Search is not available for this dataset
pipeline_tag
stringclasses
48 values
library_name
stringclasses
205 values
text
stringlengths
0
18.3M
metadata
stringlengths
2
1.07B
id
stringlengths
5
122
last_modified
null
tags
listlengths
1
1.84k
sha
null
created_at
stringlengths
25
25
null
null
{}
Sohail/Client_details
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
Solo9x/DialoGPT-medium-harrypotter
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
text-generation
null
# My Awesome Model
{"tags": ["conversational"]}
SonMooSans/DialoGPT-small-joshua
null
[ "conversational", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-generation
transformers
# My Awesome Model
{"tags": ["conversational"]}
SonMooSans/test
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.8549 - Matthews Correlation: 0.5332 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.5213 | 1.0 | 535 | 0.5163 | 0.4183 | | 0.3479 | 2.0 | 1070 | 0.5351 | 0.5182 | | 0.231 | 3.0 | 1605 | 0.6271 | 0.5291 | | 0.166 | 4.0 | 2140 | 0.7531 | 0.5279 | | 0.1313 | 5.0 | 2675 | 0.8549 | 0.5332 | ### Framework versions - Transformers 4.10.0.dev0 - Pytorch 1.8.1 - Datasets 1.11.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["glue"], "metrics": ["matthews_correlation"], "model_index": [{"name": "distilbert-base-uncased-finetuned-cola", "results": [{"task": {"name": "Text Classification", "type": "text-classification"}, "dataset": {"name": "glue", "type": "glue", "args": "cola"}, "metric": {"name": "Matthews Correlation", "type": "matthews_correlation", "value": 0.5332198659134496}}]}]}
SongRb/distilbert-base-uncased-finetuned-cola
null
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
token-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-ner This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0746 - Precision: 0.9347 - Recall: 0.9426 - F1: 0.9386 - Accuracy: 0.9851 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0832 | 1.0 | 3511 | 0.0701 | 0.9317 | 0.9249 | 0.9283 | 0.9827 | | 0.0384 | 2.0 | 7022 | 0.0701 | 0.9282 | 0.9410 | 0.9346 | 0.9845 | | 0.0222 | 3.0 | 10533 | 0.0746 | 0.9347 | 0.9426 | 0.9386 | 0.9851 | ### Framework versions - Transformers 4.10.0.dev0 - Pytorch 1.8.1 - Datasets 1.11.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["conll2003"], "metrics": ["precision", "recall", "f1", "accuracy"], "model_index": [{"name": "distilbert-base-uncased-finetuned-ner", "results": [{"task": {"name": "Token Classification", "type": "token-classification"}, "dataset": {"name": "conll2003", "type": "conll2003", "args": "conll2003"}, "metric": {"name": "Accuracy", "type": "accuracy", "value": 0.9850826886110537}}]}]}
SongRb/distilbert-base-uncased-finetuned-ner
null
[ "transformers", "pytorch", "tensorboard", "distilbert", "token-classification", "generated_from_trainer", "dataset:conll2003", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
SongRb/distilgpt2-finetuned-wikitext2
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
SongRb/distilroberta-base-finetuned-wikitext2
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
question-answering
transformers
# DistilBERT with a second step of distillation ## Model description This model replicates the "DistilBERT (D)" model from Table 2 of the [DistilBERT paper](https://arxiv.org/pdf/1910.01108.pdf). In this approach, a DistilBERT student is fine-tuned on SQuAD v1.1, but with a BERT model (also fine-tuned on SQuAD v1.1) acting as a teacher for a second step of task-specific distillation. In this version, the following pre-trained models were used: * Student: `distilbert-base-uncased` * Teacher: `lewtun/bert-base-uncased-finetuned-squad-v1` ## Training data This model was trained on the SQuAD v1.1 dataset which can be obtained from the `datasets` library as follows: ```python from datasets import load_dataset squad = load_dataset('squad') ``` ## Training procedure ## Eval results | | Exact Match | F1 | |------------------|-------------|------| | DistilBERT paper | 79.1 | 86.9 | | Ours | 78.4 | 86.5 | The scores were calculated using the `squad` metric from `datasets`. ### BibTeX entry and citation info ```bibtex @misc{sanh2020distilbert, title={DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter}, author={Victor Sanh and Lysandre Debut and Julien Chaumond and Thomas Wolf}, year={2020}, eprint={1910.01108}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
{"language": ["en"], "license": "apache-2.0", "tags": ["question-answering"], "datasets": ["squad"], "metrics": ["squad"], "thumbnail": "https://github.com/karanchahal/distiller/blob/master/distiller.jpg"}
Sonny/distilbert-base-uncased-finetuned-squad-d5716d28
null
[ "transformers", "pytorch", "distilbert", "fill-mask", "question-answering", "en", "dataset:squad", "arxiv:1910.01108", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
fill-mask
transformers
{}
Sonny/dummy-model
null
[ "transformers", "pytorch", "camembert", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
fill-mask
transformers
This is a test model2.
{}
Sonny/dummy-model2
null
[ "transformers", "camembert", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
Sonny/dummy-model3
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
fill-mask
transformers
{}
Soonhwan-Kwon/xlm-roberta-xlarge
null
[ "transformers", "pytorch", "xlm-roberta", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
fill-mask
transformers
{}
Soonhwan-Kwon/xlm-roberta-xxlarge
null
[ "transformers", "pytorch", "xlm-roberta", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text2text-generation
transformers
{}
SophieTr/PPO_training
null
[ "transformers", "pytorch", "pegasus", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text2text-generation
transformers
This is the model so far before time out
{}
SophieTr/distil-pegasus-reddit
null
[ "transformers", "pytorch", "pegasus", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text2text-generation
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # fine-tune-Pegasus-large This model is a fine-tuned version of [google/pegasus-large](https://huggingface.co/google/pegasus-large) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 11.0526 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6.35e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 500 - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1 - Datasets 1.17.0 - Tokenizers 0.10.3
{"tags": ["generated_from_trainer"], "model-index": [{"name": "fine-tune-Pegasus-large", "results": []}]}
SophieTr/fine-tune-Pegasus-large
null
[ "transformers", "pytorch", "pegasus", "text2text-generation", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text2text-generation
transformers
{}
SophieTr/fine-tune-Pegasus
null
[ "transformers", "pytorch", "pegasus", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text2text-generation
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # results This model is a fine-tuned version of [sshleifer/distill-pegasus-xsum-16-4](https://huggingface.co/sshleifer/distill-pegasus-xsum-16-4) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.4473 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 7.2378 | 0.51 | 100 | 7.1853 | | 7.2309 | 1.01 | 200 | 6.6342 | | 6.4796 | 1.52 | 300 | 6.3206 | | 6.2691 | 2.02 | 400 | 6.0184 | | 5.7382 | 2.53 | 500 | 5.5754 | | 4.9922 | 3.03 | 600 | 4.5178 | | 3.6031 | 3.54 | 700 | 2.8579 | | 2.5203 | 4.04 | 800 | 2.4718 | | 2.2563 | 4.55 | 900 | 2.4128 | | 2.1425 | 5.05 | 1000 | 2.3767 | | 2.004 | 5.56 | 1100 | 2.3982 | | 2.0437 | 6.06 | 1200 | 2.3787 | | 1.9407 | 6.57 | 1300 | 2.3952 | | 1.9194 | 7.07 | 1400 | 2.3964 | | 1.758 | 7.58 | 1500 | 2.4056 | | 1.918 | 8.08 | 1600 | 2.4101 | | 1.9162 | 8.59 | 1700 | 2.4085 | | 1.8983 | 9.09 | 1800 | 2.4058 | | 1.6939 | 9.6 | 1900 | 2.4050 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu111 - Datasets 1.15.1 - Tokenizers 0.10.3
{"tags": ["generated_from_trainer"], "model-index": [{"name": "results", "results": []}]}
SophieTr/results
null
[ "transformers", "pytorch", "pegasus", "text2text-generation", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
Sora/Haechan
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
text-generation
transformers
# Naruto DialoGPT Model
{"tags": ["conversational"]}
Sora4762/DialoGPT-small-naruto
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-generation
transformers
# Naruto DialoGPT Model1.1
{"tags": ["conversational"]}
Sora4762/DialoGPT-small-naruto1.1
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
question-answering
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext-ContaminationQAmodel_PubmedBERT This model is a fine-tuned version of [Sotireas/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext-ContaminationQAmodel_PubmedBERT](https://huggingface.co/Sotireas/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext-ContaminationQAmodel_PubmedBERT) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 3.0853 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 21 | 3.8118 | | No log | 2.0 | 42 | 3.5006 | | No log | 3.0 | 63 | 3.1242 | | No log | 4.0 | 84 | 2.9528 | | No log | 5.0 | 105 | 2.9190 | | No log | 6.0 | 126 | 2.9876 | | No log | 7.0 | 147 | 3.0574 | | No log | 8.0 | 168 | 3.0718 | | No log | 9.0 | 189 | 3.0426 | | No log | 10.0 | 210 | 3.0853 | ### Framework versions - Transformers 4.21.0 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
{"license": "mit", "tags": ["generated_from_trainer"], "model-index": [{"name": "BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext-ContaminationQAmodel_PubmedBERT", "results": []}]}
Sotireas/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext-ContaminationQAmodel_PubmedBERT
null
[ "transformers", "pytorch", "tensorboard", "bert", "question-answering", "generated_from_trainer", "license:mit", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
Soumyajit1008/DialoGPT-small-harryPotternew
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
text-generation
transformers
# Harry Potter DialoGPT Model
{"tags": ["conversational"]}
Soumyajit1008/DialoGPT-small-harryPotterssen
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
Soundside/Road
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
Soundside/Road_trip
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
question-answering
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 1.1573 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.2188 | 1.0 | 5533 | 1.1708 | | 0.9519 | 2.0 | 11066 | 1.1058 | | 0.7576 | 3.0 | 16599 | 1.1573 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["squad"], "model-index": [{"name": "distilbert-base-uncased-finetuned-squad", "results": []}]}
Sourabh714/distilbert-base-uncased-finetuned-squad
null
[ "transformers", "pytorch", "tensorboard", "distilbert", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
transformers
### VAE with Pytorch-Lightning This is inspired from vae-playground. This is an example where we test out vae and conv_vae models with multiple datasets like MNIST, celeb-a and MNIST-Fashion datasets. This also comes with an example streamlit app & deployed at huggingface. ## Model Training You can train the VAE models by using `train.py` and editing the `config.yaml` file. \ Hyperparameters to change are: - model_type [vae|conv_vae] - alpha - hidden_dim - dataset [celeba|mnist|fashion-mnist] There are other configurations that can be changed if required like height, width, channels etc. It also contains the pytorch-lightning configs as well.
