Search is not available for this dataset
pipeline_tag
stringclasses
48 values
library_name
stringclasses
205 values
text
stringlengths
0
18.3M
metadata
stringlengths
2
1.07B
id
stringlengths
5
122
last_modified
null
tags
listlengths
1
1.84k
sha
null
created_at
stringlengths
25
25
token-classification
transformers
# bert-base-japanese-luw-upos ## Model Description This is a BERT model pre-trained on Japanese Wikipedia texts for POS-tagging and dependency-parsing, derived from [bert-base-japanese-char-extended](https://huggingface.co/KoichiYasuoka/bert-base-japanese-char-extended). Every long-unit-word is tagged by [UPOS](https://universaldependencies.org/u/pos/) (Universal Part-Of-Speech) and [FEATS](https://universaldependencies.org/u/feat/). ## How to Use ```py import torch from transformers import AutoTokenizer,AutoModelForTokenClassification tokenizer=AutoTokenizer.from_pretrained("KoichiYasuoka/bert-base-japanese-luw-upos") model=AutoModelForTokenClassification.from_pretrained("KoichiYasuoka/bert-base-japanese-luw-upos") s="国境の長いトンネルを抜けると雪国であった。" p=[model.config.id2label[q] for q in torch.argmax(model(tokenizer.encode(s,return_tensors="pt"))["logits"],dim=2)[0].tolist()[1:-1]] print(list(zip(s,p))) ``` or ```py import esupar nlp=esupar.load("KoichiYasuoka/bert-base-japanese-luw-upos") print(nlp("国境の長いトンネルを抜けると雪国であった。")) ``` ## Reference 安岡孝一: [Transformersと国語研長単位による日本語係り受け解析モデルの製作](http://id.nii.ac.jp/1001/00216223/), 情報処理学会研究報告, Vol.2022-CH-128, No.7 (2022年2月), pp.1-8. ## See Also [esupar](https://github.com/KoichiYasuoka/esupar): Tokenizer POS-tagger and Dependency-parser with BERT/RoBERTa/DeBERTa models
{"language": ["ja"], "license": "cc-by-sa-4.0", "tags": ["japanese", "token-classification", "pos", "wikipedia", "dependency-parsing"], "datasets": ["universal_dependencies"], "pipeline_tag": "token-classification", "widget": [{"text": "\u56fd\u5883\u306e\u9577\u3044\u30c8\u30f3\u30cd\u30eb\u3092\u629c\u3051\u308b\u3068\u96ea\u56fd\u3067\u3042\u3063\u305f\u3002"}]}
KoichiYasuoka/bert-base-japanese-luw-upos
null
[ "transformers", "pytorch", "bert", "token-classification", "japanese", "pos", "wikipedia", "dependency-parsing", "ja", "dataset:universal_dependencies", "license:cc-by-sa-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
token-classification
transformers
# bert-base-japanese-unidic-luw-upos ## Model Description This is a BERT model pre-trained on Japanese Wikipedia texts for POS-tagging and dependency-parsing, derived from [bert-base-japanese-v2](https://huggingface.co/cl-tohoku/bert-base-japanese-v2). Every long-unit-word is tagged by [UPOS](https://universaldependencies.org/u/pos/) (Universal Part-Of-Speech). ## How to Use ```py import torch from transformers import AutoTokenizer,AutoModelForTokenClassification tokenizer=AutoTokenizer.from_pretrained("KoichiYasuoka/bert-base-japanese-unidic-luw-upos") model=AutoModelForTokenClassification.from_pretrained("KoichiYasuoka/bert-base-japanese-unidic-luw-upos") s="国境の長いトンネルを抜けると雪国であった。" t=tokenizer.tokenize(s) p=[model.config.id2label[q] for q in torch.argmax(model(tokenizer.encode(s,return_tensors="pt"))["logits"],dim=2)[0].tolist()[1:-1]] print(list(zip(t,p))) ``` or ```py import esupar nlp=esupar.load("KoichiYasuoka/bert-base-japanese-unidic-luw-upos") print(nlp("国境の長いトンネルを抜けると雪国であった。")) ``` [fugashi](https://pypi.org/project/fugashi) and [unidic-lite](https://pypi.org/project/unidic-lite) are required. ## Reference 安岡孝一: [Transformersと国語研長単位による日本語係り受け解析モデルの製作](http://id.nii.ac.jp/1001/00216223/), 情報処理学会研究報告, Vol.2022-CH-128, No.7 (2022年2月), pp.1-8. ## See Also [esupar](https://github.com/KoichiYasuoka/esupar): Tokenizer POS-tagger and Dependency-parser with BERT/RoBERTa/DeBERTa models
{"language": ["ja"], "license": "cc-by-sa-4.0", "tags": ["japanese", "token-classification", "pos", "wikipedia", "dependency-parsing"], "datasets": ["universal_dependencies"], "pipeline_tag": "token-classification", "widget": [{"text": "\u56fd\u5883\u306e\u9577\u3044\u30c8\u30f3\u30cd\u30eb\u3092\u629c\u3051\u308b\u3068\u96ea\u56fd\u3067\u3042\u3063\u305f\u3002"}]}
KoichiYasuoka/bert-base-japanese-unidic-luw-upos
null
[ "transformers", "pytorch", "bert", "token-classification", "japanese", "pos", "wikipedia", "dependency-parsing", "ja", "dataset:universal_dependencies", "license:cc-by-sa-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
token-classification
transformers
# bert-base-japanese-upos ## Model Description This is a BERT model pre-trained on Japanese Wikipedia texts for POS-tagging and dependency-parsing, derived from [bert-base-japanese-char-extended](https://huggingface.co/KoichiYasuoka/bert-base-japanese-char-extended). Every short-unit-word is tagged by [UPOS](https://universaldependencies.org/u/pos/) (Universal Part-Of-Speech). ## How to Use ```py import torch from transformers import AutoTokenizer,AutoModelForTokenClassification tokenizer=AutoTokenizer.from_pretrained("KoichiYasuoka/bert-base-japanese-upos") model=AutoModelForTokenClassification.from_pretrained("KoichiYasuoka/bert-base-japanese-upos") s="国境の長いトンネルを抜けると雪国であった。" p=[model.config.id2label[q] for q in torch.argmax(model(tokenizer.encode(s,return_tensors="pt"))["logits"],dim=2)[0].tolist()[1:-1]] print(list(zip(s,p))) ``` or ```py import esupar nlp=esupar.load("KoichiYasuoka/bert-base-japanese-upos") print(nlp("国境の長いトンネルを抜けると雪国であった。")) ``` ## See Also [esupar](https://github.com/KoichiYasuoka/esupar): Tokenizer POS-tagger and Dependency-parser with BERT/RoBERTa/DeBERTa models
{"language": ["ja"], "license": "cc-by-sa-4.0", "tags": ["japanese", "token-classification", "pos", "wikipedia", "dependency-parsing"], "datasets": ["universal_dependencies"], "pipeline_tag": "token-classification", "widget": [{"text": "\u56fd\u5883\u306e\u9577\u3044\u30c8\u30f3\u30cd\u30eb\u3092\u629c\u3051\u308b\u3068\u96ea\u56fd\u3067\u3042\u3063\u305f\u3002"}]}
KoichiYasuoka/bert-base-japanese-upos
null
[ "transformers", "pytorch", "bert", "token-classification", "japanese", "pos", "wikipedia", "dependency-parsing", "ja", "dataset:universal_dependencies", "license:cc-by-sa-4.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
token-classification
transformers
# bert-base-thai-upos ## Model Description This is a BERT model pre-trained on Thai Wikipedia texts for POS-tagging and dependency-parsing, derived from [bert-base-th-cased](https://huggingface.co/Geotrend/bert-base-th-cased). Every word is tagged by [UPOS](https://universaldependencies.org/u/pos/) (Universal Part-Of-Speech). ## How to Use ```py from transformers import AutoTokenizer,AutoModelForTokenClassification tokenizer=AutoTokenizer.from_pretrained("KoichiYasuoka/bert-base-thai-upos") model=AutoModelForTokenClassification.from_pretrained("KoichiYasuoka/bert-base-thai-upos") ``` or ```py import esupar nlp=esupar.load("KoichiYasuoka/bert-base-thai-upos") ``` ## See Also [esupar](https://github.com/KoichiYasuoka/esupar): Tokenizer POS-tagger and Dependency-parser with BERT/RoBERTa/DeBERTa models
{"language": ["th"], "license": "apache-2.0", "tags": ["thai", "token-classification", "pos", "wikipedia", "dependency-parsing"], "datasets": ["universal_dependencies"], "pipeline_tag": "token-classification", "widget": [{"text": "\u0e2b\u0e25\u0e32\u0e22\u0e2b\u0e31\u0e27\u0e14\u0e35\u0e01\u0e27\u0e48\u0e32\u0e2b\u0e31\u0e27\u0e40\u0e14\u0e35\u0e22\u0e27"}]}
KoichiYasuoka/bert-base-thai-upos
null
[ "transformers", "pytorch", "bert", "token-classification", "thai", "pos", "wikipedia", "dependency-parsing", "th", "dataset:universal_dependencies", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
fill-mask
transformers
# bert-large-japanese-char-extended ## Model Description This is a BERT model pre-trained on Japanese Wikipedia texts, derived from [bert-large-japanese-char](https://huggingface.co/cl-tohoku/bert-large-japanese-char). Character-embeddings are enhanced to include all 常用漢字/人名用漢字 characters using BertTokenizerFast. You can fine-tune `bert-large-japanese-char-extended` for downstream tasks, such as [POS-tagging](https://huggingface.co/KoichiYasuoka/bert-large-japanese-upos), [dependency-parsing](https://huggingface.co/KoichiYasuoka/bert-large-japanese-wikipedia-ud-head), and so on. ## How to Use ```py from transformers import AutoTokenizer,AutoModelForMaskedLM tokenizer=AutoTokenizer.from_pretrained("KoichiYasuoka/bert-large-japanese-char-extended") model=AutoModelForMaskedLM.from_pretrained("KoichiYasuoka/bert-large-japanese-char-extended") ```
{"language": ["ja"], "license": "cc-by-sa-4.0", "tags": ["japanese", "masked-lm", "wikipedia"], "pipeline_tag": "fill-mask", "mask_token": "[MASK]", "widget": [{"text": "\u9178\u7d20\u30dc\u30f3\u30d9\u3092\u5145[MASK]\u3059\u308b\u3002"}]}
KoichiYasuoka/bert-large-japanese-char-extended
null
[ "transformers", "pytorch", "bert", "fill-mask", "japanese", "masked-lm", "wikipedia", "ja", "license:cc-by-sa-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
token-classification
transformers
# bert-large-japanese-luw-upos ## Model Description This is a BERT model pre-trained on Japanese Wikipedia texts for POS-tagging and dependency-parsing, derived from [bert-large-japanese-char-extended](https://huggingface.co/KoichiYasuoka/bert-large-japanese-char-extended). Every long-unit-word is tagged by [UPOS](https://universaldependencies.org/u/pos/) (Universal Part-Of-Speech) and [FEATS](https://universaldependencies.org/u/feat/). ## How to Use ```py import torch from transformers import AutoTokenizer,AutoModelForTokenClassification tokenizer=AutoTokenizer.from_pretrained("KoichiYasuoka/bert-large-japanese-luw-upos") model=AutoModelForTokenClassification.from_pretrained("KoichiYasuoka/bert-large-japanese-luw-upos") s="国境の長いトンネルを抜けると雪国であった。" p=[model.config.id2label[q] for q in torch.argmax(model(tokenizer.encode(s,return_tensors="pt"))["logits"],dim=2)[0].tolist()[1:-1]] print(list(zip(s,p))) ``` or ```py import esupar nlp=esupar.load("KoichiYasuoka/bert-large-japanese-luw-upos") print(nlp("国境の長いトンネルを抜けると雪国であった。")) ``` ## Reference 安岡孝一: [Transformersと国語研長単位による日本語係り受け解析モデルの製作](http://id.nii.ac.jp/1001/00216223/), 情報処理学会研究報告, Vol.2022-CH-128, No.7 (2022年2月), pp.1-8. ## See Also [esupar](https://github.com/KoichiYasuoka/esupar): Tokenizer POS-tagger and Dependency-parser with BERT/RoBERTa/DeBERTa models
{"language": ["ja"], "license": "cc-by-sa-4.0", "tags": ["japanese", "token-classification", "pos", "wikipedia", "dependency-parsing"], "datasets": ["universal_dependencies"], "pipeline_tag": "token-classification", "widget": [{"text": "\u56fd\u5883\u306e\u9577\u3044\u30c8\u30f3\u30cd\u30eb\u3092\u629c\u3051\u308b\u3068\u96ea\u56fd\u3067\u3042\u3063\u305f\u3002"}]}
