Search is not available for this dataset
pipeline_tag
stringclasses
48 values
library_name
stringclasses
205 values
text
stringlengths
0
18.3M
metadata
stringlengths
2
1.07B
id
stringlengths
5
122
last_modified
null
tags
sequencelengths
1
1.84k
sha
null
created_at
stringlengths
25
25
text-classification
transformers
{}
DoyyingFace/bert-asian-hate-tweets-self-clean-small-epoch6
null
[ "transformers", "pytorch", "bert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
{}
DoyyingFace/bert-asian-hate-tweets-self-clean-small-more-epoch
null
[ "transformers", "pytorch", "bert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
{}
DoyyingFace/bert-asian-hate-tweets-self-clean-small-warmup-100
null
[ "transformers", "pytorch", "bert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
{}
DoyyingFace/bert-asian-hate-tweets-self-clean-small-warmup-50
null
[ "transformers", "pytorch", "bert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
{}
DoyyingFace/bert-asian-hate-tweets-self-clean-small
null
[ "transformers", "pytorch", "bert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
{}
DoyyingFace/bert-asian-hate-tweets-self-clean-with-unclean-valid
null
[ "transformers", "pytorch", "bert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
{}
DoyyingFace/bert-asian-hate-tweets-self-clean
null
[ "transformers", "pytorch", "bert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
{}
DoyyingFace/bert-asian-hate-tweets-self-unclean-freeze-12
null
[ "transformers", "pytorch", "bert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
{}
DoyyingFace/bert-asian-hate-tweets-self-unclean-freeze-4
null
[ "transformers", "pytorch", "bert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
{}
DoyyingFace/bert-asian-hate-tweets-self-unclean-freeze-8
null
[ "transformers", "pytorch", "bert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
{}
DoyyingFace/bert-asian-hate-tweets-self-unclean-small
null
[ "transformers", "pytorch", "bert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
{}
DoyyingFace/bert-asian-hate-tweets-self-unclean
null
[ "transformers", "pytorch", "bert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
{}
DoyyingFace/bert-asian-hate-tweets-self-unlean-with-clean-valid
null
[ "transformers", "pytorch", "bert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
{}
DoyyingFace/bert-cola-finetuned
null
[ "transformers", "pytorch", "bert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
{}
DoyyingFace/bert-tweets-semeval-clean
null
[ "transformers", "pytorch", "bert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
{}
DoyyingFace/bert-tweets-semeval-unclean
null
[ "transformers", "pytorch", "bert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
{}
DoyyingFace/bert-wiki-comments-finetuned
null
[ "transformers", "pytorch", "bert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
DoyyingFace/doyying_bert_first
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
<!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # tmp_qubhe07 This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set: ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5e-05, 'decay_steps': 1374, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False} - training_precision: float32 ### Training results ### Framework versions - Transformers 4.15.0 - TensorFlow 2.7.0 - Datasets 1.17.0 - Tokenizers 0.10.3
{"tags": ["generated_from_keras_callback"], "model-index": [{"name": "tmp_qubhe07", "results": []}]}
DoyyingFace/doyying_bert_first_again
null
[ "transformers", "tf", "bert", "text-classification", "generated_from_keras_callback", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
fill-mask
transformers
<!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # dummy-model This model is a fine-tuned version of [camembert-base](https://huggingface.co/camembert-base) on an unknown dataset. It achieves the following results on the evaluation set: ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: None - training_precision: float32 ### Training results ### Framework versions - Transformers 4.15.0 - TensorFlow 2.7.0 - Datasets 1.17.0 - Tokenizers 0.10.3
{"license": "mit", "tags": ["generated_from_keras_callback"], "model-index": [{"name": "dummy-model", "results": []}]}
DoyyingFace/dummy-model
null
[ "transformers", "tf", "camembert", "fill-mask", "generated_from_keras_callback", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
DoyyingFace/test-dummy-model
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
transformers
{}
DrMatters/rubert_cased
null
[ "transformers", "pytorch", "jax", "bert", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
DrOz/DialoGPT-small-RickAndMorty
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
DrSploit/DrFars
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Drackyyy/TLM
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Drackyyy/ag-large-scale
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
transformers
# Legacies DialoGPT Model
{"tags": ["conversational"]}
Dragoniod1596/DialoGPT-small-Legacies
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Dragonjack/test
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
transformers
#Uncle Iroh DialoGPT Model
{"tags": ["conversational"]}
Dreyzin/DialoGPT-medium-avatar
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Dri/Dri
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
automatic-speech-recognition
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - AB dataset. It achieves the following results on the evaluation set: - Loss: 0.5620 - Wer: 0.5651 ### Evaluation Commands 1. To evaluate on mozilla-foundation/common_voice_8_0 with test split python eval.py --model_id DrishtiSharma/wav2vec2-large-xls-r-300m-ab-CV7 --dataset mozilla-foundation/common_voice_7_0 --config ab --split test --log_outputs 2. To evaluate on speech-recognition-community-v2/dev_data NA ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 100.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 9.6445 | 13.64 | 300 | 4.3963 | 1.0 | | 3.6459 | 27.27 | 600 | 3.2267 | 1.0 | | 3.0978 | 40.91 | 900 | 3.0927 | 1.0 | | 2.8357 | 54.55 | 1200 | 2.1462 | 1.0029 | | 1.2723 | 68.18 | 1500 | 0.6747 | 0.6996 | | 0.6528 | 81.82 | 1800 | 0.5928 | 0.6422 | | 0.4905 | 95.45 | 2100 | 0.5587 | 0.5681 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.11.0
{"language": ["ab"], "license": "apache-2.0", "tags": ["automatic-speech-recognition", "mozilla-foundation/common_voice_7_0", "generated_from_trainer", "ab", "robust-speech-event", "model_for_talk", "hf-asr-leaderboard"], "datasets": ["mozilla-foundation/common_voice_7_0"], "model-index": [{"name": "wav2vec2-large-xls-r-300m-ab-CV7", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Common Voice 7", "type": "mozilla-foundation/common_voice_7_0", "args": "ab"}, "metrics": [{"type": "wer", "value": 0.5291160452450775, "name": "Test WER"}, {"type": "cer", "value": 0.10630270750110964, "name": "Test CER"}]}, {"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Robust Speech Event - Dev Data", "type": "speech-recognition-community-v2/dev_data", "args": "ab"}, "metrics": [{"type": "wer", "value": "NA", "name": "Test WER"}, {"type": "cer", "value": "NA", "name": "Test CER"}]}]}]}
DrishtiSharma/wav2vec2-large-xls-r-300m-ab-CV7
null
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "mozilla-foundation/common_voice_7_0", "generated_from_trainer", "ab", "robust-speech-event", "model_for_talk", "hf-asr-leaderboard", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
automatic-speech-recognition
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - AB dataset. It achieves the following results on the evaluation set: - Loss: 0.6178 - Wer: 0.5794 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.00025 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 70.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 5.2793 | 27.27 | 300 | 3.0737 | 1.0 | | 1.5348 | 54.55 | 600 | 0.6312 | 0.6334 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.11.0
{"language": ["ab"], "license": "apache-2.0", "tags": ["automatic-speech-recognition", "mozilla-foundation/common_voice_7_0", "generated_from_trainer"], "datasets": ["common_voice"], "model-index": [{"name": "", "results": []}]}
DrishtiSharma/wav2vec2-large-xls-r-300m-ab-v4
null
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "mozilla-foundation/common_voice_7_0", "generated_from_trainer", "ab", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
automatic-speech-recognition
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-as-g1 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - AS dataset. It achieves the following results on the evaluation set: - Loss: 1.3327 - Wer: 0.5744 ### Evaluation Commands 1. To evaluate on mozilla-foundation/common_voice_8_0 with test split python eval.py --model_id DrishtiSharma/wav2vec2-large-xls-r-300m-as-g1 --dataset mozilla-foundation/common_voice_8_0 --config as --split test --log_outputs 2. To evaluate on speech-recognition-community-v2/dev_data Assamese language isn't available in speech-recognition-community-v2/dev_data ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 200 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 14.1958 | 5.26 | 100 | 7.1919 | 1.0 | | 5.0035 | 10.51 | 200 | 3.9362 | 1.0 | | 3.6193 | 15.77 | 300 | 3.4451 | 1.0 | | 3.4852 | 21.05 | 400 | 3.3536 | 1.0 | | 2.8489 | 26.31 | 500 | 1.6451 | 0.9100 | | 0.9568 | 31.56 | 600 | 1.0514 | 0.7561 | | 0.4865 | 36.82 | 700 | 1.0434 | 0.7184 | | 0.322 | 42.1 | 800 | 1.0825 | 0.7210 | | 0.2383 | 47.36 | 900 | 1.1304 | 0.6897 | | 0.2136 | 52.62 | 1000 | 1.1150 | 0.6854 | | 0.179 | 57.87 | 1100 | 1.2453 | 0.6875 | | 0.1539 | 63.15 | 1200 | 1.2211 | 0.6704 | | 0.1303 | 68.41 | 1300 | 1.2859 | 0.6747 | | 0.1183 | 73.67 | 1400 | 1.2775 | 0.6721 | | 0.0994 | 78.92 | 1500 | 1.2321 | 0.6404 | | 0.0991 | 84.21 | 1600 | 1.2766 | 0.6524 | | 0.0887 | 89.46 | 1700 | 1.3026 | 0.6344 | | 0.0754 | 94.72 | 1800 | 1.3199 | 0.6704 | | 0.0693 | 99.97 | 1900 | 1.3044 | 0.6361 | | 0.0568 | 105.26 | 2000 | 1.3541 | 0.6254 | | 0.0536 | 110.51 | 2100 | 1.3320 | 0.6249 | | 0.0529 | 115.77 | 2200 | 1.3370 | 0.6271 | | 0.048 | 121.05 | 2300 | 1.2757 | 0.6031 | | 0.0419 | 126.31 | 2400 | 1.2661 | 0.6172 | | 0.0349 | 131.56 | 2500 | 1.2897 | 0.6048 | | 0.0309 | 136.82 | 2600 | 1.2688 | 0.5962 | | 0.0278 | 142.1 | 2700 | 1.2885 | 0.5954 | | 0.0254 | 147.36 | 2800 | 1.2988 | 0.5915 | | 0.0223 | 152.62 | 2900 | 1.3153 | 0.5941 | | 0.0216 | 157.87 | 3000 | 1.2936 | 0.5937 | | 0.0186 | 163.15 | 3100 | 1.2906 | 0.5877 | | 0.0156 | 168.41 | 3200 | 1.3476 | 0.5962 | | 0.0158 | 173.67 | 3300 | 1.3363 | 0.5847 | | 0.0142 | 178.92 | 3400 | 1.3367 | 0.5847 | | 0.0153 | 184.21 | 3500 | 1.3105 | 0.5757 | | 0.0119 | 189.46 | 3600 | 1.3255 | 0.5705 | | 0.0115 | 194.72 | 3700 | 1.3340 | 0.5787 | | 0.0103 | 199.97 | 3800 | 1.3327 | 0.5744 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
{"language": ["as"], "license": "apache-2.0", "tags": ["automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "as", "robust-speech-event", "model_for_talk", "hf-asr-leaderboard"], "datasets": ["mozilla-foundation/common_voice_8_0"], "model-index": [{"name": "wav2vec2-large-xls-r-300m-as-g1", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Common Voice 8", "type": "mozilla-foundation/common_voice_8_0", "args": "as"}, "metrics": [{"type": "wer", "value": 0.6540934419202743, "name": "Test WER"}, {"type": "cer", "value": 0.21454042646095625, "name": "Test CER"}]}, {"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Robust Speech Event - Dev Data", "type": "speech-recognition-community-v2/dev_data", "args": "as"}, "metrics": [{"type": "wer", "value": "NA", "name": "Test WER"}, {"type": "cer", "value": "NA", "name": "Test CER"}]}]}]}
DrishtiSharma/wav2vec2-large-xls-r-300m-as-g1
null
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "as", "robust-speech-event", "model_for_talk", "hf-asr-leaderboard", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
automatic-speech-recognition
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-as-v9 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 1.1679 - Wer: 0.5761 ### Evaluation Command 1. To evaluate on mozilla-foundation/common_voice_8_0 with test split python eval.py --model_id DrishtiSharma/wav2vec2-large-xls-r-300m-as-v9 --dataset mozilla-foundation/common_voice_8_0 --config as --split test --log_outputs 2. To evaluate on speech-recognition-community-v2/dev_data Assamese (as) language isn't available in speech-recognition-community-v2/dev_data ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.000111 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 300 - num_epochs: 200 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 8.3852 | 10.51 | 200 | 3.6402 | 1.0 | | 3.5374 | 21.05 | 400 | 3.3894 | 1.0 | | 2.8645 | 31.56 | 600 | 1.3143 | 0.8303 | | 1.1784 | 42.1 | 800 | 0.9417 | 0.6661 | | 0.7805 | 52.62 | 1000 | 0.9292 | 0.6237 | | 0.5973 | 63.15 | 1200 | 0.9489 | 0.6014 | | 0.4784 | 73.67 | 1400 | 0.9916 | 0.5962 | | 0.4138 | 84.21 | 1600 | 1.0272 | 0.6121 | | 0.3491 | 94.72 | 1800 | 1.0412 | 0.5984 | | 0.3062 | 105.26 | 2000 | 1.0769 | 0.6005 | | 0.2707 | 115.77 | 2200 | 1.0708 | 0.5752 | | 0.2459 | 126.31 | 2400 | 1.1285 | 0.6009 | | 0.2234 | 136.82 | 2600 | 1.1209 | 0.5949 | | 0.2035 | 147.36 | 2800 | 1.1348 | 0.5842 | | 0.1876 | 157.87 | 3000 | 1.1480 | 0.5872 | | 0.1669 | 168.41 | 3200 | 1.1496 | 0.5838 | | 0.1595 | 178.92 | 3400 | 1.1721 | 0.5778 | | 0.1505 | 189.46 | 3600 | 1.1654 | 0.5744 | | 0.1486 | 199.97 | 3800 | 1.1679 | 0.5761 | ### Framework versions - Transformers 4.16.1 - Pytorch 1.10.0+cu111 - Datasets 1.18.2 - Tokenizers 0.11.0
{"language": ["as"], "license": "apache-2.0", "tags": ["automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "as", "robust-speech-event", "model_for_talk", "hf-asr-leaderboard"], "datasets": ["mozilla-foundation/common_voice_8_0"], "model-index": [{"name": "wav2vec2-large-xls-r-300m-as-v9", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Common Voice 8", "type": "mozilla-foundation/common_voice_8_0", "args": "hsb"}, "metrics": [{"type": "wer", "value": 0.6163737676810973, "name": "Test WER"}, {"type": "cer", "value": 0.19496397642093005, "name": "Test CER"}, {"type": "wer", "value": 61.64, "name": "Test WER"}]}, {"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Robust Speech Event - Dev Data", "type": "speech-recognition-community-v2/dev_data", "args": "as"}, "metrics": [{"type": "wer", "value": "NA", "name": "Test WER"}, {"type": "cer", "value": "NA", "name": "Test CER"}]}]}]}
DrishtiSharma/wav2vec2-large-xls-r-300m-as-v9
null
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "as", "robust-speech-event", "model_for_talk", "hf-asr-leaderboard", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
automatic-speech-recognition
null
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> ### Note: Files are missing. Probably, didn't get (git)pushed properly. :( This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 1.1679 - Wer: 0.5761 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.000111 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 300 - num_epochs: 200 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 8.3852 | 10.51 | 200 | 3.6402 | 1.0 | | 3.5374 | 21.05 | 400 | 3.3894 | 1.0 | | 2.8645 | 31.56 | 600 | 1.3143 | 0.8303 | | 1.1784 | 42.1 | 800 | 0.9417 | 0.6661 | | 0.7805 | 52.62 | 1000 | 0.9292 | 0.6237 | | 0.5973 | 63.15 | 1200 | 0.9489 | 0.6014 | | 0.4784 | 73.67 | 1400 | 0.9916 | 0.5962 | | 0.4138 | 84.21 | 1600 | 1.0272 | 0.6121 | | 0.3491 | 94.72 | 1800 | 1.0412 | 0.5984 | | 0.3062 | 105.26 | 2000 | 1.0769 | 0.6005 | | 0.2707 | 115.77 | 2200 | 1.0708 | 0.5752 | | 0.2459 | 126.31 | 2400 | 1.1285 | 0.6009 | | 0.2234 | 136.82 | 2600 | 1.1209 | 0.5949 | | 0.2035 | 147.36 | 2800 | 1.1348 | 0.5842 | | 0.1876 | 157.87 | 3000 | 1.1480 | 0.5872 | | 0.1669 | 168.41 | 3200 | 1.1496 | 0.5838 | | 0.1595 | 178.92 | 3400 | 1.1721 | 0.5778 | | 0.1505 | 189.46 | 3600 | 1.1654 | 0.5744 | | 0.1486 | 199.97 | 3800 | 1.1679 | 0.5761 | ### Framework versions - Transformers 4.16.1 - Pytorch 1.10.0+cu111 - Datasets 1.18.2 - Tokenizers 0.11.0
{"language": ["as"], "license": "apache-2.0", "tags": ["automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "as", "robust-speech-event", "model_for_talk", "hf-asr-leaderboard"], "datasets": ["common_voice"], "model-index": [{"name": "wav2vec2-large-xls-r-300m-as-with-LM-v2", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Common Voice 8", "type": "mozilla-foundation/common_voice_8_0", "args": "hsb"}, "metrics": [{"type": "wer", "value": [], "name": "Test WER"}, {"type": "cer", "value": [], "name": "Test CER"}]}]}]}
DrishtiSharma/wav2vec2-large-xls-r-300m-as-with-LM-v2
null
[ "automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "as", "robust-speech-event", "model_for_talk", "hf-asr-leaderboard", "dataset:common_voice", "license:apache-2.0", "model-index", "region:us" ]
null
2022-03-02T23:29:04+00:00
automatic-speech-recognition
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-bas-v1 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - BAS dataset. It achieves the following results on the evaluation set: - Loss: 0.5997 - Wer: 0.3870 ### Evaluation Commands 1. To evaluate on mozilla-foundation/common_voice_8_0 with test split python eval.py --model_id DrishtiSharma/wav2vec2-large-xls-r-300m-bas-v1 --dataset mozilla-foundation/common_voice_8_0 --config bas --split test --log_outputs 2. To evaluate on speech-recognition-community-v2/dev_data Basaa (bas) language isn't available in speech-recognition-community-v2/dev_data ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.000111 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 100 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 12.7076 | 5.26 | 200 | 3.6361 | 1.0 | | 3.1657 | 10.52 | 400 | 3.0101 | 1.0 | | 2.3987 | 15.78 | 600 | 0.9125 | 0.6774 | | 1.0079 | 21.05 | 800 | 0.6477 | 0.5352 | | 0.7392 | 26.31 | 1000 | 0.5432 | 0.4929 | | 0.6114 | 31.57 | 1200 | 0.5498 | 0.4639 | | 0.5222 | 36.83 | 1400 | 0.5220 | 0.4561 | | 0.4648 | 42.1 | 1600 | 0.5586 | 0.4289 | | 0.4103 | 47.36 | 1800 | 0.5337 | 0.4082 | | 0.3692 | 52.62 | 2000 | 0.5421 | 0.3861 | | 0.3403 | 57.88 | 2200 | 0.5549 | 0.4096 | | 0.3011 | 63.16 | 2400 | 0.5833 | 0.3925 | | 0.2932 | 68.42 | 2600 | 0.5674 | 0.3815 | | 0.2696 | 73.68 | 2800 | 0.5734 | 0.3889 | | 0.2496 | 78.94 | 3000 | 0.5968 | 0.3985 | | 0.2289 | 84.21 | 3200 | 0.5888 | 0.3893 | | 0.2091 | 89.47 | 3400 | 0.5849 | 0.3852 | | 0.2005 | 94.73 | 3600 | 0.5938 | 0.3875 | | 0.1876 | 99.99 | 3800 | 0.5997 | 0.3870 | ### Framework versions - Transformers 4.16.1 - Pytorch 1.10.0+cu111 - Datasets 1.18.2 - Tokenizers 0.11.0
