Search is not available for this dataset
pipeline_tag
stringclasses
48 values
library_name
stringclasses
205 values
text
stringlengths
0
18.3M
metadata
stringlengths
2
1.07B
id
stringlengths
5
122
last_modified
null
tags
listlengths
1
1.84k
sha
null
created_at
stringlengths
25
25
automatic-speech-recognition
transformers
# Wav2Vec2-Large-XLSR-53-Italian Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Italian using the [Common Voice](https://huggingface.co/datasets/common_voice) dataset. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "it", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained('gchhablani/wav2vec2-large-xlsr-it') model = Wav2Vec2ForCTC.from_pretrained('gchhablani/wav2vec2-large-xlsr-it') resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Portuguese test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re import unicodedata import jiwer def chunked_wer(targets, predictions, chunk_size=None): if chunk_size is None: return jiwer.wer(targets, predictions) start = 0 end = chunk_size H, S, D, I = 0, 0, 0, 0 while start < len(targets): chunk_metrics = jiwer.compute_measures(targets[start:end], predictions[start:end]) H = H + chunk_metrics["hits"] S = S + chunk_metrics["substitutions"] D = D + chunk_metrics["deletions"] I = I + chunk_metrics["insertions"] start += chunk_size end += chunk_size return float(S + D + I) / float(H + S + D) allowed_characters = [ " ", "'", 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z', 'à', 'á', 'è', 'é', 'ì', 'í', 'ò', 'ó', 'ù', 'ú', ] def remove_accents(input_str): if input_str in allowed_characters: return input_str if input_str == 'ø': return 'o' elif input_str=='ß' or input_str =='ß': return 'b' elif input_str=='ё': return 'e' elif input_str=='đ': return 'd' nfkd_form = unicodedata.normalize('NFKD', input_str) only_ascii = nfkd_form.encode('ASCII', 'ignore').decode() if only_ascii is None or only_ascii=='': return input_str else: return only_ascii def fix_accents(sentence): new_sentence='' for char in sentence: new_sentence+=remove_accents(char) return new_sentence test_dataset = load_dataset("common_voice", "it", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained('gchhablani/wav2vec2-large-xlsr-it') model = Wav2Vec2ForCTC.from_pretrained('gchhablani/wav2vec2-large-xlsr-it') model.to("cuda") resampler = torchaudio.transforms.Resample(48_000, 16_000) chars_to_remove= [",", "?", ".", "!", "-", ";", ":", '""', "%", '"', "�",'ʿ','“','”','(','=','`','_','+','«','<','>','~','…','«','»','–','\[','\]','°','̇','´','ʾ','„','̇','̇','̇','¡'] # All extra characters chars_to_remove_regex = f'[{"".join(chars_to_remove)}]' # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_remove_regex, '', batch["sentence"]).lower().replace('‘',"'").replace('ʻ',"'").replace('ʼ',"'").replace('’',"'").replace('ʹ',"''").replace('̇','') batch["sentence"] = fix_accents(batch["sentence"]) speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * chunked_wer(predictions=result["pred_strings"], targets=result["sentence"],chunk_size=5000))) ``` **Test Result**: 11.49 % ## Training The Common Voice `train` and `validation` datasets were used for training. The code can be found [here](https://github.com/gchhablani/wav2vec2-week/blob/main/fine-tune-xlsr-wav2vec2-on-italian-asr-with-transformers_final.ipynb).
{"language": "it", "license": "apache-2.0", "tags": ["audio", "automatic-speech-recognition", "speech", "xlsr-fine-tuning-week"], "datasets": ["common_voice"], "metrics": ["wer"], "model-index": [{"name": "Wav2Vec2 Large 53 Italian by Gunjan Chhablani", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice it", "type": "common_voice", "args": "it"}, "metrics": [{"type": "wer", "value": 11.49, "name": "Test WER"}]}]}]}
gchhablani/wav2vec2-large-xlsr-it
null
[ "transformers", "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "audio", "speech", "xlsr-fine-tuning-week", "it", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
automatic-speech-recognition
transformers
# Wav2Vec2-Large-XLSR-53-Marathi Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Marathi using a part of the [InterSpeech 2021 Marathi](https://navana-tech.github.io/IS21SS-indicASRchallenge/data.html) dataset. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows, assuming you have a dataset with Marathi `sentence` and `path` fields: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor # test_dataset = #TODO: WRITE YOUR CODE TO LOAD THE TEST DATASET. For sample see the Colab link in Training Section. processor = Wav2Vec2Processor.from_pretrained("gchhablani/wav2vec2-large-xlsr-mr-2") model = Wav2Vec2ForCTC.from_pretrained("gchhablani/wav2vec2-large-xlsr-mr-2") resampler = torchaudio.transforms.Resample(8_000, 16_000) # The original data was with 8,000 sampling rate. You can change it according to your input. # Preprocessing the datasets. # We need to read the audio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the test set of the Marathi data on InterSpeech-2021. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re # test_dataset = #TODO: WRITE YOUR CODE TO LOAD THE TEST DATASET. For sample see the Colab link in Training Section. wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("gchhablani/wav2vec2-large-xlsr-mr-2") model = Wav2Vec2ForCTC.from_pretrained("gchhablani/wav2vec2-large-xlsr-mr-2") model.to("cuda") chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\'\�]' resampler = torchaudio.transforms.Resample(8_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 19.98 % (555 examples from test set were used for evaluation) **Test Result on 10% of OpenSLR74 data**: 64.64 % ## Training 5000 examples of the InterSpeech Marathi dataset were used for training. The colab notebook used for training can be found [here](https://colab.research.google.com/drive/1sIwGOLJPQqhKm_wVZDkzRuoJqAEgArFr?usp=sharing).
{"language": "mr", "license": "apache-2.0", "tags": ["audio", "automatic-speech-recognition", "speech", "xlsr-fine-tuning-week"], "datasets": ["interspeech_2021_asr"], "metrics": ["wer"], "model-index": [{"name": "XLSR Wav2Vec2 Large 53 Marathi 2 by Gunjan Chhablani", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "InterSpeech 2021 ASR mr", "type": "interspeech_2021_asr"}, "metrics": [{"type": "wer", "value": 14.53, "name": "Test WER"}]}]}]}
gchhablani/wav2vec2-large-xlsr-mr-2
null
[ "transformers", "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "audio", "speech", "xlsr-fine-tuning-week", "mr", "dataset:interspeech_2021_asr", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
automatic-speech-recognition
transformers
# Wav2Vec2-Large-XLSR-53-Marathi Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Marathi using the [OpenSLR SLR64](http://openslr.org/64/) dataset and [InterSpeech 2021](https://navana-tech.github.io/IS21SS-indicASRchallenge/data.html) Marathi datasets. Note that this data OpenSLR contains only female voices. Please keep this in mind before using the model for your task. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows, assuming you have a dataset with Marathi `text` and `audio_path` fields: ```python import torch import torchaudio import librosa from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor # test_data = #TODO: WRITE YOUR CODE TO LOAD THE TEST DATASET. For sample see the Colab link in Training Section. processor = Wav2Vec2Processor.from_pretrained("gchhablani/wav2vec2-large-xlsr-mr-3") model = Wav2Vec2ForCTC.from_pretrained("gchhablani/wav2vec2-large-xlsr-mr-3") # Preprocessing the datasets. # We need to read the audio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["audio_path"]) batch["speech"] = librosa.resample(speech_array[0].numpy(), sampling_rate, 16_000) # sampling_rate can vary return batch test_data= test_data.map(speech_file_to_array_fn) inputs = processor(test_data["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_data["text"][:2]) ``` ## Evaluation The model can be evaluated as follows on 10% of the Marathi data on OpenSLR. ```python import torch import torchaudio import librosa from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re # test_data = #TODO: WRITE YOUR CODE TO LOAD THE TEST DATASET. For sample see the Colab link in Training Section. wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("gchhablani/wav2vec2-large-xlsr-mr-3") model = Wav2Vec2ForCTC.from_pretrained("gchhablani/wav2vec2-large-xlsr-mr-3") model.to("cuda") chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\%\‘\”\�\–\…]' # Preprocessing the datasets. # We need to read the audio files as arrays def speech_file_to_array_fn(batch): batch["text"] = re.sub(chars_to_ignore_regex, '', batch["text"]).lower() speech_array, sampling_rate = torchaudio.load(batch["audio_path"]) batch["speech"] = librosa.resample(speech_array[0].numpy(), sampling_rate, 16_000) return batch test_data= test_data.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the audio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_data.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["text"]))) ``` **Test Result**: 19.05 % (157+157 examples) **Test Result on OpenSLR test**: 14.15 % (157 examples) **Test Results on InterSpeech test**: 27.14 % (157 examples) ## Training 1412 examples of the OpenSLR Marathi dataset and 1412 examples of InterSpeech 2021 Marathi ASR dataset were used for training. For testing, 157 examples from each were used. The colab notebook used for training and evaluation can be found [here](https://colab.research.google.com/drive/15fUhb4bUFFGJyNLr-_alvPxVX4w0YXRu?usp=sharing).
