Search is not available for this dataset
pipeline_tag
stringclasses
48 values
library_name
stringclasses
205 values
text
stringlengths
0
18.3M
metadata
stringlengths
2
1.07B
id
stringlengths
5
122
last_modified
null
tags
listlengths
1
1.84k
sha
null
created_at
stringlengths
25
25
token-classification
transformers
{}
gurkan08/turkish-ner
null
[ "transformers", "pytorch", "jax", "bert", "token-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
{}
gurkan08/turkish-product-comment-sentiment-classification
null
[ "transformers", "pytorch", "jax", "bert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-generation
transformers
# Rick bot
{"tags": ["conversational"]}
gusintheshell/DialoGPT-small-rickbot
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
text2text-generation
transformers
### Quantized BigScience's T0 3B with 8-bit weights This is a version of [BigScience's T0](https://huggingface.co/bigscience/T0_3B) with 3 billion parameters that is modified so you can generate **and fine-tune the model in colab or equivalent desktop gpu (e.g. single 1080Ti)**. Inspired by [GPT-J 8bit](https://huggingface.co/hivemind/gpt-j-6B-8bit). Here's how to run it: [![colab](https://camo.githubusercontent.com/84f0493939e0c4de4e6dbe113251b4bfb5353e57134ffd9fcab6b8714514d4d1/68747470733a2f2f636f6c61622e72657365617263682e676f6f676c652e636f6d2f6173736574732f636f6c61622d62616467652e737667)](https://colab.research.google.com/drive/1lMja-CPc0vm5_-gXNXAWU-9c0nom7vZ9) This model can be easily loaded using the `T5ForConditionalGeneration` functionality: ```python from transformers import T5ForConditionalGeneration model = T5ForConditionalGeneration.from_pretrained("gustavecortal/T0_3B-8bit") ``` Before loading, you have to Monkey-Patch T5: ```python class T5ForConditionalGeneration(transformers.models.t5.modeling_t5.T5ForConditionalGeneration): def __init__(self, config): super().__init__(config) convert_to_int8(self) transformers.models.t5.modeling_t5.T5ForConditionalGeneration = T5ForConditionalGeneration ``` ## Model Description T0* shows zero-shot task generalization on English natural language prompts, outperforming GPT-3 on many tasks, while being 16x smaller. It is a series of encoder-decoder models trained on a large set of different tasks specified in natural language prompts. We convert numerous English supervised datasets into prompts, each with multiple templates using varying formulations. These prompted datasets allow for benchmarking the ability of a model to perform completely unseen tasks specified in natural language. To obtain T0*, we fine-tune a pretrained language model on this multitask mixture covering many different NLP tasks. ## Links * [BigScience](https://bigscience.huggingface.co/) * [Hivemind](https://training-transformers-together.github.io/) * [Gustave Cortal](https://twitter.com/gustavecortal) ```bibtex @misc{sanh2021multitask, title={Multitask Prompted Training Enables Zero-Shot Task Generalization}, author={Victor Sanh and Albert Webson and Colin Raffel and Stephen H. Bach and Lintang Sutawika and Zaid Alyafeai and Antoine Chaffin and Arnaud Stiegler and Teven Le Scao and Arun Raja and Manan Dey and M Saiful Bari and Canwen Xu and Urmish Thakker and Shanya Sharma Sharma and Eliza Szczechla and Taewoon Kim and Gunjan Chhablani and Nihal Nayak and Debajyoti Datta and Jonathan Chang and Mike Tian-Jian Jiang and Han Wang and Matteo Manica and Sheng Shen and Zheng Xin Yong and Harshit Pandey and Rachel Bawden and Thomas Wang and Trishala Neeraj and Jos Rozen and Abheesht Sharma and Andrea Santilli and Thibault Fevry and Jason Alan Fries and Ryan Teehan and Stella Biderman and Leo Gao and Tali Bers and Thomas Wolf and Alexander M. Rush}, year={2021}, eprint={2110.08207}, archivePrefix={arXiv}, primaryClass={cs.LG} } ```
{"language": "fr", "license": "mit", "tags": ["en"], "datasets": ["bigscience/P3"]}
gustavecortal/T0_3B-8bit
null
[ "transformers", "pytorch", "t5", "text2text-generation", "en", "fr", "dataset:bigscience/P3", "arxiv:2110.08207", "license:mit", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-generation
transformers
### Quantized Cedille/fr-boris with 8-bit weights This is a version of Cedille's GPT-J (fr-boris) with 6 billion parameters that is modified so you can generate **and fine-tune the model in colab or equivalent desktop gpu (e.g. single 1080Ti)**. Inspired by [GPT-J 8bit](https://huggingface.co/hivemind/gpt-j-6B-8bit). Here's how to run it: [![colab](https://camo.githubusercontent.com/84f0493939e0c4de4e6dbe113251b4bfb5353e57134ffd9fcab6b8714514d4d1/68747470733a2f2f636f6c61622e72657365617263682e676f6f676c652e636f6d2f6173736574732f636f6c61622d62616467652e737667)](https://colab.research.google.com/drive/1lMja-CPc0vm5_-gXNXAWU-9c0nom7vZ9) This model can be easily loaded using the `GPTJForCausalLM` functionality: ```python from transformers import GPTJForCausalLM model = GPTJForCausalLM.from_pretrained("gustavecortal/fr-boris-8bit") ``` ## fr-boris Boris is a 6B parameter autoregressive language model based on the GPT-J architecture and trained using the [mesh-transformer-jax](https://github.com/kingoflolz/mesh-transformer-jax) codebase. Boris was trained on around 78B tokens of French text from the [C4](https://huggingface.co/datasets/c4) dataset. ## Links * [Cedille](https://en.cedille.ai/) * [Hivemind](https://training-transformers-together.github.io/) * [Gustave Cortal](https://twitter.com/gustavecortal)
{"language": "fr", "license": "mit", "tags": ["causal-lm", "fr"], "datasets": ["c4", "The Pile"]}
gustavecortal/fr-boris-8bit
null
[ "transformers", "pytorch", "gptj", "text-generation", "causal-lm", "fr", "license:mit", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-generation
transformers
### Quantized EleutherAI/gpt-neo-2.7B with 8-bit weights This is a version of [EleutherAI's GPT-Neo](https://huggingface.co/EleutherAI/gpt-neo-2.7B) with 2.7 billion parameters that is modified so you can generate **and fine-tune the model in colab or equivalent desktop gpu (e.g. single 1080Ti)**. Inspired by [GPT-J 8bit](https://huggingface.co/hivemind/gpt-j-6B-8bit). Here's how to run it: [![colab](https://camo.githubusercontent.com/84f0493939e0c4de4e6dbe113251b4bfb5353e57134ffd9fcab6b8714514d4d1/68747470733a2f2f636f6c61622e72657365617263682e676f6f676c652e636f6d2f6173736574732f636f6c61622d62616467652e737667)](https://colab.research.google.com/drive/1lMja-CPc0vm5_-gXNXAWU-9c0nom7vZ9) ## Model Description GPT-Neo 2.7B is a transformer model designed using EleutherAI's replication of the GPT-3 architecture. GPT-Neo refers to the class of models, while 2.7B represents the number of parameters of this particular pre-trained model. ## Links * [EleutherAI](https://www.eleuther.ai) * [Hivemind](https://training-transformers-together.github.io/) * [Gustave Cortal](https://twitter.com/gustavecortal)
{"language": "en", "license": "mit", "tags": ["causal-lm"], "datasets": ["The_Pile"]}
