Search is not available for this dataset
pipeline_tag
stringclasses
48 values
library_name
stringclasses
205 values
text
stringlengths
0
18.3M
metadata
stringlengths
2
1.07B
id
stringlengths
5
122
last_modified
null
tags
listlengths
1
1.84k
sha
null
created_at
stringlengths
25
25
null
null
{}
K7h30/K
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
transformers
#Rick DialoGPT Model
{"tags": ["conversational"]}
KAIHATSU/DialoGPT-small-rick
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
transformers
# Swedish BERT Models The National Library of Sweden / KBLab releases three pretrained language models based on BERT and ALBERT. The models are trained on approximately 15-20GB of text (200M sentences, 3000M tokens) from various sources (books, news, government publications, swedish wikipedia and internet forums) aiming to provide a representative BERT model for Swedish text. A more complete description will be published later on. The following three models are currently available: - **bert-base-swedish-cased** (*v1*) - A BERT trained with the same hyperparameters as first published by Google. - **bert-base-swedish-cased-ner** (*experimental*) - a BERT fine-tuned for NER using SUC 3.0. - **albert-base-swedish-cased-alpha** (*alpha*) - A first attempt at an ALBERT for Swedish. All models are cased and trained with whole word masking. ## Files | **name** | **files** | |---------------------------------|-----------| | bert-base-swedish-cased | [config](https://s3.amazonaws.com/models.huggingface.co/bert/KB/bert-base-swedish-cased/config.json), [vocab](https://s3.amazonaws.com/models.huggingface.co/bert/KB/bert-base-swedish-cased/vocab.txt), [pytorch_model.bin](https://s3.amazonaws.com/models.huggingface.co/bert/KB/bert-base-swedish-cased/pytorch_model.bin) | | bert-base-swedish-cased-ner | [config](https://s3.amazonaws.com/models.huggingface.co/bert/KB/bert-base-swedish-cased-ner/config.json), [vocab](https://s3.amazonaws.com/models.huggingface.co/bert/KB/bert-base-swedish-cased-ner/vocab.txt) [pytorch_model.bin](https://s3.amazonaws.com/models.huggingface.co/bert/KB/bert-base-swedish-cased-ner/pytorch_model.bin) | | albert-base-swedish-cased-alpha | [config](https://s3.amazonaws.com/models.huggingface.co/bert/KB/albert-base-swedish-cased-alpha/config.json), [sentencepiece model](https://s3.amazonaws.com/models.huggingface.co/bert/KB/albert-base-swedish-cased-alpha/spiece.model), [pytorch_model.bin](https://s3.amazonaws.com/models.huggingface.co/bert/KB/albert-base-swedish-cased-alpha/pytorch_model.bin) | TensorFlow model weights will be released soon. ## Usage requirements / installation instructions The examples below require Huggingface Transformers 2.4.1 and Pytorch 1.3.1 or greater. For Transformers<2.4.0 the tokenizer must be instantiated manually and the `do_lower_case` flag parameter set to `False` and `keep_accents` to `True` (for ALBERT). To create an environment where the examples can be run, run the following in an terminal on your OS of choice. ``` # git clone https://github.com/Kungbib/swedish-bert-models # cd swedish-bert-models # python3 -m venv venv # source venv/bin/activate # pip install --upgrade pip # pip install -r requirements.txt ``` ### BERT Base Swedish A standard BERT base for Swedish trained on a variety of sources. Vocabulary size is ~50k. Using Huggingface Transformers the model can be loaded in Python as follows: ```python from transformers import AutoModel,AutoTokenizer tok = AutoTokenizer.from_pretrained('KBLab/bert-base-swedish-cased') model = AutoModel.from_pretrained('KBLab/bert-base-swedish-cased') ``` ### BERT base fine-tuned for Swedish NER This model is fine-tuned on the SUC 3.0 dataset. Using the Huggingface pipeline the model can be easily instantiated. For Transformer<2.4.1 it seems the tokenizer must be loaded separately to disable lower-casing of input strings: ```python from transformers import pipeline nlp = pipeline('ner', model='KB/bert-base-swedish-cased-ner', tokenizer='KB/bert-base-swedish-cased-ner') nlp('Idag släpper KB tre språkmodeller.') ``` Running the Python code above should produce in something like the result below. Entity types used are `TME` for time, `PRS` for personal names, `LOC` for locations, `EVN` for events and `ORG` for organisations. These labels are subject to change. ```python [ { 'word': 'Idag', 'score': 0.9998126029968262, 'entity': 'TME' }, { 'word': 'KB', 'score': 0.9814832210540771, 'entity': 'ORG' } ] ``` The BERT tokenizer often splits words into multiple tokens, with the subparts starting with `##`, for example the string `Engelbert kör Volvo till Herrängens fotbollsklubb` gets tokenized as `Engel ##bert kör Volvo till Herr ##ängens fotbolls ##klubb`. To glue parts back together one can use something like this: ```python text = 'Engelbert tar Volvon till Tele2 Arena för att titta på Djurgården IF ' +\ 'som spelar fotboll i VM klockan två på kvällen.' l = [] for token in nlp(text): if token['word'].startswith('##'): l[-1]['word'] += token['word'][2:] else: l += [ token ] print(l) ``` Which should result in the following (though less cleanly formatted): ```python [ { 'word': 'Engelbert', 'score': 0.99..., 'entity': 'PRS'}, { 'word': 'Volvon', 'score': 0.99..., 'entity': 'OBJ'}, { 'word': 'Tele2', 'score': 0.99..., 'entity': 'LOC'}, { 'word': 'Arena', 'score': 0.99..., 'entity': 'LOC'}, { 'word': 'Djurgården', 'score': 0.99..., 'entity': 'ORG'}, { 'word': 'IF', 'score': 0.99..., 'entity': 'ORG'}, { 'word': 'VM', 'score': 0.99..., 'entity': 'EVN'}, { 'word': 'klockan', 'score': 0.99..., 'entity': 'TME'}, { 'word': 'två', 'score': 0.99..., 'entity': 'TME'}, { 'word': 'på', 'score': 0.99..., 'entity': 'TME'}, { 'word': 'kvällen', 'score': 0.54..., 'entity': 'TME'} ] ``` ### ALBERT base The easiest way to do this is, again, using Huggingface Transformers: ```python from transformers import AutoModel,AutoTokenizer tok = AutoTokenizer.from_pretrained('KBLab/albert-base-swedish-cased-alpha'), model = AutoModel.from_pretrained('KBLab/albert-base-swedish-cased-alpha') ``` ## Acknowledgements ❤️ - Resources from Stockholms University, Umeå University and Swedish Language Bank at Gothenburg University were used when fine-tuning BERT for NER. - Model pretraining was made partly in-house at the KBLab and partly (for material without active copyright) with the support of Cloud TPUs from Google's TensorFlow Research Cloud (TFRC). - Models are hosted on S3 by Huggingface 🤗
{"language": "sv"}
KBLab/albert-base-swedish-cased-alpha
null
[ "transformers", "pytorch", "albert", "sv", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
fill-mask
transformers
{}
KBLab/bert-base-swedish-cased-alpha
null
[ "transformers", "pytorch", "jax", "bert", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
token-classification
transformers
# Swedish BERT Models The National Library of Sweden / KBLab releases three pretrained language models based on BERT and ALBERT. The models are trained on approximately 15-20GB of text (200M sentences, 3000M tokens) from various sources (books, news, government publications, swedish wikipedia and internet forums) aiming to provide a representative BERT model for Swedish text. A more complete description will be published later on. The following three models are currently available: - **bert-base-swedish-cased** (*v1*) - A BERT trained with the same hyperparameters as first published by Google. - **bert-base-swedish-cased-ner** (*experimental*) - a BERT fine-tuned for NER using SUC 3.0. - **albert-base-swedish-cased-alpha** (*alpha*) - A first attempt at an ALBERT for Swedish. All models are cased and trained with whole word masking. ## Files | **name** | **files** | |---------------------------------|-----------| | bert-base-swedish-cased | [config](https://s3.amazonaws.com/models.huggingface.co/bert/KB/bert-base-swedish-cased/config.json), [vocab](https://s3.amazonaws.com/models.huggingface.co/bert/KB/bert-base-swedish-cased/vocab.txt), [pytorch_model.bin](https://s3.amazonaws.com/models.huggingface.co/bert/KB/bert-base-swedish-cased/pytorch_model.bin) | | bert-base-swedish-cased-ner | [config](https://s3.amazonaws.com/models.huggingface.co/bert/KB/bert-base-swedish-cased-ner/config.json), [vocab](https://s3.amazonaws.com/models.huggingface.co/bert/KB/bert-base-swedish-cased-ner/vocab.txt) [pytorch_model.bin](https://s3.amazonaws.com/models.huggingface.co/bert/KB/bert-base-swedish-cased-ner/pytorch_model.bin) | | albert-base-swedish-cased-alpha | [config](https://s3.amazonaws.com/models.huggingface.co/bert/KB/albert-base-swedish-cased-alpha/config.json), [sentencepiece model](https://s3.amazonaws.com/models.huggingface.co/bert/KB/albert-base-swedish-cased-alpha/spiece.model), [pytorch_model.bin](https://s3.amazonaws.com/models.huggingface.co/bert/KB/albert-base-swedish-cased-alpha/pytorch_model.bin) | TensorFlow model weights will be released soon. ## Usage requirements / installation instructions The examples below require Huggingface Transformers 2.4.1 and Pytorch 1.3.1 or greater. For Transformers<2.4.0 the tokenizer must be instantiated manually and the `do_lower_case` flag parameter set to `False` and `keep_accents` to `True` (for ALBERT). To create an environment where the examples can be run, run the following in an terminal on your OS of choice. ``` # git clone https://github.com/Kungbib/swedish-bert-models # cd swedish-bert-models # python3 -m venv venv # source venv/bin/activate # pip install --upgrade pip # pip install -r requirements.txt ``` ### BERT Base Swedish A standard BERT base for Swedish trained on a variety of sources. Vocabulary size is ~50k. Using Huggingface Transformers the model can be loaded in Python as follows: ```python from transformers import AutoModel,AutoTokenizer tok = AutoTokenizer.from_pretrained('KBLab/bert-base-swedish-cased') model = AutoModel.from_pretrained('KBLab/bert-base-swedish-cased') ``` ### BERT base fine-tuned for Swedish NER This model is fine-tuned on the SUC 3.0 dataset. Using the Huggingface pipeline the model can be easily instantiated. For Transformer<2.4.1 it seems the tokenizer must be loaded separately to disable lower-casing of input strings: ```python from transformers import pipeline nlp = pipeline('ner', model='KBLab/bert-base-swedish-cased-ner', tokenizer='KBLab/bert-base-swedish-cased-ner') nlp('Idag släpper KB tre språkmodeller.') ``` Running the Python code above should produce in something like the result below. Entity types used are `TME` for time, `PRS` for personal names, `LOC` for locations, `EVN` for events and `ORG` for organisations. These labels are subject to change. ```python [ { 'word': 'Idag', 'score': 0.9998126029968262, 'entity': 'TME' }, { 'word': 'KB', 'score': 0.9814832210540771, 'entity': 'ORG' } ] ``` The BERT tokenizer often splits words into multiple tokens, with the subparts starting with `##`, for example the string `Engelbert kör Volvo till Herrängens fotbollsklubb` gets tokenized as `Engel ##bert kör Volvo till Herr ##ängens fotbolls ##klubb`. To glue parts back together one can use something like this: ```python text = 'Engelbert tar Volvon till Tele2 Arena för att titta på Djurgården IF ' +\ 'som spelar fotboll i VM klockan två på kvällen.' l = [] for token in nlp(text): if token['word'].startswith('##'): l[-1]['word'] += token['word'][2:] else: l += [ token ] print(l) ``` Which should result in the following (though less cleanly formatted): ```python [ { 'word': 'Engelbert', 'score': 0.99..., 'entity': 'PRS'}, { 'word': 'Volvon', 'score': 0.99..., 'entity': 'OBJ'}, { 'word': 'Tele2', 'score': 0.99..., 'entity': 'LOC'}, { 'word': 'Arena', 'score': 0.99..., 'entity': 'LOC'}, { 'word': 'Djurgården', 'score': 0.99..., 'entity': 'ORG'}, { 'word': 'IF', 'score': 0.99..., 'entity': 'ORG'}, { 'word': 'VM', 'score': 0.99..., 'entity': 'EVN'}, { 'word': 'klockan', 'score': 0.99..., 'entity': 'TME'}, { 'word': 'två', 'score': 0.99..., 'entity': 'TME'}, { 'word': 'på', 'score': 0.99..., 'entity': 'TME'}, { 'word': 'kvällen', 'score': 0.54..., 'entity': 'TME'} ] ``` ### ALBERT base The easiest way to do this is, again, using Huggingface Transformers: ```python from transformers import AutoModel,AutoTokenizer tok = AutoTokenizer.from_pretrained('KBLab/albert-base-swedish-cased-alpha'), model = AutoModel.from_pretrained('KBLab/albert-base-swedish-cased-alpha') ``` ## Acknowledgements ❤️ - Resources from Stockholms University, Umeå University and Swedish Language Bank at Gothenburg University were used when fine-tuning BERT for NER. - Model pretraining was made partly in-house at the KBLab and partly (for material without active copyright) with the support of Cloud TPUs from Google's TensorFlow Research Cloud (TFRC). - Models are hosted on S3 by Huggingface 🤗
{"language": "sv"}
