Search is not available for this dataset
pipeline_tag
stringclasses
48 values
library_name
stringclasses
205 values
text
stringlengths
0
18.3M
metadata
stringlengths
2
1.07B
id
stringlengths
5
122
last_modified
null
tags
listlengths
1
1.84k
sha
null
created_at
stringlengths
25
25
null
null
{}
PolyakovMaxim/GPTCHAT
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
transformers
This model generate the time shift's text of Norbit Company also generate the same ending of the textes of any phrases like base gpt model.
{}
PolyakovMaxim/ModelGptTS
null
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
PolyakovMaxim/T
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Pooya448/distilgpt2-finetuned-wikitext2
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Pornphat/distilbert-base-uncased-finetuned-squad
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Prabhudayala/opus-mt-en-ro-finetuned-en-to-ro
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
automatic-speech-recognition
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-colab-1 This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3857 - Wer: 0.3874 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.4285 | 2.01 | 500 | 1.4732 | 0.9905 | | 0.7457 | 4.02 | 1000 | 0.5278 | 0.4960 | | 0.3463 | 6.02 | 1500 | 0.4245 | 0.4155 | | 0.2034 | 8.03 | 2000 | 0.3857 | 0.3874 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "model-index": [{"name": "wav2vec2-base-timit-demo-colab-1", "results": []}]}
Prasadi/wav2vec2-base-timit-demo-colab-1
null
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Prasadi/wav2vec2-base-timit-demo-colab
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-marc-en This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the amazon_reviews_multi dataset. It achieves the following results on the evaluation set: - Loss: 0.9575 - Mae: 0.5488 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mae | |:-------------:|:-----:|:----:|:---------------:|:------:| | 1.1253 | 1.0 | 235 | 0.9960 | 0.5366 | | 0.9708 | 2.0 | 470 | 0.9575 | 0.5488 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.0+cu111 - Datasets 1.14.0 - Tokenizers 0.10.3
{"license": "mit", "tags": ["generated_from_trainer"], "datasets": ["amazon_reviews_multi"], "model-index": [{"name": "xlm-roberta-base-finetuned-marc-en", "results": []}]}
Pratibha/xlm-roberta-base-finetuned-marc-en
null
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "text-classification", "generated_from_trainer", "dataset:amazon_reviews_multi", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Pratik/wav2vec2-base-gujrati-openslr
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
fill-mask
transformers
{}
Preeyank/roberta-base-education-domain
null
[ "transformers", "pytorch", "jax", "roberta", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
question-answering
transformers
# ALBERT-base for QA ## Overview **Language model:** albert-base </br> **Language:** English </br> **Downstream-task:** Extractive QA </br> **Training data:** SQuAD 2.0 </br> **Eval data:** SQuAD 2.0 </br> **Code:** <TBD> </br> ## Env Information `transformers` version: 4.9.1 </br> Platform: Linux-5.4.104+-x86_64-with-Ubuntu-18.04-bionic </br> Python version: 3.7.11 </br> PyTorch version (GPU?): 1.9.0+cu102 (False)</br> Tensorflow version (GPU?): 2.5.0 (False)</br> ## Hyperparameters ``` max_seq_len=386 doc_stride=128 n_best_size=20 max_answer_length=30 min_null_score=7.0 batch_size=32 n_epochs=3 base_LM_model = "albert-base-v2" learning_rate=3e-5 adam_epsilon=1e-5 adam_beta1=0.95 adam_beta2=0.999 warmup_steps=300 weight_decay=0.01 optimizer=AdamW lr_scheduler="polynomial" ``` ## Performance ``` "exact": 78.253 "f1": 81.523 "total": 11873 "HasAns_exact": 73.616 "HasAns_f1": 80.165 "HasAns_total": 5928 "NoAns_exact": 82.876 "NoAns_f1": 82.876 "NoAns_total": 5945 ``` ## Usage ### In Transformers ```python from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline model_name = "PremalMatalia/albert-base-best-squad2" # a) Get predictions nlp = pipeline('question-answering', model=model_name, tokenizer=model_name) QA_input = { 'question': 'Which name is also used to describe the Amazon rainforest in English?', 'context': 'The Amazon rainforest (Portuguese: Floresta Amazônica or Amazônia; Spanish: Selva Amazónica, Amazonía or usually Amazonia; French: Forêt amazonienne; Dutch: Amazoneregenwoud), also known in English as Amazonia or the Amazon Jungle, is a moist broadleaf forest that covers most of the Amazon basin of South America. This basin encompasses 7,000,000 square kilometres (2,700,000 sq mi), of which 5,500,000 square kilometres (2,100,000 sq mi) are covered by the rainforest. This region includes territory belonging to nine nations. The majority of the forest is contained within Brazil, with 60% of the rainforest, followed by Peru with 13%, Colombia with 10%, and with minor amounts in Venezuela, Ecuador, Bolivia, Guyana, Suriname and French Guiana. States or departments in four nations contain "Amazonas" in their names. The Amazon represents over half of the planet\'s remaining rainforests, and comprises the largest and most biodiverse tract of tropical rainforest in the world, with an estimated 390 billion individual trees divided into 16,000 species.' } res = nlp(QA_input) print(res) # b) Load model & tokenizer model = AutoModelForQuestionAnswering.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) ``` ## Authors Premal Matalia
{"datasets": ["squad_v2"]}