gustavecortal/gpt-neo-2.7B-8bit
null
[ "transformers", "pytorch", "gpt_neo", "text-generation", "causal-lm", "en", "dataset:The_Pile", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
gusu/mymodel1
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
automatic-speech-recognition
transformers
# Wav2Vec2-Large-XLSR-53-ml Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on ml (Malayalam) using the [Indic TTS Malayalam Speech Corpus (via Kaggle)](https://www.kaggle.com/kavyamanohar/indic-tts-malayalam-speech-corpus), [Openslr Malayalam Speech Corpus](http://openslr.org/63/), [SMC Malayalam Speech Corpus](https://blog.smc.org.in/malayalam-speech-corpus/) and [IIIT-H Indic Speech Databases](http://speech.iiit.ac.in/index.php/research-svl/69.html). The notebooks used to train model are available [here](https://github.com/gauthamsuresh09/wav2vec2-large-xlsr-53-malayalam/). When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = <load-test-split-of-combined-dataset> # Details on loading this dataset in the evaluation section processor = Wav2Vec2Processor.from_pretrained("gvs/wav2vec2-large-xlsr-malayalam") model = Wav2Vec2ForCTC.from_pretrained("gvs/wav2vec2-large-xlsr-malayalam") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the audio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"]) ``` ## Evaluation The model can be evaluated as follows on the test data of combined custom dataset. For more details on dataset preparation, check the notebooks mentioned at the end of this file. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re from datasets import load_dataset, load_metric from pathlib import Path # The custom dataset needs to be created using notebook mentioned at the end of this file data_dir = Path('<path-to-custom-dataset>') dataset_folders = { 'iiit': 'iiit_mal_abi', 'openslr': 'openslr', 'indic-tts': 'indic-tts-ml', 'msc-reviewed': 'msc-reviewed-speech-v1.0+20200825', } # Set directories for datasets openslr_male_dir = data_dir / dataset_folders['openslr'] / 'male' openslr_female_dir = data_dir / dataset_folders['openslr'] / 'female' iiit_dir = data_dir / dataset_folders['iiit'] indic_tts_male_dir = data_dir / dataset_folders['indic-tts'] / 'male' indic_tts_female_dir = data_dir / dataset_folders['indic-tts'] / 'female' msc_reviewed_dir = data_dir / dataset_folders['msc-reviewed'] # Load the datasets openslr_male = load_dataset("json", data_files=[f"{str(openslr_male_dir.absolute())}/sample_{i}.json" for i in range(2023)], split="train") openslr_female = load_dataset("json", data_files=[f"{str(openslr_female_dir.absolute())}/sample_{i}.json" for i in range(2103)], split="train") iiit = load_dataset("json", data_files=[f"{str(iiit_dir.absolute())}/sample_{i}.json" for i in range(1000)], split="train") indic_tts_male = load_dataset("json", data_files=[f"{str(indic_tts_male_dir.absolute())}/sample_{i}.json" for i in range(5649)], split="train") indic_tts_female = load_dataset("json", data_files=[f"{str(indic_tts_female_dir.absolute())}/sample_{i}.json" for i in range(2950)], split="train") msc_reviewed = load_dataset("json", data_files=[f"{str(msc_reviewed_dir.absolute())}/sample_{i}.json" for i in range(1541)], split="train") # Create test split as 20%, set random seed as well. test_size = 0.2 random_seed=1 openslr_male_splits = openslr_male.train_test_split(test_size=test_size, seed=random_seed) openslr_female_splits = openslr_female.train_test_split(test_size=test_size, seed=random_seed) iiit_splits = iiit.train_test_split(test_size=test_size, seed=random_seed) indic_tts_male_splits = indic_tts_male.train_test_split(test_size=test_size, seed=random_seed) indic_tts_female_splits = indic_tts_female.train_test_split(test_size=test_size, seed=random_seed) msc_reviewed_splits = msc_reviewed.train_test_split(test_size=test_size, seed=random_seed) # Get combined test dataset split_list = [openslr_male_splits, openslr_female_splits, indic_tts_male_splits, indic_tts_female_splits, msc_reviewed_splits, iiit_splits] test_dataset = datasets.concatenate_datasets([split['test'] for split in split_list) wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("gvs/wav2vec2-large-xlsr-malayalam") model = Wav2Vec2ForCTC.from_pretrained("gvs/wav2vec2-large-xlsr-malayalam") model.to("cuda") resamplers = { 48000: torchaudio.transforms.Resample(48_000, 16_000), } chars_to_ignore_regex = '[\\\\,\\\\?\\\\.\\\\!\\\\-\\\\;\\\\:\\\\"\\\\“\\\\%\\\\‘\\\\”\\\\�Utrnle\\\\_]' unicode_ignore_regex = r'[\\\\u200e]' # Preprocessing the datasets. # We need to read the audio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]) batch["sentence"] = re.sub(unicode_ignore_regex, '', batch["sentence"]) speech_array, sampling_rate = torchaudio.load(batch["path"]) # Resample if its not in 16kHz if sampling_rate != 16000: batch["speech"] = resamplers[sampling_rate](speech_array).squeeze().numpy() else: batch["speech"] = speech_array.squeeze().numpy() # If more than one dimension is present, pick first one if batch["speech"].ndim > 1: batch["speech"] = batch["speech"][0] return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the audio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result (WER)**: 28.43 % ## Training A combined dataset was created using [Indic TTS Malayalam Speech Corpus (via Kaggle)](https://www.kaggle.com/kavyamanohar/indic-tts-malayalam-speech-corpus), [Openslr Malayalam Speech Corpus](http://openslr.org/63/), [SMC Malayalam Speech Corpus](https://blog.smc.org.in/malayalam-speech-corpus/) and [IIIT-H Indic Speech Databases](http://speech.iiit.ac.in/index.php/research-svl/69.html). The datasets were downloaded and was converted to HF Dataset format using [this notebook](https://github.com/gauthamsuresh09/wav2vec2-large-xlsr-53-malayalam/blob/main/make_hf_dataset.ipynb) The notebook used for training and evaluation can be found [here](https://github.com/gauthamsuresh09/wav2vec2-large-xlsr-53-malayalam/blob/main/fine-tune-xlsr-wav2vec2-on-malayalam-asr-with-transformers_v2.ipynb)
{"language": "ml", "license": "apache-2.0", "tags": ["audio", "automatic-speech-recognition", "speech", "xlsr-fine-tuning-week"], "datasets": ["Indic TTS Malayalam Speech Corpus", "Openslr Malayalam Speech Corpus", "SMC Malayalam Speech Corpus", "IIIT-H Indic Speech Databases"], "metrics": ["wer"], "model-index": [{"name": "Malayalam XLSR Wav2Vec2 Large 53", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Test split of combined dataset using all datasets mentioned above", "type": "custom", "args": "ml"}, "metrics": [{"type": "wer", "value": 28.43, "name": "Test WER"}]}]}]}
