Search is not available for this dataset
pipeline_tag
stringclasses
48 values
library_name
stringclasses
205 values
text
stringlengths
0
18.3M
metadata
stringlengths
2
1.07B
id
stringlengths
5
122
last_modified
null
tags
listlengths
1
1.84k
sha
null
created_at
stringlengths
25
25
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # deberta-v3-large__sst2__train-8-5 This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.3078 - Accuracy: 0.6930 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6813 | 1.0 | 3 | 0.7842 | 0.25 | | 0.6617 | 2.0 | 6 | 0.7968 | 0.25 | | 0.6945 | 3.0 | 9 | 0.7746 | 0.25 | | 0.5967 | 4.0 | 12 | 0.7557 | 0.25 | | 0.4824 | 5.0 | 15 | 0.6920 | 0.25 | | 0.3037 | 6.0 | 18 | 0.6958 | 0.5 | | 0.2329 | 7.0 | 21 | 0.6736 | 0.5 | | 0.1441 | 8.0 | 24 | 0.3749 | 1.0 | | 0.0875 | 9.0 | 27 | 0.3263 | 0.75 | | 0.0655 | 10.0 | 30 | 0.3525 | 0.75 | | 0.0373 | 11.0 | 33 | 0.1993 | 1.0 | | 0.0173 | 12.0 | 36 | 0.1396 | 1.0 | | 0.0147 | 13.0 | 39 | 0.0655 | 1.0 | | 0.0084 | 14.0 | 42 | 0.0343 | 1.0 | | 0.0049 | 15.0 | 45 | 0.0225 | 1.0 | | 0.004 | 16.0 | 48 | 0.0167 | 1.0 | | 0.003 | 17.0 | 51 | 0.0134 | 1.0 | | 0.0027 | 18.0 | 54 | 0.0114 | 1.0 | | 0.002 | 19.0 | 57 | 0.0104 | 1.0 | | 0.0015 | 20.0 | 60 | 0.0099 | 1.0 | | 0.0014 | 21.0 | 63 | 0.0095 | 1.0 | | 0.0013 | 22.0 | 66 | 0.0095 | 1.0 | | 0.0012 | 23.0 | 69 | 0.0091 | 1.0 | | 0.0011 | 24.0 | 72 | 0.0085 | 1.0 | | 0.0009 | 25.0 | 75 | 0.0081 | 1.0 | | 0.001 | 26.0 | 78 | 0.0077 | 1.0 | | 0.0008 | 27.0 | 81 | 0.0074 | 1.0 | | 0.0009 | 28.0 | 84 | 0.0071 | 1.0 | | 0.0007 | 29.0 | 87 | 0.0068 | 1.0 | | 0.0008 | 30.0 | 90 | 0.0064 | 1.0 | | 0.0007 | 31.0 | 93 | 0.0062 | 1.0 | | 0.0007 | 32.0 | 96 | 0.0059 | 1.0 | | 0.0007 | 33.0 | 99 | 0.0056 | 1.0 | | 0.0005 | 34.0 | 102 | 0.0054 | 1.0 | | 0.0006 | 35.0 | 105 | 0.0053 | 1.0 | | 0.0008 | 36.0 | 108 | 0.0051 | 1.0 | | 0.0007 | 37.0 | 111 | 0.0050 | 1.0 | | 0.0007 | 38.0 | 114 | 0.0049 | 1.0 | | 0.0006 | 39.0 | 117 | 0.0048 | 1.0 | | 0.0005 | 40.0 | 120 | 0.0048 | 1.0 | | 0.0005 | 41.0 | 123 | 0.0048 | 1.0 | | 0.0005 | 42.0 | 126 | 0.0047 | 1.0 | | 0.0005 | 43.0 | 129 | 0.0047 | 1.0 | | 0.0005 | 44.0 | 132 | 0.0047 | 1.0 | | 0.0006 | 45.0 | 135 | 0.0047 | 1.0 | | 0.0005 | 46.0 | 138 | 0.0047 | 1.0 | | 0.0005 | 47.0 | 141 | 0.0047 | 1.0 | | 0.0006 | 48.0 | 144 | 0.0047 | 1.0 | | 0.0005 | 49.0 | 147 | 0.0047 | 1.0 | | 0.0005 | 50.0 | 150 | 0.0047 | 1.0 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
{"license": "mit", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "deberta-v3-large__sst2__train-8-5", "results": []}]}
SetFit/deberta-v3-large__sst2__train-8-5
null
[ "transformers", "pytorch", "deberta-v2", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # deberta-v3-large__sst2__train-8-6 This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.4331 - Accuracy: 0.7106 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6486 | 1.0 | 3 | 0.7901 | 0.25 | | 0.6418 | 2.0 | 6 | 0.9259 | 0.25 | | 0.6169 | 3.0 | 9 | 1.0574 | 0.25 | | 0.5639 | 4.0 | 12 | 1.1372 | 0.25 | | 0.4562 | 5.0 | 15 | 0.6090 | 0.5 | | 0.3105 | 6.0 | 18 | 0.4435 | 1.0 | | 0.2303 | 7.0 | 21 | 0.2804 | 1.0 | | 0.1388 | 8.0 | 24 | 0.2205 | 1.0 | | 0.0918 | 9.0 | 27 | 0.1282 | 1.0 | | 0.0447 | 10.0 | 30 | 0.0643 | 1.0 | | 0.0297 | 11.0 | 33 | 0.0361 | 1.0 | | 0.0159 | 12.0 | 36 | 0.0211 | 1.0 | | 0.0102 | 13.0 | 39 | 0.0155 | 1.0 | | 0.0061 | 14.0 | 42 | 0.0158 | 1.0 | | 0.0049 | 15.0 | 45 | 0.0189 | 1.0 | | 0.0035 | 16.0 | 48 | 0.0254 | 1.0 | | 0.0027 | 17.0 | 51 | 0.0305 | 1.0 | | 0.0021 | 18.0 | 54 | 0.0287 | 1.0 | | 0.0016 | 19.0 | 57 | 0.0215 | 1.0 | | 0.0016 | 20.0 | 60 | 0.0163 | 1.0 | | 0.0014 | 21.0 | 63 | 0.0138 | 1.0 | | 0.0015 | 22.0 | 66 | 0.0131 | 1.0 | | 0.001 | 23.0 | 69 | 0.0132 | 1.0 | | 0.0014 | 24.0 | 72 | 0.0126 | 1.0 | | 0.0011 | 25.0 | 75 | 0.0125 | 1.0 | | 0.001 | 26.0 | 78 | 0.0119 | 1.0 | | 0.0008 | 27.0 | 81 | 0.0110 | 1.0 | | 0.0007 | 28.0 | 84 | 0.0106 | 1.0 | | 0.0008 | 29.0 | 87 | 0.0095 | 1.0 | | 0.0009 | 30.0 | 90 | 0.0089 | 1.0 | | 0.0008 | 31.0 | 93 | 0.0083 | 1.0 | | 0.0007 | 32.0 | 96 | 0.0075 | 1.0 | | 0.0008 | 33.0 | 99 | 0.0066 | 1.0 | | 0.0006 | 34.0 | 102 | 0.0059 | 1.0 | | 0.0007 | 35.0 | 105 | 0.0054 | 1.0 | | 0.0008 | 36.0 | 108 | 0.0051 | 1.0 | | 0.0007 | 37.0 | 111 | 0.0049 | 1.0 | | 0.0007 | 38.0 | 114 | 0.0047 | 1.0 | | 0.0006 | 39.0 | 117 | 0.0045 | 1.0 | | 0.0006 | 40.0 | 120 | 0.0046 | 1.0 | | 0.0005 | 41.0 | 123 | 0.0045 | 1.0 | | 0.0006 | 42.0 | 126 | 0.0044 | 1.0 | | 0.0006 | 43.0 | 129 | 0.0043 | 1.0 | | 0.0006 | 44.0 | 132 | 0.0044 | 1.0 | | 0.0005 | 45.0 | 135 | 0.0045 | 1.0 | | 0.0006 | 46.0 | 138 | 0.0043 | 1.0 | | 0.0006 | 47.0 | 141 | 0.0043 | 1.0 | | 0.0006 | 48.0 | 144 | 0.0041 | 1.0 | | 0.0007 | 49.0 | 147 | 0.0042 | 1.0 | | 0.0005 | 50.0 | 150 | 0.0042 | 1.0 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
{"license": "mit", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "deberta-v3-large__sst2__train-8-6", "results": []}]}
SetFit/deberta-v3-large__sst2__train-8-6
null
[ "transformers", "pytorch", "deberta-v2", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # deberta-v3-large__sst2__train-8-7 This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7037 - Accuracy: 0.5008 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6864 | 1.0 | 3 | 0.7800 | 0.25 | | 0.6483 | 2.0 | 6 | 0.8067 | 0.25 | | 0.6028 | 3.0 | 9 | 0.8500 | 0.25 | | 0.4086 | 4.0 | 12 | 1.0661 | 0.25 | | 0.2923 | 5.0 | 15 | 1.2302 | 0.25 | | 0.2059 | 6.0 | 18 | 1.0312 | 0.5 | | 0.1238 | 7.0 | 21 | 1.1271 | 0.5 | | 0.0711 | 8.0 | 24 | 1.3100 | 0.5 | | 0.0453 | 9.0 | 27 | 1.4208 | 0.5 | | 0.0198 | 10.0 | 30 | 1.5988 | 0.5 | | 0.0135 | 11.0 | 33 | 1.9174 | 0.5 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
{"license": "mit", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "deberta-v3-large__sst2__train-8-7", "results": []}]}
SetFit/deberta-v3-large__sst2__train-8-7
null
[ "transformers", "pytorch", "deberta-v2", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # deberta-v3-large__sst2__train-8-8 This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7414 - Accuracy: 0.5623 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6597 | 1.0 | 3 | 0.7716 | 0.25 | | 0.6376 | 2.0 | 6 | 0.7802 | 0.25 | | 0.5857 | 3.0 | 9 | 0.6625 | 0.75 | | 0.4024 | 4.0 | 12 | 0.5195 | 0.75 | | 0.2635 | 5.0 | 15 | 0.4222 | 1.0 | | 0.1714 | 6.0 | 18 | 0.4410 | 0.5 | | 0.1267 | 7.0 | 21 | 0.7773 | 0.75 | | 0.0582 | 8.0 | 24 | 0.9070 | 0.75 | | 0.0374 | 9.0 | 27 | 0.9539 | 0.75 | | 0.0204 | 10.0 | 30 | 1.0507 | 0.75 | | 0.012 | 11.0 | 33 | 1.2802 | 0.5 | | 0.0086 | 12.0 | 36 | 1.4272 | 0.5 | | 0.0049 | 13.0 | 39 | 1.4803 | 0.5 | | 0.0039 | 14.0 | 42 | 1.4912 | 0.5 | | 0.0031 | 15.0 | 45 | 1.5231 | 0.5 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
{"license": "mit", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "deberta-v3-large__sst2__train-8-8", "results": []}]}
SetFit/deberta-v3-large__sst2__train-8-8
null
[ "transformers", "pytorch", "deberta-v2", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # deberta-v3-large__sst2__train-8-9 This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6013 - Accuracy: 0.7210 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6757 | 1.0 | 3 | 0.7810 | 0.25 | | 0.6506 | 2.0 | 6 | 0.8102 | 0.25 | | 0.6463 | 3.0 | 9 | 0.8313 | 0.25 | | 0.5813 | 4.0 | 12 | 0.8858 | 0.25 | | 0.4635 | 5.0 | 15 | 0.8220 | 0.25 | | 0.3992 | 6.0 | 18 | 0.7226 | 0.5 | | 0.3281 | 7.0 | 21 | 0.6707 | 0.75 | | 0.2276 | 8.0 | 24 | 0.7515 | 0.75 | | 0.1674 | 9.0 | 27 | 0.6971 | 0.75 | | 0.0873 | 10.0 | 30 | 0.5419 | 0.75 | | 0.0525 | 11.0 | 33 | 0.5025 | 0.75 | | 0.0286 | 12.0 | 36 | 0.5229 | 0.75 | | 0.0149 | 13.0 | 39 | 0.5660 | 0.75 | | 0.0082 | 14.0 | 42 | 0.6954 | 0.75 | | 0.006 | 15.0 | 45 | 0.8649 | 0.75 | | 0.0043 | 16.0 | 48 | 1.0011 | 0.75 | | 0.0035 | 17.0 | 51 | 1.0909 | 0.75 | | 0.0021 | 18.0 | 54 | 1.1615 | 0.75 | | 0.0017 | 19.0 | 57 | 1.2147 | 0.75 | | 0.0013 | 20.0 | 60 | 1.2585 | 0.75 | | 0.0016 | 21.0 | 63 | 1.2917 | 0.75 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
{"license": "mit", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "deberta-v3-large__sst2__train-8-9", "results": []}]}
SetFit/deberta-v3-large__sst2__train-8-9
null
[ "transformers", "pytorch", "deberta-v2", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
{}
SetFit/distilbert-base-uncased__TREC-QC__all-train
null
[ "transformers", "pytorch", "distilbert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
{}
SetFit/distilbert-base-uncased__enron_spam__all-train
null
[ "transformers", "pytorch", "distilbert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
{}
SetFit/distilbert-base-uncased__ethos_binary__all-train
null
[ "transformers", "pytorch", "distilbert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
{}
SetFit/distilbert-base-uncased__hate_speech_offensive__all-train
null
[ "transformers", "pytorch", "distilbert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__hate_speech_offensive__train-16-0 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.2707 - Accuracy: 0.517 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.0943 | 1.0 | 10 | 1.1095 | 0.3 | | 1.0602 | 2.0 | 20 | 1.1086 | 0.4 | | 1.0159 | 3.0 | 30 | 1.1165 | 0.4 | | 0.9027 | 4.0 | 40 | 1.1377 | 0.4 | | 0.8364 | 5.0 | 50 | 1.0126 | 0.5 | | 0.6653 | 6.0 | 60 | 0.9298 | 0.5 | | 0.535 | 7.0 | 70 | 0.9555 | 0.5 | | 0.3713 | 8.0 | 80 | 0.8543 | 0.4 | | 0.1633 | 9.0 | 90 | 0.9876 | 0.4 | | 0.1069 | 10.0 | 100 | 0.8383 | 0.6 | | 0.0591 | 11.0 | 110 | 0.8056 | 0.6 | | 0.0344 | 12.0 | 120 | 0.8915 | 0.6 | | 0.0265 | 13.0 | 130 | 0.8722 | 0.6 | | 0.0196 | 14.0 | 140 | 1.0064 | 0.6 | | 0.0158 | 15.0 | 150 | 1.0479 | 0.6 | | 0.0128 | 16.0 | 160 | 1.0723 | 0.6 | | 0.0121 | 17.0 | 170 | 1.0758 | 0.6 | | 0.0093 | 18.0 | 180 | 1.1236 | 0.6 | | 0.0085 | 19.0 | 190 | 1.1480 | 0.6 | | 0.0084 | 20.0 | 200 | 1.1651 | 0.6 | | 0.0077 | 21.0 | 210 | 1.1832 | 0.6 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "distilbert-base-uncased__hate_speech_offensive__train-16-0", "results": []}]}
SetFit/distilbert-base-uncased__hate_speech_offensive__train-16-0
null
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__hate_speech_offensive__train-16-1 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0424 - Accuracy: 0.5355 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.0989 | 1.0 | 10 | 1.1049 | 0.1 | | 1.0641 | 2.0 | 20 | 1.0768 | 0.3 | | 0.9742 | 3.0 | 30 | 1.0430 | 0.4 | | 0.8765 | 4.0 | 40 | 1.0058 | 0.4 | | 0.6979 | 5.0 | 50 | 0.8488 | 0.7 | | 0.563 | 6.0 | 60 | 0.7221 | 0.7 | | 0.4135 | 7.0 | 70 | 0.6587 | 0.8 | | 0.2509 | 8.0 | 80 | 0.5577 | 0.7 | | 0.0943 | 9.0 | 90 | 0.5840 | 0.7 | | 0.0541 | 10.0 | 100 | 0.6959 | 0.7 | | 0.0362 | 11.0 | 110 | 0.6884 | 0.6 | | 0.0254 | 12.0 | 120 | 0.9263 | 0.6 | | 0.0184 | 13.0 | 130 | 0.7992 | 0.6 | | 0.0172 | 14.0 | 140 | 0.7351 | 0.6 | | 0.0131 | 15.0 | 150 | 0.7664 | 0.6 | | 0.0117 | 16.0 | 160 | 0.8262 | 0.6 | | 0.0101 | 17.0 | 170 | 0.8839 | 0.6 | | 0.0089 | 18.0 | 180 | 0.9018 | 0.6 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "distilbert-base-uncased__hate_speech_offensive__train-16-1", "results": []}]}
SetFit/distilbert-base-uncased__hate_speech_offensive__train-16-1
null
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__hate_speech_offensive__train-16-2 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9210 - Accuracy: 0.5635 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.0915 | 1.0 | 10 | 1.1051 | 0.4 | | 1.0663 | 2.0 | 20 | 1.0794 | 0.3 | | 1.0307 | 3.0 | 30 | 1.0664 | 0.5 | | 0.9443 | 4.0 | 40 | 1.0729 | 0.5 | | 0.8373 | 5.0 | 50 | 1.0175 | 0.4 | | 0.6892 | 6.0 | 60 | 0.9624 | 0.5 | | 0.538 | 7.0 | 70 | 0.9924 | 0.5 | | 0.4173 | 8.0 | 80 | 1.0136 | 0.6 | | 0.1846 | 9.0 | 90 | 1.0683 | 0.6 | | 0.1125 | 10.0 | 100 | 1.2376 | 0.6 | | 0.0754 | 11.0 | 110 | 1.2537 | 0.6 | | 0.0401 | 12.0 | 120 | 1.4387 | 0.6 | | 0.0285 | 13.0 | 130 | 1.5702 | 0.6 | | 0.0241 | 14.0 | 140 | 1.6795 | 0.6 | | 0.0175 | 15.0 | 150 | 1.7228 | 0.6 | | 0.0147 | 16.0 | 160 | 1.7892 | 0.6 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "distilbert-base-uncased__hate_speech_offensive__train-16-2", "results": []}]}
SetFit/distilbert-base-uncased__hate_speech_offensive__train-16-2
null
