"], "datasets": ["nli_tr"], "pipeline_tag": "zero-shot-classification", "widget": [{"text": "Dolar y\u00fckselmeye devam ediyor.", "candidate_labels": "ekonomi, siyaset, spor"}, {"text": "Senaryo \u00e7ok sa\u00e7mayd\u0131, be\u011fendim diyemem.", "candidate_labels": "olumlu, olumsuz"}]}
emrecan/convbert-base-turkish-mc4-cased-multinli_tr
null
[ "transformers", "pytorch", "convbert", "text-classification", "zero-shot-classification", "nli", "tr", "dataset:nli_tr", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:05+00:00
zero-shot-classification
transformers
{"language": ["tr"], "license": "apache-2.0", "tags": ["zero-shot-classification", "nli", "pytorch"], "datasets": ["nli_tr"], "pipeline_tag": "zero-shot-classification", "widget": [{"text": "Dolar y\u00fckselmeye devam ediyor.", "candidate_labels": "ekonomi, siyaset, spor"}, {"text": "Senaryo \u00e7ok sa\u00e7mayd\u0131, be\u011fendim diyemem.", "candidate_labels": "olumlu, olumsuz"}]}
emrecan/convbert-base-turkish-mc4-cased-snli_tr
null
[ "transformers", "pytorch", "convbert", "text-classification", "zero-shot-classification", "nli", "tr", "dataset:nli_tr", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:05+00:00
zero-shot-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-turkish-cased_allnli_tr This model is a fine-tuned version of [dbmdz/distilbert-base-turkish-cased](https://huggingface.co/dbmdz/distilbert-base-turkish-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6481 - Accuracy: 0.7381 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.94 | 0.03 | 1000 | 0.9074 | 0.5813 | | 0.8102 | 0.07 | 2000 | 0.8802 | 0.5949 | | 0.7737 | 0.1 | 3000 | 0.8491 | 0.6155 | | 0.7576 | 0.14 | 4000 | 0.8283 | 0.6261 | | 0.7286 | 0.17 | 5000 | 0.8150 | 0.6362 | | 0.7162 | 0.2 | 6000 | 0.7998 | 0.6400 | | 0.7092 | 0.24 | 7000 | 0.7830 | 0.6565 | | 0.6962 | 0.27 | 8000 | 0.7653 | 0.6629 | | 0.6876 | 0.31 | 9000 | 0.7630 | 0.6687 | | 0.6778 | 0.34 | 10000 | 0.7475 | 0.6739 | | 0.6737 | 0.37 | 11000 | 0.7495 | 0.6781 | | 0.6712 | 0.41 | 12000 | 0.7350 | 0.6826 | | 0.6559 | 0.44 | 13000 | 0.7274 | 0.6897 | | 0.6493 | 0.48 | 14000 | 0.7248 | 0.6902 | | 0.6483 | 0.51 | 15000 | 0.7263 | 0.6858 | | 0.6445 | 0.54 | 16000 | 0.7070 | 0.6978 | | 0.6467 | 0.58 | 17000 | 0.7083 | 0.6981 | | 0.6332 | 0.61 | 18000 | 0.6996 | 0.7004 | | 0.6288 | 0.65 | 19000 | 0.6979 | 0.6978 | | 0.6308 | 0.68 | 20000 | 0.6912 | 0.7040 | | 0.622 | 0.71 | 21000 | 0.6904 | 0.7092 | | 0.615 | 0.75 | 22000 | 0.6872 | 0.7094 | | 0.6186 | 0.78 | 23000 | 0.6877 | 0.7075 | | 0.6183 | 0.82 | 24000 | 0.6818 | 0.7111 | | 0.6115 | 0.85 | 25000 | 0.6856 | 0.7122 | | 0.608 | 0.88 | 26000 | 0.6697 | 0.7179 | | 0.6071 | 0.92 | 27000 | 0.6727 | 0.7181 | | 0.601 | 0.95 | 28000 | 0.6798 | 0.7118 | | 0.6018 | 0.99 | 29000 | 0.6854 | 0.7071 | | 0.5762 | 1.02 | 30000 | 0.6697 | 0.7214 | | 0.5507 | 1.05 | 31000 | 0.6710 | 0.7185 | | 0.5575 | 1.09 | 32000 | 0.6709 | 0.7226 | | 0.5493 | 1.12 | 33000 | 0.6659 | 0.7191 | | 0.5464 | 1.15 | 34000 | 0.6709 | 0.7232 | | 0.5595 | 1.19 | 35000 | 0.6642 | 0.7220 | | 0.5446 | 1.22 | 36000 | 0.6709 | 0.7202 | | 0.5524 | 1.26 | 37000 | 0.6751 | 0.7148 | | 0.5473 | 1.29 | 38000 | 0.6642 | 0.7209 | | 0.5477 | 1.32 | 39000 | 0.6662 | 0.7223 | | 0.5522 | 1.36 | 40000 | 0.6586 | 0.7227 | | 0.5406 | 1.39 | 41000 | 0.6602 | 0.7258 | | 0.54 | 1.43 | 42000 | 0.6564 | 0.7273 | | 0.5458 | 1.46 | 43000 | 0.6780 | 0.7213 | | 0.5448 | 1.49 | 44000 | 0.6561 | 0.7235 | | 0.5418 | 1.53 | 45000 | 0.6600 | 0.7253 | | 0.5408 | 1.56 | 46000 | 0.6616 | 0.7274 | | 0.5451 | 1.6 | 47000 | 0.6557 | 0.7283 | | 0.5385 | 1.63 | 48000 | 0.6583 | 0.7295 | | 0.5261 | 1.66 | 49000 | 0.6468 | 0.7325 | | 0.5364 | 1.7 | 50000 | 0.6447 | 0.7329 | | 0.5294 | 1.73 | 51000 | 0.6429 | 0.7320 | | 0.5332 | 1.77 | 52000 | 0.6508 | 