gvs/wav2vec2-large-xlsr-malayalam
null
[ "transformers", "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "audio", "speech", "xlsr-fine-tuning-week", "ml", "license:apache-2.0", "model-index", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
{}
gwangjogong/quora-insincere-electra-small
null
[ "transformers", "pytorch", "electra", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
gwen/us
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
gwima/DialoGPT-small-ryanmajima
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
gwima/Mistakes
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
gwima/please-god-ryan-work
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
text-generation
transformers
{"tags": ["conversational"]}
gwima/ryan-sackmott
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
gwima/ryan
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
transformers
"5050_base_test"
{}
gwkim22/5050_b_disc
null
[ "transformers", "pytorch", "electra", "pretraining", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
transformers
"test_5050"
{}
gwkim22/5050_s_disc
null
[ "transformers", "pytorch", "electra", "pretraining", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
transformers
"domain_base_test"
{}
gwkim22/domain_b_disc
null
[ "transformers", "pytorch", "electra", "pretraining", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
transformers
"domain_base2_disc_0719"
{}
gwkim22/domain_base2_disc
null
[ "transformers", "pytorch", "electra", "pretraining", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
transformers
"test_domain_only"
{}
gwkim22/domain_s_disc
null
[ "transformers", "pytorch", "electra", "pretraining", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
transformers
"general_base_test"
{}
gwkim22/general_b_disc
null
[ "transformers", "pytorch", "electra", "pretraining", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
transformers
"general_test"
{}
gwkim22/general_s_disc
null
[ "transformers", "pytorch", "electra", "pretraining", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text2text-generation
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-xsum This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:| | No log | 1.0 | 13 | 3.6429 | 15.3135 | 1.0725 | 12.0447 | 12.445 | 18.97 | ### Framework versions - Transformers 4.9.0 - Pytorch 1.9.0+cu102 - Datasets 1.10.2 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": [], "model_index": [{"name": "t5-small-finetuned-xsum", "results": [{"task": {"name": "Sequence-to-sequence Language Modeling", "type": "text2text-generation"}}]}]}
gwynethfae/t5-small-finetuned-xsum
null
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-generation
transformers
{}
gyre/200wordrpgmodel
null
[ "transformers", "pytorch", "gpt2", "text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
gyung/distilbert-base-uncased-finetuned-cola
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
gyung/my-new-shiny-tokenizer
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
# MultiLingual CLIP Multilingual CLIP is a pre-trained model which can be used for multilingual semantic search and zero-shot image classification in 100 languages. # Model Architecture Multilingual CLIP was built using [OpenAI CLIP](https://github.com/openai/CLIP) model. I have used the same Vision encoder (ResNet 50x4), but instead I replaced their text encoder (Transformer) with a Mulilingual Text Encoder ([XLM-Roberta](https://huggingface.co/xlm-roberta-large)) and a configurable number of projection heads, as seen below: ![Model Architecture](https://challengepost-s3-challengepost.netdna-ssl.com/photos/production/software_photos/001/858/046/datas/gallery.jpg) The model was trained in a distributed fashion on 16 Habana Gaudi Accelerators and with mixed Precision in two phases (using COCO Dataset for phase 1 and Google Conceptual Captions for phase 2). The training pipeline was built using PyTorch, PyTorch Lightning, and Distributed Data Parallel. # Datasets Three datasets have been used for building the model. COCO captions was used for training phase 1 and Google Conceptual Captions was used for training phase 2. Unsplash dataset was used for testing and inference. ## COCO Captions COCO (Common Objects in Context) is a large-scale object detection, segmentation, and captioning dataset. The COCO captions dataset has around ~85000 images and captions pairs. Run the following to download the dataset: ```bash ./download_coco.sh ``` This dataset was used for the first pre-training phase. ## Google Conceptual Captions Conceptual Captions is a dataset consisting of ~3.3 million images annotated with captions. In contrast with the curated style of other image caption annotations, Conceptual Caption images and their raw descriptions are harvested from the web, and therefore represent a wider variety of styles. Download the datasets urls/captions from [here](https://storage.cloud.google.com/gcc-data/Train/GCC-training.tsv?_ga=2.191230122.-1896153081.1529438250) as save it to `datasets/googlecc/googlecc.tsv`. The full dataset has over 3 million images, but you can select a subset by loading the `googlecc.tsv` file and saving only the number of rows you want (I have used 1 million images for training). Then run the following commands to download each image on the `googlecc.tsv` file: ```bash npm install node download_build_googlecc.js ``` This dataset was used for the second pre-training phase. ## Unplash This dataset was used as the test set during inference. Run `python3.8 download_unsplash.py` to download the dataset. # Training ![Training phase 1](https://challengepost-s3-challengepost.netdna-ssl.com/photos/production/software_photos/001/858/047/datas/gallery.jpg) ![Training phase 2](https://challengepost-s3-challengepost.netdna-ssl.com/photos/production/software_photos/001/858/048/datas/gallery.jpg) ## Setup Create two Habana instances ([AWS EC2 DL1](https://aws.amazon.com/ec2/instance-types/dl1/)) using [Habana® Deep Learning Base AMI (Ubuntu 20.04)](https://aws.amazon.com/marketplace/pp/prodview-fw46rwuxrtfse) Create the PyTorch docker container running: ```bash docker run --name pytorch -td --runtime=habana -e HABANA_VISIBLE_DEVICES=all -e OMPI_MCA_btl_vader_single_copy_mechanism=none --cap-add=sys_nice --net=host --ipc=host vault.habana.ai/gaudi-docker/1.2.0/ubuntu20.04/habanalabs/pytorch-installer-1.10.0:1.2.0-585 ``` Enter the docker image by running: ``` docker exec -it pytorch /bin/bash ``` #### Setup password-less ssh between all connected servers 1. Configure