Search is not available for this dataset
pipeline_tag
stringclasses
48 values
library_name
stringclasses
205 values
text
stringlengths
0
18.3M
metadata
stringlengths
2
1.07B
id
stringlengths
5
122
last_modified
null
tags
listlengths
1
1.84k
sha
null
created_at
stringlengths
25
25
feature-extraction
transformers
## Model description This is the question encoder for the Polish DPR question answering model. The full model consists of two encoders. Please read [context encoder documentation](https://huggingface.co/enelpol/czywiesz-context) to get the details of the model.
{"language": "pl", "datasets": ["enelpol/czywiesz"], "task_categories": ["question_answering"], "task_ids": ["open-domain-qa"], "multilinguality": ["monolingual"], "size_categories": ["1k<n<10K"]}
enelpol/czywiesz-question
null
[ "transformers", "pytorch", "bert", "feature-extraction", "pl", "dataset:enelpol/czywiesz", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
token-classification
transformers
{}
enelpol/poleval2021-task1
null
[ "transformers", "pytorch", "bert", "token-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
{}
enelpol/poleval2021-task2
null
[ "transformers", "pytorch", "bert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text2text-generation
transformers
Trained with prefix `ocr: `.
{}
enelpol/poleval2021-task3
null
[ "transformers", "pytorch", "t5", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
{}
enod/esg-bert
null
[ "transformers", "pytorch", "bert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
fill-mask
transformers
{}
enriqueyanh/bert1
null
[ "transformers", "pytorch", "bert", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
fill-mask
transformers
{}
enriqueyanh/bert_cn
null
[ "transformers", "pytorch", "bert", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-generation
transformers
{}
ensamblador/gpt2-derecha-with-bos-eos-48heads
null
[ "transformers", "pytorch", "tf", "jax", "gpt2", "text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-generation
transformers
{}
ensamblador/gpt2-derecha-with-bos-eos-8heads
null
[ "transformers", "pytorch", "tf", "jax", "gpt2", "text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-generation
transformers
{}
ensamblador/gpt2-es-48heads
null
[ "transformers", "pytorch", "tf", "jax", "gpt2", "text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-generation
transformers
{}
ensamblador/gpt2-es-8heads
null
[ "transformers", "pytorch", "tf", "jax", "gpt2", "text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-generation
transformers
{}
ensamblador/gpt2-twitter-politico
null
[ "transformers", "pytorch", "tf", "jax", "gpt2", "text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-generation
transformers
{}
ensamblador/gpt2_espanol_8hx512pos
null
[ "transformers", "pytorch", "tf", "jax", "gpt2", "text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-generation
transformers
{}
ensamblador/model_es_custom
null
[ "transformers", "pytorch", "tf", "jax", "gpt2", "text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
entelecheia/eKonBERT
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
transformers
{}
entelecheia/ekonbert-base
null
[ "transformers", "pytorch", "jax", "bert", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
transformers
{}
entelecheia/ekonelectra-base-discriminator
null
[ "transformers", "pytorch", "electra", "pretraining", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
fill-mask
transformers
{}
entelecheia/ekonelectra-base-generator
null
[ "transformers", "pytorch", "electra", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
transformers
{}
entelecheia/ekonelectra-small-discriminator
null
[ "transformers", "pytorch", "electra", "pretraining", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
fill-mask
transformers
{}
entelecheia/ekonelectra-small-generator
null
[ "transformers", "pytorch", "electra", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
enyakong/tek
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
enzomarcus/enzo
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
enzomarcus/enzooo
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
feature-extraction
transformers
{}
eooitom/phobertlong4096
null
[ "transformers", "pytorch", "roberta", "feature-extraction", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-generation
transformers
This is fine-tuned model on Bhagvad Gita and creates text based on prompts. Example of usage: ``` from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("epsil/bhagvad_gita") model = AutoModelForCausalLM.from_pretrained("epsil/bhagvad_gita") ``` Input ``` from transformers import pipeline pipeline = pipeline('text-generation',model=model, tokenizer=tokenizer) result = samples('Krishna show me the right path')[0]['generated_text'] print(result) ``` Output ``` Krishna show me the right path, and I also to remember the lessons, and to remember them right. Sama! in His Day, and by Thy own Eternal Grace. A man like that who shall come to us ``` > Created by [Saurabh Mishra](https://www.linkedin.com/in/saurabh-mishra-12b5a1216/) > Made with <span style="color: #e25555;">&hearts;</span> in India
{}
epsil/bhagvad_gita
null
[ "transformers", "pytorch", "safetensors", "gpt2", "text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
feature-extraction
transformers
{}
epwalsh/bert-xsmall-dummy
null
[ "transformers", "pytorch", "jax", "bert", "feature-extraction", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
equ1/mnist_interface
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
er/17731000248
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
fill-mask
transformers
{}
erasedwalt/rubert-base-vet
null
[ "transformers", "pytorch", "bert", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
feature-extraction
transformers
{}
erayyildiz/electra-turkish-cased
null
[ "transformers", "pytorch", "electra", "feature-extraction", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
erdody/distilbert-base-uncased-finetuned-squad
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
erensezener/norwegian-t5-base
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
erensezener/t5-base-it
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
text2text-generation
transformers
# Persian-t5-formality-transfer This is a formality style transfer model for the Persian language to convert colloquial text into a formal one. It is based on [the monolingual T5 model for Persian.](https://huggingface.co/Ahmad/parsT5-base) and [Persian T5 paraphraser](https://huggingface.co/erfan226/persian-t5-paraphraser) Note: This model is still in development and therefore its outputs might not be very good. However, you can experiment with different values for the decoder to get better results. For more info check this [link.](https://huggingface.co/blog/how-to-generate) ## Usage ```python >>> pip install transformers >>> from transformers import (T5ForConditionalGeneration, AutoTokenizer, pipeline) >>> import torch model_path = 'erfan226/persian-t5-formality-transfer' model = T5ForConditionalGeneration.from_pretrained(model_path) tokenizer = AutoTokenizer.from_pretrained(model_path) pipe = pipeline(task='text2text-generation', model=model, tokenizer=tokenizer) def paraphrase(text): for j in range(3): out = pipe(text, encoder_no_repeat_ngram_size=4, do_sample=True, num_beams=5, max_length=128)[0]['generated_text'] print("Paraphrase:", out) text = "من با دوستام میرم بازی" print("Original:", text) paraphrase(text) # Original: من با دوستام میرم بازی # Paraphrase: دوست دارم با دوستانم بازی کنم. # Paraphrase: من با دوستانم میرم... # Paraphrase: من با دوستام بازی می کنم. ``` ## Training data TBD
{"language": "fa", "tags": ["Style transfer", "Formality style transfer"], "widget": [{"text": "\u0645\u0646 \u0628\u0627 \u062f\u0648\u0633\u062a\u0627\u0645 \u0645\u06cc\u0631\u0645 \u0628\u0627\u0632\u06cc."}, {"text": "\u0645\u0646 \u0628\u0647 \u062e\u0648\u0646\u0647 \u062f\u0648\u0633\u062a\u0645 \u0631\u0641\u062a\u0645."}]}
erfan226/persian-t5-formality-transfer
null
[ "transformers", "pytorch", "t5", "text2text-generation", "Style transfer", "Formality style transfer", "fa", "autotrain_compatible", "endpoints_compatible", "has_space", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
text2text-generation
transformers
# Persian-t5-paraphraser This is a paraphrasing model for the Persian language. It is based on [the monolingual T5 model for Persian.](https://huggingface.co/Ahmad/parsT5-base) ## Usage ```python >>> pip install transformers >>> from transformers import (T5ForConditionalGeneration, AutoTokenizer, pipeline) >>> import torch model_path = 'erfan226/persian-t5-paraphraser' model = T5ForConditionalGeneration.from_pretrained(model_path) tokenizer = AutoTokenizer.from_pretrained(model_path) pipe = pipeline(task='text2text-generation', model=model, tokenizer=tokenizer) def paraphrase(text): for j in range(5): out = pipe(text, encoder_no_repeat_ngram_size=5, do_sample=True, num_beams=5, max_length=128)[0]['generated_text'] print("Paraphrase:", out) text = "این یک مقالهٔ خرد آلمان است. می‌توانید با گسترش آن به ویکی‌پدیا کمک کنید." print("Original:", text) paraphrase(text) # Original: این یک مقالهٔ خرد آلمان است. می‌توانید با گسترش آن به ویکی‌پدیا کمک کنید. # Paraphrase: این یک مقالهٔ کوچک است. # Paraphrase: این یک مقالهٔ کوچک است. # Paraphrase: شما می توانید با گسترش این مقاله، به کسب و کار خود کمک کنید. # Paraphrase: می توانید با گسترش این مقالهٔ خرد آلمان کمک کنید. # Paraphrase: شما می توانید با گسترش این مقالهٔ خرد، به گسترش آن کمک کنید. ``` ## Training data This model was trained on the Persian subset of the [Tapaco dataset](https://huggingface.co/datasets/tapaco). It should be noted that this model was trained on a very small dataset and therefore the performance might not be as expected, for now.
{"language": "fa", "tags": ["paraphrasing"], "datasets": ["tapaco"], "widget": [{"text": "\u0627\u06cc\u0646 \u06cc\u06a9 \u0645\u0642\u0627\u0644\u0647\u0654 \u062e\u0631\u062f \u0622\u0644\u0645\u0627\u0646 \u0627\u0633\u062a. \u0645\u06cc\u200c\u062a\u0648\u0627\u0646\u06cc\u062f \u0628\u0627 \u06af\u0633\u062a\u0631\u0634 \u0622\u0646 \u0628\u0647 \u0648\u06cc\u06a9\u06cc\u200c\u067e\u062f\u06cc\u0627 \u06a9\u0645\u06a9 \u06a9\u0646\u06cc\u062f."}, {"text": "\u0628\u0631\u0627\u06cc \u062e\u0631\u06cc\u062f \u06cc\u06a9 \u06a9\u062a\u0627\u0628 \u0628\u0627\u06cc\u062f \u0627\u0632 \u0641\u0631\u0648\u0634\u06af\u0627\u0647 \u0627\u06cc\u0646\u062a\u0631\u0646\u062a\u06cc \u0627\u0633\u062a\u0641\u0627\u062f\u0647 \u06a9\u0646\u06cc\u062f."}]}
erfan226/persian-t5-paraphraser
null
[ "transformers", "pytorch", "t5", "text2text-generation", "paraphrasing", "fa", "dataset:tapaco", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
erga/bert-base-cased-finetuned-inf8460kaggle
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
eric14a/xlm-roberta-base-finetuned-panx-de
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
question-answering
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-finetuned-squad This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 4.0178 ## Model description Base model weights were frozen leaving only to finetune the last layer (qa outputs). ## Training and evaluation data Achieved EM: 8.013245033112582, F1: 15.9706088498649 ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 4.3602 | 1.0 | 5533 | 4.3460 | | 4.0995 | 2.0 | 11066 | 4.0787 | | 4.0302 | 3.0 | 16599 | 4.0178 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["squad"], "model-index": [{"name": "bert-base-uncased-finetuned-squad", "results": []}]}
ericRosello/bert-base-uncased-finetuned-squad-frozen-v1
null
[ "transformers", "pytorch", "tensorboard", "bert", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
question-answering
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-finetuned-squad This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 1.4571 ## Model description Most base model weights were frozen leaving only to finetune the last layer (qa outputs) and 3 last layers of the encoder. ## Training and evaluation data Achieved EM: 76.77388836329234, F1: 85.41893520501723 ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:------:|:---------------:| | 1.2944 | 1.0 | 44262 | 1.3432 | | 1.0152 | 2.0 | 88524 | 1.3450 | | 1.0062 | 3.0 | 132786 | 1.4571 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["squad"], "model-index": [{"name": "bert-base-uncased-finetuned-squad", "results": []}]}
ericRosello/bert-base-uncased-finetuned-squad-frozen-v2
null
[ "transformers", "pytorch", "tensorboard", "bert", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
ericRosello/bert-base-uncased-finetuned-squad
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
feature-extraction
transformers
{}
ericRosello/bert-frozen-v1
null
[ "transformers", "pytorch", "bert", "feature-extraction", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
question-answering
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 4.3629 ## Model description Base model weights were frozen leaving only to finetune the last layer (qa outputs). ## Training and evaluation data Achieved EM: 4.7776726584673606, F1: 11.440882287905591 ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 4.679 | 1.0 | 5533 | 4.6713 | | 4.4171 | 2.0 | 11066 | 4.4218 | | 4.3464 | 3.0 | 16599 | 4.3629 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["squad"], "model-index": [{"name": "distilbert-base-uncased-finetuned-squad", "results": []}]}
ericRosello/distilbert-base-uncased-finetuned-squad-frozen-v1
null
[ "transformers", "pytorch", "tensorboard", "distilbert", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
question-answering
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 1.2104 ## Model description Most base model weights were frozen leaving only to finetune the last layer (qa outputs) and 3 last layers of the encoder. ## Training and evaluation data Achieved EM: 73.519394512772, F1: 82.71779517079237 ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.3937 | 1.0 | 5533 | 1.2915 | | 1.1522 | 2.0 | 11066 | 1.2227 | | 1.0055 | 3.0 | 16599 | 1.2104 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["squad"], "model-index": [{"name": "distilbert-base-uncased-finetuned-squad", "results": []}]}
ericRosello/distilbert-base-uncased-finetuned-squad-frozen-v2
null
[ "transformers", "pytorch", "tensorboard", "distilbert", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
ericRosello/distilbert-base-uncased-finetuned-squad
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
feature-extraction
transformers
{}
ericRosello/distilbert-frozen-v1
null
[ "transformers", "pytorch", "distilbert", "feature-extraction", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
feature-extraction
transformers
{}
ericRosello/distilbert-frozen-v2
null
[ "transformers", "pytorch", "distilbert", "feature-extraction", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
ericRosello/qa_outputs.bias-frozen-v2.5
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
question-answering
transformers
{}
ericRosello/results
null
[ "transformers", "pytorch", "tensorboard", "bert", "question-answering", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
feature-extraction
transformers
{}
ericRosello/trial
null
[ "transformers", "pytorch", "distilbert", "feature-extraction", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
fill-mask
transformers
{}
erica/kc_900
null
[ "transformers", "pytorch", "bert", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
fill-mask
transformers
{}
erica/kcbase400
null
[ "transformers", "pytorch", "jax", "bert", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
fill-mask
transformers
{}
erica/kob400
null
[ "transformers", "pytorch", "jax", "bert", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
fill-mask
transformers
{}
erica/kob900
null
[ "transformers", "pytorch", "bert", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
fill-mask
transformers
{}
erica/krm_fin
null
[ "transformers", "pytorch", "bert", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
{}
erica/krm_sa2
null
[ "transformers", "pytorch", "bert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
{}
erica/krm_sa3
null
[ "transformers", "pytorch", "bert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
fill-mask
transformers
{}
ericchchiu/dummy-model
null
[ "transformers", "pytorch", "camembert", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
ericdoug/reoberta_qq
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
text-generation
transformers
# Harry Potter DialoGPT Model
{"tags": ["conversational"]}
ericklasco/DialoGPT-small-erickHarryPotter
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-generation
transformers
# Rick
{"tags": ["conversational"]}
ericzhou/DialoGPT-Medium-Rick
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-generation
transformers
# rick
{"tags": ["conversational"]}
ericzhou/DialoGPT-Medium-Rick_v2
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "has_space", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-generation
transformers
# elon
{"tags": ["conversational"]}
ericzhou/DialoGPT-medium-elon
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-generation
transformers
{"tags": ["conversational"]}
ericzhou/tsundere_v1
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
erikedwards4/roberta
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
text-generation
transformers
# GPT2 Keyword Based Lecture Generator ## Model description GPT2 fine-tuned on the TED Talks Dataset (published under the Creative Commons BY-NC-ND license). ## Intended uses Used to generate spoken-word lectures. ### How to use Input text: <BOS> title <|SEP|> Some keywords <|SEP|> Keyword Format: "Main Topic"."Subtopic1","Subtopic2","Subtopic3" Code Example: ``` prompt = <BOS> + title + \\ <|SEP|> + keywords + <|SEP|> generated = torch.tensor(tokenizer.encode(prompt)).unsqueeze(0) model.eval(); ```
{}
erikinfo/gpt2TEDlectures
null
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
ernieho/model_name
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
# Classifying Text into DB07 Codes This model is [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) fine-tuned to classify Danish descriptions of activities into [Dansk Branchekode DB07](https://www.dst.dk/en/Statistik/dokumentation/nomenklaturer/dansk-branchekode-db07) codes. ## Data Approximately 2.5 million business names and descriptions of activities from Norwegian and Danish businesses were used to fine-tune the model. The Norwegian descriptions were translated into Danish and the Norwegian SN 2007 codes were translated into Danish DB07 codes. Activity descriptions and business names were concatenated but separated by the separator token `</s>`. Thus, the model was trained on input texts in the format `f"{description_of_activity}</s>{business_name}"`. ## Quick Start ```python from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification tokenizer = AutoTokenizer.from_pretrained("erst/xlm-roberta-base-finetuned-db07") model = AutoModelForSequenceClassification.from_pretrained("erst/xlm-roberta-base-finetuned-db07") pl = pipeline( "sentiment-analysis", model=model, tokenizer=tokenizer, return_all_scores=False, ) pl("Vi sælger sko") pl("We sell clothes</s>Clothing ApS") ``` ## License This model is released under the MIT License.