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__hate_speech_offensive__train-16-3 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0675 - Accuracy: 0.44 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.0951 | 1.0 | 10 | 1.1346 | 0.1 | | 1.0424 | 2.0 | 20 | 1.1120 | 0.2 | | 0.957 | 3.0 | 30 | 1.1002 | 0.3 | | 0.7889 | 4.0 | 40 | 1.0838 | 0.4 | | 0.6162 | 5.0 | 50 | 1.0935 | 0.5 | | 0.4849 | 6.0 | 60 | 1.0867 | 0.5 | | 0.3089 | 7.0 | 70 | 1.1145 | 0.5 | | 0.2145 | 8.0 | 80 | 1.1278 | 0.6 | | 0.0805 | 9.0 | 90 | 1.2801 | 0.6 | | 0.0497 | 10.0 | 100 | 1.3296 | 0.6 | | 0.0328 | 11.0 | 110 | 1.2913 | 0.6 | | 0.0229 | 12.0 | 120 | 1.3692 | 0.6 | | 0.0186 | 13.0 | 130 | 1.4642 | 0.6 | | 0.0161 | 14.0 | 140 | 1.5568 | 0.6 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "distilbert-base-uncased__hate_speech_offensive__train-16-3", "results": []}]}
SetFit/distilbert-base-uncased__hate_speech_offensive__train-16-3
null
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__hate_speech_offensive__train-16-4 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0903 - Accuracy: 0.4805 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.0974 | 1.0 | 10 | 1.1139 | 0.1 | | 1.0637 | 2.0 | 20 | 1.0988 | 0.1 | | 0.9758 | 3.0 | 30 | 1.1013 | 0.1 | | 0.9012 | 4.0 | 40 | 1.0769 | 0.3 | | 0.6993 | 5.0 | 50 | 1.0484 | 0.6 | | 0.5676 | 6.0 | 60 | 1.0223 | 0.6 | | 0.4069 | 7.0 | 70 | 0.9190 | 0.6 | | 0.3192 | 8.0 | 80 | 1.1370 | 0.6 | | 0.1112 | 9.0 | 90 | 1.1728 | 0.6 | | 0.07 | 10.0 | 100 | 1.1998 | 0.6 | | 0.0397 | 11.0 | 110 | 1.3700 | 0.6 | | 0.027 | 12.0 | 120 | 1.3329 | 0.6 | | 0.021 | 13.0 | 130 | 1.2697 | 0.6 | | 0.0177 | 14.0 | 140 | 1.4195 | 0.6 | | 0.0142 | 15.0 | 150 | 1.5342 | 0.6 | | 0.0118 | 16.0 | 160 | 1.5999 | 0.6 | | 0.0108 | 17.0 | 170 | 1.6327 | 0.6 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "distilbert-base-uncased__hate_speech_offensive__train-16-4", "results": []}]}
SetFit/distilbert-base-uncased__hate_speech_offensive__train-16-4
null
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__hate_speech_offensive__train-16-5 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9907 - Accuracy: 0.49 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.0941 | 1.0 | 10 | 1.1287 | 0.2 | | 1.0481 | 2.0 | 20 | 1.1136 | 0.2 | | 0.9498 | 3.0 | 30 | 1.1200 | 0.2 | | 0.8157 | 4.0 | 40 | 1.0771 | 0.2 | | 0.65 | 5.0 | 50 | 0.9733 | 0.4 | | 0.5021 | 6.0 | 60 | 1.0626 | 0.4 | | 0.3358 | 7.0 | 70 | 1.0787 | 0.4 | | 0.2017 | 8.0 | 80 | 1.3183 | 0.4 | | 0.088 | 9.0 | 90 | 1.2204 | 0.5 | | 0.0527 | 10.0 | 100 | 1.6892 | 0.4 | | 0.0337 | 11.0 | 110 | 1.6967 | 0.5 | | 0.0238 | 12.0 | 120 | 1.5436 | 0.5 | | 0.0183 | 13.0 | 130 | 1.7447 | 0.4 | | 0.0159 | 14.0 | 140 | 1.8999 | 0.4 | | 0.014 | 15.0 | 150 | 1.9004 | 0.4 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "distilbert-base-uncased__hate_speech_offensive__train-16-5", "results": []}]}
SetFit/distilbert-base-uncased__hate_speech_offensive__train-16-5
null
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__hate_speech_offensive__train-16-6 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8331 - Accuracy: 0.625 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.0881 | 1.0 | 10 | 1.1248 | 0.1 | | 1.0586 | 2.0 | 20 | 1.1162 | 0.2 | | 0.9834 | 3.0 | 30 | 1.1199 | 0.3 | | 0.9271 | 4.0 | 40 | 1.0740 | 0.3 | | 0.7663 | 5.0 | 50 | 1.0183 | 0.5 | | 0.6042 | 6.0 | 60 | 1.0259 | 0.5 | | 0.4482 | 7.0 | 70 | 0.8699 | 0.7 | | 0.3072 | 8.0 | 80 | 1.0615 | 0.5 | | 0.1458 | 9.0 | 90 | 1.0164 | 0.5 | | 0.0838 | 10.0 | 100 | 1.0620 | 0.5 | | 0.055 | 11.0 | 110 | 1.1829 | 0.5 | | 0.0347 | 12.0 | 120 | 1.2815 | 0.4 | | 0.0244 | 13.0 | 130 | 1.2607 | 0.6 | | 0.0213 | 14.0 | 140 | 1.3695 | 0.5 | | 0.0169 | 15.0 | 150 | 1.4397 | 0.5 | | 0.0141 | 16.0 | 160 | 1.4388 | 0.6 | | 0.0122 | 17.0 | 170 | 1.4242 | 0.6 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "distilbert-base-uncased__hate_speech_offensive__train-16-6", "results": []}]}
SetFit/distilbert-base-uncased__hate_speech_offensive__train-16-6
null
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__hate_speech_offensive__train-16-7 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9011 - Accuracy: 0.578 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.0968 | 1.0 | 10 | 1.1309 | 0.0 | | 1.0709 | 2.0 | 20 | 1.1237 | 0.1 | | 0.9929 | 3.0 | 30 | 1.1254 | 0.1 | | 0.878 | 4.0 | 40 | 1.1206 | 0.5 | | 0.7409 | 5.0 | 50 | 1.0831 | 0.1 | | 0.5663 | 6.0 | 60 | 0.9830 | 0.6 | | 0.4105 | 7.0 | 70 | 0.9919 | 0.5 | | 0.2912 | 8.0 | 80 | 1.0472 | 0.6 | | 0.1013 | 9.0 | 90 | 1.1617 | 0.4 | | 0.0611 | 10.0 | 100 | 1.2789 | 0.6 | | 0.039 | 11.0 | 110 | 1.4091 | 0.4 | | 0.0272 | 12.0 | 120 | 1.4974 | 0.4 | | 0.0189 | 13.0 | 130 | 1.4845 | 0.5 | | 0.018 | 14.0 | 140 | 1.4924 | 0.5 | | 0.0131 | 15.0 | 150 | 1.5206 | 0.6 | | 0.0116 | 16.0 | 160 | 1.5858 | 0.5 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "distilbert-base-uncased__hate_speech_offensive__train-16-7", "results": []}]}
SetFit/distilbert-base-uncased__hate_speech_offensive__train-16-7
null
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__hate_speech_offensive__train-16-8 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0704 - Accuracy: 0.394 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.1031 | 1.0 | 10 | 1.1286 | 0.1 | | 1.0648 | 2.0 | 20 | 1.1157 | 0.3 | | 0.9982 | 3.0 | 30 | 1.1412 | 0.2 | | 0.9283 | 4.0 | 40 | 1.2053 | 0.2 | | 0.7958 | 5.0 | 50 | 1.1466 | 0.2 | | 0.6668 | 6.0 | 60 | 1.1783 | 0.3 | | 0.5068 | 7.0 | 70 | 1.2992 | 0.3 | | 0.3741 | 8.0 | 80 | 1.3483 | 0.3 | | 0.1653 | 9.0 | 90 | 1.4533 | 0.2 | | 0.0946 | 10.0 | 100 | 1.6292 | 0.2 | | 0.0569 | 11.0 | 110 | 1.8381 | 0.2 | | 0.0346 | 12.0 | 120 | 2.0781 | 0.2 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "distilbert-base-uncased__hate_speech_offensive__train-16-8", "results": []}]}
SetFit/distilbert-base-uncased__hate_speech_offensive__train-16-8
null
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__hate_speech_offensive__train-16-9 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.1121 - Accuracy: 0.16 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.1038 | 1.0 | 10 | 1.1243 | 0.1 | | 1.0859 | 2.0 | 20 | 1.1182 | 0.2 | | 1.0234 | 3.0 | 30 | 1.1442 | 0.3 | | 0.9493 | 4.0 | 40 | 1.2239 | 0.1 | | 0.8114 | 5.0 | 50 | 1.2023 | 0.4 | | 0.6464 | 6.0 | 60 | 1.2329 | 0.4 | | 0.4731 | 7.0 | 70 | 1.2971 | 0.5 | | 0.3355 | 8.0 | 80 | 1.3913 | 0.4 | | 0.1268 | 9.0 | 90 | 1.4670 | 0.5 | | 0.0747 | 10.0 | 100 | 1.7961 | 0.4 | | 0.0449 | 11.0 | 110 | 1.8168 | 0.5 | | 0.0307 | 12.0 | 120 | 1.9307 | 0.4 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "distilbert-base-uncased__hate_speech_offensive__train-16-9", "results": []}]}
SetFit/distilbert-base-uncased__hate_speech_offensive__train-16-9
null
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__hate_speech_offensive__train-32-0 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7714 - Accuracy: 0.705 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.0871 | 1.0 | 19 | 1.0704 | 0.45 | | 1.0019 | 2.0 | 38 | 1.0167 | 0.55 | | 0.8412 | 3.0 | 57 | 0.9134 | 0.55 | | 0.6047 | 4.0 | 76 | 0.8430 | 0.6 | | 0.3746 | 5.0 | 95 | 0.8315 | 0.6 | | 0.1885 | 6.0 | 114 | 0.8585 | 0.6 | | 0.0772 | 7.0 | 133 | 0.9443 | 0.65 | | 0.0312 | 8.0 | 152 | 1.1019 | 0.65 | | 0.0161 | 9.0 | 171 | 1.1420 | 0.65 | | 0.0102 | 10.0 | 190 | 1.2773 | 0.65 | | 0.0077 | 11.0 | 209 | 1.2454 | 0.65 | | 0.0064 | 12.0 | 228 | 1.2785 | 0.65 | | 0.006 | 13.0 | 247 | 1.3834 | 0.65 | | 0.0045 | 14.0 | 266 | 1.4139 | 0.65 | | 0.0043 | 15.0 | 285 | 1.4056 | 0.65 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "distilbert-base-uncased__hate_speech_offensive__train-32-0", "results": []}]}
SetFit/distilbert-base-uncased__hate_speech_offensive__train-32-0
null
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__hate_speech_offensive__train-32-1 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0606 - Accuracy: 0.4745 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.0941 | 1.0 | 19 | 1.1045 | 0.2 | | 0.9967 | 2.0 | 38 | 1.1164 | 0.35 | | 0.8164 | 3.0 | 57 | 1.1570 | 0.4 | | 0.5884 | 4.0 | 76 | 1.2403 | 0.35 | | 0.3322 | 5.0 | 95 | 1.3815 | 0.35 | | 0.156 | 6.0 | 114 | 1.8102 | 0.3 | | 0.0576 | 7.0 | 133 | 2.1439 | 0.4 | | 0.0227 | 8.0 | 152 | 2.4368 | 0.3 | | 0.0133 | 9.0 | 171 | 2.5994 | 0.4 | | 0.009 | 10.0 | 190 | 2.7388 | 0.35 | | 0.0072 | 11.0 | 209 | 2.8287 | 0.35 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "distilbert-base-uncased__hate_speech_offensive__train-32-1", "results": []}]}
SetFit/distilbert-base-uncased__hate_speech_offensive__train-32-1
null
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__hate_speech_offensive__train-32-2 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7136 - Accuracy: 0.679 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.1052 | 1.0 | 19 | 1.0726 | 0.45 | | 1.0421 | 2.0 | 38 | 1.0225 | 0.5 | | 0.9173 | 3.0 | 57 | 0.9164 | 0.6 | | 0.6822 | 4.0 | 76 | 0.8251 | 0.7 | | 0.4407 | 5.0 | 95 | 0.8908 | 0.5 | | 0.2367 | 6.0 | 114 | 0.6772 | 0.75 | | 0.1145 | 7.0 | 133 | 0.7792 | 0.65 | | 0.0479 | 8.0 | 152 | 1.0657 | 0.6 | | 0.0186 | 9.0 | 171 | 1.2228 | 0.65 | | 0.0111 | 10.0 | 190 | 1.1100 | 0.6 | | 0.0083 | 11.0 | 209 | 1.1991 | 0.65 | | 0.0067 | 12.0 | 228 | 1.2654 | 0.65 | | 0.0061 | 13.0 | 247 | 1.2837 | 0.65 | | 0.0046 | 14.0 | 266 | 1.2860 | 0.6 | | 0.0043 | 15.0 | 285 | 1.3160 | 0.65 | | 0.0037 | 16.0 | 304 | 1.3323 | 0.65 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "distilbert-base-uncased__hate_speech_offensive__train-32-2", "results": []}]}
SetFit/distilbert-base-uncased__hate_speech_offensive__train-32-2
null
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__hate_speech_offensive__train-32-3 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8286 - Accuracy: 0.661 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.1041 | 1.0 | 19 | 1.0658 | 0.5 | | 1.009 | 2.0 | 38 | 0.9892 | 0.7 | | 0.7925 | 3.0 | 57 | 0.8516 | 0.7 | | 0.5279 | 4.0 | 76 | 0.7877 | 0.65 | | 0.2932 | 5.0 | 95 | 0.7592 | 0.65 | | 0.1166 | 6.0 | 114 | 0.9437 | 0.65 | | 0.044 | 7.0 | 133 | 1.0315 | 0.75 | | 0.0197 | 8.0 | 152 | 1.3513 | 0.55 | | 0.0126 | 9.0 | 171 | 1.1702 | 0.7 | | 0.0083 | 10.0 | 190 | 1.2272 | 0.7 | | 0.0068 | 11.0 | 209 | 1.2889 | 0.7 | | 0.0059 | 12.0 | 228 | 1.3073 | 0.7 | | 0.0052 | 13.0 | 247 | 1.3595 | 0.7 | | 0.0041 | 14.0 | 266 | 1.4443 | 0.7 | | 0.0038 | 15.0 | 285 | 1.4709 | 0.7 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "distilbert-base-uncased__hate_speech_offensive__train-32-3", "results": []}]}
SetFit/distilbert-base-uncased__hate_speech_offensive__train-32-3
null
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__hate_speech_offensive__train-32-4 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7384 - Accuracy: 0.724 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.1013 | 1.0 | 19 | 1.0733 | 0.55 | | 1.0226 | 2.0 | 38 | 1.0064 | 0.65 | | 0.8539 | 3.0 | 57 | 0.8758 | 0.75 | | 0.584 | 4.0 | 76 | 0.6941 | 0.7 | | 0.2813 | 5.0 | 95 | 0.5151 | 0.7 | | 0.1122 | 6.0 | 114 | 0.4351 | 0.8 | | 0.0432 | 7.0 | 133 | 0.4896 | 0.85 | | 0.0199 | 8.0 | 152 | 0.5391 | 0.85 | | 0.0126 | 9.0 | 171 | 0.5200 | 0.85 | | 0.0085 | 10.0 | 190 | 0.5622 | 0.85 | | 0.0069 | 11.0 | 209 | 0.5950 | 0.85 | | 0.0058 | 12.0 | 228 | 0.6015 | 0.85 | | 0.0053 | 13.0 | 247 | 0.6120 | 0.85 | | 0.0042 | 14.0 | 266 | 0.6347 | 0.85 | | 0.0039 | 15.0 | 285 | 0.6453 | 0.85 | | 0.0034 | 16.0 | 304 | 0.6660 | 0.85 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "distilbert-base-uncased__hate_speech_offensive__train-32-4", "results": []}]}
SetFit/distilbert-base-uncased__hate_speech_offensive__train-32-4
null
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__hate_speech_offensive__train-32-5 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.1327 - Accuracy: 0.57 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.0972 | 1.0 | 19 | 1.0470 | 0.45 | | 0.9738 | 2.0 | 38 | 0.9244 | 0.65 | | 0.7722 | 3.0 | 57 | 0.8612 | 0.65 | | 0.4929 | 4.0 | 76 | 0.6759 | 0.75 | | 0.2435 | 5.0 | 95 | 0.7273 | 0.7 | | 0.0929 | 6.0 | 114 | 0.6444 | 0.85 | | 0.0357 | 7.0 | 133 | 0.7671 | 0.8 | | 0.0173 | 8.0 | 152 | 0.7599 | 0.75 | | 0.0121 | 9.0 | 171 | 0.8140 | 0.8 | | 0.0081 | 10.0 | 190 | 0.7861 | 0.8 | | 0.0066 | 11.0 | 209 | 0.8318 | 0.8 | | 0.0057 | 12.0 | 228 | 0.8777 | 0.8 | | 0.0053 | 13.0 | 247 | 0.8501 | 0.8 | | 0.004 | 14.0 | 266 | 0.8603 | 0.8 | | 0.004 | 15.0 | 285 | 0.8787 | 0.8 | | 0.0034 | 16.0 | 304 | 0.8969 | 0.8 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "base_model": "distilbert-base-uncased", "model-index": [{"name": "distilbert-base-uncased__hate_speech_offensive__train-32-5", "results": []}]}
SetFit/distilbert-base-uncased__hate_speech_offensive__train-32-5
null
