Search is not available for this dataset
pipeline_tag
stringclasses
48 values
library_name
stringclasses
205 values
text
stringlengths
0
18.3M
metadata
stringlengths
2
1.07B
id
stringlengths
5
122
last_modified
null
tags
sequencelengths
1
1.84k
sha
null
created_at
stringlengths
25
25
summarization
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # T5-Base_GNAD This model is a fine-tuned version of [Einmalumdiewelt/T5-Base_GNAD](https://huggingface.co/Einmalumdiewelt/T5-Base_GNAD) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.1025 - Rouge1: 27.5357 - Rouge2: 8.5623 - Rougel: 19.1508 - Rougelsum: 23.9029 - Gen Len: 52.7253 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.22.0.dev0 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
{"language": ["de"], "tags": ["generated_from_trainer", "summarization"], "metrics": ["rouge"], "model-index": [{"name": "T5-Base_GNAD", "results": []}]}
Einmalumdiewelt/T5-Base_GNAD
null
[ "transformers", "pytorch", "t5", "text2text-generation", "generated_from_trainer", "summarization", "de", "autotrain_compatible", "endpoints_compatible", "has_space", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Eirca/add_vocab_fin
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Eirca/vocab_add_fin
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Eissugen/Eissugen
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Ekael/distilbert-base-uncased-finetuned-squad
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Ekta/Hark2
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Ekta/Hark3
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Ekta/Hark4
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Ekta/dummy-model
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Ekta/your-model-name
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Elaben/wav2vec2-base-timit-demo-colab
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Elaben/wav2vec2-base-timit-demo-ipython
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Elainecc/testcc
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Elainelau9913/distilbert-base-uncased-finetuned-squad
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
fill-mask
transformers
{}
Elbe/RoBERTaforIns
null
[ "transformers", "pytorch", "jax", "roberta", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Elbe/RoBERTaforIns_2
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Elbe/RoBERTaforIns_full
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
transformers
# Enformer Enformer model. It was introduced in the paper [Effective gene expression prediction from sequence by integrating long-range interactions.](https://www.nature.com/articles/s41592-021-01252-x) by Avsec et al. and first released in [this repository](https://github.com/deepmind/deepmind-research/tree/master/enformer). This particular model was trained on sequences of 196,608 basepairs, target length 896, with shift augmentation but without reverse complement, on poisson loss objective. Final human pearson R of ~0.45. This repo contains the weights of the PyTorch implementation by Phil Wang as seen in the [enformer-pytorch repository](https://github.com/lucidrains/enformer-pytorch). Disclaimer: The team releasing Enformer did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description Enformer is a neural network architecture based on the Transformer that led to greatly increased accuracy in predicting gene expression from DNA sequence. We refer to the [paper](https://www.nature.com/articles/s41592-021-01252-x) published in Nature for details. ### How to use Refer to the README of [enformer-pytorch](https://github.com/lucidrains/enformer-pytorch) regarding usage. ### Citation info ``` Avsec, Ž., Agarwal, V., Visentin, D. et al. Effective gene expression prediction from sequence by integrating long-range interactions. Nat Methods 18, 1196–1203 (2021). https://doi.org/10.1038/s41592-021-01252-x ```
{"license": "apache-2.0", "inference": false}
EleutherAI/enformer-191k
null
[ "transformers", "pytorch", "enformer", "license:apache-2.0", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
transformers
# Enformer Enformer model. It was introduced in the paper [Effective gene expression prediction from sequence by integrating long-range interactions.](https://www.nature.com/articles/s41592-021-01252-x) by Avsec et al. and first released in [this repository](https://github.com/deepmind/deepmind-research/tree/master/enformer). This particular model was trained on sequences of 196,608 basepairs, target length 896, with shift augmentation but without reverse complement, on poisson loss objective. Final human pearson R of ~0.49. This repo contains the weights of the PyTorch implementation by Phil Wang as seen in the [enformer-pytorch repository](https://github.com/lucidrains/enformer-pytorch). Disclaimer: The team releasing Enformer did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description Enformer is a neural network architecture based on the Transformer that led to greatly increased accuracy in predicting gene expression from DNA sequence. We refer to the [paper](https://www.nature.com/articles/s41592-021-01252-x) published in Nature for details. ### How to use Refer to the README of [enformer-pytorch](https://github.com/lucidrains/enformer-pytorch) regarding usage. ### Citation info ``` Avsec, Ž., Agarwal, V., Visentin, D. et al. Effective gene expression prediction from sequence by integrating long-range interactions. Nat Methods 18, 1196–1203 (2021). https://doi.org/10.1038/s41592-021-01252-x ```
{"license": "apache-2.0", "inference": false}
EleutherAI/enformer-191k_corr_coef_obj
null
[ "transformers", "pytorch", "enformer", "license:apache-2.0", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
transformers
# Enformer Enformer model. It was introduced in the paper [Effective gene expression prediction from sequence by integrating long-range interactions.](https://www.nature.com/articles/s41592-021-01252-x) by Avsec et al. and first released in [this repository](https://github.com/deepmind/deepmind-research/tree/master/enformer). This particular model was trained on sequences of 131,072 basepairs, target length 896 on v3-64 TPUs for 3 days with sequence augmentations and pearson correlation objective. This repo contains the weights of the PyTorch implementation by Phil Wang as seen in the [enformer-pytorch repository](https://github.com/lucidrains/enformer-pytorch). Disclaimer: The team releasing Enformer did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description Enformer is a neural network architecture based on the Transformer that led to greatly increased accuracy in predicting gene expression from DNA sequence. We refer to the [paper](https://www.nature.com/articles/s41592-021-01252-x) published in Nature for details. ### How to use Refer to the README of [enformer-pytorch](https://github.com/lucidrains/enformer-pytorch) regarding usage. ### Citation info ``` Avsec, Ž., Agarwal, V., Visentin, D. et al. Effective gene expression prediction from sequence by integrating long-range interactions. Nat Methods 18, 1196–1203 (2021). https://doi.org/10.1038/s41592-021-01252-x ```
{"license": "apache-2.0", "inference": false}
EleutherAI/enformer-corr_coef_obj
null
[ "transformers", "pytorch", "enformer", "license:apache-2.0", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
transformers
# Enformer Enformer model. It was introduced in the paper [Effective gene expression prediction from sequence by integrating long-range interactions.](https://www.nature.com/articles/s41592-021-01252-x) by Avsec et al. and first released in [this repository](https://github.com/deepmind/deepmind-research/tree/master/enformer). This particular model was trained on sequences of 131,072 basepairs, target length 896 on v3-64 TPUs for 2 and a half days without augmentations and poisson loss. This repo contains the weights of the PyTorch implementation by Phil Wang as seen in the [enformer-pytorch repository](https://github.com/lucidrains/enformer-pytorch). Disclaimer: The team releasing Enformer did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description Enformer is a neural network architecture based on the Transformer that led to greatly increased accuracy in predicting gene expression from DNA sequence. We refer to the [paper](https://www.nature.com/articles/s41592-021-01252-x) published in Nature for details. ### How to use Refer to the README of [enformer-pytorch](https://github.com/lucidrains/enformer-pytorch) regarding usage. ### Citation info ``` Avsec, Ž., Agarwal, V., Visentin, D. et al. Effective gene expression prediction from sequence by integrating long-range interactions. Nat Methods 18, 1196–1203 (2021). https://doi.org/10.1038/s41592-021-01252-x ```
{"license": "apache-2.0", "inference": false}
EleutherAI/enformer-preview
null
[ "transformers", "pytorch", "enformer", "license:apache-2.0", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
transformers