{"license": "apache-2.0"}
Souranil/VAE
null
[ "transformers", "pytorch", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-generation
transformers
{}
SouvikGhosh/DialoGPT-Souvik
null
[ "transformers", "pytorch", "gpt2", "text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
Souvikcmsa/FiBER
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
Log FiBER This model is able to sentence embedding.
{}
Souvikcmsa/LogFiBER
null
[ "pytorch", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-generation
transformers
#Gandalf DialoGPT Model
{"tags": ["conversational"]}
SpacyGalaxy/DialoGPT-medium-Gandalf
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
transformers
{}
SpanBERT/spanbert-base-cased
null
[ "transformers", "pytorch", "jax", "bert", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
transformers
{}
SpanBERT/spanbert-large-cased
null
[ "transformers", "pytorch", "jax", "bert", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
# Roberta Large STS-B This model is a fine tuned RoBERTA model over STS-B. It was trained with these params: !python /content/transformers/examples/text-classification/run_glue.py \ --model_type roberta \ --model_name_or_path roberta-large \ --task_name STS-B \ --do_train \ --do_eval \ --do_lower_case \ --data_dir /content/glue_data/STS-B/ \ --max_seq_length 128 \ --per_gpu_eval_batch_size=8 \ --per_gpu_train_batch_size=8 \ --learning_rate 2e-5 \ --num_train_epochs 3.0 \ --output_dir /content/roberta-sts-b ## How to run ```python import toolz import torch batch_size = 6 def roberta_similarity_batches(to_predict): batches = toolz.partition(batch_size, to_predict) similarity_scores = [] for batch in batches: sentences = [(sentence_similarity["sent1"], sentence_similarity["sent2"]) for sentence_similarity in batch] batch_scores = similarity_roberta(model, tokenizer,sentences) similarity_scores = similarity_scores + batch_scores[0].cpu().squeeze(axis=1).tolist() return similarity_scores def similarity_roberta(model, tokenizer, sent_pairs): batch_token = tokenizer(sent_pairs, padding='max_length', truncation=True, max_length=500) res = model(torch.tensor(batch_token['input_ids']).cuda(), attention_mask=torch.tensor(batch_token["attention_mask"]).cuda()) return res similarity_roberta(model, tokenizer, [('NEW YORK--(BUSINESS WIRE)--Rosen Law Firm, a global investor rights law firm, announces it is investigating potential securities claims on behalf of shareholders of Vale S.A. ( VALE ) resulting from allegations that Vale may have issued materially misleading business information to the investing public', 'EQUITY ALERT: Rosen Law Firm Announces Investigation of Securities Claims Against Vale S.A. – VALE')]) ```
{}
SparkBeyond/roberta-large-sts-b
null
[ "transformers", "pytorch", "jax", "roberta", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-generation
transformers
#EmmyBot
{"tags": ["conversational"]}
Spectrox/emmybot
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
Spidey8801/NLPTraining
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
text-generation
transformers
# DialoGPT Trained on the Speech of a TV Series Character This is an instance of [microsoft/DialoGPT-medium](https://huggingface.co/microsoft/DialoGPT-medium) trained on a TV series character, Sheldon from [The Big Bang Theory](https://en.wikipedia.org/wiki/The_Big_Bang_Theory). The data comes from [a Kaggle TV series script dataset](https://www.kaggle.com/mitramir5/the-big-bang-theory-series-transcript). Chat with the model: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("spirax/DialoGPT-medium-sheldon") model = AutoModelWithLMHead.from_pretrained("spirax/DialoGPT-medium-sheldon") # Let's chat for 4 lines for step in range(4): # encode the new user input, add the eos_token and return a tensor in Pytorch new_user_input_ids = tokenizer.encode(input(">> User:") + tokenizer.eos_token, return_tensors='pt') # print(new_user_input_ids) # append the new user input tokens to the chat history bot_input_ids = torch.cat([chat_history_ids, new_user_input_ids], dim=-1) if step > 0 else new_user_input_ids # generated a response while limiting the total chat history to 1000 tokens, chat_history_ids = model.generate( bot_input_ids, max_length=200, pad_token_id=tokenizer.eos_token_id, no_repeat_ngram_size=3, do_sample=True, top_k=100, top_p=0.7, temperature=0.8 ) # pretty print last ouput tokens from bot print("SheldorBot: {}".format(tokenizer.decode(chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True))) ```
{"license": "mit", "tags": ["conversational"], "thumbnail": "https://i.imgur.com/7HAcbbD.gif"}
Spirax/DialoGPT-medium-sheldon
null
[ "transformers", "pytorch", "safetensors", "gpt2", "text-generation", "conversational", "license:mit", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
feature-extraction
transformers
{}
Splend1dchan/phoneme-bart-base
null
[ "transformers", "pytorch", "bart", "feature-extraction", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-generation
transformers
# Engineer DialoGPT Model
{"tags": ["conversational"]}
Spoon/DialoGPT-small-engineer
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
Spoon/DialoGPT-small-engineertwo
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
Sreejith/back-and-forth
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
image-classification
transformers
# sriram-car-classifier Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### AM_General_Hummer_SUV_2000 ![AM_General_Hummer_SUV_2000](images/AM_General_Hummer_SUV_2000.jpg) #### Acura_Integra_Type_R_2001 ![Acura_Integra_Type_R_2001](images/Acura_Integra_Type_R_2001.jpg) #### Acura_RL_Sedan_2012 ![Acura_RL_Sedan_2012](images/Acura_RL_Sedan_2012.jpg) #### Acura_TL_Sedan_2012 ![Acura_TL_Sedan_2012](images/Acura_TL_Sedan_2012.jpg) #### Acura_TL_Type-S_2008 ![Acura_TL_Type-S_2008](images/Acura_TL_Type-S_2008.jpg) #### Acura_TSX_Sedan_2012 ![Acura_TSX_Sedan_2012](images/Acura_TSX_Sedan_2012.jpg) #### Acura_ZDX_Hatchback_2012 ![Acura_ZDX_Hatchback_2012](images/Acura_ZDX_Hatchback_2012.jpg) #### Aston_Martin_V8_Vantage_Convertible_2012 ![Aston_Martin_V8_Vantage_Convertible_2012](images/Aston_Martin_V8_Vantage_Convertible_2012.jpg) #### Aston_Martin_V8_Vantage_Coupe_2012 ![Aston_Martin_V8_Vantage_Coupe_2012](images/Aston_Martin_V8_Vantage_Coupe_2012.jpg) #### Aston_Martin_Virage_Convertible_2012 ![Aston_Martin_Virage_Convertible_2012](images/Aston_Martin_Virage_Convertible_2012.jpg) #### Aston_Martin_Virage_Coupe_2012 ![Aston_Martin_Virage_Coupe_2012](images/Aston_Martin_Virage_Coupe_2012.jpg) #### Audi_100_Sedan_1994 ![Audi_100_Sedan_1994](images/Audi_100_Sedan_1994.jpg) #### Audi_100_Wagon_1994 ![Audi_100_Wagon_1994](images/Audi_100_Wagon_1994.jpg) #### Audi_A5_Coupe_2012 ![Audi_A5_Coupe_2012](images/Audi_A5_Coupe_2012.jpg) #### Audi_R8_Coupe_2012 ![Audi_R8_Coupe_2012](images/Audi_R8_Coupe_2012.jpg) #### Audi_RS_4_Convertible_2008 ![Audi_RS_4_Convertible_2008](images/Audi_RS_4_Convertible_2008.jpg) #### Audi_S4_Sedan_2007 ![Audi_S4_Sedan_2007](images/Audi_S4_Sedan_2007.jpg) #### Audi_S4_Sedan_2012 ![Audi_S4_Sedan_2012](images/Audi_S4_Sedan_2012.jpg) #### Audi_S5_Convertible_2012 ![Audi_S5_Convertible_2012](images/Audi_S5_Convertible_2012.jpg) #### Audi_S5_Coupe_2012 ![Audi_S5_Coupe_2012](images/Audi_S5_Coupe_2012.jpg) #### Audi_S6_Sedan_2011 ![Audi_S6_Sedan_2011](images/Audi_S6_Sedan_2011.jpg) #### Audi_TTS_Coupe_2012 ![Audi_TTS_Coupe_2012](images/Audi_TTS_Coupe_2012.jpg) #### Audi_TT_Hatchback_2011 ![Audi_TT_Hatchback_2011](images/Audi_TT_Hatchback_2011.jpg) #### Audi_TT_RS_Coupe_2012 ![Audi_TT_RS_Coupe_2012](images/Audi_TT_RS_Coupe_2012.jpg) #### Audi_V8_Sedan_1994 ![Audi_V8_Sedan_1994](images/Audi_V8_Sedan_1994.jpg) #### BMW_1_Series_Convertible_2012 ![BMW_1_Series_Convertible_2012](images/BMW_1_Series_Convertible_2012.jpg) #### BMW_1_Series_Coupe_2012 ![BMW_1_Series_Coupe_2012](images/BMW_1_Series_Coupe_2012.jpg) #### BMW_3_Series_Sedan_2012 ![BMW_3_Series_Sedan_2012](images/BMW_3_Series_Sedan_2012.jpg) #### BMW_3_Series_Wagon_2012 ![BMW_3_Series_Wagon_2012](images/BMW_3_Series_Wagon_2012.jpg) #### BMW_6_Series_Convertible_2007 ![BMW_6_Series_Convertible_2007](images/BMW_6_Series_Convertible_2007.jpg) #### BMW_ActiveHybrid_5_Sedan_2012 ![BMW_ActiveHybrid_5_Sedan_2012](images/BMW_ActiveHybrid_5_Sedan_2012.jpg) #### BMW_M3_Coupe_2012 ![BMW_M3_Coupe_2012](images/BMW_M3_Coupe_2012.jpg) #### BMW_M5_Sedan_2010 ![BMW_M5_Sedan_2010](images/BMW_M5_Sedan_2010.jpg) #### BMW_M6_Convertible_2010 ![BMW_M6_Convertible_2010](images/BMW_M6_Convertible_2010.jpg) #### BMW_X3_SUV_2012 ![BMW_X3_SUV_2012](images/BMW_X3_SUV_2012.jpg) #### BMW_X5_SUV_2007 ![BMW_X5_SUV_2007](images/BMW_X5_SUV_2007.jpg) #### BMW_X6_SUV_2012 ![BMW_X6_SUV_2012](images/BMW_X6_SUV_2012.jpg) #### BMW_Z4_Convertible_2012 ![BMW_Z4_Convertible_2012](images/BMW_Z4_Convertible_2012.jpg) #### Bentley_Arnage_Sedan_2009 ![Bentley_Arnage_Sedan_2009](images/Bentley_Arnage_Sedan_2009.jpg) #### Bentley_Continental_Flying_Spur_Sedan_2007 ![Bentley_Continental_Flying_Spur_Sedan_2007](images/Bentley_Continental_Flying_Spur_Sedan_2007.jpg) #### Bentley_Continental_GT_Coupe_2007 ![Bentley_Continental_GT_Coupe_2007](images/Bentley_Continental_GT_Coupe_2007.jpg) #### Bentley_Continental_GT_Coupe_2012 ![Bentley_Continental_GT_Coupe_2012](images/Bentley_Continental_GT_Coupe_2012.jpg) #### Bentley_Continental_Supersports_Conv._Convertible_2012 ![Bentley_Continental_Supersports_Conv._Convertible_2012](images/Bentley_Continental_Supersports_Conv._Convertible_2012.jpg) #### Bentley_Mulsanne_Sedan_2011 ![Bentley_Mulsanne_Sedan_2011](images/Bentley_Mulsanne_Sedan_2011.jpg) #### Bugatti_Veyron_16.4_Convertible_2009 ![Bugatti_Veyron_16.4_Convertible_2009](images/Bugatti_Veyron_16.4_Convertible_2009.jpg) #### Bugatti_Veyron_16.4_Coupe_2009 ![Bugatti_Veyron_16.4_Coupe_2009](images/Bugatti_Veyron_16.4_Coupe_2009.jpg) #### Buick_Enclave_SUV_2012 ![Buick_Enclave_SUV_2012](images/Buick_Enclave_SUV_2012.jpg) #### Buick_Rainier_SUV_2007 ![Buick_Rainier_SUV_2007](images/Buick_Rainier_SUV_2007.jpg) #### Buick_Regal_GS_2012 ![Buick_Regal_GS_2012](images/Buick_Regal_GS_2012.jpg) #### Buick_Verano_Sedan_2012 ![Buick_Verano_Sedan_2012](images/Buick_Verano_Sedan_2012.jpg) #### Cadillac_CTS-V_Sedan_2012 ![Cadillac_CTS-V_Sedan_2012](images/Cadillac_CTS-V_Sedan_2012.jpg) #### Cadillac_Escalade_EXT_Crew_Cab_2007 ![Cadillac_Escalade_EXT_Crew_Cab_2007](images/Cadillac_Escalade_EXT_Crew_Cab_2007.jpg) #### Cadillac_SRX_SUV_2012 ![Cadillac_SRX_SUV_2012](images/Cadillac_SRX_SUV_2012.jpg) #### Chevrolet_Avalanche_Crew_Cab_2012 ![Chevrolet_Avalanche_Crew_Cab_2012](images/Chevrolet_Avalanche_Crew_Cab_2012.jpg) #### Chevrolet_Camaro_Convertible_2012 ![Chevrolet_Camaro_Convertible_2012](images/Chevrolet_Camaro_Convertible_2012.jpg) #### Chevrolet_Cobalt_SS_2010 ![Chevrolet_Cobalt_SS_2010](images/Chevrolet_Cobalt_SS_2010.jpg) #### Chevrolet_Corvette_Convertible_2012 ![Chevrolet_Corvette_Convertible_2012](images/Chevrolet_Corvette_Convertible_2012.jpg) #### Chevrolet_Corvette_Ron_Fellows_Edition_Z06_2007 ![Chevrolet_Corvette_Ron_Fellows_Edition_Z06_2007](images/Chevrolet_Corvette_Ron_Fellows_Edition_Z06_2007.jpg) #### Chevrolet_Corvette_ZR1_2012 ![Chevrolet_Corvette_ZR1_2012](images/Chevrolet_Corvette_ZR1_2012.jpg) #### Chevrolet_Express_Cargo_Van_2007 ![Chevrolet_Express_Cargo_Van_2007](images/Chevrolet_Express_Cargo_Van_2007.jpg) #### Chevrolet_Express_Van_2007 ![Chevrolet_Express_Van_2007](images/Chevrolet_Express_Van_2007.jpg) #### Chevrolet_HHR_SS_2010 ![Chevrolet_HHR_SS_2010](images/Chevrolet_HHR_SS_2010.jpg) #### Chevrolet_Impala_Sedan_2007 ![Chevrolet_Impala_Sedan_2007](images/Chevrolet_Impala_Sedan_2007.jpg) #### Chevrolet_Malibu_Hybrid_Sedan_2010 ![Chevrolet_Malibu_Hybrid_Sedan_2010](images/Chevrolet_Malibu_Hybrid_Sedan_2010.jpg) #### Chevrolet_Malibu_Sedan_2007 ![Chevrolet_Malibu_Sedan_2007](images/Chevrolet_Malibu_Sedan_2007.jpg) #### Chevrolet_Monte_Carlo_Coupe_2007 ![Chevrolet_Monte_Carlo_Coupe_2007](images/Chevrolet_Monte_Carlo_Coupe_2007.jpg) #### Chevrolet_Silverado_1500_Classic_Extended_Cab_2007 ![Chevrolet_Silverado_1500_Classic_Extended_Cab_2007](images/Chevrolet_Silverado_1500_Classic_Extended_Cab_2007.jpg) #### Chevrolet_Silverado_1500_Extended_Cab_2012 ![Chevrolet_Silverado_1500_Extended_Cab_2012](images/Chevrolet_Silverado_1500_Extended_Cab_2012.jpg) #### Chevrolet_Silverado_1500_Hybrid_Crew_Cab_2012 ![Chevrolet_Silverado_1500_Hybrid_Crew_Cab_2012](images/Chevrolet_Silverado_1500_Hybrid_Crew_Cab_2012.jpg) #### Chevrolet_Silverado_1500_Regular_Cab_2012 ![Chevrolet_Silverado_1500_Regular_Cab_2012](images/Chevrolet_Silverado_1500_Regular_Cab_2012.jpg) #### Chevrolet_Silverado_2500HD_Regular_Cab_2012 ![Chevrolet_Silverado_2500HD_Regular_Cab_2012](images/Chevrolet_Silverado_2500HD_Regular_Cab_2012.jpg) #### Chevrolet_Sonic_Sedan_2012 ![Chevrolet_Sonic_Sedan_2012](images/Chevrolet_Sonic_Sedan_2012.jpg) #### Chevrolet_Tahoe_Hybrid_SUV_2012 ![Chevrolet_Tahoe_Hybrid_SUV_2012](images/Chevrolet_Tahoe_Hybrid_SUV_2012.jpg) #### Chevrolet_TrailBlazer_SS_2009 ![Chevrolet_TrailBlazer_SS_2009](images/Chevrolet_TrailBlazer_SS_2009.jpg) #### Chevrolet_Traverse_SUV_2012 ![Chevrolet_Traverse_SUV_2012](images/Chevrolet_Traverse_SUV_2012.jpg) #### Chrysler_300_SRT-8_2010 ![Chrysler_300_SRT-8_2010](images/Chrysler_300_SRT-8_2010.jpg) #### Chrysler_Aspen_SUV_2009 ![Chrysler_Aspen_SUV_2009](images/Chrysler_Aspen_SUV_2009.jpg) #### Chrysler_Crossfire_Convertible_2008 ![Chrysler_Crossfire_Convertible_2008](images/Chrysler_Crossfire_Convertible_2008.jpg) #### Chrysler_PT_Cruiser_Convertible_2008 ![Chrysler_PT_Cruiser_Convertible_2008](images/Chrysler_PT_Cruiser_Convertible_2008.jpg) #### Chrysler_Sebring_Convertible_2010 ![Chrysler_Sebring_Convertible_2010](images/Chrysler_Sebring_Convertible_2010.jpg) #### Chrysler_Town_and_Country_Minivan_2012 ![Chrysler_Town_and_Country_Minivan_2012](images/Chrysler_Town_and_Country_Minivan_2012.jpg) #### Daewoo_Nubira_Wagon_2002 ![Daewoo_Nubira_Wagon_2002](images/Daewoo_Nubira_Wagon_2002.jpg) #### Dodge_Caliber_Wagon_2007 ![Dodge_Caliber_Wagon_2007](images/Dodge_Caliber_Wagon_2007.jpg) #### Dodge_Caliber_Wagon_2012 ![Dodge_Caliber_Wagon_2012](images/Dodge_Caliber_Wagon_2012.jpg) #### Dodge_Caravan_Minivan_1997 ![Dodge_Caravan_Minivan_1997](images/Dodge_Caravan_Minivan_1997.jpg) #### Dodge_Challenger_SRT8_2011 ![Dodge_Challenger_SRT8_2011](images/Dodge_Challenger_SRT8_2011.jpg) #### Dodge_Charger_SRT-8_2009 ![Dodge_Charger_SRT-8_2009](images/Dodge_Charger_SRT-8_2009.jpg) #### Dodge_Charger_Sedan_2012 ![Dodge_Charger_Sedan_2012](images/Dodge_Charger_Sedan_2012.jpg) #### Dodge_Dakota_Club_Cab_2007 ![Dodge_Dakota_Club_Cab_2007](images/Dodge_Dakota_Club_Cab_2007.jpg) #### Dodge_Dakota_Crew_Cab_2010 ![Dodge_Dakota_Crew_Cab_2010](images/Dodge_Dakota_Crew_Cab_2010.jpg) #### Dodge_Durango_SUV_2007 ![Dodge_Durango_SUV_2007](images/Dodge_Durango_SUV_2007.jpg) #### Dodge_Durango_SUV_2012 ![Dodge_Durango_SUV_2012](images/Dodge_Durango_SUV_2012.jpg) #### Dodge_Journey_SUV_2012 ![Dodge_Journey_SUV_2012](images/Dodge_Journey_SUV_2012.jpg) #### Dodge_Magnum_Wagon_2008 ![Dodge_Magnum_Wagon_2008](images/Dodge_Magnum_Wagon_2008.jpg) #### Dodge_Ram_Pickup_3500_Crew_Cab_2010 ![Dodge_Ram_Pickup_3500_Crew_Cab_2010](images/Dodge_Ram_Pickup_3500_Crew_Cab_2010.jpg) #### Dodge_Ram_Pickup_3500_Quad_Cab_2009 ![Dodge_Ram_Pickup_3500_Quad_Cab_2009](images/Dodge_Ram_Pickup_3500_Quad_Cab_2009.jpg) #### Dodge_Sprinter_Cargo_Van_2009 ![Dodge_Sprinter_Cargo_Van_2009](images/Dodge_Sprinter_Cargo_Van_2009.jpg) #### Eagle_Talon_Hatchback_1998 ![Eagle_Talon_Hatchback_1998](images/Eagle_Talon_Hatchback_1998.jpg) #### FIAT_500_Abarth_2012 ![FIAT_500_Abarth_2012](images/FIAT_500_Abarth_2012.jpg) #### FIAT_500_Convertible_2012 ![FIAT_500_Convertible_2012](images/FIAT_500_Convertible_2012.jpg) #### Ferrari_458_Italia_Convertible_2012 ![Ferrari_458_Italia_Convertible_2012](images/Ferrari_458_Italia_Convertible_2012.jpg) #### Ferrari_458_Italia_Coupe_2012 ![Ferrari_458_Italia_Coupe_2012](images/Ferrari_458_Italia_Coupe_2012.jpg) #### Ferrari_California_Convertible_2012 ![Ferrari_California_Convertible_2012](images/Ferrari_California_Convertible_2012.jpg) #### Ferrari_FF_Coupe_2012 ![Ferrari_FF_Coupe_2012](images/Ferrari_FF_Coupe_2012.jpg) #### Fisker_Karma_Sedan_2012 ![Fisker_Karma_Sedan_2012](images/Fisker_Karma_Sedan_2012.jpg) #### Ford_E-Series_Wagon_Van_2012 ![Ford_E-Series_Wagon_Van_2012](images/Ford_E-Series_Wagon_Van_2012.jpg) #### Ford_Edge_SUV_2012 ![Ford_Edge_SUV_2012](images/Ford_Edge_SUV_2012.jpg) #### Ford_Expedition_EL_SUV_2009 ![Ford_Expedition_EL_SUV_2009](images/Ford_Expedition_EL_SUV_2009.jpg) #### Ford_F-150_Regular_Cab_2007 ![Ford_F-150_Regular_Cab_2007](images/Ford_F-150_Regular_Cab_2007.jpg) #### Ford_F-150_Regular_Cab_2012 ![Ford_F-150_Regular_Cab_2012](images/Ford_F-150_Regular_Cab_2012.jpg) #### Ford_F-450_Super_Duty_Crew_Cab_2012 ![Ford_F-450_Super_Duty_Crew_Cab_2012](images/Ford_F-450_Super_Duty_Crew_Cab_2012.jpg) #### Ford_Fiesta_Sedan_2012 ![Ford_Fiesta_Sedan_2012](images/Ford_Fiesta_Sedan_2012.jpg) #### Ford_Focus_Sedan_2007 ![Ford_Focus_Sedan_2007](images/Ford_Focus_Sedan_2007.jpg) #### Ford_Freestar_Minivan_2007 ![Ford_Freestar_Minivan_2007](images/Ford_Freestar_Minivan_2007.jpg) #### Ford_GT_Coupe_2006 ![Ford_GT_Coupe_2006](images/Ford_GT_Coupe_2006.jpg) #### Ford_Mustang_Convertible_2007 ![Ford_Mustang_Convertible_2007](images/Ford_Mustang_Convertible_2007.jpg) #### Ford_Ranger_SuperCab_2011 ![Ford_Ranger_SuperCab_2011](images/Ford_Ranger_SuperCab_2011.jpg) #### GMC_Acadia_SUV_2012 ![GMC_Acadia_SUV_2012](images/GMC_Acadia_SUV_2012.jpg) #### GMC_Canyon_Extended_Cab_2012 ![GMC_Canyon_Extended_Cab_2012](images/GMC_Canyon_Extended_Cab_2012.jpg) #### GMC_Savana_Van_2012 ![GMC_Savana_Van_2012](images/GMC_Savana_Van_2012.jpg) #### GMC_Terrain_SUV_2012 ![GMC_Terrain_SUV_2012](images/GMC_Terrain_SUV_2012.jpg) #### GMC_Yukon_Hybrid_SUV_2012 ![GMC_Yukon_Hybrid_SUV_2012](images/GMC_Yukon_Hybrid_SUV_2012.jpg) #### Geo_Metro_Convertible_1993 ![Geo_Metro_Convertible_1993](images/Geo_Metro_Convertible_1993.jpg) #### HUMMER_H2_SUT_Crew_Cab_2009 ![HUMMER_H2_SUT_Crew_Cab_2009](images/HUMMER_H2_SUT_Crew_Cab_2009.jpg) #### HUMMER_H3T_Crew_Cab_2010 ![HUMMER_H3T_Crew_Cab_2010](images/HUMMER_H3T_Crew_Cab_2010.jpg) #### Honda_Accord_Coupe_2012 ![Honda_Accord_Coupe_2012](images/Honda_Accord_Coupe_2012.jpg) #### Honda_Accord_Sedan_2012 ![Honda_Accord_Sedan_2012](images/Honda_Accord_Sedan_2012.jpg) #### Honda_Odyssey_Minivan_2007 ![Honda_Odyssey_Minivan_2007](images/Honda_Odyssey_Minivan_2007.jpg) #### Honda_Odyssey_Minivan_2012 ![Honda_Odyssey_Minivan_2012](images/Honda_Odyssey_Minivan_2012.jpg) #### Hyundai_Accent_Sedan_2012 ![Hyundai_Accent_Sedan_2012](images/Hyundai_Accent_Sedan_2012.jpg) #### Hyundai_Azera_Sedan_2012 ![Hyundai_Azera_Sedan_2012](images/Hyundai_Azera_Sedan_2012.jpg) #### Hyundai_Elantra_Sedan_2007 ![Hyundai_Elantra_Sedan_2007](images/Hyundai_Elantra_Sedan_2007.jpg) #### Hyundai_Elantra_Touring_Hatchback_2012 ![Hyundai_Elantra_Touring_Hatchback_2012](images/Hyundai_Elantra_Touring_Hatchback_2012.jpg) #### Hyundai_Genesis_Sedan_2012 ![Hyundai_Genesis_Sedan_2012](images/Hyundai_Genesis_Sedan_2012.jpg) #### Hyundai_Santa_Fe_SUV_2012 ![Hyundai_Santa_Fe_SUV_2012](images/Hyundai_Santa_Fe_SUV_2012.jpg) #### Hyundai_Sonata_Hybrid_Sedan_2012 ![Hyundai_Sonata_Hybrid_Sedan_2012](images/Hyundai_Sonata_Hybrid_Sedan_2012.jpg) #### Hyundai_Sonata_Sedan_2012 ![Hyundai_Sonata_Sedan_2012](images/Hyundai_Sonata_Sedan_2012.jpg) #### Hyundai_Tucson_SUV_2012 ![Hyundai_Tucson_SUV_2012](images/Hyundai_Tucson_SUV_2012.jpg) #### Hyundai_Veloster_Hatchback_2012 ![Hyundai_Veloster_Hatchback_2012](images/Hyundai_Veloster_Hatchback_2012.jpg) #### Hyundai_Veracruz_SUV_2012 ![Hyundai_Veracruz_SUV_2012](images/Hyundai_Veracruz_SUV_2012.jpg) #### Infiniti_G_Coupe_IPL_2012 ![Infiniti_G_Coupe_IPL_2012](images/Infiniti_G_Coupe_IPL_2012.jpg) #### Infiniti_QX56_SUV_2011 ![Infiniti_QX56_SUV_2011](images/Infiniti_QX56_SUV_2011.jpg) #### Isuzu_Ascender_SUV_2008 ![Isuzu_Ascender_SUV_2008](images/Isuzu_Ascender_SUV_2008.jpg) #### Jaguar_XK_XKR_2012 ![Jaguar_XK_XKR_2012](images/Jaguar_XK_XKR_2012.jpg) #### Jeep_Compass_SUV_2012 ![Jeep_Compass_SUV_2012](images/Jeep_Compass_SUV_2012.jpg) #### Jeep_Grand_Cherokee_SUV_2012 ![Jeep_Grand_Cherokee_SUV_2012](images/Jeep_Grand_Cherokee_SUV_2012.jpg) #### Jeep_Liberty_SUV_2012 ![Jeep_Liberty_SUV_2012](images/Jeep_Liberty_SUV_2012.jpg) #### Jeep_Patriot_SUV_2012 ![Jeep_Patriot_SUV_2012](images/Jeep_Patriot_SUV_2012.jpg) #### Jeep_Wrangler_SUV_2012 ![Jeep_Wrangler_SUV_2012](images/Jeep_Wrangler_SUV_2012.jpg) #### Lamborghini_Aventador_Coupe_2012 ![Lamborghini_Aventador_Coupe_2012](images/Lamborghini_Aventador_Coupe_2012.jpg) #### Lamborghini_Diablo_Coupe_2001 ![Lamborghini_Diablo_Coupe_2001](images/Lamborghini_Diablo_Coupe_2001.jpg) #### Lamborghini_Gallardo_LP_570-4_Superleggera_2012 ![Lamborghini_Gallardo_LP_570-4_Superleggera_2012](images/Lamborghini_Gallardo_LP_570-4_Superleggera_2012.jpg) #### Lamborghini_Reventon_Coupe_2008 ![Lamborghini_Reventon_Coupe_2008](images/Lamborghini_Reventon_Coupe_2008.jpg) #### Land_Rover_LR2_SUV_2012 ![Land_Rover_LR2_SUV_2012](images/Land_Rover_LR2_SUV_2012.jpg) #### Land_Rover_Range_Rover_SUV_2012 ![Land_Rover_Range_Rover_SUV_2012](images/Land_Rover_Range_Rover_SUV_2012.jpg) #### Lincoln_Town_Car_Sedan_2011 ![Lincoln_Town_Car_Sedan_2011](images/Lincoln_Town_Car_Sedan_2011.jpg) #### MINI_Cooper_Roadster_Convertible_2012 ![MINI_Cooper_Roadster_Convertible_2012](images/MINI_Cooper_Roadster_Convertible_2012.jpg) #### Maybach_Landaulet_Convertible_2012 ![Maybach_Landaulet_Convertible_2012](images/Maybach_Landaulet_Convertible_2012.jpg) #### Mazda_Tribute_SUV_2011 ![Mazda_Tribute_SUV_2011](images/Mazda_Tribute_SUV_2011.jpg) #### McLaren_MP4-12C_Coupe_2012 ![McLaren_MP4-12C_Coupe_2012](images/McLaren_MP4-12C_Coupe_2012.jpg) #### Mercedes-Benz_300-Class_Convertible_1993 ![Mercedes-Benz_300-Class_Convertible_1993](images/Mercedes-Benz_300-Class_Convertible_1993.jpg) #### Mercedes-Benz_C-Class_Sedan_2012 ![Mercedes-Benz_C-Class_Sedan_2012](images/Mercedes-Benz_C-Class_Sedan_2012.jpg) #### Mercedes-Benz_E-Class_Sedan_2012 ![Mercedes-Benz_E-Class_Sedan_2012](images/Mercedes-Benz_E-Class_Sedan_2012.jpg) #### Mercedes-Benz_S-Class_Sedan_2012 ![Mercedes-Benz_S-Class_Sedan_2012](images/Mercedes-Benz_S-Class_Sedan_2012.jpg) #### Mercedes-Benz_SL-Class_Coupe_2009 ![Mercedes-Benz_SL-Class_Coupe_2009](images/Mercedes-Benz_SL-Class_Coupe_2009.jpg) #### Mercedes-Benz_Sprinter_Van_2012 ![Mercedes-Benz_Sprinter_Van_2012](images/Mercedes-Benz_Sprinter_Van_2012.jpg) #### Mitsubishi_Lancer_Sedan_2012 ![Mitsubishi_Lancer_Sedan_2012](images/Mitsubishi_Lancer_Sedan_2012.jpg) #### Nissan_240SX_Coupe_1998 ![Nissan_240SX_Coupe_1998](images/Nissan_240SX_Coupe_1998.jpg) #### Nissan_Juke_Hatchback_2012 ![Nissan_Juke_Hatchback_2012](images/Nissan_Juke_Hatchback_2012.jpg) #### Nissan_Leaf_Hatchback_2012 ![Nissan_Leaf_Hatchback_2012](images/Nissan_Leaf_Hatchback_2012.jpg) #### Nissan_NV_Passenger_Van_2012 ![Nissan_NV_Passenger_Van_2012](images/Nissan_NV_Passenger_Van_2012.jpg) #### Plymouth_Neon_Coupe_1999 ![Plymouth_Neon_Coupe_1999](images/Plymouth_Neon_Coupe_1999.jpg) #### Porsche_Panamera_Sedan_2012 ![Porsche_Panamera_Sedan_2012](images/Porsche_Panamera_Sedan_2012.jpg) #### Ram_C_V_Cargo_Van_Minivan_2012 ![Ram_C_V_Cargo_Van_Minivan_2012](images/Ram_C_V_Cargo_Van_Minivan_2012.jpg) #### Rolls-Royce_Ghost_Sedan_2012 ![Rolls-Royce_Ghost_Sedan_2012](images/Rolls-Royce_Ghost_Sedan_2012.jpg) #### Rolls-Royce_Phantom_Drophead_Coupe_Convertible_2012 ![Rolls-Royce_Phantom_Drophead_Coupe_Convertible_2012](images/Rolls-Royce_Phantom_Drophead_Coupe_Convertible_2012.jpg) #### Rolls-Royce_Phantom_Sedan_2012 ![Rolls-Royce_Phantom_Sedan_2012](images/Rolls-Royce_Phantom_Sedan_2012.jpg) #### Scion_xD_Hatchback_2012 ![Scion_xD_Hatchback_2012](images/Scion_xD_Hatchback_2012.jpg) #### Spyker_C8_Convertible_2009 ![Spyker_C8_Convertible_2009](images/Spyker_C8_Convertible_2009.jpg) #### Spyker_C8_Coupe_2009 ![Spyker_C8_Coupe_2009](images/Spyker_C8_Coupe_2009.jpg) #### Suzuki_Aerio_Sedan_2007 ![Suzuki_Aerio_Sedan_2007](images/Suzuki_Aerio_Sedan_2007.jpg) #### Suzuki_Kizashi_Sedan_2012 ![Suzuki_Kizashi_Sedan_2012](images/Suzuki_Kizashi_Sedan_2012.jpg) #### Suzuki_SX4_Hatchback_2012 ![Suzuki_SX4_Hatchback_2012](images/Suzuki_SX4_Hatchback_2012.jpg) #### Suzuki_SX4_Sedan_2012 ![Suzuki_SX4_Sedan_2012](images/Suzuki_SX4_Sedan_2012.jpg) #### Tesla_Model_S_Sedan_2012 ![Tesla_Model_S_Sedan_2012](images/Tesla_Model_S_Sedan_2012.jpg) #### Toyota_4Runner_SUV_2012 ![Toyota_4Runner_SUV_2012](images/Toyota_4Runner_SUV_2012.jpg) #### Toyota_Camry_Sedan_2012 ![Toyota_Camry_Sedan_2012](images/Toyota_Camry_Sedan_2012.jpg) #### Toyota_Corolla_Sedan_2012 ![Toyota_Corolla_Sedan_2012](images/Toyota_Corolla_Sedan_2012.jpg) #### Toyota_Sequoia_SUV_2012 ![Toyota_Sequoia_SUV_2012](images/Toyota_Sequoia_SUV_2012.jpg) #### Volkswagen_Beetle_Hatchback_2012 ![Volkswagen_Beetle_Hatchback_2012](images/Volkswagen_Beetle_Hatchback_2012.jpg) #### Volkswagen_Golf_Hatchback_1991 ![Volkswagen_Golf_Hatchback_1991](images/Volkswagen_Golf_Hatchback_1991.jpg) #### Volkswagen_Golf_Hatchback_2012 ![Volkswagen_Golf_Hatchback_2012](images/Volkswagen_Golf_Hatchback_2012.jpg) #### Volvo_240_Sedan_1993 ![Volvo_240_Sedan_1993](images/Volvo_240_Sedan_1993.jpg) #### Volvo_C30_Hatchback_2012 ![Volvo_C30_Hatchback_2012](images/Volvo_C30_Hatchback_2012.jpg) #### Volvo_XC90_SUV_2007 ![Volvo_XC90_SUV_2007](images/Volvo_XC90_SUV_2007.jpg) #### smart_fortwo_Convertible_2012 ![smart_fortwo_Convertible_2012](images/smart_fortwo_Convertible_2012.jpg)
{"tags": ["image-classification", "pytorch", "huggingpics"], "metrics": ["accuracy"]}
SriramSridhar78/sriram-car-classifier
null
[ "transformers", "pytorch", "tensorboard", "safetensors", "vit", "image-classification", "huggingpics", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
----- tags: - conversational ---- # Discord Bot
{}
Sristi/Senti-Bot
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
automatic-speech-recognition
transformers
Wav2Vec2-Large-XLSR-Welsh Fine-tuned facebook/wav2vec2-large-xlsr-53 on the Welsh Common Voice dataset. The data was augmented using standard augmentation approach. When using this model, make sure that your speech input is sampled at 16kHz. Test Result: 29.4% Usage The model can be used directly (without a language model) as follows: ``` import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "cy", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("Srulikbdd/Wav2vec2-large-xlsr-welsh") model = Wav2Vec2ForCTC.from_pretrained("Srulikbdd/Wav2vec2-large-xlsr-welsh") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): tlogits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` Evaluation The model can be evaluated as follows on the Welsh test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "cy", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("Srulikbdd/Wav2Vec2-large-xlsr-welsh") model = Wav2Vec2ForCTC.from_pretrained("Srulikbdd/Wav2Vec2-large-xlsr-welsh") model.to("cuda") chars_to_ignore_regex = '[\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\,\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\?\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\.\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\!\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\u2013\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\u2014\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\;\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\:\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\"\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\%\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\]' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ```