{"language": "mr", "license": "apache-2.0", "tags": ["audio", "automatic-speech-recognition", "speech", "xlsr-fine-tuning-week"], "datasets": ["openslr", "interspeech_2021_asr"], "metrics": ["wer"], "model-index": [{"name": "XLSR Wav2Vec2 Large 53 Marathi by Gunjan Chhablani", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "OpenSLR mr, InterSpeech 2021 ASR mr", "type": "openslr, interspeech_2021_asr"}, "metrics": [{"type": "wer", "value": 19.05, "name": "Test WER"}]}]}]}
gchhablani/wav2vec2-large-xlsr-mr-3
null
[ "transformers", "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "audio", "speech", "xlsr-fine-tuning-week", "mr", "dataset:openslr", "dataset:interspeech_2021_asr", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
automatic-speech-recognition
transformers
# Wav2Vec2-Large-XLSR-53-Marathi Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Marathi using the [OpenSLR SLR64](http://openslr.org/64/) dataset. Note that this data contains only female voices. Please keep this in mind before using the model for your task, although it works very well for male voice too. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows, assuming you have a dataset with Marathi `sentence` and `path` fields: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor # test_dataset = #TODO: WRITE YOUR CODE TO LOAD THE TEST DATASET. For sample see the Colab link in Training Section. processor = Wav2Vec2Processor.from_pretrained("gchhablani/wav2vec2-large-xlsr-mr") model = Wav2Vec2ForCTC.from_pretrained("gchhablani/wav2vec2-large-xlsr-mr") resampler = torchaudio.transforms.Resample(48_000, 16_000) # The original data was with 48,000 sampling rate. You can change it according to your input. # Preprocessing the datasets. # We need to read the audio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on 10% of the Marathi data on OpenSLR. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re # test_dataset = #TODO: WRITE YOUR CODE TO LOAD THE TEST DATASET. For sample see the Colab link in Training Section. wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("gchhablani/wav2vec2-large-xlsr-mr") model = Wav2Vec2ForCTC.from_pretrained("gchhablani/wav2vec2-large-xlsr-mr") model.to("cuda") chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\%\‘\”\�\–\…]' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 14.53 % ## Training 90% of the OpenSLR Marathi dataset was used for training. The colab notebook used for training can be found [here](https://colab.research.google.com/drive/1_BbLyLqDUsXG3RpSULfLRjC6UY3RjwME?usp=sharing).
{"language": "mr", "license": "apache-2.0", "tags": ["audio", "automatic-speech-recognition", "speech", "xlsr-fine-tuning-week"], "datasets": ["openslr"], "metrics": ["wer"], "model-index": [{"name": "XLSR Wav2Vec2 Large 53 Marathi by Gunjan Chhablani", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "OpenSLR mr", "type": "openslr"}, "metrics": [{"type": "wer", "value": 14.53, "name": "Test WER"}]}]}]}
gchhablani/wav2vec2-large-xlsr-mr
null
[ "transformers", "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "audio", "speech", "xlsr-fine-tuning-week", "mr", "dataset:openslr", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
automatic-speech-recognition
transformers
# Wav2Vec2-Large-XLSR-53-Odia Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Odia using the [Common Voice](https://huggingface.co/datasets/common_voice). When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "or", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("gchhablani/wav2vec2-large-xlsr-or") model = Wav2Vec2ForCTC.from_pretrained("gchhablani/wav2vec2-large-xlsr-or") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Odia test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "or", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("gchhablani/wav2vec2-large-xlsr-or") model = Wav2Vec2ForCTC.from_pretrained("gchhablani/wav2vec2-large-xlsr-or") model.to("cuda") chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\%\‘\”\�\–\…\'\_\’\।\|]' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 52.64 % ## Training The Common Voice `train` and `validation` datasets were used for training.The colab notebook used can be found [here](https://colab.research.google.com/drive/1s8DrwgB5y4Z7xXIrPXo1rQA5_1OZ8WD5?usp=sharing).
{"language": "or", "license": "apache-2.0", "tags": ["audio", "automatic-speech-recognition", "speech", "xlsr-fine-tuning-week"], "datasets": ["common_voice"], "metrics": ["wer"], "model-index": [{"name": "XLSR Wav2Vec2 Large 53 Odia by Gunjan Chhablani", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice or", "type": "common_voice", "args": "or"}, "metrics": [{"type": "wer", "value": 52.64, "name": "Test WER"}]}]}]}
gchhablani/wav2vec2-large-xlsr-or
null
[ "transformers", "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "audio", "speech", "xlsr-fine-tuning-week", "or", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
automatic-speech-recognition
transformers
# Wav2Vec2-Large-XLSR-53-Portuguese Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Portuguese using the [Common Voice](https://huggingface.co/datasets/common_voice) dataset. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "pt", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("gchhablani/wav2vec2-large-xlsr-pt") model = Wav2Vec2ForCTC.from_pretrained("gchhablani/wav2vec2-large-xlsr-pt") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Portuguese test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "pt", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("gchhablani/wav2vec2-large-xlsr-pt") model = Wav2Vec2ForCTC.from_pretrained("gchhablani/wav2vec2-large-xlsr-pt") model.to("cuda") chars_to_ignore_regex = '[\,\?\.\!\-\;\;\"\“\'\�]' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 17.22 % ## Training The Common Voice `train` and `validation` datasets were used for training. The script used for training can be found [here](https://github.com/jqueguiner/wav2vec2-sprint/blob/main/run_common_voice.py). The parameters passed were: ```bash #!/usr/bin/env bash python run_common_voice.py \ --model_name_or_path="facebook/wav2vec2-large-xlsr-53" \ --dataset_config_name="pt" \ --output_dir=/workspace/output_models/pt/wav2vec2-large-xlsr-pt \ --cache_dir=/workspace/data \ --overwrite_output_dir \ --num_train_epochs="30" \ --per_device_train_batch_size="32" \ --per_device_eval_batch_size="32" \ --evaluation_strategy="steps" \ --learning_rate="3e-4" \ --warmup_steps="500" \ --fp16 \ --freeze_feature_extractor \ --save_steps="500" \ --eval_steps="500" \ --save_total_limit="1" \ --logging_steps="500" \ --group_by_length \ --feat_proj_dropout="0.0" \ --layerdrop="0.1" \ --gradient_checkpointing \ --do_train --do_eval \ ``` Notebook containing the evaluation can be found [here](https://colab.research.google.com/drive/14e-zNK_5pm8EMY9EbeZerpHx7WsGycqG?usp=sharing).
{"language": "pt", "license": "apache-2.0", "tags": ["audio", "automatic-speech-recognition", "speech", "xlsr-fine-tuning-week"], "datasets": ["common_voice"], "metrics": ["wer"], "model-index": [{"name": "Wav2Vec2 Large 53 Portugese by Gunjan Chhablani", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice pt", "type": "common_voice", "args": "pt"}, "metrics": [{"type": "wer", "value": 17.22, "name": "Test WER"}]}]}]}
gchhablani/wav2vec2-large-xlsr-pt
null
[ "transformers", "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "audio", "speech", "xlsr-fine-tuning-week", "pt", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
automatic-speech-recognition
transformers
# Wav2Vec2-Large-XLSR-53-Romansh-Sursilvan Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Romansh Sursilvan using the [Common Voice](https://huggingface.co/datasets/common_voice) dataset. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "rm-sursilv", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("gchhablani/wav2vec2-large-xlsr-rm-sursilv") model = Wav2Vec2ForCTC.from_pretrained("gchhablani/wav2vec2-large-xlsr-rm-sursilv") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Portuguese test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "rm-sursilv", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("gchhablani/wav2vec2-large-xlsr-rm-sursilv") model = Wav2Vec2ForCTC.from_pretrained("gchhablani/wav2vec2-large-xlsr-rm-sursilv") model.to("cuda") chars_to_ignore_regex = '[\\,\\?\\.\\!\\-\\;\\:\\"\\“\\%\\‘\\”\\�\\…\\«\\»\\–]' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 25.16 % ## Training The Common Voice `train` and `validation` datasets were used for training. The code can be found [here](https://colab.research.google.com/drive/1dpZr_GzRowCciUbzM3GnW04TNKnB7vrP?usp=sharing).