# GPT-J 6B ## Model Description GPT-J 6B is a transformer model trained using Ben Wang's [Mesh Transformer JAX](https://github.com/kingoflolz/mesh-transformer-jax/). "GPT-J" refers to the class of model, while "6B" represents the number of trainable parameters. <figure> | Hyperparameter | Value | |----------------------|------------| | \\(n_{parameters}\\) | 6053381344 | | \\(n_{layers}\\) | 28&ast; | | \\(d_{model}\\) | 4096 | | \\(d_{ff}\\) | 16384 | | \\(n_{heads}\\) | 16 | | \\(d_{head}\\) | 256 | | \\(n_{ctx}\\) | 2048 | | \\(n_{vocab}\\) | 50257/50400&dagger; (same tokenizer as GPT-2/3) | | Positional Encoding | [Rotary Position Embedding (RoPE)](https://arxiv.org/abs/2104.09864) | | RoPE Dimensions | [64](https://github.com/kingoflolz/mesh-transformer-jax/blob/f2aa66e0925de6593dcbb70e72399b97b4130482/mesh_transformer/layers.py#L223) | <figcaption><p><strong>&ast;</strong> Each layer consists of one feedforward block and one self attention block.</p> <p><strong>&dagger;</strong> Although the embedding matrix has a size of 50400, only 50257 entries are used by the GPT-2 tokenizer.</p></figcaption></figure> The model consists of 28 layers with a model dimension of 4096, and a feedforward dimension of 16384. The model dimension is split into 16 heads, each with a dimension of 256. Rotary Position Embedding (RoPE) is applied to 64 dimensions of each head. The model is trained with a tokenization vocabulary of 50257, using the same set of BPEs as GPT-2/GPT-3. ## Intended Use and Limitations GPT-J learns an inner representation of the English language that can be used to extract features useful for downstream tasks. The model is best at what it was pretrained for however, which is generating text from a prompt. ### Out-of-scope use GPT-J-6B is **not** intended for deployment without fine-tuning, supervision, and/or moderation. It is not a in itself a product and cannot be used for human-facing interactions. For example, the model may generate harmful or offensive text. Please evaluate the risks associated with your particular use case. GPT-J-6B was trained on an English-language only dataset, and is thus **not** suitable for translation or generating text in other languages. GPT-J-6B has not been fine-tuned for downstream contexts in which language models are commonly deployed, such as writing genre prose, or commercial chatbots. This means GPT-J-6B will **not** respond to a given prompt the way a product like ChatGPT does. This is because, unlike this model, ChatGPT was fine-tuned using methods such as Reinforcement Learning from Human Feedback (RLHF) to better “follow” human instructions. ### Limitations and Biases The core functionality of GPT-J is taking a string of text and predicting the next token. While language models are widely used for tasks other than this, there are a lot of unknowns with this work. When prompting GPT-J it is important to remember that the statistically most likely next token is often not the token that produces the most "accurate" text. Never depend upon GPT-J to produce factually accurate output. GPT-J was trained on the Pile, a dataset known to contain profanity, lewd, and otherwise abrasive language. Depending upon use case GPT-J may produce socially unacceptable text. See [Sections 5 and 6 of the Pile paper](https://arxiv.org/abs/2101.00027) for a more detailed analysis of the biases in the Pile. As with all language models, it is hard to predict in advance how GPT-J will respond to particular prompts and offensive content may occur without warning. We recommend having a human curate or filter the outputs before releasing them, both to censor undesirable content and to improve the quality of the results. ### How to use This model can be easily loaded using the `AutoModelForCausalLM` functionality: ```python from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-j-6B") model = AutoModelForCausalLM.from_pretrained("EleutherAI/gpt-j-6B") ``` ## Training data GPT-J 6B was trained on [the Pile](https://pile.eleuther.ai), a large-scale curated dataset created by [EleutherAI](https://www.eleuther.ai). ## Training procedure This model was trained for 402 billion tokens over 383,500 steps on TPU v3-256 pod. It was trained as an autoregressive language model, using cross-entropy loss to maximize the likelihood of predicting the next token correctly. ## Evaluation results <figure> | Model | Public | Training FLOPs | LAMBADA PPL ↓ | LAMBADA Acc ↑ | Winogrande ↑ | Hellaswag ↑ | PIQA ↑ | Dataset Size (GB) | |--------------------------|-------------|----------------|--- |--- |--- |--- |--- |-------------------| | Random Chance | &check; | 0 | ~a lot | ~0% | 50% | 25% | 25% | 0 | | GPT-3 Ada&ddagger; | &cross; | ----- | 9.95 | 51.6% | 52.9% | 43.4% | 70.5% | ----- | | GPT-2 1.5B | &check; | ----- | 10.63 | 51.21% | 59.4% | 50.9% | 70.8% | 40 | | GPT-Neo 1.3B&ddagger; | &check; | 3.0e21 | 7.50 | 57.2% | 55.0% | 48.9% | 71.1% | 825 | | Megatron-2.5B&ast; | &cross; | 2.4e21 | ----- | 61.7% | ----- | ----- | ----- | 174 | | GPT-Neo 2.7B&ddagger; | &check; | 6.8e21 | 5.63 | 62.2% | 56.5% | 55.8% | 73.0% | 825 | | GPT-3 1.3B&ast;&ddagger; | &cross; | 2.4e21 | 5.44 | 63.6% | 58.7% | 54.7% | 75.1% | ~800 | | GPT-3 Babbage&ddagger; | &cross; | ----- | 5.58 | 62.4% | 59.0% | 54.5% | 75.5% | ----- | | Megatron-8.3B&ast; | &cross; | 7.8e21 | ----- | 66.5% | ----- | ----- | ----- | 174 | | GPT-3 2.7B&ast;&ddagger; | &cross; | 4.8e21 | 4.60 | 67.1% | 62.3% | 62.8% | 75.6% | ~800 | | Megatron-11B&dagger; | &check; | 1.0e22 | ----- | ----- | ----- | ----- | ----- | 161 | | **GPT-J 6B&ddagger;** | **&check;** | **1.5e22** | **3.99** | **69.7%** | **65.3%** | **66.1%** | **76.5%** | **825** | | GPT-3 6.7B&ast;&ddagger; | &cross; | 1.2e22 | 4.00 | 70.3% | 64.5% | 67.4% | 78.0% | ~800 | | GPT-3 Curie&ddagger; | &cross; | ----- | 4.00 | 69.3% | 65.6% | 68.5% | 77.9% | ----- | | GPT-3 13B&ast;&ddagger; | &cross; | 2.3e22 | 3.56 | 72.5% | 67.9% | 70.9% | 78.5% | ~800 | | GPT-3 175B&ast;&ddagger; | &cross; | 3.1e23 | 3.00 | 76.2% | 70.2% | 78.9% | 81.0% | ~800 | | GPT-3 Davinci&ddagger; | &cross; | ----- | 3.0 | 75% | 72% | 78% | 80% | ----- | <figcaption><p>Models roughly sorted by performance, or by FLOPs if not available.</p> <p><strong>&ast;</strong> Evaluation numbers reported by their respective authors. All other numbers are provided by running <a href="https://github.com/EleutherAI/lm-evaluation-harness/"><code>lm-evaluation-harness</code></a> either with released weights or with API access. Due to subtle implementation differences as well as different zero shot task framing, these might not be directly comparable. See <a href="https://blog.eleuther.ai/gpt3-model-sizes/">this blog post</a> for more details.</p> <p><strong>†</strong> Megatron-11B provides no comparable metrics, and several implementations using the released weights do not reproduce the generation quality and evaluations. (see <a href="https://github.com/huggingface/transformers/pull/10301">1</a> <a href="https://github.com/pytorch/fairseq/issues/2358">2</a> <a href="https://github.com/pytorch/fairseq/issues/2719">3</a>) Thus, evaluation was not attempted.</p> <p><strong>‡</strong> These models have been trained with data which contains possible test set contamination. The OpenAI GPT-3 models failed to deduplicate training data for certain test sets, while the GPT-Neo models as well as this one is trained on the Pile, which has not been deduplicated against any test sets.</p></figcaption></figure> ## Citation and Related Information ### BibTeX entry To cite this model: ```bibtex @misc{gpt-j, author = {Wang, Ben and Komatsuzaki, Aran}, title = {{GPT-J-6B: A 6 Billion Parameter Autoregressive Language Model}}, howpublished = {\url{https://github.com/kingoflolz/mesh-transformer-jax}}, year = 2021, month = May } ``` To cite the codebase that trained this model: ```bibtex @misc{mesh-transformer-jax, author = {Wang, Ben}, title = {{Mesh-Transformer-JAX: Model-Parallel Implementation of Transformer Language Model with JAX}}, howpublished = {\url{https://github.com/kingoflolz/mesh-transformer-jax}}, year = 2021, month = May } ``` If you use this model, we would love to hear about it! Reach out on [GitHub](https://github.com/kingoflolz/mesh-transformer-jax), Discord, or shoot Ben an email. ## Acknowledgements This project would not have been possible without compute generously provided by Google through the [TPU Research Cloud](https://sites.research.google/trc/), as well as the Cloud TPU team for providing early access to the [Cloud TPU VM](https://cloud.google.com/blog/products/compute/introducing-cloud-tpu-vms) Alpha. Thanks to everyone who have helped out one way or another (listed alphabetically): - [James Bradbury](https://twitter.com/jekbradbury) for valuable assistance with debugging JAX issues. - [Stella Biderman](https://www.stellabiderman.com), [Eric Hallahan](https://twitter.com/erichallahan), [Kurumuz](https://github.com/kurumuz/), and [Finetune](https://github.com/finetuneanon/) for converting the model to be compatible with the `transformers` package. - [Leo Gao](https://twitter.com/nabla_theta) for running zero shot evaluations for the baseline models for the table. - [Laurence Golding](https://github.com/researcher2/) for adding some features to the web demo. - [Aran Komatsuzaki](https://twitter.com/arankomatsuzaki) for advice with experiment design and writing the blog posts. - [Janko Prester](https://github.com/jprester/) for creating the web demo frontend.
