Search is not available for this dataset
pipeline_tag
stringclasses
48 values
library_name
stringclasses
205 values
text
stringlengths
0
18.3M
metadata
stringlengths
2
1.07B
id
stringlengths
5
122
last_modified
null
tags
listlengths
1
1.84k
sha
null
created_at
stringlengths
25
25
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-bne-finetuned-amazon_reviews_multi This model is a fine-tuned version of [BSC-TeMU/roberta-base-bne](https://huggingface.co/BSC-TeMU/roberta-base-bne) on the amazon_reviews_multi dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Framework versions - Transformers 4.9.2 - Pytorch 1.9.0+cu102 - Datasets 1.11.0 - Tokenizers 0.10.3
{"license": "cc-by-4.0", "tags": ["generated_from_trainer"], "datasets": ["amazon_reviews_multi"], "model_index": [{"name": "roberta-base-bne-finetuned-amazon_reviews_multi", "results": [{"task": {"name": "Text Classification", "type": "text-classification"}, "dataset": {"name": "amazon_reviews_multi", "type": "amazon_reviews_multi", "args": "es"}}]}]}
IsabellaKarabasz/roberta-base-bne-finetuned-amazon_reviews_multi
null
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "dataset:amazon_reviews_multi", "license:cc-by-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Ishdeep/DialoGPT-small-JoeyBot
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{"license": "mit"}
IshiKura/ELMo
null
[ "license:mit", "region:us" ]
null
2022-03-02T23:29:04+00:00
automatic-speech-recognition
transformers
{}
Iskaj/300m_cv8.0_nl_base
null
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
automatic-speech-recognition
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [hf-test/xls-r-dummy](https://huggingface.co/hf-test/xls-r-dummy) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - AB dataset. It achieves the following results on the evaluation set: - Loss: 156.8789 - Wer: 1.3456 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 10 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.18.1.dev0 - Tokenizers 0.11.0
{"language": ["ab"], "tags": ["automatic-speech-recognition", "mozilla-foundation/common_voice_7_0", "generated_from_trainer"], "datasets": ["common_voice"], "model-index": [{"name": "", "results": []}]}
Iskaj/hf-challenge-test
null
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "mozilla-foundation/common_voice_7_0", "generated_from_trainer", "ab", "dataset:common_voice", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Iskaj/hf-test-nl
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
automatic-speech-recognition
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # newnew This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - NL dataset. It achieves the following results on the evaluation set: - Loss: 11.4375 - Wer: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 4000 - num_epochs: 50.0 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.3.dev0 - Tokenizers 0.11.0
{"language": ["nl"], "license": "apache-2.0", "tags": ["automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "generated_from_trainer"], "datasets": ["common_voice"], "model-index": [{"name": "newnew", "results": []}]}
Iskaj/newnew
null
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "nl", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Iskaj/w2v-sub
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
automatic-speech-recognition
transformers
Copy of "facebook/wav2vec2-large-xlsr-53-dutch"
{}
Iskaj/w2v-xlsr-dutch-lm-added
null
[ "transformers", "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
automatic-speech-recognition
transformers
Model cloned from https://huggingface.co/facebook/wav2vec2-large-xlsr-53-dutch Currently bugged: Logits size 48, vocab size 50
{}
Iskaj/w2v-xlsr-dutch-lm
null
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
automatic-speech-recognition
transformers
# xlsr300m_cv_7.0_nl_lm
{"language": ["nl"], "license": "apache-2.0", "tags": ["automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "nl", "robust-speech-event", "model_for_talk", "hf-asr-leaderboard"], "datasets": ["mozilla-foundation/common_voice_8_0"], "model-index": [{"name": "XLS-R-300M - Dutch", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Common Voice 8 NL", "type": "mozilla-foundation/common_voice_8_0", "args": "nl"}, "metrics": [{"type": "wer", "value": 32, "name": "Test WER"}, {"type": "cer", "value": 17, "name": "Test CER"}]}, {"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Robust Speech Event - Dev Data", "type": "speech-recognition-community-v2/dev_data", "args": "nl"}, "metrics": [{"type": "wer", "value": 37.44, "name": "Test WER"}]}, {"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Robust Speech Event - Test Data", "type": "speech-recognition-community-v2/eval_data", "args": "nl"}, "metrics": [{"type": "wer", "value": 38.74, "name": "Test WER"}]}]}]}
Iskaj/xlsr300m_cv_7.0_nl_lm
null
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "nl", "robust-speech-event", "model_for_talk", "hf-asr-leaderboard", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
automatic-speech-recognition
transformers
# xlsr300m_cv_8.0_nl #### Evaluation Commands 1. To evaluate on `mozilla-foundation/common_voice_8_0` with split `test` ```bash python eval.py --model_id Iskaj/xlsr300m_cv_8.0_nl --dataset mozilla-foundation/common_voice_8_0 --config nl --split test ``` 2. To evaluate on `speech-recognition-community-v2/dev_data` ```bash python eval.py --model_id Iskaj/xlsr300m_cv_8.0_nl --dataset speech-recognition-community-v2/dev_data --config nl --split validation --chunk_length_s 5.0 --stride_length_s 1.0 ``` ### Inference ```python import torch from datasets import load_dataset from transformers import AutoModelForCTC, AutoProcessor import torchaudio.functional as F model_id = "Iskaj/xlsr300m_cv_8.0_nl" sample_iter = iter(load_dataset("mozilla-foundation/common_voice_8_0", "nl", split="test", streaming=True, use_auth_token=True)) sample = next(sample_iter) resampled_audio = F.resample(torch.tensor(sample["audio"]["array"]), 48_000, 16_000).numpy() model = AutoModelForCTC.from_pretrained(model_id) processor = AutoProcessor.from_pretrained(model_id) inputs = processor(resampled_audio, sampling_rate=16_000, return_tensors="pt") with torch.no_grad(): logits = model(**inputs).logits predicted_ids = torch.argmax(logits, dim=-1) transcription = processor.batch_decode(predicted_ids) transcription[0].lower() #'het kontine schip lag aangemeert in de aven' ```
{"language": ["nl"], "license": "apache-2.0", "tags": ["automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "mozilla-foundation/common_voice_7_0", "nl", "robust-speech-event", "model_for_talk", "hf-asr-leaderboard"], "datasets": ["mozilla-foundation/common_voice_8_0"], "model-index": [{"name": "XLS-R-300M - Dutch", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Common Voice 8 NL", "type": "mozilla-foundation/common_voice_8_0", "args": "nl"}, "metrics": [{"type": "wer", "value": 46.94, "name": "Test WER"}, {"type": "cer", "value": 21.65, "name": "Test CER"}]}, {"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Robust Speech Event - Dev Data", "type": "speech-recognition-community-v2/dev_data", "args": "nl"}, "metrics": [{"type": "wer", "value": "???", "name": "Test WER"}, {"type": "cer", "value": "???", "name": "Test CER"}]}, {"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Robust Speech Event - Test Data", "type": "speech-recognition-community-v2/eval_data", "args": "nl"}, "metrics": [{"type": "wer", "value": 42.56, "name": "Test WER"}]}]}]}
Iskaj/xlsr300m_cv_8.0_nl
null
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "mozilla-foundation/common_voice_7_0", "nl", "robust-speech-event", "model_for_talk", "hf-asr-leaderboard", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
automatic-speech-recognition
transformers
# xlsr_300m_CV_8.0_50_EP_new_params_nl
{"language": ["nl"], "license": "apache-2.0", "tags": ["automatic-speech-recognition", "hf-asr-leaderboard", "model_for_talk", "mozilla-foundation/common_voice_8_0", "nl", "robust-speech-event"], "datasets": ["mozilla-foundation/common_voice_8_0"], "model-index": [{"name": "XLS-R-300M - Dutch", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Common Voice 8 NL", "type": "mozilla-foundation/common_voice_8_0", "args": "nl"}, "metrics": [{"type": "wer", "value": 35.44, "name": "Test WER"}, {"type": "cer", "value": 19.57, "name": "Test CER"}]}, {"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Robust Speech Event - Dev Data", "type": "speech-recognition-community-v2/dev_data", "args": "nl"}, "metrics": [{"type": "wer", "value": 37.17, "name": "Test WER"}]}, {"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Robust Speech Event - Test Data", "type": "speech-recognition-community-v2/eval_data", "args": "nl"}, "metrics": [{"type": "wer", "value": 38.73, "name": "Test WER"}]}]}]}
Iskaj/xlsr_300m_CV_8.0_50_EP_new_params_nl
null
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "hf-asr-leaderboard", "model_for_talk", "mozilla-foundation/common_voice_8_0", "nl", "robust-speech-event", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
null
#sherlock
{"tags": ["conversational"]}
Istiaque190515/Sherlock
null
[ "conversational", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
transformers
#harry_bot
{"tags": ["conversational"]}
Istiaque190515/harry_bot_discord
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
transformers
#harry_potter
{"tags": ["conversational"]}
Istiaque190515/harry_potter
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
fill-mask
transformers
{}
Itcast/bert-base-cnc
null
[ "transformers", "pytorch", "jax", "bert", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
transformers
{}
Itcast/cnc_output
null
[ "transformers", "pytorch", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
{}
ItcastAI/bert_cn_finetuning
null
[ "transformers", "pytorch", "jax", "bert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
{}
ItcastAI/bert_cn_finetunning
null
[ "transformers", "pytorch", "jax", "bert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
{}
ItcastAI/bert_finetuning_test
null
[ "transformers", "pytorch", "jax", "bert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
{}
ItcastAI/bert_finetunning_test
null
[ "transformers", "pytorch", "jax", "bert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
transformers
{}
ItelAi/Chatbot
null
[ "transformers", "pytorch", "gpt2", "text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
transformers
# Tohru DialoGPT model
{"tags": ["conversational"]}
ItoYagura/DialoGPT-medium-tohru
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
{}
ItuThesis2022MlviNikw/bert-base-uncased
null
[ "transformers", "pytorch", "bert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
{}
ItuThesis2022MlviNikw/deberta-v3-base
null
[ "transformers", "pytorch", "deberta-v2", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
transformers
# Pickle Rick DialoGPT Model
{"tags": ["conversational"]}
ItzJorinoPlays/DialoGPT-small-PickleRick
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Ivanclay/J
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
token-classification
transformers
{}
Ivo/emscad-skill-extraction-conference-token-classification
null
[ "transformers", "pytorch", "tf", "bert", "token-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
{}
Ivo/emscad-skill-extraction-conference
null
[ "transformers", "pytorch", "tf", "bert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
token-classification
transformers
{}
Ivo/emscad-skill-extraction-token-classification
null
[ "transformers", "pytorch", "tf", "bert", "token-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
{}
Ivo/emscad-skill-extraction
null
[ "transformers", "pytorch", "tf", "bert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Izadora12/Arcane
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
transformers
# Thor DialogGPT Model
{"tags": ["conversational"]}
J-Chiang/DialoGPT-small-thor
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
question-answering
transformers