0.7272 | | 0.5274 | 1.8 | 53000 | 0.6492 | 0.7326 | | 0.5286 | 1.83 | 54000 | 0.6470 | 0.7318 | | 0.5359 | 1.87 | 55000 | 0.6393 | 0.7354 | | 0.5366 | 1.9 | 56000 | 0.6445 | 0.7367 | | 0.5296 | 1.94 | 57000 | 0.6413 | 0.7313 | | 0.5346 | 1.97 | 58000 | 0.6393 | 0.7315 | | 0.5264 | 2.0 | 59000 | 0.6448 | 0.7357 | | 0.4857 | 2.04 | 60000 | 0.6640 | 0.7335 | | 0.4888 | 2.07 | 61000 | 0.6612 | 0.7318 | | 0.4964 | 2.11 | 62000 | 0.6516 | 0.7337 | | 0.493 | 2.14 | 63000 | 0.6503 | 0.7356 | | 0.4961 | 2.17 | 64000 | 0.6519 | 0.7348 | | 0.4847 | 2.21 | 65000 | 0.6517 | 0.7327 | | 0.483 | 2.24 | 66000 | 0.6555 | 0.7310 | | 0.4857 | 2.28 | 67000 | 0.6525 | 0.7312 | | 0.484 | 2.31 | 68000 | 0.6444 | 0.7342 | | 0.4792 | 2.34 | 69000 | 0.6508 | 0.7330 | | 0.488 | 2.38 | 70000 | 0.6513 | 0.7344 | | 0.472 | 2.41 | 71000 | 0.6547 | 0.7346 | | 0.4872 | 2.45 | 72000 | 0.6500 | 0.7342 | | 0.4782 | 2.48 | 73000 | 0.6585 | 0.7358 | | 0.481 | 2.51 | 74000 | 0.6477 | 0.7356 | | 0.4822 | 2.55 | 75000 | 0.6587 | 0.7346 | | 0.4728 | 2.58 | 76000 | 0.6572 | 0.7340 | | 0.4841 | 2.62 | 77000 | 0.6443 | 0.7374 | | 0.4885 | 2.65 | 78000 | 0.6494 | 0.7362 | | 0.4752 | 2.68 | 79000 | 0.6509 | 0.7382 | | 0.4883 | 2.72 | 80000 | 0.6457 | 0.7371 | | 0.4888 | 2.75 | 81000 | 0.6497 | 0.7364 | | 0.4844 | 2.79 | 82000 | 0.6481 | 0.7376 | | 0.4833 | 2.82 | 83000 | 0.6451 | 0.7389 | | 0.48 | 2.85 | 84000 | 0.6423 | 0.7373 | | 0.4832 | 2.89 | 85000 | 0.6477 | 0.7357 | | 0.4805 | 2.92 | 86000 | 0.6464 | 0.7379 | | 0.4775 | 2.96 | 87000 | 0.6477 | 0.7380 | | 0.4843 | 2.99 | 88000 | 0.6481 | 0.7381 | ### Framework versions - Transformers 4.12.3 - Pytorch 1.10.0+cu102 - Datasets 1.15.1 - Tokenizers 0.10.3
{"language": ["tr"], "license": "apache-2.0", "tags": ["zero-shot-classification", "nli", "pytorch"], "datasets": ["nli_tr"], "metrics": ["accuracy"], "pipeline_tag": "zero-shot-classification", "widget": [{"text": "Dolar y\u00fckselmeye devam ediyor.", "candidate_labels": "ekonomi, siyaset, spor"}, {"text": "Senaryo \u00e7ok sa\u00e7mayd\u0131, be\u011fendim diyemem.", "candidate_labels": "olumlu, olumsuz"}]}
emrecan/distilbert-base-turkish-cased-allnli_tr
null
[ "transformers", "pytorch", "distilbert", "text-classification", "zero-shot-classification", "nli", "tr", "dataset:nli_tr", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:05+00:00
zero-shot-classification
transformers
{"language": ["tr"], "license": "apache-2.0", "tags": ["zero-shot-classification", "nli", "pytorch"], "datasets": ["nli_tr"], "pipeline_tag": "zero-shot-classification", "widget": [{"text": "Dolar y\u00fckselmeye devam ediyor.", "candidate_labels": "ekonomi, siyaset, spor"}, {"text": "Senaryo \u00e7ok sa\u00e7mayd\u0131, be\u011fendim diyemem.", "candidate_labels": "olumlu, olumsuz"}]}
emrecan/distilbert-base-turkish-cased-multinli_tr
null
[ "transformers", "pytorch", "distilbert", "text-classification", "zero-shot-classification", "nli", "tr", "dataset:nli_tr", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:05+00:00
zero-shot-classification
transformers
{"language": ["tr"], "license": "apache-2.0", "tags": ["zero-shot-classification", "nli", "pytorch"], "datasets": ["nli_tr"], "pipeline_tag": "zero-shot-classification", "widget": [{"text": "Dolar y\u00fckselmeye devam ediyor.", "candidate_labels": "ekonomi, siyaset, spor"}, {"text": "Senaryo \u00e7ok sa\u00e7mayd\u0131, be\u011fendim diyemem.", "candidate_labels": "olumlu, olumsuz"}]}
emrecan/distilbert-base-turkish-cased-snli_tr
null
[ "transformers", "pytorch", "distilbert", "text-classification", "zero-shot-classification", "nli", "tr", "dataset:nli_tr", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
en/bert-large-uncased-whole-word-masking-finetuned-squad-finetuned-squad
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
question-answering
