Search is not available for this dataset
pipeline_tag
stringclasses
48 values
library_name
stringclasses
205 values
text
stringlengths
0
18.3M
metadata
stringlengths
2
1.07B
id
stringlengths
5
122
last_modified
null
tags
listlengths
1
1.84k
sha
null
created_at
stringlengths
25
25
text-classification
transformers
{}
Jeevesh8/multiberts_seed_9_ft_2
null
[ "transformers", "jax", "tensorboard", "bert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
{}
Jeevesh8/multiberts_seed_9_ft_3
null
[ "transformers", "jax", "tensorboard", "bert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
{}
Jeevesh8/multiberts_seed_9_ft_4
null
[ "transformers", "jax", "tensorboard", "bert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
fill-mask
transformers
{}
Jeevesh8/sMLM-256-LF
null
[ "transformers", "pytorch", "longformer", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
fill-mask
transformers
{}
Jeevesh8/sMLM-LF
null
[ "transformers", "pytorch", "longformer", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
fill-mask
transformers
{}
Jeevesh8/sMLM-RoBERTa
null
[ "transformers", "pytorch", "roberta", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
fill-mask
transformers
{}
Jeevesh8/sMLM-bert
null
[ "transformers", "pytorch", "bert", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Jeevesh8/test
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
JeffZl/DialoGPT-small-harrypotter
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
transformers
{"tags": ["conversational"]}
Jeffrey/DialoGPT-small-Jeffrey
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Jeffy/DialoGPT-small-spongebob
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Jennie/Jennie
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Jeremie24/JEREMIE
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
JeremyS/distilbert-base-uncased-finetuned-cola
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Jerr/model_name
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Jerry/bert-analysis
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
transformers
{}
JerryQu/v2-distilgpt2
null
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
JerukPurut/DialoGPT-small-natwithaheart
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Jeska/BERTJEforTextClassificationVaccinChat
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
fill-mask
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # BertjeWDialData This model is a fine-tuned version of [GroNLP/bert-base-dutch-cased](https://huggingface.co/GroNLP/bert-base-dutch-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.2608 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 297 | 2.2419 | ### Framework versions - Transformers 4.13.0.dev0 - Pytorch 1.10.0+cu111 - Datasets 1.15.1 - Tokenizers 0.10.3
{"tags": ["generated_from_trainer"], "model-index": [{"name": "BertjeWDialData", "results": []}]}
Jeska/BertjeWDialData
null
[ "transformers", "pytorch", "tensorboard", "bert", "fill-mask", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
fill-mask
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # BertjeWDialDataALL This model is a fine-tuned version of [GroNLP/bert-base-dutch-cased](https://huggingface.co/GroNLP/bert-base-dutch-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.9469 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 2.1739 | 1.0 | 1542 | 2.0150 | | 2.0759 | 2.0 | 3084 | 1.9918 | | 2.0453 | 3.0 | 4626 | 2.0132 | | 1.9936 | 4.0 | 6168 | 1.9341 | | 1.9659 | 5.0 | 7710 | 1.9140 | | 1.9545 | 6.0 | 9252 | 1.9418 | | 1.9104 | 7.0 | 10794 | 1.9179 | | 1.8991 | 8.0 | 12336 | 1.9157 | ### Framework versions - Transformers 4.13.0.dev0 - Pytorch 1.10.0 - Datasets 1.16.1 - Tokenizers 0.10.3
{"tags": ["generated_from_trainer"], "model-index": [{"name": "BertjeWDialDataALL", "results": []}]}
Jeska/BertjeWDialDataALL
null
[ "transformers", "pytorch", "tensorboard", "bert", "fill-mask", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
fill-mask
transformers
{}
Jeska/BertjeWDialDataALL02
null
[ "transformers", "pytorch", "tensorboard", "bert", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
fill-mask
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # BertjeWDialDataALL03 This model is a fine-tuned version of [GroNLP/bert-base-dutch-cased](https://huggingface.co/GroNLP/bert-base-dutch-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.9459 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 8.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 2.1951 | 1.0 | 1542 | 2.0285 | | 2.0918 | 2.0 | 3084 | 1.9989 | | 2.0562 | 3.0 | 4626 | 2.0162 | | 2.0012 | 4.0 | 6168 | 1.9330 | | 1.9705 | 5.0 | 7710 | 1.9151 | | 1.9571 | 6.0 | 9252 | 1.9419 | | 1.9113 | 7.0 | 10794 | 1.9175 | | 1.8988 | 8.0 | 12336 | 1.9143 | ### Framework versions - Transformers 4.13.0.dev0 - Pytorch 1.10.0 - Datasets 1.16.1 - Tokenizers 0.10.3
{"tags": ["generated_from_trainer"], "model-index": [{"name": "BertjeWDialDataALL03", "results": []}]}
Jeska/BertjeWDialDataALL03
null
[ "transformers", "pytorch", "tensorboard", "bert", "fill-mask", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
fill-mask
