Search is not available for this dataset
pipeline_tag
stringclasses 48
values | library_name
stringclasses 205
values | text
stringlengths 0
18.3M
| metadata
stringlengths 2
1.07B
| id
stringlengths 5
122
| last_modified
null | tags
listlengths 1
1.84k
| sha
null | created_at
stringlengths 25
25
|
---|---|---|---|---|---|---|---|---|
fill-mask | transformers | # RuBio
for paper: dsdfsfsdf | {} | alexyalunin/my-awesome-model | null | [
"transformers",
"pytorch",
"bert",
"fill-mask",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| null | 2022-03-02T23:29:05+00:00 |
fill-mask | transformers |
<img src="https://raw.githubusercontent.com/alger-ia/dziribert/main/dziribert_drawing.png" alt="drawing" width="25%" height="25%" align="right"/>
# DziriBERT
DziriBERT is the first Transformer-based Language Model that has been pre-trained specifically for the Algerian Dialect. It handles Algerian text contents written using both Arabic and Latin characters. It sets new state of the art results on Algerian text classification datasets, even if it has been pre-trained on much less data (~1 million tweets).
For more information, please visit our paper: https://arxiv.org/pdf/2109.12346.pdf.
## How to use
```python
from transformers import BertTokenizer, BertForMaskedLM
tokenizer = BertTokenizer.from_pretrained("alger-ia/dziribert")
model = BertForMaskedLM.from_pretrained("alger-ia/dziribert")
```
You can find a fine-tuning script in our Github repo: https://github.com/alger-ia/dziribert
## Limitations
The pre-training data used in this project comes from social media (Twitter). Therefore, the Masked Language Modeling objective may predict offensive words in some situations. Modeling this kind of words may be either an advantage (e.g. when training a hate speech model) or a disadvantage (e.g. when generating answers that are directly sent to the end user). Depending on your downstream task, you may need to filter out such words especially when returning automatically generated text to the end user.
### How to cite
```bibtex
@article{dziribert,
title={DziriBERT: a Pre-trained Language Model for the Algerian Dialect},
author={Abdaoui, Amine and Berrimi, Mohamed and Oussalah, Mourad and Moussaoui, Abdelouahab},
journal={arXiv preprint arXiv:2109.12346},
year={2021}
}
```
## Contact
Please contact [email protected] for any question, feedback or request.
| {"language": ["ar", "dz"], "license": "apache-2.0", "tags": ["pytorch", "bert", "multilingual", "ar", "dz"], "widget": [{"text": " \u0623\u0646\u0627 \u0645\u0646 \u0627\u0644\u062c\u0632\u0627\u0626\u0631 \u0645\u0646 \u0648\u0644\u0627\u064a\u0629 [MASK] "}, {"text": "rabi [MASK] khouya sami"}, {"text": " \u0631\u0628\u064a [MASK] \u062e\u0648\u064a\u0627 \u0644\u0639\u0632\u064a\u0632"}, {"text": "tahya el [MASK]."}, {"text": "rouhi ya dzayer [MASK]"}], "inference": true} | alger-ia/dziribert | null | [
"transformers",
"pytorch",
"tf",
"safetensors",
"bert",
"fill-mask",
"multilingual",
"ar",
"dz",
"arxiv:2109.12346",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"has_space",
"region:us"
]
| null | 2022-03-02T23:29:05+00:00 |
fill-mask | transformers | <p>Chinese Bert Large Model</p>
<p>bert large中文预训练模型</p>
#### 训练语料
中文wiki, 2018-2020海量新闻语料 | {} | algolet/bert-large-chinese | null | [
"transformers",
"pytorch",
"bert",
"fill-mask",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| null | 2022-03-02T23:29:05+00:00 |
text2text-generation | transformers | <h3 align="center">
<p>MT5 Base Model for Chinese Question Generation</p>
</h3>
<h3 align="center">
<p>基于mt5的中文问题生成任务</p>
</h3>
#### 可以通过安装question-generation包开始用
```
pip install question-generation
```
使用方法请参考github项目:https://github.com/algolet/question_generation
#### 在线使用
可以直接在线使用我们的模型:https://www.algolet.com/applications/qg
#### 通过transformers调用
``` python
import torch
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
tokenizer = AutoTokenizer.from_pretrained("algolet/mt5-base-chinese-qg")
model = AutoModelForSeq2SeqLM.from_pretrained("algolet/mt5-base-chinese-qg")
model.eval()
text = "在一个寒冷的冬天,赶集完回家的农夫在路边发现了一条冻僵了的蛇。他很可怜蛇,就把它放在怀里。当他身上的热气把蛇温暖以后,蛇很快苏醒了,露出了残忍的本性,给了农夫致命的伤害——咬了农夫一口。农夫临死之前说:“我竟然救了一条可怜的毒蛇,就应该受到这种报应啊!”"