## Model description This model was obtained by fine-tuning deepset/bert-base-cased-squad2 on Cord19 Dataset. ## How to use ```python from transformers.pipelines import pipeline model_name = "JAlexis/PruebaBert" nlp = pipeline('question-answering', model=model_name, tokenizer=model_name) inputs = { 'question': 'How can I protect myself against covid-19?', 'context': 'Preventative measures consist of recommendations to wear a mask in public, maintain social distancing of at least six feet, wash hands regularly, and use hand sanitizer. To facilitate this aim, we adapt the conceptual model and measures of Liao et al. [6] to the current context of the COVID-19 pandemic and the culture of the USA. Applying this model in a different time and context provides an opportunity to make comparisons of reactions to information sources across a decade of evolving attitudes toward media and government, between two cultures (Hong Kong vs. the USA), and between two considerably different global pandemics (H1N1 vs. COVID-19). ', 'question': 'How can I protect myself against covid-19?', 'context': ' ', } nlp(inputs) ``` ## Overview ``` Language model: deepset/bert-base-cased-squad2 Language: English Downstream-task: Q&A Datasets: CORD-19 from 31rd January 2022 Code: Haystack and FARM Infrastructure: Tesla T4 ``` ## Hyperparameters ``` batch_size = 8 n_epochs = 7 max_seq_len = max_length learning_rate = AdamW: 2e-5 ```
{"language": "en", "tags": ["pytorch", "question-answering"], "datasets": ["squad2", "cord19"], "metrics": ["f1"], "widget": [{"text": "How can I protect myself against covid-19?", "context": "Preventative measures consist of recommendations to wear a mask in public, maintain social distancing of at least six feet, wash hands regularly, and use hand sanitizer. To facilitate this aim, we adapt the conceptual model and measures of Liao et al. [6] to the current context of the COVID-19 pandemic and the culture of the USA. Applying this model in a different time and context provides an opportunity to make comparisons of reactions to information sources across a decade of evolving attitudes toward media and government, between two cultures (Hong Kong vs. the USA), and between two considerably different global pandemics (H1N1 vs. COVID-19)."}, {"text": "How can I protect myself against covid-19?", "context": " "}]}
JAlexis/Bertv1_fine
null
[ "transformers", "pytorch", "bert", "question-answering", "en", "dataset:squad2", "dataset:cord19", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
question-answering
transformers
## Model description This model was obtained by fine-tuning deepset/bert-base-cased-squad2 on Cord19 Dataset. ## How to use ```python from transformers.pipelines import pipeline model_name = "JAlexis/PruebaBert" nlp = pipeline('question-answering', model=model_name, tokenizer=model_name) inputs = { 'question': 'How can I protect myself against covid-19?', 'context': 'Preventative measures consist of recommendations to wear a mask in public, maintain social distancing of at least six feet, wash hands regularly, and use hand sanitizer. To facilitate this aim, we adapt the conceptual model and measures of Liao et al. [6] to the current context of the COVID-19 pandemic and the culture of the USA. Applying this model in a different time and context provides an opportunity to make comparisons of reactions to information sources across a decade of evolving attitudes toward media and government, between two cultures (Hong Kong vs. the USA), and between two considerably different global pandemics (H1N1 vs. COVID-19). ', 'question': 'How can I protect myself against covid-19?', 'context': ' ', } nlp(inputs) ``` ## Overview ``` Language model: deepset/bert-base-cased-squad2 Language: English Downstream-task: Q&A Datasets: CORD-19 from 31rd January 2022 Code: Haystack and FARM Infrastructure: Tesla T4 ``` ## Hyperparameters ``` batch_size = 8 n_epochs = 9 max_seq_len = max_length learning_rate = AdamW: 1e-5 ```
{"language": "en", "tags": ["pytorch", "question-answering"], "datasets": ["squad2", "cord19"], "metrics": ["EM (exact match)"], "widget": [{"text": "How can I protect myself against covid-19?", "context": "Preventative measures consist of recommendations to wear a mask in public, maintain social distancing of at least six feet, wash hands regularly, and use hand sanitizer. To facilitate this aim, we adapt the conceptual model and measures of Liao et al. [6] to the current context of the COVID-19 pandemic and the culture of the USA. Applying this model in a different time and context provides an opportunity to make comparisons of reactions to information sources across a decade of evolving attitudes toward media and government, between two cultures (Hong Kong vs. the USA), and between two considerably different global pandemics (H1N1 vs. COVID-19)."}, {"text": "How can I protect myself against covid-19?", "context": " "}]}
JAlexis/PruebaBert
null
[ "transformers", "pytorch", "bert", "question-answering", "en", "dataset:squad2", "dataset:cord19", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.8366 - Matthews Correlation: 0.5472 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.5224 | 1.0 | 535 | 0.5432 | 0.4243 | | 0.3447 | 2.0 | 1070 | 0.4968 | 0.5187 | | 0.2347 | 3.0 | 1605 | 0.6540 | 0.5280 | | 0.1747 | 4.0 | 2140 | 0.7547 | 0.5367 | | 0.1255 | 5.0 | 2675 | 0.8366 | 0.5472 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["glue"], "metrics": ["matthews_correlation"], "model-index": [{"name": "distilbert-base-uncased-finetuned-cola", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "glue", "type": "glue", "args": "cola"}, "metrics": [{"type": "matthews_correlation", "value": 0.5471613867597194, "name": "Matthews Correlation"}]}]}]}
JBNLRY/distilbert-base-uncased-finetuned-cola
null
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text2text-generation
transformers
# T5 Question Generation and Question Answering ## Model description This model is a T5 Transformers model (airklizz/t5-base-multi-fr-wiki-news) that was fine-tuned in french on 3 different tasks * question generation * question answering * answer extraction It obtains quite good results on FQuAD validation dataset. ## Intended uses & limitations This model functions for the 3 tasks mentionned earlier and was not tested on other tasks. ```python from transformers import T5ForConditionalGeneration, T5Tokenizer model = T5ForConditionalGeneration.from_pretrained("JDBN/t5-base-fr-qg-fquad") tokenizer = T5Tokenizer.from_pretrained("JDBN/t5-base-fr-qg-fquad") ``` ## Training data The initial model used was https://huggingface.co/airKlizz/t5-base-multi-fr-wiki-news. This model was finetuned on a dataset composed of FQuAD and PIAF on the 3 tasks mentioned previously. The data were preprocessed like this * question generation: "generate question: Barack Hussein Obama, né le 4 aout 1961, est un homme politique américain et avocat. Il a été élu <hl> en 2009 <hl> pour devenir le 44ème président des Etats-Unis d'Amérique." * question answering: "question: Quand Barack Hussein Obamaa-t-il été élu président des Etats-Unis d’Amérique? context: Barack Hussein Obama, né le 4 aout 1961, est un homme politique américain et avocat. Il a été élu en 2009 pour devenir le 44ème président des Etats-Unis d’Amérique." * answer extraction: "extract_answers: Barack Hussein Obama, né le 4 aout 1961, est un homme politique américain et avocat. <hl> Il a été élu en 2009 pour devenir le 44ème président des Etats-Unis d’Amérique <hl>." The preprocessing we used was implemented in https://github.com/patil-suraj/question_generation ## Eval results #### On FQuAD validation set | BLEU_1 | BLEU_2 | BLEU_3 | BLEU_4 | METEOR | ROUGE_L | CIDEr | |--------|--------|--------|--------|--------|---------|-------| | 0.290 | 0.203 | 0.149 | 0.111 | 0.197 | 0.284 | 1.038 | #### Question Answering metrics For these metrics, the performance of this question answering model (https://huggingface.co/illuin/camembert-base-fquad) on FQuAD original question and on T5 generated questions are compared. | Questions | Exact Match | F1 Score | |------------------|--------|--------| |Original FQuAD | 54.015 | 77.466 | |Generated | 45.765 | 67.306 | ### BibTeX entry and citation info ```bibtex @misc{githubPatil, author = {Patil Suraj}, title = {question generation GitHub repository}, year = {2020}, howpublished={\url{https://github.com/patil-suraj/question_generation}} } @article{T5, title={Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer}, author={Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu}, year={2019}, eprint={1910.10683}, archivePrefix={arXiv}, primaryClass={cs.LG} } @misc{dhoffschmidt2020fquad, title={FQuAD: French Question Answering Dataset}, author={Martin d'Hoffschmidt and Wacim Belblidia and Tom Brendlé and Quentin Heinrich and Maxime Vidal}, year={2020}, eprint={2002.06071}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
{"language": "fr", "tags": ["pytorch", "t5", "question-generation", "seq2seq"], "datasets": ["fquad", "piaf"], "widget": [{"text": "generate question: Barack Hussein Obama, n\u00e9 le 4 aout 1961, est un homme politique am\u00e9ricain et avocat. Il a \u00e9t\u00e9 \u00e9lu <hl> en 2009 <hl> pour devenir le 44\u00e8me pr\u00e9sident des Etats-Unis d'Am\u00e9rique. </s>"}, {"text": "question: Quand Barack Obama a t'il \u00e9t\u00e9 \u00e9lu pr\u00e9sident? context: Barack Hussein Obama, n\u00e9 le 4 aout 1961, est un homme politique am\u00e9ricain et avocat. Il a \u00e9t\u00e9 \u00e9lu en 2009 pour devenir le 44\u00e8me pr\u00e9sident des Etats-Unis d'Am\u00e9rique. </s>"}]}
JDBN/t5-base-fr-qg-fquad
null
[ "transformers", "pytorch", "jax", "t5", "text2text-generation", "question-generation", "seq2seq", "fr", "dataset:fquad", "dataset:piaf", "arxiv:1910.10683", "arxiv:2002.06071", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
transformers
@ Harry Potter DialoGPT Model
{"tags": ["conversational"]}
JDS22/DialoGPT-medium-HarryPotterBot
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
JDT/my-bert
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
JEEEEEEK/model_name
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
JIWON/NLI_model
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-finetuned-nli This model is a fine-tuned version of [klue/bert-base](https://huggingface.co/klue/bert-base) on the klue dataset. It achieves the following results on the evaluation set: - Loss: 0.6210 - Accuracy: 0.085 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 196 | 0.6210 | 0.085 | | No log | 2.0 | 392 | 0.5421 | 0.0643 | | 0.5048 | 3.0 | 588 | 0.5523 | 0.062 | | 0.5048 | 4.0 | 784 | 0.5769 | 0.0533 | | 0.5048 | 5.0 | 980 | 0.5959 | 0.052 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
{"tags": ["generated_from_trainer"], "datasets": ["klue"], "metrics": ["accuracy"], "model-index": [{"name": "bert-base-finetuned-nli", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "klue", "type": "klue", "args": "nli"}, "metrics": [{"type": "accuracy", "value": 0.085, "name": "Accuracy"}]}]}]}
JIWON/bert-base-finetuned-nli
null
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "dataset:klue", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
{}
JP040/bert-german-sentiment-twitter
null
[ "transformers", "pytorch", "jax", "bert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
JPK/DialoGPT-small-HarryPotter
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
JRRY/DialoGPT-small-harrypotter
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
token-classification
transformers
{}
JSv4/layoutlmv2-finetuned-funsd-test
null
[ "transformers", "pytorch", "tensorboard", "layoutlmv2", "token-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
feature-extraction
transformers
{}
Jackkkkk/tm-bert
null
[ "transformers", "pytorch", "bert", "feature-extraction", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Jackson99/DialoGPT-small-jakeperalta
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Jackyswl/bert-base-chinese-finetuned-wikitext2
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
fill-mask
transformers
# aristoBERTo aristoBERTo is a transformer model for ancient Greek, a low resource language. We initialized the pre-training with weights from [GreekBERT](https://huggingface.co/nlpaueb/bert-base-greek-uncased-v1), a Greek version of BERT which was trained on a large corpus of modern Greek (~ 30 GB of texts). We continued the pre-training with an ancient Greek corpus of about 900 MB, which was scrapped from the web and post-processed. Duplicate texts and editorial punctuation were removed. Applied to the processing of ancient Greek, aristoBERTo outperforms xlm-roberta-base and mdeberta in most downstream tasks like the labeling of POS, MORPH, DEP and LEMMA. aristoBERTo is provided by the [Diogenet project](https://diogenet.ucsd.edu) of the University of California, San Diego. ## Intended uses This model was created for fine-tuning with spaCy and the ancient Greek Universal Dependency datasets as well as a NER corpus produced by the [Diogenet project](https://diogenet.ucsd.edu). As a fill-mask model, AristoBERTo can also be used in the restoration of damaged Greek papyri, inscriptions, and manuscripts. It achieves the following results on the evaluation set: - Loss: 1.6323 ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-------:|:---------------:| | 1.377 | 20.0 | 3414220 | 1.6314 | ### Framework versions - Transformers 4.14.0.dev0 - Pytorch 1.10.0+cu102 - Datasets 1.16.1 - Tokenizers 0.10.3
{"language": ["grc"], "widget": [{"text": "\u03a0\u03bb\u03ac\u03c4\u03c9\u03bd \u1f41 \u03a0\u03b5\u03c1\u03b9\u03ba\u03c4\u03b9\u03cc\u03bd\u03b7\u03c2 [MASK] \u03b3\u03ad\u03bd\u03bf\u03c2 \u1f00\u03bd\u03ad\u03c6\u03b5\u03c1\u03b5\u03bd \u03b5\u1f30\u03c2 \u03a3\u03cc\u03bb\u03c9\u03bd\u03b1."