KoichiYasuoka/bert-large-japanese-luw-upos
null
[ "transformers", "pytorch", "bert", "token-classification", "japanese", "pos", "wikipedia", "dependency-parsing", "ja", "dataset:universal_dependencies", "license:cc-by-sa-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
token-classification
transformers
# bert-large-japanese-unidic-luw-upos ## Model Description This is a BERT model pre-trained on Japanese Wikipedia texts for POS-tagging and dependency-parsing, derived from [bert-large-japanese](https://huggingface.co/cl-tohoku/bert-large-japanese). Every long-unit-word is tagged by [UPOS](https://universaldependencies.org/u/pos/) (Universal Part-Of-Speech). ## How to Use ```py import torch from transformers import AutoTokenizer,AutoModelForTokenClassification tokenizer=AutoTokenizer.from_pretrained("KoichiYasuoka/bert-large-japanese-unidic-luw-upos") model=AutoModelForTokenClassification.from_pretrained("KoichiYasuoka/bert-large-japanese-unidic-luw-upos") s="国境の長いトンネルを抜けると雪国であった。" t=tokenizer.tokenize(s) p=[model.config.id2label[q] for q in torch.argmax(model(tokenizer.encode(s,return_tensors="pt"))["logits"],dim=2)[0].tolist()[1:-1]] print(list(zip(t,p))) ``` or ```py import esupar nlp=esupar.load("KoichiYasuoka/bert-large-japanese-unidic-luw-upos") print(nlp("国境の長いトンネルを抜けると雪国であった。")) ``` [fugashi](https://pypi.org/project/fugashi) and [unidic-lite](https://pypi.org/project/unidic-lite) are required. ## Reference 安岡孝一: [Transformersと国語研長単位による日本語係り受け解析モデルの製作](http://id.nii.ac.jp/1001/00216223/), 情報処理学会研究報告, Vol.2022-CH-128, No.7 (2022年2月), pp.1-8. ## See Also [esupar](https://github.com/KoichiYasuoka/esupar): Tokenizer POS-tagger and Dependency-parser with BERT/RoBERTa/DeBERTa models
{"language": ["ja"], "license": "cc-by-sa-4.0", "tags": ["japanese", "token-classification", "pos", "wikipedia", "dependency-parsing"], "datasets": ["universal_dependencies"], "pipeline_tag": "token-classification", "widget": [{"text": "\u56fd\u5883\u306e\u9577\u3044\u30c8\u30f3\u30cd\u30eb\u3092\u629c\u3051\u308b\u3068\u96ea\u56fd\u3067\u3042\u3063\u305f\u3002"}]}
KoichiYasuoka/bert-large-japanese-unidic-luw-upos
null
[ "transformers", "pytorch", "bert", "token-classification", "japanese", "pos", "wikipedia", "dependency-parsing", "ja", "dataset:universal_dependencies", "license:cc-by-sa-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
token-classification
transformers
# bert-large-japanese-upos ## Model Description This is a BERT model pre-trained on Japanese Wikipedia texts for POS-tagging and dependency-parsing, derived from [bert-large-japanese-char-extended](https://huggingface.co/KoichiYasuoka/bert-large-japanese-char-extended). Every short-unit-word is tagged by [UPOS](https://universaldependencies.org/u/pos/) (Universal Part-Of-Speech). ## How to Use ```py import torch from transformers import AutoTokenizer,AutoModelForTokenClassification tokenizer=AutoTokenizer.from_pretrained("KoichiYasuoka/bert-large-japanese-upos") model=AutoModelForTokenClassification.from_pretrained("KoichiYasuoka/bert-large-japanese-upos") s="国境の長いトンネルを抜けると雪国であった。" p=[model.config.id2label[q] for q in torch.argmax(model(tokenizer.encode(s,return_tensors="pt"))["logits"],dim=2)[0].tolist()[1:-1]] print(list(zip(s,p))) ``` or ```py import esupar nlp=esupar.load("KoichiYasuoka/bert-large-japanese-upos") print(nlp("国境の長いトンネルを抜けると雪国であった。")) ``` ## See Also [esupar](https://github.com/KoichiYasuoka/esupar): Tokenizer POS-tagger and Dependency-parser with BERT/RoBERTa/DeBERTa models
{"language": ["ja"], "license": "cc-by-sa-4.0", "tags": ["japanese", "token-classification", "pos", "wikipedia", "dependency-parsing"], "datasets": ["universal_dependencies"], "pipeline_tag": "token-classification", "widget": [{"text": "\u56fd\u5883\u306e\u9577\u3044\u30c8\u30f3\u30cd\u30eb\u3092\u629c\u3051\u308b\u3068\u96ea\u56fd\u3067\u3042\u3063\u305f\u3002"}]}
KoichiYasuoka/bert-large-japanese-upos
null
[ "transformers", "pytorch", "bert", "token-classification", "japanese", "pos", "wikipedia", "dependency-parsing", "ja", "dataset:universal_dependencies", "license:cc-by-sa-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
token-classification
transformers
# chinese-bert-wwm-ext-upos ## Model Description This is a BERT model pre-trained on Chinese Wikipedia texts (both simplified and traditional) for POS-tagging and dependency-parsing, derived from [chinese-bert-wwm-ext](https://huggingface.co/hfl/chinese-bert-wwm-ext). Every word is tagged by [UPOS](https://universaldependencies.org/u/pos/) (Universal Part-Of-Speech). ## How to Use ```py from transformers import AutoTokenizer,AutoModelForTokenClassification tokenizer=AutoTokenizer.from_pretrained("KoichiYasuoka/chinese-bert-wwm-ext-upos") model=AutoModelForTokenClassification.from_pretrained("KoichiYasuoka/chinese-bert-wwm-ext-upos") ``` or ```py import esupar nlp=esupar.load("KoichiYasuoka/chinese-bert-wwm-ext-upos") ``` ## See Also [esupar](https://github.com/KoichiYasuoka/esupar): Tokenizer POS-tagger and Dependency-parser with BERT/RoBERTa/DeBERTa models
{"language": ["zh"], "license": "apache-2.0", "tags": ["chinese", "token-classification", "pos", "wikipedia", "dependency-parsing"], "datasets": ["universal_dependencies"], "pipeline_tag": "token-classification"}
KoichiYasuoka/chinese-bert-wwm-ext-upos
null
[ "transformers", "pytorch", "bert", "token-classification", "chinese", "pos", "wikipedia", "dependency-parsing", "zh", "dataset:universal_dependencies", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
token-classification
transformers
# chinese-roberta-base-upos ## Model Description This is a BERT model pre-trained on Chinese Wikipedia texts (both simplified and traditional) for POS-tagging and dependency-parsing, derived from [chinese-roberta-wwm-ext](https://huggingface.co/hfl/chinese-roberta-wwm-ext). Every word is tagged by [UPOS](https://universaldependencies.org/u/pos/) (Universal Part-Of-Speech). ## How to Use ```py from transformers import AutoTokenizer,AutoModelForTokenClassification tokenizer=AutoTokenizer.from_pretrained("KoichiYasuoka/chinese-roberta-base-upos") model=AutoModelForTokenClassification.from_pretrained("KoichiYasuoka/chinese-roberta-base-upos") ``` or ```py import esupar nlp=esupar.load("KoichiYasuoka/chinese-roberta-base-upos") ``` ## See Also [esupar](https://github.com/KoichiYasuoka/esupar): Tokenizer POS-tagger and Dependency-parser with BERT/RoBERTa/DeBERTa models
{"language": ["zh"], "license": "apache-2.0", "tags": ["chinese", "token-classification", "pos", "wikipedia", "dependency-parsing"], "datasets": ["universal_dependencies"], "pipeline_tag": "token-classification"}
KoichiYasuoka/chinese-roberta-base-upos
null
[ "transformers", "pytorch", "bert", "token-classification", "chinese", "pos", "wikipedia", "dependency-parsing", "zh", "dataset:universal_dependencies", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
token-classification
transformers
# chinese-roberta-large-upos ## Model Description This is a BERT model pre-trained on Chinese Wikipedia texts (both simplified and traditional) for POS-tagging and dependency-parsing, derived from [chinese-roberta-wwm-ext-large](https://huggingface.co/hfl/chinese-roberta-wwm-ext-large). Every word is tagged by [UPOS](https://universaldependencies.org/u/pos/) (Universal Part-Of-Speech). ## How to Use ```py from transformers import AutoTokenizer,AutoModelForTokenClassification tokenizer=AutoTokenizer.from_pretrained("KoichiYasuoka/chinese-roberta-large-upos") model=AutoModelForTokenClassification.from_pretrained("KoichiYasuoka/chinese-roberta-large-upos") ``` or ```py import esupar nlp=esupar.load("KoichiYasuoka/chinese-roberta-large-upos") ``` ## See Also [esupar](https://github.com/KoichiYasuoka/esupar): Tokenizer POS-tagger and Dependency-parser with BERT/RoBERTa/DeBERTa models
{"language": ["zh"], "license": "apache-2.0", "tags": ["chinese", "token-classification", "pos", "wikipedia", "dependency-parsing"], "datasets": ["universal_dependencies"], "pipeline_tag": "token-classification"}
KoichiYasuoka/chinese-roberta-large-upos
null
[ "transformers", "pytorch", "bert", "token-classification", "chinese", "pos", "wikipedia", "dependency-parsing", "zh", "dataset:universal_dependencies", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
token-classification
transformers
# roberta-base-english-upos ## Model Description This is a RoBERTa model pre-trained with [UD_English](https://universaldependencies.org/en/) for POS-tagging and dependency-parsing, derived from [roberta-base](https://huggingface.co/roberta-base). Every word is tagged by [UPOS](https://universaldependencies.org/u/pos/) (Universal Part-Of-Speech). ## How to Use ```py from transformers import AutoTokenizer,AutoModelForTokenClassification tokenizer=AutoTokenizer.from_pretrained("KoichiYasuoka/roberta-base-english-upos") model=AutoModelForTokenClassification.from_pretrained("KoichiYasuoka/roberta-base-english-upos") ``` or ```py import esupar nlp=esupar.load("KoichiYasuoka/roberta-base-english-upos") ``` ## See Also [esupar](https://github.com/KoichiYasuoka/esupar): Tokenizer POS-tagger and Dependency-parser with BERT/RoBERTa/DeBERTa models
{"language": ["en"], "license": "cc-by-sa-4.0", "tags": ["english", "token-classification", "pos", "dependency-parsing"], "datasets": ["universal_dependencies"], "pipeline_tag": "token-classification"}
KoichiYasuoka/roberta-base-english-upos
null
[ "transformers", "pytorch", "roberta", "token-classification", "english", "pos", "dependency-parsing", "en", "dataset:universal_dependencies", "license:cc-by-sa-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
fill-mask
transformers
# roberta-base-japanese-aozora-char ## Model Description This is a RoBERTa model pre-trained on 青空文庫 texts with character tokenizer. You can fine-tune `roberta-base-japanese-aozora-char` for downstream tasks, such as [POS-tagging](https://huggingface.co/KoichiYasuoka/roberta-base-japanese-char-luw-upos), [dependency-parsing](https://huggingface.co/KoichiYasuoka/roberta-base-japanese-aozora-ud-head), and so on. ## How to Use ```py from transformers import AutoTokenizer,AutoModelForMaskedLM tokenizer=AutoTokenizer.from_pretrained("KoichiYasuoka/roberta-base-japanese-aozora-char") model=AutoModelForMaskedLM.from_pretrained("KoichiYasuoka/roberta-base-japanese-aozora-char") ``` ## Reference 安岡孝一: [Transformersと国語研長単位による日本語係り受け解析モデルの製作](http://id.nii.ac.jp/1001/00216223/), 情報処理学会研究報告, Vol.2022-CH-128, No.7 (2022年2月), pp.1-8.
