Search is not available for this dataset
pipeline_tag
stringclasses
48 values
library_name
stringclasses
205 values
text
stringlengths
0
18.3M
metadata
stringlengths
2
1.07B
id
stringlengths
5
122
last_modified
null
tags
listlengths
1
1.84k
sha
null
created_at
stringlengths
25
25
null
null
{}
hytting/DialoGPT-medium-Sheldon-1
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
hytting/DialoGPT-medium-Sheldon-2
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
hytting/DialoGPT-medium-Sheldon-3
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
hytting/DialoGPT-medium-Sheldon-4
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
{}
Jodsa/camembert_clf
null
[ "transformers", "pytorch", "camembert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
fill-mask
transformers
{}
Jodsa/camembert_mlm
null
[ "transformers", "pytorch", "camembert", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Joemar0990/Joemar
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Joguita/Giovanna
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
JohnCCM/DialogGPT-small-harrypotter
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Johnnil/model_name
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Johnnil/prestoBERT
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Jon/model_name
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Jon/testRetailModel
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
# roberta-base-bne-finetuned-catalonia-independence-detector This model is a fine-tuned version of [BSC-TeMU/roberta-base-bne](https://huggingface.co/BSC-TeMU/roberta-base-bne) on the catalonia_independence dataset. It achieves the following results on the evaluation set: - Loss: 0.9415 - Accuracy: 0.7881 <details> ## Model description The data was collected over 12 days during February and March of 2019 from tweets posted in Barcelona, and during September of 2018 from tweets posted in the town of Terrassa, Catalonia. Each corpus is annotated with three classes: AGAINST, FAVOR and NEUTRAL, which express the stance towards the target - independence of Catalonia. ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 378 | 0.5534 | 0.7558 | | 0.6089 | 2.0 | 756 | 0.5315 | 0.7643 | | 0.2678 | 3.0 | 1134 | 0.7336 | 0.7816 | | 0.0605 | 4.0 | 1512 | 0.8809 | 0.7866 | | 0.0605 | 5.0 | 1890 | 0.9415 | 0.7881 | </details> ### Model in action 🚀 Fast usage with **pipelines**: ```python from transformers import pipeline model_path = "JonatanGk/roberta-base-bne-finetuned-catalonia-independence-detector" independence_analysis = pipeline("text-classification", model=model_path, tokenizer=model_path) independence_analysis( "Junqueras, sobre la decisión judicial sobre Puigdemont: La justicia que falta en el Estado llega y llegará de Europa" ) # Output: [{'label': 'FAVOR', 'score': 0.9936726093292236}] independence_analysis( "El desafío independentista queda adormecido, y eso que el Gobierno ha sido muy claro en que su propuesta para Cataluña es una agenda de reencuentro, centrada en inversiones e infraestructuras") # Output: [{'label': 'AGAINST', 'score': 0.7508948445320129}] independence_analysis( "Desconvocada la manifestación del domingo en Barcelona en apoyo a Puigdemont" ) # Output: [{'label': 'NEUTRAL', 'score': 0.9966907501220703}] ``` [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/JonatanGk/Shared-Colab/blob/master/Catalonia_independence_Detector_(SPANISH).ipynb#scrollTo=uNMOXJz38W6U) ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.0+cu111 - Datasets 1.12.1 - Tokenizers 0.10.3 ## Citation Thx to HF.co & [@lewtun](https://github.com/lewtun) for Dataset ;) > Special thx to [Manuel Romero/@mrm8488](https://huggingface.co/mrm8488) as my mentor & R.C. > Created by [Jonatan Luna](https://JonatanGk.github.io) | [LinkedIn](https://www.linkedin.com/in/JonatanGk/)
{"language": "es", "license": "apache-2.0", "tags": ["spanish"], "datasets": ["catalonia_independence"], "metrics": ["accuracy"], "widget": [{"text": "Junqueras, sobre la decisi\u00f3n judicial sobre Puigdemont: La justicia que falta en el Estado llega y llegar\u00e1 de Europa"}, {"text": "Desconvocada la manifestaci\u00f3n del domingo en Barcelona en apoyo a Puigdemont"}], "model-index": [{"name": "roberta-base-bne-finetuned-mnli", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "catalonia_independence", "type": "catalonia_independence", "args": "spanish"}, "metrics": [{"type": "accuracy", "value": 0.7880893300248138, "name": "Accuracy"}]}, {"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "catalonia_independence", "type": "catalonia_independence", "config": "catalan", "split": "test"}, "metrics": [{"type": "accuracy", "value": 0.4592039800995025, "name": "Accuracy", "verified": true}, {"type": "precision", "value": 0.6104489964825159, "name": "Precision Macro", "verified": true}, {"type": "precision", "value": 0.4592039800995025, "name": "Precision Micro", "verified": true}, {"type": "precision", "value": 0.6167123723406555, "name": "Precision Weighted", "verified": true}, {"type": "recall", "value": 0.4146479268294389, "name": "Recall Macro", "verified": true}, {"type": "recall", "value": 0.4592039800995025, "name": "Recall Micro", "verified": true}, {"type": "recall", "value": 0.4592039800995025, "name": "Recall Weighted", "verified": true}, {"type": "f1", "value": 0.33416407167650636, "name": "F1 Macro", "verified": true}, {"type": "f1", "value": 0.4592039800995025, "name": "F1 Micro", "verified": true}, {"type": "f1", "value": 0.34549318538357193, "name": "F1 Weighted", "verified": true}, {"type": "loss", "value": 3.393402099609375, "name": "loss", "verified": true}]}]}]}
JonatanGk/roberta-base-bne-finetuned-catalonia-independence-detector
null
[ "transformers", "pytorch", "tensorboard", "roberta", "text-classification", "spanish", "es", "dataset:catalonia_independence", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
# roberta-base-bne-finetuned-ciberbullying-spanish This model is a fine-tuned version of [BSC-TeMU/roberta-base-bne](https://huggingface.co/BSC-TeMU/roberta-base-bne) on the dataset generated scrapping all social networks (Twitter, Youtube ...) to detect ciberbullying on Spanish. It achieves the following results on the evaluation set: - Loss: 0.1657 - Accuracy: 0.9607 ## Training and evaluation data I use the concatenation from multiple datasets generated scrapping social networks (Twitter,Youtube,Discord...) to fine-tune this model. The total number of sentence pairs is above 360k sentences. ## Training procedure <details> ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Accuracy | Validation Loss | |:-------------:|:-----:|:-----:|:--------:|:---------------:| | 0.1512 | 1.0 | 22227 | 0.9501 | 0.1418 | | 0.1253 | 2.0 | 44454 | 0.9567 | 0.1499 | | 0.0973 | 3.0 | 66681 | 0.9594 | 0.1397 | | 0.0658 | 4.0 | 88908 | 0.9607 | 0.1657 | </details> ### Model in action 🚀 Fast usage with **pipelines**: ```python from transformers import pipeline model_path = "JonatanGk/roberta-base-bne-finetuned-ciberbullying-spanish" bullying_analysis = pipeline("text-classification", model=model_path, tokenizer=model_path) bullying_analysis( "Desde que te vi me enamoré de ti." ) # Output: [{'label': 'Not_bullying', 'score': 0.9995710253715515}] bullying_analysis( "Eres tan fea que cuando eras pequeña te echaban de comer por debajo de la puerta." ) # Output: [{'label': 'Bullying', 'score': 0.9918262958526611}] ``` [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/JonatanGk/Shared-Colab/blob/master/Cyberbullying_detection_(SPANISH).ipynb) ### Framework versions - Transformers 4.10.3 - Pytorch 1.9.0+cu102 - Datasets 1.12.1 - Tokenizers 0.10.3 > Special thx to [Manuel Romero/@mrm8488](https://huggingface.co/mrm8488) as my mentor & R.C. > Created by [Jonatan Luna](https://JonatanGk.github.io) | [LinkedIn](https://www.linkedin.com/in/JonatanGk/)
{"language": "es", "tags": ["spanish"], "metrics": ["accuracy"], "widget": [{"text": "Eres mas peque\u00f1o que un pitufo!"}, {"text": "Eres muy feo!"}, {"text": "Odio tu forma de hablar!"}, {"text": "Eres tan fea que cuando eras peque\u00f1a te echaban de comer por debajo de la puerta."}]}
JonatanGk/roberta-base-bne-finetuned-cyberbullying-spanish
null
[ "transformers", "pytorch", "tensorboard", "safetensors", "roberta", "text-classification", "spanish", "es", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-bne-finetuned-mnli This model is a fine-tuned version of [BSC-TeMU/roberta-base-bne](https://huggingface.co/BSC-TeMU/roberta-base-bne) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2869 - Accuracy: 0.9012 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.3222 | 1.0 | 1255 | 0.2869 | 0.9012 | | 0.2418 | 2.0 | 2510 | 0.3125 | 0.8987 | | 0.1726 | 3.0 | 3765 | 0.4120 | 0.8943 | | 0.0685 | 4.0 | 5020 | 0.5239 | 0.8919 | | 0.0245 | 5.0 | 6275 | 0.5910 | 0.8947 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.0+cu111 - Datasets 1.12.1 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "roberta-base-bne-finetuned-mnli", "results": []}]}
JonatanGk/roberta-base-bne-finetuned-hate-speech-offensive-spanish
null
[ "transformers", "pytorch", "tensorboard", "safetensors", "roberta", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
question-answering
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-bne-finetuned-sqac This model is a fine-tuned version of [PlanTL-GOB-ES/roberta-base-bne](https://huggingface.co/PlanTL-GOB-ES/roberta-base-bne) on the sqac dataset. It achieves the following results on the evaluation set: - Loss: 1.2066 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.9924 | 1.0 | 1196 | 0.8670 | | 0.474 | 2.0 | 2392 | 0.8923 | | 0.1637 | 3.0 | 3588 | 1.2066 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.0+cu111 - Datasets 1.14.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["sqac"], "model-index": [{"name": "roberta-base-bne-finetuned-sqac", "results": []}]}
JonatanGk/roberta-base-bne-finetuned-sqac
null
[ "transformers", "pytorch", "tensorboard", "roberta", "question-answering", "generated_from_trainer", "dataset:sqac", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