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "base_model:distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__hate_speech_offensive__train-32-6 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0523 - Accuracy: 0.663 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.0957 | 1.0 | 19 | 1.0696 | 0.6 | | 1.0107 | 2.0 | 38 | 1.0047 | 0.55 | | 0.8257 | 3.0 | 57 | 0.8358 | 0.8 | | 0.6006 | 4.0 | 76 | 0.7641 | 0.6 | | 0.4172 | 5.0 | 95 | 0.5931 | 0.8 | | 0.2639 | 6.0 | 114 | 0.5570 | 0.7 | | 0.1314 | 7.0 | 133 | 0.5017 | 0.65 | | 0.0503 | 8.0 | 152 | 0.3115 | 0.75 | | 0.023 | 9.0 | 171 | 0.4353 | 0.85 | | 0.0128 | 10.0 | 190 | 0.5461 | 0.75 | | 0.0092 | 11.0 | 209 | 0.5045 | 0.8 | | 0.007 | 12.0 | 228 | 0.5014 | 0.8 | | 0.0064 | 13.0 | 247 | 0.5070 | 0.8 | | 0.0049 | 14.0 | 266 | 0.4681 | 0.8 | | 0.0044 | 15.0 | 285 | 0.4701 | 0.8 | | 0.0039 | 16.0 | 304 | 0.4862 | 0.8 | | 0.0036 | 17.0 | 323 | 0.4742 | 0.8 | | 0.0035 | 18.0 | 342 | 0.4652 | 0.8 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "distilbert-base-uncased__hate_speech_offensive__train-32-6", "results": []}]}
SetFit/distilbert-base-uncased__hate_speech_offensive__train-32-6
null
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__hate_speech_offensive__train-32-7 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8210 - Accuracy: 0.6305 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.0989 | 1.0 | 19 | 1.0655 | 0.4 | | 1.0102 | 2.0 | 38 | 0.9927 | 0.6 | | 0.8063 | 3.0 | 57 | 0.9117 | 0.5 | | 0.5284 | 4.0 | 76 | 0.8058 | 0.55 | | 0.2447 | 5.0 | 95 | 0.8393 | 0.45 | | 0.098 | 6.0 | 114 | 0.8438 | 0.6 | | 0.0388 | 7.0 | 133 | 1.1901 | 0.45 | | 0.0188 | 8.0 | 152 | 1.4429 | 0.45 | | 0.0121 | 9.0 | 171 | 1.3648 | 0.4 | | 0.0082 | 10.0 | 190 | 1.4768 | 0.4 | | 0.0066 | 11.0 | 209 | 1.4830 | 0.45 | | 0.0057 | 12.0 | 228 | 1.4936 | 0.45 | | 0.0053 | 13.0 | 247 | 1.5649 | 0.4 | | 0.0041 | 14.0 | 266 | 1.6306 | 0.4 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "distilbert-base-uncased__hate_speech_offensive__train-32-7", "results": []}]}
SetFit/distilbert-base-uncased__hate_speech_offensive__train-32-7
null
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__hate_speech_offensive__train-32-8 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9191 - Accuracy: 0.632 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.1008 | 1.0 | 19 | 1.0877 | 0.4 | | 1.0354 | 2.0 | 38 | 1.0593 | 0.35 | | 0.8765 | 3.0 | 57 | 0.9722 | 0.5 | | 0.6365 | 4.0 | 76 | 0.9271 | 0.55 | | 0.3944 | 5.0 | 95 | 0.7852 | 0.5 | | 0.2219 | 6.0 | 114 | 0.9360 | 0.55 | | 0.126 | 7.0 | 133 | 1.0610 | 0.55 | | 0.0389 | 8.0 | 152 | 1.0884 | 0.6 | | 0.0191 | 9.0 | 171 | 1.3483 | 0.55 | | 0.0108 | 10.0 | 190 | 1.4226 | 0.55 | | 0.0082 | 11.0 | 209 | 1.4270 | 0.55 | | 0.0065 | 12.0 | 228 | 1.5074 | 0.55 | | 0.0059 | 13.0 | 247 | 1.5577 | 0.55 | | 0.0044 | 14.0 | 266 | 1.5798 | 0.55 | | 0.0042 | 15.0 | 285 | 1.6196 | 0.55 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "distilbert-base-uncased__hate_speech_offensive__train-32-8", "results": []}]}
SetFit/distilbert-base-uncased__hate_speech_offensive__train-32-8
null
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__hate_speech_offensive__train-32-9 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7075 - Accuracy: 0.692 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.1054 | 1.0 | 19 | 1.0938 | 0.35 | | 1.0338 | 2.0 | 38 | 1.0563 | 0.65 | | 0.8622 | 3.0 | 57 | 0.9372 | 0.6 | | 0.5919 | 4.0 | 76 | 0.8461 | 0.6 | | 0.3357 | 5.0 | 95 | 1.0206 | 0.45 | | 0.1621 | 6.0 | 114 | 0.9802 | 0.7 | | 0.0637 | 7.0 | 133 | 1.2434 | 0.65 | | 0.0261 | 8.0 | 152 | 1.3865 | 0.65 | | 0.0156 | 9.0 | 171 | 1.4414 | 0.7 | | 0.01 | 10.0 | 190 | 1.5502 | 0.7 | | 0.0079 | 11.0 | 209 | 1.6102 | 0.7 | | 0.0062 | 12.0 | 228 | 1.6525 | 0.7 | | 0.0058 | 13.0 | 247 | 1.6884 | 0.7 | | 0.0046 | 14.0 | 266 | 1.7479 | 0.7 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "distilbert-base-uncased__hate_speech_offensive__train-32-9", "results": []}]}
SetFit/distilbert-base-uncased__hate_speech_offensive__train-32-9
null
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__hate_speech_offensive__train-8-0 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.1097 - Accuracy: 0.132 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.1065 | 1.0 | 5 | 1.1287 | 0.0 | | 1.0592 | 2.0 | 10 | 1.1729 | 0.0 | | 1.0059 | 3.0 | 15 | 1.1959 | 0.0 | | 0.9129 | 4.0 | 20 | 1.2410 | 0.0 | | 0.8231 | 5.0 | 25 | 1.2820 | 0.0 | | 0.7192 | 6.0 | 30 | 1.3361 | 0.0 | | 0.6121 | 7.0 | 35 | 1.4176 | 0.0 | | 0.5055 | 8.0 | 40 | 1.5111 | 0.0 | | 0.4002 | 9.0 | 45 | 1.5572 | 0.0 | | 0.3788 | 10.0 | 50 | 1.6733 | 0.0 | | 0.2755 | 11.0 | 55 | 1.7381 | 0.2 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "distilbert-base-uncased__hate_speech_offensive__train-8-0", "results": []}]}
SetFit/distilbert-base-uncased__hate_speech_offensive__train-8-0
null
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__hate_speech_offensive__train-8-1 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.1013 - Accuracy: 0.0915 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.0866 | 1.0 | 5 | 1.1363 | 0.0 | | 1.0439 | 2.0 | 10 | 1.1803 | 0.0 | | 1.0227 | 3.0 | 15 | 1.2162 | 0.2 | | 0.9111 | 4.0 | 20 | 1.2619 | 0.0 | | 0.8243 | 5.0 | 25 | 1.2929 | 0.2 | | 0.7488 | 6.0 | 30 | 1.3010 | 0.2 | | 0.62 | 7.0 | 35 | 1.3011 | 0.2 | | 0.5054 | 8.0 | 40 | 1.2931 | 0.4 | | 0.4191 | 9.0 | 45 | 1.3274 | 0.4 | | 0.4107 | 10.0 | 50 | 1.3259 | 0.4 | | 0.3376 | 11.0 | 55 | 1.2800 | 0.4 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "distilbert-base-uncased__hate_speech_offensive__train-8-1", "results": []}]}
SetFit/distilbert-base-uncased__hate_speech_offensive__train-8-1
null
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__hate_speech_offensive__train-8-2 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.1019 - Accuracy: 0.139 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.1082 | 1.0 | 5 | 1.1432 | 0.0 | | 1.0524 | 2.0 | 10 | 1.1613 | 0.0 | | 1.0641 | 3.0 | 15 | 1.1547 | 0.0 | | 0.9592 | 4.0 | 20 | 1.1680 | 0.0 | | 0.9085 | 5.0 | 25 | 1.1762 | 0.0 | | 0.8508 | 6.0 | 30 | 1.1809 | 0.2 | | 0.7263 | 7.0 | 35 | 1.1912 | 0.2 | | 0.6448 | 8.0 | 40 | 1.2100 | 0.2 | | 0.5378 | 9.0 | 45 | 1.2037 | 0.2 | | 0.5031 | 10.0 | 50 | 1.2096 | 0.2 | | 0.4041 | 11.0 | 55 | 1.2203 | 0.2 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "distilbert-base-uncased__hate_speech_offensive__train-8-2", "results": []}]}
SetFit/distilbert-base-uncased__hate_speech_offensive__train-8-2
null
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__hate_speech_offensive__train-8-3 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9681 - Accuracy: 0.549 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.1073 | 1.0 | 5 | 1.1393 | 0.0 | | 1.0392 | 2.0 | 10 | 1.1729 | 0.0 | | 1.0302 | 3.0 | 15 | 1.1694 | 0.2 | | 0.9176 | 4.0 | 20 | 1.1846 | 0.2 | | 0.8339 | 5.0 | 25 | 1.1663 | 0.2 | | 0.7533 | 6.0 | 30 | 1.1513 | 0.4 | | 0.6327 | 7.0 | 35 | 1.1474 | 0.4 | | 0.4402 | 8.0 | 40 | 1.1385 | 0.4 | | 0.3752 | 9.0 | 45 | 1.0965 | 0.2 | | 0.3448 | 10.0 | 50 | 1.0357 | 0.2 | | 0.2582 | 11.0 | 55 | 1.0438 | 0.2 | | 0.1903 | 12.0 | 60 | 1.0561 | 0.2 | | 0.1479 | 13.0 | 65 | 1.0569 | 0.2 | | 0.1129 | 14.0 | 70 | 1.0455 | 0.2 | | 0.1071 | 15.0 | 75 | 1.0416 | 0.4 | | 0.0672 | 16.0 | 80 | 1.1164 | 0.4 | | 0.0561 | 17.0 | 85 | 1.1846 | 0.6 | | 0.0463 | 18.0 | 90 | 1.2040 | 0.6 | | 0.0431 | 19.0 | 95 | 1.2078 | 0.6 | | 0.0314 | 20.0 | 100 | 1.2368 | 0.6 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "distilbert-base-uncased__hate_speech_offensive__train-8-3", "results": []}]}
SetFit/distilbert-base-uncased__hate_speech_offensive__train-8-3
null
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__hate_speech_offensive__train-8-4 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.1045 - Accuracy: 0.128 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.1115 | 1.0 | 5 | 1.1174 | 0.0 | | 1.0518 | 2.0 | 10 | 1.1379 | 0.0 | | 1.0445 | 3.0 | 15 | 1.1287 | 0.0 | | 0.9306 | 4.0 | 20 | 1.1324 | 0.2 | | 0.8242 | 5.0 | 25 | 1.1219 | 0.2 | | 0.7986 | 6.0 | 30 | 1.1369 | 0.4 | | 0.7369 | 7.0 | 35 | 1.1732 | 0.2 | | 0.534 | 8.0 | 40 | 1.1828 | 0.6 | | 0.4285 | 9.0 | 45 | 1.1482 | 0.6 | | 0.3691 | 10.0 | 50 | 1.1401 | 0.6 | | 0.3215 | 11.0 | 55 | 1.1286 | 0.6 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "distilbert-base-uncased__hate_speech_offensive__train-8-4", "results": []}]}
SetFit/distilbert-base-uncased__hate_speech_offensive__train-8-4
null
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__hate_speech_offensive__train-8-5 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.7214 - Accuracy: 0.37 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.0995 | 1.0 | 5 | 1.1301 | 0.0 | | 1.0227 | 2.0 | 10 | 1.1727 | 0.0 | | 1.0337 | 3.0 | 15 | 1.1734 | 0.2 | | 0.9137 | 4.0 | 20 | 1.1829 | 0.2 | | 0.8065 | 5.0 | 25 | 1.1496 | 0.4 | | 0.7038 | 6.0 | 30 | 1.1101 | 0.4 | | 0.6246 | 7.0 | 35 | 1.0982 | 0.2 | | 0.4481 | 8.0 | 40 | 1.0913 | 0.2 | | 0.3696 | 9.0 | 45 | 1.0585 | 0.4 | | 0.3137 | 10.0 | 50 | 1.0418 | 0.4 | | 0.2482 | 11.0 | 55 | 1.0078 | 0.4 | | 0.196 | 12.0 | 60 | 0.9887 | 0.6 | | 0.1344 | 13.0 | 65 | 0.9719 | 0.6 | | 0.1014 | 14.0 | 70 | 1.0053 | 0.6 | | 0.111 | 15.0 | 75 | 0.9653 | 0.6 | | 0.0643 | 16.0 | 80 | 0.9018 | 0.6 | | 0.0559 | 17.0 | 85 | 0.9393 | 0.6 | | 0.0412 | 18.0 | 90 | 1.0210 | 0.6 | | 0.0465 | 19.0 | 95 | 0.9965 | 0.6 | | 0.0328 | 20.0 | 100 | 0.9739 | 0.6 | | 0.0289 | 21.0 | 105 | 0.9796 | 0.6 | | 0.0271 | 22.0 | 110 | 0.9968 | 0.6 | | 0.0239 | 23.0 | 115 | 1.0143 | 0.6 | | 0.0201 | 24.0 | 120 | 1.0459 | 0.6 | | 0.0185 | 25.0 | 125 | 1.0698 | 0.6 | | 0.0183 | 26.0 | 130 | 1.0970 | 0.6 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "base_model": "distilbert-base-uncased", "model-index": [{"name": "distilbert-base-uncased__hate_speech_offensive__train-8-5", "results": []}]}
SetFit/distilbert-base-uncased__hate_speech_offensive__train-8-5
null
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "base_model:distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__hate_speech_offensive__train-8-6 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.1275 - Accuracy: 0.3795 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.11 | 1.0 | 5 | 1.1184 | 0.0 | | 1.0608 | 2.0 | 10 | 1.1227 | 0.0 | | 1.0484 | 3.0 | 15 | 1.1009 | 0.2 | | 0.9614 | 4.0 | 20 | 1.1009 | 0.2 | | 0.8545 | 5.0 | 25 | 1.0772 | 0.2 | | 0.8241 | 6.0 | 30 | 1.0457 | 0.2 | | 0.708 | 7.0 | 35 | 1.0301 | 0.4 | | 0.5045 | 8.0 | 40 | 1.0325 | 0.4 | | 0.4175 | 9.0 | 45 | 1.0051 | 0.4 | | 0.3446 | 10.0 | 50 | 0.9610 | 0.4 | | 0.2851 | 11.0 | 55 | 0.9954 | 0.4 | | 0.1808 | 12.0 | 60 | 1.0561 | 0.4 | | 0.1435 | 13.0 | 65 | 1.0218 | 0.4 | | 0.1019 | 14.0 | 70 | 1.0254 | 0.4 | | 0.0908 | 15.0 | 75 | 0.9935 | 0.4 | | 0.0591 | 16.0 | 80 | 1.0090 | 0.4 | | 0.0512 | 17.0 | 85 | 1.0884 | 0.4 | | 0.0397 | 18.0 | 90 | 1.2732 | 0.4 | | 0.039 | 19.0 | 95 | 1.2979 | 0.6 | | 0.0325 | 20.0 | 100 | 1.2705 | 0.4 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "distilbert-base-uncased__hate_speech_offensive__train-8-6", "results": []}]}
SetFit/distilbert-base-uncased__hate_speech_offensive__train-8-6
null
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__hate_speech_offensive__train-8-7 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.1206 - Accuracy: 0.0555 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.1186 | 1.0 | 5 | 1.1631 | 0.0 | | 1.058 | 2.0 | 10 | 1.1986 | 0.0 | | 1.081 | 3.0 | 15 | 1.2111 | 0.0 | | 1.0118 | 4.0 | 20 | 1.2373 | 0.0 | | 0.9404 | 5.0 | 25 | 1.2645 | 0.0 | | 0.9146 | 6.0 | 30 | 1.3258 | 0.0 | | 0.8285 | 7.0 | 35 | 1.3789 | 0.0 | | 0.6422 | 8.0 | 40 | 1.3783 | 0.0 | | 0.6156 | 9.0 | 45 | 1.3691 | 0.0 | | 0.5321 | 10.0 | 50 | 1.3693 | 0.0 | | 0.4504 | 11.0 | 55 | 1.4000 | 0.0 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "distilbert-base-uncased__hate_speech_offensive__train-8-7", "results": []}]}
SetFit/distilbert-base-uncased__hate_speech_offensive__train-8-7
null
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__hate_speech_offensive__train-8-8 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0005 - Accuracy: 0.518 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.1029 | 1.0 | 5 | 1.1295 | 0.0 | | 1.0472 | 2.0 | 10 | 1.1531 | 0.0 | | 1.054 | 3.0 | 15 | 1.1475 | 0.0 | | 0.9366 | 4.0 | 20 | 1.1515 | 0.0 | | 0.8698 | 5.0 | 25 | 1.1236 | 0.4 | | 0.8148 | 6.0 | 30 | 1.0716 | 0.6 | | 0.6884 | 7.0 | 35 | 1.0662 | 0.6 | | 0.5641 | 8.0 | 40 | 1.0671 | 0.6 | | 0.5 | 9.0 | 45 | 1.0282 | 0.6 | | 0.3882 | 10.0 | 50 | 1.0500 | 0.6 | | 0.3522 | 11.0 | 55 | 1.1381 | 0.6 | | 0.2492 | 12.0 | 60 | 1.1278 | 0.6 | | 0.2063 | 13.0 | 65 | 1.0731 | 0.6 | | 0.1608 | 14.0 | 70 | 1.1339 | 0.6 | | 0.1448 | 15.0 | 75 | 1.1892 | 0.6 | | 0.0925 | 16.0 | 80 | 1.1840 | 0.6 | | 0.0768 | 17.0 | 85 | 1.0608 | 0.6 | | 0.0585 | 18.0 | 90 | 1.1073 | 0.6 | | 0.0592 | 19.0 | 95 | 1.3134 | 0.6 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "distilbert-base-uncased__hate_speech_offensive__train-8-8", "results": []}]}