{"language": ["ja"], "license": "cc-by-sa-4.0", "tags": ["japanese", "masked-lm"], "pipeline_tag": "fill-mask", "mask_token": "[MASK]", "widget": [{"text": "\u65e5\u672c\u306b\u7740\u3044\u305f\u3089[MASK]\u3092\u8a2a\u306d\u306a\u3055\u3044\u3002"}]}
KoichiYasuoka/roberta-base-japanese-aozora-char
null
[ "transformers", "pytorch", "roberta", "fill-mask", "japanese", "masked-lm", "ja", "license:cc-by-sa-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
fill-mask
transformers
# roberta-base-japanese-aozora ## Model Description This is a RoBERTa model pre-trained on 青空文庫 texts with [Japanese-LUW-Tokenizer](https://github.com/KoichiYasuoka/Japanese-LUW-Tokenizer). You can fine-tune `roberta-base-japanese-aozora` for downstream tasks, such as [POS-tagging](https://huggingface.co/KoichiYasuoka/roberta-base-japanese-luw-upos), [dependency-parsing](https://huggingface.co/KoichiYasuoka/roberta-base-japanese-aozora-ud-goeswith), and so on. ## How to Use ```py from transformers import AutoTokenizer,AutoModelForMaskedLM tokenizer=AutoTokenizer.from_pretrained("KoichiYasuoka/roberta-base-japanese-aozora") model=AutoModelForMaskedLM.from_pretrained("KoichiYasuoka/roberta-base-japanese-aozora") ``` ## Reference 安岡孝一: [Transformersと国語研長単位による日本語係り受け解析モデルの製作](http://id.nii.ac.jp/1001/00216223/), 情報処理学会研究報告, Vol.2022-CH-128, No.7 (2022年2月), pp.1-8.
{"language": ["ja"], "license": "cc-by-sa-4.0", "tags": ["japanese", "masked-lm"], "pipeline_tag": "fill-mask", "mask_token": "[MASK]", "widget": [{"text": "\u65e5\u672c\u306b\u7740\u3044\u305f\u3089[MASK]\u3092\u8a2a\u306d\u306a\u3055\u3044\u3002"}]}
KoichiYasuoka/roberta-base-japanese-aozora
null
[ "transformers", "pytorch", "roberta", "fill-mask", "japanese", "masked-lm", "ja", "license:cc-by-sa-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
token-classification
transformers
# roberta-base-japanese-char-luw-upos ## Model Description This is a RoBERTa model pre-trained on 青空文庫 texts for POS-tagging and dependency-parsing, derived from [roberta-base-japanese-aozora-char](https://huggingface.co/KoichiYasuoka/roberta-base-japanese-aozora-char). Every long-unit-word is tagged by [UPOS](https://universaldependencies.org/u/pos/) (Universal Part-Of-Speech) and [FEATS](https://universaldependencies.org/u/feat/). ## How to Use ```py from transformers import AutoTokenizer,AutoModelForTokenClassification,TokenClassificationPipeline tokenizer=AutoTokenizer.from_pretrained("KoichiYasuoka/roberta-base-japanese-char-luw-upos") model=AutoModelForTokenClassification.from_pretrained("KoichiYasuoka/roberta-base-japanese-char-luw-upos") pipeline=TokenClassificationPipeline(tokenizer=tokenizer,model=model,aggregation_strategy="simple") nlp=lambda x:[(x[t["start"]:t["end"]],t["entity_group"]) for t in pipeline(x)] print(nlp("国境の長いトンネルを抜けると雪国であった。")) ``` or ```py import esupar nlp=esupar.load("KoichiYasuoka/roberta-base-japanese-char-luw-upos") print(nlp("国境の長いトンネルを抜けると雪国であった。")) ``` ## Reference 安岡孝一: [Transformersと国語研長単位による日本語係り受け解析モデルの製作](http://id.nii.ac.jp/1001/00216223/), 情報処理学会研究報告, Vol.2022-CH-128, No.7 (2022年2月), pp.1-8. ## See Also [esupar](https://github.com/KoichiYasuoka/esupar): Tokenizer POS-tagger and Dependency-parser with BERT/RoBERTa/DeBERTa models
{"language": ["ja"], "license": "cc-by-sa-4.0", "tags": ["japanese", "token-classification", "pos", "dependency-parsing"], "datasets": ["universal_dependencies"], "pipeline_tag": "token-classification", "widget": [{"text": "\u56fd\u5883\u306e\u9577\u3044\u30c8\u30f3\u30cd\u30eb\u3092\u629c\u3051\u308b\u3068\u96ea\u56fd\u3067\u3042\u3063\u305f\u3002"}]}
KoichiYasuoka/roberta-base-japanese-char-luw-upos
null
[ "transformers", "pytorch", "roberta", "token-classification", "japanese", "pos", "dependency-parsing", "ja", "dataset:universal_dependencies", "license:cc-by-sa-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
token-classification
transformers
# roberta-base-japanese-luw-upos ## Model Description This is a RoBERTa model pre-trained on 青空文庫 texts for POS-tagging and dependency-parsing, derived from [roberta-base-japanese-aozora](https://huggingface.co/KoichiYasuoka/roberta-base-japanese-aozora). Every long-unit-word is tagged by [UPOS](https://universaldependencies.org/u/pos/) (Universal Part-Of-Speech). ## How to Use ```py from transformers import AutoTokenizer,AutoModelForTokenClassification,TokenClassificationPipeline tokenizer=AutoTokenizer.from_pretrained("KoichiYasuoka/roberta-base-japanese-luw-upos") model=AutoModelForTokenClassification.from_pretrained("KoichiYasuoka/roberta-base-japanese-luw-upos") pipeline=TokenClassificationPipeline(tokenizer=tokenizer,model=model,aggregation_strategy="simple") nlp=lambda x:[(x[t["start"]:t["end"]],t["entity_group"]) for t in pipeline(x)] print(nlp("国境の長いトンネルを抜けると雪国であった。")) ``` or ```py import esupar nlp=esupar.load("KoichiYasuoka/roberta-base-japanese-luw-upos") print(nlp("国境の長いトンネルを抜けると雪国であった。")) ``` ## Reference 安岡孝一: [Transformersと国語研長単位による日本語係り受け解析モデルの製作](http://id.nii.ac.jp/1001/00216223/), 情報処理学会研究報告, Vol.2022-CH-128, No.7 (2022年2月), pp.1-8. ## See Also [esupar](https://github.com/KoichiYasuoka/esupar): Tokenizer POS-tagger and Dependency-parser with BERT/RoBERTa/DeBERTa models
{"language": ["ja"], "license": "cc-by-sa-4.0", "tags": ["japanese", "token-classification", "pos", "dependency-parsing"], "datasets": ["universal_dependencies"], "pipeline_tag": "token-classification", "widget": [{"text": "\u56fd\u5883\u306e\u9577\u3044\u30c8\u30f3\u30cd\u30eb\u3092\u629c\u3051\u308b\u3068\u96ea\u56fd\u3067\u3042\u3063\u305f\u3002"}]}
KoichiYasuoka/roberta-base-japanese-luw-upos
null
[ "transformers", "pytorch", "roberta", "token-classification", "japanese", "pos", "dependency-parsing", "ja", "dataset:universal_dependencies", "license:cc-by-sa-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
token-classification
transformers
# roberta-base-thai-char-upos ## Model Description This is a RoBERTa model pre-trained on Thai Wikipedia texts for POS-tagging and dependency-parsing, derived from [roberta-base-thai-char](https://huggingface.co/KoichiYasuoka/roberta-base-thai-char). Every word is tagged by [UPOS](https://universaldependencies.org/u/pos/) (Universal Part-Of-Speech). ## How to Use ```py import torch from transformers import AutoTokenizer,AutoModelForTokenClassification tokenizer=AutoTokenizer.from_pretrained("KoichiYasuoka/roberta-base-thai-char-upos") model=AutoModelForTokenClassification.from_pretrained("KoichiYasuoka/roberta-base-thai-char-upos") s="หลายหัวดีกว่าหัวเดียว" t=tokenizer.tokenize(s) p=[model.config.id2label[q] for q in torch.argmax(model(tokenizer.encode(s,return_tensors="pt"))["logits"],dim=2)[0].tolist()[1:-1]] print(list(zip(t,p))) ``` or ``` import esupar nlp=esupar.load("KoichiYasuoka/roberta-base-thai-char-upos") print(nlp("หลายหัวดีกว่าหัวเดียว")) ``` ## See Also [esupar](https://github.com/KoichiYasuoka/esupar): Tokenizer POS-tagger and Dependency-parser with BERT/RoBERTa/DeBERTa models
{"language": ["th"], "license": "apache-2.0", "tags": ["thai", "token-classification", "pos", "wikipedia", "dependency-parsing"], "datasets": ["universal_dependencies"], "pipeline_tag": "token-classification", "widget": [{"text": "\u0e2b\u0e25\u0e32\u0e22\u0e2b\u0e31\u0e27\u0e14\u0e35\u0e01\u0e27\u0e48\u0e32\u0e2b\u0e31\u0e27\u0e40\u0e14\u0e35\u0e22\u0e27"}]}
KoichiYasuoka/roberta-base-thai-char-upos
null
[ "transformers", "pytorch", "roberta", "token-classification", "thai", "pos", "wikipedia", "dependency-parsing", "th", "dataset:universal_dependencies", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
fill-mask
transformers
# roberta-base-thai-char ## Model Description This is a RoBERTa model pre-trained on Thai Wikipedia texts with character-wise embeddings to use BertTokenizerFast. You can fine-tune `roberta-base-thai-char` for downstream tasks, such as [POS-tagging](https://huggingface.co/KoichiYasuoka/roberta-base-thai-char-upos), [dependency-parsing](https://huggingface.co/KoichiYasuoka/roberta-base-thai-char-ud-goeswith), and so on. ## How to Use ```py from transformers import AutoTokenizer,AutoModelForMaskedLM tokenizer=AutoTokenizer.from_pretrained("KoichiYasuoka/roberta-base-thai-char") model=AutoModelForMaskedLM.from_pretrained("KoichiYasuoka/roberta-base-thai-char") ```
{"language": ["th"], "license": "apache-2.0", "tags": ["thai", "masked-lm", "wikipedia"], "pipeline_tag": "fill-mask", "mask_token": "[MASK]"}
KoichiYasuoka/roberta-base-thai-char
null
[ "transformers", "pytorch", "roberta", "fill-mask", "thai", "masked-lm", "wikipedia", "th", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
token-classification
transformers
# roberta-base-thai-spm-upos ## Model Description This is a RoBERTa model pre-trained on Thai Wikipedia texts for POS-tagging and dependency-parsing, derived from [roberta-base-thai-spm](https://huggingface.co/KoichiYasuoka/roberta-base-thai-spm). Every word is tagged by [UPOS](https://universaldependencies.org/u/pos/) (Universal Part-Of-Speech). ## How to Use ```py import torch from transformers import AutoTokenizer,AutoModelForTokenClassification tokenizer=AutoTokenizer.from_pretrained("KoichiYasuoka/roberta-base-thai-spm-upos") model=AutoModelForTokenClassification.from_pretrained("KoichiYasuoka/roberta-base-thai-spm-upos") s="หลายหัวดีกว่าหัวเดียว" t=tokenizer.tokenize(s) p=[model.config.id2label[q] for q in torch.argmax(model(tokenizer.encode(s,return_tensors="pt"))["logits"],dim=2)[0].tolist()[1:-1]] print(list(zip(t,p))) ``` or ``` import esupar nlp=esupar.load("KoichiYasuoka/roberta-base-thai-spm-upos") print(nlp("หลายหัวดีกว่าหัวเดียว")) ``` ## See Also [esupar](https://github.com/KoichiYasuoka/esupar): Tokenizer POS-tagger and Dependency-parser with BERT/RoBERTa/DeBERTa models
{"language": ["th"], "license": "apache-2.0", "tags": ["thai", "token-classification", "pos", "wikipedia", "dependency-parsing"], "datasets": ["universal_dependencies"], "pipeline_tag": "token-classification", "widget": [{"text": "\u0e2b\u0e25\u0e32\u0e22\u0e2b\u0e31\u0e27\u0e14\u0e35\u0e01\u0e27\u0e48\u0e32\u0e2b\u0e31\u0e27\u0e40\u0e14\u0e35\u0e22\u0e27"}]}
KoichiYasuoka/roberta-base-thai-spm-upos
null
[ "transformers", "pytorch", "roberta", "token-classification", "thai", "pos", "wikipedia", "dependency-parsing", "th", "dataset:universal_dependencies", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
fill-mask
transformers
# roberta-base-thai-spm ## Model Description This is a RoBERTa model pre-trained on Thai Wikipedia texts. You can fine-tune `roberta-base-thai-spm` for downstream tasks, such as [POS-tagging](https://huggingface.co/KoichiYasuoka/roberta-base-thai-spm-upos), [dependency-parsing](https://huggingface.co/KoichiYasuoka/roberta-base-thai-spm-ud-head), and so on. ## How to Use ```py from transformers import AutoTokenizer,AutoModelForMaskedLM tokenizer=AutoTokenizer.from_pretrained("KoichiYasuoka/roberta-base-thai-spm") model=AutoModelForMaskedLM.from_pretrained("KoichiYasuoka/roberta-base-thai-spm") ```
{"language": ["th"], "license": "apache-2.0", "tags": ["thai", "masked-lm", "wikipedia"], "pipeline_tag": "fill-mask", "mask_token": "[MASK]"}
KoichiYasuoka/roberta-base-thai-spm
null
[ "transformers", "pytorch", "roberta", "fill-mask", "thai", "masked-lm", "wikipedia", "th", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
token-classification
transformers