# roberta-base-ca-finetuned-catalonia-independence-detector This model is a fine-tuned version of [BSC-TeMU/roberta-base-ca](https://huggingface.co/BSC-TeMU/roberta-base-ca) on the catalonia_independence dataset. It achieves the following results on the evaluation set: - Loss: 0.6065 - Accuracy: 0.7612 <details> ## Training and evaluation data The data was collected over 12 days during February and March of 2019 from tweets posted in Barcelona, and during September of 2018 from tweets posted in the town of Terrassa, Catalonia. Each corpus is annotated with three classes: AGAINST, FAVOR and NEUTRAL, which express the stance towards the target - independence of Catalonia. ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 377 | 0.6311 | 0.7453 | | 0.7393 | 2.0 | 754 | 0.6065 | 0.7612 | | 0.5019 | 3.0 | 1131 | 0.6340 | 0.7547 | | 0.3837 | 4.0 | 1508 | 0.6777 | 0.7597 | | 0.3837 | 5.0 | 1885 | 0.7232 | 0.7582 | </details> ### Model in action 🚀 Fast usage with **pipelines**: ```python from transformers import pipeline model_path = "JonatanGk/roberta-base-ca-finetuned-catalonia-independence-detector" independence_analysis = pipeline("text-classification", model=model_path, tokenizer=model_path) independence_analysis( "Assegura l'expert que en un 46% els catalans s'inclouen dins del que es denomina com el doble sentiment identitari. És a dir, se senten tant catalans com espanyols. 1 de cada cinc, en canvi, té un sentiment excloent, només se senten catalans, i un 4% sol espanyol." ) # Output: [{'label': 'AGAINST', 'score': 0.7457581758499146}] independence_analysis( "Llarena demana la detenció de Comín i Ponsatí aprofitant que són a Itàlia amb Puigdemont" ) # Output: [{'label': 'NEUTRAL', 'score': 0.7436802983283997}] independence_analysis( "Puigdemont, a l'estat espanyol: Quatre anys després, ens hem guanyat el dret a dir prou" ) # Output: [{'label': 'FAVOR', 'score': 0.9040119647979736}] ``` [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/JonatanGk/Shared-Colab/blob/master/Catalonia_independence_Detector_(CATALAN).ipynb#scrollTo=j29NHJtOyAVU) ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.0+cu111 - Datasets 1.12.1 - Tokenizers 0.10.3 ## Citation Thx to HF.co & [@lewtun](https://github.com/lewtun) for Dataset ;) > Special thx to [Manuel Romero/@mrm8488](https://huggingface.co/mrm8488) as my mentor & R.C. > Created by [Jonatan Luna](https://JonatanGk.github.io) | [LinkedIn](https://www.linkedin.com/in/JonatanGk/)
{"language": "ca", "license": "apache-2.0", "tags": ["catalan"], "datasets": ["catalonia_independence"], "metrics": ["accuracy"], "widget": [{"text": "Puigdemont, a l'estat espanyol: Quatre anys despr\u00e9s, ens hem guanyat el dret a dir prou"}, {"text": "Llarena demana la detenci\u00f3 de Com\u00edn i Ponsat\u00ed aprofitant que s\u00f3n a It\u00e0lia amb Puigdemont"}, {"text": "Assegura l'expert que en un 46% els catalans s'inclouen dins del que es denomina com el doble sentiment identitari. \u00c9s a dir, se senten tant catalans com espanyols. 1 de cada cinc, en canvi, t\u00e9 un sentiment excloent, nom\u00e9s se senten catalans, i un 4% sol espanyol."}], "model-index": [{"name": "roberta-base-ca-finetuned-mnli", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "catalonia_independence", "type": "catalonia_independence", "args": "catalan"}, "metrics": [{"type": "accuracy", "value": 0.7611940298507462, "name": "Accuracy"}]}, {"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "catalonia_independence", "type": "catalonia_independence", "config": "catalan", "split": "test"}, "metrics": [{"type": "accuracy", "value": 0.7208955223880597, "name": "Accuracy", "verified": true}, {"type": "precision", "value": 0.7532458247651523, "name": "Precision Macro", "verified": true}, {"type": "precision", "value": 0.7208955223880597, "name": "Precision Micro", "verified": true}, {"type": "precision", "value": 0.7367396361532118, "name": "Precision Weighted", "verified": true}, {"type": "recall", "value": 0.6880645531209203, "name": "Recall Macro", "verified": true}, {"type": "recall", "value": 0.7208955223880597, "name": "Recall Micro", "verified": true}, {"type": "recall", "value": 0.7208955223880597, "name": "Recall Weighted", "verified": true}, {"type": "f1", "value": 0.7013044744309381, "name": "F1 Macro", "verified": true}, {"type": "f1", "value": 0.7208955223880597, "name": "F1 Micro", "verified": true}, {"type": "f1", "value": 0.713640086434487, "name": "F1 Weighted", "verified": true}, {"type": "loss", "value": 0.6895929574966431, "name": "loss", "verified": true}]}]}]}
JonatanGk/roberta-base-ca-finetuned-catalonia-independence-detector
null
[ "transformers", "pytorch", "tensorboard", "roberta", "text-classification", "catalan", "ca", "dataset:catalonia_independence", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
# roberta-base-ca-finetuned-cyberbullying-catalan This model is a fine-tuned version of [BSC-TeMU/roberta-base-ca](https://huggingface.co/BSC-TeMU/roberta-base-ca) on the dataset generated scrapping all social networks (Twitter, Youtube ...) to detect cyberbullying on Catalan. It achieves the following results on the evaluation set: - Loss: 0.1508 - Accuracy: 0.9665 ## Training and evaluation data I use the concatenation from multiple datasets generated scrapping social networks (Twitter,Youtube,Discord...) to fine-tune this model. The total number of sentence pairs is above 410k sentences. Trained similar method at [roberta-base-bne-finetuned-cyberbullying-spanish](https://huggingface.co/JonatanGk/roberta-base-bne-finetuned-cyberbullying-spanish) ## Training procedure <details> ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 </details> ### Model in action 🚀 Fast usage with **pipelines**: ```python from transformers import pipeline model_path = "JonatanGk/roberta-base-ca-finetuned-ciberbullying-catalan" bullying_analysis = pipeline("text-classification", model=model_path, tokenizer=model_path) bullying_analysis( "Des que et vaig veure m'en vaig enamorar de tu." ) # Output: [{'label': 'Not_bullying', 'score': 0.9996786117553711}] bullying_analysis( "Ets tan lletja que et donaven de menjar per sota la porta." ) # Output: [{'label': 'Bullying', 'score': 0.9927878975868225}] ``` [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/JonatanGk/Shared-Colab/blob/master/Cyberbullying_detection_(CATALAN).ipynb) ### Framework versions - Transformers 4.10.3 - Pytorch 1.9.0+cu102 - Datasets 1.12.1 - Tokenizers 0.10.3 ## Citation ```bibtex @inproceedings{armengol-estape-etal-2021-multilingual, title = "Are Multilingual Models the Best Choice for Moderately Under-resourced Languages? {A} Comprehensive Assessment for {C}atalan", author = "Armengol-Estap{\'e}, Jordi and Carrino, Casimiro Pio and Rodriguez-Penagos, Carlos and de Gibert Bonet, Ona and Armentano-Oller, Carme and Gonzalez-Agirre, Aitor and Melero, Maite and Villegas, Marta", booktitle = "Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021", month = aug, year = "2021", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.findings-acl.437", doi = "10.18653/v1/2021.findings-acl.437", pages = "4933--4946", } ``` > Special thx to [Manuel Romero/@mrm8488](https://huggingface.co/mrm8488) as my mentor & R.C. > Created by [Jonatan Luna](https://JonatanGk.github.io) | [LinkedIn](https://www.linkedin.com/in/JonatanGk/)
{"language": "ca", "tags": ["catalan"], "metrics": ["accuracy"], "widget": [{"text": "Ets m\u00e9s petita que un barrufet!!"}, {"text": "Ets tan lletja que et donaven de menjar per sota la porta."}]}
JonatanGk/roberta-base-ca-finetuned-cyberbullying-catalan
null
[ "transformers", "pytorch", "roberta", "text-classification", "catalan", "ca", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-ca-finetuned-mnli This model is a fine-tuned version of [BSC-TeMU/roberta-base-ca](https://huggingface.co/BSC-TeMU/roberta-base-ca) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4137 - Accuracy: 0.8778 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.3699 | 1.0 | 1255 | 0.3712 | 0.8669 | | 0.3082 | 2.0 | 2510 | 0.3401 | 0.8766 | | 0.2375 | 3.0 | 3765 | 0.4137 | 0.8778 | | 0.1889 | 4.0 | 5020 | 0.4671 | 0.8733 | | 0.1486 | 5.0 | 6275 | 0.5205 | 0.8749 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.0+cu111 - Datasets 1.12.1 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "roberta-base-ca-finetuned-mnli", "results": []}]}
JonatanGk/roberta-base-ca-finetuned-hate-speech-offensive-catalan
null
[ "transformers", "pytorch", "tensorboard", "roberta", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-ca-finetuned-mnli This model is a fine-tuned version of [BSC-TeMU/roberta-base-ca](https://huggingface.co/BSC-TeMU/roberta-base-ca) on the tecla dataset. It achieves the following results on the evaluation set: - Loss: 0.9354 - Accuracy: 0.7362 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.8465 | 1.0 | 6888 | 0.8222 | 0.6990 | | 0.6966 | 2.0 | 13776 | 0.7872 | 0.7157 | | 0.5643 | 3.0 | 20664 | 0.8060 | 0.7268 | | 0.4435 | 4.0 | 27552 | 0.8470 | 0.7333 | | 0.3206 | 5.0 | 34440 | 0.9354 | 0.7362 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.0+cu111 - Datasets 1.12.1 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["tecla"], "metrics": ["accuracy"], "model-index": [{"name": "roberta-base-ca-finetuned-mnli", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "tecla", "type": "tecla", "args": "tecla"}, "metrics": [{"type": "accuracy", "value": 0.7361816335412737, "name": "Accuracy"}]}]}]}
JonatanGk/roberta-base-ca-finetuned-tecla
null
[ "transformers", "pytorch", "tensorboard", "roberta", "text-classification", "generated_from_trainer", "dataset:tecla", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
JonathanCmitchell/model_name
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
JonathanLehner/Chatbot
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
JonathanSum/another-dummy-model
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
JonathanSum/code-search-net-tokenizer
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
fill-mask
transformers
{}
JonathanSum/dummy-model
null
[ "transformers", "pytorch", "camembert", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
This is a dummy model.
{}
JonathanSum/new-dummy-model
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
JonathanSum/wav2vec2-large-xls-r-300m-zh-HK-colab_round
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
transformers
# Barney Calhoun DialoGPT Model
{"tags": ["conversational"]}
Jonesy/DialoGPT-medium_Barney
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
transformers
# Family Guy DialoGPT Model
{"tags": ["conversational"]}
Jonesy/FG_OLD
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
transformers
# Johnny Test DialoGPT Model
{"tags": ["conversational"]}
Jonesy/DialoGPT-small_JT
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Jonghyun/model_test
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Joragasy/SmartLayers-finetuned-ner
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Joragasy/custom_ner_model
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
text2text-generation
transformers
This is a smaller version of the google/mt5-base model with only Spanish and some English embeddings trained on 60k Spanish MLSum for summarization. You can use it with the command "summarize:"
{"language": "es"}
JorgeSarry/est5-summarize
null
[ "transformers", "pytorch", "mt5", "text2text-generation", "es", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
text2text-generation
transformers
This is a smaller version of the google/mt5-base model with only Spanish and some English embeddings trained on 60k Spanish WikiEdits for sentence simplification. You can use it with the command "simplify:"
{"language": "es"}
JorgeSarry/est5base-simplify
null
[ "transformers", "pytorch", "mt5", "text2text-generation", "es", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
text2text-generation
transformers
This is a smaller version of the google/mt5-base model with only Spanish and some English embeddings left following the procedure outlined here https://towardsdatascience.com/how-to-adapt-a-multilingual-t5-model-for-a-single-language-b9f94f3d9c90 The original model has 582M parameters, with 384M of them being input and output embeddings. After shrinking the sentencepiece vocabulary from 250K to 30K (top 10K English and top 20K Spanish tokens) the number of model parameters reduced to 244M parameters, resulting on a model size reduced from 2.2GB to 0.9GB - 42% of the original one.