password-less ssh between all nodes: Do the following in all the nodes' docker sessions: ```bash mkdir ~/.ssh cd ~/.ssh ssh-keygen -t rsa -b 4096 ``` Copy id_rsa.pub contents from every node's docker to every other node's docker's ~/.ssh/authorized_keys (all public keys need to be in all hosts' authorized_keys): ```bash cat id_rsa.pub > authorized_keys vi authorized_keys ``` Copy the contents from inside to other systems. Paste all hosts' public keys in all hosts' “authorized_keys” file. 2. On each system: Add all hosts (including itself) to known_hosts. The IP addresses used below are just for illustration: ```bash ssh-keyscan -p 3022 -H $IP1 >> ~/.ssh/known_hosts ssh-keyscan -p 3022 -H $IP2 >> ~/.ssh/known_hosts ``` 3. Change Docker SSH port to 3022 ```bash sed -i 's/#Port 22/Port 3022/g' /etc/ssh/sshd_config sed -i 's/#PermitRootLogin prohibit-password/PermitRootLogin yes/' /etc/ssh/sshd_config service ssh restart ``` [Allow all TCP](https://docs.aws.amazon.com/vpc/latest/userguide/VPC_SecurityGroups.html) traffic between the nodes on AWS Clone the git repo: ```bash git clone https://github.com/gzomer/clip-multilingual ``` Create environment: ```bash python3.8 -m venv .env ``` Install requirements: ```bash python3.8 -r requirements.txt ``` Activate environment ```bash source .env/bin/activate ``` ## Training params Learning rate: 1e-3 Batch size: 64 Phase 1 - Epochs: 100 Phase 2 - Epochs: 15 ## Train script arguments ``` --dataset-num-workers Number of workers (default: 8) --dataset-type Dataset type (coco or googlecc) (default: coco) --dataset-dir Dataset dir (default: ./datasets/coco/) --dataset-subset-size Load only a subset of the dataset (useful for debugging) --dataset-train-split Dataset train split (default: 0.8) --train-device Type of device to use (default: hpu) --distributed-num-nodes Number of nodes (machines) (default: 2) --distributed-parallel-devices Number of parallel devices per node (default: 8) --distributed-master-address Master node IP address --distributed-master-port Master node port (default: 12345) --distributed-bucket-cap-mb DDP bucket cap MB (default: 200) --checkpoint-dir Model checkpoint dir (default: ./models) --checkpoint-save-every-n Save every n epochs (default: 1) --checkpoint-load-vision-path Load vision encoder checkpoint --checkpoint-load-text-path Load text encoder checkpoint --model-visual-name Which visual model to use (default: RN50x4) --model-textual-name Which textual model to use (default: xlm-roberta-base) --hyperparam-num-layers Number of layers (default: 3) --hyperparam-lr Model learning rate (default: 0.001) --hyperparam-epochs Max epochs (default: 100) --hyperparam-precision Precision (default: 16) --hyperparam-batch-size Batch size (default: 64) --wandb-project W&B project name (default: clip) --wandb-enabled W&B is enabled? (default: True) ``` ## Habana Gaudi - 8 accelerators ### Phase 1 training ```bash python3.8 train.py --train-device hpu --distributed-parallel-devices 8 --distributed-num-nodes 1 ``` ### Phase 2 training ```bash python3.8 train.py --train-device hpu --distributed-parallel-devices 8 --distributed-num-nodes 1 --hyperparam-epochs 15 --checkpoint-load-text-path /home/models/text-last.ckpt --checkpoint-load-vision-path /home/models/vision-last.ckpt --checkpoint-dir ./models_phase2 ``` ## Habana Gaudi - 16 accelerators (multi-server training) Change the master IP address based on your instances (use local IP, not public IP). ### Phase 1 training ```bash NODE_RANK=0 python3.8 train.py --distributed-master-address 172.31.86.231 --train-device hpu --distributed-parallel-devices 8 --distributed-num-nodes 2 ``` ```bash NODE_RANK=1 python3.8 train.py --distributed-master-address 172.31.86.231 --train-device hpu --distributed-parallel-devices 8 --distributed-num-nodes 2 ``` ### Phase 2 training ```bash NODE_RANK=0 python3.8 train.py --distributed-master-address 172.31.86.231 --train-device hpu --distributed-parallel-devices 8 --distributed-num-nodes 2 --hyperparam-epochs 10 --checkpoint-load-text-path /home/models/text-last.ckpt --checkpoint-load-vision-path /home/models/vision-last.ckpt --checkpoint-dir ./models_phase2 ``` ```bash NODE_RANK=1 python3.8 train.py --distributed-master-address 172.31.86.231 --train-device hpu --distributed-parallel-devices 8 --distributed-num-nodes 2 --hyperparam-epochs 15 --checkpoint-load-text-path /home/models/text-last.ckpt --checkpoint-load-vision-path /home/models/vision-last.ckpt --checkpoint-dir ./models_phase2 ``` ## Other devices If you don't have access to a Habana Gaudi accelerator yet, you can also train on CPU/GPU, although it will be way slower. To train on CPU, just pass `--train-device=cpu` and on GPU `--train-device=cuda` to the `train.py` script. # Inference ## Loading pre-trained model from Hugging Face HUB ```python from models import create_and_load_from_hub model = create_and_load_from_hub() ``` ## Loading model from local checkpoint ```python from models import MultiLingualCLIP, load_model text_checkpoint_path = '/path/to/text model checkpoint' vision_checkpoint_path = '/path/to/vision model checkpoint' model = MultiLingualCLIP(num_layers=3) load_model(model, vision_checkpoint_path, text_checkpoint_path) ``` ## Generate embeddings Run the following (after downloading Unplash dataset): `python3.8 ./generate_embeddings.py` ## Searching images ```python import numpy as np from search import MultiLingualSearch images_embeddings = np.load('/path/to/images_embeddings') images_data = [...] # List of image info for each row of the embeddings. For instance, it could be a list of urls, filepaths, ids. They will be returned when calling the search function semantic_search = MultiLingualSearch(model, images_embeddings, images_data) results = semantic_search.search('विद्यालय में') # Means at school print(results) ``` ```json [{"image": "https://images.unsplash.com/photo-1557804506-669a67965ba0?crop=entropy&cs=tinysrgb&fit=max&fm=jpg&ixid=MnwyNDg3OTV8MHwxfHNlYXJjaHwxM3x8bWVldGluZ3N8ZW58MHx8fHwxNjQ1NjA2MjQz&ixlib=rb-1.2.1&q=80&w=400", "prob": 0.2461608648300171}, {"image": "https://images.unsplash.com/photo-1558403194-611308249627?crop=entropy&cs=tinysrgb&fit=max&fm=jpg&ixid=MnwyNDg3OTV8MHwxfHNlYXJjaHwyMXx8cGVvcGxlJTIwd29ya2luZ3xlbnwwfHx8fDE2NDU2MDMyMjE&ixlib=rb-1.2.1&q=80&w=400", "prob": 0.16881239414215088}, {"image": "https://images.unsplash.com/photo-1531497865144-0464ef8fb9a9?crop=entropy&cs=tinysrgb&fit=max&fm=jpg&ixid=MnwyNDg3OTV8MHwxfHNlYXJjaHw4Nnx8cGVvcGxlJTIwd29ya2luZ3xlbnwwfHx8fDE2NDU2MDY5ODc&ixlib=rb-1.2.1&q=80&w=400", "prob": 0.14744874835014343}, {"image": "https://images.unsplash.com/photo-1561089489-f13d5e730d72?crop=entropy&cs=tinysrgb&fit=max&fm=jpg&ixid=MnwyNDg3OTV8MHwxfHNlYXJjaHw5MHx8ZWR1Y2F0aW9ufGVufDB8fHx8MTY0NTYwNjk1Nw&ixlib=rb-1.2.1&q=80&w=400", "prob": 0.095176100730896}, {"image": "https://images.unsplash.com/photo-1580582932707-520aed937b7b?crop=entropy&cs=tinysrgb&fit=max&fm=jpg&ixid=MnwyNDg3OTV8MHwxfHNlYXJjaHwxMnx8ZWR1Y2F0aW9ufGVufDB8fHx8MTY0NTYwMzIwMA&ixlib=rb-1.2.1&q=80&w=400", "prob": 0.05218643322587013}] ```
{"language": "multilingual", "license": "mit", "tags": ["clip", "vision", "text"]}