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # BertjeWDialDataALL04 This model is a fine-tuned version of [GroNLP/bert-base-dutch-cased](https://huggingface.co/GroNLP/bert-base-dutch-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.9717 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 2.2954 | 1.0 | 1542 | 2.0372 | | 2.2015 | 2.0 | 3084 | 2.0104 | | 2.1661 | 3.0 | 4626 | 2.0372 | | 2.1186 | 4.0 | 6168 | 1.9549 | | 2.0939 | 5.0 | 7710 | 1.9438 | | 2.0867 | 6.0 | 9252 | 1.9648 | | 2.0462 | 7.0 | 10794 | 1.9465 | | 2.0315 | 8.0 | 12336 | 1.9412 | ### Framework versions - Transformers 4.13.0.dev0 - Pytorch 1.10.0 - Datasets 1.16.1 - Tokenizers 0.10.3
{"tags": ["generated_from_trainer"], "model-index": [{"name": "BertjeWDialDataALL04", "results": []}]}
Jeska/BertjeWDialDataALL04
null
[ "transformers", "pytorch", "tensorboard", "bert", "fill-mask", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
fill-mask
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # BertjeWDialDataALLQonly This model is a fine-tuned version of [GroNLP/bert-base-dutch-cased](https://huggingface.co/GroNLP/bert-base-dutch-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.9438 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 2.2122 | 1.0 | 871 | 2.0469 | | 2.0961 | 2.0 | 1742 | 2.0117 | | 2.0628 | 3.0 | 2613 | 2.0040 | | 2.0173 | 4.0 | 3484 | 1.9901 | | 1.9772 | 5.0 | 4355 | 1.9711 | | 1.9455 | 6.0 | 5226 | 1.9785 | | 1.917 | 7.0 | 6097 | 1.9380 | | 1.8933 | 8.0 | 6968 | 1.9651 | | 1.8708 | 9.0 | 7839 | 1.9915 | | 1.862 | 10.0 | 8710 | 1.9310 | | 1.8545 | 11.0 | 9581 | 1.9422 | | 1.8231 | 12.0 | 10452 | 1.9310 | | 1.8141 | 13.0 | 11323 | 1.9362 | | 1.7939 | 14.0 | 12194 | 1.9334 | | 1.8035 | 15.0 | 13065 | 1.9197 | ### Framework versions - Transformers 4.13.0.dev0 - Pytorch 1.10.0 - Datasets 1.16.1 - Tokenizers 0.10.3
{"tags": ["generated_from_trainer"], "model-index": [{"name": "BertjeWDialDataALLQonly", "results": []}]}
Jeska/BertjeWDialDataALLQonly
null
[ "transformers", "pytorch", "tensorboard", "bert", "fill-mask", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
fill-mask
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # BertjeWDialDataALLQonly02 This model is a fine-tuned version of [GroNLP/bert-base-dutch-cased](https://huggingface.co/GroNLP/bert-base-dutch-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.9043 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 12.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 2.2438 | 1.0 | 871 | 2.1122 | | 2.1235 | 2.0 | 1742 | 2.0784 | | 2.0712 | 3.0 | 2613 | 2.0679 | | 2.0034 | 4.0 | 3484 | 2.0546 | | 1.9375 | 5.0 | 4355 | 2.0277 | | 1.8911 | 6.0 | 5226 | 2.0364 | | 1.8454 | 7.0 | 6097 | 1.9812 | | 1.808 | 8.0 | 6968 | 2.0175 | | 1.7716 | 9.0 | 7839 | 2.0286 | | 1.7519 | 10.0 | 8710 | 1.9653 | | 1.7358 | 11.0 | 9581 | 1.9817 | | 1.7084 | 12.0 | 10452 | 1.9633 | ### Framework versions - Transformers 4.13.0.dev0 - Pytorch 1.10.0 - Datasets 1.16.1 - Tokenizers 0.10.3
{"tags": ["generated_from_trainer"], "model-index": [{"name": "BertjeWDialDataALLQonly02", "results": []}]}
Jeska/BertjeWDialDataALLQonly02
null
[ "transformers", "pytorch", "tensorboard", "bert", "fill-mask", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
fill-mask
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # BertjeWDialDataALLQonly03 This model is a fine-tuned version of [GroNLP/bert-base-dutch-cased](https://huggingface.co/GroNLP/bert-base-dutch-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.9995 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 24.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | No log | 1.0 | 435 | 2.0751 | | 2.1982 | 2.0 | 870 | 2.0465 | | 2.0841 | 3.0 | 1305 | 2.0420 | | 2.0374 | 4.0 | 1740 | 2.0325 | | 1.9731 | 5.0 | 2175 | 2.0075 | | 1.9248 | 6.0 | 2610 | 2.0219 | | 1.8848 | 7.0 | 3045 | 1.9770 | | 1.8848 | 8.0 | 3480 | 2.0093 | | 1.8419 | 9.0 | 3915 | 2.0298 | | 1.804 | 10.0 | 4350 | 1.9681 | | 1.7817 | 11.0 | 4785 | 1.9938 | | 1.7472 | 12.0 | 5220 | 1.9654 | | 1.7075 | 13.0 | 5655 | 1.9797 | | 1.6976 | 14.0 | 6090 | 1.9691 | | 1.6748 | 15.0 | 6525 | 1.9568 | | 1.6748 | 16.0 | 6960 | 1.9618 | | 1.6528 | 17.0 | 7395 | 1.9843 | | 1.6335 | 18.0 | 7830 | 1.9265 | | 1.6179 | 19.0 | 8265 | 1.9598 | | 1.5992 | 20.0 | 8700 | 1.9331 | | 1.583 | 21.0 | 9135 | 1.9795 | | 1.5699 | 22.0 | 9570 | 2.0073 | | 1.5703 | 23.0 | 10005 | 1.9308 | | 1.5703 | 24.0 | 10440 | 1.9285 | ### Framework versions - Transformers 4.13.0.dev0 - Pytorch 1.10.0 - Datasets 1.16.1 - Tokenizers 0.10.3
{"tags": ["generated_from_trainer"], "model-index": [{"name": "BertjeWDialDataALLQonly03", "results": []}]}
Jeska/BertjeWDialDataALLQonly03
null
[ "transformers", "pytorch", "tensorboard", "bert", "fill-mask", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
fill-mask
transformers
{}
Jeska/BertjeWDialDataALLQonly04
null
[ "transformers", "pytorch", "tensorboard", "bert", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
fill-mask
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # BertjeWDialDataALLQonly05 This model is a fine-tuned version of [GroNLP/bert-base-dutch-cased](https://huggingface.co/GroNLP/bert-base-dutch-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.3921 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 12.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 2.9349 | 1.0 | 871 | 2.9642 | | 2.9261 | 2.0 | 1742 | 2.9243 | | 2.8409 | 3.0 | 2613 | 2.8895 | | 2.7308 | 4.0 | 3484 | 2.8394 | | 2.6042 | 5.0 | 4355 | 2.7703 | | 2.4671 | 6.0 | 5226 | 2.7522 | | 2.3481 | 7.0 | 6097 | 2.6339 | | 2.2493 | 8.0 | 6968 | 2.6224 | | 2.1233 | 9.0 | 7839 | 2.5637 | | 2.0194 | 10.0 | 8710 | 2.4896 | | 1.9178 | 11.0 | 9581 | 2.4689 | | 1.8588 | 12.0 | 10452 | 2.4663 | ### Framework versions - Transformers 4.13.0.dev0 - Pytorch 1.10.0 - Datasets 1.16.1 - Tokenizers 0.10.3