{"language": "es"}
JorgeSarry/est5base
null
[ "transformers", "pytorch", "t5", "text2text-generation", "es", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
token-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # albert-base-v2-finetuned-ner This model is a fine-tuned version of [albert-base-v2](https://huggingface.co/albert-base-v2) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0626 - Precision: 0.9252 - Recall: 0.9330 - F1: 0.9291 - Accuracy: 0.9848 ## Model description More information needed ## limitations #### Limitations and bias This model is limited by its training dataset of entity-annotated news articles from a specific span of time. This may not generalize well for all use cases in different domains. Furthermore, the model occassionally tags subword tokens as entities and post-processing of results may be necessary to handle those cases. #### How to use You can use this model with Transformers *pipeline* for NER. ```python from transformers import pipeline from transformers import AutoTokenizer, AutoModelForTokenClassification tokenizer = AutoTokenizer.from_pretrained("Jorgeutd/albert-base-v2-finetuned-ner") model = AutoModelForTokenClassification.from_pretrained("Jorgeutd/albert-base-v2-finetuned-ner") nlp = pipeline("ner", model=model, tokenizer=tokenizer) example = "My name is Scott and I live in Ohio" ner_results = nlp(example) print(ner_results) ``` ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 220 | 0.0863 | 0.8827 | 0.8969 | 0.8898 | 0.9773 | | No log | 2.0 | 440 | 0.0652 | 0.8951 | 0.9199 | 0.9073 | 0.9809 | | 0.1243 | 3.0 | 660 | 0.0626 | 0.9191 | 0.9208 | 0.9200 | 0.9827 | | 0.1243 | 4.0 | 880 | 0.0585 | 0.9227 | 0.9281 | 0.9254 | 0.9843 | | 0.0299 | 5.0 | 1100 | 0.0626 | 0.9252 | 0.9330 | 0.9291 | 0.9848 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.8.1+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
{"language": "en", "license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["conll2003"], "metrics": ["precision", "recall", "f1", "accuracy"], "widget": [{"text": "My name is Scott and I live in Columbus."}, {"text": "Apple was founded in 1976 by Steve Jobs, Steve Wozniak and Ronald Wayne."}], "base_model": "albert-base-v2", "model-index": [{"name": "albert-base-v2-finetuned-ner", "results": [{"task": {"type": "token-classification", "name": "Token Classification"}, "dataset": {"name": "conll2003", "type": "conll2003", "args": "conll2003"}, "metrics": [{"type": "precision", "value": 0.9252213840603477, "name": "Precision"}, {"type": "recall", "value": 0.9329732113328189, "name": "Recall"}, {"type": "f1", "value": 0.9290811285541773, "name": "F1"}, {"type": "accuracy", "value": 0.9848205157332728, "name": "Accuracy"}]}]}]}
Jorgeutd/albert-base-v2-finetuned-ner
null
[ "transformers", "pytorch", "albert", "token-classification", "generated_from_trainer", "en", "dataset:conll2003", "base_model:albert-base-v2", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
## bert-base-uncased This model was trained using Amazon SageMaker and the new Hugging Face Deep Learning container. - Problem type: Text Classification(adverse drug effects detection). ## Hyperparameters ```json { "do_eval": true, "do_train": true, "fp16": true, "load_best_model_at_end": true, "model_name": "bert-base-uncased", "num_train_epochs": 10, "per_device_eval_batch_size": 16, "per_device_train_batch_size": 16, "learning_rate":5e-5 } ``` ## Validation Metrics | key | value | | --- | ----- | | eval_accuracy | 0.9298021697511167 | | eval_auc | 0.8902672664394546 | | eval_f1 | 0.827315541601256 | | eval_loss | 0.17835010588169098 | | eval_recall | 0.8234375 | | eval_precision | 0.831230283911672 | ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I got a rash from taking acetaminophen"}' https://api-inference.huggingface.co/models/Jorgeutd/bert-base-uncased-ade-Ade-corpus-v2 ``` """
{"language": "en", "license": "apache-2.0", "tags": ["sagemaker", "bert-base-uncased", "text classification"], "datasets": ["adecorpusv2"], "widget": [{"text": "I got a rash from taking acetaminophen"}], "model-index": [{"name": "BERT-ade_corpus", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "ade_corpus_v2Ade_corpus_v2_classification", "type": "ade_corpus"}, "metrics": [{"type": "accuracy", "value": 92.98, "name": "Validation Accuracy"}, {"type": "f1", "value": 82.73, "name": "Validation F1"}]}]}]}
Jorgeutd/bert-base-uncased-ade-Ade-corpus-v2
null
[ "transformers", "pytorch", "safetensors", "bert", "text-classification", "sagemaker", "bert-base-uncased", "text classification", "en", "dataset:adecorpusv2", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-finetuned-surveyclassification This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on a custom survey dataset. It achieves the following results on the evaluation set: - Loss: 0.2818 - Accuracy: 0.9097 - F1: 0.9097 ## Model description More information needed #### Limitations and bias This model is limited by its training dataset of survey results for a particular customer service domain. This may not generalize well for all use cases in different domains. #### How to use You can use this model with Transformers *pipeline* for Text Classification. ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline tokenizer = AutoTokenizer.from_pretrained("Jorgeutd/bert-base-uncased-finetuned-surveyclassification") model = AutoModelForSequenceClassification.from_pretrained("Jorgeutd/bert-base-uncased-finetuned-surveyclassification") text_classifier = pipeline("text-classification", model=model,tokenizer=tokenizer, device=0) example = "The agent on the phone was very helpful and nice to me." results = text_classifier(example) print(results) ``` ## Training and evaluation data Custom survey dataset. ## Training procedure SageMaker notebook instance. ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.4136 | 1.0 | 902 | 0.2818 | 0.9097 | 0.9097 | | 0.2213 | 2.0 | 1804 | 0.2990 | 0.9077 | 0.9077 | | 0.1548 | 3.0 | 2706 | 0.3507 | 0.9026 | 0.9026 | | 0.1034 | 4.0 | 3608 | 0.4692 | 0.9011 | 0.9011 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.8.1+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
{"language": "en", "license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy", "f1"], "widget": [{"text": "The agent on the phone was very helpful and nice to me."}], "base_model": "bert-base-uncased", "model-index": [{"name": "bert-base-uncased-finetuned-surveyclassification", "results": []}]}
Jorgeutd/bert-base-uncased-finetuned-surveyclassification
null
[ "transformers", "pytorch", "safetensors", "bert", "text-classification", "generated_from_trainer", "en", "base_model:bert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
token-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-large-uncased-finetuned-ner This model is a fine-tuned version of [bert-large-uncased](https://huggingface.co/bert-large-uncased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0778 - Precision: 0.9505 - Recall: 0.9575 - F1: 0.9540 - Accuracy: 0.9886 ## Model description More information needed #### Limitations and bias This model is limited by its training dataset of entity-annotated news articles from a specific span of time. This may not generalize well for all use cases in different domains. Furthermore, the model occassionally tags subword tokens as entities and post-processing of results may be necessary to handle those cases. #### How to use You can use this model with Transformers *pipeline* for NER. ```python from transformers import pipeline from transformers import AutoTokenizer, AutoModelForTokenClassification tokenizer = AutoTokenizer.from_pretrained("Jorgeutd/bert-large-uncased-finetuned-ner") model = AutoModelForTokenClassification.from_pretrained("Jorgeutd/bert-large-uncased-finetuned-ner") nlp = pipeline("ner", model=model, tokenizer=tokenizer) example = "My name is Scott and I live in Ohio" ner_results = nlp(example) print(ner_results) ``` ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.1997 | 1.0 | 878 | 0.0576 | 0.9316 | 0.9257 | 0.9286 | 0.9837 | | 0.04 | 2.0 | 1756 | 0.0490 | 0.9400 | 0.9513 | 0.9456 | 0.9870 | | 0.0199 | 3.0 | 2634 | 0.0557 | 0.9436 | 0.9540 | 0.9488 | 0.9879 | | 0.0112 | 4.0 | 3512 | 0.0602 | 0.9443 | 0.9569 | 0.9506 | 0.9881 | | 0.0068 | 5.0 | 4390 | 0.0631 | 0.9451 | 0.9589 | 0.9520 | 0.9882 | | 0.0044 | 6.0 | 5268 | 0.0638 | 0.9510 | 0.9567 | 0.9538 | 0.9885 | | 0.003 | 7.0 | 6146 | 0.0722 | 0.9495 | 0.9560 | 0.9527 | 0.9885 | | 0.0016 | 8.0 | 7024 | 0.0762 | 0.9491 | 0.9595 | 0.9543 | 0.9887 | | 0.0018 | 9.0 | 7902 | 0.0769 | 0.9496 | 0.9542 | 0.9519 | 0.9883 | | 0.0009 | 10.0 | 8780 | 0.0778 | 0.9505 | 0.9575 | 0.9540 | 0.9886 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.8.1+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
{"language": "en", "license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["conll2003"], "metrics": ["precision", "recall", "f1", "accuracy"], "widget": [{"text": "My name is Scott and I live in Columbus."}, {"text": "My name is Scott and I am calling from Buffalo, NY. I would like to file a complain with United Airlines."}, {"text": "Apple was founded in 1976 by Steve Jobs, Steve Wozniak and Ronald Wayne."}], "base_model": "bert-large-uncased", "model-index": [{"name": "bert-large-uncased-finetuned-ner", "results": [{"task": {"type": "token-classification", "name": "Token Classification"}, "dataset": {"name": "conll2003", "type": "conll2003", "args": "conll2003"}, "metrics": [{"type": "precision", "value": 0.9504719600222099, "name": "Precision"}, {"type": "recall", "value": 0.9574896520863632, "name": "Recall"}, {"type": "f1", "value": 0.9539679001337494, "name": "F1"}, {"type": "accuracy", "value": 0.9885618059637473, "name": "Accuracy"}]}]}]}