{"language": ["bas"], "license": "apache-2.0", "tags": ["automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "bas", "robust-speech-event", "model_for_talk", "hf-asr-leaderboard"], "datasets": ["mozilla-foundation/common_voice_8_0"], "model-index": [{"name": "wav2vec2-large-xls-r-300m-bas-v1", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Common Voice 8", "type": "mozilla-foundation/common_voice_8_0", "args": "bas"}, "metrics": [{"type": "wer", "value": 0.3566497929130234, "name": "Test WER"}, {"type": "cer", "value": 0.1102657634184471, "name": "Test CER"}]}, {"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Robust Speech Event - Dev Data", "type": "speech-recognition-community-v2/dev_data", "args": "bas"}, "metrics": [{"type": "wer", "value": "NA", "name": "Test WER"}, {"type": "cer", "value": "NA", "name": "Test CER"}]}]}]}
DrishtiSharma/wav2vec2-large-xls-r-300m-bas-v1
null
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "bas", "robust-speech-event", "model_for_talk", "hf-asr-leaderboard", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
automatic-speech-recognition
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-bg-d2 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - BG dataset. It achieves the following results on the evaluation set: - Loss: 0.3421 - Wer: 0.2860 ### Evaluation Commands 1. To evaluate on mozilla-foundation/common_voice_8_0 with test split python eval.py --model_id DrishtiSharma/wav2vec2-large-xls-r-300m-bg-d2 --dataset mozilla-foundation/common_voice_8_0 --config bg --split test --log_outputs 2. To evaluate on speech-recognition-community-v2/dev_data python eval.py --model_id DrishtiSharma/wav2vec2-large-xls-r-300m-bg-d2 --dataset speech-recognition-community-v2/dev_data --config bg --split validation --chunk_length_s 10 --stride_length_s 1 ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.00025 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 700 - num_epochs: 35 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 6.8791 | 1.74 | 200 | 3.1902 | 1.0 | | 3.0441 | 3.48 | 400 | 2.8098 | 0.9864 | | 1.1499 | 5.22 | 600 | 0.4668 | 0.5014 | | 0.4968 | 6.96 | 800 | 0.4162 | 0.4472 | | 0.3553 | 8.7 | 1000 | 0.3580 | 0.3777 | | 0.3027 | 10.43 | 1200 | 0.3422 | 0.3506 | | 0.2562 | 12.17 | 1400 | 0.3556 | 0.3639 | | 0.2272 | 13.91 | 1600 | 0.3621 | 0.3583 | | 0.2125 | 15.65 | 1800 | 0.3436 | 0.3358 | | 0.1904 | 17.39 | 2000 | 0.3650 | 0.3545 | | 0.1695 | 19.13 | 2200 | 0.3366 | 0.3241 | | 0.1532 | 20.87 | 2400 | 0.3550 | 0.3311 | | 0.1453 | 22.61 | 2600 | 0.3582 | 0.3131 | | 0.1359 | 24.35 | 2800 | 0.3524 | 0.3084 | | 0.1233 | 26.09 | 3000 | 0.3503 | 0.2973 | | 0.1114 | 27.83 | 3200 | 0.3434 | 0.2946 | | 0.1051 | 29.57 | 3400 | 0.3474 | 0.2956 | | 0.0965 | 31.3 | 3600 | 0.3426 | 0.2907 | | 0.0923 | 33.04 | 3800 | 0.3478 | 0.2894 | | 0.0894 | 34.78 | 4000 | 0.3421 | 0.2860 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
{"language": ["bg"], "license": "apache-2.0", "tags": ["automatic-speech-recognition", "bg", "generated_from_trainer", "hf-asr-leaderboard", "mozilla-foundation/common_voice_8_0", "robust-speech-event"], "datasets": ["mozilla-foundation/common_voice_8_0"], "model-index": [{"name": "wav2vec2-large-xls-r-300m-bg-d2", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Common Voice 8", "type": "mozilla-foundation/common_voice_8_0", "args": "bg"}, "metrics": [{"type": "wer", "value": 0.28775471338792613, "name": "Test WER"}, {"type": "cer", "value": 0.06861971204625049, "name": "Test CER"}]}, {"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Robust Speech Event - Dev Data", "type": "speech-recognition-community-v2/dev_data", "args": "bg"}, "metrics": [{"type": "wer", "value": 0.49783147459727384, "name": "Test WER"}, {"type": "cer", "value": 0.1591062599627158, "name": "Test CER"}]}, {"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Robust Speech Event - Test Data", "type": "speech-recognition-community-v2/eval_data", "args": "bg"}, "metrics": [{"type": "wer", "value": 51.25, "name": "Test WER"}]}]}]}
DrishtiSharma/wav2vec2-large-xls-r-300m-bg-d2
null
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "bg", "generated_from_trainer", "hf-asr-leaderboard", "mozilla-foundation/common_voice_8_0", "robust-speech-event", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
automatic-speech-recognition
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - BG dataset. It achieves the following results on the evaluation set: - Loss: 0.5197 - Wer: 0.4689 ### Evaluation Commands 1. To evaluate on mozilla-foundation/common_voice_8_0 with test split python eval.py --model_id DrishtiSharma/wav2vec2-large-xls-r-300m-bg-v1 --dataset mozilla-foundation/common_voice_8_0 --config bg --split test --log_outputs 2. To evaluate on speech-recognition-community-v2/dev_data python eval.py --model_id DrishtiSharma/wav2vec2-large-xls-r-300m-bg-v1 --dataset speech-recognition-community-v2/dev_data --config bg --split validation --chunk_length_s 10 --stride_length_s 1 ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 50.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 4.3711 | 2.61 | 300 | 4.3122 | 1.0 | | 3.1653 | 5.22 | 600 | 3.1156 | 1.0 | | 2.8904 | 7.83 | 900 | 2.8421 | 0.9918 | | 0.9207 | 10.43 | 1200 | 0.9895 | 0.8689 | | 0.6384 | 13.04 | 1500 | 0.6994 | 0.7700 | | 0.5215 | 15.65 | 1800 | 0.5628 | 0.6443 | | 0.4573 | 18.26 | 2100 | 0.5316 | 0.6174 | | 0.3875 | 20.87 | 2400 | 0.4932 | 0.5779 | | 0.3562 | 23.48 | 2700 | 0.4972 | 0.5475 | | 0.3218 | 26.09 | 3000 | 0.4895 | 0.5219 | | 0.2954 | 28.7 | 3300 | 0.5226 | 0.5192 | | 0.287 | 31.3 | 3600 | 0.4957 | 0.5146 | | 0.2587 | 33.91 | 3900 | 0.4944 | 0.4893 | | 0.2496 | 36.52 | 4200 | 0.4976 | 0.4895 | | 0.2365 | 39.13 | 4500 | 0.5185 | 0.4819 | | 0.2264 | 41.74 | 4800 | 0.5152 | 0.4776 | | 0.2224 | 44.35 | 5100 | 0.5031 | 0.4746 | | 0.2096 | 46.96 | 5400 | 0.5062 | 0.4708 | | 0.2038 | 49.57 | 5700 | 0.5217 | 0.4698 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0
{"language": ["bg"], "license": "apache-2.0", "tags": ["automatic-speech-recognition", "bg", "generated_from_trainer", "hf-asr-leaderboard", "model_for_talk", "mozilla-foundation/common_voice_8_0", "robust-speech-event"], "datasets": ["mozilla-foundation/common_voice_8_0"], "model-index": [{"name": "wav2vec2-large-xls-r-300m-bg-v1", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Common Voice 8", "type": "mozilla-foundation/common_voice_8_0", "args": "bg"}, "metrics": [{"type": "wer", "value": 0.4709579127785184, "name": "Test WER"}, {"type": "cer", "value": 0.10205125354383235, "name": "Test CER"}]}, {"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Robust Speech Event - Dev Data", "type": "speech-recognition-community-v2/dev_data", "args": "bg"}, "metrics": [{"type": "wer", "value": 0.7053128872366791, "name": "Test WER"}, {"type": "cer", "value": 0.210804311998487, "name": "Test CER"}]}, {"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Robust Speech Event - Test Data", "type": "speech-recognition-community-v2/eval_data", "args": "bg"}, "metrics": [{"type": "wer", "value": 72.6, "name": "Test WER"}]}]}]}
DrishtiSharma/wav2vec2-large-xls-r-300m-bg-v1
null
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "bg", "generated_from_trainer", "hf-asr-leaderboard", "model_for_talk", "mozilla-foundation/common_voice_8_0", "robust-speech-event", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
automatic-speech-recognition
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-br-d10 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - BR dataset. It achieves the following results on the evaluation set: - Loss: 1.1382 - Wer: 0.4895 ### Evaluation Commands 1. To evaluate on mozilla-foundation/common_voice_8_0 with test split python eval.py --model_id DrishtiSharma/wav2vec2-large-xls-r-300m-br-d10 --dataset mozilla-foundation/common_voice_8_0 --config br --split test --log_outputs 2. To evaluate on speech-recognition-community-v2/dev_data Breton language isn't available in speech-recognition-community-v2/dev_data ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0004 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 800 - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 13.611 | 0.68 | 100 | 5.8492 | 1.0 | | 3.8176 | 1.35 | 200 | 3.2181 | 1.0 | | 3.0457 | 2.03 | 300 | 3.0902 | 1.0 | | 2.2632 | 2.7 | 400 | 1.4882 | 0.9426 | | 1.1965 | 3.38 | 500 | 1.1396 | 0.7950 | | 0.984 | 4.05 | 600 | 1.0216 | 0.7583 | | 0.8036 | 4.73 | 700 | 1.0258 | 0.7202 | | 0.7061 | 5.41 | 800 | 0.9710 | 0.6820 | | 0.689 | 6.08 | 900 | 0.9731 | 0.6488 | | 0.6063 | 6.76 | 1000 | 0.9442 | 0.6569 | | 0.5215 | 7.43 | 1100 | 1.0221 | 0.6671 | | 0.4965 | 8.11 | 1200 | 0.9266 | 0.6181 | | 0.4321 | 8.78 | 1300 | 0.9050 | 0.5991 | | 0.3762 | 9.46 | 1400 | 0.9801 | 0.6134 | | 0.3747 | 10.14 | 1500 | 0.9210 | 0.5747 | | 0.3554 | 10.81 | 1600 | 0.9720 | 0.6051 | | 0.3148 | 11.49 | 1700 | 0.9672 | 0.6099 | | 0.3176 | 12.16 | 1800 | 1.0120 | 0.5966 | | 0.2915 | 12.84 | 1900 | 0.9490 | 0.5653 | | 0.2696 | 13.51 | 2000 | 0.9394 | 0.5819 | | 0.2569 | 14.19 | 2100 | 1.0197 | 0.5667 | | 0.2395 | 14.86 | 2200 | 0.9771 | 0.5608 | | 0.2367 | 15.54 | 2300 | 1.0516 | 0.5678 | | 0.2153 | 16.22 | 2400 | 1.0097 | 0.5679 | | 0.2092 | 16.89 | 2500 | 1.0143 | 0.5430 | | 0.2046 | 17.57 | 2600 | 1.0884 | 0.5631 | | 0.1937 | 18.24 | 2700 | 1.0113 | 0.5648 | | 0.1752 | 18.92 | 2800 | 1.0056 | 0.5470 | | 0.164 | 19.59 | 2900 | 1.0340 | 0.5508 | | 0.1723 | 20.27 | 3000 | 1.0743 | 0.5615 | | 0.1535 | 20.95 | 3100 | 1.0495 | 0.5465 | | 0.1432 | 21.62 | 3200 | 1.0390 | 0.5333 | | 0.1561 | 22.3 | 3300 | 1.0798 | 0.5590 | | 0.1384 | 22.97 | 3400 | 1.1716 | 0.5449 | | 0.1359 | 23.65 | 3500 | 1.1154 | 0.5420 | | 0.1356 | 24.32 | 3600 | 1.0883 | 0.5387 | | 0.1355 | 25.0 | 3700 | 1.1114 | 0.5504 | | 0.1158 | 25.68 | 3800 | 1.1171 | 0.5388 | | 0.1166 | 26.35 | 3900 | 1.1335 | 0.5403 | | 0.1165 | 27.03 | 4000 | 1.1374 | 0.5248 | | 0.1064 | 27.7 | 4100 | 1.0336 | 0.5298 | | 0.0987 | 28.38 | 4200 | 1.0407 | 0.5216 | | 0.104 | 29.05 | 4300 | 1.1012 | 0.5350 | | 0.0894 | 29.73 | 4400 | 1.1016 | 0.5310 | | 0.0912 | 30.41 | 4500 | 1.1383 | 0.5302 | | 0.0972 | 31.08 | 4600 | 1.0851 | 0.5214 | | 0.0832 | 31.76 | 4700 | 1.1705 | 0.5311 | | 0.0859 | 32.43 | 4800 | 1.0750 | 0.5192 | | 0.0811 | 33.11 | 4900 | 1.0900 | 0.5180 | | 0.0825 | 33.78 | 5000 | 1.1271 | 0.5196 | | 0.07 | 34.46 | 5100 | 1.1289 | 0.5141 | | 0.0689 | 35.14 | 5200 | 1.0960 | 0.5101 | | 0.068 | 35.81 | 5300 | 1.1377 | 0.5050 | | 0.0776 | 36.49 | 5400 | 1.0880 | 0.5194 | | 0.0642 | 37.16 | 5500 | 1.1027 | 0.5076 | | 0.0607 | 37.84 | 5600 | 1.1293 | 0.5119 | | 0.0607 | 38.51 | 5700 | 1.1229 | 0.5103 | | 0.0545 | 39.19 | 5800 | 1.1168 | 0.5103 | | 0.0562 | 39.86 | 5900 | 1.1206 | 0.5073 | | 0.0484 | 40.54 | 6000 | 1.1710 | 0.5019 | | 0.0499 | 41.22 | 6100 | 1.1511 | 0.5100 | | 0.0455 | 41.89 | 6200 | 1.1488 | 0.5009 | | 0.0475 | 42.57 | 6300 | 1.1196 | 0.4944 | | 0.0413 | 43.24 | 6400 | 1.1654 | 0.4996 | | 0.0389 | 43.92 | 6500 | 1.0961 | 0.4930 | | 0.0428 | 44.59 | 6600 | 1.0955 | 0.4938 | | 0.039 | 45.27 | 6700 | 1.1323 | 0.4955 | | 0.0352 | 45.95 | 6800 | 1.1040 | 0.4930 | | 0.0334 | 46.62 | 6900 | 1.1382 | 0.4942 | | 0.0338 | 47.3 | 7000 | 1.1264 | 0.4911 | | 0.0307 | 47.97 | 7100 | 1.1216 | 0.4881 | | 0.0286 | 48.65 | 7200 | 1.1459 | 0.4894 | | 0.0348 | 49.32 | 7300 | 1.1419 | 0.4906 | | 0.0329 | 50.0 | 7400 | 1.1382 | 0.4895 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
{"language": ["br"], "license": "apache-2.0", "tags": ["generated_from_trainer", "robust-speech-event", "hf-asr-leaderboard"], "datasets": ["mozilla-foundation/common_voice_8_0"], "metrics": ["wer"], "model-index": [{"name": "wav2vec2-large-xls-r-300m-br-d10", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice 8", "type": "mozilla-foundation/common_voice_8_0", "args": "br"}, "metrics": [{"type": "wer", "value": 0.5230357484228637, "name": "Test WER"}, {"type": "cer", "value": 0.1880661144228536, "name": "Test CER"}]}, {"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Robust Speech Event - Dev Data", "type": "speech-recognition-community-v2/dev_data", "args": "br"}, "metrics": [{"type": "wer", "value": "NA", "name": "Test WER"}, {"type": "cer", "value": "NA", "name": "Test CER"}]}]}]}
DrishtiSharma/wav2vec2-large-xls-r-300m-br-d10
null
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "robust-speech-event", "hf-asr-leaderboard", "br", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
automatic-speech-recognition
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-br-d2 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - BR dataset. It achieves the following results on the evaluation set: - Loss: 1.1257 - Wer: 0.4631 ### Evaluation Commands 1. To evaluate on mozilla-foundation/common_voice_8_0 with test split python eval.py --model_id DrishtiSharma/wav2vec2-large-xls-r-300m-br-d2 --dataset mozilla-foundation/common_voice_8_0 --config br --split test --log_outputs 2. To evaluate on speech-recognition-community-v2/dev_data Breton language isn't available in speech-recognition-community-v2/dev_data ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.00034 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 750 - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 14.0379 | 0.68 | 100 | 5.6808 | 1.0 | | 3.9145 | 1.35 | 200 | 3.1970 | 1.0 | | 3.0293 | 2.03 | 300 | 2.9513 | 1.0 | | 2.0927 | 2.7 | 400 | 1.4545 | 0.8887 | | 1.1556 | 3.38 | 500 | 1.0966 | 0.7564 | | 0.9628 | 4.05 | 600 | 0.9808 | 0.7364 | | 0.7869 | 4.73 | 700 | 1.0488 | 0.7355 | | 0.703 | 5.41 | 800 | 0.9500 | 0.6881 | | 0.6657 | 6.08 | 900 | 0.9309 | 0.6259 | | 0.5663 | 6.76 | 1000 | 0.9133 | 0.6357 | | 0.496 | 7.43 | 1100 | 0.9890 | 0.6028 | | 0.4748 | 8.11 | 1200 | 0.9469 | 0.5894 | | 0.4135 | 8.78 | 1300 | 0.9270 | 0.6045 | | 0.3579 | 9.46 | 1400 | 0.8818 | 0.5708 | | 0.353 | 10.14 | 1500 | 0.9244 | 0.5781 | | 0.334 | 10.81 | 1600 | 0.9009 | 0.5638 | | 0.2917 | 11.49 | 1700 | 1.0132 | 0.5828 | | 0.29 | 12.16 | 1800 | 0.9696 | 0.5668 | | 0.2691 | 12.84 | 1900 | 0.9811 | 0.5455 | | 0.25 | 13.51 | 2000 | 0.9951 | 0.5624 | | 0.2467 | 14.19 | 2100 | 0.9653 | 0.5573 | | 0.2242 | 14.86 | 2200 | 0.9714 | 0.5378 | | 0.2066 | 15.54 | 2300 | 0.9829 | 0.5394 | | 0.2075 | 16.22 | 2400 | 1.0547 | 0.5520 | | 0.1923 | 16.89 | 2500 | 1.0014 | 0.5397 | | 0.1919 | 17.57 | 2600 | 0.9978 | 0.5477 | | 0.1908 | 18.24 | 2700 | 1.1064 | 0.5397 | | 0.157 | 18.92 | 2800 | 1.0629 | 0.5238 | | 0.159 | 19.59 | 2900 | 1.0642 | 0.5321 | | 0.1652 | 20.27 | 3000 | 1.0207 | 0.5328 | | 0.141 | 20.95 | 3100 | 0.9948 | 0.5312 | | 0.1417 | 21.62 | 3200 | 1.0338 | 0.5328 | | 0.1514 | 22.3 | 3300 | 1.0513 | 0.5313 | | 0.1365 | 22.97 | 3400 | 1.0357 | 0.5291 | | 0.1319 | 23.65 | 3500 | 1.0587 | 0.5167 | | 0.1298 | 24.32 | 3600 | 1.0636 | 0.5236 | | 0.1245 | 25.0 | 3700 | 1.1367 | 0.5280 | | 0.1114 | 25.68 | 3800 | 1.0633 | 0.5200 | | 0.1088 | 26.35 | 3900 | 1.0495 | 0.5210 | | 0.1175 | 27.03 | 4000 | 1.0897 | 0.5095 | | 0.1043 | 27.7 | 4100 | 1.0580 | 0.5309 | | 0.0951 | 28.38 | 4200 | 1.0448 | 0.5067 | | 0.1011 | 29.05 | 4300 | 1.0665 | 0.5137 | | 0.0889 | 29.73 | 4400 | 1.0579 | 0.5026 | | 0.0833 | 30.41 | 4500 | 1.0740 | 0.5037 | | 0.0889 | 31.08 | 4600 | 1.0933 | 0.5083 | | 0.0784 | 31.76 | 4700 | 1.0715 | 0.5089 | | 0.0767 | 32.43 | 4800 | 1.0658 | 0.5049 | | 0.0769 | 33.11 | 4900 | 1.1118 | 0.4979 | | 0.0722 | 33.78 | 5000 | 1.1413 | 0.4986 | | 0.0709 | 34.46 | 5100 | 1.0706 | 0.4885 | | 0.0664 | 35.14 | 5200 | 1.1217 | 0.4884 | | 0.0648 | 35.81 | 5300 | 1.1298 | 0.4941 | | 0.0657 | 36.49 | 5400 | 1.1330 | 0.4920 | | 0.0582 | 37.16 | 5500 | 1.0598 | 0.4835 | | 0.0602 | 37.84 | 5600 | 1.1097 | 0.4943 | | 0.0598 | 38.51 | 5700 | 1.0976 | 0.4876 | | 0.0547 | 39.19 | 5800 | 1.0734 | 0.4825 | | 0.0561 | 39.86 | 5900 | 1.0926 | 0.4850 | | 0.0516 | 40.54 | 6000 | 1.1579 | 0.4751 | | 0.0478 | 41.22 | 6100 | 1.1384 | 0.4706 | | 0.0396 | 41.89 | 6200 | 1.1462 | 0.4739 | | 0.0472 | 42.57 | 6300 | 1.1277 | 0.4732 | | 0.0447 | 43.24 | 6400 | 1.1517 | 0.4752 | | 0.0423 | 43.92 | 6500 | 1.1219 | 0.4784 | | 0.0426 | 44.59 | 6600 | 1.1311 | 0.4724 | | 0.0391 | 45.27 | 6700 | 1.1135 | 0.4692 | | 0.0362 | 45.95 | 6800 | 1.0878 | 0.4645 | | 0.0329 | 46.62 | 6900 | 1.1137 | 0.4668 | | 0.0356 | 47.3 | 7000 | 1.1233 | 0.4687 | | 0.0328 | 47.97 | 7100 | 1.1238 | 0.4653 | | 0.0323 | 48.65 | 7200 | 1.1307 | 0.4646 | | 0.0325 | 49.32 | 7300 | 1.1242 | 0.4645 | | 0.03 | 50.0 | 7400 | 1.1257 | 0.4631 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
{"language": ["br"], "license": "apache-2.0", "tags": ["generated_from_trainer", "robust-speech-event", "hf-asr-leaderboard"], "datasets": ["mozilla-foundation/common_voice_8_0"], "metrics": ["wer"], "model-index": [{"name": "wav2vec2-large-xls-r-300m-br-d2", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice 8", "type": "mozilla-foundation/common_voice_8_0", "args": "br"}, "metrics": [{"type": "wer", "value": 0.49770598355954887, "name": "Test WER"}, {"type": "cer", "value": 0.18090500890299605, "name": "Test CER"}]}, {"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Robust Speech Event - Dev Data", "type": "speech-recognition-community-v2/dev_data", "args": "br"}, "metrics": [{"type": "wer", "value": "NA", "name": "Test WER"}, {"type": "cer", "value": "NA", "name": "Test CER"}]}]}]}
DrishtiSharma/wav2vec2-large-xls-r-300m-br-d2
null
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "robust-speech-event", "hf-asr-leaderboard", "br", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
automatic-speech-recognition