{"language": "rm-sursilv", "license": "apache-2.0", "tags": ["audio", "automatic-speech-recognition", "speech", "xlsr-fine-tuning-week"], "datasets": ["common_voice"], "metrics": ["wer"], "model-index": [{"name": "Wav2Vec2 Large 53 Romansh Sursilvan by Gunjan Chhablani", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice rm-sursilv", "type": "common_voice", "args": "rm-sursilv"}, "metrics": [{"type": "wer", "value": 25.16, "name": "Test WER"}]}]}]}
gchhablani/wav2vec2-large-xlsr-rm-sursilv
null
[ "transformers", "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "audio", "speech", "xlsr-fine-tuning-week", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
gclb/test-names
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
gd2021/empathetic_chatbot
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
question-answering
transformers
{}
gdario/biobert_bioasq
null
[ "transformers", "pytorch", "jax", "bert", "question-answering", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
gdber/esparanto
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{"license": "cc-by-4.0"}
gdber/model_card_test
null
[ "license:cc-by-4.0", "region:us" ]
null
2022-03-02T23:29:05+00:00
automatic-speech-recognition
transformers
{}
gdimino/voxpopuli_base_it_2
null
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
fill-mask
transformers
# GreekSocialBERT ## Model description A Greek language model based on [GreekBERT](https://huggingface.co/nlpaueb/bert-base-greek-uncased-v1) ## Training data The training data is a corpus of 458,293 documents collected from Greek social media accounts. The training corpus has been collected and provided by [Palo LTD](http://www.paloservices.com/) ## Eval results ### BibTeX entry and citation info ```bibtex @Article{info12080331, AUTHOR = {Alexandridis, Georgios and Varlamis, Iraklis and Korovesis, Konstantinos and Caridakis, George and Tsantilas, Panagiotis}, TITLE = {A Survey on Sentiment Analysis and Opinion Mining in Greek Social Media}, JOURNAL = {Information}, VOLUME = {12}, YEAR = {2021}, NUMBER = {8}, ARTICLE-NUMBER = {331}, URL = {https://www.mdpi.com/2078-2489/12/8/331}, ISSN = {2078-2489}, DOI = {10.3390/info12080331} } ```
{"language": "el"}
gealexandri/greeksocialbert-base-greek-uncased-v1
null
[ "transformers", "pytorch", "tf", "bert", "fill-mask", "el", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
fill-mask
transformers
# PaloBERT ## Model description A Greek language model based on [RoBERTa](https://arxiv.org/abs/1907.11692) ## Training data The training data is a corpus of 458,293 documents collected from Greek social media accounts. It also contains a GTP-2 tokenizer trained from scratch on the same corpus. The training corpus has been collected and provided by [Palo LTD](http://www.paloservices.com/) ## Eval results ### BibTeX entry and citation info ```bibtex @Article{info12080331, AUTHOR = {Alexandridis, Georgios and Varlamis, Iraklis and Korovesis, Konstantinos and Caridakis, George and Tsantilas, Panagiotis}, TITLE = {A Survey on Sentiment Analysis and Opinion Mining in Greek Social Media}, JOURNAL = {Information}, VOLUME = {12}, YEAR = {2021}, NUMBER = {8}, ARTICLE-NUMBER = {331}, URL = {https://www.mdpi.com/2078-2489/12/8/331}, ISSN = {2078-2489}, DOI = {10.3390/info12080331} } ```
{"language": "el"}
gealexandri/palobert-base-greek-uncased-v1
null
[ "transformers", "pytorch", "tf", "roberta", "fill-mask", "el", "arxiv:1907.11692", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
{}
geckos/bart-fined-tuned-on-entailment-classification
null
[ "transformers", "pytorch", "bart", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
{}
geckos/bert-base-uncased-finetuned-glue-cola
null
[ "transformers", "pytorch", "bert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text2text-generation
transformers
{}
geckos/pegasus-fined-tuned-on-paraphrase
null
[ "transformers", "pytorch", "pegasus", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:05+00:00
feature-extraction
transformers
hello
{}
geekfeed/gpt2_ja
null
[ "transformers", "pytorch", "jax", "gpt2", "feature-extraction", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
geekplusq/bert-base-cased-finetuned-ner
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
geekplusq/distilbert-base-uncased-finetuned-ner
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
geekydevu/distilbert-base-uncased-finetuned-cola
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
geekydevu/distilbert-base-uncased-finetuned-sst2
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
https://dl.fbaipublicfiles.com/avhubert/model/lrs3_vox/vsr/base_vox_433h.pt
{}
g30rv17ys/avhubert
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
gelayks/gel
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
genasix/test
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
fill-mask
transformers
# Please use 'Bert' related functions to load this model! ## Chinese BERT with Whole Word Masking Fix MLM Parameters Init parameters by https://huggingface.co/hfl/chinese-roberta-wwm-ext-large miss mlm parameters issue https://github.com/ymcui/Chinese-BERT-wwm/issues/98 Only train MLM parameters and freeze other parameters More info in github https://github.com/genggui001/chinese_roberta_wwm_large_ext_fix_mlm
{"language": ["zh"], "license": "apache-2.0", "tags": ["bert"]}
genggui001/chinese_roberta_wwm_large_ext_fix_mlm
null
[ "transformers", "pytorch", "tf", "jax", "safetensors", "bert", "fill-mask", "zh", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
fill-mask
transformers
{}
geninhu/roberta_large_ITPT_FP
null
[ "transformers", "pytorch", "roberta", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
automatic-speech-recognition
transformers
# xls-asr-vi-40h-1B This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on 40 hours of FPT Open Speech Dataset (FOSD) and Common Voice 7.0. ### Benchmark WER result: | | [VIVOS](https://huggingface.co/datasets/vivos) | [COMMON VOICE 7.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0) | [COMMON VOICE 8.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_8_0) |---|---|---|---| |without LM| 25.93 | 34.21 | |with 4-grams LM| 24.11 | 25.84 | 31.158 | ### Benchmark CER result: | | [VIVOS](https://huggingface.co/datasets/vivos) | [COMMON VOICE 7.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0) | [COMMON VOICE 8.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_8_0) |---|---|---|---| |without LM| 9.24 | 19.94 | |with 4-grams LM| 10.37 | 12.96 | 16.179 | ## Evaluation Please use the eval.py file to run the evaluation ```python python eval.py --model_id geninhu/xls-asr-vi-40h-1B --dataset mozilla-foundation/common_voice_7_0 --config vi --split test --log_outputs ``` ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1500 - num_epochs: 10.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 4.6222 | 1.85 | 1500 | 5.9479 | 0.5474 | | 1.1362 | 3.7 | 3000 | 7.9799 | 0.5094 | | 0.7814 | 5.56 | 4500 | 5.0330 | 0.4724 | | 0.6281 | 7.41 | 6000 | 2.3484 | 0.5020 | | 0.5472 | 9.26 | 7500 | 2.2495 | 0.4793 | | 0.4827 | 11.11 | 9000 | 1.1530 | 0.4768 | | 0.4327 | 12.96 | 10500 | 1.6160 | 0.4646 | | 0.3989 | 14.81 | 12000 | 3.2633 | 0.4703 | | 0.3522 | 16.67 | 13500 | 2.2337 | 0.4708 | | 0.3201 | 18.52 | 15000 | 3.6879 | 0.4565 | | 0.2899 | 20.37 | 16500 | 5.4389 | 0.4599 | | 0.2776 | 22.22 | 18000 | 3.5284 | 0.4537 | | 0.2574 | 24.07 | 19500 | 2.1759 | 0.4649 | | 0.2378 | 25.93 | 21000 | 3.3901 | 0.4448 | | 0.217 | 27.78 | 22500 | 1.1632 | 0.4565 | | 0.2115 | 29.63 | 24000 | 1.7441 | 0.4232 | | 0.1959 | 31.48 | 25500 | 3.4992 | 0.4304 | | 0.187 | 33.33 | 27000 | 3.6163 | 0.4369 | | 0.1748 | 35.19 | 28500 | 3.6038 | 0.4467 | | 0.17 | 37.04 | 30000 | 2.9708 | 0.4362 | | 0.159 | 38.89 | 31500 | 3.2045 | 0.4279 | | 0.153 | 40.74 | 33000 | 3.2427 | 0.4287 | | 0.1463 | 42.59 | 34500 | 3.5439 | 0.4270 | | 0.139 | 44.44 | 36000 | 3.9381 | 0.4150 | | 0.1352 | 46.3 | 37500 | 4.1744 | 0.4092 | | 0.1369 | 48.15 | 39000 | 4.2279 | 0.4154 | | 0.1273 | 50.0 | 40500 | 4.1691 | 0.4133 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.11.0
{"language": ["vi"], "license": "apache-2.0", "tags": ["automatic-speech-recognition", "common-voice", "hf-asr-leaderboard", "robust-speech-event"], "datasets": ["mozilla-foundation/common_voice_7_0"], "model-index": [{"name": "xls-asr-vi-40h-1B", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice 7.0", "type": "mozilla-foundation/common_voice_7_0", "args": "vi"}, "metrics": [{"type": "wer", "value": 25.846, "name": "Test WER (with LM)"}, {"type": "cer", "value": 12.961, "name": "Test CER (with LM)"}]}, {"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice 8.0", "type": "mozilla-foundation/common_voice_8_0", "args": "vi"}, "metrics": [{"type": "wer", "value": 31.158, "name": "Test WER (with LM)"}, {"type": "cer", "value": 16.179, "name": "Test CER (with LM)"}]}]}]}
