Search is not available for this dataset
pipeline_tag
stringclasses
48 values
library_name
stringclasses
205 values
text
stringlengths
0
18.3M
metadata
stringlengths
2
1.07B
id
stringlengths
5
122
last_modified
null
tags
listlengths
1
1.84k
sha
null
created_at
stringlengths
25
25
text-classification
transformers
{}
hanseokhyeon/bert-badword
null
[ "transformers", "pytorch", "jax", "bert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
fill-mask
transformers
## Not yet
{}
hansgun/model_test
null
[ "transformers", "tf", "bert", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
feature-extraction
transformers
{}
hansgun/model_test2
null
[ "transformers", "pytorch", "jax", "bert", "feature-extraction", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
hanwentao/t5
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
text2text-generation
transformers
# Helsinki-NLP/opus-mt-en-vi - This model is a fine-tune checkpoint of [Helsinki-NLP/opus-mt-en-vi](https://huggingface.co/Helsinki-NLP/opus-mt-en-vi). - This model reaches BLEU score = 33.086 on the test set of IWSLT'15 English-Vietnamese data. # Fine-tuning hyper-parameters - learning_rate = 1e-4 - batch_size = 4 - num_train_epochs = 3.0
{}
haotieu/en-vi-mt-model
null
[ "transformers", "pytorch", "marian", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:05+00:00
text2text-generation
transformers
{}
haotieu/vietnamese-summarization
null
[ "transformers", "pytorch", "mbart", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
haozhu233/chinese_recipe
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
feature-extraction
sentence-transformers
# multi-qa-MiniLM-L6-cos-v1 This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 384 dimensional dense vector space and was designed for **semantic search**. It has been trained on 215M (question, answer) pairs from diverse sources. For an introduction to semantic search, have a look at: [SBERT.net - Semantic Search](https://www.sbert.net/examples/applications/semantic-search/README.html) ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer, util query = "How many people live in London?" docs = ["Around 9 Million people live in London", "London is known for its financial district"] #Load the model model = SentenceTransformer('sentence-transformers/multi-qa-MiniLM-L6-cos-v1') #Encode query and documents query_emb = model.encode(query) doc_emb = model.encode(docs) #Compute dot score between query and all document embeddings scores = util.dot_score(query_emb, doc_emb)[0].cpu().tolist() #Combine docs & scores doc_score_pairs = list(zip(docs, scores)) #Sort by decreasing score doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True) #Output passages & scores for doc, score in doc_score_pairs: print(score, doc) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the correct pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch import torch.nn.functional as F #Mean Pooling - Take average of all tokens def mean_pooling(model_output, attention_mask): token_embeddings = model_output.last_hidden_state #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) #Encode text def encode(texts): # Tokenize sentences encoded_input = tokenizer(texts, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input, return_dict=True) # Perform pooling embeddings = mean_pooling(model_output, encoded_input['attention_mask']) # Normalize embeddings embeddings = F.normalize(embeddings, p=2, dim=1) return embeddings # Sentences we want sentence embeddings for query = "How many people live in London?" docs = ["Around 9 Million people live in London", "London is known for its financial district"] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained("sentence-transformers/multi-qa-MiniLM-L6-cos-v1") model = AutoModel.from_pretrained("sentence-transformers/multi-qa-MiniLM-L6-cos-v1") #Encode query and docs query_emb = encode(query) doc_emb = encode(docs) #Compute dot score between query and all document embeddings scores = torch.mm(query_emb, doc_emb.transpose(0, 1))[0].cpu().tolist() #Combine docs & scores doc_score_pairs = list(zip(docs, scores)) #Sort by decreasing score doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True) #Output passages & scores for doc, score in doc_score_pairs: print(score, doc) ``` ## Technical Details In the following some technical details how this model must be used: | Setting | Value | | --- | :---: | | Dimensions | 384 | | Produces normalized embeddings | Yes | | Pooling-Method | Mean pooling | | Suitable score functions | dot-product (`util.dot_score`), cosine-similarity (`util.cos_sim`), or euclidean distance | Note: When loaded with `sentence-transformers`, this model produces normalized embeddings with length 1. In that case, dot-product and cosine-similarity are equivalent. dot-product is preferred as it is faster. Euclidean distance is proportional to dot-product and can also be used. ---- ## Background The project aims to train sentence embedding models on very large sentence level datasets using a self-supervised contrastive learning objective. We use a contrastive learning objective: given a sentence from the pair, the model should predict which out of a set of randomly sampled other sentences, was actually paired with it in our dataset. We developped this model during the [Community week using JAX/Flax for NLP & CV](https://discuss.huggingface.co/t/open-to-the-community-community-week-using-jax-flax-for-nlp-cv/7104), organized by Hugging Face. We developped this model as part of the project: [Train the Best Sentence Embedding Model Ever with 1B Training Pairs](https://discuss.huggingface.co/t/train-the-best-sentence-embedding-model-ever-with-1b-training-pairs/7354). We benefited from efficient hardware infrastructure to run the project: 7 TPUs v3-8, as well as intervention from Googles Flax, JAX, and Cloud team member about efficient deep learning frameworks. ## Intended uses Our model is intented to be used for semantic search: It encodes queries / questions and text paragraphs in a dense vector space. It finds relevant documents for the given passages. Note that there is a limit of 512 word pieces: Text longer than that will be truncated. Further note that the model was just trained on input text up to 250 word pieces. It might not work well for longer text. ## Training procedure The full training script is accessible in this current repository: `train_script.py`. ### Pre-training We use the pretrained [`nreimers/MiniLM-L6-H384-uncased`](https://huggingface.co/nreimers/MiniLM-L6-H384-uncased) model. Please refer to the model card for more detailed information about the pre-training procedure. #### Training We use the concatenation from multiple datasets to fine-tune our model. In total we have about 215M (question, answer) pairs. We sampled each dataset given a weighted probability which configuration is detailed in the `data_config.json` file. The model was trained with [MultipleNegativesRankingLoss](https://www.sbert.net/docs/package_reference/losses.html#multiplenegativesrankingloss) using Mean-pooling, cosine-similarity as similarity function, and a scale of 20. | Dataset | Number of training tuples | |--------------------------------------------------------|:--------------------------:| | [WikiAnswers](https://github.com/afader/oqa#wikianswers-corpus) Duplicate question pairs from WikiAnswers | 77,427,422 | | [PAQ](https://github.com/facebookresearch/PAQ) Automatically generated (Question, Paragraph) pairs for each paragraph in Wikipedia | 64,371,441 | | [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) (Title, Body) pairs from all StackExchanges | 25,316,456 | | [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) (Title, Answer) pairs from all StackExchanges | 21,396,559 | | [MS MARCO](https://microsoft.github.io/msmarco/) Triplets (query, answer, hard_negative) for 500k queries from Bing search engine | 17,579,773 | | [GOOAQ: Open Question Answering with Diverse Answer Types](https://github.com/allenai/gooaq) (query, answer) pairs for 3M Google queries and Google featured snippet | 3,012,496 | | [Amazon-QA](http://jmcauley.ucsd.edu/data/amazon/qa/) (Question, Answer) pairs from Amazon product pages | 2,448,839 | [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) (Title, Answer) pairs from Yahoo Answers | 1,198,260 | | [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) (Question, Answer) pairs from Yahoo