{"language": ["en"], "license": "apache-2.0", "tags": ["pytorch", "causal-lm"], "datasets": ["EleutherAI/pile"]}
EleutherAI/gpt-j-6b
null
[ "transformers", "pytorch", "tf", "jax", "gptj", "text-generation", "causal-lm", "en", "dataset:EleutherAI/pile", "arxiv:2104.09864", "arxiv:2101.00027", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
transformers
# GPT-Neo 1.3B ## Model Description GPT-Neo 1.3B is a transformer model designed using EleutherAI's replication of the GPT-3 architecture. GPT-Neo refers to the class of models, while 1.3B represents the number of parameters of this particular pre-trained model. ## Training data GPT-Neo 1.3B was trained on the Pile, a large scale curated dataset created by EleutherAI for the purpose of training this model. ## Training procedure This model was trained on the Pile for 380 billion tokens over 362,000 steps. It was trained as a masked autoregressive language model, using cross-entropy loss. ## Intended Use and Limitations This way, the model learns an inner representation of the English language that can then be used to extract features useful for downstream tasks. The model is best at what it was pretrained for however, which is generating texts from a prompt. ### How to use You can use this model directly with a pipeline for text generation. This example generates a different sequence each time it's run: ```py >>> from transformers import pipeline >>> generator = pipeline('text-generation', model='EleutherAI/gpt-neo-1.3B') >>> generator("EleutherAI has", do_sample=True, min_length=50) [{'generated_text': 'EleutherAI has made a commitment to create new software packages for each of its major clients and has'}] ``` ### Limitations and Biases GPT-Neo was trained as an autoregressive language model. This means that its core functionality is taking a string of text and predicting the next token. While language models are widely used for tasks other than this, there are a lot of unknowns with this work. GPT-Neo was trained on the Pile, a dataset known to contain profanity, lewd, and otherwise abrasive language. Depending on your usecase GPT-Neo may produce socially unacceptable text. See Sections 5 and 6 of the Pile paper for a more detailed analysis of the biases in the Pile. As with all language models, it is hard to predict in advance how GPT-Neo will respond to particular prompts and offensive content may occur without warning. We recommend having a human curate or filter the outputs before releasing them, both to censor undesirable content and to improve the quality of the results. ## Eval results ### Linguistic Reasoning | Model and Size | Pile BPB | Pile PPL | Wikitext PPL | Lambada PPL | Lambada Acc | Winogrande | Hellaswag | | ---------------- | ---------- | ---------- | ------------- | ----------- | ----------- | ---------- | ----------- | | **GPT-Neo 1.3B** | **0.7527** | **6.159** | **13.10** | **7.498** | **57.23%** | **55.01%** | **38.66%** | | GPT-2 1.5B | 1.0468 | ----- | 17.48 | 10.634 | 51.21% | 59.40% | 40.03% | | GPT-Neo 2.7B | 0.7165 | 5.646 | 11.39 | 5.626 | 62.22% | 56.50% | 42.73% | | GPT-3 Ada | 0.9631 | ----- | ----- | 9.954 | 51.60% | 52.90% | 35.93% | ### Physical and Scientific Reasoning | Model and Size | MathQA | PubMedQA | Piqa | | ---------------- | ---------- | ---------- | ----------- | | **GPT-Neo 1.3B** | **24.05%** | **54.40%** | **71.11%** | | GPT-2 1.5B | 23.64% | 58.33% | 70.78% | | GPT-Neo 2.7B | 24.72% | 57.54% | 72.14% | | GPT-3 Ada | 24.29% | 52.80% | 68.88% | ### Down-Stream Applications TBD ### BibTeX entry and citation info To cite this model, please use ```bibtex @software{gpt-neo, author = {Black, Sid and Leo, Gao and Wang, Phil and Leahy, Connor and Biderman, Stella}, title = {{GPT-Neo: Large Scale Autoregressive Language Modeling with Mesh-Tensorflow}}, month = mar, year = 2021, note = {{If you use this software, please cite it using these metadata.}}, publisher = {Zenodo}, version = {1.0}, doi = {10.5281/zenodo.5297715}, url = {https://doi.org/10.5281/zenodo.5297715} } @article{gao2020pile, title={The Pile: An 800GB Dataset of Diverse Text for Language Modeling}, author={Gao, Leo and Biderman, Stella and Black, Sid and Golding, Laurence and Hoppe, Travis and Foster, Charles and Phang, Jason and He, Horace and Thite, Anish and Nabeshima, Noa and others}, journal={arXiv preprint arXiv:2101.00027}, year={2020} } ``` # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_EleutherAI__gpt-neo-1.3B) | Metric | Value | |-----------------------|---------------------------| | Avg. | 29.44 | | ARC (25-shot) | 31.23 | | HellaSwag (10-shot) | 48.47 | | MMLU (5-shot) | 24.82 | | TruthfulQA (0-shot) | 39.63 | | Winogrande (5-shot) | 56.91 | | GSM8K (5-shot) | 0.45 | | DROP (3-shot) | 4.6 |
{"language": ["en"], "license": "mit", "tags": ["text generation", "pytorch", "causal-lm"], "datasets": ["EleutherAI/pile"]}
EleutherAI/gpt-neo-1.3B
null
[ "transformers", "pytorch", "jax", "rust", "safetensors", "gpt_neo", "text-generation", "text generation", "causal-lm", "en", "dataset:EleutherAI/pile", "license:mit", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
transformers
# GPT-Neo 125M ## Model Description GPT-Neo 125M is a transformer model designed using EleutherAI's replication of the GPT-3 architecture. GPT-Neo refers to the class of models, while 125M represents the number of parameters of this particular pre-trained model. ## Training data GPT-Neo 125M was trained on the Pile, a large scale curated dataset created by EleutherAI for the purpose of training this model. ## Training procedure This model was trained on the Pile for 300 billion tokens over 572,300 steps. It was trained as a masked autoregressive language model, using cross-entropy loss. ## Intended Use and Limitations This way, the model learns an inner representation of the English language that can then be used to extract features useful for downstream tasks. The model is best at what it was pretrained for however, which is generating texts from a prompt. ### How to use You can use this model directly with a pipeline for text generation. This example generates a different sequence each time it's run: ```py >>> from transformers import pipeline >>> generator = pipeline('text-generation', model='EleutherAI/gpt-neo-125M') >>> generator("EleutherAI has", do_sample=True, min_length=20) [{'generated_text': 'EleutherAI has made a commitment to create new software packages for each of its major clients and has'}] ``` ### Limitations and Biases GPT-Neo was trained as an autoregressive language model. This means that its core functionality is taking a string of text and predicting the next token. While language models are widely used for tasks other than this, there are a lot of unknowns with this work. GPT-Neo was trained on the Pile, a dataset known to contain profanity, lewd, and otherwise abrasive language. Depending on your usecase GPT-Neo may produce socially unacceptable text. See Sections 5 and 6 of the Pile paper for a more detailed analysis of the biases in the Pile. As with all language models, it is hard to predict in advance how GPT-Neo will respond to particular prompts and offensive content may occur without warning. We recommend having a human curate or filter the outputs before releasing them, both to censor undesirable content and to improve the quality of the results. ## Eval results TBD ### Down-Stream Applications TBD ### BibTeX entry and citation info To cite this model, use ```bibtex @software{gpt-neo, author = {Black, Sid and Leo, Gao and Wang, Phil and Leahy, Connor and Biderman, Stella}, title = {{GPT-Neo: Large Scale Autoregressive Language Modeling with Mesh-Tensorflow}}, month = mar, year = 2021, note = {{If you use this software, please cite it using these metadata.}}, publisher = {Zenodo}, version = {1.0}, doi = {10.5281/zenodo.5297715}, url = {https://doi.org/10.5281/zenodo.5297715} } @article{gao2020pile, title={The Pile: An 800GB Dataset of Diverse Text for Language Modeling}, author={Gao, Leo and Biderman, Stella and Black, Sid and Golding, Laurence and Hoppe, Travis and Foster, Charles and Phang, Jason and He, Horace and Thite, Anish and Nabeshima, Noa and others}, journal={arXiv preprint arXiv:2101.00027}, year={2020} } ``` # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_EleutherAI__gpt-neo-125m) | Metric | Value | |-----------------------|---------------------------| | Avg. | 25.79 | | ARC (25-shot) | 22.95 | | HellaSwag (10-shot) | 30.26 | | MMLU (5-shot) | 25.97 | | TruthfulQA (0-shot) | 45.58 | | Winogrande (5-shot) | 51.78 | | GSM8K (5-shot) | 0.3 | | DROP (3-shot) | 3.69 |
{"language": ["en"], "license": "mit", "tags": ["text generation", "pytorch", "causal-lm"], "datasets": ["EleutherAI/pile"]}