geninhu/xls-asr-vi-40h-1B
null
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "common-voice", "hf-asr-leaderboard", "robust-speech-event", "vi", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
automatic-speech-recognition
transformers
# xls-asr-vi-40h This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common voice 7.0 vi & private dataset. It achieves the following results on the evaluation set (Without Language Model): - Loss: 1.1177 - Wer: 60.58 ## Evaluation Please run the eval.py file ```bash !python eval_custom.py --model_id geninhu/xls-asr-vi-40h --dataset mozilla-foundation/common_voice_7_0 --config vi --split test ``` ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1500 - num_epochs: 50.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 23.3878 | 0.93 | 1500 | 21.9179 | 1.0 | | 8.8862 | 1.85 | 3000 | 6.0599 | 1.0 | | 4.3701 | 2.78 | 4500 | 4.3837 | 1.0 | | 4.113 | 3.7 | 6000 | 4.2698 | 0.9982 | | 3.9666 | 4.63 | 7500 | 3.9726 | 0.9989 | | 3.5965 | 5.56 | 9000 | 3.7124 | 0.9975 | | 3.3944 | 6.48 | 10500 | 3.5005 | 1.0057 | | 3.304 | 7.41 | 12000 | 3.3710 | 1.0043 | | 3.2482 | 8.33 | 13500 | 3.4201 | 1.0155 | | 3.212 | 9.26 | 15000 | 3.3732 | 1.0151 | | 3.1778 | 10.19 | 16500 | 3.2763 | 1.0009 | | 3.1027 | 11.11 | 18000 | 3.1943 | 1.0025 | | 2.9905 | 12.04 | 19500 | 2.8082 | 0.9703 | | 2.7095 | 12.96 | 21000 | 2.4993 | 0.9302 | | 2.4862 | 13.89 | 22500 | 2.3072 | 0.9140 | | 2.3271 | 14.81 | 24000 | 2.1398 | 0.8949 | | 2.1968 | 15.74 | 25500 | 2.0594 | 0.8817 | | 2.111 | 16.67 | 27000 | 1.9404 | 0.8630 | | 2.0387 | 17.59 | 28500 | 1.8895 | 0.8497 | | 1.9504 | 18.52 | 30000 | 1.7961 | 0.8315 | | 1.9039 | 19.44 | 31500 | 1.7433 | 0.8213 | | 1.8342 | 20.37 | 33000 | 1.6790 | 0.7994 | | 1.7824 | 21.3 | 34500 | 1.6291 | 0.7825 | | 1.7359 | 22.22 | 36000 | 1.5783 | 0.7706 | | 1.7053 | 23.15 | 37500 | 1.5248 | 0.7492 | | 1.6504 | 24.07 | 39000 | 1.4930 | 0.7406 | | 1.6263 | 25.0 | 40500 | 1.4572 | 0.7348 | | 1.5893 | 25.93 | 42000 | 1.4202 | 0.7161 | | 1.5669 | 26.85 | 43500 | 1.3987 | 0.7143 | | 1.5277 | 27.78 | 45000 | 1.3512 | 0.6991 | | 1.501 | 28.7 | 46500 | 1.3320 | 0.6879 | | 1.4781 | 29.63 | 48000 | 1.3112 | 0.6788 | | 1.4477 | 30.56 | 49500 | 1.2850 | 0.6657 | | 1.4483 | 31.48 | 51000 | 1.2813 | 0.6633 | | 1.4065 | 32.41 | 52500 | 1.2475 | 0.6541 | | 1.3779 | 33.33 | 54000 | 1.2244 | 0.6503 | | 1.3788 | 34.26 | 55500 | 1.2116 | 0.6407 | | 1.3428 | 35.19 | 57000 | 1.1938 | 0.6352 | | 1.3453 | 36.11 | 58500 | 1.1927 | 0.6340 | | 1.3137 | 37.04 | 60000 | 1.1699 | 0.6252 | | 1.2984 | 37.96 | 61500 | 1.1666 | 0.6229 | | 1.2927 | 38.89 | 63000 | 1.1585 | 0.6188 | | 1.2919 | 39.81 | 64500 | 1.1618 | 0.6190 | | 1.293 | 40.74 | 66000 | 1.1479 | 0.6181 | | 1.2853 | 41.67 | 67500 | 1.1423 | 0.6202 | | 1.2687 | 42.59 | 69000 | 1.1315 | 0.6131 | | 1.2603 | 43.52 | 70500 | 1.1333 | 0.6128 | | 1.2577 | 44.44 | 72000 | 1.1191 | 0.6079 | | 1.2435 | 45.37 | 73500 | 1.1177 | 0.6079 | | 1.251 | 46.3 | 75000 | 1.1211 | 0.6092 | | 1.2482 | 47.22 | 76500 | 1.1177 | 0.6060 | | 1.2422 | 48.15 | 78000 | 1.1227 | 0.6097 | | 1.2485 | 49.07 | 79500 | 1.1187 | 0.6071 | | 1.2425 | 50.0 | 81000 | 1.1177 | 0.6058 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.11.0
{"language": ["vi"], "license": "apache-2.0", "tags": ["automatic-speech-recognition", "common-voice", "hf-asr-leaderboard", "robust-speech-event"], "datasets": ["mozilla-foundation/common_voice_7_0"], "model-index": [{"name": "xls-asr-vi-40h", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice 7.0", "type": "mozilla-foundation/common_voice_7_0", "args": "vi"}, "metrics": [{"type": "wer", "value": 56.57, "name": "Test WER (with Language model)"}]}]}]}
geninhu/xls-asr-vi-40h
null
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "common-voice", "hf-asr-leaderboard", "robust-speech-event", "vi", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
genji/li
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
text-generation
transformers
# MechDistilGPT2 ## Table of Contents - [Model Details](#model-details) - [Uses](#uses) - [Risks, Limitations and Biases](#risks-limitations-and-biases) - [Training](#training) - [Environmental Impact](#environmental-impact) - [How to Get Started With the Model](#how-to-get-started-with-the-model) ## Model Details - **Model Description:** This model is fine-tuned on text scraped from 100+ Mechanical/Automotive pdf books. - **Developed by:** [Ashwin](https://huggingface.co/geralt) - **Model Type:** Causal Language modeling - **Language(s):** English - **License:** [More Information Needed] - **Parent Model:** See the [DistilGPT2model](https://huggingface.co/distilgpt2) for more information about the Distilled-GPT2 base model. - **Resources for more information:** - [Research Paper](https://arxiv.org/abs/2105.09680) - [GitHub Repo](https://github.com/huggingface/notebooks/blob/master/examples/language_modeling.ipynb) ## Uses #### Direct Use The model can be used for tasks including topic classification, Causal Language modeling and text generation #### Misuse and Out-of-scope Use The model should not be used to intentionally create hostile or alienating environments for people. In addition, the model was not trained to be factual or true representations of people or events, and therefore using the model to generate such content is out-of-scope for the abilities of this model. ## Risks, Limitations and Biases **CONTENT WARNING: Readers should be aware this section contains content that is disturbing, offensive, and can propagate historical and current stereotypes.** Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al. (2021)](https://aclanthology.org/2021.acl-long.330.pdf) and [Bender et al. (2021)](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)). ## Training #### Training Data This model is fine-tuned on text scraped from 100+ Mechanical/Automotive pdf books. #### Training Procedure ###### Fine-Tuning * Default Training Args * Epochs = 3 * Training set = 200k sentences * Validation set = 40k sentences ###### Framework versions * Transformers 4.7.0.dev0 * Pytorch 1.8.1+cu111 * Datasets 1.6.2 * Tokenizers 0.10.2 # Environmental Impact ​ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). ​ - **Hardware Type:** [More information needed] - **Hours used:** [More information needed] - **Cloud Provider:** [More information needed] - **Compute Region:** [More information needed"] - **Carbon Emitted:** [More information needed] ​ ## How to Get Started With the Model ```python from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("geralt/MechDistilGPT2") model = AutoModelForCausalLM.from_pretrained("geralt/MechDistilGPT2") ```
{"tags": ["Causal Language modeling", "text-generation", "CLM"], "model_index": [{"name": "MechDistilGPT2", "results": [{"task": {"name": "Causal Language modeling", "type": "Causal Language modeling"}}]}]}