Answers | 681,164 | | [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) (Title, Question) pairs from Yahoo Answers | 659,896 | | [SearchQA](https://huggingface.co/datasets/search_qa) (Question, Answer) pairs for 140k questions, each with Top5 Google snippets on that question | 582,261 | | [ELI5](https://huggingface.co/datasets/eli5) (Question, Answer) pairs from Reddit ELI5 (explainlikeimfive) | 325,475 | | [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) Duplicate questions pairs (titles) | 304,525 | | [Quora Question Triplets](https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs) (Question, Duplicate_Question, Hard_Negative) triplets for Quora Questions Pairs dataset | 103,663 | | [Natural Questions (NQ)](https://ai.google.com/research/NaturalQuestions) (Question, Paragraph) pairs for 100k real Google queries with relevant Wikipedia paragraph | 100,231 | | [SQuAD2.0](https://rajpurkar.github.io/SQuAD-explorer/) (Question, Paragraph) pairs from SQuAD2.0 dataset | 87,599 | | [TriviaQA](https://huggingface.co/datasets/trivia_qa) (Question, Evidence) pairs | 73,346 | | **Total** | **214,988,242** |
{"tags": ["sentence-transformers", "feature-extraction", "sentence-similarity"], "pipeline_tag": "feature-extraction"}
haqishen/test-mode-fe
null
[ "sentence-transformers", "pytorch", "bert", "feature-extraction", "sentence-similarity", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
haqishen/test-model-fe
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
fill-mask
transformers
{}
harish/AStitchInLanguageModels-Task2_EN_BERTTokenizedALLReplacePreTrain
null
[ "transformers", "pytorch", "bert", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
fill-mask
transformers
{}
harish/AStitchInLanguageModels-Task2_EN_BERTTokenizedNoPreTrain
null
[ "transformers", "pytorch", "bert", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
fill-mask
transformers
{}
harish/AStitchInLanguageModels-Task2_EN_BERTTokenizedSelectReplacePreTrain
null
[ "transformers", "pytorch", "bert", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
transformers
{}
harish/AStitchInLanguageModels-Task2_EN_SentTransALLReplacePreTrain
null
[ "transformers", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
transformers
{}
harish/AStitchInLanguageModels-Task2_EN_SentTransAllTokenizedFineTuned
null
[ "transformers", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
transformers
{}
harish/AStitchInLanguageModels-Task2_EN_SentTransDefaultFineTuned
null
[ "transformers", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
transformers
{}
harish/AStitchInLanguageModels-Task2_EN_SentTransSelectReplacePreTrain
null
[ "transformers", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
transformers
{}
harish/AStitchInLanguageModels-Task2_EN_SentTransSelectTokenizedFineTuned
null
[ "transformers", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
transformers
{}
harish/AStitchInLanguageModels-Task2_EN_SentTransTokenizedNoPreTrain
null
[ "transformers", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
transformers
{}
harish/AStitchInLanguageModels-Task2_PT_SentTransALLReplacePreTrain
null
[ "transformers", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
transformers
{}
harish/AStitchInLanguageModels-Task2_PT_SentTransAllTokenizedFineTuned
null
[ "transformers", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
transformers
{}
harish/AStitchInLanguageModels-Task2_PT_SentTransDefaultFineTuned
null
[ "transformers", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
transformers
{}
harish/AStitchInLanguageModels-Task2_PT_SentTransSelectReplacePreTrain
null
[ "transformers", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
transformers
{}
harish/AStitchInLanguageModels-Task2_PT_SentTransSelectTokenizedFineTuned
null
[ "transformers", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
transformers
{}
harish/AStitchInLanguageModels-Task2_PT_SentTransTokenizedNoPreTrain
null
[ "transformers", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
fill-mask
transformers
{}
harish/AStitchInLanguageModels-Task2_PT_mBERTTokenizedALLReplacePreTrain
null
[ "transformers", "pytorch", "bert", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