}, {"text": "\u1f41 \u039a\u03c1\u03b9\u03c4\u03af\u03b1\u03c2 \u1f00\u03c0\u03ad\u03b2\u03bb\u03b5\u03c8\u03b5 [MASK] \u03c4\u1f74\u03bd \u03b8\u03cd\u03c1\u03b1\u03bd."}, {"text": "\u03c0\u03c1\u1ff6\u03c4\u03bf\u03b9 \u03b4\u1f72 \u03ba\u03b1\u1f76 \u03bf\u1f50\u03bd\u03cc\u03bc\u03b1\u03c4\u03b1 \u1f31\u03c1\u1f70 \u1f14\u03b3\u03bd\u03c9\u03c3\u03b1\u03bd \u03ba\u03b1\u1f76 [MASK] \u1f31\u03c1\u03bf\u1f7a\u03c2 \u1f14\u03bb\u03b5\u03be\u03b1\u03bd."}], "model-index": [{"name": "aristoBERTo", "results": []}]}
Jacobo/aristoBERTo
null
[ "transformers", "pytorch", "bert", "fill-mask", "grc", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
fill-mask
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # axiothea This is an experimental roberta model trained with an ancient Greek corpus of about 900 MB, which was scrapped from the web and post-processed. Duplicate texts and editorial punctuation were removed. The training dataset will be soon available in the Huggingface datasets hub. Training a model of ancient Greek is challenging given that it is a low resource language from which 50% of the register has only survived in fragmentary texts. The model is provided by the Diogenet project at the University of California, San Diego. It achieves the following results on the evaluation set: - Loss: 3.3351 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-------:|:---------------:| | 4.7013 | 1.0 | 341422 | 4.8813 | | 4.2866 | 2.0 | 682844 | 4.4422 | | 4.0496 | 3.0 | 1024266 | 4.2132 | | 3.8503 | 4.0 | 1365688 | 4.0246 | | 3.6917 | 5.0 | 1707110 | 3.8756 | | 3.4917 | 6.0 | 2048532 | 3.7381 | | 3.3907 | 7.0 | 2389954 | 3.6107 | | 3.2876 | 8.0 | 2731376 | 3.5044 | | 3.1994 | 9.0 | 3072798 | 3.3980 | | 3.0806 | 10.0 | 3414220 | 3.3095 | ### Framework versions - Transformers 4.13.0.dev0 - Pytorch 1.10.0+cu102 - Datasets 1.14.0 - Tokenizers 0.10.3
{"language": ["grc"], "tags": ["generated_from_trainer"], "widget": [{"text": "\u03a0\u03bb\u03ac\u03c4\u03c9\u03bd \u1f41 \u03a0\u03b5\u03c1\u03b9\u03ba\u03c4\u03b9\u03cc\u03bd\u03b7\u03c2 <mask> \u03b3\u03ad\u03bd\u03bf\u03c2 \u1f00\u03bd\u03ad\u03c6\u03b5\u03c1\u03b5\u03bd \u03b5\u1f30\u03c2 \u03a3\u03cc\u03bb\u03c9\u03bd\u03b1."}, {"text": "\u1f41 \u039a\u03c1\u03b9\u03c4\u03af\u03b1\u03c2 \u1f00\u03c0\u03ad\u03b2\u03bb\u03b5\u03c8\u03b5 <mask> \u03c4\u1f74\u03bd \u03b8\u03cd\u03c1\u03b1\u03bd."}, {"text": "\u1f6e \u03c6\u03af\u03bb\u03b5 \u039a\u03bb\u03b5\u03b9\u03bd\u03af\u03b1, \u03ba\u03b1\u03bb\u1ff6\u03c2 \u03bc\u1f72\u03bd <mask>."}], "model-index": [{"name": "dioBERTo", "results": []}]}
Jacobo/axiothea
null
[ "transformers", "pytorch", "roberta", "fill-mask", "generated_from_trainer", "grc", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Jacopo/ToonClip
null
[ "onnx", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
JadAssaf/STPI
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{"language": "zh_CN", "license": "MIT", "tags": ["NLP", "LAW"], "datasets": ["WIP"], "metrics": ["WIP"], "thumbnail": "url to a thumbnail used in social sharing"}
Jade/bert_base_law
null
[ "NLP", "LAW", "dataset:WIP", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Jaeger/DialogGPT-small-stewie
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Jaewon/test
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Jagp/Jagp
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
JaidevShriram/gpt2-wikitext2
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
automatic-speech-recognition
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-csa-10-rev3 This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.5869 - Wer: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:---:| | 18.7934 | 25.0 | 200 | 3.5869 | 1.0 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "model-index": [{"name": "wav2vec2-base-csa-10-rev3", "results": []}]}
Jainil30/wav2vec2-base-csa-10-rev3
null
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Jainil30/wav2vec2-base-timit-demo-colab
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Jakakshwve/Hazel
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
JakeKo/KO
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
JakeKo/NLP
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Jalal/pidgin-english-asr-model
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
JalalKol/distilroberta-base-finetuned-wikitext2
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
JamesU/learning
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Jamesr227/Mod-bot-ai-small
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Janez/mt5-small-finetuned-amazon-en-es
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Janez/xlm-roberta-base-finetuned-panx-de
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Jaroslav/test
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
JarvisZHAO/chatbot
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
JasonCheung/gpt2
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
JasonYe/Covid_19_NLP_twitter
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
JavaWhiz/DialoGPT-Tony-Stark
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
text2text-generation
transformers
{}
Javel/linkedin_post_t5
null
[ "transformers", "pytorch", "jax", "t5", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Javel/t5_linkedin_post
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # sagemaker-distilbert-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2469 - Accuracy: 0.9165 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.9351 | 1.0 | 500 | 0.2469 | 0.9165 | ### Framework versions - Transformers 4.12.3 - Pytorch 1.9.1 - Datasets 1.15.1 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["emotion"], "metrics": ["accuracy"], "model-index": [{"name": "sagemaker-distilbert-emotion", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "emotion", "type": "emotion", "args": "default"}, "metrics": [{"type": "accuracy", "value": 0.9165, "name": "Accuracy"}]}]}]}
