Search is not available for this dataset
pipeline_tag
stringclasses
48 values
library_name
stringclasses
205 values
text
stringlengths
0
18.3M
metadata
stringlengths
2
1.07B
id
stringlengths
5
122
last_modified
null
tags
listlengths
1
1.84k
sha
null
created_at
stringlengths
25
25
null
null
# Paragram Embeddings Towards Universal Paraphrastic Sentence Embeddings (25 dimensions) Read more: * https://www.cs.cmu.edu/~jwieting/ * https://www.cs.cmu.edu/~jwieting/wieting2016ICLR.pdf
{"tags": ["glove", "gensim", "fse"]}
fse/paragram-25
null
[ "glove", "gensim", "fse", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
# Paragram Embeddings 300 dimensional Paragram embeddings tuned on SimLex999 dataset Read more: * https://www.cs.cmu.edu/~jwieting/
{"tags": ["glove", "gensim", "fse"]}
fse/paragram-300-sl999
null
[ "glove", "gensim", "fse", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
# Paragram Embeddings 300 dimensional Paragram embeddings tuned on WordSim353 dataset Read more: * https://www.cs.cmu.edu/~jwieting/
{"tags": ["glove", "gensim", "fse"]}
fse/paragram-300-ws353
null
[ "glove", "gensim", "fse", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
# Paragram Embeddings Pushing the Limits of Paraphrastic Sentence Embeddings with Millions of Machine Translations (300 dimensions) Read more: * https://www.cs.cmu.edu/~jwieting/ * https://www.cs.cmu.edu/~jwieting/wieting2017Millions.pdf
{"tags": ["glove", "gensim", "fse"]}
fse/paranmt-300
null
[ "glove", "gensim", "fse", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
# Word2Vec Pre-trained vectors trained on a part of the Google News dataset (about 100 billion words). The model contains 300-dimensional vectors for 3 million words and phrases. The phrases were obtained using a simple data-driven approach described in 'Distributed Representations of Words and Phrases and their Compositionality' Read more: * https://code.google.com/archive/p/word2vec/ * https://arxiv.org/abs/1301.3781 * https://arxiv.org/abs/1310.4546 * https://www.microsoft.com/en-us/research/publication/linguistic-regularities-in-continuous-space-word-representations/?from=http%3A%2F%2Fresearch.microsoft.com%2Fpubs%2F189726%2Frvecs.pdf
{"tags": ["glove", "gensim", "fse"]}
fse/word2vec-google-news-300
null
[ "glove", "gensim", "fse", "arxiv:1301.3781", "arxiv:1310.4546", "has_space", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
transformers
{}
fspanda/Electra-Medical-v1.5-discriminator
null
[ "transformers", "pytorch", "electra", "pretraining", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
fill-mask
transformers
{}
fspanda/Electra-Medical-v1.5-generator
null
[ "transformers", "pytorch", "electra", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
transformers
{}
fspanda/Electra-Medical-v790000-discriminator
null
[ "transformers", "pytorch", "electra", "pretraining", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
fill-mask
transformers
{}
fspanda/Electra-Medical-v790000-generator
null
[ "transformers", "pytorch", "electra", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
fill-mask
transformers
{}
fspanda/Medical-Bio-BERT2
null
[ "transformers", "pytorch", "jax", "bert", "fill-mask", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
transformers
{}
fspanda/electra-medical-discriminator
null
[ "transformers", "pytorch", "electra", "pretraining", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
transformers
{}
fspanda/electra-medical-small-discriminator
null
[ "transformers", "pytorch", "electra", "pretraining", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
fill-mask
transformers
{}
fspanda/electra-medical-small-generator
null
[ "transformers", "pytorch", "electra", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-generation
transformers
#Bully Maguire demo bot
{"tags": ["conversational"]}
ftnvir/DialoGPT-medium-bullyMaguire
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-to-speech
espnet
This model was trained by ftshijt using aishell3/tts1 recipe in <a href="https://github.com/espnet/espnet/">espnet</a>. <p>&nbsp;</p> <ul> <li><strong>Python API</strong><pre><code class="language-python">See https://github.com/espnet/espnet_model_zoo</code></pre></li> <li><strong>Evaluate in the recipe</strong><pre> <code class="language-bash"> See ESPNet repo for how to use pre-trained models </pre></li> <li><strong>Config</strong><pre><code>config: conf/train.yaml print_config: false log_level: INFO dry_run: false iterator_type: sequence output_dir: exp/tts_train_raw_phn_pypinyin_g2p_phone ngpu: 1 seed: 0 num_workers: 1 num_att_plot: 3 dist_backend: nccl dist_init_method: env:// dist_world_size: null dist_rank: null local_rank: 0 dist_master_addr: null dist_master_port: null dist_launcher: null multiprocessing_distributed: false unused_parameters: false sharded_ddp: false cudnn_enabled: true cudnn_benchmark: false cudnn_deterministic: true collect_stats: false write_collected_feats: false max_epoch: 500 patience: null val_scheduler_criterion: - valid - loss early_stopping_criterion: - valid - loss - min best_model_criterion: - - valid - loss - min - - train - loss - min keep_nbest_models: 5 grad_clip: 1.0 grad_clip_type: 2.0 grad_noise: false accum_grad: 1 no_forward_run: false resume: true train_dtype: float32 use_amp: false log_interval: null use_tensorboard: true use_wandb: false wandb_project: null wandb_id: null wandb_entity: null wandb_name: null wandb_model_log_interval: -1 detect_anomaly: false pretrain_path: null init_param: [] ignore_init_mismatch: false freeze_param: [] num_iters_per_epoch: 500 batch_size: 20 valid_batch_size: null batch_bins: 3750000 valid_batch_bins: null train_shape_file: - exp/tts_stats_raw_phn_pypinyin_g2p_phone/train/text_shape.phn - exp/tts_stats_raw_phn_pypinyin_g2p_phone/train/speech_shape valid_shape_file: - exp/tts_stats_raw_phn_pypinyin_g2p_phone/valid/text_shape.phn - exp/tts_stats_raw_phn_pypinyin_g2p_phone/valid/speech_shape batch_type: numel valid_batch_type: null fold_length: - 150 - 240000 sort_in_batch: descending sort_batch: descending multiple_iterator: false chunk_length: 500 chunk_shift_ratio: 0.5 num_cache_chunks: 1024 train_data_path_and_name_and_type: - - dump/raw/train_no_dev/text - text - text - - dump/raw/train_no_dev/wav.scp - speech - sound - - dump/xvector/train_no_dev/xvector.scp - spembs - kaldi_ark valid_data_path_and_name_and_type: - - dump/raw/dev/text - text - text - - dump/raw/dev/wav.scp - speech - sound - - dump/xvector/dev/xvector.scp - spembs - kaldi_ark allow_variable_data_keys: false max_cache_size: 0.0 max_cache_fd: 32 valid_max_cache_size: null optim: adam optim_conf: lr: 0.001 eps: 1.0e-06 weight_decay: 0.0 scheduler: null scheduler_conf: {} token_list: - <blank> - <unk> - '' - d - sh - j - i4 - zh - l - x - e - b - g - i1 - h - q - m - u4 - t - z - ch - i3 - i2 - f - s - n - r - ian4 - e4 - ong1 - en2 - ai4 - k - ing2 - a1 - iou3 - uo3 - ao4 - u3 - ui4 - p - e2 - an1 - eng2 - c - in1 - ai2 - an4 - ian2 - ing1 - ai3 - ang4 - ao3 - ian1 - uo4 - ian3 - iao4 - ang1 - u2 - ü4 - u1 - a4 - eng1 - ing4 - üan2 - ie4 - en1 - iu4 - uei4 - ou4 - er4 - e1 - ei4 - an3 - ong2 - uo2 - ang3 - ou1 - ou3 - ong4 - eng4 - an2 - iang4 - a3 - iang1 - ia1 - iao1 - uan4 - ia4 - iu3 - ang2 - uo1 - ei3 - e3 - in4 - iang3 - ü1 - uan1 - en3 - iao3 - ie3 - ao1 - ai1 - ü2 - ing3 - er2 - ü3 - uan3 - üe4 - in3 - en - ei2 - üe2 - ie2 - en4 - ua4 - in2 - iu2 - uan2 - a2 - ie1 - ou2 - ui1 - iang2 - ong3 - i - uang3 - eng3 - ün4 - uang4 - uai4 - iong4 - v3 - iou2 - ui2 - un1 - üan4 - uang1 - ei1 - uang2 - o2 - a - ao2 - iao2 - ui3 - un4 - o1 - ua2 - un2 - uen2 - iu1 - v4 - ua1 - uei1 - üan3 - ün1 - üe1 - ün2 - uen4 - uei3 - uei2 - un3 - iou4 - o4 - er3 - uen1 - iong3 - iou1 - ia3 - üan1 - ia2 - iong1 - üe3 - uen3 - ve4 - iong2 - uai2 - uai1 - ua3 - ün3 - er - uai3 - ia - o3 - v2 - o - ueng1 - ei - '2' - ua - io1 - <sos/eos> odim: null model_conf: {} use_preprocessor: true token_type: phn bpemodel: null non_linguistic_symbols: null cleaner: null g2p: pypinyin_g2p_phone feats_extract: fbank feats_extract_conf: n_fft: 2048 hop_length: 300 win_length: 1200 fs: 24000 fmin: 80 fmax: 7600 n_mels: 80 normalize: global_mvn normalize_conf: stats_file: exp/tts_stats_raw_phn_pypinyin_g2p_phone/train/feats_stats.npz tts: tacotron2 tts_conf: embed_dim: 512 elayers: 1 eunits: 512 econv_layers: 3 econv_chans: 512 econv_filts: 5 atype: location adim: 512 aconv_chans: 32 aconv_filts: 15 cumulate_att_w: true dlayers: 2 dunits: 1024 prenet_layers: 2 prenet_units: 256 postnet_layers: 5 postnet_chans: 512 postnet_filts: 5 output_activation: null use_batch_norm: true use_concate: true use_residual: false spk_embed_dim: 512 spk_embed_integration_type: add use_gst: true gst_heads: 4 gst_tokens: 16 dropout_rate: 0.5 zoneout_rate: 0.1 reduction_factor: 1 use_masking: true bce_pos_weight: 10.0 use_guided_attn_loss: true guided_attn_loss_sigma: 0.4 guided_attn_loss_lambda: 1.0 pitch_extract: null pitch_extract_conf: {} pitch_normalize: null pitch_normalize_conf: {} energy_extract: null energy_extract_conf: {} energy_normalize: null energy_normalize_conf: {} required: - output_dir - token_list version: 0.10.2a1 distributed: false</code></pre></li> </ul>
{"language": "zh", "license": "cc-by-4.0", "tags": ["espnet", "audio", "text-to-speech"], "datasets": ["aishell3"], "inference": false}
ftshijt/ESPnet2_pretrained_model_ftshijt_aishell3_tts_train_raw_phn_pypinyin_g2p_phone_train.loss.best
null
[ "espnet", "audio", "text-to-speech", "zh", "dataset:aishell3", "license:cc-by-4.0", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-to-speech
espnet
This model was trained by ftshijt using thchs30/tts1 recipe in <a href="https://github.com/espnet/espnet/">espnet</a>. <p>&nbsp;</p> <ul> <li><strong>Python API</strong><pre><code class="language-python">See https://github.com/espnet/espnet_model_zoo</code></pre></li> <li><strong>Evaluate in the recipe</strong><pre> <code class="language-bash">Please see ESPNet for how to use pre-trained model </pre></li> <li><strong>Config</strong><pre><code>config: conf/train.yaml print_config: false log_level: INFO dry_run: false iterator_type: sequence output_dir: exp/tts_train_raw_phn_pypinyin_g2p_phone ngpu: 1 seed: 0 num_workers: 1 num_att_plot: 3 dist_backend: nccl dist_init_method: env:// dist_world_size: null dist_rank: null local_rank: 0 dist_master_addr: null dist_master_port: null dist_launcher: null multiprocessing_distributed: false unused_parameters: false sharded_ddp: false cudnn_enabled: true cudnn_benchmark: false cudnn_deterministic: true collect_stats: false write_collected_feats: false max_epoch: 500 patience: null val_scheduler_criterion: - valid - loss early_stopping_criterion: - valid - loss - min best_model_criterion: - - valid - loss - min - - train - loss - min keep_nbest_models: 5 grad_clip: 1.0 grad_clip_type: 2.0 grad_noise: false accum_grad: 1 no_forward_run: false resume: true train_dtype: float32 use_amp: false log_interval: null use_tensorboard: true use_wandb: false wandb_project: null wandb_id: null wandb_entity: null wandb_name: null wandb_model_log_interval: -1 detect_anomaly: false pretrain_path: null init_param: [] ignore_init_mismatch: false freeze_param: [] num_iters_per_epoch: 500 batch_size: 20 valid_batch_size: null batch_bins: 3750000 valid_batch_bins: null train_shape_file: - exp/tts_stats_raw_phn_pypinyin_g2p_phone/train/text_shape.phn - exp/tts_stats_raw_phn_pypinyin_g2p_phone/train/speech_shape valid_shape_file: - exp/tts_stats_raw_phn_pypinyin_g2p_phone/valid/text_shape.phn - exp/tts_stats_raw_phn_pypinyin_g2p_phone/valid/speech_shape batch_type: numel valid_batch_type: null fold_length: - 150 - 204800 sort_in_batch: descending sort_batch: descending multiple_iterator: false chunk_length: 500 chunk_shift_ratio: 0.5 num_cache_chunks: 1024 train_data_path_and_name_and_type: - - dump/raw/train/text - text - text - - dump/raw/train/wav.scp - speech - sound - - dump/xvector/train/xvector.scp - spembs - kaldi_ark valid_data_path_and_name_and_type: - - dump/raw/dev/text - text - text - - dump/raw/dev/wav.scp - speech - sound - - dump/xvector/dev/xvector.scp - spembs - kaldi_ark allow_variable_data_keys: false max_cache_size: 0.0 max_cache_fd: 32 valid_max_cache_size: null optim: adam optim_conf: lr: 0.001 eps: 1.0e-06 weight_decay: 0.0 scheduler: null scheduler_conf: {} token_list: - <blank> - <unk> - '' - d - sh - j - zh - l - i4 - x - b - g - h - e - q - t - m - ch - i1 - z - u4 - i2 - i3 - n - f - s - r - k - c - p - ai4 - e4 - a1 - an4 - ian4 - ing2 - u3 - ian2 - ong1 - e2 - in1 - eng2 - ui4 - ao4 - u2 - iao4 - üan2 - en2 - an1 - u1 - ai2 - ao3 - ing4 - eng1 - iou3 - ü4 - uo4 - üe4 - ong2 - ian1 - ing1 - uo3 - ie4 - ang1 - uei4 - ang4 - an2 - a4 - ou4 - ei4 - uai4 - ie3 - ang3 - ong4 - ai3 - ü2 - uo2 - an3 - ang2 - ou3 - er2 - ou1 - uo1 - en1 - ia1 - ü3 - uan1 - in2 - iong4 - ian3 - iang3 - a3 - iang2 - ia4 - ü1 - uan4 - iao3 - iang4 - uen2 - iang1 - uan3 - ai1 - ie2 - ei3 - uan2 - uang2 - in4 - üe2 - ao1 - eng3 - iu4 - iao1 - er4 - iu2 - in3 - un1 - uang1 - eng4 - a2 - uang3 - en3 - uang4 - ong3 - ing3 - e3 - ei2 - ou2 - ao2 - i - ün4 - uei2 - ua4 - iou4 - ui1 - ua1 - en4 - ün2 - iao2 - ie1 - iou2 - iu3 - ün1 - üan4 - en - ei1 - o2 - un4 - ui3 - iu1 - üan3 - e1 - v3 - ua2 - ia2 - ui2 - un2 - o4 - un3 - er3 - ia3 - iong1 - uei3 - o1 - üe1 - üan1 - iong3 - v4 - iong2 - uen4 - uai2 - uei1 - iou1 - a - ua3 - uen1 - o3 - ueng1 - uai1 - uen3 - üe3 - ou - uai3 - ve4 - er - ün3 - o - ua - ia - ' l =' - <sos/eos> odim: null model_conf: {} use_preprocessor: true token_type: phn bpemodel: null non_linguistic_symbols: null cleaner: null g2p: pypinyin_g2p_phone feats_extract: fbank feats_extract_conf: n_fft: 1024 hop_length: 256 win_length: null fs: 16000 fmin: 80 fmax: 7600 n_mels: 80 normalize: global_mvn normalize_conf: stats_file: exp/tts_stats_raw_phn_pypinyin_g2p_phone/train/feats_stats.npz tts: tacotron2 tts_conf: embed_dim: 512 elayers: 1 eunits: 512 econv_layers: 3 econv_chans: 512 econv_filts: 5 atype: location adim: 512 aconv_chans: 32 aconv_filts: 15 cumulate_att_w: true dlayers: 2 dunits: 1024 prenet_layers: 2 prenet_units: 256 postnet_layers: 5 postnet_chans: 512 postnet_filts: 5 output_activation: null use_batch_norm: true use_concate: true use_residual: false spk_embed_dim: 512 spk_embed_integration_type: add use_gst: true gst_heads: 4 gst_tokens: 16 dropout_rate: 0.5 zoneout_rate: 0.1 reduction_factor: 1 use_masking: true bce_pos_weight: 10.0 use_guided_attn_loss: true guided_attn_loss_sigma: 0.4 guided_attn_loss_lambda: 1.0 pitch_extract: null pitch_extract_conf: {} pitch_normalize: null pitch_normalize_conf: {} energy_extract: null energy_extract_conf: {} energy_normalize: null energy_normalize_conf: {} required: - output_dir - token_list version: 0.10.2a1 distributed: false</code></pre></li> </ul>
{"language": "zh", "license": "cc-by-4.0", "tags": ["espnet", "audio", "text-to-speech"], "datasets": ["thchs30"], "inference": false}
ftshijt/ESPnet2_pretrained_model_ftshijt_thchs30_tts_train_raw_phn_pypinyin_g2p_phone_train.loss.best
null
[ "espnet", "audio", "text-to-speech", "zh", "dataset:thchs30", "license:cc-by-4.0", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
ftshijt/ftshijt_espnet2_asr_puebla_nahuatl_transfer_learning
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
fuliucansheng/adsplus
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
fuliucansheng/detection
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
fuliucansheng/detectron2
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
fuliucansheng/mass
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
fuliucansheng/unilm
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
https://vrip.unmsm.edu.pe/forum/profile/liexylezzy/ https://vrip.unmsm.edu.pe/forum/profile/ellindanatasya/ https://vrip.unmsm.edu.pe/forum/profile/oploscgv/ https://vrip.unmsm.edu.pe/forum/profile/Zackoplos/ https://vrip.unmsm.edu.pe/forum/profile/unholyzulk/ https://vrip.unmsm.edu.pe/forum/profile/aurorarezash/
{}
fullshowbox/DSADAWF
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
https://community.afpglobal.org/network/members/profile?UserKey=fb4fdcef-dde4-4258-a423-2159545d84c1 https://community.afpglobal.org/network/members/profile?UserKey=e6ccc088-b709-45ec-b61e-4d56088acbda https://community.afpglobal.org/network/members/profile?UserKey=ba280059-0890-4510-81d0-a79522b75ac8 https://community.afpglobal.org/network/members/profile?UserKey=799ba769-6e99-4a6a-a173-4f1b817e978c https://community.afpglobal.org/network/members/profile?UserKey=babb84d7-e91a-4972-b26a-51067c66d793 https://community.afpglobal.org/network/members/profile?UserKey=8e4656bc-8d0d-44e1-b280-e68a2ace9353 https://community.afpglobal.org/network/members/profile?UserKey=8e7b41a8-9bed-4cb0-9021-a164b0aa6dd3 https://community.afpglobal.org/network/members/profile?UserKey=e4f38596-d772-4fbe-9e93-9aef5618f26e https://community.afpglobal.org/network/members/profile?UserKey=18221e49-74ba-4155-ac1e-6f184bfb2398 https://community.afpglobal.org/network/members/profile?UserKey=ef4391e8-03df-467f-bf3f-4a45087817eb https://community.afpglobal.org/network/members/profile?UserKey=832774fd-a035-421a-8236-61cf45a7747d https://community.afpglobal.org/network/members/profile?UserKey=9f05cd73-b75c-4820-b60a-5df6357b2af9 https://community.afpglobal.org/network/members/profile?UserKey=c1727992-5024-4321-b0c9-ecc6f51e6532 https://www.hybrid-analysis.com/sample/255948e335dd9f873d11bf0224f8d180cd097509d23d27506292c22443fa92b8 https://www.facebook.com/PS5Giveaways2021 https://cgvmovie.cookpad-blog.jp/articles/589986 https://myanimelist.net/blog.php?eid=850892 https://comicvine.gamespot.com/profile/full-tv-free/about-me/ https://pantip.com/topic/40658194