EleutherAI/gpt-neo-125m
null
[ "transformers", "pytorch", "jax", "rust", "safetensors", "gpt_neo", "text-generation", "text generation", "causal-lm", "en", "dataset:EleutherAI/pile", "license:mit", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
transformers
# GPT-Neo 2.7B ## Model Description GPT-Neo 2.7B is a transformer model designed using EleutherAI's replication of the GPT-3 architecture. GPT-Neo refers to the class of models, while 2.7B represents the number of parameters of this particular pre-trained model. ## Training data GPT-Neo 2.7B was trained on the Pile, a large scale curated dataset created by EleutherAI for the purpose of training this model. ## Training procedure This model was trained for 420 billion tokens over 400,000 steps. It was trained as a masked autoregressive language model, using cross-entropy loss. ## Intended Use and Limitations This way, the model learns an inner representation of the English language that can then be used to extract features useful for downstream tasks. The model is best at what it was pretrained for however, which is generating texts from a prompt. ### How to use You can use this model directly with a pipeline for text generation. This example generates a different sequence each time it's run: ```py >>> from transformers import pipeline >>> generator = pipeline('text-generation', model='EleutherAI/gpt-neo-2.7B') >>> generator("EleutherAI has", do_sample=True, min_length=50) [{'generated_text': 'EleutherAI has made a commitment to create new software packages for each of its major clients and has'}] ``` ### Limitations and Biases GPT-Neo was trained as an autoregressive language model. This means that its core functionality is taking a string of text and predicting the next token. While language models are widely used for tasks other than this, there are a lot of unknowns with this work. GPT-Neo was trained on the Pile, a dataset known to contain profanity, lewd, and otherwise abrasive language. Depending on your usecase GPT-Neo may produce socially unacceptable text. See Sections 5 and 6 of the Pile paper for a more detailed analysis of the biases in the Pile. As with all language models, it is hard to predict in advance how GPT-Neo will respond to particular prompts and offensive content may occur without warning. We recommend having a human curate or filter the outputs before releasing them, both to censor undesirable content and to improve the quality of the results. ## Eval results All evaluations were done using our [evaluation harness](https://github.com/EleutherAI/lm-evaluation-harness). Some results for GPT-2 and GPT-3 are inconsistent with the values reported in the respective papers. We are currently looking into why, and would greatly appreciate feedback and further testing of our eval harness. If you would like to contribute evaluations you have done, please reach out on our [Discord](https://discord.gg/vtRgjbM). ### Linguistic Reasoning | Model and Size | Pile BPB | Pile PPL | Wikitext PPL | Lambada PPL | Lambada Acc | Winogrande | Hellaswag | | ---------------- | ---------- | ---------- | ------------- | ----------- | ----------- | ---------- | ----------- | | GPT-Neo 1.3B | 0.7527 | 6.159 | 13.10 | 7.498 | 57.23% | 55.01% | 38.66% | | GPT-2 1.5B | 1.0468 | ----- | 17.48 | 10.634 | 51.21% | 59.40% | 40.03% | | **GPT-Neo 2.7B** | **0.7165** | **5.646** | **11.39** | **5.626** | **62.22%** | **56.50%** | **42.73%** | | GPT-3 Ada | 0.9631 | ----- | ----- | 9.954 | 51.60% | 52.90% | 35.93% | ### Physical and Scientific Reasoning | Model and Size | MathQA | PubMedQA | Piqa | | ---------------- | ---------- | ---------- | ----------- | | GPT-Neo 1.3B | 24.05% | 54.40% | 71.11% | | GPT-2 1.5B | 23.64% | 58.33% | 70.78% | | **GPT-Neo 2.7B** | **24.72%** | **57.54%** | **72.14%** | | GPT-3 Ada | 24.29% | 52.80% | 68.88% | ### Down-Stream Applications TBD ### BibTeX entry and citation info To cite this model, use ```bibtex @software{gpt-neo, author = {Black, Sid and Leo, Gao and Wang, Phil and Leahy, Connor and Biderman, Stella}, title = {{GPT-Neo: Large Scale Autoregressive Language Modeling with Mesh-Tensorflow}}, month = mar, year = 2021, note = {{If you use this software, please cite it using these metadata.}}, publisher = {Zenodo}, version = {1.0}, doi = {10.5281/zenodo.5297715}, url = {https://doi.org/10.5281/zenodo.5297715} } @article{gao2020pile, title={The Pile: An 800GB Dataset of Diverse Text for Language Modeling}, author={Gao, Leo and Biderman, Stella and Black, Sid and Golding, Laurence and Hoppe, Travis and Foster, Charles and Phang, Jason and He, Horace and Thite, Anish and Nabeshima, Noa and others}, journal={arXiv preprint arXiv:2101.00027}, year={2020} } ```
{"language": ["en"], "license": "mit", "tags": ["text generation", "pytorch", "causal-lm"], "datasets": ["EleutherAI/pile"]}
EleutherAI/gpt-neo-2.7B
null
[ "transformers", "pytorch", "jax", "rust", "safetensors", "gpt_neo", "text-generation", "text generation", "causal-lm", "en", "dataset:EleutherAI/pile", "license:mit", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Elliejone/Ellie
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
{}
Elluran/Hate_speech_detector
null
[ "transformers", "pytorch", "jax", "roberta", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
ElnazDi/xlm-roberta-base-finetuned-marc
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Elron/BLEURT-20
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
\n## BLEURT Pytorch version of the original BLEURT models from ACL paper ["BLEURT: Learning Robust Metrics for Text Generation"](https://aclanthology.org/2020.acl-main.704/) by Thibault Sellam, Dipanjan Das and Ankur P. Parikh of Google Research. The code for model conversion was originated from [this notebook](https://colab.research.google.com/drive/1KsCUkFW45d5_ROSv2aHtXgeBa2Z98r03?usp=sharing) mentioned [here](https://github.com/huggingface/datasets/issues/224). ## Usage Example ```python from transformers import AutoModelForSequenceClassification, AutoTokenizer import torch tokenizer = AutoTokenizer.from_pretrained("Elron/bleurt-base-128") model = AutoModelForSequenceClassification.from_pretrained("Elron/bleurt-base-128") model.eval() references = ["hello world", "hello world"] candidates = ["hi universe", "bye world"] with torch.no_grad(): scores = model(**tokenizer(references, candidates, return_tensors='pt'))[0].squeeze() print(scores) # tensor([0.3598, 0.0723]) ```
{}
Elron/bleurt-base-128
null
[ "transformers", "pytorch", "bert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