{}
erst/xlm-roberta-base-finetuned-db07
null
[ "transformers", "pytorch", "xlm-roberta", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
# Classifying Text into NACE Codes This model is [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) fine-tuned to classify descriptions of activities into [NACE Rev. 2](https://ec.europa.eu/eurostat/web/nace-rev2) codes. ## Data The data used to fine-tune the model consist of 2.5 million descriptions of activities from Norwegian and Danish businesses. To improve the model's multilingual performance, random samples of the Norwegian and Danish descriptions were machine translated into the following languages: - English - German - Spanish - French - Finnish - Polish ## Quick Start ```python from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification tokenizer = AutoTokenizer.from_pretrained("erst/xlm-roberta-base-finetuned-nace") model = AutoModelForSequenceClassification.from_pretrained("erst/xlm-roberta-base-finetuned-nace") pl = pipeline( "sentiment-analysis", model=model, tokenizer=tokenizer, return_all_scores=False, ) pl("The purpose of our company is to build houses") ``` ## License This model is released under the MIT License
{}
erst/xlm-roberta-base-finetuned-nace
null
[ "transformers", "pytorch", "xlm-roberta", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
ervis/aaaa
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
ervis/test
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
text2text-generation
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-cocktails_recipe-base This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "base_model": "t5-base", "model-index": [{"name": "t5-cocktails_recipe-base", "results": []}]}
erwanlc/t5-cocktails_recipe-base
null
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "base_model:t5-base", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
text2text-generation
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-cocktails_recipe-small This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "base_model": "t5-base", "model-index": [{"name": "t5-cocktails_recipe-small", "results": []}]}
erwanlc/t5-cocktails_recipe-small
null
[ "transformers", "pytorch", "tensorboard", "safetensors", "t5", "text2text-generation", "generated_from_trainer", "base_model:t5-base", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
text2text-generation
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-coktails_recipe-base This model is a fine-tuned version of [google/t5-v1_1-base](https://huggingface.co/google/t5-v1_1-base) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "base_model": "google/t5-v1_1-base", "model-index": [{"name": "t5-coktails_recipe-base", "results": []}]}
erwanlc/t5-coktails_recipe-base
null
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "base_model:google/t5-v1_1-base", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
text2text-generation
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-coktails_recipe-small This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "model-index": [{"name": "t5-coktails_recipe-small", "results": []}]}
erwanlc/t5-coktails_recipe-small
null
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
eshaaftab900/distilbert-base-uncased-finetuned-squad
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
eshaoliu/dayumodel
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
esnaultloi/streamlite
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
{}
espejelomar/BETO_Clasificar_Tweets_Mexicano
null
[ "transformers", "pytorch", "bert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
fill-mask
transformers
{}
espejelomar/beto-base-cased
null
[ "transformers", "pytorch", "bert", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
image-classification
fastai
## Pet breeds classification model Finetuned model on The Oxford-IIIT Pet Dataset. It was introduced in [this paper](https://www.robots.ox.ac.uk/~vgg/publications/2012/parkhi12a/) and first released in [this webpage](https://www.robots.ox.ac.uk/~vgg/data/pets/). The pretrained model was trained on the ImageNet dataset, a dataset that has 100,000+ images across 200 different classes. It was introduced in [this paper](https://image-net.org/static_files/papers/imagenet_cvpr09.pdf) and available [in this webpage](https://image-net.org/download.php) Disclaimer: The model was fine-tuned after [Chapter 5](https://github.com/fastai/fastbook/blob/master/05_pet_breeds.ipynb) of [Deep Learning for Coders with Fastai and Pytorch: AI Applications Without a PhD (2020)](https://github.com/fastai/fastbook) written by Jeremy Howard and Sylvain Gugger. ## Model description The model was finetuned using the `cnn_learner` method of the fastai library suing a Resnet 34 backbone pretrained on the ImageNet dataset. The fastai library uses PyTorch for the undelying operations. `cnn_learner` automatically gets a pretrained model from a given architecture with a custom head that is suitable for the target data. Resnet34 is a 34 layer convolutional neural network. It takes residuals from each layer and uses them in the subsequent connected layers. Advantages of a resnet arquitecture ([Neurohive, 2019](https://neurohive.io/en/popular-networks/resnet/)): - Are easy to optimize, but the “plain” networks (that simply stack layers) shows higher training error when the depth increases. - Can easily gain accuracy from greatly increased depth, producing results which are better than previous networks. Please refer to the original paper '[Deep Residual Learning for Image Recognition](https://arxiv.org/pdf/1512.03385.pdf)' written by Kaiming He, Xiangyu Zhang, Shaoqing Ren and Jian Sun. Specifically, the model was obtained: ``` learn = cnn_learner(dls, resnet34, metrics=error_rate) learn.fine_tune(2) ``` ## How to use Download the model this way: ```python from huggingface_hub import hf_hub_download from fastai.learner import load_learner model = load_learner( hf_hub_download('espejelomar/fastai-pet-breeds-classification', filename="model.pkl") ) ``` Then you can use your downloaded fastai model in any way you want. For example, if the input is a PIL Image, with the following code you can obtain the resulting outputs for each class: ```python _, _, preds = self.model.predict(np.array(inputs)) ``` ## Training data The Resnet34 model was pretrained on [ImageNet](https://image-net.org/static_files/papers/imagenet_cvpr09.pdf), a dataset that has 100,000+ images across 200 different classes, and fine-tuned on [The Oxford-IIIT Pet Dataset](https://www.robots.ox.ac.uk/~vgg/data/pets/). ## Preprocessing For more detailed information on the preprocessing procedure, refer to the [Chapter 5](https://github.com/fastai/fastbook/blob/master/05_pet_breeds.ipynb) of [Deep Learning for Coders with Fastai and Pytorch: AI Applications Without a PhD (2020)](https://github.com/fastai/fastbook). Two main strategies are followed to presizing the images: - Resize images to relatively "large" dimensions—that is, dimensions significantly larger than the target training dimensions. - Compose all of the common augmentation operations (including a resize to the final target size) into one, and perform the combined operation on the GPU only once at the end of processing, rather than performing the operations individually and interpolating multiple times. "The first step, the resize, creates images large enough that they have spare margin to allow further augmentation transforms on their inner regions without creating empty zones. This transformation works by resizing to a square, using a large crop size. On the training set, the crop area is chosen randomly, and the size of the crop is selected to cover the entire width or height of the image, whichever is smaller. In the second step, the GPU is used for all data augmentation, and all of the potentially destructive operations are done together, with a single interpolation at the end." ([Howard and Gugger, 2020](https://github.com/fastai/fastbook)) Specifically, the following code is used for preprocessing: ```python #hide_input #id interpolations #caption A comparison of fastai's data augmentation strategy (left) and the traditional approach (right). dblock1 = DataBlock(blocks=(ImageBlock(), CategoryBlock()), get_y=parent_label, item_tfms=Resize(460)) # Place an image in the 'images/grizzly.jpg' subfolder where this notebook is located before running this dls1 = dblock1.dataloaders([(Path.cwd()/'images'/'grizzly.jpg')]*100, bs=8) dls1.train.get_idxs = lambda: Inf.ones x,y = dls1.valid.one_batch() _,axs = subplots(1, 2) x1 = TensorImage(x.clone()) x1 = x1.affine_coord(sz=224) x1 = x1.rotate(draw=30, p=1.) x1 = x1.zoom(draw=1.2, p=1.) x1 = x1.warp(draw_x=-0.2, draw_y=0.2, p=1.) tfms = setup_aug_tfms([Rotate(draw=30, p=1, size=224), Zoom(draw=1.2, p=1., size=224), Warp(draw_x=-0.2, draw_y=0.2, p=1., size=224)]) x = Pipeline(tfms)(x) #x.affine_coord(coord_tfm=coord_tfm, sz=size, mode=mode, pad_mode=pad_mode) TensorImage(x[0]).show(ctx=axs[0]) TensorImage(x1[0]).show(ctx=axs[1]); ``` ### BibTeX entry and citation info ```bibtex @book{howard2020deep, author = {Howard, J. and Gugger, S.}, title = {Deep Learning for Coders with Fastai and Pytorch: AI Applications Without a PhD}, isbn = {9781492045526}, year = {2020}, url = {https://books.google.no/books?id=xd6LxgEACAAJ}, publisher = {O'Reilly Media, Incorporated}, } ```
{"library_name": "fastai", "tags": ["image-classification", "fastai"], "datasets": ["Oxford-IIIT Pet Dataset", "ImageNet"]}
espejelomar/fastai-pet-breeds-classification
null
[ "fastai", "image-classification", "arxiv:1512.03385", "has_space", "region:us" ]
null
2022-03-02T23:29:05+00:00
audio-to-audio
espnet
## Example ESPnet2 ENH model ### `Chenda_Li/wsj0_2mix_enh_train_enh_conv_tasnet_raw_valid.si_snr.ave` ♻️ Imported from https://zenodo.org/record/4498562/ This model was trained by Chenda Li using wsj0_2mix/enh1 recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```python # coming soon ``` ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson {Enrique Yalta Soplin} and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } @inproceedings{hayashi2020espnet, title={{Espnet-TTS}: Unified, reproducible, and integratable open source end-to-end text-to-speech toolkit}, author={Hayashi, Tomoki and Yamamoto, Ryuichi and Inoue, Katsuki and Yoshimura, Takenori and Watanabe, Shinji and Toda, Tomoki and Takeda, Kazuya and Zhang, Yu and Tan, Xu}, booktitle={Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, pages={7654--7658}, year={2020}, organization={IEEE} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Enrique Yalta Soplin and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
{"language": "en", "license": "cc-by-4.0", "tags": ["espnet", "audio", "speech-enhancement", "audio-to-audio"], "datasets": ["wsj0_2mix"]}
espnet/Chenda_Li_wsj0_2mix_enh_train_enh_conv_tasnet_raw_valid.si_snr.ave
null
[ "espnet", "audio", "speech-enhancement", "audio-to-audio", "en", "dataset:wsj0_2mix", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
null
2022-03-02T23:29:05+00:00
audio-to-audio
espnet
## Example ESPnet2 ENH model ### `Chenda_Li/wsj0_2mix_enh_train_enh_rnn_tf_raw_valid.si_snr.ave` ♻️ Imported from https://zenodo.org/record/4498554/ This model was trained by Chenda Li using wsj0_2mix/enh1 recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```python # coming soon ``` ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson {Enrique Yalta Soplin} and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } @inproceedings{hayashi2020espnet, title={{Espnet-TTS}: Unified, reproducible, and integratable open source end-to-end text-to-speech toolkit}, author={Hayashi, Tomoki and Yamamoto, Ryuichi and Inoue, Katsuki and Yoshimura, Takenori and Watanabe, Shinji and Toda, Tomoki and Takeda, Kazuya and Zhang, Yu and Tan, Xu}, booktitle={Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, pages={7654--7658}, year={2020}, organization={IEEE} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Enrique Yalta Soplin and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
{"language": "en", "license": "cc-by-4.0", "tags": ["espnet", "audio", "speech-enhancement", "audio-to-audio"], "datasets": ["wsj0_2mix"]}
espnet/Chenda_Li_wsj0_2mix_enh_train_enh_rnn_tf_raw_valid.si_snr.ave
null
[ "espnet", "audio", "speech-enhancement", "audio-to-audio", "en", "dataset:wsj0_2mix", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
null
2022-03-02T23:29:05+00:00
automatic-speech-recognition
espnet
## ESPnet2 ASR model ### `Dan_Berrebbi_aishell4_asr` This model was trained by dan_berrebbi using aishell4 recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```bash cd espnet git checkout da1a26652f7d5a019cc24ad1e0e6e844f2b57e1b pip install -e . cd egs2/aishell4/asr1 ./run.sh --skip_data_prep false --skip_train true --download_model Dan_Berrebbi_aishell4_asr ``` <!-- Generated by scripts/utils/show_asr_result.sh --> # RESULTS ## Environments - date: `Tue Sep 21 09:36:01 EDT 2021` - python version: `3.7.11 (default, Jul 27 2021, 14:32:16) [GCC 7.5.0]` - espnet version: `espnet 0.10.3a1` - pytorch version: `pytorch 1.9.0` - Git hash: `7887faeabbc2299922267928e190ed89cb032a36` - Commit date: `Mon Sep 20 16:25:02 2021 -0400` ## asr_fine_tune5_100ep ### WER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_asr_rnn_lm_lm_nuit_valid.loss.ave_asr_model_valid.acc.ave/dev|599|601|6.8|92.7|0.5|0.0|93.2|93.2| |decode_transformer_lm_lm_nuit_valid.loss.ave_asr_model_valid.acc.ave/dev|599|601|6.8|92.8|0.3|0.0|93.2|93.2| ### CER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_asr_rnn_lm_lm_nuit_valid.loss.ave_asr_model_valid.acc.ave/dev|599|15936|66.9|25.6|7.5|9.8|42.9|93.2| |decode_transformer_lm_lm_nuit_valid.loss.ave_asr_model_valid.acc.ave/dev|599|15936|64.7|27.6|7.7|11.0|46.3|93.2| ### TER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| ## ASR config <details><summary>expand</summary> ``` config: conf/tuning/train_asr_conformer5.yaml print_config: false log_level: INFO dry_run: false iterator_type: sequence output_dir: exp/asr_fine_tune5_100ep ngpu: 1 seed: 0 num_workers: 1 num_att_plot: 3 dist_backend: nccl dist_init_method: env:// dist_world_size: null dist_rank: null local_rank: 0 dist_master_addr: null dist_master_port: null dist_launcher: null multiprocessing_distributed: false unused_parameters: false sharded_ddp: false cudnn_enabled: true cudnn_benchmark: false cudnn_deterministic: true collect_stats: false write_collected_feats: false max_epoch: 100 patience: null val_scheduler_criterion: - valid - loss early_stopping_criterion: - valid - loss - min best_model_criterion: - - valid - acc - max keep_nbest_models: 10 grad_clip: 3 grad_clip_type: 2.0 grad_noise: false accum_grad: 1 no_forward_run: false resume: true train_dtype: float32 use_amp: false log_interval: null use_tensorboard: true use_wandb: false wandb_project: null wandb_id: null wandb_entity: null wandb_name: null wandb_model_log_interval: -1 detect_anomaly: false pretrain_path: null init_param: [] ignore_init_mismatch: false freeze_param: [] num_iters_per_epoch: null batch_size: 20 valid_batch_size: null batch_bins: 10000000 valid_batch_bins: null train_shape_file: - exp/asr_stats_raw_zh_char/train/speech_shape - exp/asr_stats_raw_zh_char/train/text_shape.char valid_shape_file: - exp/asr_stats_raw_zh_char/valid/speech_shape - exp/asr_stats_raw_zh_char/valid/text_shape.char batch_type: numel valid_batch_type: null fold_length: - 51200 - 150 sort_in_batch: descending sort_batch: descending multiple_iterator: false chunk_length: 500 chunk_shift_ratio: 0.5 num_cache_chunks: 1024 train_data_path_and_name_and_type: - - dump/raw/train_nodev/wav.scp - speech - sound - - dump/raw/train_nodev/text - text - text valid_data_path_and_name_and_type: - - dump/raw/dev/wav.scp - speech - sound - - dump/raw/dev/text - text - text allow_variable_data_keys: false max_cache_size: 0.0 max_cache_fd: 32 valid_max_cache_size: null optim: adam optim_conf: lr: 4.0 scheduler: noamlr scheduler_conf: model_size: 256 warmup_steps: 25000 token_list: - <blank> - <unk> - , - 的 - 是 - 个 - 这 - 一 - 。 - 就 - 儿 - 嗯 - 们 - 呃 - 我 - 有 - <sil> - 那 - 说 - 不 - 些 - 也 - 他 - 你 - 要 - 后 - 以 - 咱 - 在 - 啊 - 了 - 然 - 家 - 都 - 来 - 还 - 可 - 子 - 下 - 上 - 时 - 比 - 话 - 孩 - 呢 - 去 - 人 - 好 - 对 - 能 - 么 - 吧 - 学 - 多 - 到 - 看 - 为 - 进 - 把 - 大 - 做 - 生 - 种 - 品 - 给 - 没 - 行 - 现 - 小 - 会 - 作 - 较 - 方 - 块 - 业 - 让 - 点 - 定 - 因 - 什 - 长 - 面 - 如 - 安 - 客 - 问 - 过 - 车 - 出 - 啦 - 边 - 候 - 主 - 所 - 题 - 买 - 销 - 天 - 意 - 自 - 全 - 动 - 工 - '&' - 老 - 或 - 者 - 年 - 着 - 实 - 活 - 理 - 包 - 样 - 再 - 区 - 用 - 呀 - 零 - 员 - 发 - 先 - 部 - 放 - 门 - 情 - 像 - 分 - 售 - 很 - 开 - 己 - 十 - 括 - 跟 - 事 - 需 - 更 - 其 - 装 - 市 - 成 - 里 - 物 - 别 - 间 - 第 - 次 - 中 - 提 - 超 - 顾 - 保 - 感 - 加 - 量 - 二 - 和 - 各 - 嘛 - 新 - 每 - 完 - 力 - 消 - 得 - 店 - 本 - 通 - 习 - 觉 - 道 - 心 - 校 - 菜 - 交 - 哪 - 产 - 于 - 位 - 电 - 想 - 三 - 况 - 度 - 期 - 应 - 但 - 教 - 体 - 常 - 师 - 它 - 高 - 前 - 之 - 西 - 特 - 商 - 果 - 场 - 重 - 防 - 管 - 起 - 地 - 该 - 东 - 少 - 打 - 费 - 当 - 带 - 服 - 口 - 购 - 知 - 回 - 同 - 钱 - 外 - 户 - 注 - 促 - 价 - 解 - <#> - 水 - 百 - 今 - 太 - 最 - 报 - 怎 - 才 - 等 - 及 - 关 - <-> - 肯 - 火 - 机 - 流 - 制 - 送 - 手 - 确 - 法 - 写 - 玩 - 传 - 路 - 班 - 查 - 招 - 卖 - 几 - 正 - 合 - 够 - 五 - 引 - 容 - 只 - 男 - 日 - 四 - 宣 - 反 - 两 - 清 - 处 - 周 - 单 - 首 - 课 - 衣 - 便 - 身 - 气 - 针 - 奶 - 六 - 经 - 接 - 女 - 育 - 鲜 - 赠 - 试 - 停 - 晚 - 类 - 故 - 入 - 性 - 增 - 食 - 满 - 格 - 基 - 备 - 洗 - 培 - 质 - 美 - 明 - 整 - 化 - 公 - 案 - 哎 - 吸 - 原 - 易 - 幺 - 总 - 尽 - 优 - 而 - 建 - 责 - 啥 - 干 - 月 - 使 - 找 - 季 - 望 - 器 - 目 - 识 - 低 - 听 - 烟 - 相 - 早 - 检 - 护 - 摆 - 住 - 直 - 从 - 务 - 希 - 导 - 内 - 八 - 持 - 近 - 配 - 叫 - 见 - 设 - 吗 - 非 - 调 - 程 - 拿 - 训 - <%> - 结 - 标 - 挺 - 花 - <$> - 受 - 式 - 求 - 平 - 换 - 具 - 愿 - 货 - 牌 - 专 - 轻 - 推 - 妈 - 司 - 辆 - 存 - 名 - 且 - 欢 - 喜 - 吃 - 数 - 段 - 议 - 控 - 往 - 礼 - 决 - 走 - 养 - 免 - 惠 - 园 - 档 - 谁 - 真 - 快 - 置 - 幼 - 乐 - 证 - 向 - 厂 - 简 - 声 - 视 - 划 - 绩 - 适 - 集 - 搞 - 办 - 规 - 灾 - 造 - 准 - 必 - 任 - 险 - 响 - 毕 - 群 - 鞋 - 九 - 嘞 - 信 - 库 - 计 - 认 - 奖 - 表 - 无 - 影 - 头 - 卡 - 告 - 考 - 抽 - 竟 - 选 - 帮 - 何 - 修 - 酒 - 尤 - 线 - 穿 - 讲 - 光 - 留 - 讨 - 随 - 请 - 卫 - 系 - 队 - 失 - 双 - 庭 - 强 - 微 - 折 - 色 - 半 - 否 - 立 - 差 - 沟 - 冬 - 批 - 害 - 已 - 危 - 白 - 爆 - 节 - 参 - 逛 - 搭 - 风 - 朋 - 友 - 环 - 验 - 评 - 严 - 般 - 效 - 舞 - 饭 - 境 - 负 - 又 - 底 - 术 - 刚 - 件 - 罚 - 助 - 态 - 状 - 室 - 房 - 游 - 息 - 领 - 难 - 警 - 按 - 级 - 错 - 利 - 与 - 餐 - 陪 - 蹈 - 论 - 记 - 许 - 马 - 算 - 楼 - 型 - 排 - 广 - 值 - 油 - 糕 - 楚 - 步 - 至 - 拉 - 紧 - 灯 - 升 - 七 - 共 - 努 - 除 - 展 - 形 - 元 - 网 - 宜 - 营 - 兴 - 互 - 蛋 - 燃 - 冷 - 条 - 思 - 巡 - 净 - 须 - 遇 - 落 - 禁 - 科 - 款 - 哦 - 止 - 采 - 材 - 介 - 套 - 围 - 维 - 旦 - 切 - 显 - 汇 - 损 - 速 - 越 - 模 - 假 - 精 - 稍 - 书 - 绍 - 父 - 积 - 策 - 示 - 骑 - 改 - 跑 - 运 - 变 - 洁 - 仓 - 鱼 - <space> - 绝 - 诶 - 伤 - 细 - 职 - 离 - 慢 - 素 - 料 - 睡 - 趣 - 爱 - 母 - 眼 - 味 - 列 - 督 - 张 - 率 - 被 - 域 - 语 - 坏 - 资 - 红 - 减 - 励 - 择 - 预 - 层 - 陈 - 根 - 休 - 毒 - 球 - 爸 - 登 - 足 - 取 - 指 - 柜 - 限 - 降 - 概 - 院 - 供 - 支 - 额 - 源 - 始 - 盘 - 饮 - 项 - 液 - 童 - 爷 - 号 - 抓 - 台 - 转 - 观 - 金 - 照 - 滑 - 岁 - 致 - 文 - 她 - 弄 - 站 - 酸 - 音 - 胎 - 投 - 疏 - 乱 - 临 - 允 - 狗 - 疫 - 询 - 、 - 象 - 占 - 坐 - 倒 - 争 - 午 - 亲 - 读 - 演 - 退 - 惯 - 贵 - 达 - 监 - 志 - 绿 - 醒 - 急 - 驾 - 违 - 诉 - 片 - 空 - 势 - 极 - 豆 - 独 - 钟 - 代 - 瓶 - 纸 - 并 - 企 - 映 - 统 - 属 - 省 - 夜 - 障 - 谈 - 避 - 由 - 终 - 频 - 掉 - 估 - 激 - 仅 - 布 - 谢 - 灭 - 忙 - 码 - 伙 - 缺 - 叶 - 功 - 析 - 赖 - 架 - 范 - 签 - D - 待 - 神 - 龄 - 画 - 券 - 居 - 杜 - 堵 - 您 - 勤 - 扫 - 技 - 财 - 隐 - 患 - 例 - 乘 - 摩 - 戏 - 鼓 - 份 - 杂 - 散 - 热 - 铺 - 据 - 肤 - 怕 - 依 - 拖 - 充 - 智 - 偷 - 远 - 挂 - 盗 - 附 - 梯 - 冰 - 联 - 借 - 蹭 - 异 - 蔬 - 绑 - 堂 - 将 - 厨 - 帽 - 破 - 戴 - 皮 - 粉 - 氛 - 仪 - 国 - 益 - 闯 - 惩 - 逃 - 刻 - 突 - 申 - 略 - 顿 - 毛 - 召 - 海 - 黄 - 青 - 士 - 移 - 喝 - 板 - 练 - 歌 - 千 - 床 - 享 - 磨 - 构 - 收 - 万 - 摸 - 圈 - 亮 - 刹 - 逆 - 驶 - 赶 - 松 - 呐 - 压 - 拥 - 辅 - 协 - 托 - 断 - 轮 - 善 - 哈 - 捆 - 座 - 病 - 健 - 牛 - 草 - 释 - 似 - 土 - 补 - 俩 - 堆 - 即 - 密 - 背 - 言 - 街 - 尚 - 窗 - C - 艺 - 纠 - 纷 - 忽 - 句 - 另 - 施 - 政 - 温 - 某 - 翻 - 章 - 守 - 熟 - 民 - 续 - 良 - 挤 - 础 - 字 - 瓜 - 乎 - 竞 - 距 - 际 - 暖 - 凭 - 董 - 碗 - 短 - 渠 - 康 - 藏 - 香 - 虽 - 露 - 厉 - 忘 - 误 - 冒 - 窃 - 络 - 淡 - 腐 - 颜 - 播 - 默 - 锻 - 炼 - 宝 - 组 - 淘 - 则 - 逻 - 垃 - 圾 - 复 - 贴 - 靠 - 潜 - 察 - 晨 - 碰 - 剩 - 峰 - 深 - 偏 - 虑 - 念 - 初 - 闹 - 幸 - 跳 - 米 - 旧 - 蛤 - 虾 - 汽 - 苦 - 螃 - 蟹 - 冲 - 固 - 隔 - 懂 - 卷 - 镜 - 罩 - 暴 - 闭 - 野 - 玻 - 璃 - 义 - B - 煤 - 富 - 踩 - 途 - 闲 - 紫 - 北 - 欲 - 曲 - 榜 - 垒 - 伴 - 累 - 判 - 搜 - 困 - 租 - 键 - 肥 - 社 - 弯 - 角 - 纪 - 律 - 详 - 右 - 刮 - 继 - 撤 - 输 - 普 - 未 - 稳 - 摔 - 访 - 扩 - 扣 - 末 - 票 - 承 - 担 - 丢 - 涉 - 欠 - 创 - 获 - 摊 - 疑 - 蓝 - 答 - 霜 - 录 - 齐 - 烦 - 治 - 粗 - 叛 - 污 - 址 - 若 - 染 - 含 - 药 - 雨 - 此 - 陌 - 研 - 催 - 拨 - 页 - 磕 - 呆 - 脸 - 墙 - 夫 - A - 棉 - 袜 - 填 - 死 - 懒 - 植 - 扇 - 捡 - 遍 - 操 - 摄 - 箱 - ? - 繁 - 城 - 咯 - 左 - 拐 - 悉 - 犯 - 宽 - 伞 - 余 - 糊 - 巧 - 透 - 贪 - 顺 - 局 - 妇 - 私 - 浪 - 岗 - 棋 - 序 - 辛 - V - 握 - 擦 - 扔 - 斤 - 付 - 剐 - 锁 - 麻 - 敢 - 桶 - 佩 - 坠 - 封 - 替 - 塞 - 斗 - 攀 - 爽 - 沉 - 混 - 滋 - 刺 - 潮 - 皿 - 端 - 刷 - 刀 - 巾 - 烫 - 木 - 漏 - 迅 - 织 - 救 - 吹 - 仔 - 称 - 返 - 景 - 聚 - 阶 - 秀 - 涨 - P - 颈 - 肩 - 泥 - I - 侣 - 尔 - 伍 - 甚 - 皂 - 蒙 - 世 - 界 - 嘻 - 辈 - Q - 审 - 尾 - 浇 - 遛 - 馨 - 措 - 邻 - 撒 - 挥 - 遵 - 予 - 击 - 鉴 - 殊 - 哇 - 载 - 添 - 盈 - 盯 - 惊 - 喷 - 荷 - 怠 - 抢 - 喂 - 饱 - 谅 - 团 - 龙 - 冻 - 图 - 掺 - 扑 - 刊 - 葱 - 薄 - 萝 - 卜 - 麦 - 苹 - 触 - 飞 - 艳 - 畅 - 鸡 - 权 - 趟 - 连 - 哭 - 旁 - 漂 - 焊 - 敞 - 叉 - 钢 - 氧 - 溺 - 聊 - 巢 - 衡 - 淀 - 劣 - 虫 - 符 - 均 - 辨 - 菌 - 彻 - 烂 - 厅 - 皱 - 妥 - 拾 - 插 - 携 - 竹 - 碍 - 湿 - 灵 - 忌 - 旅 - 勿 - 宿 - 迷 - 探 - 春 - 劵 - 星 - 耐 - 裤 - 颖 - 韩 - 艾 - 灸 - 邀 - 婚 - 乳 - 芽 - 挑 - 摘 - 阿 - 姨 - 伊 - 慕 - 纯 - 貌 - 嘴 - 偶 - 睛 - 献 - 坚 - 账 - 典 - 唱 - L - E - 贡 - 寒 - 唧 - Y - 尝 - 抹 - 汰 - 腾 - 哼 - 仿 - 英 - 舒 - 扰 - 拒 - 剪 - 夏 - 宠 - 咬 - 派 - 委 - 婉 - 执 - 呗 - 悄 - 搬 - 雪 - 盐 - 暂 - 奸 - 耍 - 僻 - 却 - 署 - 寻 - 串 - 援 - 亏 - 烈 - 印 - 捎 - 幅 - 绘 - 锈 - 闸 - 罪 - 嫌 - 俗 - 歹 - 劳 - 兜 - 喽 - 谓 - 鹤 - 舍 - 克 - 徇 - 倍 - 敏 - 丝 - 纺 - 拭 - 融 - 蔫 - 掂 - 测 - T - 众 - 卸 - 暗 - 赔 - 偿 - 举 - 劲 - 篮 - 储 - 乙 - 炔 - 软 - 侵 - 诱 - 浊 - 蚀 - 秽 - 炸 - 泽 - 闻 - 鼻 - 甜 - 澈 - 脏 - 官 - 凝 - 芳 - 灰 - 卵 - 农 - 烧 - 肉 - 桌 - 椅 - 垫 - 硬 - 叠 - 瓷 - 碎 - 柄 - 屉 - 拳 - 撞 - 铝 - 歇 - 遗 - 炮 - 掌 - 妨 - 静 - 浸 - 涂 - 凉 - 炫 - 耀 - 姓 - 究 - 奏 - 缆 - 脚 - 酿 - 抄 - 慌 - 戚 - 燥 - 毯 - 挽 - 诺 - 济 - 旺 - 抖 - 郊 - 疗 - 巴 - 痧 - 脊 - 膜 - 晒 - 润 - 掏 - 笔 - 鞭 - 博 - 捧 - 函 - 胡 - 锅 - 雾 - 疯 - 狂 - 趋 - 膏 - 妆 - 尘 - 袋 - 贝 - 俺 - 耽 - 怀 - 恐 - 赋 - 脑 - 焉 - 愣 - 呵 - 噼 - 啪 - 虚 - 河 - 归 - 绊 - 械 - 扬 - 筒 - 靴 - 束 - 彩 - 荐 - 沙 - 迎 - 荡 - 凌 - 昂 - 碑 - 蹦 - 扉 - 泼 - 丰 - 滴 - 沾 - 亭 - 粘 - 奇 - 饼 - 牙 - 娃 - 杯 - 踢 - 嘿 - 抛 - 枯 - 剔 - 苗 - 纹 - 永 - 津 - 唉 - 趁 - 屡 - 逮 - 戒 - 肃 - 仁 - 肇 - 醉 - 糟 - 馈 - 横 - 扭 - 盔 - 侧 - 鲁 - 莽 - 飙 - 稿 - 逐 - 谋 - 京 - 苏 - 宁 - 驻 - 咨 - 旷 - 拓 - 杆 - 秤 - 叮 - 嘱 - 咋 - 炊 - 怪 - 婆 - 阎 - 王 - 饿 - 鬼 - 惨 - 渡 - 坎 - 囤 - 甲 - 蛙 - 鲤 - 桂 - 石 - 玉 - 溪 - 华 - 窝 - 截 - 秩 - 嗨 - 芹 - 梨 - 蕉 - S - 煲 - 汤 - 鲫 - 揽 - 挡 - 柚 - 瑞 - 匹 - '2' - 踹 - 吵 - 凶 - 矩 - 迟 - 脾 - 纳 - 朵 - 墨 - 袖 - 链 - 钩 - 笼 - 熄 - 盆 - 殴 - 欺 - 诈 - 厕 - 娱 - 爬 - 威 - 胁 - 阅 - 赌 - 拢 - 症 - 伪 - 脂 - 堪 - 盛 - 蚊 - 蝇 - 煎 - 晰 - 柔 - 涩 - 汁 - 腹 - 胃 - 痉 - 挛 - 颗 - 粒 - 匀 - 败 - 历 - 佳 - 乏 - 寄 - 残 - 杀 - 剂 - 疾 - 衍 - 溅 - 倘 - 褶 - 席 - 启 - 遮 - 槽 - 递 - 橱 - 迹 - 镁 - 泄 - 阀 - 柴 - 阻 - 恋 - 盲 - 浓 - 捂 - 腰 - 姿 - 缝 - 肿 - 焦 - 骗 - 伺 - 嘘 - 掩 - 褥 - 帘 - 籍 - 锥 - 锋 - 尖 - 锐 - 祸 - 秒 - 李 - 伸 - 浏 - 览 - 航 - 讯 - 谨 - 慎 - 匪 - 劫 - 医 - 族 - 忧 - 孤 - 拜 - 窄 - 唯 - 搁 - 朝 - 尺 - 盟 - 波 - 隆 - 词 - 村 - 娶 - 媳 - 县 - 聘 - 醇 - 泡 - 坨 - 淋 - 延 - 柱 - 肾 - 蒸 - 槛 - 赚 - 凡 - 恩 - 厚 - 赞 - 茎 - 蒜 - 苔 - 甘 - 菠 - 涮 - 霾 - 仍 - 云 - 追 - 丽 - 盖 - 欧 - 莱 - 雅 - 婴 - 孕 - 敲 - 约 - 惰 - 谱 - 射 - 惑 - 睹 - 奉 - 诚 - 惶 - 卓 - 勉 - 聪 - 疼 - 弃 - 奴 - 隶 - 嚷 - 眠 - 躺 - 乒 - 乓 - 琴 - 挖 - 掘 - 阵 - 浆 - 索 - 呼 - 古 - 弥 - 熔 - 抱 - 怨 - 猫 - 笑 - 挣 - 黑 - 猛 - 令 - 核 - 磊 - 橙 - 吨 - 吊 - 蘸 - 氮 - 罐 - 战 - 懈 - 渐 - 胜 - 命 - 抬 - 缘 - 睦 - 扮 - 珠 - 颁 - 蔼 - 凳 - 饰 - 缤 - 晶 - 抵 - 遥 - 腿 - 拍 - 妻 - 羽 - 绒 - 梳 - 袄 - 述 - 跆 - 屈 - 脱 - 朗 - 劝 - 胆 - 腔 - 圆 - 亚 - 宴 - 编 - 肢 - 壶 - 暑 - 怒 - 描 - 绕 - 悦 - 忆 - 嗓 - 胖 - 疙 - 瘩 - 哒 - 碴 - 棱 - 炒 - 井 - 漫 - 烘 - 焙 - 涤 - 船 - 纱 - 君 - 茉 - 莉 - 钙 - 瞩 - <_> - 塌 - 嗷 - 屁 - 股 - 绪 - 勇 - 奋 - 荣 - 诲 - 卑 - 挫 - 昧 - 疲 - 惫 - 册 - 呈 - 僵 - 熬 - 敬 - 呦 - <sos/eos> init: null input_size: null ctc_conf: dropout_rate: 0.0 ctc_type: builtin reduce: true ignore_nan_grad: true model_conf: ctc_weight: 0.3 lsm_weight: 0.1 length_normalized_loss: false use_preprocessor: true token_type: char bpemodel: null non_linguistic_symbols: /ocean/projects/cis210027p/berrebbi/espnet/egs2/aishell4/asr1/data/nlsyms.txt cleaner: null g2p: null speech_volume_normalize: null rir_scp: null rir_apply_prob: 1.0 noise_scp: null noise_apply_prob: 1.0 noise_db_range: '13_15' frontend: default frontend_conf: n_fft: 512 win_length: 400 hop_length: 160 fs: 16k specaug: specaug specaug_conf: apply_time_warp: true time_warp_window: 5 time_warp_mode: bicubic apply_freq_mask: true freq_mask_width_range: - 0 - 30 num_freq_mask: 2 apply_time_mask: true time_mask_width_range: - 0 - 40 num_time_mask: 2 normalize: global_mvn normalize_conf: stats_file: exp/asr_stats_raw_zh_char/train/feats_stats.npz preencoder: null preencoder_conf: {} encoder: conformer encoder_conf: input_layer: conv2d num_blocks: 12 linear_units: 2048 dropout_rate: 0.1 output_size: 256 attention_heads: 4 attention_dropout_rate: 0.0 pos_enc_layer_type: rel_pos selfattention_layer_type: rel_selfattn activation_type: swish macaron_style: true use_cnn_module: true cnn_module_kernel: 15 postencoder: null postencoder_conf: {} decoder: transformer decoder_conf: input_layer: embed num_blocks: 6 linear_units: 2048 dropout_rate: 0.1 required: - output_dir - token_list version: 0.10.3a1 distributed: false ``` </details> ## LM config <details><summary>expand</summary> ``` config: conf/train_lm_transformer.yaml print_config: false log_level: INFO dry_run: false iterator_type: sequence output_dir: exp/lm_nuit ngpu: 1 seed: 0 num_workers: 1 num_att_plot: 3 dist_backend: nccl dist_init_method: env:// dist_world_size: null dist_rank: null local_rank: 0 dist_master_addr: null dist_master_port: null dist_launcher: null multiprocessing_distributed: false unused_parameters: false sharded_ddp: false cudnn_enabled: true cudnn_benchmark: false cudnn_deterministic: true collect_stats: false write_collected_feats: false max_epoch: 15 patience: null val_scheduler_criterion: - valid - loss early_stopping_criterion: - valid - loss - min best_model_criterion: - - valid - loss - min keep_nbest_models: 10 grad_clip: 5.0 grad_clip_type: 2.0 grad_noise: false accum_grad: 1 no_forward_run: false resume: true train_dtype: float32 use_amp: false log_interval: null use_tensorboard: true use_wandb: false wandb_project: null wandb_id: null wandb_entity: null wandb_name: null wandb_model_log_interval: -1 detect_anomaly: false pretrain_path: null init_param: [] ignore_init_mismatch: false freeze_param: [] num_iters_per_epoch: null batch_size: 20 valid_batch_size: null batch_bins: 2000000 valid_batch_bins: null train_shape_file: - exp/lm_stats_zh_char/train/text_shape.char valid_shape_file: - exp/lm_stats_zh_char/valid/text_shape.char batch_type: numel valid_batch_type: null fold_length: - 150 sort_in_batch: descending sort_batch: descending multiple_iterator: false chunk_length: 500 chunk_shift_ratio: 0.5 num_cache_chunks: 1024 train_data_path_and_name_and_type: - - dump/raw/lm_train.txt - text - text valid_data_path_and_name_and_type: - - dump/raw/dev/text - text - text allow_variable_data_keys: false max_cache_size: 0.0 max_cache_fd: 32 valid_max_cache_size: null optim: adam optim_conf: lr: 0.005 scheduler: warmuplr scheduler_conf: warmup_steps: 25000 token_list: - <blank> - <unk> - , - 的 - 是 - 个 - 这 - 一 - 。 - 就 - 儿 - 嗯 - 们 - 呃 - 我 - 有 - <sil> - 那 - 说 - 不 - 些 - 也 - 他 - 你 - 要 - 后 - 以 - 咱 - 在 - 啊 - 了 - 然 - 家 - 都 - 来 - 还 - 可 - 子 - 下 - 上 - 时 - 比 - 话 - 孩 - 呢 - 去 - 人 - 好 - 对 - 能 - 么 - 吧 - 学 - 多 - 到 - 看 - 为 - 进 - 把 - 大 - 做 - 生 - 种 - 品 - 给 - 没 - 行 - 现 - 小 - 会 - 作 - 较 - 方 - 块 - 业 - 让 - 点 - 定 - 因 - 什 - 长 - 面 - 如 - 安 - 客 - 问 - 过 - 车 - 出 - 啦 - 边 - 候 - 主 - 所 - 题 - 买 - 销 - 天 - 意 - 自 - 全 - 动 - 工 - '&' - 老 - 或 - 者 - 年 - 着 - 实 - 活 - 理 - 包 - 样 - 再 - 区 - 用 - 呀 - 零 - 员 - 发 - 先 - 部 - 放 - 门 - 情 - 像 - 分 - 售 - 很 - 开 - 己 - 十 - 括 - 跟 - 事 - 需 - 更 - 其 - 装 - 市 - 成 - 里 - 物 - 别 - 间 - 第 - 次 - 中 - 提 - 超 - 顾 - 保 - 感 - 加 - 量 - 二 - 和 - 各 - 嘛 - 新 - 每 - 完 - 力 - 消 - 得 - 店 - 本 - 通 - 习 - 觉 - 道 - 心 - 校 - 菜 - 交 - 哪 - 产 - 于 - 位 - 电 - 想 - 三 - 况 - 度 - 期 - 应 - 但 - 教 - 体 - 常 - 师 - 它 - 高 - 前 - 之 - 西 - 特 - 商 - 果 - 场 - 重 - 防 - 管 - 起 - 地 - 该 - 东 - 少 - 打 - 费 - 当 - 带 - 服 - 口 - 购 - 知 - 回 - 同 - 钱 - 外 - 户 - 注 - 促 - 价 - 解 - <#> - 水 - 百 - 今 - 太 - 最 - 报 - 怎 - 才 - 等 - 及 - 关 - <-> - 肯 - 火 - 机 - 流 - 制 - 送 - 手 - 确 - 法 - 写 - 玩 - 传 - 路 - 班 - 查 - 招 - 卖 - 几 - 正 - 合 - 够 - 五 - 引 - 容 - 只 - 男 - 日 - 四 - 宣 - 反 - 两 - 清 - 处 - 周 - 单 - 首 - 课 - 衣 - 便 - 身 - 气 - 针 - 奶 - 六 - 经 - 接 - 女 - 育 - 鲜 - 赠 - 试 - 停 - 晚 - 类 - 故 - 入 - 性 - 增 - 食 - 满 - 格 - 基 - 备 - 洗 - 培 - 质 - 美 - 明 - 整 - 化 - 公 - 案 - 哎 - 吸 - 原 - 易 - 幺 - 总 - 尽 - 优 - 而 - 建 - 责 - 啥 - 干 - 月 - 使 - 找 - 季 - 望 - 器 - 目 - 识 - 低 - 听 - 烟 - 相 - 早 - 检 - 护 - 摆 - 住 - 直 - 从 - 务 - 希 - 导 - 内 - 八 - 持 - 近 - 配 - 叫 - 见 - 设 - 吗 - 非 - 调 - 程 - 拿 - 训 - <%> - 结 - 标 - 挺 - 花 - <$> - 受 - 式 - 求 - 平 - 换 - 具 - 愿 - 货 - 牌 - 专 - 轻 - 推 - 妈 - 司 - 辆 - 存 - 名 - 且 - 欢 - 喜 - 吃 - 数 - 段 - 议 - 控 - 往 - 礼 - 决 - 走 - 养 - 免 - 惠 - 园 - 档 - 谁 - 真 - 快 - 置 - 幼 - 乐 - 证 - 向 - 厂 - 简 - 声 - 视 - 划 - 绩 - 适 - 集 - 搞 - 办 - 规 - 灾 - 造 - 准 - 必 - 任 - 险 - 响 - 毕 - 群 - 鞋 - 九 - 嘞 - 信 - 库 - 计 - 认 - 奖 - 表 - 无 - 影 - 头 - 卡 - 告 - 考 - 抽 - 竟 - 选 - 帮 - 何 - 修 - 酒 - 尤 - 线 - 穿 - 讲 - 光 - 留 - 讨 - 随 - 请 - 卫 - 系 - 队 - 失 - 双 - 庭 - 强 - 微 - 折 - 色 - 半 - 否 - 立 - 差 - 沟 - 冬 - 批 - 害 - 已 - 危 - 白 - 爆 - 节 - 参 - 逛 - 搭 - 风 - 朋 - 友 - 环 - 验 - 评 - 严 - 般 - 效 - 舞 - 饭 - 境 - 负 - 又 - 底 - 术 - 刚 - 件 - 罚 - 助 - 态 - 状 - 室 - 房 - 游 - 息 - 领 - 难 - 警 - 按 - 级 - 错 - 利 - 与 - 餐 - 陪 - 蹈 - 论 - 记 - 许 - 马 - 算 - 楼 - 型 - 排 - 广 - 值 - 油 - 糕 - 楚 - 步 - 至 - 拉 - 紧 - 灯 - 升 - 七 - 共 - 努 - 除 - 展 - 形 - 元 - 网 - 宜 - 营 - 兴 - 互 - 蛋 - 燃 - 冷 - 条 - 思 - 巡 - 净 - 须 - 遇 - 落 - 禁 - 科 - 款 - 哦 - 止 - 采 - 材 - 介 - 套 - 围 - 维 - 旦 - 切 - 显 - 汇 - 损 - 速 - 越 - 模 - 假 - 精 - 稍 - 书 - 绍 - 父 - 积 - 策 - 示 - 骑 - 改 - 跑 - 运 - 变 - 洁 - 仓 - 鱼 - <space> - 绝 - 诶 - 伤 - 细 - 职 - 离 - 慢 - 素 - 料 - 睡 - 趣 - 爱 - 母 - 眼 - 味 - 列 - 督 - 张 - 率 - 被 - 域 - 语 - 坏 - 资 - 红 - 减 - 励 - 择 - 预 - 层 - 陈 - 根 - 休 - 毒 - 球 - 爸 - 登 - 足 - 取 - 指 - 柜 - 限 - 降 - 概 - 院 - 供 - 支 - 额 - 源 - 始 - 盘 - 饮 - 项 - 液 - 童 - 爷 - 号 - 抓 - 台 - 转 - 观 - 金 - 照 - 滑 - 岁 - 致 - 文 - 她 - 弄 - 站 - 酸 - 音 - 胎 - 投 - 疏 - 乱 - 临 - 允 - 狗 - 疫 - 询 - 、 - 象 - 占 - 坐 - 倒 - 争 - 午 - 亲 - 读 - 演 - 退 - 惯 - 贵 - 达 - 监 - 志 - 绿 - 醒 - 急 - 驾 - 违 - 诉 - 片 - 空 - 势 - 极 - 豆 - 独 - 钟 - 代 - 瓶 - 纸 - 并 - 企 - 映 - 统 - 属 - 省 - 夜 - 障 - 谈 - 避 - 由 - 终 - 频 - 掉 - 估 - 激 - 仅 - 布 - 谢 - 灭 - 忙 - 码 - 伙 - 缺 - 叶 - 功 - 析 - 赖 - 架 - 范 - 签 - D - 待 - 神 - 龄 - 画 - 券 - 居 - 杜 - 堵 - 您 - 勤 - 扫 - 技 - 财 - 隐 - 患 - 例 - 乘 - 摩 - 戏 - 鼓 - 份 - 杂 - 散 - 热 - 铺 - 据 - 肤 - 怕 - 依 - 拖 - 充 - 智 - 偷 - 远 - 挂 - 盗 - 附 - 梯 - 冰 - 联 - 借 - 蹭 - 异 - 蔬 - 绑 - 堂 - 将 - 厨 - 帽 - 破 - 戴 - 皮 - 粉 - 氛 - 仪 - 国 - 益 - 闯 - 惩 - 逃 - 刻 - 突 - 申 - 略 - 顿 - 毛 - 召 - 海 - 黄 - 青 - 士 - 移 - 喝 - 板 - 练 - 歌 - 千 - 床 - 享 - 磨 - 构 - 收 - 万 - 摸 - 圈 - 亮 - 刹 - 逆 - 驶 - 赶 - 松 - 呐 - 压 - 拥 - 辅 - 协 - 托 - 断 - 轮 - 善 - 哈 - 捆 - 座 - 病 - 健 - 牛 - 草 - 释 - 似 - 土 - 补 - 俩 - 堆 - 即 - 密 - 背 - 言 - 街 - 尚 - 窗 - C - 艺 - 纠 - 纷 - 忽 - 句 - 另 - 施 - 政 - 温 - 某 - 翻 - 章 - 守 - 熟 - 民 - 续 - 良 - 挤 - 础 - 字 - 瓜 - 乎 - 竞 - 距 - 际 - 暖 - 凭 - 董 - 碗 - 短 - 渠 - 康 - 藏 - 香 - 虽 - 露 - 厉 - 忘 - 误 - 冒 - 窃 - 络 - 淡 - 腐 - 颜 - 播 - 默 - 锻 - 炼 - 宝 - 组 - 淘 - 则 - 逻 - 垃 - 圾 - 复 - 贴 - 靠 - 潜 - 察 - 晨 - 碰 - 剩 - 峰 - 深 - 偏 - 虑 - 念 - 初 - 闹 - 幸 - 跳 - 米 - 旧 - 蛤 - 虾 - 汽 - 苦 - 螃 - 蟹 - 冲 - 固 - 隔 - 懂 - 卷 - 镜 - 罩 - 暴 - 闭 - 野 - 玻 - 璃 - 义 - B - 煤 - 富 - 踩 - 途 - 闲 - 紫 - 北 - 欲 - 曲 - 榜 - 垒 - 伴 - 累 - 判 - 搜 - 困 - 租 - 键 - 肥 - 社 - 弯 - 角 - 纪 - 律 - 详 - 右 - 刮 - 继 - 撤 - 输 - 普 - 未 - 稳 - 摔 - 访 - 扩 - 扣 - 末 - 票 - 承 - 担 - 丢 - 涉 - 欠 - 创 - 获 - 摊 - 疑 - 蓝 - 答 - 霜 - 录 - 齐 - 烦 - 治 - 粗 - 叛 - 污 - 址 - 若 - 染 - 含 - 药 - 雨 - 此 - 陌 - 研 - 催 - 拨 - 页 - 磕 - 呆 - 脸 - 墙 - 夫 - A - 棉 - 袜 - 填 - 死 - 懒 - 植 - 扇 - 捡 - 遍 - 操 - 摄 - 箱 - ? - 繁 - 城 - 咯 - 左 - 拐 - 悉 - 犯 - 宽 - 伞 - 余 - 糊 - 巧 - 透 - 贪 - 顺 - 局 - 妇 - 私 - 浪 - 岗 - 棋 - 序 - 辛 - V - 握 - 擦 - 扔 - 斤 - 付 - 剐 - 锁 - 麻 - 敢 - 桶 - 佩 - 坠 - 封 - 替 - 塞 - 斗 - 攀 - 爽 - 沉 - 混 - 滋 - 刺 - 潮 - 皿 - 端 - 刷 - 刀 - 巾 - 烫 - 木 - 漏 - 迅 - 织 - 救 - 吹 - 仔 - 称 - 返 - 景 - 聚 - 阶 - 秀 - 涨 - P - 颈 - 肩 - 泥 - I - 侣 - 尔 - 伍 - 甚 - 皂 - 蒙 - 世 - 界 - 嘻 - 辈 - Q - 审 - 尾 - 浇 - 遛 - 馨 - 措 - 邻 - 撒 - 挥 - 遵 - 予 - 击 - 鉴 - 殊 - 哇 - 载 - 添 - 盈 - 盯 - 惊 - 喷 - 荷 - 怠 - 抢 - 喂 - 饱 - 谅 - 团 - 龙 - 冻 - 图 - 掺 - 扑 - 刊 - 葱 - 薄 - 萝 - 卜 - 麦 - 苹 - 触 - 飞 - 艳 - 畅 - 鸡 - 权 - 趟 - 连 - 哭 - 旁 - 漂 - 焊 - 敞 - 叉 - 钢 - 氧 - 溺 - 聊 - 巢 - 衡 - 淀 - 劣 - 虫 - 符 - 均 - 辨 - 菌 - 彻 - 烂 - 厅 - 皱 - 妥 - 拾 - 插 - 携 - 竹 - 碍 - 湿 - 灵 - 忌 - 旅 - 勿 - 宿 - 迷 - 探 - 春 - 劵 - 星 - 耐 - 裤 - 颖 - 韩 - 艾 - 灸 - 邀 - 婚 - 乳 - 芽 - 挑 - 摘 - 阿 - 姨 - 伊 - 慕 - 纯 - 貌 - 嘴 - 偶 - 睛 - 献 - 坚 - 账 - 典 - 唱 - L - E - 贡 - 寒 - 唧 - Y - 尝 - 抹 - 汰 - 腾 - 哼 - 仿 - 英 - 舒 - 扰 - 拒 - 剪 - 夏 - 宠 - 咬 - 派 - 委 - 婉 - 执 - 呗 - 悄 - 搬 - 雪 - 盐 - 暂 - 奸 - 耍 - 僻 - 却 - 署 - 寻 - 串 - 援 - 亏 - 烈 - 印 - 捎 - 幅 - 绘 - 锈 - 闸 - 罪 - 嫌 - 俗 - 歹 - 劳 - 兜 - 喽 - 谓 - 鹤 - 舍 - 克 - 徇 - 倍 - 敏 - 丝 - 纺 - 拭 - 融 - 蔫 - 掂 - 测 - T - 众 - 卸 - 暗 - 赔 - 偿 - 举 - 劲 - 篮 - 储 - 乙 - 炔 - 软 - 侵 - 诱 - 浊 - 蚀 - 秽 - 炸 - 泽 - 闻 - 鼻 - 甜 - 澈 - 脏 - 官 - 凝 - 芳 - 灰 - 卵 - 农 - 烧 - 肉 - 桌 - 椅 - 垫 - 硬 - 叠 - 瓷 - 碎 - 柄 - 屉 - 拳 - 撞 - 铝 - 歇 - 遗 - 炮 - 掌 - 妨 - 静 - 浸 - 涂 - 凉 - 炫 - 耀 - 姓 - 究 - 奏 - 缆 - 脚 - 酿 - 抄 - 慌 - 戚 - 燥 - 毯 - 挽 - 诺 - 济 - 旺 - 抖 - 郊 - 疗 - 巴 - 痧 - 脊 - 膜 - 晒 - 润 - 掏 - 笔 - 鞭 - 博 - 捧 - 函 - 胡 - 锅 - 雾 - 疯 - 狂 - 趋 - 膏 - 妆 - 尘 - 袋 - 贝 - 俺 - 耽 - 怀 - 恐 - 赋 - 脑 - 焉 - 愣 - 呵 - 噼 - 啪 - 虚 - 河 - 归 - 绊 - 械 - 扬 - 筒 - 靴 - 束 - 彩 - 荐 - 沙 - 迎 - 荡 - 凌 - 昂 - 碑 - 蹦 - 扉 - 泼 - 丰 - 滴 - 沾 - 亭 - 粘 - 奇 - 饼 - 牙 - 娃 - 杯 - 踢 - 嘿 - 抛 - 枯 - 剔 - 苗 - 纹 - 永 - 津 - 唉 - 趁 - 屡 - 逮 - 戒 - 肃 - 仁 - 肇 - 醉 - 糟 - 馈 - 横 - 扭 - 盔 - 侧 - 鲁 - 莽 - 飙 - 稿 - 逐 - 谋 - 京 - 苏 - 宁 - 驻 - 咨 - 旷 - 拓 - 杆 - 秤 - 叮 - 嘱 - 咋 - 炊 - 怪 - 婆 - 阎 - 王 - 饿 - 鬼 - 惨 - 渡 - 坎 - 囤 - 甲 - 蛙 - 鲤 - 桂 - 石 - 玉 - 溪 - 华 - 窝 - 截 - 秩 - 嗨 - 芹 - 梨 - 蕉 - S - 煲 - 汤 - 鲫 - 揽 - 挡 - 柚 - 瑞 - 匹 - '2' - 踹 - 吵 - 凶 - 矩 - 迟 - 脾 - 纳 - 朵 - 墨 - 袖 - 链 - 钩 - 笼 - 熄 - 盆 - 殴 - 欺 - 诈 - 厕 - 娱 - 爬 - 威 - 胁 - 阅 - 赌 - 拢 - 症 - 伪 - 脂 - 堪 - 盛 - 蚊 - 蝇 - 煎 - 晰 - 柔 - 涩 - 汁 - 腹 - 胃 - 痉 - 挛 - 颗 - 粒 - 匀 - 败 - 历 - 佳 - 乏 - 寄 - 残 - 杀 - 剂 - 疾 - 衍 - 溅 - 倘 - 褶 - 席 - 启 - 遮 - 槽 - 递 - 橱 - 迹 - 镁 - 泄 - 阀 - 柴 - 阻 - 恋 - 盲 - 浓 - 捂 - 腰 - 姿 - 缝 - 肿 - 焦 - 骗 - 伺 - 嘘 - 掩 - 褥 - 帘 - 籍 - 锥 - 锋 - 尖 - 锐 - 祸 - 秒 - 李 - 伸 - 浏 - 览 - 航 - 讯 - 谨 - 慎 - 匪 - 劫 - 医 - 族 - 忧 - 孤 - 拜 - 窄 - 唯 - 搁 - 朝 - 尺 - 盟 - 波 - 隆 - 词 - 村 - 娶 - 媳 - 县 - 聘 - 醇 - 泡 - 坨 - 淋 - 延 - 柱 - 肾 - 蒸 - 槛 - 赚 - 凡 - 恩 - 厚 - 赞 - 茎 - 蒜 - 苔 - 甘 - 菠 - 涮 - 霾 - 仍 - 云 - 追 - 丽 - 盖 - 欧 - 莱 - 雅 - 婴 - 孕 - 敲 - 约 - 惰 - 谱 - 射 - 惑 - 睹 - 奉 - 诚 - 惶 - 卓 - 勉 - 聪 - 疼 - 弃 - 奴 - 隶 - 嚷 - 眠 - 躺 - 乒 - 乓 - 琴 - 挖 - 掘 - 阵 - 浆 - 索 - 呼 - 古 - 弥 - 熔 - 抱 - 怨 - 猫 - 笑 - 挣 - 黑 - 猛 - 令 - 核 - 磊 - 橙 - 吨 - 吊 - 蘸 - 氮 - 罐 - 战 - 懈 - 渐 - 胜 - 命 - 抬 - 缘 - 睦 - 扮 - 珠 - 颁 - 蔼 - 凳 - 饰 - 缤 - 晶 - 抵 - 遥 - 腿 - 拍 - 妻 - 羽 - 绒 - 梳 - 袄 - 述 - 跆 - 屈 - 脱 - 朗 - 劝 - 胆 - 腔 - 圆 - 亚 - 宴 - 编 - 肢 - 壶 - 暑 - 怒 - 描 - 绕 - 悦 - 忆 - 嗓 - 胖 - 疙 - 瘩 - 哒 - 碴 - 棱 - 炒 - 井 - 漫 - 烘 - 焙 - 涤 - 船 - 纱 - 君 - 茉 - 莉 - 钙 - 瞩 - <_> - 塌 - 嗷 - 屁 - 股 - 绪 - 勇 - 奋 - 荣 - 诲 - 卑 - 挫 - 昧 - 疲 - 惫 - 册 - 呈 - 僵 - 熬 - 敬 - 呦 - <sos/eos> init: null model_conf: ignore_id: 0 use_preprocessor: true token_type: char bpemodel: null non_linguistic_symbols: /ocean/projects/cis210027p/berrebbi/espnet/egs2/aishell4/asr1/data/nlsyms.txt cleaner: null g2p: null lm: transformer lm_conf: pos_enc: null embed_unit: 128 att_unit: 512 head: 8 unit: 2048 layer: 16 dropout_rate: 0.1 required: - output_dir - token_list version: 0.10.3a1 distributed: false ``` </details>
{"language": "zh", "license": "cc-by-4.0", "tags": ["espnet", "audio", "automatic-speech-recognition"], "datasets": ["aishell4"]}