KBLab/bert-base-swedish-cased-ner
null
[ "transformers", "pytorch", "tf", "jax", "safetensors", "bert", "token-classification", "sv", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
token-classification
transformers
{}
KBLab/bert-base-swedish-cased-neriob
null
[ "transformers", "pytorch", "jax", "safetensors", "bert", "token-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
token-classification
transformers
{}
KBLab/bert-base-swedish-cased-pos
null
[ "transformers", "pytorch", "tf", "jax", "safetensors", "bert", "token-classification", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
question-answering
transformers
{}
KBLab/bert-base-swedish-cased-squad-experimental
null
[ "transformers", "pytorch", "jax", "safetensors", "bert", "question-answering", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
fill-mask
transformers
# Swedish BERT Models The National Library of Sweden / KBLab releases three pretrained language models based on BERT and ALBERT. The models are trained on aproximately 15-20GB of text (200M sentences, 3000M tokens) from various sources (books, news, government publications, swedish wikipedia and internet forums) aiming to provide a representative BERT model for Swedish text. A more complete description will be published later on. The following three models are currently available: - **bert-base-swedish-cased** (*v1*) - A BERT trained with the same hyperparameters as first published by Google. - **bert-base-swedish-cased-ner** (*experimental*) - a BERT fine-tuned for NER using SUC 3.0. - **albert-base-swedish-cased-alpha** (*alpha*) - A first attempt at an ALBERT for Swedish. All models are cased and trained with whole word masking. ## Files | **name** | **files** | |---------------------------------|-----------| | bert-base-swedish-cased | [config](https://s3.amazonaws.com/models.huggingface.co/bert/KB/bert-base-swedish-cased/config.json), [vocab](https://s3.amazonaws.com/models.huggingface.co/bert/KB/bert-base-swedish-cased/vocab.txt), [pytorch_model.bin](https://s3.amazonaws.com/models.huggingface.co/bert/KB/bert-base-swedish-cased/pytorch_model.bin) | | bert-base-swedish-cased-ner | [config](https://s3.amazonaws.com/models.huggingface.co/bert/KB/bert-base-swedish-cased-ner/config.json), [vocab](https://s3.amazonaws.com/models.huggingface.co/bert/KB/bert-base-swedish-cased-ner/vocab.txt) [pytorch_model.bin](https://s3.amazonaws.com/models.huggingface.co/bert/KB/bert-base-swedish-cased-ner/pytorch_model.bin) | | albert-base-swedish-cased-alpha | [config](https://s3.amazonaws.com/models.huggingface.co/bert/KB/albert-base-swedish-cased-alpha/config.json), [sentencepiece model](https://s3.amazonaws.com/models.huggingface.co/bert/KB/albert-base-swedish-cased-alpha/spiece.model), [pytorch_model.bin](https://s3.amazonaws.com/models.huggingface.co/bert/KB/albert-base-swedish-cased-alpha/pytorch_model.bin) | TensorFlow model weights will be released soon. ## Usage requirements / installation instructions The examples below require Huggingface Transformers 2.4.1 and Pytorch 1.3.1 or greater. For Transformers<2.4.0 the tokenizer must be instantiated manually and the `do_lower_case` flag parameter set to `False` and `keep_accents` to `True` (for ALBERT). To create an environment where the examples can be run, run the following in an terminal on your OS of choice. ``` # git clone https://github.com/Kungbib/swedish-bert-models # cd swedish-bert-models # python3 -m venv venv # source venv/bin/activate # pip install --upgrade pip # pip install -r requirements.txt ``` ### BERT Base Swedish A standard BERT base for Swedish trained on a variety of sources. Vocabulary size is ~50k. Using Huggingface Transformers the model can be loaded in Python as follows: ```python from transformers import AutoModel,AutoTokenizer tok = AutoTokenizer.from_pretrained('KBLab/bert-base-swedish-cased') model = AutoModel.from_pretrained('KBLab/bert-base-swedish-cased') ``` ### BERT base fine-tuned for Swedish NER This model is fine-tuned on the SUC 3.0 dataset. Using the Huggingface pipeline the model can be easily instantiated. For Transformer<2.4.1 it seems the tokenizer must be loaded separately to disable lower-casing of input strings: ```python from transformers import pipeline nlp = pipeline('ner', model='KB/bert-base-swedish-cased-ner', tokenizer='KB/bert-base-swedish-cased-ner') nlp('Idag släpper KB tre språkmodeller.') ``` Running the Python code above should produce in something like the result below. Entity types used are `TME` for time, `PRS` for personal names, `LOC` for locations, `EVN` for events and `ORG` for organisations. These labels are subject to change. ```python [ { 'word': 'Idag', 'score': 0.9998126029968262, 'entity': 'TME' }, { 'word': 'KB', 'score': 0.9814832210540771, 'entity': 'ORG' } ] ``` The BERT tokenizer often splits words into multiple tokens, with the subparts starting with `##`, for example the string `Engelbert kör Volvo till Herrängens fotbollsklubb` gets tokenized as `Engel ##bert kör Volvo till Herr ##ängens fotbolls ##klubb`. To glue parts back together one can use something like this: ```python text = 'Engelbert tar Volvon till Tele2 Arena för att titta på Djurgården IF ' +\ 'som spelar fotboll i VM klockan två på kvällen.' l = [] for token in nlp(text): if token['word'].startswith('##'): l[-1]['word'] += token['word'][2:] else: l += [ token ] print(l) ``` Which should result in the following (though less cleanly formated): ```python [ { 'word': 'Engelbert', 'score': 0.99..., 'entity': 'PRS'}, { 'word': 'Volvon', 'score': 0.99..., 'entity': 'OBJ'}, { 'word': 'Tele2', 'score': 0.99..., 'entity': 'LOC'}, { 'word': 'Arena', 'score': 0.99..., 'entity': 'LOC'}, { 'word': 'Djurgården', 'score': 0.99..., 'entity': 'ORG'}, { 'word': 'IF', 'score': 0.99..., 'entity': 'ORG'}, { 'word': 'VM', 'score': 0.99..., 'entity': 'EVN'}, { 'word': 'klockan', 'score': 0.99..., 'entity': 'TME'}, { 'word': 'två', 'score': 0.99..., 'entity': 'TME'}, { 'word': 'på', 'score': 0.99..., 'entity': 'TME'}, { 'word': 'kvällen', 'score': 0.54..., 'entity': 'TME'} ] ``` ### ALBERT base The easisest way to do this is, again, using Huggingface Transformers: ```python from transformers import AutoModel,AutoTokenizer tok = AutoTokenizer.from_pretrained('KBLab/albert-base-swedish-cased-alpha'), model = AutoModel.from_pretrained('KBLab/albert-base-swedish-cased-alpha') ``` ## Acknowledgements ❤️ - Resources from Stockholms University, Umeå University and Swedish Language Bank at Gothenburg University were used when fine-tuning BERT for NER. - Model pretraining was made partly in-house at the KBLab and partly (for material without active copyright) with the support of Cloud TPUs from Google's TensorFlow Research Cloud (TFRC). - Models are hosted on S3 by Huggingface 🤗 ## Citation https://arxiv.org/abs/2007.01658 ``` @misc{malmsten2020playing, title={Playing with Words at the National Library of Sweden -- Making a Swedish BERT}, author={Martin Malmsten and Love Börjeson and Chris Haffenden}, year={2020}, eprint={2007.01658}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
{"language": "sv", "arxiv": "https://arxiv.org/abs/2007.01658"}
KBLab/bert-base-swedish-cased
null
[ "transformers", "pytorch", "tf", "jax", "safetensors", "bert", "fill-mask", "sv", "arxiv:2007.01658", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
transformers
{}
KBLab/electra-base-swedish-cased-discriminator
null
[ "transformers", "pytorch", "tf", "electra", "pretraining", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
fill-mask
transformers
{}
KBLab/electra-base-swedish-cased-generator
null
[ "transformers", "pytorch", "tf", "electra", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
transformers
{}
KBLab/electra-small-swedish-cased-discriminator
null
[ "transformers", "pytorch", "tf", "electra", "pretraining", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
fill-mask
transformers
{}
KBLab/electra-small-swedish-cased-generator
null
[ "transformers", "pytorch", "tf", "electra", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
automatic-speech-recognition
transformers
Test
{"tags": ["automatic-speech-recognition", "generated_from_trainer", "asr_seq2seq"]}
KBLab/asr-voxrex-bart-base
null
[ "transformers", "pytorch", "speech-encoder-decoder", "automatic-speech-recognition", "generated_from_trainer", "asr_seq2seq", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text2text-generation
transformers
## KB-BART A [BART](https://arxiv.org/abs/1910.13461) model trained on a Swedish corpus consisting of 15 billion tokens (about 80GB of text). The model was trained with [Fairseq](https://github.com/pytorch/fairseq), and converted to be compatible with Huggingface. Training code can be found [here](https://github.com/kb-labb/kb_bart). ## Usage ```python from transformers import BartForConditionalGeneration, PreTrainedTokenizerFast, AutoTokenizer model = BartForConditionalGeneration.from_pretrained("KBLab/bart-base-swedish-cased") tok = AutoTokenizer.from_pretrained("KBLab/bart-base-swedish-cased") model.eval() input_ids = tok.encode( "Jag har ätit en utsökt <mask> på restaurang vid <mask> .", return_tensors="pt" ) # Simple greedy search output_ids = model.generate( input_ids, min_length=15, max_length=25, num_beams=1, do_sample=False, ) tok.decode(output_ids[0]) # '</s><s> Jag har ätit en utsökt middag på restaurang vid havet på restaurang vid havet på restaurang vid havet.</s>' # Sampling output_ids = model.generate( input_ids, min_length=15, max_length=20, num_beams=1, do_sample=True, ) tok.decode(output_ids[0]) #'</s><s> Jag har ätit en utsökt god mat som de tagit in på restaurang vid avröjda</s>' # Beam search output_ids = model.generate( input_ids, min_length=15, max_length=25, no_repeat_ngram_size=3, num_beams=8, early_stopping=True, do_sample=True, num_return_sequences=6 ) tok.decode(output_ids[0]) # '</s><s> Jag har ätit en utsökt middag på restaurang vid havet. Jag har varit ute och gått en sväng.</s><pad><pad>' # Diverse beam generation output_ids = model.generate( input_ids, min_length=50, max_length=100, no_repeat_ngram_size=3, num_beams=8, early_stopping=True, do_sample=False, num_return_sequences=6, num_beam_groups=8, diversity_penalty=2.0, ) tok.decode(output_ids[0]) # '</s><s> Jag har ätit en utsökt middag på restaurang vid havet på restaurang. Jag har varit på restaurang i två dagar... Jag..,..!!!.. Så.. Nu.. Hej.. Vi.. Här.</s>' ``` ## Acknowledgements We gratefully acknowledge the HPC RIVR consortium ([www.hpc-rivr.si](https://www.hpc-rivr.si/)) and EuroHPC JU ([eurohpc-ju.europa.eu/](https://eurohpc-ju.europa.eu/)) for funding this research by providing computing resources of the HPC system Vega at the Institute of Information Science ([www.izum.si](https://www.izum.si/)).
{"language": "sv", "widget": [{"text": "Jag har \u00e4tit en <mask>"}]}
KBLab/bart-base-swedish-cased
null
[ "transformers", "pytorch", "safetensors", "bart", "text2text-generation", "sv", "arxiv:1910.13461", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
fill-mask
transformers
# 🤗 BERT Swedish This BERT model was trained using the 🤗 transformers library. The size of the model is a regular BERT-base with 110M parameters. The model was trained on about 70GB of data, consisting mostly of OSCAR and Swedish newspaper text curated by the National Library of Sweden. To avoid excessive padding documents shorter than 512 tokens were concatenated into one large sequence of 512 tokens, and larger documents were split into multiple 512 token sequences, following https://github.com/huggingface/transformers/blob/master/examples/pytorch/language-modeling/run_mlm.py Training was done for a bit more than 8 epochs with a batch size of 2048, resulting in a little less than 125k training steps. The model has three sister models trained on the same dataset: - [Megatron-BERT-base-125k](https://huggingface.co/KBLab/megatron-bert-base-swedish-cased-125k) - [Megatron-BERT-base-600k](https://huggingface.co/KBLab/megatron-bert-base-swedish-cased-600k) - [Megatron-BERT-large-110k](https://huggingface.co/KBLab/megatron-bert-large-swedish-cased-110k) ## Acknowledgements We gratefully acknowledge the HPC RIVR consortium (https://www.hpc-rivr.si) and EuroHPC JU (https://eurohpc-ju.europa.eu) for funding this research by providing computing resources of the HPC system Vega at the Institute of Information Science (https://www.izum.si).