geralt/MechDistilGPT2
null
[ "transformers", "pytorch", "gpt2", "text-generation", "Causal Language modeling", "CLM", "arxiv:2105.09680", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
gerardoalemanm/gpt-2-small-spanish
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
question-answering
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # biobert_v1.1_pubmed-finetuned-squad This model is a fine-tuned version of [gerardozq/biobert_v1.1_pubmed-finetuned-squad](https://huggingface.co/gerardozq/biobert_v1.1_pubmed-finetuned-squad) on the squad_v2 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Framework versions - Transformers 4.12.3 - Pytorch 1.9.0+cu111 - Datasets 1.15.1 - Tokenizers 0.10.3
{"tags": ["generated_from_trainer"], "datasets": ["squad_v2"], "model-index": [{"name": "biobert_v1.1_pubmed-finetuned-squad", "results": []}]}
gerardozq/biobert_v1.1_pubmed-finetuned-squad
null
[ "transformers", "pytorch", "tensorboard", "bert", "question-answering", "generated_from_trainer", "dataset:squad_v2", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
transformers
# German Electra Uncased <img width="300px" src="https://raw.githubusercontent.com/German-NLP-Group/german-transformer-training/master/model_cards/german-electra-logo.png"> [¹] ## Version 2 Release We released an improved version of this model. Version 1 was trained for 766,000 steps. For this new version we continued the training for an additional 734,000 steps. It therefore follows that version 2 was trained on a total of 1,500,000 steps. See "Evaluation of Version 2: GermEval18 Coarse" below for details. ## Model Info This Model is suitable for training on many downstream tasks in German (Q&A, Sentiment Analysis, etc.). It can be used as a drop-in replacement for **BERT** in most down-stream tasks (**ELECTRA** is even implemented as an extended **BERT** Class). At the time of release (August 2020) this model is the best performing publicly available German NLP model on various German evaluation metrics (CONLL03-DE, GermEval18 Coarse, GermEval18 Fine). For GermEval18 Coarse results see below. More will be published soon. ## Installation This model has the special feature that it is **uncased** but does **not strip accents**. This possibility was added by us with [PR #6280](https://github.com/huggingface/transformers/pull/6280). To use it you have to use Transformers version 3.1.0 or newer. ```bash pip install transformers -U ``` ## Uncase and Umlauts ('Ö', 'Ä', 'Ü') This model is uncased. This helps especially for domains where colloquial terms with uncorrect capitalization is often used. The special characters 'ö', 'ü', 'ä' are included through the `strip_accent=False` option, as this leads to an improved precision. ## Creators This model was trained and open sourced in conjunction with the [**German NLP Group**](https://github.com/German-NLP-Group) in equal parts by: - [**Philip May**](https://May.la) - [Deutsche Telekom](https://www.telekom.de/) - [**Philipp Reißel**](https://www.linkedin.com/in/philipp-reissel/) - [ambeRoad](https://amberoad.de/) ## Evaluation of Version 2: GermEval18 Coarse We evaluated all language models on GermEval18 with the F1 macro score. For each model we did an extensive automated hyperparameter search. With the best hyperparmeters we did fit the moodel multiple times on GermEval18. This is done to cancel random effects and get results of statistical relevance. ![GermEval18 Coarse Model Evaluation for Version 2](https://raw.githubusercontent.com/German-NLP-Group/german-transformer-training/master/model_cards/model-eval-v2.png) ## Checkpoint evaluation Since it it not guaranteed that the last checkpoint is the best, we evaluated the checkpoints on GermEval18. We found that the last checkpoint is indeed the best. The training was stable and did not overfit the text corpus. ## Pre-training details ### Data - Cleaned Common Crawl Corpus 2019-09 German: [CC_net](https://github.com/facebookresearch/cc_net) (Only head coprus and filtered for language_score > 0.98) - 62 GB - German Wikipedia Article Pages Dump (20200701) - 5.5 GB - German Wikipedia Talk Pages Dump (20200620) - 1.1 GB - Subtitles - 823 MB - News 2018 - 4.1 GB The sentences were split with [SojaMo](https://github.com/tsproisl/SoMaJo). We took the German Wikipedia Article Pages Dump 3x to oversample. This approach was also used in a similar way in GPT-3 (Table 2.2). More Details can be found here [Preperaing Datasets for German Electra Github](https://github.com/German-NLP-Group/german-transformer-training) ### Electra Branch no_strip_accents Because we do not want to stip accents in our training data we made a change to Electra and used this repo [Electra no_strip_accents](https://github.com/PhilipMay/electra/tree/no_strip_accents) (branch `no_strip_accents`). Then created the tf dataset with: ```bash python build_pretraining_dataset.py --corpus-dir <corpus_dir> --vocab-file <dir>/vocab.txt --output-dir ./tf_data --max-seq-length 512 --num-processes 8 --do-lower-case --no-strip-accents ``` ### The training The training itself can be performed with the Original Electra Repo (No special case for this needed). We run it with the following Config: <details> <summary>The exact Training Config</summary> <br/>debug False <br/>disallow_correct False <br/>disc_weight 50.0 <br/>do_eval False <br/>do_lower_case True <br/>do_train True <br/>electra_objective True <br/>embedding_size 768 <br/>eval_batch_size 128 <br/>gcp_project None <br/>gen_weight 1.0 <br/>generator_hidden_size 0.33333 <br/>generator_layers 1.0 <br/>iterations_per_loop 200 <br/>keep_checkpoint_max 0 <br/>learning_rate 0.0002 <br/>lr_decay_power 1.0 <br/>mask_prob 0.15 <br/>max_predictions_per_seq 79 <br/>max_seq_length 512 <br/>model_dir gs://XXX <br/>model_hparam_overrides {} <br/>model_name 02_Electra_Checkpoints_32k_766k_Combined <br/>model_size base <br/>num_eval_steps 100 <br/>num_tpu_cores 8 <br/>num_train_steps 766000 <br/>num_warmup_steps 10000 <br/>pretrain_tfrecords gs://XXX <br/>results_pkl gs://XXX <br/>results_txt gs://XXX <br/>save_checkpoints_steps 5000 <br/>temperature 1.0 <br/>tpu_job_name None <br/>tpu_name electrav5 <br/>tpu_zone None <br/>train_batch_size 256 <br/>uniform_generator False <br/>untied_generator True <br/>untied_generator_embeddings False <br/>use_tpu True <br/>vocab_file gs://XXX <br/>vocab_size 32767 <br/>weight_decay_rate 0.01 </details> ![Training Loss](https://raw.githubusercontent.com/German-NLP-Group/german-transformer-training/master/model_cards/loss.png) Please Note: *Due to the GAN like strucutre of Electra the loss is not that meaningful* It took about 7 Days on a preemtible TPU V3-8. In total, the Model went through approximately 10 Epochs. For an automatically recreation of a cancelled TPUs we used [tpunicorn](https://github.com/shawwn/tpunicorn). The total cost of training summed up to about 450 $ for one run. The Data-pre processing and Vocab Creation needed approximately 500-1000 CPU hours. Servers were fully provided by [T-Systems on site services GmbH](https://www.t-systems-onsite.de/), [ambeRoad](https://amberoad.de/). Special thanks to [Stefan Schweter](https://github.com/stefan-it) for your feedback and providing parts of the text corpus. [¹]: Source for the picture [Pinterest](https://www.pinterest.cl/pin/371828512984142193/) ### Negative Results We tried the following approaches which we found had no positive influence: - **Increased Vocab Size**: Leads to more parameters and thus reduced examples/sec while no visible Performance gains were measured - **Decreased Batch-Size**: The original Electra was trained with a Batch Size per TPU Core of 16 whereas this Model was trained with 32 BS / TPU Core. We found out that 32 BS leads to better results when you compare metrics over computation time ## License - The MIT License Copyright 2020-2021 Philip May<br> Copyright 2020-2021 Philipp Reissel Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
{"language": "de", "license": "mit", "tags": ["electra", "commoncrawl", "uncased", "umlaute", "umlauts", "german", "deutsch"], "thumbnail": "https://raw.githubusercontent.com/German-NLP-Group/german-transformer-training/master/model_cards/german-electra-logo.png"}