{}
fullshowbox/full-tv-free
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
https://volunteer.alz.org/network/members/profile?UserKey=f4774542-39b3-4cfd-8c21-7b834795f7d7 https://volunteer.alz.org/network/members/profile?UserKey=05a00b90-f854-45fb-9a3a-7420144d290c https://volunteer.alz.org/network/members/profile?UserKey=45cceddd-29b9-4c6c-8612-e2a16aaa391a https://volunteer.alz.org/network/members/profile?UserKey=ae3c28f9-72a3-4af5-bd50-3b2ea2c0d3a3 https://volunteer.alz.org/network/members/profile?UserKey=7ab8e28e-e31f-4906-ab06-84b9ea3a880f https://volunteer.alz.org/network/members/profile?UserKey=1b31fc90-e18e-4ef6-81f0-5c0b55fb95a3 https://volunteer.alz.org/network/members/profile?UserKey=23971b11-04ad-4eb4-abc5-6e659c6b071c 123movies-watch-online-movie-full-free-2021 https://myanimelist.net/blog.php?eid=849353 https://comicvine.gamespot.com/profile/nacenetwork21/about-me/ https://pantip.com/topic/40639721
{}
fullshowbox/nacenetwork21
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
https://www.nace.org/network/members/profile?UserKey=461a690a-bff6-4e4c-be63-ea8e39264459 https://www.nace.org/network/members/profile?UserKey=b4a6a66a-fb8a-4f2b-8af9-04f003ad9d46 https://www.nace.org/network/members/profile?UserKey=24544ab2-551d-42aa-adbe-7a1c1d68fd9c https://www.nace.org/network/members/profile?UserKey=3e8035d5-056a-482d-9010-9883e5990f4a https://www.nace.org/network/members/profile?UserKey=d7241c69-28c4-4146-a077-a00cc2c9ccf5 https://www.nace.org/network/members/profile?UserKey=2c58c2fb-13a4-4e5a-b044-f467bb295d83 https://www.nace.org/network/members/profile?UserKey=dd8a290c-e53a-4b56-9a17-d35dbcb6b8bd https://www.nace.org/network/members/profile?UserKey=0e96a1af-91f4-496a-af02-6d753a1bbded
{}
fullshowbox/networkprofile
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
https://ragbrai.com/groups/hd-movie-watch-french-exit-2021-full-movie-online-for-free/ https://ragbrai.com/groups/hd-movie-watch-nobody-2021-full-movie-online-for-free/ https://ragbrai.com/groups/hd-movie-watch-voyagers-2021-full-movie-online-for-free/ https://ragbrai.com/groups/hd-movie-watch-godzilla-vs-kong-2021-full-movie-online-for-free/ https://ragbrai.com/groups/hd-movie-watch-raya-and-the-last-dragon-2021-full-movie-online-for-free/ https://ragbrai.com/groups/hd-movie-watch-mortal-kombat-2021-full-movie-online-for-free/ https://ragbrai.com/groups/hd-movie-watch-the-father-2021-full-movie-online-for-free/
{}
fullshowbox/ragbrai
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
feature-extraction
transformers
# Funnel Transformer intermediate model (B6-6-6 without decoder) Pretrained model on English language using a similar objective objective as [ELECTRA](https://huggingface.co/transformers/model_doc/electra.html). It was introduced in [this paper](https://arxiv.org/pdf/2006.03236.pdf) and first released in [this repository](https://github.com/laiguokun/Funnel-Transformer). This model is uncased: it does not make a difference between english and English. Disclaimer: The team releasing Funnel Transformer did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description Funnel Transformer is a transformers model pretrained on a large corpus of English data in a self-supervised fashion. This means it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, a small language model corrupts the input texts and serves as a generator of inputs for this model, and the pretraining objective is to predict which token is an original and which one has been replaced, a bit like a GAN training. This way, the model learns an inner representation of the English language that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled sentences for instance, you can train a standard classifier using the features produced by the BERT model as inputs. **Note:** This model does not contain the decoder, so it ouputs hidden states that have a sequence length of one fourth of the inputs. It's good to use for tasks requiring a summary of the sentence (like sentence classification) but not if you need one input per initial token. You should use the `intermediate` model in that case. ## Intended uses & limitations You can use the raw model to extract a vector representation of a given text, but it's mostly intended to be fine-tuned on a downstream task. See the [model hub](https://huggingface.co/models?filter=funnel-transformer) to look for fine-tuned versions on a task that interests you. Note that this model is primarily aimed at being fine-tuned on tasks that use the whole sentence (potentially masked) to make decisions, such as sequence classification, token classification or question answering. For tasks such as text generation you should look at model like GPT2. ### How to use Here is how to use this model to get the features of a given text in PyTorch: ```python from transformers import FunnelTokenizer, FunnelBaseModel tokenizer = FunnelTokenizer.from_pretrained("funnel-transformer/intermediate-base") model = FunnelBaseModel.from_pretrained("funnel-transformer/intermediate-base") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` and in TensorFlow: ```python from transformers import FunnelTokenizer, TFFunnelBaseModel tokenizer = FunnelTokenizer.from_pretrained("funnel-transformer/intermediate-base") model = TFFunnelBaseModel.from_pretrained("funnel-transformer/intermediate-base") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` ## Training data The BERT model was pretrained on: - [BookCorpus](https://yknzhu.wixsite.com/mbweb), a dataset consisting of 11,038 unpublished books, - [English Wikipedia](https://en.wikipedia.org/wiki/English_Wikipedia) (excluding lists, tables and headers), - [Clue Web](https://lemurproject.org/clueweb12/), a dataset of 733,019,372 English web pages, - [GigaWord](https://catalog.ldc.upenn.edu/LDC2011T07), an archive of newswire text data, - [Common Crawl](https://commoncrawl.org/), a dataset of raw web pages. ### BibTeX entry and citation info ```bibtex @misc{dai2020funneltransformer, title={Funnel-Transformer: Filtering out Sequential Redundancy for Efficient Language Processing}, author={Zihang Dai and Guokun Lai and Yiming Yang and Quoc V. Le}, year={2020}, eprint={2006.03236}, archivePrefix={arXiv}, primaryClass={cs.LG} } ```
{"language": "en", "license": "apache-2.0", "datasets": ["bookcorpus", "wikipedia", "gigaword"]}
funnel-transformer/intermediate-base
null
[ "transformers", "pytorch", "tf", "funnel", "feature-extraction", "en", "dataset:bookcorpus", "dataset:wikipedia", "dataset:gigaword", "arxiv:2006.03236", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
feature-extraction
transformers
# Funnel Transformer intermediate model (B6-6-6 with decoder) Pretrained model on English language using a similar objective objective as [ELECTRA](https://huggingface.co/transformers/model_doc/electra.html). It was introduced in [this paper](https://arxiv.org/pdf/2006.03236.pdf) and first released in [this repository](https://github.com/laiguokun/Funnel-Transformer). This model is uncased: it does not make a difference between english and English. Disclaimer: The team releasing Funnel Transformer did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description Funnel Transformer is a transformers model pretrained on a large corpus of English data in a self-supervised fashion. This means it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, a small language model corrupts the input texts and serves as a generator of inputs for this model, and the pretraining objective is to predict which token is an original and which one has been replaced, a bit like a GAN training. This way, the model learns an inner representation of the English language that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled sentences for instance, you can train a standard classifier using the features produced by the BERT model as inputs. ## Intended uses & limitations You can use the raw model to extract a vector representation of a given text, but it's mostly intended to be fine-tuned on a downstream task. See the [model hub](https://huggingface.co/models?filter=funnel-transformer) to look for fine-tuned versions on a task that interests you. Note that this model is primarily aimed at being fine-tuned on tasks that use the whole sentence (potentially masked) to make decisions, such as sequence classification, token classification or question answering. For tasks such as text generation you should look at model like GPT2. ### How to use Here is how to use this model to get the features of a given text in PyTorch: ```python from transformers import FunnelTokenizer, FunnelModel tokenizer = FunnelTokenizer.from_pretrained("funnel-transformer/intermediate") model = FunneModel.from_pretrained("funnel-transformer/intermediate") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` and in TensorFlow: ```python from transformers import FunnelTokenizer, TFFunnelModel tokenizer = FunnelTokenizer.from_pretrained("funnel-transformer/intermediate") model = TFFunnelModel.from_pretrained("funnel-transformer/intermediatesmall") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` ## Training data The BERT model was pretrained on: - [BookCorpus](https://yknzhu.wixsite.com/mbweb), a dataset consisting of 11,038 unpublished books, - [English Wikipedia](https://en.wikipedia.org/wiki/English_Wikipedia) (excluding lists, tables and headers), - [Clue Web](https://lemurproject.org/clueweb12/), a dataset of 733,019,372 English web pages, - [GigaWord](https://catalog.ldc.upenn.edu/LDC2011T07), an archive of newswire text data, - [Common Crawl](https://commoncrawl.org/), a dataset of raw web pages. ### BibTeX entry and citation info ```bibtex @misc{dai2020funneltransformer, title={Funnel-Transformer: Filtering out Sequential Redundancy for Efficient Language Processing}, author={Zihang Dai and Guokun Lai and Yiming Yang and Quoc V. Le}, year={2020}, eprint={2006.03236}, archivePrefix={arXiv}, primaryClass={cs.LG} } ```
{"language": "en", "license": "apache-2.0", "datasets": ["bookcorpus", "wikipedia", "gigaword"]}
funnel-transformer/intermediate
null
[ "transformers", "pytorch", "tf", "safetensors", "funnel", "feature-extraction", "en", "dataset:bookcorpus", "dataset:wikipedia", "dataset:gigaword", "arxiv:2006.03236", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
feature-extraction
transformers
# Funnel Transformer large model (B8-8-8 without decoder) Pretrained model on English language using a similar objective objective as [ELECTRA](https://huggingface.co/transformers/model_doc/electra.html). It was introduced in [this paper](https://arxiv.org/pdf/2006.03236.pdf) and first released in [this repository](https://github.com/laiguokun/Funnel-Transformer). This model is uncased: it does not make a difference between english and English. Disclaimer: The team releasing Funnel Transformer did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description Funnel Transformer is a transformers model pretrained on a large corpus of English data in a self-supervised fashion. This means it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, a small language model corrupts the input texts and serves as a generator of inputs for this model, and the pretraining objective is to predict which token is an original and which one has been replaced, a bit like a GAN training. This way, the model learns an inner representation of the English language that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled sentences for instance, you can train a standard classifier using the features produced by the BERT model as inputs. **Note:** This model does not contain the decoder, so it ouputs hidden states that have a sequence length of one fourth of the inputs. It's good to use for tasks requiring a summary of the sentence (like sentence classification) but not if you need one input per initial token. You should use the `large` model in that case. ## Intended uses & limitations You can use the raw model to extract a vector representation of a given text, but it's mostly intended to be fine-tuned on a downstream task. See the [model hub](https://huggingface.co/models?filter=funnel-transformer) to look for fine-tuned versions on a task that interests you. Note that this model is primarily aimed at being fine-tuned on tasks that use the whole sentence (potentially masked) to make decisions, such as sequence classification, token classification or question answering. For tasks such as text generation you should look at model like GPT2. ### How to use Here is how to use this model to get the features of a given text in PyTorch: ```python from transformers import FunnelTokenizer, FunnelBaseModel tokenizer = FunnelTokenizer.from_pretrained("funnel-transformer/large-base") model = FunnelBaseModel.from_pretrained("funnel-transformer/large-base") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` and in TensorFlow: ```python from transformers import FunnelTokenizer, TFFunnelBaseModel tokenizer = FunnelTokenizer.from_pretrained("funnel-transformer/large-base") model = TFFunnelBaseModel.from_pretrained("funnel-transformer/large-base") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` ## Training data The BERT model was pretrained on: - [BookCorpus](https://yknzhu.wixsite.com/mbweb), a dataset consisting of 11,038 unpublished books, - [English Wikipedia](https://en.wikipedia.org/wiki/English_Wikipedia) (excluding lists, tables and headers), - [Clue Web](https://lemurproject.org/clueweb12/), a dataset of 733,019,372 English web pages, - [GigaWord](https://catalog.ldc.upenn.edu/LDC2011T07), an archive of newswire text data, - [Common Crawl](https://commoncrawl.org/), a dataset of raw web pages. ### BibTeX entry and citation info ```bibtex @misc{dai2020funneltransformer, title={Funnel-Transformer: Filtering out Sequential Redundancy for Efficient Language Processing}, author={Zihang Dai and Guokun Lai and Yiming Yang and Quoc V. Le}, year={2020}, eprint={2006.03236}, archivePrefix={arXiv}, primaryClass={cs.LG} } ```
{"language": "en", "license": "apache-2.0", "datasets": ["bookcorpus", "wikipedia", "gigaword"]}
funnel-transformer/large-base
null
[ "transformers", "pytorch", "tf", "funnel", "feature-extraction", "en", "dataset:bookcorpus", "dataset:wikipedia", "dataset:gigaword", "arxiv:2006.03236", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
feature-extraction
transformers
# Funnel Transformer large model (B8-8-8 with decoder) Pretrained model on English language using a similar objective as [ELECTRA](https://huggingface.co/transformers/model_doc/electra.html). It was introduced in [this paper](https://arxiv.org/pdf/2006.03236.pdf) and first released in [this repository](https://github.com/laiguokun/Funnel-Transformer). This model is uncased: it does not make a difference between english and English. Disclaimer: The team releasing Funnel Transformer did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description Funnel Transformer is a transformers model pretrained on a large corpus of English data in a self-supervised fashion. This means it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, a small language model corrupts the input texts and serves as a generator of inputs for this model, and the pretraining objective is to predict which token is an original and which one has been replaced, a bit like a GAN training. This way, the model learns an inner representation of the English language that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled sentences for instance, you can train a standard classifier using the features produced by the BERT model as inputs. ## Intended uses & limitations You can use the raw model to extract a vector representation of a given text, but it's mostly intended to be fine-tuned on a downstream task. See the [model hub](https://huggingface.co/models?filter=funnel-transformer) to look for fine-tuned versions on a task that interests you. Note that this model is primarily aimed at being fine-tuned on tasks that use the whole sentence (potentially masked) to make decisions, such as sequence classification, token classification or question answering. For tasks such as text generation you should look at model like GPT2. ### How to use Here is how to use this model to get the features of a given text in PyTorch: ```python from transformers import FunnelTokenizer, FunnelModel tokenizer = FunnelTokenizer.from_pretrained("funnel-transformer/large") model = FunneModel.from_pretrained("funnel-transformer/large") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` and in TensorFlow: ```python from transformers import FunnelTokenizer, TFFunnelModel tokenizer = FunnelTokenizer.from_pretrained("funnel-transformer/large") model = TFFunnelModel.from_pretrained("funnel-transformer/large") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` ## Training data The BERT model was pretrained on: - [BookCorpus](https://yknzhu.wixsite.com/mbweb), a dataset consisting of 11,038 unpublished books, - [English Wikipedia](https://en.wikipedia.org/wiki/English_Wikipedia) (excluding lists, tables and headers), - [Clue Web](https://lemurproject.org/clueweb12/), a dataset of 733,019,372 English web pages, - [GigaWord](https://catalog.ldc.upenn.edu/LDC2011T07), an archive of newswire text data, - [Common Crawl](https://commoncrawl.org/), a dataset of raw web pages. ### BibTeX entry and citation info ```bibtex @misc{dai2020funneltransformer, title={Funnel-Transformer: Filtering out Sequential Redundancy for Efficient Language Processing}, author={Zihang Dai and Guokun Lai and Yiming Yang and Quoc V. Le}, year={2020}, eprint={2006.03236}, archivePrefix={arXiv}, primaryClass={cs.LG} } ```
{"language": "en", "license": "apache-2.0", "datasets": ["bookcorpus", "wikipedia", "gigaword"]}