{"language": ["sv"]}
KBLab/bert-base-swedish-cased-new
null
[ "transformers", "pytorch", "safetensors", "bert", "fill-mask", "sv", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
token-classification
transformers
# KB-BERT for NER ## Cased data This model is based on [KB-BERT](https://huggingface.co/KB/bert-base-swedish-cased) and was fine-tuned on the [SUCX 3.0 - NER](https://huggingface.co/datasets/KBLab/sucx3_ner) corpus, using the _simple_ tags and cased data. For this model we used a variation of the data that did **not** use BIO-encoding to differentiate between the beginnings (B), and insides (I) of named entity tags. The model was trained on the training data only, with the best model chosen by its performance on the validation data. You find more information about the model and the performance on our blog: https://kb-labb.github.io/posts/2022-02-07-sucx3_ner
{"language": "sv", "tags": ["token-classification", "sequence-tagger-model", "bert"], "datasets": ["KBLab/sucx3_ner"], "widget": [{"text": "Emil bor i L\u00f6nneberga"}]}
KBLab/bert-base-swedish-cased-reallysimple-ner
null
[ "transformers", "pytorch", "megatron-bert", "token-classification", "sequence-tagger-model", "bert", "sv", "dataset:KBLab/sucx3_ner", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
token-classification
transformers
# KB-BERT for NER ## Mixed cased and uncased data This model is based on [KB-BERT](https://huggingface.co/KB/bert-base-swedish-cased) and was fine-tuned on the [SUCX 3.0 - NER](https://huggingface.co/datasets/KBLab/sucx3_ner) corpus, using the _simple_ tags and partially lowercased data. For this model we used a variation of the data that did **not** use BIO-encoding to differentiate between the beginnings (B), and insides (I) of named entity tags. The model was trained on the training data only, with the best model chosen by its performance on the validation data. You find more information about the model and the performance on our blog: https://kb-labb.github.io/posts/2022-02-07-sucx3_ner
{"language": "sv", "tags": ["token-classification", "sequence-tagger-model", "bert"], "datasets": ["KBLab/sucx3_ner"], "model": ["KB/bert-base-swedish-cased"], "widget": [{"text": "Emil bor i L\u00f6nneberga"}]}
KBLab/bert-base-swedish-lowermix-reallysimple-ner
null
[ "transformers", "pytorch", "safetensors", "bert", "token-classification", "sequence-tagger-model", "sv", "dataset:KBLab/sucx3_ner", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
fill-mask
transformers
# Megatron-BERT-base Swedish 600k This BERT model was trained using the Megatron-LM library. The size of the model is a regular BERT-base with 110M parameters. The model was trained on about 70GB of data, consisting mostly of OSCAR and Swedish newspaper text curated by the National Library of Sweden. Training was done for 600k training steps. Its [sister model](https://huggingface.co/KBLab/megatron-bert-base-swedish-cased-125k) used the same setup, but was instead trained for only 125k steps. The model has three sister models trained on the same dataset: - [🤗 BERT Swedish](https://huggingface.co/KBLab/bert-base-swedish-cased-new) - [Megatron-BERT-base-125k](https://huggingface.co/KBLab/megatron-bert-base-swedish-cased-125k) - [Megatron-BERT-large-110k](https://huggingface.co/KBLab/megatron-bert-large-swedish-cased-110k) ## Acknowledgements We gratefully acknowledge the HPC RIVR consortium (https://www.hpc-rivr.si) and EuroHPC JU (https://eurohpc-ju.europa.eu) for funding this research by providing computing resources of the HPC system Vega at the Institute of Information Science (https://www.izum.si).
{"language": ["sv"]}
KBLab/megatron-bert-base-swedish-cased-600k
null
[ "transformers", "pytorch", "safetensors", "megatron-bert", "fill-mask", "sv", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
fill-mask
transformers
# Megatron-BERT-base Swedish 125k This BERT model was trained using the Megatron-LM library. The size of the model is a regular BERT-base with 110M parameters. The model was trained on about 70GB of data, consisting mostly of OSCAR and Swedish newspaper text curated by the National Library of Sweden. Training was done for 125k training steps. Its [sister model](https://huggingface.co/KBLab/megatron-bert-base-swedish-cased-600k) used the same setup, but was instead trained for 600k steps. The model has three sister models trained on the same dataset: - [🤗 BERT Swedish](https://huggingface.co/KBLab/bert-base-swedish-cased-new) - [Megatron-BERT-base-600k](https://huggingface.co/KBLab/megatron-bert-base-swedish-cased-600k) - [Megatron-BERT-large-110k](https://huggingface.co/KBLab/megatron-bert-large-swedish-cased-110k) ## Acknowledgements We gratefully acknowledge the HPC RIVR consortium (https://www.hpc-rivr.si) and EuroHPC JU (https://eurohpc-ju.europa.eu) for funding this research by providing computing resources of the HPC system Vega at the Institute of Information Science (https://www.izum.si).
{"language": ["sv"]}
KBLab/megatron-bert-base-swedish-cased-125k
null
[ "transformers", "pytorch", "safetensors", "megatron-bert", "fill-mask", "sv", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
fill-mask
transformers
# Roberta base TEST
{}
KBLab/roberta-base-swedish-cased
null
[ "transformers", "pytorch", "roberta", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
sentence-similarity
sentence-transformers
# KBLab/sentence-bert-swedish-cased This is a [sentence-transformers](https://www.SBERT.net) model: It maps Swedish sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. This model is a bilingual Swedish-English model trained according to instructions in the paper [Making Monolingual Sentence Embeddings Multilingual using Knowledge Distillation](https://arxiv.org/pdf/2004.09813.pdf) and the [documentation](https://www.sbert.net/examples/training/multilingual/README.html) accompanying its companion python package. We have used the strongest available pretrained English Bi-Encoder ([all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2)) as a teacher model, and the pretrained Swedish [KB-BERT](https://huggingface.co/KB/bert-base-swedish-cased) as the student model. A more detailed description of the model can be found in an article we published on the KBLab blog [here](https://kb-labb.github.io/posts/2021-08-23-a-swedish-sentence-transformer/) and for the updated model [here](https://kb-labb.github.io/posts/2023-01-16-sentence-transformer-20/). **Update**: We have released updated versions of the model since the initial release. The original model described in the blog post is **v1.0**. The current version is **v2.0**. The newer versions are trained on longer paragraphs, and have a longer max sequence length. **v2.0** is trained with a stronger teacher model and is the current default. | Model version | Teacher Model | Max Sequence Length | |---------------|---------|----------| | v1.0 | [paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2) | 256 | | v1.1 | [paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2) | 384 | | v2.0 | [all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) | 384 | <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["Det här är en exempelmening", "Varje exempel blir konverterad"] model = SentenceTransformer('KBLab/sentence-bert-swedish-cased') embeddings = model.encode(sentences) print(embeddings) ``` ### Loading an older model version (Sentence-Transformers) Currently, the easiest way to load an older model version is to clone the model repository and load it from disk. For example, to clone the **v1.0** model: ```bash git clone --depth 1 --branch v1.0 https://huggingface.co/KBLab/sentence-bert-swedish-cased ``` Then you can load the model by pointing to the local folder where you cloned the model: ```python from sentence_transformers import SentenceTransformer model = SentenceTransformer("path_to_model_folder/sentence-bert-swedish-cased") ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['Det här är en exempelmening', 'Varje exempel blir konverterad'] # Load model from HuggingFace Hub # To load an older version, e.g. v1.0, add the argument revision="v1.0" tokenizer = AutoTokenizer.from_pretrained('KBLab/sentence-bert-swedish-cased') model = AutoModel.from_pretrained('KBLab/sentence-bert-swedish-cased') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, max pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ### Loading an older model (Hugginfface Transformers) To load an older model specify the version tag with the `revision` arg. For example, to load the **v1.0** model, use the following code: ```python AutoTokenizer.from_pretrained('KBLab/sentence-bert-swedish-cased', revision="v1.0") AutoModel.from_pretrained('KBLab/sentence-bert-swedish-cased', revision="v1.0") ``` ## Evaluation Results <!--- Describe how your model was evaluated --> The model was evaluated on [SweParaphrase v1.0](https://spraakbanken.gu.se/en/resources/sweparaphrase) and **SweParaphrase v2.0**. This test set is part of [SuperLim](https://spraakbanken.gu.se/en/resources/superlim) -- a Swedish evaluation suite for natural langage understanding tasks. We calculated Pearson and Spearman correlation between predicted model similarity scores and the human similarity score labels. Results from **SweParaphrase v1.0** are displayed below. | Model version | Pearson | Spearman | |---------------|---------|----------| | v1.0 | 0.9183 | 0.9114 | | v1.1 | 0.9183 | 0.9114 | | v2.0 | **0.9283** | **0.9130** | The following code snippet can be used to reproduce the above results: ```python from sentence_transformers import SentenceTransformer import pandas as pd df = pd.read_csv( "sweparaphrase-dev-165.csv", sep="\t", header=None, names=[ "original_id", "source", "type", "sentence_swe1", "sentence_swe2", "score", "sentence1", "sentence2", ], ) model = SentenceTransformer("KBLab/sentence-bert-swedish-cased") sentences1 = df["sentence_swe1"].tolist() sentences2 = df["sentence_swe2"].tolist() # Compute embedding for both lists embeddings1 = model.encode(sentences1, convert_to_tensor=True) embeddings2 = model.encode(sentences2, convert_to_tensor=True) # Compute cosine similarity after normalizing embeddings1 /= embeddings1.norm(dim=-1, keepdim=True) embeddings2 /= embeddings2.norm(dim=-1, keepdim=True) cosine_scores = embeddings1 @ embeddings2.t() sentence_pair_scores = cosine_scores.diag() df["model_score"] = sentence_pair_scores.cpu().tolist() print(df[["score", "model_score"]].corr(method="spearman")) print(df[["score", "model_score"]].corr(method="pearson")) ``` ### Sweparaphrase v2.0 In general, **v1.1** correlates the most with human assessment of text similarity on SweParaphrase v2.0. Below, we present zero-shot evaluation results on all data splits. They display the model's performance out of the box, without any fine-tuning. | Model version | Data split | Pearson | Spearman | |---------------|------------|------------|------------| | v1.0 | train | 0.8355 | 0.8256 | | v1.1 | train | **0.8383** | **0.8302** | | v2.0 | train | 0.8209 | 0.8059 | | v1.0 | dev | 0.8682 | 0.8774 | | v1.1 | dev | **0.8739** | **0.8833** | | v2.0 | dev | 0.8638 | 0.8668 | | v1.0 | test | 0.8356 | 0.8476 | | v1.1 | test | **0.8393** | **0.8550** | | v2.0 | test | 0.8232 | 0.8213 | ### SweFAQ v2.0 When it comes to retrieval tasks, **v2.0** performs the best by quite a substantial margin. It is better at matching the correct answer to a question compared to v1.1 and v1.0. | Model version | Data split | Accuracy | |---------------|------------|------------| | v1.0 | train | 0.5262 | | v1.1 | train | 0.6236 | | v2.0 | train | **0.7106** | | v1.0 | dev | 0.4636 | | v1.1 | dev | 0.5818 | | v2.0 | dev | **0.6727** | | v1.0 | test | 0.4495 | | v1.1 | test | 0.5229 | | v2.0 | test | **0.5871** | Examples how to evaluate the models on some of the test sets of the SuperLim suites can be found on the following links: [evaluate_faq.py](https://github.com/kb-labb/swedish-sbert/blob/main/evaluate_faq.py) (Swedish FAQ), [evaluate_swesat.py](https://github.com/kb-labb/swedish-sbert/blob/main/evaluate_swesat.py) (SweSAT synonyms), [evaluate_supersim.py](https://github.com/kb-labb/swedish-sbert/blob/main/evaluate_supersim.py) (SuperSim). ## Training An article with more details on data and v1.0 of the model can be found on the [KBLab blog](https://kb-labb.github.io/posts/2021-08-23-a-swedish-sentence-transformer/). Around 14.6 million sentences from English-Swedish parallel corpuses were used to train the model. Data was sourced from the [Open Parallel Corpus](https://opus.nlpl.eu/) (OPUS) and downloaded via the python package [opustools](https://pypi.org/project/opustools/). Datasets used were: JW300, Europarl, DGT-TM, EMEA, ELITR-ECA, TED2020, Tatoeba and OpenSubtitles. The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 180513 with parameters: ``` {'batch_size': 64, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.MSELoss.MSELoss` Parameters of the fit()-Method: ``` { "epochs": 2, "evaluation_steps": 1000, "evaluator": "sentence_transformers.evaluation.SequentialEvaluator.SequentialEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "eps": 1e-06, "lr": 8e-06 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 5000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information --> This model was trained by KBLab, a data lab at the National Library of Sweden. You can cite the article on our blog: https://kb-labb.github.io/posts/2021-08-23-a-swedish-sentence-transformer/ . ``` @misc{rekathati2021introducing, author = {Rekathati, Faton}, title = {The KBLab Blog: Introducing a Swedish Sentence Transformer}, url = {https://kb-labb.github.io/posts/2021-08-23-a-swedish-sentence-transformer/}, year = {2021} } ``` ## Acknowledgements We gratefully acknowledge the HPC RIVR consortium ([www.hpc-rivr.si](https://www.hpc-rivr.si/)) and EuroHPC JU ([eurohpc-ju.europa.eu/](https://eurohpc-ju.europa.eu/)) for funding this research by providing computing resources of the HPC system Vega at the Institute of Information Science ([www.izum.si](https://www.izum.si/)).