text = "question generation: " + text
inputs = tokenizer(text,
return_tensors='pt',
truncation=True,
max_length=512)
with torch.no_grad():
outs = model.generate(input_ids=inputs["input_ids"],
attention_mask=inputs["attention_mask"],
max_length=128,
no_repeat_ngram_size=4,
num_beams=4)
question = tokenizer.decode(outs[0], skip_special_tokens=True)
questions = [q.strip() for q in question.split("<sep>") if len(q.strip()) > 0]
print(questions)
['在寒冷的冬天,农夫在哪里发现了一条可怜的蛇?', '农夫是如何看待蛇的?', '当农夫遇到蛇时,他做了什么?']
```
#### 指标
rouge-1: 0.4041
rouge-2: 0.2104
rouge-l: 0.3843
---
language:
- zh
tags:
- mt5
- question generation
metrics:
- rouge
---
| {} | algolet/mt5-base-chinese-qg | null | [
"transformers",
"pytorch",
"mt5",
"text2text-generation",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
]
| null | 2022-03-02T23:29:05+00:00 |
null | null | {} | algomuffin/disney | null | [
"has_space",
"region:us"
]
| null | 2022-03-02T23:29:05+00:00 |
|
fill-mask | transformers | {} | algomuffin/dummy | null | [
"transformers",
"pytorch",
"camembert",
"fill-mask",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| null | 2022-03-02T23:29:05+00:00 |
|
null | null | {} | algomuffin/my_model | null | [
"region:us"
]
| null | 2022-03-02T23:29:05+00:00 |
|
text2text-generation | transformers | {} | algoprog/mimics-bart-base | null | [
"transformers",
"pytorch",
"bart",
"text2text-generation",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| null | 2022-03-02T23:29:05+00:00 |
|
text2text-generation | transformers | {} | algoprog/mimics-query-bart-base | null | [
"transformers",
"pytorch",
"bart",
"text2text-generation",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| null | 2022-03-02T23:29:05+00:00 |
|
feature-extraction | transformers | {} | algoprog/mimics-query-facet-encoder-mpnet-base | null | [
"transformers",
"pytorch",
"mpnet",
"feature-extraction",
"endpoints_compatible",
"region:us"
]
| null | 2022-03-02T23:29:05+00:00 |
|
token-classification | transformers | {} | algoprog/mimics-tagging-roberta-base | null | [
"transformers",
"pytorch",
"roberta",
"token-classification",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| null | 2022-03-02T23:29:05+00:00 |
|
token-classification | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-base-uncased_token_itr0_0.0001_all_01_03_2022-04_48_27
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2899
- Precision: 0.3170
- Recall: 0.5261
- F1: 0.3956
- Accuracy: 0.8799
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 30 | 0.2912 | 0.2752 | 0.4444 | 0.3400 | 0.8730 |
| No log | 2.0 | 60 | 0.2772 | 0.4005 | 0.4589 | 0.4277 | 0.8911 |
| No log | 3.0 | 90 | 0.2267 | 0.3642 | 0.5281 | 0.4311 | 0.9043 |
| No log | 4.0 | 120 | 0.2129 | 0.3617 | 0.5455 | 0.4350 | 0.9140 |
| No log | 5.0 | 150 | 0.2399 | 0.3797 | 0.5556 | 0.4511 | 0.9114 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
| {"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "bert-base-uncased_token_itr0_0.0001_all_01_03_2022-04_48_27", "results": []}]} | ali2066/bert-base-uncased_token_itr0_0.0001_all_01_03_2022-04_48_27 | null | [
"transformers",
"pytorch",
"tensorboard",
"bert",
"token-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| null | 2022-03-02T23:29:05+00:00 |
token-classification | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-base-uncased_token_itr0_0.0001_all_01_03_2022-14_21_25
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2698
- Precision: 0.3321
- Recall: 0.5265
- F1: 0.4073
- Accuracy: 0.8942
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 30 | 0.3314 | 0.1627 | 0.3746 | 0.2269 | 0.8419 |