{"language": "sv", "license": "apache-2.0", "tags": ["audio", "automatic-speech-recognition", "speech", "xlsr-fine-tuning-week"], "model-index": [{"name": "XLSR Wav2Vec2 Welsh by Srulik Ben David", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice cy", "type": "common_voice", "args": "cy"}, "metrics": [{"type": "wer", "value": 29.4, "name": "Test WER"}]}]}]}
Srulikbdd/Wav2Vec2-large-xlsr-welsh
null
[ "transformers", "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "audio", "speech", "xlsr-fine-tuning-week", "sv", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
Ssadaf/bert-base-uncased-finetuned-copa
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
Stabley/DialoDPT-small-evelynn
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
text-generation
transformers
# Evelynn DialoGPT Model
{"tags": ["conversational"]}
Stabley/DialoGPT-small-evelynn
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
StanBienaives/wisenlp
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
fill-mask
transformers
{}
Stancld/roformer_chinese_char_base
null
[ "transformers", "jax", "roformer", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
Stargazer9/roberta-base-squad2-finetuned-squad
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
Startlate/my-new-shiny-tokenizer
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
StellarSav2021/DialoGPT-small-harrypotter
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
StellarSav2021/Dialogpt-small-4t3t54wy6y
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
automatic-speech-recognition
transformers
{}
StephennFernandes/XLS-R-300m-marathi
null
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
This is a dummy readme
{}
StephennFernandes/XLS-R-assamese-LM
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
StephennFernandes/XLS-R-assamese
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
automatic-speech-recognition
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # XLS-R-marathi This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - MR dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1200 - num_epochs: 30.0 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
{"language": ["mr"], "license": "apache-2.0", "tags": ["automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "robust-speech-event", "generated_from_trainer", "hf-asr-leaderboard"], "model-index": [{"name": "XLS-R-marathi", "results": []}]}
StephennFernandes/XLS-R-marathi
null
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "robust-speech-event", "generated_from_trainer", "hf-asr-leaderboard", "mr", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
StephennFernandes/backup-test
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
feature-extraction
transformers
{}
StephennFernandes/wav2vec2-XLS-R-300m-assamese
null
[ "transformers", "pytorch", "wav2vec2", "feature-extraction", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
automatic-speech-recognition
transformers
tags: - automatic-speech-recognition - robust-speech-event --- This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on a private dataset. It achieves the following results on the evaluation set: The following hyper-parameters were used during training: - learning_rate: 3e-4 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 800 - num_epochs: 30 - mixed_precision_training: Native AMP
{}
StephennFernandes/wav2vec2-XLS-R-300m-konkani
null
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
Stepp/WorkTime
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
text-generation
transformers
It's just a dialog bot trained on my Tweets. Unfortunately as tweets aren\'t very conversational it comes off pretty random.
{}
SteveC/sdc_bot_15K
null
[ "transformers", "pytorch", "gpt2", "text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-generation
transformers
{}
SteveC/sdc_bot_medium
null
[ "transformers", "pytorch", "gpt2", "text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-generation
transformers
{}
SteveC/sdc_bot_small
null
[ "transformers", "pytorch", "gpt2", "text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-generation
transformers
{}
SteveC/sdc_bot_two_step
null
[ "transformers", "pytorch", "gpt2", "text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
SteveMama/abc
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
SteveMama/pegasus-samsum
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
fill-mask
transformers
## Melayu BERT Melayu BERT is a masked language model based on [BERT](https://arxiv.org/abs/1810.04805). It was trained on the [OSCAR](https://huggingface.co/datasets/oscar) dataset, specifically the `unshuffled_original_ms` subset. The model used was [English BERT model](https://huggingface.co/bert-base-uncased) and fine-tuned on the Malaysian dataset. The model achieved a perplexity of 9.46 on a 20% validation dataset. Many of the techniques used are based on a Hugging Face tutorial [notebook](https://github.com/huggingface/notebooks/blob/master/examples/language_modeling.ipynb) written by [Sylvain Gugger](https://github.com/sgugger), and [fine-tuning tutorial notebook](https://github.com/piegu/fastai-projects/blob/master/finetuning-English-GPT2-any-language-Portuguese-HuggingFace-fastaiv2.ipynb) written by [Pierre Guillou](https://huggingface.co/pierreguillou). The model is available both for PyTorch and TensorFlow use. ## Model The model was trained on 3 epochs with a learning rate of 2e-3 and achieved a training loss per steps as shown below. | Step |Training loss| |--------|-------------| |500 | 5.051300 | |1000 | 3.701700 | |1500 | 3.288600 | |2000 | 3.024000 | |2500 | 2.833500 | |3000 | 2.741600 | |3500 | 2.637900 | |4000 | 2.547900 | |4500 | 2.451500 | |5000 | 2.409600 | |5500 | 2.388300 | |6000 | 2.351600 | ## How to Use ### As Masked Language Model ```python from transformers import pipeline pretrained_name = "StevenLimcorn/MelayuBERT" fill_mask = pipeline( "fill-mask", model=pretrained_name, tokenizer=pretrained_name ) fill_mask("Saya [MASK] makan nasi hari ini.") ``` ### Import Tokenizer and Model ```python from transformers import AutoTokenizer, AutoModelForMaskedLM tokenizer = AutoTokenizer.from_pretrained("StevenLimcorn/MelayuBERT") model = AutoModelForMaskedLM.from_pretrained("StevenLimcorn/MelayuBERT") ``` ## Author Melayu BERT was trained by [Steven Limcorn](https://github.com/stevenlimcorn) and [Wilson Wongso](https://hf.co/w11wo).