\n## BLEURT Pytorch version of the original BLEURT models from ACL paper ["BLEURT: Learning Robust Metrics for Text Generation"](https://aclanthology.org/2020.acl-main.704/) by Thibault Sellam, Dipanjan Das and Ankur P. Parikh of Google Research. The code for model conversion was originated from [this notebook](https://colab.research.google.com/drive/1KsCUkFW45d5_ROSv2aHtXgeBa2Z98r03?usp=sharing) mentioned [here](https://github.com/huggingface/datasets/issues/224). ## Usage Example ```python from transformers import AutoModelForSequenceClassification, AutoTokenizer import torch tokenizer = AutoTokenizer.from_pretrained("Elron/bleurt-base-512") model = AutoModelForSequenceClassification.from_pretrained("Elron/bleurt-base-512") model.eval() references = ["hello world", "hello world"] candidates = ["hi universe", "bye world"] with torch.no_grad(): scores = model(**tokenizer(references, candidates, return_tensors='pt'))[0].squeeze() print(scores) # tensor([1.0327, 0.2055]) ```
{}
Elron/bleurt-base-512
null
[ "transformers", "pytorch", "bert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
\n## BLEURT Pytorch version of the original BLEURT models from ACL paper ["BLEURT: Learning Robust Metrics for Text Generation"](https://aclanthology.org/2020.acl-main.704/) by Thibault Sellam, Dipanjan Das and Ankur P. Parikh of Google Research. The code for model conversion was originated from [this notebook](https://colab.research.google.com/drive/1KsCUkFW45d5_ROSv2aHtXgeBa2Z98r03?usp=sharing) mentioned [here](https://github.com/huggingface/datasets/issues/224). ## Usage Example ```python from transformers import AutoModelForSequenceClassification, AutoTokenizer import torch tokenizer = AutoTokenizer.from_pretrained("Elron/bleurt-large-128") model = AutoModelForSequenceClassification.from_pretrained("Elron/bleurt-large-128") model.eval() references = ["hello world", "hello world"] candidates = ["hi universe", "bye world"] with torch.no_grad(): scores = model(**tokenizer(references, candidates, return_tensors='pt'))[0].squeeze() print(scores) # tensor([ 0.0020, -0.6647]) ```
{}
Elron/bleurt-large-128
null
[ "transformers", "pytorch", "bert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
## BLEURT Pytorch version of the original BLEURT models from ACL paper ["BLEURT: Learning Robust Metrics for Text Generation"](https://aclanthology.org/2020.acl-main.704/) by Thibault Sellam, Dipanjan Das and Ankur P. Parikh of Google Research. The code for model conversion was originated from [this notebook](https://colab.research.google.com/drive/1KsCUkFW45d5_ROSv2aHtXgeBa2Z98r03?usp=sharing) mentioned [here](https://github.com/huggingface/datasets/issues/224). ## Usage Example ```python from transformers import AutoModelForSequenceClassification, AutoTokenizer import torch tokenizer = AutoTokenizer.from_pretrained("Elron/bleurt-large-512") model = AutoModelForSequenceClassification.from_pretrained("Elron/bleurt-large-512") model.eval() references = ["hello world", "hello world"] candidates = ["hi universe", "bye world"] with torch.no_grad(): scores = model(**tokenizer(references, candidates, return_tensors='pt'))[0].squeeze() print(scores) # tensor([0.9877, 0.0475]) ```
{}
Elron/bleurt-large-512
null
[ "transformers", "pytorch", "bert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
\n## BLEURT Pytorch version of the original BLEURT models from ACL paper ["BLEURT: Learning Robust Metrics for Text Generation"](https://aclanthology.org/2020.acl-main.704/) by Thibault Sellam, Dipanjan Das and Ankur P. Parikh of Google Research. The code for model conversion was originated from [this notebook](https://colab.research.google.com/drive/1KsCUkFW45d5_ROSv2aHtXgeBa2Z98r03?usp=sharing) mentioned [here](https://github.com/huggingface/datasets/issues/224). ## Usage Example ```python from transformers import AutoModelForSequenceClassification, AutoTokenizer import torch tokenizer = AutoTokenizer.from_pretrained("Elron/bleurt-tiny-512") model = AutoModelForSequenceClassification.from_pretrained("Elron/bleurt-tiny-512") model.eval() references = ["hello world", "hello world"] candidates = ["hi universe", "bye world"] with torch.no_grad(): scores = model(**tokenizer(references, candidates, return_tensors='pt'))[0].squeeze() print(scores) # tensor([-1.0563, -0.3004]) ```
{}
Elron/bleurt-tiny-128
null
[ "transformers", "pytorch", "bert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
# Model Card for bleurt-tiny-512 # Model Details ## Model Description Pytorch version of the original BLEURT models from ACL paper - **Developed by:** Elron Bandel, Thibault Sellam, Dipanjan Das and Ankur P. Parikh of Google Research - **Shared by [Optional]:** Elron Bandel - **Model type:** Text Classification - **Language(s) (NLP):** More information needed - **License:** More information needed - **Parent Model:** BERT - **Resources for more information:** - [GitHub Repo](https://github.com/google-research/bleurt/tree/master) - [Associated Paper](https://aclanthology.org/2020.acl-main.704/) - [Blog Post](https://ai.googleblog.com/2020/05/evaluating-natural-language-generation.html) # Uses ## Direct Use This model can be used for the task of Text Classification ## Downstream Use [Optional] More information needed. ## Out-of-Scope Use The model should not be used to intentionally create hostile or alienating environments for people. # Bias, Risks, and Limitations Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al. (2021)](https://aclanthology.org/2021.acl-long.330.pdf) and [Bender et al. (2021)](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)). Predictions generated by the model may include disturbing and harmful stereotypes across protected classes; identity characteristics; and sensitive, social, and occupational groups. ## Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. # Training Details ## Training Data The model authors note in the [associated paper](https://aclanthology.org/2020.acl-main.704.pdf): > We use years 2017 to 2019 of the WMT Metrics Shared Task, to-English language pairs. For each year, we used the of- ficial WMT test set, which include several thou- sand pairs of sentences with human ratings from the news domain. The training sets contain 5,360, 9,492, and 147,691 records for each year. ## Training Procedure ### Preprocessing More information needed ### Speeds, Sizes, Times More information needed # Evaluation ## Testing Data, Factors & Metrics ### Testing Data The test sets for years 2018 and 2019 [of the WMT Metrics Shared Task, to-English language pairs.] are noisier, ### Factors More information needed ### Metrics More information needed ## Results More information needed # Model Examination More information needed # Environmental Impact Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** More information needed - **Hours used:** More information needed - **Cloud Provider:** More information needed - **Compute Region:** More information needed - **Carbon Emitted:** More information needed # Technical Specifications [optional] ## Model Architecture and Objective More information needed ## Compute Infrastructure More information needed ### Hardware More information needed ### Software More information needed. # Citation **BibTeX:** ```bibtex @inproceedings{sellam2020bleurt, title = {BLEURT: Learning Robust Metrics for Text Generation}, author = {Thibault Sellam and Dipanjan Das and Ankur P Parikh}, year = {2020}, booktitle = {Proceedings of ACL} } ``` # Glossary [optional] More information needed # More Information [optional] More information needed # Model Card Authors [optional] Elron Bandel in collaboration with Ezi Ozoani and the Hugging Face team # Model Card Contact More information needed # How to Get Started with the Model Use the code below to get started with the model. <details> <summary> Click to expand </summary> ```python from transformers import AutoModelForSequenceClassification, AutoTokenizer import torch tokenizer = AutoTokenizer.from_pretrained("Elron/bleurt-tiny-512") model = AutoModelForSequenceClassification.from_pretrained("Elron/bleurt-tiny-512") model.eval() references = ["hello world", "hello world"] candidates = ["hi universe", "bye world"] with torch.no_grad(): scores = model(**tokenizer(references, candidates, return_tensors='pt'))[0].squeeze() print(scores) # tensor([-0.9414, -0.5678]) ``` See [this notebook](https://colab.research.google.com/drive/1KsCUkFW45d5_ROSv2aHtXgeBa2Z98r03?usp=sharing) for model conversion code. </details>
{"tags": ["text-classification", "bert"]}
