Search is not available for this dataset
pipeline_tag
stringclasses
48 values
library_name
stringclasses
205 values
text
stringlengths
0
18.3M
metadata
stringlengths
2
1.07B
id
stringlengths
5
122
last_modified
null
tags
listlengths
1
1.84k
sha
null
created_at
stringlengths
25
25
null
transformers
{}
NtDNlp/cmcbert
null
[ "transformers", "pytorch", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
feature-extraction
transformers
#EmbeddingSimilarityEvaluator: Evaluating the model on STS.en-en.txt dataset in epoch 2 after 26000 steps: | Type | Pearson | Spearman | | ----------- | ----------- | ----------- | | Cosine | 0.7650 | 0.8095 | | Euclidean | 0.8089 | 0.8010 | | Cosine | 0.8075 | 0.7999 | | Euclidean | 0.7531 | 0.7680
{}
NtDNlp/sentence-embedding-vietnamese
null
[ "transformers", "pytorch", "xlm-roberta", "feature-extraction", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{"license": "afl-3.0"}
Nui/Sconte
null
[ "license:afl-3.0", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Nukki/Eu
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
NullisTerminis/en-to-pt
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
NullisTerminis/marian-finetuned-kde4-en-to-fr
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
transformers
{}
Numenta/BertSparse80
null
[ "transformers", "pytorch", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
transformers
{}
Numenta/BertSparse85
null
[ "transformers", "pytorch", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
transformers
{}
Numenta/BertSparse90
null
[ "transformers", "pytorch", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
automatic-speech-recognition
transformers
# Quran Speech Recognizer This application will listen to the user's Quran recitation, and take the user to the position of the Quran from where the s/he had recited. You can also take a look at our [presentation slides](https://docs.google.com/presentation/d/1dbbVYHi3LQRiggH14nN36YV2A-ddUAKg67aX5MWi0ys/edit?usp=sharing). # Methodology We used transfer learning to make our application. We fine-tuned the pretrained model available at https://huggingface.co/elgeish/wav2vec2-large-xlsr-53-arabic using the data available at https://www.kaggle.com/c/quran-asr-challenge/data. Our model can be found at https://huggingface.co/Nuwaisir/Quran_speech_recognizer. # Usage Run all the cells of run_ui.ipynb. The last cell will hear your recitation for 5 seconds (changeable) from the time you run that cell. And then convert your speech to Arabic text and show the most probable corresponding parts of 30th juzz (Surah 78 - 114) of the Quran as the output based on edit distance value. Currently, we are searching from Surah 78 to Surah 114 as the searching algorithm needs some time to search the whole Quran. This range can be changed in the 6th cell of the notebook.
{}
Nuwaisir/Quran_speech_recognizer
null
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
OLAOLA/AA
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
OStars/bert-base-chinese-finetuned-ner
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
null
{"tags": ["conversational"]}
Obesitycart/ChatBot
null
[ "conversational", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
transformers
# 707 DialoGPT Model
{"tags": ["conversational"]}
Obscurity/DialoGPT-Medium-707
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Ocelma/Test
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
transformers
# GPT2-Mongolia ## Model description GPT-2 is a transformers model pretrained on a very small corpus of Mongolian news data in a self-supervised fashion. This means it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it was trained to guess the next word in sentences. ## How to use ```python import tensorflow as tf from transformers import GPT2Config, TFGPT2LMHeadModel, GPT2Tokenizer from transformers import WEIGHTS_NAME, CONFIG_NAME tokenizer = GPT2Tokenizer.from_pretrained('Ochiroo/tiny_mn_gpt') model = TFGPT2LMHeadModel.from_pretrained('Ochiroo/tiny_mn_gpt') text = "Намайг Эрдэнэ-Очир гэдэг. Би" input_ids = tokenizer.encode(text, return_tensors='tf') beam_outputs = model.generate( input_ids, max_length = 25, num_beams = 5, temperature = 0.7, no_repeat_ngram_size=2, num_return_sequences=5 ) print(tokenizer.decode(beam_outputs[0])) ``` ## Training data and biases Trained on 500MB of Mongolian news dataset (IKON) on RTX 2060.