fill-mask
transformers
{}
harish/AStitchInLanguageModels-Task2_PT_mBERTTokenizedNoPreTrain
null
[ "transformers", "pytorch", "bert", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
fill-mask
transformers
{}
harish/AStitchInLanguageModels-Task2_PT_mBERTTokenizedSelectReplacePreTrain
null
[ "transformers", "pytorch", "bert", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
transformers
{}
harish/AllTokenFineTunedNLI-E1
null
[ "transformers", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
transformers
{}
harish/AllTokenFineTunedNLI-V1-E1
null
[ "transformers", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
transformers
{}
harish/AllTokenFineTunedSB-E1
null
[ "transformers", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
transformers
{}
harish/BERT-Plus-CxG-100K
null
[ "transformers", "pytorch", "jax", "bert", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
transformers
{}
harish/BERT-Plus-CxG-20K
null
[ "transformers", "pytorch", "jax", "bert", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
transformers
{}
harish/BERTBaseClone-10000-6000000
null
[ "transformers", "pytorch", "jax", "bert", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
transformers
{}
harish/BERTBaseClone-2-10000
null
[ "transformers", "pytorch", "jax", "bert", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
transformers
{}
harish/BERTRand-10000-6000000
null
[ "transformers", "pytorch", "jax", "bert", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
transformers
{}
harish/BERTRand-2-10000
null
[ "transformers", "pytorch", "jax", "bert", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
transformers
{}
harish/CxGBERT-10000-6000000
null
[ "transformers", "pytorch", "jax", "bert", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
transformers
{}
harish/CxGBERT-2-10000
null
[ "transformers", "pytorch", "jax", "bert", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
{}
harish/EN-AStitchTask1A-BERTBaseCased-FalseFalse-0-3-BEST
null
[ "transformers", "pytorch", "bert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
{}
harish/EN-AStitchTask1A-BERTBaseCased-FalseTrue-0-3-BEST
null
[ "transformers", "pytorch", "bert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
{}
harish/EN-AStitchTask1A-BERTBaseCased-TrueFalse-0-4-BEST
null
[ "transformers", "pytorch", "safetensors", "bert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
{}
harish/EN-AStitchTask1A-BERTBaseCased-TrueTrue-0-3-BEST
null
[ "transformers", "pytorch", "bert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
{}
harish/EN-AStitchTask1A-BERTBaseUncased-FalseTrue-0-0-BEST
null
[ "transformers", "pytorch", "bert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
{}
harish/EN-AStitchTask1A-DistilBERT-FalseTrue-0-2-BEST
null
[ "transformers", "pytorch", "distilbert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
{}
harish/EN-AStitchTask1A-RoBERTaBase-FalseTrue-0-0-BEST
null
[ "transformers", "pytorch", "roberta", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
{}
harish/EN-AStitchTask1A-XLNet-FalseFalse-0-FewShot-4-BEST
null
[ "transformers", "pytorch", "xlnet", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
{}
harish/EN-AStitchTask1A-XLNet-FalseFalse-0-OneShot-0-BEST
null
[ "transformers", "pytorch", "xlnet", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
{}
harish/EN-AStitchTask1A-XLNet-FalseTrue-0-1-BEST
null
[ "transformers", "pytorch", "xlnet", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
{}
harish/EN-AStitchTask1A-XLNet-FalseTrue-0-FewShot-0-BEST
null
[ "transformers", "pytorch", "xlnet", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
{}
harish/EN-AStitchTask1A-XLNet-TrueFalse-0-FewShot-0-BEST
null
[ "transformers", "pytorch", "safetensors", "xlnet", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
{}
harish/EN-AStitchTask1A-XLNet-TrueFalse-0-OneShot-1-BEST
null
[ "transformers", "pytorch", "xlnet", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
fill-mask
transformers
{}
harish/ENAllE5
null
[ "transformers", "pytorch", "bert", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
{}
harish/PT-FalseFalse-0_2_BEST
null
[ "transformers", "pytorch", "jax", "bert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