Elron/bleurt-tiny-512
null
[ "transformers", "pytorch", "bert", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
transformers
# Harry Potter DialoGPT Model
{"tags": ["conversational"]}
Elzen7/DialoGPT-medium-harrypotter
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
token-classification
transformers
# Model Trained Using AutoNLP - Problem type: Entity Extraction - Model ID: 21124427 - CO2 Emissions (in grams): 6.2107269129101805 ## Validation Metrics - Loss: 0.09813392907381058 - Accuracy: 0.9714309035997062 - Precision: 0.9721275936822545 - Recall: 0.9735345807918949 - F1: 0.9728305785123967 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/Emanuel/autonlp-pos-tag-bosque-21124427 ``` Or Python API: ``` from transformers import AutoModelForTokenClassification, AutoTokenizer model = AutoModelForTokenClassification.from_pretrained("Emanuel/autonlp-pos-tag-bosque") tokenizer = AutoTokenizer.from_pretrained("Emanuel/autonlp-pos-tag-bosque") inputs = tokenizer("A noiva casa de branco", return_tensors="pt") outputs = model(**inputs) labelids = outputs.logits.squeeze().argmax(axis=-1) labels = [model.config.id2label[int(x)] for x in labelids] labels = labels[1:-1]# Filter start and end of sentence symbols ```
{"language": "pt", "tags": "autonlp", "datasets": ["Emanuel/autonlp-data-pos-tag-bosque"], "widget": [{"text": "I love AutoNLP \ud83e\udd17"}], "co2_eq_emissions": 6.2107269129101805}
Emanuel/autonlp-pos-tag-bosque
null
[ "transformers", "pytorch", "bert", "token-classification", "autonlp", "pt", "dataset:Emanuel/autonlp-data-pos-tag-bosque", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
# bertweet-emotion-base This model is a fine-tuned version of [Bertweet](https://huggingface.co/vinai/bertweet-base). It achieves the following results on the evaluation set: - Loss: 0.1172 - Accuracy: 0.945 ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 80 - eval_batch_size: 80 - lr_scheduler_type: linear - num_epochs: 6.0 ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu113 - Datasets 1.15.1 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["emotion"], "metrics": ["accuracy"], "model-index": [{"name": "bertweet-emotion-base", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "emotion", "type": "emotion", "args": "default"}, "metrics": [{"type": "accuracy", "value": 0.945, "name": "Accuracy"}]}, {"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "emotion", "type": "emotion", "config": "default", "split": "test"}, "metrics": [{"type": "accuracy", "value": 0.9285, "name": "Accuracy", "verified": true, "verifyToken": "eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNGJhMTM3YzAyMDg0YTA1MTY4ZjMyZGY1OThjYTI0ODZlOTFlMzAwZWFkNzc3MzQ4YjNiMzViMGIxYTY4M2Q1NiIsInZlcnNpb24iOjF9.1RDEvEoO3YooUsWgDUbuRoia0PBNo6dbGn9lFiXqfeCowHQMLpagMQpBHIoofCmlQA4ZHQbBtwY5lSCzJugzBQ"}, {"type": "precision", "value": 0.8884219402987917, "name": "Precision Macro", "verified": true, "verifyToken": "eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYjQ2YzhiZDg3ZTJlOGYzNTBlNjEzZTNhYjIyMjFiNWJiZjNjNjg0MTFjMDFjNmI4MzEyZThkMTg5YTNkMzNhZCIsInZlcnNpb24iOjF9.yjvC1cZQllxTpkW3e5bLBA5Wmk9o6xTwusDSPVOQsbapD-XZ5TG06dgG8OF7yxQWvYLEiIp5K0VxnGA645ngBw"}, {"type": "precision", "value": 0.9285, "name": "Precision Micro", "verified": true, "verifyToken": "eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNDE4MjcwYTgxZmM2Y2M5YzUxNmVjMWMxYjUxYzMxNWJlMGMzOGY2MWZkYTRlZTFkMWUwOTE3YjI4MmE5ZGQ3YiIsInZlcnNpb24iOjF9.SD7BSPVASL91UHNj4vJ226sPAUteEXGoEF2KWc1pKhdwUh0ZBFlnMBYbaNH6Fey0M-Cc6kqQHsYyMpBbgBG0Cw"}, {"type": "precision", "value": 0.9294663182278102, "name": "Precision Weighted", "verified": true, "verifyToken": "eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMDAzMjE3M2FmMjEwMzE2ZDA4NGI3ZDI1ZDlkMjhlZmEzNTlmZWM4NjRlMDNjODIzMTE1N2JiMTE5OTA2N2EzYSIsInZlcnNpb24iOjF9.O7Y0CljPErSGKRacqPcDuzlJEOFo_cnQMqmXcW94JFeq_jWHXEqxHb8Jszi2LCQOlDmFf81Yn1gr7qNbef0lDQ"}, {"type": "recall", "value": 0.8859392810987465, "name": "Recall Macro", "verified": true, "verifyToken": "eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNjVkODBlZTVlZmNiYjMyNDU2MDRiYWY4M2Y3MDRhNGQ0OTFlNDBiOGIwNGUxNzczMGFjMjg1YzNhNWI4N2QzMiIsInZlcnNpb24iOjF9.qBdhvXbJXKpoCQpJadg5rLlvTgfl4kitQlelAeCLNLTUyq6lBEg8onL78j2ln7m-njgF6dC0M10n4riIbTseDA"}, {"type": "recall", "value": 0.9285, "name": "Recall Micro", "verified": true, "verifyToken": "eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiN2FlYjdmOWNiODUyNmI0OWViYjc2NWNhOTVlMDkyYWMxZjIyMDJlMjZkY2I3Yjg1ZjBlOTQ3MWY4ZDI3MDEwZCIsInZlcnNpb24iOjF9.ZaZNohPIOgvh5NQe6s5PWNyxwtMlrGQxsGz_zeqKshF9btY69cNQxyg9jlfXqrdmI4XhmC8K_MIEObkbfgqCBw"}, {"type": "recall", "value": 0.9285, "name": "Recall Weighted", "verified": true, "verifyToken": "eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNWQ2ODgzMjE2MGE2MmM4OGEyNWUxMWU5OGE3N2JmYTY0MWMzM2JkNjQ3ZDkzMWJkZmU5YWFlYTJhYzg3ODI5NCIsInZlcnNpb24iOjF9.ELxb_KXB0H-SaXOW97WUkTaNzAPH6itG0BpOtvcY-3J33Kr7Wi4eLEyX1fYjgY01LbkPmH4UN-rUQz2pXoRBCQ"}, {"type": "f1", "value": 0.8863603878501328, "name": "F1 Macro", "verified": true, "verifyToken": "eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNGYxOWRmYzVkYWE2YWRmMTY5ODFkNWU2MGYyZWZmZmIxOTQwN2E1MTJlZjFlMTAzNjNmMzM0OGM3MTAxNzNhYSIsInZlcnNpb24iOjF9.sgcxi41I9bPbli1HO0jS9tXEVIVwdmp2nw5_nG16wO-eF5R8m7uezIUbwf8SfwTDijsZPKU7n5GI1ugKKTXbCQ"}, {"type": "f1", "value": 0.9285, "name": "F1 Micro", "verified": true, "verifyToken": "eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiOWU0MGE3ZjViMzAzMTk1MzhiYjA1OTM4ZDRmZDU5NmRjODE0NThiOWY1MDVjNmU2OTI1OTAzYzY0NjY0NzMwZCIsInZlcnNpb24iOjF9.-_1WgnpD_qr18pp89fkgP651yW5YZ8Vm9i0M4gH8m8uosqOlnft8i7ppsDD5sp689aDoNjqtczPi_pGTvH8iAw"}, {"type": "f1", "value": 0.9284728367890772, "name": "F1 Weighted", "verified": true, "verifyToken": "eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMDMwZDUwYThkYWU2ZDBkYzRlZGQ2YjE2MGE2YjJjNWEyMDcwM2Y2YjY1NTE1ODNmZDgzNjdhZmI4ZjFhZTM1NCIsInZlcnNpb24iOjF9.HeNsdbp4LC3pY_ZXA55xccmAvzP3LZe6ohrSuUFBInMTyO8ZExnnk5ysiXv9AJp-O3GBamQe8LKv_mxyboErAQ"}, {"type": "loss", "value": 0.1349370777606964, "name": "loss", "verified": true, "verifyToken": "eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiN2RmN2U3YjVjNjg0NzU5NmMwOTcxM2NlMjNhNzdjMzVkMTVhYTJhNDhkMWEyMmFhZjg1NDgzODhjN2FlNzA4NiIsInZlcnNpb24iOjF9.mxi_oEnLE4QwXvm3LsT2wqa1zp7Ovul2SGpNdZjDOa0v-OWz6BfDwhNZFgQQFuls56Mi-yf9LkBevy0aNSBvAw"}]}]}]}
Emanuel/bertweet-emotion-base
null
[ "transformers", "pytorch", "tensorboard", "roberta", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
fill-mask
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # language-modeling This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.4229 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: tpu - num_devices: 8 - total_train_batch_size: 64 - total_eval_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.8.1+cu102 - Datasets 1.13.3 - Tokenizers 0.10.3