| No log | 2.0 | 60 | 0.2957 | 0.2887 | 0.4841 | 0.3617 | 0.8592 |
| No log | 3.0 | 90 | 0.2905 | 0.2429 | 0.5141 | 0.3299 | 0.8651 |
| No log | 4.0 | 120 | 0.2759 | 0.3137 | 0.5565 | 0.4013 | 0.8787 |
| No log | 5.0 | 150 | 0.2977 | 0.3116 | 0.5565 | 0.3995 | 0.8796 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
| {"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "bert-base-uncased_token_itr0_0.0001_all_01_03_2022-14_21_25", "results": []}]} | ali2066/bert-base-uncased_token_itr0_0.0001_all_01_03_2022-14_21_25 | null | [
"transformers",
"pytorch",
"tensorboard",
"bert",
"token-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| null | 2022-03-02T23:29:05+00:00 |
token-classification | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-base-uncased_token_itr0_2e-05_all_01_03_2022-04_40_10
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2741
- Precision: 0.1936
- Recall: 0.3243
- F1: 0.2424
- Accuracy: 0.8764
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 30 | 0.3235 | 0.1062 | 0.2076 | 0.1405 | 0.8556 |
| No log | 2.0 | 60 | 0.2713 | 0.1710 | 0.3080 | 0.2199 | 0.8872 |
| No log | 3.0 | 90 | 0.3246 | 0.2010 | 0.3391 | 0.2524 | 0.8334 |
| No log | 4.0 | 120 | 0.3008 | 0.2011 | 0.3685 | 0.2602 | 0.8459 |
| No log | 5.0 | 150 | 0.2714 | 0.1780 | 0.3772 | 0.2418 | 0.8661 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
| {"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "bert-base-uncased_token_itr0_2e-05_all_01_03_2022-04_40_10", "results": []}]} | ali2066/bert-base-uncased_token_itr0_2e-05_all_01_03_2022-04_40_10 | null | [
"transformers",
"pytorch",
"tensorboard",
"bert",
"token-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| null | 2022-03-02T23:29:05+00:00 |
text-classification | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert_base_uncased_itr0_0.0001_all_01_03_2022-14_08_15
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7632
- Accuracy: 0.8263
- F1: 0.8871
- Precision: 0.8551
- Recall: 0.9215
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
| No log | 1.0 | 390 | 0.3986 | 0.8305 | 0.8903 | 0.8868 | 0.8938 |
| 0.4561 | 2.0 | 780 | 0.4018 | 0.8439 | 0.9009 | 0.8805 | 0.9223 |
| 0.3111 | 3.0 | 1170 | 0.4306 | 0.8354 | 0.8924 | 0.8974 | 0.8875 |
| 0.1739 | 4.0 | 1560 | 0.5499 | 0.8378 | 0.9002 | 0.8547 | 0.9509 |
| 0.1739 | 5.0 | 1950 | 0.6223 | 0.85 | 0.9052 | 0.8814 | 0.9303 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
| {"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy", "f1", "precision", "recall"], "model-index": [{"name": "bert_base_uncased_itr0_0.0001_all_01_03_2022-14_08_15", "results": []}]} | ali2066/bert_base_uncased_itr0_0.0001_all_01_03_2022-14_08_15 | null | [
"transformers",
"pytorch",
"tensorboard",
"bert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| null | 2022-03-02T23:29:05+00:00 |
text-classification | transformers | {} | ali2066/bert_base_uncased_itr0_0.0001_webDiscourse_01_03_2022-16_08_12 | null | [
"transformers",
"pytorch",
"tensorboard",
"bert",
"text-classification",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| null | 2022-03-02T23:29:05+00:00 |
|
token-classification | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# correct_BERT_token_itr0_0.0001_all_01_03_2022-15_52_19
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2711
- Precision: 0.3373
- Recall: 0.5670
- F1: 0.4230
- Accuracy: 0.8943
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 30 | 0.3783 | 0.1833 | 0.3975 | 0.2509 | 0.8413 |
| No log | 2.0 | 60 | 0.3021 | 0.3280 | 0.4820 | 0.3904 | 0.8876 |
| No log | 3.0 | 90 | 0.3196 | 0.3504 | 0.5036 | 0.4133 | 0.8918 |