{"language": "ms", "license": "mit", "tags": ["melayu-bert"], "datasets": ["oscar"], "widget": [{"text": "Saya [MASK] makan nasi hari ini."}]}
StevenLimcorn/MelayuBERT
null
[ "transformers", "pytorch", "tf", "bert", "fill-mask", "melayu-bert", "ms", "dataset:oscar", "arxiv:1810.04805", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
## Indo-roberta-indonli Indo-roberta-indonli is natural language inference classifier based on [Indo-roberta](https://huggingface.co/flax-community/indonesian-roberta-base) model. It was trained on the trained on [IndoNLI](https://github.com/ir-nlp-csui/indonli/tree/main/data/indonli) dataset. The model used was [Indo-roberta](https://huggingface.co/flax-community/indonesian-roberta-base) and was transfer-learned to a natural inference classifier model. The model are tested using the validation, test_layer and test_expert dataset given in the github repository. The results are shown below. ### Result | Dataset | Accuracy | F1 | Precision | Recall | |-------------|----------|---------|-----------|---------| | Test Lay | 0.74329 | 0.74075 | 0.74283 | 0.74133 | | Test Expert | 0.6115 | 0.60543 | 0.63924 | 0.61742 | ## Model The model was trained on with 5 epochs, batch size 16, learning rate 2e-5 and weight decay 0.01. Achieved different metrics as shown below. | Epoch | Training Loss | Validation Loss | Accuracy | F1 | Precision | Recall | |-------|---------------|-----------------|----------|----------|-----------|----------| | 1 | 0.942500 | 0.658559 | 0.737369 | 0.735552 | 0.735488 | 0.736679 | | 2 | 0.649200 | 0.645290 | 0.761493 | 0.759593 | 0.762784 | 0.759642 | | 3 | 0.437100 | 0.667163 | 0.766045 | 0.763979 | 0.765740 | 0.763792 | | 4 | 0.282000 | 0.786683 | 0.764679 | 0.761802 | 0.762011 | 0.761684 | | 5 | 0.193500 | 0.925717 | 0.765134 | 0.763127 | 0.763560 | 0.763489 | ## How to Use ### As NLI Classifier ```python from transformers import pipeline pretrained_name = "StevenLimcorn/indonesian-roberta-indonli" nlp = pipeline( "zero-shot-classification", model=pretrained_name, tokenizer=pretrained_name ) nlp("Amir Sjarifoeddin Harahap lahir di Kota Medan, Sumatera Utara, 27 April 1907. Ia meninggal di Surakarta, Jawa Tengah, pada 19 Desember 1948 dalam usia 41 tahun. </s></s> Amir Sjarifoeddin Harahap masih hidup.") ``` ## Disclaimer Do consider the biases which come from both the pre-trained RoBERTa model and the `INDONLI` dataset that may be carried over into the results of this model. ## Author Indonesian RoBERTa Base IndoNLI was trained and evaluated by [Steven Limcorn](https://github.com/stevenlimcorn). All computation and development are done on Google Colaboratory using their free GPU access. ## Reference The dataset we used is by IndoNLI. ``` @inproceedings{indonli, title = "IndoNLI: A Natural Language Inference Dataset for Indonesian", author = "Mahendra, Rahmad and Aji, Alham Fikri and Louvan, Samuel and Rahman, Fahrurrozi and Vania, Clara", booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing", month = nov, year = "2021", publisher = "Association for Computational Linguistics", } ```
{"language": "id", "license": "mit", "tags": ["roberta"], "datasets": ["indonli"], "widget": [{"text": "Amir Sjarifoeddin Harahap lahir di Kota Medan, Sumatera Utara, 27 April 1907. Ia meninggal di Surakarta, Jawa Tengah, pada 19 Desember 1948 dalam usia 41 tahun. </s></s> Amir Sjarifoeddin Harahap masih hidup."}]}
StevenLimcorn/indo-roberta-indonli
null
[ "transformers", "pytorch", "tf", "roberta", "text-classification", "id", "dataset:indonli", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
token-classification
transformers
{}
StevenLimcorn/indonesian-roberta-base-bapos-tagger
null
[ "transformers", "pytorch", "tf", "roberta", "token-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
# Indo RoBERTa Emotion Classifier Indo RoBERTa Emotion Classifier is emotion classifier based on [Indo-roberta](https://huggingface.co/flax-community/indonesian-roberta-base) model. It was trained on the trained on [IndoNLU EmoT](https://huggingface.co/datasets/indonlu) dataset. The model used was [Indo-roberta](https://huggingface.co/flax-community/indonesian-roberta-base) and was transfer-learned to an emotion classifier model. Based from the [IndoNLU bencmark](https://www.indobenchmark.com/), the model achieve an f1-macro of 72.05%, accuracy of 71.81%, precision of 72.47% and recall of 71.94%. ## Model The model was trained on 7 epochs with learning rate 2e-5. Achieved different metrics as shown below. | Epoch | Training Loss | Validation Loss | Accuracy | F1 | Precision | Recall | |-------|---------------|-----------------|----------|----------|-----------|----------| | 1 | 1.300700 | 1.005149 | 0.622727 | 0.601846 | 0.640845 | 0.611144 | | 2 | 0.806300 | 0.841953 | 0.686364 | 0.694096 | 0.701984 | 0.696657 | | 3 | 0.591900 | 0.796794 | 0.686364 | 0.696573 | 0.707520 | 0.691671 | | 4 | 0.441200 | 0.782094 | 0.722727 | 0.724359 | 0.725985 | 0.730229 | | 5 | 0.334700 | 0.809931 | 0.711364 | 0.720550 | 0.718318 | 0.724608 | | 6 | 0.268400 | 0.812771 | 0.718182 | 0.724192 | 0.721222 | 0.729195 | | 7 | 0.226000 | 0.828461 | 0.725000 | 0.733625 | 0.731709 | 0.735800 | ## How to Use ### As Text Classifier ```python from transformers import pipeline pretrained_name = "StevenLimcorn/indonesian-roberta-base-emotion-classifier" nlp = pipeline( "sentiment-analysis", model=pretrained_name, tokenizer=pretrained_name ) nlp("Hal-hal baik akan datang.") ``` ## Disclaimer Do consider the biases which come from both the pre-trained RoBERTa model and the `EmoT` dataset that may be carried over into the results of this model. ## Author Indonesian RoBERTa Base Emotion Classifier was trained and evaluated by [Steven Limcorn](https://github.com/stevenlimcorn). All computation and development are done on Google Colaboratory using their free GPU access. If used, please cite ```bibtex @misc {steven_limcorn_2023, author = { {Steven Limcorn} }, title = { indonesian-roberta-base-emotion-classifier (Revision e8a9cb9) }, year = 2023, url = { https://huggingface.co/StevenLimcorn/indonesian-roberta-base-emotion-classifier }, doi = { 10.57967/hf/0681 }, publisher = { Hugging Face } } ```
{"language": "id", "license": "mit", "tags": ["roberta"], "datasets": ["indonlu"], "widget": [{"text": "Hal-hal baik akan datang."}]}
StevenLimcorn/indonesian-roberta-base-emotion-classifier
null
[ "transformers", "pytorch", "tf", "safetensors", "roberta", "text-classification", "id", "dataset:indonlu", "doi:10.57967/hf/0681", "license:mit", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:05+00:00
automatic-speech-recognition
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the COMMON_VOICE - ZH-TW dataset. It achieves the following results on the evaluation set: - Loss: 1.1786 - Wer: 0.8594 - Cer: 0.2964 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 100.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:-----:|:---------------:|:------:|:------:| | 64.6189 | 2.51 | 500 | 63.8077 | 1.0 | 1.0 | | 8.0561 | 5.03 | 1000 | 6.8014 | 1.0 | 1.0 | | 6.0427 | 7.54 | 1500 | 6.0745 | 1.0 | 1.0 | | 5.9357 | 10.05 | 2000 | 5.8682 | 1.0 | 1.0 | | 5.0489 | 12.56 | 2500 | 4.4032 | 0.9990 | 0.7750 | | 4.6184 | 15.08 | 3000 | 3.8383 | 0.9983 | 0.6768 | | 4.365 | 17.59 | 3500 | 3.4633 | 0.9959 | 0.6299 | | 4.1026 | 20.1 | 4000 | 3.0732 | 0.9902 | 0.5814 | | 3.8655 | 22.61 | 4500 | 2.7638 | 0.9868 | 0.5465 | | 3.6991 | 25.13 | 5000 | 2.4759 | 0.9811 | 0.5088 | | 3.4894 | 27.64 | 5500 | 2.2937 | 0.9746 | 0.4852 | | 3.3983 | 30.15 | 6000 | 2.1684 | 0.9733 | 0.4674 | | 3.2736 | 32.66 | 6500 | 2.0372 | 0.9659 | 0.4458 | | 3.1884 | 35.18 | 7000 | 1.9267 | 0.9648 | 0.4329 | | 3.1248 | 37.69 | 7500 | 1.8408 | 0.9591 | 0.4217 | | 3.0381 | 40.2 | 8000 | 1.7531 | 0.9503 | 0.4074 | | 2.9515 | 42.71 | 8500 | 1.6880 | 0.9459 | 0.3967 | | 2.8704 | 45.23 | 9000 | 1.6264 | 0.9378 | 0.3884 | | 2.8128 | 47.74 | 9500 | 1.5621 | 0.9341 | 0.3782 | | 2.7386 | 50.25 | 10000 | 1.5011 | 0.9243 | 0.3664 | | 2.6646 | 52.76 | 10500 | 1.4608 | 0.9192 | 0.3575 | | 2.6072 | 55.28 | 11000 | 1.4251 | 0.9148 | 0.3501 | | 2.569 | 57.79 | 11500 | 1.3837 | 0.9060 | 0.3462 | | 2.5091 | 60.3 | 12000 | 1.3589 | 0.9070 | 0.3392 | | 2.4588 | 62.81 | 12500 | 1.3261 | 0.8966 | 0.3284 | | 2.4083 | 65.33 | 13000 | 1.3052 | 0.8982 | 0.3265 | | 2.3787 | 67.84 | 13500 | 1.2997 | 0.8908 | 0.3243 | | 2.3457 | 70.35 | 14000 | 1.2778 | 0.8898 | 0.3187 | | 2.3099 | 72.86 | 14500 | 1.2661 | 0.8830 | 0.3172 | | 2.2559 | 75.38 | 15000 | 1.2475 | 0.8851 | 0.3143 | | 2.2264 | 77.89 | 15500 | 1.2319 | 0.8739 | 0.3085 | | 2.196 | 80.4 | 16000 | 1.2218 | 0.8722 | 0.3049 | | 2.1613 | 82.91 | 16500 | 1.2093 | 0.8719 | 0.3051 | | 2.1455 | 85.43 | 17000 | 1.2055 | 0.8624 | 0.3005 | | 2.1193 | 87.94 | 17500 | 1.1975 | 0.8600 | 0.2982 | | 2.0911 | 90.45 | 18000 | 1.1960 | 0.8648 | 0.3003 | | 2.0884 | 92.96 | 18500 | 1.1871 | 0.8638 | 0.2971 | | 2.0766 | 95.48 | 19000 | 1.1814 | 0.8617 | 0.2967 | | 2.0735 | 97.99 | 19500 | 1.1801 | 0.8621 | 0.2969 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0