{"language": "mn"}
Ochiroo/tiny_mn_gpt
null
[ "transformers", "tf", "gpt2", "text-generation", "mn", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
translation
transformers
# HEL-ACH-EN ## Model description MT model translating Acholi to English initialized with weights from [opus-mt-luo-en](https://huggingface.co/Helsinki-NLP/opus-mt-luo-en) on HuggingFace. ## Intended uses & limitations Machine Translation experiments. Do not use for sensitive tasks. #### How to use ```python # You can include sample code which will be formatted from transformers import AutoTokenizer, AutoModelForSeq2SeqLM tokenizer = AutoTokenizer.from_pretrained("Ogayo/Hel-ach-en") model = AutoModelForSeq2SeqLM.from_pretrained("Ogayo/Hel-ach-en") ``` #### Limitations and bias Trained on Jehovah Witnesses data so contains theirs and Christian views. ## Training data Trained on OPUS JW300 data. Initialized with weights from [opus-mt-luo-en](https://huggingface.co/Helsinki-NLP/opus-mt-luo-en?text=Bed+gi+nyasi+mar+chieng%27+nyuol+mopong%27+gi+mor%21#model_card) ## Training procedure Remove duplicates and rows with no alphabetic characters. Used GPU ## Eval results testset | BLEU --- | --- JW300.luo.en| 46.1
{"language": ["ach", "en"], "license": "cc-by-4.0", "tags": ["translation"], "datasets": ["JW300"], "metrics": ["bleu"]}
Ogayo/Hel-ach-en
null
[ "transformers", "pytorch", "marian", "text2text-generation", "translation", "ach", "en", "dataset:JW300", "license:cc-by-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Ogayo/ach-en-translator
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
text2text-generation
transformers
{}
Ogayo/mt-ach-en
null
[ "transformers", "pytorch", "marian", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text2text-generation
transformers
{}
Ogayo/mt-adh-en
null
[ "transformers", "pytorch", "marian", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text2text-generation
transformers
{}
Ogayo/mt-en-ach
null
[ "transformers", "pytorch", "marian", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text2text-generation
transformers
{}
Ogayo/mt-en-adh
null
[ "transformers", "pytorch", "marian", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Oji/DialoGPT-small-BOT
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
transformers
# Rick and Morty DialoGPT Model
{"tags": ["conversational"]}
Oji/DialoGPT-small-Rick
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Oji/DialoGPT-smaller-Rick
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
OksanaBash/distilroberta-base-finetuned-wikitext2
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Oksi/Sisisi
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Olaide/Psgnation
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Olaijs/DialoGPT-small-harrypotter
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
OliverZC/HuggingFace
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Olmik43/bR4mlOsmlOY
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
fill-mask
transformers
{}
Omar2027/Author_identification
null
[ "transformers", "pytorch", "jax", "bert", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
AutoTokenizer
{}
Omar2027/AutoTokenizer
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-distilled-clinc This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the clinc_oos dataset. It achieves the following results on the evaluation set: - Loss: 0.1259 - Accuracy: 0.9332 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 7 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 318 | 0.5952 | 0.7355 | | 0.7663 | 2.0 | 636 | 0.3130 | 0.8742 | | 0.7663 | 3.0 | 954 | 0.2024 | 0.9206 | | 0.3043 | 4.0 | 1272 | 0.1590 | 0.9235 | | 0.181 | 5.0 | 1590 | 0.1378 | 0.9303 | | 0.181 | 6.0 | 1908 | 0.1287 | 0.9329 | | 0.1468 | 7.0 | 2226 | 0.1259 | 0.9332 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.2+cu102 - Datasets 1.18.3 - Tokenizers 0.11.0