| No log | 4.0 | 120 | 0.3645 | 0.3434 | 0.5306 | 0.4170 | 0.8759 |
| No log | 5.0 | 150 | 0.4027 | 0.3217 | 0.5486 | 0.4056 | 0.8797 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
| {"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "correct_BERT_token_itr0_0.0001_all_01_03_2022-15_52_19", "results": []}]} | ali2066/correct_BERT_token_itr0_0.0001_all_01_03_2022-15_52_19 | null | [
"transformers",
"pytorch",
"tensorboard",
"bert",
"token-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| null | 2022-03-02T23:29:05+00:00 |
token-classification | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# correct_BERT_token_itr0_0.0001_editorials_01_03_2022-15_50_21
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1059
- Precision: 0.0637
- Recall: 0.0080
- F1: 0.0141
- Accuracy: 0.9707
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 15 | 0.1103 | 0.12 | 0.0135 | 0.0243 | 0.9772 |
| No log | 2.0 | 30 | 0.0842 | 0.12 | 0.0135 | 0.0243 | 0.9772 |
| No log | 3.0 | 45 | 0.0767 | 0.12 | 0.0135 | 0.0243 | 0.9772 |
| No log | 4.0 | 60 | 0.0754 | 0.12 | 0.0135 | 0.0243 | 0.9772 |
| No log | 5.0 | 75 | 0.0735 | 0.12 | 0.0135 | 0.0243 | 0.9772 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
| {"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "correct_BERT_token_itr0_0.0001_editorials_01_03_2022-15_50_21", "results": []}]} | ali2066/correct_BERT_token_itr0_0.0001_editorials_01_03_2022-15_50_21 | null | [
"transformers",
"pytorch",
"tensorboard",
"bert",
"token-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| null | 2022-03-02T23:29:05+00:00 |
token-classification | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# correct_BERT_token_itr0_0.0001_essays_01_03_2022-15_48_47
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1801
- Precision: 0.6153
- Recall: 0.7301
- F1: 0.6678
- Accuracy: 0.9346
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 11 | 0.2746 | 0.4586 | 0.5922 | 0.5169 | 0.9031 |
| No log | 2.0 | 22 | 0.2223 | 0.5233 | 0.6181 | 0.5668 | 0.9148 |
| No log | 3.0 | 33 | 0.2162 | 0.5335 | 0.6699 | 0.5940 | 0.9274 |
| No log | 4.0 | 44 | 0.2053 | 0.5989 | 0.7055 | 0.6478 | 0.9237 |
| No log | 5.0 | 55 | 0.2123 | 0.5671 | 0.7249 | 0.6364 | 0.9267 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
| {"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "correct_BERT_token_itr0_0.0001_essays_01_03_2022-15_48_47", "results": []}]} | ali2066/correct_BERT_token_itr0_0.0001_essays_01_03_2022-15_48_47 | null | [
"transformers",
"pytorch",
"tensorboard",
"bert",
"token-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| null | 2022-03-02T23:29:05+00:00 |
token-classification | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# correct_BERT_token_itr0_0.0001_webDiscourse_01_03_2022-15_47_14
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6542
- Precision: 0.0092
- Recall: 0.0403
- F1: 0.0150
- Accuracy: 0.7291
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 10 | 0.5856 | 0.0012 | 0.0125 | 0.0022 | 0.6950 |
| No log | 2.0 | 20 | 0.5933 | 0.0 | 0.0 | 0.0 | 0.7282 |
| No log | 3.0 | 30 | 0.5729 | 0.0051 | 0.025 | 0.0085 | 0.7155 |
| No log | 4.0 | 40 | 0.6178 | 0.0029 | 0.0125 | 0.0047 | 0.7143 |
| No log | 5.0 | 50 | 0.6707 | 0.0110 | 0.0375 | 0.0170 | 0.7178 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
| {"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "correct_BERT_token_itr0_0.0001_webDiscourse_01_03_2022-15_47_14", "results": []}]} | ali2066/correct_BERT_token_itr0_0.0001_webDiscourse_01_03_2022-15_47_14 | null | [
"transformers",
"pytorch",
"tensorboard",
"bert",