SetFit/distilbert-base-uncased__hate_speech_offensive__train-8-8
null
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__hate_speech_offensive__train-8-9 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0959 - Accuracy: 0.093 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.1068 | 1.0 | 5 | 1.1545 | 0.0 | | 1.0494 | 2.0 | 10 | 1.1971 | 0.0 | | 1.0612 | 3.0 | 15 | 1.2164 | 0.0 | | 0.9517 | 4.0 | 20 | 1.2545 | 0.0 | | 0.8874 | 5.0 | 25 | 1.2699 | 0.0 | | 0.8598 | 6.0 | 30 | 1.2835 | 0.0 | | 0.7006 | 7.0 | 35 | 1.3139 | 0.0 | | 0.5969 | 8.0 | 40 | 1.3116 | 0.2 | | 0.4769 | 9.0 | 45 | 1.3124 | 0.4 | | 0.4352 | 10.0 | 50 | 1.3541 | 0.4 | | 0.3231 | 11.0 | 55 | 1.3919 | 0.4 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "distilbert-base-uncased__hate_speech_offensive__train-8-9", "results": []}]}
SetFit/distilbert-base-uncased__hate_speech_offensive__train-8-9
null
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__sst2__all-train This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2496 - Accuracy: 0.8962 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.3643 | 1.0 | 433 | 0.2496 | 0.8962 | | 0.196 | 2.0 | 866 | 0.2548 | 0.9110 | | 0.0915 | 3.0 | 1299 | 0.4483 | 0.8957 | | 0.0505 | 4.0 | 1732 | 0.4968 | 0.9044 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "base_model": "distilbert-base-uncased", "model-index": [{"name": "distilbert-base-uncased__sst2__all-train", "results": []}]}
SetFit/distilbert-base-uncased__sst2__all-train
null
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "base_model:distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__sst2__train-16-0 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6903 - Accuracy: 0.5091 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6934 | 1.0 | 7 | 0.7142 | 0.2857 | | 0.6703 | 2.0 | 14 | 0.7379 | 0.2857 | | 0.6282 | 3.0 | 21 | 0.7769 | 0.2857 | | 0.5193 | 4.0 | 28 | 0.8799 | 0.2857 | | 0.5104 | 5.0 | 35 | 0.8380 | 0.4286 | | 0.2504 | 6.0 | 42 | 0.8622 | 0.4286 | | 0.1794 | 7.0 | 49 | 0.9227 | 0.4286 | | 0.1156 | 8.0 | 56 | 0.8479 | 0.4286 | | 0.0709 | 9.0 | 63 | 1.0929 | 0.2857 | | 0.0471 | 10.0 | 70 | 1.2189 | 0.2857 | | 0.0288 | 11.0 | 77 | 1.2026 | 0.4286 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "distilbert-base-uncased__sst2__train-16-0", "results": []}]}
SetFit/distilbert-base-uncased__sst2__train-16-0
null
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__sst2__train-16-1 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6012 - Accuracy: 0.6766 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6983 | 1.0 | 7 | 0.7036 | 0.2857 | | 0.6836 | 2.0 | 14 | 0.7181 | 0.2857 | | 0.645 | 3.0 | 21 | 0.7381 | 0.2857 | | 0.5902 | 4.0 | 28 | 0.7746 | 0.2857 | | 0.5799 | 5.0 | 35 | 0.7242 | 0.5714 | | 0.3584 | 6.0 | 42 | 0.6935 | 0.5714 | | 0.2596 | 7.0 | 49 | 0.7041 | 0.5714 | | 0.1815 | 8.0 | 56 | 0.5930 | 0.7143 | | 0.0827 | 9.0 | 63 | 0.6976 | 0.7143 | | 0.0613 | 10.0 | 70 | 0.7346 | 0.7143 | | 0.0356 | 11.0 | 77 | 0.6992 | 0.5714 | | 0.0158 | 12.0 | 84 | 0.7328 | 0.5714 | | 0.013 | 13.0 | 91 | 0.7819 | 0.5714 | | 0.0103 | 14.0 | 98 | 0.8589 | 0.5714 | | 0.0087 | 15.0 | 105 | 0.9177 | 0.5714 | | 0.0076 | 16.0 | 112 | 0.9519 | 0.5714 | | 0.0078 | 17.0 | 119 | 0.9556 | 0.5714 | | 0.006 | 18.0 | 126 | 0.9542 | 0.5714 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "distilbert-base-uncased__sst2__train-16-1", "results": []}]}
SetFit/distilbert-base-uncased__sst2__train-16-1
null
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__sst2__train-16-2 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6748 - Accuracy: 0.6315 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7043 | 1.0 | 7 | 0.7054 | 0.2857 | | 0.6711 | 2.0 | 14 | 0.7208 | 0.2857 | | 0.6311 | 3.0 | 21 | 0.7365 | 0.2857 | | 0.551 | 4.0 | 28 | 0.7657 | 0.5714 | | 0.5599 | 5.0 | 35 | 0.6915 | 0.5714 | | 0.3167 | 6.0 | 42 | 0.7134 | 0.5714 | | 0.2489 | 7.0 | 49 | 0.7892 | 0.5714 | | 0.1985 | 8.0 | 56 | 0.6756 | 0.7143 | | 0.0864 | 9.0 | 63 | 0.8059 | 0.5714 | | 0.0903 | 10.0 | 70 | 0.8165 | 0.7143 | | 0.0429 | 11.0 | 77 | 0.7947 | 0.7143 | | 0.0186 | 12.0 | 84 | 0.8570 | 0.7143 | | 0.0146 | 13.0 | 91 | 0.9346 | 0.7143 | | 0.011 | 14.0 | 98 | 0.9804 | 0.7143 | | 0.0098 | 15.0 | 105 | 1.0136 | 0.7143 | | 0.0086 | 16.0 | 112 | 1.0424 | 0.7143 | | 0.0089 | 17.0 | 119 | 1.0736 | 0.7143 | | 0.0068 | 18.0 | 126 | 1.0808 | 0.7143 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "distilbert-base-uncased__sst2__train-16-2", "results": []}]}
SetFit/distilbert-base-uncased__sst2__train-16-2
null
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__sst2__train-16-3 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7887 - Accuracy: 0.6458 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6928 | 1.0 | 7 | 0.6973 | 0.4286 | | 0.675 | 2.0 | 14 | 0.7001 | 0.4286 | | 0.6513 | 3.0 | 21 | 0.6959 | 0.4286 | | 0.5702 | 4.0 | 28 | 0.6993 | 0.4286 | | 0.5389 | 5.0 | 35 | 0.6020 | 0.7143 | | 0.3386 | 6.0 | 42 | 0.5326 | 0.5714 | | 0.2596 | 7.0 | 49 | 0.4943 | 0.7143 | | 0.1633 | 8.0 | 56 | 0.3589 | 0.8571 | | 0.1086 | 9.0 | 63 | 0.2924 | 0.8571 | | 0.0641 | 10.0 | 70 | 0.2687 | 0.8571 | | 0.0409 | 11.0 | 77 | 0.2202 | 0.8571 | | 0.0181 | 12.0 | 84 | 0.2445 | 0.8571 | | 0.0141 | 13.0 | 91 | 0.2885 | 0.8571 | | 0.0108 | 14.0 | 98 | 0.3069 | 0.8571 | | 0.009 | 15.0 | 105 | 0.3006 | 0.8571 | | 0.0084 | 16.0 | 112 | 0.2834 | 0.8571 | | 0.0088 | 17.0 | 119 | 0.2736 | 0.8571 | | 0.0062 | 18.0 | 126 | 0.2579 | 0.8571 | | 0.0058 | 19.0 | 133 | 0.2609 | 0.8571 | | 0.0057 | 20.0 | 140 | 0.2563 | 0.8571 | | 0.0049 | 21.0 | 147 | 0.2582 | 0.8571 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "distilbert-base-uncased__sst2__train-16-3", "results": []}]}
SetFit/distilbert-base-uncased__sst2__train-16-3
null
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__sst2__train-16-4 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.1501 - Accuracy: 0.6387 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7043 | 1.0 | 7 | 0.7139 | 0.2857 | | 0.68 | 2.0 | 14 | 0.7398 | 0.2857 | | 0.641 | 3.0 | 21 | 0.7723 | 0.2857 | | 0.5424 | 4.0 | 28 | 0.8391 | 0.2857 | | 0.5988 | 5.0 | 35 | 0.7761 | 0.2857 | | 0.3698 | 6.0 | 42 | 0.7707 | 0.4286 | | 0.3204 | 7.0 | 49 | 0.8290 | 0.4286 | | 0.2882 | 8.0 | 56 | 0.6551 | 0.5714 | | 0.1512 | 9.0 | 63 | 0.5652 | 0.5714 | | 0.1302 | 10.0 | 70 | 0.5278 | 0.5714 | | 0.1043 | 11.0 | 77 | 0.4987 | 0.7143 | | 0.0272 | 12.0 | 84 | 0.5278 | 0.5714 | | 0.0201 | 13.0 | 91 | 0.5307 | 0.5714 | | 0.0129 | 14.0 | 98 | 0.5382 | 0.5714 | | 0.0117 | 15.0 | 105 | 0.5227 | 0.5714 | | 0.0094 | 16.0 | 112 | 0.5066 | 0.7143 | | 0.0104 | 17.0 | 119 | 0.4869 | 0.7143 | | 0.0069 | 18.0 | 126 | 0.4786 | 0.7143 | | 0.0062 | 19.0 | 133 | 0.4707 | 0.7143 | | 0.0065 | 20.0 | 140 | 0.4669 | 0.7143 | | 0.0051 | 21.0 | 147 | 0.4686 | 0.7143 | | 0.0049 | 22.0 | 154 | 0.4784 | 0.7143 | | 0.0046 | 23.0 | 161 | 0.4839 | 0.7143 | | 0.0039 | 24.0 | 168 | 0.4823 | 0.7143 | | 0.0044 | 25.0 | 175 | 0.4791 | 0.7143 | | 0.0037 | 26.0 | 182 | 0.4778 | 0.7143 | | 0.0038 | 27.0 | 189 | 0.4770 | 0.7143 | | 0.0036 | 28.0 | 196 | 0.4750 | 0.7143 | | 0.0031 | 29.0 | 203 | 0.4766 | 0.7143 | | 0.0031 | 30.0 | 210 | 0.4754 | 0.7143 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "distilbert-base-uncased__sst2__train-16-4", "results": []}]}
SetFit/distilbert-base-uncased__sst2__train-16-4
null
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__sst2__train-16-5 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6537 - Accuracy: 0.6332 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6925 | 1.0 | 7 | 0.6966 | 0.2857 | | 0.6703 | 2.0 | 14 | 0.7045 | 0.2857 | | 0.6404 | 3.0 | 21 | 0.7205 | 0.2857 | | 0.555 | 4.0 | 28 | 0.7548 | 0.2857 | | 0.5179 | 5.0 | 35 | 0.6745 | 0.5714 | | 0.3038 | 6.0 | 42 | 0.7260 | 0.5714 | | 0.2089 | 7.0 | 49 | 0.8016 | 0.5714 | | 0.1303 | 8.0 | 56 | 0.8202 | 0.5714 | | 0.0899 | 9.0 | 63 | 0.9966 | 0.5714 | | 0.0552 | 10.0 | 70 | 1.1887 | 0.5714 | | 0.0333 | 11.0 | 77 | 1.2163 | 0.5714 | | 0.0169 | 12.0 | 84 | 1.2874 | 0.5714 | | 0.0136 | 13.0 | 91 | 1.3598 | 0.5714 | | 0.0103 | 14.0 | 98 | 1.4237 | 0.5714 | | 0.0089 | 15.0 | 105 | 1.4758 | 0.5714 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "distilbert-base-uncased__sst2__train-16-5", "results": []}]}
SetFit/distilbert-base-uncased__sst2__train-16-5
null
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__sst2__train-16-6 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8356 - Accuracy: 0.6480 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6978 | 1.0 | 7 | 0.6807 | 0.4286 | | 0.6482 | 2.0 | 14 | 0.6775 | 0.4286 | | 0.6051 | 3.0 | 21 | 0.6623 | 0.5714 | | 0.486 | 4.0 | 28 | 0.6710 | 0.5714 | | 0.4612 | 5.0 | 35 | 0.5325 | 0.7143 | | 0.2233 | 6.0 | 42 | 0.4992 | 0.7143 | | 0.1328 | 7.0 | 49 | 0.4753 | 0.7143 | | 0.0905 | 8.0 | 56 | 0.2416 | 1.0 | | 0.0413 | 9.0 | 63 | 0.2079 | 1.0 | | 0.0356 | 10.0 | 70 | 0.2234 | 0.8571 | | 0.0217 | 11.0 | 77 | 0.2639 | 0.8571 | | 0.0121 | 12.0 | 84 | 0.2977 | 0.8571 | | 0.0105 | 13.0 | 91 | 0.3468 | 0.8571 | | 0.0085 | 14.0 | 98 | 0.3912 | 0.8571 | | 0.0077 | 15.0 | 105 | 0.4000 | 0.8571 | | 0.0071 | 16.0 | 112 | 0.4015 | 0.8571 | | 0.0078 | 17.0 | 119 | 0.3865 | 0.8571 | | 0.0059 | 18.0 | 126 | 0.3603 | 0.8571 | | 0.0051 | 19.0 | 133 | 0.3231 | 0.8571 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "distilbert-base-uncased__sst2__train-16-6", "results": []}]}
SetFit/distilbert-base-uncased__sst2__train-16-6
null
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__sst2__train-16-7 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6952 - Accuracy: 0.5025 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6949 | 1.0 | 7 | 0.7252 | 0.2857 | | 0.6678 | 2.0 | 14 | 0.7550 | 0.2857 | | 0.6299 | 3.0 | 21 | 0.8004 | 0.2857 | | 0.5596 | 4.0 | 28 | 0.8508 | 0.2857 | | 0.5667 | 5.0 | 35 | 0.8464 | 0.2857 | | 0.367 | 6.0 | 42 | 0.8515 | 0.2857 | | 0.2706 | 7.0 | 49 | 0.9574 | 0.2857 | | 0.2163 | 8.0 | 56 | 0.9710 | 0.4286 | | 0.1024 | 9.0 | 63 | 1.1607 | 0.1429 | | 0.1046 | 10.0 | 70 | 1.3779 | 0.1429 | | 0.0483 | 11.0 | 77 | 1.4876 | 0.1429 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "distilbert-base-uncased__sst2__train-16-7", "results": []}]}
SetFit/distilbert-base-uncased__sst2__train-16-7
null
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__sst2__train-16-8 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6895 - Accuracy: 0.5222 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6899 | 1.0 | 7 | 0.7055 | 0.2857 | | 0.6793 | 2.0 | 14 | 0.7205 | 0.2857 | | 0.6291 | 3.0 | 21 | 0.7460 | 0.2857 | | 0.5659 | 4.0 | 28 | 0.8041 | 0.2857 | | 0.5607 | 5.0 | 35 | 0.7785 | 0.4286 | | 0.3349 | 6.0 | 42 | 0.8163 | 0.4286 | | 0.2436 | 7.0 | 49 | 0.9101 | 0.2857 | | 0.1734 | 8.0 | 56 | 0.8632 | 0.5714 | | 0.1122 | 9.0 | 63 | 0.9851 | 0.5714 | | 0.0661 | 10.0 | 70 | 1.0835 | 0.5714 | | 0.0407 | 11.0 | 77 | 1.1656 | 0.5714 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "distilbert-base-uncased__sst2__train-16-8", "results": []}]}
SetFit/distilbert-base-uncased__sst2__train-16-8
null
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__sst2__train-16-9 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6915 - Accuracy: 0.5157 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6868 | 1.0 | 7 | 0.7121 | 0.1429 | | 0.6755 | 2.0 | 14 | 0.7234 | 0.1429 | | 0.6389 | 3.0 | 21 | 0.7384 | 0.2857 | | 0.5575 | 4.0 | 28 | 0.7884 | 0.2857 | | 0.4972 | 5.0 | 35 | 0.7767 | 0.4286 | | 0.2821 | 6.0 | 42 | 0.8275 | 0.4286 | | 0.1859 | 7.0 | 49 | 0.9283 | 0.2857 | | 0.1388 | 8.0 | 56 | 0.9384 | 0.4286 | | 0.078 | 9.0 | 63 | 1.1973 | 0.4286 | | 0.0462 | 10.0 | 70 | 1.4016 | 0.4286 | | 0.0319 | 11.0 | 77 | 1.4087 | 0.4286 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "distilbert-base-uncased__sst2__train-16-9", "results": []}]}
SetFit/distilbert-base-uncased__sst2__train-16-9
null
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__sst2__train-32-0 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8558 - Accuracy: 0.7183 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7088 | 1.0 | 13 | 0.6819 | 0.6154 | | 0.635 | 2.0 | 26 | 0.6318 | 0.7692 | | 0.547 | 3.0 | 39 | 0.5356 | 0.7692 | | 0.3497 | 4.0 | 52 | 0.4456 | 0.6923 | | 0.1979 | 5.0 | 65 | 0.3993 | 0.7692 | | 0.098 | 6.0 | 78 | 0.3613 | 0.7692 | | 0.0268 | 7.0 | 91 | 0.3561 | 0.9231 | | 0.0137 | 8.0 | 104 | 0.3755 | 0.9231 | | 0.0083 | 9.0 | 117 | 0.4194 | 0.7692 | | 0.0065 | 10.0 | 130 | 0.4446 | 0.7692 | | 0.005 | 11.0 | 143 | 0.4527 | 0.7692 | | 0.0038 | 12.0 | 156 | 0.4645 | 0.7692 | | 0.0033 | 13.0 | 169 | 0.4735 | 0.7692 | | 0.0033 | 14.0 | 182 | 0.4874 | 0.7692 | | 0.0029 | 15.0 | 195 | 0.5041 | 0.7692 | | 0.0025 | 16.0 | 208 | 0.5148 | 0.7692 | | 0.0024 | 17.0 | 221 | 0.5228 | 0.7692 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "distilbert-base-uncased__sst2__train-32-0", "results": []}]}