# roberta-base-thai-syllable-upos ## Model Description This is a RoBERTa model pre-trained on Thai Wikipedia texts for POS-tagging and dependency-parsing, derived from [roberta-base-thai-syllable](https://huggingface.co/KoichiYasuoka/roberta-base-thai-syllable). Every word is tagged by [UPOS](https://universaldependencies.org/u/pos/) (Universal Part-Of-Speech). ## How to Use ```py import torch from transformers import AutoTokenizer,AutoModelForTokenClassification tokenizer=AutoTokenizer.from_pretrained("KoichiYasuoka/roberta-base-thai-syllable-upos") model=AutoModelForTokenClassification.from_pretrained("KoichiYasuoka/roberta-base-thai-syllable-upos") s="หลายหัวดีกว่าหัวเดียว" t=tokenizer.tokenize(s) p=[model.config.id2label[q] for q in torch.argmax(model(tokenizer.encode(s,return_tensors="pt"))["logits"],dim=2)[0].tolist()[1:-1]] print(list(zip(t,p))) ``` or ``` import esupar nlp=esupar.load("KoichiYasuoka/roberta-base-thai-syllable-upos") print(nlp("หลายหัวดีกว่าหัวเดียว")) ``` ## See Also [esupar](https://github.com/KoichiYasuoka/esupar): Tokenizer POS-tagger and Dependency-parser with BERT/RoBERTa/DeBERTa models
{"language": ["th"], "license": "apache-2.0", "tags": ["thai", "token-classification", "pos", "wikipedia", "dependency-parsing"], "datasets": ["universal_dependencies"], "pipeline_tag": "token-classification", "widget": [{"text": "\u0e2b\u0e25\u0e32\u0e22\u0e2b\u0e31\u0e27\u0e14\u0e35\u0e01\u0e27\u0e48\u0e32\u0e2b\u0e31\u0e27\u0e40\u0e14\u0e35\u0e22\u0e27"}]}
KoichiYasuoka/roberta-base-thai-syllable-upos
null
[ "transformers", "pytorch", "roberta", "token-classification", "thai", "pos", "wikipedia", "dependency-parsing", "th", "dataset:universal_dependencies", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
fill-mask
transformers
# roberta-base-thai-syllable ## Model Description This is a RoBERTa model pre-trained on Thai Wikipedia texts, derived from [wangchanberta-base-wiki-syllable](https://huggingface.co/airesearch/wangchanberta-base-wiki-syllable). Character-embeddings are modified to use BertTokenizerFast. You can fine-tune `roberta-base-thai-syllable` for downstream tasks, such as [POS-tagging](https://huggingface.co/KoichiYasuoka/roberta-base-thai-syllable-upos), [dependency-parsing](https://huggingface.co/KoichiYasuoka/roberta-base-thai-syllable-ud-goeswith), and so on. ## How to Use ```py from transformers import AutoTokenizer,AutoModelForMaskedLM tokenizer=AutoTokenizer.from_pretrained("KoichiYasuoka/roberta-base-thai-syllable") model=AutoModelForMaskedLM.from_pretrained("KoichiYasuoka/roberta-base-thai-syllable") ```
{"language": ["th"], "license": "apache-2.0", "tags": ["thai", "masked-lm", "wikipedia"], "pipeline_tag": "fill-mask", "mask_token": "<mask>", "widget": [{"text": "\u0e41\u0e1c\u0e19\u0e01\u0e19\u0e35\u0e49\u0e01\u0e33\u0e25\u0e31\u0e07<mask>\u0e01\u0e31\u0e1a\u0e04\u0e27\u0e32\u0e21\u0e17\u0e49\u0e32\u0e17\u0e32\u0e22\u0e43\u0e2b\u0e21\u0e48"}]}
KoichiYasuoka/roberta-base-thai-syllable
null
[ "transformers", "pytorch", "roberta", "fill-mask", "thai", "masked-lm", "wikipedia", "th", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
fill-mask
transformers
# roberta-classical-chinese-base-char ## Model Description This is a RoBERTa model pre-trained on Classical Chinese texts, derived from [GuwenBERT-base](https://huggingface.co/ethanyt/guwenbert-base). Character-embeddings are enhanced into traditional/simplified characters. You can fine-tune `roberta-classical-chinese-base-char` for downstream tasks, such as [sentence-segmentation](https://huggingface.co/KoichiYasuoka/roberta-classical-chinese-base-sentence-segmentation), [POS-tagging](https://huggingface.co/KoichiYasuoka/roberta-classical-chinese-base-upos), [dependency-parsing](https://huggingface.co/KoichiYasuoka/roberta-classical-chinese-base-ud-goeswith), and so on. ## How to Use ```py from transformers import AutoTokenizer,AutoModelForMaskedLM tokenizer=AutoTokenizer.from_pretrained("KoichiYasuoka/roberta-classical-chinese-base-char") model=AutoModelForMaskedLM.from_pretrained("KoichiYasuoka/roberta-classical-chinese-base-char") ``` ## See Also [SuPar-Kanbun](https://github.com/KoichiYasuoka/SuPar-Kanbun): Tokenizer POS-tagger and Dependency-parser for Classical Chinese
{"language": ["lzh"], "license": "apache-2.0", "tags": ["classical chinese", "literary chinese", "ancient chinese", "masked-lm"], "pipeline_tag": "fill-mask", "mask_token": "[MASK]", "widget": [{"text": "\u5b5f\u5b50[MASK]\u6881\u60e0\u738b"}]}
KoichiYasuoka/roberta-classical-chinese-base-char
null
[ "transformers", "pytorch", "roberta", "fill-mask", "classical chinese", "literary chinese", "ancient chinese", "masked-lm", "lzh", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
token-classification
transformers
# roberta-classical-chinese-base-sentence-segmentation ## Model Description This is a RoBERTa model pre-trained on Classical Chinese texts for sentence segmentation, derived from [roberta-classical-chinese-base-char](https://huggingface.co/KoichiYasuoka/roberta-classical-chinese-base-char). Every segmented sentence begins with token-class "B" and ends with token-class "E" (except for single-character sentence with token-class "S"). ## How to Use ```py import torch from transformers import AutoTokenizer,AutoModelForTokenClassification tokenizer=AutoTokenizer.from_pretrained("KoichiYasuoka/roberta-classical-chinese-base-sentence-segmentation") model=AutoModelForTokenClassification.from_pretrained("KoichiYasuoka/roberta-classical-chinese-base-sentence-segmentation") s="子曰學而時習之不亦説乎有朋自遠方來不亦樂乎人不知而不慍不亦君子乎" p=[model.config.id2label[q] for q in torch.argmax(model(tokenizer.encode(s,return_tensors="pt"))["logits"],dim=2)[0].tolist()[1:-1]] print("".join(c+"。" if q=="E" or q=="S" else c for c,q in zip(s,p))) ``` ## Reference Koichi Yasuoka: [Sentence Segmentation of Classical Chinese Texts Using Transformers and BERT/RoBERTa Models](http://hdl.handle.net/2433/266539), IPSJ Symposium Series, Vol.2021, No.1 (December 2021), pp.104-109.
{"language": ["lzh"], "license": "apache-2.0", "tags": ["classical chinese", "literary chinese", "ancient chinese", "sentence segmentation", "token-classification"], "pipeline_tag": "token-classification", "widget": [{"text": "\u5b50\u66f0\u5b78\u800c\u6642\u7fd2\u4e4b\u4e0d\u4ea6\u8aac\u4e4e\u6709\u670b\u81ea\u9060\u65b9\u4f86\u4e0d\u4ea6\u6a02\u4e4e\u4eba\u4e0d\u77e5\u800c\u4e0d\u614d\u4e0d\u4ea6\u541b\u5b50\u4e4e"}]}
KoichiYasuoka/roberta-classical-chinese-base-sentence-segmentation
null
[ "transformers", "pytorch", "roberta", "token-classification", "classical chinese", "literary chinese", "ancient chinese", "sentence segmentation", "lzh", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
token-classification
transformers
# roberta-classical-chinese-base-upos ## Model Description This is a RoBERTa model pre-trained on Classical Chinese texts for POS-tagging and dependency-parsing, derived from [roberta-classical-chinese-base-char](https://huggingface.co/KoichiYasuoka/roberta-classical-chinese-base-char). Every word is tagged by [UPOS](https://universaldependencies.org/u/pos/) (Universal Part-Of-Speech) and [FEATS](https://universaldependencies.org/u/feat/). ## How to Use ```py from transformers import AutoTokenizer,AutoModelForTokenClassification tokenizer=AutoTokenizer.from_pretrained("KoichiYasuoka/roberta-classical-chinese-base-upos") model=AutoModelForTokenClassification.from_pretrained("KoichiYasuoka/roberta-classical-chinese-base-upos") ``` or ```py import esupar nlp=esupar.load("KoichiYasuoka/roberta-classical-chinese-base-upos") ``` ## Reference Koichi Yasuoka: [Universal Dependencies Treebank of the Four Books in Classical Chinese](http://hdl.handle.net/2433/245217), DADH2019: 10th International Conference of Digital Archives and Digital Humanities (December 2019), pp.20-28. ## See Also [esupar](https://github.com/KoichiYasuoka/esupar): Tokenizer POS-tagger and Dependency-parser with BERT/RoBERTa/DeBERTa models
{"language": ["lzh"], "license": "apache-2.0", "tags": ["classical chinese", "literary chinese", "ancient chinese", "token-classification", "pos", "dependency-parsing"], "datasets": ["universal_dependencies"], "pipeline_tag": "token-classification", "widget": [{"text": "\u5b50\u66f0\u5b78\u800c\u6642\u7fd2\u4e4b\u4e0d\u4ea6\u8aac\u4e4e\u6709\u670b\u81ea\u9060\u65b9\u4f86\u4e0d\u4ea6\u6a02\u4e4e\u4eba\u4e0d\u77e5\u800c\u4e0d\u614d\u4e0d\u4ea6\u541b\u5b50\u4e4e"}]}
KoichiYasuoka/roberta-classical-chinese-base-upos
null
[ "transformers", "pytorch", "roberta", "token-classification", "classical chinese", "literary chinese", "ancient chinese", "pos", "dependency-parsing", "lzh", "dataset:universal_dependencies", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
fill-mask
transformers
# roberta-classical-chinese-large-char ## Model Description This is a RoBERTa model pre-trained on Classical Chinese texts, derived from [GuwenBERT-large](https://huggingface.co/ethanyt/guwenbert-large). Character-embeddings are enhanced into traditional/simplified characters. You can fine-tune `roberta-classical-chinese-large-char` for downstream tasks, such as [sentence-segmentation](https://huggingface.co/KoichiYasuoka/roberta-classical-chinese-large-sentence-segmentation), [POS-tagging](https://huggingface.co/KoichiYasuoka/roberta-classical-chinese-large-upos), [dependency-parsing](https://huggingface.co/KoichiYasuoka/roberta-classical-chinese-large-ud-goeswith), and so on. ## How to Use ```py from transformers import AutoTokenizer,AutoModelForMaskedLM tokenizer=AutoTokenizer.from_pretrained("KoichiYasuoka/roberta-classical-chinese-large-char") model=AutoModelForMaskedLM.from_pretrained("KoichiYasuoka/roberta-classical-chinese-large-char") ``` ## See Also [SuPar-Kanbun](https://github.com/KoichiYasuoka/SuPar-Kanbun): Tokenizer POS-tagger and Dependency-parser for Classical Chinese
{"language": ["lzh"], "license": "apache-2.0", "tags": ["classical chinese", "literary chinese", "ancient chinese", "masked-lm"], "pipeline_tag": "fill-mask", "mask_token": "[MASK]", "widget": [{"text": "\u5b5f\u5b50[MASK]\u6881\u60e0\u738b"}]}
KoichiYasuoka/roberta-classical-chinese-large-char
null
[ "transformers", "pytorch", "roberta", "fill-mask", "classical chinese", "literary chinese", "ancient chinese", "masked-lm", "lzh", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
token-classification
transformers
# roberta-classical-chinese-large-sentence-segmentation ## Model Description This is a RoBERTa model pre-trained on Classical Chinese texts for sentence segmentation, derived from [roberta-classical-chinese-large-char](https://huggingface.co/KoichiYasuoka/roberta-classical-chinese-large-char). Every segmented sentence begins with token-class "B" and ends with token-class "E" (except for single-character sentence with token-class "S"). ## How to Use ```py import torch from transformers import AutoTokenizer,AutoModelForTokenClassification tokenizer=AutoTokenizer.from_pretrained("KoichiYasuoka/roberta-classical-chinese-large-sentence-segmentation") model=AutoModelForTokenClassification.from_pretrained("KoichiYasuoka/roberta-classical-chinese-large-sentence-segmentation") s="子曰學而時習之不亦説乎有朋自遠方來不亦樂乎人不知而不慍不亦君子乎" p=[model.config.id2label[q] for q in torch.argmax(model(tokenizer.encode(s,return_tensors="pt"))["logits"],dim=2)[0].tolist()[1:-1]] print("".join(c+"。" if q=="E" or q=="S" else c for c,q in zip(s,p))) ``` ## Reference Koichi Yasuoka: [Sentence Segmentation of Classical Chinese Texts Using Transformers and BERT/RoBERTa Models](http://hdl.handle.net/2433/266539), IPSJ Symposium Series, Vol.2021, No.1 (December 2021), pp.104-109.