{"language": ["sv"], "license": "apache-2.0", "tags": ["sentence-transformers", "feature-extraction", "sentence-similarity", "transformers"], "pipeline_tag": "sentence-similarity", "lang": ["sv"], "widget": [{"source_sentence": "Mannen \u00e5t mat.", "sentences": ["Han f\u00f6rt\u00e4rde en n\u00e4rande och nyttig m\u00e5ltid.", "Det var ett sunkigt hak med ganska gott k\u00e4k.", "Han inmundigade middagen tillsammans med ett glas r\u00f6dvin.", "Potatischips \u00e4r j\u00e4ttegoda.", "Tryck p\u00e5 knappen f\u00f6r att f\u00e5 tala med kundsupporten."], "example_title": "Mat"}, {"source_sentence": "Kan jag deklarera digitalt fr\u00e5n utlandet?", "sentences": ["Du som befinner dig i utlandet kan deklarera digitalt p\u00e5 flera olika s\u00e4tt.", "Du som har kvarskatt att betala ska g\u00f6ra en inbetalning till ditt skattekonto.", "Efter att du har deklarerat g\u00e5r vi igenom uppgifterna i din deklaration och r\u00e4knar ut din skatt.", "I din deklaration som du f\u00e5r fr\u00e5n oss har vi r\u00e4knat ut vad du ska betala eller f\u00e5 tillbaka.", "Tryck p\u00e5 knappen f\u00f6r att f\u00e5 tala med kundsupporten."], "example_title": "Skatteverket FAQ"}, {"source_sentence": "Hon kunde g\u00f6ra bak\u00e5tvolter.", "sentences": ["Hon var atletisk.", "Hon var bra p\u00e5 gymnastik.", "Hon var inte atletisk.", "Hon var of\u00f6rm\u00f6gen att flippa bakl\u00e4nges."], "example_title": "Gymnastik"}]}
KBLab/sentence-bert-swedish-cased
null
[ "sentence-transformers", "pytorch", "bert", "feature-extraction", "sentence-similarity", "transformers", "sv", "arxiv:2004.09813", "license:apache-2.0", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
token-classification
spacy
{"language": ["sv"], "license": "mit", "tags": ["spacy", "token-classification"]}
KBLab/swedish-spacy-pipeline
null
[ "spacy", "token-classification", "sv", "license:mit", "model-index", "region:us" ]
null
2022-03-02T23:29:04+00:00
automatic-speech-recognition
transformers
# Wav2vec 2.0 base-voxpopuli-sv-swedish Finetuned version of Facebooks [VoxPopuli-sv base](https://huggingface.co/facebook/wav2vec2-base-sv-voxpopuli) model using NST and Common Voice data. Evalutation without a language model gives the following: WER for NST + Common Voice test set (2% of total sentences) is **5.62%**, WER for Common Voice test set is **19.15%**. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "sv-SE", split="test[:2%]"). processor = Wav2Vec2Processor.from_pretrained("KBLab/wav2vec2-base-voxpopuli-sv-swedish") model = Wav2Vec2ForCTC.from_pretrained("KBLab/wav2vec2-base-voxpopuli-sv-swedish") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ```
{"language": "sv-SE", "license": "cc-by-nc-4.0", "tags": ["audio", "automatic-speech-recognition", "speech", "voxpopuli"], "datasets": ["common_voice", "NST Swedish ASR Database"], "metrics": ["wer"]}
KBLab/wav2vec2-base-voxpopuli-sv-swedish
null
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "audio", "speech", "voxpopuli", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
automatic-speech-recognition
transformers
# Wav2vec 2.0 large-voxpopuli-sv-swedish **PLEASE NOTE that [this](https://huggingface.co/KBLab/wav2vec2-large-voxrex-swedish) model performs better and has a less restrictive license.** Additionally pretrained and finetuned version of Facebooks [VoxPopuli-sv large](https://huggingface.co/facebook/wav2vec2-large-sv-voxpopuli) model using Swedish radio broadcasts, NST and Common Voice data. Evalutation without a language model gives the following: WER for NST + Common Voice test set (2% of total sentences) is **3.95%**. WER for Common Voice test set is **10.99%** directly and **7.82%** with a 4-gram language model. When using this model, make sure that your speech input is sampled at 16kHz. ## Training This model has additionally pretrained on 1000h of Swedish local radio broadcasts, fine-tuned for 120000 updates on NST + CommonVoice and then for an additional 20000 updates on CommonVoice only. The additional fine-tuning on CommonVoice hurts performance on the NST+CommonVoice test set somewhat and, unsurprisingly, improves it on the CommonVoice test set. It seems to perform generally better though [citation needed]. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "sv-SE", split="test[:2%]"). processor = Wav2Vec2Processor.from_pretrained("KBLab/wav2vec2-large-voxpopuli-sv-swedish") model = Wav2Vec2ForCTC.from_pretrained("KBLab/wav2vec2-large-voxpopuli-sv-swedish") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ```
{"language": "sv-SE", "license": "cc-by-nc-4.0", "tags": ["audio", "automatic-speech-recognition", "speech", "voxpopuli"], "datasets": ["common_voice", "NST Swedish ASR Database"], "metrics": ["wer", "cer"], "model-index": [{"name": "Wav2vec 2.0 large VoxPopuli-sv swedish", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice", "type": "common_voice", "args": "sv-SE"}, "metrics": [{"type": "wer", "value": 10.994764, "name": "Test WER"}, {"type": "cer", "value": 3.946846, "name": "Test CER"}]}]}]}
KBLab/wav2vec2-large-voxpopuli-sv-swedish
null
[ "transformers", "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "audio", "speech", "voxpopuli", "license:cc-by-nc-4.0", "model-index", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
automatic-speech-recognition
transformers
# Wav2vec 2.0 large VoxRex Swedish (C) Finetuned version of KBs [VoxRex large](https://huggingface.co/KBLab/wav2vec2-large-voxrex) model using Swedish radio broadcasts, NST and Common Voice data. Evalutation without a language model gives the following: WER for NST + Common Voice test set (2% of total sentences) is **2.5%**. WER for Common Voice test set is **8.49%** directly and **7.37%** with a 4-gram language model. When using this model, make sure that your speech input is sampled at 16kHz. **Update 2022-01-10:** Updated to VoxRex-C version. **Update 2022-05-16:** Paper is is [here](https://arxiv.org/abs/2205.03026). # Performance\* ![Comparison](comparison.png "Comparison") <center><del>*<i>Chart shows performance without the additional 20k steps of Common Voice fine-tuning</i></del></center> ## Training This model has been fine-tuned for 120000 updates on NST + CommonVoice<del> and then for an additional 20000 updates on CommonVoice only. The additional fine-tuning on CommonVoice hurts performance on the NST+CommonVoice test set somewhat and, unsurprisingly, improves it on the CommonVoice test set. It seems to perform generally better though [citation needed]</del>. ![WER during training](chart_1.svg "WER") ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "sv-SE", split="test[:2%]"). processor = Wav2Vec2Processor.from_pretrained("KBLab/wav2vec2-large-voxrex-swedish") model = Wav2Vec2ForCTC.from_pretrained("KBLab/wav2vec2-large-voxrex-swedish") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Citation https://arxiv.org/abs/2205.03026 ``` @misc{malmsten2022hearing, title={Hearing voices at the National Library -- a speech corpus and acoustic model for the Swedish language}, author={Martin Malmsten and Chris Haffenden and Love Börjeson}, year={2022}, eprint={2205.03026}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
{"language": "sv", "license": "cc0-1.0", "tags": ["audio", "automatic-speech-recognition", "speech", "hf-asr-leaderboard"], "datasets": ["common_voice", "NST_Swedish_ASR_Database", "P4"], "metrics": ["wer"], "arxiv": "https://arxiv.org/abs/2205.03026", "model-index": [{"name": "Wav2vec 2.0 large VoxRex Swedish", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice", "type": "common_voice", "args": "sv-SE"}, "metrics": [{"type": "wer", "value": 8.49, "name": "Test WER"}]}]}]}
KBLab/wav2vec2-large-voxrex-swedish
null
[ "transformers", "pytorch", "safetensors", "wav2vec2", "automatic-speech-recognition", "audio", "speech", "hf-asr-leaderboard", "sv", "dataset:common_voice", "dataset:NST_Swedish_ASR_Database", "dataset:P4", "arxiv:2205.03026", "license:cc0-1.0", "model-index", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
automatic-speech-recognition
transformers
# Wav2vec 2.0 large VoxRex (C) **Please note:** The model hosted in this repository is a pretrained wav2vec2 without a CTC head, as such it cannot do speech-to-text. If you are interested in speech-to-text, see our finetuned version of this model, which can be found at [KBLab/wav2vec2-large-voxrex-swedish](https://huggingface.co/KBLab/wav2vec2-large-voxrex-swedish). The weights found in this repository are from the pure acoustic model after unsupervised pretraining. This model is suitable for anyone interested in i) continued wav2vec2-pretraining with your own unsupervised data, ii) a feature extractor for finetuning your own downstream tasks (e.g. if you want to train your own CTC head, or an audio classifier). **Disclaimer:** This is a work in progress.<br> **Update 2022-01-08:** Updated to VoxRex-C version, use git to get the older (B) version.<br> **Update 2022-05-16:** Paper is is [here](https://arxiv.org/abs/2205.03026). This model has been pretrained for 400,000 updates on the P4-10k corpus which contains 10 000 hours of swedish local public service radio as well as 1500 hours of audio books and other speech from KBs collections. ![Accuracy during training](accuracy.svg "Accuracy")
{"language": "sv", "license": "cc0-1.0", "tags": ["audio", "automatic-speech-recognition", "voxrex"]}
KBLab/wav2vec2-large-voxrex
null
[ "transformers", "pytorch", "wav2vec2", "pretraining", "audio", "automatic-speech-recognition", "voxrex", "sv", "arxiv:2205.03026", "license:cc0-1.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
automatic-speech-recognition
transformers
# Wav2Vec2-Large-XLSR-53-Swedish Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) in Swedish using the [NST Swedish Dictation](https://www.nb.no/sprakbanken/en/resource-catalogue/oai-nb-no-sbr-17/). When using this model, make sure that your speech input is sampled at 16kHz. **Note:** We recommend using our newer model [wav2vec2-large-voxrex-swedish](https://huggingface.co/KBLab/wav2vec2-large-voxrex-swedish) for the best performance. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "sv-SE", split="test[:2%]"). processor = Wav2Vec2Processor.from_pretrained("KBLab/wav2vec2-large-xlsr-53-swedish") model = Wav2Vec2ForCTC.from_pretrained("KBLab/wav2vec2-large-xlsr-53-swedish") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Swedish test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "sv-SE", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("KBLab/wav2vec2-large-xlsr-53-swedish") model = Wav2Vec2ForCTC.from_pretrained("KBLab/wav2vec2-large-xlsr-53-swedish") model.to("cuda") chars_to_ignore_regex = '[,?.!\\-;:"“]' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) print("CER: {:2f}".format(100 * wer.compute(predictions=[" ".join(list(entry)) for entry in result["pred_strings"]], references=[" ".join(list(entry)) for entry in result["sentence"]]))) ``` **WER**: 14.298610% **CER**: 4.925294% ## Training First the XLSR model was further pre-trained for 50 epochs with a corpus consisting of 1000 hours spoken Swedish from various radio stations. Secondly [NST Swedish Dictation](https://www.nb.no/sprakbanken/en/resource-catalogue/oai-nb-no-sbr-17/) was used for fine tuning as well as [Common Voice](https://commonvoice.mozilla.org/en/datasets). Lastly only Common Voice dataset was used for final finetuning. The [Fairseq](https://github.com/fairseq) scripts were used.