"token-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| null | 2022-03-02T23:29:05+00:00 |
token-classification | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# correct_distilBERT_token_itr0_1e-05_all_01_03_2022-15_43_47
This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3343
- Precision: 0.1651
- Recall: 0.3039
- F1: 0.2140
- Accuracy: 0.8493
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 30 | 0.4801 | 0.0352 | 0.0591 | 0.0441 | 0.7521 |
| No log | 2.0 | 60 | 0.3795 | 0.0355 | 0.0795 | 0.0491 | 0.8020 |
| No log | 3.0 | 90 | 0.3359 | 0.0591 | 0.1294 | 0.0812 | 0.8334 |
| No log | 4.0 | 120 | 0.3205 | 0.0785 | 0.1534 | 0.1039 | 0.8486 |
| No log | 5.0 | 150 | 0.3144 | 0.0853 | 0.1571 | 0.1105 | 0.8516 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
| {"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "correct_distilBERT_token_itr0_1e-05_all_01_03_2022-15_43_47", "results": []}]} | ali2066/correct_distilBERT_token_itr0_1e-05_all_01_03_2022-15_43_47 | null | [
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"token-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| null | 2022-03-02T23:29:05+00:00 |
token-classification | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# correct_distilBERT_token_itr0_1e-05_editorials_01_03_2022-15_42_32
This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1206
- Precision: 0.0637
- Recall: 0.0080
- F1: 0.0141
- Accuracy: 0.9707
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 15 | 0.1222 | 0.12 | 0.0139 | 0.0249 | 0.9736 |
| No log | 2.0 | 30 | 0.1159 | 0.12 | 0.0139 | 0.0249 | 0.9736 |
| No log | 3.0 | 45 | 0.1082 | 0.12 | 0.0139 | 0.0249 | 0.9736 |
| No log | 4.0 | 60 | 0.1042 | 0.12 | 0.0139 | 0.0249 | 0.9736 |
| No log | 5.0 | 75 | 0.1029 | 0.12 | 0.0139 | 0.0249 | 0.9736 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
| {"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "correct_distilBERT_token_itr0_1e-05_editorials_01_03_2022-15_42_32", "results": []}]} | ali2066/correct_distilBERT_token_itr0_1e-05_editorials_01_03_2022-15_42_32 | null | [
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"token-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| null | 2022-03-02T23:29:05+00:00 |
token-classification | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# correct_distilBERT_token_itr0_1e-05_essays_01_03_2022-15_41_29
This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3097
- Precision: 0.2769
- Recall: 0.4391
- F1: 0.3396
- Accuracy: 0.8878
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 11 | 0.4573 | 0.0094 | 0.0027 | 0.0042 | 0.7702 |
| No log | 2.0 | 22 | 0.3660 | 0.1706 | 0.3253 | 0.2239 | 0.8516 |
| No log | 3.0 | 33 | 0.3096 | 0.2339 | 0.408 | 0.2974 | 0.8827 |
| No log | 4.0 | 44 | 0.2868 | 0.2963 | 0.4693 | 0.3633 | 0.8928 |
| No log | 5.0 | 55 | 0.2798 | 0.3141 | 0.48 | 0.3797 | 0.8960 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
| {"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "correct_distilBERT_token_itr0_1e-05_essays_01_03_2022-15_41_29", "results": []}]} | ali2066/correct_distilBERT_token_itr0_1e-05_essays_01_03_2022-15_41_29 | null | [
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"token-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| null | 2022-03-02T23:29:05+00:00 |
token-classification | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# correct_distilBERT_token_itr0_1e-05_webDiscourse_01_03_2022-15_40_24
This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5794
- Precision: 0.0094
- Recall: 0.0147
- F1: 0.0115
- Accuracy: 0.7156
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 10 | 0.6319 | 0.08 | 0.0312 | 0.0449 | 0.6753 |