JaviBJ/sagemaker-distilbert-emotion
null
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
transformers
{}
Jawharah/Test
null
[ "transformers", "lean_albert", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Jaymakwanacodes/HarryPotter
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
multiple-choice
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-finetuned-semeval2020-task4a-append-e2-b32-l5e5 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5466 - Accuracy: 0.8890 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 344 | 0.3057 | 0.8630 | | 0.4091 | 2.0 | 688 | 0.2964 | 0.8880 | | 0.1322 | 3.0 | 1032 | 0.4465 | 0.8820 | | 0.1322 | 4.0 | 1376 | 0.5466 | 0.8890 | ### Framework versions - Transformers 4.12.3 - Pytorch 1.9.1 - Datasets 1.12.1 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"]}
JazibEijaz/bert-base-uncased-finetuned-semeval2020-task4a-append-e2-b32-l5e5
null
[ "transformers", "pytorch", "tensorboard", "bert", "multiple-choice", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
multiple-choice
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-finetuned-semeval2020-task4a This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the ComVE dataset which was part of SemEval 2020 Task 4. It achieves the following results on the test set: - Loss: 0.2782 - Accuracy: 0.9040 ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 344 | 0.2700 | 0.8940 | | 0.349 | 2.0 | 688 | 0.2782 | 0.9040 | ### Framework versions - Transformers 4.12.3 - Pytorch 1.9.1 - Datasets 1.12.1 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"]}
JazibEijaz/bert-base-uncased-finetuned-semeval2020-task4a
null
[ "transformers", "pytorch", "tensorboard", "bert", "multiple-choice", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
multiple-choice
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-finetuned-semeval2020-task4b-append-e3-b32-l4e5 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5121 - Accuracy: 0.8700 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 344 | 0.3603 | 0.8550 | | 0.3894 | 2.0 | 688 | 0.4011 | 0.8630 | | 0.1088 | 3.0 | 1032 | 0.5121 | 0.8700 | ### Framework versions - Transformers 4.12.3 - Pytorch 1.9.1 - Datasets 1.12.1 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"]}
JazibEijaz/bert-base-uncased-finetuned-semeval2020-task4b-append-e3-b32-l4e5
null
[ "transformers", "pytorch", "tensorboard", "bert", "multiple-choice", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
multiple-choice
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-finetuned-semeval2020-task4b-base-e2-b32-l3e5 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4114 - Accuracy: 0.8700 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 344 | 0.3773 | 0.8490 | | 0.3812 | 2.0 | 688 | 0.4114 | 0.8700 | ### Framework versions - Transformers 4.12.3 - Pytorch 1.9.1 - Datasets 1.12.1 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"]}
JazibEijaz/bert-base-uncased-finetuned-semeval2020-task4b-base-e2-b32-l3e5
null
[ "transformers", "pytorch", "tensorboard", "bert", "multiple-choice", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
multiple-choice
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-finetuned-semeval2020-task4b This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the ComVE dataset which was part of SemEval 2020 Task 4. It achieves the following results on the test set: - Loss: 0.6760 - Accuracy: 0.8760 ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.5016 | 1.0 | 688 | 0.3502 | 0.8600 | | 0.2528 | 2.0 | 1376 | 0.5769 | 0.8620 | | 0.0598 | 3.0 | 2064 | 0.6720 | 0.8700 | | 0.0197 | 4.0 | 2752 | 0.6760 | 0.8760 | ### Framework versions - Transformers 4.12.3 - Pytorch 1.9.1 - Datasets 1.12.1 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"]}
JazibEijaz/bert-base-uncased-finetuned-semeval2020-task4b
null
[ "transformers", "pytorch", "tensorboard", "bert", "multiple-choice", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
multiple-choice
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-finetuned-swag-e1-b16-l5e5 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the swag dataset. It achieves the following results on the evaluation set: - Loss: 0.5202 - Accuracy: 0.7997 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.701 | 1.0 | 4597 | 0.5202 | 0.7997 | ### Framework versions - Transformers 4.12.2 - Pytorch 1.9.1 - Datasets 1.12.1 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["swag"], "metrics": ["accuracy"], "model-index": [{"name": "bert-base-uncased-finetuned-swag-e1-b16-l5e5", "results": []}]}
JazibEijaz/bert-base-uncased-finetuned-swag-e1-b16-l5e5
null
[ "transformers", "pytorch", "tensorboard", "bert", "multiple-choice", "generated_from_trainer", "dataset:swag", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Jcarneiro/meuModelo
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
token-classification
transformers
# camembert-ner: model fine-tuned from camemBERT for NER task (including DATE tag). ## Introduction [camembert-ner-with-dates] is an extension of french camembert-ner model with an additionnal tag for dates. Model was trained on enriched version of wikiner-fr dataset (~170 634 sentences). On my test data (mix of chat and email), this model got an f1 score of ~83% (in comparison dateparser was ~70%). Dateparser library can still be be used on the output of this model in order to convert text to python datetime object (https://dateparser.readthedocs.io/en/latest/). ## How to use camembert-ner-with-dates with HuggingFace ##### Load camembert-ner-with-dates and its sub-word tokenizer : ```python from transformers import AutoTokenizer, AutoModelForTokenClassification tokenizer = AutoTokenizer.from_pretrained("Jean-Baptiste/camembert-ner-with-dates") model = AutoModelForTokenClassification.from_pretrained("Jean-Baptiste/camembert-ner-with-dates") ##### Process text sample (from wikipedia) from transformers import pipeline nlp = pipeline('ner', model=model, tokenizer=tokenizer, aggregation_strategy="simple") nlp("Apple est créée le 1er avril 1976 dans le garage de la maison d'enfance de Steve Jobs à Los Altos en Californie