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["clinc_oos"], "metrics": ["accuracy"], "model-index": [{"name": "distilbert-base-uncased-distilled-clinc", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "clinc_oos", "type": "clinc_oos", "args": "plus"}, "metrics": [{"type": "accuracy", "value": 0.9332258064516129, "name": "Accuracy"}]}, {"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "clinc_oos", "type": "clinc_oos", "config": "small", "split": "test"}, "metrics": [{"type": "accuracy", "value": 0.8587272727272727, "name": "Accuracy", "verified": true}, {"type": "precision", "value": 0.8619245385984416, "name": "Precision Macro", "verified": true}, {"type": "precision", "value": 0.8587272727272727, "name": "Precision Micro", "verified": true}, {"type": "precision", "value": 0.8797945801452213, "name": "Precision Weighted", "verified": true}, {"type": "recall", "value": 0.9359690949227375, "name": "Recall Macro", "verified": true}, {"type": "recall", "value": 0.8587272727272727, "name": "Recall Micro", "verified": true}, {"type": "recall", "value": 0.8587272727272727, "name": "Recall Weighted", "verified": true}, {"type": "f1", "value": 0.8922503214655346, "name": "F1 Macro", "verified": true}, {"type": "f1", "value": 0.8587272727272727, "name": "F1 Micro", "verified": true}, {"type": "f1", "value": 0.8506829426037475, "name": "F1 Weighted", "verified": true}, {"type": "loss", "value": 0.9798759818077087, "name": "loss", "verified": true}]}]}]}
Omar95farag/distilbert-base-uncased-distilled-clinc
null
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "dataset:clinc_oos", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
{}
Omar95farag/distilbert-base-uncased-finetuned-clinc
null
[ "transformers", "pytorch", "distilbert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{"license": "mit"}
Omerdor/OCTv0.1
null
[ "license:mit", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Omfhxll/Ghj
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Onlyblacktea/my_transformers
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
text2text-generation
transformers
#keytotext [![pypi Version](https://img.shields.io/pypi/v/keytotext.svg?logo=pypi&logoColor=white)](https://pypi.org/project/keytotext/) [![Downloads](https://static.pepy.tech/personalized-badge/keytotext?period=total&units=none&left_color=grey&right_color=orange&left_text=Pip%20Downloads)](https://pepy.tech/project/keytotext) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/gagan3012/keytotext/blob/master/notebooks/K2T.ipynb) [![Streamlit App](https://static.streamlit.io/badges/streamlit_badge_black_white.svg)](https://share.streamlit.io/gagan3012/keytotext/UI/app.py) [![API Call](https://img.shields.io/badge/-FastAPI-red?logo=fastapi&labelColor=white)](https://github.com/gagan3012/keytotext#api) [![Docker Call](https://img.shields.io/badge/-Docker%20Image-blue?logo=docker&labelColor=white)](https://hub.docker.com/r/gagan30/keytotext) [![HuggingFace](https://img.shields.io/badge/%F0%9F%A4%97-Models%20on%20Hub-yellow)](https://huggingface.co/models?filter=keytotext) [![Documentation Status](https://readthedocs.org/projects/keytotext/badge/?version=latest)](https://keytotext.readthedocs.io/en/latest/?badge=latest) [![Code style: black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/psf/black) ![keytotext](https://socialify.git.ci/gagan3012/keytotext/image?description=1&forks=1&language=1&owner=1&stargazers=1&theme=Light) Idea is to build a model which will take keywords as inputs and generate sentences as outputs. Potential use case can include: - Marketing - Search Engine Optimization - Topic generation etc. - Fine tuning of topic modeling models
{"language": "en", "license": "MIT", "tags": ["keytotext", "k2t", "Keywords to Sentences"], "datasets": ["WebNLG", "Dart"], "metrics": ["NLG"], "thumbnail": "Keywords to Sentences"}
OnsElleuch/logisgenerator
null
[ "transformers", "pytorch", "t5", "text2text-generation", "keytotext", "k2t", "Keywords to Sentences", "en", "dataset:WebNLG", "dataset:Dart", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
OpeyemiOsakuade/naijaNER
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Optimal/DialoGPT-small-harrypotter