Jorgeutd/bert-large-uncased-finetuned-ner
null
[ "transformers", "pytorch", "safetensors", "bert", "token-classification", "generated_from_trainer", "en", "dataset:conll2003", "base_model:bert-large-uncased", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
## roberta-base This model is a fine-tuned model that was trained using Amazon SageMaker and the new Hugging Face Deep Learning container. - Problem type: Multi Class Text Classification (emotion detection). It achieves the following results on the evaluation set: - Loss: 0.1613253802061081 - f1: 0.9413321705151999 ## Hyperparameters ```json { "epochs": 10, "train_batch_size": 16, "learning_rate": 3e-5, "weight_decay":0.01, "load_best_model_at_end": true, "model_name":"roberta-base", "do_eval": True, "load_best_model_at_end":True } ``` ## Validation Metrics | key | value | | --- | ----- | | eval_accuracy | 0.941 | | eval_f1 | 0.9413321705151999 | | eval_loss | 0.1613253802061081| | eval_recall | 0.941 | | eval_precision | 0.9419519436781406 |
{"language": "en", "license": "apache-2.0", "tags": ["sagemaker", "roberta-base", "text classification"], "datasets": ["emotion"], "widget": [{"text": "I am really upset that I have to call up to three times to the number on the back of my insurance card for my call to be answer"}], "model-index": [{"name": "sagemaker-roberta-base-emotion", "results": [{"task": {"type": "text-classification", "name": "Multi Class Text Classification"}, "dataset": {"name": "emotion", "type": "emotion"}, "metrics": [{"type": "accuracy", "value": 94.1, "name": "Validation Accuracy"}, {"type": "f1", "value": 94.13, "name": "Validation F1"}]}, {"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "emotion", "type": "emotion", "config": "default", "split": "test"}, "metrics": [{"type": "accuracy", "value": 0.931, "name": "Accuracy", "verified": true, "verifyToken": "eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNmM1ZmI0NjZhYjdlMWU4NWUwZmFjODFmMmM5MTlhMmEyMmQwOTk2NjQ5ZDNlYmFlMGEyMTY4Y2JiMTcwM2MwNiIsInZlcnNpb24iOjF9.haDbUk1y7nW1e_ext0s1xKefyOzep-XFa1HEkNQEcNV0cHCSRb-0YFakMf5Iee6q_EWFUS-QYxNkgEBlbw3fCQ"}, {"type": "precision", "value": 0.8833042147663716, "name": "Precision Macro", "verified": true, "verifyToken": "eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNjZkOTQyMzkwYjE1ZWQ5YjJkMTEzNmIyZmFlMjkwY2YxNzA3OWE0ZDk5YjJlOWVhOTU5Nzc4ZTk5Mzg5NDcxOCIsInZlcnNpb24iOjF9._XhknNSsiailHiMr1SH9ki7SRswR_b-embALunoCjhBssh9WERkv0z1xpsbw7ORo0wx7WCslZRdJWaQoXOmgDQ"}, {"type": "precision", "value": 0.931, "name": "Precision Micro", "verified": true, "verifyToken": "eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMGY0MTc0ZDBiYmZlYmFmMTcyYjk5MWM0MTRmYTlhY2U1ODY5NTQzNTQ5YjAzN2U0YjljNDAzZDQ5NDBkZDUwYyIsInZlcnNpb24iOjF9.313HYKetR4S4kjcMvEk9Yj2J-Ox8ZqvVk4FLrF6UmxlXYZ4F3put-89BEOxGl_ScugjjAWhKY1pHLPYpKz9PAA"}, {"type": "precision", "value": 0.9337002742192515, "name": "Precision Weighted", "verified": true, "verifyToken": "eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZjQ1ZDIzNmE3MjljMTk2NTBmNzcyMTEyOTUwZTljYTA2MjIwY2E4ZThkNGVjYjQwNzU3MTcxMzBiYzJkNWIzOSIsInZlcnNpb24iOjF9.6yXKQ9WS9AWdt1jxixtA5O2S1bcPTKQqIOw291Ytam8OI-zdTI2jwltT6JdU4lHdhTi5797zeNldJMCxGPR2DQ"}, {"type": "recall", "value": 0.9087144572668905, "name": "Recall Macro", "verified": true, "verifyToken": "eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNzJhNTFmNGJkYTAxNzRiOWQ4YzQyMGY5NGQxMjBiMmRjZTA5OTM2ZjM0NWY0ZDJiOTIyODQzZTZkMzEzZmY4YSIsInZlcnNpb24iOjF9.Fy1gkGvRiyANGU6nYgc5QbhccqAfb4PjxEk1EkJAIAZJjs-f0hffwUDlJt_6gRY3KKnoU2kKg1XxpWjybRY7BQ"}, {"type": "recall", "value": 0.931, "name": "Recall Micro", "verified": true, "verifyToken": "eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYTgwYWJmZDAzM2VkOGNjNjY3NjViOTFiMTYyZDc4ZDIzY2VhNTcwMDg3MjdiOTI4Nzc5ODI4N2ExYzY5ODAzMyIsInZlcnNpb24iOjF9.bEW-tZ-5JqkPDDfqkrdvzlzTGEJtYqRACZI1Jv7C8fWkJ8uJj0eQ8TDhcdGGDnFML-q1z3tnkO6PJuK9V2IxAg"}, {"type": "recall", "value": 0.931, "name": "Recall Weighted", "verified": true, "verifyToken": "eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYTM2ZDk4NDQ2YWIwM2VjNzUxZjQ0YzU4MzViZGMzYzA3YjlhMTI1NjQwOTM3M2U4NGJhNTMxYzllMjRkMzU2NSIsInZlcnNpb24iOjF9.k9yprOWEoB0-k306GyDGF-g4uw3kABLc8iE_3E5ZYfVbo9VHPo61GuSsWJyYJ7_aq6zWbzgfOFEwUeVjcmnaDA"}, {"type": "f1", "value": 0.8949974527433656, "name": "F1 Macro", "verified": true, "verifyToken": "eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiODg0ZDllYWJkYWZkMWY2NjEzYWIxMWIwMWUyZDhmNWEzM2FmN2E0MWEwOTIyMTM2YTI1MDdmYmRmZWQ5ZmVmNCIsInZlcnNpb24iOjF9.DUD3dfb4vRu-Z9YxvDErJaPLuZIEDBNsdqzkf4ee6dkOCOnYtUhGAybnxtGN1xSYsynXYhU-ymCajWcrVKUCAA"}, {"type": "f1", "value": 0.931, "name": "F1 Micro", "verified": true, "verifyToken": "eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiOGU0MTYyOTNjOTBmNzAxNjVlZmQxYmRkMmE5MWY2NzhlNjg0ZGZkMmNmZmI3Zjk1NjJlYTdjMGRhMDMwYzAzNCIsInZlcnNpb24iOjF9.h0wCmhwRT4qRZJcc2zGP3T7dF0_wKdKzTtSVoVWFOUzQZ3RoeY2Hfjl3XA7yyw9KnoDWnLiW8DU_5kOBX-peCQ"}, {"type": "f1", "value": 0.9318434300647934, "name": "F1 Weighted", "verified": true, "verifyToken": "eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZmU4OGY4M2NkYWExNjI3Yjk0YmYzNWJjZGQ5ZGNmYzc4ZDk4YzRmZDRiNmRkN2VlNDZhOGIwZDc3MzcxYjVlYiIsInZlcnNpb24iOjF9.qhwi7AV-7NSm1yVd8v1Ea3nTRAFXfqLMwUJ5PUbPSa11jJ0tZNOQVDXHMAD8fVmoueLgZNRUpPVIB881Sq3EBg"}, {"type": "loss", "value": 0.17379647493362427, "name": "loss", "verified": true, "verifyToken": "eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNDdjODE2MjA5ODg2MmM2OWJmMjMzMzUzNGU1ZDc5NjRkNGU4N2VmNmM2NWE0YTEyYWMxNGUzN2M3YTkxNzUyMCIsInZlcnNpb24iOjF9.qcQWfHuRnfiluicR7gke3vm9u701hB4Bp0YaX2opaxL6d5DRCzuqAg-2kdmhhOL-8DW5JhY6gTrF14AEuEE9Cw"}]}]}]}
Jorgeutd/sagemaker-roberta-base-emotion
null
[ "transformers", "pytorch", "safetensors", "roberta", "text-classification", "sagemaker", "roberta-base", "text classification", "en", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
audio-to-audio
asteroid
## Asteroid model `JorisCos/ConvTasNet_Libri1Mix_enhsignle_16k` Description: This model was trained by Joris Cosentino using the librimix recipe in [Asteroid](https://github.com/asteroid-team/asteroid). It was trained on the `enh_single` task of the Libri1Mix dataset. Training config: ```yml data: n_src: 1 sample_rate: 16000 segment: 3 task: enh_single train_dir: data/wav16k/min/train-360 valid_dir: data/wav16k/min/dev filterbank: kernel_size: 32 n_filters: 512 stride: 16 masknet: bn_chan: 128 hid_chan: 512 mask_act: relu n_blocks: 8 n_repeats: 3 n_src: 1 skip_chan: 128 optim: lr: 0.001 optimizer: adam weight_decay: 0.0 training: batch_size: 6 early_stop: true epochs: 200 half_lr: true num_workers: 4 ``` Results: On Libri1Mix min test set : ```yml si_sdr: 14.743051006476085 si_sdr_imp: 11.293269700616385 sdr: 15.300522933671061 sdr_imp: 11.797860134458015 sir: Infinity sir_imp: NaN sar: 15.300522933671061 sar_imp: 11.797860134458015 stoi: 0.9310514162434267 stoi_imp: 0.13513159270288563 ``` License notice: This work "ConvTasNet_Libri1Mix_enhsignle_16k" is a derivative of [LibriSpeech ASR corpus](http://www.openslr.org/12) by Vassil Panayotov, used under [CC BY 4.0](https://creativecommons.org/licenses/by/4.0/); of The WSJ0 Hipster Ambient Mixtures dataset by [Whisper.ai](http://wham.whisper.ai/), used under [CC BY-NC 4.0](https://creativecommons.org/licenses/by-nc/4.0/) (Research only). "ConvTasNet_Libri1Mix_enhsignle_16k" is licensed under [Attribution-ShareAlike 3.0 Unported](https://creativecommons.org/licenses/by-sa/3.0/) by Joris Cosentino
{"license": "cc-by-sa-4.0", "tags": ["asteroid", "audio", "ConvTasNet", "audio-to-audio"], "datasets": ["Libri1Mix", "enh_single"]}
JorisCos/ConvTasNet_Libri1Mix_enhsingle_16k
null
[ "asteroid", "pytorch", "audio", "ConvTasNet", "audio-to-audio", "dataset:Libri1Mix", "dataset:enh_single", "license:cc-by-sa-4.0", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
audio-to-audio
asteroid
## Asteroid model `JorisCos/ConvTasNet_Libri2Mix_sepclean_16k` Description: This model was trained by Joris Cosentino using the librimix recipe in [Asteroid](https://github.com/asteroid-team/asteroid). It was trained on the `sep_clean` task of the Libri2Mix dataset. Training config: ```yaml data: n_src: 2 sample_rate: 16000 segment: 3 task: sep_clean train_dir: data/wav16k/min/train-360 valid_dir: data/wav16k/min/dev filterbank: kernel_size: 32 n_filters: 512 stride: 16 masknet: bn_chan: 128 hid_chan: 512 mask_act: relu n_blocks: 8 n_repeats: 3 skip_chan: 128 optim: lr: 0.001 optimizer: adam weight_decay: 0.0 training: batch_size: 6 early_stop: true epochs: 200 half_lr: true num_workers: 4 ``` Results : On Libri2Mix min test set : ```yaml si_sdr: 15.243671356901526 si_sdr_imp: 15.243034178473609 sdr: 15.668108919568112 sdr_imp: 15.578229918028036 sir: 25.295100756629957 sir_imp: 25.205219921301754 sar: 16.307682590197313 sar_imp: -51.64989963759405 stoi: 0.9394951175291422 stoi_imp: 0.22640192740016568 ``` License notice: This work "ConvTasNet_Libri2Mix_sepclean_16k" is a derivative of [LibriSpeech ASR corpus](http://www.openslr.org/12) by Vassil Panayotov, used under [CC BY 4.0](https://creativecommons.org/licenses/by/4.0/). "ConvTasNet_Libri2Mix_sepclean_16k" is licensed under [Attribution-ShareAlike 3.0 Unported](https://creativecommons.org/licenses/by-sa/3.0/) by Cosentino Joris.