{"tags": ["generated_from_trainer"], "model-index": [{"name": "BertjeWDialDataALLQonly05", "results": []}]}
Jeska/BertjeWDialDataALLQonly05
null
[ "transformers", "pytorch", "tensorboard", "bert", "fill-mask", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
fill-mask
transformers
{}
Jeska/BertjeWDialDataALLQonly06
null
[ "transformers", "pytorch", "tensorboard", "bert", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
fill-mask
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # BertjeWDialDataALLQonly07 This model is a fine-tuned version of [GroNLP/bert-base-dutch-cased](https://huggingface.co/GroNLP/bert-base-dutch-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.1135 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 18.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 2.3589 | 1.0 | 871 | 2.2805 | | 2.2563 | 2.0 | 1742 | 2.2501 | | 2.1936 | 3.0 | 2613 | 2.2419 | | 2.11 | 4.0 | 3484 | 2.2301 | | 2.0311 | 5.0 | 4355 | 2.2320 | | 1.969 | 6.0 | 5226 | 2.2276 | | 1.9148 | 7.0 | 6097 | 2.1621 | | 1.8569 | 8.0 | 6968 | 2.1876 | | 1.7978 | 9.0 | 7839 | 2.2011 | | 1.7602 | 10.0 | 8710 | 2.1280 | | 1.7166 | 11.0 | 9581 | 2.1644 | | 1.6651 | 12.0 | 10452 | 2.1246 | | 1.6141 | 13.0 | 11323 | 2.1264 | | 1.5759 | 14.0 | 12194 | 2.1143 | | 1.5478 | 15.0 | 13065 | 2.0982 | | 1.5311 | 16.0 | 13936 | 2.0993 | | 1.5187 | 17.0 | 14807 | 2.0979 | | 1.4809 | 18.0 | 15678 | 2.0338 | ### Framework versions - Transformers 4.13.0.dev0 - Pytorch 1.10.0 - Datasets 1.16.1 - Tokenizers 0.10.3
{"tags": ["generated_from_trainer"], "model-index": [{"name": "BertjeWDialDataALLQonly07", "results": []}]}
Jeska/BertjeWDialDataALLQonly07
null
[ "transformers", "pytorch", "tensorboard", "bert", "fill-mask", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
fill-mask
transformers
{}
Jeska/BertjeWDialDataALLQonly08
null
[ "transformers", "pytorch", "tensorboard", "bert", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
fill-mask
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # BertjeWDialDataALLQonly09 This model is a fine-tuned version of [GroNLP/bert-base-dutch-cased](https://huggingface.co/GroNLP/bert-base-dutch-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.9043 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 12.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 2.2439 | 1.0 | 871 | 2.1102 | | 2.1235 | 2.0 | 1742 | 2.0785 | | 2.0709 | 3.0 | 2613 | 2.0689 | | 2.0033 | 4.0 | 3484 | 2.0565 | | 1.9386 | 5.0 | 4355 | 2.0290 | | 1.8909 | 6.0 | 5226 | 2.0366 | | 1.8449 | 7.0 | 6097 | 1.9809 | | 1.8078 | 8.0 | 6968 | 2.0177 | | 1.7709 | 9.0 | 7839 | 2.0289 | | 1.7516 | 10.0 | 8710 | 1.9645 | | 1.7354 | 11.0 | 9581 | 1.9810 | | 1.7073 | 12.0 | 10452 | 1.9631 | ### Framework versions - Transformers 4.13.0.dev0 - Pytorch 1.10.0 - Datasets 1.16.1 - Tokenizers 0.10.3
{"tags": ["generated_from_trainer"], "model-index": [{"name": "BertjeWDialDataALLQonly09", "results": []}]}
Jeska/BertjeWDialDataALLQonly09
null
[ "transformers", "pytorch", "tensorboard", "bert", "fill-mask", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
fill-mask
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # BertjeWDialDataALLQonly128 This model is a fine-tuned version of [GroNLP/bert-base-dutch-cased](https://huggingface.co/GroNLP/bert-base-dutch-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.0364 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 12.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 2.2326 | 1.0 | 871 | 2.1509 | | 2.1375 | 2.0 | 1742 | 2.1089 | | 2.0442 | 3.0 | 2613 | 2.0655 | | 2.0116 | 4.0 | 3484 | 2.0433 | | 1.9346 | 5.0 | 4355 | 2.0134 | | 1.9056 | 6.0 | 5226 | 1.9956 | | 1.8295 | 7.0 | 6097 | 2.0287 | | 1.8204 | 8.0 | 6968 | 2.0173 | | 1.7928 | 9.0 | 7839 | 2.0251 | | 1.7357 | 10.0 | 8710 | 2.0148 | | 1.7318 | 11.0 | 9581 | 1.9274 | | 1.7311 | 12.0 | 10452 | 1.9314 | ### Framework versions - Transformers 4.13.0.dev0 - Pytorch 1.10.0 - Datasets 1.16.1 - Tokenizers 0.10.3
{"tags": ["generated_from_trainer"], "model-index": [{"name": "BertjeWDialDataALLQonly128", "results": []}]}
Jeska/BertjeWDialDataALLQonly128
null
[ "transformers", "pytorch", "tensorboard", "bert", "fill-mask", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
fill-mask
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # BertjeWDialDataQA20k This model is a fine-tuned version of [GroNLP/bert-base-dutch-cased](https://huggingface.co/GroNLP/bert-base-dutch-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.9208 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.1713 | 1.0 | 1542 | 2.0098 | | 2.0736 | 2.0 | 3084 | 1.9853 | | 2.0543 | 3.0 | 4626 | 2.0134 | ### Framework versions - Transformers 4.13.0.dev0 - Pytorch 1.10.0 - Datasets 1.16.1 - Tokenizers 0.10.3
{"tags": ["generated_from_trainer"], "model-index": [{"name": "BertjeWDialDataQA20k", "results": []}]}
Jeska/BertjeWDialDataQA20k
null
[ "transformers", "pytorch", "tensorboard", "bert", "fill-mask", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
{}
Jeska/VaccinChatSentenceClassifierDutch
null