gzomer/clip-multilingual
null
[ "clip", "vision", "text", "multilingual", "license:mit", "has_space", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
h1t0ro/hayden
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
h4d35/ConvMixer
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
ha-mulan/arxiv-abstracts
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
ha-mulan/hiphopLyrics
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
text-generation
transformers
hello
{}
ha-mulan/moby-dick
null
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
haachicanoy/t5-small-finetuned-xsum
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
automatic-speech-recognition
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # egy-slang-model This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.9273 - Wer: 1.0000 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 1.64 | 200 | 2.9735 | 1.0 | | 3.8098 | 3.28 | 400 | 2.9765 | 1.0 | | 3.8098 | 4.91 | 600 | 2.9662 | 1.0 | | 2.9531 | 6.56 | 800 | 2.9708 | 1.0 | | 2.9531 | 8.2 | 1000 | 2.9673 | 1.0 | | 2.9259 | 9.83 | 1200 | 2.9989 | 1.0 | | 2.9259 | 11.47 | 1400 | 2.9889 | 1.0 | | 2.9023 | 13.11 | 1600 | 2.9739 | 1.0 | | 2.9023 | 14.75 | 1800 | 3.0040 | 1.0000 | | 2.8832 | 16.39 | 2000 | 3.0170 | 1.0 | | 2.8832 | 18.03 | 2200 | 2.9963 | 0.9999 | | 2.8691 | 19.67 | 2400 | 2.9273 | 1.0000 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.1 - Datasets 1.13.3 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "model-index": [{"name": "egy-slang-model", "results": []}]}
habiba/egy-slang-model
null
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
habiba/wav2vec2-large-xls-r-300m-turkish-colab
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
habibmatar/gpt2-wikitext2
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
habu24/dgggg
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
habu24/fdszgzsgz
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
habu24/itvpro
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
hachimi/opus-mt-en-ro-finetuned-en-to-ro
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
fill-mask
transformers
{}
hackertec/dummy
null
[ "transformers", "pytorch", "camembert", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
fill-mask
transformers
This is a test!
{}
hackertec/dummy2
null
[ "transformers", "pytorch", "camembert", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
hackertec/dummy3
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-bne-finetuned-amazon_reviews_multi-taller This model is a fine-tuned version of [BSC-TeMU/roberta-base-bne](https://huggingface.co/BSC-TeMU/roberta-base-bne) on the amazon_reviews_multi dataset. It achieves the following results on the evaluation set: - Loss: 0.2463 - Accuracy: 0.9113 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.2474 | 1.0 | 125 | 0.2463 | 0.9113 | ### Framework versions - Transformers 4.9.2 - Pytorch 1.9.0+cu102 - Datasets 1.11.0 - Tokenizers 0.10.3
{"license": "cc-by-4.0", "tags": ["generated_from_trainer"], "datasets": ["amazon_reviews_multi"], "metrics": ["accuracy"], "model_index": [{"name": "roberta-base-bne-finetuned-amazon_reviews_multi-taller", "results": [{"task": {"name": "Text Classification", "type": "text-classification"}, "dataset": {"name": "amazon_reviews_multi", "type": "amazon_reviews_multi", "args": "es"}, "metric": {"name": "Accuracy", "type": "accuracy", "value": 0.91125}}]}]}
hackertec/roberta-base-bne-finetuned-amazon_reviews_multi-taller
null
[ "transformers", "pytorch", "tensorboard", "roberta", "text-classification", "generated_from_trainer", "dataset:amazon_reviews_multi", "license:cc-by-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-bne-finetuned-amazon_reviews_multi This model is a fine-tuned version of [BSC-TeMU/roberta-base-bne](https://huggingface.co/BSC-TeMU/roberta-base-bne) on the amazon_reviews_multi dataset. It achieves the following results on the evaluation set: - Loss: 0.2557 - Accuracy: 0.9085 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.2296 | 1.0 | 125 | 0.2557 | 0.9085 | ### Framework versions - Transformers 4.9.2 - Pytorch 1.9.0+cu102 - Datasets 1.11.0 - Tokenizers 0.10.3
{"license": "cc-by-4.0", "tags": ["generated_from_trainer"], "datasets": ["amazon_reviews_multi"], "metrics": ["accuracy"], "model_index": [{"name": "roberta-base-bne-finetuned-amazon_reviews_multi", "results": [{"task": {"name": "Text Classification", "type": "text-classification"}, "dataset": {"name": "amazon_reviews_multi", "type": "amazon_reviews_multi", "args": "es"}, "metric": {"name": "Accuracy", "type": "accuracy", "value": 0.9085}}]}]}
hackertec/roberta-base-bne-finetuned-amazon_reviews_multi
null
[ "transformers", "pytorch", "tensorboard", "roberta", "text-classification", "generated_from_trainer", "dataset:amazon_reviews_multi", "license:cc-by-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
null
# Test
{"license": "afl-3.0", "tags": ["es", "bert"], "pipeline_tag": "text-classification", "widget": [{"text": "Mi nombre es Omar", "exdample_title": "Example 1"}, {"text": "Otra prueba", "example_title": "Test"}]}
hackertec9/test
null
[ "es", "bert", "text-classification", "license:afl-3.0", "region:us" ]
null
2022-03-02T23:29:05+00:00
text2text-generation
transformers
{}
hadifar/clozify
null
[ "transformers", "pytorch", "t5", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
automatic-speech-recognition
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-colab This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "model-index": [{"name": "wav2vec2-base-timit-demo-colab", "results": []}]}
hady/wav2vec2-base-timit-demo-colab
null
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-generation
transformers
{}
hafidhrendyanto/gpt2-absa
null
[ "transformers", "tf", "gpt2", "text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
haimasree/Basset
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{"language": "en", "license": "mit", "tags": ["exbert"], "datasets": ["bookcorpus", "wikipedia"]}
haimasree/DeepSTARR
null
[ "exbert", "en", "dataset:bookcorpus", "dataset:wikipedia", "license:mit", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
haisam90/tapas
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