espnet/Dan_Berrebbi_aishell4_asr
null
[ "espnet", "audio", "automatic-speech-recognition", "zh", "dataset:aishell4", "license:cc-by-4.0", "region:us" ]
null
2022-03-02T23:29:05+00:00
automatic-speech-recognition
espnet
## Example ESPnet2 ASR model ### `Emiru_Tsunoo/aishell_asr_train_asr_streaming_transformer_raw_zh_char_sp_valid.acc.ave` ♻️ Imported from https://zenodo.org/record/4604023/ This model was trained by Emiru Tsunoo using aishell/asr1 recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```python # coming soon ``` ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson {Enrique Yalta Soplin} and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } @inproceedings{hayashi2020espnet, title={{Espnet-TTS}: Unified, reproducible, and integratable open source end-to-end text-to-speech toolkit}, author={Hayashi, Tomoki and Yamamoto, Ryuichi and Inoue, Katsuki and Yoshimura, Takenori and Watanabe, Shinji and Toda, Tomoki and Takeda, Kazuya and Zhang, Yu and Tan, Xu}, booktitle={Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, pages={7654--7658}, year={2020}, organization={IEEE} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Enrique Yalta Soplin and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
{"language": "zh", "license": "cc-by-4.0", "tags": ["espnet", "audio", "automatic-speech-recognition"], "datasets": ["aishell"]}
espnet/Emiru_Tsunoo_aishell_asr_train_asr_streaming_transformer_raw_zh_char_sp_valid.acc.ave
null
[ "espnet", "audio", "automatic-speech-recognition", "zh", "dataset:aishell", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
null
2022-03-02T23:29:05+00:00
automatic-speech-recognition
espnet
## Example ESPnet2 ASR model ### `Hoon_Chung/jsut_asr_train_asr_conformer8_raw_char_sp_valid.acc.ave` ♻️ Imported from https://zenodo.org/record/4292742/ This model was trained by Hoon Chung using jsut/asr1 recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```python # coming soon ``` ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson {Enrique Yalta Soplin} and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } @inproceedings{hayashi2020espnet, title={{Espnet-TTS}: Unified, reproducible, and integratable open source end-to-end text-to-speech toolkit}, author={Hayashi, Tomoki and Yamamoto, Ryuichi and Inoue, Katsuki and Yoshimura, Takenori and Watanabe, Shinji and Toda, Tomoki and Takeda, Kazuya and Zhang, Yu and Tan, Xu}, booktitle={Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, pages={7654--7658}, year={2020}, organization={IEEE} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Enrique Yalta Soplin and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
{"language": "ja", "license": "cc-by-4.0", "tags": ["espnet", "audio", "automatic-speech-recognition"], "datasets": ["jsut"]}
espnet/Hoon_Chung_jsut_asr_train_asr_conformer8_raw_char_sp_valid.acc.ave
null
[ "espnet", "audio", "automatic-speech-recognition", "ja", "dataset:jsut", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
null
2022-03-02T23:29:05+00:00
automatic-speech-recognition
espnet
## Example ESPnet2 ASR model ### `Hoon_Chung/zeroth_korean_asr_train_asr_transformer5_raw_bpe_valid.acc.ave` ♻️ Imported from https://zenodo.org/record/4014588/ This model was trained by Hoon Chung using zeroth_korean/asr1 recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```python # coming soon ``` ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson {Enrique Yalta Soplin} and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } @inproceedings{hayashi2020espnet, title={{Espnet-TTS}: Unified, reproducible, and integratable open source end-to-end text-to-speech toolkit}, author={Hayashi, Tomoki and Yamamoto, Ryuichi and Inoue, Katsuki and Yoshimura, Takenori and Watanabe, Shinji and Toda, Tomoki and Takeda, Kazuya and Zhang, Yu and Tan, Xu}, booktitle={Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, pages={7654--7658}, year={2020}, organization={IEEE} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Enrique Yalta Soplin and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
{"language": "kr", "license": "cc-by-4.0", "tags": ["espnet", "audio", "automatic-speech-recognition"], "datasets": ["zeroth_korean"]}
espnet/Hoon_Chung_zeroth_korean_asr_train_asr_transformer5_raw_bpe_valid.acc.ave
null
[ "espnet", "audio", "automatic-speech-recognition", "kr", "dataset:zeroth_korean", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
null
2022-03-02T23:29:05+00:00
automatic-speech-recognition
espnet
## ESPnet2 ASR pretrained model ### `espnet/Karthik_DSTC2_asr_train_asr_Hubert_transformer` This model was trained by Karthik using DSTC2/asr1 recipe in [espnet](https://github.com/espnet/espnet/) ### Demo: How to use in ESPnet2 ```python # coming soon ``` ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson {Enrique Yalta Soplin} and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Enrique Yalta Soplin and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
{"language": "en", "license": "cc-by-4.0", "tags": ["espnet", "audio", "automatic-speech-recognition"], "datasets": ["sinhala"]}
espnet/Karthik_DSTC2_asr_train_asr_Hubert_transformer
null
[ "espnet", "tensorboard", "audio", "automatic-speech-recognition", "en", "dataset:sinhala", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
null
2022-03-02T23:29:05+00:00
automatic-speech-recognition
espnet
## ESPnet2 ASR pretrained model ### `espnet/Karthik_DSTC2_asr_train_asr_transformer` This model was trained by Karthik using DSTC2/asr1 recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```python # coming soon ``` ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson {Enrique Yalta Soplin} and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Enrique Yalta Soplin and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
{"language": "en", "license": "cc-by-4.0", "tags": ["espnet", "audio", "automatic-speech-recognition"], "datasets": ["sinhala"]}
espnet/Karthik_DSTC2_asr_train_asr_transformer
null
[ "espnet", "tensorboard", "audio", "automatic-speech-recognition", "en", "dataset:sinhala", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
null
2022-03-02T23:29:05+00:00
automatic-speech-recognition
espnet
## ESPnet2 ASR pretrained model ### `espnet/Karthik_sinhala_asr_train_asr_transformer` This model was trained by Karthik using sinhala/asr1 recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```python # coming soon ``` ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson {Enrique Yalta Soplin} and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Enrique Yalta Soplin and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
{"language": "en", "license": "cc-by-4.0", "tags": ["espnet", "audio", "automatic-speech-recognition"], "datasets": ["sinhala"]}
espnet/Karthik_sinhala_asr_train_asr_transformer
null
[ "espnet", "audio", "automatic-speech-recognition", "en", "dataset:sinhala", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
null
2022-03-02T23:29:05+00:00
automatic-speech-recognition
espnet
## Example ESPnet2 ASR model ### `Shinji_Watanabe/laborotv_asr_train_asr_conformer2_latest33_raw_char_sp_valid.acc.ave` ♻️ Imported from https://zenodo.org/record/4304245/ This model was trained by Shinji Watanabe using laborotv/asr1 recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```python # coming soon ``` ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson {Enrique Yalta Soplin} and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } @inproceedings{hayashi2020espnet, title={{Espnet-TTS}: Unified, reproducible, and integratable open source end-to-end text-to-speech toolkit}, author={Hayashi, Tomoki and Yamamoto, Ryuichi and Inoue, Katsuki and Yoshimura, Takenori and Watanabe, Shinji and Toda, Tomoki and Takeda, Kazuya and Zhang, Yu and Tan, Xu}, booktitle={Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, pages={7654--7658}, year={2020}, organization={IEEE} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Enrique Yalta Soplin and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
{"language": "ja", "license": "cc-by-4.0", "tags": ["espnet", "audio", "automatic-speech-recognition"], "datasets": ["laborotv"]}
espnet/Shinji_Watanabe_laborotv_asr_train_asr_conformer2_latest33_raw_char_sp_valid.acc.ave
null
[ "espnet", "audio", "automatic-speech-recognition", "ja", "dataset:laborotv", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
null
2022-03-02T23:29:05+00:00
automatic-speech-recognition
espnet
## Example ESPnet2 ASR model ### `Shinji_Watanabe/librispeech_asr_train_asr_transformer_e18_raw_bpe_sp_valid.acc.best` ♻️ Imported from https://zenodo.org/record/4030677/ This model was trained by Shinji Watanabe using librispeech/asr1 recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```python # coming soon ``` ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson {Enrique Yalta Soplin} and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } @inproceedings{hayashi2020espnet, title={{Espnet-TTS}: Unified, reproducible, and integratable open source end-to-end text-to-speech toolkit}, author={Hayashi, Tomoki and Yamamoto, Ryuichi and Inoue, Katsuki and Yoshimura, Takenori and Watanabe, Shinji and Toda, Tomoki and Takeda, Kazuya and Zhang, Yu and Tan, Xu}, booktitle={Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, pages={7654--7658}, year={2020}, organization={IEEE} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Enrique Yalta Soplin and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
{"language": "en", "license": "cc-by-4.0", "tags": ["espnet", "audio", "automatic-speech-recognition"], "datasets": ["librispeech"]}
espnet/Shinji_Watanabe_librispeech_asr_train_asr_transformer_e18_raw_bpe_sp_valid.acc.best
null
[ "espnet", "audio", "automatic-speech-recognition", "en", "dataset:librispeech", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
null
2022-03-02T23:29:05+00:00
automatic-speech-recognition
espnet
## ESPnet2 ASR pretrained model ### `Shinji Watanabe/open_li52_asr_train_asr_raw_bpe7000_valid.acc.ave` ♻️ Imported from https://zenodo.org/record/4630406/ This model was trained by Shinji Watanabe using gigaspeech/asr1 recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```python # coming soon ``` ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson {Enrique Yalta Soplin} and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Enrique Yalta Soplin and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
{"language": "en", "license": "cc-by-4.0", "tags": ["espnet", "audio", "automatic-speech-recognition"], "datasets": ["gigaspeech"]}
espnet/Shinji_Watanabe_open_li52_asr_train_asr_raw_bpe7000_valid.acc.ave
null
[ "espnet", "audio", "automatic-speech-recognition", "en", "dataset:gigaspeech", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
null
2022-03-02T23:29:05+00:00
automatic-speech-recognition
espnet
## Example ESPnet2 ASR model ### `Shinji_Watanabe/spgispeech_asr_train_asr_conformer6_n_fft512_hop_length256_raw_en_bpe5000_valid.acc.ave` ♻️ Imported from https://zenodo.org/record/4585546/ This model was trained by Shinji Watanabe using spgispeech/asr1 recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```python # coming soon ``` ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson {Enrique Yalta Soplin} and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } @inproceedings{hayashi2020espnet, title={{Espnet-TTS}: Unified, reproducible, and integratable open source end-to-end text-to-speech toolkit}, author={Hayashi, Tomoki and Yamamoto, Ryuichi and Inoue, Katsuki and Yoshimura, Takenori and Watanabe, Shinji and Toda, Tomoki and Takeda, Kazuya and Zhang, Yu and Tan, Xu}, booktitle={Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, pages={7654--7658}, year={2020}, organization={IEEE} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Enrique Yalta Soplin and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
{"language": "en", "license": "cc-by-4.0", "tags": ["espnet", "audio", "automatic-speech-recognition"], "datasets": ["spgispeech"]}
espnet/Shinji_Watanabe_spgispeech_asr_train_asr_conformer6_n_fft512_hop_lengt-truncated-f1ac86
null
[ "espnet", "audio", "automatic-speech-recognition", "en", "dataset:spgispeech", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
null
2022-03-02T23:29:05+00:00
automatic-speech-recognition
espnet
## Example ESPnet2 ASR model ### `Shinji_Watanabe/spgispeech_asr_train_asr_conformer6_n_fft512_hop_length256_raw_en_unnorm_bpe5000_valid.acc.ave` ♻️ Imported from https://zenodo.org/record/4585558/ This model was trained by Shinji Watanabe using spgispeech/asr1 recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```python # coming soon ``` ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson {Enrique Yalta Soplin} and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } @inproceedings{hayashi2020espnet, title={{Espnet-TTS}: Unified, reproducible, and integratable open source end-to-end text-to-speech toolkit}, author={Hayashi, Tomoki and Yamamoto, Ryuichi and Inoue, Katsuki and Yoshimura, Takenori and Watanabe, Shinji and Toda, Tomoki and Takeda, Kazuya and Zhang, Yu and Tan, Xu}, booktitle={Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, pages={7654--7658}, year={2020}, organization={IEEE} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Enrique Yalta Soplin and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
{"language": "en_unnorm", "license": "cc-by-4.0", "tags": ["espnet", "audio", "automatic-speech-recognition"], "datasets": ["spgispeech"]}
espnet/Shinji_Watanabe_spgispeech_asr_train_asr_conformer6_n_fft512_hop_lengt-truncated-a013d0
null
[ "espnet", "audio", "automatic-speech-recognition", "dataset:spgispeech", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
null
2022-03-02T23:29:05+00:00
audio-to-audio
espnet
## ESPnet2 ENH model ### `espnet/Wangyou_Zhang_chime4_enh_train_enh_beamformer_mvdr_raw` This model was trained by Wangyou Zhang using chime4 recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```bash cd espnet pip install -e . cd egs2/chime4/enh1 ./run.sh --skip_data_prep false --skip_train true --download_model espnet/Wangyou_Zhang_chime4_enh_train_enh_beamformer_mvdr_raw ``` ## ENH config <details><summary>expand</summary> ``` config: conf/tuning/train_enh_beamformer_mvdr.yaml print_config: false log_level: INFO dry_run: false iterator_type: sequence output_dir: exp/enh_train_enh_beamformer_mvdr_raw ngpu: 1 seed: 0 num_workers: 4 num_att_plot: 3 dist_backend: nccl dist_init_method: env:// dist_world_size: 2 dist_rank: 0 local_rank: 0 dist_master_addr: localhost dist_master_port: 35841 dist_launcher: null multiprocessing_distributed: true cudnn_enabled: true cudnn_benchmark: false cudnn_deterministic: true collect_stats: false write_collected_feats: false max_epoch: 70 patience: 4 val_scheduler_criterion: - valid - loss early_stopping_criterion: - valid - loss - min best_model_criterion: - - valid - si_snr - max - - valid - loss - min keep_nbest_models: 1 grad_clip: 5.0 grad_clip_type: 2.0 grad_noise: false accum_grad: 1 no_forward_run: false resume: true train_dtype: float32 use_amp: false log_interval: null unused_parameters: false use_tensorboard: true use_wandb: false wandb_project: null wandb_id: null pretrain_path: null init_param: [] freeze_param: [] num_iters_per_epoch: null batch_size: 8 valid_batch_size: null batch_bins: 1000000 valid_batch_bins: null train_shape_file: - exp/enh_stats_16k/train/speech_mix_shape - exp/enh_stats_16k/train/speech_ref1_shape - exp/enh_stats_16k/train/noise_ref1_shape valid_shape_file: - exp/enh_stats_16k/valid/speech_mix_shape - exp/enh_stats_16k/valid/speech_ref1_shape - exp/enh_stats_16k/valid/noise_ref1_shape batch_type: folded valid_batch_type: null fold_length: - 80000 - 80000 - 80000 sort_in_batch: descending sort_batch: descending multiple_iterator: false chunk_length: 500 chunk_shift_ratio: 0.5 num_cache_chunks: 1024 train_data_path_and_name_and_type: - - dump/raw/tr05_simu_isolated_6ch_track/wav.scp - speech_mix - sound - - dump/raw/tr05_simu_isolated_6ch_track/spk1.scp - speech_ref1 - sound - - dump/raw/tr05_simu_isolated_6ch_track/noise1.scp - noise_ref1 - sound valid_data_path_and_name_and_type: - - dump/raw/dt05_simu_isolated_6ch_track/wav.scp - speech_mix - sound - - dump/raw/dt05_simu_isolated_6ch_track/spk1.scp - speech_ref1 - sound - - dump/raw/dt05_simu_isolated_6ch_track/noise1.scp - noise_ref1 - sound allow_variable_data_keys: false max_cache_size: 0.0 max_cache_fd: 32 valid_max_cache_size: null optim: adam optim_conf: lr: 0.001 eps: 1.0e-08 weight_decay: 0 scheduler: reducelronplateau scheduler_conf: mode: min factor: 0.5 patience: 1 init: xavier_uniform model_conf: loss_type: mask_mse mask_type: PSM^2 use_preprocessor: false encoder: stft encoder_conf: n_fft: 512 hop_length: 128 separator: wpe_beamformer separator_conf: num_spk: 1 loss_type: mask_mse use_wpe: false wnet_type: blstmp wlayers: 3 wunits: 300 wprojs: 320 wdropout_rate: 0.0 taps: 5 delay: 3 use_dnn_mask_for_wpe: true use_beamformer: true bnet_type: blstmp blayers: 3 bunits: 512 bprojs: 512 badim: 320 ref_channel: 3 use_noise_mask: true beamformer_type: mvdr_souden bdropout_rate: 0.0 decoder: stft decoder_conf: n_fft: 512 hop_length: 128 required: - output_dir version: 0.9.7 distributed: true ``` </details> ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } @inproceedings{li2021espnetse, title={{ESPnet-SE}: End-to-End Speech Enhancement and Separation Toolkit Designed for {ASR} Integration}, author={Li, Chenda and Shi, Jing and Zhang, Wangyou and Subramanian, Aswin Shanmugam and Chang, Xuankai and Kamo, Naoyuki and Hira, Moto and Hayashi, Tomoki and Boeddeker, Christoph and Chen, Zhuo and Watanabe, Shinji}, booktitle={Proc. IEEE Spoken Language Technology Workshop (SLT)}, pages={785--792}, year={2021}, } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } @inproceedings{li2021espnetse, title={{ESPnet-SE}: End-to-End Speech Enhancement and Separation Toolkit Designed for {ASR} Integration}, author={Li, Chenda and Shi, Jing and Zhang, Wangyou and Subramanian, Aswin Shanmugam and Chang, Xuankai and Kamo, Naoyuki and Hira, Moto and Hayashi, Tomoki and Boeddeker, Christoph and Chen, Zhuo and Watanabe, Shinji}, year={2020}, eprint={2011.03706}, archivePrefix={arXiv}, primaryClass={eess.AS} } ```
{"license": "cc-by-4.0", "tags": ["espnet", "audio", "audio-to-audio"], "datasets": ["chime4"]}