SetFit/distilbert-base-uncased__sst2__train-32-0
null
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__sst2__train-32-1 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6492 - Accuracy: 0.6551 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7106 | 1.0 | 13 | 0.6850 | 0.6154 | | 0.631 | 2.0 | 26 | 0.6632 | 0.6923 | | 0.5643 | 3.0 | 39 | 0.6247 | 0.7692 | | 0.3992 | 4.0 | 52 | 0.5948 | 0.7692 | | 0.1928 | 5.0 | 65 | 0.5803 | 0.7692 | | 0.0821 | 6.0 | 78 | 0.6404 | 0.6923 | | 0.0294 | 7.0 | 91 | 0.7387 | 0.6923 | | 0.0141 | 8.0 | 104 | 0.8270 | 0.6923 | | 0.0082 | 9.0 | 117 | 0.8496 | 0.6923 | | 0.0064 | 10.0 | 130 | 0.8679 | 0.6923 | | 0.005 | 11.0 | 143 | 0.8914 | 0.6923 | | 0.0036 | 12.0 | 156 | 0.9278 | 0.6923 | | 0.0031 | 13.0 | 169 | 0.9552 | 0.6923 | | 0.0029 | 14.0 | 182 | 0.9745 | 0.6923 | | 0.0028 | 15.0 | 195 | 0.9785 | 0.6923 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "distilbert-base-uncased__sst2__train-32-1", "results": []}]}
SetFit/distilbert-base-uncased__sst2__train-32-1
null
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__sst2__train-32-2 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4805 - Accuracy: 0.7699 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7124 | 1.0 | 13 | 0.6882 | 0.5385 | | 0.6502 | 2.0 | 26 | 0.6715 | 0.5385 | | 0.6001 | 3.0 | 39 | 0.6342 | 0.6154 | | 0.455 | 4.0 | 52 | 0.5713 | 0.7692 | | 0.2605 | 5.0 | 65 | 0.5562 | 0.7692 | | 0.1258 | 6.0 | 78 | 0.6799 | 0.7692 | | 0.0444 | 7.0 | 91 | 0.8096 | 0.7692 | | 0.0175 | 8.0 | 104 | 0.9281 | 0.6923 | | 0.0106 | 9.0 | 117 | 0.9826 | 0.6923 | | 0.0077 | 10.0 | 130 | 1.0254 | 0.7692 | | 0.0056 | 11.0 | 143 | 1.0667 | 0.7692 | | 0.0042 | 12.0 | 156 | 1.1003 | 0.7692 | | 0.0036 | 13.0 | 169 | 1.1299 | 0.7692 | | 0.0034 | 14.0 | 182 | 1.1623 | 0.6923 | | 0.003 | 15.0 | 195 | 1.1938 | 0.6923 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "distilbert-base-uncased__sst2__train-32-2", "results": []}]}
SetFit/distilbert-base-uncased__sst2__train-32-2
null
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__sst2__train-32-3 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5694 - Accuracy: 0.7073 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7118 | 1.0 | 13 | 0.6844 | 0.5385 | | 0.6587 | 2.0 | 26 | 0.6707 | 0.6154 | | 0.6067 | 3.0 | 39 | 0.6295 | 0.5385 | | 0.4714 | 4.0 | 52 | 0.5811 | 0.6923 | | 0.2444 | 5.0 | 65 | 0.5932 | 0.7692 | | 0.1007 | 6.0 | 78 | 0.7386 | 0.6923 | | 0.0332 | 7.0 | 91 | 0.6962 | 0.6154 | | 0.0147 | 8.0 | 104 | 0.8200 | 0.7692 | | 0.0083 | 9.0 | 117 | 0.9250 | 0.7692 | | 0.0066 | 10.0 | 130 | 0.9345 | 0.7692 | | 0.005 | 11.0 | 143 | 0.9313 | 0.7692 | | 0.0036 | 12.0 | 156 | 0.9356 | 0.7692 | | 0.0031 | 13.0 | 169 | 0.9395 | 0.7692 | | 0.0029 | 14.0 | 182 | 0.9504 | 0.7692 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "distilbert-base-uncased__sst2__train-32-3", "results": []}]}
SetFit/distilbert-base-uncased__sst2__train-32-3
null
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__sst2__train-32-4 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5001 - Accuracy: 0.7650 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7175 | 1.0 | 13 | 0.6822 | 0.5385 | | 0.6559 | 2.0 | 26 | 0.6533 | 0.6154 | | 0.6052 | 3.0 | 39 | 0.5762 | 0.7692 | | 0.4587 | 4.0 | 52 | 0.4477 | 0.8462 | | 0.2459 | 5.0 | 65 | 0.4288 | 0.7692 | | 0.1001 | 6.0 | 78 | 0.5219 | 0.7692 | | 0.0308 | 7.0 | 91 | 0.8540 | 0.7692 | | 0.014 | 8.0 | 104 | 0.7789 | 0.7692 | | 0.0083 | 9.0 | 117 | 0.7996 | 0.7692 | | 0.0064 | 10.0 | 130 | 0.8342 | 0.7692 | | 0.0049 | 11.0 | 143 | 0.8612 | 0.7692 | | 0.0036 | 12.0 | 156 | 0.8834 | 0.7692 | | 0.0032 | 13.0 | 169 | 0.9067 | 0.7692 | | 0.003 | 14.0 | 182 | 0.9332 | 0.7692 | | 0.0028 | 15.0 | 195 | 0.9511 | 0.7692 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "distilbert-base-uncased__sst2__train-32-4", "results": []}]}
SetFit/distilbert-base-uncased__sst2__train-32-4
null
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__sst2__train-32-5 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6248 - Accuracy: 0.6826 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7136 | 1.0 | 13 | 0.6850 | 0.5385 | | 0.6496 | 2.0 | 26 | 0.6670 | 0.6154 | | 0.5895 | 3.0 | 39 | 0.6464 | 0.7692 | | 0.4271 | 4.0 | 52 | 0.6478 | 0.7692 | | 0.2182 | 5.0 | 65 | 0.6809 | 0.6923 | | 0.103 | 6.0 | 78 | 0.9119 | 0.6923 | | 0.0326 | 7.0 | 91 | 1.0718 | 0.6923 | | 0.0154 | 8.0 | 104 | 1.0721 | 0.7692 | | 0.0087 | 9.0 | 117 | 1.1416 | 0.7692 | | 0.0067 | 10.0 | 130 | 1.2088 | 0.7692 | | 0.005 | 11.0 | 143 | 1.2656 | 0.7692 | | 0.0037 | 12.0 | 156 | 1.3104 | 0.7692 | | 0.0032 | 13.0 | 169 | 1.3428 | 0.6923 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "distilbert-base-uncased__sst2__train-32-5", "results": []}]}
SetFit/distilbert-base-uncased__sst2__train-32-5
null
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__sst2__train-32-6 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5072 - Accuracy: 0.7650 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7057 | 1.0 | 13 | 0.6704 | 0.6923 | | 0.6489 | 2.0 | 26 | 0.6228 | 0.8462 | | 0.5475 | 3.0 | 39 | 0.5079 | 0.8462 | | 0.4014 | 4.0 | 52 | 0.4203 | 0.8462 | | 0.1923 | 5.0 | 65 | 0.3872 | 0.8462 | | 0.1014 | 6.0 | 78 | 0.4909 | 0.8462 | | 0.0349 | 7.0 | 91 | 0.5460 | 0.8462 | | 0.0173 | 8.0 | 104 | 0.4867 | 0.8462 | | 0.0098 | 9.0 | 117 | 0.5274 | 0.8462 | | 0.0075 | 10.0 | 130 | 0.6086 | 0.8462 | | 0.0057 | 11.0 | 143 | 0.6604 | 0.8462 | | 0.0041 | 12.0 | 156 | 0.6904 | 0.8462 | | 0.0037 | 13.0 | 169 | 0.7164 | 0.8462 | | 0.0034 | 14.0 | 182 | 0.7368 | 0.8462 | | 0.0031 | 15.0 | 195 | 0.7565 | 0.8462 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "distilbert-base-uncased__sst2__train-32-6", "results": []}]}
SetFit/distilbert-base-uncased__sst2__train-32-6
null
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__sst2__train-32-7 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6736 - Accuracy: 0.5931 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7094 | 1.0 | 13 | 0.6887 | 0.5385 | | 0.651 | 2.0 | 26 | 0.6682 | 0.6923 | | 0.6084 | 3.0 | 39 | 0.6412 | 0.6923 | | 0.4547 | 4.0 | 52 | 0.6095 | 0.6923 | | 0.2903 | 5.0 | 65 | 0.6621 | 0.6923 | | 0.1407 | 6.0 | 78 | 0.7130 | 0.7692 | | 0.0444 | 7.0 | 91 | 0.9007 | 0.6923 | | 0.0176 | 8.0 | 104 | 0.9525 | 0.7692 | | 0.0098 | 9.0 | 117 | 1.0289 | 0.7692 | | 0.0071 | 10.0 | 130 | 1.0876 | 0.7692 | | 0.0052 | 11.0 | 143 | 1.1431 | 0.6923 | | 0.0038 | 12.0 | 156 | 1.1687 | 0.7692 | | 0.0034 | 13.0 | 169 | 1.1792 | 0.7692 | | 0.0031 | 14.0 | 182 | 1.2033 | 0.7692 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "distilbert-base-uncased__sst2__train-32-7", "results": []}]}
SetFit/distilbert-base-uncased__sst2__train-32-7
null
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__sst2__train-32-8 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6880 - Accuracy: 0.5014 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.712 | 1.0 | 13 | 0.6936 | 0.5385 | | 0.665 | 2.0 | 26 | 0.6960 | 0.3846 | | 0.6112 | 3.0 | 39 | 0.7138 | 0.3846 | | 0.4521 | 4.0 | 52 | 0.8243 | 0.4615 | | 0.2627 | 5.0 | 65 | 0.7723 | 0.6154 | | 0.0928 | 6.0 | 78 | 1.2666 | 0.5385 | | 0.0312 | 7.0 | 91 | 1.2306 | 0.6154 | | 0.0132 | 8.0 | 104 | 1.3385 | 0.6154 | | 0.0082 | 9.0 | 117 | 1.4584 | 0.6154 | | 0.0063 | 10.0 | 130 | 1.5429 | 0.6154 | | 0.0049 | 11.0 | 143 | 1.5913 | 0.6154 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "distilbert-base-uncased__sst2__train-32-8", "results": []}]}
SetFit/distilbert-base-uncased__sst2__train-32-8
null
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__sst2__train-32-9 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5625 - Accuracy: 0.7353 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7057 | 1.0 | 13 | 0.6805 | 0.5385 | | 0.6642 | 2.0 | 26 | 0.6526 | 0.7692 | | 0.5869 | 3.0 | 39 | 0.5773 | 0.8462 | | 0.4085 | 4.0 | 52 | 0.4959 | 0.8462 | | 0.2181 | 5.0 | 65 | 0.4902 | 0.6923 | | 0.069 | 6.0 | 78 | 0.5065 | 0.8462 | | 0.0522 | 7.0 | 91 | 0.6082 | 0.7692 | | 0.0135 | 8.0 | 104 | 0.6924 | 0.7692 | | 0.0084 | 9.0 | 117 | 0.5921 | 0.7692 | | 0.0061 | 10.0 | 130 | 0.6477 | 0.7692 | | 0.0047 | 11.0 | 143 | 0.6648 | 0.7692 | | 0.0035 | 12.0 | 156 | 0.6640 | 0.7692 | | 0.0031 | 13.0 | 169 | 0.6615 | 0.7692 | | 0.0029 | 14.0 | 182 | 0.6605 | 0.7692 | | 0.0026 | 15.0 | 195 | 0.6538 | 0.8462 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "distilbert-base-uncased__sst2__train-32-9", "results": []}]}
SetFit/distilbert-base-uncased__sst2__train-32-9
null
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__sst2__train-8-0 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6920 - Accuracy: 0.5189 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6916 | 1.0 | 3 | 0.7035 | 0.25 | | 0.6852 | 2.0 | 6 | 0.7139 | 0.25 | | 0.6533 | 3.0 | 9 | 0.7192 | 0.25 | | 0.6211 | 4.0 | 12 | 0.7322 | 0.25 | | 0.5522 | 5.0 | 15 | 0.7561 | 0.25 | | 0.488 | 6.0 | 18 | 0.7883 | 0.25 | | 0.48 | 7.0 | 21 | 0.8224 | 0.25 | | 0.3948 | 8.0 | 24 | 0.8605 | 0.25 | | 0.3478 | 9.0 | 27 | 0.8726 | 0.25 | | 0.2723 | 10.0 | 30 | 0.8885 | 0.25 | | 0.2174 | 11.0 | 33 | 0.8984 | 0.5 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "distilbert-base-uncased__sst2__train-8-0", "results": []}]}
SetFit/distilbert-base-uncased__sst2__train-8-0
null
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__sst2__train-8-1 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6930 - Accuracy: 0.5047 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7082 | 1.0 | 3 | 0.7048 | 0.25 | | 0.6761 | 2.0 | 6 | 0.7249 | 0.25 | | 0.6653 | 3.0 | 9 | 0.7423 | 0.25 | | 0.6212 | 4.0 | 12 | 0.7727 | 0.25 | | 0.5932 | 5.0 | 15 | 0.8098 | 0.25 | | 0.5427 | 6.0 | 18 | 0.8496 | 0.25 | | 0.5146 | 7.0 | 21 | 0.8992 | 0.25 | | 0.4356 | 8.0 | 24 | 0.9494 | 0.25 | | 0.4275 | 9.0 | 27 | 0.9694 | 0.25 | | 0.3351 | 10.0 | 30 | 0.9968 | 0.25 | | 0.2812 | 11.0 | 33 | 1.0056 | 0.5 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "distilbert-base-uncased__sst2__train-8-1", "results": []}]}
SetFit/distilbert-base-uncased__sst2__train-8-1
null
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__sst2__train-8-2 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6932 - Accuracy: 0.4931 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7081 | 1.0 | 3 | 0.7031 | 0.25 | | 0.6853 | 2.0 | 6 | 0.7109 | 0.25 | | 0.6696 | 3.0 | 9 | 0.7211 | 0.25 | | 0.6174 | 4.0 | 12 | 0.7407 | 0.25 | | 0.5717 | 5.0 | 15 | 0.7625 | 0.25 | | 0.5096 | 6.0 | 18 | 0.7732 | 0.25 | | 0.488 | 7.0 | 21 | 0.7798 | 0.25 | | 0.4023 | 8.0 | 24 | 0.7981 | 0.25 | | 0.3556 | 9.0 | 27 | 0.8110 | 0.25 | | 0.2714 | 10.0 | 30 | 0.8269 | 0.25 | | 0.2295 | 11.0 | 33 | 0.8276 | 0.25 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "distilbert-base-uncased__sst2__train-8-2", "results": []}]}
SetFit/distilbert-base-uncased__sst2__train-8-2
null
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__sst2__train-8-3 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6914 - Accuracy: 0.5195 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6931 | 1.0 | 3 | 0.7039 | 0.25 | | 0.6615 | 2.0 | 6 | 0.7186 | 0.25 | | 0.653 | 3.0 | 9 | 0.7334 | 0.25 | | 0.601 | 4.0 | 12 | 0.7592 | 0.25 | | 0.5555 | 5.0 | 15 | 0.7922 | 0.25 | | 0.4832 | 6.0 | 18 | 0.8179 | 0.25 | | 0.4565 | 7.0 | 21 | 0.8285 | 0.25 | | 0.3996 | 8.0 | 24 | 0.8559 | 0.25 | | 0.3681 | 9.0 | 27 | 0.8586 | 0.5 | | 0.2901 | 10.0 | 30 | 0.8646 | 0.5 | | 0.241 | 11.0 | 33 | 0.8524 | 0.5 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "distilbert-base-uncased__sst2__train-8-3", "results": []}]}
SetFit/distilbert-base-uncased__sst2__train-8-3
null
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__sst2__train-8-4 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6921 - Accuracy: 0.5107 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7163 | 1.0 | 3 | 0.7100 | 0.25 | | 0.6785 | 2.0 | 6 | 0.7209 | 0.25 | | 0.6455 | 3.0 | 9 | 0.7321 | 0.25 | | 0.6076 | 4.0 | 12 | 0.7517 | 0.25 | | 0.5593 | 5.0 | 15 | 0.7780 | 0.25 | | 0.5202 | 6.0 | 18 | 0.7990 | 0.25 | | 0.4967 | 7.0 | 21 | 0.8203 | 0.25 | | 0.4158 | 8.0 | 24 | 0.8497 | 0.25 | | 0.3997 | 9.0 | 27 | 0.8638 | 0.25 | | 0.3064 | 10.0 | 30 | 0.8732 | 0.25 | | 0.2618 | 11.0 | 33 | 0.8669 | 0.25 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "distilbert-base-uncased__sst2__train-8-4", "results": []}]}