PremalMatalia/albert-base-best-squad2
null
[ "transformers", "pytorch", "albert", "question-answering", "dataset:squad_v2", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
question-answering
transformers
# ELECTRA-base for QA ## Overview **Language model:** electra-base </br> **Language:** English </br> **Downstream-task:** Extractive QA </br> **Training data:** SQuAD 2.0 </br> **Eval data:** SQuAD 2.0 </br> **Code:** <TBD> </br> ## Env Information `transformers` version: 4.9.1 </br> Platform: Linux-5.4.104+-x86_64-with-Ubuntu-18.04-bionic </br> Python version: 3.7.11 </br> PyTorch version (GPU?): 1.9.0+cu102 (False)</br> Tensorflow version (GPU?): 2.5.0 (False)</br> ## Hyperparameters ``` max_seq_len=386 doc_stride=128 n_best_size=20 max_answer_length=30 min_null_score=7.0 batch_size=8 n_epochs=2 base_LM_model = "google/electra-base-discriminator" learning_rate=1.5e-5 adam_epsilon=1e-5 adam_beta1=0.95 adam_beta2=0.999 warmup_steps=100 weight_decay=0.01 optimizer=AdamW lr_scheduler="polynomial" ``` ##### There is a special threshold value CLS_threshold=-3 used to more accurately identify no answers [Logic will be available in GitHub Repo [TBD] ## Performance ``` "exact": 79.331256 "f1": 83.232347\t "total": 11873 "HasAns_exact": 76.501350 "HasAns_f1": 84.314719 "HasAns_total": 5928 "NoAns_exact": 82.153070 "NoAns_f1": 82.153070 "NoAns_total": 5945 ``` ## Usage ### In Transformers ```python from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline model_name = "PremalMatalia/electra-base-best-squad2" # a) Get predictions nlp = pipeline('question-answering', model=model_name, tokenizer=model_name) QA_input = { 'question': 'Which name is also used to describe the Amazon rainforest in English?', 'context': 'The Amazon rainforest (Portuguese: Floresta Amazônica or Amazônia; Spanish: Selva Amazónica, Amazonía or usually Amazonia; French: Forêt amazonienne; Dutch: Amazoneregenwoud), also known in English as Amazonia or the Amazon Jungle, is a moist broadleaf forest that covers most of the Amazon basin of South America. This basin encompasses 7,000,000 square kilometres (2,700,000 sq mi), of which 5,500,000 square kilometres (2,100,000 sq mi) are covered by the rainforest. This region includes territory belonging to nine nations. The majority of the forest is contained within Brazil, with 60% of the rainforest, followed by Peru with 13%, Colombia with 10%, and with minor amounts in Venezuela, Ecuador, Bolivia, Guyana, Suriname and French Guiana. States or departments in four nations contain "Amazonas" in their names. The Amazon represents over half of the planet\'s remaining rainforests, and comprises the largest and most biodiverse tract of tropical rainforest in the world, with an estimated 390 billion individual trees divided into 16,000 species.' } res = nlp(QA_input) print(res) # b) Load model & tokenizer model = AutoModelForQuestionAnswering.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) ``` ## Authors Premal Matalia
{"datasets": ["squad_v2"]}
PremalMatalia/electra-base-best-squad2
null
[ "transformers", "pytorch", "electra", "question-answering", "dataset:squad_v2", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
question-answering
transformers
# RoBERTa-base for QA ## Overview **Language model:** 'roberta-base' </br> **Language:** English </br> **Downstream-task:** Extractive QA </br> **Training data:** SQuAD 2.0 </br> **Eval data:** SQuAD 2.0 </br> **Code:** <TBD> </br> ## Env Information `transformers` version: 4.9.1 </br> Platform: Linux-5.4.104+-x86_64-with-Ubuntu-18.04-bionic </br> Python version: 3.7.11 </br> PyTorch version (GPU?): 1.9.0+cu102 (False)</br> Tensorflow version (GPU?): 2.5.0 (False)</br> ## Hyperparameters ``` max_seq_len=386 doc_stride=128 n_best_size=20 max_answer_length=30 min_null_score=7.0 batch_size=8 n_epochs=6 base_LM_model = "roberta-base" learning_rate=1.5e-5 adam_epsilon=1e-5 adam_beta1=0.95 adam_beta2=0.999 warmup_steps=100 weight_decay=0.01 optimizer=AdamW lr_scheduler="polynomial" ``` ##### There is a special threshold value CLS_threshold=-3 used to more accurately identify no answers [Logic will be available in GitHub Repo [TBD] ## Performance ``` "exact": 81.192622 "f1": 83.95408 "total": 11873 "HasAns_exact": 74.190283 "HasAns_f1": 79.721119 "HasAns_total": 5928 "NoAns_exact": 88.174937 "NoAns_f1": 88.174937 "NoAns_total": 5945 ``` ## Usage ### In Transformers ```python from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline model_name = "PremalMatalia/roberta-base-best-squad2" # a) Get predictions nlp = pipeline('question-answering', model=model_name, tokenizer=model_name) QA_input = { 'question': 'Which name is also used to describe the Amazon rainforest in English?', 'context': 'The Amazon rainforest (Portuguese: Floresta Amazônica or Amazônia; Spanish: Selva Amazónica, Amazonía or usually Amazonia; French: Forêt amazonienne; Dutch: Amazoneregenwoud), also known in English as Amazonia or the Amazon Jungle, is a moist broadleaf forest that covers most of the Amazon basin of South America. This basin encompasses 7,000,000 square kilometres (2,700,000 sq mi), of which 5,500,000 square kilometres (2,100,000 sq mi) are covered by the rainforest. This region includes territory belonging to nine nations. The majority of the forest is contained within Brazil, with 60% of the rainforest, followed by Peru with 13%, Colombia with 10%, and with minor amounts in Venezuela, Ecuador, Bolivia, Guyana, Suriname and French Guiana. States or departments in four nations contain "Amazonas" in their names. The Amazon represents over half of the planet\'s remaining rainforests, and comprises the largest and most biodiverse tract of tropical rainforest in the world, with an estimated 390 billion individual trees divided into 16,000 species.' } res = nlp(QA_input) print(res) # b) Load model & tokenizer model = AutoModelForQuestionAnswering.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) ``` ## Authors Premal Matalia
{"datasets": ["squad_v2"]}