german-nlp-group/electra-base-german-uncased
null
[ "transformers", "pytorch", "electra", "pretraining", "commoncrawl", "uncased", "umlaute", "umlauts", "german", "deutsch", "de", "license:mit", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
fill-mask
transformers
# SlovakBERT (base-sized model) SlovakBERT pretrained model on Slovak language using a masked language modeling (MLM) objective. This model is case-sensitive: it makes a difference between slovensko and Slovensko. ## Intended uses & limitations You can use the raw model for masked language modeling, but it's mostly intended to be fine-tuned on a downstream task. **IMPORTANT**: The model was not trained on the “ and ” (direct quote) character -> so before tokenizing the text, it is advised to replace all “ and ” (direct quote marks) with a single "(double quote marks). ### How to use You can use this model directly with a pipeline for masked language modeling: ```python from transformers import pipeline unmasker = pipeline('fill-mask', model='gerulata/slovakbert') unmasker("Deti sa <mask> na ihrisku.") [{'sequence': 'Deti sa hrali na ihrisku.', 'score': 0.6355380415916443, 'token': 5949, 'token_str': ' hrali'}, {'sequence': 'Deti sa hrajú na ihrisku.', 'score': 0.14731724560260773, 'token': 9081, 'token_str': ' hrajú'}, {'sequence': 'Deti sa zahrali na ihrisku.', 'score': 0.05016357824206352, 'token': 32553, 'token_str': ' zahrali'}, {'sequence': 'Deti sa stretli na ihrisku.', 'score': 0.041727423667907715, 'token': 5964, 'token_str': ' stretli'}, {'sequence': 'Deti sa učia na ihrisku.', 'score': 0.01886524073779583, 'token': 18099, 'token_str': ' učia'}] ``` Here is how to use this model to get the features of a given text in PyTorch: ```python from transformers import RobertaTokenizer, RobertaModel tokenizer = RobertaTokenizer.from_pretrained('gerulata/slovakbert') model = RobertaModel.from_pretrained('gerulata/slovakbert') text = "Text ktorý sa má embedovať." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` and in TensorFlow: ```python from transformers import RobertaTokenizer, TFRobertaModel tokenizer = RobertaTokenizer.from_pretrained('gerulata/slovakbert') model = TFRobertaModel.from_pretrained('gerulata/slovakbert') text = "Text ktorý sa má embedovať." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` Or extract information from the model like this: ```python from transformers import pipeline unmasker = pipeline('fill-mask', model='gerulata/slovakbert') unmasker("Slovenské národne povstanie sa uskutočnilo v roku <mask>.") [{'sequence': 'Slovenske narodne povstanie sa uskutočnilo v roku 1944.', 'score': 0.7383289933204651, 'token': 16621, 'token_str': ' 1944'},...] ``` # Training data The SlovakBERT model was pretrained on these datasets: - Wikipedia (326MB of text), - OpenSubtitles (415MB of text), - Oscar (4.6GB of text), - Gerulata WebCrawl (12.7GB of text) , - Gerulata Monitoring (214 MB of text), - blbec.online (4.5GB of text) The text was then processed with the following steps: - URL and email addresses were replaced with special tokens ("url", "email"). - Elongated interpunction was reduced (e.g. -- to -). - Markdown syntax was deleted. - All text content in braces f.g was eliminated to reduce the amount of markup and programming language text. We segmented the resulting corpus into sentences and removed duplicates to get 181.6M unique sentences. In total, the final corpus has 19.35GB of text. # Pretraining The model was trained in **fairseq** on 4 x Nvidia A100 GPUs for 300K steps with a batch size of 512 and a sequence length of 512. The optimizer used is Adam with a learning rate of 5e-4, \\(\beta_{1} = 0.9\\), \\(\beta_{2} = 0.98\\) and \\(\epsilon = 1e-6\\), a weight decay of 0.01, dropout rate 0.1, learning rate warmup for 10k steps and linear decay of the learning rate after. We used 16-bit float precision. ## About us <a href="https://www.gerulata.com/"> <img width="300px" src="https://www.gerulata.com/assets/images/Logo_Blue.svg"> </a> Gerulata Technologies is a tech company on a mission to provide tools for fighting disinformation and hostile propaganda. At Gerulata, we focus on providing state-of-the-art AI-powered tools that empower human analysts and provide them with the ability to make informed decisions. Our tools allow for the monitoring and analysis of online activity, as well as the detection and tracking of disinformation and hostile propaganda campaigns. With our products, our clients are better equipped to identify and respond to threats in real-time. ### BibTeX entry and citation info If you find our resource or paper is useful, please consider including the following citation in your paper. - https://arxiv.org/abs/2109.15254 ``` @misc{pikuliak2021slovakbert, title={SlovakBERT: Slovak Masked Language Model}, author={Matúš Pikuliak and Štefan Grivalský and Martin Konôpka and Miroslav Blšták and Martin Tamajka and Viktor Bachratý and Marián Šimko and Pavol Balážik and Michal Trnka and Filip Uhlárik}, year={2021}, eprint={2109.15254}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
{"language": "sk", "license": "mit", "tags": ["SlovakBERT"], "datasets": ["wikipedia", "opensubtitles", "oscar", "gerulatawebcrawl", "gerulatamonitoring", "blbec.online"]}
gerulata/slovakbert
null
[ "transformers", "pytorch", "tf", "safetensors", "roberta", "fill-mask", "SlovakBERT", "sk", "dataset:wikipedia", "dataset:opensubtitles", "dataset:oscar", "dataset:gerulatawebcrawl", "dataset:gerulatamonitoring", "dataset:blbec.online", "arxiv:2109.15254", "license:mit", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
geup/test
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
question-answering
transformers
{"language": ["ar"], "widget": [{"text": "\u0623\u064a\u0646 \u064a\u0639\u064a\u0634 \u0645\u062d\u0645\u062f \u061f", "context": "\u0627\u0633\u0645\u064a \u0645\u062d\u0645\u062f \u0648\u0623\u0646\u0627 \u0623\u0639\u064a\u0634 \u0641\u064a \u0633\u0648\u0631\u064a\u0627"}, {"text": "\u0645\u0627 \u0627\u0644\u0639\u062f\u062f \u0627\u0644\u0630\u0631\u064a \u0644\u0644\u0647\u064a\u062f\u0631\u0648\u062c\u064a\u0646 \u061f", "context": "\u0627\u0644\u0647\u064a\u062f\u0631\u0648\u062c\u064a\u0646 \u0647\u0648 \u0639\u0646\u0635\u0631 \u0643\u064a\u0645\u064a\u0627\u0626\u064a \u0639\u062f\u062f\u0647 \u0627\u0644\u0630\u0631\u064a 1 \u060c \u0648\u0647\u0648 \u063a\u0627\u0632 \u0639\u062f\u064a\u0645 \u0627\u0644\u0631\u0627\u0626\u062d\u0629 \u0648\u0627\u0644\u0644\u0648\u0646 \u0648\u0647\u0648 \u0633\u0631\u064a\u0639 \u0627\u0644\u0627\u0634\u062a\u0639\u0627\u0644"}, {"text": "\u0645\u0627 \u062e\u0648\u0627\u0635 \u0627\u0644\u0647\u064a\u062f\u0631\u0648\u062c\u064a\u0646 \u061f", "context": "\u0627\u0644\u0647\u064a\u062f\u0631\u0648\u062c\u064a\u0646 \u0647\u0648 \u0639\u0646\u0635\u0631 \u0643\u064a\u0645\u064a\u0627\u0626\u064a \u0639\u062f\u062f\u0647 \u0627\u0644\u0630\u0631\u064a 1 \u060c \u0648\u0647\u0648 \u063a\u0627\u0632 \u0639\u062f\u064a\u0645 \u0627\u0644\u0631\u0627\u0626\u062d\u0629 \u0648\u0627\u0644\u0644\u0648\u0646 \u0648\u0647\u0648 \u0633\u0631\u064a\u0639 \u0627\u0644\u0627\u0634\u062a\u0639\u0627\u0644"}]}