{"language": ["lzh"], "license": "apache-2.0", "tags": ["classical chinese", "literary chinese", "ancient chinese", "sentence segmentation", "token-classification"], "pipeline_tag": "token-classification", "widget": [{"text": "\u5b50\u66f0\u5b78\u800c\u6642\u7fd2\u4e4b\u4e0d\u4ea6\u8aac\u4e4e\u6709\u670b\u81ea\u9060\u65b9\u4f86\u4e0d\u4ea6\u6a02\u4e4e\u4eba\u4e0d\u77e5\u800c\u4e0d\u614d\u4e0d\u4ea6\u541b\u5b50\u4e4e"}]}
KoichiYasuoka/roberta-classical-chinese-large-sentence-segmentation
null
[ "transformers", "pytorch", "roberta", "token-classification", "classical chinese", "literary chinese", "ancient chinese", "sentence segmentation", "lzh", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
token-classification
transformers
# roberta-classical-chinese-large-upos ## Model Description This is a RoBERTa model pre-trained on Classical Chinese texts for POS-tagging and dependency-parsing, derived from [roberta-classical-chinese-large-char](https://huggingface.co/KoichiYasuoka/roberta-classical-chinese-large-char). Every word is tagged by [UPOS](https://universaldependencies.org/u/pos/) (Universal Part-Of-Speech) and [FEATS](https://universaldependencies.org/u/feat/). ## How to Use ```py from transformers import AutoTokenizer,AutoModelForTokenClassification tokenizer=AutoTokenizer.from_pretrained("KoichiYasuoka/roberta-classical-chinese-large-upos") model=AutoModelForTokenClassification.from_pretrained("KoichiYasuoka/roberta-classical-chinese-large-upos") ``` or ```py import esupar nlp=esupar.load("KoichiYasuoka/roberta-classical-chinese-large-upos") ``` ## Reference Koichi Yasuoka: [Universal Dependencies Treebank of the Four Books in Classical Chinese](http://hdl.handle.net/2433/245217), DADH2019: 10th International Conference of Digital Archives and Digital Humanities (December 2019), pp.20-28. ## See Also [esupar](https://github.com/KoichiYasuoka/esupar): Tokenizer POS-tagger and Dependency-parser with BERT/RoBERTa/DeBERTa models
{"language": ["lzh"], "license": "apache-2.0", "tags": ["classical chinese", "literary chinese", "ancient chinese", "token-classification", "pos", "dependency-parsing"], "datasets": ["universal_dependencies"], "pipeline_tag": "token-classification", "widget": [{"text": "\u5b50\u66f0\u5b78\u800c\u6642\u7fd2\u4e4b\u4e0d\u4ea6\u8aac\u4e4e\u6709\u670b\u81ea\u9060\u65b9\u4f86\u4e0d\u4ea6\u6a02\u4e4e\u4eba\u4e0d\u77e5\u800c\u4e0d\u614d\u4e0d\u4ea6\u541b\u5b50\u4e4e"}]}
KoichiYasuoka/roberta-classical-chinese-large-upos
null
[ "transformers", "pytorch", "roberta", "token-classification", "classical chinese", "literary chinese", "ancient chinese", "pos", "dependency-parsing", "lzh", "dataset:universal_dependencies", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
token-classification
transformers
# roberta-large-english-upos ## Model Description This is a RoBERTa model pre-trained with [UD_English](https://universaldependencies.org/en/) for POS-tagging and dependency-parsing, derived from [roberta-large](https://huggingface.co/roberta-large). Every word is tagged by [UPOS](https://universaldependencies.org/u/pos/) (Universal Part-Of-Speech). ## How to Use ```py from transformers import AutoTokenizer,AutoModelForTokenClassification tokenizer=AutoTokenizer.from_pretrained("KoichiYasuoka/roberta-large-english-upos") model=AutoModelForTokenClassification.from_pretrained("KoichiYasuoka/roberta-large-english-upos") ``` or ```py import esupar nlp=esupar.load("KoichiYasuoka/roberta-large-english-upos") ``` ## See Also [esupar](https://github.com/KoichiYasuoka/esupar): Tokenizer POS-tagger and Dependency-parser with BERT/RoBERTa/DeBERTa models
{"language": ["en"], "license": "cc-by-sa-4.0", "tags": ["english", "token-classification", "pos", "dependency-parsing"], "datasets": ["universal_dependencies"], "pipeline_tag": "token-classification"}
KoichiYasuoka/roberta-large-english-upos
null
[ "transformers", "pytorch", "roberta", "token-classification", "english", "pos", "dependency-parsing", "en", "dataset:universal_dependencies", "license:cc-by-sa-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
fill-mask
transformers
# roberta-large-japanese-aozora-char ## Model Description This is a RoBERTa model pre-trained on 青空文庫 texts with character tokenizer. You can fine-tune `roberta-large-japanese-aozora-char` for downstream tasks, such as [POS-tagging](https://huggingface.co/KoichiYasuoka/roberta-large-japanese-char-luw-upos), [dependency-parsing](https://huggingface.co/KoichiYasuoka/roberta-large-japanese-aozora-ud-head), and so on. ## How to Use ```py from transformers import AutoTokenizer,AutoModelForMaskedLM tokenizer=AutoTokenizer.from_pretrained("KoichiYasuoka/roberta-large-japanese-aozora-char") model=AutoModelForMaskedLM.from_pretrained("KoichiYasuoka/roberta-large-japanese-aozora-char") ``` ## Reference 安岡孝一: [Transformersと国語研長単位による日本語係り受け解析モデルの製作](http://id.nii.ac.jp/1001/00216223/), 情報処理学会研究報告, Vol.2022-CH-128, No.7 (2022年2月), pp.1-8.
{"language": ["ja"], "license": "cc-by-sa-4.0", "tags": ["japanese", "masked-lm"], "pipeline_tag": "fill-mask", "mask_token": "[MASK]", "widget": [{"text": "\u65e5\u672c\u306b\u7740\u3044\u305f\u3089[MASK]\u3092\u8a2a\u306d\u306a\u3055\u3044\u3002"}]}
KoichiYasuoka/roberta-large-japanese-aozora-char
null
[ "transformers", "pytorch", "roberta", "fill-mask", "japanese", "masked-lm", "ja", "license:cc-by-sa-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
fill-mask
transformers
# roberta-large-japanese-aozora ## Model Description This is a RoBERTa model pre-trained on 青空文庫 texts with [Japanese-LUW-Tokenizer](https://github.com/KoichiYasuoka/Japanese-LUW-Tokenizer). You can fine-tune `roberta-large-japanese-aozora` for downstream tasks, such as [POS-tagging](https://huggingface.co/KoichiYasuoka/roberta-large-japanese-luw-upos), [dependency-parsing](https://huggingface.co/KoichiYasuoka/roberta-large-japanese-aozora-ud-goeswith), and so on. ## How to Use ```py from transformers import AutoTokenizer,AutoModelForMaskedLM tokenizer=AutoTokenizer.from_pretrained("KoichiYasuoka/roberta-large-japanese-aozora") model=AutoModelForMaskedLM.from_pretrained("KoichiYasuoka/roberta-large-japanese-aozora") ``` ## Reference 安岡孝一: [Transformersと国語研長単位による日本語係り受け解析モデルの製作](http://id.nii.ac.jp/1001/00216223/), 情報処理学会研究報告, Vol.2022-CH-128, No.7 (2022年2月), pp.1-8.
{"language": ["ja"], "license": "cc-by-sa-4.0", "tags": ["japanese", "masked-lm"], "pipeline_tag": "fill-mask", "mask_token": "[MASK]", "widget": [{"text": "\u65e5\u672c\u306b\u7740\u3044\u305f\u3089[MASK]\u3092\u8a2a\u306d\u306a\u3055\u3044\u3002"}]}
KoichiYasuoka/roberta-large-japanese-aozora
null
[ "transformers", "pytorch", "roberta", "fill-mask", "japanese", "masked-lm", "ja", "license:cc-by-sa-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
token-classification
transformers
# roberta-large-japanese-char-luw-upos ## Model Description This is a RoBERTa model pre-trained on 青空文庫 texts for POS-tagging and dependency-parsing, derived from [roberta-large-japanese-aozora-char](https://huggingface.co/KoichiYasuoka/roberta-large-japanese-aozora-char). Every long-unit-word is tagged by [UPOS](https://universaldependencies.org/u/pos/) (Universal Part-Of-Speech) and [FEATS](https://universaldependencies.org/u/feat/). ## How to Use ```py from transformers import AutoTokenizer,AutoModelForTokenClassification,TokenClassificationPipeline tokenizer=AutoTokenizer.from_pretrained("KoichiYasuoka/roberta-large-japanese-char-luw-upos") model=AutoModelForTokenClassification.from_pretrained("KoichiYasuoka/roberta-large-japanese-char-luw-upos") pipeline=TokenClassificationPipeline(tokenizer=tokenizer,model=model,aggregation_strategy="simple") nlp=lambda x:[(x[t["start"]:t["end"]],t["entity_group"]) for t in pipeline(x)] print(nlp("国境の長いトンネルを抜けると雪国であった。")) ``` or ```py import esupar nlp=esupar.load("KoichiYasuoka/roberta-large-japanese-char-luw-upos") print(nlp("国境の長いトンネルを抜けると雪国であった。")) ``` ## Reference 安岡孝一: [Transformersと国語研長単位による日本語係り受け解析モデルの製作](http://id.nii.ac.jp/1001/00216223/), 情報処理学会研究報告, Vol.2022-CH-128, No.7 (2022年2月), pp.1-8. ## See Also [esupar](https://github.com/KoichiYasuoka/esupar): Tokenizer POS-tagger and Dependency-parser with BERT/RoBERTa/DeBERTa models
{"language": ["ja"], "license": "cc-by-sa-4.0", "tags": ["japanese", "token-classification", "pos", "dependency-parsing"], "datasets": ["universal_dependencies"], "pipeline_tag": "token-classification", "widget": [{"text": "\u56fd\u5883\u306e\u9577\u3044\u30c8\u30f3\u30cd\u30eb\u3092\u629c\u3051\u308b\u3068\u96ea\u56fd\u3067\u3042\u3063\u305f\u3002"}]}
KoichiYasuoka/roberta-large-japanese-char-luw-upos
null
[ "transformers", "pytorch", "roberta", "token-classification", "japanese", "pos", "dependency-parsing", "ja", "dataset:universal_dependencies", "license:cc-by-sa-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
token-classification
transformers
# roberta-large-japanese-luw-upos ## Model Description This is a RoBERTa model pre-trained on 青空文庫 texts for POS-tagging and dependency-parsing, derived from [roberta-large-japanese-aozora](https://huggingface.co/KoichiYasuoka/roberta-large-japanese-aozora). Every long-unit-word is tagged by [UPOS](https://universaldependencies.org/u/pos/) (Universal Part-Of-Speech). ## How to Use ```py from transformers import AutoTokenizer,AutoModelForTokenClassification,TokenClassificationPipeline tokenizer=AutoTokenizer.from_pretrained("KoichiYasuoka/roberta-large-japanese-luw-upos") model=AutoModelForTokenClassification.from_pretrained("KoichiYasuoka/roberta-large-japanese-luw-upos") pipeline=TokenClassificationPipeline(tokenizer=tokenizer,model=model,aggregation_strategy="simple") nlp=lambda x:[(x[t["start"]:t["end"]],t["entity_group"]) for t in pipeline(x)] print(nlp("国境の長いトンネルを抜けると雪国であった。")) ``` or ```py import esupar nlp=esupar.load("KoichiYasuoka/roberta-large-japanese-luw-upos") print(nlp("国境の長いトンネルを抜けると雪国であった。")) ``` ## Reference 安岡孝一: [Transformersと国語研長単位による日本語係り受け解析モデルの製作](http://id.nii.ac.jp/1001/00216223/), 情報処理学会研究報告, Vol.2022-CH-128, No.7 (2022年2月), pp.1-8. ## See Also [esupar](https://github.com/KoichiYasuoka/esupar): Tokenizer POS-tagger and Dependency-parser with BERT/RoBERTa/DeBERTa models
{"language": ["ja"], "license": "cc-by-sa-4.0", "tags": ["japanese", "token-classification", "pos", "dependency-parsing"], "datasets": ["universal_dependencies"], "pipeline_tag": "token-classification", "widget": [{"text": "\u56fd\u5883\u306e\u9577\u3044\u30c8\u30f3\u30cd\u30eb\u3092\u629c\u3051\u308b\u3068\u96ea\u56fd\u3067\u3042\u3063\u305f\u3002"}]}
KoichiYasuoka/roberta-large-japanese-luw-upos
null
[ "transformers", "pytorch", "roberta", "token-classification", "japanese", "pos", "dependency-parsing", "ja", "dataset:universal_dependencies", "license:cc-by-sa-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
fill-mask
transformers