PremalMatalia/roberta-base-best-squad2
null
[ "transformers", "pytorch", "roberta", "question-answering", "dataset:squad_v2", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Prim9000/trial_tacotron2
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
https://github.com/Prim9000/Thai_TTS
{}
Prim9000/try
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
question-answering
transformers
# BART-Squad2 ## Model description BART for extractive (span-based) question answering, trained on Squad 2.0. F1 score of 87.4. ## Intended uses & limitations Unfortunately, the Huggingface auto-inference API won't run this model, so if you're attempting to try it through the input box above and it complains, don't be discouraged! #### How to use Here's a quick way to get question answering running locally: ```python from transformers import AutoTokenizer, AutoModelForQuestionAnswering tokenizer = AutoTokenizer.from_pretrained("Primer/bart-squad2") model = AutoModelForQuestionAnswering.from_pretrained("Primer/bart-squad2") model.to('cuda'); model.eval() def answer(question, text): seq = '<s>' + question + ' </s> </s> ' + text + ' </s>' tokens = tokenizer.encode_plus(seq, return_tensors='pt', padding='max_length', max_length=1024) input_ids = tokens['input_ids'].to('cuda') attention_mask = tokens['attention_mask'].to('cuda') start, end, _ = model(input_ids, attention_mask=attention_mask) start_idx = int(start.argmax().int()) end_idx = int(end.argmax().int()) print(tokenizer.decode(input_ids[0, start_idx:end_idx]).strip()) # ^^ it will be an empty string if the model decided "unanswerable" >>> question = "Where does Tom live?" >>> context = "Tom is an engineer in San Francisco." >>> answer(question, context) San Francisco ``` (Just drop the `.to('cuda')` stuff if running on CPU). #### Limitations and bias Unknown, no further evaluation has been performed. In a technical sense one big limitation is that it's 1.6G 😬 ## Training procedure `run_squad.py` with: |param|value| |---|---| |batch size|8| |max_seq_length|1024| |learning rate|1e-5| |epochs|2| Modified to freeze shared parameters and encoder embeddings.
{"language": "en"}
primer-ai/bart-squad2
null
[ "transformers", "pytorch", "bart", "question-answering", "en", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Priscila/latentbert
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Priscila/teste
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
automatic-speech-recognition
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [hf-test/xls-r-dummy](https://huggingface.co/hf-test/xls-r-dummy) on the COMMON_VOICE - HI dataset. It achieves the following results on the evaluation set: - Loss: 248.1278 - Wer: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 2.0 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0
{"language": ["hi"], "tags": ["automatic-speech-recognition", "common_voice", "generated_from_trainer"], "datasets": ["common_voice"], "model-index": [{"name": "", "results": []}]}
Priyajay/xls-r-ab-test
null
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "common_voice", "generated_from_trainer", "hi", "dataset:common_voice", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
automatic-speech-recognition
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the COMMON_VOICE - HI dataset. It achieves the following results on the evaluation set: - Loss: 26.7866 - Wer: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 2.0 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0
{"language": ["hi"], "license": "apache-2.0", "tags": ["automatic-speech-recognition", "common_voice", "generated_from_trainer"], "datasets": ["common_voice"], "model-index": [{"name": "", "results": []}]}
Priyajay/xls-r-kn-test
null
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "common_voice", "generated_from_trainer", "hi", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Pro/Ddddd
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-bne-finetuned-amazon_reviews_multi This model is a fine-tuned version of [BSC-TeMU/roberta-base-bne](https://huggingface.co/BSC-TeMU/roberta-base-bne) on the amazon_reviews_multi dataset. It achieves the following results on the evaluation set: - Loss: 0.3011 - Accuracy: 0.9185 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.2427 | 1.0 | 125 | 0.2109 | 0.919 | | 0.0986 | 2.0 | 250 | 0.3011 | 0.9185 | ### Framework versions - Transformers 4.9.2 - Pytorch 1.9.0+cu102 - Datasets 1.11.0 - Tokenizers 0.10.3