| No log | 2.0 | 20 | 0.6265 | 0.0364 | 0.0312 | 0.0336 | 0.6764 |
| No log | 3.0 | 30 | 0.6216 | 0.0351 | 0.0312 | 0.0331 | 0.6762 |
| No log | 4.0 | 40 | 0.6193 | 0.0274 | 0.0312 | 0.0292 | 0.6759 |
| No log | 5.0 | 50 | 0.6183 | 0.0222 | 0.0312 | 0.0260 | 0.6773 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
| {"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "correct_distilBERT_token_itr0_1e-05_webDiscourse_01_03_2022-15_40_24", "results": []}]} | ali2066/correct_distilBERT_token_itr0_1e-05_webDiscourse_01_03_2022-15_40_24 | null | [
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"token-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| null | 2022-03-02T23:29:05+00:00 |
token-classification | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# correct_twitter_RoBERTa_token_itr0_1e-05_all_01_03_2022-15_36_04
This model is a fine-tuned version of [cardiffnlp/twitter-roberta-base](https://huggingface.co/cardiffnlp/twitter-roberta-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2876
- Precision: 0.2345
- Recall: 0.4281
- F1: 0.3030
- Accuracy: 0.8728
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 30 | 0.3907 | 0.0433 | 0.0824 | 0.0568 | 0.7626 |
| No log | 2.0 | 60 | 0.3046 | 0.2302 | 0.4095 | 0.2947 | 0.8598 |
| No log | 3.0 | 90 | 0.2945 | 0.2084 | 0.4095 | 0.2762 | 0.8668 |
| No log | 4.0 | 120 | 0.2687 | 0.2847 | 0.4607 | 0.3519 | 0.8761 |
| No log | 5.0 | 150 | 0.2643 | 0.2779 | 0.4444 | 0.3420 | 0.8788 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
| {"tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "correct_twitter_RoBERTa_token_itr0_1e-05_all_01_03_2022-15_36_04", "results": []}]} | ali2066/correct_twitter_RoBERTa_token_itr0_1e-05_all_01_03_2022-15_36_04 | null | [
"transformers",
"pytorch",
"tensorboard",
"roberta",
"token-classification",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| null | 2022-03-02T23:29:05+00:00 |
token-classification | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# correct_twitter_RoBERTa_token_itr0_1e-05_editorials_01_03_2022-15_33_51
This model is a fine-tuned version of [cardiffnlp/twitter-roberta-base](https://huggingface.co/cardiffnlp/twitter-roberta-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1138
- Precision: 0.5788
- Recall: 0.4712
- F1: 0.5195
- Accuracy: 0.9688
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 15 | 0.1316 | 0.04 | 0.0021 | 0.0040 | 0.9624 |
| No log | 2.0 | 30 | 0.1016 | 0.6466 | 0.4688 | 0.5435 | 0.9767 |
| No log | 3.0 | 45 | 0.0899 | 0.5873 | 0.4625 | 0.5175 | 0.9757 |
| No log | 4.0 | 60 | 0.0849 | 0.5984 | 0.4813 | 0.5335 | 0.9761 |
| No log | 5.0 | 75 | 0.0835 | 0.5984 | 0.4813 | 0.5335 | 0.9761 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
| {"tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "correct_twitter_RoBERTa_token_itr0_1e-05_editorials_01_03_2022-15_33_51", "results": []}]} | ali2066/correct_twitter_RoBERTa_token_itr0_1e-05_editorials_01_03_2022-15_33_51 | null | [
"transformers",
"pytorch",
"tensorboard",
"roberta",
"token-classification",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| null | 2022-03-02T23:29:05+00:00 |
token-classification | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# correct_twitter_RoBERTa_token_itr0_1e-05_essays_01_03_2022-15_32_16
This model is a fine-tuned version of [cardiffnlp/twitter-roberta-base](https://huggingface.co/cardiffnlp/twitter-roberta-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2663
- Precision: 0.3644
- Recall: 0.4985
- F1: 0.4210
- Accuracy: 0.8997
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 11 | 0.5174 | 0.0120 | 0.0061 | 0.0081 | 0.6997 |