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # VaccinChatSentenceClassifierDutch_fromBERTje This model is a fine-tuned version of [GroNLP/bert-base-dutch-cased](https://huggingface.co/GroNLP/bert-base-dutch-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6223 - Accuracy: 0.9068 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 3.4666 | 1.0 | 1320 | 2.3355 | 0.5768 | | 1.5293 | 2.0 | 2640 | 1.1118 | 0.8144 | | 0.8031 | 3.0 | 3960 | 0.6362 | 0.8803 | | 0.2985 | 4.0 | 5280 | 0.5119 | 0.8958 | | 0.1284 | 5.0 | 6600 | 0.5023 | 0.8931 | | 0.0842 | 6.0 | 7920 | 0.5246 | 0.9022 | | 0.0414 | 7.0 | 9240 | 0.5581 | 0.9013 | | 0.0372 | 8.0 | 10560 | 0.5721 | 0.9004 | | 0.0292 | 9.0 | 11880 | 0.5469 | 0.9141 | | 0.0257 | 10.0 | 13200 | 0.5871 | 0.9059 | | 0.0189 | 11.0 | 14520 | 0.6181 | 0.9049 | | 0.0104 | 12.0 | 15840 | 0.6184 | 0.9068 | | 0.009 | 13.0 | 17160 | 0.6013 | 0.9049 | | 0.0051 | 14.0 | 18480 | 0.6205 | 0.9059 | | 0.0035 | 15.0 | 19800 | 0.6223 | 0.9068 | ### Framework versions - Transformers 4.13.0.dev0 - Pytorch 1.10.0 - Datasets 1.16.1 - Tokenizers 0.10.3
{"tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "VaccinChatSentenceClassifierDutch_fromBERTje", "results": []}]}
Jeska/VaccinChatSentenceClassifierDutch_fromBERTje
null
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # VaccinChatSentenceClassifierDutch_fromBERTje2 This model is a fine-tuned version of [GroNLP/bert-base-dutch-cased](https://huggingface.co/GroNLP/bert-base-dutch-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5112 - Accuracy: 0.9004 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-06 - lr_scheduler_type: linear - num_epochs: 15.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 4.1505 | 1.0 | 1320 | 3.3293 | 0.3793 | | 2.7333 | 2.0 | 2640 | 2.2295 | 0.6133 | | 2.0189 | 3.0 | 3960 | 1.5134 | 0.7587 | | 1.2504 | 4.0 | 5280 | 1.0765 | 0.8282 | | 0.7733 | 5.0 | 6600 | 0.7937 | 0.8629 | | 0.5217 | 6.0 | 7920 | 0.6438 | 0.8784 | | 0.3148 | 7.0 | 9240 | 0.5733 | 0.8857 | | 0.2067 | 8.0 | 10560 | 0.5362 | 0.8912 | | 0.1507 | 9.0 | 11880 | 0.5098 | 0.8903 | | 0.1024 | 10.0 | 13200 | 0.5078 | 0.8976 | | 0.0837 | 11.0 | 14520 | 0.5054 | 0.8967 | | 0.0608 | 12.0 | 15840 | 0.5062 | 0.8958 | | 0.0426 | 13.0 | 17160 | 0.5072 | 0.9013 | | 0.0374 | 14.0 | 18480 | 0.5110 | 0.9040 | | 0.0346 | 15.0 | 19800 | 0.5112 | 0.9004 | ### Framework versions - Transformers 4.13.0.dev0 - Pytorch 1.10.0 - Datasets 1.16.1 - Tokenizers 0.10.3
{"tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "VaccinChatSentenceClassifierDutch_fromBERTje2", "results": []}]}
Jeska/VaccinChatSentenceClassifierDutch_fromBERTje2
null
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # VaccinChatSentenceClassifierDutch_fromBERTje2_DAdialog This model is a fine-tuned version of [outputDA/checkpoint-7710](https://huggingface.co/outputDA/checkpoint-7710) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5025 - Accuracy: 0.9077 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-06 - lr_scheduler_type: linear - num_epochs: 15.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 3.9925 | 1.0 | 1320 | 3.0954 | 0.4223 | | 2.5041 | 2.0 | 2640 | 1.9762 | 0.6563 | | 1.8061 | 3.0 | 3960 | 1.3196 | 0.7952 | | 1.0694 | 4.0 | 5280 | 0.9304 | 0.8510 | | 0.6479 | 5.0 | 6600 | 0.6875 | 0.8821 | | 0.4408 | 6.0 | 7920 | 0.5692 | 0.8976 | | 0.2542 | 7.0 | 9240 | 0.5291 | 0.8949 | | 0.1709 | 8.0 | 10560 | 0.5038 | 0.9059 | | 0.1181 | 9.0 | 11880 | 0.4885 | 0.9049 | | 0.0878 | 10.0 | 13200 | 0.4900 | 0.9049 | | 0.0702 | 11.0 | 14520 | 0.4930 | 0.9086 | | 0.0528 | 12.0 | 15840 | 0.4987 | 0.9113 | | 0.0406 | 13.0 | 17160 | 0.5009 | 0.9113 | | 0.0321 | 14.0 | 18480 | 0.5017 | 0.9104 | | 0.0308 | 15.0 | 19800 | 0.5025 | 0.9077 | ### Framework versions - Transformers 4.13.0.dev0 - Pytorch 1.10.0 - Datasets 1.16.1 - Tokenizers 0.10.3
{"tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "VaccinChatSentenceClassifierDutch_fromBERTje2_DAdialog", "results": []}]}
Jeska/VaccinChatSentenceClassifierDutch_fromBERTje2_DAdialog
null
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
{}
Jeska/VaccinChatSentenceClassifierDutch_fromBERTje2_DAdialog02
null
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # VaccinChatSentenceClassifierDutch_fromBERTje2_DAdialogQonly This model is a fine-tuned version of [outputDAQonly/checkpoint-8710](https://huggingface.co/outputDAQonly/checkpoint-8710) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5008 - Accuracy: 0.9068 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-06 - lr_scheduler_type: linear - num_epochs: 15.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 4.0751 | 1.0 | 1320 | 3.1674 | 0.4086 | | 2.5619 | 2.0 | 2640 | 2.0335 | 0.6426 | | 1.8549 | 3.0 | 3960 | 1.3537 | 0.7861 | | 1.106 | 4.0 | 5280 | 0.9515 | 0.8519 | | 0.6698 | 5.0 | 6600 | 0.7152 | 0.8757 | | 0.4497 | 6.0 | 7920 | 0.5838 | 0.8921 | | 0.2626 | 7.0 | 9240 | 0.5300 | 0.8940 | | 0.1762 | 8.0 | 10560 | 0.4984 | 0.8958 | | 0.119 | 9.0 | 11880 | 0.4906 | 0.9059 | | 0.0919 | 10.0 | 13200 | 0.4896 | 0.8995 | | 0.0722 | 11.0 | 14520 | 0.5012 | 0.9022 | | 0.0517 | 12.0 | 15840 | 0.4951 | 0.9040 | | 0.0353 | 13.0 | 17160 | 0.4988 | 0.9040 | | 0.0334 | 14.0 | 18480 | 0.5035 | 0.9049 | | 0.0304 | 15.0 | 19800 | 0.5008 | 0.9068 | ### Framework versions - Transformers 4.13.0.dev0 - Pytorch 1.10.0 - Datasets 1.16.1 - Tokenizers 0.10.3
{"tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "VaccinChatSentenceClassifierDutch_fromBERTje2_DAdialogQonly", "results": []}]}