{"license": "cc-by-4.0", "tags": ["generated_from_trainer"], "datasets": ["amazon_reviews_multi"], "metrics": ["accuracy"], "model_index": [{"name": "roberta-base-bne-finetuned-amazon_reviews_multi", "results": [{"task": {"name": "Text Classification", "type": "text-classification"}, "dataset": {"name": "amazon_reviews_multi", "type": "amazon_reviews_multi", "args": "es"}, "metric": {"name": "Accuracy", "type": "accuracy", "value": 0.9185}}]}]}
Proggleb/roberta-base-bne-finetuned-amazon_reviews_multi
null
[ "transformers", "pytorch", "tensorboard", "roberta", "text-classification", "generated_from_trainer", "dataset:amazon_reviews_multi", "license:cc-by-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
# ***LegalNLP*** - Natural Language Processing Methods for the Brazilian Legal Language ⚖️ ### The library of Natural Language Processing for Brazilian legal language, *LegalNLP*, was born in a partnership between Brazilian researchers and the legal tech [Tikal Tech](https://www.tikal.tech) based in São Paulo, Brazil. Besides containing pre-trained language models for the Brazilian legal language, ***LegalNLP*** provides functions that can facilitate the manipulation of legal texts in Portuguese and demonstration/tutorials to help people in their own work. You can access our paper by clicking [**here**](https://arxiv.org/abs/2110.15709). If you use our library in your academic work, please cite us in the following way @article{polo2021legalnlp, title={LegalNLP--Natural Language Processing methods for the Brazilian Legal Language}, author={Polo, Felipe Maia and Mendon{\c{c}}a, Gabriel Caiaffa Floriano and Parreira, Kau{\^e} Capellato J and Gianvechio, Lucka and Cordeiro, Peterson and Ferreira, Jonathan Batista and de Lima, Leticia Maria Paz and Maia, Ant{\^o}nio Carlos do Amaral and Vicente, Renato}, journal={arXiv preprint arXiv:2110.15709}, year={2021} } -------------- ## Summary 0. [Accessing the Language Models](#0) 1. [ Introduction / Installing package](#1) 2. [ Language Models (Details / How to use)](#2) 1. [ Word2Vec/Doc2Vec ](#2.1) 3. [ Demonstrations / Tutorials](#3) 4. [ References](#4) -------------- <a name="0"></a> ## 0\. Accessing the Language Models All our models can be found [here](https://drive.google.com/drive/folders/1tCccOXPLSEAEUQtcWXvED3YaNJi3p7la?usp=sharing). Please contact *[email protected]* if you have any problem accessing the language models. -------------- <a name="1"></a> ## 1\. Introduction / Installing package *LegalNLP* is promising given the scarcity of Natural Language Processing resources focused on the Brazilian legal language. It is worth mentioning that our library was made for Python, one of the most well-known programming languages for machine learning. You first need to install the HuggingFaceHub library running the following command on terminal ``` :sh $ pip install huggingface_hub ``` Import `hf_hub_download`: ```python from huggingface_hub import hf_hub_download ``` And then you can download our Word2Vec(SG)/Doc2Vec(DBOW) and Word2Vec(CBOW)/Doc2Vec(DM) by the following commands: ```python w2v_sg_d2v_dbow = hf_hub_download(repo_id = "Projeto/LegalNLP", filename = "w2v_d2v_dbow_size_100_window_15_epochs_20") w2v_cbow_d2v_dm = hf_hub_download(repo_id = "Projeto/LegalNLP", filename = "w2v_d2v_dm_size_100_window_15_epochs_20") ``` -------------- <a name="2"></a> ## 2\. Model Languages <a name="3.2"></a> ### 3.2\. Word2Vec/Doc2Vec Our first models for generating vector representation for tokens and texts (embeddings) are variations of the Word2Vec [1, 2] and Doc2Vec [3] methods. In short, the Word2Vec methods generate embeddings for tokens5 and that somehow capture the meaning of the various textual elements, based on the contexts in which these elements appear. Doc2Vec methods are extensions/modifications of Word2Vec for generating whole text representations. Remember to at least make all letters lowercase. Please check our paper or [Gensim page](https://radimrehurek.com/gensim_3.8.3/models/doc2vec.html) for more details. Preferably use Gensim version 3.8.3. Below we have a summary table with some important information about the trained models: | Filenames | Doc2Vec | Word2Vec | Size | Windows |:-------------------:|:--------------:|:--------------:|:--------------:|:--------------:| | ```w2v_d2v_dm*``` | Distributed Memory (DM) | Continuous Bag-of-Words (CBOW) | 100, 200, 300 | 15 | ```w2v_d2v_dbow*``` | Distributed Bag-of-Words (DBOW) | Skip-Gram (SG) | 100, 200, 300 | 15 Here we made available both models with 100 size and 15 window. #### Using *Word2Vec* Installing Gensim ```python !pip install gensim=='3.8.3' ``` Loading W2V: ```python from gensim.models import KeyedVectors #Loading a W2V model w2v=KeyedVectors.load(w2v_cbow_d2v_dm) w2v=w2v.wv ``` Viewing the first 10 entries of 'juiz' vector ```python w2v['juiz'][:10] ``` array([ 6.570131 , -1.262787 , 5.156106 , -8.943866 , -5.884408 , -7.717058 , 1.8819941 , -8.02803 , -0.66901577, 6.7223144 ], dtype=float32) Viewing closest tokens to 'juiz' ```python w2v.most_similar('juiz') ``` [('juíza', 0.8210258483886719), ('juiza', 0.7306275367736816), ('juíz', 0.691645085811615), ('juízo', 0.6605231165885925), ('magistrado', 0.6213295459747314), ('mmª_juíza', 0.5510469675064087), ('juizo', 0.5494943261146545), ('desembargador', 0.5313084721565247), ('mmjuiz', 0.5277603268623352), ('fabíola_melo_feijão_juíza', 0.5043971538543701)] #### Using *Doc2Vec* Installing Gensim ```python !pip install gensim=='3.8.3' ``` Loading D2V ```python from gensim.models import Doc2Vec #Loading a D2V model d2v=Doc2Vec.load(w2v_cbow_d2v_dm) ``` Inferring vector for a text ```python txt='direito do consumidor origem : bangu regional xxix juizado especial civel ação : [processo] - - recte : fundo de investimento em direitos creditórios' tokens=txt.split() txt_vec=d2v.infer_vector(tokens, epochs=20) txt_vec[:10] ``` array([ 0.02626514, -0.3876521 , -0.24873355, -0.0318402 , 0.3343679 , -0.21307918, 0.07193747, 0.02030687, 0.407305 , 0.20065512], dtype=float32) -------------- <a name="4"></a> ## 4\. Demonstrations For a better understanding of the application of these models, below are the links to notebooks where we apply them to a legal dataset using various classification models such as Logistic Regression and CatBoost: - **BERT notebook** : [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/felipemaiapolo/legalnlp/blob/main/demo/BERT/BERT_TUTORIAL.ipynb) - **Word2Vec notebook** : [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/felipemaiapolo/legalnlp/blob/main/demo/Word2Vec/Word2Vec_TUTORIAL.ipynb) - **Doc2Vec notebook** : [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/felipemaiapolo/legalnlp/blob/main/demo/Doc2Vec/Doc2Vec_TUTORIAL.ipynb) -------------- <a name="5"></a> ## 5\. References [1] Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., and Dean, J. (2013b). Distributed representations of words and phrases and their compositionality. In Advances in neural information processing systems, pages 3111–3119. [2] Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013a). Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781. [3] Le, Q. and Mikolov, T. (2014). Distributed representations of sentences and documents. In International conference on machine learning, pages 1188–1196. PMLR. [4] Bojanowski, P., Grave, E., Joulin, A., and Mikolov, T. (2017). Enriching word vectors with subword information. Transactions of the Association for Computational Linguistics, 5:135–146. [5] Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2018). Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805. [6] Souza, F., Nogueira, R., and Lotufo, R. (2020). BERTimbau: pretrained BERT models for Brazilian Portuguese. In 9th Brazilian Conference on Intelligent Systems, BRACIS, Rio Grande do Sul, Brazil, October 20-23
{"language": "pt-br", "license": "mit", "tags": ["LegalNLP", "NLP", "legal field", "python", "word2vec", "doc2vec"]}
Projeto/LegalNLP
null
[ "LegalNLP", "NLP", "legal field", "python", "word2vec", "doc2vec", "arxiv:2110.15709", "license:mit", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
# Prompsit/paraphrase-bert-en This model allows to evaluate paraphrases for a given phrase. We have fine-tuned this model from pretrained "bert-base-uncased". Model built under a TSI-100905-2019-4 project, co-financed by Ministry of Economic Affairs and Digital Transformation from the Government of Spain. # How to use it The model answer the following question: Is "phrase B" a paraphrase of "phrase A". Please note that we're considering phrases instead of sentences. Therefore, we must take into account that the model doesn't expect to find punctuation marks or long pieces of text. Resulting probabilities correspond to classes: * 0: Not a paraphrase * 1: It's a paraphrase So, considering the phrase "may be addressed" and a candidate paraphrase like "could be included", you can use the model like this: ``` import torch from transformers import AutoTokenizer, AutoModelForSequenceClassification tokenizer = AutoTokenizer.from_pretrained("Prompsit/paraphrase-bert-en") model = AutoModelForSequenceClassification.from_pretrained("Prompsit/paraphrase-bert-en") input = tokenizer('may be addressed','could be included',return_tensors='pt') logits = model(**input).logits soft = torch.nn.Softmax(dim=1) print(soft(logits)) ``` Code output is: ``` tensor([[0.1592, 0.8408]], grad_fn=<SoftmaxBackward>) ``` As the probability of 1 (=It's a paraphrase) is 0.84 and the probability of 0 (=It is not a paraphrase) is 0.15, we can conclude, for our previous example, that "could be included" is a paraphrase of "may be addressed". # Evaluation results We have used as test dataset 16500 pairs of phrases human tagged. Metrics obtained are: ``` metrics={ 'test_loss': 0.5660144090652466, 'test_accuracy': 0.8170742794799527, 'test_precision': 0.7043977055449331, 'test_recall': 0.5978578383641675, 'test_f1': 0.6467696629213483, 'test_matthews_correlation': 0.5276716223607356, 'test_runtime': 19.3345, 'test_samples_per_second': 568.88, 'test_steps_per_second': 17.792 } ```
{"language": "en", "tags": ["transformers"], "pipeline_tag": "text-classification", "inference": false}
Prompsit/paraphrase-bert-en
null
[ "transformers", "pytorch", "bert", "text-classification", "en", "autotrain_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