feature-extraction
transformers
Github: https://github.com/haisongzhang/roberta-tiny-cased
{}
haisongzhang/roberta-tiny-cased
null
[ "transformers", "pytorch", "tf", "jax", "bert", "feature-extraction", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:05+00:00
fill-mask
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bertweet-base-SNS_BRANDS_100k This model is a fine-tuned version of [vinai/bertweet-base](https://huggingface.co/vinai/bertweet-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0483 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.0735 | 1.0 | 2928 | 0.0670 | | 0.0574 | 2.0 | 5856 | 0.0529 | | 0.0497 | 3.0 | 8784 | 0.0483 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
{"tags": ["generated_from_trainer"], "model-index": [{"name": "bertweet-base-SNS_BRANDS_100k", "results": []}]}
haji2438/bertweet-base-SNS_BRANDS_100k
null
[ "transformers", "pytorch", "tensorboard", "roberta", "fill-mask", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
fill-mask
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bertweet-base-SNS_BRANDS_200k This model is a fine-tuned version of [vinai/bertweet-base](https://huggingface.co/vinai/bertweet-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0243 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 0.0428 | 1.0 | 5882 | 0.0336 | | 0.0276 | 2.0 | 11764 | 0.0241 | | 0.0251 | 3.0 | 17646 | 0.0243 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.18.0 - Tokenizers 0.10.3
{"tags": ["generated_from_trainer"], "model-index": [{"name": "bertweet-base-SNS_BRANDS_200k", "results": []}]}
haji2438/bertweet-base-SNS_BRANDS_200k
null
[ "transformers", "pytorch", "tensorboard", "roberta", "fill-mask", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
fill-mask
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bertweet-base-SNS_BRANDS_50k This model is a fine-tuned version of [vinai/bertweet-base](https://huggingface.co/vinai/bertweet-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0490 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.0787 | 1.0 | 1465 | 0.0751 | | 0.0662 | 2.0 | 2930 | 0.0628 | | 0.053 | 3.0 | 4395 | 0.0531 | | 0.0452 | 4.0 | 5860 | 0.0490 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.18.0 - Tokenizers 0.10.3
{"tags": ["generated_from_trainer"], "model-index": [{"name": "bertweet-base-SNS_BRANDS_50k", "results": []}]}
haji2438/bertweet-base-SNS_BRANDS_50k
null
[ "transformers", "pytorch", "tensorboard", "roberta", "fill-mask", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
fill-mask
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bertweet-base-finetuned-IGtext This model is a fine-tuned version of [vinai/bertweet-base](https://huggingface.co/vinai/bertweet-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.0334 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.6741 | 1.0 | 505 | 2.2096 | | 2.3183 | 2.0 | 1010 | 2.0934 | | 2.2089 | 3.0 | 1515 | 2.0595 | | 2.1473 | 4.0 | 2020 | 2.0246 | ### Framework versions - Transformers 4.12.3 - Pytorch 1.10.0+cu111 - Datasets 1.15.1 - Tokenizers 0.10.3
{"tags": ["generated_from_trainer"], "model-index": [{"name": "bertweet-base-finetuned-IGtext", "results": []}]}
haji2438/bertweet-base-finetuned-IGtext
null
[ "transformers", "pytorch", "tensorboard", "roberta", "fill-mask", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
fill-mask
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bertweet-base-finetuned-SNS-brand-personality This model is a fine-tuned version of [vinai/bertweet-base](https://huggingface.co/vinai/bertweet-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0498 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.0757 | 1.0 | 1549 | 0.0723 | | 0.0605 | 2.0 | 3098 | 0.0573 | | 0.0498 | 3.0 | 4647 | 0.0498 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
{"tags": ["generated_from_trainer"], "model-index": [{"name": "bertweet-base-finetuned-SNS-brand-personality", "results": []}]}
haji2438/bertweet-base-finetuned-SNS-brand-personality
null
[ "transformers", "pytorch", "tensorboard", "roberta", "fill-mask", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
haji2438/distilgpt2-finetuned-wikitext2
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
{}
haji2438/test_Com_bertweet_fine_tuned
null
[ "transformers", "pytorch", "roberta", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
{}
haji2438/test_sin
null
[ "transformers", "pytorch", "roberta", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
{}
haji2438/test_sin_bertweet_fine_tuned
null
[ "transformers", "pytorch", "roberta", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
haji2438/test_sin_ony
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
text-generation
transformers
# XLNet-japanese ## Model description This model require Mecab and senetencepiece with XLNetTokenizer. See details https://qiita.com/mkt3/items/4d0ae36f3f212aee8002 This model uses NFKD as the normalization method for character encoding. Japanese muddle marks and semi-muddle marks will be lost. *日本語の濁点・半濁点がないモデルです* #### How to use ```python from fugashi import Tagger from transformers import ( pipeline, XLNetLMHeadModel, XLNetTokenizer ) class XLNet(): def __init__(self): self.m = Tagger('-Owakati') self.gen_model = XLNetLMHeadModel.from_pretrained("hajime9652/xlnet-japanese") self.gen_tokenizer = XLNetTokenizer.from_pretrained("hajime9652/xlnet-japanese") def generate(self, prompt="福岡のご飯は美味しい。コンパクトで暮らしやすい街。"): prompt = self.m.parse(prompt) inputs = self.gen_tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt") prompt_length = len(self.gen_tokenizer.decode(inputs[0], skip_special_tokens=True, clean_up_tokenization_spaces=True)) outputs = self.gen_model.generate(inputs, max_length=200, do_sample=True, top_p=0.95, top_k=60) generated = prompt + self.gen_tokenizer.decode(outputs[0])[prompt_length:] return generated ``` #### Limitations and bias This model's training use the Japanese Business News. # Important matter The company that created and published this model is called Stockmark. This repository is for use by HuggingFace and not for infringement. See this documents https://qiita.com/mkt3/items/4d0ae36f3f212aee8002 published by https://github.com/mkt3
{"language": ["ja"], "license": ["apache-2.0"], "tags": ["xlnet", "lm-head", "causal-lm"], "datasets": ["Japanese_Business_News"]}
hajime9652/xlnet-japanese
null
[ "transformers", "pytorch", "xlnet", "text-generation", "lm-head", "causal-lm", "ja", "dataset:Japanese_Business_News", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-generation
transformers
This model has been initialized with random values. It is supposed to be used for the purpose of debugging.