gfdgdfgdg/arap_qa_bert
null
[ "transformers", "pytorch", "bert", "question-answering", "ar", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
question-answering
transformers
{"language": ["ar"], "widget": [{"text": "\u0623\u064a\u0646 \u064a\u0639\u064a\u0634 \u0645\u062d\u0645\u062f \u061f", "context": "\u0627\u0633\u0645\u064a \u0645\u062d\u0645\u062f \u0648\u0623\u0646\u0627 \u0623\u0639\u064a\u0634 \u0641\u064a \u0633\u0648\u0631\u064a\u0627"}, {"text": "\u0645\u0627 \u0627\u0644\u0639\u062f\u062f \u0627\u0644\u0630\u0631\u064a \u0644\u0644\u0647\u064a\u062f\u0631\u0648\u062c\u064a\u0646 \u061f", "context": "\u0627\u0644\u0647\u064a\u062f\u0631\u0648\u062c\u064a\u0646 \u0647\u0648 \u0639\u0646\u0635\u0631 \u0643\u064a\u0645\u064a\u0627\u0626\u064a \u0639\u062f\u062f\u0647 \u0627\u0644\u0630\u0631\u064a 1 \u060c \u0648\u0647\u0648 \u063a\u0627\u0632 \u0639\u062f\u064a\u0645 \u0627\u0644\u0631\u0627\u0626\u062d\u0629 \u0648\u0627\u0644\u0644\u0648\u0646 \u0648\u0647\u0648 \u0633\u0631\u064a\u0639 \u0627\u0644\u0627\u0634\u062a\u0639\u0627\u0644"}, {"text": "\u0645\u0627 \u062e\u0648\u0627\u0635 \u0627\u0644\u0647\u064a\u062f\u0631\u0648\u062c\u064a\u0646 \u061f", "context": "\u0627\u0644\u0647\u064a\u062f\u0631\u0648\u062c\u064a\u0646 \u0647\u0648 \u0639\u0646\u0635\u0631 \u0643\u064a\u0645\u064a\u0627\u0626\u064a \u0639\u062f\u062f\u0647 \u0627\u0644\u0630\u0631\u064a 1 \u060c \u0648\u0647\u0648 \u063a\u0627\u0632 \u0639\u062f\u064a\u0645 \u0627\u0644\u0631\u0627\u0626\u062d\u0629 \u0648\u0627\u0644\u0644\u0648\u0646 \u0648\u0647\u0648 \u0633\u0631\u064a\u0639 \u0627\u0644\u0627\u0634\u062a\u0639\u0627\u0644"}]}
gfdgdfgdg/arap_qa_bert_large_v2
null
[ "transformers", "pytorch", "bert", "question-answering", "ar", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
question-answering
transformers
{"language": ["ar"], "widget": [{"text": "\u0623\u064a\u0646 \u064a\u0639\u064a\u0634 \u0645\u062d\u0645\u062f \u061f", "context": "\u0627\u0633\u0645\u064a \u0645\u062d\u0645\u062f \u0648\u0623\u0646\u0627 \u0623\u0639\u064a\u0634 \u0641\u064a \u0633\u0648\u0631\u064a\u0627"}, {"text": "\u0645\u0627 \u0627\u0644\u0639\u062f\u062f \u0627\u0644\u0630\u0631\u064a \u0644\u0644\u0647\u064a\u062f\u0631\u0648\u062c\u064a\u0646 \u061f", "context": "\u0627\u0644\u0647\u064a\u062f\u0631\u0648\u062c\u064a\u0646 \u0647\u0648 \u0639\u0646\u0635\u0631 \u0643\u064a\u0645\u064a\u0627\u0626\u064a \u0639\u062f\u062f\u0647 \u0627\u0644\u0630\u0631\u064a 1 \u060c \u0648\u0647\u0648 \u063a\u0627\u0632 \u0639\u062f\u064a\u0645 \u0627\u0644\u0631\u0627\u0626\u062d\u0629 \u0648\u0627\u0644\u0644\u0648\u0646 \u0648\u0647\u0648 \u0633\u0631\u064a\u0639 \u0627\u0644\u0627\u0634\u062a\u0639\u0627\u0644"}, {"text": "\u0645\u0627 \u062e\u0648\u0627\u0635 \u0627\u0644\u0647\u064a\u062f\u0631\u0648\u062c\u064a\u0646 \u061f", "context": "\u0627\u0644\u0647\u064a\u062f\u0631\u0648\u062c\u064a\u0646 \u0647\u0648 \u0639\u0646\u0635\u0631 \u0643\u064a\u0645\u064a\u0627\u0626\u064a \u0639\u062f\u062f\u0647 \u0627\u0644\u0630\u0631\u064a 1 \u060c \u0648\u0647\u0648 \u063a\u0627\u0632 \u0639\u062f\u064a\u0645 \u0627\u0644\u0631\u0627\u0626\u062d\u0629 \u0648\u0627\u0644\u0644\u0648\u0646 \u0648\u0647\u0648 \u0633\u0631\u064a\u0639 \u0627\u0644\u0627\u0634\u062a\u0639\u0627\u0644"}]}
gfdgdfgdg/arap_qa_bert_v2
null
[ "transformers", "pytorch", "bert", "question-answering", "ar", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
gfdream/DialoGPT-medium-harrypotter
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
text-generation
transformers
# Family Guy (Peter) DialoGPT Model
{"tags": ["conversational"]}
gfdream/dialogpt-small-familyguy
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-generation
transformers
# Harry Potter DialoGPT Model
{"tags": ["conversational"]}
gfdream/dialogpt-small-harrypotter
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
gfoles/Poo
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
ggggy/test
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
ggosline/bart-base-herblabels
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
text2text-generation
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-herblabels This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4823 - Rouge1: 3.0759 - Rouge2: 1.0495 - Rougel: 3.0758 - Rougelsum: 3.0431 - Gen Len: 18.9716 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| | No log | 1.0 | 264 | 1.6010 | 2.4276 | 0.5658 | 2.3546 | 2.3099 | 18.9091 | | 2.5052 | 2.0 | 528 | 1.0237 | 2.9016 | 0.3395 | 2.8221 | 2.783 | 18.9673 | | 2.5052 | 3.0 | 792 | 0.7793 | 2.962 | 0.3091 | 2.9375 | 2.8786 | 18.9588 | | 1.1552 | 4.0 | 1056 | 0.6530 | 2.98 | 0.4375 | 2.9584 | 2.8711 | 18.9588 | | 1.1552 | 5.0 | 1320 | 0.5863 | 3.0023 | 0.5882 | 2.987 | 2.9155 | 18.9588 | | 0.8659 | 6.0 | 1584 | 0.5428 | 3.0576 | 0.8019 | 3.0494 | 2.9989 | 18.9716 | | 0.8659 | 7.0 | 1848 | 0.5145 | 3.0808 | 0.9476 | 3.0719 | 3.0237 | 18.9716 | | 0.747 | 8.0 | 2112 | 0.4962 | 3.0748 | 1.0032 | 3.0683 | 3.0359 | 18.9716 | | 0.747 | 9.0 | 2376 | 0.4856 | 3.0702 | 1.0196 | 3.0665 | 3.0328 | 18.9716 | | 0.6987 | 10.0 | 2640 | 0.4823 | 3.0759 | 1.0495 | 3.0758 | 3.0431 | 18.9716 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0 - Datasets 1.16.1 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["rouge"], "model-index": [{"name": "t5-small-herblabels", "results": []}]}
ggosline/t5-small-herblabels
null
[ "transformers", "pytorch", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
ggosline/t5-small-herblables
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
ggrunin/model_name
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
token-classification
transformers
{}
ghadeermobasher/BC2GM-Gene-Modified_BioM-ELECTRA-Base-Discriminator
null
[ "transformers", "pytorch", "electra", "token-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
token-classification
transformers
{}
ghadeermobasher/BC2GM-Gene-Modified_PubMedBERT
null
[ "transformers", "pytorch", "bert", "token-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
ghadeermobasher/BC2GM-Gene-Modified_biobert-large-cased-v1.1
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
token-classification
transformers
{}
ghadeermobasher/BC2GM-Gene-Modified_scibert_scivocab_cased
null
[ "transformers", "pytorch", "bert", "token-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
ghadeermobasher/BC2GM-Gene_Imbalanced-biobert-large-cased-v1.1
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
token-classification
transformers
{}
ghadeermobasher/BC2GM-Gene_ImbalancedBioM-ELECTRA-Base-Discriminator
null
[ "transformers", "pytorch", "electra", "token-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
token-classification
transformers
{}
ghadeermobasher/BC2GM-Gene_ImbalancedPubMedBERT
null
[ "transformers", "pytorch", "bert", "token-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
token-classification
transformers
{}
ghadeermobasher/BC2GM-Gene_Imbalancedscibert_scivocab_cased
null
[ "transformers", "pytorch", "bert", "token-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
token-classification
transformers
{}
ghadeermobasher/BC4-Original-biobert-v1.1
null
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
token-classification
transformers
{}
ghadeermobasher/BC4-Original-bluebert_pubmed_uncased_L-12_H-768_A-12
null
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
token-classification
transformers
{}
ghadeermobasher/BC4-Original-scibert_scivocab_uncased
null
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
token-classification
transformers
{}
ghadeermobasher/BC4-modified-PubmedBert
null
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
token-classification
transformers
{}
ghadeermobasher/BC4-modified-PubmedBert_small