# Prompsit/paraphrase-bert-pt This model allows to evaluate paraphrases for a given phrase. We have fine-tuned this model from pretrained "neuralmind/bert-base-portuguese-cased". Model built under a TSI-100905-2019-4 project, co-financed by Ministry of Economic Affairs and Digital Transformation from the Government of Spain. # How to use it The model answer the following question: Is "phrase B" a paraphrase of "phrase A". Please note that we're considering phrases instead of sentences. Therefore, we must take into account that the model doesn't expect to find punctuation marks or long pieces of text. Resulting probabilities correspond to classes: * 0: Not a paraphrase * 1: It's a paraphrase So, considering the phrase "logo após o homicídio" and a candidate paraphrase like "pouco depois do assassinato", you can use the model like this: ``` import torch from transformers import AutoTokenizer, AutoModelForSequenceClassification tokenizer = AutoTokenizer.from_pretrained("Prompsit/paraphrase-bert-pt") model = AutoModelForSequenceClassification.from_pretrained("Prompsit/paraphrase-bert-pt") input = tokenizer('logo após o homicídio','pouco depois do assassinato',return_tensors='pt') logits = model(**input).logits soft = torch.nn.Softmax(dim=1) print(soft(logits)) ``` Code output is: ``` tensor([[0.2137, 0.7863]], grad_fn=<SoftmaxBackward>) ``` As the probability of 1 (=It's a paraphrase) is 0.7863 and the probability of 0 (=It is not a paraphrase) is 0.2137, we can conclude, for our previous example, that "pouco depois do assassinato" is a paraphrase of "logo após o homicidio". # Evaluation results We have used as test dataset 16500 pairs of phrases human tagged. Metrics obtained are: ``` metrics={ 'test_loss': 0.6074697375297546, 'test_accuracy': 0.7809, 'test_precision': 0.7157638466220329, 'test_recall': 0.40551724137931033, 'test_f1': 0.5177195685670262, 'test_matthews_correlation': 0.41603913834665324, 'test_runtime': 16.4585, 'test_samples_per_second': 607.587, 'test_steps_per_second': 19.017 } ```
{"language": "pt", "tags": ["transformers"], "pipeline_tag": "text-classification", "inference": false}
Prompsit/paraphrase-bert-pt
null
[ "transformers", "pytorch", "bert", "text-classification", "pt", "autotrain_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
# Prompsit/paraphrase-roberta-es This model allows to evaluate paraphrases for a given phrase. We have fine-tuned this model from pretrained "PlanTL-GOB-ES/roberta-base-bne". Model built under a TSI-100905-2019-4 project, co-financed by Ministry of Economic Affairs and Digital Transformation from the Government of Spain. # How to use it The model answer the following question: Is "phrase B" a paraphrase of "phrase A". Please note that we're considering phrases instead of sentences. Therefore, we must take into account that the model doesn't expect to find punctuation marks or long pieces of text. Resulting probabilities correspond to classes: * 0: Not a paraphrase * 1: It's a paraphrase So, considering the phrase "se buscarán acuerdos" and a candidate paraphrase like "se deberá obtener el acuerdo", you can use the model like this: ``` import torch from transformers import AutoTokenizer, AutoModelForSequenceClassification tokenizer = AutoTokenizer.from_pretrained("Prompsit/paraphrase-roberta-es") model = AutoModelForSequenceClassification.from_pretrained("Prompsit/paraphrase-roberta-es") input = tokenizer('se buscarán acuerdos','se deberá obtener el acuerdo',return_tensors='pt') logits = model(**input).logits soft = torch.nn.Softmax(dim=1) print(soft(logits)) ``` Code output is: ``` tensor([[0.2266, 0.7734]], grad_fn=<SoftmaxBackward>) ``` As the probability of 1 (=It's a paraphrase) is 0.77 and the probability of 0 (=It is not a paraphrase) is 0.22, we can conclude, for our previous example, that "se deberá obtener el acuerdo" is a paraphrase of "se buscarán acuerdos". # Evaluation results We have used as test dataset 16500 pairs of phrases human tagged. Metrics obtained are: ``` metrics={ 'test_loss': 0.4869941473007202, 'test_accuracy': 0.8003636363636364, 'test_precision': 0.6692456479690522, 'test_recall': 0.5896889646357052, 'test_f1': 0.6269535673839184, 'test_matthews_correlation': 0.49324489316659575, 'test_runtime': 27.1537, 'test_samples_per_second': 607.652, 'test_steps_per_second': 19.003 } ```
{"language": "es", "tags": ["transformers"], "pipeline_tag": "text-classification", "inference": false}
Prompsit/paraphrase-roberta-es
null
[ "transformers", "pytorch", "roberta", "text-classification", "es", "autotrain_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
FinBERT is a pre-trained NLP model to analyze sentiment of financial text. It is built by further training the BERT language model in the finance domain, using a large financial corpus and thereby fine-tuning it for financial sentiment classification. [Financial PhraseBank](https://www.researchgate.net/publication/251231107_Good_Debt_or_Bad_Debt_Detecting_Semantic_Orientations_in_Economic_Texts) by Malo et al. (2014) is used for fine-tuning. For more details, please see the paper [FinBERT: Financial Sentiment Analysis with Pre-trained Language Models](https://arxiv.org/abs/1908.10063) and our related [blog post](https://medium.com/prosus-ai-tech-blog/finbert-financial-sentiment-analysis-with-bert-b277a3607101) on Medium. The model will give softmax outputs for three labels: positive, negative or neutral. --- About Prosus Prosus is a global consumer internet group and one of the largest technology investors in the world. Operating and investing globally in markets with long-term growth potential, Prosus builds leading consumer internet companies that empower people and enrich communities. For more information, please visit www.prosus.com. Contact information Please contact Dogu Araci dogu.araci[at]prosus[dot]com and Zulkuf Genc zulkuf.genc[at]prosus[dot]com about any FinBERT related issues and questions.