{"language": "sv", "license": "apache-2.0", "tags": ["audio", "automatic-speech-recognition", "speech", "xlsr-fine-tuning-week"], "datasets": ["common_voice", "KTH/nst"], "metrics": ["wer", "cer"], "model-index": [{"name": "XLSR Wav2Vec2 Swedish by KBLab", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice sv-SE", "type": "common_voice", "args": "sv-SE"}, "metrics": [{"type": "wer", "value": 14.29861, "name": "Test WER"}, {"type": "cer", "value": 4.925294, "name": "Test CER"}]}]}]}
KBLab/wav2vec2-large-xlsr-53-swedish
null
[ "transformers", "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "audio", "speech", "xlsr-fine-tuning-week", "sv", "dataset:common_voice", "dataset:KTH/nst", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
transformers
# Harry Potter DialoGPT Model
{"tags": ["conversational"]}
KENNETHFOO/DialoGPT-medium-harrypotter
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
text2text-generation
transformers
# Model This model utilises T5-base pre-trained model. It was fine tuned using a modified version of the [JFLEG](https://arxiv.org/abs/1702.04066) dataset and [Happy Transformer framework](https://github.com/EricFillion/happy-transformer). This model was fine-tuned for sentence correction on normal English translations and positional English translations of local Caribbean English Creole. This model will be updated periodically as more data is compiled. For more on the Caribbean English Creole checkout the library [Caribe](https://pypi.org/project/Caribe/). ___ # Re-training/Fine Tuning The results of fine-tuning resulted in a final accuracy of 92% # Usage ```python from happytransformer import HappyTextToText, TTSettings pre_trained_model="T5" model = HappyTextToText(pre_trained_model, "KES/T5-KES") arguments = TTSettings(num_beams=4, min_length=1) sentence = "Wat iz your nam" correction = model.generate_text("grammar: "+sentence, args=arguments) if(correction.text.find(" .")): correction.text=correction.text.replace(" .", ".") print(correction.text) # Correction: "What is your name?". ``` ___ # Usage with Transformers ```python from transformers import AutoTokenizer, AutoModelForSeq2SeqLM tokenizer = AutoTokenizer.from_pretrained("KES/T5-KES") model = AutoModelForSeq2SeqLM.from_pretrained("KES/T5-KES") text = "I am lived with my parenmts " inputs = tokenizer("grammar:"+text, truncation=True, return_tensors='pt') output = model.generate(inputs['input_ids'], num_beams=4, max_length=512, early_stopping=True) correction=tokenizer.batch_decode(output, skip_special_tokens=True) print("".join(correction)) #Correction: I am living with my parents. ``` ___
{"language": "en", "license": "cc-by-nc-sa-4.0", "tags": ["sentence correction", "text2text-generation"], "datasets": ["jfleg"]}
KES/T5-KES
null
[ "transformers", "pytorch", "safetensors", "t5", "text2text-generation", "sentence correction", "en", "dataset:jfleg", "arxiv:1702.04066", "license:cc-by-nc-sa-4.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
text2text-generation
transformers
# Trinidad English Creole Parser This model was trained as a parser to Trinidad English Creole. --- # Model This model utilises T5-base pre-trained model. It was fine tuned using a combination of a custom dataset and creolised [JFLEG](https://arxiv.org/abs/1702.04066) dataset. JFLEG dataset was creolised using the file encoding feature of the Caribe library. For more on Caribbean Creole checkout the library [Caribe](https://pypi.org/project/Caribe/). ___ # Usage with Transformers ```python from transformers import AutoTokenizer, AutoModelForSeq2SeqLM tokenizer = AutoTokenizer.from_pretrained("KES/T5-TTParser") model = AutoModelForSeq2SeqLM.from_pretrained("KES/T5-TTParser") txt = "Ah have live with mi paremnts en London" inputs = tokenizer("grammar:"+txt, truncation=True, return_tensors='pt') output = model.generate(inputs['input_ids'], num_beams=4, max_length=512, early_stopping=True) correction=tokenizer.batch_decode(output, skip_special_tokens=True) print("".join(correction)) #Correction: Ah live with meh parents in London. ```
{"language": "en", "license": "cc-by-nc-sa-4.0", "tags": ["Trinidad and Tobago English Parser", "text2text-generation", "Caribe"], "datasets": ["Custom dataset", "Creolised JFLEG"]}
KES/T5-TTParser
null
[ "transformers", "pytorch", "t5", "text2text-generation", "Trinidad and Tobago English Parser", "Caribe", "en", "arxiv:1702.04066", "license:cc-by-nc-sa-4.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
text2text-generation
transformers
# Model Card for ke-t5-base-ko # Model Details ## Model Description - **Developed by:** Korea Electronics Technology Institute Artificial Intelligence Research Center - **Shared by [Optional]:** More information needed - **Model type:** Text2Text Generation - **Language(s) (NLP):** More information needed - **License:** More information needed - **Related Models:** - **Parent Model:** T5 - **Resources for more information:** - [GitHub Repo](https://github.com/google-research/text-to-text-transfer-transformer#released-model-checkpoints) - [KE-T5 Github Repo](https://github.com/AIRC-KETI/ke-t5) - [Paper](https://aclanthology.org/2021.findings-emnlp.33/) - [Associated Paper](https://jmlr.org/papers/volume21/20-074/20-074.pdf) - [Blog Post](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html) # Uses ## Direct Use This model can be used for the task of Text2Text Generation ## Downstream Use [Optional] More information needed ## Out-of-Scope Use The model should not be used to intentionally create hostile or alienating environments for people. # Bias, Risks, and Limitations Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al. (2021)](https://aclanthology.org/2021.acl-long.330.pdf) and [Bender et al. (2021)](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)). Predictions generated by the model may include disturbing and harmful stereotypes across protected classes; identity characteristics; and sensitive, social, and occupational groups. ## Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. # Training Details ## Training Data The model is pre-trained on the [Colossal Clean Crawled Corpus (C4)](https://www.tensorflow.org/datasets/catalog/c4), which was developed and released in the context of the same [research paper](https://jmlr.org/papers/volume21/20-074/20-074.pdf) as T5. The model was pre-trained on a on a **multi-task mixture of unsupervised (1.) and supervised tasks (2.)**. See the [t5-base model card](https://huggingface.co/t5-base?text=My+name+is+Wolfgang+and+I+live+in+Berlin) for further information. ## Training Procedure ### Preprocessing More information needed ### Speeds, Sizes, Times More information needed # Evaluation ## Testing Data, Factors & Metrics ### Testing Data More information needed ### Factors ### Metrics More information needed ## Results More information needed # Model Examination More information needed # Environmental Impact Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** More information needed - **Hours used:** More information needed - **Cloud Provider:** More information needed - **Compute Region:** More information needed - **Carbon Emitted:** More information needed # Technical Specifications [optional] ## Model Architecture and Objective More information needed ## Compute Infrastructure More information needed ### Hardware More information needed ### Software More information needed # Citation **BibTeX:** ```bibtex @inproceedings{kim-etal-2021-model-cross, title = "A Model of Cross-Lingual Knowledge-Grounded Response Generation for Open-Domain Dialogue Systems", author = "Kim, San and Jang, Jin Yea and Jung, Minyoung and Shin, Saim", booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2021", month = nov, year = "2021", address = "Punta Cana, Dominican Republic", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.findings-emnlp.33", doi = "10.18653/v1/2021.findings-emnlp.33", pages = "352--365", abstract = "Research on open-domain dialogue systems that allow free topics is challenging in the field of natural language processing (NLP). The performance of the dialogue system has been improved recently by the method utilizing dialogue-related knowledge; however, non-English dialogue systems suffer from reproducing the performance of English dialogue systems because securing knowledge in the same language with the dialogue system is relatively difficult. Through experiments with a Korean dialogue system, this paper proves that the performance of a non-English dialogue system can be improved by utilizing English knowledge, highlighting the system uses cross-lingual knowledge. For the experiments, we 1) constructed a Korean version of the Wizard of Wikipedia dataset, 2) built Korean-English T5 (KE-T5), a language model pre-trained with Korean and English corpus, and 3) developed a knowledge-grounded Korean dialogue model based on KE-T5. We observed the performance improvement in the open-domain Korean dialogue model even only English knowledge was given. The experimental results showed that the knowledge inherent in cross-lingual language models can be helpful for generating responses in open dialogue systems.", } ``` ```bibtex @article{2020t5, author = {Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu}, title = {Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer}, journal = {Journal of Machine Learning Research}, year = {2020}, volume = {21}, number = {140}, pages = {1-67}, url = {http://jmlr.org/papers/v21/20-074.html} } ``` **APA:** ``` - Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M., ... & Liu, P. J. (2020). Exploring the limits of transfer learning with a unified text-to-text transformer. J. Mach. Learn. Res., 21(140), 1-67. ``` # Glossary [optional] More information needed # More Information [optional] More information needed # Model Card Authors [optional] Korea Electronics Technology Institute Artificial Intelligence Research Center in collaboration with Ezi Ozoani and the Hugging Face team # Model Card Contact More information needed # How to Get Started with the Model Use the code below to get started with the model. <details> <summary> Click to expand </summary> ```python from transformers import AutoTokenizer, AutoModelForSeq2SeqLM tokenizer = AutoTokenizer.from_pretrained("KETI-AIR/ke-t5-base-ko") model = AutoModelForSeq2SeqLM.from_pretrained("KETI-AIR/ke-t5-base-ko") ``` </details>
{"language": "ko", "license": "apache-2.0", "tags": ["t5"], "eos_token": "</s>", "widget": [{"text": "\uc544\ubc84\uc9c0\uac00 \ubc29\uc5d0 \ub4e4\uc5b4\uac00\uc2e0\ub2e4.</s>"}]}
KETI-AIR/ke-t5-base-ko
null
[ "transformers", "pytorch", "tf", "jax", "safetensors", "t5", "text2text-generation", "ko", "arxiv:1910.09700", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
text2text-generation
transformers
# ke-t5 base Pretrained T5 Model on Korean and English. See [Github](https://github.com/AIRC-KETI/ke-t5) and [Paper](https://aclanthology.org/2021.findings-emnlp.33/) [Korean paper](https://koreascience.kr/article/CFKO202130060717834.pdf) for more details. ## How to use ```python from transformers import AutoModel, AutoTokenizer model = AutoModel.from_pretrained("KETI-AIR/ke-t5-base-newslike") tokenizer = AutoTokenizer.from_pretrained("KETI-AIR/ke-t5-base-newslike") ``` ## BibTeX entry and citation info ```bibtex @inproceedings{kim-etal-2021-model-cross, title = "A Model of Cross-Lingual Knowledge-Grounded Response Generation for Open-Domain Dialogue Systems", author = "Kim, San and Jang, Jin Yea and Jung, Minyoung and Shin, Saim", booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2021", month = nov, year = "2021", address = "Punta Cana, Dominican Republic", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.findings-emnlp.33", doi = "10.18653/v1/2021.findings-emnlp.33", pages = "352--365", abstract = "Research on open-domain dialogue systems that allow free topics is challenging in the field of natural language processing (NLP). The performance of the dialogue system has been improved recently by the method utilizing dialogue-related knowledge; however, non-English dialogue systems suffer from reproducing the performance of English dialogue systems because securing knowledge in the same language with the dialogue system is relatively difficult. Through experiments with a Korean dialogue system, this paper proves that the performance of a non-English dialogue system can be improved by utilizing English knowledge, highlighting the system uses cross-lingual knowledge. For the experiments, we 1) constructed a Korean version of the Wizard of Wikipedia dataset, 2) built Korean-English T5 (KE-T5), a language model pre-trained with Korean and English corpus, and 3) developed a knowledge-grounded Korean dialogue model based on KE-T5. We observed the performance improvement in the open-domain Korean dialogue model even only English knowledge was given. The experimental results showed that the knowledge inherent in cross-lingual language models can be helpful for generating responses in open dialogue systems.", } ```
{"language": ["ko", "en"], "license": "apache-2.0", "tags": ["t5"], "eos_token": "</s>", "widget": [{"text": "\uc544\ubc84\uc9c0\uac00 \ubc29\uc5d0 \ub4e4\uc5b4\uac00\uc2e0\ub2e4.</s>"}]}
KETI-AIR/ke-t5-base-newslike
null
[ "transformers", "pytorch", "tf", "jax", "safetensors", "t5", "text2text-generation", "ko", "en", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
text2text-generation
transformers