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-gn-k1 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - GN dataset. It achieves the following results on the evaluation set: - Loss: 0.9220 - Wer: 0.6631 ### Evaluation Commands 1. To evaluate on mozilla-foundation/common_voice_8_0 with test split python eval.py --model_id DrishtiSharma/wav2vec2-large-xls-r-300m-gn-k1 --dataset mozilla-foundation/common_voice_8_0 --config gn --split test --log_outputs 2. To evaluate on speech-recognition-community-v2/dev_data NA ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.00018 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 600 - num_epochs: 200 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 15.9402 | 8.32 | 100 | 6.9185 | 1.0 | | 4.6367 | 16.64 | 200 | 3.7416 | 1.0 | | 3.4337 | 24.96 | 300 | 3.2581 | 1.0 | | 3.2307 | 33.32 | 400 | 2.8008 | 1.0 | | 1.3182 | 41.64 | 500 | 0.8359 | 0.8171 | | 0.409 | 49.96 | 600 | 0.8470 | 0.8323 | | 0.2573 | 58.32 | 700 | 0.7823 | 0.7576 | | 0.1969 | 66.64 | 800 | 0.8306 | 0.7424 | | 0.1469 | 74.96 | 900 | 0.9225 | 0.7713 | | 0.1172 | 83.32 | 1000 | 0.7903 | 0.6951 | | 0.1017 | 91.64 | 1100 | 0.8519 | 0.6921 | | 0.0851 | 99.96 | 1200 | 0.8129 | 0.6646 | | 0.071 | 108.32 | 1300 | 0.8614 | 0.7043 | | 0.061 | 116.64 | 1400 | 0.8414 | 0.6921 | | 0.0552 | 124.96 | 1500 | 0.8649 | 0.6905 | | 0.0465 | 133.32 | 1600 | 0.8575 | 0.6646 | | 0.0381 | 141.64 | 1700 | 0.8802 | 0.6723 | | 0.0338 | 149.96 | 1800 | 0.8731 | 0.6845 | | 0.0306 | 158.32 | 1900 | 0.9003 | 0.6585 | | 0.0236 | 166.64 | 2000 | 0.9408 | 0.6616 | | 0.021 | 174.96 | 2100 | 0.9353 | 0.6723 | | 0.0212 | 183.32 | 2200 | 0.9269 | 0.6570 | | 0.0191 | 191.64 | 2300 | 0.9277 | 0.6662 | | 0.0161 | 199.96 | 2400 | 0.9220 | 0.6631 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
{"language": ["gn"], "license": "apache-2.0", "tags": ["automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "gn", "robust-speech-event", "hf-asr-leaderboard"], "datasets": ["mozilla-foundation/common_voice_8_0"], "model-index": [{"name": "wav2vec2-large-xls-r-300m-gn-k1", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Common Voice 8", "type": "mozilla-foundation/common_voice_8_0", "args": "gn"}, "metrics": [{"type": "wer", "value": 0.711890243902439, "name": "Test WER"}, {"type": "cer", "value": 0.13311897106109324, "name": "Test CER"}]}, {"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Robust Speech Event - Dev Data", "type": "speech-recognition-community-v2/dev_data", "args": "gn"}, "metrics": [{"type": "wer", "value": "NA", "name": "Test WER"}, {"type": "cer", "value": "NA", "name": "Test CER"}]}]}]}
DrishtiSharma/wav2vec2-large-xls-r-300m-gn-k1
null
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "gn", "robust-speech-event", "hf-asr-leaderboard", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
automatic-speech-recognition
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-hi-CV7 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - HI dataset. It achieves the following results on the evaluation set: - Loss: 0.6588 - Wer: 0.2987 ### Evaluation Commands 1. To evaluate on mozilla-foundation/common_voice_8_0 with test split python eval.py --model_id DrishtiSharma/wav2vec2-large-xls-r-300m-hi-CV7 --dataset mozilla-foundation/common_voice_7_0 --config hi --split test --log_outputs 2. To evaluate on speech-recognition-community-v2/dev_data NA ### Training hyperparameters The following hyperparameters were used during training: # - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 60 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 12.809 | 1.36 | 200 | 6.2066 | 1.0 | | 4.3402 | 2.72 | 400 | 3.5184 | 1.0 | | 3.4365 | 4.08 | 600 | 3.2779 | 1.0 | | 1.8643 | 5.44 | 800 | 0.9875 | 0.6270 | | 0.7504 | 6.8 | 1000 | 0.6382 | 0.4666 | | 0.5328 | 8.16 | 1200 | 0.6075 | 0.4505 | | 0.4364 | 9.52 | 1400 | 0.5785 | 0.4215 | | 0.3777 | 10.88 | 1600 | 0.6279 | 0.4227 | | 0.3374 | 12.24 | 1800 | 0.6536 | 0.4192 | | 0.3236 | 13.6 | 2000 | 0.5911 | 0.4047 | | 0.2877 | 14.96 | 2200 | 0.5955 | 0.4097 | | 0.2643 | 16.33 | 2400 | 0.5923 | 0.3744 | | 0.2421 | 17.68 | 2600 | 0.6307 | 0.3814 | | 0.2218 | 19.05 | 2800 | 0.6036 | 0.3764 | | 0.2046 | 20.41 | 3000 | 0.6286 | 0.3797 | | 0.191 | 21.77 | 3200 | 0.6517 | 0.3889 | | 0.1856 | 23.13 | 3400 | 0.6193 | 0.3661 | | 0.1721 | 24.49 | 3600 | 0.7034 | 0.3727 | | 0.1656 | 25.85 | 3800 | 0.6293 | 0.3591 | | 0.1532 | 27.21 | 4000 | 0.6075 | 0.3611 | | 0.1507 | 28.57 | 4200 | 0.6313 | 0.3565 | | 0.1381 | 29.93 | 4400 | 0.6564 | 0.3578 | | 0.1359 | 31.29 | 4600 | 0.6724 | 0.3543 | | 0.1248 | 32.65 | 4800 | 0.6789 | 0.3512 | | 0.1198 | 34.01 | 5000 | 0.6442 | 0.3539 | | 0.1125 | 35.37 | 5200 | 0.6676 | 0.3419 | | 0.1036 | 36.73 | 5400 | 0.7017 | 0.3435 | | 0.0982 | 38.09 | 5600 | 0.6828 | 0.3319 | | 0.0971 | 39.45 | 5800 | 0.6112 | 0.3351 | | 0.0968 | 40.81 | 6000 | 0.6424 | 0.3252 | | 0.0893 | 42.18 | 6200 | 0.6707 | 0.3304 | | 0.0878 | 43.54 | 6400 | 0.6432 | 0.3236 | | 0.0827 | 44.89 | 6600 | 0.6696 | 0.3240 | | 0.0788 | 46.26 | 6800 | 0.6564 | 0.3180 | | 0.0753 | 47.62 | 7000 | 0.6574 | 0.3130 | | 0.0674 | 48.98 | 7200 | 0.6698 | 0.3175 | | 0.0676 | 50.34 | 7400 | 0.6441 | 0.3142 | | 0.0626 | 51.7 | 7600 | 0.6642 | 0.3121 | | 0.0617 | 53.06 | 7800 | 0.6615 | 0.3117 | | 0.0599 | 54.42 | 8000 | 0.6634 | 0.3059 | | 0.0538 | 55.78 | 8200 | 0.6464 | 0.3033 | | 0.0571 | 57.14 | 8400 | 0.6503 | 0.3018 | | 0.0491 | 58.5 | 8600 | 0.6625 | 0.3025 | | 0.0511 | 59.86 | 8800 | 0.6588 | 0.2987 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
{"language": ["hi"], "license": "apache-2.0", "tags": ["automatic-speech-recognition", "mozilla-foundation/common_voice_7_0", "generated_from_trainer", "hi", "robust-speech-event", "hf-asr-leaderboard"], "datasets": ["mozilla-foundation/common_voice_7_0"], "model-index": [{"name": "wav2vec2-large-xls-r-300m-hi-CV7", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Common Voice 7", "type": "mozilla-foundation/common_voice_7_0", "args": "hi"}, "metrics": [{"type": "wer", "value": 35.31946325249292, "name": "Test WER"}, {"type": "cer", "value": 11.310803379493075, "name": "Test CER"}]}, {"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Robust Speech Event - Dev Data", "type": "speech-recognition-community-v2/dev_data", "args": "vot"}, "metrics": [{"type": "wer", "value": "NA", "name": "Test WER"}, {"type": "cer", "value": "NA", "name": "Test CER"}]}]}]}
DrishtiSharma/wav2vec2-large-xls-r-300m-hi-CV7
null
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "mozilla-foundation/common_voice_7_0", "generated_from_trainer", "hi", "robust-speech-event", "hf-asr-leaderboard", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
automatic-speech-recognition
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-hi-cv8-b2 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - HI dataset. It achieves the following results on the evaluation set: - Loss: 0.7322 - Wer: 0.3469 ### Evaluation Commands 1. To evaluate on mozilla-foundation/common_voice_8_0 with test split python eval.py --model_id DrishtiSharma/wav2vec2-large-xls-r-300m-hi-cv8-b2 --dataset mozilla-foundation/common_voice_8_0 --config hi --split test --log_outputs 2. To evaluate on speech-recognition-community-v2/dev_data Hindi language isn't available in speech-recognition-community-v2/dev_data ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.00025 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 700 - num_epochs: 35 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 9.6226 | 1.04 | 200 | 3.8855 | 1.0 | | 3.4678 | 2.07 | 400 | 3.4283 | 1.0 | | 2.3668 | 3.11 | 600 | 1.0743 | 0.7175 | | 0.7308 | 4.15 | 800 | 0.7663 | 0.5498 | | 0.4985 | 5.18 | 1000 | 0.6957 | 0.5001 | | 0.3817 | 6.22 | 1200 | 0.6932 | 0.4866 | | 0.3281 | 7.25 | 1400 | 0.7034 | 0.4983 | | 0.2752 | 8.29 | 1600 | 0.6588 | 0.4606 | | 0.2475 | 9.33 | 1800 | 0.6514 | 0.4328 | | 0.219 | 10.36 | 2000 | 0.6396 | 0.4176 | | 0.2036 | 11.4 | 2200 | 0.6867 | 0.4162 | | 0.1793 | 12.44 | 2400 | 0.6943 | 0.4196 | | 0.1724 | 13.47 | 2600 | 0.6862 | 0.4260 | | 0.1554 | 14.51 | 2800 | 0.7615 | 0.4222 | | 0.151 | 15.54 | 3000 | 0.7058 | 0.4110 | | 0.1335 | 16.58 | 3200 | 0.7172 | 0.3986 | | 0.1326 | 17.62 | 3400 | 0.7182 | 0.3923 | | 0.1225 | 18.65 | 3600 | 0.6995 | 0.3910 | | 0.1146 | 19.69 | 3800 | 0.7075 | 0.3875 | | 0.108 | 20.73 | 4000 | 0.7297 | 0.3858 | | 0.1048 | 21.76 | 4200 | 0.7413 | 0.3850 | | 0.0979 | 22.8 | 4400 | 0.7452 | 0.3793 | | 0.0946 | 23.83 | 4600 | 0.7436 | 0.3759 | | 0.0897 | 24.87 | 4800 | 0.7289 | 0.3754 | | 0.0854 | 25.91 | 5000 | 0.7271 | 0.3667 | | 0.0803 | 26.94 | 5200 | 0.7378 | 0.3656 | | 0.0752 | 27.98 | 5400 | 0.7488 | 0.3680 | | 0.0718 | 29.02 | 5600 | 0.7185 | 0.3619 | | 0.0702 | 30.05 | 5800 | 0.7428 | 0.3554 | | 0.0653 | 31.09 | 6000 | 0.7447 | 0.3559 | | 0.0638 | 32.12 | 6200 | 0.7327 | 0.3523 | | 0.058 | 33.16 | 6400 | 0.7339 | 0.3488 | | 0.0594 | 34.2 | 6600 | 0.7322 | 0.3469 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
{"language": ["hi"], "license": "apache-2.0", "tags": ["automatic-speech-recognition", "robust-speech-event", "hf-asr-leaderboard"], "datasets": ["mozilla-foundation/common_voice_8_0"], "metrics": ["wer"], "model-index": [{"name": "wav2vec2-large-xls-r-300m-hi-cv8-b2", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice 7", "type": "mozilla-foundation/common_voice_8_0", "args": "hi"}, "metrics": [{"type": "wer", "value": 0.3891350503092403, "name": "Test WER"}, {"type": "cer", "value": 0.13016327327131985, "name": "Test CER"}]}, {"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Robust Speech Event - Dev Data", "type": "speech-recognition-community-v2/dev_data", "args": "hi"}, "metrics": [{"type": "wer", "value": "NA", "name": "Test WER"}, {"type": "cer", "value": "NA", "name": "Test CER"}]}]}]}
DrishtiSharma/wav2vec2-large-xls-r-300m-hi-cv8-b2
null
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "robust-speech-event", "hf-asr-leaderboard", "hi", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
automatic-speech-recognition
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-hi-cv8 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - HI dataset. It achieves the following results on the evaluation set: - Loss: 0.6510 - Wer: 0.3179 ### Evaluation Commands 1. To evaluate on mozilla-foundation/common_voice_8_0 with test split python eval.py --model_id DrishtiSharma/wav2vec2-large-xls-r-300m-hi-cv8 --dataset mozilla-foundation/common_voice_8_0 --config hi --split test --log_outputs 2. To evaluate on speech-recognition-community-v2/dev_data python eval.py --model_id DrishtiSharma/wav2vec2-large-xls-r-300m-hi-cv8 --dataset speech-recognition-community-v2/dev_data --config hi --split validation --chunk_length_s 10 --stride_length_s 1 Note: Hindi language not found in speech-recognition-community-v2/dev_data ### Training hyperparameters The following hyperparameters were used during training: - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 12.5576 | 1.04 | 200 | 6.6594 | 1.0 | | 4.4069 | 2.07 | 400 | 3.6011 | 1.0 | | 3.4273 | 3.11 | 600 | 3.3370 | 1.0 | | 2.1108 | 4.15 | 800 | 1.0641 | 0.6562 | | 0.8817 | 5.18 | 1000 | 0.7178 | 0.5172 | | 0.6508 | 6.22 | 1200 | 0.6612 | 0.4839 | | 0.5524 | 7.25 | 1400 | 0.6458 | 0.4889 | | 0.4992 | 8.29 | 1600 | 0.5791 | 0.4382 | | 0.4669 | 9.33 | 1800 | 0.6039 | 0.4352 | | 0.4441 | 10.36 | 2000 | 0.6276 | 0.4297 | | 0.4172 | 11.4 | 2200 | 0.6183 | 0.4474 | | 0.3872 | 12.44 | 2400 | 0.5886 | 0.4231 | | 0.3692 | 13.47 | 2600 | 0.6448 | 0.4399 | | 0.3385 | 14.51 | 2800 | 0.6344 | 0.4075 | | 0.3246 | 15.54 | 3000 | 0.5896 | 0.4087 | | 0.3026 | 16.58 | 3200 | 0.6158 | 0.4016 | | 0.284 | 17.62 | 3400 | 0.6038 | 0.3906 | | 0.2682 | 18.65 | 3600 | 0.6165 | 0.3900 | | 0.2577 | 19.69 | 3800 | 0.5754 | 0.3805 | | 0.2509 | 20.73 | 4000 | 0.6028 | 0.3925 | | 0.2426 | 21.76 | 4200 | 0.6335 | 0.4138 | | 0.2346 | 22.8 | 4400 | 0.6128 | 0.3870 | | 0.2205 | 23.83 | 4600 | 0.6223 | 0.3831 | | 0.2104 | 24.87 | 4800 | 0.6122 | 0.3781 | | 0.1992 | 25.91 | 5000 | 0.6467 | 0.3792 | | 0.1916 | 26.94 | 5200 | 0.6277 | 0.3636 | | 0.1835 | 27.98 | 5400 | 0.6317 | 0.3773 | | 0.1776 | 29.02 | 5600 | 0.6124 | 0.3614 | | 0.1751 | 30.05 | 5800 | 0.6475 | 0.3628 | | 0.1662 | 31.09 | 6000 | 0.6266 | 0.3504 | | 0.1584 | 32.12 | 6200 | 0.6347 | 0.3532 | | 0.1494 | 33.16 | 6400 | 0.6636 | 0.3491 | | 0.1457 | 34.2 | 6600 | 0.6334 | 0.3507 | | 0.1427 | 35.23 | 6800 | 0.6397 | 0.3442 | | 0.1397 | 36.27 | 7000 | 0.6468 | 0.3496 | | 0.1283 | 37.31 | 7200 | 0.6291 | 0.3416 | | 0.1255 | 38.34 | 7400 | 0.6652 | 0.3461 | | 0.1195 | 39.38 | 7600 | 0.6587 | 0.3342 | | 0.1169 | 40.41 | 7800 | 0.6478 | 0.3319 | | 0.1126 | 41.45 | 8000 | 0.6280 | 0.3291 | | 0.1112 | 42.49 | 8200 | 0.6434 | 0.3290 | | 0.1069 | 43.52 | 8400 | 0.6542 | 0.3268 | | 0.1027 | 44.56 | 8600 | 0.6536 | 0.3239 | | 0.0993 | 45.6 | 8800 | 0.6622 | 0.3257 | | 0.0973 | 46.63 | 9000 | 0.6572 | 0.3192 | | 0.0911 | 47.67 | 9200 | 0.6522 | 0.3175 | | 0.0897 | 48.7 | 9400 | 0.6521 | 0.3200 | | 0.0905 | 49.74 | 9600 | 0.6510 | 0.3179 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
{"language": ["hi"], "license": "apache-2.0", "tags": ["automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "hi", "robust-speech-event", "model_for_talk", "hf-asr-leaderboard"], "datasets": ["mozilla-foundation/common_voice_8_0"], "model-index": [{"name": "wav2vec2-large-xls-r-300m-hi-cv8", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Common Voice 8", "type": "mozilla-foundation/common_voice_8_0", "args": "hi"}, "metrics": [{"type": "wer", "value": 0.3628727037755008, "name": "Test WER"}, {"type": "cer", "value": 0.11933724247521164, "name": "Test CER"}]}, {"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Robust Speech Event - Dev Data", "type": "speech-recognition-community-v2/dev_data", "args": "hi"}, "metrics": [{"type": "wer", "value": "NA", "name": "Test WER"}, {"type": "cer", "value": "NA", "name": "Test CER"}]}]}]}
DrishtiSharma/wav2vec2-large-xls-r-300m-hi-cv8
null
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "hi", "robust-speech-event", "model_for_talk", "hf-asr-leaderboard", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
automatic-speech-recognition
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-hi-d3 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - HI dataset. It achieves the following results on the evaluation set: - Loss: 0.7988 - Wer: 0.3713 ###Evaluation Commands 1. To evaluate on mozilla-foundation/common_voice_8_0 with test split python eval.py --model_id DrishtiSharma/wav2vec2-large-xls-r-300m-hi-d3 --dataset mozilla-foundation/common_voice_7_0 --config hi --split test --log_outputs 2. To evaluate on speech-recognition-community-v2/dev_data Hindi language isn't available in speech-recognition-community-v2/dev_data ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.000388 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 750 - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 8.2826 | 1.36 | 200 | 3.5253 | 1.0 | | 2.7019 | 2.72 | 400 | 1.1744 | 0.7360 | | 0.7358 | 4.08 | 600 | 0.7781 | 0.5501 | | 0.4942 | 5.44 | 800 | 0.7590 | 0.5345 | | 0.4056 | 6.8 | 1000 | 0.6885 | 0.4776 | | 0.3243 | 8.16 | 1200 | 0.7195 | 0.4861 | | 0.2785 | 9.52 | 1400 | 0.7473 | 0.4930 | | 0.2448 | 10.88 | 1600 | 0.7201 | 0.4574 | | 0.2155 | 12.24 | 1800 | 0.7686 | 0.4648 | | 0.2039 | 13.6 | 2000 | 0.7440 | 0.4624 | | 0.1792 | 14.96 | 2200 | 0.7815 | 0.4658 | | 0.1695 | 16.33 | 2400 | 0.7678 | 0.4557 | | 0.1598 | 17.68 | 2600 | 0.7468 | 0.4393 | | 0.1568 | 19.05 | 2800 | 0.7440 | 0.4422 | | 0.1391 | 20.41 | 3000 | 0.7656 | 0.4317 | | 0.1283 | 21.77 | 3200 | 0.7892 | 0.4299 | | 0.1194 | 23.13 | 3400 | 0.7646 | 0.4192 | | 0.1116 | 24.49 | 3600 | 0.8156 | 0.4330 | | 0.1111 | 25.85 | 3800 | 0.7661 | 0.4322 | | 0.1023 | 27.21 | 4000 | 0.7419 | 0.4276 | | 0.1007 | 28.57 | 4200 | 0.8488 | 0.4245 | | 0.0925 | 29.93 | 4400 | 0.8062 | 0.4070 | | 0.0918 | 31.29 | 4600 | 0.8412 | 0.4218 | | 0.0813 | 32.65 | 4800 | 0.8045 | 0.4087 | | 0.0805 | 34.01 | 5000 | 0.8411 | 0.4113 | | 0.0774 | 35.37 | 5200 | 0.7664 | 0.3943 | | 0.0666 | 36.73 | 5400 | 0.8082 | 0.3939 | | 0.0655 | 38.09 | 5600 | 0.7948 | 0.4000 | | 0.0617 | 39.45 | 5800 | 0.8084 | 0.3932 | | 0.0606 | 40.81 | 6000 | 0.8223 | 0.3841 | | 0.0569 | 42.18 | 6200 | 0.7892 | 0.3832 | | 0.0544 | 43.54 | 6400 | 0.8326 | 0.3834 | | 0.0508 | 44.89 | 6600 | 0.7952 | 0.3774 | | 0.0492 | 46.26 | 6800 | 0.7923 | 0.3756 | | 0.0459 | 47.62 | 7000 | 0.7925 | 0.3701 | | 0.0423 | 48.98 | 7200 | 0.7988 | 0.3713 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
{"language": ["hi"], "license": "apache-2.0", "tags": ["automatic-speech-recognition", "mozilla-foundation/common_voice_7_0", "generated_from_trainer", "hi", "robust-speech-event", "model_for_talk", "hf-asr-leaderboard"], "datasets": ["mozilla-foundation/common_voice_7_0"], "model-index": [{"name": "wav2vec2-large-xls-r-300m-hi-d3", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Common Voice 7", "type": "mozilla-foundation/common_voice_7_0", "args": "vot"}, "metrics": [{"type": "wer", "value": 0.4204111781361566, "name": "Test WER"}, {"type": "cer", "value": 0.13869169624556316, "name": "Test CER"}, {"type": "wer", "value": 42.04, "name": "Test WER"}]}, {"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Robust Speech Event - Dev Data", "type": "speech-recognition-community-v2/dev_data", "args": "hi"}, "metrics": [{"type": "wer", "value": "NA", "name": "Test WER"}, {"type": "cer", "value": "NA", "name": "Test CER"}]}]}]}
DrishtiSharma/wav2vec2-large-xls-r-300m-hi-d3
null
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "mozilla-foundation/common_voice_7_0", "generated_from_trainer", "hi", "robust-speech-event", "model_for_talk", "hf-asr-leaderboard", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
automatic-speech-recognition