{}
hakurei/gpt-j-random-tinier
null
[ "transformers", "pytorch", "gptj", "text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-generation
transformers
# Lit-125M - A Small Fine-tuned Model For Fictional Storytelling Lit-125M is a GPT-Neo 125M model fine-tuned on 2GB of a diverse range of light novels, erotica, and annotated literature for the purpose of generating novel-like fictional text. ## Model Description The model used for fine-tuning is [GPT-Neo 125M](https://huggingface.co/EleutherAI/gpt-neo-125M), which is a 125 million parameter auto-regressive language model trained on [The Pile](https://pile.eleuther.ai/).. ## Training Data & Annotative Prompting The data used in fine-tuning has been gathered from various sources such as the [Gutenberg Project](https://www.gutenberg.org/). The annotated fiction dataset has prepended tags to assist in generating towards a particular style. Here is an example prompt that shows how to use the annotations. ``` [ Title: The Dunwich Horror; Author: H. P. Lovecraft; Genre: Horror; Tags: 3rdperson, scary; Style: Dark ] *** When a traveler in north central Massachusetts takes the wrong fork... ``` The annotations can be mixed and matched to help generate towards a specific style. ## Downstream Uses This model can be used for entertainment purposes and as a creative writing assistant for fiction writers. The small size of the model can also help for easy debugging or further development of other models with a similar purpose. ## Example Code ``` from transformers import AutoTokenizer, AutoModelForCausalLM model = AutoModelForCausalLM.from_pretrained('hakurei/lit-125M') tokenizer = AutoTokenizer.from_pretrained('hakurei/lit-125M') prompt = '''[ Title: The Dunwich Horror; Author: H. P. Lovecraft; Genre: Horror ] *** When a traveler''' input_ids = tokenizer.encode(prompt, return_tensors='pt') output = model.generate(input_ids, do_sample=True, temperature=1.0, top_p=0.9, repetition_penalty=1.2, max_length=len(input_ids[0])+100, pad_token_id=tokenizer.eos_token_id) generated_text = tokenizer.decode(output[0]) print(generated_text) ``` An example output from this code produces a result that will look similar to: ``` [ Title: The Dunwich Horror; Author: H. P. Lovecraft; Genre: Horror ] *** When a traveler takes a trip through the streets of the world, the traveler feels like a youkai with a whole world inside her mind. It can be very scary for a youkai. When someone goes in the opposite direction and knocks on your door, it is actually the first time you have ever come to investigate something like that. That's right: everyone has heard stories about youkai, right? If you have heard them, you know what I'm talking about. It's hard not to say you ``` ## Team members and Acknowledgements - [Anthony Mercurio](https://github.com/harubaru) - Imperishable_NEET
{"language": ["en"], "license": "mit", "tags": ["pytorch", "causal-lm"]}
hakurei/lit-125M
null
[ "transformers", "pytorch", "gpt_neo", "text-generation", "causal-lm", "en", "license:mit", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
transformers
# Lit-6B - A Large Fine-tuned Model For Fictional Storytelling Lit-6B is a GPT-J 6B model fine-tuned on 2GB of a diverse range of light novels, erotica, and annotated literature for the purpose of generating novel-like fictional text. ## Model Description The model used for fine-tuning is [GPT-J](https://github.com/kingoflolz/mesh-transformer-jax), which is a 6 billion parameter auto-regressive language model trained on [The Pile](https://pile.eleuther.ai/). ## Training Data & Annotative Prompting The data used in fine-tuning has been gathered from various sources such as the [Gutenberg Project](https://www.gutenberg.org/). The annotated fiction dataset has prepended tags to assist in generating towards a particular style. Here is an example prompt that shows how to use the annotations. ``` [ Title: The Dunwich Horror; Author: H. P. Lovecraft; Genre: Horror; Tags: 3rdperson, scary; Style: Dark ] *** When a traveler in north central Massachusetts takes the wrong fork... ``` The annotations can be mixed and matched to help generate towards a specific style. ## Downstream Uses This model can be used for entertainment purposes and as a creative writing assistant for fiction writers. ## Example Code ``` from transformers import AutoTokenizer, AutoModelForCausalLM model = AutoModelForCausalLM.from_pretrained('hakurei/lit-6B') tokenizer = AutoTokenizer.from_pretrained('hakurei/lit-6B') prompt = '''[ Title: The Dunwich Horror; Author: H. P. Lovecraft; Genre: Horror ] *** When a traveler''' input_ids = tokenizer.encode(prompt, return_tensors='pt') output = model.generate(input_ids, do_sample=True, temperature=1.0, top_p=0.9, repetition_penalty=1.2, max_length=len(input_ids[0])+100, pad_token_id=tokenizer.eos_token_id) generated_text = tokenizer.decode(output[0]) print(generated_text) ``` An example output from this code produces a result that will look similar to: ``` [ Title: The Dunwich Horror; Author: H. P. Lovecraft; Genre: Horror ] *** When a traveler comes to an unknown region, his thoughts turn inevitably towards the old gods and legends which cluster around its appearance. It is not that he believes in them or suspects their reality—but merely because they are present somewhere else in creation just as truly as himself, and so belong of necessity in any landscape whose features cannot be altogether strange to him. Moreover, man has been prone from ancient times to brood over those things most connected with the places where he dwells. Thus the Olympian deities who ruled Hyper ``` ## Team members and Acknowledgements This project would not have been possible without the computational resources graciously provided by the [TPU Research Cloud](https://sites.research.google/trc/) - [Anthony Mercurio](https://github.com/harubaru) - Imperishable_NEET
{"language": ["en"], "license": "mit", "tags": ["pytorch", "causal-lm"]}
hakurei/lit-6B-8bit
null
[ "transformers", "pytorch", "causal-lm", "en", "license:mit", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-generation
transformers