# Model Card for ke-t5-base # Model Details ## Model Description The developers of the Text-To-Text Transfer Transformer (T5) [write](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html): > With T5, we propose reframing all NLP tasks into a unified text-to-text-format where the input and output are always text strings, in contrast to BERT-style models that can only output either a class label or a span of the input. Our text-to-text framework allows us to use the same model, loss function, and hyperparameters on any NLP task. T5-Base is the checkpoint with 220 million parameters. - **Developed by:** Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, Peter J. Liu. - **Shared by [Optional]:** Korea Electronics Technology Institute Artificial Intelligence Research Center - **Model type:** Text Generation - **Language(s) (NLP):**More information needed - **License:** More information needed - **Related Models:** - **Parent Model:** T5 - **Resources for more information:** - [GitHub Repo](https://github.com/google-research/text-to-text-transfer-transformer#released-model-checkpoints) - [KE-T5 Github Repo](https://github.com/AIRC-KETI/ke-t5) - [Paper](https://aclanthology.org/2021.findings-emnlp.33/) - [Associated Paper](https://jmlr.org/papers/volume21/20-074/20-074.pdf) - [Blog Post](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html) # Uses ## Direct Use The developers write in a [blog post](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html) that the model: > Our text-to-text framework allows us to use the same model, loss function, and hyperparameters on any NLP task, including machine translation, document summarization, question answering, and classification tasks (e.g., sentiment analysis). We can even apply T5 to regression tasks by training it to predict the string representation of a number instead of the number itself ## Downstream Use [Optional] More information needed ## Out-of-Scope Use The model should not be used to intentionally create hostile or alienating environments for people. # Bias, Risks, and Limitations Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al. (2021)](https://aclanthology.org/2021.acl-long.330.pdf) and [Bender et al. (2021)](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)). Predictions generated by the model may include disturbing and harmful stereotypes across protected classes; identity characteristics; and sensitive, social, and occupational groups. ## Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. # Training Details ## Training Data The model is pre-trained on the [Colossal Clean Crawled Corpus (C4)](https://www.tensorflow.org/datasets/catalog/c4), which was developed and released in the context of the same [research paper](https://jmlr.org/papers/volume21/20-074/20-074.pdf) as T5. The model was pre-trained on a on a **multi-task mixture of unsupervised (1.) and supervised tasks (2.)**. See the [t5-base model card](https://huggingface.co/t5-base?text=My+name+is+Wolfgang+and+I+live+in+Berlin) for further information. ## Training Procedure ### Preprocessing More information needed ### Speeds, Sizes, Times More information needed # Evaluation ## Testing Data, Factors & Metrics ### Testing Data The developers evaluated the model on 24 tasks, see the [research paper](https://jmlr.org/papers/volume21/20-074/20-074.pdf) for full details. ### Factors More information needed ### Metrics More information needed ## Results For full results for T5-Base, see the [research paper](https://jmlr.org/papers/volume21/20-074/20-074.pdf), Table 14. # Model Examination More information needed # Environmental Impact Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** Google Cloud TPU Pods - **Hours used:** More information needed - **Cloud Provider:** GCP - **Compute Region:** More information needed - **Carbon Emitted:** More information needed # Technical Specifications [optional] ## Model Architecture and Objective More information needed ## Compute Infrastructure More information needed ### Hardware More information needed ### Software More information needed # Citation **BibTeX:** ```bibtex @inproceedings{kim-etal-2021-model-cross, title = "A Model of Cross-Lingual Knowledge-Grounded Response Generation for Open-Domain Dialogue Systems", author = "Kim, San and Jang, Jin Yea and Jung, Minyoung and Shin, Saim", booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2021", month = nov, year = "2021", address = "Punta Cana, Dominican Republic", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.findings-emnlp.33", doi = "10.18653/v1/2021.findings-emnlp.33", pages = "352--365", abstract = "Research on open-domain dialogue systems that allow free topics is challenging in the field of natural language processing (NLP). The performance of the dialogue system has been improved recently by the method utilizing dialogue-related knowledge; however, non-English dialogue systems suffer from reproducing the performance of English dialogue systems because securing knowledge in the same language with the dialogue system is relatively difficult. Through experiments with a Korean dialogue system, this paper proves that the performance of a non-English dialogue system can be improved by utilizing English knowledge, highlighting the system uses cross-lingual knowledge. For the experiments, we 1) constructed a Korean version of the Wizard of Wikipedia dataset, 2) built Korean-English T5 (KE-T5), a language model pre-trained with Korean and English corpus, and 3) developed a knowledge-grounded Korean dialogue model based on KE-T5. We observed the performance improvement in the open-domain Korean dialogue model even only English knowledge was given. The experimental results showed that the knowledge inherent in cross-lingual language models can be helpful for generating responses in open dialogue systems.", } ``` ```bibtex @article{2020t5, author = {Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu}, title = {Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer}, journal = {Journal of Machine Learning Research}, year = {2020}, volume = {21}, number = {140}, pages = {1-67}, url = {http://jmlr.org/papers/v21/20-074.html} } ``` **APA:** - Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M., ... & Liu, P. J. (2020). Exploring the limits of transfer learning with a unified text-to-text transformer. J. Mach. Learn. Res., 21(140), 1-67. # Glossary [optional] More information needed # More Information [optional] More information needed # Model Card Authors [optional] Korea Electronics Technology Institute Artificial Intelligence Research Center in collaboration with Ezi Ozoani and the Hugging Face team # Model Card Contact More information needed # How to Get Started with the Model Use the code below to get started with the model. <details> <summary> Click to expand </summary> ```python from transformers import AutoTokenizer, AutoModelForSeq2SeqLM tokenizer = AutoTokenizer.from_pretrained("KETI-AIR/ke-t5-base") model = AutoModelForSeq2SeqLM.from_pretrained("KETI-AIR/ke-t5-base") ``` See the [Hugging Face T5](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5Model) docs and a [Colab Notebook](https://colab.research.google.com/github/google-research/text-to-text-transfer-transformer/blob/main/notebooks/t5-trivia.ipynb) created by the model developers for more examples. </details>
{"language": ["en", "ko"], "license": "apache-2.0", "tags": ["t5"], "eos_token": "</s>", "widget": [{"text": "\uc544\ubc84\uc9c0\uac00 \ubc29\uc5d0 \ub4e4\uc5b4\uac00\uc2e0\ub2e4.</s>"}]}
KETI-AIR/ke-t5-base
null
[ "transformers", "pytorch", "tf", "jax", "safetensors", "t5", "text2text-generation", "en", "ko", "arxiv:1910.09700", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
text2text-generation
transformers
# ke-t5 base Pretrained T5 Model on Korean and English. See [Github](https://github.com/AIRC-KETI/ke-t5) and [Paper](https://aclanthology.org/2021.findings-emnlp.33/) [Korean paper](https://koreascience.kr/article/CFKO202130060717834.pdf) for more details. ## How to use ```python from transformers import AutoModel, AutoTokenizer model = AutoModel.from_pretrained("KETI-AIR/ke-t5-large-ko") tokenizer = AutoTokenizer.from_pretrained("KETI-AIR/ke-t5-large-ko") ``` ## BibTeX entry and citation info ```bibtex @inproceedings{kim-etal-2021-model-cross, title = "A Model of Cross-Lingual Knowledge-Grounded Response Generation for Open-Domain Dialogue Systems", author = "Kim, San and Jang, Jin Yea and Jung, Minyoung and Shin, Saim", booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2021", month = nov, year = "2021", address = "Punta Cana, Dominican Republic", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.findings-emnlp.33", doi = "10.18653/v1/2021.findings-emnlp.33", pages = "352--365", abstract = "Research on open-domain dialogue systems that allow free topics is challenging in the field of natural language processing (NLP). The performance of the dialogue system has been improved recently by the method utilizing dialogue-related knowledge; however, non-English dialogue systems suffer from reproducing the performance of English dialogue systems because securing knowledge in the same language with the dialogue system is relatively difficult. Through experiments with a Korean dialogue system, this paper proves that the performance of a non-English dialogue system can be improved by utilizing English knowledge, highlighting the system uses cross-lingual knowledge. For the experiments, we 1) constructed a Korean version of the Wizard of Wikipedia dataset, 2) built Korean-English T5 (KE-T5), a language model pre-trained with Korean and English corpus, and 3) developed a knowledge-grounded Korean dialogue model based on KE-T5. We observed the performance improvement in the open-domain Korean dialogue model even only English knowledge was given. The experimental results showed that the knowledge inherent in cross-lingual language models can be helpful for generating responses in open dialogue systems.", } ```
{"language": "ko", "license": "apache-2.0", "tags": ["t5"], "eos_token": "</s>", "widget": [{"text": "\uc544\ubc84\uc9c0\uac00 \ubc29\uc5d0 \ub4e4\uc5b4\uac00\uc2e0\ub2e4.</s>"}]}
KETI-AIR/ke-t5-large-ko
null
[ "transformers", "pytorch", "tf", "jax", "t5", "text2text-generation", "ko", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
text2text-generation
transformers
# ke-t5 base Pretrained T5 Model on Korean and English. See [Github](https://github.com/AIRC-KETI/ke-t5) and [Paper](https://aclanthology.org/2021.findings-emnlp.33/) [Korean paper](https://koreascience.kr/article/CFKO202130060717834.pdf) for more details. ## How to use ```python from transformers import AutoModel, AutoTokenizer model = AutoModel.from_pretrained("KETI-AIR/ke-t5-large-newslike") tokenizer = AutoTokenizer.from_pretrained("KETI-AIR/ke-t5-large-newslike") ``` ## BibTeX entry and citation info ```bibtex @inproceedings{kim-etal-2021-model-cross, title = "A Model of Cross-Lingual Knowledge-Grounded Response Generation for Open-Domain Dialogue Systems", author = "Kim, San and Jang, Jin Yea and Jung, Minyoung and Shin, Saim", booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2021", month = nov, year = "2021", address = "Punta Cana, Dominican Republic", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.findings-emnlp.33", doi = "10.18653/v1/2021.findings-emnlp.33", pages = "352--365", abstract = "Research on open-domain dialogue systems that allow free topics is challenging in the field of natural language processing (NLP). The performance of the dialogue system has been improved recently by the method utilizing dialogue-related knowledge; however, non-English dialogue systems suffer from reproducing the performance of English dialogue systems because securing knowledge in the same language with the dialogue system is relatively difficult. Through experiments with a Korean dialogue system, this paper proves that the performance of a non-English dialogue system can be improved by utilizing English knowledge, highlighting the system uses cross-lingual knowledge. For the experiments, we 1) constructed a Korean version of the Wizard of Wikipedia dataset, 2) built Korean-English T5 (KE-T5), a language model pre-trained with Korean and English corpus, and 3) developed a knowledge-grounded Korean dialogue model based on KE-T5. We observed the performance improvement in the open-domain Korean dialogue model even only English knowledge was given. The experimental results showed that the knowledge inherent in cross-lingual language models can be helpful for generating responses in open dialogue systems.", } ```
{"language": ["ko", "en"], "license": "apache-2.0", "tags": ["t5"], "eos_token": "</s>", "widget": [{"text": "\uc544\ubc84\uc9c0\uac00 \ubc29\uc5d0 \ub4e4\uc5b4\uac00\uc2e0\ub2e4.</s>"}]}
KETI-AIR/ke-t5-large-newslike
null
[ "transformers", "pytorch", "tf", "jax", "safetensors", "t5", "text2text-generation", "ko", "en", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
text2text-generation
transformers
# ke-t5 base Pretrained T5 Model on Korean and English. See [Github](https://github.com/AIRC-KETI/ke-t5) and [Paper](https://aclanthology.org/2021.findings-emnlp.33/) [Korean paper](https://koreascience.kr/article/CFKO202130060717834.pdf) for more details. ## How to use ```python from transformers import AutoModel, AutoTokenizer model = AutoModel.from_pretrained("KETI-AIR/ke-t5-large") tokenizer = AutoTokenizer.from_pretrained("KETI-AIR/ke-t5-large") ``` ## BibTeX entry and citation info ```bibtex @inproceedings{kim-etal-2021-model-cross, title = "A Model of Cross-Lingual Knowledge-Grounded Response Generation for Open-Domain Dialogue Systems", author = "Kim, San and Jang, Jin Yea and Jung, Minyoung and Shin, Saim", booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2021", month = nov, year = "2021", address = "Punta Cana, Dominican Republic", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.findings-emnlp.33", doi = "10.18653/v1/2021.findings-emnlp.33", pages = "352--365", abstract = "Research on open-domain dialogue systems that allow free topics is challenging in the field of natural language processing (NLP). The performance of the dialogue system has been improved recently by the method utilizing dialogue-related knowledge; however, non-English dialogue systems suffer from reproducing the performance of English dialogue systems because securing knowledge in the same language with the dialogue system is relatively difficult. Through experiments with a Korean dialogue system, this paper proves that the performance of a non-English dialogue system can be improved by utilizing English knowledge, highlighting the system uses cross-lingual knowledge. For the experiments, we 1) constructed a Korean version of the Wizard of Wikipedia dataset, 2) built Korean-English T5 (KE-T5), a language model pre-trained with Korean and English corpus, and 3) developed a knowledge-grounded Korean dialogue model based on KE-T5. We observed the performance improvement in the open-domain Korean dialogue model even only English knowledge was given. The experimental results showed that the knowledge inherent in cross-lingual language models can be helpful for generating responses in open dialogue systems.", } ```
{"language": ["en", "ko"], "license": "apache-2.0", "tags": ["t5"], "eos_token": "</s>", "widget": [{"text": "\uc544\ubc84\uc9c0\uac00 \ubc29\uc5d0 \ub4e4\uc5b4\uac00\uc2e0\ub2e4.</s>"}]}
KETI-AIR/ke-t5-large
null
[ "transformers", "pytorch", "tf", "jax", "safetensors", "t5", "text2text-generation", "en", "ko", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
text2text-generation
transformers
# ke-t5 base Pretrained T5 Model on Korean and English. See [Github](https://github.com/AIRC-KETI/ke-t5) and [Paper](https://aclanthology.org/2021.findings-emnlp.33/) [Korean paper](https://koreascience.kr/article/CFKO202130060717834.pdf) for more details. ## How to use ```python from transformers import AutoModel, AutoTokenizer model = AutoModel.from_pretrained("KETI-AIR/ke-t5-small-ko") tokenizer = AutoTokenizer.from_pretrained("KETI-AIR/ke-t5-small-ko") ``` ## BibTeX entry and citation info ```bibtex @inproceedings{kim-etal-2021-model-cross, title = "A Model of Cross-Lingual Knowledge-Grounded Response Generation for Open-Domain Dialogue Systems", author = "Kim, San and Jang, Jin Yea and Jung, Minyoung and Shin, Saim", booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2021", month = nov, year = "2021", address = "Punta Cana, Dominican Republic", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.findings-emnlp.33", doi = "10.18653/v1/2021.findings-emnlp.33", pages = "352--365", abstract = "Research on open-domain dialogue systems that allow free topics is challenging in the field of natural language processing (NLP). The performance of the dialogue system has been improved recently by the method utilizing dialogue-related knowledge; however, non-English dialogue systems suffer from reproducing the performance of English dialogue systems because securing knowledge in the same language with the dialogue system is relatively difficult. Through experiments with a Korean dialogue system, this paper proves that the performance of a non-English dialogue system can be improved by utilizing English knowledge, highlighting the system uses cross-lingual knowledge. For the experiments, we 1) constructed a Korean version of the Wizard of Wikipedia dataset, 2) built Korean-English T5 (KE-T5), a language model pre-trained with Korean and English corpus, and 3) developed a knowledge-grounded Korean dialogue model based on KE-T5. We observed the performance improvement in the open-domain Korean dialogue model even only English knowledge was given. The experimental results showed that the knowledge inherent in cross-lingual language models can be helpful for generating responses in open dialogue systems.", } ```
{"language": "ko", "license": "apache-2.0", "tags": ["t5"], "eos_token": "</s>", "widget": [{"text": "\uc544\ubc84\uc9c0\uac00 \ubc29\uc5d0 \ub4e4\uc5b4\uac00\uc2e0\ub2e4.</s>"}]}