funnel-transformer/large
null
[ "transformers", "pytorch", "tf", "safetensors", "funnel", "feature-extraction", "en", "dataset:bookcorpus", "dataset:wikipedia", "dataset:gigaword", "arxiv:2006.03236", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
feature-extraction
transformers
# Funnel Transformer medium model (B6-3x2-3x2 without decoder) Pretrained model on English language using a similar objective objective as [ELECTRA](https://huggingface.co/transformers/model_doc/electra.html). It was introduced in [this paper](https://arxiv.org/pdf/2006.03236.pdf) and first released in [this repository](https://github.com/laiguokun/Funnel-Transformer). This model is uncased: it does not make a difference between english and English. Disclaimer: The team releasing Funnel Transformer did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description Funnel Transformer is a transformers model pretrained on a large corpus of English data in a self-supervised fashion. This means it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, a small language model corrupts the input texts and serves as a generator of inputs for this model, and the pretraining objective is to predict which token is an original and which one has been replaced, a bit like a GAN training. This way, the model learns an inner representation of the English language that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled sentences for instance, you can train a standard classifier using the features produced by the BERT model as inputs. **Note:** This model does not contain the decoder, so it ouputs hidden states that have a sequence length of one fourth of the inputs. It's good to use for tasks requiring a summary of the sentence (like sentence classification) but not if you need one input per initial token. You should use the `medium` model in that case. ## Intended uses & limitations You can use the raw model to extract a vector representation of a given text, but it's mostly intended to be fine-tuned on a downstream task. See the [model hub](https://huggingface.co/models?filter=funnel-transformer) to look for fine-tuned versions on a task that interests you. Note that this model is primarily aimed at being fine-tuned on tasks that use the whole sentence (potentially masked) to make decisions, such as sequence classification, token classification or question answering. For tasks such as text generation you should look at model like GPT2. ### How to use Here is how to use this model to get the features of a given text in PyTorch: ```python from transformers import FunnelTokenizer, FunnelBaseModel tokenizer = FunnelTokenizer.from_pretrained("funnel-transformer/medium-base") model = FunnelBaseModel.from_pretrained("funnel-transformer/medium-base") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` and in TensorFlow: ```python from transformers import FunnelTokenizer, TFFunnelBaseModel tokenizer = FunnelTokenizer.from_pretrained("funnel-transformer/medium-base") model = TFFunnelBaseModel.from_pretrained("funnel-transformer/medium-base") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` ## Training data The BERT model was pretrained on: - [BookCorpus](https://yknzhu.wixsite.com/mbweb), a dataset consisting of 11,038 unpublished books, - [English Wikipedia](https://en.wikipedia.org/wiki/English_Wikipedia) (excluding lists, tables and headers), - [Clue Web](https://lemurproject.org/clueweb12/), a dataset of 733,019,372 English web pages, - [GigaWord](https://catalog.ldc.upenn.edu/LDC2011T07), an archive of newswire text data, - [Common Crawl](https://commoncrawl.org/), a dataset of raw web pages. ### BibTeX entry and citation info ```bibtex @misc{dai2020funneltransformer, title={Funnel-Transformer: Filtering out Sequential Redundancy for Efficient Language Processing}, author={Zihang Dai and Guokun Lai and Yiming Yang and Quoc V. Le}, year={2020}, eprint={2006.03236}, archivePrefix={arXiv}, primaryClass={cs.LG} } ```
{"language": "en", "license": "apache-2.0", "datasets": ["bookcorpus", "wikipedia", "gigaword"]}
funnel-transformer/medium-base
null
[ "transformers", "pytorch", "tf", "funnel", "feature-extraction", "en", "dataset:bookcorpus", "dataset:wikipedia", "dataset:gigaword", "arxiv:2006.03236", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
feature-extraction
transformers
# Funnel Transformer medium model (B6-3x2-3x2 with decoder) Pretrained model on English language using a similar objective objective as [ELECTRA](https://huggingface.co/transformers/model_doc/electra.html). It was introduced in [this paper](https://arxiv.org/pdf/2006.03236.pdf) and first released in [this repository](https://github.com/laiguokun/Funnel-Transformer). This model is uncased: it does not make a difference between english and English. Disclaimer: The team releasing Funnel Transformer did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description Funnel Transformer is a transformers model pretrained on a large corpus of English data in a self-supervised fashion. This means it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, a small language model corrupts the input texts and serves as a generator of inputs for this model, and the pretraining objective is to predict which token is an original and which one has been replaced, a bit like a GAN training. This way, the model learns an inner representation of the English language that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled sentences for instance, you can train a standard classifier using the features produced by the BERT model as inputs. ## Intended uses & limitations You can use the raw model to extract a vector representation of a given text, but it's mostly intended to be fine-tuned on a downstream task. See the [model hub](https://huggingface.co/models?filter=funnel-transformer) to look for fine-tuned versions on a task that interests you. Note that this model is primarily aimed at being fine-tuned on tasks that use the whole sentence (potentially masked) to make decisions, such as sequence classification, token classification or question answering. For tasks such as text generation you should look at model like GPT2. ### How to use Here is how to use this model to get the features of a given text in PyTorch: ```python from transformers import FunnelTokenizer, FunnelModel tokenizer = FunnelTokenizer.from_pretrained("funnel-transformer/medium") model = FunneModel.from_pretrained("funnel-transformer/medium") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` and in TensorFlow: ```python from transformers import FunnelTokenizer, TFFunnelModel tokenizer = FunnelTokenizer.from_pretrained("funnel-transformer/medium") model = TFFunnelModel.from_pretrained("funnel-transformer/medium") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` ## Training data The BERT model was pretrained on: - [BookCorpus](https://yknzhu.wixsite.com/mbweb), a dataset consisting of 11,038 unpublished books, - [English Wikipedia](https://en.wikipedia.org/wiki/English_Wikipedia) (excluding lists, tables and headers), - [Clue Web](https://lemurproject.org/clueweb12/), a dataset of 733,019,372 English web pages, - [GigaWord](https://catalog.ldc.upenn.edu/LDC2011T07), an archive of newswire text data, - [Common Crawl](https://commoncrawl.org/), a dataset of raw web pages. ### BibTeX entry and citation info ```bibtex @misc{dai2020funneltransformer, title={Funnel-Transformer: Filtering out Sequential Redundancy for Efficient Language Processing}, author={Zihang Dai and Guokun Lai and Yiming Yang and Quoc V. Le}, year={2020}, eprint={2006.03236}, archivePrefix={arXiv}, primaryClass={cs.LG} } ```
{"language": "en", "license": "apache-2.0", "datasets": ["bookcorpus", "wikipedia", "gigaword"]}
funnel-transformer/medium
null
[ "transformers", "pytorch", "tf", "funnel", "feature-extraction", "en", "dataset:bookcorpus", "dataset:wikipedia", "dataset:gigaword", "arxiv:2006.03236", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
feature-extraction
transformers
# Funnel Transformer small model (B4-4-4 without decoder) Pretrained model on English language using a similar objective objective as [ELECTRA](https://huggingface.co/transformers/model_doc/electra.html). It was introduced in [this paper](https://arxiv.org/pdf/2006.03236.pdf) and first released in [this repository](https://github.com/laiguokun/Funnel-Transformer). This model is uncased: it does not make a difference between english and English. Disclaimer: The team releasing Funnel Transformer did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description Funnel Transformer is a transformers model pretrained on a large corpus of English data in a self-supervised fashion. This means it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, a small language model corrupts the input texts and serves as a generator of inputs for this model, and the pretraining objective is to predict which token is an original and which one has been replaced, a bit like a GAN training. This way, the model learns an inner representation of the English language that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled sentences for instance, you can train a standard classifier using the features produced by the BERT model as inputs. **Note:** This model does not contain the decoder, so it ouputs hidden states that have a sequence length of one fourth of the inputs. It's good to use for tasks requiring a summary of the sentence (like sentence classification) but not if you need one input per initial token. You should use the `small` model in that case. ## Intended uses & limitations You can use the raw model to extract a vector representation of a given text, but it's mostly intended to be fine-tuned on a downstream task. See the [model hub](https://huggingface.co/models?filter=funnel-transformer) to look for fine-tuned versions on a task that interests you. Note that this model is primarily aimed at being fine-tuned on tasks that use the whole sentence (potentially masked) to make decisions, such as sequence classification, token classification or question answering. For tasks such as text generation you should look at model like GPT2. ### How to use Here is how to use this model to get the features of a given text in PyTorch: ```python from transformers import FunnelTokenizer, FunnelBaseModel tokenizer = FunnelTokenizer.from_pretrained("funnel-transformer/small-base") model = FunnelBaseModel.from_pretrained("funnel-transformer/small-base") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` and in TensorFlow: ```python from transformers import FunnelTokenizer, TFFunnelBaseModel tokenizer = FunnelTokenizer.from_pretrained("funnel-transformer/small-base") model = TFFunnelBaseModel.from_pretrained("funnel-transformer/small-base") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` ## Training data The BERT model was pretrained on: - [BookCorpus](https://yknzhu.wixsite.com/mbweb), a dataset consisting of 11,038 unpublished books, - [English Wikipedia](https://en.wikipedia.org/wiki/English_Wikipedia) (excluding lists, tables and headers), - [Clue Web](https://lemurproject.org/clueweb12/), a dataset of 733,019,372 English web pages, - [GigaWord](https://catalog.ldc.upenn.edu/LDC2011T07), an archive of newswire text data, - [Common Crawl](https://commoncrawl.org/), a dataset of raw web pages. ### BibTeX entry and citation info ```bibtex @misc{dai2020funneltransformer, title={Funnel-Transformer: Filtering out Sequential Redundancy for Efficient Language Processing}, author={Zihang Dai and Guokun Lai and Yiming Yang and Quoc V. Le}, year={2020}, eprint={2006.03236}, archivePrefix={arXiv}, primaryClass={cs.LG} } ```
{"language": "en", "license": "apache-2.0", "datasets": ["bookcorpus", "wikipedia", "gigaword"]}
funnel-transformer/small-base
null
[ "transformers", "pytorch", "tf", "safetensors", "funnel", "feature-extraction", "en", "dataset:bookcorpus", "dataset:wikipedia", "dataset:gigaword", "arxiv:2006.03236", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
feature-extraction
transformers
# Funnel Transformer small model (B4-4-4 with decoder) Pretrained model on English language using a similar objective objective as [ELECTRA](https://huggingface.co/transformers/model_doc/electra.html). It was introduced in [this paper](https://arxiv.org/pdf/2006.03236.pdf) and first released in [this repository](https://github.com/laiguokun/Funnel-Transformer). This model is uncased: it does not make a difference between english and English. Disclaimer: The team releasing Funnel Transformer did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description Funnel Transformer is a transformers model pretrained on a large corpus of English data in a self-supervised fashion. This means it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, a small language model corrupts the input texts and serves as a generator of inputs for this model, and the pretraining objective is to predict which token is an original and which one has been replaced, a bit like a GAN training. This way, the model learns an inner representation of the English language that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled sentences for instance, you can train a standard classifier using the features produced by the BERT model as inputs. ## Intended uses & limitations You can use the raw model to extract a vector representation of a given text, but it's mostly intended to be fine-tuned on a downstream task. See the [model hub](https://huggingface.co/models?filter=funnel-transformer) to look for fine-tuned versions on a task that interests you. Note that this model is primarily aimed at being fine-tuned on tasks that use the whole sentence (potentially masked) to make decisions, such as sequence classification, token classification or question answering. For tasks such as text generation you should look at model like GPT2. ### How to use Here is how to use this model to get the features of a given text in PyTorch: ```python from transformers import FunnelTokenizer, FunnelModel tokenizer = FunnelTokenizer.from_pretrained("funnel-transformer/small") model = FunneModel.from_pretrained("funnel-transformer/small") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` and in TensorFlow: ```python from transformers import FunnelTokenizer, TFFunnelModel tokenizer = FunnelTokenizer.from_pretrained("funnel-transformer/small") model = TFFunnelModel.from_pretrained("funnel-transformer/small") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` ## Training data The BERT model was pretrained on: - [BookCorpus](https://yknzhu.wixsite.com/mbweb), a dataset consisting of 11,038 unpublished books, - [English Wikipedia](https://en.wikipedia.org/wiki/English_Wikipedia) (excluding lists, tables and headers), - [Clue Web](https://lemurproject.org/clueweb12/), a dataset of 733,019,372 English web pages, - [GigaWord](https://catalog.ldc.upenn.edu/LDC2011T07), an archive of newswire text data, - [Common Crawl](https://commoncrawl.org/), a dataset of raw web pages. ### BibTeX entry and citation info ```bibtex @misc{dai2020funneltransformer, title={Funnel-Transformer: Filtering out Sequential Redundancy for Efficient Language Processing}, author={Zihang Dai and Guokun Lai and Yiming Yang and Quoc V. Le}, year={2020}, eprint={2006.03236}, archivePrefix={arXiv}, primaryClass={cs.LG} } ```
{"language": "en", "license": "apache-2.0", "datasets": ["bookcorpus", "wikipedia", "gigaword"]}
funnel-transformer/small
null
[ "transformers", "pytorch", "tf", "funnel", "feature-extraction", "en", "dataset:bookcorpus", "dataset:wikipedia", "dataset:gigaword", "arxiv:2006.03236", "license:apache-2.0", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:05+00:00
feature-extraction
transformers