{"language": "en", "tags": ["financial-sentiment-analysis", "sentiment-analysis"], "widget": [{"text": "Stocks rallied and the British pound gained."}]}
ProsusAI/finbert
null
[ "transformers", "pytorch", "tf", "jax", "bert", "text-classification", "financial-sentiment-analysis", "sentiment-analysis", "en", "arxiv:1908.10063", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
{}
PubChimps/dl-bert
null
[ "transformers", "pytorch", "jax", "roberta", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
{}
PubChimps/dlfBERT
null
[ "transformers", "pytorch", "jax", "roberta", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Pumpkinpie25/DialoGPT-small-Rick
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
transformers
# Shrek DialoGPT Model
{"tags": ["conversational"]}
Pupihed/DialoGPT-small-shrek
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
PurpleJacketGuy/DialoGPT-small-jarvis
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
transformers
# Jarvis DialoGPT Model
{"tags": ["conversational"]}
PurpleJacketGuy/My_Jarvis
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
transformers
# Jarvis DialoGPT Model
{"tags": ["conversational"]}
PurpleJacketGuy/My_Jarvis_2
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Purplegohtic13/Ella
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
PutaDaVi/Elizabeth
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
fill-mask
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-dutch-cased-finetuned-gv This model is a fine-tuned version of [GroNLP/bert-base-dutch-cased](https://huggingface.co/GroNLP/bert-base-dutch-cased) on an unkown dataset. It achieves the following results on the evaluation set: - Loss: 1.7837 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.4741 | 1.0 | 2603 | 1.8404 | | 1.2384 | 2.0 | 5206 | 1.8457 | | 1.2121 | 3.0 | 7809 | 1.7837 | ### Framework versions - Transformers 4.9.0 - Pytorch 1.9.0+cu102 - Datasets 1.10.2 - Tokenizers 0.10.3
{"tags": ["generated_from_trainer"], "model_index": [{"name": "bert-base-dutch-cased-finetuned-gv", "results": [{"task": {"name": "Masked Language Modeling", "type": "fill-mask"}}]}]}
Pyjay/bert-base-dutch-cased-finetuned-gv
null
[ "transformers", "pytorch", "tensorboard", "bert", "fill-mask", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-medium-dutch-finetuned-text-generation This model is a fine-tuned version of [GroNLP/gpt2-medium-dutch-embeddings](https://huggingface.co/GroNLP/gpt2-medium-dutch-embeddings) on an unkown dataset. It achieves the following results on the evaluation set: - Loss: 3.9268 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 394 | 4.0144 | | 3.3633 | 2.0 | 788 | 3.9379 | | 2.7108 | 3.0 | 1182 | 3.9268 | ### Framework versions - Transformers 4.9.0 - Pytorch 1.9.0+cu102 - Datasets 1.10.2 - Tokenizers 0.10.3
{"tags": ["generated_from_trainer"], "model_index": [{"name": "gpt2-medium-dutch-finetuned-text-generation", "results": [{"task": {"name": "Causal Language Modeling", "type": "text-generation"}}]}]}
Pyjay/gpt2-medium-dutch-finetuned-text-generation
null
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
sentence-similarity
sentence-transformers
# Pyjay/sentence-transformers-multilingual-snli-v2-500k This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('Pyjay/sentence-transformers-multilingual-snli-v2-500k') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('Pyjay/sentence-transformers-multilingual-snli-v2-500k') model = AutoModel.from_pretrained('Pyjay/sentence-transformers-multilingual-snli-v2-500k') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, max pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=Pyjay/sentence-transformers-multilingual-snli-v2-500k) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 15604 with parameters: ``` {'batch_size': 32, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.SoftmaxLoss.SoftmaxLoss` **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 180 with parameters: ``` {'batch_size': 32, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "callback": null, "epochs": 4, "evaluation_steps": 1000, "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 72, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
{"tags": ["sentence-transformers", "feature-extraction", "sentence-similarity", "transformers"], "pipeline_tag": "sentence-similarity"}
Pyjay/sentence-transformers-multilingual-snli-v2-500k
null
[ "sentence-transformers", "pytorch", "xlm-roberta", "feature-extraction", "sentence-similarity", "transformers", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
feature-extraction
transformers
{}
Pyke/1
null
[ "transformers", "pytorch", "bart", "feature-extraction", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text2text-generation
transformers
{}
Pyke/DS-config-1
null
[ "transformers", "pytorch", "bart", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text2text-generation
transformers
{}
Pyke/DS-config-12
null
[ "transformers", "pytorch", "bart", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text2text-generation
transformers
{}
Pyke/DS-config-14
null
[ "transformers", "pytorch", "bart", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Pyke/DS-config-15
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
feature-extraction
transformers
{}
Pyke/DS-config-16
null
[ "transformers", "pytorch", "bart", "feature-extraction", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text2text-generation
transformers
{}
Pyke/DS-config-18
null
[ "transformers", "pytorch", "bart", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text2text-generation
transformers
{}
Pyke/DS-config-19
null
[ "transformers", "pytorch", "bart", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text2text-generation
transformers
{}
Pyke/DS-config-2
null
[ "transformers", "pytorch", "bart", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text2text-generation
transformers
{}
Pyke/DS-config-20
null
[ "transformers", "pytorch", "bart", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text2text-generation
transformers
{}
Pyke/DS-config-21
null
[ "transformers", "pytorch", "bart", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text2text-generation
transformers
{}
Pyke/DS-config-22
null
[ "transformers", "pytorch", "bart", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text2text-generation
transformers
{}
Pyke/DS-config-23
null
[ "transformers", "pytorch", "bart", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text2text-generation
transformers
{}
Pyke/DS-config-3
null
[ "transformers", "pytorch", "bart", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text2text-generation
transformers
{}
Pyke/DS-config-4
null
[ "transformers", "pytorch", "bart", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text2text-generation
transformers
{}
Pyke/DS-config-5
null
[ "transformers", "pytorch", "bart", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text2text-generation
transformers
{}
Pyke/DS-config-6
null
[ "transformers", "pytorch", "bart", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text2text-generation
transformers
{}
Pyke/DS-config-7
null