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-hi-wx1 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 -HI dataset. It achieves the following results on the evaluation set: - Loss: 0.6552 - Wer: 0.3200 Evaluation Commands 1. To evaluate on mozilla-foundation/common_voice_8_0 with test split python eval.py --model_id DrishtiSharma/wav2vec2-large-xls-r-300m-hi-wx1 --dataset mozilla-foundation/common_voice_7_0 --config hi --split test --log_outputs 2. To evaluate on speech-recognition-community-v2/dev_data NA ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.00024 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1800 - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 12.2663 | 1.36 | 200 | 5.9245 | 1.0 | | 4.1856 | 2.72 | 400 | 3.4968 | 1.0 | | 3.3908 | 4.08 | 600 | 2.9970 | 1.0 | | 1.5444 | 5.44 | 800 | 0.9071 | 0.6139 | | 0.7237 | 6.8 | 1000 | 0.6508 | 0.4862 | | 0.5323 | 8.16 | 1200 | 0.6217 | 0.4647 | | 0.4426 | 9.52 | 1400 | 0.5785 | 0.4288 | | 0.3933 | 10.88 | 1600 | 0.5935 | 0.4217 | | 0.3532 | 12.24 | 1800 | 0.6358 | 0.4465 | | 0.3319 | 13.6 | 2000 | 0.5789 | 0.4118 | | 0.2877 | 14.96 | 2200 | 0.6163 | 0.4056 | | 0.2663 | 16.33 | 2400 | 0.6176 | 0.3893 | | 0.2511 | 17.68 | 2600 | 0.6065 | 0.3999 | | 0.2275 | 19.05 | 2800 | 0.6183 | 0.3842 | | 0.2098 | 20.41 | 3000 | 0.6486 | 0.3864 | | 0.1943 | 21.77 | 3200 | 0.6365 | 0.3885 | | 0.1877 | 23.13 | 3400 | 0.6013 | 0.3677 | | 0.1679 | 24.49 | 3600 | 0.6451 | 0.3795 | | 0.1667 | 25.85 | 3800 | 0.6410 | 0.3635 | | 0.1514 | 27.21 | 4000 | 0.6000 | 0.3577 | | 0.1453 | 28.57 | 4200 | 0.6020 | 0.3518 | | 0.134 | 29.93 | 4400 | 0.6531 | 0.3517 | | 0.1354 | 31.29 | 4600 | 0.6874 | 0.3578 | | 0.1224 | 32.65 | 4800 | 0.6519 | 0.3492 | | 0.1199 | 34.01 | 5000 | 0.6553 | 0.3490 | | 0.1077 | 35.37 | 5200 | 0.6621 | 0.3429 | | 0.0997 | 36.73 | 5400 | 0.6641 | 0.3413 | | 0.0964 | 38.09 | 5600 | 0.6722 | 0.3385 | | 0.0931 | 39.45 | 5800 | 0.6365 | 0.3363 | | 0.0944 | 40.81 | 6000 | 0.6454 | 0.3326 | | 0.0862 | 42.18 | 6200 | 0.6497 | 0.3256 | | 0.0848 | 43.54 | 6400 | 0.6599 | 0.3226 | | 0.0793 | 44.89 | 6600 | 0.6625 | 0.3232 | | 0.076 | 46.26 | 6800 | 0.6463 | 0.3186 | | 0.0749 | 47.62 | 7000 | 0.6559 | 0.3225 | | 0.0663 | 48.98 | 7200 | 0.6552 | 0.3200 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
{"language": ["hi"], "license": "apache-2.0", "tags": ["automatic-speech-recognition", "hf-asr-leaderboard", "robust-speech-event"], "datasets": ["mozilla-foundation/common_voice_7_0"], "metrics": ["wer"], "model-index": [{"name": "wav2vec2-large-xls-r-300m-hi-wx1", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice 7", "type": "mozilla-foundation/common_voice_7_0", "args": "hi"}, "metrics": [{"type": "wer", "value": 37.19684845500431, "name": "Test WER"}, {"type": "cer", "value": 11.763235514672798, "name": "Test CER"}]}]}]}
DrishtiSharma/wav2vec2-large-xls-r-300m-hi-wx1
null
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "hf-asr-leaderboard", "robust-speech-event", "hi", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
automatic-speech-recognition
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-hsb-v1 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - HSB dataset. It achieves the following results on the evaluation set: - Loss: 0.5684 - Wer: 0.4402 ### Evaluation Commands 1. To evaluate on mozilla-foundation/common_voice_8_0 with test split python eval.py --model_id DrishtiSharma/wav2vec2-large-xls-r-300m-hsb-v1 --dataset mozilla-foundation/common_voice_8_0 --config hsb --split test --log_outputs 2. To evaluate on speech-recognition-community-v2/dev_data Upper Sorbian language isn't available in speech-recognition-community-v2/dev_data ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.00045 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 8.972 | 3.23 | 100 | 3.7498 | 1.0 | | 3.3401 | 6.45 | 200 | 3.2320 | 1.0 | | 3.2046 | 9.68 | 300 | 3.1741 | 0.9806 | | 2.4031 | 12.9 | 400 | 1.0579 | 0.8996 | | 1.0427 | 16.13 | 500 | 0.7989 | 0.7557 | | 0.741 | 19.35 | 600 | 0.6405 | 0.6299 | | 0.5699 | 22.58 | 700 | 0.6129 | 0.5928 | | 0.4607 | 25.81 | 800 | 0.6548 | 0.5695 | | 0.3827 | 29.03 | 900 | 0.6268 | 0.5190 | | 0.3282 | 32.26 | 1000 | 0.5919 | 0.5016 | | 0.2764 | 35.48 | 1100 | 0.5953 | 0.4805 | | 0.2335 | 38.71 | 1200 | 0.5717 | 0.4728 | | 0.2106 | 41.94 | 1300 | 0.5674 | 0.4569 | | 0.1859 | 45.16 | 1400 | 0.5685 | 0.4502 | | 0.1592 | 48.39 | 1500 | 0.5684 | 0.4402 | ### Framework versions - Transformers 4.16.1 - Pytorch 1.10.0+cu111 - Datasets 1.18.2 - Tokenizers 0.11.0
{"language": ["hsb"], "license": "apache-2.0", "tags": ["automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "hsb", "robust-speech-event", "model_for_talk", "hf-asr-leaderboard"], "datasets": ["mozilla-foundation/common_voice_8_0"], "model-index": [{"name": "wav2vec2-large-xls-r-300m-hsb-v1", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Common Voice 8", "type": "mozilla-foundation/common_voice_8_0", "args": "hsb"}, "metrics": [{"type": "wer", "value": 0.4393, "name": "Test WER"}, {"type": "cer", "value": 0.1036, "name": "Test CER"}]}, {"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Robust Speech Event - Dev Data", "type": "speech-recognition-community-v2/dev_data", "args": "hsb"}, "metrics": [{"type": "wer", "value": "NA", "name": "Test WER"}, {"type": "cer", "value": "NA", "name": "Test CER"}]}]}]}
DrishtiSharma/wav2vec2-large-xls-r-300m-hsb-v1
null
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "hsb", "robust-speech-event", "model_for_talk", "hf-asr-leaderboard", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
automatic-speech-recognition
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-hsb-v2 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - HSB dataset. It achieves the following results on the evaluation set: - Loss: 0.5328 - Wer: 0.4596 ### Evaluation Commands 1. To evaluate on mozilla-foundation/common_voice_8_0 with test split python eval.py --model_id DrishtiSharma/wav2vec2-large-xls-r-300m-hsb-v2 --dataset mozilla-foundation/common_voice_8_0 --config hsb --split test --log_outputs 2. To evaluate on speech-recognition-community-v2/dev_data Upper Sorbian (hsb) not found in speech-recognition-community-v2/dev_data ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.00045 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 8.5979 | 3.23 | 100 | 3.5602 | 1.0 | | 3.303 | 6.45 | 200 | 3.2238 | 1.0 | | 3.2034 | 9.68 | 300 | 3.2002 | 0.9888 | | 2.7986 | 12.9 | 400 | 1.2408 | 0.9210 | | 1.3869 | 16.13 | 500 | 0.7973 | 0.7462 | | 1.0228 | 19.35 | 600 | 0.6722 | 0.6788 | | 0.8311 | 22.58 | 700 | 0.6100 | 0.6150 | | 0.717 | 25.81 | 800 | 0.6236 | 0.6013 | | 0.6264 | 29.03 | 900 | 0.6031 | 0.5575 | | 0.5494 | 32.26 | 1000 | 0.5656 | 0.5309 | | 0.4781 | 35.48 | 1100 | 0.5289 | 0.4996 | | 0.4311 | 38.71 | 1200 | 0.5375 | 0.4768 | | 0.3902 | 41.94 | 1300 | 0.5246 | 0.4703 | | 0.3508 | 45.16 | 1400 | 0.5382 | 0.4696 | | 0.3199 | 48.39 | 1500 | 0.5328 | 0.4596 | ### Framework versions - Transformers 4.16.1 - Pytorch 1.10.0+cu111 - Datasets 1.18.2 - Tokenizers 0.11.0
{"language": ["hsb"], "license": "apache-2.0", "tags": ["automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "hsb", "robust-speech-event", "model_for_talk", "hf-asr-leaderboard"], "datasets": ["mozilla-foundation/common_voice_8_0"], "model-index": [{"name": "wav2vec2-large-xls-r-300m-hsb-v2", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Common Voice 8", "type": "mozilla-foundation/common_voice_8_0", "args": "hsb"}, "metrics": [{"type": "wer", "value": 0.4654228855721393, "name": "Test WER"}, {"type": "cer", "value": 0.11351049990708047, "name": "Test CER"}]}, {"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Robust Speech Event - Dev Data", "type": "speech-recognition-community-v2/dev_data", "args": "hsb"}, "metrics": [{"type": "wer", "value": "NA", "name": "Test WER"}, {"type": "cer", "value": "NA", "name": "Test CER"}]}]}]}
DrishtiSharma/wav2vec2-large-xls-r-300m-hsb-v2
null
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "hsb", "robust-speech-event", "model_for_talk", "hf-asr-leaderboard", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
automatic-speech-recognition
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-hsb-v3 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - HSB dataset. It achieves the following results on the evaluation set: - Loss: 0.6549 - Wer: 0.4827 ### Evaluation Commands 1. To evaluate on mozilla-foundation/common_voice_8_0 with test split python eval.py --model_id DrishtiSharma/wav2vec2-large-xls-r-300m-hsb-v3 --dataset mozilla-foundation/common_voice_8_0 --config hsb --split test --log_outputs 2. To evaluate on speech-recognition-community-v2/dev_data Upper Sorbian (hsb) language not found in speech-recognition-community-v2/dev_data! ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.00045 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 8.8951 | 3.23 | 100 | 3.6396 | 1.0 | | 3.314 | 6.45 | 200 | 3.2331 | 1.0 | | 3.1931 | 9.68 | 300 | 3.0947 | 0.9906 | | 1.7079 | 12.9 | 400 | 0.8865 | 0.8499 | | 0.6859 | 16.13 | 500 | 0.7994 | 0.7529 | | 0.4804 | 19.35 | 600 | 0.7783 | 0.7069 | | 0.3506 | 22.58 | 700 | 0.6904 | 0.6321 | | 0.2695 | 25.81 | 800 | 0.6519 | 0.5926 | | 0.222 | 29.03 | 900 | 0.7041 | 0.5720 | | 0.1828 | 32.26 | 1000 | 0.6608 | 0.5513 | | 0.1474 | 35.48 | 1100 | 0.7129 | 0.5319 | | 0.1269 | 38.71 | 1200 | 0.6664 | 0.5056 | | 0.1077 | 41.94 | 1300 | 0.6712 | 0.4942 | | 0.0934 | 45.16 | 1400 | 0.6467 | 0.4879 | | 0.0819 | 48.39 | 1500 | 0.6549 | 0.4827 | ### Framework versions - Transformers 4.16.1 - Pytorch 1.10.0+cu111 - Datasets 1.18.2 - Tokenizers 0.11.0
{"language": ["hsb"], "license": "apache-2.0", "tags": ["automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "hsb", "robust-speech-event", "model_for_talk", "hf-asr-leaderboard"], "datasets": ["mozilla-foundation/common_voice_8_0"], "model-index": [{"name": "wav2vec2-large-xls-r-300m-hsb-v3", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Common Voice 8", "type": "mozilla-foundation/common_voice_8_0", "args": "hsb"}, "metrics": [{"type": "wer", "value": 0.4763681592039801, "name": "Test WER"}, {"type": "cer", "value": 0.11194945177476305, "name": "Test CER"}]}, {"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Robust Speech Event - Dev Data", "type": "speech-recognition-community-v2/dev_data", "args": "hsb"}, "metrics": [{"type": "wer", "value": "NA", "name": "Test WER"}, {"type": "cer", "value": "NA", "name": "Test CER"}]}]}]}
DrishtiSharma/wav2vec2-large-xls-r-300m-hsb-v3
null
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "hsb", "robust-speech-event", "model_for_talk", "hf-asr-leaderboard", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
automatic-speech-recognition
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - KK dataset. It achieves the following results on the evaluation set: - Loss: 0.7149 - Wer: 0.451 # Evaluation Commands 1. To evaluate on mozilla-foundation/common_voice_8_0 with test split python eval.py --model_id DrishtiSharma/wav2vec2-large-xls-r-300m-kk-with-LM --dataset mozilla-foundation/common_voice_8_0 --config kk --split test --log_outputs 2. To evaluate on speech-recognition-community-v2/dev_data Kazakh language isn't available in speech-recognition-community-v2/dev_data ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.000222 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 150.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 9.6799 | 9.09 | 200 | 3.6119 | 1.0 | | 3.1332 | 18.18 | 400 | 2.5352 | 1.005 | | 1.0465 | 27.27 | 600 | 0.6169 | 0.682 | | 0.3452 | 36.36 | 800 | 0.6572 | 0.607 | | 0.2575 | 45.44 | 1000 | 0.6527 | 0.578 | | 0.2088 | 54.53 | 1200 | 0.6828 | 0.551 | | 0.158 | 63.62 | 1400 | 0.7074 | 0.5575 | | 0.1309 | 72.71 | 1600 | 0.6523 | 0.5595 | | 0.1074 | 81.8 | 1800 | 0.7262 | 0.5415 | | 0.087 | 90.89 | 2000 | 0.7199 | 0.521 | | 0.0711 | 99.98 | 2200 | 0.7113 | 0.523 | | 0.0601 | 109.09 | 2400 | 0.6863 | 0.496 | | 0.0451 | 118.18 | 2600 | 0.6998 | 0.483 | | 0.0378 | 127.27 | 2800 | 0.6971 | 0.4615 | | 0.0319 | 136.36 | 3000 | 0.7119 | 0.4475 | | 0.0305 | 145.44 | 3200 | 0.7181 | 0.459 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0 ### Evaluation Command !python eval.py \ --model_id DrishtiSharma/wav2vec2-xls-r-300m-kk-n2 \ --dataset mozilla-foundation/common_voice_8_0 --config kk --split test --log_outputs
{"language": ["kk"], "license": "apache-2.0", "tags": ["automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "kk", "robust-speech-event", "model_for_talk", "hf-asr-leaderboard"], "datasets": ["mozilla-foundation/common_voice_8_0"], "model-index": [{"name": "wav2vec2-large-xls-r-300m-kk-with-LM", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Common Voice 8", "type": "mozilla-foundation/common_voice_8_0", "args": "ru"}, "metrics": [{"type": "wer", "value": 0.4355, "name": "Test WER"}, {"type": "cer", "value": 0.10469915859660263, "name": "Test CER"}, {"type": "wer", "value": 0.417, "name": "Test WER (+LM)"}, {"type": "cer", "value": 0.10319098269566598, "name": "Test CER (+LM)"}, {"type": "wer", "value": 41.7, "name": "Test WER"}]}, {"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Robust Speech Event - Dev Data", "type": "speech-recognition-community-v2/dev_data", "args": "kk"}, "metrics": [{"type": "wer", "value": "NA", "name": "Test WER"}, {"type": "cer", "value": "NA", "name": "Test CER"}]}, {"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Robust Speech Event - Test Data", "type": "speech-recognition-community-v2/eval_data", "args": "kk"}, "metrics": [{"type": "wer", "value": 67.09, "name": "Test WER"}]}]}]}
DrishtiSharma/wav2vec2-large-xls-r-300m-kk-with-LM
null
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "kk", "robust-speech-event", "model_for_talk", "hf-asr-leaderboard", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
automatic-speech-recognition
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-maltese This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - MT dataset. It achieves the following results on the evaluation set: - Loss: 0.2994 - Wer: 0.2781 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1800 - num_epochs: 100.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 3.0174 | 9.01 | 1000 | 3.0552 | 1.0 | | 1.0446 | 18.02 | 2000 | 0.6708 | 0.7577 | | 0.7995 | 27.03 | 3000 | 0.4202 | 0.4770 | | 0.6978 | 36.04 | 4000 | 0.3054 | 0.3494 | | 0.6189 | 45.05 | 5000 | 0.2878 | 0.3154 | | 0.5667 | 54.05 | 6000 | 0.3114 | 0.3286 | | 0.5173 | 63.06 | 7000 | 0.3085 | 0.3021 | | 0.4682 | 72.07 | 8000 | 0.3058 | 0.2969 | | 0.451 | 81.08 | 9000 | 0.3146 | 0.2907 | | 0.4213 | 90.09 | 10000 | 0.3030 | 0.2881 | | 0.4005 | 99.1 | 11000 | 0.3001 | 0.2789 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0 ### Evaluation Script !python eval.py \ --model_id DrishtiSharma/wav2vec2-large-xls-r-300m-maltese \ --dataset mozilla-foundation/common_voice_8_0 --config mt --split test --log_outputs
{"language": ["mt"], "license": "apache-2.0", "tags": ["automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "model_for_talk", "mozilla-foundation/common_voice_8_0", "mt", "robust-speech-event"], "datasets": ["mozilla-foundation/common_voice_8_0"]}
DrishtiSharma/wav2vec2-large-xls-r-300m-maltese
null
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "model_for_talk", "mozilla-foundation/common_voice_8_0", "mt", "robust-speech-event", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
automatic-speech-recognition
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-mr-v2 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - MR dataset. It achieves the following results on the evaluation set: - Loss: 0.8729 - Wer: 0.4942 ### Evaluation Commands 1. To evaluate on mozilla-foundation/common_voice_8_0 with test split python eval.py --model_id DrishtiSharma/wav2vec2-large-xls-r-300m-mr-v2 --dataset mozilla-foundation/common_voice_8_0 --config mr --split test --log_outputs 2. To evaluate on speech-recognition-community-v2/dev_data python eval.py --model_id DrishtiSharma/wav2vec2-large-xls-r-300m-mr-v2 --dataset speech-recognition-community-v2/dev_data --config mr --split validation --chunk_length_s 10 --stride_length_s 1 Note: Marathi language not found in speech-recognition-community-v2/dev_data! ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.000333 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 200 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 8.4934 | 9.09 | 200 | 3.7326 | 1.0 | | 3.4234 | 18.18 | 400 | 3.3383 | 0.9996 | | 3.2628 | 27.27 | 600 | 2.7482 | 0.9992 | | 1.7743 | 36.36 | 800 | 0.6755 | 0.6787 | | 1.0346 | 45.45 | 1000 | 0.6067 | 0.6193 | | 0.8137 | 54.55 | 1200 | 0.6228 | 0.5612 | | 0.6637 | 63.64 | 1400 | 0.5976 | 0.5495 | | 0.5563 | 72.73 | 1600 | 0.7009 | 0.5383 | | 0.4844 | 81.82 | 1800 | 0.6662 | 0.5287 | | 0.4057 | 90.91 | 2000 | 0.6911 | 0.5303 | | 0.3582 | 100.0 | 2200 | 0.7207 | 0.5327 | | 0.3163 | 109.09 | 2400 | 0.7107 | 0.5118 | | 0.2761 | 118.18 | 2600 | 0.7538 | 0.5118 | | 0.2415 | 127.27 | 2800 | 0.7850 | 0.5178 | | 0.2127 | 136.36 | 3000 | 0.8016 | 0.5034 | | 0.1873 | 145.45 | 3200 | 0.8302 | 0.5187 | | 0.1723 | 154.55 | 3400 | 0.9085 | 0.5223 | | 0.1498 | 163.64 | 3600 | 0.8396 | 0.5126 | | 0.1425 | 172.73 | 3800 | 0.8776 | 0.5094 | | 0.1258 | 181.82 | 4000 | 0.8651 | 0.5014 | | 0.117 | 190.91 | 4200 | 0.8772 | 0.4970 | | 0.1093 | 200.0 | 4400 | 0.8729 | 0.4942 | ### Framework versions - Transformers 4.16.1 - Pytorch 1.10.0+cu111 - Datasets 1.18.2 - Tokenizers 0.11.0
{"language": ["mr"], "license": "apache-2.0", "tags": ["automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "mr", "robust-speech-event", "hf-asr-leaderboard"], "datasets": ["mozilla-foundation/common_voice_8_0"], "model-index": [{"name": "wav2vec2-large-xls-r-300m-mr-v2", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Common Voice 8", "type": "mozilla-foundation/common_voice_8_0", "args": "mr"}, "metrics": [{"type": "wer", "value": 0.49378259125551544, "name": "Test WER"}, {"type": "cer", "value": 0.12470799640610962, "name": "Test CER"}]}, {"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Robust Speech Event - Dev Data", "type": "speech-recognition-community-v2/dev_data", "args": "mr"}, "metrics": [{"type": "wer", "value": "NA", "name": "Test WER"}, {"type": "cer", "value": "NA", "name": "Test CER"}]}]}]}
DrishtiSharma/wav2vec2-large-xls-r-300m-mr-v2
null
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "mr", "robust-speech-event", "hf-asr-leaderboard", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
automatic-speech-recognition