{"license": "mit", "tags": ["generated_from_trainer"], "model-index": [{"name": "language-modeling", "results": []}]}
Emanuel/roebrta-base-val-test
null
[ "transformers", "pytorch", "roberta", "fill-mask", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
# twitter-emotion-deberta-v3-base This model is a fine-tuned version of [DeBERTa-v3](https://huggingface.co/microsoft/deberta-v3-base). It achieves the following results on the evaluation set: - Loss: 0.1474 - Accuracy: 0.937 ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 80 - eval_batch_size: 80 - lr_scheduler_type: linear - num_epochs: 6.0 ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu113 - Datasets 1.15.1 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["emotion"], "metrics": ["accuracy"], "model-index": [{"name": "twitter-emotion-deberta-v3-base", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "emotion", "type": "emotion", "args": "default"}, "metrics": [{"type": "accuracy", "value": 0.937, "name": "Accuracy"}]}, {"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "emotion", "type": "emotion", "config": "default", "split": "test"}, "metrics": [{"type": "accuracy", "value": 0.9255, "name": "Accuracy", "verified": true, "verifyToken": "eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMTlhZDRlN2VkOGQ0OTg3Nzg2OWJmOTAzMDYxZjk5NzE4YmMyNDIxM2FhOTgyMDI2ZTQ3ZjkyNGMwYjI4Nzc2ZiIsInZlcnNpb24iOjF9.GaEt0ZAvLf30YcCff1mZtjms1XD57bY-b00IVak3WGtZJsgVshwAP_Vla2pylTAQvZITz4WESqSlEpyu6Bn-CA"}, {"type": "precision", "value": 0.8915483806374028, "name": "Precision Macro", "verified": true, "verifyToken": "eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiOTI4MTRlN2UyMDZhODM1NWIzNzdhZTUyZjNhYjdkMmZiODRjM2ViODMzOTU4MGE1NjQ4MjM1ZWUwODQzMzk3YyIsInZlcnNpb24iOjF9.qU0v868jMD8kFNrF8CqaP0jGxLzx_ExZTJ1BIBQKEHPSv59QyDLUt6ggjL09jUcmNj-gmps2XzFO16ape0O2Ag"}, {"type": "precision", "value": 0.9255, "name": "Precision Micro", "verified": true, "verifyToken": "eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNTY3NzgyMmFkYmY1NzU0ODM4NWVjZmI0MTgwYWU3OGY1MzI5NWRhNWMyYjM3NTQ0MzEzOWZmYTk5NDYxMjI0ZSIsInZlcnNpb24iOjF9.fnBjSgKbcOk3UF3pfn1rPbr87adek5YDTeSCqgSaCI4zzEqP_PWPNAinS1eBispGxEVh5iolmbO3frSZZ-TzDw"}, {"type": "precision", "value": 0.9286522707274408, "name": "Precision Weighted", "verified": true, "verifyToken": "eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYTE2ZmMxYzE2Mzc4OGQ2MzA1MDA3OGQ5Y2E4N2VkZDUwN2VjYmVhZGRlZTA2Nzg5NWJlZGNlMGYwNjc4YmNlYyIsInZlcnNpb24iOjF9.gRsf37CBTZpLIaAPNfdhli5cUV6K2Rbi8gHWHZydKTse9H9bkV6K_R6o_cMPhuXAyCCWx6SI-RbzInSC9K5lBw"}, {"type": "recall", "value": 0.875946770128528, "name": "Recall Macro", "verified": true, "verifyToken": "eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiOTZkNjMwOTFkZmEyYmRjNTBiOGFjYmYzYmZiMmUyY2U0ZWNhNDNmY2M3ZWZhODRjZDQ2MmFhNzZmM2ZjZDQ5OSIsInZlcnNpb24iOjF9.UTNojxmP-lR4wu13HPt7DAtgzFskdsR8IyohDDhA4sLj2_AQG7-FHdE7eE_SZ4H4FOtp-F1V-g6UoyDtFF0YCQ"}, {"type": "recall", "value": 0.9255, "name": "Recall Micro", "verified": true, "verifyToken": "eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZjczZjBlNDhhM2YwZDJiNGEwNmMwMTE3ZDQwY2FkMjY5MGMzNjI2NDMyMmNkNTg2ZGRmMWZmOTk2OTEwNGQ0ZCIsInZlcnNpb24iOjF9.DXAXqasIV3OiJGuUGSFMIDVSsM3ailYD5rHDj9bkoDJ0duVyRQdD5l_Uxs2ILUtMYvy66HG8q9hT3oaQpDDFAQ"}, {"type": "recall", "value": 0.9255, "name": "Recall Weighted", "verified": true, "verifyToken": "eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZDZjNGRhNDhkOTY4NmU5ZWUwNTJkNTk3ZGUwZjQwMzYyZTQ3YTYxZTBjMzg3ZjY5YjUwZGM1ZmI4YzlhZmMwMiIsInZlcnNpb24iOjF9.0Jr2FqC3_4aCO7N_Cd-25rjzz2rtyI0w863DvQfVPJNPzkWrs8qaQ_3lcfcQaMbR9CiVfKYPsgWb7-dwrm-UDA"}, {"type": "f1", "value": 0.8790048313120858, "name": "F1 Macro", "verified": true, "verifyToken": "eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNGNmMzc1MjgxZjM4Njk5ODM2NzIzOWMwYTIyN2E2NWJhYzcwNzgzMTQ0NWZjOGJhZmFkZjg5ZmNkNzYyYzdjMSIsInZlcnNpb24iOjF9.M3qaWCQwpe1vNptl5r8M62VhNe9-0eXQBZ1gIGRaEWOx9aRoTTFAqz_pl3wlhER0dSAjZlUuKElbYCI_R0KQDw"}, {"type": "f1", "value": 0.9255, "name": "F1 Micro", "verified": true, "verifyToken": "eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiOGQzNWNhOWFhZjNmYTllZTliYjRjNWVkMzgyNzE4OTcyZWIwOWY0ZTFkMjVjZDgwOTQyYWI1YzhkZjFmNWY3MiIsInZlcnNpb24iOjF9.zLzGH5b86fzDqgyM-P31QEgpVCVNXRXIxsUzWN0NinSARJDmGp0hYAKu80GwRRnCPdavIoluet1FjQaDvt6aDA"}, {"type": "f1", "value": 0.92449885920049, "name": "F1 Weighted", "verified": true, "verifyToken": "eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYTQ2OTM0ZTU1MTQyNzQxNjVkNjY3ODdkYmJhOTE0ZTYxYzhiNzM3NGFhZGRiN2FiNzM5ZjFiNzczOGZhMDU1NCIsInZlcnNpb24iOjF9.33hcbfNttHRTdGFIgtD18ywdBnihqA3W2bJnwozAnpz6A1Fh9w-kHJ7WQ51XMK_MfHBNrMOO_k_x6fNS-Wm5Dg"}, {"type": "loss", "value": 0.16804923117160797, "name": "loss", "verified": true, "verifyToken": "eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZWYwMWY5MzFkYjM3YjZmNmE3MmFlYTI3OTQ1OWRhZTUzODM3MjYwNTgxY2IxMjQ5NmI0ZDk3NDExZjg5YjJjZiIsInZlcnNpb24iOjF9.bHYpW_rQcKjc0QsMe8yVgWo-toI-LxAZE307_8kUKxQwzzb4cvrjLR66ciel2dVSMsjt479vGpbbAXU_8vh6Dw"}]}]}]}
Emanuel/twitter-emotion-deberta-v3-base
null
[ "transformers", "pytorch", "tensorboard", "deberta-v2", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Emclaniyi/insurance
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Emi/distilbert-base-uncased-finetuned-squad
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
transformers
# My Awesome Model
{"tags": ["conversational"]}
Emi2160/DialoGPT-small-Neku
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
transformers
# Harry Potter DialoGPT Model
{"tags": ["conversational"]}
EmileAjar/DialoGPT-small-harrypotter
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
transformers
# Peppa pig DialoGPT Model
{"tags": ["conversational"]}
EmileAjar/DialoGPT-small-peppapig
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
{}
Emily/fyp
null
[ "transformers", "pytorch", "bert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Emily/fypmodel
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
{}
Emirhan/51k-finetuned-bert-model
null
[ "transformers", "pytorch", "bert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Emmanuel/bert-finetuned-ner-accelerate
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
token-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0603 - Precision: 0.9317 - Recall: 0.9510 - F1: 0.9413 - Accuracy: 0.9866 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0872 | 1.0 | 1756 | 0.0660 | 0.9152 | 0.9350 | 0.9250 | 0.9827 | | 0.0386 | 2.0 | 3512 | 0.0579 | 0.9374 | 0.9498 | 0.9436 | 0.9864 | | 0.0225 | 3.0 | 5268 | 0.0603 | 0.9317 | 0.9510 | 0.9413 | 0.9866 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["conll2003"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "bert-finetuned-ner", "results": [{"task": {"type": "token-classification", "name": "Token Classification"}, "dataset": {"name": "conll2003", "type": "conll2003", "args": "conll2003"}, "metrics": [{"type": "precision", "value": 0.9317394888705688, "name": "Precision"}, {"type": "recall", "value": 0.9510265903736116, "name": "Recall"}, {"type": "f1", "value": 0.9412842508536686, "name": "F1"}, {"type": "accuracy", "value": 0.9865779713898863, "name": "Accuracy"}]}]}]}
Emmanuel/bert-finetuned-ner
null
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "dataset:conll2003", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
transformers
{}
Emran/ClinicalBERT_ICD10_Categories
null
[ "transformers", "pytorch", "bert", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
transformers
{}
Emran/ClinicalBERT_ICD10_Full
null
[ "transformers", "pytorch", "bert", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
transformers
{}