SetFit/distilbert-base-uncased__sst2__train-8-4
null
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__sst2__train-8-5 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8419 - Accuracy: 0.6172 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7057 | 1.0 | 3 | 0.6848 | 0.75 | | 0.6681 | 2.0 | 6 | 0.6875 | 0.5 | | 0.6591 | 3.0 | 9 | 0.6868 | 0.25 | | 0.6052 | 4.0 | 12 | 0.6943 | 0.25 | | 0.557 | 5.0 | 15 | 0.7078 | 0.25 | | 0.4954 | 6.0 | 18 | 0.7168 | 0.25 | | 0.4593 | 7.0 | 21 | 0.7185 | 0.25 | | 0.3936 | 8.0 | 24 | 0.7212 | 0.25 | | 0.3699 | 9.0 | 27 | 0.6971 | 0.5 | | 0.2916 | 10.0 | 30 | 0.6827 | 0.5 | | 0.2511 | 11.0 | 33 | 0.6464 | 0.5 | | 0.2109 | 12.0 | 36 | 0.6344 | 0.75 | | 0.1655 | 13.0 | 39 | 0.6377 | 0.75 | | 0.1412 | 14.0 | 42 | 0.6398 | 0.75 | | 0.1157 | 15.0 | 45 | 0.6315 | 0.75 | | 0.0895 | 16.0 | 48 | 0.6210 | 0.75 | | 0.0783 | 17.0 | 51 | 0.5918 | 0.75 | | 0.0606 | 18.0 | 54 | 0.5543 | 0.75 | | 0.0486 | 19.0 | 57 | 0.5167 | 0.75 | | 0.0405 | 20.0 | 60 | 0.4862 | 0.75 | | 0.0376 | 21.0 | 63 | 0.4644 | 0.75 | | 0.0294 | 22.0 | 66 | 0.4497 | 0.75 | | 0.0261 | 23.0 | 69 | 0.4428 | 0.75 | | 0.0238 | 24.0 | 72 | 0.4408 | 0.75 | | 0.0217 | 25.0 | 75 | 0.4392 | 0.75 | | 0.0187 | 26.0 | 78 | 0.4373 | 0.75 | | 0.0177 | 27.0 | 81 | 0.4360 | 0.75 | | 0.0136 | 28.0 | 84 | 0.4372 | 0.75 | | 0.0144 | 29.0 | 87 | 0.4368 | 0.75 | | 0.014 | 30.0 | 90 | 0.4380 | 0.75 | | 0.0137 | 31.0 | 93 | 0.4383 | 0.75 | | 0.0133 | 32.0 | 96 | 0.4409 | 0.75 | | 0.013 | 33.0 | 99 | 0.4380 | 0.75 | | 0.0096 | 34.0 | 102 | 0.4358 | 0.75 | | 0.012 | 35.0 | 105 | 0.4339 | 0.75 | | 0.0122 | 36.0 | 108 | 0.4305 | 0.75 | | 0.0109 | 37.0 | 111 | 0.4267 | 0.75 | | 0.0121 | 38.0 | 114 | 0.4231 | 0.75 | | 0.0093 | 39.0 | 117 | 0.4209 | 0.75 | | 0.0099 | 40.0 | 120 | 0.4199 | 0.75 | | 0.0091 | 41.0 | 123 | 0.4184 | 0.75 | | 0.0116 | 42.0 | 126 | 0.4173 | 0.75 | | 0.01 | 43.0 | 129 | 0.4163 | 0.75 | | 0.0098 | 44.0 | 132 | 0.4153 | 0.75 | | 0.0101 | 45.0 | 135 | 0.4155 | 0.75 | | 0.0088 | 46.0 | 138 | 0.4149 | 0.75 | | 0.0087 | 47.0 | 141 | 0.4150 | 0.75 | | 0.0093 | 48.0 | 144 | 0.4147 | 0.75 | | 0.0081 | 49.0 | 147 | 0.4147 | 0.75 | | 0.009 | 50.0 | 150 | 0.4150 | 0.75 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "distilbert-base-uncased__sst2__train-8-5", "results": []}]}
SetFit/distilbert-base-uncased__sst2__train-8-5
null
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__sst2__train-8-6 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5336 - Accuracy: 0.7523 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7161 | 1.0 | 3 | 0.6941 | 0.5 | | 0.6786 | 2.0 | 6 | 0.7039 | 0.25 | | 0.6586 | 3.0 | 9 | 0.7090 | 0.25 | | 0.6121 | 4.0 | 12 | 0.7183 | 0.25 | | 0.5696 | 5.0 | 15 | 0.7266 | 0.25 | | 0.522 | 6.0 | 18 | 0.7305 | 0.25 | | 0.4899 | 7.0 | 21 | 0.7339 | 0.25 | | 0.3985 | 8.0 | 24 | 0.7429 | 0.25 | | 0.3758 | 9.0 | 27 | 0.7224 | 0.25 | | 0.2876 | 10.0 | 30 | 0.7068 | 0.5 | | 0.2498 | 11.0 | 33 | 0.6751 | 0.75 | | 0.1921 | 12.0 | 36 | 0.6487 | 0.75 | | 0.1491 | 13.0 | 39 | 0.6261 | 0.75 | | 0.1276 | 14.0 | 42 | 0.6102 | 0.75 | | 0.0996 | 15.0 | 45 | 0.5964 | 0.75 | | 0.073 | 16.0 | 48 | 0.6019 | 0.75 | | 0.0627 | 17.0 | 51 | 0.5933 | 0.75 | | 0.053 | 18.0 | 54 | 0.5768 | 0.75 | | 0.0403 | 19.0 | 57 | 0.5698 | 0.75 | | 0.0328 | 20.0 | 60 | 0.5656 | 0.75 | | 0.03 | 21.0 | 63 | 0.5634 | 0.75 | | 0.025 | 22.0 | 66 | 0.5620 | 0.75 | | 0.0209 | 23.0 | 69 | 0.5623 | 0.75 | | 0.0214 | 24.0 | 72 | 0.5606 | 0.75 | | 0.0191 | 25.0 | 75 | 0.5565 | 0.75 | | 0.0173 | 26.0 | 78 | 0.5485 | 0.75 | | 0.0175 | 27.0 | 81 | 0.5397 | 0.75 | | 0.0132 | 28.0 | 84 | 0.5322 | 0.75 | | 0.0138 | 29.0 | 87 | 0.5241 | 0.75 | | 0.0128 | 30.0 | 90 | 0.5235 | 0.75 | | 0.0126 | 31.0 | 93 | 0.5253 | 0.75 | | 0.012 | 32.0 | 96 | 0.5317 | 0.75 | | 0.0118 | 33.0 | 99 | 0.5342 | 0.75 | | 0.0092 | 34.0 | 102 | 0.5388 | 0.75 | | 0.0117 | 35.0 | 105 | 0.5414 | 0.75 | | 0.0124 | 36.0 | 108 | 0.5453 | 0.75 | | 0.0109 | 37.0 | 111 | 0.5506 | 0.75 | | 0.0112 | 38.0 | 114 | 0.5555 | 0.75 | | 0.0087 | 39.0 | 117 | 0.5597 | 0.75 | | 0.01 | 40.0 | 120 | 0.5640 | 0.75 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "distilbert-base-uncased__sst2__train-8-6", "results": []}]}
SetFit/distilbert-base-uncased__sst2__train-8-6
null
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__sst2__train-8-7 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6950 - Accuracy: 0.4618 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7156 | 1.0 | 3 | 0.6965 | 0.25 | | 0.6645 | 2.0 | 6 | 0.7059 | 0.25 | | 0.6368 | 3.0 | 9 | 0.7179 | 0.25 | | 0.5944 | 4.0 | 12 | 0.7408 | 0.25 | | 0.5369 | 5.0 | 15 | 0.7758 | 0.25 | | 0.449 | 6.0 | 18 | 0.8009 | 0.25 | | 0.4352 | 7.0 | 21 | 0.8209 | 0.5 | | 0.3462 | 8.0 | 24 | 0.8470 | 0.5 | | 0.3028 | 9.0 | 27 | 0.8579 | 0.5 | | 0.2365 | 10.0 | 30 | 0.8704 | 0.5 | | 0.2023 | 11.0 | 33 | 0.8770 | 0.5 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "distilbert-base-uncased__sst2__train-8-7", "results": []}]}
SetFit/distilbert-base-uncased__sst2__train-8-7
null
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__sst2__train-8-8 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6925 - Accuracy: 0.5200 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7061 | 1.0 | 3 | 0.6899 | 0.75 | | 0.6627 | 2.0 | 6 | 0.7026 | 0.25 | | 0.644 | 3.0 | 9 | 0.7158 | 0.25 | | 0.6087 | 4.0 | 12 | 0.7325 | 0.25 | | 0.5602 | 5.0 | 15 | 0.7555 | 0.25 | | 0.5034 | 6.0 | 18 | 0.7725 | 0.25 | | 0.4672 | 7.0 | 21 | 0.7983 | 0.25 | | 0.403 | 8.0 | 24 | 0.8314 | 0.25 | | 0.3571 | 9.0 | 27 | 0.8555 | 0.25 | | 0.2792 | 10.0 | 30 | 0.9065 | 0.25 | | 0.2373 | 11.0 | 33 | 0.9286 | 0.25 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "distilbert-base-uncased__sst2__train-8-8", "results": []}]}
SetFit/distilbert-base-uncased__sst2__train-8-8
null
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__sst2__train-8-9 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6925 - Accuracy: 0.5140 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7204 | 1.0 | 3 | 0.7025 | 0.5 | | 0.6885 | 2.0 | 6 | 0.7145 | 0.5 | | 0.6662 | 3.0 | 9 | 0.7222 | 0.5 | | 0.6182 | 4.0 | 12 | 0.7427 | 0.25 | | 0.5707 | 5.0 | 15 | 0.7773 | 0.25 | | 0.5247 | 6.0 | 18 | 0.8137 | 0.25 | | 0.5003 | 7.0 | 21 | 0.8556 | 0.25 | | 0.4195 | 8.0 | 24 | 0.9089 | 0.5 | | 0.387 | 9.0 | 27 | 0.9316 | 0.25 | | 0.2971 | 10.0 | 30 | 0.9558 | 0.25 | | 0.2581 | 11.0 | 33 | 0.9420 | 0.25 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "distilbert-base-uncased__sst2__train-8-9", "results": []}]}
SetFit/distilbert-base-uncased__sst2__train-8-9
null
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__sst5__all-train This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.3757 - Accuracy: 0.5045 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.2492 | 1.0 | 534 | 1.1163 | 0.4991 | | 0.9937 | 2.0 | 1068 | 1.1232 | 0.5122 | | 0.7867 | 3.0 | 1602 | 1.2097 | 0.5045 | | 0.595 | 4.0 | 2136 | 1.3757 | 0.5045 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "distilbert-base-uncased__sst5__all-train", "results": []}]}
SetFit/distilbert-base-uncased__sst5__all-train
null
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__subj__all-train This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3193 - Accuracy: 0.9485 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.1992 | 1.0 | 500 | 0.1236 | 0.963 | | 0.084 | 2.0 | 1000 | 0.1428 | 0.963 | | 0.0333 | 3.0 | 1500 | 0.1906 | 0.965 | | 0.0159 | 4.0 | 2000 | 0.3193 | 0.9485 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "base_model": "distilbert-base-uncased", "model-index": [{"name": "distilbert-base-uncased__subj__all-train", "results": []}]}
SetFit/distilbert-base-uncased__subj__all-train
null
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "base_model:distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__subj__train-8-0 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4440 - Accuracy: 0.789 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7163 | 1.0 | 3 | 0.6868 | 0.5 | | 0.6683 | 2.0 | 6 | 0.6804 | 0.75 | | 0.6375 | 3.0 | 9 | 0.6702 | 0.75 | | 0.5997 | 4.0 | 12 | 0.6686 | 0.75 | | 0.5345 | 5.0 | 15 | 0.6720 | 0.75 | | 0.4673 | 6.0 | 18 | 0.6646 | 0.75 | | 0.4214 | 7.0 | 21 | 0.6494 | 0.75 | | 0.3439 | 8.0 | 24 | 0.6313 | 0.75 | | 0.3157 | 9.0 | 27 | 0.6052 | 0.75 | | 0.2329 | 10.0 | 30 | 0.5908 | 0.75 | | 0.1989 | 11.0 | 33 | 0.5768 | 0.75 | | 0.1581 | 12.0 | 36 | 0.5727 | 0.75 | | 0.1257 | 13.0 | 39 | 0.5678 | 0.75 | | 0.1005 | 14.0 | 42 | 0.5518 | 0.75 | | 0.0836 | 15.0 | 45 | 0.5411 | 0.75 | | 0.0611 | 16.0 | 48 | 0.5320 | 0.75 | | 0.0503 | 17.0 | 51 | 0.5299 | 0.75 | | 0.0407 | 18.0 | 54 | 0.5368 | 0.75 | | 0.0332 | 19.0 | 57 | 0.5455 | 0.75 | | 0.0293 | 20.0 | 60 | 0.5525 | 0.75 | | 0.0254 | 21.0 | 63 | 0.5560 | 0.75 | | 0.0231 | 22.0 | 66 | 0.5569 | 0.75 | | 0.0201 | 23.0 | 69 | 0.5572 | 0.75 | | 0.0179 | 24.0 | 72 | 0.5575 | 0.75 | | 0.0184 | 25.0 | 75 | 0.5547 | 0.75 | | 0.0148 | 26.0 | 78 | 0.5493 | 0.75 | | 0.0149 | 27.0 | 81 | 0.5473 | 0.75 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "distilbert-base-uncased__subj__train-8-0", "results": []}]}
SetFit/distilbert-base-uncased__subj__train-8-0
null
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__subj__train-8-1 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5488 - Accuracy: 0.791 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.703 | 1.0 | 3 | 0.6906 | 0.5 | | 0.666 | 2.0 | 6 | 0.6945 | 0.25 | | 0.63 | 3.0 | 9 | 0.6885 | 0.5 | | 0.588 | 4.0 | 12 | 0.6888 | 0.25 | | 0.5181 | 5.0 | 15 | 0.6899 | 0.25 | | 0.4508 | 6.0 | 18 | 0.6770 | 0.5 | | 0.4025 | 7.0 | 21 | 0.6579 | 0.5 | | 0.3361 | 8.0 | 24 | 0.6392 | 0.5 | | 0.2919 | 9.0 | 27 | 0.6113 | 0.5 | | 0.2151 | 10.0 | 30 | 0.5774 | 0.75 | | 0.1728 | 11.0 | 33 | 0.5248 | 0.75 | | 0.1313 | 12.0 | 36 | 0.4824 | 0.75 | | 0.1046 | 13.0 | 39 | 0.4456 | 0.75 | | 0.0858 | 14.0 | 42 | 0.4076 | 0.75 | | 0.0679 | 15.0 | 45 | 0.3755 | 0.75 | | 0.0485 | 16.0 | 48 | 0.3422 | 0.75 | | 0.0416 | 17.0 | 51 | 0.3055 | 0.75 | | 0.0358 | 18.0 | 54 | 0.2731 | 1.0 | | 0.0277 | 19.0 | 57 | 0.2443 | 1.0 | | 0.0234 | 20.0 | 60 | 0.2187 | 1.0 | | 0.0223 | 21.0 | 63 | 0.1960 | 1.0 | | 0.0187 | 22.0 | 66 | 0.1762 | 1.0 | | 0.017 | 23.0 | 69 | 0.1629 | 1.0 | | 0.0154 | 24.0 | 72 | 0.1543 | 1.0 | | 0.0164 | 25.0 | 75 | 0.1476 | 1.0 | | 0.0131 | 26.0 | 78 | 0.1423 | 1.0 | | 0.0139 | 27.0 | 81 | 0.1387 | 1.0 | | 0.0107 | 28.0 | 84 | 0.1360 | 1.0 | | 0.0108 | 29.0 | 87 | 0.1331 | 1.0 | | 0.0105 | 30.0 | 90 | 0.1308 | 1.0 | | 0.0106 | 31.0 | 93 | 0.1276 | 1.0 | | 0.0104 | 32.0 | 96 | 0.1267 | 1.0 | | 0.0095 | 33.0 | 99 | 0.1255 | 1.0 | | 0.0076 | 34.0 | 102 | 0.1243 | 1.0 | | 0.0094 | 35.0 | 105 | 0.1235 | 1.0 | | 0.0103 | 36.0 | 108 | 0.1228 | 1.0 | | 0.0086 | 37.0 | 111 | 0.1231 | 1.0 | | 0.0094 | 38.0 | 114 | 0.1236 | 1.0 | | 0.0074 | 39.0 | 117 | 0.1240 | 1.0 | | 0.0085 | 40.0 | 120 | 0.1246 | 1.0 | | 0.0079 | 41.0 | 123 | 0.1253 | 1.0 | | 0.0088 | 42.0 | 126 | 0.1248 | 1.0 | | 0.0082 | 43.0 | 129 | 0.1244 | 1.0 | | 0.0082 | 44.0 | 132 | 0.1234 | 1.0 | | 0.0082 | 45.0 | 135 | 0.1223 | 1.0 | | 0.0071 | 46.0 | 138 | 0.1212 | 1.0 | | 0.0073 | 47.0 | 141 | 0.1208 | 1.0 | | 0.0081 | 48.0 | 144 | 0.1205 | 1.0 | | 0.0067 | 49.0 | 147 | 0.1202 | 1.0 | | 0.0077 | 50.0 | 150 | 0.1202 | 1.0 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "distilbert-base-uncased__subj__train-8-1", "results": []}]}
SetFit/distilbert-base-uncased__subj__train-8-1
null
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__subj__train-8-2 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3081 - Accuracy: 0.8755 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7146 | 1.0 | 3 | 0.6798 | 0.75 | | 0.6737 | 2.0 | 6 | 0.6847 | 0.75 | | 0.6519 | 3.0 | 9 | 0.6783 | 0.75 | | 0.6105 | 4.0 | 12 | 0.6812 | 0.25 | | 0.5463 | 5.0 | 15 | 0.6869 | 0.25 | | 0.4922 | 6.0 | 18 | 0.6837 | 0.5 | | 0.4543 | 7.0 | 21 | 0.6716 | 0.5 | | 0.3856 | 8.0 | 24 | 0.6613 | 0.75 | | 0.3475 | 9.0 | 27 | 0.6282 | 0.75 | | 0.2717 | 10.0 | 30 | 0.6045 | 0.75 | | 0.2347 | 11.0 | 33 | 0.5620 | 0.75 | | 0.1979 | 12.0 | 36 | 0.5234 | 1.0 | | 0.1535 | 13.0 | 39 | 0.4771 | 1.0 | | 0.1332 | 14.0 | 42 | 0.4277 | 1.0 | | 0.1041 | 15.0 | 45 | 0.3785 | 1.0 | | 0.082 | 16.0 | 48 | 0.3318 | 1.0 | | 0.0672 | 17.0 | 51 | 0.2885 | 1.0 | | 0.0538 | 18.0 | 54 | 0.2568 | 1.0 | | 0.0412 | 19.0 | 57 | 0.2356 | 1.0 | | 0.0361 | 20.0 | 60 | 0.2217 | 1.0 | | 0.0303 | 21.0 | 63 | 0.2125 | 1.0 | | 0.0268 | 22.0 | 66 | 0.2060 | 1.0 | | 0.0229 | 23.0 | 69 | 0.2015 | 1.0 | | 0.0215 | 24.0 | 72 | 0.1989 | 1.0 | | 0.0211 | 25.0 | 75 | 0.1969 | 1.0 | | 0.0172 | 26.0 | 78 | 0.1953 | 1.0 | | 0.0165 | 27.0 | 81 | 0.1935 | 1.0 | | 0.0132 | 28.0 | 84 | 0.1923 | 1.0 | | 0.0146 | 29.0 | 87 | 0.1914 | 1.0 | | 0.0125 | 30.0 | 90 | 0.1904 | 1.0 | | 0.0119 | 31.0 | 93 | 0.1897 | 1.0 | | 0.0122 | 32.0 | 96 | 0.1886 | 1.0 | | 0.0118 | 33.0 | 99 | 0.1875 | 1.0 | | 0.0097 | 34.0 | 102 | 0.1866 | 1.0 | | 0.0111 | 35.0 | 105 | 0.1861 | 1.0 | | 0.0111 | 36.0 | 108 | 0.1855 | 1.0 | | 0.0102 | 37.0 | 111 | 0.1851 | 1.0 | | 0.0109 | 38.0 | 114 | 0.1851 | 1.0 | | 0.0085 | 39.0 | 117 | 0.1854 | 1.0 | | 0.0089 | 40.0 | 120 | 0.1855 | 1.0 | | 0.0092 | 41.0 | 123 | 0.1863 | 1.0 | | 0.0105 | 42.0 | 126 | 0.1868 | 1.0 | | 0.0089 | 43.0 | 129 | 0.1874 | 1.0 | | 0.0091 | 44.0 | 132 | 0.1877 | 1.0 | | 0.0096 | 45.0 | 135 | 0.1881 | 1.0 | | 0.0081 | 46.0 | 138 | 0.1881 | 1.0 | | 0.0086 | 47.0 | 141 | 0.1883 | 1.0 | | 0.009 | 48.0 | 144 | 0.1884 | 1.0 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "distilbert-base-uncased__subj__train-8-2", "results": []}]}