# Lit-6B - A Large Fine-tuned Model For Fictional Storytelling Lit-6B is a GPT-J 6B model fine-tuned on 2GB of a diverse range of light novels, erotica, and annotated literature for the purpose of generating novel-like fictional text. ## Model Description The model used for fine-tuning is [GPT-J](https://github.com/kingoflolz/mesh-transformer-jax), which is a 6 billion parameter auto-regressive language model trained on [The Pile](https://pile.eleuther.ai/). ## Training Data & Annotative Prompting The data used in fine-tuning has been gathered from various sources such as the [Gutenberg Project](https://www.gutenberg.org/). The annotated fiction dataset has prepended tags to assist in generating towards a particular style. Here is an example prompt that shows how to use the annotations. ``` [ Title: The Dunwich Horror; Author: H. P. Lovecraft; Genre: Horror; Tags: 3rdperson, scary; Style: Dark ] *** When a traveler in north central Massachusetts takes the wrong fork... ``` The annotations can be mixed and matched to help generate towards a specific style. ## Downstream Uses This model can be used for entertainment purposes and as a creative writing assistant for fiction writers. ## Example Code ``` from transformers import AutoTokenizer, AutoModelForCausalLM model = AutoModelForCausalLM.from_pretrained('hakurei/lit-6B') tokenizer = AutoTokenizer.from_pretrained('hakurei/lit-6B') prompt = '''[ Title: The Dunwich Horror; Author: H. P. Lovecraft; Genre: Horror ] *** When a traveler''' input_ids = tokenizer.encode(prompt, return_tensors='pt') output = model.generate(input_ids, do_sample=True, temperature=1.0, top_p=0.9, repetition_penalty=1.2, max_length=len(input_ids[0])+100, pad_token_id=tokenizer.eos_token_id) generated_text = tokenizer.decode(output[0]) print(generated_text) ``` An example output from this code produces a result that will look similar to: ``` [ Title: The Dunwich Horror; Author: H. P. Lovecraft; Genre: Horror ] *** When a traveler comes to an unknown region, his thoughts turn inevitably towards the old gods and legends which cluster around its appearance. It is not that he believes in them or suspects their reality—but merely because they are present somewhere else in creation just as truly as himself, and so belong of necessity in any landscape whose features cannot be altogether strange to him. Moreover, man has been prone from ancient times to brood over those things most connected with the places where he dwells. Thus the Olympian deities who ruled Hyper ``` ## Team members and Acknowledgements This project would not have been possible without the computational resources graciously provided by the [TPU Research Cloud](https://sites.research.google/trc/) - [Anthony Mercurio](https://github.com/harubaru) - Imperishable_NEET
{"language": ["en"], "license": "mit", "tags": ["pytorch", "causal-lm"]}
hakurei/lit-6B
null
[ "transformers", "pytorch", "gptj", "text-generation", "causal-lm", "en", "license:mit", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
haladaj/dc
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
hale-in/distilbert-base-uncased-finetuned-squad
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
haleyej/predict_verification
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
feature-extraction
transformers
{}
halimara/model_sentence_bert
null
[ "transformers", "pytorch", "bert", "feature-extraction", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-generation
transformers
{}
ham19za/model
null
[ "transformers", "pytorch", "gpt_neo", "text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-generation
transformers
{}
ham19za/model2
null
[ "transformers", "pytorch", "gpt_neo", "text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-generation
transformers
# DOC DialoGPT Model
{"tags": ["conversational"]}
hama/Doctor_Bot
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-generation
transformers
# Harry Potter DialoGPT Model
{"tags": ["conversational"]}
hama/Harry_Bot
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-generation
transformers
# BArney DialoGPT Model
{"tags": ["conversational"]}
hama/barney_bot
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-generation
transformers
# me 101
{"tags": ["conversational"]}
hama/me0.01
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-generation
transformers
# Rick and Morty DialoGPT Model
{"tags": ["conversational"]}
hama/rick_bot
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
text2text-generation
transformers
# mBart50 for Zeroshot Azerbaijani-Turkish Translation The mBart50 model is finetuned on English-Azerbaijani-Turkish translation leaving Az<->Tr as zeroshot directions. The method of tied representations is used to enforce alignment between semantically equivalent sentences leading to superior zeroshot performance.
{}
hamishs/mBART50-en-az-tr1
null
[ "transformers", "pytorch", "mbart", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
hammadktk/firstModel
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
hello
{}
hamxxxa/SBert
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
{}
hamzaMM/Inappropriate-Filter
null
[ "transformers", "tf", "bert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
{}
hamzaMM/questionClassifier
null
[ "transformers", "pytorch", "bert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
feature-extraction
transformers
{}
hamzab/codebert_code_search
null
[ "transformers", "pytorch", "roberta", "feature-extraction", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
hana/bertbase
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
fill-mask
transformers
{}
hangmu/9.4AIstudy
null
[ "transformers", "pytorch", "bert", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
hanguyen99ptit/my_model_pho
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
hanguyen99ptit/mymodel
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
hanguyen99ptit/notOK
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
question-answering
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # electra-small-discriminator-finetuned-squad This model is a fine-tuned version of [google/electra-small-discriminator](https://huggingface.co/google/electra-small-discriminator) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 1.2174 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.5751 | 1.0 | 2767 | 1.3952 | | 1.2939 | 2.0 | 5534 | 1.2458 | | 1.1866 | 3.0 | 8301 | 1.2174 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["squad"], "model-index": [{"name": "electra-small-discriminator-finetuned-squad", "results": []}]}
hankzhong/electra-small-discriminator-finetuned-squad
null
[ "transformers", "pytorch", "tensorboard", "electra", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
feature-extraction
transformers
{}
hanmaroo/xlm_roberta_large_korquad_v1
null
[ "transformers", "pytorch", "xlm-roberta", "feature-extraction", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
feature-extraction
transformers
{}
hanmaroo/xlm_roberta_large_korquad_v2
null
[ "transformers", "pytorch", "xlm-roberta", "feature-extraction", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
{}
hanseokhyeon/bert-11street
null
[ "transformers", "pytorch", "jax", "bert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
{}
hanseokhyeon/bert-badword-base
null
[ "transformers", "pytorch", "jax", "bert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
{}
hanseokhyeon/bert-badword-large
null
[ "transformers", "pytorch", "jax", "bert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
{}
hanseokhyeon/bert-badword-puri-000
null
[ "transformers", "pytorch", "jax", "bert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
{}
hanseokhyeon/bert-badword-puri-1200-base
null
[ "transformers", "pytorch", "jax", "bert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
{}
hanseokhyeon/bert-badword-puri-2400
null
[ "transformers", "pytorch", "jax", "bert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
{}
hanseokhyeon/bert-badword-puri
null
[ "transformers", "pytorch", "jax", "bert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00