{"language": ["zh-TW"], "license": "apache-2.0", "tags": ["automatic-speech-recognition", "common_voice", "generated_from_trainer"], "datasets": ["common_voice"], "model-index": [{"name": "", "results": []}]}
StevenLimcorn/wav2vec2-xls-r-300m-zh-TW
null
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "common_voice", "generated_from_trainer", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-generation
transformers
{}
StevenShoemakerNLP/pitchfork
null
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
Stevenn/test
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
text-generation
transformers
@ Deltarune Spamton DialoGPT Model
{"tags": ["conversational"]}
Stevo/DiagloGPT-medium-spamton
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
token-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-multilingual-cased-finetuned-ner-4 #This model is part of a test for creating multilingual BioMedical NER systems. Not intended for proffesional use now. This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on the CRAFT+BC4CHEMD+BioNLP09 datasets concatenated. It achieves the following results on the evaluation set: - Loss: 0.1027 - Precision: 0.9830 - Recall: 0.9832 - F1: 0.9831 - Accuracy: 0.9799 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0658 | 1.0 | 6128 | 0.0751 | 0.9795 | 0.9795 | 0.9795 | 0.9758 | | 0.0406 | 2.0 | 12256 | 0.0753 | 0.9827 | 0.9815 | 0.9821 | 0.9786 | | 0.0182 | 3.0 | 18384 | 0.0934 | 0.9834 | 0.9825 | 0.9829 | 0.9796 | | 0.011 | 4.0 | 24512 | 0.1027 | 0.9830 | 0.9832 | 0.9831 | 0.9799 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "bert-base-multilingual-cased-finetuned-ner-4", "results": []}]}
StivenLancheros/mBERT-base-Biomedical-NER
null
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
token-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-biomedical-clinical-es-finetuned-ner-CRAFT This model is a fine-tuned version of [PlanTL-GOB-ES/roberta-base-biomedical-clinical-es](https://huggingface.co/PlanTL-GOB-ES/roberta-base-biomedical-clinical-es) on the CRAFT dataset. It achieves the following results on the evaluation set: - Loss: 0.1720 - Precision: 0.8253 - Recall: 0.8147 - F1: 0.8200 - Accuracy: 0.9660 ## Model description This model performs Named Entity Recognition for 6 entity tags: Sequence, Cell, Protein, Gene, Taxon, and Chemical from the [CRAFT](https://github.com/UCDenver-ccp/CRAFT/releases)(Colorado Richly Annotated Full Text) Corpus in English. Entity tags have been normalized and replaced from the original three letter code to a full name e.g. B-Protein, I-Chemical. ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.1133 | 1.0 | 1360 | 0.1629 | 0.7985 | 0.7782 | 0.7882 | 0.9610 | | 0.049 | 2.0 | 2720 | 0.1530 | 0.8165 | 0.8084 | 0.8124 | 0.9651 | | 0.0306 | 3.0 | 4080 | 0.1603 | 0.8198 | 0.8075 | 0.8136 | 0.9650 | | 0.0158 | 4.0 | 5440 | 0.1720 | 0.8253 | 0.8147 | 0.8200 | 0.9660 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.6
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "roberta-base-biomedical-clinical-es-finetuned-ner-CRAFT", "results": []}]}
StivenLancheros/roberta-base-biomedical-clinical-es-finetuned-ner-CRAFT
null
[ "transformers", "pytorch", "tensorboard", "roberta", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
Storm-Breaker/NER-Test
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
fill-mask
transformers
{}
StormZJ/test1
null
[ "transformers", "pytorch", "bert", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
Stoyan/Sssdd
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
Strawberrymilkshake/personal_project
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
Stu/bert
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
Stu/model_name
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
asdf
{}
Subfire/testModel
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
Subhashini17/wav2vec2-large-xls-r-300m-ta-colab-copy
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
automatic-speech-recognition
transformers
{}
Subhashini17/wav2vec2-large-xls-r-300m-ta-colab-new
null
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
automatic-speech-recognition
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-ta-colab-new1 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - eval_loss: 0.6642 - eval_wer: 0.7611 - eval_runtime: 152.4412 - eval_samples_per_second: 11.683 - eval_steps_per_second: 1.463 - epoch: 10.11 - step: 960 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu113 - Datasets 1.13.3 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["common_voice"], "model-index": [{"name": "wav2vec2-large-xls-r-300m-ta-colab-new1", "results": []}]}
Subhashini17/wav2vec2-large-xls-r-300m-ta-colab-new1
null
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
automatic-speech-recognition
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-ta-colab This model is a fine-tuned version of [akashsivanandan/wav2vec2-large-xls-r-300m-tamil-colab-final](https://huggingface.co/akashsivanandan/wav2vec2-large-xls-r-300m-tamil-colab-final) on the common_voice dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 3 - total_train_batch_size: 6 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - num_epochs: 5 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["common_voice"], "model-index": [{"name": "wav2vec2-large-xls-r-300m-ta-colab", "results": []}]}
Subhashini17/wav2vec2-large-xls-r-300m-ta-colab
null
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
Subhashini17/wav2vec2-large-xls-r-300m-tamil-colab
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
Subhashini17/wav2vec2-large-xls-r-300m-tamilasr-colab
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
Subhashini17/wav2vec2-large-xlsr-300m-tamil-colab
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
Subhrato20/testing-bot-repov2
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
token-classification
transformers
<h1>Bengali Named Entity Recognition</h1> Fine-tuning bert-base-multilingual-cased on Wikiann dataset for performing NER on Bengali language. ## Label ID and its corresponding label name | Label ID | Label Name| | -------- | ----- | |0 | O | | 1 | B-PER | | 2 | I-PER | | 3 | B-ORG| | 4 | I-ORG | | 5 | B-LOC | | 6 | I-LOC | <h1>Results</h1> | Name | Overall F1 | LOC F1 | ORG F1 | PER F1 | | ---- | -------- | ----- | ---- | ---- | | Train set | 0.997927 | 0.998246 | 0.996613 | 0.998769 | | Validation set | 0.970187 | 0.969212 | 0.956831 | 0.982079 | | Test set | 0.9673011 | 0.967120 | 0.963614 | 0.970938 | Example ```py from transformers import AutoTokenizer, AutoModelForTokenClassification from transformers import pipeline tokenizer = AutoTokenizer.from_pretrained("Suchandra/bengali_language_NER") model = AutoModelForTokenClassification.from_pretrained("Suchandra/bengali_language_NER") nlp = pipeline("ner", model=model, tokenizer=tokenizer) example = "মারভিন দি মারসিয়ান" ner_results = nlp(example) ner_results ```
{"language": "bn", "datasets": ["wikiann"], "widget": [{"text": "\u09ae\u09be\u09b0\u09ad\u09bf\u09a8 \u09a6\u09bf \u09ae\u09be\u09b0\u09b8\u09bf\u09af\u09bc\u09be\u09a8", "example_title": "Sentence_1"}, {"text": "\u09b2\u09bf\u0993\u09a8\u09be\u09b0\u09cd\u09a6\u09cb \u09a6\u09be \u09ad\u09bf\u099e\u09cd\u099a\u09bf", "example_title": "Sentence_2"}, {"text": "\u09ac\u09b8\u09a8\u09bf\u09af\u09bc\u09be \u0993 \u09b9\u09be\u09b0\u09cd\u099c\u09c7\u0997\u09cb\u09ad\u09bf\u09a8\u09be", "example_title": "Sentence_3"}, {"text": "\u09b8\u09be\u0989\u09a5 \u0987\u09b8\u09cd\u099f \u0987\u0989\u09a8\u09bf\u09ad\u09be\u09b0\u09cd\u09b8\u09bf\u099f\u09bf", "example_title": "Sentence_4"}, {"text": "\u09ae\u09be\u09a8\u09bf\u0995 \u09ac\u09a8\u09cd\u09a6\u09cd\u09af\u09cb\u09aa\u09be\u09a7\u09cd\u09af\u09be\u09af\u09bc \u09b2\u09c7\u0996\u0995", "example_title": "Sentence_5"}]}
Suchandra/bengali_language_NER
null
[ "transformers", "pytorch", "safetensors", "bert", "token-classification", "bn", "dataset:wikiann", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
SugarB/SugarB
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
Suha/mbart50-finetuned-ar-to-ar-accelerate
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
Suhan/indic-bert-v2
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
Suhanshu/Movie-plot-generator
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
Summerbud/test
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00