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-myv-v1 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - MYV dataset. It achieves the following results on the evaluation set: - Loss: 0.8537 - Wer: 0.6160 ### Evaluation Commands 1. To evaluate on mozilla-foundation/common_voice_8_0 with test split python eval.py --model_id DrishtiSharma/wav2vec2-large-xls-r-300m-myv-v1 --dataset mozilla-foundation/common_voice_8_0 --config myv --split test --log_outputs 2. To evaluate on speech-recognition-community-v2/dev_data Erzya language not found in speech-recognition-community-v2/dev_data! ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.000222 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 150 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 19.453 | 1.92 | 50 | 16.4001 | 1.0 | | 9.6875 | 3.85 | 100 | 5.4468 | 1.0 | | 4.9988 | 5.77 | 150 | 4.3507 | 1.0 | | 4.1148 | 7.69 | 200 | 3.6753 | 1.0 | | 3.4922 | 9.62 | 250 | 3.3103 | 1.0 | | 3.2443 | 11.54 | 300 | 3.1741 | 1.0 | | 3.164 | 13.46 | 350 | 3.1346 | 1.0 | | 3.0954 | 15.38 | 400 | 3.0428 | 1.0 | | 3.0076 | 17.31 | 450 | 2.9137 | 1.0 | | 2.6883 | 19.23 | 500 | 2.1476 | 0.9978 | | 1.5124 | 21.15 | 550 | 0.8955 | 0.8225 | | 0.8711 | 23.08 | 600 | 0.6948 | 0.7591 | | 0.6695 | 25.0 | 650 | 0.6683 | 0.7636 | | 0.5606 | 26.92 | 700 | 0.6821 | 0.7435 | | 0.503 | 28.85 | 750 | 0.7220 | 0.7516 | | 0.4528 | 30.77 | 800 | 0.6638 | 0.7324 | | 0.4219 | 32.69 | 850 | 0.7120 | 0.7435 | | 0.4109 | 34.62 | 900 | 0.7122 | 0.7511 | | 0.3887 | 36.54 | 950 | 0.7179 | 0.7199 | | 0.3895 | 38.46 | 1000 | 0.7322 | 0.7525 | | 0.391 | 40.38 | 1050 | 0.6850 | 0.7364 | | 0.3537 | 42.31 | 1100 | 0.7571 | 0.7279 | | 0.3267 | 44.23 | 1150 | 0.7575 | 0.7257 | | 0.3195 | 46.15 | 1200 | 0.7580 | 0.6998 | | 0.2891 | 48.08 | 1250 | 0.7452 | 0.7101 | | 0.294 | 50.0 | 1300 | 0.7316 | 0.6945 | | 0.2854 | 51.92 | 1350 | 0.7241 | 0.6757 | | 0.2801 | 53.85 | 1400 | 0.7532 | 0.6887 | | 0.2502 | 55.77 | 1450 | 0.7587 | 0.6811 | | 0.2427 | 57.69 | 1500 | 0.7231 | 0.6851 | | 0.2311 | 59.62 | 1550 | 0.7288 | 0.6632 | | 0.2176 | 61.54 | 1600 | 0.7711 | 0.6664 | | 0.2117 | 63.46 | 1650 | 0.7914 | 0.6940 | | 0.2114 | 65.38 | 1700 | 0.8065 | 0.6918 | | 0.1913 | 67.31 | 1750 | 0.8372 | 0.6945 | | 0.1897 | 69.23 | 1800 | 0.8051 | 0.6869 | | 0.1865 | 71.15 | 1850 | 0.8076 | 0.6740 | | 0.1844 | 73.08 | 1900 | 0.7935 | 0.6708 | | 0.1757 | 75.0 | 1950 | 0.8015 | 0.6610 | | 0.1636 | 76.92 | 2000 | 0.7614 | 0.6414 | | 0.1637 | 78.85 | 2050 | 0.8123 | 0.6592 | | 0.1599 | 80.77 | 2100 | 0.7907 | 0.6566 | | 0.1498 | 82.69 | 2150 | 0.8641 | 0.6757 | | 0.1545 | 84.62 | 2200 | 0.7438 | 0.6682 | | 0.1433 | 86.54 | 2250 | 0.8014 | 0.6624 | | 0.1427 | 88.46 | 2300 | 0.7758 | 0.6646 | | 0.1423 | 90.38 | 2350 | 0.7741 | 0.6423 | | 0.1298 | 92.31 | 2400 | 0.7938 | 0.6414 | | 0.1111 | 94.23 | 2450 | 0.7976 | 0.6467 | | 0.1243 | 96.15 | 2500 | 0.7916 | 0.6481 | | 0.1215 | 98.08 | 2550 | 0.7594 | 0.6392 | | 0.113 | 100.0 | 2600 | 0.8236 | 0.6392 | | 0.1077 | 101.92 | 2650 | 0.7959 | 0.6347 | | 0.0988 | 103.85 | 2700 | 0.8189 | 0.6392 | | 0.0953 | 105.77 | 2750 | 0.8157 | 0.6414 | | 0.0889 | 107.69 | 2800 | 0.7946 | 0.6369 | | 0.0929 | 109.62 | 2850 | 0.8255 | 0.6360 | | 0.0822 | 111.54 | 2900 | 0.8320 | 0.6334 | | 0.086 | 113.46 | 2950 | 0.8539 | 0.6490 | | 0.0825 | 115.38 | 3000 | 0.8438 | 0.6418 | | 0.0727 | 117.31 | 3050 | 0.8568 | 0.6481 | | 0.0717 | 119.23 | 3100 | 0.8447 | 0.6512 | | 0.0815 | 121.15 | 3150 | 0.8470 | 0.6445 | | 0.0689 | 123.08 | 3200 | 0.8264 | 0.6249 | | 0.0726 | 125.0 | 3250 | 0.7981 | 0.6169 | | 0.0648 | 126.92 | 3300 | 0.8237 | 0.6200 | | 0.0632 | 128.85 | 3350 | 0.8416 | 0.6249 | | 0.06 | 130.77 | 3400 | 0.8276 | 0.6173 | | 0.0616 | 132.69 | 3450 | 0.8429 | 0.6209 | | 0.0614 | 134.62 | 3500 | 0.8485 | 0.6271 | | 0.0539 | 136.54 | 3550 | 0.8598 | 0.6218 | | 0.0555 | 138.46 | 3600 | 0.8557 | 0.6169 | | 0.0604 | 140.38 | 3650 | 0.8436 | 0.6186 | | 0.0556 | 142.31 | 3700 | 0.8428 | 0.6178 | | 0.051 | 144.23 | 3750 | 0.8440 | 0.6142 | | 0.0526 | 146.15 | 3800 | 0.8566 | 0.6142 | | 0.052 | 148.08 | 3850 | 0.8544 | 0.6178 | | 0.0519 | 150.0 | 3900 | 0.8537 | 0.6160 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.2 - Tokenizers 0.11.0
{"language": ["myv"], "license": "apache-2.0", "tags": ["automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "myv", "robust-speech-event", "model_for_talk", "hf-asr-leaderboard"], "datasets": ["mozilla-foundation/common_voice_8_0"], "model-index": [{"name": "wav2vec2-large-xls-r-300m-myv-v1", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Common Voice 8", "type": "mozilla-foundation/common_voice_8_0", "args": "myv"}, "metrics": [{"type": "wer", "value": 0.599548532731377, "name": "Test WER"}, {"type": "cer", "value": 0.12953851902597, "name": "Test CER"}]}, {"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Robust Speech Event - Dev Data", "type": "speech-recognition-community-v2/dev_data", "args": "myv"}, "metrics": [{"type": "wer", "value": "NA", "name": "Test WER"}, {"type": "cer", "value": "NA", "name": "Test CER"}]}]}]}
DrishtiSharma/wav2vec2-large-xls-r-300m-myv-v1
null
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "myv", "robust-speech-event", "model_for_talk", "hf-asr-leaderboard", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
automatic-speech-recognition
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-or-d5 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - OR dataset. It achieves the following results on the evaluation set: - Loss: 0.9571 - Wer: 0.5450 ### Evaluation Commands 1. To evaluate on mozilla-foundation/common_voice_8_0 with test split python eval.py --model_id DrishtiSharma/wav2vec2-large-xls-r-300m-or-d5 --dataset mozilla-foundation/common_voice_8_0 --config or --split test --log_outputs 2. To evaluate on speech-recognition-community-v2/dev_data python eval.py --model_id DrishtiSharma/wav2vec2-large-xls-r-300m-or-d5 --dataset speech-recognition-community-v2/dev_data --config or --split validation --chunk_length_s 10 --stride_length_s 1 ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.000111 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 800 - num_epochs: 200 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 9.2958 | 12.5 | 300 | 4.9014 | 1.0 | | 3.4065 | 25.0 | 600 | 3.5150 | 1.0 | | 1.5402 | 37.5 | 900 | 0.8356 | 0.7249 | | 0.6049 | 50.0 | 1200 | 0.7754 | 0.6349 | | 0.4074 | 62.5 | 1500 | 0.7994 | 0.6217 | | 0.3097 | 75.0 | 1800 | 0.8815 | 0.5985 | | 0.2593 | 87.5 | 2100 | 0.8532 | 0.5754 | | 0.2097 | 100.0 | 2400 | 0.9077 | 0.5648 | | 0.1784 | 112.5 | 2700 | 0.9047 | 0.5668 | | 0.1567 | 125.0 | 3000 | 0.9019 | 0.5728 | | 0.1315 | 137.5 | 3300 | 0.9295 | 0.5827 | | 0.1125 | 150.0 | 3600 | 0.9256 | 0.5681 | | 0.1035 | 162.5 | 3900 | 0.9148 | 0.5496 | | 0.0901 | 175.0 | 4200 | 0.9480 | 0.5483 | | 0.0817 | 187.5 | 4500 | 0.9799 | 0.5516 | | 0.079 | 200.0 | 4800 | 0.9571 | 0.5450 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
{"language": ["or"], "license": "apache-2.0", "tags": ["automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "or", "robust-speech-event", "model_for_talk", "hf-asr-leaderboard"], "datasets": ["mozilla-foundation/common_voice_8_0"], "model-index": [{"name": "wav2vec2-large-xls-r-300m-or-d5", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Common Voice 8", "type": "mozilla-foundation/common_voice_8_0", "args": "or"}, "metrics": [{"type": "wer", "value": 0.579136690647482, "name": "Test WER"}, {"type": "cer", "value": 0.1572148018392818, "name": "Test CER"}]}, {"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Robust Speech Event - Dev Data", "type": "speech-recognition-community-v2/dev_data", "args": "or"}, "metrics": [{"type": "wer", "value": "NA", "name": "Test WER"}, {"type": "cer", "value": "NA", "name": "Test CER"}]}]}]}
DrishtiSharma/wav2vec2-large-xls-r-300m-or-d5
null
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "or", "robust-speech-event", "model_for_talk", "hf-asr-leaderboard", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
automatic-speech-recognition
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-or-dx12 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 1.4638 - Wer: 0.5602 ### Evaluation Commands 1. To evaluate on mozilla-foundation/common_voice_8_0 with test split python eval.py --model_id DrishtiSharma/wav2vec2-large-xls-r-300m-or-dx12 --dataset mozilla-foundation/common_voice_8_0 --config or --split test --log_outputs 2. To evaluate on speech-recognition-community-v2/dev_data Oriya language isn't available in speech-recognition-community-v2/dev_data ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0004 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 200 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 13.5059 | 4.17 | 100 | 10.3789 | 1.0 | | 4.5964 | 8.33 | 200 | 4.3294 | 1.0 | | 3.4448 | 12.5 | 300 | 3.7903 | 1.0 | | 3.3683 | 16.67 | 400 | 3.5289 | 1.0 | | 2.042 | 20.83 | 500 | 1.1531 | 0.7857 | | 0.5721 | 25.0 | 600 | 1.0267 | 0.7646 | | 0.3274 | 29.17 | 700 | 1.0773 | 0.6938 | | 0.2466 | 33.33 | 800 | 1.0323 | 0.6647 | | 0.2047 | 37.5 | 900 | 1.1255 | 0.6733 | | 0.1847 | 41.67 | 1000 | 1.1194 | 0.6515 | | 0.1453 | 45.83 | 1100 | 1.1215 | 0.6601 | | 0.1367 | 50.0 | 1200 | 1.1898 | 0.6627 | | 0.1334 | 54.17 | 1300 | 1.3082 | 0.6687 | | 0.1041 | 58.33 | 1400 | 1.2514 | 0.6177 | | 0.1024 | 62.5 | 1500 | 1.2055 | 0.6528 | | 0.0919 | 66.67 | 1600 | 1.4125 | 0.6369 | | 0.074 | 70.83 | 1700 | 1.4006 | 0.6634 | | 0.0681 | 75.0 | 1800 | 1.3943 | 0.6131 | | 0.0709 | 79.17 | 1900 | 1.3545 | 0.6296 | | 0.064 | 83.33 | 2000 | 1.2437 | 0.6237 | | 0.0552 | 87.5 | 2100 | 1.3762 | 0.6190 | | 0.056 | 91.67 | 2200 | 1.3763 | 0.6323 | | 0.0514 | 95.83 | 2300 | 1.2897 | 0.6164 | | 0.0409 | 100.0 | 2400 | 1.4257 | 0.6104 | | 0.0379 | 104.17 | 2500 | 1.4219 | 0.5853 | | 0.0367 | 108.33 | 2600 | 1.4361 | 0.6032 | | 0.0412 | 112.5 | 2700 | 1.4713 | 0.6098 | | 0.0353 | 116.67 | 2800 | 1.4132 | 0.6369 | | 0.0336 | 120.83 | 2900 | 1.5210 | 0.6098 | | 0.0302 | 125.0 | 3000 | 1.4686 | 0.5939 | | 0.0398 | 129.17 | 3100 | 1.5456 | 0.6204 | | 0.0291 | 133.33 | 3200 | 1.4111 | 0.5827 | | 0.0247 | 137.5 | 3300 | 1.3866 | 0.6151 | | 0.0196 | 141.67 | 3400 | 1.4513 | 0.5880 | | 0.0218 | 145.83 | 3500 | 1.5100 | 0.5899 | | 0.0196 | 150.0 | 3600 | 1.4936 | 0.5999 | | 0.0164 | 154.17 | 3700 | 1.5012 | 0.5701 | | 0.0168 | 158.33 | 3800 | 1.5601 | 0.5919 | | 0.0151 | 162.5 | 3900 | 1.4891 | 0.5761 | | 0.0137 | 166.67 | 4000 | 1.4839 | 0.5800 | | 0.0143 | 170.83 | 4100 | 1.4826 | 0.5754 | | 0.0114 | 175.0 | 4200 | 1.4950 | 0.5708 | | 0.0092 | 179.17 | 4300 | 1.5008 | 0.5694 | | 0.0104 | 183.33 | 4400 | 1.4774 | 0.5728 | | 0.0096 | 187.5 | 4500 | 1.4948 | 0.5767 | | 0.0105 | 191.67 | 4600 | 1.4557 | 0.5694 | | 0.009 | 195.83 | 4700 | 1.4615 | 0.5628 | | 0.0081 | 200.0 | 4800 | 1.4638 | 0.5602 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
{"language": ["or"], "license": "apache-2.0", "tags": ["automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "model_for_talk", "mozilla-foundation/common_voice_8_0", "or", "robust-speech-event"], "datasets": ["common_voice"], "model-index": [{"name": "wav2vec2-large-xls-r-300m-or-dx12", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Common Voice 8", "type": "mozilla-foundation/common_voice_8_0", "args": "or"}, "metrics": [{"type": "wer", "value": 0.5947242206235012, "name": "Test WER"}, {"type": "cer", "value": 0.18272388876724327, "name": "Test CER"}]}, {"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Robust Speech Event - Dev Data", "type": "speech-recognition-community-v2/dev_data", "args": "or"}, "metrics": [{"type": "wer", "value": "NA", "name": "Test WER"}, {"type": "cer", "value": "NA", "name": "Test CER"}]}]}]}
DrishtiSharma/wav2vec2-large-xls-r-300m-or-dx12
null
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "model_for_talk", "mozilla-foundation/common_voice_8_0", "or", "robust-speech-event", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
automatic-speech-recognition
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - PA-IN dataset. It achieves the following results on the evaluation set: - Loss: 1.0855 - Wer: 0.4755 ### Evaluation Commands 1. To evaluate on mozilla-foundation/common_voice_8_0 with test split python eval.py --model_id DrishtiSharma/wav2vec2-large-xls-r-300m-pa-IN-dx1 --dataset mozilla-foundation/common_voice_8_0 --config pa-IN --split test --log_outputs 2. To evaluate on speech-recognition-community-v2/dev_data Punjabi language isn't available in speech-recognition-community-v2/dev_data ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1200 - num_epochs: 100.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.4607 | 9.26 | 500 | 2.7746 | 1.0416 | | 0.3442 | 18.52 | 1000 | 0.9114 | 0.5911 | | 0.2213 | 27.78 | 1500 | 0.9687 | 0.5751 | | 0.1242 | 37.04 | 2000 | 1.0204 | 0.5461 | | 0.0998 | 46.3 | 2500 | 1.0250 | 0.5233 | | 0.0727 | 55.56 | 3000 | 1.1072 | 0.5382 | | 0.0605 | 64.81 | 3500 | 1.0588 | 0.5073 | | 0.0458 | 74.07 | 4000 | 1.0818 | 0.5069 | | 0.0338 | 83.33 | 4500 | 1.0948 | 0.5108 | | 0.0223 | 92.59 | 5000 | 1.0986 | 0.4775 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0
{"language": ["pa-IN"], "license": "apache-2.0", "tags": ["automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "pa-IN", "robust-speech-event", "hf-asr-leaderboard"], "datasets": ["mozilla-foundation/common_voice_8_0"], "model-index": [{"name": "wav2vec2-large-xls-r-300m-pa-IN-dx1", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Common Voice 8", "type": "mozilla-foundation/common_voice_8_0", "args": "pa-IN"}, "metrics": [{"type": "wer", "value": 0.48725989807918463, "name": "Test WER"}, {"type": "cer", "value": 0.1687305197540224, "name": "Test CER"}]}, {"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Robust Speech Event - Dev Data", "type": "speech-recognition-community-v2/dev_data", "args": "pa-IN"}, "metrics": [{"type": "wer", "value": "NA", "name": "Test WER"}, {"type": "cer", "value": "NA", "name": "Test CER"}]}]}]}
DrishtiSharma/wav2vec2-large-xls-r-300m-pa-IN-dx1
null
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "pa-IN", "robust-speech-event", "hf-asr-leaderboard", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
automatic-speech-recognition
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-sat-a3 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - SAT dataset. It achieves the following results on the evaluation set: - Loss: 0.8961 - Wer: 0.3976 ### Evaluation Commands 1. To evaluate on mozilla-foundation/common_voice_8_0 with test split python eval.py --model_id DrishtiSharma/wav2vec2-large-xls-r-300m-sat-a3 --dataset mozilla-foundation/common_voice_8_0 --config sat --split test --log_outputs 2. To evaluate on speech-recognition-community-v2/dev_data Note: Santali (Ol Chiki) language not found in speech-recognition-community-v2/dev_data ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0004 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 200 - num_epochs: 200 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 11.1266 | 33.29 | 100 | 2.8577 | 1.0 | | 2.1549 | 66.57 | 200 | 1.0799 | 0.5542 | | 0.5628 | 99.86 | 300 | 0.7973 | 0.4016 | | 0.0779 | 133.29 | 400 | 0.8424 | 0.4177 | | 0.0404 | 166.57 | 500 | 0.9048 | 0.4137 | | 0.0212 | 199.86 | 600 | 0.8961 | 0.3976 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
{"language": ["sat"], "license": "apache-2.0", "tags": ["automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "sat", "robust-speech-event", "model_for_talk", "hf-asr-leaderboard"], "datasets": ["mozilla-foundation/common_voice_8_0"], "model-index": [{"name": "wav2vec2-large-xls-r-300m-sat-a3", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Common Voice 8", "type": "mozilla-foundation/common_voice_8_0", "args": "sat"}, "metrics": [{"type": "wer", "value": 0.357429718875502, "name": "Test WER"}, {"type": "cer", "value": 0.14203730272596843, "name": "Test CER"}]}, {"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Robust Speech Event - Dev Data", "type": "speech-recognition-community-v2/dev_data", "args": "sat"}, "metrics": [{"type": "wer", "value": "NA", "name": "Test WER"}, {"type": "cer", "value": "NA", "name": "Test CER"}]}]}]}
DrishtiSharma/wav2vec2-large-xls-r-300m-sat-a3
null
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "sat", "robust-speech-event", "model_for_talk", "hf-asr-leaderboard", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
automatic-speech-recognition
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-sat-final This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - SAT dataset. It achieves the following results on the evaluation set: - Loss: 0.8012 - Wer: 0.3815 ### Evaluation Commands 1. To evaluate on mozilla-foundation/common_voice_8_0 with test split python eval.py --model_id DrishtiSharma/wav2vec2-large-xls-r-300m-sat-final --dataset mozilla-foundation/common_voice_8_0 --config sat --split test --log_outputs 2. To evaluate on speech-recognition-community-v2/dev_data python eval.py --model_id DrishtiSharma/wav2vec2-large-xls-r-300m-sat-final --dataset speech-recognition-community-v2/dev_data --config sat --split validation --chunk_length_s 10 --stride_length_s 1 **Note: Santali (Ol Chiki) language not found in speech-recognition-community-v2/dev_data** ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0004 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 170 - num_epochs: 200 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 10.6317 | 33.29 | 100 | 2.8629 | 1.0 | | 2.047 | 66.57 | 200 | 0.9516 | 0.5703 | | 0.4475 | 99.86 | 300 | 0.8539 | 0.3896 | | 0.0716 | 133.29 | 400 | 0.8277 | 0.3454 | | 0.047 | 166.57 | 500 | 0.7597 | 0.3655 | | 0.0249 | 199.86 | 600 | 0.8012 | 0.3815 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
{"language": ["sat"], "license": "apache-2.0", "tags": ["automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "sat", "robust-speech-event", "model_for_talk", "hf-asr-leaderboard"], "datasets": ["mozilla-foundation/common_voice_8_0"], "model-index": [{"name": "wav2vec2-large-xls-r-300m-sat-final", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Common Voice 8", "type": "mozilla-foundation/common_voice_8_0", "args": "sat"}, "metrics": [{"type": "wer", "value": 0.3493975903614458, "name": "Test WER"}, {"type": "cer", "value": 0.13773314203730272, "name": "Test CER"}]}, {"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Robust Speech Event - Dev Data", "type": "speech-recognition-community-v2/dev_data", "args": "sat"}, "metrics": [{"type": "wer", "value": "NA", "name": "Test WER"}, {"type": "cer", "value": "NA", "name": "Test CER"}]}]}]}
DrishtiSharma/wav2vec2-large-xls-r-300m-sat-final
null
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "sat", "robust-speech-event", "model_for_talk", "hf-asr-leaderboard", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
automatic-speech-recognition