{}
harish/PT-FalseTrue-0_2_BEST
null
[ "transformers", "pytorch", "jax", "bert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
transformers
{}
harish/PT-STS-bert-base-multilingual-cased-4-BEST
null
[ "transformers", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
transformers
{}
harish/PT-STS-bert-base-multilingual-cased-original-2-BEST
null
[ "transformers", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
transformers
{}
harish/PT-STS-pt-e5-all-4-BEST
null
[ "transformers", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
transformers
{}
harish/PT-STS-pt-e5-select-5-BEST
null
[ "transformers", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
{}
harish/PT-TrueTrue-0_0_BEST
null
[ "transformers", "pytorch", "jax", "bert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
{}
harish/PT-UP-mBERT-FalseTrue-0_1_BEST
null
[ "transformers", "pytorch", "bert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
{}
harish/PT-UP-mBERT-TrueTrue-0_2_BEST
null
[ "transformers", "pytorch", "bert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
{}
harish/PT-UP-xlmR-ContextIncluded_IdiomExcluded-4_BEST
null
[ "transformers", "pytorch", "safetensors", "xlm-roberta", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
{}
harish/PT-UP-xlmR-ContextIncluded_IdiomExcluded-FewShot-4_BEST
null
[ "transformers", "pytorch", "xlm-roberta", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
{}
harish/PT-UP-xlmR-ContextIncluded_IdiomExcluded-OneShot-4_BEST
null
[ "transformers", "pytorch", "safetensors", "xlm-roberta", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
{}
harish/PT-UP-xlmR-FalseFalse-0_0_BEST
null
[ "transformers", "pytorch", "xlm-roberta", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
{}
harish/PT-UP-xlmR-FalseFalse-FewShot-2_BEST
null
[ "transformers", "pytorch", "xlm-roberta", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
{}
harish/PT-UP-xlmR-FalseFalse-OneShot-0_BEST
null
[ "transformers", "pytorch", "safetensors", "xlm-roberta", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
{}
harish/PT-UP-xlmR-FalseTrue-0_0_BEST
null
[ "transformers", "pytorch", "xlm-roberta", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
{}
harish/PT-UP-xlmR-FewShot-FalseTrue-0_0_BEST
null
[ "transformers", "pytorch", "xlm-roberta", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
{}
harish/PT-UP-xlmR-OneShot-FalseTrue-0_2_BEST
null
[ "transformers", "pytorch", "xlm-roberta", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
{}
harish/PT-UP-xlmR-TrueTrue-0_4_BEST
null
[ "transformers", "pytorch", "xlm-roberta", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
{}
harish/PT-XLM_R-FalseFalse-0_2_BEST
null
[ "transformers", "pytorch", "xlm-roberta", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
{}
harish/PT-XLM_R-FalseTrue-0_2_BEST
null
[ "transformers", "pytorch", "xlm-roberta", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
{}
harish/PT-mbert-train-from-test-and-dev-FalseTrue-0_0_BEST
null
[ "transformers", "pytorch", "jax", "bert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
{}
harish/PT-mbert-train-from-test-and-dev-SHORT-FalseTrue-0_2_BEST
null
[ "transformers", "pytorch", "jax", "bert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
fill-mask
transformers
{}
harish/PT-v3-dev-test-all-PreTrain-e10-all
null
[ "transformers", "pytorch", "jax", "bert", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
fill-mask
transformers
{}
harish/PT-v3-dev-test-all-PreTrain-e5-all
null
[ "transformers", "pytorch", "jax", "bert", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
fill-mask
transformers
{}
harish/PT-v3-dev-test-all-PreTrain-e5-select
null
[ "transformers", "pytorch", "jax", "bert", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
fill-mask
transformers
{}
harish/PT-v3-dev-test-all-PreTrain-e6-all
null
[ "transformers", "pytorch", "jax", "bert", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
fill-mask
transformers
{}
harish/PT-v3-dev-test-all-PreTrain-e7-select
null
[ "transformers", "pytorch", "jax", "bert", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
transformers
{}
harish/SemEval2022Task2SubTask2ABaseline
null