# roberta-small-japanese-aozora-char ## Model Description This is a RoBERTa model pre-trained on 青空文庫 texts with character tokenizer. You can fine-tune `roberta-small-japanese-aozora-char` for downstream tasks, such as [POS-tagging](https://huggingface.co/KoichiYasuoka/roberta-small-japanese-char-luw-upos), dependency-parsing, and so on. ## How to Use ```py from transformers import AutoTokenizer,AutoModelForMaskedLM tokenizer=AutoTokenizer.from_pretrained("KoichiYasuoka/roberta-small-japanese-aozora-char") model=AutoModelForMaskedLM.from_pretrained("KoichiYasuoka/roberta-small-japanese-aozora-char") ```
{"language": ["ja"], "license": "cc-by-sa-4.0", "tags": ["japanese", "masked-lm"], "pipeline_tag": "fill-mask", "mask_token": "[MASK]", "widget": [{"text": "\u65e5\u672c\u306b\u7740\u3044\u305f\u3089[MASK]\u3092\u8a2a\u306d\u306a\u3055\u3044\u3002"}]}
KoichiYasuoka/roberta-small-japanese-aozora-char
null
[ "transformers", "pytorch", "roberta", "fill-mask", "japanese", "masked-lm", "ja", "license:cc-by-sa-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
fill-mask
transformers
# roberta-small-japanese-aozora ## Model Description This is a RoBERTa model pre-trained on 青空文庫 texts with [Japanese-LUW-Tokenizer](https://github.com/KoichiYasuoka/Japanese-LUW-Tokenizer). You can fine-tune `roberta-small-japanese-aozora` for downstream tasks, such as [POS-tagging](https://huggingface.co/KoichiYasuoka/roberta-small-japanese-luw-upos), dependency-parsing, and so on. ## How to Use ```py from transformers import AutoTokenizer,AutoModelForMaskedLM tokenizer=AutoTokenizer.from_pretrained("KoichiYasuoka/roberta-small-japanese-aozora") model=AutoModelForMaskedLM.from_pretrained("KoichiYasuoka/roberta-small-japanese-aozora") ```
{"language": ["ja"], "license": "cc-by-sa-4.0", "tags": ["japanese", "masked-lm"], "pipeline_tag": "fill-mask", "mask_token": "[MASK]", "widget": [{"text": "\u65e5\u672c\u306b\u7740\u3044\u305f\u3089[MASK]\u3092\u8a2a\u306d\u306a\u3055\u3044\u3002"}]}
KoichiYasuoka/roberta-small-japanese-aozora
null
[ "transformers", "pytorch", "roberta", "fill-mask", "japanese", "masked-lm", "ja", "license:cc-by-sa-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
token-classification
transformers
# roberta-small-japanese-char-luw-upos ## Model Description This is a RoBERTa model pre-trained on 青空文庫 texts for POS-tagging and dependency-parsing, derived from [roberta-small-japanese-aozora-char](https://huggingface.co/KoichiYasuoka/roberta-small-japanese-aozora-char). Every long-unit-word is tagged by [UPOS](https://universaldependencies.org/u/pos/) (Universal Part-Of-Speech). ## How to Use ```py from transformers import AutoTokenizer,AutoModelForTokenClassification,TokenClassificationPipeline tokenizer=AutoTokenizer.from_pretrained("KoichiYasuoka/roberta-small-japanese-char-luw-upos") model=AutoModelForTokenClassification.from_pretrained("KoichiYasuoka/roberta-small-japanese-char-luw-upos") pipeline=TokenClassificationPipeline(tokenizer=tokenizer,model=model,aggregation_strategy="simple") nlp=lambda x:[(x[t["start"]:t["end"]],t["entity_group"]) for t in pipeline(x)] print(nlp("国境の長いトンネルを抜けると雪国であった。")) ``` or ```py import esupar nlp=esupar.load("KoichiYasuoka/roberta-small-japanese-char-luw-upos") print(nlp("国境の長いトンネルを抜けると雪国であった。")) ``` ## See Also [esupar](https://github.com/KoichiYasuoka/esupar): Tokenizer POS-tagger and Dependency-parser with BERT/RoBERTa/DeBERTa models
{"language": ["ja"], "license": "cc-by-sa-4.0", "tags": ["japanese", "token-classification", "pos", "dependency-parsing"], "datasets": ["universal_dependencies"], "pipeline_tag": "token-classification", "widget": [{"text": "\u56fd\u5883\u306e\u9577\u3044\u30c8\u30f3\u30cd\u30eb\u3092\u629c\u3051\u308b\u3068\u96ea\u56fd\u3067\u3042\u3063\u305f\u3002"}]}
KoichiYasuoka/roberta-small-japanese-char-luw-upos
null
[ "transformers", "pytorch", "roberta", "token-classification", "japanese", "pos", "dependency-parsing", "ja", "dataset:universal_dependencies", "license:cc-by-sa-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
token-classification
transformers
# roberta-small-japanese-luw-upos ## Model Description This is a RoBERTa model pre-trained on 青空文庫 texts for POS-tagging and dependency-parsing, derived from [roberta-small-japanese-aozora](https://huggingface.co/KoichiYasuoka/roberta-small-japanese-aozora). Every long-unit-word is tagged by [UPOS](https://universaldependencies.org/u/pos/) (Universal Part-Of-Speech). ## How to Use ```py from transformers import AutoTokenizer,AutoModelForTokenClassification,TokenClassificationPipeline tokenizer=AutoTokenizer.from_pretrained("KoichiYasuoka/roberta-small-japanese-luw-upos") model=AutoModelForTokenClassification.from_pretrained("KoichiYasuoka/roberta-small-japanese-luw-upos") pipeline=TokenClassificationPipeline(tokenizer=tokenizer,model=model,aggregation_strategy="simple") nlp=lambda x:[(x[t["start"]:t["end"]],t["entity_group"]) for t in pipeline(x)] print(nlp("国境の長いトンネルを抜けると雪国であった。")) ``` or ```py import esupar nlp=esupar.load("KoichiYasuoka/roberta-small-japanese-luw-upos") print(nlp("国境の長いトンネルを抜けると雪国であった。")) ``` ## See Also [esupar](https://github.com/KoichiYasuoka/esupar): Tokenizer POS-tagger and Dependency-parser with BERT/RoBERTa/DeBERTa models
{"language": ["ja"], "license": "cc-by-sa-4.0", "tags": ["japanese", "token-classification", "pos", "dependency-parsing"], "datasets": ["universal_dependencies"], "pipeline_tag": "token-classification", "widget": [{"text": "\u56fd\u5883\u306e\u9577\u3044\u30c8\u30f3\u30cd\u30eb\u3092\u629c\u3051\u308b\u3068\u96ea\u56fd\u3067\u3042\u3063\u305f\u3002"}]}
KoichiYasuoka/roberta-small-japanese-luw-upos
null
[ "transformers", "pytorch", "roberta", "token-classification", "japanese", "pos", "dependency-parsing", "ja", "dataset:universal_dependencies", "license:cc-by-sa-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
token-classification
transformers
# xlm-roberta-base-english-upos ## Model Description This is an XLM-RoBERTa model pre-trained with [UD_English-EWT](https://github.com/UniversalDependencies/UD_English-EWT) for POS-tagging and dependency-parsing, derived from [xlm-roberta-base](https://huggingface.co/xlm-roberta-base). Every word is tagged by [UPOS](https://universaldependencies.org/u/pos/) (Universal Part-Of-Speech). ## How to Use ```py from transformers import AutoTokenizer,AutoModelForTokenClassification tokenizer=AutoTokenizer.from_pretrained("KoichiYasuoka/xlm-roberta-base-english-upos") model=AutoModelForTokenClassification.from_pretrained("KoichiYasuoka/xlm-roberta-base-english-upos") ``` or ```py import esupar nlp=esupar.load("KoichiYasuoka/xlm-roberta-base-english-upos") ``` ## See Also [esupar](https://github.com/KoichiYasuoka/esupar): Tokenizer POS-tagger and Dependency-parser with BERT/RoBERTa/DeBERTa models
{"language": ["en"], "license": "cc-by-sa-4.0", "tags": ["english", "token-classification", "pos", "dependency-parsing"], "datasets": ["universal_dependencies"], "pipeline_tag": "token-classification"}
KoichiYasuoka/xlm-roberta-base-english-upos
null
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "english", "pos", "dependency-parsing", "en", "dataset:universal_dependencies", "license:cc-by-sa-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
null
#Harry Potter DialoGPT Model
{"tags": ["conversational"]}
Konggate/DialoGPT-small-harrypotter
null
[ "conversational", "region:us" ]
null
2022-03-02T23:29:04+00:00
fill-mask
transformers
# Α lite RoBERTa fill mask model trained mostly in greek tweets The training dataset of this model consists of 23 million tweets in Greek, of approximately 5000 users in total, spanning from 2008 to 2018. The model has been trained to support the work for the paper [Multimodal Hate Speech Detection in Greek Social Media](https://www.mdpi.com/2414-4088/5/7/34) ## Load the pretrained model ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("Konstantinos/BERTaTweetGR") model = AutoModel.from_pretrained("Konstantinos/BERTaTweetGR") ```
{"language": "el", "widget": [{"text": "\u03bc\u03c0\u03b1\u03b9\u03bd\u03c9 \u03c3\u03c4\u03bf <mask> \u03ba\u03b1\u03b9 \u03c4\u03b9 \u03bd\u03b1 \u03b4\u03c9."}]}
Konstantinos/BERTaTweetGR
null
[ "transformers", "pytorch", "jax", "roberta", "fill-mask", "el", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("r3dhummingbird/DialoGPT-medium-joshua") model = AutoModelForCausalLM.from_pretrained("r3dhummingbird/DialoGPT-medium-joshua")
{}
Kookly/Kooklybots
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Koraiem/test_1
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
transformers
I'm dumb
{"tags": ["conversational"]}
Koriyy/DialoGPT-medium-gf
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
transformers
# Rick and Morty DialoGPT Model
{"tags": ["conversational"]}
Koro/DialoGPT-medium-rickandmorty
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
null
# Rick and Morty DialoGPT Model
{"tags": ["conversational"]}
Koro/DialoGPT-small-rickandmorty
null
[ "conversational", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Koshi-108/distilbert-base-uncased-finetuned-squad
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Kosmo/Kosmo
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Kothi/model_name
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Kouki/wav2vec2-common-voice-ja
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
fill-mask
transformers
# Bangla BERT Base Here we published a pretrained Bangla bert language model as **bangla-bert**! which is now available in huggingface model hub. Here we described [bangla-bert](https://github.com/Kowsher/bert-base-bangla) which is a pretrained Bangla language model based on mask language modeling described in [BERT](https://arxiv.org/abs/1810.04805) and the GitHub [repository](https://github.com/google-research/bert) ## Corpus Details We trained the Bangla bert language model using BanglaLM dataset from kaggle [BanglaLM](https://www.kaggle.com/gakowsher/bangla-language-model-dataset). There is 3 version of dataset which is almost 40GB. After downloading the dataset, we went on the way to mask LM. **bangla-bert Tokenizer** ```py from transformers import AutoTokenizer, AutoModel bnbert_tokenizer = AutoTokenizer.from_pretrained("Kowsher/bangla-bert") text = "খাঁটি সোনার চাইতে খাঁটি আমার দেশের মাটি" bnbert_tokenizer.tokenize(text) # output: ['খাটি', 'সে', '##ানার', 'চাইতে', 'খাটি', 'আমার', 'দেশের', 'মাটি'] ``` **MASK Generation** here, we can use bert base bangla model as for masked language modeling: ```py from transformers import BertForMaskedLM, BertTokenizer, pipeline model = BertForMaskedLM.from_pretrained("Kowsher/bangla-bert") tokenizer = BertTokenizer.from_pretrained("Kowsher/bangla-bert") nlp = pipeline('fill-mask', model=model, tokenizer=tokenizer) for pred in nlp(f"আমি বাংলার গান {nlp.tokenizer.mask_token}"): print(pred) # {'sequence': 'আমি বাংলার গান লিখি', 'score': 0.17955434322357178, 'token': 24749, 'token_str': 'লিখি'} nlp = pipeline('fill-mask', model=model, tokenizer=tokenizer) for pred in nlp(f"তুই রাজাকার তুই {nlp.tokenizer.mask_token}"): print(pred) # {'sequence': 'তুই রাজাকার তুই রাজাকার', 'score': 0.9975168704986572, 'token': 13401, 'token_str': 'রাজাকার'} nlp = pipeline('fill-mask', model=model, tokenizer=tokenizer) for pred in nlp(f"বাংলা আমার {nlp.tokenizer.mask_token}"): print(pred) # {'sequence': 'বাংলা আমার অহংকার', 'score': 0.5679506063461304, 'token': 19009, 'token_str': 'অহংকার'} ``` **Cite this work** M. Kowsher, A. A. Sami, N. J. Prottasha, M. S. Arefin, P. K. Dhar and T. Koshiba, "Bangla-BERT: Transformer-based Efficient Model for Transfer Learning and Language Understanding," in IEEE Access, 2022, doi: 10.1109/ACCESS.2022.3197662. ## Author [Kowsher](http://kowsher.org/)
{"language": "bn", "tags": ["Bert base Bangla", "Bengali Bert", "Bengali lm", "Bangla Base Bert", "Bangla Bert language model", "Bangla Bert"], "datasets": ["BanglaLM dataset"]}