Jeska/VaccinChatSentenceClassifierDutch_fromBERTje2_DAdialogQonly
null
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # VaccinChatSentenceClassifierDutch_fromBERTje2_DAdialogQonly09 This model is a fine-tuned version of [outputDAQonly09/](https://huggingface.co/outputDAQonly09/) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4978 - Accuracy: 0.9031 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 30.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 330 | 3.9692 | 0.2249 | | 4.3672 | 2.0 | 660 | 3.1312 | 0.4031 | | 4.3672 | 3.0 | 990 | 2.5068 | 0.5658 | | 3.1495 | 4.0 | 1320 | 2.0300 | 0.6600 | | 2.2491 | 5.0 | 1650 | 1.6517 | 0.7450 | | 2.2491 | 6.0 | 1980 | 1.3604 | 0.7943 | | 1.622 | 7.0 | 2310 | 1.1328 | 0.8327 | | 1.1252 | 8.0 | 2640 | 0.9484 | 0.8611 | | 1.1252 | 9.0 | 2970 | 0.8212 | 0.8757 | | 0.7969 | 10.0 | 3300 | 0.7243 | 0.8830 | | 0.5348 | 11.0 | 3630 | 0.6597 | 0.8867 | | 0.5348 | 12.0 | 3960 | 0.5983 | 0.8857 | | 0.3744 | 13.0 | 4290 | 0.5635 | 0.8976 | | 0.2564 | 14.0 | 4620 | 0.5437 | 0.8985 | | 0.2564 | 15.0 | 4950 | 0.5124 | 0.9013 | | 0.1862 | 16.0 | 5280 | 0.5074 | 0.9022 | | 0.1349 | 17.0 | 5610 | 0.5028 | 0.9049 | | 0.1349 | 18.0 | 5940 | 0.4876 | 0.9077 | | 0.0979 | 19.0 | 6270 | 0.4971 | 0.9049 | | 0.0763 | 20.0 | 6600 | 0.4941 | 0.9022 | | 0.0763 | 21.0 | 6930 | 0.4957 | 0.9049 | | 0.0602 | 22.0 | 7260 | 0.4989 | 0.9049 | | 0.0504 | 23.0 | 7590 | 0.4959 | 0.9040 | | 0.0504 | 24.0 | 7920 | 0.4944 | 0.9031 | | 0.0422 | 25.0 | 8250 | 0.4985 | 0.9040 | | 0.0379 | 26.0 | 8580 | 0.4970 | 0.9049 | | 0.0379 | 27.0 | 8910 | 0.4949 | 0.9040 | | 0.0351 | 28.0 | 9240 | 0.4971 | 0.9040 | | 0.0321 | 29.0 | 9570 | 0.4967 | 0.9031 | | 0.0321 | 30.0 | 9900 | 0.4978 | 0.9031 | ### Framework versions - Transformers 4.13.0.dev0 - Pytorch 1.10.0 - Datasets 1.16.1 - Tokenizers 0.10.3
{"tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "VaccinChatSentenceClassifierDutch_fromBERTje2_DAdialogQonly09", "results": []}]}
Jeska/VaccinChatSentenceClassifierDutch_fromBERTje2_DAdialogQonly09
null
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # VaccinChatSentenceClassifierDutch_fromBERTjeDIAL This model is a fine-tuned version of [Jeska/BertjeWDialDataQA20k](https://huggingface.co/Jeska/BertjeWDialDataQA20k) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.8355 - Accuracy: 0.6322 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 3.4418 | 1.0 | 1457 | 2.3866 | 0.5406 | | 1.7742 | 2.0 | 2914 | 1.9365 | 0.6069 | | 1.1313 | 3.0 | 4371 | 1.8355 | 0.6322 | ### Framework versions - Transformers 4.13.0.dev0 - Pytorch 1.10.0 - Datasets 1.16.1 - Tokenizers 0.10.3
{"tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "VaccinChatSentenceClassifierDutch_fromBERTjeDIAL", "results": []}]}
Jeska/VaccinChatSentenceClassifierDutch_fromBERTjeDIAL
null
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Jeska/XLM-RoBERTaWDialDataALL01
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
# Model Trained Using AutoNLP - Problem type: Multi-class Classification - Model ID: 22144706 - CO2 Emissions (in grams): 27.135492487925884 ## Validation Metrics - Loss: 1.81697416305542 - Accuracy: 0.6377269139700079 - Macro F1: 0.5181293370145044 - Micro F1: 0.6377269139700079 - Weighted F1: 0.631117826235572 - Macro Precision: 0.5371452512845428 - Micro Precision: 0.6377269139700079 - Weighted Precision: 0.6655055695465463 - Macro Recall: 0.5609328178925124 - Micro Recall: 0.6377269139700079 - Weighted Recall: 0.6377269139700079 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/Jeska/autonlp-vaccinfaq-22144706 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("Jeska/autonlp-vaccinfaq-22144706", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("Jeska/autonlp-vaccinfaq-22144706", use_auth_token=True) inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```
{"language": "unk", "tags": "autonlp", "datasets": ["Jeska/autonlp-data-vaccinfaq"], "widget": [{"text": "I love AutoNLP \ud83e\udd17"}], "co2_eq_emissions": 27.135492487925884}
Jeska/autonlp-vaccinfaq-22144706
null
[ "transformers", "pytorch", "bert", "text-classification", "autonlp", "unk", "dataset:Jeska/autonlp-data-vaccinfaq", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
JesseParvess/fine-tune-wav2vec2
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
JhunMarson/JhunMarson
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
`LOREN` is an interpretable fact verification model trained on [FEVER](https://fever.ai), which aims to predict the veracity of a textual claim against a trustworthy knowledge source such as Wikipedia. `LOREN` also decomposes the verification and makes accurate and faithful phrase-level veracity predictions without any phrasal veracity supervision. This repo hosts the following pre-trained models for `LOREN`: - `fact_checking/`: the verification models based on BERT (large) and RoBERTa (large), respectively. - `mrc_seq2seq/`: the generative machine reading comprehension model based on BART (base). - `evidence_retrieval/`: the evidence sentence ranking models, which are copied directly from [KGAT](https://github.com/thunlp/KernelGAT). More technical details can be found at [this GitHub Repo](https://github.com/jiangjiechen/LOREN). Please check out our AAAI 2022 paper for more details: "[LOREN: Logic-Regularized Reasoning for Interpretable Fact Verification](https://arxiv.org/abs/2012.13577)".