par Steve Jobs, Steve Wozniak et Ronald Wayne14, puis constituée sous forme de société le 3 janvier 1977 à l'origine sous le nom d'Apple Computer, mais pour ses 30 ans et pour refléter la diversification de ses produits, le mot « computer » est retiré le 9 janvier 2015.") [{'entity_group': 'ORG', 'score': 0.9776379466056824, 'word': 'Apple', 'start': 0, 'end': 5}, {'entity_group': 'DATE', 'score': 0.9793774570737567, 'word': 'le 1er avril 1976 dans le', 'start': 15, 'end': 41}, {'entity_group': 'PER', 'score': 0.9958226680755615, 'word': 'Steve Jobs', 'start': 74, 'end': 85}, {'entity_group': 'LOC', 'score': 0.995087186495463, 'word': 'Los Altos', 'start': 87, 'end': 97}, {'entity_group': 'LOC', 'score': 0.9953305125236511, 'word': 'Californie', 'start': 100, 'end': 111}, {'entity_group': 'PER', 'score': 0.9961076378822327, 'word': 'Steve Jobs', 'start': 115, 'end': 126}, {'entity_group': 'PER', 'score': 0.9960325956344604, 'word': 'Steve Wozniak', 'start': 127, 'end': 141}, {'entity_group': 'PER', 'score': 0.9957776467005411, 'word': 'Ronald Wayne', 'start': 144, 'end': 157}, {'entity_group': 'DATE', 'score': 0.994030773639679, 'word': 'le 3 janvier 1977 à', 'start': 198, 'end': 218}, {'entity_group': 'ORG', 'score': 0.9720810294151306, 'word': "d'Apple Computer", 'start': 240, 'end': 257}, {'entity_group': 'DATE', 'score': 0.9924157659212748, 'word': '30 ans et', 'start': 272, 'end': 282}, {'entity_group': 'DATE', 'score': 0.9934852868318558, 'word': 'le 9 janvier 2015.', 'start': 363, 'end': 382}] ``` ## Model performances (metric: seqeval) Global ``` 'precision': 0.928 'recall': 0.928 'f1': 0.928 ``` By entity ``` Label LOC: (precision:0.929, recall:0.932, f1:0.931, support:9510) Label PER: (precision:0.952, recall:0.965, f1:0.959, support:9399) Label MISC: (precision:0.878, recall:0.844, f1:0.860, support:5364) Label ORG: (precision:0.848, recall:0.883, f1:0.865, support:2299) Label DATE: Not relevant because of method used to add date tag on wikiner dataset (estimated f1 ~90%) ```
{"language": "fr", "license": "mit", "datasets": ["Jean-Baptiste/wikiner_fr"], "widget": [{"text": "Je m'appelle jean-baptiste et j'habite \u00e0 montr\u00e9al depuis fevr 2012"}]}
Jean-Baptiste/camembert-ner-with-dates
null
[ "transformers", "pytorch", "onnx", "safetensors", "camembert", "token-classification", "fr", "dataset:Jean-Baptiste/wikiner_fr", "license:mit", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
token-classification
transformers
# camembert-ner: model fine-tuned from camemBERT for NER task. ## Introduction [camembert-ner] is a NER model that was fine-tuned from camemBERT on wikiner-fr dataset. Model was trained on wikiner-fr dataset (~170 634 sentences). Model was validated on emails/chat data and overperformed other models on this type of data specifically. In particular the model seems to work better on entity that don't start with an upper case. ## Training data Training data was classified as follow: Abbreviation|Description -|- O |Outside of a named entity MISC |Miscellaneous entity PER |Person’s name ORG |Organization LOC |Location ## How to use camembert-ner with HuggingFace ##### Load camembert-ner and its sub-word tokenizer : ```python from transformers import AutoTokenizer, AutoModelForTokenClassification tokenizer = AutoTokenizer.from_pretrained("Jean-Baptiste/camembert-ner") model = AutoModelForTokenClassification.from_pretrained("Jean-Baptiste/camembert-ner") ##### Process text sample (from wikipedia) from transformers import pipeline nlp = pipeline('ner', model=model, tokenizer=tokenizer, aggregation_strategy="simple") nlp("Apple est créée le 1er avril 1976 dans le garage de la maison d'enfance de Steve Jobs à Los Altos en Californie par Steve Jobs, Steve Wozniak et Ronald Wayne14, puis constituée sous forme de société le 3 janvier 1977 à l'origine sous le nom d'Apple Computer, mais pour ses 30 ans et pour refléter la diversification de ses produits, le mot « computer » est retiré le 9 janvier 2015.") [{'entity_group': 'ORG', 'score': 0.9472818374633789, 'word': 'Apple', 'start': 0, 'end': 5}, {'entity_group': 'PER', 'score': 0.9838564991950989, 'word': 'Steve Jobs', 'start': 74, 'end': 85}, {'entity_group': 'LOC', 'score': 0.9831605950991312, 'word': 'Los Altos', 'start': 87, 'end': 97}, {'entity_group': 'LOC', 'score': 0.9834540486335754, 'word': 'Californie', 'start': 100, 'end': 111}, {'entity_group': 'PER', 'score': 0.9841555754343668, 'word': 'Steve Jobs', 'start': 115, 'end': 126}, {'entity_group': 'PER', 'score': 0.9843501806259155, 'word': 'Steve Wozniak', 'start': 127, 'end': 141}, {'entity_group': 'PER', 'score': 0.9841533899307251, 'word': 'Ronald Wayne', 'start': 144, 'end': 157}, {'entity_group': 'ORG', 'score': 0.9468960364659628, 'word': 'Apple Computer', 'start': 243, 'end': 257}] ``` ## Model performances (metric: seqeval) Overall precision|recall|f1 -|-|- 0.8859|0.8971|0.8914 By entity entity|precision|recall|f1 -|-|-|- PER|0.9372|0.9598|0.9483 ORG|0.8099|0.8265|0.8181 LOC|0.8905|0.9005|0.8955 MISC|0.8175|0.8117|0.8146 For those who could be interested, here is a short article on how I used the results of this model to train a LSTM model for signature detection in emails: https://medium.com/@jean-baptiste.polle/lstm-model-for-email-signature-detection-8e990384fefa
{"language": "fr", "license": "mit", "datasets": ["Jean-Baptiste/wikiner_fr"], "widget": [{"text": "Je m'appelle jean-baptiste et je vis \u00e0 montr\u00e9al"}, {"text": "george washington est all\u00e9 \u00e0 washington"}]}
Jean-Baptiste/camembert-ner
null
[ "transformers", "pytorch", "onnx", "safetensors", "camembert", "token-classification", "fr", "dataset:Jean-Baptiste/wikiner_fr", "license:mit", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
token-classification
transformers