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
transformers
#harry potter dialogpt model
{"tags": ["conversational"]}
Optimal/Harry
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Optimal/chatbot
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
OraeeMaryam1376/my_model
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
OreoSlayer/Choch_GPT-medium
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
OreoSlayer/Chochito_GPT2
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Orhantuna/Tunalar
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Orodrethxvx/DialoGPT-small-harrybotter
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
OsKyl/model_name
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
OsanOrg/test
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Osasuna52/bert-base-multilingual-cased-finetuned-polish-squad2-finetuned-squad-h-truncated-0f3010
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Osasuna52/bert-base-polish-cased-v1-finetuned-squad-Geotrend-distilbert-cased-dev
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Osasuna52/bert-base-polish-cased-v1-finetuned-squad-kleczek-bert-cased-dev
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Osasuna52/bert-base-polish-cased-v1-finetuned-squad-kleczek-bert-cased
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Osasuna52/distilbert-base-pl-cased-finetuned-squad-Geotrend-distilbert-cased-dev
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Osasuna52/herbert-base-cased-finetuned-squad-allegro-herbert-base-cased-dev
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Osasuna52/herbert-large-cased-finetuned-squad-allegro-herbert-large-cased-dev
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
transformers
# Finetuned DialoGPT model for Eng-Spa translation DialoGPT-small model was used and finetuned on English to Spanish translations, extracted from http://storage.googleapis.com/download.tensorflow.org/data/spa-eng.zip some examples of translations | Role | Response | | :---: |------------------------| | User | please, sing me a song | | Bot | Por favor, canta una canción. | | User | I really want to go to China | | Bot | Realmente quiero ir a China. | | User | Can you do me a favor? | | Bot | ¿Me puedes hacer un favor? | | User | I don't know what you are talking about | | Bot | No sé de qué estás hablando. | | User | I don't want to go to China | | Bot | No quiero ir a China. | # Using the model example code for trying out the model ```python from transformers import AutoModelWithLMHead, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained('microsoft/DialoGPT-small') model = AutoModelWithLMHead.from_pretrained('OscarNav/dialoGPT_translate') # Let's traslate 5 sentences for step in range(5): # encode the new user input, add the eos_token and return a tensor in Pytorch new_user_input_ids = tokenizer.encode(input(">> User:") + tokenizer.eos_token, return_tensors='pt') # generated a response while limiting the total chat history to 1000 tokens, chat_history_ids = model.generate( new_user_input_ids, max_length=1000, pad_token_id=tokenizer.eos_token_id, top_p=0.92, top_k = 50 ) # pretty print last ouput tokens from bot print("DialoGPT: {}".format(tokenizer.decode(chat_history_ids[:, new_user_input_ids.shape[-1]:][0], skip_special_tokens=True))) ```
{}
OscarNav/dialoGPT_translate
null
[ "transformers", "pytorch", "gpt2", "text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
OsefZ/distilbert-base-uncased-finetuned-squad
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
### Introduction: This model belongs to text-classification. You can determine the emotion behind a sentence. ### Label Explaination: LABEL_0: Positive (have positive emotion) LABEL_1: Negative (have negative emotion) ### Usage: ```python >>> from transformers import pipeline >>> ec = pipeline('text-classification', model='Osiris/emotion_classifier') >>> ec("Hello, I'm a good model.") ``` ### Accuracy: We reach 83.82% for validation dataset, and 84.42% for test dataset.