KETI-AIR/ke-t5-small-ko
null
[ "transformers", "pytorch", "tf", "jax", "safetensors", "t5", "text2text-generation", "ko", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
text2text-generation
transformers
# ke-t5 base Pretrained T5 Model on Korean and English. See [Github](https://github.com/AIRC-KETI/ke-t5) and [Paper](https://aclanthology.org/2021.findings-emnlp.33/) [Korean paper](https://koreascience.kr/article/CFKO202130060717834.pdf) for more details. ## How to use ```python from transformers import AutoModel, AutoTokenizer model = AutoModel.from_pretrained("KETI-AIR/ke-t5-small-newslike") tokenizer = AutoTokenizer.from_pretrained("KETI-AIR/ke-t5-small-newslike") ``` ## BibTeX entry and citation info ```bibtex @inproceedings{kim-etal-2021-model-cross, title = "A Model of Cross-Lingual Knowledge-Grounded Response Generation for Open-Domain Dialogue Systems", author = "Kim, San and Jang, Jin Yea and Jung, Minyoung and Shin, Saim", booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2021", month = nov, year = "2021", address = "Punta Cana, Dominican Republic", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.findings-emnlp.33", doi = "10.18653/v1/2021.findings-emnlp.33", pages = "352--365", abstract = "Research on open-domain dialogue systems that allow free topics is challenging in the field of natural language processing (NLP). The performance of the dialogue system has been improved recently by the method utilizing dialogue-related knowledge; however, non-English dialogue systems suffer from reproducing the performance of English dialogue systems because securing knowledge in the same language with the dialogue system is relatively difficult. Through experiments with a Korean dialogue system, this paper proves that the performance of a non-English dialogue system can be improved by utilizing English knowledge, highlighting the system uses cross-lingual knowledge. For the experiments, we 1) constructed a Korean version of the Wizard of Wikipedia dataset, 2) built Korean-English T5 (KE-T5), a language model pre-trained with Korean and English corpus, and 3) developed a knowledge-grounded Korean dialogue model based on KE-T5. We observed the performance improvement in the open-domain Korean dialogue model even only English knowledge was given. The experimental results showed that the knowledge inherent in cross-lingual language models can be helpful for generating responses in open dialogue systems.", } ```
{"language": ["ko", "en"], "license": "apache-2.0", "tags": ["t5"], "eos_token": "</s>", "widget": [{"text": "\uc544\ubc84\uc9c0\uac00 \ubc29\uc5d0 \ub4e4\uc5b4\uac00\uc2e0\ub2e4.</s>"}]}
KETI-AIR/ke-t5-small-newslike
null
[ "transformers", "pytorch", "tf", "jax", "safetensors", "t5", "text2text-generation", "ko", "en", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
text2text-generation
transformers
# ke-t5 base Pretrained T5 Model on Korean and English. See [Github](https://github.com/AIRC-KETI/ke-t5) and [Paper](https://aclanthology.org/2021.findings-emnlp.33/) [Korean paper](https://koreascience.kr/article/CFKO202130060717834.pdf) for more details. ## How to use ```python from transformers import AutoModel, AutoTokenizer model = AutoModel.from_pretrained("KETI-AIR/ke-t5-small") tokenizer = AutoTokenizer.from_pretrained("KETI-AIR/ke-t5-small") ``` ## BibTeX entry and citation info ```bibtex @inproceedings{kim-etal-2021-model-cross, title = "A Model of Cross-Lingual Knowledge-Grounded Response Generation for Open-Domain Dialogue Systems", author = "Kim, San and Jang, Jin Yea and Jung, Minyoung and Shin, Saim", booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2021", month = nov, year = "2021", address = "Punta Cana, Dominican Republic", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.findings-emnlp.33", doi = "10.18653/v1/2021.findings-emnlp.33", pages = "352--365", abstract = "Research on open-domain dialogue systems that allow free topics is challenging in the field of natural language processing (NLP). The performance of the dialogue system has been improved recently by the method utilizing dialogue-related knowledge; however, non-English dialogue systems suffer from reproducing the performance of English dialogue systems because securing knowledge in the same language with the dialogue system is relatively difficult. Through experiments with a Korean dialogue system, this paper proves that the performance of a non-English dialogue system can be improved by utilizing English knowledge, highlighting the system uses cross-lingual knowledge. For the experiments, we 1) constructed a Korean version of the Wizard of Wikipedia dataset, 2) built Korean-English T5 (KE-T5), a language model pre-trained with Korean and English corpus, and 3) developed a knowledge-grounded Korean dialogue model based on KE-T5. We observed the performance improvement in the open-domain Korean dialogue model even only English knowledge was given. The experimental results showed that the knowledge inherent in cross-lingual language models can be helpful for generating responses in open dialogue systems.", } ```
{"language": ["en", "ko"], "license": "apache-2.0", "tags": ["t5"], "eos_token": "</s>", "widget": [{"text": "\uc544\ubc84\uc9c0\uac00 \ubc29\uc5d0 \ub4e4\uc5b4\uac00\uc2e0\ub2e4.</s>"}]}
KETI-AIR/ke-t5-small
null
[ "transformers", "pytorch", "tf", "jax", "safetensors", "t5", "text2text-generation", "en", "ko", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
KHYJ/bert-base-finetuned-sts
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
transformers
{}
KK/DialoGPT-small-Rick
null
[ "transformers", "pytorch", "gpt2", "text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
transformers
# Clever bot DialoGPT Model
{"tags": ["conversational"]}
KOSTAS/DialoGPT-small-Cleverbot
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
transformers
# RickBot built for [Chai](https://chai.ml/) Make your own [here](https://colab.research.google.com/drive/1o5LxBspm-C28HQvXN-PRQavapDbm5WjG?usp=sharing)
{"tags": ["conversational"]}
KP2500/KPBot
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
KP2500/finetuned-bert-mrpc
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
fill-mask
transformers
{}
KY/KY_test_model
null
[ "transformers", "pytorch", "distilbert", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
fill-mask
transformers
{}
KY/modeling_test_II
null
[ "transformers", "pytorch", "distilbert", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
KaZyKa/distilgpt2-finetuned-wikitext2
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
KaZyKa/xlm-roberta-finetuned
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Kadjel/distilbert-base-uncased-finetuned
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Kadjel/distilbert-base-uncased-finetuned_9th_auc
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Kadjel/qnli-electra-base-finetuned_auc
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
transformers
# Harry Potter DialoGPT Model
{"tags": ["conversational"]}
Kai0857/DialoGPT-small-harrypotter
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
transformers
#Peralta DialoGPT Model
{"tags": ["conversational"]}
Kail91/DialoGPT-small-PeraltaBot
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
transformers
# Rick DialoGPT model
{"tags": ["conversational"]}
Kairu/DialoGPT-small-Rick
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
transformers
# Rick bot chat
{"tags": ["conversational"]}
Kairu/RICKBOT
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Kaivalya2107/WizardBot
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Kaivalya2107/YerAWizard
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Kakau/K
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
transformers
#my awesome model
{"tags": ["conversational"]}
KakoSi/Smolmm3
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
transformers
# My Awesome Model
{"tags": ["conversational"]}
KakoSi/opaazzi
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Kal/Damen
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
transformers
# Dona Julia DialoGPT Model
{"tags": ["conversational"]}
Kaledmgo/DialoGPT-small-donajulia
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Kaleinc/kale
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
fill-mask
transformers
### Overview SinBerto is a small language model trained on a small news corpus. SinBerto is trained on Sinhala Language which is a low resource language compared to other languages. ### Model Specifications. model : [Roberta](https://arxiv.org/abs/1907.11692) vocab_size=52_000, max_position_embeddings=514, num_attention_heads=12, num_hidden_layers=6, type_vocab_size=1 ### How to use from the Transformers Library from transformers import AutoTokenizer, AutoModelForMaskedLM tokenizer = AutoTokenizer.from_pretrained("Kalindu/SinBerto") model = AutoModelForMaskedLM.from_pretrained("Kalindu/SinBerto") ### OR Clone the model repo git lfs install git clone https://huggingface.co/Kalindu/SinBerto
{"language": "si", "tags": ["SinBERTo", "Sinhala", "roberta"]}
Kalindu/SinBerto
null
[ "transformers", "pytorch", "roberta", "fill-mask", "SinBERTo", "Sinhala", "si", "arxiv:1907.11692", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
KaluSenpaii/Chatbot
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
demo file
{}
KalyanM/demo
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
Dummy model
{}
KalyanM/dummy
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
token-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-ner This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0604 - Precision: 0.9271 - Recall: 0.9381 - F1: 0.9326 - Accuracy: 0.9836 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.2324 | 1.0 | 878 | 0.0688 | 0.9146 | 0.9264 | 0.9205 | 0.9816 | | 0.0517 | 2.0 | 1756 | 0.0620 | 0.9207 | 0.9329 | 0.9268 | 0.9829 | | 0.0301 | 3.0 | 2634 | 0.0604 | 0.9271 | 0.9381 | 0.9326 | 0.9836 | ### Framework versions - Transformers 4.9.1 - Pytorch 1.9.0+cu102 - Datasets 1.11.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["conll2003"], "metrics": ["precision", "recall", "f1", "accuracy"], "model_index": [{"name": "distilbert-base-uncased-finetuned-ner", "results": [{"task": {"name": "Token Classification", "type": "token-classification"}, "dataset": {"name": "conll2003", "type": "conll2003", "args": "conll2003"}, "metric": {"name": "Accuracy", "type": "accuracy", "value": 0.9836370279759162}}]}]}
KamSut/distilbert-base-uncased-finetuned-ner
null
[ "transformers", "pytorch", "tensorboard", "distilbert", "token-classification", "generated_from_trainer", "dataset:conll2003", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
KamehK/DMBot
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
KamehK/test
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
KamehK/test2
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
fill-mask
transformers
AIOX Lab and SI2M Lab INSEA have joined forces to offer researchers, industrialists and the NLP (Natural Language Processing) community the first intelligent Open Source system that understands Moroccan dialectal language "Darija". **DarijaBERT** is the first BERT model for the Moroccan Arabic dialect called “Darija”. It is based on the same architecture as BERT-base, but without the Next Sentence Prediction (NSP) objective. This model is the Arabizi specific version of DarijaBERT and it was trained on a total of ~4.6 Million sequences of Darija dialect written in Latin letters. The model was trained on a dataset issued from Youtube comments. More details about DarijaBert are available in the dedicated GitHub [repository](https://github.com/AIOXLABS/DBert) **Loading the model** The model can be loaded directly using the Huggingface library: ```python from transformers import AutoTokenizer, AutoModel DarijaBERT_tokenizer = AutoTokenizer.from_pretrained("SI2M-Lab/DarijaBERT-arabizi") DarijaBert_model = AutoModel.from_pretrained("SI2M-Lab/DarijaBERT-arabizi") ``` **Citation** If you use our models for your scientific publication, or if you find the resources in this repository useful, please cite our paper as follows (to be updated): ``` @article{gaanoun2023darijabert, title={Darijabert: a Step Forward in Nlp for the Written Moroccan Dialect}, author={Gaanoun, Kamel and Naira, Abdou Mohamed and Allak, Anass and Benelallam, Imade}, year={2023} } ``` **Acknowledgments** We gratefully acknowledge Google’s TensorFlow Research Cloud (TRC) program for providing us with free Cloud TPUs. <font size =2>**Warning** This model being trained on texts from social networks, it can unfortunately generate toxic outputs reflecting part of the learned data</font>
{"language": "ar", "widget": [{"text": " Mchit njib [MASK] ."}, {"text": " Yak nta li [MASK] lih dik lhedra."}, {"text": " Ach [MASK] daba."}, {"text": " Lmghrib ajmal [MASK] fl3alam."}]}
SI2M-Lab/DarijaBERT-arabizi
null
[ "transformers", "pytorch", "safetensors", "bert", "fill-mask", "ar", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
fill-mask
transformers
AIOX Lab and SI2M Lab INSEA have joined forces to offer researchers, industrialists and the NLP (Natural Language Processing) community the first intelligent Open Source system that understands Moroccan dialectal language "Darija". **DarijaBERT** is the first BERT model for the Moroccan Arabic dialect called “Darija”. It is based on the same architecture as BERT-base, but without the Next Sentence Prediction (NSP) objective. This model was trained on a total of ~3 Million sequences of Darija dialect representing 691MB of text or a total of ~100M tokens. The model was trained on a dataset issued from three different sources: * Stories written in Darija scrapped from a dedicated website * Youtube comments from 40 different Moroccan channels * Tweets crawled based on a list of Darija keywords. More details about DarijaBert are available in the dedicated GitHub [repository](https://github.com/AIOXLABS/DBert) **Loading the model** The model can be loaded directly using the Huggingface library: ```python from transformers import AutoTokenizer, AutoModel DarijaBERT_tokenizer = AutoTokenizer.from_pretrained("SI2M-Lab/DarijaBERT") DarijaBert_model = AutoModel.from_pretrained("SI2M-Lab/DarijaBERT") ``` **Citation** If you use our models for your scientific publication, or if you find the resources in this repository useful, please cite our paper as follows (to be updated): ``` @article{gaanoun2023darijabert, title={Darijabert: a Step Forward in Nlp for the Written Moroccan Dialect}, author={Gaanoun, Kamel and Naira, Abdou Mohamed and Allak, Anass and Benelallam, Imade}, year={2023} } ``` **Acknowledgments** We gratefully acknowledge Google’s TensorFlow Research Cloud (TRC) program for providing us with free Cloud TPUs.