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - SL dataset. It achieves the following results on the evaluation set: - Loss: 0.2756 - Wer: 0.2279 ### Evaluation Commands 1. To evaluate on mozilla-foundation/common_voice_8_0 with test split python eval.py --model_id DrishtiSharma/wav2vec2-large-xls-r-300m-sl-with-LM-v1 --dataset mozilla-foundation/common_voice_8_0 --config sl --split test --log_outputs 2. To evaluate on speech-recognition-community-v2/dev_data python eval.py --model_id DrishtiSharma/wav2vec2-large-xls-r-300m-sl-with-LM-v1 --dataset speech-recognition-community-v2/dev_data --config sl --split validation --chunk_length_s 10 --stride_length_s 1 ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 100.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.3881 | 6.1 | 500 | 2.9710 | 1.0 | | 2.6401 | 12.2 | 1000 | 1.7677 | 0.9734 | | 1.5152 | 18.29 | 1500 | 0.5564 | 0.6011 | | 1.2191 | 24.39 | 2000 | 0.4319 | 0.4390 | | 1.0237 | 30.49 | 2500 | 0.3141 | 0.3175 | | 0.8892 | 36.59 | 3000 | 0.2748 | 0.2689 | | 0.8296 | 42.68 | 3500 | 0.2680 | 0.2534 | | 0.7602 | 48.78 | 4000 | 0.2820 | 0.2506 | | 0.7186 | 54.88 | 4500 | 0.2672 | 0.2398 | | 0.6887 | 60.98 | 5000 | 0.2729 | 0.2402 | | 0.6507 | 67.07 | 5500 | 0.2767 | 0.2361 | | 0.6226 | 73.17 | 6000 | 0.2817 | 0.2332 | | 0.6024 | 79.27 | 6500 | 0.2679 | 0.2279 | | 0.5787 | 85.37 | 7000 | 0.2837 | 0.2316 | | 0.5744 | 91.46 | 7500 | 0.2838 | 0.2284 | | 0.5556 | 97.56 | 8000 | 0.2763 | 0.2281 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0
{"language": ["sl"], "license": "apache-2.0", "tags": ["automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "model_for_talk", "mozilla-foundation/common_voice_8_0", "robust-speech-event", "sl"], "datasets": ["mozilla-foundation/common_voice_8_0"], "model-index": [{"name": "wav2vec2-large-xls-r-300m-sl-with-LM-v1", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Common Voice 8", "type": "mozilla-foundation/common_voice_8_0", "args": "sl"}, "metrics": [{"type": "wer", "value": 0.20626555409164105, "name": "Test WER"}, {"type": "cer", "value": 0.051648321634392154, "name": "Test CER"}, {"type": "wer", "value": 0.13482652613087395, "name": "Test WER (+LM)"}, {"type": "cer", "value": 0.038838663862562475, "name": "Test CER (+LM)"}]}, {"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Robust Speech Event - Dev Data", "type": "speech-recognition-community-v2/dev_data", "args": "sl"}, "metrics": [{"type": "wer", "value": 0.5406156320830592, "name": "Dev WER"}, {"type": "cer", "value": 0.22249723590310583, "name": "Dev CER"}, {"type": "wer", "value": 0.49783147459727384, "name": "Dev WER (+LM)"}, {"type": "cer", "value": 0.1591062599627158, "name": "Dev CER (+LM)"}]}, {"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Robust Speech Event - Test Data", "type": "speech-recognition-community-v2/eval_data", "args": "sl"}, "metrics": [{"type": "wer", "value": 46.17, "name": "Test WER"}]}]}]}
DrishtiSharma/wav2vec2-large-xls-r-300m-sl-with-LM-v1
null
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "model_for_talk", "mozilla-foundation/common_voice_8_0", "robust-speech-event", "sl", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
automatic-speech-recognition
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - SL dataset. It achieves the following results on the evaluation set: - Loss: 0.2855 - Wer: 0.2401 ### Evaluation Commands 1. To evaluate on mozilla-foundation/common_voice_8_0 with test split python eval.py --model_id DrishtiSharma/wav2vec2-large-xls-r-300m-sl-with-LM-v2 --dataset mozilla-foundation/common_voice_8_0 --config sl --split test --log_outputs 2. To evaluate on speech-recognition-community-v2/dev_data python eval.py --model_id DrishtiSharma/wav2vec2-large-xls-r-300m-sl-with-LM-v2 --dataset speech-recognition-community-v2/dev_data --config sl --split validation --chunk_length_s 10 --stride_length_s 1 ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 100.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 6.9294 | 6.1 | 500 | 2.9712 | 1.0 | | 2.8305 | 12.2 | 1000 | 1.7073 | 0.9479 | | 1.4795 | 18.29 | 1500 | 0.5756 | 0.6397 | | 1.3433 | 24.39 | 2000 | 0.4968 | 0.5424 | | 1.1766 | 30.49 | 2500 | 0.4185 | 0.4743 | | 1.0017 | 36.59 | 3000 | 0.3303 | 0.3578 | | 0.9358 | 42.68 | 3500 | 0.3003 | 0.3051 | | 0.8358 | 48.78 | 4000 | 0.3045 | 0.2884 | | 0.7647 | 54.88 | 4500 | 0.2866 | 0.2677 | | 0.7482 | 60.98 | 5000 | 0.2829 | 0.2585 | | 0.6943 | 67.07 | 5500 | 0.2782 | 0.2478 | | 0.6586 | 73.17 | 6000 | 0.2911 | 0.2537 | | 0.6425 | 79.27 | 6500 | 0.2817 | 0.2462 | | 0.6067 | 85.37 | 7000 | 0.2910 | 0.2436 | | 0.5974 | 91.46 | 7500 | 0.2875 | 0.2430 | | 0.5812 | 97.56 | 8000 | 0.2852 | 0.2396 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0
{"language": ["sl"], "license": "apache-2.0", "tags": ["automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "model_for_talk", "mozilla-foundation/common_voice_8_0", "robust-speech-event", "sl"], "datasets": ["mozilla-foundation/common_voice_8_0"], "model-index": [{"name": "wav2vec2-large-xls-r-300m-sl-with-LM-v2", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Common Voice 8", "type": "mozilla-foundation/common_voice_8_0", "args": "sl"}, "metrics": [{"type": "wer", "value": 0.21695212999560826, "name": "Test WER"}, {"type": "cer", "value": 0.052850080572474256, "name": "Test CER"}, {"type": "wer", "value": 0.14551310203484116, "name": "Test WER (+LM)"}, {"type": "cer", "value": 0.03927566711277415, "name": "Test CER (+LM)"}]}, {"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Robust Speech Event - Dev Data", "type": "speech-recognition-community-v2/dev_data", "args": "sl"}, "metrics": [{"type": "wer", "value": 0.560722380639029, "name": "Dev WER"}, {"type": "cer", "value": 0.2279626093074681, "name": "Dev CER"}, {"type": "wer", "value": 0.46486802661402354, "name": "Dev WER (+LM)"}, {"type": "cer", "value": 0.21105136194592422, "name": "Dev CER (+LM)"}]}, {"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Robust Speech Event - Test Data", "type": "speech-recognition-community-v2/eval_data", "args": "sl"}, "metrics": [{"type": "wer", "value": 46.69, "name": "Test WER"}]}]}]}
DrishtiSharma/wav2vec2-large-xls-r-300m-sl-with-LM-v2
null
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "model_for_talk", "mozilla-foundation/common_voice_8_0", "robust-speech-event", "sl", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
automatic-speech-recognition
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-sr-v4 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - SR dataset. It achieves the following results on the evaluation set: - Loss: 0.5570 - Wer: 0.3038 ### Evaluation Commands 1. To evaluate on mozilla-foundation/common_voice_8_0 with test split python eval.py --model_id DrishtiSharma/wav2vec2-large-xls-r-300m-sr-v4 --dataset mozilla-foundation/common_voice_8_0 --config sr --split test --log_outputs 2. To evaluate on speech-recognition-community-v2/dev_data python eval.py --model_id DrishtiSharma/wav2vec2-large-xls-r-300m-sr-v4 --dataset speech-recognition-community-v2/dev_data --config sr --split validation --chunk_length_s 10 --stride_length_s 1 ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 800 - num_epochs: 200 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 8.2934 | 7.5 | 300 | 2.9777 | 0.9995 | | 1.5049 | 15.0 | 600 | 0.5036 | 0.4806 | | 0.3263 | 22.5 | 900 | 0.5822 | 0.4055 | | 0.2008 | 30.0 | 1200 | 0.5609 | 0.4032 | | 0.1543 | 37.5 | 1500 | 0.5203 | 0.3710 | | 0.1158 | 45.0 | 1800 | 0.6458 | 0.3985 | | 0.0997 | 52.5 | 2100 | 0.6227 | 0.4013 | | 0.0834 | 60.0 | 2400 | 0.6048 | 0.3836 | | 0.0665 | 67.5 | 2700 | 0.6197 | 0.3686 | | 0.0602 | 75.0 | 3000 | 0.5418 | 0.3453 | | 0.0524 | 82.5 | 3300 | 0.5310 | 0.3486 | | 0.0445 | 90.0 | 3600 | 0.5599 | 0.3374 | | 0.0406 | 97.5 | 3900 | 0.5958 | 0.3327 | | 0.0358 | 105.0 | 4200 | 0.6017 | 0.3262 | | 0.0302 | 112.5 | 4500 | 0.5613 | 0.3248 | | 0.0285 | 120.0 | 4800 | 0.5659 | 0.3462 | | 0.0213 | 127.5 | 5100 | 0.5568 | 0.3206 | | 0.0215 | 135.0 | 5400 | 0.6524 | 0.3472 | | 0.0162 | 142.5 | 5700 | 0.6223 | 0.3458 | | 0.0137 | 150.0 | 6000 | 0.6625 | 0.3313 | | 0.0114 | 157.5 | 6300 | 0.5739 | 0.3336 | | 0.0101 | 165.0 | 6600 | 0.5906 | 0.3285 | | 0.008 | 172.5 | 6900 | 0.5982 | 0.3112 | | 0.0076 | 180.0 | 7200 | 0.5399 | 0.3094 | | 0.0071 | 187.5 | 7500 | 0.5387 | 0.2991 | | 0.0057 | 195.0 | 7800 | 0.5570 | 0.3038 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.2 - Tokenizers 0.11.0
{"language": ["sr"], "license": "apache-2.0", "tags": ["automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "model_for_talk", "mozilla-foundation/common_voice_8_0", "robust-speech-event", "sr"], "datasets": ["mozilla-foundation/common_voice_8_0"], "model-index": [{"name": "wav2vec2-large-xls-r-300m-sr-v4", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Common Voice 8", "type": "mozilla-foundation/common_voice_8_0", "args": "sr"}, "metrics": [{"type": "wer", "value": 0.303313, "name": "Test WER"}, {"type": "cer", "value": 0.1048951, "name": "Test CER"}]}, {"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Robust Speech Event - Dev Data", "type": "speech-recognition-community-v2/dev_data", "args": "sr"}, "metrics": [{"type": "wer", "value": 0.9486784706184245, "name": "Test WER"}, {"type": "cer", "value": 0.8084369606584945, "name": "Test CER"}]}, {"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Robust Speech Event - Test Data", "type": "speech-recognition-community-v2/eval_data", "args": "sr"}, "metrics": [{"type": "wer", "value": 94.53, "name": "Test WER"}]}]}]}
DrishtiSharma/wav2vec2-large-xls-r-300m-sr-v4
null
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "model_for_talk", "mozilla-foundation/common_voice_8_0", "robust-speech-event", "sr", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
automatic-speech-recognition
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-vot-final-a2 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - VOT dataset. It achieves the following results on the evaluation set: - Loss: 2.8745 - Wer: 0.8333 ### Evaluation Commands 1. To evaluate on mozilla-foundation/common_voice_8_0 with test split python eval.py --model_id DrishtiSharma/wav2vec2-large-xls-r-300m-vot-final-a2 --dataset mozilla-foundation/common_voice_8_0 --config vot --split test --log_outputs 2. To evaluate on speech-recognition-community-v2/dev_data Votic language isn't available in speech-recognition-community-v2/dev_data ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0004 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 340 - num_epochs: 200 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 11.1216 | 33.33 | 100 | 4.2848 | 1.0 | | 2.9982 | 66.67 | 200 | 2.8665 | 1.0 | | 1.5476 | 100.0 | 300 | 2.3022 | 0.8889 | | 0.2776 | 133.33 | 400 | 2.7480 | 0.8889 | | 0.1136 | 166.67 | 500 | 2.5383 | 0.8889 | | 0.0489 | 200.0 | 600 | 2.8745 | 0.8333 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
{"language": ["vot"], "license": "apache-2.0", "tags": ["automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "vot", "robust-speech-event", "hf-asr-leaderboard"], "datasets": ["mozilla-foundation/common_voice_8_0"], "model-index": [{"name": "wav2vec2-large-xls-r-300m-vot-final-a2", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Common Voice 8", "type": "mozilla-foundation/common_voice_8_0", "args": "vot"}, "metrics": [{"type": "wer", "value": 0.8333333333333334, "name": "Test WER"}, {"type": "cer", "value": 0.48672566371681414, "name": "Test CER"}]}, {"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Robust Speech Event - Dev Data", "type": "speech-recognition-community-v2/dev_data", "args": "vot"}, "metrics": [{"type": "wer", "value": "NA", "name": "Test WER"}, {"type": "cer", "value": "NA", "name": "Test CER"}]}]}]}
DrishtiSharma/wav2vec2-large-xls-r-300m-vot-final-a2
null
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "vot", "robust-speech-event", "hf-asr-leaderboard", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
automatic-speech-recognition
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - KK dataset. It achieves the following results on the evaluation set: - Loss: 0.7149 - Wer: 0.451 ### Evaluation Commands 1. To evaluate on mozilla-foundation/common_voice_8_0 with test split python eval.py --model_id DrishtiSharma/wav2vec2-xls-r-300m-kk-n2 --dataset mozilla-foundation/common_voice_8_0 --config kk --split test --log_outputs 2. To evaluate on speech-recognition-community-v2/dev_data Kazakh language not found in speech-recognition-community-v2/dev_data! ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.000222 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 150.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 9.6799 | 9.09 | 200 | 3.6119 | 1.0 | | 3.1332 | 18.18 | 400 | 2.5352 | 1.005 | | 1.0465 | 27.27 | 600 | 0.6169 | 0.682 | | 0.3452 | 36.36 | 800 | 0.6572 | 0.607 | | 0.2575 | 45.44 | 1000 | 0.6527 | 0.578 | | 0.2088 | 54.53 | 1200 | 0.6828 | 0.551 | | 0.158 | 63.62 | 1400 | 0.7074 | 0.5575 | | 0.1309 | 72.71 | 1600 | 0.6523 | 0.5595 | | 0.1074 | 81.8 | 1800 | 0.7262 | 0.5415 | | 0.087 | 90.89 | 2000 | 0.7199 | 0.521 | | 0.0711 | 99.98 | 2200 | 0.7113 | 0.523 | | 0.0601 | 109.09 | 2400 | 0.6863 | 0.496 | | 0.0451 | 118.18 | 2600 | 0.6998 | 0.483 | | 0.0378 | 127.27 | 2800 | 0.6971 | 0.4615 | | 0.0319 | 136.36 | 3000 | 0.7119 | 0.4475 | | 0.0305 | 145.44 | 3200 | 0.7181 | 0.459 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0
{"language": ["kk"], "license": "apache-2.0", "tags": ["automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "kk", "robust-speech-event", "model_for_talk", "hf-asr-leaderboard"], "datasets": ["mozilla-foundation/common_voice_8_0"], "model-index": [{"name": "wav2vec2-xls-r-300m-kk-n2", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Common Voice 8", "type": "mozilla-foundation/common_voice_8_0", "args": "tt"}, "metrics": [{"type": "wer", "value": 0.4355, "name": "Test WER"}, {"type": "cer", "value": 0.10469915859660263, "name": "Test CER"}]}, {"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Robust Speech Event - Dev Data", "type": "speech-recognition-community-v2/dev_data", "args": "vot"}, "metrics": [{"type": "wer", "value": "NA", "name": "Test WER"}, {"type": "cer", "value": "NA", "name": "Test CER"}]}]}]}
DrishtiSharma/wav2vec2-xls-r-300m-kk-n2
null
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "kk", "robust-speech-event", "model_for_talk", "hf-asr-leaderboard", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
automatic-speech-recognition
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - MT dataset. It achieves the following results on the evaluation set: - Loss: 0.1987 - Wer: 0.1920 ### Evaluation Commands 1. To evaluate on mozilla-foundation/common_voice_8_0 with test split python eval.py --model_id DrishtiSharma/wav2vec2-xls-r-300m-mt-o1 --dataset mozilla-foundation/common_voice_8_0 --config mt --split test --log_outputs 2. To evaluate on speech-recognition-community-v2/dev_data Maltese language not found in speech-recognition-community-v2/dev_data! ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7e-05 - train_batch_size: 32 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 100.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 1.1721 | 18.02 | 2000 | 0.3831 | 0.4066 | | 0.7849 | 36.04 | 4000 | 0.2191 | 0.2417 | | 0.6723 | 54.05 | 6000 | 0.2056 | 0.2134 | | 0.6015 | 72.07 | 8000 | 0.2008 | 0.2031 | | 0.5386 | 90.09 | 10000 | 0.1967 | 0.1953 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0
{"language": ["mt"], "license": "apache-2.0", "tags": ["automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "mt", "robust-speech-event", "model_for_talk", "hf-asr-leaderboard"], "datasets": ["mozilla-foundation/common_voice_8_0"], "model-index": [{"name": "wav2vec2-xls-r-300m-mt-o1", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Common Voice 8", "type": "mozilla-foundation/common_voice_8_0", "args": "mt"}, "metrics": [{"type": "wer", "value": 0.2378369069146646, "name": "Test WER"}, {"type": "cer", "value": 0.050364163712536256, "name": "Test CER"}]}, {"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Robust Speech Event - Dev Data", "type": "speech-recognition-community-v2/dev_data", "args": "mt"}, "metrics": [{"type": "wer", "value": "NA", "name": "Test WER"}, {"type": "cer", "value": "NA", "name": "Test CER"}]}]}]}
DrishtiSharma/wav2vec2-xls-r-300m-mt-o1
null
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "mt", "robust-speech-event", "model_for_talk", "hf-asr-leaderboard", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
automatic-speech-recognition
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - PA-IN dataset. It achieves the following results on the evaluation set: - Loss: 0.8881 - Wer: 0.4175 ### Evaluation Commands 1. To evaluate on mozilla-foundation/common_voice_8_0 with test split python eval.py --model_id DrishtiSharma/wav2vec2-xls-r-300m-pa-IN-r5 --dataset mozilla-foundation/common_voice_8_0 --config pa-IN --split test --log_outputs 2. To evaluate on speech-recognition-community-v2/dev_data Punjabi language isn't available in speech-recognition-community-v2/dev_data ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.000111 - train_batch_size: 16 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 200.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 10.695 | 18.52 | 500 | 3.5681 | 1.0 | | 3.2718 | 37.04 | 1000 | 2.3081 | 0.9643 | | 0.8727 | 55.56 | 1500 | 0.7227 | 0.5147 | | 0.3349 | 74.07 | 2000 | 0.7498 | 0.4959 | | 0.2134 | 92.59 | 2500 | 0.7779 | 0.4720 | | 0.1445 | 111.11 | 3000 | 0.8120 | 0.4594 | | 0.1057 | 129.63 | 3500 | 0.8225 | 0.4610 | | 0.0826 | 148.15 | 4000 | 0.8307 | 0.4351 | | 0.0639 | 166.67 | 4500 | 0.8967 | 0.4316 | | 0.0528 | 185.19 | 5000 | 0.8875 | 0.4238 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0
{"language": ["pa-IN"], "license": "apache-2.0", "tags": ["automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "pa-IN", "robust-speech-event", "model_for_talk", "hf-asr-leaderboard"], "datasets": ["mozilla-foundation/common_voice_8_0"], "model-index": [{"name": "wav2vec2-xls-r-300m-pa-IN-r5", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Common Voice 8", "type": "mozilla-foundation/common_voice_8_0", "args": "pa-IN"}, "metrics": [{"type": "wer", "value": 0.4186593492747942, "name": "Test WER"}, {"type": "cer", "value": 0.13301322550753938, "name": "Test CER"}]}, {"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Robust Speech Event - Dev Data", "type": "speech-recognition-community-v2/dev_data", "args": "pa-IN"}, "metrics": [{"type": "wer", "value": "NA", "name": "Test WER"}, {"type": "cer", "value": "NA", "name": "Test CER"}]}]}]}
DrishtiSharma/wav2vec2-xls-r-300m-pa-IN-r5
null
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "pa-IN", "robust-speech-event", "model_for_talk", "hf-asr-leaderboard", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