[ "transformers", "pytorch", "bart", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text2text-generation
transformers
{}
Pyke/DS-config-8
null
[ "transformers", "pytorch", "bart", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text2text-generation
transformers
{}
Pyke/DS-config-9
null
[ "transformers", "pytorch", "bart", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text2text-generation
transformers
{}
Pyke/bart-finetuned-on-patent-Deepspeed-DS-04
null
[ "transformers", "pytorch", "bart", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text2text-generation
transformers
{}
Pyke/bart-finetuned-on-patent-Deepspeed-DS-1
null
[ "transformers", "pytorch", "bart", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text2text-generation
transformers
{}
Pyke/bart-finetuned-on-patent-Deepspeed-DS-2
null
[ "transformers", "pytorch", "bart", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text2text-generation
transformers
{}
Pyke/bart-finetuned-on-patent-Deepspeed-DS-4
null
[ "transformers", "pytorch", "bart", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text2text-generation
transformers
{}
Pyke/bart-finetuned-on-patent-Deepspeed-Test-Formal-01
null
[ "transformers", "pytorch", "bart", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text2text-generation
transformers
{}
Pyke/bart-finetuned-on-patent-Deepspeed-Test-Formal-02
null
[ "transformers", "pytorch", "bart", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text2text-generation
transformers
{}
Pyke/bart-finetuned-on-patent-Deepspeed-Test-Formal-04
null
[ "transformers", "pytorch", "bart", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text2text-generation
transformers
{}
Pyke/bart-finetuned-on-patent-Deepspeed-Test-Formal-05
null
[ "transformers", "pytorch", "bart", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text2text-generation
transformers
{}
Pyke/bart-finetuned-on-patent-Deepspeed-Test-Formal-1
null
[ "transformers", "pytorch", "bart", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text2text-generation
transformers
{}
Pyke/bart-finetuned-on-patent-Deepspeed-Test-Formal-2
null
[ "transformers", "pytorch", "bart", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text2text-generation
transformers
{}
Pyke/bart-finetuned-on-patent-Deepspeed-Test-Formal-4
null
[ "transformers", "pytorch", "bart", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text2text-generation
transformers
{}
Pyke/bart-finetuned-on-patent-Deepspeed-Test001
null
[ "transformers", "pytorch", "bart", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text2text-generation
transformers
{}
Pyke/bart-finetuned-on-patent-Deepspeed-Test002
null
[ "transformers", "pytorch", "bart", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
feature-extraction
transformers
{}
Pyke/bart-finetuned-on-patent-Deepspeed-Test003
null
[ "transformers", "pytorch", "bart", "feature-extraction", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text2text-generation
transformers
{}
Pyke/bart-finetuned-on-patent-Deepspeed-Test004
null
[ "transformers", "pytorch", "bart", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text2text-generation
transformers
{}
Pyke/bart-finetuned-on-patent-Deepspeed-Test005
null
[ "transformers", "pytorch", "bart", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Pyke/bart-finetuned-on-patent-Deepspeed-Test01
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
transformers
{}
Pyke/bart-finetuned-on-patent-Deepspeed-Test1
null
[ "transformers", "pytorch", "bart", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text2text-generation
transformers
{}
Pyke/bart-finetuned-on-patent-Deepspeed-Test10
null
[ "transformers", "pytorch", "bart", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text2text-generation
transformers
{}
Pyke/bart-finetuned-on-patent-Deepspeed-Test11
null
[ "transformers", "pytorch", "bart", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text2text-generation
transformers
{}
Pyke/bart-finetuned-on-patent-Deepspeed-Test12
null
[ "transformers", "pytorch", "bart", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text2text-generation
transformers
{}
Pyke/bart-finetuned-on-patent-Deepspeed-Test13
null
[ "transformers", "pytorch", "bart", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text2text-generation
transformers
{}
Pyke/bart-finetuned-on-patent-Deepspeed-Test14
null
[ "transformers", "pytorch", "bart", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text2text-generation
transformers
{}
Pyke/bart-finetuned-on-patent-Deepspeed-Test15
null
[ "transformers", "pytorch", "bart", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Pyke/bart-finetuned-on-patent-Deepspeed-Test16
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Pyke/bart-finetuned-on-patent-Deepspeed-Test17
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
text2text-generation
transformers
{}
Pyke/bart-finetuned-on-patent-Deepspeed-Test18
null
[ "transformers", "pytorch", "bart", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Pyke/bart-finetuned-on-patent-Deepspeed-Test19
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
text2text-generation
transformers
{}
Pyke/bart-finetuned-on-patent-Deepspeed-Test2
null
[ "transformers", "pytorch", "bart", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text2text-generation
transformers
{}
Pyke/bart-finetuned-on-patent-Deepspeed-Test20
null
[ "transformers", "bart", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Pyke/bart-finetuned-on-patent-Deepspeed-Test21
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Pyke/bart-finetuned-on-patent-Deepspeed-Test22
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
text2text-generation
transformers
{}
Pyke/bart-finetuned-on-patent-Deepspeed-Test23
null
[ "transformers", "pytorch", "bart", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text2text-generation
transformers
{}
Pyke/bart-finetuned-on-patent-Deepspeed-Test25
null
[ "transformers", "pytorch", "bart", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
feature-extraction
transformers
{}
Pyke/bart-finetuned-on-patent-Deepspeed-Test26
null
[ "transformers", "pytorch", "bart", "feature-extraction", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
feature-extraction
transformers
{}
Pyke/bart-finetuned-on-patent-Deepspeed-Test27
null
[ "transformers", "pytorch", "bart", "feature-extraction", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
feature-extraction
transformers
{}
Pyke/bart-finetuned-on-patent-Deepspeed-Test28
null
[ "transformers", "pytorch", "bert", "feature-extraction", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text2text-generation
transformers
{}
Pyke/bart-finetuned-on-patent-Deepspeed-Test29
null
[ "transformers", "pytorch", "bart", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
transformers
{}
Pyke/bart-finetuned-on-patent-Deepspeed-Test3
null
[ "transformers", "pytorch", "bart", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text2text-generation
transformers
{}
Pyke/bart-finetuned-on-patent-Deepspeed-Test30
null
[ "transformers", "pytorch", "bart", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00