# Funnel Transformer xlarge model (B10-10-10 without decoder) Pretrained model on English language using a similar objective objective as [ELECTRA](https://huggingface.co/transformers/model_doc/electra.html). It was introduced in [this paper](https://arxiv.org/pdf/2006.03236.pdf) and first released in [this repository](https://github.com/laiguokun/Funnel-Transformer). This model is uncased: it does not make a difference between english and English. Disclaimer: The team releasing Funnel Transformer did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description Funnel Transformer is a transformers model pretrained on a large corpus of English data in a self-supervised fashion. This means it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, a small language model corrupts the input texts and serves as a generator of inputs for this model, and the pretraining objective is to predict which token is an original and which one has been replaced, a bit like a GAN training. This way, the model learns an inner representation of the English language that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled sentences for instance, you can train a standard classifier using the features produced by the BERT model as inputs. **Note:** This model does not contain the decoder, so it ouputs hidden states that have a sequence length of one fourth of the inputs. It's good to use for tasks requiring a summary of the sentence (like sentence classification) but not if you need one input per initial token. You should use the `xlarge` model in that case. ## Intended uses & limitations You can use the raw model to extract a vector representation of a given text, but it's mostly intended to be fine-tuned on a downstream task. See the [model hub](https://huggingface.co/models?filter=funnel-transformer) to look for fine-tuned versions on a task that interests you. Note that this model is primarily aimed at being fine-tuned on tasks that use the whole sentence (potentially masked) to make decisions, such as sequence classification, token classification or question answering. For tasks such as text generation you should look at model like GPT2. ### How to use Here is how to use this model to get the features of a given text in PyTorch: ```python from transformers import FunnelTokenizer, FunnelBaseModel tokenizer = FunnelTokenizer.from_pretrained("funnel-transformer/xlarge-base") model = FunnelBaseModel.from_pretrained("funnel-transformer/xlarge-base") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` and in TensorFlow: ```python from transformers import FunnelTokenizer, TFFunnelBaseModel tokenizer = FunnelTokenizer.from_pretrained("funnel-transformer/xlarge-base") model = TFFunnelBaseModel.from_pretrained("funnel-transformer/xlarge-base") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` ## Training data The BERT model was pretrained on: - [BookCorpus](https://yknzhu.wixsite.com/mbweb), a dataset consisting of 11,038 unpublished books, - [English Wikipedia](https://en.wikipedia.org/wiki/English_Wikipedia) (excluding lists, tables and headers), - [Clue Web](https://lemurproject.org/clueweb12/), a dataset of 733,019,372 English web pages, - [GigaWord](https://catalog.ldc.upenn.edu/LDC2011T07), an archive of newswire text data, - [Common Crawl](https://commoncrawl.org/), a dataset of raw web pages. ### BibTeX entry and citation info ```bibtex @misc{dai2020funneltransformer, title={Funnel-Transformer: Filtering out Sequential Redundancy for Efficient Language Processing}, author={Zihang Dai and Guokun Lai and Yiming Yang and Quoc V. Le}, year={2020}, eprint={2006.03236}, archivePrefix={arXiv}, primaryClass={cs.LG} } ```
{"language": "en", "license": "apache-2.0", "datasets": ["bookcorpus", "wikipedia", "gigaword"]}
funnel-transformer/xlarge-base
null
[ "transformers", "pytorch", "tf", "safetensors", "funnel", "feature-extraction", "en", "dataset:bookcorpus", "dataset:wikipedia", "dataset:gigaword", "arxiv:2006.03236", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
feature-extraction
transformers
# Funnel Transformer xlarge model (B10-10-10 with decoder) Pretrained model on English language using a similar objective objective as [ELECTRA](https://huggingface.co/transformers/model_doc/electra.html). It was introduced in [this paper](https://arxiv.org/pdf/2006.03236.pdf) and first released in [this repository](https://github.com/laiguokun/Funnel-Transformer). This model is uncased: it does not make a difference between english and English. Disclaimer: The team releasing Funnel Transformer did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description Funnel Transformer is a transformers model pretrained on a large corpus of English data in a self-supervised fashion. This means it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, a small language model corrupts the input texts and serves as a generator of inputs for this model, and the pretraining objective is to predict which token is an original and which one has been replaced, a bit like a GAN training. This way, the model learns an inner representation of the English language that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled sentences for instance, you can train a standard classifier using the features produced by the BERT model as inputs. ## Intended uses & limitations You can use the raw model to extract a vector representation of a given text, but it's mostly intended to be fine-tuned on a downstream task. See the [model hub](https://huggingface.co/models?filter=funnel-transformer) to look for fine-tuned versions on a task that interests you. Note that this model is primarily aimed at being fine-tuned on tasks that use the whole sentence (potentially masked) to make decisions, such as sequence classification, token classification or question answering. For tasks such as text generation you should look at model like GPT2. ### How to use Here is how to use this model to get the features of a given text in PyTorch: ```python from transformers import FunnelTokenizer, FunnelModel tokenizer = FunnelTokenizer.from_pretrained("funnel-transformer/xlarge") model = FunneModel.from_pretrained("funnel-transformer/xlarge") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` and in TensorFlow: ```python from transformers import FunnelTokenizer, TFFunnelModel tokenizer = FunnelTokenizer.from_pretrained("funnel-transformer/xlarge") model = TFFunnelModel.from_pretrained("funnel-transformer/xlarge") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` ## Training data The BERT model was pretrained on: - [BookCorpus](https://yknzhu.wixsite.com/mbweb), a dataset consisting of 11,038 unpublished books, - [English Wikipedia](https://en.wikipedia.org/wiki/English_Wikipedia) (excluding lists, tables and headers), - [Clue Web](https://lemurproject.org/clueweb12/), a dataset of 733,019,372 English web pages, - [GigaWord](https://catalog.ldc.upenn.edu/LDC2011T07), an archive of newswire text data, - [Common Crawl](https://commoncrawl.org/), a dataset of raw web pages. ### BibTeX entry and citation info ```bibtex @misc{dai2020funneltransformer, title={Funnel-Transformer: Filtering out Sequential Redundancy for Efficient Language Processing}, author={Zihang Dai and Guokun Lai and Yiming Yang and Quoc V. Le}, year={2020}, eprint={2006.03236}, archivePrefix={arXiv}, primaryClass={cs.LG} } ```
{"language": "en", "license": "apache-2.0", "datasets": ["bookcorpus", "wikipedia", "gigaword"]}
funnel-transformer/xlarge
null
[ "transformers", "pytorch", "tf", "funnel", "feature-extraction", "en", "dataset:bookcorpus", "dataset:wikipedia", "dataset:gigaword", "arxiv:2006.03236", "license:apache-2.0", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
funnyfunny/test_transfer
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
funwiththoughts/dummy-model
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
furkanbilgin/gpt2-eksisozluk
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
furuhata/f
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
furunkel/bert-base-StackOverflow-comments_2M
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
text2text-generation
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-base-finetuned-bbc-headline This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 12 - eval_batch_size: 12 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | No log | 1.0 | 167 | 2.2978 | 31.8313 | 10.3824 | 29.6182 | 29.4336 | 10.3153 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.1 - Datasets 1.12.1 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "model-index": [{"name": "t5-base-finetuned-bbc-headline", "results": []}]}
furyhawk/t5-base-finetuned-bbc-headline
null
[ "transformers", "pytorch", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
text2text-generation
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-base-finetuned-bbc This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 6 - eval_batch_size: 6 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | No log | 1.0 | 334 | 0.1500 | 24.5024 | 21.4979 | 24.0227 | 24.0303 | 19.0 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.1 - Datasets 1.12.1 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "model-index": [{"name": "t5-base-finetuned-bbc", "results": []}]}
furyhawk/t5-base-finetuned-bbc
null
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
text2text-generation
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-bbc-headline This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 12 - eval_batch_size: 12 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:------:|:---------:|:-------:| | No log | 1.0 | 167 | 3.6454 | 22.4311 | 5.9878 | 20.118 | 20.482 | 18.9009 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.1 - Datasets 1.12.1 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "model-index": [{"name": "t5-small-finetuned-bbc-headline", "results": []}]}
furyhawk/t5-small-finetuned-bbc-headline
null
[ "transformers", "pytorch", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
text2text-generation
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-bbc This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3238 - Rouge1: 21.2266 - Rouge2: 16.0927 - Rougel: 19.6785 - Rougelsum: 19.8849 - Gen Len: 19.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | 0.4882 | 1.0 | 1001 | 0.3238 | 21.2266 | 16.0927 | 19.6785 | 19.8849 | 19.0 | ### Framework versions - Transformers 4.12.0 - Pytorch 1.10.0 - Datasets 1.14.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["rouge"], "model-index": [{"name": "t5-small-finetuned-bbc", "results": []}]}
furyhawk/t5-small-finetuned-bbc
null
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
text2text-generation
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-xsum This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the xsum dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:| | No log | 1.0 | 128 | 2.9003 | 19.4784 | 2.8529 | 14.7786 | 15.0614 | 18.9825 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.1 - Datasets 1.12.1 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["xsum"], "model-index": [{"name": "t5-small-finetuned-xsum", "results": []}]}
furyhawk/t5-small-finetuned-xsum
null
[ "transformers", "pytorch", "t5", "text2text-generation", "generated_from_trainer", "dataset:xsum", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
furyhawk/text_sum
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
fuyunhuayu/face
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
text2text-generation
transformers
{}
fvlr/pegasus-xsum
null
[ "transformers", "pegasus", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
fwafawfwa/fawfwafawfwaf
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
fxr/DialoGPT-small-joshua
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
fyc132/lfs
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
fill-mask
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-cased-wikitext2 This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 6.8575 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 7.0964 | 1.0 | 2346 | 7.0532 | | 6.9055 | 2.0 | 4692 | 6.8710 | | 6.8574 | 3.0 | 7038 | 6.8917 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "model-index": [{"name": "bert-base-cased-wikitext2", "results": []}]}
fznmhmmd/bert-base-cased-wikitext2
null
[ "transformers", "pytorch", "tensorboard", "bert", "fill-mask", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.8273 - Matthews Correlation: 0.5544 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.5256 | 1.0 | 535 | 0.5419 | 0.4248 | | 0.3486 | 2.0 | 1070 | 0.5187 | 0.4999 | | 0.2406 | 3.0 | 1605 | 0.6580 | 0.5054 | | 0.1692 | 4.0 | 2140 | 0.7455 | 0.5403 | | 0.1343 | 5.0 | 2675 | 0.8273 | 0.5544 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["glue"], "metrics": ["matthews_correlation"], "model-index": [{"name": "distilbert-base-uncased-finetuned-cola", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "glue", "type": "glue", "args": "cola"}, "metrics": [{"type": "matthews_correlation", "value": 0.5543972545286807, "name": "Matthews Correlation"}]}]}]}
fznmhmmd/distilbert-base-uncased-finetuned-cola
null
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-generation
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-wikitext2 This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 6.1112 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 6.5571 | 1.0 | 2249 | 6.4684 | | 6.1921 | 2.0 | 4498 | 6.1984 | | 6.0016 | 3.0 | 6747 | 6.1112 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
{"license": "mit", "tags": ["generated_from_trainer"], "model-index": [{"name": "gpt2-wikitext2", "results": []}]}
fznmhmmd/gpt2-wikitext2
null
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
fznmhmmd/my-new-shiny-tokenizer
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
g4brielvs/gaga
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
transformers
{}
g8a9/vit-geppetto-captioning
null
[ "transformers", "pytorch", "vision-encoder-decoder", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
g9rant/wav2vec2-base-timit-demo-colab
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
g9rant/wav2vec2-large-xls-300m-en-please
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
g9rant/wav2vec2-large-xls-r-300m-en-colab
null
[ "tensorboard", "region:us" ]
null
2022-03-02T23:29:05+00:00
automatic-speech-recognition
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-common_voice-es-demo This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the COMMON_VOICE - ES dataset. It achieves the following results on the evaluation set: - Loss: 0.1788 - Wer: 1.0239 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 15.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | No log | 0.02 | 100 | 6.6465 | 1.0 | | No log | 0.04 | 200 | 3.0150 | 1.0 | | No log | 0.05 | 300 | 2.8622 | 1.0003 | | No log | 0.07 | 400 | 0.9506 | 0.9771 | | 5.1598 | 0.09 | 500 | 0.4883 | 1.0009 | | 5.1598 | 0.11 | 600 | 0.3893 | 1.0203 | | 5.1598 | 0.13 | 700 | 0.3417 | 1.0283 | | 5.1598 | 0.14 | 800 | 0.3352 | 1.0335 | | 5.1598 | 0.16 | 900 | 0.2987 | 1.0168 | | 0.3671 | 0.18 | 1000 | 0.2921 | 1.0159 | | 0.3671 | 0.2 | 1100 | 0.2770 | 1.0096 | | 0.3671 | 0.22 | 1200 | 0.2790 | 1.0398 | | 0.3671 | 0.24 | 1300 | 0.2659 | 1.0190 | | 0.3671 | 0.25 | 1400 | 0.2657 | 1.0528 | | 0.289 | 0.27 | 1500 | 0.2556 | 1.0301 | | 0.289 | 0.29 | 1600 | 0.2514 | 1.0193 | | 0.289 | 0.31 | 1700 | 0.2708 | 1.0699 | | 0.289 | 0.33 | 1800 | 0.2455 | 1.0723 | | 0.289 | 0.34 | 1900 | 0.2456 | 1.0100 | | 0.271 | 0.36 | 2000 | 0.2338 | 1.0533 | | 0.271 | 0.38 | 2100 | 0.2479 | 1.0128 | | 0.271 | 0.4 | 2200 | 0.2483 | 1.0386 | | 0.271 | 0.42 | 2300 | 0.2436 | 1.0528 | | 0.271 | 0.43 | 2400 | 0.2382 | 1.0476 | | 0.2634 | 0.45 | 2500 | 0.2329 | 1.0680 | | 0.2634 | 0.47 | 2600 | 0.2433 | 1.0581 | | 0.2634 | 0.49 | 2700 | 0.2354 | 1.0641 | | 0.2634 | 0.51 | 2800 | 0.2318 | 1.0504 | | 0.2634 | 0.52 | 2900 | 0.2325 | 1.0500 | | 0.2522 | 0.54 | 3000 | 0.2344 | 1.0380 | | 0.2522 | 0.56 | 3100 | 0.2244 | 1.0663 | | 0.2522 | 0.58 | 3200 | 0.2340 | 1.0647 | | 0.2522 | 0.6 | 3300 | 0.2288 | 1.0538 | | 0.2522 | 0.61 | 3400 | 0.2212 | 1.0614 | | 0.2468 | 0.63 | 3500 | 0.2487 | 1.0557 | | 0.2468 | 0.65 | 3600 | 0.2330 | 1.0510 | | 0.2468 | 0.67 | 3700 | 0.2308 | 1.0506 | | 0.2468 | 0.69 | 3800 | 0.2320 | 1.0451 | | 0.2468 | 0.71 | 3900 | 0.2261 | 1.0701 | | 0.2505 | 0.72 | 4000 | 0.2281 | 1.0713 | | 0.2505 | 0.74 | 4100 | 0.2277 | 1.0741 | | 0.2505 | 0.76 | 4200 | 0.2253 | 1.0814 | | 0.2505 | 0.78 | 4300 | 0.2215 | 1.0437 | | 0.2505 | 0.8 | 4400 | 0.2220 | 1.0557 | | 0.2434 | 0.81 | 4500 | 0.2184 | 1.0533 | | 0.2434 | 0.83 | 4600 | 0.2222 | 1.0819 | | 0.2434 | 0.85 | 4700 | 0.2162 | 1.0238 | | 0.2434 | 0.87 | 4800 | 0.2132 | 1.0457 | | 0.2434 | 0.89 | 4900 | 0.2068 | 1.0611 | | 0.2347 | 0.9 | 5000 | 0.2166 | 1.0332 | | 0.2347 | 0.92 | 5100 | 0.2087 | 1.0433 | | 0.2347 | 0.94 | 5200 | 0.2100 | 1.0292 | | 0.2347 | 0.96 | 5300 | 0.2067 | 1.0734 | | 0.2347 | 0.98 | 5400 | 0.2148 | 1.0279 | | 0.2333 | 0.99 | 5500 | 0.2125 | 1.0277 | | 0.2333 | 1.01 | 5600 | 0.2054 | 1.0453 | | 0.2333 | 1.03 | 5700 | 0.2091 | 1.0557 | | 0.2333 | 1.05 | 5800 | 0.2086 | 1.0239 | | 0.2333 | 1.07 | 5900 | 0.2051 | 1.0645 | | 0.2087 | 1.09 | 6000 | 0.2103 | 1.0240 | | 0.2087 | 1.1 | 6100 | 0.2145 | 1.0197 | | 0.2087 | 1.12 | 6200 | 0.2136 | 1.0248 | | 0.2087 | 1.14 | 6300 | 0.2045 | 1.0443 | | 0.2087 | 1.16 | 6400 | 0.2089 | 1.0397 | | 0.2013 | 1.18 | 6500 | 0.2012 | 1.0654 | | 0.2013 | 1.19 | 6600 | 0.2054 | 1.0414 | | 0.2013 | 1.21 | 6700 | 0.2081 | 1.0632 | | 0.2013 | 1.23 | 6800 | 0.2104 | 1.0190 | | 0.2013 | 1.25 | 6900 | 0.2045 | 