automatic-speech-recognition
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - RM-SURSILV dataset. It achieves the following results on the evaluation set: - Loss: 0.2511 - Wer: 0.2415 #### Evaluation Commands 1. To evaluate on mozilla-foundation/common_voice_8_0 with test split python eval.py --model_id DrishtiSharma/wav2vec2-xls-r-300m-rm-sursilv-d11 --dataset mozilla-foundation/common_voice_8_0 --config rm-sursilv --split test --log_outputs 2. To evaluate on speech-recognition-community-v2/dev_data Romansh-Sursilv language isn't available in speech-recognition-community-v2/dev_data ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 125.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:-----:|:---------------:|:------:| | 2.3958 | 17.44 | 1500 | 0.6808 | 0.6521 | | 0.9663 | 34.88 | 3000 | 0.3023 | 0.3718 | | 0.7963 | 52.33 | 4500 | 0.2588 | 0.3046 | | 0.6893 | 69.77 | 6000 | 0.2436 | 0.2718 | | 0.6148 | 87.21 | 7500 | 0.2521 | 0.2572 | | 0.5556 | 104.65 | 9000 | 0.2490 | 0.2442 | | 0.5258 | 122.09 | 10500 | 0.2515 | 0.2442 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0
{"language": ["rm-sursilv"], "license": "apache-2.0", "tags": ["automatic-speech-recognition", "hf-asr-leaderboard", "robust-speech-event"], "datasets": ["mozilla-foundation/common_voice_8_0"], "metrics": ["wer"], "model-index": [{"name": "wav2vec2-xls-r-300m-rm-sursilv-d11", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice 8", "type": "mozilla-foundation/common_voice_8_0", "args": "rm-sursilv"}, "metrics": [{"type": "wer", "value": 0.24094169578811844, "name": "Test WER"}, {"type": "cer", "value": 0.049832791672554284, "name": "Test CER"}]}, {"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Robust Speech Event - Dev Data", "type": "speech-recognition-community-v2/dev_data", "args": "rm-sursilv"}, "metrics": [{"type": "wer", "value": "NA", "name": "Test WER"}, {"type": "cer", "value": "NA", "name": "Test CER"}]}]}]}
DrishtiSharma/wav2vec2-xls-r-300m-rm-sursilv-d11
null
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "hf-asr-leaderboard", "robust-speech-event", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
automatic-speech-recognition
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - RM-VALLADER dataset. It achieves the following results on the evaluation set: - Loss: 0.2754 - Wer: 0.2831 ### Evaluation Commands 1. To evaluate on mozilla-foundation/common_voice_8_0 with test split python eval.py --model_id DrishtiSharma/wav2vec2-xls-r-300m-rm-vallader-d1 --dataset mozilla-foundation/common_voice_8_0 --config rm-vallader --split test --log_outputs 2. To evaluate on speech-recognition-community-v2/dev_data Romansh-Vallader language not found in speech-recognition-community-v2/dev_data ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 100.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 2.927 | 15.15 | 500 | 2.9196 | 1.0 | | 1.3835 | 30.3 | 1000 | 0.5879 | 0.5866 | | 0.7415 | 45.45 | 1500 | 0.3077 | 0.3316 | | 0.5575 | 60.61 | 2000 | 0.2735 | 0.2954 | | 0.4581 | 75.76 | 2500 | 0.2707 | 0.2802 | | 0.3977 | 90.91 | 3000 | 0.2785 | 0.2809 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0
{"language": ["rm-vallader"], "license": "apache-2.0", "tags": ["automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "rm-vallader", "robust-speech-event", "model_for_talk", "hf-asr-leaderboard"], "datasets": ["mozilla-foundation/common_voice_8_0"], "model-index": [{"name": "wav2vec2-xls-r-300m-rm-vallader-d1", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Common Voice 8", "type": "mozilla-foundation/common_voice_8_0", "args": "rm-vallader"}, "metrics": [{"type": "wer", "value": 0.26472007722007723, "name": "Test WER"}, {"type": "cer", "value": 0.05860608074430969, "name": "Test CER"}]}, {"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Robust Speech Event - Dev Data", "type": "speech-recognition-community-v2/dev_data", "args": "vot"}, "metrics": [{"type": "wer", "value": "NA", "name": "Test WER"}, {"type": "cer", "value": "NA", "name": "Test CER"}]}]}]}
DrishtiSharma/wav2vec2-xls-r-300m-rm-vallader-d1
null
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "rm-vallader", "robust-speech-event", "model_for_talk", "hf-asr-leaderboard", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
automatic-speech-recognition
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - MYV dataset. It achieves the following results on the evaluation set: - Loss: 1.0356 - Wer: 0.6524 ### Evaluation Commands **1. To evaluate on mozilla-foundation/common_voice_8_0 with test split** python eval.py --model_id DrishtiSharma/wav2vec2-xls-r-myv-a1 --dataset mozilla-foundation/common_voice_8_0 --config myv --split test --log_outputs **2. To evaluate on speech-recognition-community-v2/dev_data** Erzya language not found in speech-recognition-community-v2/dev_data ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0004 - train_batch_size: 16 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 800 - num_epochs: 200.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:-----:|:---------------:|:------:| | 5.649 | 9.62 | 500 | 3.0038 | 1.0 | | 1.6272 | 19.23 | 1000 | 0.7362 | 0.7819 | | 1.1354 | 28.85 | 1500 | 0.6410 | 0.7111 | | 1.0424 | 38.46 | 2000 | 0.6907 | 0.7431 | | 0.9293 | 48.08 | 2500 | 0.7249 | 0.7102 | | 0.8246 | 57.69 | 3000 | 0.7422 | 0.6966 | | 0.7837 | 67.31 | 3500 | 0.7413 | 0.6813 | | 0.7147 | 76.92 | 4000 | 0.7873 | 0.6930 | | 0.6276 | 86.54 | 4500 | 0.8038 | 0.6677 | | 0.6041 | 96.15 | 5000 | 0.8240 | 0.6831 | | 0.5336 | 105.77 | 5500 | 0.8748 | 0.6749 | | 0.4705 | 115.38 | 6000 | 0.9006 | 0.6497 | | 0.43 | 125.0 | 6500 | 0.8954 | 0.6551 | | 0.3859 | 134.62 | 7000 | 0.9074 | 0.6614 | | 0.3342 | 144.23 | 7500 | 0.9693 | 0.6560 | | 0.3155 | 153.85 | 8000 | 1.0073 | 0.6691 | | 0.2673 | 163.46 | 8500 | 1.0170 | 0.6632 | | 0.2409 | 173.08 | 9000 | 1.0304 | 0.6709 | | 0.2189 | 182.69 | 9500 | 0.9965 | 0.6546 | | 0.1973 | 192.31 | 10000 | 1.0360 | 0.6551 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0 ### Evaluation Command !python eval.py \ --model_id DrishtiSharma/wav2vec2-large-xls-r-300m-myv-v1 \ --dataset mozilla-foundation/common_voice_8_0 --config myv --split test --log_outputs
{"language": ["myv"], "license": "apache-2.0", "tags": ["automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "myv", "robust-speech-event", "model_for_talk", "hf-asr-leaderboard"], "datasets": ["mozilla-foundation/common_voice_8_0"], "model-index": [{"name": "wav2vec2-xls-r-myv-a1", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Common Voice 8", "type": "mozilla-foundation/common_voice_8_0", "args": "myv"}, "metrics": [{"type": "wer", "value": 0.6514672686230248, "name": "Test WER"}, {"type": "cer", "value": 0.17226131905088124, "name": "Test CER"}]}, {"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Robust Speech Event - Dev Data", "type": "speech-recognition-community-v2/dev_data", "args": "vot"}, "metrics": [{"type": "wer", "value": "NA", "name": "Test WER"}, {"type": "cer", "value": "NA", "name": "Test CER"}]}]}]}
DrishtiSharma/wav2vec2-xls-r-myv-a1
null
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "myv", "robust-speech-event", "model_for_talk", "hf-asr-leaderboard", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
automatic-speech-recognition
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - PA-IN dataset. It achieves the following results on the evaluation set: - Loss: 1.1508 - Wer: 0.4908 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1500 - num_epochs: 100.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.5841 | 9.26 | 500 | 3.2514 | 0.9941 | | 0.3992 | 18.52 | 1000 | 0.8790 | 0.6107 | | 0.2409 | 27.78 | 1500 | 1.0012 | 0.6366 | | 0.1447 | 37.04 | 2000 | 1.0167 | 0.6276 | | 0.1109 | 46.3 | 2500 | 1.0638 | 0.5653 | | 0.0797 | 55.56 | 3000 | 1.1447 | 0.5715 | | 0.0636 | 64.81 | 3500 | 1.1503 | 0.5316 | | 0.0466 | 74.07 | 4000 | 1.2227 | 0.5386 | | 0.0372 | 83.33 | 4500 | 1.1214 | 0.5225 | | 0.0239 | 92.59 | 5000 | 1.1375 | 0.4998 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0
{"language": ["pa-IN"], "license": "apache-2.0", "tags": ["automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "generated_from_trainer"], "datasets": ["common_voice"], "model-index": [{"name": "", "results": []}]}
DrishtiSharma/wav2vec2-xls-r-pa-IN-a1
null
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
automatic-speech-recognition
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - SL dataset. It achieves the following results on the evaluation set: - Loss: 0.2756 - Wer: 0.2279 ### Evaluation Commands 1. To evaluate on mozilla-foundation/common_voice_8_0 with test split python eval.py --model_id DrishtiSharma/wav2vec2-xls-r-sl-a1 --dataset mozilla-foundation/common_voice_8_0 --config sl --split test --log_outputs 2. To evaluate on speech-recognition-community-v2/dev_data python eval.py --model_id DrishtiSharma/wav2vec2-xls-r-sl-a1 --dataset speech-recognition-community-v2/dev_data --config sl --split validation --chunk_length_s 10 --stride_length_s 1 ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 100.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.3881 | 6.1 | 500 | 2.9710 | 1.0 | | 2.6401 | 12.2 | 1000 | 1.7677 | 0.9734 | | 1.5152 | 18.29 | 1500 | 0.5564 | 0.6011 | | 1.2191 | 24.39 | 2000 | 0.4319 | 0.4390 | | 1.0237 | 30.49 | 2500 | 0.3141 | 0.3175 | | 0.8892 | 36.59 | 3000 | 0.2748 | 0.2689 | | 0.8296 | 42.68 | 3500 | 0.2680 | 0.2534 | | 0.7602 | 48.78 | 4000 | 0.2820 | 0.2506 | | 0.7186 | 54.88 | 4500 | 0.2672 | 0.2398 | | 0.6887 | 60.98 | 5000 | 0.2729 | 0.2402 | | 0.6507 | 67.07 | 5500 | 0.2767 | 0.2361 | | 0.6226 | 73.17 | 6000 | 0.2817 | 0.2332 | | 0.6024 | 79.27 | 6500 | 0.2679 | 0.2279 | | 0.5787 | 85.37 | 7000 | 0.2837 | 0.2316 | | 0.5744 | 91.46 | 7500 | 0.2838 | 0.2284 | | 0.5556 | 97.56 | 8000 | 0.2763 | 0.2281 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0
{"language": ["sl"], "license": "apache-2.0", "tags": ["automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "model_for_talk", "mozilla-foundation/common_voice_8_0", "robust-speech-event", "sl"], "datasets": ["mozilla-foundation/common_voice_8_0"], "model-index": [{"name": "wav2vec2-xls-r-sl-a1", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Common Voice 8", "type": "mozilla-foundation/common_voice_8_0", "args": "sl"}, "metrics": [{"type": "wer", "value": 0.20626555409164105, "name": "Test WER"}, {"type": "cer", "value": 0.051648321634392154, "name": "Test CER"}]}, {"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Robust Speech Event - Dev Data", "type": "speech-recognition-community-v2/dev_data", "args": "sl"}, "metrics": [{"type": "wer", "value": 0.5406156320830592, "name": "Test WER"}, {"type": "cer", "value": 0.22249723590310583, "name": "Test CER"}]}, {"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Robust Speech Event - Test Data", "type": "speech-recognition-community-v2/eval_data", "args": "sl"}, "metrics": [{"type": "wer", "value": 55.24, "name": "Test WER"}]}]}]}
DrishtiSharma/wav2vec2-xls-r-sl-a1
null
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "model_for_talk", "mozilla-foundation/common_voice_8_0", "robust-speech-event", "sl", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
automatic-speech-recognition
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - SL dataset. It achieves the following results on the evaluation set: - Loss: 0.2855 - Wer: 0.2401 ##Evaluation Commands 1. To evaluate on mozilla-foundation/common_voice_8_0 with test split python eval.py --model_id DrishtiSharma/wav2vec2-xls-r-sl-a2 --dataset mozilla-foundation/common_voice_8_0 --config sl --split test --log_outputs 2. To evaluate on speech-recognition-community-v2/dev_data Votic language not found in speech-recognition-community-v2/dev_data ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 100.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 6.9294 | 6.1 | 500 | 2.9712 | 1.0 | | 2.8305 | 12.2 | 1000 | 1.7073 | 0.9479 | | 1.4795 | 18.29 | 1500 | 0.5756 | 0.6397 | | 1.3433 | 24.39 | 2000 | 0.4968 | 0.5424 | | 1.1766 | 30.49 | 2500 | 0.4185 | 0.4743 | | 1.0017 | 36.59 | 3000 | 0.3303 | 0.3578 | | 0.9358 | 42.68 | 3500 | 0.3003 | 0.3051 | | 0.8358 | 48.78 | 4000 | 0.3045 | 0.2884 | | 0.7647 | 54.88 | 4500 | 0.2866 | 0.2677 | | 0.7482 | 60.98 | 5000 | 0.2829 | 0.2585 | | 0.6943 | 67.07 | 5500 | 0.2782 | 0.2478 | | 0.6586 | 73.17 | 6000 | 0.2911 | 0.2537 | | 0.6425 | 79.27 | 6500 | 0.2817 | 0.2462 | | 0.6067 | 85.37 | 7000 | 0.2910 | 0.2436 | | 0.5974 | 91.46 | 7500 | 0.2875 | 0.2430 | | 0.5812 | 97.56 | 8000 | 0.2852 | 0.2396 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0
{"language": ["sl"], "license": "apache-2.0", "tags": ["automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "sl", "robust-speech-event", "model_for_talk", "hf-asr-leaderboard"], "datasets": ["mozilla-foundation/common_voice_8_0"], "model-index": [{"name": "wav2vec2-xls-r-sl-a2", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Common Voice 8", "type": "mozilla-foundation/common_voice_8_0", "args": "sl"}, "metrics": [{"type": "wer", "value": 0.21695212999560826, "name": "Test WER"}, {"type": "cer", "value": 0.052850080572474256, "name": "Test CER"}]}, {"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Robust Speech Event - Dev Data", "type": "speech-recognition-community-v2/dev_data", "args": "vot"}, "metrics": [{"type": "wer", "value": 0.560722380639029, "name": "Test WER"}, {"type": "cer", "value": 0.2279626093074681, "name": "Test CER"}, {"type": "wer", "value": 56.07, "name": "Test WER"}]}, {"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Robust Speech Event - Test Data", "type": "speech-recognition-community-v2/eval_data", "args": "sl"}, "metrics": [{"type": "wer", "value": 56.19, "name": "Test WER"}]}]}]}
DrishtiSharma/wav2vec2-xls-r-sl-a2
null
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "sl", "robust-speech-event", "model_for_talk", "hf-asr-leaderboard", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{"license": "artistic-2.0"}
Duael/RRHood
null
[ "license:artistic-2.0", "region:us" ]
null
2022-03-02T23:29:04+00:00
token-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-ner This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0604 - Precision: 0.9262 - Recall: 0.9375 - F1: 0.9318 - Accuracy: 0.9841 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.2424 | 1.0 | 878 | 0.0684 | 0.9096 | 0.9206 | 0.9150 | 0.9813 | | 0.0524 | 2.0 | 1756 | 0.0607 | 0.9188 | 0.9349 | 0.9268 | 0.9835 | | 0.0304 | 3.0 | 2634 | 0.0604 | 0.9262 | 0.9375 | 0.9318 | 0.9841 | ### Framework versions - Transformers 4.12.3 - Pytorch 1.9.0+cu111 - Datasets 1.15.1 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["conll2003"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "distilbert-base-uncased-finetuned-ner", "results": [{"task": {"type": "token-classification", "name": "Token Classification"}, "dataset": {"name": "conll2003", "type": "conll2003", "args": "conll2003"}, "metrics": [{"type": "precision", "value": 0.9261715296198055, "name": "Precision"}, {"type": "recall", "value": 0.9374650408323079, "name": "Recall"}, {"type": "f1", "value": 0.9317840662700839, "name": "F1"}, {"type": "accuracy", "value": 0.9840659602522758, "name": "Accuracy"}]}]}]}
Duc/distilbert-base-uncased-finetuned-ner
null
[ "transformers", "pytorch", "tensorboard", "distilbert", "token-classification", "generated_from_trainer", "dataset:conll2003", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
DuckMeme/Eve
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Duda/Duda
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Dudu/DialoGPT-small-harrypotter
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
transformers
# Harry Potter DialoGPT Model
{"tags": ["conversational"]}
DueLinx0402/DialoGPT-small-harrypotter
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
automatic-speech-recognition
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> ## This model achieves WER on common-voice ro test split of WER: 12.457178% # wav2vec2-xls-r-300m-romanian This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on an common voice ro and RSS dataset. It achieves the following results on the evaluation set: - eval_loss: 0.0836 - eval_wer: 0.0705 - eval_runtime: 160.4549 - eval_samples_per_second: 11.081 - eval_steps_per_second: 1.39 - epoch: 14.38 - step: 2703 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - num_epochs: 15 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3 Used the following code for evaluation: ``` import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "ro", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("Dumiiii/wav2vec2-xls-r-300m-romanian") model = Wav2Vec2ForCTC.from_pretrained("Dumiiii/wav2vec2-xls-r-300m-romanian") model.to("cuda") chars_to_ignore_regex = '['+string.punctuation+']' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` Credits for evaluation: https://huggingface.co/anton-l
{"license": "apache-2.0", "tags": ["generated_from_trainer"]}
Dumiiii/wav2vec2-xls-r-300m-romanian
null
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
transformers
# Alexia Bot Testing
{}
Duugu/alexia-bot-test
null
[ "transformers", "pytorch", "gpt_neo", "text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
transformers
# My Awesome Model
{"tags": ["conversational"]}
Duugu/jakebot3000
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Duy/wav2vec2_malay
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Dynamo14324/macow
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
transformers
#Landcheese
{"tags": ["conversational"]}
Dyzi/DialoGPT-small-landcheese
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
E312/t5-small-finetuned-xsum
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
ECHO123/1
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
text2text-generation