SetFit/distilbert-base-uncased__subj__train-8-2
null
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__subj__train-8-3 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3496 - Accuracy: 0.859 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7136 | 1.0 | 3 | 0.6875 | 0.75 | | 0.6702 | 2.0 | 6 | 0.6824 | 0.75 | | 0.6456 | 3.0 | 9 | 0.6687 | 0.75 | | 0.5934 | 4.0 | 12 | 0.6564 | 0.75 | | 0.537 | 5.0 | 15 | 0.6428 | 0.75 | | 0.4812 | 6.0 | 18 | 0.6180 | 0.75 | | 0.4279 | 7.0 | 21 | 0.5864 | 0.75 | | 0.3608 | 8.0 | 24 | 0.5540 | 0.75 | | 0.3076 | 9.0 | 27 | 0.5012 | 1.0 | | 0.2292 | 10.0 | 30 | 0.4497 | 1.0 | | 0.1991 | 11.0 | 33 | 0.3945 | 1.0 | | 0.1495 | 12.0 | 36 | 0.3483 | 1.0 | | 0.1176 | 13.0 | 39 | 0.3061 | 1.0 | | 0.0947 | 14.0 | 42 | 0.2683 | 1.0 | | 0.0761 | 15.0 | 45 | 0.2295 | 1.0 | | 0.0584 | 16.0 | 48 | 0.1996 | 1.0 | | 0.0451 | 17.0 | 51 | 0.1739 | 1.0 | | 0.0387 | 18.0 | 54 | 0.1521 | 1.0 | | 0.0272 | 19.0 | 57 | 0.1333 | 1.0 | | 0.0247 | 20.0 | 60 | 0.1171 | 1.0 | | 0.0243 | 21.0 | 63 | 0.1044 | 1.0 | | 0.0206 | 22.0 | 66 | 0.0943 | 1.0 | | 0.0175 | 23.0 | 69 | 0.0859 | 1.0 | | 0.0169 | 24.0 | 72 | 0.0799 | 1.0 | | 0.0162 | 25.0 | 75 | 0.0746 | 1.0 | | 0.0137 | 26.0 | 78 | 0.0705 | 1.0 | | 0.0141 | 27.0 | 81 | 0.0674 | 1.0 | | 0.0107 | 28.0 | 84 | 0.0654 | 1.0 | | 0.0117 | 29.0 | 87 | 0.0634 | 1.0 | | 0.0113 | 30.0 | 90 | 0.0617 | 1.0 | | 0.0107 | 31.0 | 93 | 0.0599 | 1.0 | | 0.0106 | 32.0 | 96 | 0.0585 | 1.0 | | 0.0101 | 33.0 | 99 | 0.0568 | 1.0 | | 0.0084 | 34.0 | 102 | 0.0553 | 1.0 | | 0.0101 | 35.0 | 105 | 0.0539 | 1.0 | | 0.0102 | 36.0 | 108 | 0.0529 | 1.0 | | 0.009 | 37.0 | 111 | 0.0520 | 1.0 | | 0.0092 | 38.0 | 114 | 0.0511 | 1.0 | | 0.0073 | 39.0 | 117 | 0.0504 | 1.0 | | 0.0081 | 40.0 | 120 | 0.0497 | 1.0 | | 0.0079 | 41.0 | 123 | 0.0492 | 1.0 | | 0.0092 | 42.0 | 126 | 0.0488 | 1.0 | | 0.008 | 43.0 | 129 | 0.0483 | 1.0 | | 0.0087 | 44.0 | 132 | 0.0479 | 1.0 | | 0.009 | 45.0 | 135 | 0.0474 | 1.0 | | 0.0076 | 46.0 | 138 | 0.0470 | 1.0 | | 0.0075 | 47.0 | 141 | 0.0467 | 1.0 | | 0.008 | 48.0 | 144 | 0.0465 | 1.0 | | 0.0069 | 49.0 | 147 | 0.0464 | 1.0 | | 0.0077 | 50.0 | 150 | 0.0464 | 1.0 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "distilbert-base-uncased__subj__train-8-3", "results": []}]}
SetFit/distilbert-base-uncased__subj__train-8-3
null
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__subj__train-8-4 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3305 - Accuracy: 0.8565 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6991 | 1.0 | 3 | 0.6772 | 0.75 | | 0.6707 | 2.0 | 6 | 0.6704 | 0.75 | | 0.6402 | 3.0 | 9 | 0.6608 | 1.0 | | 0.5789 | 4.0 | 12 | 0.6547 | 0.75 | | 0.5211 | 5.0 | 15 | 0.6434 | 0.75 | | 0.454 | 6.0 | 18 | 0.6102 | 1.0 | | 0.4187 | 7.0 | 21 | 0.5701 | 1.0 | | 0.3401 | 8.0 | 24 | 0.5289 | 1.0 | | 0.3107 | 9.0 | 27 | 0.4737 | 1.0 | | 0.2381 | 10.0 | 30 | 0.4255 | 1.0 | | 0.1982 | 11.0 | 33 | 0.3685 | 1.0 | | 0.1631 | 12.0 | 36 | 0.3200 | 1.0 | | 0.1234 | 13.0 | 39 | 0.2798 | 1.0 | | 0.0993 | 14.0 | 42 | 0.2455 | 1.0 | | 0.0781 | 15.0 | 45 | 0.2135 | 1.0 | | 0.0586 | 16.0 | 48 | 0.1891 | 1.0 | | 0.0513 | 17.0 | 51 | 0.1671 | 1.0 | | 0.043 | 18.0 | 54 | 0.1427 | 1.0 | | 0.0307 | 19.0 | 57 | 0.1225 | 1.0 | | 0.0273 | 20.0 | 60 | 0.1060 | 1.0 | | 0.0266 | 21.0 | 63 | 0.0920 | 1.0 | | 0.0233 | 22.0 | 66 | 0.0823 | 1.0 | | 0.0185 | 23.0 | 69 | 0.0751 | 1.0 | | 0.0173 | 24.0 | 72 | 0.0698 | 1.0 | | 0.0172 | 25.0 | 75 | 0.0651 | 1.0 | | 0.0142 | 26.0 | 78 | 0.0613 | 1.0 | | 0.0151 | 27.0 | 81 | 0.0583 | 1.0 | | 0.0117 | 28.0 | 84 | 0.0563 | 1.0 | | 0.0123 | 29.0 | 87 | 0.0546 | 1.0 | | 0.0121 | 30.0 | 90 | 0.0531 | 1.0 | | 0.0123 | 31.0 | 93 | 0.0511 | 1.0 | | 0.0112 | 32.0 | 96 | 0.0496 | 1.0 | | 0.0103 | 33.0 | 99 | 0.0481 | 1.0 | | 0.0086 | 34.0 | 102 | 0.0468 | 1.0 | | 0.0096 | 35.0 | 105 | 0.0457 | 1.0 | | 0.0107 | 36.0 | 108 | 0.0447 | 1.0 | | 0.0095 | 37.0 | 111 | 0.0439 | 1.0 | | 0.0102 | 38.0 | 114 | 0.0429 | 1.0 | | 0.0077 | 39.0 | 117 | 0.0422 | 1.0 | | 0.0092 | 40.0 | 120 | 0.0415 | 1.0 | | 0.0083 | 41.0 | 123 | 0.0409 | 1.0 | | 0.0094 | 42.0 | 126 | 0.0404 | 1.0 | | 0.0084 | 43.0 | 129 | 0.0400 | 1.0 | | 0.0085 | 44.0 | 132 | 0.0396 | 1.0 | | 0.0092 | 45.0 | 135 | 0.0392 | 1.0 | | 0.0076 | 46.0 | 138 | 0.0389 | 1.0 | | 0.0073 | 47.0 | 141 | 0.0388 | 1.0 | | 0.0085 | 48.0 | 144 | 0.0387 | 1.0 | | 0.0071 | 49.0 | 147 | 0.0386 | 1.0 | | 0.0079 | 50.0 | 150 | 0.0386 | 1.0 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "distilbert-base-uncased__subj__train-8-4", "results": []}]}
SetFit/distilbert-base-uncased__subj__train-8-4
null
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__subj__train-8-5 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6927 - Accuracy: 0.506 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7102 | 1.0 | 3 | 0.6790 | 0.75 | | 0.6693 | 2.0 | 6 | 0.6831 | 0.75 | | 0.6438 | 3.0 | 9 | 0.6876 | 0.75 | | 0.6047 | 4.0 | 12 | 0.6970 | 0.75 | | 0.547 | 5.0 | 15 | 0.7065 | 0.75 | | 0.4885 | 6.0 | 18 | 0.7114 | 0.75 | | 0.4601 | 7.0 | 21 | 0.7147 | 0.5 | | 0.4017 | 8.0 | 24 | 0.7178 | 0.5 | | 0.3474 | 9.0 | 27 | 0.7145 | 0.5 | | 0.2624 | 10.0 | 30 | 0.7153 | 0.5 | | 0.2175 | 11.0 | 33 | 0.7158 | 0.5 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "distilbert-base-uncased__subj__train-8-5", "results": []}]}
SetFit/distilbert-base-uncased__subj__train-8-5
null
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__subj__train-8-6 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6075 - Accuracy: 0.7485 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7163 | 1.0 | 3 | 0.6923 | 0.5 | | 0.6648 | 2.0 | 6 | 0.6838 | 0.5 | | 0.6329 | 3.0 | 9 | 0.6747 | 0.75 | | 0.5836 | 4.0 | 12 | 0.6693 | 0.5 | | 0.5287 | 5.0 | 15 | 0.6670 | 0.25 | | 0.4585 | 6.0 | 18 | 0.6517 | 0.5 | | 0.415 | 7.0 | 21 | 0.6290 | 0.5 | | 0.3353 | 8.0 | 24 | 0.6019 | 0.5 | | 0.2841 | 9.0 | 27 | 0.5613 | 0.75 | | 0.2203 | 10.0 | 30 | 0.5222 | 1.0 | | 0.1743 | 11.0 | 33 | 0.4769 | 1.0 | | 0.1444 | 12.0 | 36 | 0.4597 | 1.0 | | 0.1079 | 13.0 | 39 | 0.4462 | 1.0 | | 0.0891 | 14.0 | 42 | 0.4216 | 1.0 | | 0.0704 | 15.0 | 45 | 0.3880 | 1.0 | | 0.0505 | 16.0 | 48 | 0.3663 | 1.0 | | 0.0428 | 17.0 | 51 | 0.3536 | 1.0 | | 0.0356 | 18.0 | 54 | 0.3490 | 1.0 | | 0.0283 | 19.0 | 57 | 0.3531 | 1.0 | | 0.025 | 20.0 | 60 | 0.3595 | 1.0 | | 0.0239 | 21.0 | 63 | 0.3594 | 1.0 | | 0.0202 | 22.0 | 66 | 0.3521 | 1.0 | | 0.0168 | 23.0 | 69 | 0.3475 | 1.0 | | 0.0159 | 24.0 | 72 | 0.3458 | 1.0 | | 0.0164 | 25.0 | 75 | 0.3409 | 1.0 | | 0.0132 | 26.0 | 78 | 0.3360 | 1.0 | | 0.0137 | 27.0 | 81 | 0.3302 | 1.0 | | 0.0112 | 28.0 | 84 | 0.3235 | 1.0 | | 0.0113 | 29.0 | 87 | 0.3178 | 1.0 | | 0.0111 | 30.0 | 90 | 0.3159 | 1.0 | | 0.0113 | 31.0 | 93 | 0.3108 | 1.0 | | 0.0107 | 32.0 | 96 | 0.3101 | 1.0 | | 0.0101 | 33.0 | 99 | 0.3100 | 1.0 | | 0.0083 | 34.0 | 102 | 0.3110 | 1.0 | | 0.0092 | 35.0 | 105 | 0.3117 | 1.0 | | 0.0102 | 36.0 | 108 | 0.3104 | 1.0 | | 0.0086 | 37.0 | 111 | 0.3086 | 1.0 | | 0.0092 | 38.0 | 114 | 0.3047 | 1.0 | | 0.0072 | 39.0 | 117 | 0.3024 | 1.0 | | 0.0079 | 40.0 | 120 | 0.3014 | 1.0 | | 0.0079 | 41.0 | 123 | 0.2983 | 1.0 | | 0.0091 | 42.0 | 126 | 0.2948 | 1.0 | | 0.0077 | 43.0 | 129 | 0.2915 | 1.0 | | 0.0085 | 44.0 | 132 | 0.2890 | 1.0 | | 0.009 | 45.0 | 135 | 0.2870 | 1.0 | | 0.0073 | 46.0 | 138 | 0.2856 | 1.0 | | 0.0073 | 47.0 | 141 | 0.2844 | 1.0 | | 0.0076 | 48.0 | 144 | 0.2841 | 1.0 | | 0.0065 | 49.0 | 147 | 0.2836 | 1.0 | | 0.0081 | 50.0 | 150 | 0.2835 | 1.0 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "distilbert-base-uncased__subj__train-8-6", "results": []}]}
SetFit/distilbert-base-uncased__subj__train-8-6
null
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__subj__train-8-7 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2766 - Accuracy: 0.8845 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7044 | 1.0 | 3 | 0.6909 | 0.5 | | 0.6678 | 2.0 | 6 | 0.6901 | 0.5 | | 0.6336 | 3.0 | 9 | 0.6807 | 0.5 | | 0.5926 | 4.0 | 12 | 0.6726 | 0.5 | | 0.5221 | 5.0 | 15 | 0.6648 | 0.5 | | 0.4573 | 6.0 | 18 | 0.6470 | 0.5 | | 0.4177 | 7.0 | 21 | 0.6251 | 0.5 | | 0.3252 | 8.0 | 24 | 0.5994 | 0.5 | | 0.2831 | 9.0 | 27 | 0.5529 | 0.5 | | 0.213 | 10.0 | 30 | 0.5078 | 0.75 | | 0.1808 | 11.0 | 33 | 0.4521 | 1.0 | | 0.1355 | 12.0 | 36 | 0.3996 | 1.0 | | 0.1027 | 13.0 | 39 | 0.3557 | 1.0 | | 0.0862 | 14.0 | 42 | 0.3121 | 1.0 | | 0.0682 | 15.0 | 45 | 0.2828 | 1.0 | | 0.0517 | 16.0 | 48 | 0.2603 | 1.0 | | 0.0466 | 17.0 | 51 | 0.2412 | 1.0 | | 0.038 | 18.0 | 54 | 0.2241 | 1.0 | | 0.0276 | 19.0 | 57 | 0.2096 | 1.0 | | 0.0246 | 20.0 | 60 | 0.1969 | 1.0 | | 0.0249 | 21.0 | 63 | 0.1859 | 1.0 | | 0.0201 | 22.0 | 66 | 0.1770 | 1.0 | | 0.018 | 23.0 | 69 | 0.1703 | 1.0 | | 0.0164 | 24.0 | 72 | 0.1670 | 1.0 | | 0.0172 | 25.0 | 75 | 0.1639 | 1.0 | | 0.0135 | 26.0 | 78 | 0.1604 | 1.0 | | 0.014 | 27.0 | 81 | 0.1585 | 1.0 | | 0.0108 | 28.0 | 84 | 0.1569 | 1.0 | | 0.0116 | 29.0 | 87 | 0.1549 | 1.0 | | 0.0111 | 30.0 | 90 | 0.1532 | 1.0 | | 0.0113 | 31.0 | 93 | 0.1513 | 1.0 | | 0.0104 | 32.0 | 96 | 0.1503 | 1.0 | | 0.01 | 33.0 | 99 | 0.1490 | 1.0 | | 0.0079 | 34.0 | 102 | 0.1479 | 1.0 | | 0.0097 | 35.0 | 105 | 0.1466 | 1.0 | | 0.0112 | 36.0 | 108 | 0.1458 | 1.0 | | 0.0091 | 37.0 | 111 | 0.1457 | 1.0 | | 0.0098 | 38.0 | 114 | 0.1454 | 1.0 | | 0.0076 | 39.0 | 117 | 0.1451 | 1.0 | | 0.0085 | 40.0 | 120 | 0.1448 | 1.0 | | 0.0079 | 41.0 | 123 | 0.1445 | 1.0 | | 0.0096 | 42.0 | 126 | 0.1440 | 1.0 | | 0.0081 | 43.0 | 129 | 0.1430 | 1.0 | | 0.0083 | 44.0 | 132 | 0.1424 | 1.0 | | 0.0088 | 45.0 | 135 | 0.1418 | 1.0 | | 0.0077 | 46.0 | 138 | 0.1414 | 1.0 | | 0.0073 | 47.0 | 141 | 0.1413 | 1.0 | | 0.0084 | 48.0 | 144 | 0.1412 | 1.0 | | 0.0072 | 49.0 | 147 | 0.1411 | 1.0 | | 0.0077 | 50.0 | 150 | 0.1411 | 1.0 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "distilbert-base-uncased__subj__train-8-7", "results": []}]}
SetFit/distilbert-base-uncased__subj__train-8-7
null
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__subj__train-8-8 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3160 - Accuracy: 0.8735 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7187 | 1.0 | 3 | 0.6776 | 1.0 | | 0.684 | 2.0 | 6 | 0.6608 | 1.0 | | 0.6532 | 3.0 | 9 | 0.6364 | 1.0 | | 0.5996 | 4.0 | 12 | 0.6119 | 1.0 | | 0.5242 | 5.0 | 15 | 0.5806 | 1.0 | | 0.4612 | 6.0 | 18 | 0.5320 | 1.0 | | 0.4192 | 7.0 | 21 | 0.4714 | 1.0 | | 0.3274 | 8.0 | 24 | 0.4071 | 1.0 | | 0.2871 | 9.0 | 27 | 0.3378 | 1.0 | | 0.2082 | 10.0 | 30 | 0.2822 | 1.0 | | 0.1692 | 11.0 | 33 | 0.2271 | 1.0 | | 0.1242 | 12.0 | 36 | 0.1793 | 1.0 | | 0.0977 | 13.0 | 39 | 0.1417 | 1.0 | | 0.0776 | 14.0 | 42 | 0.1117 | 1.0 | | 0.0631 | 15.0 | 45 | 0.0894 | 1.0 | | 0.0453 | 16.0 | 48 | 0.0733 | 1.0 | | 0.0399 | 17.0 | 51 | 0.0617 | 1.0 | | 0.0333 | 18.0 | 54 | 0.0528 | 1.0 | | 0.0266 | 19.0 | 57 | 0.0454 | 1.0 | | 0.0234 | 20.0 | 60 | 0.0393 | 1.0 | | 0.0223 | 21.0 | 63 | 0.0345 | 1.0 | | 0.0195 | 22.0 | 66 | 0.0309 | 1.0 | | 0.0161 | 23.0 | 69 | 0.0281 | 1.0 | | 0.0167 | 24.0 | 72 | 0.0260 | 1.0 | | 0.0163 | 25.0 | 75 | 0.0242 | 1.0 | | 0.0134 | 26.0 | 78 | 0.0227 | 1.0 | | 0.0128 | 27.0 | 81 | 0.0214 | 1.0 | | 0.0101 | 28.0 | 84 | 0.0204 | 1.0 | | 0.0109 | 29.0 | 87 | 0.0194 | 1.0 | | 0.0112 | 30.0 | 90 | 0.0186 | 1.0 | | 0.0108 | 31.0 | 93 | 0.0179 | 1.0 | | 0.011 | 32.0 | 96 | 0.0174 | 1.0 | | 0.0099 | 33.0 | 99 | 0.0169 | 1.0 | | 0.0083 | 34.0 | 102 | 0.0164 | 1.0 | | 0.0096 | 35.0 | 105 | 0.0160 | 1.0 | | 0.01 | 36.0 | 108 | 0.0156 | 1.0 | | 0.0084 | 37.0 | 111 | 0.0152 | 1.0 | | 0.0089 | 38.0 | 114 | 0.0149 | 1.0 | | 0.0073 | 39.0 | 117 | 0.0146 | 1.0 | | 0.0082 | 40.0 | 120 | 0.0143 | 1.0 | | 0.008 | 41.0 | 123 | 0.0141 | 1.0 | | 0.0093 | 42.0 | 126 | 0.0139 | 1.0 | | 0.0078 | 43.0 | 129 | 0.0138 | 1.0 | | 0.0086 | 44.0 | 132 | 0.0136 | 1.0 | | 0.009 | 45.0 | 135 | 0.0135 | 1.0 | | 0.0072 | 46.0 | 138 | 0.0134 | 1.0 | | 0.0075 | 47.0 | 141 | 0.0133 | 1.0 | | 0.0082 | 48.0 | 144 | 0.0133 | 1.0 | | 0.0068 | 49.0 | 147 | 0.0132 | 1.0 | | 0.0074 | 50.0 | 150 | 0.0132 | 1.0 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "distilbert-base-uncased__subj__train-8-8", "results": []}]}