1.0813 | | 0.2092 | 1.27 | 7000 | 0.2096 | 1.0751 | | 0.2092 | 1.28 | 7100 | 0.2103 | 1.0328 | | 0.2092 | 1.3 | 7200 | 0.2044 | 1.0011 | | 0.2092 | 1.32 | 7300 | 0.2089 | 1.0260 | | 0.2092 | 1.34 | 7400 | 0.2063 | 1.0551 | | 0.2076 | 1.36 | 7500 | 0.2029 | 1.0075 | | 0.2076 | 1.37 | 7600 | 0.2040 | 1.0528 | | 0.2076 | 1.39 | 7700 | 0.2075 | 1.0398 | | 0.2076 | 1.41 | 7800 | 0.2023 | 1.0231 | | 0.2076 | 1.43 | 7900 | 0.2049 | 1.0318 | | 0.2028 | 1.45 | 8000 | 0.2072 | 1.0763 | | 0.2028 | 1.47 | 8100 | 0.2075 | 1.0762 | | 0.2028 | 1.48 | 8200 | 0.2052 | 1.0838 | | 0.2028 | 1.5 | 8300 | 0.2053 | 1.0407 | | 0.2028 | 1.52 | 8400 | 0.2066 | 1.0266 | | 0.2025 | 1.54 | 8500 | 0.2037 | 1.0628 | | 0.2025 | 1.56 | 8600 | 0.2010 | 1.0351 | | 0.2025 | 1.57 | 8700 | 0.1961 | 1.0812 | | 0.2025 | 1.59 | 8800 | 0.1963 | 1.0868 | | 0.2025 | 1.61 | 8900 | 0.2022 | 1.0710 | | 0.1997 | 1.63 | 9000 | 0.2051 | 1.0764 | | 0.1997 | 1.65 | 9100 | 0.1987 | 1.0581 | | 0.1997 | 1.66 | 9200 | 0.2051 | 1.0611 | | 0.1997 | 1.68 | 9300 | 0.1999 | 1.0808 | | 0.1997 | 1.7 | 9400 | 0.1972 | 1.0703 | | 0.1983 | 1.72 | 9500 | 0.1961 | 1.0584 | | 0.1983 | 1.74 | 9600 | 0.2031 | 1.0938 | | 0.1983 | 1.75 | 9700 | 0.2019 | 1.0891 | | 0.1983 | 1.77 | 9800 | 0.2006 | 1.0542 | | 0.1983 | 1.79 | 9900 | 0.1925 | 1.0627 | | 0.1961 | 1.81 | 10000 | 0.1976 | 1.0751 | | 0.1961 | 1.83 | 10100 | 0.2051 | 1.0611 | | 0.1961 | 1.85 | 10200 | 0.2037 | 1.0656 | | 0.1961 | 1.86 | 10300 | 0.2025 | 1.0291 | | 0.1961 | 1.88 | 10400 | 0.1977 | 1.0525 | | 0.2025 | 1.9 | 10500 | 0.2030 | 1.0670 | | 0.2025 | 1.92 | 10600 | 0.1980 | 1.0765 | | 0.2025 | 1.94 | 10700 | 0.1975 | 1.0254 | | 0.2025 | 1.95 | 10800 | 0.1986 | 1.0636 | | 0.2025 | 1.97 | 10900 | 0.1956 | 1.0352 | | 0.2025 | 1.99 | 11000 | 0.1954 | 1.0265 | | 0.2025 | 2.01 | 11100 | 0.1957 | 1.0752 | | 0.2025 | 2.03 | 11200 | 0.1943 | 1.0784 | | 0.2025 | 2.04 | 11300 | 0.1898 | 1.0341 | | 0.2025 | 2.06 | 11400 | 0.1921 | 1.0301 | | 0.1805 | 2.08 | 11500 | 0.1910 | 1.0230 | | 0.1805 | 2.1 | 11600 | 0.1961 | 1.0203 | | 0.1805 | 2.12 | 11700 | 0.1973 | 1.0776 | | 0.1805 | 2.13 | 11800 | 0.1876 | 1.0788 | | 0.1805 | 2.15 | 11900 | 0.1934 | 1.0251 | | 0.177 | 2.17 | 12000 | 0.1967 | 1.0340 | | 0.177 | 2.19 | 12100 | 0.1932 | 1.0131 | | 0.177 | 2.21 | 12200 | 0.1926 | 1.0078 | | 0.177 | 2.23 | 12300 | 0.1947 | 0.9991 | | 0.177 | 2.24 | 12400 | 0.1914 | 1.0213 | | 0.1782 | 2.26 | 12500 | 0.1962 | 0.9882 | | 0.1782 | 2.28 | 12600 | 0.1960 | 1.0562 | | 0.1782 | 2.3 | 12700 | 0.2006 | 1.0401 | | 0.1782 | 2.32 | 12800 | 0.1950 | 1.0688 | | 0.1782 | 2.33 | 12900 | 0.1920 | 1.0435 | | 0.1796 | 2.35 | 13000 | 0.1926 | 1.0667 | | 0.1796 | 2.37 | 13100 | 0.1949 | 1.0859 | | 0.1796 | 2.39 | 13200 | 0.1932 | 1.0670 | | 0.1796 | 2.41 | 13300 | 0.1882 | 1.0663 | | 0.1796 | 2.42 | 13400 | 0.1877 | 1.0760 | | 0.1775 | 2.44 | 13500 | 0.1893 | 1.0859 | | 0.1775 | 2.46 | 13600 | 0.1936 | 1.0702 | | 0.1775 | 2.48 | 13700 | 0.1871 | 1.0414 | | 0.1775 | 2.5 | 13800 | 0.1917 | 1.0430 | | 0.1775 | 2.51 | 13900 | 0.1922 | 1.0422 | | 0.1778 | 2.53 | 14000 | 0.1875 | 1.0585 | | 0.1778 | 2.55 | 14100 | 0.1876 | 1.0603 | | 0.1778 | 2.57 | 14200 | 0.1888 | 1.0628 | | 0.1778 | 2.59 | 14300 | 0.1948 | 1.0782 | | 0.1778 | 2.6 | 14400 | 0.1942 | 1.0695 | | 0.1784 | 2.62 | 14500 | 0.1842 | 1.0863 | | 0.1784 | 2.64 | 14600 | 0.1850 | 1.0543 | | 0.1784 | 2.66 | 14700 | 0.1824 | 1.0683 | | 0.1784 | 2.68 | 14800 | 0.1888 | 1.0693 | | 0.1784 | 2.7 | 14900 | 0.1871 | 1.0175 | | 0.1753 | 2.71 | 15000 | 0.1889 | 1.0549 | | 0.1753 | 2.73 | 15100 | 0.1865 | 1.0544 | | 0.1753 | 2.75 | 15200 | 0.1918 | 1.0726 | | 0.1753 | 2.77 | 15300 | 0.1964 | 1.0915 | | 0.1753 | 2.79 | 15400 | 0.1900 | 1.0610 | | 0.1768 | 2.8 | 15500 | 0.1894 | 1.0763 | | 0.1768 | 2.82 | 15600 | 0.1882 | 1.0548 | | 0.1768 | 2.84 | 15700 | 0.1861 | 1.0902 | | 0.1768 | 2.86 | 15800 | 0.1860 | 1.0551 | | 0.1768 | 2.88 | 15900 | 0.1879 | 1.0581 | | 0.1761 | 2.89 | 16000 | 0.1899 | 1.0544 | | 0.1761 | 2.91 | 16100 | 0.1860 | 1.0530 | | 0.1761 | 2.93 | 16200 | 0.1894 | 1.0596 | | 0.1761 | 2.95 | 16300 | 0.1835 | 1.0394 | | 0.1761 | 2.97 | 16400 | 0.1852 | 1.0445 | | 0.1754 | 2.98 | 16500 | 0.1847 | 1.0390 | | 0.1754 | 3.0 | 16600 | 0.1828 | 1.0440 | | 0.1754 | 3.02 | 16700 | 0.1869 | 1.0560 | | 0.1754 | 3.04 | 16800 | 0.1882 | 1.0573 | | 0.1754 | 3.06 | 16900 | 0.1912 | 1.0600 | | 0.1592 | 3.08 | 17000 | 0.1921 | 1.0529 | | 0.1592 | 3.09 | 17100 | 0.1881 | 1.0175 | | 0.1592 | 3.11 | 17200 | 0.1891 | 1.0654 | | 0.1592 | 3.13 | 17300 | 0.1889 | 1.0687 | | 0.1592 | 3.15 | 17400 | 0.1916 | 1.0642 | | 0.1556 | 3.17 | 17500 | 0.1850 | 1.0295 | | 0.1556 | 3.18 | 17600 | 0.1875 | 1.0273 | | 0.1556 | 3.2 | 17700 | 0.1894 | 1.0051 | | 0.1556 | 3.22 | 17800 | 0.1870 | 1.0462 | | 0.1556 | 3.24 | 17900 | 0.1831 | 1.0308 | | 0.1557 | 3.26 | 18000 | 0.1878 | 1.0603 | | 0.1557 | 3.27 | 18100 | 0.1850 | 1.0566 | | 0.1557 | 3.29 | 18200 | 0.1843 | 1.0629 | | 0.1557 | 3.31 | 18300 | 0.1886 | 1.0378 | | 0.1557 | 3.33 | 18400 | 0.1892 | 1.0381 | | 0.159 | 3.35 | 18500 | 0.1942 | 1.0519 | | 0.159 | 3.36 | 18600 | 0.1829 | 1.0622 | | 0.159 | 3.38 | 18700 | 0.1894 | 1.0557 | | 0.159 | 3.4 | 18800 | 0.1895 | 1.0627 | | 0.159 | 3.42 | 18900 | 0.1863 | 1.0362 | | 0.1582 | 3.44 | 19000 | 0.1888 | 1.0491 | | 0.1582 | 3.46 | 19100 | 0.1854 | 1.0483 | | 0.1582 | 3.47 | 19200 | 0.1797 | 0.9787 | | 0.1582 | 3.49 | 19300 | 0.1785 | 1.0086 | | 0.1582 | 3.51 | 19400 | 0.1797 | 0.9915 | | 0.1507 | 3.53 | 19500 | 0.1873 | 1.0266 | | 0.1507 | 3.55 | 19600 | 0.1838 | 1.0299 | | 0.1507 | 3.56 | 19700 | 0.1817 | 1.0355 | | 0.1507 | 3.58 | 19800 | 0.1819 | 1.0271 | | 0.1507 | 3.6 | 19900 | 0.1883 | 1.0248 | | 0.1601 | 3.62 | 20000 | 0.1823 | 1.0406 | | 0.1601 | 3.64 | 20100 | 0.1801 | 1.0261 | | 0.1601 | 3.65 | 20200 | 0.1783 | 1.0329 | | 0.1601 | 3.67 | 20300 | 0.1857 | 1.0162 | | 0.1601 | 3.69 | 20400 | 0.1814 | 1.0212 | | 0.1552 | 3.71 | 20500 | 0.1837 | 1.0232 | | 0.1552 | 3.73 | 20600 | 0.1843 | 1.0314 | | 0.1552 | 3.74 | 20700 | 0.1842 | 1.0258 | | 0.1552 | 3.76 | 20800 | 0.1821 | 1.0479 | | 0.1552 | 3.78 | 20900 | 0.1864 | 1.0459 | | 0.1576 | 3.8 | 21000 | 0.1831 | 1.0364 | | 0.1576 | 3.82 | 21100 | 0.1852 | 1.0271 | | 0.1576 | 3.83 | 21200 | 0.1865 | 1.0204 | | 0.1576 | 3.85 | 21300 | 0.1794 | 1.0324 | | 0.1576 | 3.87 | 21400 | 0.1826 | 1.0315 | | 0.1585 | 3.89 | 21500 | 0.1824 | 1.0327 | | 0.1585 | 3.91 | 21600 | 0.1838 | 1.0208 | | 0.1585 | 3.93 | 21700 | 0.1850 | 1.0199 | | 0.1585 | 3.94 | 21800 | 0.1841 | 1.0050 | | 0.1585 | 3.96 | 21900 | 0.1783 | 1.0003 | | 0.1572 | 3.98 | 22000 | 0.1787 | 1.0115 | | 0.1572 | 4.0 | 22100 | 0.1810 | 1.0235 | | 0.1572 | 4.02 | 22200 | 0.1763 | 1.0191 | | 0.1572 | 4.03 | 22300 | 0.1764 | 1.0332 | | 0.1572 | 4.05 | 22400 | 0.1794 | 1.0429 | | 0.1406 | 4.07 | 22500 | 0.1905 | 1.0288 | | 0.1406 | 4.09 | 22600 | 0.1776 | 1.0244 | | 0.1406 | 4.11 | 22700 | 0.1782 | 1.0451 | | 0.1406 | 4.12 | 22800 | 0.1771 | 1.0387 | | 0.1406 | 4.14 | 22900 | 0.1788 | 1.0435 | | 0.14 | 4.16 | 23000 | 0.1792 | 1.0421 | | 0.14 | 4.18 | 23100 | 0.1841 | 1.0241 | | 0.14 | 4.2 | 23200 | 0.1769 | 1.0546 | | 0.14 | 4.21 | 23300 | 0.1815 | 1.0602 | | 0.14 | 4.23 | 23400 | 0.1784 | 1.0369 | | 0.1394 | 4.25 | 23500 | 0.1809 | 1.0406 | | 0.1394 | 4.27 | 23600 | 0.1744 | 1.0133 | | 0.1394 | 4.29 | 23700 | 0.1771 | 1.0214 | | 0.1394 | 4.31 | 23800 | 0.1765 | 1.0064 | | 0.1394 | 4.32 | 23900 | 0.1793 | 1.0200 | | 0.14 | 4.34 | 24000 | 0.1776 | 1.0352 | | 0.14 | 4.36 | 24100 | 0.1775 | 1.0294 | | 0.14 | 4.38 | 24200 | 0.1763 | 1.0213 | | 0.14 | 4.4 | 24300 | 0.1697 | 1.0302 | | 0.14 | 4.41 | 24400 | 0.1771 | 1.0259 | | 0.1408 | 4.43 | 24500 | 0.1747 | 1.0409 | | 0.1408 | 4.45 | 24600 | 0.1769 | 1.0278 | | 0.1408 | 4.47 | 24700 | 0.1767 | 1.0190 | | 0.1408 | 4.49 | 24800 | 0.1745 | 1.0281 | | 0.1408 | 4.5 | 24900 | 0.1738 | 1.0356 | | 0.1391 | 4.52 | 25000 | 0.1781 | 1.0429 | | 0.1391 | 4.54 | 25100 | 0.1784 | 1.0076 | | 0.1391 | 4.56 | 25200 | 0.1771 | 1.0157 | | 0.1391 | 4.58 | 25300 | 0.1758 | 1.0337 | | 0.1391 | 4.59 | 25400 | 0.1758 | 1.0466 | | 0.1398 | 4.61 | 25500 | 0.1724 | 1.0403 | | 0.1398 | 4.63 | 25600 | 0.1765 | 1.0481 | | 0.1398 | 4.65 | 25700 | 0.1757 | 1.0320 | | 0.1398 | 4.67 | 25800 | 0.1814 | 1.0479 | | 0.1398 | 4.69 | 25900 | 0.1713 | 1.0251 | | 0.1427 | 4.7 | 26000 | 0.1735 | 1.0340 | | 0.1427 | 4.72 | 26100 | 0.1765 | 1.0358 | | 0.1427 | 4.74 | 26200 | 0.1731 | 1.0220 | | 0.1427 | 4.76 | 26300 | 0.1769 | 1.0261 | | 0.1427 | 4.78 | 26400 | 0.1747 | 1.0139 | | 0.1424 | 4.79 | 26500 | 0.1791 | 1.0406 | | 0.1424 | 4.81 | 26600 | 0.1735 | 1.0497 | | 0.1424 | 4.83 | 26700 | 0.1710 | 1.0433 | | 0.1424 | 4.85 | 26800 | 0.1771 | 1.0002 | | 0.1424 | 4.87 | 26900 | 0.1748 | 1.0046 | | 0.1419 | 4.88 | 27000 | 0.1794 | 1.0332 | | 0.1419 | 4.9 | 27100 | 0.1772 | 1.0558 | | 0.1419 | 4.92 | 27200 | 0.1757 | 1.0477 | | 0.1419 | 4.94 | 27300 | 0.1735 | 1.0324 | | 0.1419 | 4.96 | 27400 | 0.1758 | 1.0260 | | 0.1433 | 4.97 | 27500 | 0.1767 | 1.0422 | | 0.1433 | 4.99 | 27600 | 0.1695 | 1.0386 | | 0.1433 | 5.01 | 27700 | 0.1763 | 1.0571 | | 0.1433 | 5.03 | 27800 | 0.1743 | 1.0367 | | 0.1433 | 5.05 | 27900 | 0.1804 | 1.0255 | | 0.1306 | 5.07 | 28000 | 0.1803 | 1.0377 | | 0.1306 | 5.08 | 28100 | 0.1750 | 1.0552 | | 0.1306 | 5.1 | 28200 | 0.1743 | 1.0512 | | 0.1306 | 5.12 | 28300 | 0.1777 | 1.0584 | | 0.1306 | 5.14 | 28400 | 0.1726 | 1.0374 | | 0.123 | 5.16 | 28500 | 0.1776 | 1.0439 | | 0.123 | 5.17 | 28600 | 0.1759 | 1.0682 | | 0.123 | 5.19 | 28700 | 0.1724 | 1.0511 | | 0.123 | 5.21 | 28800 | 0.1677 | 1.0560 | | 0.123 | 5.23 | 28900 | 0.1699 | 1.0421 | | 0.1217 | 5.25 | 29000 | 0.1803 | 1.0370 | | 0.1217 | 5.26 | 29100 | 0.1770 | 1.0474 | | 0.1217 | 5.28 | 29200 | 0.1733 | 1.0332 | | 0.1217 | 5.3 | 29300 | 0.1746 | 1.0158 | | 0.1217 | 5.32 | 29400 | 0.1763 | 1.0341 | | 0.1246 | 5.34 | 29500 | 0.1775 | 1.0348 | | 0.1246 | 5.35 | 29600 | 0.1730 | 1.0492 | | 0.1246 | 5.37 | 29700 | 0.1730 | 1.0503 | | 0.1246 | 5.39 | 29800 | 0.1727 | 1.0437 | | 0.1246 | 5.41 | 29900 | 0.1744 | 1.0539 | | 0.127 | 5.43 | 30000 | 0.1748 | 1.0463 | | 0.127 | 5.44 | 30100 | 0.1746 | 1.0555 | | 0.127 | 5.46 | 30200 | 0.1810 | 1.0558 | | 0.127 | 5.48 | 30300 | 0.1773 | 1.0407 | | 0.127 | 5.5 | 30400 | 0.1722 | 1.0489 | | 0.1276 | 5.52 | 30500 | 0.1720 | 1.0520 | | 0.1276 | 5.54 | 30600 | 0.1777 | 1.0347 | | 0.1276 | 5.55 | 30700 | 0.1685 | 1.0347 | | 0.1276 | 5.57 | 30800 | 0.1659 | 1.0338 | | 0.1276 | 5.59 | 30900 | 0.1756 | 1.0228 | | 0.1246 | 5.61 | 31000 | 0.1717 | 1.0409 | | 0.1246 | 5.63 | 31100 | 0.1764 | 1.0202 | | 0.1246 | 5.64 | 31200 | 0.1693 | 1.0314 | | 0.1246 | 5.66 | 31300 | 0.1731 | 1.0319 | | 0.1246 | 5.68 | 31400 | 0.1688 | 1.0380 | | 0.1271 | 5.7 | 31500 | 0.1671 | 1.0350 | | 0.1271 | 5.72 | 31600 | 0.1676 | 1.0430 | | 0.1271 | 5.73 | 31700 | 0.1656 | 1.0441 | | 0.1271 | 5.75 | 31800 | 0.1664 | 1.0403 | | 0.1271 | 5.77 | 31900 | 0.1691 | 1.0152 | | 0.1259 | 5.79 | 32000 | 0.1702 | 1.0018 | | 0.1259 | 5.81 | 32100 | 0.1664 | 1.0246 | | 0.1259 | 5.82 | 32200 | 0.1737 | 1.0340 | | 0.1259 | 5.84 | 32300 | 0.1742 | 1.0449 | | 0.1259 | 5.86 | 32400 | 0.1707 | 1.0279 | | 0.1273 | 5.88 | 32500 | 0.1697 | 1.0471 | | 0.1273 | 5.9 | 32600 | 0.1668 | 1.0322 | | 0.1273 | 5.92 | 32700 | 0.1706 | 1.0378 | | 0.1273 | 5.93 | 32800 | 0.1704 | 1.0350 | | 0.1273 | 5.95 | 32900 | 0.1725 | 1.0244 | | 0.123 | 5.97 | 33000 | 0.1678 | 1.0447 | | 0.123 | 5.99 | 33100 | 0.1681 | 1.0438 | | 0.123 | 6.01 | 33200 | 0.1689 | 1.0297 | | 0.123 | 6.02 | 33300 | 0.1690 | 1.0333 | | 0.123 | 6.04 | 33400 | 0.1734 | 1.0296 | | 0.1163 | 6.06 | 33500 | 0.1748 | 1.0307 | | 0.1163 | 6.08 | 33600 | 0.1715 | 1.0123 | | 0.1163 | 6.1 | 33700 | 0.1668 | 1.0117 | | 0.1163 | 6.11 | 33800 | 0.1690 | 1.0230 | | 0.1163 | 6.13 | 33900 | 0.1693 | 1.0166 | | 0.1101 | 6.15 | 34000 | 0.1728 | 1.0162 | | 0.1101 | 6.17 | 34100 | 0.1683 | 1.0107 | | 0.1101 | 6.19 | 34200 | 0.1703 | 0.9814 | | 0.1101 | 6.2 | 34300 | 0.1692 | 1.0007 | | 0.1101 | 6.22 | 34400 | 0.1690 | 1.0000 | | 0.1118 | 6.24 | 34500 | 0.1734 | 0.9972 | | 0.1118 | 6.26 | 34600 | 0.1739 | 1.0096 | | 0.1118 | 6.28 | 34700 | 0.1749 | 1.0047 | | 0.1118 | 6.3 | 34800 | 0.1709 | 1.0111 | | 0.1118 | 6.31 | 34900 | 0.1717 | 1.0179 | | 0.1153 | 6.33 | 35000 | 0.1690 | 1.0155 | | 0.1153 | 6.35 | 35100 | 0.1710 | 1.0144 | | 0.1153 | 6.37 | 35200 | 0.1719 | 1.0030 | | 0.1153 | 6.39 | 35300 | 0.1690 | 1.0272 | | 0.1153 | 6.4 | 35400 | 0.1673 | 1.0103 | | 0.1106 | 6.42 | 35500 | 0.1710 | 1.0222 | | 0.1106 | 6.44 | 35600 | 0.1747 | 1.0173 | | 0.1106 | 6.46 | 35700 | 0.1721 | 0.9933 | | 0.1106 | 6.48 | 35800 | 0.1670 | 1.0184 | | 0.1106 | 6.49 | 35900 | 0.1714 | 1.0122 | | 0.1116 | 6.51 | 36000 | 0.1717 | 1.0035 | | 0.1116 | 6.53 | 36100 | 0.1685 | 1.0099 | | 0.1116 | 6.55 | 36200 | 0.1687 | 1.0288 | | 0.1116 | 6.57 | 36300 | 0.1664 | 1.0314 | | 0.1116 | 6.58 | 36400 | 0.1665 | 1.0264 | | 0.1128 | 6.6 | 36500 | 0.1681 | 1.0420 | | 0.1128 | 6.62 | 36600 | 0.1682 | 1.0409 | | 0.1128 | 6.64 | 36700 | 0.1717 | 1.0271 | | 0.1128 | 6.66 | 36800 | 0.1717 | 1.0166 | | 0.1128 | 6.68 | 36900 | 0.1755 | 1.0175 | | 0.1134 | 6.69 | 37000 | 0.1623 | 1.0185 | | 0.1134 | 6.71 | 37100 | 0.1674 | 1.0302 | | 0.1134 | 6.73 | 37200 | 0.1633 | 1.0325 | | 0.1134 | 6.75 | 37300 | 0.1628 | 1.0228 | | 0.1134 | 6.77 | 37400 | 0.1636 | 1.0243 | | 0.1102 | 6.78 | 37500 | 0.1667 | 1.0282 | | 0.1102 | 6.8 | 37600 | 0.1623 | 1.0212 | | 0.1102 | 6.82 | 37700 | 0.1639 | 1.0140 | | 0.1102 | 6.84 | 37800 | 0.1587 | 1.0258 | | 0.1102 | 6.86 | 37900 | 0.1610 | 1.0087 | | 0.1113 | 6.87 | 38000 | 0.1647 | 1.0199 | | 0.1113 | 6.89 | 38100 | 0.1609 | 1.0054 | | 0.1113 | 6.91 | 38200 | 0.1602 | 1.0145 | | 0.1113 | 6.93 | 38300 | 0.1602 | 1.0144 | | 0.1113 | 6.95 | 38400 | 0.1602 | 1.0375 | | 0.1071 | 6.96 | 38500 | 0.1592 | 1.0259 | | 0.1071 | 6.98 | 38600 | 0.1612 | 1.0236 | | 0.1071 | 7.0 | 38700 | 0.1621 | 1.0277 | | 0.1071 | 7.02 | 38800 | 0.1669 | 1.0367 | | 0.1071 | 7.04 | 38900 | 0.1742 | 1.0484 | | 0.1062 | 7.05 | 39000 | 0.1752 | 1.0302 | | 0.1062 | 7.07 | 39100 | 0.1676 | 1.0244 | | 0.1062 | 7.09 | 39200 | 0.1723 | 1.0300 | | 0.1062 | 7.11 | 39300 | 0.1727 | 1.0294 | | 0.1062 | 7.13 | 39400 | 0.1711 | 1.0255 | | 0.1021 | 7.15 | 39500 | 0.1699 | 1.0471 | | 0.1021 | 7.16 | 39600 | 0.1682 | 1.0426 | | 0.1021 | 7.18 | 39700 | 0.1713 | 1.0233 | | 0.1021 | 7.2 | 39800 | 0.1682 | 1.0259 | | 0.1021 | 7.22 | 39900 | 0.1710 | 1.0162 | | 0.103 | 7.24 | 40000 | 0.1725 | 1.0283 | | 0.103 | 7.25 | 40100 | 0.1729 | 1.0264 | | 0.103 | 7.27 | 40200 | 0.1665 | 1.0451 | | 0.103 | 7.29 | 40300 | 0.1671 | 1.0386 | | 0.103 | 7.31 | 40400 | 0.1671 | 1.0316 | | 0.0981 | 7.33 | 40500 | 0.1708 | 1.0257 | | 0.0981 | 7.34 | 40600 | 0.1642 | 1.0152 | | 0.0981 | 7.36 | 40700 | 0.1707 | 1.0110 | | 0.0981 | 7.38 | 40800 | 0.1675 | 1.0186 | | 0.0981 | 7.4 | 40900 | 0.1702 | 1.0123 | | 0.1005 | 7.42 | 41000 | 0.1699 | 1.0159 | | 0.1005 | 7.43 | 41100 | 0.1703 | 1.0219 | | 0.1005 | 7.45 | 41200 | 0.1707 | 1.0194 | | 0.1005 | 7.47 | 41300 | 0.1644 | 1.0016 | | 0.1005 | 7.49 | 41400 | 0.1716 | 0.9941 | | 0.1021 | 7.51 | 41500 | 0.1670 | 1.0159 | | 0.1021 | 7.53 | 41600 | 0.1667 | 1.0033 | | 0.1021 | 7.54 | 41700 | 0.1667 | 1.0176 | | 0.1021 | 7.56 | 41800 | 0.1679 | 1.0194 | | 0.1021 | 7.58 | 41900 | 0.1632 | 1.0418 | | 0.0963 | 7.6 | 42000 | 0.1712 | 1.0152 | | 0.0963 | 7.62 | 42100 | 0.1632 | 1.0364 | | 0.0963 | 7.63 | 42200 | 0.1702 | 1.0229 | | 0.0963 | 7.65 | 42300 | 0.1655 | 1.0179 | | 0.0963 | 7.67 | 42400 | 0.1698 | 1.0329 | | 0.1014 | 7.69 | 42500 | 0.1691 | 1.0398 | | 0.1014 | 7.71 | 42600 | 0.1638 | 1.0487 | | 0.1014 | 7.72 | 42700 | 0.1617 | 1.0210 | | 0.1014 | 7.74 | 42800 | 0.1648 | 1.0124 | | 0.1014 | 7.76 | 42900 | 0.1608 | 1.0202 | | 0.1008 | 7.78 | 43000 | 0.1611 | 1.0353 | | 0.1008 | 7.8 | 43100 | 0.1633 | 1.0319 | | 0.1008 | 7.81 | 43200 | 0.1640 | 1.0032 | | 0.1008 | 7.83 | 43300 | 0.1589 | 0.9985 | | 0.1008 | 7.85 | 43400 | 0.1630 | 0.9975 | | 0.0988 | 7.87 | 43500 | 0.1604 | 1.0053 | | 0.0988 | 7.89 | 43600 | 0.1687 | 1.0063 | | 0.0988 | 7.91 | 43700 | 0.1619 | 1.0096 | | 0.0988 | 7.92 | 43800 | 0.1565 | 0.9901 | | 0.0988 | 7.94 | 43900 | 0.1619 | 0.9742 | | 0.102 | 7.96 | 44000 | 0.1598 | 0.9593 | | 0.102 | 7.98 | 44100 | 0.1635 | 0.9718 | | 0.102 | 8.0 | 44200 | 0.1624 | 0.9903 | | 0.102 | 8.01 | 44300 | 0.1605 | 0.9882 | | 0.102 | 8.03 | 44400 | 0.1657 | 1.0128 | | 0.0961 | 8.05 | 44500 | 0.1651 | 1.0155 | | 0.0961 | 8.07 | 44600 | 0.1680 | 1.0194 | | 0.0961 | 8.09 | 44700 | 0.1694 | 1.0112 | | 0.0961 | 8.1 | 44800 | 0.1665 | 1.0073 | | 0.0961 | 8.12 | 44900 | 0.1612 | 1.0200 | | 0.0894 | 8.14 | 45000 | 0.1652 | 1.0337 | | 0.0894 | 8.16 | 45100 | 0.1626 | 1.0086 | | 0.0894 | 8.18 | 45200 | 0.1639 | 1.0083 | | 0.0894 | 8.19 | 45300 | 0.1634 | 1.0223 | | 0.0894 | 8.21 | 45400 | 0.1631 | 1.0339 | | 0.0887 | 8.23 | 45500 | 0.1640 | 1.0311 | | 0.0887 | 8.25 | 45600 | 0.1661 | 1.0264 | | 0.0887 | 8.27 | 45700 | 0.1650 | 1.0315 | | 0.0887 | 8.29 | 45800 | 0.1624 | 1.0390 | | 0.0887 | 8.3 | 45900 | 0.1624 | 1.0350 | | 0.0884 | 8.32 | 46000 | 0.1615 | 1.0318 | | 0.0884 | 8.34 | 46100 | 0.1628 | 1.0410 | | 0.0884 | 8.36 | 46200 | 0.1627 | 1.0429 | | 0.0884 | 8.38 | 46300 | 0.1644 | 1.0320 | | 0.0884 | 8.39 | 46400 | 