{"license": "cc-by-sa-4.0", "tags": ["asteroid", "audio", "ConvTasNet", "audio-to-audio"], "datasets": ["Libri2Mix", "sep_clean"]}
JorisCos/ConvTasNet_Libri2Mix_sepclean_16k
null
[ "asteroid", "pytorch", "audio", "ConvTasNet", "audio-to-audio", "dataset:Libri2Mix", "dataset:sep_clean", "license:cc-by-sa-4.0", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
audio-to-audio
asteroid
## Asteroid model `JorisCos/ConvTasNet_Libri2Mix_sepclean_8k` Imported from [Zenodo](https://zenodo.org/record/3873572#.X9M69cLjJH4) Description: This model was trained by Joris Cosentino using the librimix recipe in [Asteroid](https://github.com/asteroid-team/asteroid). It was trained on the `sep_clean` task of the Libri2Mix dataset. Training config: ```yaml data: n_src: 2 sample_rate: 8000 segment: 3 task: sep_clean train_dir: data/wav8k/min/train-360 valid_dir: data/wav8k/min/dev filterbank: kernel_size: 16 n_filters: 512 stride: 8 masknet: bn_chan: 128 hid_chan: 512 mask_act: relu n_blocks: 8 n_repeats: 3 skip_chan: 128 optim: lr: 0.001 optimizer: adam weight_decay: 0.0 training: batch_size: 24 early_stop: True epochs: 200 half_lr: True num_workers: 2 ``` Results : On Libri2Mix min test set : ```yaml si_sdr: 14.764543634468069 si_sdr_imp: 14.764029375607246 sdr: 15.29337970745095 sdr_imp: 15.114146605113111 sir: 24.092904661115366 sir_imp: 23.913669683141528 sar: 16.06055906916849 sar_imp: -51.980784441287454 stoi: 0.9311142440593033 stoi_imp: 0.21817376142710482 ``` License notice: This work "ConvTasNet_Libri2Mix_sepclean_8k" is a derivative of [LibriSpeech ASR corpus](http://www.openslr.org/12) by Vassil Panayotov, used under [CC BY 4.0](https://creativecommons.org/licenses/by/4.0/). "ConvTasNet_Libri2Mix_sepclean_8k" is licensed under [Attribution-ShareAlike 3.0 Unported](https://creativecommons.org/licenses/by-sa/3.0/) by Cosentino Joris.
{"license": "cc-by-sa-4.0", "tags": ["asteroid", "audio", "ConvTasNet", "audio-to-audio"], "datasets": ["Libri2Mix", "sep_clean"]}
JorisCos/ConvTasNet_Libri2Mix_sepclean_8k
null
[ "asteroid", "pytorch", "audio", "ConvTasNet", "audio-to-audio", "dataset:Libri2Mix", "dataset:sep_clean", "license:cc-by-sa-4.0", "region:us" ]
null
2022-03-02T23:29:04+00:00
audio-to-audio
asteroid
## Asteroid model `JorisCos/ConvTasNet_Libri2Mix_sepnoisy_16k` Description: This model was trained by Joris Cosentino using the librimix recipe in [Asteroid](https://github.com/asteroid-team/asteroid). It was trained on the `sep_noisy` task of the Libri2Mix dataset. Training config: ```yml data: n_src: 2 sample_rate: 16000 segment: 3 task: sep_noisy train_dir: data/wav16k/min/train-360 valid_dir: data/wav16k/min/dev filterbank: kernel_size: 32 n_filters: 512 stride: 16 masknet: bn_chan: 128 hid_chan: 512 mask_act: relu n_blocks: 8 n_repeats: 3 n_src: 2 skip_chan: 128 optim: lr: 0.001 optimizer: adam weight_decay: 0.0 training: batch_size: 6 early_stop: true epochs: 200 half_lr: true num_workers: 4 ``` Results: On Libri2Mix min test set : ```yml si_sdr: 10.617130949793383 si_sdr_imp: 12.551811412989263 sdr: 11.231867464482065 sdr_imp: 13.059765009747343 sir: 24.461138352988346 sir_imp: 24.371856452307703 sar: 11.5649982725426 sar_imp: 4.662525705768228 stoi: 0.8701085138712695 stoi_imp: 0.2245418019822898 ``` License notice: This work "ConvTasNet_Libri2Mix_sepnoisy_16k" is a derivative of [LibriSpeech ASR corpus](http://www.openslr.org/12) by Vassil Panayotov, used under[CC BY 4.0](https://creativecommons.org/licenses/by/4.0/); of The WSJ0 Hipster Ambient Mixtures dataset by [Whisper.ai](http://wham.whisper.ai/), used under [CC BY-NC 4.0](https://creativecommons.org/licenses/by-nc/4.0/) (Research only). "ConvTasNet_Libri2Mix_sepnoisy_16k" is licensed under [Attribution-ShareAlike 3.0 Unported](https://creativecommons.org/licenses/by-sa/3.0/) by Joris Cosentino
{"license": "cc-by-sa-4.0", "tags": ["asteroid", "audio", "ConvTasNet", "audio-to-audio"], "datasets": ["Libri2Mix", "sep_noisy"]}
JorisCos/ConvTasNet_Libri2Mix_sepnoisy_16k
null
[ "asteroid", "pytorch", "audio", "ConvTasNet", "audio-to-audio", "dataset:Libri2Mix", "dataset:sep_noisy", "license:cc-by-sa-4.0", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
audio-to-audio
asteroid
## Asteroid model `JorisCos/ConvTasNet_Libri2Mix_sepnoisy_8k` Imported from [Zenodo](https://zenodo.org/record/3874420#.X9I6NcLjJH4) Description: This model was trained by Joris Cosentino using the librimix recipe in [Asteroid](https://github.com/asteroid-team/asteroid). It was trained on the `sep_noisy` task of the Libri2Mix dataset. Training config: ```yml data: n_src: 2 sample_rate: 8000 segment: 3 task: sep_noisy train_dir: data/wav8k/min/train-360 valid_dir: data/wav8k/min/dev filterbank: kernel_size: 16 n_filters: 512 stride: 8 masknet: bn_chan: 128 hid_chan: 512 mask_act: relu n_blocks: 8 n_repeats: 3 skip_chan: 128 optim: lr: 0.001 optimizer: adam weight_decay: 0.0 training: batch_size: 24 early_stop: True epochs: 200 half_lr: True num_workers: 4 ``` Results: On Libri2Mix min test set : ```yml si_sdr: 9.944424856077259 si_sdr_imp: 11.939395359731192 sdr: 10.701526190782072 sdr_imp: 12.481757547845662 sir: 22.633644975545575 sir_imp: 22.45666740833025 sar: 11.131644100944868 sar_imp: 4.248489589311784 stoi: 0.852048619949357 stoi_imp: 0.2071994899565506 ``` License notice: This work "ConvTasNet_Libri2Mix_sepnoisy_8k" is a derivative of [LibriSpeech ASR corpus](http://www.openslr.org/12) by Vassil Panayotov, used under [CC BY 4.0](https://creativecommons.org/licenses/by/4.0/); of The WSJ0 Hipster Ambient Mixtures dataset by [Whisper.ai](http://wham.whisper.ai/), used under [CC BY-NC 4.0](https://creativecommons.org/licenses/by-nc/4.0/) (Research only). "ConvTasNet_Libri2Mix_sepnoisy_8k" is licensed under A[Attribution-ShareAlike 3.0 Unported](https://creativecommons.org/licenses/by-sa/3.0/) by Joris Cosentino
{"license": "cc-by-sa-4.0", "tags": ["asteroid", "audio", "ConvTasNet", "audio-to-audio"], "datasets": ["Libri2Mix", "sep_noisy"]}
JorisCos/ConvTasNet_Libri2Mix_sepnoisy_8k
null
[ "asteroid", "pytorch", "audio", "ConvTasNet", "audio-to-audio", "dataset:Libri2Mix", "dataset:sep_noisy", "license:cc-by-sa-4.0", "region:us" ]
null
2022-03-02T23:29:04+00:00
audio-to-audio
asteroid
## Asteroid model `JorisCos/ConvTasNet_Libri3Mix_sepclean_16k` Description: This model was trained by Joris Cosentino using the librimix recipe in [Asteroid](https://github.com/asteroid-team/asteroid). It was trained on the `sep_clean` task of the Libri3Mix dataset. Training config: ```yaml data: n_src: 3 sample_rate: 16000 segment: 3 task: sep_clean train_dir: data/wav16k/min/train-360 valid_dir: data/wav16k/min/dev filterbank: kernel_size: 32 n_filters: 512 stride: 16 masknet: bn_chan: 128 hid_chan: 512 mask_act: relu n_blocks: 8 n_repeats: 3 n_src: 3 skip_chan: 128 optim: lr: 0.001 optimizer: adam weight_decay: 0.0 training: batch_size: 8 early_stop: true epochs: 200 half_lr: true num_workers: 4 ``` Results : On Libri3Mix min test set : ```yaml si_sdr: 8.932601610824145 si_sdr_imp: 12.299341066588594 sdr: 9.557260814240447 sdr_imp: 12.76957128385349 sir: 17.387646884037455 sir_imp: 20.599955591768484 sar: 10.686885056960504 sar_imp: -55.8894643263213 stoi: 0.8481258332025354 stoi_imp: 0.25528367853750356 ``` License notice: This work "ConvTasNet_Libri3Mix_sepclean_16k" is a derivative of [LibriSpeech ASR corpus](http://www.openslr.org/12) by Vassil Panayotov, used under [CC BY 4.0](https://creativecommons.org/licenses/by/4.0/). "ConvTasNet_Libri3Mix_sepclean_16k" is licensed under [Attribution-ShareAlike 3.0 Unported](https://creativecommons.org/licenses/by-sa/3.0/) by Cosentino Joris.