null
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
token-classification
transformers
{}
ghadeermobasher/BC4-original-PubmedBert
null
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
token-classification
transformers
{}
ghadeermobasher/BC4-original-PubmedBert_small
null
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
token-classification
transformers
{}
ghadeermobasher/BC4CHEMD-Modified_BioM-ELECTRA-Base-Discriminator
null
[ "transformers", "pytorch", "electra", "token-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
token-classification
transformers
{}
ghadeermobasher/BC4CHEMD-Modified_PubMedBERT
null
[ "transformers", "pytorch", "bert", "token-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
token-classification
transformers
{}
ghadeermobasher/BC4CHEMD-Modified_pubmed_clinical
null
[ "transformers", "pytorch", "bert", "token-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
token-classification
transformers
{}
ghadeermobasher/BC4CHEMD-Modified_scibert_scivocab_cased
null
[ "transformers", "pytorch", "bert", "token-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
ghadeermobasher/BC4CHEMD_Imbalanced-biobert-large-cased-v1.1
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
token-classification
transformers
{}
ghadeermobasher/BC4CHEMD_ImbalancedBioM-ELECTRA-Base-Discriminator
null
[ "transformers", "pytorch", "electra", "token-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
token-classification
transformers
{}
ghadeermobasher/BC4CHEMD_ImbalancedPubMedBERT
null
[ "transformers", "pytorch", "bert", "token-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
token-classification
transformers
{}
ghadeermobasher/BC4CHEMD_Imbalancedscibert_scivocab_cased
null
[ "transformers", "pytorch", "bert", "token-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
token-classification
transformers
{}
ghadeermobasher/BC4_CHEM_PubmedBERT
null
[ "transformers", "pytorch", "bert", "token-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
token-classification
transformers
{}
ghadeermobasher/BC4_Modified-biobert-v1.1
null
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
token-classification
transformers
{}
ghadeermobasher/BC4_Modified-bluebert_pubmed_uncased_L-12_H-768_A-12
null
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
token-classification
transformers
{}
ghadeermobasher/BC4_Modified-scibert_scivocab_uncased
null
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
token-classification
transformers
{}
ghadeermobasher/BC4_Modified_BiomedNLP-PubMedBERT-base-uncased-abstract
null
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
token-classification
transformers
{}
ghadeermobasher/BC4_Original-BiomedNLP-PubMedBERT-base-uncased-abstract
null
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
ghadeermobasher/BC5CDR-Chem-Modified-PubmedBert
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
token-classification
transformers
{}
ghadeermobasher/BC5CDR-Chem-Modified_biobert-large-cased
null
[ "transformers", "pytorch", "bert", "token-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
token-classification
transformers
{}
ghadeermobasher/BC5CDR-Chem-Modified_biobert-v1.1_latest
null
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
token-classification
transformers
{}
ghadeermobasher/BC5CDR-Chem-Modified_bluebert_pubmed_uncased_L-12_H-768_A-12_latest
null
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
token-classification
transformers
{}
ghadeermobasher/BC5CDR-Chem-Modified_pubmed_abstract_3
null
[ "transformers", "pytorch", "bert", "token-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
token-classification
transformers
{}
ghadeermobasher/BC5CDR-Chem-Modified_pubmed_abstract_latest
null
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
token-classification
transformers
{}
ghadeermobasher/BC5CDR-Chem-Modified_pubmed_full_3
null
[ "transformers", "pytorch", "bert", "token-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
token-classification
transformers
{}
ghadeermobasher/BC5CDR-Chem-Modified_scibert_scivocab_uncased_latest
null
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
ghadeermobasher/BC5CDR-Chem-Original-PubmedBert
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
ghadeermobasher/BC5CDR-Chem-Original-biobert-v1.1
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
token-classification
transformers
{}
ghadeermobasher/WELT-PubMedBERT-BC5CDRChemical
null
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
ghadeermobasher/BC5CDR-Chem2-Modified_bluebert_pubmed_uncased_L-12_H-768_A-12_latest
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
token-classification
transformers
{}
ghadeermobasher/Original-PubMedBERT-BC5CDRChemical
null
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
token-classification
transformers
{}
ghadeermobasher/BC5CDR-Chemical-Disease-balanced-BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext
null
[ "transformers", "pytorch", "bert", "token-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
adapter-transformers
# Adapter `ghadeermobasher/BC5CDR-Chemical-Disease-balanced-SapBERT-UMLS-2020AB-all-lang-from-XLMR` for ghadeermobasher/BC5CDR-Chemical-Disease-balanced-SapBERT-UMLS-2020AB-all-lang-from-XLMR An [adapter](https://adapterhub.ml) for the `ghadeermobasher/BC5CDR-Chemical-Disease-balanced-SapBERT-UMLS-2020AB-all-lang-from-XLMR` model that was trained on the [other](https://adapterhub.ml/explore/other/) dataset. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoModelWithHeads model = AutoModelWithHeads.from_pretrained("ghadeermobasher/BC5CDR-Chemical-Disease-balanced-SapBERT-UMLS-2020AB-all-lang-from-XLMR") adapter_name = model.load_adapter("ghadeermobasher/BC5CDR-Chemical-Disease-balanced-SapBERT-UMLS-2020AB-all-lang-from-XLMR", source="hf", set_active=True) ``` ## Architecture & Training <!-- Add some description here --> ## Evaluation results <!-- Add some description here --> ## Citation <!-- Add some description here -->
{"tags": ["adapter-transformers", "adapterhub:other", "xlm-roberta"], "datasets": ["ghadeermobasher/BC5CDR-Chemical-Disease"]}
ghadeermobasher/BC5CDR-Chemical-Disease-balanced-SapBERT-UMLS-2020AB-all-lang-from-XLMR
null
[ "adapter-transformers", "pytorch", "xlm-roberta", "adapterhub:other", "dataset:ghadeermobasher/BC5CDR-Chemical-Disease", "region:us" ]
null
2022-03-02T23:29:05+00:00
token-classification
transformers
{}
ghadeermobasher/BC5CDR-Chemical-Disease-balanced-SapBERT-from-PubMedBERT-fulltext
null
[ "transformers", "pytorch", "bert", "token-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
token-classification
transformers
{}
ghadeermobasher/BC5CDR-Chemical-Disease-balanced-biobert-base-cased-v1.2
null
[ "transformers", "pytorch", "bert", "token-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
ghadeermobasher/BC5CDR-Chemical-Disease-balanced-biobert-large-cased-v1.1
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
token-classification
transformers
{}
ghadeermobasher/BC5CDR-Chemical-Disease-balanced-pubmedbert
null
[ "transformers", "pytorch", "bert", "token-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
token-classification
transformers
{}
ghadeermobasher/BC5CDR-Chemical-Disease-balanced-scibert_scivocab_cased
null
[ "transformers", "pytorch", "bert", "token-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
token-classification
transformers
{}
ghadeermobasher/BC5CDR-Chemical-Disease-balancedBioM-ELECTRA-Base-Discriminator
null
[ "transformers", "pytorch", "electra", "token-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
token-classification
transformers
{}
ghadeermobasher/BC5CDR-Chemical-Disease_ImbalancedBioM-ELECTRA-Base-Discriminator
null
[ "transformers", "pytorch", "electra", "token-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00