[ "transformers", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
fill-mask
transformers
{}
harish/preTrained-xlm-pt-e5-select
null
[ "transformers", "pytorch", "xlm-roberta", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
fill-mask
transformers
{}
harish/preTrained-xlm-pt-e8-all
null
[ "transformers", "pytorch", "xlm-roberta", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
fill-mask
transformers
{}
harish/preTrained-xlm-pt-e8-select
null
[ "transformers", "pytorch", "xlm-roberta", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
transformers
{}
harish/v3-dev-test-all-xlm-all-e5-s6
null
[ "transformers", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
transformers
{}
harish/v3-dev-test-all-xlm-all-e8-s4
null
[ "transformers", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
transformers
{}
harish/v3-dev-test-all-xlm-all-e8-s7
null
[ "transformers", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
transformers
{}
harish/v3-dev-test-all-xlm-baseline-s7
null
[ "transformers", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
transformers
{}
harish/v3-dev-test-all-xlm-select-e8-s7
null
[ "transformers", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
transformers
{}
harish/v3-dev-test-all-xlm-select-s6
null
[ "transformers", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
transformers
{}
harish/v3-xlm-roberta-base-s4
null
[ "transformers", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
fill-mask
transformers
{}
harish/xlm-roberta-base-ID
null
[ "transformers", "pytorch", "xlm-roberta", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
harislania/urdu-speech-to-text-test
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
automatic-speech-recognition
transformers
{}
harislania/urdu-speech-to-text
null
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:05+00:00
question-answering
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 1.1642 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.2251 | 1.0 | 5533 | 1.1707 | | 0.9554 | 2.0 | 11066 | 1.1211 | | 0.7645 | 3.0 | 16599 | 1.1642 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["squad"], "model-index": [{"name": "distilbert-base-uncased-finetuned-squad", "results": []}]}
hark99/distilbert-base-uncased-finetuned-squad
null
[ "transformers", "pytorch", "tensorboard", "distilbert", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
hark99/squad
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
token-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-ingredients This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the ingredients_yes_no dataset. It achieves the following results on the evaluation set: - Loss: 0.0105 - Precision: 0.9899 - Recall: 0.9932 - F1: 0.9915 - Accuracy: 0.9978 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 47 | 0.2783 | 0.4 | 0.5492 | 0.4629 | 0.8910 | | No log | 2.0 | 94 | 0.1089 | 0.8145 | 0.8780 | 0.8450 | 0.9718 | | No log | 3.0 | 141 | 0.0273 | 0.9865 | 0.9932 | 0.9899 | 0.9973 | | No log | 4.0 | 188 | 0.0168 | 0.9865 | 0.9932 | 0.9899 | 0.9973 | | No log | 5.0 | 235 | 0.0156 | 0.9865 | 0.9898 | 0.9882 | 0.9957 | | No log | 6.0 | 282 | 0.0129 | 0.9865 | 0.9932 | 0.9899 | 0.9973 | | No log | 7.0 | 329 | 0.0121 | 0.9899 | 0.9932 | 0.9915 | 0.9978 | | No log | 8.0 | 376 | 0.0115 | 0.9899 | 0.9932 | 0.9915 | 0.9978 | | No log | 9.0 | 423 | 0.0108 | 0.9899 | 0.9932 | 0.9915 | 0.9978 | | No log | 10.0 | 470 | 0.0105 | 0.9899 | 0.9932 | 0.9915 | 0.9978 | ### Framework versions - Transformers 4.10.2 - Pytorch 1.9.0+cu102 - Datasets 1.11.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["ingredients_yes_no"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "distilbert-base-uncased-finetuned-ingredients", "results": [{"task": {"type": "token-classification", "name": "Token Classification"}, "dataset": {"name": "ingredients_yes_no", "type": "ingredients_yes_no", "args": "IngredientsYesNo"}, "metrics": [{"type": "precision", "value": 0.9898648648648649, "name": "Precision"}, {"type": "recall", "value": 0.9932203389830508, "name": "Recall"}, {"type": "f1", "value": 0.9915397631133671, "name": "F1"}, {"type": "accuracy", "value": 0.9978308026030369, "name": "Accuracy"}]}]}]}
harr/distilbert-base-uncased-finetuned-ingredients