Kowsher/bangla-bert
null
[ "transformers", "pytorch", "bert", "fill-mask", "Bert base Bangla", "Bengali Bert", "Bengali lm", "Bangla Base Bert", "Bangla Bert language model", "Bangla Bert", "bn", "arxiv:1810.04805", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
token-classification
transformers
{}
Kowsher/bert-base-bangla-ner
null
[ "transformers", "pytorch", "bert", "token-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
fill-mask
transformers
{}
Kowsher/model-bangla-bert
null
[ "transformers", "pytorch", "bert", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Kr33p/DialoGPT-medium-Albedo
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
KranNaut/bert-tagalog-base-uncased-finetuned-ner
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
KranNaut/finetuned-bert-ner
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-marc-en This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the amazon_reviews_multi dataset. It achieves the following results on the evaluation set: - Loss: 0.9005 - Mae: 0.5 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mae | |:-------------:|:-----:|:----:|:---------------:|:------:| | 1.108 | 1.0 | 235 | 0.9801 | 0.5610 | | 0.9592 | 2.0 | 470 | 0.9005 | 0.5 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.0+cu111 - Datasets 1.14.0 - Tokenizers 0.10.3
{"license": "mit", "tags": ["generated_from_trainer"], "datasets": ["amazon_reviews_multi"], "model-index": [{"name": "xlm-roberta-base-finetuned-marc-en", "results": []}]}
Krassy/xlm-roberta-base-finetuned-marc-en
null
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "text-classification", "generated_from_trainer", "dataset:amazon_reviews_multi", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
transformers
# Santa Chatbot
{"tags": ["conversational"]}
KringleClaus/Dialog-santa
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-plot This model is a fine-tuned version of [gpt2-medium](https://huggingface.co/gpt2-medium) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.8856 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.13.0.dev0 - Pytorch 1.9.0 - Datasets 1.15.1 - Tokenizers 0.10.3
{"tags": ["generated_from_trainer"], "model-index": [{"name": "gpt2-plot", "results": []}]}
KrishParikh/gpt2_imdb_movie_plots
null
[ "transformers", "pytorch", "gpt2", "text-generation", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
KrishanuMishra/DialoGPT-medium-Rick
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
--- tags: - conversational ---
{}
KrishnaChandra4/DialoGPT-small-Rick
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
KrishnaChandra4/DialoGPT-small-joshua
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
transformers
# Harry Potter DialoGPTModel
{"tags": ["conversational"]}
KrispyIChris/DialoGPT-small-harrypotter
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
transformers
# Buro discord bot
{"tags": ["conversational"]}
Kryptone/Burobot
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
transformers
# Rin chatbot
{"tags": ["conversational"]}
Kryptone/RinAI
null
[ "transformers", "pytorch", "safetensors", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
transformers
# MoniKA unstable
{"tags": ["conversational"]}
Kryptone/monikAI-Unstable
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
transformers
# Monika Discord Chatbot
{"tags": ["conversational"]}
Kryptone/monikAI
null
[ "transformers", "pytorch", "safetensors", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
text2text-generation
transformers
## mDialBART: A Cross-Lingual Dialogue Summarization Model This model is introduced by [*ClidSum: A Benchmark Dataset for Cross-Lingual Dialogue Summarization*](https://arxiv.org/abs/2202.05599).
{"license": "cc-by-nc-sa-4.0"}
Krystalan/mdialbart_de
null
[ "transformers", "pytorch", "mbart", "text2text-generation", "arxiv:2202.05599", "license:cc-by-nc-sa-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text2text-generation
transformers
## mDialBART: A Cross-Lingual Dialogue Summarization Model This model is introduced by [*ClidSum: A Benchmark Dataset for Cross-Lingual Dialogue Summarization*](https://arxiv.org/abs/2202.05599).
{"license": "cc-by-nc-sa-4.0"}
Krystalan/mdialbart_zh
null
[ "transformers", "pytorch", "mbart", "text2text-generation", "arxiv:2202.05599", "license:cc-by-nc-sa-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
transformers
# Rick Sanchez DialoGPT Model
{"tags": ["conversational"]}
Kshaunish/DialoGPT-small-rick
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Kudoz/DialoGPT-medium-Morty
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Kuge266/DialoGPT-medium-Rollercoaster
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Kuge266/DialoGPT-small-Rollercoaster
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.7758 - Matthews Correlation: 0.5259 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.1926 | 1.0 | 535 | 0.7758 | 0.5259 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["glue"], "metrics": ["matthews_correlation"], "model-index": [{"name": "distilbert-base-uncased-finetuned-cola", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "glue", "type": "glue", "args": "cola"}, "metrics": [{"type": "matthews_correlation", "value": 0.5258663312307151, "name": "Matthews Correlation"}]}]}]}
Kumicho/distilbert-base-uncased-finetuned-cola
null
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Kup/gpt2-wikitext2
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
automatic-speech-recognition
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # librispeech-100h-supervised This model is a fine-tuned version of [facebook/wav2vec2-large-lv60](https://huggingface.co/facebook/wav2vec2-large-lv60) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0955 - Wer: 0.0345 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 24 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 4.8277 | 0.42 | 500 | 2.9071 | 1.0 | | 2.0261 | 0.84 | 1000 | 0.3060 | 0.2496 | | 0.2181 | 1.26 | 1500 | 0.1172 | 0.0873 | | 0.1255 | 1.68 | 2000 | 0.0894 | 0.0637 | | 0.0971 | 2.1 | 2500 | 0.0821 | 0.0560 | | 0.078 | 2.52 | 3000 | 0.0751 | 0.0500 | | 0.0706 | 2.94 | 3500 | 0.0721 | 0.0456 | | 0.0609 | 3.36 | 4000 | 0.0755 | 0.0464 | | 0.0572 | 3.78 | 4500 | 0.0705 | 0.0431 | | 0.0528 | 4.2 | 5000 | 0.0715 | 0.0423 | | 0.0481 | 4.62 | 5500 | 0.0691 | 0.0403 | | 0.0471 | 5.04 | 6000 | 0.0743 | 0.0401 | | 0.0412 | 5.46 | 6500 | 0.0757 | 0.0399 | | 0.0416 | 5.88 | 7000 | 0.0688 | 0.0378 | | 0.0391 | 6.3 | 7500 | 0.0704 | 0.0383 | | 0.0367 | 6.72 | 8000 | 0.0742 | 0.0387 | | 0.0349 | 7.14 | 8500 | 0.0732 | 0.0388 | | 0.033 | 7.56 | 9000 | 0.0719 | 0.0374 | | 0.0327 | 7.98 | 9500 | 0.0750 | 0.0369 | | 0.0292 | 8.4 | 10000 | 0.0734 | 0.0368 | | 0.0303 | 8.82 | 10500 | 0.0733 | 0.0365 | | 0.0283 | 9.24 | 11000 | 0.0766 | 0.0357 | | 0.0269 | 9.66 | 11500 | 0.0761 | 0.0350 | | 0.0268 | 10.08 | 12000 | 0.0802 | 0.0359 | | 0.0245 | 10.42 | 12500 | 0.0758 | 0.0354 | | 0.023 | 10.84 | 13000 | 0.0775 | 0.0349 | | 0.0186 | 11.26 | 13500 | 0.0817 | 0.0355 | | 0.0176 | 11.68 | 14000 | 0.0853 | 0.0354 | | 0.0163 | 12.1 | 14500 | 0.0880 | 0.0347 | | 0.0156 | 12.52 | 15000 | 0.0864 | 0.0357 | | 0.0141 | 12.94 | 15500 | 0.0897 | 0.0355 | | 0.0134 | 13.36 | 16000 | 0.0915 | 0.0349 | | 0.013 | 13.78 | 16500 | 0.0928 | 0.0350 | | 0.0097 | 13.42 | 17000 | 0.0955 | 0.0345 | ### Framework versions - Transformers 4.14.1 - Pytorch 1.10.2 - Datasets 1.18.2 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "model-index": [{"name": "librispeech-100h-supervised", "results": []}]}
Kuray107/librispeech-100h-supervised
null
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
automatic-speech-recognition
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # timit-5percent-supervised This model is a fine-tuned version of [facebook/wav2vec2-large-lv60](https://huggingface.co/facebook/wav2vec2-large-lv60) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6615 - Wer: 0.2788 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 200 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 5.3773 | 33.33 | 500 | 2.9693 | 1.0 | | 1.4746 | 66.67 | 1000 | 0.5050 | 0.3359 | | 0.1067 | 100.0 | 1500 | 0.5981 | 0.3054 | | 0.0388 | 133.33 | 2000 | 0.6192 | 0.2712 | | 0.0244 | 166.67 | 2500 | 0.6392 | 0.2776 | | 0.018 | 200.0 | 3000 | 0.6615 | 0.2788 | ### Framework versions - Transformers 4.14.1 - Pytorch 1.10.2 - Datasets 1.18.2 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "model-index": [{"name": "timit-5percent-supervised", "results": []}]}
Kuray107/timit-5percent-supervised
null
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
automatic-speech-recognition
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # timit-supervised This model is a fine-tuned version of [Experiments/single_dataset/timit-supervised/checkpoint-3500](https://huggingface.co/Experiments/single_dataset/timit-supervised/checkpoint-3500) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1272 - Wer: 0.0532 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.0554 | 1.77 | 500 | 0.1310 | 0.0697 | | 0.0509 | 3.53 | 1000 | 0.1497 | 0.0710 | | 0.038 | 5.3 | 1500 | 0.1190 | 0.0659 | | 0.0328 | 7.07 | 2000 | 0.0926 | 0.0596 | | 0.0247 | 8.83 | 2500 | 0.0873 | 0.0570 | | 0.0229 | 10.6 | 3000 | 0.0890 | 0.0532 | | 0.0183 | 12.37 | 3500 | 0.0969 | 0.0532 | | 0.0326 | 14.13 | 4000 | 0.0809 | 0.0469 | | 0.03 | 15.9 | 4500 | 0.0758 | 0.0444 | | 0.0264 | 17.67 | 5000 | 0.0973 | 0.0520 | | 0.0244 | 19.43 | 5500 | 0.1272 | 0.0532 | ### Framework versions - Transformers 4.14.1 - Pytorch 1.10.2 - Datasets 1.18.2 - Tokenizers 0.10.3
{"tags": ["generated_from_trainer"], "model-index": [{"name": "timit-supervised", "results": []}]}
Kuray107/timit-supervised
null
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
automatic-speech-recognition