{}
Osiris/emotion_classifier
null
[ "transformers", "pytorch", "roberta", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
### Introduction: This model belongs to text-classification. You can check whether the sentence consists any emotion. ### Label Explaination: LABEL_1: Non Neutral (have some emotions) LABEL_0: Neutral (have no emotion) ### Usage: ```python >>> from transformers import pipeline >>> nnc = pipeline('text-classification', model='Osiris/neutral_non_neutral_classifier') >>> nnc("Hello, I'm a good model.") ``` ### Accuracy: We reach 93.98% for validation dataset, and 91.92% for test dataset.
{}
Osiris/neutral_non_neutral_classifier
null
[ "transformers", "pytorch", "roberta", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
git lfs install git clone https://huggingface.co/r3dhummingbird/DialoGPT-medium-joshua
{}
OsmyReal/Ayuda
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
automatic-speech-recognition
transformers
# Distil-wav2vec2 This model is a distilled version of the wav2vec2 model (https://arxiv.org/pdf/2006.11477.pdf). This model is 45% times smaller and twice as fast as the original wav2vec2 base model. # Evaluation results This model achieves the following results (speed is mesured for a batch size of 64): |Model| Size| WER Librispeech-test-clean |WER Librispeech-test-other|Speed on cpu|speed on gpu| |----------| ------------- |-------------|-----------| ------|----| |Distil-wav2vec2| 197.9 Mb | 0.0983 | 0.2266|0.4006s| 0.0046s| |wav2vec2-base| 360 Mb | 0.0389 | 0.1047|0.4919s| 0.0082s| # Usage notebook (executes seamlessly on google colab) at https://github.com/OthmaneJ/distil-wav2vec2
{"language": "en", "license": "apache-2.0", "tags": ["speech", "audio", "automatic-speech-recognition"], "datasets": ["librispeech_asr"]}
OthmaneJ/distil-wav2vec2
null
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "speech", "audio", "en", "dataset:librispeech_asr", "arxiv:2006.11477", "license:apache-2.0", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Otiham/Bah
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Overburn/Large-Jim500
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
transformers
0 Tony Stark DialoGPT Model
{"tags": ["conversational"]}
P4RZ1V4L/DialoGPT-Medium-Tony
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
PJ/Phylicz
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
PJH10/tutorial
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
PSC/wav2vec2-large-xls-r-300m-tr-colab
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
transformers
#Rick and Morty DialoGPT medium model
{"tags": ["conversational"]}
PVAbhiram2003/DialoGPT-medium-RickandMorty
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
PaalHannus/INF368_data
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
PaalHannus/Model_out
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
PaalHannus/NER_nor-finetuned-ner
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Pablogps/xls-r-ab-test
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
fill-mask
transformers
{}
PaegiPang/bert_base_hate_speech
null
[ "transformers", "pytorch", "bert", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
question-answering
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # albert-base-v2_squad This model is a fine-tuned version of [albert-base-v2](https://huggingface.co/albert-base-v2) on the **squadV1** dataset. - "eval_exact_match": 82.69631031220435 - "eval_f1": 90.10806626207174 - "eval_samples": 10808 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.14.1 - Pytorch 1.9.0 - Datasets 1.16.1 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["squad"], "model-index": [{"name": "albert-base-v2_squad", "results": []}]}
Palak/albert-base-v2_squad
null
[ "transformers", "pytorch", "albert", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
question-answering
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # albert-large-v2_squad This model is a fine-tuned version of [albert-large-v2](https://huggingface.co/albert-large-v2) on the **squadV1** dataset. - "eval_exact_match": 84.80605487228004 - "eval_f1": 91.80638438705844 - "eval_samples": 10808 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.14.1 - Pytorch 1.9.0 - Datasets 1.16.1 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["squad"], "model-index": [{"name": "albert-large-v2_squad", "results": []}]}
Palak/albert-large-v2_squad
null
[ "transformers", "pytorch", "albert", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
question-answering