0.1633 | 1.0177 | | 0.0893 | 8.41 | 46500 | 0.1654 | 1.0189 | | 0.0893 | 8.43 | 46600 | 0.1598 | 1.0154 | | 0.0893 | 8.45 | 46700 | 0.1618 | 1.0250 | | 0.0893 | 8.47 | 46800 | 0.1639 | 1.0402 | | 0.0893 | 8.48 | 46900 | 0.1616 | 1.0336 | | 0.0869 | 8.5 | 47000 | 0.1613 | 1.0296 | | 0.0869 | 8.52 | 47100 | 0.1648 | 1.0568 | | 0.0869 | 8.54 | 47200 | 0.1625 | 1.0256 | | 0.0869 | 8.56 | 47300 | 0.1609 | 1.0390 | | 0.0869 | 8.57 | 47400 | 0.1606 | 1.0450 | | 0.0894 | 8.59 | 47500 | 0.1605 | 1.0445 | | 0.0894 | 8.61 | 47600 | 0.1660 | 1.0402 | | 0.0894 | 8.63 | 47700 | 0.1618 | 1.0444 | | 0.0894 | 8.65 | 47800 | 0.1669 | 1.0333 | | 0.0894 | 8.66 | 47900 | 0.1627 | 1.0364 | | 0.0885 | 8.68 | 48000 | 0.1616 | 1.0334 | | 0.0885 | 8.7 | 48100 | 0.1626 | 1.0564 | | 0.0885 | 8.72 | 48200 | 0.1624 | 1.0396 | | 0.0885 | 8.74 | 48300 | 0.1623 | 1.0396 | | 0.0885 | 8.76 | 48400 | 0.1612 | 1.0112 | | 0.0888 | 8.77 | 48500 | 0.1638 | 1.0292 | | 0.0888 | 8.79 | 48600 | 0.1639 | 0.9988 | | 0.0888 | 8.81 | 48700 | 0.1618 | 1.0127 | | 0.0888 | 8.83 | 48800 | 0.1584 | 1.0042 | | 0.0888 | 8.85 | 48900 | 0.1615 | 1.0041 | | 0.0887 | 8.86 | 49000 | 0.1637 | 1.0269 | | 0.0887 | 8.88 | 49100 | 0.1627 | 0.9989 | | 0.0887 | 8.9 | 49200 | 0.1583 | 1.0104 | | 0.0887 | 8.92 | 49300 | 0.1600 | 1.0214 | | 0.0887 | 8.94 | 49400 | 0.1599 | 1.0126 | | 0.0893 | 8.95 | 49500 | 0.1595 | 1.0516 | | 0.0893 | 8.97 | 49600 | 0.1625 | 1.0464 | | 0.0893 | 8.99 | 49700 | 0.1595 | 1.0361 | | 0.0893 | 9.01 | 49800 | 0.1614 | 1.0469 | | 0.0893 | 9.03 | 49900 | 0.1612 | 1.0304 | | 0.0834 | 9.04 | 50000 | 0.1643 | 1.0335 | | 0.0834 | 9.06 | 50100 | 0.1640 | 1.0175 | | 0.0834 | 9.08 | 50200 | 0.1655 | 1.0264 | | 0.0834 | 9.1 | 50300 | 0.1678 | 1.0243 | | 0.0834 | 9.12 | 50400 | 0.1659 | 1.0145 | | 0.079 | 9.14 | 50500 | 0.1644 | 1.0316 | | 0.079 | 9.15 | 50600 | 0.1630 | 1.0326 | | 0.079 | 9.17 | 50700 | 0.1634 | 1.0154 | | 0.079 | 9.19 | 50800 | 0.1697 | 1.0095 | | 0.079 | 9.21 | 50900 | 0.1678 | 1.0050 | | 0.078 | 9.23 | 51000 | 0.1626 | 1.0159 | | 0.078 | 9.24 | 51100 | 0.1666 | 1.0238 | | 0.078 | 9.26 | 51200 | 0.1644 | 1.0244 | | 0.078 | 9.28 | 51300 | 0.1655 | 1.0345 | | 0.078 | 9.3 | 51400 | 0.1615 | 1.0237 | | 0.0776 | 9.32 | 51500 | 0.1664 | 1.0180 | | 0.0776 | 9.33 | 51600 | 0.1603 | 1.0208 | | 0.0776 | 9.35 | 51700 | 0.1594 | 1.0230 | | 0.0776 | 9.37 | 51800 | 0.1622 | 1.0201 | | 0.0776 | 9.39 | 51900 | 0.1596 | 1.0039 | | 0.0782 | 9.41 | 52000 | 0.1645 | 1.0204 | | 0.0782 | 9.42 | 52100 | 0.1640 | 1.0318 | | 0.0782 | 9.44 | 52200 | 0.1621 | 1.0290 | | 0.0782 | 9.46 | 52300 | 0.1638 | 1.0318 | | 0.0782 | 9.48 | 52400 | 0.1613 | 1.0217 | | 0.0782 | 9.5 | 52500 | 0.1609 | 1.0261 | | 0.0782 | 9.52 | 52600 | 0.1625 | 1.0101 | | 0.0782 | 9.53 | 52700 | 0.1613 | 1.0058 | | 0.0782 | 9.55 | 52800 | 0.1599 | 1.0068 | | 0.0782 | 9.57 | 52900 | 0.1600 | 1.0110 | | 0.0797 | 9.59 | 53000 | 0.1594 | 1.0171 | | 0.0797 | 9.61 | 53100 | 0.1583 | 1.0124 | | 0.0797 | 9.62 | 53200 | 0.1646 | 1.0093 | | 0.0797 | 9.64 | 53300 | 0.1580 | 1.0201 | | 0.0797 | 9.66 | 53400 | 0.1599 | 1.0207 | | 0.0783 | 9.68 | 53500 | 0.1577 | 1.0226 | | 0.0783 | 9.7 | 53600 | 0.1593 | 1.0160 | | 0.0783 | 9.71 | 53700 | 0.1570 | 1.0173 | | 0.0783 | 9.73 | 53800 | 0.1614 | 1.0299 | | 0.0783 | 9.75 | 53900 | 0.1610 | 1.0184 | | 0.0779 | 9.77 | 54000 | 0.1606 | 1.0173 | | 0.0779 | 9.79 | 54100 | 0.1577 | 1.0032 | | 0.0779 | 9.8 | 54200 | 0.1590 | 1.0070 | | 0.0779 | 9.82 | 54300 | 0.1580 | 1.0257 | | 0.0779 | 9.84 | 54400 | 0.1592 | 1.0108 | | 0.0778 | 9.86 | 54500 | 0.1617 | 0.9907 | | 0.0778 | 9.88 | 54600 | 0.1605 | 1.0189 | | 0.0778 | 9.89 | 54700 | 0.1605 | 1.0177 | | 0.0778 | 9.91 | 54800 | 0.1536 | 1.0275 | | 0.0778 | 9.93 | 54900 | 0.1658 | 1.0282 | | 0.0777 | 9.95 | 55000 | 0.1543 | 1.0385 | | 0.0777 | 9.97 | 55100 | 0.1559 | 1.0375 | | 0.0777 | 9.99 | 55200 | 0.1590 | 1.0215 | | 0.0777 | 10.0 | 55300 | 0.1624 | 1.0242 | | 0.0777 | 10.02 | 55400 | 0.1635 | 1.0244 | | 0.0712 | 10.04 | 55500 | 0.1629 | 1.0298 | | 0.0712 | 10.06 | 55600 | 0.1601 | 1.0299 | | 0.0712 | 10.08 | 55700 | 0.1625 | 1.0117 | | 0.0712 | 10.09 | 55800 | 0.1650 | 1.0233 | | 0.0712 | 10.11 | 55900 | 0.1631 | 1.0061 | | 0.0667 | 10.13 | 56000 | 0.1637 | 1.0226 | | 0.0667 | 10.15 | 56100 | 0.1607 | 1.0042 | | 0.0667 | 10.17 | 56200 | 0.1599 | 1.0117 | | 0.0667 | 10.18 | 56300 | 0.1623 | 1.0246 | | 0.0667 | 10.2 | 56400 | 0.1639 | 1.0294 | | 0.0695 | 10.22 | 56500 | 0.1650 | 1.0232 | | 0.0695 | 10.24 | 56600 | 0.1620 | 1.0289 | | 0.0695 | 10.26 | 56700 | 0.1667 | 1.0209 | | 0.0695 | 10.27 | 56800 | 0.1580 | 1.0163 | | 0.0695 | 10.29 | 56900 | 0.1646 | 1.0293 | | 0.0686 | 10.31 | 57000 | 0.1636 | 1.0106 | | 0.0686 | 10.33 | 57100 | 0.1586 | 1.0044 | | 0.0686 | 10.35 | 57200 | 0.1582 | 1.0213 | | 0.0686 | 10.37 | 57300 | 0.1627 | 1.0151 | | 0.0686 | 10.38 | 57400 | 0.1619 | 1.0248 | | 0.0686 | 10.4 | 57500 | 0.1596 | 1.0098 | | 0.0686 | 10.42 | 57600 | 0.1606 | 1.0031 | | 0.0686 | 10.44 | 57700 | 0.1620 | 1.0046 | | 0.0686 | 10.46 | 57800 | 0.1592 | 1.0018 | | 0.0686 | 10.47 | 57900 | 0.1592 | 1.0058 | | 0.0669 | 10.49 | 58000 | 0.1605 | 0.9961 | | 0.0669 | 10.51 | 58100 | 0.1632 | 1.0102 | | 0.0669 | 10.53 | 58200 | 0.1593 | 1.0061 | | 0.0669 | 10.55 | 58300 | 0.1586 | 1.0091 | | 0.0669 | 10.56 | 58400 | 0.1603 | 1.0085 | | 0.068 | 10.58 | 58500 | 0.1579 | 1.0031 | | 0.068 | 10.6 | 58600 | 0.1591 | 1.0021 | | 0.068 | 10.62 | 58700 | 0.1590 | 1.0163 | | 0.068 | 10.64 | 58800 | 0.1584 | 1.0045 | | 0.068 | 10.65 | 58900 | 0.1594 | 1.0158 | | 0.0693 | 10.67 | 59000 | 0.1568 | 1.0052 | | 0.0693 | 10.69 | 59100 | 0.1581 | 0.9955 | | 0.0693 | 10.71 | 59200 | 0.1622 | 0.9917 | | 0.0693 | 10.73 | 59300 | 0.1580 | 1.0018 | | 0.0693 | 10.75 | 59400 | 0.1601 | 1.0077 | | 0.0699 | 10.76 | 59500 | 0.1605 | 0.9997 | | 0.0699 | 10.78 | 59600 | 0.1585 | 1.0009 | | 0.0699 | 10.8 | 59700 | 0.1541 | 1.0058 | | 0.0699 | 10.82 | 59800 | 0.1583 | 1.0026 | | 0.0699 | 10.84 | 59900 | 0.1592 | 0.9992 | | 0.0671 | 10.85 | 60000 | 0.1590 | 1.0004 | | 0.0671 | 10.87 | 60100 | 0.1585 | 1.0060 | | 0.0671 | 10.89 | 60200 | 0.1579 | 1.0063 | | 0.0671 | 10.91 | 60300 | 0.1582 | 0.9949 | | 0.0671 | 10.93 | 60400 | 0.1562 | 1.0004 | | 0.0661 | 10.94 | 60500 | 0.1560 | 0.9950 | | 0.0661 | 10.96 | 60600 | 0.1564 | 0.9990 | | 0.0661 | 10.98 | 60700 | 0.1552 | 0.9982 | | 0.0661 | 11.0 | 60800 | 0.1596 | 1.0018 | | 0.0661 | 11.02 | 60900 | 0.1618 | 0.9905 | | 0.0634 | 11.03 | 61000 | 0.1652 | 0.9890 | | 0.0634 | 11.05 | 61100 | 0.1649 | 0.9886 | | 0.0634 | 11.07 | 61200 | 0.1668 | 0.9870 | | 0.0634 | 11.09 | 61300 | 0.1663 | 0.9921 | | 0.0634 | 11.11 | 61400 | 0.1650 | 0.9919 | | 0.0587 | 11.13 | 61500 | 0.1674 | 0.9831 | | 0.0587 | 11.14 | 61600 | 0.1633 | 0.9793 | | 0.0587 | 11.16 | 61700 | 0.1665 | 0.9781 | | 0.0587 | 11.18 | 61800 | 0.1642 | 0.9821 | | 0.0587 | 11.2 | 61900 | 0.1638 | 0.9797 | | 0.0581 | 11.22 | 62000 | 0.1628 | 0.9727 | | 0.0581 | 11.23 | 62100 | 0.1661 | 0.9796 | | 0.0581 | 11.25 | 62200 | 0.1641 | 0.9830 | | 0.0581 | 11.27 | 62300 | 0.1601 | 0.9867 | | 0.0581 | 11.29 | 62400 | 0.1626 | 0.9757 | | 0.0584 | 11.31 | 62500 | 0.1632 | 1.0014 | | 0.0584 | 11.32 | 62600 | 0.1626 | 1.0052 | | 0.0584 | 11.34 | 62700 | 0.1586 | 1.0098 | | 0.0584 | 11.36 | 62800 | 0.1597 | 1.0151 | | 0.0584 | 11.38 | 62900 | 0.1624 | 1.0054 | | 0.0589 | 11.4 | 63000 | 0.1618 | 1.0018 | | 0.0589 | 11.41 | 63100 | 0.1635 | 1.0032 | | 0.0589 | 11.43 | 63200 | 0.1654 | 1.0142 | | 0.0589 | 11.45 | 63300 | 0.1646 | 1.0031 | | 0.0589 | 11.47 | 63400 | 0.1618 | 1.0118 | | 0.0579 | 11.49 | 63500 | 0.1634 | 1.0218 | | 0.0579 | 11.51 | 63600 | 0.1616 | 1.0179 | | 0.0579 | 11.52 | 63700 | 0.1603 | 1.0036 | | 0.0579 | 11.54 | 63800 | 0.1610 | 1.0150 | | 0.0579 | 11.56 | 63900 | 0.1605 | 1.0285 | | 0.0572 | 11.58 | 64000 | 0.1621 | 1.0261 | | 0.0572 | 11.6 | 64100 | 0.1625 | 1.0252 | | 0.0572 | 11.61 | 64200 | 0.1677 | 1.0257 | | 0.0572 | 11.63 | 64300 | 0.1656 | 1.0243 | | 0.0572 | 11.65 | 64400 | 0.1669 | 1.0270 | | 0.0592 | 11.67 | 64500 | 0.1605 | 1.0305 | | 0.0592 | 11.69 | 64600 | 0.1633 | 1.0277 | | 0.0592 | 11.7 | 64700 | 0.1606 | 1.0176 | | 0.0592 | 11.72 | 64800 | 0.1618 | 1.0249 | | 0.0592 | 11.74 | 64900 | 0.1609 | 1.0113 | | 0.0595 | 11.76 | 65000 | 0.1609 | 1.0254 | | 0.0595 | 11.78 | 65100 | 0.1662 | 1.0275 | | 0.0595 | 11.79 | 65200 | 0.1652 | 1.0164 | | 0.0595 | 11.81 | 65300 | 0.1638 | 1.0266 | | 0.0595 | 11.83 | 65400 | 0.1589 | 1.0274 | | 0.0588 | 11.85 | 65500 | 0.1607 | 1.0136 | | 0.0588 | 11.87 | 65600 | 0.1592 | 1.0136 | | 0.0588 | 11.88 | 65700 | 0.1581 | 1.0183 | | 0.0588 | 11.9 | 65800 | 0.1587 | 1.0133 | | 0.0588 | 11.92 | 65900 | 0.1596 | 1.0170 | | 0.0558 | 11.94 | 66000 | 0.1590 | 1.0161 | | 0.0558 | 11.96 | 66100 | 0.1597 | 1.0193 | | 0.0558 | 11.98 | 66200 | 0.1590 | 1.0193 | | 0.0558 | 11.99 | 66300 | 0.1608 | 1.0242 | | 0.0558 | 12.01 | 66400 | 0.1642 | 1.0231 | | 0.0555 | 12.03 | 66500 | 0.1679 | 1.0168 | | 0.0555 | 12.05 | 66600 | 0.1674 | 1.0083 | | 0.0555 | 12.07 | 66700 | 0.1658 | 1.0069 | | 0.0555 | 12.08 | 66800 | 0.1661 | 1.0134 | | 0.0555 | 12.1 | 66900 | 0.1682 | 1.0274 | | 0.0508 | 12.12 | 67000 | 0.1702 | 1.0219 | | 0.0508 | 12.14 | 67100 | 0.1694 | 1.0219 | | 0.0508 | 12.16 | 67200 | 0.1667 | 1.0236 | | 0.0508 | 12.17 | 67300 | 0.1672 | 1.0253 | | 0.0508 | 12.19 | 67400 | 0.1640 | 1.0215 | | 0.0513 | 12.21 | 67500 | 0.1649 | 1.0242 | | 0.0513 | 12.23 | 67600 | 0.1687 | 1.0262 | | 0.0513 | 12.25 | 67700 | 0.1655 | 1.0231 | | 0.0513 | 12.26 | 67800 | 0.1692 | 1.0176 | | 0.0513 | 12.28 | 67900 | 0.1675 | 1.0202 | | 0.0519 | 12.3 | 68000 | 0.1644 | 1.0241 | | 0.0519 | 12.32 | 68100 | 0.1651 | 1.0297 | | 0.0519 | 12.34 | 68200 | 0.1661 | 1.0287 | | 0.0519 | 12.36 | 68300 | 0.1665 | 1.0257 | | 0.0519 | 12.37 | 68400 | 0.1685 | 1.0233 | | 0.0522 | 12.39 | 68500 | 0.1636 | 1.0177 | | 0.0522 | 12.41 | 68600 | 0.1709 | 1.0200 | | 0.0522 | 12.43 | 68700 | 0.1684 | 1.0164 | | 0.0522 | 12.45 | 68800 | 0.1666 | 1.0119 | | 0.0522 | 12.46 | 68900 | 0.1683 | 1.0136 | | 0.05 | 12.48 | 69000 | 0.1696 | 1.0127 | | 0.05 | 12.5 | 69100 | 0.1708 | 1.0184 | | 0.05 | 12.52 | 69200 | 0.1654 | 1.0282 | | 0.05 | 12.54 | 69300 | 0.1700 | 1.0235 | | 0.05 | 12.55 | 69400 | 0.1688 | 1.0257 | | 0.0513 | 12.57 | 69500 | 0.1646 | 1.0274 | | 0.0513 | 12.59 | 69600 | 0.1660 | 1.0247 | | 0.0513 | 12.61 | 69700 | 0.1657 | 1.0188 | | 0.0513 | 12.63 | 69800 | 0.1654 | 1.0087 | | 0.0513 | 12.64 | 69900 | 0.1681 | 1.0146 | | 0.0512 | 12.66 | 70000 | 0.1660 | 1.0185 | | 0.0512 | 12.68 | 70100 | 0.1690 | 1.0214 | | 0.0512 | 12.7 | 70200 | 0.1683 | 1.0160 | | 0.0512 | 12.72 | 70300 | 0.1695 | 1.0198 | | 0.0512 | 12.74 | 70400 | 0.1666 | 1.0193 | | 0.0484 | 12.75 | 70500 | 0.1654 | 1.0142 | | 0.0484 | 12.77 | 70600 | 0.1598 | 1.0154 | | 0.0484 | 12.79 | 70700 | 0.1623 | 1.0139 | | 0.0484 | 12.81 | 70800 | 0.1662 | 1.0180 | | 0.0484 | 12.83 | 70900 | 0.1659 | 1.0232 | | 0.0501 | 12.84 | 71000 | 0.1662 | 1.0202 | | 0.0501 | 12.86 | 71100 | 0.1639 | 1.0161 | | 0.0501 | 12.88 | 71200 | 0.1666 | 1.0151 | | 0.0501 | 12.9 | 71300 | 0.1644 | 1.0129 | | 0.0501 | 12.92 | 71400 | 0.1642 | 1.0171 | | 0.0482 | 12.93 | 71500 | 0.1635 | 1.0162 | | 0.0482 | 12.95 | 71600 | 0.1637 | 1.0186 | | 0.0482 | 12.97 | 71700 | 0.1639 | 1.0142 | | 0.0482 | 12.99 | 71800 | 0.1643 | 1.0122 | | 0.0482 | 13.01 | 71900 | 0.1679 | 1.0156 | | 0.0483 | 13.02 | 72000 | 0.1717 | 1.0224 | | 0.0483 | 13.04 | 72100 | 0.1742 | 1.0229 | | 0.0483 | 13.06 | 72200 | 0.1718 | 1.0237 | | 0.0483 | 13.08 | 72300 | 0.1742 | 1.0266 | | 0.0483 | 13.1 | 72400 | 0.1736 | 1.0257 | | 0.0443 | 13.12 | 72500 | 0.1741 | 1.0275 | | 0.0443 | 13.13 | 72600 | 0.1745 | 1.0325 | | 0.0443 | 13.15 | 72700 | 0.1737 | 1.0296 | | 0.0443 | 13.17 | 72800 | 0.1722 | 1.0303 | | 0.0443 | 13.19 | 72900 | 0.1702 | 1.0305 | | 0.0424 | 13.21 | 73000 | 0.1733 | 1.0241 | | 0.0424 | 13.22 | 73100 | 0.1748 | 1.0243 | | 0.0424 | 13.24 | 73200 | 0.1760 | 1.0231 | | 0.0424 | 13.26 | 73300 | 0.1745 | 1.0241 | | 0.0424 | 13.28 | 73400 | 0.1772 | 1.0217 | | 0.0424 | 13.3 | 73500 | 0.1755 | 1.0206 | | 0.0424 | 13.31 | 73600 | 0.1743 | 1.0242 | | 0.0424 | 13.33 | 73700 | 0.1738 | 1.0208 | | 0.0424 | 13.35 | 73800 | 0.1736 | 1.0249 | | 0.0424 | 13.37 | 73900 | 0.1747 | 1.0271 | | 0.0437 | 13.39 | 74000 | 0.1707 | 1.0241 | | 0.0437 | 13.4 | 74100 | 0.1731 | 1.0269 | | 0.0437 | 13.42 | 74200 | 0.1743 | 1.0290 | | 0.0437 | 13.44 | 74300 | 0.1739 | 1.0266 | | 0.0437 | 13.46 | 74400 | 0.1763 | 1.0246 | | 0.0443 | 13.48 | 74500 | 0.1724 | 1.0209 | | 0.0443 | 13.49 | 74600 | 0.1744 | 1.0244 | | 0.0443 | 13.51 | 74700 | 0.1717 | 1.0232 | | 0.0443 | 13.53 | 74800 | 0.1754 | 1.0217 | | 0.0443 | 13.55 | 74900 | 0.1721 | 1.0234 | | 0.0435 | 13.57 | 75000 | 0.1751 | 1.0197 | | 0.0435 | 13.59 | 75100 | 0.1727 | 1.0285 | | 0.0435 | 13.6 | 75200 | 0.1715 | 1.0221 | | 0.0435 | 13.62 | 75300 | 0.1746 | 1.0247 | | 0.0435 | 13.64 | 75400 | 0.1712 | 1.0231 | | 0.0436 | 13.66 | 75500 | 0.1719 | 1.0228 | | 0.0436 | 13.68 | 75600 | 0.1727 | 1.0197 | | 0.0436 | 13.69 | 75700 | 0.1750 | 1.0252 | | 0.0436 | 13.71 | 75800 | 0.1702 | 1.0241 | | 0.0436 | 13.73 | 75900 | 0.1720 | 1.0250 | | 0.0433 | 13.75 | 76000 | 0.1744 | 1.0210 | | 0.0433 | 13.77 | 76100 | 0.1735 | 1.0211 | | 0.0433 | 13.78 | 76200 | 0.1727 | 1.0205 | | 0.0433 | 13.8 | 76300 | 0.1706 | 1.0218 | | 0.0433 | 13.82 | 76400 | 0.1709 | 1.0238 | | 0.0431 | 13.84 | 76500 | 0.1705 | 1.0197 | | 0.0431 | 13.86 | 76600 | 0.1734 | 1.0223 | | 0.0431 | 13.87 | 76700 | 0.1695 | 1.0250 | | 0.0431 | 13.89 | 76800 | 0.1734 | 1.0232 | | 0.0431 | 13.91 | 76900 | 0.1724 | 1.0219 | | 0.041 | 13.93 | 77000 | 0.1706 | 1.0236 | | 0.041 | 13.95 | 77100 | 0.1689 | 1.0220 | | 0.041 | 13.97 | 77200 | 0.1738 | 1.0230 | | 0.041 | 13.98 | 77300 | 0.1727 | 1.0254 | | 0.041 | 14.0 | 77400 | 0.1721 | 1.0261 | | 0.041 | 14.02 | 77500 | 0.1760 | 1.0261 | | 0.041 | 14.04 | 77600 | 0.1772 | 1.0202 | | 0.041 | 14.06 | 77700 | 0.1782 | 1.0202 | | 0.041 | 14.07 | 77800 | 0.1777 | 1.0222 | | 0.041 | 14.09 | 77900 | 0.1787 | 1.0203 | | 0.0383 | 14.11 | 78000 | 0.1790 | 1.0236 | | 0.0383 | 14.13 | 78100 | 0.1812 | 1.0245 | | 0.0383 | 14.15 | 78200 | 0.1778 | 1.0224 | | 0.0383 | 14.16 | 78300 | 0.1771 | 1.0231 | | 0.0383 | 14.18 | 78400 | 0.1782 | 1.0242 | | 0.0391 | 14.2 | 78500 | 0.1785 | 1.0262 | | 0.0391 | 14.22 | 78600 | 0.1791 | 1.0261 | | 0.0391 | 14.24 | 78700 | 0.1770 | 1.0254 | | 0.0391 | 14.25 | 78800 | 0.1810 | 1.0257 | | 0.0391 | 14.27 | 78900 | 0.1794 | 1.0241 | | 0.0387 | 14.29 | 79000 | 0.1774 | 1.0256 | | 0.0387 | 14.31 | 79100 | 0.1774 | 1.0236 | | 0.0387 | 14.33 | 79200 | 0.1759 | 1.0222 | | 0.0387 | 14.35 | 79300 | 0.1787 | 1.0237 | | 0.0387 | 14.36 | 79400 | 0.1788 | 1.0227 | | 0.0372 | 14.38 | 79500 | 0.1789 | 1.0232 | | 0.0372 | 14.4 | 79600 | 0.1771 | 1.0254 | | 0.0372 | 14.42 | 79700 | 0.1777 | 1.0244 | | 0.0372 | 14.44 | 79800 | 0.1791 | 1.0225 | | 0.0372 | 14.45 | 79900 | 0.1786 | 1.0237 | | 0.0385 | 14.47 | 80000 | 0.1782 | 1.0243 | | 0.0385 | 14.49 | 80100 | 0.1770 | 1.0236 | | 0.0385 | 14.51 | 80200 | 0.1782 | 1.0240 | | 0.0385 | 14.53 | 80300 | 0.1764 | 1.0243 | | 0.0385 | 14.54 | 80400 | 0.1748 | 1.0248 | | 0.039 | 14.56 | 80500 | 0.1758 | 1.0232 | | 0.039 | 14.58 | 80600 | 0.1763 | 1.0246 | | 0.039 | 14.6 | 80700 | 0.1770 | 1.0220 | | 0.039 | 14.62 | 80800 | 0.1788 | 1.0225 | | 0.039 | 14.63 | 80900 | 0.1781 | 1.0230 | | 0.039 | 14.65 | 81000 | 0.1779 | 1.0230 | | 0.039 | 14.67 | 81100 | 0.1755 | 1.0212 | | 0.039 | 14.69 | 81200 | 0.1765 | 1.0226 | | 0.039 | 14.71 | 81300 | 0.1787 | 1.0241 | | 0.039 | 14.72 | 81400 | 0.1782 | 1.0250 | | 0.0368 | 14.74 | 81500 | 0.1780 | 1.0248 | | 0.0368 | 14.76 | 81600 | 0.1782 | 1.0242 | | 0.0368 | 14.78 | 81700 | 0.1782 | 1.0242 | | 0.0368 | 14.8 | 81800 | 0.1792 | 1.0241 | | 0.0368 | 14.82 | 81900 | 0.1796 | 1.0238 | | 0.0378 | 14.83 | 82000 | 0.1795 | 1.0236 | | 0.0378 | 14.85 | 82100 | 0.1796 | 1.0239 | | 0.0378 | 14.87 | 82200 | 0.1792 | 1.0236 | | 0.0378 | 14.89 | 82300 | 0.1789 | 1.0239 | | 0.0378 | 14.91 | 82400 | 0.1788 | 1.0238 | | 0.0386 | 14.92 | 82500 | 0.1787 | 1.0239 | | 0.0386 | 14.94 | 82600 | 0.1786 | 1.0236 | | 0.0386 | 14.96 | 82700 | 0.1786 | 1.0237 | | 0.0386 | 14.98 | 82800 | 0.1787 | 1.0239 | | 0.0386 | 15.0 | 82900 | 0.1788 | 1.0238 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1 - Datasets 1.17.0 - Tokenizers 0.10.3
{"language": ["es"], "license": "apache-2.0", "tags": ["automatic-speech-recognition", "common_voice", "generated_from_trainer"], "datasets": ["common_voice"], "model-index": [{"name": "wav2vec2-common_voice-es-demo", "results": []}]}
gabrieljg/wav2vec2-common_voice-es-demo
null
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "common_voice", "generated_from_trainer", "es", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
gabrieljg/wav2vec2-large-xls-r-300m-spanish-colab
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
text-generation
transformers
# Tagalog DialoGPT This is an extension of the base Tagalog DialoGPT model (https://huggingface.co/gabtan99/dialogpt-tagalog-medium). This model is trained on 52K original conversations and 52K synthetic conversations, where 10% of tokens in each utterance in the synthetic conversation are machine-generated tokens.