null
[ "transformers", "pytorch", "tensorboard", "distilbert", "token-classification", "generated_from_trainer", "dataset:ingredients_yes_no", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
Simple Sentiment Ananlysis
{}
harsh2040/sentiment_ananlysis
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
harshaVajapai/DialoGPT-small-harrypotter
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
automatic-speech-recognition
transformers
# Wav2Vec2-Large-LV60-TIMIT Fine-tuned [facebook/wav2vec2-large-lv60](https://huggingface.co/facebook/wav2vec2-large-lv60) on the [timit_asr dataset](https://huggingface.co/datasets/timit_asr). When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import soundfile as sf import torch from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor model_name = "hktayal345/wav2vec2-large-lv60-timit-asr" processor = Wav2Vec2Processor.from_pretrained(model_name) model = Wav2Vec2ForCTC.from_pretrained(model_name) model.eval() dataset = load_dataset("timit_asr", split="test").shuffle().select(range(10)) char_translations = str.maketrans({"-": " ", ",": "", ".": "", "?": ""}) def prepare_example(example): example["speech"], _ = sf.read(example["file"]) example["text"] = example["text"].translate(char_translations) example["text"] = " ".join(example["text"].split()) # clean up whitespaces example["text"] = example["text"].lower() return example dataset = dataset.map(prepare_example, remove_columns=["file"]) inputs = processor(dataset["speech"], sampling_rate=16000, return_tensors="pt", padding="longest") with torch.no_grad(): predicted_ids = torch.argmax(model(inputs.input_values).logits, dim=-1) predicted_ids[predicted_ids == -100] = processor.tokenizer.pad_token_id # see fine-tuning script predicted_transcripts = processor.tokenizer.batch_decode(predicted_ids) for reference, predicted in zip(dataset["text"], predicted_transcripts): print("reference:", reference) print("predicted:", predicted) print("--") ``` Here's the output: ``` reference: the emblem depicts the acropolis all aglow predicted: the amblum depicts the acropolis all a glo -- reference: don't ask me to carry an oily rag like that predicted: don't ask me to carry an oily rag like that -- reference: they enjoy it when i audition predicted: they enjoy it when i addition -- reference: set aside to dry with lid on sugar bowl predicted: set aside to dry with a litt on shoogerbowl -- reference: a boring novel is a superb sleeping pill predicted: a bor and novel is a suberb sleeping peel -- reference: only the most accomplished artists obtain popularity predicted: only the most accomplished artists obtain popularity -- reference: he has never himself done anything for which to be hated which of us has predicted: he has never himself done anything for which to be hated which of us has -- reference: the fish began to leap frantically on the surface of the small lake predicted: the fish began to leap frantically on the surface of the small lake -- reference: or certain words or rituals that child and adult go through may do the trick predicted: or certain words or rituals that child an adult go through may do the trick -- reference: are your grades higher or lower than nancy's predicted: are your grades higher or lower than nancies -- ``` ## Fine-Tuning Script You can find the script used to produce this model [here](https://colab.research.google.com/drive/1gVaZhFuIXxBDN2pD0esW490azlbQtQ7C?usp=sharing). **Note:** This model can be fine-tuned further; [trainer_state.json](https://huggingface.co/harshit345/wav2vec2-large-lv60-timit/blob/main/trainer_state.json) shows useful details, namely the last state (this checkpoint): ```json { "epoch": 29.51, "eval_loss": 25.424150466918945, "eval_runtime": 182.9499, "eval_samples_per_second": 9.183, "eval_wer": 0.1351704233095107, "step": 8500 } ```
{"language": "en", "license": "apache-2.0", "tags": ["audio", "automatic-speech-recognition", "speech"], "datasets": ["timit_asr"]}
harshit345/wav2vec2-large-lv60-timit
null
[ "transformers", "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "audio", "speech", "en", "dataset:timit_asr", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00