{"language": "ar", "widget": [{"text": " \u062c\u0627\u0628 \u0644\u064a\u0627 [MASK] ."}, {"text": "\u0645\u0634\u064a\u062a \u0646\u062c\u064a\u0628[MASK] \u0641\u0627\u0644\u0641\u0631\u0645\u0627\u0633\u064a\u0627\u0646 ."}]}
SI2M-Lab/DarijaBERT
null
[ "transformers", "pytorch", "bert", "fill-mask", "ar", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text2text-generation
transformers
# MArSum: Moroccan Articles Summarization dataset - [Description](#description) - [Dataset](#dataset) - [Citation](#citation) - [License](#license) ## Description This dataset contains **19,806** news articles written in Moroccan Arabic dialect along with their titles. The articles were crawled from [Goud.ma](http://www.goud.ma) website between 01/01/2018 and 12/31/2020. The articles are written mainly in Moroccan Arabic dialect (Darija) but some of them contain Modern Standard Arabic (MSA) passages. All the titles are written in Darija. The following table summarize some tatistics on the MArSum Dataset. <table class="tg"> <thead> <tr> <th class="tg-0pky" rowspan="2">Size</th> <th class="tg-0pky" colspan="3">Titles length</th> <th class="tg-0pky" colspan="3">Articles length</th> </tr> <tr> <th class="tg-lqy6">Min.</th> <th class="tg-lqy6">Max.</th> <th class="tg-lqy6">Avg.</th> <th class="tg-lqy6">Min.</th> <th class="tg-lqy6">Max.</th> <th class="tg-0lax">Avg.</th> </tr> </thead> <tbody> <tr> <td class="tg-dvpl">19,806</td> <td class="tg-dvpl">2</td> <td class="tg-dvpl">74</td> <td class="tg-dvpl">14.6</td> <td class="tg-dvpl">30</td> <td class="tg-dvpl">2964</td> <td class="tg-0pky">140.7</td> </tr> </tbody> </table> The following figure describes the creation process of MArSum: ![alt text](MArSum_schema_Color1.png) You may refer to our paper, cited below, for more details on this process. ## Dataset The dataset is split into Train/Test subsets using a 90/10 split strategy. Both subsets are available for direct [donwload](https://github.com/KamelGaanoun/MoroccanSummarization). ## Citation Please cite the following paper if you decide to use the dataset: Gaanoun, K., Naira, A. M., Allak, A., & Benelallam, I. (2022). Automatic Text Summarization for Moroccan Arabic Dialect Using an Artificial Intelligence Approach. In International Conference on Business Intelligence (pp. 158-177). Springer, Cham. ## License The dataset is distributed under the CC BY 4.0 license.
{"language": "ar", "widget": [{"text": " \u0643\u0634\u0641 \u0627\u0644\u0645\u0644\u064a\u0627\u0631\u062f\u064a\u0631 \u0627\u0644\u0645\u064a\u0631\u064a\u0643\u0627\u0646\u064a \u0648\u0645\u0624\u0633\u0633 \u0634\u0631\u0643\u0629 \u201c\u0645\u0627\u064a\u0643\u0631\u0648\u0633\u0648\u0641\u062a\u201d\u060c \u0628\u064a\u0644 \u0643\u064e\u064a\u062a\u0633\u060c \u0628\u0644\u0644\u064a \u0645\u0627\u0639\u0646\u062f\u0648\u0634 \u062d\u062a\u0649 \u0641\u0644\u0648\u0633 \u0631\u0642\u0645\u064a\u0629\u060c \u0648\u0643\u064a\u0641\u0636\u0644 \u064a\u0633\u062a\u062b\u0645\u0631 \u0641\u0644\u0648\u0633\u0648 \u0641\u0627\u0644\u0623\u0634\u064a\u0627\u0621 \u0627\u0644\u0644\u064a \u0639\u0646\u062f\u0647\u0627 \u0642\u064a\u0645\u0629\u060c \u062d\u0633\u0628 \u0643\u0644\u0627\u0645\u0648. \u062c\u0631\u064a\u062f\u0629 \u201c\u0628\u0631\u064a\u0637\u0627\u0646\u064a\u0629 \u0642\u0627\u0644\u062a \u0623\u0646 \u062a\u0635\u0631\u064a\u062d\u0627\u062a \u0643\u064e\u064a\u062a\u0633 \u0639\u0644\u0649 \u0627\u0644\u0639\u0645\u0644\u0627\u062a \u0627\u0644\u0645\u0634\u0641\u0631\u0629 \u0643\u0627\u0646\u062a \u0628\u0645\u0646\u0627\u0633\u0628\u0629 \u062d\u062f\u062b \u201c\u0633\u0648\u0644\u0646\u064a \u0639\u0644\u0649 \u0623\u064a \u062d\u0627\u062c\u0629\u201d\u060c \u0627\u0644\u0644\u064a \u062a\u0646\u0638\u0645 \u0639\u0644\u0649 \u0645\u0648\u0642\u0639 \u201c\u0631\u064a\u062f\u064a\u062a\u201d \u0627\u0644\u0634\u0647\u064a\u0631.\u0628\u064a\u0644 \u0643\u064e\u064a\u062a\u0633 \u0627\u0644\u0644\u064a \u0648\u0627\u0635\u0644\u0629 \u0644\u0627\u0641\u0648\u0631\u062a\u064a\u0646 \u062f\u064a\u0627\u0644\u0648 \u0644116 \u0645\u0644\u064a\u0627\u0631 \u062f\u0648\u0644\u0627\u0631\u060c \u0648\u0647\u0648 \u0631\u0627\u0628\u0639 \u0623\u063a\u0646\u0649 \u0631\u062c\u0644 \u0641\u0627\u0644\u0639\u0627\u0644\u0645\u060c \u062c\u0627\u062a \u062a\u0635\u0631\u064a\u062d\u0627\u062a\u0648 \u0628\u0627\u0644\u062a\u0632\u0627\u0645\u0646 \u0645\u0639 \u062e\u0633\u0627\u0631\u0629 \u0627\u0644\u0639\u0645\u0644\u0627\u062a \u0627\u0644\u0631\u0642\u0645\u064a\u0629 \u0644\u062a\u0631\u064a\u0644\u064a\u0648\u0646 \u062f\u0648\u0644\u0627\u0631 \u0645\u0646 \u0642\u064a\u0645\u062a\u0647\u0627 \u0641\u0639\u0627\u0645 2022\u060c \u0648\u0636\u0627\u0639\u062a \u0641\u062d\u0648\u0627\u0644\u064a 200 \u0645\u0644\u064a\u0627\u0631 \u062f\u0648\u0644\u0627\u0631 \u0645\u0646 \u0642\u064a\u0645\u062a\u0647\u0627 \u064124 \u0633\u0627\u0639\u0629 \u0641\u0642\u0637 \u0641\u0648\u0642\u062a \u0633\u0627\u0628\u0642 \u0645\u0646 \u0647\u0630\u0627 \u0627\u0644\u0634\u0647\u0631."}]}
Kamel/t5-darija-summarization
null
[ "transformers", "pytorch", "t5", "text2text-generation", "ar", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
fill-mask
transformers
{}
KamrusSamad/bnbert
null
[ "transformers", "pytorch", "bert", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
fill-mask
transformers
{"license": "other"}
KamrusSamad/tiny_A-2_H-2
null
[ "transformers", "pytorch", "tf", "bert", "fill-mask", "license:other", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
samyarn-bert-base-multilingual-cased kao
{}
Kao/samyarn-bert-base-multilingual-cased
null
[ "transformers", "pytorch", "bert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Kap/test-model
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Kapi88/roberta-base-bne-finetuned-amazon_reviews_multi
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Kapil/model_name
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Karen/test_model
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
transformers
# randombot DialoGPT Model
{"tags": ["conversational"]}
Kargan/DialoGPT-small-randombot
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
text2text-generation
transformers
{}
Karimfayed/pegasus-SAMSum
null
[ "transformers", "pytorch", "safetensors", "pegasus", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Kashyap12-byte/DialoGPT-small-joshua
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Kasidit/Test
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Kasidit/aaa
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Kateshi20/Kateshi20
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
this is a test. How do you write a paper?
{}
Katiejdarby/test1
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8229 - Accuracy: 0.54 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 7 | 0.7709 | 0.74 | | No log | 2.0 | 14 | 0.7048 | 0.72 | | No log | 3.0 | 21 | 0.8728 | 0.46 | | No log | 4.0 | 28 | 0.7849 | 0.64 | | No log | 5.0 | 35 | 0.8229 | 0.54 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "distilbert-base-uncased-finetuned", "results": []}]}
Katsiaryna/distilbert-base-uncased-finetuned
null
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned_9th This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2826 - Accuracy: 0.4462 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.2357 | 1.0 | 569 | 0.2277 | 0.3474 | | 0.2237 | 2.0 | 1138 | 0.2316 | 0.3474 | | 0.1847 | 3.0 | 1707 | 0.2456 | 0.3712 | | 0.1302 | 4.0 | 2276 | 0.2763 | 0.4602 | | 0.0863 | 5.0 | 2845 | 0.2826 | 0.4462 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "distilbert-base-uncased-finetuned_9th", "results": []}]}
Katsiaryna/distilbert-base-uncased-finetuned_9th
null
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
{}
Katsiaryna/distilbert-base-uncased-finetuned_9th_auc
null
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Katsiaryna/distilbert-base-uncased-finetuned_night
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Katsiaryna/ms-marco-TinyBERT-L-2-finetuned_auc
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Katsiaryna/ms-marco-TinyBERT-L-4-finetuned_auc
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Katsiaryna/ms-marco-electra-base-finetuned_auc
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Katsiaryna/msmarco-MiniLM-L12-en-de-v1-finetuned_auc
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
{}
Katsiaryna/qnli-electra-base-finetuned_9th_auc_ce
null
[ "transformers", "pytorch", "tensorboard", "electra", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
{}
Katsiaryna/qnli-electra-base-finetuned_9th_auc_ce_diff
null
[ "transformers", "pytorch", "tensorboard", "electra", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Katsiaryna/qnli-electra-base-finetuned_9th_auc_ce_diff5
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00