SetFit/distilbert-base-uncased__subj__train-8-8
null
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__subj__train-8-9 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4865 - Accuracy: 0.778 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7024 | 1.0 | 3 | 0.6843 | 0.75 | | 0.67 | 2.0 | 6 | 0.6807 | 0.5 | | 0.6371 | 3.0 | 9 | 0.6677 | 0.5 | | 0.585 | 4.0 | 12 | 0.6649 | 0.5 | | 0.5122 | 5.0 | 15 | 0.6707 | 0.5 | | 0.4379 | 6.0 | 18 | 0.6660 | 0.5 | | 0.4035 | 7.0 | 21 | 0.6666 | 0.5 | | 0.323 | 8.0 | 24 | 0.6672 | 0.5 | | 0.2841 | 9.0 | 27 | 0.6534 | 0.5 | | 0.21 | 10.0 | 30 | 0.6456 | 0.5 | | 0.1735 | 11.0 | 33 | 0.6325 | 0.5 | | 0.133 | 12.0 | 36 | 0.6214 | 0.5 | | 0.0986 | 13.0 | 39 | 0.6351 | 0.5 | | 0.081 | 14.0 | 42 | 0.6495 | 0.5 | | 0.0638 | 15.0 | 45 | 0.6671 | 0.5 | | 0.0449 | 16.0 | 48 | 0.7156 | 0.5 | | 0.0399 | 17.0 | 51 | 0.7608 | 0.5 | | 0.0314 | 18.0 | 54 | 0.7796 | 0.5 | | 0.0243 | 19.0 | 57 | 0.7789 | 0.5 | | 0.0227 | 20.0 | 60 | 0.7684 | 0.5 | | 0.0221 | 21.0 | 63 | 0.7628 | 0.5 | | 0.0192 | 22.0 | 66 | 0.7728 | 0.5 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "distilbert-base-uncased__subj__train-8-9", "results": []}]}
SetFit/distilbert-base-uncased__subj__train-8-9
null
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
{}
SetFit/distilbert-base-uncased__tweet_eval_stance__all-train
null
[ "transformers", "pytorch", "distilbert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
Setodab/sentencemodel
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
Sezai/deneme
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
transformers
# Small-E-Czech Small-E-Czech is an [Electra](https://arxiv.org/abs/2003.10555)-small model pretrained on a Czech web corpus created at [Seznam.cz](https://www.seznam.cz/) and introduced in an [IAAI 2022 paper](https://arxiv.org/abs/2112.01810). Like other pretrained models, it should be finetuned on a downstream task of interest before use. At Seznam.cz, it has helped improve [web search ranking](https://blog.seznam.cz/2021/02/vyhledavani-pomoci-vyznamovych-vektoru/), query typo correction or clickbait titles detection. We release it under [CC BY 4.0 license](https://creativecommons.org/licenses/by/4.0/) (i.e. allowing commercial use). To raise an issue, please visit our [github](https://github.com/seznam/small-e-czech). ### How to use the discriminator in transformers ```python from transformers import ElectraForPreTraining, ElectraTokenizerFast import torch discriminator = ElectraForPreTraining.from_pretrained("Seznam/small-e-czech") tokenizer = ElectraTokenizerFast.from_pretrained("Seznam/small-e-czech") sentence = "Za hory, za doly, mé zlaté parohy" fake_sentence = "Za hory, za doly, kočka zlaté parohy" fake_sentence_tokens = ["[CLS]"] + tokenizer.tokenize(fake_sentence) + ["[SEP]"] fake_inputs = tokenizer.encode(fake_sentence, return_tensors="pt") outputs = discriminator(fake_inputs) predictions = torch.nn.Sigmoid()(outputs[0]).cpu().detach().numpy() for token in fake_sentence_tokens: print("{:>7s}".format(token), end="") print() for prediction in predictions.squeeze(): print("{:7.1f}".format(prediction), end="") print() ``` In the output we can see the probabilities of particular tokens not belonging in the sentence (i.e. having been faked by the generator) according to the discriminator: ``` [CLS] za hory , za dol ##y , kočka zlaté paro ##hy [SEP] 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.8 0.3 0.2 0.1 0.0 ``` ### Finetuning For instructions on how to finetune the model on a new task, see the official HuggingFace transformers [tutorial](https://huggingface.co/transformers/training.html).
{"language": "cs", "license": "cc-by-4.0"}
Seznam/small-e-czech
null
[ "transformers", "pytorch", "tf", "electra", "cs", "arxiv:2003.10555", "arxiv:2112.01810", "license:cc-by-4.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
Shadaab27/distilroberta-base-finetuned-TeamBHP
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
ShadowKing/Aguante_armin
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
Shah92/dspd-assignment-1
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
summarization
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mode-bart-deutsch This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on the mlsum de dataset. It achieves the following results on the evaluation set: - Loss: 1.2152 - Rouge1: 41.698 - Rouge2: 31.3548 - Rougel: 38.2817 - Rougelsum: 39.6349 - Gen Len: 63.1723 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 6 - eval_batch_size: 6 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
{"language": "de", "license": "apache-2.0", "tags": ["generated_from_trainer", "summarization"], "datasets": ["mlsum"], "metrics": ["rouge"], "model-index": [{"name": "mode-bart-deutsch", "results": [{"task": {"type": "summarization", "name": "Summarization"}, "dataset": {"name": "mlsum de", "type": "mlsum", "args": "de"}, "metrics": [{"type": "rouge", "value": 41.698, "name": "Rouge1"}]}]}]}
Shahm/bart-german
null
[ "transformers", "pytorch", "tensorboard", "onnx", "safetensors", "bart", "text2text-generation", "generated_from_trainer", "summarization", "de", "dataset:mlsum", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
summarization
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-seven-epoch-base-german This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the mlsum de dataset. It achieves the following results on the evaluation set: - Loss: 1.5491 - Rouge1: 42.3787 - Rouge2: 32.0253 - Rougel: 38.9529 - Rougelsum: 40.4544 - Gen Len: 47.7873 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 6 - eval_batch_size: 6 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 7.0 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
{"language": "de", "license": "apache-2.0", "tags": ["generated_from_trainer", "summarization"], "datasets": ["mlsum"], "metrics": ["rouge"], "model-index": [{"name": "t5-seven-epoch-base-german", "results": [{"task": {"type": "summarization", "name": "Summarization"}, "dataset": {"name": "mlsum de", "type": "mlsum", "args": "de"}, "metrics": [{"type": "rouge", "value": 42.3787, "name": "Rouge1"}]}]}]}
Shahm/t5-small-german
null
[ "transformers", "pytorch", "tensorboard", "safetensors", "t5", "text2text-generation", "generated_from_trainer", "summarization", "de", "dataset:mlsum", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-generation
transformers
# Spongebob DialoGPT model
{"tags": ["conversational"]}
Shakaw/DialoGPT-small-spongebot
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
transformers
# ChineseBERT-base This repository contains code, model, dataset for **ChineseBERT** at ACL2021. paper: **[ChineseBERT: Chinese Pretraining Enhanced by Glyph and Pinyin Information](https://arxiv.org/abs/2106.16038)** *Zijun Sun, Xiaoya Li, Xiaofei Sun, Yuxian Meng, Xiang Ao, Qing He, Fei Wu and Jiwei Li* code: [ChineseBERT github link](https://github.com/ShannonAI/ChineseBert) ## Model description We propose ChineseBERT, which incorporates both the glyph and pinyin information of Chinese characters into language model pretraining. First, for each Chinese character, we get three kind of embedding. - **Char Embedding:** the same as origin BERT token embedding. - **Glyph Embedding:** capture visual features based on different fonts of a Chinese character. - **Pinyin Embedding:** capture phonetic feature from the pinyin sequence ot a Chinese Character. Then, char embedding, glyph embedding and pinyin embedding are first concatenated, and mapped to a D-dimensional embedding through a fully connected layer to form the fusion embedding. Finally, the fusion embedding is added with the position embedding, which is fed as input to the BERT model. The following image shows an overview architecture of ChineseBERT model. ![MODEL](https://raw.githubusercontent.com/ShannonAI/ChineseBert/main/images/ChineseBERT.png) ChineseBERT leverages the glyph and pinyin information of Chinese characters to enhance the model's ability of capturing context semantics from surface character forms and disambiguating polyphonic characters in Chinese.
{}
ShannonAI/ChineseBERT-base
null
[ "transformers", "pytorch", "arxiv:2106.16038", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
transformers
# ChineseBERT-large This repository contains code, model, dataset for **ChineseBERT** at ACL2021. paper: **[ChineseBERT: Chinese Pretraining Enhanced by Glyph and Pinyin Information](https://arxiv.org/abs/2106.16038)** *Zijun Sun, Xiaoya Li, Xiaofei Sun, Yuxian Meng, Xiang Ao, Qing He, Fei Wu and Jiwei Li* code: [ChineseBERT github link](https://github.com/ShannonAI/ChineseBert) ## Model description We propose ChineseBERT, which incorporates both the glyph and pinyin information of Chinese characters into language model pretraining. First, for each Chinese character, we get three kind of embedding. - **Char Embedding:** the same as origin BERT token embedding. - **Glyph Embedding:** capture visual features based on different fonts of a Chinese character. - **Pinyin Embedding:** capture phonetic feature from the pinyin sequence ot a Chinese Character. Then, char embedding, glyph embedding and pinyin embedding are first concatenated, and mapped to a D-dimensional embedding through a fully connected layer to form the fusion embedding. Finally, the fusion embedding is added with the position embedding, which is fed as input to the BERT model. The following image shows an overview architecture of ChineseBERT model. ![MODEL](https://raw.githubusercontent.com/ShannonAI/ChineseBert/main/images/ChineseBERT.png) ChineseBERT leverages the glyph and pinyin information of Chinese characters to enhance the model's ability of capturing context semantics from surface character forms and disambiguating polyphonic characters in Chinese.
{}
ShannonAI/ChineseBERT-large
null
[ "transformers", "pytorch", "arxiv:2106.16038", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
fill-mask
transformers
{}
Shanny/FinBERT
null
[ "transformers", "pytorch", "bert", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
question-answering
transformers
{}
Shappey/roberta-base-QnA-squad2-trained
null
[ "transformers", "pytorch", "roberta", "question-answering", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1dqeUwS_DZ-urrmYzB29nTCBUltwJxhbh?usp=sharing) # 22 Language Identifier - BERT This model is trained to identify the following 22 different languages. - Arabic - Chinese - Dutch - English - Estonian - French - Hindi - Indonesian - Japanese - Korean - Latin - Persian - Portugese - Pushto - Romanian - Russian - Spanish - Swedish - Tamil - Thai - Turkish - Urdu ## Loading the model ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification tokenizer = AutoTokenizer.from_pretrained("SharanSMenon/22-languages-bert-base-cased") model = AutoModelForSequenceClassification.from_pretrained("SharanSMenon/22-languages-bert-base-cased") ``` ## Inference ```python def predict(sentence): tokenized = tokenizer(sentence, return_tensors="pt") outputs = model(**tokenized) return model.config.id2label[outputs.logits.argmax(dim=1).item()] ``` ### Examples ```python sentence1 = "in war resolution, in defeat defiance, in victory magnanimity" predict(sentence1) # English sentence2 = "en la guerra resolución en la derrota desafío en la victoria magnanimidad" predict(sentence2) # Spanish sentence3 = "هذا هو أعظم إله على الإطلاق" predict(sentence3) # Arabic ```
{"metrics": ["accuracy"], "widget": [{"text": "In war resolution, in defeat defiance, in victory magnanimity"}, {"text": "en la guerra resoluci\u00f3n en la derrota desaf\u00edo en la victoria magnanimidad"}]}
SharanSMenon/22-languages-bert-base-cased
null
[ "transformers", "pytorch", "safetensors", "bert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
SharanSMenon/birds-identifier-325-species
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
ShaswatSheshank/gpt2-wikitext2
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
feature-extraction
transformers
{}
Shauli/IE-metric-model-spike
null
[ "transformers", "pytorch", "jax", "bert", "feature-extraction", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00