{}
jiangjiechen/loren
null
[ "arxiv:2012.13577", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Jiayao/distilbert-base-uncased-finetuned-squad
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Jibans/Bob_Marley
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Jiejie/asr
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
JihyukKim/cbert-aleqd-s100-b36-g2-ib-hn
null
[ "pytorch", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
JihyukKim/cbert-b36-g2-ib-hn
null
[ "pytorch", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Jihyun22/bert-base-finetuned-ner
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-finetuned-nli This model is a fine-tuned version of [klue/bert-base](https://huggingface.co/klue/bert-base) on the klue dataset. It achieves the following results on the evaluation set: - Loss: 0.1357 - Accuracy: 0.756 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 196 | 0.7357 | 0.156 | | No log | 2.0 | 392 | 0.5952 | 0.0993 | | 0.543 | 3.0 | 588 | 0.5630 | 0.099 | | 0.543 | 4.0 | 784 | 0.5670 | 0.079 | | 0.543 | 5.0 | 980 | 0.5795 | 0.078 | ### Framework versions - Transformers 4.9.2 - Pytorch 1.9.0+cu102 - Datasets 1.11.0 - Tokenizers 0.10.3
{"tags": ["generated_from_trainer"], "datasets": ["klue"], "metrics": ["accuracy"], "model_index": [{"name": "bert-base-finetuned-nli", "results": [{"task": {"name": "Text Classification", "type": "text-classification"}, "dataset": {"name": "klue", "type": "klue", "args": "nli"}, "metric": {"name": "Accuracy", "type": "accuracy", "value": 0.756}}]}]}
Jihyun22/bert-base-finetuned-nli
null
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "dataset:klue", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Jihyun22/roberta-base-finetuned-nli
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
JihyunLEE/bert-base-uncased-finetuned-swag
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
LysandreJik/Rose-Brain
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
LysandreJik/dummy-hf-hub
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
fill-mask
transformers
{}
LysandreJik/dummy-model
null
[ "transformers", "pytorch", "camembert", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
LysandreJik/fat-pushes
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
LysandreJik/flax-model
null
[ "jax", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
LysandreJik/layoutlmv2-base-uncased
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
feature-extraction
transformers
{}
LysandreJik/local_dir
null
[ "transformers", "pytorch", "bert", "feature-extraction", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
LysandreJik/local_dir2
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
LysandreJik/local_dir3
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
feature-extraction
transformers
{}
LysandreJik/local_dir_1
null
[ "transformers", "pytorch", "bert", "feature-extraction", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
LysandreJik/metnet-test
null
[ "pytorch", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
LysandreJik/model
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
LysandreJik/new-repo
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
LysandreJik/random-model
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
LysandreJik/repo-with-large-files
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
{}
LysandreJik/test-upload
null
[ "transformers", "pytorch", "distilbert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
{}
LysandreJik/test-upload1
null
[ "transformers", "pytorch", "distilbert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # testing This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the GLUE MRPC dataset. It achieves the following results on the evaluation set: - Loss: 0.6644 - Accuracy: 0.6814 - F1: 0.8105 - Combined Score: 0.7459 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 10 ### Training results ### Framework versions - Transformers 4.11.0.dev0 - Pytorch 1.9.0+cu111 - Datasets 1.11.0 - Tokenizers 0.10.3
{"language": ["en"], "license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["glue"], "metrics": ["accuracy", "f1"], "model-index": [{"name": "testing", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "GLUE MRPC", "type": "glue", "args": "mrpc"}, "metrics": [{"type": "accuracy", "value": 0.6813725490196079, "name": "Accuracy"}, {"type": "f1", "value": 0.8104956268221574, "name": "F1"}]}]}]}
LysandreJik/testing
null
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
LysandreJik/text-files-2
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
LysandreJik/text-files
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
feature-extraction
transformers
{}
LysandreJik/torch-model-2
null
[ "transformers", "pytorch", "bert", "feature-extraction", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
LysandreJik/torch-model
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
LysandreJik/trocr-large
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
LysandreJik/with-commit-1
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
transformers
# Jimmy's character DialoGPT model
{"tags": ["conversational"]}
JimmyHodl/DialoGPT-medium
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
JimmyHodl/Model
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Jinchao/wav2vec2-large-xls-r-300m-turkish-colab
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
transformers
# KrELECTRA-base-mecab Korean-based Pre-trained ELECTRA Language Model using Mecab (Morphological Analyzer) ## Usage ### Load model and tokenizer ```python >>> from transformers import AutoTokenizer, AutoModelForPreTraining >>> model = AutoModelForPreTraining.from_pretrained("Jinhwan/krelectra-base-mecab") >>> tokenizer = AutoTokenizer.from_pretrained("Jinhwan/krelectra-base-mecab") ``` ### Tokenizer example ```python >>> from transformers import AutoTokenizer >>> tokenizer = AutoTokenizer.from_pretrained("Jinhwan/krelectra-base-mecab") >>> tokenizer.tokenize("[CLS] 한국어 ELECTRA를 공유합니다. [SEP]") ['[CLS]', '한국어', 'EL', '##ECT', '##RA', '##를', '공유', '##합', '##니다', '.', '[SEP]'] >>> tokenizer.convert_tokens_to_ids(['[CLS]', '한국어', 'EL', '##ECT', '##RA', '##를', '공유', '##합', '##니다', '.', '[SEP]']) [2, 7214, 24023, 24663, 26580, 3195, 7086, 3746, 5500, 17, 3]
{"language": "ko", "license": "apache-2.0", "tags": ["korean"]}
Jinhwan/krelectra-base-mecab
null
[ "transformers", "pytorch", "electra", "pretraining", "korean", "ko", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Jinx18/Nastya19
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
transformers
{}
Jipski/Flos_gpt-2_erw-02
null
[ "transformers", "pytorch", "gpt2", "text-generation", "autotrain_compatible", "endpoints_compatible", "has_space", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