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wsj0-full-supervised This model is a fine-tuned version of [facebook/wav2vec2-large-lv60](https://huggingface.co/facebook/wav2vec2-large-lv60) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0623 - Wer: 0.0343 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 12 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 5.517 | 0.86 | 500 | 2.9475 | 1.0 | | 2.2387 | 1.72 | 1000 | 0.4004 | 0.3498 | | 0.3081 | 2.57 | 1500 | 0.1362 | 0.1159 | | 0.1744 | 3.43 | 2000 | 0.1125 | 0.0929 | | 0.1285 | 4.29 | 2500 | 0.0894 | 0.0727 | | 0.1015 | 5.15 | 3000 | 0.0852 | 0.0642 | | 0.0811 | 6.0 | 3500 | 0.0789 | 0.0614 | | 0.0748 | 6.86 | 4000 | 0.0746 | 0.0529 | | 0.0639 | 7.72 | 4500 | 0.0714 | 0.0481 | | 0.0606 | 8.58 | 5000 | 0.0698 | 0.0489 | | 0.0525 | 9.43 | 5500 | 0.0747 | 0.0464 | | 0.0489 | 10.29 | 6000 | 0.0594 | 0.0396 | | 0.0419 | 11.15 | 6500 | 0.0600 | 0.0359 | | 0.0414 | 12.01 | 7000 | 0.0612 | 0.0412 | | 0.0383 | 12.86 | 7500 | 0.0676 | 0.0392 | | 0.0352 | 13.72 | 8000 | 0.0626 | 0.0388 | | 0.034 | 14.58 | 8500 | 0.0699 | 0.0372 | | 0.0309 | 15.44 | 9000 | 0.0807 | 0.0420 | | 0.0295 | 16.3 | 9500 | 0.0796 | 0.0396 | | 0.0273 | 17.15 | 10000 | 0.0716 | 0.0376 | | 0.0271 | 18.01 | 10500 | 0.0657 | 0.0384 | | 0.0251 | 18.87 | 11000 | 0.0585 | 0.0351 | | 0.024 | 19.73 | 11500 | 0.0557 | 0.0347 | | 0.0252 | 20.58 | 12000 | 0.0609 | 0.0327 | | 0.0231 | 21.44 | 12500 | 0.0720 | 0.0368 | | 0.0202 | 22.3 | 13000 | 0.0625 | 0.0343 | | 0.0195 | 23.16 | 13500 | 0.0635 | 0.0372 | | 0.0201 | 24.01 | 14000 | 0.0582 | 0.0335 | | 0.0183 | 24.87 | 14500 | 0.0562 | 0.0343 | | 0.0183 | 25.73 | 15000 | 0.0629 | 0.0335 | | 0.0175 | 26.59 | 15500 | 0.0593 | 0.0323 | | 0.017 | 27.44 | 16000 | 0.0631 | 0.0339 | | 0.0162 | 28.3 | 16500 | 0.0597 | 0.0335 | | 0.0169 | 29.16 | 17000 | 0.0623 | 0.0343 | ### Framework versions - Transformers 4.14.1 - Pytorch 1.10.2 - Datasets 1.18.2 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "model-index": [{"name": "wsj0-full-supervised", "results": []}]}
Kuray107/wsj0-full-supervised
null
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
transformers
# Harry Potter DialoGPT Model
{"tags": ["conversational"]}
Kush/DialoGPT-small-harrypotter
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Kutlwano/AutoLyrist
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Kyaw/distilgpt2-finetuned-wikitext2
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Kyaw/t5-small-finetuned-xsum
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Kyobkiq/opus-mt-finetuned-en-to-de
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Kyon/K
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Kyon/Kyon
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
feature-extraction
transformers
This is **KOREAN** Bert Masked LM pretrained model adapted in **BEAUTY** domain. (BertForMaskedLM) About 60,000 reviews were used. It was fine-tuned based on _beomi/kcbert-base_ model weights. Enjoy!
{}
Kyoungmin/beauty-base-KLCP
null
[ "transformers", "pytorch", "bert", "feature-extraction", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
fill-mask
transformers
**Second** BertForMaskedLM pretrained model in **KOREAN Beauty** domain. About 120,000 reviews were used. It was trained based on _beomi/kcbert-base_ . Check out _Kyoungmin/beauty-base-KLCP_ for smaller model !!
{}
Kyoungmin/beauty-base-KLCP2
null
[ "transformers", "pytorch", "bert", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
No use
{}
Kyoungmin/beauty-word2vec
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
fill-mask
transformers
This is practice model for kcbert-base with Korean petition data!
{}
Kyoungmin/kcbert-base-petition
null
[ "transformers", "pytorch", "bert", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
transformers
{}
Kyuyoung11/haremotions-v1
null
[ "transformers", "electra", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
transformers
{}
Kyuyoung11/haremotions-v2
null
[ "transformers", "pytorch", "electra", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
transformers
{}
Kyuyoung11/haremotions-v3
null
[ "transformers", "pytorch", "electra", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
transformers
{}
Kyuyoung11/haremotions-v4
null
[ "transformers", "pytorch", "electra", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
transformers
{}
Kyuyoung11/haremotions-v5
null
[ "transformers", "pytorch", "electra", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Kyuyoung11/haremotions_audio_v1
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
transformers
#VADER DialogGPT Model
{"tags": ["conversational"]}
LARACHNIDE/DialogGPT-small-sw
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
LARACHNIDE/DialogGPT-small-sw2
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
multiple-choice
transformers
# Roberta Large Fine Tuned on RACE ## Model description This model follows the implementation by Allen AI team about [Aristo Roberta V7 Model](https://leaderboard.allenai.org/arc/submission/blcotvl7rrltlue6bsv0) given in [ARC Challenge](https://leaderboard.allenai.org/arc/submissions/public) #### How to use ```python import datasets from transformers import RobertaTokenizer from transformers import RobertaForMultipleChoice tokenizer = RobertaTokenizer.from_pretrained( "LIAMF-USP/aristo-roberta") model = RobertaForMultipleChoice.from_pretrained( "LIAMF-USP/aristo-roberta") dataset = datasets.load_dataset( "arc",, split=["train", "validation", "test"], ) training_examples = dataset[0] evaluation_examples = dataset[1] test_examples = dataset[2] example=training_examples[0] example_id = example["example_id"] question = example["question"] label_example = example["answer"] options = example["options"] if label_example in ["A", "B", "C", "D", "E"]: label_map = {label: i for i, label in enumerate( ["A", "B", "C", "D", "E"])} elif label_example in ["1", "2", "3", "4", "5"]: label_map = {label: i for i, label in enumerate( ["1", "2", "3", "4", "5"])} else: print(f"{label_example} not found") while len(options) < 5: empty_option = {} empty_option['option_context'] = '' empty_option['option_text'] = '' options.append(empty_option) choices_inputs = [] for ending_idx, option in enumerate(options): ending = option["option_text"] context = option["option_context"] if question.find("_") != -1: # fill in the banks questions question_option = question.replace("_", ending) else: question_option = question + " " + ending inputs = tokenizer( context, question_option, add_special_tokens=True, max_length=MAX_SEQ_LENGTH, padding="max_length", truncation=True, return_overflowing_tokens=False, ) if "num_truncated_tokens" in inputs and inputs["num_truncated_tokens"] > 0: logging.warning(f"Question: {example_id} with option {ending_idx} was truncated") choices_inputs.append(inputs) label = label_map[label_example] input_ids = [x["input_ids"] for x in choices_inputs] attention_mask = ( [x["attention_mask"] for x in choices_inputs] # as the senteces follow the same structure, just one of them is # necessary to check if "attention_mask" in choices_inputs[0] else None ) example_encoded = { "example_id": example_id, "input_ids": input_ids, "attention_mask": attention_mask, "token_type_ids": token_type_ids, "label": label } output = model(**example_encoded) ``` ## Training data the Training data was the same as proposed [here](https://leaderboard.allenai.org/arc/submission/blcotvl7rrltlue6bsv0) The only diferrence was the hypeparameters of RACE fine tuned model, which were reported [here](https://huggingface.co/LIAMF-USP/roberta-large-finetuned-race#eval-results) ## Training procedure It was necessary to preprocess the data with a method that is exemplified for a single instance in the _How to use_ section. The used hyperparameters were the following: | Hyperparameter | Value | |:----:|:----:| | adam_beta1 | 0.9 | | adam_beta2 | 0.98 | | adam_epsilon | 1.000e-8 | | eval_batch_size | 16 | | train_batch_size | 4 | | fp16 | True | | gradient_accumulation_steps | 4 | | learning_rate | 0.00001 | | warmup_steps | 0.06 | | max_length | 256 | | epochs | 4 | The other parameters were the default ones from [Trainer](https://huggingface.co/transformers/main_classes/trainer.html) and [Trainer Arguments](https://huggingface.co/transformers/main_classes/trainer.html#trainingarguments) ## Eval results: | Dataset Acc | Challenge Test | |:----:|:----:| | | 65.358 | **The model was trained with a TITAN RTX**
{"language": "english", "license": "mit", "datasets": ["race", "ai2_arc", "openbookqa"], "metrics": ["accuracy"]}
LIAMF-USP/aristo-roberta
null
[ "transformers", "pytorch", "tf", "jax", "roberta", "multiple-choice", "dataset:race", "dataset:ai2_arc", "dataset:openbookqa", "license:mit", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
multiple-choice
transformers
# Roberta Large Fine Tuned on RACE ## Model description This model is a fine-tuned model of Roberta-large applied on RACE #### How to use ```python import datasets from transformers import RobertaTokenizer from transformers import RobertaForMultipleChoice tokenizer = RobertaTokenizer.from_pretrained( "LIAMF-USP/roberta-large-finetuned-race") model = RobertaForMultipleChoice.from_pretrained( "LIAMF-USP/roberta-large-finetuned-race") dataset = datasets.load_dataset( "race", "all", split=["train", "validation", "test"], )training_examples = dataset[0] evaluation_examples = dataset[1] test_examples = dataset[2] example=training_examples[0] example_id = example["example_id"] question = example["question"] context = example["article"] options = example["options"] label_example = example["answer"] label_map = {label: i for i, label in enumerate(["A", "B", "C", "D"])} choices_inputs = [] for ending_idx, (_, ending) in enumerate( zip(context, options)): if question.find("_") != -1: # fill in the banks questions question_option = question.replace("_", ending) else: question_option = question + " " + ending inputs = tokenizer( context, question_option, add_special_tokens=True, max_length=MAX_SEQ_LENGTH, padding="max_length", truncation=True, return_overflowing_tokens=False, ) label = label_map[label_example] input_ids = [x["input_ids"] for x in choices_inputs] attention_mask = ( [x["attention_mask"] for x in choices_inputs] # as the senteces follow the same structure, #just one of them is necessary to check if "attention_mask" in choices_inputs[0] else None ) example_encoded = { "example_id": example_id, "input_ids": input_ids, "attention_mask": attention_mask, "label": label, } output = model(**example_encoded) ``` ## Training data The initial model was [roberta large model](https://huggingface.co/roberta-large) which was then fine-tuned on [RACE dataset](https://www.cs.cmu.edu/~glai1/data/race/) ## Training procedure It was necessary to preprocess the data with a method that is exemplified for a single instance in the _How to use_ section. The used hyperparameters were the following: | Hyperparameter | Value | |:----:|:----:| | adam_beta1 | 0.9 | | adam_beta2 | 0.98 | | adam_epsilon | 1.000e-8 | | eval_batch_size | 32 | | train_batch_size | 1 | | fp16 | True | | gradient_accumulation_steps | 16 | | learning_rate | 0.00001 | | warmup_steps | 1000 | | max_length | 512 | | epochs | 4 | ## Eval results: | Dataset Acc | Eval | All Test |High School Test |Middle School Test | |:----:|:----:|:----:|:----:|:----:| | | 85.2 | 84.9|83.5|88.0| **The model was trained with a Tesla V100-PCIE-16GB**
{"language": "english", "license": "mit", "datasets": ["race"], "metrics": ["accuracy"]}
LIAMF-USP/roberta-large-finetuned-race
null
[ "transformers", "pytorch", "tf", "jax", "roberta", "multiple-choice", "dataset:race", "license:mit", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
LJ/distilbert-base-uncased-finetuned-squad
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00