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilroberta-base_squad This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on the **squadV1** dataset. - "eval_exact_match": 80.97445600756859 - "eval_f1": 88.0153886332912 - "eval_samples": 10790 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.14.1 - Pytorch 1.9.0 - Datasets 1.16.1 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["squad"], "model-index": [{"name": "distilroberta-base_squad", "results": []}]}
Palak/distilroberta-base_squad
null
[ "transformers", "pytorch", "roberta", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
question-answering
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # google_electra-base-discriminator_squad This model is a fine-tuned version of [google/electra-base-discriminator](https://huggingface.co/google/electra-base-discriminator) on the **squadV1** dataset. - "eval_exact_match": 85.33585619678335 - "eval_f1": 91.97363450387108 - "eval_samples": 10784 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.14.1 - Pytorch 1.9.0 - Datasets 1.16.1 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["squad"], "model-index": [{"name": "google_electra-base-discriminator_squad", "results": []}]}
Palak/google_electra-base-discriminator_squad
null
[ "transformers", "pytorch", "electra", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
question-answering
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # google_electra-small-discriminator_squad This model is a fine-tuned version of [google/electra-small-discriminator](https://huggingface.co/google/electra-small-discriminator) on the **squadV1** dataset. - "eval_exact_match": 76.95364238410596 - "eval_f1": 84.98869246841396 - "eval_samples": 10784 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.14.1 - Pytorch 1.9.0 - Datasets 1.16.1 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["squad"], "model-index": [{"name": "google_electra-small-discriminator_squad", "results": []}]}
Palak/google_electra-small-discriminator_squad
null
[ "transformers", "pytorch", "electra", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
question-answering
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # microsoft_deberta-base_squad This model is a fine-tuned version of [microsoft/deberta-base](https://huggingface.co/microsoft/deberta-base) on the **squadV1** dataset. - "eval_exact_match": 86.30085146641439 - "eval_f1": 92.68502275661561 - "eval_samples": 10788 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 12 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.14.1 - Pytorch 1.9.0 - Datasets 1.16.1 - Tokenizers 0.10.3
{"license": "mit", "tags": ["generated_from_trainer"], "datasets": ["squad"], "model-index": [{"name": "microsoft_deberta-base_squad", "results": []}]}
Palak/microsoft_deberta-base_squad
null
[ "transformers", "pytorch", "deberta", "question-answering", "generated_from_trainer", "dataset:squad", "license:mit", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
question-answering
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # microsoft-deberta-large This model is a fine-tuned version of [microsoft_deberta-large](https://huggingface.co/microsoft/deberta-large) on the **squadV1** dataset. - "eval_exact_match": 87.89025543992432 - "eval_f1": 93.8755152147345 - "eval_samples": 10788 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 12 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Framework versions - Transformers 4.14.1 - Pytorch 1.9.0 - Datasets 1.16.1 - Tokenizers 0.10.3
{"tags": ["generated_from_trainer"], "datasets": ["squad"], "model-index": [{"name": "microsoft-deberta-large", "results": []}]}
Palak/microsoft_deberta-large_squad
null
[ "transformers", "pytorch", "deberta", "question-answering", "generated_from_trainer", "dataset:squad", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
question-answering
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base_squad This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the squad dataset. - "eval_exact_match": 82.69631031220435 - "eval_f1": 89.4562841806503 - "eval_samples": 10918 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.14.1 - Pytorch 1.9.0 - Datasets 1.16.1 - Tokenizers 0.10.3
{"license": "mit", "tags": ["generated_from_trainer"], "datasets": ["squad"], "model-index": [{"name": "xlm-roberta-base_squad", "results": []}]}
Palak/xlm-roberta-base_squad
null
[ "transformers", "pytorch", "xlm-roberta", "question-answering", "generated_from_trainer", "dataset:squad", "license:mit", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
question-answering