transformers
{}
Jipski/Flos_gpt-2_erw
null
[ "transformers", "pytorch", "gpt2", "text-generation", "autotrain_compatible", "endpoints_compatible", "has_space", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
transformers
{}
Jipski/MegStuart_gpt-2
null
[ "transformers", "pytorch", "gpt2", "text-generation", "autotrain_compatible", "endpoints_compatible", "has_space", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
transformers
{}
Jipski/gpt2-Flo-BasBoettcher-Chefkoch
null
[ "transformers", "pytorch", "gpt2", "text-generation", "autotrain_compatible", "endpoints_compatible", "has_space", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
transformers
{}
Jipski/gpt2-Flo-BasBoettcher
null
[ "transformers", "pytorch", "gpt2", "text-generation", "autotrain_compatible", "endpoints_compatible", "has_space", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
transformers
{}
Jipski/gpt2-FloSolo
null
[ "transformers", "pytorch", "gpt2", "text-generation", "autotrain_compatible", "endpoints_compatible", "has_space", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
for test
{"license": "afl-3.0"}
Jira/first_test
null
[ "license:afl-3.0", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
JirroReo/DialoGPT-small-rick
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
feature-extraction
transformers
{}
indexxlim/HanBART_base
null
[ "transformers", "pytorch", "bart", "feature-extraction", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
fill-mask
transformers
{}
Jitin/manglish
null
[ "transformers", "pytorch", "jax", "roberta", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
fill-mask
transformers
{}
Jitin/romanized-malayalam
null
[ "transformers", "pytorch", "jax", "roberta", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
zero-shot-classification
transformers
# XLM-roBERTa-large-it-mnli ## Version 0.1 | | matched-it acc | mismatched-it acc | | -------------------------------------------------------------------------------- |----------------|-------------------| | XLM-roBERTa-large-it-mnli | 84.75 | 85.39 | ## Model Description This model takes [xlm-roberta-large](https://huggingface.co/xlm-roberta-large) and fine-tunes it on a subset of NLI data taken from a automatically translated version of the MNLI corpus. It is intended to be used for zero-shot text classification, such as with the Hugging Face [ZeroShotClassificationPipeline](https://huggingface.co/transformers/master/main_classes/pipelines.html#transformers.ZeroShotClassificationPipeline). ## Intended Usage This model is intended to be used for zero-shot text classification of italian texts. Since the base model was pre-trained trained on 100 different languages, the model has shown some effectiveness in languages beyond those listed above as well. See the full list of pre-trained languages in appendix A of the [XLM Roberata paper](https://arxiv.org/abs/1911.02116) For English-only classification, it is recommended to use [bart-large-mnli](https://huggingface.co/facebook/bart-large-mnli) or [a distilled bart MNLI model](https://huggingface.co/models?filter=pipeline_tag%3Azero-shot-classification&search=valhalla). #### With the zero-shot classification pipeline The model can be loaded with the `zero-shot-classification` pipeline like so: ```python from transformers import pipeline classifier = pipeline("zero-shot-classification", model="Jiva/xlm-roberta-large-it-mnli", device=0, use_fast=True, multi_label=True) ``` You can then classify in any of the above languages. You can even pass the labels in one language and the sequence to classify in another: ```python # we will classify the following wikipedia entry about Sardinia" sequence_to_classify = "La Sardegna è una regione italiana a statuto speciale di 1 592 730 abitanti con capoluogo Cagliari, la cui denominazione bilingue utilizzata nella comunicazione ufficiale è Regione Autonoma della Sardegna / Regione Autònoma de Sardigna." # we can specify candidate labels in Italian: candidate_labels = ["geografia", "politica", "macchine", "cibo", "moda"] classifier(sequence_to_classify, candidate_labels) # {'labels': ['geografia', 'moda', 'politica', 'macchine', 'cibo'], # 'scores': [0.38871392607688904, 0.22633370757102966, 0.19398456811904907, 0.13735772669315338, 0.13708525896072388]} ``` The default hypothesis template is the English, `This text is {}`. With this model better results are achieving when providing a translated template: ```python sequence_to_classify = "La Sardegna è una regione italiana a statuto speciale di 1 592 730 abitanti con capoluogo Cagliari, la cui denominazione bilingue utilizzata nella comunicazione ufficiale è Regione Autonoma della Sardegna / Regione Autònoma de Sardigna." candidate_labels = ["geografia", "politica", "macchine", "cibo", "moda"] hypothesis_template = "si parla di {}" # classifier(sequence_to_classify, candidate_labels, hypothesis_template=hypothesis_template) # 'scores': [0.6068345904350281, 0.34715887904167175, 0.32433947920799255, 0.3068877160549164, 0.18744681775569916]} ``` #### With manual PyTorch ```python # pose sequence as a NLI premise and label as a hypothesis from transformers import AutoModelForSequenceClassification, AutoTokenizer nli_model = AutoModelForSequenceClassification.from_pretrained('Jiva/xlm-roberta-large-it-mnli') tokenizer = AutoTokenizer.from_pretrained('Jiva/xlm-roberta-large-it-mnli') premise = sequence hypothesis = f'si parla di {}.' # run through model pre-trained on MNLI x = tokenizer.encode(premise, hypothesis, return_tensors='pt', truncation_strategy='only_first') logits = nli_model(x.to(device))[0] # we throw away "neutral" (dim 1) and take the probability of # "entailment" (2) as the probability of the label being true entail_contradiction_logits = logits[:,[0,2]] probs = entail_contradiction_logits.softmax(dim=1) prob_label_is_true = probs[:,1] ``` ## Training ## Version 0.1 The model has been now retrained on the full training set. Around 1000 sentences pairs have been removed from the set because their translation was botched by the translation model. | metric | value | |----------------- |------- | | learning_rate | 4e-6 | | optimizer | AdamW | | batch_size | 80 | | mcc | 0.77 | | train_loss | 0.34 | | eval_loss | 0.40 | | stopped_at_step | 9754 | ## Version 0.0 This model was pre-trained on set of 100 languages, as described in [the original paper](https://arxiv.org/abs/1911.02116). It was then fine-tuned on the task of NLI on an Italian translation of the MNLI dataset (85% of the train set only so far). The model used for translating the texts is Helsinki-NLP/opus-mt-en-it, with a max output sequence lenght of 120. The model has been trained for 1 epoch with learning rate 4e-6 and batch size 80, currently it scores 82 acc. on the remaining 15% of the training.