{"license": "cc-by-sa-4.0", "tags": ["asteroid", "audio", "ConvTasNet", "audio-to-audio"], "datasets": ["Libri3Mix", "sep_clean"]}
JorisCos/ConvTasNet_Libri3Mix_sepclean_16k
null
[ "asteroid", "pytorch", "audio", "ConvTasNet", "audio-to-audio", "dataset:Libri3Mix", "dataset:sep_clean", "license:cc-by-sa-4.0", "region:us" ]
null
2022-03-02T23:29:04+00:00
audio-to-audio
asteroid
## Asteroid model `JorisCos/ConvTasNet_Libri3Mix_sepclean_8k` Description: This model was trained by Joris Cosentino using the librimix recipe in [Asteroid](https://github.com/asteroid-team/asteroid). It was trained on the `sep_clean` task of the Libri3Mix dataset. Training config: ```yml data: n_src: 3 sample_rate: 8000 segment: 3 task: sep_clean train_dir: data/wav8k/min/train-360 valid_dir: data/wav8k/min/dev filterbank: kernel_size: 16 n_filters: 512 stride: 8 masknet: bn_chan: 128 hid_chan: 512 mask_act: relu n_blocks: 8 n_repeats: 3 n_src: 3 skip_chan: 128 optim: lr: 0.001 optimizer: adam weight_decay: 0.0 training: batch_size: 24 early_stop: true epochs: 200 half_lr: true num_workers: 4 ``` Results : On Libri3Mix min test set : ```yaml si_sdr: 8.581797049575108 si_sdr_imp: 11.977037288467368 sdr' 9.305885208641385 sdr_imp: 12.3943409734845 sir: 16.42030534048559 sir_imp: 19.508759460400984 sar: 10.641943911079238 sar_imp: -56.4345187842095 stoi: 0.8365148408724333 stoi_imp: 0.24401766199806396 ``` License notice: This work "ConvTasNet_Libri3Mix_sepclean_8k" is a derivative of [LibriSpeech ASR corpus](http://www.openslr.org/12) by Vassil Panayotov, used under [CC BY 4.0](https://creativecommons.org/licenses/by/4.0/). "ConvTasNet_Libri3Mix_sepclean_8k" is licensed under [Attribution-ShareAlike 3.0 Unported](https://creativecommons.org/licenses/by-sa/3.0/) by Cosentino Joris.
{"license": "cc-by-sa-4.0", "tags": ["asteroid", "audio", "ConvTasNet", "audio-to-audio"], "datasets": ["Libri3Mix", "sep_clean"]}
JorisCos/ConvTasNet_Libri3Mix_sepclean_8k
null
[ "asteroid", "pytorch", "audio", "ConvTasNet", "audio-to-audio", "dataset:Libri3Mix", "dataset:sep_clean", "license:cc-by-sa-4.0", "region:us" ]
null
2022-03-02T23:29:04+00:00
audio-to-audio
asteroid
## Asteroid model `JorisCos/ConvTasNet_Libri3Mix_sepnoisy_16k` Description: This model was trained by Joris Cosentino using the librimix recipe in [Asteroid](https://github.com/asteroid-team/asteroid). It was trained on the `sep_noisy` task of the Libri3Mix dataset. Training config: ```yml data: n_src: 3 sample_rate: 16000 segment: 3 task: sep_noisy train_dir: data/wav16k/min/train-360 valid_dir: data/wav16k/min/dev filterbank: kernel_size: 32 n_filters: 512 stride: 16 masknet: bn_chan: 128 hid_chan: 512 mask_act: relu n_blocks: 8 n_repeats: 3 n_src: 3 skip_chan: 128 optim: lr: 0.001 optimizer: adam weight_decay: 0.0 training: batch_size: 8 early_stop: true epochs: 200 half_lr: true num_workers: 4 ``` Results: On Libri3Mix min test set : ```yml si_sdr: 5.926151147554517 si_sdr_imp: 10.282912158535625 sdr: 6.700975236867358 sdr_imp: 10.882972447337504 sir: 15.364110064569388 sir_imp: 18.574476587171688 sar: 7.918866830474568 sar_imp: -0.9638973409971135 stoi: 0.7713777027310713 stoi_imp: 0.2078696167973911 ``` License notice: This work "ConvTasNet_Libri3Mix_sepnoisy_16k" is a derivative of [LibriSpeech ASR corpus](http://www.openslr.org/12) by Vassil Panayotov, used under [CC BY 4.0](https://creativecommons.org/licenses/by/4.0/); of The WSJ0 Hipster Ambient Mixtures dataset by [Whisper.ai](http://wham.whisper.ai/), used under [CC BY-NC 4.0](https://creativecommons.org/licenses/by-nc/4.0/). "ConvTasNet_Libri3Mix_sepnoisy_16k" is licensed under [Attribution-ShareAlike 3.0 Unported](https://creativecommons.org/licenses/by-sa/3.0/) by Joris Cosentino
{"license": "cc-by-sa-4.0", "tags": ["asteroid", "audio", "ConvTasNet", "audio-to-audio"], "datasets": ["Libri3Mix", "sep_noisy"]}
JorisCos/ConvTasNet_Libri3Mix_sepnoisy_16k
null
[ "asteroid", "pytorch", "audio", "ConvTasNet", "audio-to-audio", "dataset:Libri3Mix", "dataset:sep_noisy", "license:cc-by-sa-4.0", "region:us" ]
null
2022-03-02T23:29:04+00:00
audio-to-audio
asteroid
## Asteroid model `JorisCos/ConvTasNet_Libri3Mix_sepnoisy_8k` Description: This model was trained by Joris Cosentino using the librimix recipe in [Asteroid](https://github.com/asteroid-team/asteroid). It was trained on the `sep_noisy` task of the Libri3Mix dataset. Training config: ```yml data: n_src: 3 sample_rate: 8000 segment: 3 task: sep_noisy train_dir: data/wav8k/min/train-360 valid_dir: data/wav8k/min/dev filterbank: kernel_size: 16 n_filters: 512 stride: 8 masknet: bn_chan: 128 hid_chan: 512 mask_act: relu n_blocks: 8 n_repeats: 3 n_src: 3 skip_chan: 128 optim: lr: 0.001 optimizer: adam weight_decay: 0.0 training: batch_size: 24 early_stop: true epochs: 200 half_lr: true num_workers: 4 ``` Results: On Libri3Mix min test set : ```yml si_sdr: 5.978836560066222 si_sdr_imp: 10.388889689413096 sdr: 6.8651365291740225 sdr_imp: 10.928018056925016 sir: 14.997089638783114 sir_imp: 18.08248357801549 sar: 8.127504792061933 sar_imp: -0.7869320540959925 stoi: 0.7669414686111115 stoi_imp: 0.20416563213078837 ``` License notice: This work "ConvTasNet_Libri3Mix_sepnoisy_8k" is a derivative of [LibriSpeech ASR corpus](http://www.openslr.org/12) by Vassil Panayotov, used under [CC BY 4.0](https://creativecommons.org/licenses/by/4.0/); of The WSJ0 Hipster Ambient Mixtures dataset by [Whisper.ai](http://wham.whisper.ai/), used under [CC BY-NC 4.0](https://creativecommons.org/licenses/by-nc/4.0/) (Research only). "ConvTasNet_Libri3Mix_sepnoisy_8k" is licensed under [Attribution-ShareAlike 3.0 Unported](https://creativecommons.org/licenses/by-sa/3.0/) by Joris Cosentino
{"license": "cc-by-sa-4.0", "tags": ["asteroid", "audio", "ConvTasNet", "audio-to-audio"], "datasets": ["Libri3Mix", "sep_noisy"]}
JorisCos/ConvTasNet_Libri3Mix_sepnoisy_8k
null
[ "asteroid", "pytorch", "audio", "ConvTasNet", "audio-to-audio", "dataset:Libri3Mix", "dataset:sep_noisy", "license:cc-by-sa-4.0", "region:us" ]
null
2022-03-02T23:29:04+00:00
audio-to-audio
asteroid
## Asteroid model `JorisCos/DCCRNet_Libri1Mix_enhsignle_16k` Description: This model was trained by Joris Cosentino using the librimix recipe in [Asteroid](https://github.com/asteroid-team/asteroid). It was trained on the `enh_single` task of the Libri1Mix dataset. Training config: ```yml data: n_src: 1 sample_rate: 16000 segment: 3 task: enh_single train_dir: data/wav16k/min/train-360 valid_dir: data/wav16k/min/dev filterbank: stft_kernel_size: 400 stft_n_filters: 512 stft_stride: 100 masknet: architecture: DCCRN-CL n_src: 1 optim: lr: 0.001 optimizer: adam weight_decay: 1.0e-05 training: batch_size: 12 early_stop: true epochs: 200 gradient_clipping: 5 half_lr: true num_workers: 4 ``` Results: On Libri1Mix min test set : ```yml si_sdr: 13.329767398333798 si_sdr_imp: 9.879986092474098 sdr: 13.87279932997016 sdr_imp: 10.370136530757103 sir: Infinity sir_imp: NaN sar: 13.87279932997016 sar_imp: 10.370136530757103 stoi: 0.9140907015623948 stoi_imp: 0.11817087802185405 ``` License notice: This work "DCCRNet_Libri1Mix_enhsignle_16k" is a derivative of [LibriSpeech ASR corpus](http://www.openslr.org/12) by Vassil Panayotov, used under [CC BY 4.0](https://creativecommons.org/licenses/by/4.0/); of The WSJ0 Hipster Ambient Mixtures dataset by [Whisper.ai](http://wham.whisper.ai/), used under [CC BY-NC 4.0](https://creativecommons.org/licenses/by-nc/4.0/) (Research only). "DCCRNet_Libri1Mix_enhsignle_16k" is licensed under [Attribution-ShareAlike 3.0 Unported](https://creativecommons.org/licenses/by-sa/3.0/) by Joris Cosentino
{"license": "cc-by-sa-4.0", "tags": ["asteroid", "audio", "DCCRNet", "audio-to-audio", "speech-enhancement"], "datasets": ["Libri1Mix", "enh_single"]}
JorisCos/DCCRNet_Libri1Mix_enhsingle_16k
null
[ "asteroid", "pytorch", "audio", "DCCRNet", "audio-to-audio", "speech-enhancement", "dataset:Libri1Mix", "dataset:enh_single", "license:cc-by-sa-4.0", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
audio-to-audio
asteroid
## Asteroid model `JorisCos/DCUNet_Libri1Mix_enhsignle_16k` Description: This model was trained by Joris Cosentino using the librimix recipe in [Asteroid](https://github.com/asteroid-team/asteroid). It was trained on the `enh_single` task of the Libri1Mix dataset. Training config: ```yml data: n_src: 1 sample_rate: 16000 segment: 3 task: enh_single train_dir: data/wav16k/min/train-360 valid_dir: data/wav16k/min/dev filterbank: stft_n_filters: 1024 stft_kernel_size: 1024 stft_stride: 256 masknet: architecture: Large-DCUNet-20 fix_length_mode: pad n_src: 1 optim: lr: 0.001 optimizer: adam weight_decay: 1.0e-05 training: batch_size: 2 early_stop: true epochs: 200 gradient_clipping: 5 half_lr: true num_workers: 4 ``` Results: On Libri1Mix min test set : ```yml si_sdr: 13.154035391645971 si_sdr_imp: 9.704254085786271 sdr: 13.568058873121435 sdr_imp: 10.065396073908367 sar: 13.568058873121435 sar_imp: 10.065396073908367 stoi: 0.9199373340235417 stoi_imp: 0.12401751048300132 ``` License notice: This work "DCUNet_Libri1Mix_enhsignle_16k" is a derivative of [LibriSpeech ASR corpus](http://www.openslr.org/12) by Vassil Panayotov, used under [CC BY 4.0](https://creativecommons.org/licenses/by/4.0/); of The WSJ0 Hipster Ambient Mixtures dataset by [Whisper.ai](http://wham.whisper.ai/), used under [CC BY-NC 4.0](https://creativecommons.org/licenses/by-nc/4.0/) (Research only). "DCUNet_Libri1Mix_enhsignle_16k" is licensed under [Attribution-ShareAlike 3.0 Unported](https://creativecommons.org/licenses/by-sa/3.0/) by Joris Cosentino
{"license": "cc-by-sa-4.0", "tags": ["asteroid", "audio", "DCUNet", "audio-to-audio"], "datasets": ["Libri1Mix", "enh_single"]}