espnet/Wangyou_Zhang_chime4_enh_train_enh_beamformer_mvdr_raw
null
[ "espnet", "audio", "audio-to-audio", "dataset:chime4", "arxiv:1804.00015", "arxiv:2011.03706", "license:cc-by-4.0", "region:us" ]
null
2022-03-02T23:29:05+00:00
automatic-speech-recognition
espnet
## ESPnet2 ASR model ### `espnet/YushiUeda_iemocap_sentiment_asr_train_asr_conformer` This model was trained by Yushi Ueda using iemocap recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```bash cd espnet git checkout dfa2868243a897c2a6c34b7407eaea5e4b5508a5 pip install -e . cd egs2/iemocap/asr1 ./run.sh --skip_data_prep false --skip_train true --download_model espnet/YushiUeda_iemocap_sentiment_asr_train_asr_conformer ``` <!-- Generated by scripts/utils/show_asr_result.sh --> # RESULTS ## Environments - date: `Thu Feb 17 11:25:22 EST 2022` - python version: `3.7.11 (default, Jul 27 2021, 14:32:16) [GCC 7.5.0]` - espnet version: `espnet 0.10.7a1` - pytorch version: `pytorch 1.9.0+cu102` - Git hash: `f6cde1c419c814a14ccd40abe557a780508cbcdf` - Commit date: `Fri Feb 11 12:25:33 2022 -0500` ## Using Conformer based encoder and Transformer based decoder with spectral augmentation and predicting transcript along with sentiment - ASR config: [conf/tuning/train_asr_conformer.yaml](conf/tuning/train_asr_conformer.yaml) - token_type: word - labels: Positive, Neutral, Negative |dataset|Snt|Intent Classification Macro F1 (%)| Weighted F1 (%)| Micro F1 (%)| |---|---|---|---|---| |decode_asr_model_valid.acc.ave_10best/valid|754|53.9|65.7|66.4| |decode_asr_model_valid.acc.ave_10best/test|1650|50.3|54.5|55.7| ## ASR config <details><summary>expand</summary> ``` config: conf/tuning/train_asr_conformer.yaml print_config: false log_level: INFO dry_run: false iterator_type: sequence output_dir: exp/asr_train_asr_conformer_raw_en_word ngpu: 1 seed: 0 num_workers: 1 num_att_plot: 3 dist_backend: nccl dist_init_method: env:// dist_world_size: null dist_rank: null local_rank: 0 dist_master_addr: null dist_master_port: null dist_launcher: null multiprocessing_distributed: false unused_parameters: false sharded_ddp: false cudnn_enabled: true cudnn_benchmark: false cudnn_deterministic: true collect_stats: false write_collected_feats: false max_epoch: 200 patience: null val_scheduler_criterion: - valid - loss early_stopping_criterion: - valid - loss - min best_model_criterion: - - valid - acc - max keep_nbest_models: 10 nbest_averaging_interval: 0 grad_clip: 5.0 grad_clip_type: 2.0 grad_noise: false accum_grad: 1 no_forward_run: false resume: true train_dtype: float32 use_amp: false log_interval: null use_matplotlib: true use_tensorboard: true use_wandb: false wandb_project: null wandb_id: null wandb_entity: null wandb_name: null wandb_model_log_interval: -1 detect_anomaly: false pretrain_path: null init_param: [] ignore_init_mismatch: false freeze_param: [] num_iters_per_epoch: null batch_size: 64 valid_batch_size: null batch_bins: 1000000 valid_batch_bins: null train_shape_file: - exp/asr_stats_raw_en_word/train/speech_shape - exp/asr_stats_raw_en_word/train/text_shape.word valid_shape_file: - exp/asr_stats_raw_en_word/valid/speech_shape - exp/asr_stats_raw_en_word/valid/text_shape.word batch_type: folded valid_batch_type: null fold_length: - 80000 - 150 sort_in_batch: descending sort_batch: descending multiple_iterator: false chunk_length: 500 chunk_shift_ratio: 0.5 num_cache_chunks: 1024 train_data_path_and_name_and_type: - - dump/raw/train/wav.scp - speech - sound - - dump/raw/train/text - text - text valid_data_path_and_name_and_type: - - dump/raw/valid/wav.scp - speech - sound - - dump/raw/valid/text - text - text allow_variable_data_keys: false max_cache_size: 0.0 max_cache_fd: 32 valid_max_cache_size: null optim: adam optim_conf: lr: 0.0005 scheduler: warmuplr scheduler_conf: warmup_steps: 5000 token_list: - <blank> - <unk> - i - you - Negative - to - it - '''s' - the - '''t' - that - and - Neutral - Positive - a - know - what - of - like - we - don - just - is - do - this - '''m' - me - have - can - in - for - 'no' - so - not - '''re' - my - but - mean - be - going - all - was - they - well - want - yeah - right - get - 'on' - there - he - oh - here - go - out - with - your - if - okay - are - she - at - '''ll' - '''ve' - got - think - about - up - see - then - why - how - time - really - one - now - or - as - back - look - her - him - been - because - 'yes' - would - didn - little - did - good - some - them - something - need - maybe - never - um - come - take - god - had - could - will - uh - am - people - thing - when - very - let - much - sorry - from - again - long - give - anything - too - make - fish - years - where - isn - three - said - things - nothing - help - work - tell - guess - over - 'off' - business - even - sir - any - his - around - were - way - who - new - kind - '''d' - our - everything - more - came - an - should - down - understand - only - great - else - man - line - us - ask - last - doing - say - waiting - other - lot - job - feel - yourself - point - thought - day - whole - away - coming - better - marry - always - these - still - wrong - two - sure - care - phone - probably - remember - annie - life - year - believe - gonna - supposed - went - first - talk - listen - alright - before - thinking - after - stuff - happy - ever - turn - thank - home - fine - into - than - call - money - stay - actually - every - hope - love - huh - married - wait - somewhere - has - being - father - larry - hell - wanted - trying - getting - guys - name - saying - bag - hear - girl - hey - flashlight - beach - put - leave - dollars - mind - augie - does - won - fifty - excited - hate - four - done - through - their - keep - car - lost - doesn - happen - wouldn - school - big - calm - night - '''cause' - id - another - though - myself - nobody - somebody - best - might - same - form - mom - nice - matter - spot - stop - told - by - shut - enough - five - joe - hard - find - course - chris - drunk - snap - luggage - rather - standing - someone - laugh - took - those - please - live - six - ridiculous - minute - looking - bring - show - start - brought - days - must - pretty - sort - talking - sand - child - working - send - next - hundred - whatever - many - moon - moment - champagne - s - problem - end - real - dear - happened - person - place - fill - awesome - house - such - cool - c - haven - knew - die - finally - glasses - stupid - least - dad - supervisor - totally - each - try - waited - idea - u - party - asked - anymore - sick - evening - license - kid - wow - flight - felt - pay - since - single - miss - without - different - mmhmm - free - sometimes - yet - couldn - view - hour - knows - drive - themselves - swim - ah - brandy - fact - ma - '''am' - already - part - sit - thanks - comes - check - everyone - started - kiss - weren - hotel - own - beast - bad - above - run - worst - grunions - darling - seem - baby - turned - gone - shouldn - exactly - reason - full - both - crazy - pack - bit - swimming - liquor - seemed - serious - cause - peter - burden - gosh - forgot - happens - alone - pass - letters - heard - manager - hours - baggage - card - number - argue - seen - walk - forget - kids - family - blanket - honey - open - quite - gotta - forms - mother - old - needs - times - airline - which - once - service - week - together - twenty - stand - made - fun - dead - sake - men - kate - today - plane - most - carla - driving - deal - information - wanna - definitely - while - yea - certificate - particular - lots - calling - fortune - write - entire - found - trouble - use - forever - woman - enjoy - room - damn - war - meaning - longer - jacket - ticket - twice - sent - wonder - small - amanda - cannot - able - half - ha - saw - bus - ago - hmm - hi - kidding - giving - gave - move - women - ahead - york - guy - suppose - company - incredible - either - minutes - tonight - shoes - utterly - wasn - filled - gets - amazing - beautiful - hello - birth - prove - choice - friend - expect - says - blue - anywhere - died - weird - umm - blood - d - face - body - alive - diagram - goes - read - far - race - wind - fly - interested - california - coast - news - past - charles - floor - idiotic - indeed - absolutely - softball - answer - somehow - having - campus - completely - file - everybody - given - fair - front - telling - tried - sign - helping - dollar - used - takes - hair - behind - head - also - question - pull - brother - nonsense - kill - pocket - cold - mine - watching - shall - divorce - driver - m - makes - cried - security - suitcase - seems - control - set - letter - realized - paper - weeks - address - sweet - lose - huge - death - ones - living - glad - bed - until - thinks - wedding - pieces - parents - ready - almost - forgive - kissed - silver - during - forty - lives - grow - arrive - eyes - putting - quiet - poor - presents - sting - tired - row - anyhow - window - v - thousand - watch - ashamed - figure - vacation - application - left - certainly - calls - months - student - close - helpful - called - welcome - major - match - morning - fit - reach - door - wife - faith - noticed - several - killed - accident - rat - flop - hands - ear - dancing - hairs - bugging - dinner - bills - worked - bored - conversation - tunis - overbearing - grand - nine - amusing - vile - tempered - obviously - tomorrow - taken - eight - venice - worth - boy - realize - midnight - evil - sixteen - gotten - paying - bottle - smart - cindy - excuse - along - seven - children - figured - jobs - joke - charge - memorial - sitting - hardly - young - story - feels - pronouncing - insane - forgotten - fast - inspire - grub - tough - arguing - air - toss - instance - raining - pair - dry - socks - selfish - included - yours - mystery - mindedness - urgency - pure - urge - insulting - ideas - herself - period - missed - backwards - dance - worms - pop - except - perfect - blow - funny - listening - sadistic - bully - cruel - 'true' - second - acting - lucky - handle - loved - hit - shaking - destroyed - changed - book - eleven - animals - ice - cream - brings - frustrating - otherwise - onto - pregnant - operator - baltimore - san - diego - contract - brown - friends - pictures - internet - piece - high - anyone - tickets - inconvenience - gift - usually - green - city - couple - chuck - growing - pick - throw - yay - walking - grave - considerate - inspired - looked - mistake - believes - avoid - sucker - rock - strangers - missing - hide - geez - imagination - overseas - command - earth - monument - difference - zipped - kansas - reservations - ahh - formed - barefoot - shower - running - garage - knickerbocker - locker - wasting - roses - peaches - rosy - mention - shh - behave - exquisitely - beautifully - rolling - biting - scratching - panthers - suddenly - ought - dreadfully - pity - eye - world - making - bark - roll - hoops - insufferable - weak - upstairs - insist - boorish - conceited - impossible - torment - brute - perfectly - wicked - crawling - top - wish - wants - bank - plan - soon - plenty - bags - congratulations - play - carry - ignore - sudden - refrigerator - loot - fight - lights - swallows - goose - bumps - keeps - fighting - massive - celebration - sex - human - ours - light - minded - social - needed - anyway - words - problems - claim - reimburse - checked - airport - meet - e - responsibility - grunion - knees - thousands - important - shows - goddamn - strong - law - sara - brent - passport - aren - month - romantic - leaving - random - applied - interesting - regular - taking - harder - hurt - movie - freaking - record - airlines - responsible - honestly - grew - proud - hang - mrs - fellow - terrible - contradict - infuriate - throws - afraid - suffer - bloody - settled - thrash - may - son - faithful - moments - act - sleep - detroit - planning - yard - particularly - natural - phenomenon - highlight - flopping - laying - eggs - mating - orgy - magic - unexplainable - instincts - seaweed - instinctual - firecracker - spent - clasped - intimate - special - wishes - seriously - refreshments - ooh - pinpoint - marge - dishes - fat - ring - later - shivers - spine - sillier - poise - trumpets - squeakers - sockets - allure - contrary - violently - glass - temperamental - fiend - loathe - adder - riotous - mentioned - intemperate - tots - downstairs - mad - loose - lived - yelling - happening - promise - known - exciting - finish - college - atlanta - searching - fired - drinking - jesus - lock - plans - hole - santa - kitchen - invite - believing - ann - landing - eats - panties - sore - throat - unmistakable - capistrano - lemmings - cliffs - invitation - map - heaven - carpet - poodle - suicide - pact - turns - court - dies - mustn - vampire - identification - places - danger - hand - middle - situation - option - willing - paid - horrible - pain - anybody - paperwork - difficult - dream - sakes - matters - toes - become - habit - hold - survive - break - babe - shit - contact - land - water - transfer - backersen - desk - wallet - stolen - credit - cards - clearly - appreciate - complicated - uhuh - bucks - win - theatre - resume - riding - helps - less - planes - means - future - ran - red - wrote - loans - spend - dreaming - proof - shooting - crack - cracked - dares - invited - breaks - embarrassed - wondering - aw - style - granted - embarrassing - mixed - su - spawning - stubbed - toe - bodies - expectantly - meant - beginning - traumatized - freda - sooner - applies - philosophers - rots - trivial - torture - stiff - venom - fangs - wake - bended - voice - build - unbelievable - hiring - resumes - eventually - aggressive - awhile - especially - further - mass - pointless - claus - neither - mmm - cannes - figures - burnt - debate - exception - busy - safe - possible - spring - starting - buy - rest - office - complaint - accepted - ten - area - seats - foam - vibrations - drives - popped - slightly - exaggerated - scientific - proposed - bathroom - awful - scene - adders - afford - packet - forward - customer - brand - yellow - fifteen - brian - asking - percent - girlfriend - acceptance - patient - patience - dishonest - cheese - restaurant - t - sixty - direct - holiday - inn - refund - hmmm - receiving - sim - browns - unacceptable - northwest - dorky - putt - change - filling - z - x - simple - mail - request - raise - town - hadn - played - pennies - visa - visit - loves - list - environment - frustrated - ride - imagine - flew - nash - replace - paris - personal - issue - flights - track - angry - headstone - cemetery - cancer - poetry - palm - l - dropped - bunch - p - chair - broke - o - allow - nights - talent - ignoring - center - lovely - sneaking - whose - es - naturally - stays - wide - bought - arm - exact - curtsy - wiggle - superficial - paint - naked - vendome - rouser - younger - jealous - fascinating - duty - photographer - studio - cad - restraint - ill - knee - applying - questions - picture - fake - apartment - cash - drink - upset - sending - flying - speak - details - wherever - unfortunate - education - leaves - basically - hospital - messed - sounds - pinch - malibu - drop - team - professional - till - ambiguous - seeing - ugh - wet - heading - release - fire - inside - pr - includes - rub - ludicrous - wriggle - flippancy - acid - sweetness - curling - dressing - gown - broach - enjoyable - original - '''em' - early - ok - daughter - age - steps - rejected - starts - competitive - hired - worse - itself - nowhere - unfortunately - process - fault - decision - package - easy - transferred - straight - suckers - none - returning - throwing - cork - softest - breathe - road - catch - threw - canal - comb - towels - sacred - savor - delight - needn - late - web - website - rough - daddy - talked - feeling - talented - interview - food - looks - misplaced - theft - likely - stuck - tags - cult - everywhere - menu - choose - press - lady - bill - department - online - immediately - miles - notice - vote - heavens - yell - anna - tables - hasn - stole - losing - unfair - positive - boston - celebrate - system - turning - newspapers - pays - dare - jokes - swine - demand - building - finished - staying - cheap - anyways - okey - lobster - wonderful - harvard - engineering - summer - lawyer - mr - lax - delta - funeral - report - property - whoever - corporate - miso - soup - holy - olivia - camera - power - sold - testing - greens - explain - agreement - undecided - access - babies - street - vegas - slot - honeymoon - husband - penny - slots - wheel - cat - citizenship - england - fan - spending - craig - services - monster - baloney - saving - necessarily - carousel - cameras - airplane - sentimental - value - incredibly - shopping - jet - clothes - apologize - allowed - amount - candy - redlands - sprinklers - whenever - brain - park - holding - memorized - surgery - audience - joy - scholarships - commuting - h - ruined - mm - bet - neighborhood - sticking - woo - teach - class - confused - clock - foolish - ocean - distinctly - whispered - wishing - white - elliott - strange - quest - ultimate - truth - shan - word - disagreeable - wench - birthday - national - thin - rent - colors - citizen - account - '''til' - hire - short - fuse - america - audition - sponge - language - arriving - reimbursement - computer - cover - ass - dealing - quick - freaks - pitch - hitting - housing - force - scholarship - dirty - depends - helicopter - wild - sport - games - streets - although - mi - trust - cracker - curtsey - bicker - irons - besides - splendid - born - weekends - letting - tear - apart - touch - flipped - hot - outside - flowers - candles - approve - surprised - lead - ends - worthless - apparently - worker - annoy - belongings - disappeared - under - case - checking - admit - risk - agreed - yesterday - country - financial - aid - within - automated - systems - specific - rate - star - aisle - afternoon - maui - machine - waste - available - confirmed - thinkin - liked - kicked - intermittently - burned - desire - fade - passion - laughable - cunning - mirrors - painted - wooden - snake - suspicious - nosey - silly - wonders - order - standard - site - sense - dangerous - cute - whether - considering - opinion - f - few - guarantee - possessions - claims - sue - easier - cared - expected - trip - europe - its - circles - large - store - macy - rotary - instead - showed - hundreds - planned - someplace - sensitive - popping - opened - backrub - fantasy - damned - sheet - cut - purchase - amy - quit - clapping - onstage - eighteen - auditioning - rejection - prepared - thirty - master - kelly - natalie - pants - isabella - verizon - goodbye - fucking - challenge - slept - created - checkbook - argument - uhh - perhaps - loath - complete - sad - priorities - between - moving - song - temporary - pulling - smith - receptionist - extra - lodging - eh - la - cost - boss - peanuts - doctor - production - downtown - april - contracts - incompetent - realtor - fix - payphone - verify - electrical - outage - symptoms - nature - pilot - hook - realizes - bother - trade - event - meadow - faint - blues - bananas - overnight - station - attention - purchasing - terms - taser - excellent - counsel - sorority - golfing - library - dork - taco - branch - separate - sacrifices - mothers - kicking - videotape - stream - sitters - moved - computers - machines - bride - cruise - likes - tabs - plays - giant - renamed - brenda - lumber - janet - state - quarters - costs - escort - reliable - board - posting - trail - following - fantastic - mighty - recommending - generally - outline - affords - save - carpool - frustration - refuse - anger - fourth - lines - fourteen - mileage - candid - packed - replaced - expensive - lawsuit - cruising - bruising - president - mistakenly - behalf - listed - liable - held - sean - badge - employee - impression - cemeteries - urban - oasis - wandering - hers - pathetic - ground - stones - tumors - heather - built - prospect - garden - section - parties - feet - poems - curly - tree - crown - john - dunn - begin - wheelchair - reciting - envelope - grants - mold - minds - mess - rapper - ho - masters - teacher - dash - popular - seasoning - messing - ruin - woke - darkest - beating - bush - porch - fresh - rooms - sweetest - pets - cheeked - brooch - however - jones - voices - berating - christmas - shame - bunker - guard - spread - companies - shipping - shock - group - dual - unattached - engagement - sock - dude - lucked - blush - beige - loaded - craziest - offered - spoke - english - accent - illegal - jail - caught - hardcore - tropical - bahamas - tahiti - wealthy - royalty - removed - attitude - extremely - hostile - cutting - sentence - jumping - produce - field - shake - across - soaked - dying - georgia - educated - boarding - attendance - seat - offer - publicize - abuse - insinuating - smug - mouth - tossing - hanky - black - wheels - easily - overhead - compartment - data - collecting - lip - coffee - smoking - cigarettes - union - differently - numb - sickness - boom - mortality - affecting - slow - books - per - diem - victorian - houses - west - sider - commute - practice - neon - softballs - glow - co - ed - nationally - ranked - ping - pong - denigrate - rookie - donuts - recently - pitcher - hitter - mostly - shortstop - ex - trojans - sports - nicer - monica - player - type - helipad - fell - literally - doubt - cares - mustache - papers - crying - floorboards - sorted - everyday - seas - bringing - sacrifice - guilty - opening - return - jumped - distinctively - direction - tiny - action - passed - cheeks - darn - urgh - restrain - self - centered - registration - lunch - documents - identifications - deadline - carries - official - documentation - government - wireless - crucial - pulls - kinda - girly - radiant - ya - shine - invitations - response - mcdonald - level - member - pavement - indicators - prejudice - against - applications - hating - physically - amateur - crawl - dumber - cases - etiquette - bug - opinions - magically - irresponsible - carrousel - contents - main - liability - provides - shops - reimbursed - investigate - provide - uncommon - johnny - conscious - stories - africa - image - hurts - goout - gradual - impact - subside - heals - parts - football - recognizable - accomplished - prestige - load - worrying - decide - tour - friendly - ivy - walls - collegiate - g - choices - math - prestigious - departments - orientation - graduate - shiloh - valued - customers - previous - purchases - scheduling - highly - discounted - uses - corporation - hotels - rated - aisles - switch - fortunately - allows - spare - shuttle - appropriate - traveling - deals - shuttles - sleeps - gee - futile - moralists - unbearable - flippant - shibboleths - rush - madly - piazza - iron - dri - counter - applica - lonely - disappear - video - definitive - magazine - boyfriend - stage - golly - concert - crew - freak - guaranteed - nervous - hah - persistence - factors - types - male - female - consideration - cooking - reconsidering - uhm - retirement - foot - persistent - table - skewed - painting - outer - employment - unlucky - planet - normal - peoples - reading - difficulties - loading - mishap - cart - shipped - tracking - reim - tight - error - continue - 'false' - compensate - policy - gifts - nobodies - tag - originally - shoe - core - memories - kathy - lasted - gary - closed - surreal - troops - loving - los - angeles - schools - kinds - secrets - explore - rip - nuts - champions - leaning - towards - communications - broad - confined - ropes - recording - depending - leads - bypass - zero - pleasant - ebay - bye - steve - hint - asks - tone - pretend - protection - rid - submit - print - regarding - grievance - sites - protected - processed - careful - secure - unreliable - trash - kept - spotting - certain - specifically - pushing - headed - ears - watched - sends - ceaseless - wear - often - pleasure - sonya - promoted - nurses - mommy - va - videotaped - cousin - postpone - performance - swear - cast - spotlight - microphone - tripped - surprise - scored - points - members - loser - marrying - weddings - carats - lousy - chaperone - drowsy - deserve - cry - tears - happiness - marriage - commercials - refection - financially - studied - passing - russel - crowe - pooling - funds - owe - learning - role - auditions - denny - tip - teaching - oof - france - steal - keys - laughing - rosenkrantz - thingy - bopper - limit - whoa - ways - suffered - disease - handsome - gifted - parent - ripped - uveny - tricia - chemo - baseball - benny - nat - nation - bread - eat - beer - dorm - sometime - mattresses - reserved - grauman - scale - whooooo - acti - film - art - academy - films - fuck - ethiopia - cuddle - profanity - provider - satellites - average - compensating - unbeknownst - satellite - exaggerate - advising - addressed - fax - dumb - fritz - incoming - million - grown - fella - shootin - travel - sat - instinct - goosebumps - arms - danced - intimately - spart - strumpets - bristling - diamonds - taste - portion - side - stairs - condescending - copy - proceed - remove - missy - behaving - sweetie - deploy - specialist - increase - triple - promotion - retire - quiets - faster - career - lame - drew - barrymore - nasty - mouse - cheesy - jane - tarzan - engaged - esmeralda - hitched - spontaneous - character - conga - dim - pulled - chucky - sarah - guiding - graduated - apply - colleges - energy - busing - clerk - excuses - qualified - chang - investment - banking - deloitte - touche - temp - degrading - smarter - astronaut - biomedical - internship - plus - breaking - evicting - typing - shoot - degree - science - club - joking - doomed - maryland - cooperate - emergency - pounds - urn - deduction - sherlock - holmes - vessel - burst - caption - therefore - placed - firing - lobby - fastest - ibm - misplace - count - hanging - explanation - follow - footsteps - overboard - paralyzed - coma - fucked - studying - countries - goal - met - greatest - hopefully - mmmm - cinema - chapter - professionals - sipping - martinis - sushi - vat - assistance - starve - south - central - firm - police - officer - viacom - digits - speaking - network - charging - connect - outages - hurricane - katrina - chose - maam - proven - failing - receive - cuts - using - flip - writing - ms - fall - older - game - orange - pink - goodies - battling - sees - flat - stronger - acted - deserves - hats - shore - pokes - nah - paul - boats - dammit - enjoys - bound - harm - pleasured - lure - devil - rile - topic - initialed - lets - correctly - spelled - signed - shitty - timing - susie - tours - emotionally - bullshit - enlist - lie - traditional - church - cabins - flowery - naturey - midsummer - excitement - hoping - attacked - bears - trim - cooler - dog - tanish - contrast - cake - buffet - fried - chicken - mashed - potatoes - happier - thrilled - ecstatic - rushed - pressure - interviews - favors - bite - excessive - unemployed - cab - gas - possibly - extreme - trained - presentable - quote - buck - chugging - engine - realm - minimum - wage - fry - flipper - bottom - clear - affect - cle - dressed - shave - legs - presentation - eighty - success - position - training - mcdonalds - tv - rainbow - colored - crap - safely - destination - percoes - equivalent - amends - courtesy - inconveniencing - near - communicate - conditions - frequently - current - expecting - pissed - honor - grandmother - condition - inevitable - peace - general - mace - present - knife - puny - underwater - basket - weaving - lying - decided - works - worried - occasion - cruisers - vibe - greek - lessons - suck - celebrating - crush - throughout - test - waters - movies - vermont - cruiser - abused - frat - boys - dorms - dell - requests - fixed - dealt - worries - refunded - situa - relevant - ordered - orders - others - incorrectly - tomatoes - del - cents - attached - cuz - hoped - opportunity - rushing - goods - skipped - breath - kleenex - alaska - bearing - hated - holes - calf - witch - whore - <sos/eos> init: null input_size: null ctc_conf: dropout_rate: 0.0 ctc_type: builtin reduce: true ignore_nan_grad: true joint_net_conf: null model_conf: ctc_weight: 0.5 ignore_id: -1 lsm_weight: 0.0 length_normalized_loss: false report_cer: true report_wer: true sym_space: <space> sym_blank: <blank> extract_feats_in_collect_stats: true use_preprocessor: true token_type: word bpemodel: null non_linguistic_symbols: null cleaner: null g2p: null speech_volume_normalize: null rir_scp: null rir_apply_prob: 1.0 noise_scp: null noise_apply_prob: 1.0 noise_db_range: '13_15' frontend: default frontend_conf: fs: 16k specaug: specaug specaug_conf: apply_time_warp: true time_warp_window: 5 time_warp_mode: bicubic apply_freq_mask: true freq_mask_width_range: - 0 - 30 num_freq_mask: 2 apply_time_mask: true time_mask_width_range: - 0 - 40 num_time_mask: 2 normalize: utterance_mvn normalize_conf: {} preencoder: null preencoder_conf: {} encoder: conformer encoder_conf: output_size: 512 attention_heads: 4 linear_units: 2048 num_blocks: 12 dropout_rate: 0.1 positional_dropout_rate: 0.1 attention_dropout_rate: 0.1 input_layer: conv2d normalize_before: true macaron_style: true pos_enc_layer_type: rel_pos selfattention_layer_type: rel_selfattn activation_type: swish use_cnn_module: true cnn_module_kernel: 31 postencoder: null postencoder_conf: {} decoder: transformer decoder_conf: attention_heads: 4 linear_units: 2048 num_blocks: 6 dropout_rate: 0.1 positional_dropout_rate: 0.1 self_attention_dropout_rate: 0.1 src_attention_dropout_rate: 0.1 required: - output_dir - token_list version: 0.10.7a1 distributed: false ``` </details> ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
{"language": "en", "license": "cc-by-4.0", "tags": ["espnet", "audio", "automatic-speech-recognition"], "datasets": ["iemocap"]}
espnet/YushiUeda_iemocap_sentiment_asr_train_asr_conformer
null
[ "espnet", "audio", "automatic-speech-recognition", "en", "dataset:iemocap", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
null
2022-03-02T23:29:05+00:00
automatic-speech-recognition
espnet