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # out This model is a fine-tuned version of [/1TB_SSD/SB_AI/out_epoch1/out/checkpoint-1115000/](https://huggingface.co//1TB_SSD/SB_AI/out_epoch1/out/checkpoint-1115000/) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0645 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 2518227880 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-------:|:---------------:| | 0.0867 | 0.07 | 75000 | 0.0742 | | 0.0783 | 0.13 | 150000 | 0.0695 | | 0.0719 | 0.2 | 225000 | 0.0732 | | 0.0743 | 0.27 | 300000 | 0.0663 | | 0.0659 | 0.34 | 375000 | 0.0686 | | 0.0664 | 0.4 | 450000 | 0.0683 | | 0.0637 | 0.47 | 525000 | 0.0680 | | 0.0655 | 0.54 | 600000 | 0.0641 | | 0.0676 | 0.6 | 675000 | 0.0644 | | 0.0704 | 0.67 | 750000 | 0.0645 | | 0.0687 | 0.74 | 825000 | 0.0610 | | 0.059 | 0.81 | 900000 | 0.0652 | | 0.0666 | 0.87 | 975000 | 0.0619 | | 0.0624 | 0.94 | 1050000 | 0.0619 | | 0.0625 | 1.01 | 1125000 | 0.0667 | | 0.0614 | 1.03 | 1150000 | 0.0658 | | 0.0597 | 1.05 | 1175000 | 0.0683 | | 0.0629 | 1.07 | 1200000 | 0.0691 | | 0.0603 | 1.1 | 1225000 | 0.0678 | | 0.0601 | 1.12 | 1250000 | 0.0746 | | 0.0606 | 1.14 | 1275000 | 0.0691 | | 0.0671 | 1.16 | 1300000 | 0.0702 | | 0.0625 | 1.19 | 1325000 | 0.0661 | | 0.0617 | 1.21 | 1350000 | 0.0688 | | 0.0579 | 1.23 | 1375000 | 0.0679 | | 0.0663 | 1.25 | 1400000 | 0.0634 | | 0.0583 | 1.28 | 1425000 | 0.0638 | | 0.0623 | 1.3 | 1450000 | 0.0681 | | 0.0615 | 1.32 | 1475000 | 0.0670 | | 0.0592 | 1.34 | 1500000 | 0.0666 | | 0.0626 | 1.37 | 1525000 | 0.0666 | | 0.063 | 1.39 | 1550000 | 0.0647 | | 0.0648 | 1.41 | 1575000 | 0.0653 | | 0.0611 | 1.43 | 1600000 | 0.0700 | | 0.0622 | 1.46 | 1625000 | 0.0634 | | 0.0617 | 1.48 | 1650000 | 0.0651 | | 0.0613 | 1.5 | 1675000 | 0.0634 | | 0.0639 | 1.52 | 1700000 | 0.0661 | | 0.0615 | 1.54 | 1725000 | 0.0644 | | 0.0605 | 1.57 | 1750000 | 0.0662 | | 0.0622 | 1.59 | 1775000 | 0.0656 | | 0.0585 | 1.61 | 1800000 | 0.0633 | | 0.0628 | 1.63 | 1825000 | 0.0625 | | 0.0638 | 1.66 | 1850000 | 0.0662 | | 0.0599 | 1.68 | 1875000 | 0.0664 | | 0.0583 | 1.7 | 1900000 | 0.0668 | | 0.0543 | 1.72 | 1925000 | 0.0631 | | 0.06 | 1.75 | 1950000 | 0.0629 | | 0.0615 | 1.77 | 1975000 | 0.0644 | | 0.0587 | 1.79 | 2000000 | 0.0663 | | 0.0647 | 1.81 | 2025000 | 0.0654 | | 0.0604 | 1.84 | 2050000 | 0.0639 | | 0.0641 | 1.86 | 2075000 | 0.0636 | | 0.0604 | 1.88 | 2100000 | 0.0636 | | 0.0654 | 1.9 | 2125000 | 0.0652 | | 0.0588 | 1.93 | 2150000 | 0.0638 | | 0.0616 | 1.95 | 2175000 | 0.0657 | | 0.0598 | 1.97 | 2200000 | 0.0646 | | 0.0633 | 1.99 | 2225000 | 0.0645 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 1.17.0 - Tokenizers 0.10.3
{"tags": ["generated_from_trainer"], "model-index": [{"name": "out", "results": []}]}
EColi/sponsorblock-base-v1
null
[ "transformers", "pytorch", "t5", "text2text-generation", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "has_space", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
EColi/sponsorblock-base
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
transformers
# Brooke DialoGPT Model
{"tags": ["conversational"]}
EEE/DialoGPT-medium-brooke
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
transformers
# Aang DialoGPT Model
{"tags": ["conversational"]}
EEE/DialoGPT-small-aang
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
transformers
# Yoda DialoGPT Model
{"tags": ["conversational"]}
EEE/DialoGPT-small-yoda
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
EEE/TrumpSpeechGen
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
EGOIST/XM
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
EL1u/distilbert-base-uncased-finetuned-ner
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
summarization
transformers
**IMPORTANT:** On the 5th of April 2022, we detected a mistake in the configuration file; thus, the model was not generating the summaries correctly, and it was underperforming in all scenarios. For this reason, if you had used the model until that day, we would be glad if you would re-evaluate the model if you are publishing some results with it. We apologize for the inconvenience and thank you for your understanding. # NASca and NASes: Two Monolingual Pre-Trained Models for Abstractive Summarization in Catalan and Spanish Most of the models proposed in the literature for abstractive summarization are generally suitable for the English language but not for other languages. Multilingual models were introduced to address that language constraint, but despite their applicability being broader than that of the monolingual models, their performance is typically lower, especially for minority languages like Catalan. In this paper, we present a monolingual model for abstractive summarization of textual content in the Catalan language. The model is a Transformer encoder-decoder which is pretrained and fine-tuned specifically for the Catalan language using a corpus of newspaper articles. In the pretraining phase, we introduced several self-supervised tasks to specialize the model on the summarization task and to increase the abstractivity of the generated summaries. To study the performance of our proposal in languages with higher resources than Catalan, we replicate the model and the experimentation for the Spanish language. The usual evaluation metrics, not only the most used ROUGE measure but also other more semantic ones such as BertScore, do not allow to correctly evaluate the abstractivity of the generated summaries. In this work, we also present a new metric, called content reordering, to evaluate one of the most common characteristics of abstractive summaries, the rearrangement of the original content. We carried out an exhaustive experimentation to compare the performance of the monolingual models proposed in this work with two of the most widely used multilingual models in text summarization, mBART and mT5. The experimentation results support the quality of our monolingual models, especially considering that the multilingual models were pretrained with many more resources than those used in our models. Likewise, it is shown that the pretraining tasks helped to increase the degree of abstractivity of the generated summaries. To our knowledge, this is the first work that explores a monolingual approach for abstractive summarization both in Catalan and Spanish. # The NASca model News Abstractive Summarization for Catalan (NASca) is a Transformer encoder-decoder model, with the same hyper-parameters than BART, to perform summarization of Catalan news articles. It is pre-trained on a combination of several self-supervised tasks that help to increase the abstractivity of the generated summaries. Four pre-training tasks have been combined: sentence permutation, text infilling, Gap Sentence Generation, and Next Segment Generation. Catalan newspapers, the Catalan subset of the OSCAR corpus and Wikipedia articles in Catalan were used for pre-training the model (9.3GB of raw text -2.5 millions of documents-). NASca is finetuned for the summarization task on 636.596 (document, summary) pairs from the Dataset for Automatic summarization of Catalan and Spanish newspaper Articles (DACSA). ### BibTeX entry ```bibtex @Article{app11219872, AUTHOR = {Ahuir, Vicent and Hurtado, Lluís-F. and González, José Ángel and Segarra, Encarna}, TITLE = {NASca and NASes: Two Monolingual Pre-Trained Models for Abstractive Summarization in Catalan and Spanish}, JOURNAL = {Applied Sciences}, VOLUME = {11}, YEAR = {2021}, NUMBER = {21}, ARTICLE-NUMBER = {9872}, URL = {https://www.mdpi.com/2076-3417/11/21/9872}, ISSN = {2076-3417}, DOI = {10.3390/app11219872} } ```
{"language": "ca", "tags": ["summarization"], "widget": [{"text": "La Universitat Polit\u00e8cnica de Val\u00e8ncia (UPV), a trav\u00e9s del projecte Atenea \u201cplataforma de dones, art i tecnologia\u201d i en col\u00b7laboraci\u00f3 amb les companyies tecnol\u00f2giques Metric Salad i Zetalab, ha digitalitzat i modelat en 3D per a la 35a edici\u00f3 del Festival Dansa Val\u00e8ncia, que se celebra del 2 al 10 d'abril, la primera pe\u00e7a de dansa en un metaverso espec\u00edfic. La pe\u00e7a No \u00e9s amor, dirigida per Lara Mis\u00f3, forma part de la programaci\u00f3 d'aquesta edici\u00f3 del Festival Dansa Val\u00e8ncia i explora la figura geom\u00e8trica del cercle des de totes les seues perspectives: espacial, corporal i compositiva. No \u00e9s amor est\u00e0 inspirada en el treball de l'artista japonesa Yayoi Kusama i mira de prop les diferents facetes d'una obsessi\u00f3. Aix\u00ed dona cabuda a la insist\u00e8ncia, la repetici\u00f3, el trastorn, la hipnosi i l'alliberament. El proc\u00e9s de digitalitzaci\u00f3, materialitzat per Metric Salad i ZetaLab, ha sigut complex respecte a uns altres ja realitzats a causa de l'enorme desafiament que comporta el modelatge en 3D de cossos en moviment al ritme de la composici\u00f3 de l'obra. L'objectiu era generar una experi\u00e8ncia el m\u00e9s realista possible i fidedigna de l'original perqu\u00e8 el resultat final fora un proc\u00e9s absolutament immersiu.Aix\u00ed, el metaverso est\u00e0 compost per figures modelades en 3D al costat de quatre projeccions digitalitzades en pantalles flotants amb les quals l'usuari podr\u00e0 interactuar segons es vaja acostant, b\u00e9 mitjan\u00e7ant els comandaments de l'ordinador, b\u00e9 a trav\u00e9s d'ulleres de realitat virtual. L'objectiu \u00e9s que quan l'usuari s'acoste a cadascuna de les projeccions tinga la sensaci\u00f3 d'una immersi\u00f3 quasi completa en fondre's amb el contingut audiovisual que li genere una experi\u00e8ncia intimista i molt real."}]}
ELiRF/NASCA
null
[ "transformers", "pytorch", "safetensors", "bart", "text2text-generation", "summarization", "ca", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
summarization
transformers
**IMPORTANT:** On the 5th of April 2022, we detected a mistake in the configuration file; thus, the model was not generating the summaries correctly, and it was underperforming in all scenarios. For this reason, if you had used the model until that day, we would be glad if you would re-evaluate the model if you are publishing some results with it. We apologize for the inconvenience and thank you for your understanding. # NASca and NASes: Two Monolingual Pre-Trained Models for Abstractive Summarization in Catalan and Spanish Most of the models proposed in the literature for abstractive summarization are generally suitable for the English language but not for other languages. Multilingual models were introduced to address that language constraint, but despite their applicability being broader than that of the monolingual models, their performance is typically lower, especially for minority languages like Catalan. In this paper, we present a monolingual model for abstractive summarization of textual content in the Catalan language. The model is a Transformer encoder-decoder which is pretrained and fine-tuned specifically for the Catalan language using a corpus of newspaper articles. In the pretraining phase, we introduced several self-supervised tasks to specialize the model on the summarization task and to increase the abstractivity of the generated summaries. To study the performance of our proposal in languages with higher resources than Catalan, we replicate the model and the experimentation for the Spanish language. The usual evaluation metrics, not only the most used ROUGE measure but also other more semantic ones such as BertScore, do not allow to correctly evaluate the abstractivity of the generated summaries. In this work, we also present a new metric, called content reordering, to evaluate one of the most common characteristics of abstractive summaries, the rearrangement of the original content. We carried out an exhaustive experimentation to compare the performance of the monolingual models proposed in this work with two of the most widely used multilingual models in text summarization, mBART and mT5. The experimentation results support the quality of our monolingual models, especially considering that the multilingual models were pretrained with many more resources than those used in our models. Likewise, it is shown that the pretraining tasks helped to increase the degree of abstractivity of the generated summaries. To our knowledge, this is the first work that explores a monolingual approach for abstractive summarization both in Catalan and Spanish. # The NASes model News Abstractive Summarization for Spanish (NASes) is a Transformer encoder-decoder model, with the same hyper-parameters than BART, to perform summarization of Spanish news articles. It is pre-trained on a combination of several self-supervised tasks that help to increase the abstractivity of the generated summaries. Four pre-training tasks have been combined: sentence permutation, text infilling, Gap Sentence Generation, and Next Segment Generation. Spanish newspapers, and Wikipedia articles in Spanish were used for pre-training the model (21GB of raw text -8.5 millions of documents-). NASes is finetuned for the summarization task on 1.802.919 (document, summary) pairs from the Dataset for Automatic summarization of Catalan and Spanish newspaper Articles (DACSA). ### BibTeX entry ```bibtex @Article{app11219872, AUTHOR = {Ahuir, Vicent and Hurtado, Lluís-F. and González, José Ángel and Segarra, Encarna}, TITLE = {NASca and NASes: Two Monolingual Pre-Trained Models for Abstractive Summarization in Catalan and Spanish}, JOURNAL = {Applied Sciences}, VOLUME = {11}, YEAR = {2021}, NUMBER = {21}, ARTICLE-NUMBER = {9872}, URL = {https://www.mdpi.com/2076-3417/11/21/9872}, ISSN = {2076-3417}, DOI = {10.3390/app11219872} } ```
{"language": "es", "tags": ["summarization"], "widget": [{"text": "La Agencia Valenciana de la Innovaci\u00f3n (AVI) financia el desarrollo de un software que integra diferentes modelos y tecnolog\u00edas para la monitorizaci\u00f3n y an\u00e1lisis multiling\u00fce de las redes sociales. A trav\u00e9s de t\u00e9cnicas de 'deep learning' y procesamiento del lenguaje natural es capaz de interpretar la iron\u00eda y las emociones en los textos, incluso en aquellos escritos en idiomas menos extendidos, a menudo no contemplados por las herramientas comerciales. La iniciativa, bautizada como 'Guaita', est\u00e1 liderada por el Instituto Valenciano de Investigaci\u00f3n en Inteligencia Artificial (VRAIN), adscrito a la Universidad Polit\u00e9cnica de Valencia (UPV), que cuenta a su vez para su desarrollo con la colaboraci\u00f3n del Instituto Valenciano de Inform\u00e1tica (ITI) y la Corporaci\u00f3n Valenciana de Mitjans de Comunicaci\u00f3n (CVMC).De este modo, y a solicitud del usuario o usuaria, monitorizar\u00e1 las redes sociales para obtener la informaci\u00f3n asociada a los temas objeto de inter\u00e9s y ofrecer\u00e1 los resultados de forma gr\u00e1fica, bien a trav\u00e9s de una interfaz web, bien mediante la generaci\u00f3n de informes. El programa ser\u00e1, adem\u00e1s, capaz de determinar la reputaci\u00f3n de una empresa o instituci\u00f3n a partir de dichos an\u00e1lisis gracias a la combinaci\u00f3n de distintas tecnolog\u00edas de procesamiento e interpretaci\u00f3n, destaca la agencia en un comunicado."}]}
ELiRF/NASES
null
[ "transformers", "pytorch", "safetensors", "bart", "text2text-generation", "summarization", "es", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
{}
EMBEDDIA/bertic-tweetsentiment
null
[ "transformers", "pytorch", "electra", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
fill-mask
transformers
# CroSloEngual BERT CroSloEngual BERT is a trilingual model, using bert-base architecture, trained on Croatian, Slovenian, and English corpora. Focusing on three languages, the model performs better than [multilingual BERT](https://huggingface.co/bert-base-multilingual-cased), while still offering an option for cross-lingual knowledge transfer, which a monolingual model wouldn't. Evaluation is presented in our article: ``` @Inproceedings{ulcar-robnik2020finest, author = "Ulčar, M. and Robnik-Šikonja, M.", year = 2020, title = "{FinEst BERT} and {CroSloEngual BERT}: less is more in multilingual models", editor = "Sojka, P and Kopeček, I and Pala, K and Horák, A", booktitle = "Text, Speech, and Dialogue {TSD 2020}", series = "Lecture Notes in Computer Science", volume = 12284, publisher = "Springer", url = "https://doi.org/10.1007/978-3-030-58323-1_11", } ``` The preprint is available at [arxiv.org/abs/2006.07890](https://arxiv.org/abs/2006.07890).
{"language": ["hr", "sl", "en", "multilingual"], "license": "cc-by-4.0"}
EMBEDDIA/crosloengual-bert
null
[ "transformers", "pytorch", "jax", "bert", "fill-mask", "hr", "sl", "en", "multilingual", "arxiv:2006.07890", "license:cc-by-4.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
{}
EMBEDDIA/english-tweetsentiment
null
[ "transformers", "pytorch", "bert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
fill-mask
transformers
# Usage Load in transformers library with: ``` from transformers import AutoTokenizer, AutoModelForMaskedLM tokenizer = AutoTokenizer.from_pretrained("EMBEDDIA/est-roberta") model = AutoModelForMaskedLM.from_pretrained("EMBEDDIA/est-roberta") ``` # Est-RoBERTa Est-RoBERTa model is a monolingual Estonian BERT-like model. It is closely related to French Camembert model https://camembert-model.fr/. The Estonian corpora used for training the model have 2.51 billion tokens in total. The subword vocabulary contains 40,000 tokens. Est-RoBERTa was trained for 40 epochs.
{"language": ["et"], "license": "cc-by-sa-4.0"}
EMBEDDIA/est-roberta
null
[ "transformers", "pytorch", "camembert", "fill-mask", "et", "license:cc-by-sa-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
fill-mask
transformers
# FinEst BERT FinEst BERT is a trilingual model, using bert-base architecture, trained on Finnish, Estonian, and English corpora. Focusing on three languages, the model performs better than [multilingual BERT](https://huggingface.co/bert-base-multilingual-cased), while still offering an option for cross-lingual knowledge transfer, which a monolingual model wouldn't. Evaluation is presented in our article: ``` @Inproceedings{ulcar-robnik2020finest, author = "Ulčar, M. and Robnik-Šikonja, M.", year = 2020, title = "{FinEst BERT} and {CroSloEngual BERT}: less is more in multilingual models", editor = "Sojka, P and Kopeček, I and Pala, K and Horák, A", booktitle = "Text, Speech, and Dialogue {TSD 2020}", series = "Lecture Notes in Computer Science", volume = 12284, publisher = "Springer", url = "https://doi.org/10.1007/978-3-030-58323-1_11", } ``` The preprint is available at [arxiv.org/abs/2006.07890](https://arxiv.org/abs/2006.07890).
{"language": ["fi", "et", "en", "multilingual"], "license": "cc-by-4.0"}
EMBEDDIA/finest-bert
null
[ "transformers", "pytorch", "jax", "bert", "fill-mask", "fi", "et", "en", "multilingual", "arxiv:2006.07890", "license:cc-by-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00