JorisCos/DCUNet_Libri1Mix_enhsingle_16k
null
[ "asteroid", "pytorch", "audio", "DCUNet", "audio-to-audio", "dataset:Libri1Mix", "dataset:enh_single", "license:cc-by-sa-4.0", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
audio-to-audio
asteroid
## Asteroid model `JorisCos/DPRNNTasNet_Libri1Mix_enhsignle_16k` Description: This model was trained by Joris Cosentino using the librimix recipe in [Asteroid](https://github.com/asteroid-team/asteroid). It was trained on the `enh_single` task of the Libri1Mix dataset. Training config: ```yml data: n_src: 1 sample_rate: 16000 segment: 1 task: enh_single train_dir: data/wav16k/min/train-360 valid_dir: data/wav16k/min/dev filterbank: kernel_size: 2 n_filters: 64 stride: 1 masknet: bidirectional: true bn_chan: 128 chunk_size: 250 dropout: 0 hid_size: 128 hop_size: 125 in_chan: 64 mask_act: sigmoid n_repeats: 6 n_src: 1 out_chan: 64 optim: lr: 0.001 optimizer: adam weight_decay: 1.0e-05 training: batch_size: 2 early_stop: true epochs: 200 gradient_clipping: 5 half_lr: true num_workers: 4 ``` Results: On Libri1Mix min test set : ```yml si_sdr: 14.7228101708889 si_sdr_imp: 11.2730288650292 sdr: 15.35661405197161 sdr_imp: 11.853951252758595 sir: Infinity sir_imp: NaN sar: 15.35661405197161 sar_imp: 11.853951252758595 stoi: 0.9300461826351578 stoi_imp: 0.13412635909461715 ``` License notice: This work "DPRNNTasNet_Libri1Mix_enhsignle_16k" is a derivative of [LibriSpeech ASR corpus](http://www.openslr.org/12) by Vassil Panayotov, used under [CC BY 4.0](https://creativecommons.org/licenses/by/4.0/); of The WSJ0 Hipster Ambient Mixtures dataset by [Whisper.ai](http://wham.whisper.ai/), used under [CC BY-NC 4.0](https://creativecommons.org/licenses/by-nc/4.0/) (Research only). "DPRNNTasNet_Libri1Mix_enhsignle_16k" is licensed under [Attribution-ShareAlike 3.0 Unported](https://creativecommons.org/licenses/by-sa/3.0/) by Joris Cosentino
{"license": "cc-by-sa-4.0", "tags": ["asteroid", "audio", "DPRNNTasNet", "audio-to-audio"], "datasets": ["Libri1Mix", "enh_single"]}
JorisCos/DPRNNTasNet-ks2_Libri1Mix_enhsingle_16k
null
[ "asteroid", "pytorch", "audio", "DPRNNTasNet", "audio-to-audio", "dataset:Libri1Mix", "dataset:enh_single", "license:cc-by-sa-4.0", "region:us" ]
null
2022-03-02T23:29:04+00:00
audio-to-audio
asteroid
## Asteroid model `JorisCos/DPTNet_Libri1Mix_enhsignle_16k` Description: This model was trained by Joris Cosentino using the librimix recipe in [Asteroid](https://github.com/asteroid-team/asteroid). It was trained on the `enh_single` task of the Libri1Mix dataset. Training config: ```yml data: n_src: 1 sample_rate: 16000 segment: 3 task: enh_single train_dir: data/wav16k/min/train-360 valid_dir: data/wav16k/min/dev filterbank: kernel_size: 16 n_filters: 64 stride: 8 masknet: bidirectional: true chunk_size: 100 dropout: 0 ff_activation: relu ff_hid: 256 hop_size: 50 in_chan: 64 mask_act: sigmoid n_repeats: 2 n_src: 1 norm_type: gLN out_chan: 64 optim: lr: 0.001 optimizer: adam weight_decay: 1.0e-05 scheduler: d_model: 64 steps_per_epoch: 10000 training: batch_size: 4 early_stop: true epochs: 200 gradient_clipping: 5 half_lr: true num_workers: 4 ``` Results: On Libri1Mix min test set : ```yml si_sdr: 14.829670037349064 si_sdr_imp: 11.379888731489366 sdr: 15.395712644737149 sdr_imp: 11.893049845524112 sir: Infinity sir_imp: NaN sar: 15.395712644737149 sar_imp: 11.893049845524112 stoi: 0.9301948391058859 stoi_imp: 0.13427501556534832 ``` License notice: This work "DPTNet_Libri1Mix_enhsignle_16k" is a derivative of [LibriSpeech ASR corpus](http://www.openslr.org/12) by Vassil Panayotov, used under [CC BY 4.0](https://creativecommons.org/licenses/by/4.0/); of The WSJ0 Hipster Ambient Mixtures dataset by [Whisper.ai](http://wham.whisper.ai/), used under [CC BY-NC 4.0](https://creativecommons.org/licenses/by-nc/4.0/) (Research only). "DPTNet_Libri1Mix_enhsignle_16k" is licensed under [Attribution-ShareAlike 3.0 Unported](https://creativecommons.org/licenses/by-sa/3.0/) by Joris Cosentino
{"license": "cc-by-sa-4.0", "tags": ["asteroid", "audio", "DPTNet", "audio-to-audio"], "datasets": ["Libri1Mix", "enh_single"]}
JorisCos/DPTNet_Libri1Mix_enhsingle_16k
null
[ "asteroid", "pytorch", "audio", "DPTNet", "audio-to-audio", "dataset:Libri1Mix", "dataset:enh_single", "license:cc-by-sa-4.0", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
JorisCos/FasNet
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
asteroid
## Asteroid model `JorisCos/VAD_Net` Description: This model was trained by Joris Cosentino using the librimix recipe in [Asteroid](https://github.com/asteroid-team/asteroid). It was trained on the `enh_single` task of the Libri1Mix dataset. Training config: ```yml data: segment: 3 train_dir: /home/jcosentino/VAD_dataset/metadata/sets/train.json valid_dir: /home/jcosentino/VAD_dataset/metadata/sets/dev.json filterbank: kernel_size: 16 n_filters: 512 stride: 8 main_args: exp_dir: exp/full_not_causal_f1/ help: null masknet: bn_chan: 128 causal: false hid_chan: 512 mask_act: relu n_blocks: 3 n_repeats: 5 skip_chan: 128 optim: lr: 0.001 optimizer: adam weight_decay: 0.0 positional arguments: {} training: batch_size: 8 early_stop: true epochs: 200 half_lr: true num_workers: 4 ``` Results: On LibriVAD min test set : ```yml accuracy: 0.8196149023502931, precision: 0.8305009048356607, recall: 0.8869202491310206, f1_score: 0.8426184545700124 ``` License notice: This work "VAD_Net" is a derivative of [LibriSpeech ASR corpus](http://www.openslr.org/12) by Vassil Panayotov, used under [CC BY 4.0](https://creativecommons.org/licenses/by/4.0/); of The [DNS challenge](https://github.com/microsoft/DNS-Challenge) noises, [Attribution-ShareAlike 3.0 Unported](https://creativecommons.org/licenses/by-sa/3.0/). "VAD_Net" is licensed under [Attribution-ShareAlike 3.0 Unported](https://creativecommons.org/licenses/by-sa/3.0/) by Joris Cosentino
{"license": "cc-by-sa-4.0", "tags": ["asteroid", "audio", "VADNet", "VAD", "Voice Activity Detection"], "datasets": ["LibriVAD"]}
JorisCos/VAD_Net
null
[ "asteroid", "pytorch", "audio", "VADNet", "VAD", "Voice Activity Detection", "dataset:LibriVAD", "license:cc-by-sa-4.0", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
JosAbc123/Loken
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
JoseRPrietoF/distilbert-base-uncased-finetuned-cola
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
JosepRC/distilbert-base-uncased-finetuned-cola
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Youfeng/distilbert-base-uncased-finetuned-cola
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
JoshObi94/GPT-Neo
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
JoshuaGhost/counter_assist
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Josiah/test
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
text2text-generation
transformers
# BART_Finetuned_CNN_dailymail The following repo contains a [bart-base](https://huggingface.co/facebook/bart-base) model that was finetuned using the dataset [cnn_dailymail](https://huggingface.co/datasets/cnn_dailymail)
{}
Josmar/BART_Finetuned_CNN_dailymail
null
[ "transformers", "pytorch", "bart", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Jour/Translation-Test
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
translation
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # m2m100_418M-fr This model is a fine-tuned version of [facebook/m2m100_418M](https://huggingface.co/facebook/m2m100_418M) on the kde4 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Framework versions - Transformers 4.12.5 - Pytorch 1.9.0+cpu - Datasets 1.16.1 - Tokenizers 0.10.3
{"license": "mit", "tags": ["translation", "generated_from_trainer"], "datasets": ["kde4"], "model-index": [{"name": "m2m100_418M-fr", "results": []}]}
Jour/m2m100_418M-fr
null
[ "transformers", "pytorch", "tensorboard", "m2m_100", "text2text-generation", "translation", "generated_from_trainer", "dataset:kde4", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Jour/marian-finetuned-kde4-en-to-fr-accelerate
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Jour/marian-finetuned-kde4-en-to-fr
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
{}
JovenPai/bert_cn_finetunning
null
[ "transformers", "pytorch", "jax", "bert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
{}
JovenPai/bert_finetunning_test
null
[ "transformers", "pytorch", "jax", "bert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
{}
Jtisch7/bertFinancialSent
null
[ "transformers", "tf", "bert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Juani/Matemags
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Julhialinda/Julhia
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Juliana/Jujubinha
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
transformers
# Morty DialoGPT Model
{"tags": ["conversational"]}
Julianqll/DialoGPT-small-finalmorty
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
transformers
# Rick Sanchez DialoGPT Model
{"tags": ["conversational"]}
Julianqll/DialoGPT-small-ricksanchez
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Juliet/Teste
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
## Model description This model was trained on the XED dataset and achieved validation loss: 0.5995 validation acc: 84.28% (ROC-AUC) Labels are based on Plutchik's model of emotions and may be combined: ![image](https://user-images.githubusercontent.com/12978899/122398897-f60d2500-cf97-11eb-8991-61e68f4ea1fc.png) ### Framework versions - Transformers 4.6.1 - Pytorch 1.8.1+cu101 - Datasets 1.8.0 - Tokenizers 0.10.3
{}