## ESPnet2 ASR model ### `espnet/YushiUeda_iemocap_sentiment_asr_train_asr_conformer_hubert` This model was trained by Yushi Ueda using iemocap recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```bash cd espnet git checkout dfa2868243a897c2a6c34b7407eaea5e4b5508a5 pip install -e . cd egs2/iemocap/asr1 ./run.sh --skip_data_prep false --skip_train true --download_model espnet/YushiUeda_iemocap_sentiment_asr_train_asr_conformer_hubert ``` <!-- Generated by scripts/utils/show_asr_result.sh --> # RESULTS ## Environments - date: `Sat Feb 12 23:11:32 EST 2022` - python version: `3.7.11 (default, Jul 27 2021, 14:32:16) [GCC 7.5.0]` - espnet version: `espnet 0.10.7a1` - pytorch version: `pytorch 1.9.0+cu102` - Git hash: `f6cde1c419c814a14ccd40abe557a780508cbcdf` - Commit date: `Fri Feb 11 12:25:33 2022 -0500` ## Using Conformer based encoder, Transformer based decoder, and self-supervised learning features with spectral augmentation and predicting transcript along with sentiment - ASR config: [conf/tuning/train_asr_conformer_hubert.yaml](conf/tuning/train_asr_conformer_hubert.yaml) - token_type: word - Sentiment Labels: Positive, Neutral, Negative |dataset|Snt|Intent Classification Macro F1 (%)| Weighted F1 (%)| Micro F1 (%)| |---|---|---|---|---| |decode_asr_model_valid.acc.ave_10best/valid|754|66.5|76.4|75.7| |decode_asr_model_valid.acc.ave_10best/test|1650|62.0|65.5|65.8| ## ASR config <details><summary>expand</summary> ``` config: conf/tuning/train_asr_conformer_hubert.yaml print_config: false log_level: INFO dry_run: false iterator_type: sequence output_dir: exp/asr_train_asr_conformer_hubert_sentiment ngpu: 1 seed: 0 num_workers: 1 num_att_plot: 3 dist_backend: nccl dist_init_method: env:// dist_world_size: null dist_rank: null local_rank: 0 dist_master_addr: null dist_master_port: null dist_launcher: null multiprocessing_distributed: false unused_parameters: false sharded_ddp: false cudnn_enabled: true cudnn_benchmark: false cudnn_deterministic: true collect_stats: false write_collected_feats: false max_epoch: 50 patience: null val_scheduler_criterion: - valid - loss early_stopping_criterion: - valid - loss - min best_model_criterion: - - valid - acc - max keep_nbest_models: 10 nbest_averaging_interval: 0 grad_clip: 5.0 grad_clip_type: 2.0 grad_noise: false accum_grad: 1 no_forward_run: false resume: true train_dtype: float32 use_amp: false log_interval: null use_matplotlib: true use_tensorboard: true use_wandb: false wandb_project: null wandb_id: null wandb_entity: null wandb_name: null wandb_model_log_interval: -1 detect_anomaly: false pretrain_path: null init_param: [] ignore_init_mismatch: false freeze_param: - frontend.upstream num_iters_per_epoch: null batch_size: 20 valid_batch_size: null batch_bins: 1000000 valid_batch_bins: null train_shape_file: - exp/asr_stats_raw_en_word/train/speech_shape - exp/asr_stats_raw_en_word/train/text_shape.word valid_shape_file: - exp/asr_stats_raw_en_word/valid/speech_shape - exp/asr_stats_raw_en_word/valid/text_shape.word batch_type: folded valid_batch_type: null fold_length: - 80000 - 150 sort_in_batch: descending sort_batch: descending multiple_iterator: false chunk_length: 500 chunk_shift_ratio: 0.5 num_cache_chunks: 1024 train_data_path_and_name_and_type: - - dump/raw/train/wav.scp - speech - sound - - dump/raw/train/text - text - text valid_data_path_and_name_and_type: - - dump/raw/valid/wav.scp - speech - sound - - dump/raw/valid/text - text - text allow_variable_data_keys: false max_cache_size: 0.0 max_cache_fd: 32 valid_max_cache_size: null optim: adam optim_conf: lr: 0.0002 scheduler: warmuplr scheduler_conf: warmup_steps: 25000 token_list: - <blank> - <unk> - i - you - Negative - to - it - '''s' - the - '''t' - that - and - Neutral - Positive - a - know - what - of - like - we - don - just - is - do - this - '''m' - me - have - can - in - for - 'no' - so - not - '''re' - my - but - mean - be - going - all - was - they - well - want - yeah - right - get - 'on' - there - he - oh - here - go - out - with - your - if - okay - are - she - at - '''ll' - '''ve' - got - think - about - up - see - then - why - how - time - really - one - now - or - as - back - look - her - him - been - because - 'yes' - would - didn - little - did - good - some - them - something - need - maybe - never - um - come - take - god - had - could - will - uh - am - people - thing - when - very - let - much - sorry - from - again - long - give - anything - too - make - fish - years - where - isn - three - said - things - nothing - help - work - tell - guess - over - 'off' - business - even - sir - any - his - around - were - way - who - new - kind - '''d' - our - everything - more - came - an - should - down - understand - only - great - else - man - line - us - ask - last - doing - say - waiting - other - lot - job - feel - yourself - point - thought - day - whole - away - coming - better - marry - always - these - still - wrong - two - sure - care - phone - probably - remember - annie - life - year - believe - gonna - supposed - went - first - talk - listen - alright - before - thinking - after - stuff - happy - ever - turn - thank - home - fine - into - than - call - money - stay - actually - every - hope - love - huh - married - wait - somewhere - has - being - father - larry - hell - wanted - trying - getting - guys - name - saying - bag - hear - girl - hey - flashlight - beach - put - leave - dollars - mind - augie - does - won - fifty - excited - hate - four - done - through - their - keep - car - lost - doesn - happen - wouldn - school - big - calm - night - '''cause' - id - another - though - myself - nobody - somebody - best - might - same - form - mom - nice - matter - spot - stop - told - by - shut - enough - five - joe - hard - find - course - chris - drunk - snap - luggage - rather - standing - someone - laugh - took - those - please - live - six - ridiculous - minute - looking - bring - show - start - brought - days - must - pretty - sort - talking - sand - child - working - send - next - hundred - whatever - many - moon - moment - champagne - s - problem - end - real - dear - happened - person - place - fill - awesome - house - such - cool - c - haven - knew - die - finally - glasses - stupid - least - dad - supervisor - totally - each - try - waited - idea - u - party - asked - anymore - sick - evening - license - kid - wow - flight - felt - pay - since - single - miss - without - different - mmhmm - free - sometimes - yet - couldn - view - hour - knows - drive - themselves - swim - ah - brandy - fact - ma - '''am' - already - part - sit - thanks - comes - check - everyone - started - kiss - weren - hotel - own - beast - bad - above - run - worst - grunions - darling - seem - baby - turned - gone - shouldn - exactly - reason - full - both - crazy - pack - bit - swimming - liquor - seemed - serious - cause - peter - burden - gosh - forgot - happens - alone - pass - letters - heard - manager - hours - baggage - card - number - argue - seen - walk - forget - kids - family - blanket - honey - open - quite - gotta - forms - mother - old - needs - times - airline - which - once - service - week - together - twenty - stand - made - fun - dead - sake - men - kate - today - plane - most - carla - driving - deal - information - wanna - definitely - while - yea - certificate - particular - lots - calling - fortune - write - entire - found - trouble - use - forever - woman - enjoy - room - damn - war - meaning - longer - jacket - ticket - twice - sent - wonder - small - amanda - cannot - able - half - ha - saw - bus - ago - hmm - hi - kidding - giving - gave - move - women - ahead - york - guy - suppose - company - incredible - either - minutes - tonight - shoes - utterly - wasn - filled - gets - amazing - beautiful - hello - birth - prove - choice - friend - expect - says - blue - anywhere - died - weird - umm - blood - d - face - body - alive - diagram - goes - read - far - race - wind - fly - interested - california - coast - news - past - charles - floor - idiotic - indeed - absolutely - softball - answer - somehow - having - campus - completely - file - everybody - given - fair - front - telling - tried - sign - helping - dollar - used - takes - hair - behind - head - also - question - pull - brother - nonsense - kill - pocket - cold - mine - watching - shall - divorce - driver - m - makes - cried - security - suitcase - seems - control - set - letter - realized - paper - weeks - address - sweet - lose - huge - death - ones - living - glad - bed - until - thinks - wedding - pieces - parents - ready - almost - forgive - kissed - silver - during - forty - lives - grow - arrive - eyes - putting - quiet - poor - presents - sting - tired - row - anyhow - window - v - thousand - watch - ashamed - figure - vacation - application - left - certainly - calls - months - student - close - helpful - called - welcome - major - match - morning - fit - reach - door - wife - faith - noticed - several - killed - accident - rat - flop - hands - ear - dancing - hairs - bugging - dinner - bills - worked - bored - conversation - tunis - overbearing - grand - nine - amusing - vile - tempered - obviously - tomorrow - taken - eight - venice - worth - boy - realize - midnight - evil - sixteen - gotten - paying - bottle - smart - cindy - excuse - along - seven - children - figured - jobs - joke - charge - memorial - sitting - hardly - young - story - feels - pronouncing - insane - forgotten - fast - inspire - grub - tough - arguing - air - toss - instance - raining - pair - dry - socks - selfish - included - yours - mystery - mindedness - urgency - pure - urge - insulting - ideas - herself - period - missed - backwards - dance - worms - pop - except - perfect - blow - funny - listening - sadistic - bully - cruel - 'true' - second - acting - lucky - handle - loved - hit - shaking - destroyed - changed - book - eleven - animals - ice - cream - brings - frustrating - otherwise - onto - pregnant - operator - baltimore - san - diego - contract - brown - friends - pictures - internet - piece - high - anyone - tickets - inconvenience - gift - usually - green - city - couple - chuck - growing - pick - throw - yay - walking - grave - considerate - inspired - looked - mistake - believes - avoid - sucker - rock - strangers - missing - hide - geez - imagination - overseas - command - earth - monument - difference - zipped - kansas - reservations - ahh - formed - barefoot - shower - running - garage - knickerbocker - locker - wasting - roses - peaches - rosy - mention - shh - behave - exquisitely - beautifully - rolling - biting - scratching - panthers - suddenly - ought - dreadfully - pity - eye - world - making - bark - roll - hoops - insufferable - weak - upstairs - insist - boorish - conceited - impossible - torment - brute - perfectly - wicked - crawling - top - wish - wants - bank - plan - soon - plenty - bags - congratulations - play - carry - ignore - sudden - refrigerator - loot - fight - lights - swallows - goose - bumps - keeps - fighting - massive - celebration - sex - human - ours - light - minded - social - needed - anyway - words - problems - claim - reimburse - checked - airport - meet - e - responsibility - grunion - knees - thousands - important - shows - goddamn - strong - law - sara - brent - passport - aren - month - romantic - leaving - random - applied - interesting - regular - taking - harder - hurt - movie - freaking - record - airlines - responsible - honestly - grew - proud - hang - mrs - fellow - terrible - contradict - infuriate - throws - afraid - suffer - bloody - settled - thrash - may - son - faithful - moments - act - sleep - detroit - planning - yard - particularly - natural - phenomenon - highlight - flopping - laying - eggs - mating - orgy - magic - unexplainable - instincts - seaweed - instinctual - firecracker - spent - clasped - intimate - special - wishes - seriously - refreshments - ooh - pinpoint - marge - dishes - fat - ring - later - shivers - spine - sillier - poise - trumpets - squeakers - sockets - allure - contrary - violently - glass - temperamental - fiend - loathe - adder - riotous - mentioned - intemperate - tots - downstairs - mad - loose - lived - yelling - happening - promise - known - exciting - finish - college - atlanta - searching - fired - drinking - jesus - lock - plans - hole - santa - kitchen - invite - believing - ann - landing - eats - panties - sore - throat - unmistakable - capistrano - lemmings - cliffs - invitation - map - heaven - carpet - poodle - suicide - pact - turns - court - dies - mustn - vampire - identification - places - danger - hand - middle - situation - option - willing - paid - horrible - pain - anybody - paperwork - difficult - dream - sakes - matters - toes - become - habit - hold - survive - break - babe - shit - contact - land - water - transfer - backersen - desk - wallet - stolen - credit - cards - clearly - appreciate - complicated - uhuh - bucks - win - theatre - resume - riding - helps - less - planes - means - future - ran - red - wrote - loans - spend - dreaming - proof - shooting - crack - cracked - dares - invited - breaks - embarrassed - wondering - aw - style - granted - embarrassing - mixed - su - spawning - stubbed - toe - bodies - expectantly - meant - beginning - traumatized - freda - sooner - applies - philosophers - rots - trivial - torture - stiff - venom - fangs - wake - bended - voice - build - unbelievable - hiring - resumes - eventually - aggressive - awhile - especially - further - mass - pointless - claus - neither - mmm - cannes - figures - burnt - debate - exception - busy - safe - possible - spring - starting - buy - rest - office - complaint - accepted - ten - area - seats - foam - vibrations - drives - popped - slightly - exaggerated - scientific - proposed - bathroom - awful - scene - adders - afford - packet - forward - customer - brand - yellow - fifteen - brian - asking - percent - girlfriend - acceptance - patient - patience - dishonest - cheese - restaurant - t - sixty - direct - holiday - inn - refund - hmmm - receiving - sim - browns - unacceptable - northwest - dorky - putt - change - filling - z - x - simple - mail - request - raise - town - hadn - played - pennies - visa - visit - loves - list - environment - frustrated - ride - imagine - flew - nash - replace - paris - personal - issue - flights - track - angry - headstone - cemetery - cancer - poetry - palm - l - dropped - bunch - p - chair - broke - o - allow - nights - talent - ignoring - center - lovely - sneaking - whose - es - naturally - stays - wide - bought - arm - exact - curtsy - wiggle - superficial - paint - naked - vendome - rouser - younger - jealous - fascinating - duty - photographer - studio - cad - restraint - ill - knee - applying - questions - picture - fake - apartment - cash - drink - upset - sending - flying - speak - details - wherever - unfortunate - education - leaves - basically - hospital - messed - sounds - pinch - malibu - drop - team - professional - till - ambiguous - seeing - ugh - wet - heading - release - fire - inside - pr - includes - rub - ludicrous - wriggle - flippancy - acid - sweetness - curling - dressing - gown - broach - enjoyable - original - '''em' - early - ok - daughter - age - steps - rejected - starts - competitive - hired - worse - itself - nowhere - unfortunately - process - fault - decision - package - easy - transferred - straight - suckers - none - returning - throwing - cork - softest - breathe - road - catch - threw - canal - comb - towels - sacred - savor - delight - needn - late - web - website - rough - daddy - talked - feeling - talented - interview - food - looks - misplaced - theft - likely - stuck - tags - cult - everywhere - menu - choose - press - lady - bill - department - online - immediately - miles - notice - vote - heavens - yell - anna - tables - hasn - stole - losing - unfair - positive - boston - celebrate - system - turning - newspapers - pays - dare - jokes - swine - demand - building - finished - staying - cheap - anyways - okey - lobster - wonderful - harvard - engineering - summer - lawyer - mr - lax - delta - funeral - report - property - whoever - corporate - miso - soup - holy - olivia - camera - power - sold - testing - greens - explain - agreement - undecided - access - babies - street - vegas - slot - honeymoon - husband - penny - slots - wheel - cat - citizenship - england - fan - spending - craig - services - monster - baloney - saving - necessarily - carousel - cameras - airplane - sentimental - value - incredibly - shopping - jet - clothes - apologize - allowed - amount - candy - redlands - sprinklers - whenever - brain - park - holding - memorized - surgery - audience - joy - scholarships - commuting - h - ruined - mm - bet - neighborhood - sticking - woo - teach - class - confused - clock - foolish - ocean - distinctly - whispered - wishing - white - elliott - strange - quest - ultimate - truth - shan - word - disagreeable - wench - birthday - national - thin - rent - colors - citizen - account - '''til' - hire - short - fuse - america - audition - sponge - language - arriving - reimbursement - computer - cover - ass - dealing - quick - freaks - pitch - hitting - housing - force - scholarship - dirty - depends - helicopter - wild - sport - games - streets - although - mi - trust - cracker - curtsey - bicker - irons - besides - splendid - born - weekends - letting - tear - apart - touch - flipped - hot - outside - flowers - candles - approve - surprised - lead - ends - worthless - apparently - worker - annoy - belongings - disappeared - under - case - checking - admit - risk - agreed - yesterday - country - financial - aid - within - automated - systems - specific - rate - star - aisle - afternoon - maui - machine - waste - available - confirmed - thinkin - liked - kicked - intermittently - burned - desire - fade - passion - laughable - cunning - mirrors - painted - wooden - snake - suspicious - nosey - silly - wonders - order - standard - site - sense - dangerous - cute - whether - considering - opinion - f - few - guarantee - possessions - claims - sue - easier - cared - expected - trip - europe - its - circles - large - store - macy - rotary - instead - showed - hundreds - planned - someplace - sensitive - popping - opened - backrub - fantasy - damned - sheet - cut - purchase - amy - quit - clapping - onstage - eighteen - auditioning - rejection - prepared - thirty - master - kelly - natalie - pants - isabella - verizon - goodbye - fucking - challenge - slept - created - checkbook - argument - uhh - perhaps - loath - complete - sad - priorities - between - moving - song - temporary - pulling - smith - receptionist - extra - lodging - eh - la - cost - boss - peanuts - doctor - production - downtown - april - contracts - incompetent - realtor - fix - payphone - verify - electrical - outage - symptoms - nature - pilot - hook - realizes - bother - trade - event - meadow - faint - blues - bananas - overnight - station - attention - purchasing - terms - taser - excellent - counsel - sorority - golfing - library - dork - taco - branch - separate - sacrifices - mothers - kicking - videotape - stream - sitters - moved - computers - machines - bride - cruise - likes - tabs - plays - giant - renamed - brenda - lumber - janet - state - quarters - costs - escort - reliable - board - posting - trail - following - fantastic - mighty - recommending - generally - outline - affords - save - carpool - frustration - refuse - anger - fourth - lines - fourteen - mileage - candid - packed - replaced - expensive - lawsuit - cruising - bruising - president - mistakenly - behalf - listed - liable - held - sean - badge - employee - impression - cemeteries - urban - oasis - wandering - hers - pathetic - ground - stones - tumors - heather - built - prospect - garden - section - parties - feet - poems - curly - tree - crown - john - dunn - begin - wheelchair - reciting - envelope - grants - mold - minds - mess - rapper - ho - masters - teacher - dash - popular - seasoning - messing - ruin - woke - darkest - beating - bush - porch - fresh - rooms - sweetest - pets - cheeked - brooch - however - jones - voices - berating - christmas - shame - bunker - guard - spread - companies - shipping - shock - group - dual - unattached - engagement - sock - dude - lucked - blush - beige - loaded - craziest - offered - spoke - english - accent - illegal - jail - caught - hardcore - tropical - bahamas - tahiti - wealthy - royalty - removed - attitude - extremely - hostile - cutting - sentence - jumping - produce - field - shake - across - soaked - dying - georgia - educated - boarding - attendance - seat - offer - publicize - abuse - insinuating - smug - mouth - tossing - hanky - black - wheels - easily - overhead - compartment - data - collecting - lip - coffee - smoking - cigarettes - union - differently - numb - sickness - boom - mortality - affecting - slow - books - per - diem - victorian - houses - west - sider - commute - practice - neon - softballs - glow - co - ed - nationally - ranked - ping - pong - denigrate - rookie - donuts - recently - pitcher - hitter - mostly - shortstop - ex - trojans - sports - nicer - monica - player - type - helipad - fell - literally - doubt - cares - mustache - papers - crying - floorboards - sorted - everyday - seas - bringing - sacrifice - guilty - opening - return - jumped - distinctively - direction - tiny - action - passed - cheeks - darn - urgh - restrain - self - centered - registration - lunch - documents - identifications - deadline - carries - official - documentation - government - wireless - crucial - pulls - kinda - girly - radiant - ya - shine - invitations - response - mcdonald - level - member - pavement - indicators - prejudice - against - applications - hating - physically - amateur - crawl - dumber - cases - etiquette - bug - opinions - magically - irresponsible - carrousel - contents - main - liability - provides - shops - reimbursed - investigate - provide - uncommon - johnny - conscious - stories - africa - image - hurts - goout - gradual - impact - subside - heals - parts - football - recognizable - accomplished - prestige - load - worrying - decide - tour - friendly - ivy - walls - collegiate - g - choices - math - prestigious - departments - orientation - graduate - shiloh - valued - customers - previous - purchases - scheduling - highly - discounted - uses - corporation - hotels - rated - aisles - switch - fortunately - allows - spare - shuttle - appropriate - traveling - deals - shuttles - sleeps - gee - futile - moralists - unbearable - flippant - shibboleths - rush - madly - piazza - iron - dri - counter - applica - lonely - disappear - video - definitive - magazine - boyfriend - stage - golly - concert - crew - freak - guaranteed - nervous - hah - persistence - factors - types - male - female - consideration - cooking - reconsidering - uhm - retirement - foot - persistent - table - skewed - painting - outer - employment - unlucky - planet - normal - peoples - reading - difficulties - loading - mishap - cart - shipped - tracking - reim - tight - error - continue - 'false' - compensate - policy - gifts - nobodies - tag - originally - shoe - core - memories - kathy - lasted - gary - closed - surreal - troops - loving - los - angeles - schools - kinds - secrets - explore - rip - nuts - champions - leaning - towards - communications - broad - confined - ropes - recording - depending - leads - bypass - zero - pleasant - ebay - bye - steve - hint - asks - tone - pretend - protection - rid - submit - print - regarding - grievance - sites - protected - processed - careful - secure - unreliable - trash - kept - spotting - certain - specifically - pushing - headed - ears - watched - sends - ceaseless - wear - often - pleasure - sonya - promoted - nurses - mommy - va - videotaped - cousin - postpone - performance - swear - cast - spotlight - microphone - tripped - surprise - scored - points - members - loser - marrying - weddings - carats - lousy - chaperone - drowsy - deserve - cry - tears - happiness - marriage - commercials - refection - financially - studied - passing - russel - crowe - pooling - funds - owe - learning - role - auditions - denny - tip - teaching - oof - france - steal - keys - laughing - rosenkrantz - thingy - bopper - limit - whoa - ways - suffered - disease - handsome - gifted - parent - ripped - uveny - tricia - chemo - baseball - benny - nat - nation - bread - eat - beer - dorm - sometime - mattresses - reserved - grauman - scale - whooooo - acti - film - art - academy - films - fuck - ethiopia - cuddle - profanity - provider - satellites - average - compensating - unbeknownst - satellite - exaggerate - advising - addressed - fax - dumb - fritz - incoming - million - grown - fella - shootin - travel - sat - instinct - goosebumps - arms - danced - intimately - spart - strumpets - bristling - diamonds - taste - portion - side - stairs - condescending - copy - proceed - remove - missy - behaving - sweetie - deploy - specialist - increase - triple - promotion - retire - quiets - faster - career - lame - drew - barrymore - nasty - mouse - cheesy - jane - tarzan - engaged - esmeralda - hitched - spontaneous - character - conga - dim - pulled - chucky - sarah - guiding - graduated - apply - colleges - energy - busing - clerk - excuses - qualified - chang - investment - banking - deloitte - touche - temp - degrading - smarter - astronaut - biomedical - internship - plus - breaking - evicting - typing - shoot - degree - science - club - joking - doomed - maryland - cooperate - emergency - pounds - urn - deduction - sherlock - holmes - vessel - burst - caption - therefore - placed - firing - lobby - fastest - ibm - misplace - count - hanging - explanation - follow - footsteps - overboard - paralyzed - coma - fucked - studying - countries - goal - met - greatest - hopefully - mmmm - cinema - chapter - professionals - sipping - martinis - sushi - vat - assistance - starve - south - central - firm - police - officer - viacom - digits - speaking - network - charging - connect - outages - hurricane - katrina - chose - maam - proven - failing - receive - cuts - using - flip - writing - ms - fall - older - game - orange - pink - goodies - battling - sees - flat - stronger - acted - deserves - hats - shore - pokes - nah - paul - boats - dammit - enjoys - bound - harm - pleasured - lure - devil - rile - topic - initialed - lets - correctly - spelled - signed - shitty - timing - susie - tours - emotionally - bullshit - enlist - lie - traditional - church - cabins - flowery - naturey - midsummer - excitement - hoping - attacked - bears - trim - cooler - dog - tanish - contrast - cake - buffet - fried - chicken - mashed - potatoes - happier - thrilled - ecstatic - rushed - pressure - interviews - favors - bite - excessive - unemployed - cab - gas - possibly - extreme - trained - presentable - quote - buck - chugging - engine - realm - minimum - wage - fry - flipper - bottom - clear - affect - cle - dressed - shave - legs - presentation - eighty - success - position - training - mcdonalds - tv - rainbow - colored - crap - safely - destination - percoes - equivalent - amends - courtesy - inconveniencing - near - communicate - conditions - frequently - current - expecting - pissed - honor - grandmother - condition - inevitable - peace - general - mace - present - knife - puny - underwater - basket - weaving - lying - decided - works - worried - occasion - cruisers - vibe - greek - lessons - suck - celebrating - crush - throughout - test - waters - movies - vermont - cruiser - abused - frat - boys - dorms - dell - requests - fixed - dealt - worries - refunded - situa - relevant - ordered - orders - others - incorrectly - tomatoes - del - cents - attached - cuz - hoped - opportunity - rushing - goods - skipped - breath - kleenex - alaska - bearing - hated - holes - calf - witch - whore - <sos/eos> init: null input_size: null ctc_conf: dropout_rate: 0.0 ctc_type: builtin reduce: true ignore_nan_grad: true joint_net_conf: null model_conf: ctc_weight: 0.3 lsm_weight: 0.1 length_normalized_loss: false extract_feats_in_collect_stats: false use_preprocessor: true token_type: word bpemodel: null non_linguistic_symbols: null cleaner: null g2p: null speech_volume_normalize: null rir_scp: null rir_apply_prob: 1.0 noise_scp: null noise_apply_prob: 1.0 noise_db_range: '13_15' frontend: s3prl frontend_conf: frontend_conf: upstream: hubert_large_ll60k download_dir: ./hub multilayer_feature: true fs: 16k specaug: specaug specaug_conf: apply_time_warp: true time_warp_window: 5 time_warp_mode: bicubic apply_freq_mask: true freq_mask_width_range: - 0 - 30 num_freq_mask: 2 apply_time_mask: true time_mask_width_range: - 0 - 40 num_time_mask: 2 normalize: utterance_mvn normalize_conf: {} preencoder: linear preencoder_conf: input_size: 1024 output_size: 80 encoder: conformer encoder_conf: output_size: 512 attention_heads: 8 linear_units: 2048 num_blocks: 12 dropout_rate: 0.1 positional_dropout_rate: 0.1 attention_dropout_rate: 0.1 input_layer: conv2d normalize_before: true macaron_style: true pos_enc_layer_type: rel_pos selfattention_layer_type: rel_selfattn activation_type: swish use_cnn_module: true cnn_module_kernel: 31 postencoder: null postencoder_conf: {} decoder: transformer decoder_conf: attention_heads: 8 linear_units: 2048 num_blocks: 6 dropout_rate: 0.1 positional_dropout_rate: 0.1 self_attention_dropout_rate: 0.1 src_attention_dropout_rate: 0.1 required: - output_dir - token_list version: 0.10.7a1 distributed: false ``` </details> ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
{"language": "en", "license": "cc-by-4.0", "tags": ["espnet", "audio", "automatic-speech-recognition"], "datasets": ["iemocap"]}
espnet/YushiUeda_iemocap_sentiment_asr_train_asr_conformer_hubert
null
[ "espnet", "audio", "automatic-speech-recognition", "en", "dataset:iemocap", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
espnet
## ESPnet2 DIAR model ### `espnet/YushiUeda_mini_librispeech_diar_train_diar_raw_valid.acc.best` This model was trained by YushiUeda using mini_librispeech recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```bash cd espnet git checkout 650472b45a67612eaac09c7fbd61dc25f8ff2405 pip install -e . cd egs2/mini_librispeech/diar1 ./run.sh --skip_data_prep false --skip_train true --download_model espnet/YushiUeda_mini_librispeech_diar_train_diar_raw_valid.acc.best ``` <!-- Generated by scripts/utils/show_diar_result.sh --> # RESULTS ## Environments - date: `Tue Jan 4 16:43:34 EST 2022` - python version: `3.7.11 (default, Jul 27 2021, 14:32:16) [GCC 7.5.0]` - espnet version: `espnet 0.10.5a1` - pytorch version: `pytorch 1.9.0+cu102` - Git hash: `0b2a6786b6f627f47defaee22911b3c2dc04af2a` - Commit date: `Thu Dec 23 12:22:49 2021 -0500` ## diar_train_diar_raw ### DER dev_clean_2_ns2_beta2_500 |threshold_median_collar|DER| |---|---| |result_th0.3_med11_collar0.0|32.28| |result_th0.3_med1_collar0.0|32.64| |result_th0.4_med11_collar0.0|30.43| |result_th0.4_med1_collar0.0|31.15| |result_th0.5_med11_collar0.0|29.45| |result_th0.5_med1_collar0.0|30.53| |result_th0.6_med11_collar0.0|29.52| |result_th0.6_med1_collar0.0|30.95| |result_th0.7_med11_collar0.0|30.92| |result_th0.7_med1_collar0.0|32.69| ## DIAR config <details><summary>expand</summary> ``` config: conf/train_diar.yaml print_config: false log_level: INFO dry_run: false iterator_type: chunk output_dir: exp/diar_train_diar_raw ngpu: 1 seed: 0 num_workers: 1 num_att_plot: 3 dist_backend: nccl dist_init_method: env:// dist_world_size: 4 dist_rank: 0 local_rank: 0 dist_master_addr: localhost dist_master_port: 33757 dist_launcher: null multiprocessing_distributed: true unused_parameters: false sharded_ddp: false cudnn_enabled: true cudnn_benchmark: false cudnn_deterministic: true collect_stats: false write_collected_feats: false max_epoch: 100 patience: 3 val_scheduler_criterion: - valid - loss early_stopping_criterion: - valid - loss - min best_model_criterion: - - valid - acc - max keep_nbest_models: 3 nbest_averaging_interval: 0 grad_clip: 5 grad_clip_type: 2.0 grad_noise: false accum_grad: 2 no_forward_run: false resume: true train_dtype: float32 use_amp: false log_interval: null use_matplotlib: true use_tensorboard: true use_wandb: false wandb_project: null wandb_id: null wandb_entity: null wandb_name: null wandb_model_log_interval: -1 detect_anomaly: false pretrain_path: null init_param: [] ignore_init_mismatch: false freeze_param: [] num_iters_per_epoch: null batch_size: 16 valid_batch_size: null batch_bins: 1000000 valid_batch_bins: null train_shape_file: - exp/diar_stats_8k/train/speech_shape - exp/diar_stats_8k/train/spk_labels_shape valid_shape_file: - exp/diar_stats_8k/valid/speech_shape - exp/diar_stats_8k/valid/spk_labels_shape batch_type: folded valid_batch_type: null fold_length: - 80000 - 800 sort_in_batch: descending sort_batch: descending multiple_iterator: false chunk_length: 200000 chunk_shift_ratio: 0.5 num_cache_chunks: 64 train_data_path_and_name_and_type: - - dump/raw/simu/data/train_clean_5_ns2_beta2_500/wav.scp - speech - sound - - dump/raw/simu/data/train_clean_5_ns2_beta2_500/espnet_rttm - spk_labels - rttm valid_data_path_and_name_and_type: - - dump/raw/simu/data/dev_clean_2_ns2_beta2_500/wav.scp - speech - sound - - dump/raw/simu/data/dev_clean_2_ns2_beta2_500/espnet_rttm - spk_labels - rttm allow_variable_data_keys: false max_cache_size: 0.0 max_cache_fd: 32 valid_max_cache_size: null optim: adam optim_conf: lr: 0.01 scheduler: noamlr scheduler_conf: warmup_steps: 1000 num_spk: 2 init: xavier_uniform input_size: null model_conf: attractor_weight: 1.0 use_preprocessor: true frontend: default frontend_conf: fs: 8k hop_length: 128 specaug: null specaug_conf: {} normalize: global_mvn normalize_conf: stats_file: exp/diar_stats_8k/train/feats_stats.npz encoder: transformer encoder_conf: input_layer: linear num_blocks: 2 linear_units: 512 dropout_rate: 0.1 output_size: 256 attention_heads: 4 attention_dropout_rate: 0.0 decoder: linear decoder_conf: {} label_aggregator: label_aggregator label_aggregator_conf: {} attractor: null attractor_conf: {} required: - output_dir version: 0.10.5a1 distributed: true ``` </details> ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
{"language": "noinfo", "license": "cc-by-4.0", "tags": ["espnet", "audio", "diarization"], "datasets": ["mini_librispeech"]}
espnet/YushiUeda_mini_librispeech_diar_train_diar_raw_valid.acc.best
null
[ "espnet", "audio", "diarization", "dataset:mini_librispeech", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
null
2022-03-02T23:29:05+00:00
automatic-speech-recognition
espnet
## ESPnet2 ASR pretrained model ### `Yushi Ueda/ksponspeech_asr_train_asr_conformer8_n_fft512_hop_length256_raw_kr_bpe2309_valid.acc.best` ♻️ Imported from https://zenodo.org/record/5154341/ This model was trained by Yushi Ueda using ksponspeech/asr1 recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```python # coming soon ``` ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson {Enrique Yalta Soplin} and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Enrique Yalta Soplin and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
{"language": "kr", "license": "cc-by-4.0", "tags": ["espnet", "audio", "automatic-speech-recognition"], "datasets": ["ksponspeech"]}
espnet/Yushi_Ueda_ksponspeech_asr_train_asr_conformer8_n_fft512_hop_length256-truncated-eb42e5
null
[ "espnet", "audio", "automatic-speech-recognition", "kr", "dataset:ksponspeech", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
espnet
## ESPnet2 DIAR pretrained model ### `Yushi Ueda/mini_librispeech_diar_train_diar_raw_max_epoch20_valid.acc.best` ♻️ Imported from https://zenodo.org/record/5264020/ This model was trained by Yushi Ueda using mini_librispeech/diar1 recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```python # coming soon ``` ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson {Enrique Yalta Soplin} and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Enrique Yalta Soplin and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
{"language": "en", "license": "cc-by-4.0", "tags": ["espnet", "audio", "speaker-diarization"], "datasets": ["mini_librispeech"]}
espnet/Yushi_Ueda_mini_librispeech_diar_train_diar_raw_max_epoch20_valid.acc.best
null
[ "espnet", "audio", "speaker-diarization", "en", "dataset:mini_librispeech", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
null
2022-03-02T23:29:05+00:00