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 1.1453 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.2065 | 1.0 | 5577 | 1.1289 | | 0.9226 | 2.0 | 11154 | 1.1019 | | 0.7411 | 3.0 | 16731 | 1.1453 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.0+cu111 - Datasets 1.14.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["squad"], "model-index": [{"name": "distilbert-base-uncased-finetuned-squad", "results": []}]}
en/distilbert-base-uncased-finetuned-squad
null
[ "transformers", "pytorch", "tensorboard", "distilbert", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
question-answering
transformers
{}
okanvk/bert-question-answering-cased-squadv2_tr
null
[ "transformers", "pytorch", "jax", "bert", "question-answering", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
question-answering
transformers
{}
okanvk/bert-question-answering-uncased-squadv2_tr
null
[ "transformers", "pytorch", "jax", "bert", "question-answering", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
question-answering
transformers
{}
okanvk/electra-base-discriminator-finetuned_squadv1_tr
null
[ "transformers", "pytorch", "electra", "question-answering", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
question-answering
transformers
{}
okanvk/electra-base-discriminator-finetuned_squadv2_tr
null
[ "transformers", "pytorch", "electra", "question-answering", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
question-answering
transformers
{}
okanvk/electra-tr-enelpi-squad-qa
null
[ "transformers", "pytorch", "electra", "question-answering", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
okanvk/example
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
transformers
{}
okanvk/med-electra-small-30k-discriminator
null
[ "transformers", "pytorch", "electra", "pretraining", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
transformers
{}
okanvk/med-electra-small-64k-discriminator
null
[ "transformers", "pytorch", "electra", "pretraining", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
transformers
{}
okanvk/med-electra-small-discriminator
null
[ "transformers", "pytorch", "electra", "pretraining", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
feature-extraction
transformers
# Model description The model was created for selective question answering in Polish. I.e. it is used to find passages containing the answers to the given question. It is used to encode the contexts (aka passages) in the DPR bi-encoder architecture. The architecture requires two separate models. The question part has to be encoded with the corresponding [question encoder](https://huggingface.co/enelpol/czywiesz-question). The model was created by fine-tuning [Herbert base cased](https://huggingface.co/allegro/herbert-base-cased) on "Czywiesz" dataset. [Czywiesz](https://clarin-pl.eu/dspace/handle/11321/39) dataset contains questions and Wikipedia articles extracted from the Polish Wikipedia. # Usage It is the easiest to use the model with the [Haystack framework](https://haystack.deepset.ai/overview/intro). ```python from haystack.document_stores import FAISSDocumentStore from haystack.retriever import DensePassageRetriever document_store = FAISSDocumentStore(faiss_index_factory_str="Flat") retriever = DensePassageRetriever( document_store=document_store, query_embedding_model="enelpol/czywiesz-question", passage_embedding_model="enelpol/czywiesz-context" ) for document in documents: document_store.write_documents([document]) document_store.update_embeddings(retriever) document_store.save("contexts.faiss") ```
{"language": "pl", "datasets": ["enelpol/czywiesz"]}
enelpol/czywiesz-context
null
[ "transformers", "pytorch", "bert", "feature-extraction", "pl", "dataset:enelpol/czywiesz", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00