Emran/ClinicalBERT_ICD10_Full_200_epoch
null
[ "transformers", "pytorch", "bert", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
transformers
{}
Emran/ClinicalBERT_description_full_ICD10_Code
null
[ "transformers", "pytorch", "bert", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Ender/Jfxosn
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Enego-Comley/SuperNeg99-1
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Enes3774/gpt
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
bu benim modelim
{}
Enes3774/gpt2
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
EngNada/sinai-voice-ar-stt-demo-colabb
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
automatic-speech-recognition
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xlsr-53-demo-colab This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 7.9807 - Wer: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:---:| | 22.8021 | 1.78 | 80 | 7.9807 | 1.0 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.14.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["common_voice"], "model-index": [{"name": "wav2vec2-large-xlsr-53-demo-colab", "results": []}]}
EngNada/wav2vec2-large-xlsr-53-demo-colab
null
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
EngNada/wav2vec2-large-xlsr-53-demo1-colab
null
[ "tensorboard", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
EngNada/wav2vec2-large-xlsr-53-demo1-colab1
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Engin/DialoGPT-small-joshua
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2131 - Accuracy: 0.9265 - F1: 0.9269 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8031 | 1.0 | 250 | 0.2973 | 0.9125 | 0.9110 | | 0.2418 | 2.0 | 500 | 0.2131 | 0.9265 | 0.9269 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.1 - Datasets 1.16.1 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["emotion"], "metrics": ["accuracy", "f1"], "model-index": [{"name": "distilbert-base-uncased-finetuned-emotion", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "emotion", "type": "emotion", "args": "default"}, "metrics": [{"type": "accuracy", "value": 0.9265, "name": "Accuracy"}, {"type": "f1", "value": 0.9268984054036417, "name": "F1"}]}]}]}
EnsarEmirali/distilbert-base-uncased-finetuned-emotion
null
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Enutodu/QnA
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Eren/gpt-2-small-the-office
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
text2text-generation
transformers
{"language": ["fa"], "tags": ["Title-Generation"], "metrics": ["ROUGH"]}
Erfan/mT5-base_Farsi_Title_Generator
null
[ "transformers", "pytorch", "mt5", "text2text-generation", "Title-Generation", "fa", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
text2text-generation
transformers
{}
Erfan/mT5-base_Farsi_Title_Generator_plus
null
[ "transformers", "pytorch", "mt5", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
text2text-generation
transformers
{"language": ["en"], "tags": ["Title-Generation"], "metrics": ["ROUGH"]}
Erfan/mT5-small_Farsi_Title_Generator
null
[ "transformers", "pytorch", "mt5", "text2text-generation", "Title-Generation", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
ErickMMuniz/bert-base-uncased-contracts-finetuned-squad
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
ErickMMuniz/distilbert-base-uncased-finetuned-squad
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Ericles/Arcaneme
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Erikaka/DialoGPT-small-harrypotter
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
transformers
#Loki DialoGPT Model
{"tags": ["conversational"]}
Erikaka/DialoGPT-small-loki
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Eris/Tytrack
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
ErisW/Meeee
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Eshtemele/DialoGPT-large-Michael
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
EsiLambda/distilbert-base-uncased-finetuned-ner
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Esmee/yers
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Essa99/wav2vec2-large-xls-r-300m-tr-colab
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
EstebanGarces/dummy-model
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
transformers
# Harry Potter DialoGPT Model
{"tags": ["conversational"]}
EstoyDePaso/DialoGPT-small-harrypotter
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Eternally12/Such
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
{}
EthanChen0418/domain-cls-nine-classes
null
[ "transformers", "pytorch", "bart", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
{}
EthanChen0418/few-shot-model-five-classes
null
[ "transformers", "pytorch", "bart", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
{}
EthanChen0418/intent_cls
null
[ "transformers", "pytorch", "bert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
{}
EthanChen0418/seven-classed-domain-cls
null
[ "transformers", "pytorch", "bart", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
{}
EthanChen0418/six-classed-domain-cls
null
[ "transformers", "pytorch", "bart", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
EthonLee/Lethon202103test001
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
{}
Eugenia/roberta-base-bne-finetuned-amazon_reviews_multi
null
[ "transformers", "pytorch", "tensorboard", "roberta", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Eulalief/model_name
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Eunhui/bert-base-cased-wikitext2
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Eunji/kant
null
[ "tensorboard", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Eunku/KorLangModel
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
transformers
{}
Eunooeh/mnmt_gpt2
null
[ "transformers", "pytorch", "gpt2", "text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
transformers
{}
Eunooeh/test
null
[ "transformers", "pytorch", "bert", "pretraining", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
transformers
# MrCobb DialoGPT Model
{"tags": ["conversational"]}
EuropeanTurtle/DialoGPT-small-mrcobb
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
EvaRo/roberta-base-bne-finetuned-amazon_reviews_multi
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
feature-extraction
transformers
{}
Evgen/model_awara_text
null
[ "transformers", "pytorch", "bert", "feature-extraction", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
token-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-ner This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0845 - Precision: 0.8754 - Recall: 0.9058 - F1: 0.8904 - Accuracy: 0.9763 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.2529 | 1.0 | 878 | 0.0845 | 0.8754 | 0.9058 | 0.8904 | 0.9763 | ### Framework versions - Transformers 4.13.0 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["conll2003"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "distilbert-base-uncased-finetuned-ner", "results": [{"task": {"type": "token-classification", "name": "Token Classification"}, "dataset": {"name": "conll2003", "type": "conll2003", "args": "conll2003"}, "metrics": [{"type": "precision", "value": 0.875445994161531, "name": "Precision"}, {"type": "recall", "value": 0.9058060185703098, "name": "Recall"}, {"type": "f1", "value": 0.8903672751264571, "name": "F1"}, {"type": "accuracy", "value": 0.9763292928971993, "name": "Accuracy"}]}]}]}
Evgeneus/distilbert-base-uncased-finetuned-ner
null
[ "transformers", "pytorch", "tensorboard", "distilbert", "token-classification", "generated_from_trainer", "dataset:conll2003", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00