JuliusAlphonso/dear-jarvis-monolith-xed-en
null
[ "transformers", "pytorch", "distilbert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # dear-jarvis-v5 This model is a fine-tuned version of [distilbert-base-cased](https://huggingface.co/distilbert-base-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3148 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 470 | 0.3106 | | 0.3452 | 2.0 | 940 | 0.3064 | | 0.2692 | 3.0 | 1410 | 0.3148 | ### Framework versions - Transformers 4.7.0 - Pytorch 1.9.0+cu102 - Datasets 1.8.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "datasets": [], "model_index": [{"name": "dear-jarvis-v5", "results": [{"task": {"name": "Text Classification", "type": "text-classification"}}]}]}
JuliusAlphonso/dear-jarvis-v5
null
[ "transformers", "pytorch", "distilbert", "text-classification", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
Labels are based on Plutchik's model of emotions and may be combined: ![image](https://user-images.githubusercontent.com/12978899/122398897-f60d2500-cf97-11eb-8991-61e68f4ea1fc.png)
{}
JuliusAlphonso/distilbert-plutchik
null
[ "transformers", "pytorch", "distilbert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Junaid/URDU
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
text2text-generation
transformers
{}
Jung/t5-base
null
[ "transformers", "pytorch", "tf", "jax", "t5", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
text2text-generation
transformers
{}
Jung/t5-large-finetuned
null
[ "transformers", "pytorch", "jax", "t5", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
text2text-generation
transformers
{}
Jung/t5-large
null
[ "transformers", "pytorch", "jax", "t5", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.7470 - Matthews Correlation: 0.5414 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.5237 | 1.0 | 535 | 0.5327 | 0.4248 | | 0.347 | 2.0 | 1070 | 0.5105 | 0.5239 | | 0.2344 | 3.0 | 1605 | 0.6639 | 0.5224 | | 0.1672 | 4.0 | 2140 | 0.7470 | 0.5414 | | 0.1228 | 5.0 | 2675 | 0.8352 | 0.5377 | ### Framework versions - Transformers 4.12.2 - Pytorch 1.9.0+cu111 - Datasets 1.14.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["glue"], "metrics": ["matthews_correlation"], "model-index": [{"name": "distilbert-base-uncased-finetuned-cola", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "glue", "type": "glue", "args": "cola"}, "metrics": [{"type": "matthews_correlation", "value": 0.541356878970505, "name": "Matthews Correlation"}]}]}]}
Jungwoo/distilbert-base-uncased-finetuned-cola
null
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Jungwoo/distilbert-base-uncased-finetuned-squad
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Junjun/JUNJUN
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
feature-extraction
transformers
{}
Junmai/klue-roberta-large-boolq-finetuned-v1
null
[ "transformers", "pytorch", "roberta", "feature-extraction", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
multiple-choice
transformers
{}
Junmai/klue-roberta-large-copa-finetuned-v1
null
[ "transformers", "pytorch", "roberta", "multiple-choice", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
multiple-choice
transformers
{}
Junmai/pretrained-klue-roberta-v1
null
[ "transformers", "pytorch", "roberta", "multiple-choice", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Junxia/negCue
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
asteroid
## Asteroid model ## Description: - Code: The code corresponding to this pretrained model can be found [here](https://github.com/asteroid-team/asteroid/tree/master/egs/wsj0-mix-var/Multi-Decoder-DPRNN). - Notebook: Colab Notebook with examples can be found [here](https://colab.research.google.com/drive/11MGx3_sgOrQrB6k8edyAvg5mGIxqR5ED?usp=sharing) - [Paper](http://www.isle.illinois.edu/speech_web_lg/pubs/2021/zhu2021multi.pdf): "Multi-Decoder DPRNN: High Accuracy Source Counting and Separation", Junzhe Zhu, Raymond Yeh, Mark Hasegawa-Johnson. ICASSP(2021). - Summary: This model achieves SOTA on the problem of source separation with an unknown number of speakers. It uses multiple decoder heads(each tackling a distinct number of speakers), in addition to a classifier head that selects which decoder head to use. - [Project Page](https://junzhejosephzhu.github.io/Multi-Decoder-DPRNN/) - [Original research repo](https://github.com/JunzheJosephZhu/MultiDecoder-DPRNN) This model was trained by Joseph Zhu using the wsj0-mix-var/Multi-Decoder-DPRNN recipe in Asteroid. It was trained on the `sep_count` task of the Wsj0MixVar dataset. ## Training config: ```yaml filterbank: n_filters: 64 kernel_size: 8 stride: 4 masknet: n_srcs: [2, 3, 4, 5] bn_chan: 128 hid_size: 128 chunk_size: 128 hop_size: 64 n_repeats: 8 mask_act: 'sigmoid' bidirectional: true dropout: 0 use_mulcat: false training: epochs: 200 batch_size: 2 num_workers: 2 half_lr: yes lr_decay: yes early_stop: yes gradient_clipping: 5 optim: optimizer: adam lr: 0.001 weight_decay: 0.00000 data: train_dir: "data/{}speakers/wav8k/min/tr" valid_dir: "data/{}speakers/wav8k/min/cv" task: sep_count sample_rate: 8000 seglen: 4.0 minlen: 2.0 loss: lambda: 0.05 ``` ## Results: ```yaml 'Accuracy': 0.9723333333333334, 'P-Si-SNR': 10.36027378628496 ``` ### License notice: This work "MultiDecoderDPRNN" is a derivative of [CSR-I (WSJ0) Complete](https://catalog.ldc.upenn.edu/LDC93S6A) by [LDC](https://www.ldc.upenn.edu/), used under [LDC User Agreement for Non-Members](https://catalog.ldc.upenn.edu/license/ldc-non-members-agreement.pdf) (Research only). "MultiDecoderDPRNN" is licensed under [Attribution-ShareAlike 3.0 Unported](https://creativecommons.org/licenses/by-sa/3.0/) by Joseph Zhu.
{"license": "cc-by-sa-4.0", "tags": ["asteroid", "audio", "MultiDecoderDPRNN"], "datasets": ["Wsj0MixVar", "sep_clean"]}
JunzheJosephZhu/MultiDecoderDPRNN
null
[ "asteroid", "pytorch", "audio", "MultiDecoderDPRNN", "dataset:Wsj0MixVar", "dataset:sep_clean", "license:cc-by-sa-4.0", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Jurgen/RALFY
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
# Model Trained Using AutoNLP - Problem type: Multi-class Classification - Model ID: 29016523 - CO2 Emissions (in grams): 3.273303707756322 ## Validation Metrics - Loss: 0.6093757748603821 - Accuracy: 0.8333333333333334 - Macro F1: 0.7937936978656889 - Micro F1: 0.8333333333333334 - Weighted F1: 0.8239843785760546 - Macro Precision: 0.8988882462566673 - Micro Precision: 0.8333333333333334 - Weighted Precision: 0.8404982541824647 - Macro Recall: 0.7805142534864643 - Micro Recall: 0.8333333333333334 - Weighted Recall: 0.8333333333333334 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/Jush/autonlp-bp-29016523 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("Jush/autonlp-bp-29016523", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("Jush/autonlp-bp-29016523", use_auth_token=True) inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```
{"language": "en", "tags": "autonlp", "datasets": ["Jush/autonlp-data-bp"], "widget": [{"text": "I love AutoNLP \ud83e\udd17"}], "co2_eq_emissions": 3.273303707756322}
JushBJJ/autonlp-bp-29016523
null
[ "transformers", "pytorch", "bert", "text-classification", "autonlp", "en", "dataset:Jush/autonlp-data-bp", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
JustMuteAll/Riddle_man
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
JustMuteAll/bert-base-uncased-finetuned-swag
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
fill-mask
transformers
FidicBERT is a pre-trained language model to analyze legal text. It is built by further training the Roberta language model in the legal domain, using an extensive legal and contract corpus and thereby fine-tuning for classifying and clustering contractual documents.
{}
Jzz/FidicBERT
null
[ "transformers", "pytorch", "roberta", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
translation
transformers
This model is finetuned from [mt5-base](https://huggingface.co/google/mt5-base). The model vocabulary is trimmed to ~1/3 by selecting top 85000 tokens in the training data. The code to trim the vocabulary can be found [here](https://gist.github.com/K024/4a100a0f4f4b07208958e0f3244da6ad). Usage: ```python from transformers import ( T5Tokenizer, MT5ForConditionalGeneration, Text2TextGenerationPipeline, ) path = "K024/mt5-zh-ja-en-trimmed" pipe = Text2TextGenerationPipeline( model=MT5ForConditionalGeneration.from_pretrained(path), tokenizer=T5Tokenizer.from_pretrained(path), ) sentence = "ja2zh: 吾輩は猫である。名前はまだ無い。" res = pipe(sentence, max_length=100, num_beams=4) res[0]['generated_text'] ``` Training data: ``` wikimedia-en-ja wikimedia-en-zh wikimedia-ja-zh wikititles-ja-en wikititles-zh-en wikimatrix-ja-zh news-commentary-en-ja news-commentary-en-zh news-commentary-ja-zh ted2020-en-ja ted2020-en-zh ted2020-ja-zh ``` License: [![CC BY-NC-SA 4.0][cc-by-nc-sa-image]][cc-by-nc-sa] [cc-by-nc-sa]: http://creativecommons.org/licenses/by-nc-sa/4.0/ [cc-by-nc-sa-image]: https://licensebuttons.net/l/by-nc-sa/4.0/88x31.png
{"language": ["zh", "ja", "en"], "license": "cc-by-nc-sa-4.0", "tags": ["translation"], "widget": [{"text": "ja2zh: \u543e\u8f29\u306f\u732b\u3067\u3042\u308b\u3002\u540d\u524d\u306f\u307e\u3060\u7121\u3044\u3002"}]}
K024/mt5-zh-ja-en-trimmed
null
[ "transformers", "pytorch", "mt5", "text2text-generation", "translation", "zh", "ja", "en", "license:cc-by-nc-sa-4.0", "autotrain_compatible", "endpoints_compatible", "has_space", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
yes
{}
K3LLiN/Kellin
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00