{"language": ["tl"], "tags": ["conversational", "tagalog", "filipino"]}
gabtan99/dialogpt-tagalog-medium-10
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "tagalog", "filipino", "tl", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-generation
transformers
# Tagalog DialoGPT This is an extension of the base Tagalog DialoGPT model (https://huggingface.co/gabtan99/dialogpt-tagalog-medium). This model is trained on 52K original conversations and 52K synthetic conversations, where 20% of tokens in each utterance in the synthetic conversation are machine-generated tokens.
{"language": ["tl"], "tags": ["conversational", "tagalog", "filipino"], "inference": false}
gabtan99/dialogpt-tagalog-medium-20
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "tagalog", "filipino", "tl", "autotrain_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-generation
transformers
# Tagalog DialoGPT This is an extension of the base Tagalog DialoGPT model (https://huggingface.co/gabtan99/dialogpt-tagalog-medium). This model is trained on 52K original conversations and 52K synthetic conversations, where 30% of tokens in each utterance in the synthetic conversation are machine-generated tokens.
{"language": ["tl"], "tags": ["conversational", "tagalog", "filipino"], "inference": false}
gabtan99/dialogpt-tagalog-medium-30
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "tagalog", "filipino", "tl", "autotrain_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-generation
transformers
# Tagalog DialoGPT A DialoGPT-medium model fine-tuned on Tagalog conversational data scraped from the web. This model is an output of a research on RoBERTa-based data augmentation for low resource languages. This is the baseline model which did not use any synthetic data in training. # Latest release: July 25, 2021 * The model is currently only able to respond based on the history of 3 previous utterances before being limited. This is a result of the scarce amount of Tagalog conversations in our dataset. # Dataset [PEx Conversations Dataset](https://huggingface.co/datasets/gabtan99/pex-conversations) # Usage Here is an example of using beam search for model inference. ``` for step in range(2): # encode the new user input, add the eos_token and return a tensor in Pytorch new_user_input_ids = tokenizer.encode(input(">> User:") + tokenizer.eos_token, return_tensors='pt') # append the new user input tokens to the chat history bot_input_ids = torch.cat([chat_history_ids, new_user_input_ids], dim=-1) if step > 0 else new_user_input_ids # we limit the generation to 512 tokens, each utterance in training had a maximum of 128 tokens chat_history_ids = model.generate( bot_input_ids, max_length=512, pad_token_id=tokenizer.eos_token_id, num_beams=5, no_repeat_ngram_size=3 ) # pretty print last ouput tokens from bot print("DialoGPT: {}".format(tokenizer.decode(chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True))) ``` # Training Script [Fine-tuning script adapted from Spanish DialoGPT](https://colab.research.google.com/github/ncoop57/i-am-a-nerd/blob/master/_notebooks/2020-05-12-chatbot-part-1.ipynb) # Research by * [tyadrianpaule](https://huggingface.co/tyadrianpaule) * [schuylerng](https://huggingface.co/schuylerng) * [dcl127](https://huggingface.co/dcl127)
{"language": ["tl"], "tags": ["conversational", "tagalog", "filipino"], "datasets": ["gabtan99/pex-conversations"], "inference": false}
gabtan99/dialogpt-tagalog-medium
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "tagalog", "filipino", "tl", "dataset:gabtan99/pex-conversations", "autotrain_compatible", "has_space", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
I am adding my first README in order to test the interface. How good is it really?
{}
gael1130/gael_first_model
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
text2text-generation
transformers
This model is used in the paper **Generative Relation Linking for Question Answering over Knowledge Bases**. [ArXiv](https://arxiv.org/abs/2108.07337), [GitHub](https://github.com/IBM/kbqa-relation-linking) ## Citation ```bibtex @inproceedings{rossiello-genrl-2021, title={Generative relation linking for question answering over knowledge bases}, author={Rossiello, Gaetano and Mihindukulasooriya, Nandana and Abdelaziz, Ibrahim and Bornea, Mihaela and Gliozzo, Alfio and Naseem, Tahira and Kapanipathi, Pavan}, booktitle={International Semantic Web Conference}, pages={321--337}, year={2021}, organization={Springer}, url = "https://link.springer.com/chapter/10.1007/978-3-030-88361-4_19", doi = "10.1007/978-3-030-88361-4_19" } ```
{"license": "apache-2.0"}
gaetangate/bart-large_genrl_lcquad1
null
[ "transformers", "pytorch", "bart", "text2text-generation", "arxiv:2108.07337", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text2text-generation
transformers
This model is used in the paper **Generative Relation Linking for Question Answering over Knowledge Bases**. [ArXiv](https://arxiv.org/abs/2108.07337), [GitHub](https://github.com/IBM/kbqa-relation-linking) ## Citation ```bibtex @inproceedings{rossiello-genrl-2021, title={Generative relation linking for question answering over knowledge bases}, author={Rossiello, Gaetano and Mihindukulasooriya, Nandana and Abdelaziz, Ibrahim and Bornea, Mihaela and Gliozzo, Alfio and Naseem, Tahira and Kapanipathi, Pavan}, booktitle={International Semantic Web Conference}, pages={321--337}, year={2021}, organization={Springer}, url = "https://link.springer.com/chapter/10.1007/978-3-030-88361-4_19", doi = "10.1007/978-3-030-88361-4_19" } ```
{"license": "apache-2.0"}
gaetangate/bart-large_genrl_lcquad2
null
[ "transformers", "pytorch", "bart", "text2text-generation", "arxiv:2108.07337", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text2text-generation
transformers
This model is used in the paper **Generative Relation Linking for Question Answering over Knowledge Bases**. [ArXiv](https://arxiv.org/abs/2108.07337), [GitHub](https://github.com/IBM/kbqa-relation-linking) ## Citation ```bibtex @inproceedings{rossiello-genrl-2021, title={Generative relation linking for question answering over knowledge bases}, author={Rossiello, Gaetano and Mihindukulasooriya, Nandana and Abdelaziz, Ibrahim and Bornea, Mihaela and Gliozzo, Alfio and Naseem, Tahira and Kapanipathi, Pavan}, booktitle={International Semantic Web Conference}, pages={321--337}, year={2021}, organization={Springer}, url = "https://link.springer.com/chapter/10.1007/978-3-030-88361-4_19", doi = "10.1007/978-3-030-88361-4_19" } ```
{"license": "apache-2.0"}
gaetangate/bart-large_genrl_qald9
null
[ "transformers", "pytorch", "bart", "text2text-generation", "arxiv:2108.07337", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text2text-generation
transformers
This model is used in the paper **Generative Relation Linking for Question Answering over Knowledge Bases**. [ArXiv](https://arxiv.org/abs/2108.07337), [GitHub](https://github.com/IBM/kbqa-relation-linking) ## Citation ```bibtex @inproceedings{rossiello-genrl-2021, title={Generative relation linking for question answering over knowledge bases}, author={Rossiello, Gaetano and Mihindukulasooriya, Nandana and Abdelaziz, Ibrahim and Bornea, Mihaela and Gliozzo, Alfio and Naseem, Tahira and Kapanipathi, Pavan}, booktitle={International Semantic Web Conference}, pages={321--337}, year={2021}, organization={Springer}, url = "https://link.springer.com/chapter/10.1007/978-3-030-88361-4_19", doi = "10.1007/978-3-030-88361-4_19" } ```
{"license": "apache-2.0"}
gaetangate/bart-large_genrl_simpleq
null
[ "transformers", "pytorch", "bart", "text2text-generation", "arxiv:2108.07337", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
test 123
{}
gaga42gaga42/test
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
text-generation
transformers
# Generating Right Wing News Using GPT2 ### I have built a custom model for it using data from Kaggle Creating a new finetuned model using data from FOX news ### My model can be accessed at gagan3012/Fox-News-Generator Check the [BenchmarkTest](https://github.com/gagan3012/Fox-News-Generator/blob/master/BenchmarkTest.ipynb) notebook for results Find the model at [gagan3012/Fox-News-Generator](https://huggingface.co/gagan3012/Fox-News-Generator) ``` from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("gagan3012/Fox-News-Generator") model = AutoModelWithLMHead.from_pretrained("gagan3012/Fox-News-Generator") ```
{}
gagan3012/Fox-News-Generator
null
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ViTGPT2I2A This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the vizwiz dataset. It achieves the following results on the evaluation set: - Loss: 0.0708 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - distributed_type: multi-GPU - num_devices: 2 - total_train_batch_size: 4 - total_eval_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 0.1528 | 0.17 | 1000 | 0.0869 | | 0.0899 | 0.34 | 2000 | 0.0817 | | 0.084 | 0.51 | 3000 | 0.0790 | | 0.0814 | 0.68 | 4000 | 0.0773 | | 0.0803 | 0.85 | 5000 | 0.0757 | | 0.077 | 1.02 | 6000 | 0.0745 | | 0.0739 | 1.19 | 7000 | 0.0740 | | 0.0719 | 1.37 | 8000 | 0.0737 | | 0.0717 | 1.54 | 9000 | 0.0730 | | 0.0731 | 1.71 | 10000 | 0.0727 | | 0.0708 | 1.88 | 11000 | 0.0720 | | 0.0697 | 2.05 | 12000 | 0.0717 | | 0.0655 | 2.22 | 13000 | 0.0719 | | 0.0653 | 2.39 | 14000 | 0.0719 | | 0.0657 | 2.56 | 15000 | 0.0712 | | 0.0663 | 2.73 | 16000 | 0.0710 | | 0.0654 | 2.9 | 17000 | 0.0708 | | 0.0645 | 3.07 | 18000 | 0.0716 | | 0.0616 | 3.24 | 19000 | 0.0712 | | 0.0607 | 3.41 | 20000 | 0.0712 | | 0.0611 | 3.58 | 21000 | 0.0711 | | 0.0615 | 3.76 | 22000 | 0.0711 | | 0.0614 | 3.93 | 23000 | 0.0710 | | 0.0594 | 4.1 | 24000 | 0.0716 | | 0.0587 | 4.27 | 25000 | 0.0715 | | 0.0574 | 4.44 | 26000 | 0.0715 | | 0.0579 | 4.61 | 27000 | 0.0715 | | 0.0581 | 4.78 | 28000 | 0.0715 | | 0.0579 | 4.95 | 29000 | 0.0715 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.2+cu113 - Datasets 1.18.3 - Tokenizers 0.11.0
{"license": "apache-2.0", "tags": ["image-captioning", "generated_from_trainer"], "model-index": [{"name": "ViTGPT2I2A", "results": []}]}
gagan3012/ViTGPT2I2A
null
[ "transformers", "pytorch", "vision-encoder-decoder", "image-captioning", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ViTGPT2_VW This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0771 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - distributed_type: multi-GPU - num_devices: 2 - total_train_batch_size: 4 - total_eval_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 0.1256 | 0.03 | 1000 | 0.0928 | | 0.0947 | 0.07 | 2000 | 0.0897 | | 0.0889 | 0.1 | 3000 | 0.0859 | | 0.0888 | 0.14 | 4000 | 0.0842 | | 0.0866 | 0.17 | 5000 | 0.0831 | | 0.0852 | 0.2 | 6000 | 0.0819 | | 0.0833 | 0.24 | 7000 | 0.0810 | | 0.0835 | 0.27 | 8000 | 0.0802 | | 0.081 | 0.31 | 9000 | 0.0796 | | 0.0803 | 0.34 | 10000 | 0.0789 | | 0.0814 | 0.38 | 11000 | 0.0785 | | 0.0799 | 0.41 | 12000 | 0.0780 | | 0.0786 | 0.44 | 13000 | 0.0776 | | 0.0796 | 0.48 | 14000 | 0.0771 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.2+cu113 - Datasets 1.18.3 - Tokenizers 0.11.0
{"tags": ["generated_from_trainer"], "model-index": [{"name": "ViTGPT2_VW", "results": []}]}
gagan3012/ViTGPT2_VW
null
[ "transformers", "pytorch", "vision-encoder-decoder", "generated_from_trainer", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
image-to-text
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ViTGPT2_vizwiz This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0719 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 0.1207 | 0.07 | 1000 | 0.0906 | | 0.0916 | 0.14 | 2000 | 0.0861 | | 0.0879 | 0.2 | 3000 | 0.0840 | | 0.0856 | 0.27 | 4000 | 0.0822 | | 0.0834 | 0.34 | 5000 | 0.0806 | | 0.0817 | 0.41 | 6000 | 0.0795 | | 0.0812 | 0.48 | 7000 | 0.0785 | | 0.0808 | 0.55 | 8000 | 0.0779 | | 0.0796 | 0.61 | 9000 | 0.0771 | | 0.0786 | 0.68 | 10000 | 0.0767 | | 0.0774 | 0.75 | 11000 | 0.0762 | | 0.0772 | 0.82 | 12000 | 0.0758 | | 0.0756 | 0.89 | 13000 | 0.0754 | | 0.0759 | 0.96 | 14000 | 0.0750 | | 0.0756 | 1.02 | 15000 | 0.0748 | | 0.0726 | 1.09 | 16000 | 0.0745 | | 0.0727 | 1.16 | 17000 | 0.0745 | | 0.0715 | 1.23 | 18000 | 0.0742 | | 0.0726 | 1.3 | 19000 | 0.0741 | | 0.072 | 1.37 | 20000 | 0.0738 | | 0.0723 | 1.43 | 21000 | 0.0735 | | 0.0715 | 1.5 | 22000 | 0.0734 | | 0.0724 | 1.57 | 23000 | 0.0732 | | 0.0723 | 1.64 | 24000 | 0.0730 | | 0.0718 | 1.71 | 25000 | 0.0729 | | 0.07 | 1.78 | 26000 | 0.0728 | | 0.0702 | 1.84 | 27000 | 0.0726 | | 0.0704 | 1.91 | 28000 | 0.0725 | | 0.0703 | 1.98 | 29000 | 0.0725 | | 0.0686 | 2.05 | 30000 | 0.0726 | | 0.0687 | 2.12 | 31000 | 0.0726 | | 0.0688 | 2.19 | 32000 | 0.0724 | | 0.0677 | 2.25 | 33000 | 0.0724 | | 0.0665 | 2.32 | 34000 | 0.0725 | | 0.0684 | 2.39 | 35000 | 0.0723 | | 0.0678 | 2.46 | 36000 | 0.0722 | | 0.0686 | 2.53 | 37000 | 0.0722 | | 0.067 | 2.59 | 38000 | 0.0721 | | 0.0669 | 2.66 | 39000 | 0.0721 | | 0.0673 | 2.73 | 40000 | 0.0721 | | 0.0673 | 2.8 | 41000 | 0.0720 | | 0.0662 | 2.87 | 42000 | 0.0720 | | 0.0681 | 2.94 | 43000 | 0.0719 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0
{"tags": ["generated_from_trainer", "image-to-text"], "model-index": [{"name": "ViTGPT2_vizwiz", "results": []}]}
gagan3012/ViTGPT2_vizwiz
null
[ "transformers", "pytorch", "vision-encoder-decoder", "generated_from_trainer", "image-to-text", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:05+00:00
token-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-tiny-finetuned-ner This model is a fine-tuned version of [prajjwal1/bert-tiny](https://huggingface.co/prajjwal1/bert-tiny) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.1689 - Precision: 0.8083 - Recall: 0.8274 - F1: 0.8177 - Accuracy: 0.9598 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0355 | 1.0 | 878 | 0.1692 | 0.8072 | 0.8248 | 0.8159 | 0.9594 | | 0.0411 | 2.0 | 1756 | 0.1678 | 0.8101 | 0.8277 | 0.8188 | 0.9600 | | 0.0386 | 3.0 | 2634 | 0.1697 | 0.8103 | 0.8269 | 0.8186 | 0.9599 | | 0.0373 | 4.0 | 3512 | 0.1694 | 0.8106 | 0.8263 | 0.8183 | 0.9600 | | 0.0383 | 5.0 | 4390 | 0.1689 | 0.8083 | 0.8274 | 0.8177 | 0.9598 | ### Framework versions - Transformers 4.10.0 - Pytorch 1.9.0+cu102 - Datasets 1.11.0 - Tokenizers 0.10.3
{"tags": ["generated_from_trainer"], "datasets": ["conll2003"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "bert-tiny-finetuned-ner", "results": [{"task": {"type": "token-classification", "name": "Token Classification"}, "dataset": {"name": "conll2003", "type": "conll2003", "args": "conll2003"}, "metrics": [{"type": "precision", "value": 0.8083060109289617, "name": "Precision"}, {"type": "recall", "value": 0.8273856136033113, "name": "Recall"}, {"type": "f1", "value": 0.8177345348001547, "name": "F1"}, {"type": "accuracy", "value": 0.9597597979252387, "name": "Accuracy"}]}]}]}
gagan3012/bert-tiny-finetuned-ner
null
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "dataset:conll2003", "model-index", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
gagan3012/debug_notebook
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
token-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-ner This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0614 - Precision: 0.9274 - Recall: 0.9363 - F1: 0.9319 - Accuracy: 0.9840 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.2403 | 1.0 | 878 | 0.0701 | 0.9101 | 0.9202 | 0.9151 | 0.9805 | | 0.0508 | 2.0 | 1756 | 0.0600 | 0.9220 | 0.9350 | 0.9285 | 0.9833 | | 0.0301 | 3.0 | 2634 | 0.0614 | 0.9274 | 0.9363 | 0.9319 | 0.9840 | ### Framework versions - Transformers 4.10.2 - Pytorch 1.9.0+cu102 - Datasets 1.12.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["conll2003"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "distilbert-base-uncased-finetuned-ner", "results": [{"task": {"type": "token-classification", "name": "Token Classification"}, "dataset": {"name": "conll2003", "type": "conll2003", "args": "conll2003"}, "metrics": [{"type": "precision", "value": 0.9274238227146815, "name": "Precision"}, {"type": "recall", "value": 0.9363463474661595, "name": "Recall"}, {"type": "f1", "value": 0.9318637274549098, "name": "F1"}, {"type": "accuracy", "value": 0.9839865283492462, "name": "Accuracy"}]}]}]}
gagan3012/distilbert-base-uncased-finetuned-ner
null
[ "transformers", "pytorch", "tensorboard", "distilbert", "token-classification", "generated_from_trainer", "dataset:conll2003", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
gagan3012/distilbert-base-uncased-finetuned-sst2
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
gagan3012/distilbert-fakenews-model-grover
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
text2text-generation
transformers
# keytotext ![keytotext (1)](https://user-images.githubusercontent.com/49101362/116334480-f5e57a00-a7dd-11eb-987c-186477f94b6e.png) Idea is to build a model which will take keywords as inputs and generate sentences as outputs. ### Keytotext is powered by Huggingface 🤗 [![pypi Version](https://img.shields.io/pypi/v/keytotext.svg?style=flat-square&logo=pypi&logoColor=white)](https://pypi.org/project/keytotext/) [![Downloads](https://static.pepy.tech/personalized-badge/keytotext?period=total&units=none&left_color=grey&right_color=orange&left_text=Pip%20Downloads)](https://pepy.tech/project/keytotext) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/gagan3012/keytotext/blob/master/Examples/K2T.ipynb) [![Streamlit App](https://static.streamlit.io/badges/streamlit_badge_black_white.svg)](https://share.streamlit.io/gagan3012/keytotext/UI/app.py) ## Model: Keytotext is based on the Amazing T5 Model: - `k2t`: [Model](https://huggingface.co/gagan3012/k2t) - `k2t-tiny`: [Model](https://huggingface.co/gagan3012/k2t-tiny) - `k2t-base`: [Model](https://huggingface.co/gagan3012/k2t-base) Training Notebooks can be found in the [`Training Notebooks`](https://github.com/gagan3012/keytotext/tree/master/Training%20Notebooks) Folder ## Usage: Example usage: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/gagan3012/keytotext/blob/master/Examples/K2T.ipynb) Example Notebooks can be found in the [`Notebooks`](https://github.com/gagan3012/keytotext/tree/master/Examples) Folder ``` pip install keytotext ``` ![carbon (3)](https://user-images.githubusercontent.com/49101362/116220679-90e64180-a755-11eb-9246-82d93d924a6c.png) ## UI: UI: [![Streamlit App](https://static.streamlit.io/badges/streamlit_badge_black_white.svg)](https://share.streamlit.io/gagan3012/keytotext/UI/app.py) ``` pip install streamlit-tags ``` This uses a custom streamlit component built by me: [GitHub](https://github.com/gagan3012/streamlit-tags) ![image](https://user-images.githubusercontent.com/49101362/116162205-fc042980-a6fd-11eb-892e-8f6902f193f4.png)
{"language": "en", "license": "mit", "tags": ["keytotext", "k2t-base", "Keywords to Sentences"], "datasets": ["WebNLG", "Dart"], "metrics": ["NLG"], "thumbnail": "Keywords to Sentences"}
gagan3012/k2t-base
null
[ "transformers", "pytorch", "t5", "text2text-generation", "keytotext", "k2t-base", "Keywords to Sentences", "en", "dataset:WebNLG", "dataset:Dart", "license:mit", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
text2text-generation
transformers
# keytotext ![keytotext (1)](https://user-images.githubusercontent.com/49101362/116334480-f5e57a00-a7dd-11eb-987c-186477f94b6e.png) Idea is to build a model which will take keywords as inputs and generate sentences as outputs. ### Keytotext is powered by Huggingface 🤗 [![pypi Version](https://img.shields.io/pypi/v/keytotext.svg?style=flat-square&logo=pypi&logoColor=white)](https://pypi.org/project/keytotext/) [![Downloads](https://static.pepy.tech/personalized-badge/keytotext?period=total&units=none&left_color=grey&right_color=orange&left_text=Pip%20Downloads)](https://pepy.tech/project/keytotext) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/gagan3012/keytotext/blob/master/Examples/K2T.ipynb) [![Streamlit App](https://static.streamlit.io/badges/streamlit_badge_black_white.svg)](https://share.streamlit.io/gagan3012/keytotext/UI/app.py) ## Model: Keytotext is based on the Amazing T5 Model: - `k2t`: [Model](https://huggingface.co/gagan3012/k2t) - `k2t-tiny`: [Model](https://huggingface.co/gagan3012/k2t-tiny) - `k2t-base`: [Model](https://huggingface.co/gagan3012/k2t-base) Training Notebooks can be found in the [`Training Notebooks`](https://github.com/gagan3012/keytotext/tree/master/Training%20Notebooks) Folder ## Usage: Example usage: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/gagan3012/keytotext/blob/master/Examples/K2T.ipynb) Example Notebooks can be found in the [`Notebooks`](https://github.com/gagan3012/keytotext/tree/master/Examples) Folder ``` pip install keytotext ``` ![carbon (3)](https://user-images.githubusercontent.com/49101362/116220679-90e64180-a755-11eb-9246-82d93d924a6c.png) ## UI: UI: [![Streamlit App](https://static.streamlit.io/badges/streamlit_badge_black_white.svg)](https://share.streamlit.io/gagan3012/keytotext/UI/app.py) ``` pip install streamlit-tags ``` This uses a custom streamlit component built by me: [GitHub](https://github.com/gagan3012/streamlit-tags) ![image](https://user-images.githubusercontent.com/49101362/116162205-fc042980-a6fd-11eb-892e-8f6902f193f4.png)
{"language": "en", "license": "mit", "tags": ["keytotext", "k2t", "Keywords to Sentences"], "datasets": ["common_gen"], "metrics": ["NLG"], "thumbnail": "Keywords to Sentences"}