# roberta-large-ner-english: model fine-tuned from roberta-large for NER task ## Introduction [roberta-large-ner-english] is an english NER model that was fine-tuned from roberta-large on conll2003 dataset. Model was validated on emails/chat data and outperformed other models on this type of data specifically. In particular the model seems to work better on entity that don't start with an upper case. ## Training data Training data was classified as follow: Abbreviation|Description -|- O |Outside of a named entity MISC |Miscellaneous entity PER |Person’s name ORG |Organization LOC |Location In order to simplify, the prefix B- or I- from original conll2003 was removed. I used the train and test dataset from original conll2003 for training and the "validation" dataset for validation. This resulted in a dataset of size: Train | Validation -|- 17494 | 3250 ## How to use roberta-large-ner-english with HuggingFace ##### Load roberta-large-ner-english and its sub-word tokenizer : ```python from transformers import AutoTokenizer, AutoModelForTokenClassification tokenizer = AutoTokenizer.from_pretrained("Jean-Baptiste/roberta-large-ner-english") model = AutoModelForTokenClassification.from_pretrained("Jean-Baptiste/roberta-large-ner-english") ##### Process text sample (from wikipedia) from transformers import pipeline nlp = pipeline('ner', model=model, tokenizer=tokenizer, aggregation_strategy="simple") nlp("Apple was founded in 1976 by Steve Jobs, Steve Wozniak and Ronald Wayne to develop and sell Wozniak's Apple I personal computer") [{'entity_group': 'ORG', 'score': 0.99381506, 'word': ' Apple', 'start': 0, 'end': 5}, {'entity_group': 'PER', 'score': 0.99970853, 'word': ' Steve Jobs', 'start': 29, 'end': 39}, {'entity_group': 'PER', 'score': 0.99981767, 'word': ' Steve Wozniak', 'start': 41, 'end': 54}, {'entity_group': 'PER', 'score': 0.99956465, 'word': ' Ronald Wayne', 'start': 59, 'end': 71}, {'entity_group': 'PER', 'score': 0.9997918, 'word': ' Wozniak', 'start': 92, 'end': 99}, {'entity_group': 'MISC', 'score': 0.99956393, 'word': ' Apple I', 'start': 102, 'end': 109}] ``` ## Model performances Model performances computed on conll2003 validation dataset (computed on the tokens predictions) entity|precision|recall|f1 -|-|-|- PER|0.9914|0.9927|0.9920 ORG|0.9627|0.9661|0.9644 LOC|0.9795|0.9862|0.9828 MISC|0.9292|0.9262|0.9277 Overall|0.9740|0.9766|0.9753 On private dataset (email, chat, informal discussion), computed on word predictions: entity|precision|recall|f1 -|-|-|- PER|0.8823|0.9116|0.8967 ORG|0.7694|0.7292|0.7487 LOC|0.8619|0.7768|0.8171 By comparison on the same private dataset, Spacy (en_core_web_trf-3.2.0) was giving: entity|precision|recall|f1 -|-|-|- PER|0.9146|0.8287|0.8695 ORG|0.7655|0.6437|0.6993 LOC|0.8727|0.6180|0.7236 For those who could be interested, here is a short article on how I used the results of this model to train a LSTM model for signature detection in emails: https://medium.com/@jean-baptiste.polle/lstm-model-for-email-signature-detection-8e990384fefa
{"language": "en", "license": "mit", "datasets": ["conll2003"], "widget": [{"text": "My name is jean-baptiste and I live in montreal"}, {"text": "My name is clara and I live in berkeley, california."}, {"text": "My name is wolfgang and I live in berlin"}], "train-eval-index": [{"config": "conll2003", "task": "token-classification", "task_id": "entity_extraction", "splits": {"eval_split": "validation"}, "col_mapping": {"tokens": "tokens", "ner_tags": "tags"}}]}
Jean-Baptiste/roberta-large-ner-english
null
[ "transformers", "pytorch", "tf", "onnx", "safetensors", "roberta", "token-classification", "en", "dataset:conll2003", "license:mit", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
token-classification
transformers
# roberta-ticker: model was fine-tuned from Roberta to detect financial tickers ## Introduction This is a model specifically designed to identify tickers in text. Model was trained on transformed dataset from following Kaggle dataset: https://www.kaggle.com/omermetinn/tweets-about-the-top-companies-from-2015-to-2020 ## How to use roberta-ticker with HuggingFace ##### Load roberta-ticker and its sub-word tokenizer : ```python from transformers import AutoTokenizer, AutoModelForTokenClassification tokenizer = AutoTokenizer.from_pretrained("Jean-Baptiste/roberta-ticker") model = AutoModelForTokenClassification.from_pretrained("Jean-Baptiste/roberta-ticker") ##### Process text sample from transformers import pipeline nlp = pipeline('ner', model=model, tokenizer=tokenizer, aggregation_strategy="simple") nlp("I am going to buy 100 shares of cake tomorrow") [{'entity_group': 'TICKER', 'score': 0.9612462520599365, 'word': ' cake', 'start': 32, 'end': 36}] nlp("I am going to eat a cake tomorrow") [] ``` ## Model performances ``` precision: 0.914157 recall: 0.788824 f1: 0.846878 ```
{"language": "en", "widget": [{"text": "I am going to buy 100 shares of cake tomorrow"}]}
Jean-Baptiste/roberta-ticker
null
[ "transformers", "pytorch", "safetensors", "roberta", "token-classification", "en", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Jeangyu/bert-base-finetuned-ynat
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
transformers
# Tony Stark
{"tags": ["conversational"]}
Jedi33/tonystarkAI
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
fill-mask
transformers
{}
Jeevesh8/DA-LF
null
[ "transformers", "pytorch", "longformer", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
fill-mask
transformers
{}
Jeevesh8/DA-bert
null
[ "transformers", "pytorch", "bert", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
First 50 [Feather BERT-s](https://arxiv.org/abs/1911.02969) compressed in groups of 10. Clone this repository, decompress the compressed folders, and provide the paths to the Feather BERT you want to use in ``.from_pretrained()``. For downloading next 50 Feather BERT-s, see [here](https://huggingface.co/Jeevesh8/feather_berts1/).
{}
Jeevesh8/feather_berts
null
[ "arxiv:1911.02969", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
Second 50 [Feather BERT-s](https://arxiv.org/abs/1911.02969) compressed in groups of 10. Clone this repository, decompress the compressed folders, and provide the paths to the Feather BERT you want to use in ``.from_pretrained()``. For downloading first 50 Feather BERT-s, see [here](https://huggingface.co/Jeevesh8/feather_berts/).
{}
Jeevesh8/feather_berts1
null
[ "arxiv:1911.02969", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
{}
Jeevesh8/multiberts_seed_0_ft_0
null
[ "transformers", "jax", "bert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
{}
Jeevesh8/multiberts_seed_0_ft_1
null
[ "transformers", "jax", "bert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
{}
Jeevesh8/multiberts_seed_0_ft_2
null
[ "transformers", "jax", "bert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00