{"language": "it", "license": "mit", "tags": ["text-classification", "pytorch", "tensorflow"], "datasets": ["multi_nli", "glue"], "pipeline_tag": "zero-shot-classification", "widget": [{"text": "La seconda guerra mondiale vide contrapporsi, tra il 1939 e il 1945, le cosiddette potenze dell'Asse e gli Alleati che, come gi\u00e0 accaduto ai belligeranti della prima guerra mondiale, si combatterono su gran parte del pianeta; il conflitto ebbe inizio il 1\u00ba settembre 1939 con l'attacco della Germania nazista alla Polonia e termin\u00f2, nel teatro europeo, l'8 maggio 1945 con la resa tedesca e, in quello asiatico, il successivo 2 settembre con la resa dell'Impero giapponese dopo i bombardamenti atomici di Hiroshima e Nagasaki.", "candidate_labels": "guerra, storia, moda, cibo", "multi_class": true}], "model-index": [{"name": "Jiva/xlm-roberta-large-it-mnli", "results": [{"task": {"type": "natural-language-inference", "name": "Natural Language Inference"}, "dataset": {"name": "glue", "type": "glue", "config": "mnli", "split": "validation_matched"}, "metrics": [{"type": "accuracy", "value": 0.8819154355578197, "name": "Accuracy", "verified": true, "verifyToken": "eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNjY3MTgxNjg2ZGZmYjRjNmUyYWMwYzA3M2I3M2U0ZTYxZTFlNWY0Y2Y3MjZhYmVmM2U0OTZlYmJiMzU0MWRiMiIsInZlcnNpb24iOjF9.jgND_l7mc3EtHPiAPbAas7YaNnNZ5FSZNmIDOHSEpqV87lGL2XL4seol_MspagWmoQAN_RGdSM9nsIQH364EAw"}, {"type": "precision", "value": 0.8814638070461666, "name": "Precision Macro", "verified": true, "verifyToken": "eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiOGY0MjQ0ZDkyMzA3NmU2YmYzMGUyNTJmNWUxMTI4MTI5YzhiNjA2MzZiZDBmMTc4ODdhMzcxNTMyM2Y0MWIwOCIsInZlcnNpb24iOjF9.BCDxzHFaXZWISV2qkXimdnIxGT3qVos-tcBv3Yp9VntL2ot4e-Nifman-Yb4XwmHccTxBnf3TY0DxEE55vF9BQ"}, {"type": "precision", "value": 0.8819154355578197, "name": "Precision Micro", "verified": true, "verifyToken": "eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZTlkZWIzNTBhNmFkNzkwNzg3ODcxNmU3YjgwODBmMmE5Njc3M2RmMDk0ZGFjZWYwMDBmNzVjOTQ3NGYyZjI3ZSIsInZlcnNpb24iOjF9.ejVcvVSUBWSMbvpxlkVi73qzkwNBgD5C1GBTandyWbk3bOas7fJ26x0duI6sNkgz-Y3Q_3pI-LJSCZgtPhP0Bw"}, {"type": "precision", "value": 0.881571663280083, "name": "Precision Weighted", "verified": true, "verifyToken": "eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNDFkMWI2MTIwNjRmYjgxYjZiNWJmZWZmNzAxNDcwODdjYzg2MTAwM2I5YWRjYWQ0MzA5MTk5MTFlZDI5NGQ4MiIsInZlcnNpb24iOjF9.GrHhqY6L8AJEy0XaNzR2QI2nnwJUen8Ay5sKVh0gBN3jAv-DWwNrjVZgeclGgH4pOdRxxlNCOkZyPnEEon4eAA"}, {"type": "recall", "value": 0.8802419956104793, "name": "Recall Macro", "verified": true, "verifyToken": "eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYjFhNjA2M2IxZGQwYjE3YzIzZGRkMTM1MDg5OTBiNTY3YjE1YjE0ZDlkNmI1ZmY5ZmM5OTZkOTk2ODI3Mzc3YiIsInZlcnNpb24iOjF9.yWoQSRCGGu6mNhjak6fPM-w01kAlDK8lDVdlKserf19gEeiB4vyPfklrp4HdlRFadfUB7pJ2iloTCkDj_jPYBA"}, {"type": "recall", "value": 0.8819154355578197, "name": "Recall Micro", "verified": true, "verifyToken": "eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYjQ1N2FhNmRiMWY5YmIwODgzNjI2YjY2NzgwNmQ2ZDRmN2UzNTg3MWQ0NDhmMjMzNjc2NGExMjliNWYxMDRjZSIsInZlcnNpb24iOjF9.XGiAwKlPkFwimVDK2CJ37oi8mz2KkJMxAanTJNFcW_Lwa-9T9--yZNtS3t1pfbUP2NeXxCzW_8DlxnM7RcG2DA"}, {"type": "recall", "value": 0.8819154355578197, "name": "Recall Weighted", "verified": true, "verifyToken": "eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNDU1OWFjN2ZmYjVlNWJjZTVmZDQ0MmVjZmFkMmU2OTkzZTcxZDkyZTlmN2E0NjFkOTE4YzU1ZjVjYWMxYjViYSIsInZlcnNpb24iOjF9.HpRWd_-NXIgZemTCIcpK2lpe4bt2fro_NgWX2wuvN4uWVdKsYKr9v5W8EOEv4xWzdbgtlllCG9UCc3-7YqBAAg"}, {"type": "f1", "value": 0.8802937937959167, "name": "F1 Macro", "verified": true, "verifyToken": "eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiY2U1OGNmZDMxZTUwNDgxZjIzYWM2ZGQzZTg1NmNjMjdjNTkxNTk0MGI2ZDlkYjVmODFiZTllZmE0NzZlZWVlOCIsInZlcnNpb24iOjF9.7NupnTf-kIv0pIoof-2XHp7ESavQeTDDRGs3bTF3F0UJsorY8WO7I_qyoGiuPmLWtwFsNJjybQdMahM_oss7Ag"}, {"type": "f1", "value": 0.8819154355578197, "name": "F1 Micro", "verified": true, "verifyToken": "eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiODA2MGU2MzM5OWRjMTk4OGYxNTIxMjUyNWI0YjU5ZWRlMDZhMWRjMjk1MmQzZDg0YTYzYzY4M2U3OWFhNzEwNiIsInZlcnNpb24iOjF9.dIYUojg4cbbQCP6rlp2tbX72tMR5ROtUZYFDJBgHD8_KfEAr9nNoLeP2cvFCYcFe8MyQh7LADTK5l0PTt3B0AQ"}, {"type": "f1", "value": 0.8811955957302677, "name": "F1 Weighted", "verified": true, "verifyToken": "eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiY2I2ZDQ4NWY5NmNmZjNjOWRjNGUyYzcyZWNjNzA0MGJlZmRkYWIwNjVmYmFlNjRmMjAwMWIwMTJjNDY1MjYxNyIsInZlcnNpb24iOjF9.LII2Vu8rWWbjWU55Yenf4ZsSpReiPsoBmHH1XwgVu7HgTtL-TnRaCCxSTJ0i0jnK8sa2kKqXw1RndE1HL1GbBQ"}, {"type": "loss", "value": 0.3171548545360565, "name": "loss", "verified": true, "verifyToken": "eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiOGYxNDA4YzBjMGU5MDBjNGQwOThlMzZkNWFjNDg4MzdiNWFiNGM2ZmQyOTZmNTBkMTE1OGI1NzhmMGM3ZWJjYSIsInZlcnNpb24iOjF9._yP8hC7siIQkSG8-R9RLlIYqqyh8sobk-jN1-QELU0iv9VS54df_7nNPy8hGUVx-TAntaIeFyQ8DLVcM_vVDDw"}]}]}]}
Jiva/xlm-roberta-large-it-mnli
null
[ "transformers", "pytorch", "safetensors", "xlm-roberta", "text-classification", "tensorflow", "zero-shot-classification", "it", "dataset:multi_nli", "dataset:glue", "arxiv:1911.02116", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
transformers
# My Awesome Model
{"tags": ["conversational"]}
Jllama/dialoGPT-small-Joshua-test
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Joanna88/Quenya
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00