gagan3012/k2t-new
null
[ "transformers", "pytorch", "jax", "t5", "text2text-generation", "keytotext", "k2t", "Keywords to Sentences", "en", "dataset:common_gen", "license:mit", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
text2text-generation
transformers
<h1 align="center">keytotext</h1> [![pypi Version](https://img.shields.io/pypi/v/keytotext.svg?logo=pypi&logoColor=white)](https://pypi.org/project/keytotext/) [![Downloads](https://static.pepy.tech/personalized-badge/keytotext?period=total&units=none&left_color=grey&right_color=orange&left_text=Pip%20Downloads)](https://pepy.tech/project/keytotext) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/gagan3012/keytotext/blob/master/notebooks/K2T.ipynb) [![Streamlit App](https://static.streamlit.io/badges/streamlit_badge_black_white.svg)](https://share.streamlit.io/gagan3012/keytotext/UI/app.py) [![API Call](https://img.shields.io/badge/-FastAPI-red?logo=fastapi&labelColor=white)](https://github.com/gagan3012/keytotext#api) [![Docker Call](https://img.shields.io/badge/-Docker%20Image-blue?logo=docker&labelColor=white)](https://hub.docker.com/r/gagan30/keytotext) [![HuggingFace](https://img.shields.io/badge/%F0%9F%A4%97-Models%20on%20Hub-yellow)](https://huggingface.co/models?filter=keytotext) [![Documentation Status](https://readthedocs.org/projects/keytotext/badge/?version=latest)](https://keytotext.readthedocs.io/en/latest/?badge=latest) [![Code style: black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/psf/black) ![keytotext](https://socialify.git.ci/gagan3012/keytotext/image?description=1&forks=1&language=1&owner=1&stargazers=1&theme=Light) Idea is to build a model which will take keywords as inputs and generate sentences as outputs. Potential use case can include: - Marketing - Search Engine Optimization - Topic generation etc. - Fine tuning of topic modeling models
{"language": "en", "license": "MIT", "tags": ["keytotext", "k2t", "Keywords to Sentences"], "datasets": ["WebNLG", "Dart"], "metrics": ["NLG"], "thumbnail": "Keywords to Sentences"}
gagan3012/k2t-test
null
[ "transformers", "pytorch", "t5", "text2text-generation", "keytotext", "k2t", "Keywords to Sentences", "en", "dataset:WebNLG", "dataset:Dart", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
text2text-generation
transformers
#keytotext [![pypi Version](https://img.shields.io/pypi/v/keytotext.svg?logo=pypi&logoColor=white)](https://pypi.org/project/keytotext/) [![Downloads](https://static.pepy.tech/personalized-badge/keytotext?period=total&units=none&left_color=grey&right_color=orange&left_text=Pip%20Downloads)](https://pepy.tech/project/keytotext) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/gagan3012/keytotext/blob/master/notebooks/K2T.ipynb) [![Streamlit App](https://static.streamlit.io/badges/streamlit_badge_black_white.svg)](https://share.streamlit.io/gagan3012/keytotext/UI/app.py) [![API Call](https://img.shields.io/badge/-FastAPI-red?logo=fastapi&labelColor=white)](https://github.com/gagan3012/keytotext#api) [![Docker Call](https://img.shields.io/badge/-Docker%20Image-blue?logo=docker&labelColor=white)](https://hub.docker.com/r/gagan30/keytotext) [![HuggingFace](https://img.shields.io/badge/%F0%9F%A4%97-Models%20on%20Hub-yellow)](https://huggingface.co/models?filter=keytotext) [![Documentation Status](https://readthedocs.org/projects/keytotext/badge/?version=latest)](https://keytotext.readthedocs.io/en/latest/?badge=latest) [![Code style: black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/psf/black) ![keytotext](https://socialify.git.ci/gagan3012/keytotext/image?description=1&forks=1&language=1&owner=1&stargazers=1&theme=Light) Idea is to build a model which will take keywords as inputs and generate sentences as outputs. Potential use case can include: - Marketing - Search Engine Optimization - Topic generation etc. - Fine tuning of topic modeling models
{"language": "en", "license": "MIT", "tags": ["keytotext", "k2t", "Keywords to Sentences"], "datasets": ["WebNLG", "Dart"], "metrics": ["NLG"], "thumbnail": "Keywords to Sentences"}
gagan3012/k2t-test3
null
[ "transformers", "pytorch", "t5", "text2text-generation", "keytotext", "k2t", "Keywords to Sentences", "en", "dataset:WebNLG", "dataset:Dart", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
text2text-generation
transformers
# keytotext ![keytotext (1)](https://user-images.githubusercontent.com/49101362/116334480-f5e57a00-a7dd-11eb-987c-186477f94b6e.png) Idea is to build a model which will take keywords as inputs and generate sentences as outputs. ### Keytotext is powered by Huggingface 🤗 [![pypi Version](https://img.shields.io/pypi/v/keytotext.svg?style=flat-square&logo=pypi&logoColor=white)](https://pypi.org/project/keytotext/) [![Downloads](https://static.pepy.tech/personalized-badge/keytotext?period=total&units=none&left_color=grey&right_color=orange&left_text=Pip%20Downloads)](https://pepy.tech/project/keytotext) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/gagan3012/keytotext/blob/master/Examples/K2T.ipynb) [![Streamlit App](https://static.streamlit.io/badges/streamlit_badge_black_white.svg)](https://share.streamlit.io/gagan3012/keytotext/UI/app.py) ## Model: Keytotext is based on the Amazing T5 Model: - `k2t`: [Model](https://huggingface.co/gagan3012/k2t) - `k2t-tiny`: [Model](https://huggingface.co/gagan3012/k2t-tiny) - `k2t-base`: [Model](https://huggingface.co/gagan3012/k2t-base) Training Notebooks can be found in the [`Training Notebooks`](https://github.com/gagan3012/keytotext/tree/master/Training%20Notebooks) Folder ## Usage: Example usage: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/gagan3012/keytotext/blob/master/Examples/K2T.ipynb) Example Notebooks can be found in the [`Notebooks`](https://github.com/gagan3012/keytotext/tree/master/Examples) Folder ``` pip install keytotext ``` ![carbon (3)](https://user-images.githubusercontent.com/49101362/116220679-90e64180-a755-11eb-9246-82d93d924a6c.png) ## UI: UI: [![Streamlit App](https://static.streamlit.io/badges/streamlit_badge_black_white.svg)](https://share.streamlit.io/gagan3012/keytotext/UI/app.py) ``` pip install streamlit-tags ``` This uses a custom streamlit component built by me: [GitHub](https://github.com/gagan3012/streamlit-tags) ![image](https://user-images.githubusercontent.com/49101362/116162205-fc042980-a6fd-11eb-892e-8f6902f193f4.png)
{"language": "en", "license": "mit", "tags": ["keytotext", "k2t-tiny", "Keywords to Sentences"], "datasets": ["WebNLG", "Dart"], "metrics": ["NLG"], "thumbnail": "Keywords to Sentences"}
gagan3012/k2t-tiny
null
[ "transformers", "pytorch", "t5", "text2text-generation", "keytotext", "k2t-tiny", "Keywords to Sentences", "en", "dataset:WebNLG", "dataset:Dart", "license:mit", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
text2text-generation
transformers
# keytotext ![keytotext (1)](https://user-images.githubusercontent.com/49101362/116334480-f5e57a00-a7dd-11eb-987c-186477f94b6e.png) Idea is to build a model which will take keywords as inputs and generate sentences as outputs. ### Keytotext is powered by Huggingface 🤗 [![pypi Version](https://img.shields.io/pypi/v/keytotext.svg?style=flat-square&logo=pypi&logoColor=white)](https://pypi.org/project/keytotext/) [![Downloads](https://static.pepy.tech/personalized-badge/keytotext?period=total&units=none&left_color=grey&right_color=orange&left_text=Pip%20Downloads)](https://pepy.tech/project/keytotext) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/gagan3012/keytotext/blob/master/Examples/K2T.ipynb) [![Streamlit App](https://static.streamlit.io/badges/streamlit_badge_black_white.svg)](https://share.streamlit.io/gagan3012/keytotext/UI/app.py) ## Model: Keytotext is based on the Amazing T5 Model: - `k2t`: [Model](https://huggingface.co/gagan3012/k2t) - `k2t-tiny`: [Model](https://huggingface.co/gagan3012/k2t-tiny) - `k2t-base`: [Model](https://huggingface.co/gagan3012/k2t-base) Training Notebooks can be found in the [`Training Notebooks`](https://github.com/gagan3012/keytotext/tree/master/Training%20Notebooks) Folder ## Usage: Example usage: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/gagan3012/keytotext/blob/master/Examples/K2T.ipynb) Example Notebooks can be found in the [`Notebooks`](https://github.com/gagan3012/keytotext/tree/master/Examples) Folder ``` pip install keytotext ``` ![carbon (3)](https://user-images.githubusercontent.com/49101362/116220679-90e64180-a755-11eb-9246-82d93d924a6c.png) ## UI: UI: [![Streamlit App](https://static.streamlit.io/badges/streamlit_badge_black_white.svg)](https://share.streamlit.io/gagan3012/keytotext/UI/app.py) ``` pip install streamlit-tags ``` This uses a custom streamlit component built by me: [GitHub](https://github.com/gagan3012/streamlit-tags) ![image](https://user-images.githubusercontent.com/49101362/116162205-fc042980-a6fd-11eb-892e-8f6902f193f4.png)
{"language": "en", "license": "mit", "tags": ["keytotext", "k2t", "Keywords to Sentences"], "datasets": ["WebNLG", "Dart"], "metrics": ["NLG"], "thumbnail": "Keywords to Sentences"}
gagan3012/k2t
null
[ "transformers", "pytorch", "t5", "text2text-generation", "keytotext", "k2t", "Keywords to Sentences", "en", "dataset:WebNLG", "dataset:Dart", "license:mit", "autotrain_compatible", "endpoints_compatible", "has_space", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-generation
transformers
{}
gagan3012/keytotext-gpt
null
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
text2text-generation
transformers
# keytotext Idea is to build a model which will take keywords as inputs and generate sentences as outputs. ### Model: Two Models have been built: - Using T5-base size = 850 MB can be found here: https://huggingface.co/gagan3012/keytotext - Using T5-small size = 230 MB can be found here: https://huggingface.co/gagan3012/keytotext-small #### Usage: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("gagan3012/keytotext-small") model = AutoModelWithLMHead.from_pretrained("gagan3012/keytotext-small") ``` ### Demo: [![Streamlit App](https://static.streamlit.io/badges/streamlit_badge_black_white.svg)](https://share.streamlit.io/gagan3012/keytotext/app.py) https://share.streamlit.io/gagan3012/keytotext/app.py ![image](https://user-images.githubusercontent.com/49101362/110660053-3b20fe80-81d4-11eb-9275-ba402134e8d9.png) ### Example: ['India', 'Wedding'] -> We are celebrating today in New Delhi with three wedding anniversary parties.
{}
gagan3012/keytotext-small
null
[ "transformers", "pytorch", "t5", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
text2text-generation
transformers
# keytotext Idea is to build a model which will take keywords as inputs and generate sentences as outputs. ### Model: Two Models have been built: - Using T5-base size = 850 MB can be found here: https://huggingface.co/gagan3012/keytotext - Using T5-small size = 230 MB can be found here: https://huggingface.co/gagan3012/keytotext-small #### Usage: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("gagan3012/keytotext-small") model = AutoModelWithLMHead.from_pretrained("gagan3012/keytotext-small") ``` ### Demo: [![Streamlit App](https://static.streamlit.io/badges/streamlit_badge_black_white.svg)](https://share.streamlit.io/gagan3012/keytotext/app.py) https://share.streamlit.io/gagan3012/keytotext/app.py ![image](https://user-images.githubusercontent.com/49101362/110660053-3b20fe80-81d4-11eb-9275-ba402134e8d9.png) ### Example: ['India', 'Wedding'] -> We are celebrating today in New Delhi with three wedding anniversary parties.
{}
gagan3012/keytotext
null
[ "transformers", "pytorch", "t5", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-generation
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # model This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 3.6250 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.12.0.dev0 - Pytorch 1.9.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "model-index": [{"name": "model", "results": []}]}
gagan3012/model
null
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-generation
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pickuplines This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 5.7873 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 100.0 ### Training results ### Framework versions - Transformers 4.12.0.dev0 - Pytorch 1.9.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
{"license": "mit", "tags": ["generated_from_trainer"], "model-index": [{"name": "pickuplines", "results": []}]}
gagan3012/pickuplines
null
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-generation
transformers
{}
gagan3012/project-code-py-micro
null
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-generation
transformers
{}
gagan3012/project-code-py-neo
null
[ "transformers", "pytorch", "gpt_neo", "text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-generation
transformers
# Leetcode using AI :robot: GPT-2 Model for Leetcode Questions in python **Note**: the Answers might not make sense in some cases because of the bias in GPT-2 **Contribtuions:** If you would like to make the model better contributions are welcome Check out [CONTRIBUTIONS.md](https://github.com/gagan3012/project-code-py/blob/master/CONTRIBUTIONS.md) ### 📢 Favour: It would be highly motivating, if you can STAR⭐ this repo if you find it helpful. ## Model Two models have been developed for different use cases and they can be found at https://huggingface.co/gagan3012 The model weights can be found here: [GPT-2](https://huggingface.co/gagan3012/project-code-py) and [DistilGPT-2](https://huggingface.co/gagan3012/project-code-py-small) ### Example usage: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("gagan3012/project-code-py") model = AutoModelWithLMHead.from_pretrained("gagan3012/project-code-py") ``` ## Demo [![Streamlit App](https://static.streamlit.io/badges/streamlit_badge_black_white.svg)](https://share.streamlit.io/gagan3012/project-code-py/app.py) A streamlit webapp has been setup to use the model: https://share.streamlit.io/gagan3012/project-code-py/app.py ![image](https://user-images.githubusercontent.com/49101362/110356042-e69e4780-804a-11eb-94c6-a47fa3cd66b3.png) ## Example results: ### Question: ``` Write a function to delete a node in a singly-linked list. You will not be given access to the head of the list, instead you will be given access to the node to be deleted directly. It is guaranteed that the node to be deleted is not a tail node in the list. ``` ### Answer: ```python """ Write a function to delete a node in a singly-linked list. You will not be given access to the head of the list, instead you will be given access to the node to be deleted directly. It is guaranteed that the node to be deleted is not a tail node in the list. For example, a = 1->2->3 b = 3->1->2 t = ListNode(-1, 1) Note: The lexicographic ordering of the nodes in a tree matters. Do not assign values to nodes in a tree. Example 1: Input: [1,2,3] Output: 1->2->5 Explanation: 1->2->3->3->4, then 1->2->5[2] and then 5->1->3->4. Note: The length of a linked list will be in the range [1, 1000]. Node.val must be a valid LinkedListNode type. Both the length and the value of the nodes in a linked list will be in the range [-1000, 1000]. All nodes are distinct. """ # Definition for singly-linked list. # class ListNode: # def __init__(self, x): # self.val = x # self.next = None class Solution: def deleteNode(self, head: ListNode, val: int) -> None: """ BFS Linked List :param head: ListNode :param val: int :return: ListNode """ if head is not None: return head dummy = ListNode(-1, 1) dummy.next = head dummy.next.val = val dummy.next.next = head dummy.val = "" s1 = Solution() print(s1.deleteNode(head)) print(s1.deleteNode(-1)) print(s1.deleteNode(-1)) ```
{}
gagan3012/project-code-py-small
null
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "autotrain_compatible", "endpoints_compatible", "has_space", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-generation
transformers
# Leetcode using AI :robot: GPT-2 Model for Leetcode Questions in python **Note**: the Answers might not make sense in some cases because of the bias in GPT-2 **Contribtuions:** If you would like to make the model better contributions are welcome Check out [CONTRIBUTIONS.md](https://github.com/gagan3012/project-code-py/blob/master/CONTRIBUTIONS.md) ### 📢 Favour: It would be highly motivating, if you can STAR⭐ this repo if you find it helpful. ## Model Two models have been developed for different use cases and they can be found at https://huggingface.co/gagan3012 The model weights can be found here: [GPT-2](https://huggingface.co/gagan3012/project-code-py) and [DistilGPT-2](https://huggingface.co/gagan3012/project-code-py-small) ### Example usage: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("gagan3012/project-code-py") model = AutoModelWithLMHead.from_pretrained("gagan3012/project-code-py") ``` ## Demo [![Streamlit App](https://static.streamlit.io/badges/streamlit_badge_black_white.svg)](https://share.streamlit.io/gagan3012/project-code-py/app.py) A streamlit webapp has been setup to use the model: https://share.streamlit.io/gagan3012/project-code-py/app.py ![image](https://user-images.githubusercontent.com/49101362/110356042-e69e4780-804a-11eb-94c6-a47fa3cd66b3.png) ## Example results: ### Question: ``` Write a function to delete a node in a singly-linked list. You will not be given access to the head of the list, instead you will be given access to the node to be deleted directly. It is guaranteed that the node to be deleted is not a tail node in the list. ``` ### Answer: ```python """ Write a function to delete a node in a singly-linked list. You will not be given access to the head of the list, instead you will be given access to the node to be deleted directly. It is guaranteed that the node to be deleted is not a tail node in the list. For example, a = 1->2->3 b = 3->1->2 t = ListNode(-1, 1) Note: The lexicographic ordering of the nodes in a tree matters. Do not assign values to nodes in a tree. Example 1: Input: [1,2,3] Output: 1->2->5 Explanation: 1->2->3->3->4, then 1->2->5[2] and then 5->1->3->4. Note: The length of a linked list will be in the range [1, 1000]. Node.val must be a valid LinkedListNode type. Both the length and the value of the nodes in a linked list will be in the range [-1000, 1000]. All nodes are distinct. """ # Definition for singly-linked list. # class ListNode: # def __init__(self, x): # self.val = x # self.next = None class Solution: def deleteNode(self, head: ListNode, val: int) -> None: """ BFS Linked List :param head: ListNode :param val: int :return: ListNode """ if head is not None: return head dummy = ListNode(-1, 1) dummy.next = head dummy.next.val = val dummy.next.next = head dummy.val = "" s1 = Solution() print(s1.deleteNode(head)) print(s1.deleteNode(-1)) print(s1.deleteNode(-1)) ```
{}
gagan3012/project-code-py
null
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-generation
transformers
# Generating Rap song Lyrics like Eminem Using GPT2 ### I have built a custom model for it using data from Kaggle Creating a new finetuned model using data lyrics from leading hip-hop stars ### My model can be accessed at: gagan3012/rap-writer ``` from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("gagan3012/rap-writer") model = AutoModelWithLMHead.from_pretrained("gagan3012/rap-writer") ```
{}
gagan3012/rap-writer
null
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "autotrain_compatible", "endpoints_compatible", "has_space", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
text2text-generation
transformers
--- Summarisation model summarsiation
{}
gagan3012/summarsiation
null
[ "transformers", "pytorch", "t5", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "has_space", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00