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # eval This model is a fine-tuned version of [xlm-roberta-large](https://huggingface.co/xlm-roberta-large) on the squad dataset. - eval_exact_match": 85.96026490066225 - "eval_f1": 92.25000664341768 - "eval_samples": 10918 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 12 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 0.67 ### Framework versions - Transformers 4.14.1 - Pytorch 1.9.0 - Datasets 1.16.1 - Tokenizers 0.10.3
{"tags": ["generated_from_trainer"], "datasets": ["squad"], "model-index": [{"name": "xlm-roberta-base_squad", "results": []}]}
Palak/xlm-roberta-large_squad
null
[ "transformers", "pytorch", "xlm-roberta", "question-answering", "generated_from_trainer", "dataset:squad", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Pallisgaard/distilbert-base-uncased-finetuned-cola
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Pamela/Pamela
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Pantea/Pan
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Pantea/Pantea
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
transformers
#Harry Potter AI bot
{"tags": ["conversational"]}
Paradocx/Dialogpt-mid-hpai
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Paramveer/t5-small-finetuned-xsum
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
sentence-similarity
sentence-transformers
# {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, max pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 365 with parameters: ``` {'batch_size': 32, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "callback": null, "epochs": 4, "evaluation_steps": 1000, "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 146, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: RobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
{"tags": ["sentence-transformers", "feature-extraction", "sentence-similarity", "transformers"], "pipeline_tag": "sentence-similarity"}
ParkMyungkyu/KLUE-STS-roberta-base
null
[ "sentence-transformers", "pytorch", "roberta", "feature-extraction", "sentence-similarity", "transformers", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
A fine-tuned model based on'gumgo91/IUPAC_BERT'for Blood brain barrier permeability prediction based on IUPAC string. There are also BiLSTM models available as well as these two models in 'https://github.com/mephisto121/BBBNLP if you want to check them all and check the codes too. [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1jGYf3sq93yO4EbgVaEl3nlClrVatVaXS#scrollTo=AMEdQItmilAw)
{}
Parsa/BBB_prediction_classification_IUPAC
null
[ "transformers", "pytorch", "bert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
A fine-tuned model based on'DeepChem/ChemBERTa-77M-MLM'for Blood brain barrier permeability prediction based on SMILES string. There are also BiLSTM models available as well as these two models in 'https://github.com/mephisto121/BBBNLP if you want to check them all and check the codes too. [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1jGYf3sq93yO4EbgVaEl3nlClrVatVaXS#scrollTo=AMEdQItmilAw)
{}
Parsa/BBB_prediction_classification_SMILES
null
[ "transformers", "pytorch", "safetensors", "roberta", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text2text-generation
transformers
{}
Parth/boolean
null
[ "transformers", "pytorch", "jax", "t5", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "has_space", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
text2text-generation
transformers
from transformers import MT5ForConditionalGeneration, AutoTokenizer model = MT5ForConditionalGeneration.from_pretrained("Parth/mT5-question-generator") tokenizer = AutoTokenizer.from_pretrained("google/mt5-base")
{}
Parth/mT5-question-generator
null
[ "transformers", "pytorch", "mt5", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
text2text-generation
transformers
{}
Parth/result
null
[ "transformers", "pytorch", "jax", "t5", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Pascal/model_name
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
'hello'
{}
Patrickdg/distilbert-consumer-complaints
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Paul012/bart-model
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
text2text-generation
transformers
##An MT5ForConditionalGeneration trained on 3 tasks from PAN Profiling Hate Speech Spreaders on Twitter dataset (ES): * topic attribution - topics were assigned with BertTopic library using embeddings from `Hate-speech-CNERG/dehatebert-mono-spanish` bert model (train and test sets from the PAN task) * hate speech identification (train set from the PAN task) in order to generate tone of comment use prefix **hater classification:**
{}
PaulAdversarial/PAN_twitter_hate_speech_2021_ES_MT5
null
[ "transformers", "pytorch", "mt5", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00