| No log | 2.0 | 22 | 0.4029 | 0.1145 | 0.3098 | 0.1672 | 0.8265 |
| No log | 3.0 | 33 | 0.3604 | 0.2539 | 0.4448 | 0.3233 | 0.8632 |
| No log | 4.0 | 44 | 0.3449 | 0.2992 | 0.4755 | 0.3673 | 0.8704 |
| No log | 5.0 | 55 | 0.3403 | 0.3340 | 0.4816 | 0.3945 | 0.8760 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
| {"tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "correct_twitter_RoBERTa_token_itr0_1e-05_essays_01_03_2022-15_32_16", "results": []}]} | ali2066/correct_twitter_RoBERTa_token_itr0_1e-05_essays_01_03_2022-15_32_16 | null | [
"transformers",
"pytorch",
"tensorboard",
"roberta",
"token-classification",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| null | 2022-03-02T23:29:05+00:00 |
token-classification | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# correct_twitter_RoBERTa_token_itr0_1e-05_webDiscourse_01_03_2022-15_30_39
This model is a fine-tuned version of [cardiffnlp/twitter-roberta-base](https://huggingface.co/cardiffnlp/twitter-roberta-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6169
- Precision: 0.0031
- Recall: 0.0357
- F1: 0.0057
- Accuracy: 0.6464
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 10 | 0.6339 | 0.0116 | 0.0120 | 0.0118 | 0.6662 |
| No log | 2.0 | 20 | 0.6182 | 0.0064 | 0.0120 | 0.0084 | 0.6688 |
| No log | 3.0 | 30 | 0.6139 | 0.0029 | 0.0241 | 0.0052 | 0.6659 |
| No log | 4.0 | 40 | 0.6172 | 0.0020 | 0.0241 | 0.0037 | 0.6622 |
| No log | 5.0 | 50 | 0.6165 | 0.0019 | 0.0241 | 0.0036 | 0.6599 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
| {"tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "correct_twitter_RoBERTa_token_itr0_1e-05_webDiscourse_01_03_2022-15_30_39", "results": []}]} | ali2066/correct_twitter_RoBERTa_token_itr0_1e-05_webDiscourse_01_03_2022-15_30_39 | null | [
"transformers",
"pytorch",
"tensorboard",
"roberta",
"token-classification",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| null | 2022-03-02T23:29:05+00:00 |
token-classification | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilBERT_token_itr0_0.0001_all_01_03_2022-15_22_12
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2811
- Precision: 0.3231
- Recall: 0.5151
- F1: 0.3971
- Accuracy: 0.8913
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 30 | 0.2881 | 0.2089 | 0.3621 | 0.2650 | 0.8715 |
| No log | 2.0 | 60 | 0.2500 | 0.2619 | 0.3842 | 0.3115 | 0.8845 |
| No log | 3.0 | 90 | 0.2571 | 0.2327 | 0.4338 | 0.3030 | 0.8809 |
| No log | 4.0 | 120 | 0.2479 | 0.3051 | 0.4761 | 0.3719 | 0.8949 |
| No log | 5.0 | 150 | 0.2783 | 0.3287 | 0.4761 | 0.3889 | 0.8936 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
| {"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "distilBERT_token_itr0_0.0001_all_01_03_2022-15_22_12", "results": []}]} | ali2066/distilBERT_token_itr0_0.0001_all_01_03_2022-15_22_12 | null | [
"transformers",
"pytorch",
"tensorboard",
"bert",
"token-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| null | 2022-03-02T23:29:05+00:00 |
token-classification | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilBERT_token_itr0_0.0001_editorials_01_03_2022-15_20_12
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1290
- Precision: 0.0637
- Recall: 0.0080
- F1: 0.0141
- Accuracy: 0.9707
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 15 | 0.0733 | 0.04 | 0.0055 | 0.0097 | 0.9861 |
| No log | 2.0 | 30 | 0.0732 | 0.04 | 0.0055 | 0.0097 | 0.9861 |
| No log | 3.0 | 45 | 0.0731 | 0.04 | 0.0055 | 0.0097 | 0.9861 |
| No log | 4.0 | 60 | 0.0716 | 0.04 | 0.0055 | 0.0097 | 0.9861 |
| No log | 5.0 | 75 | 0.0635 | 0.04 | 0.0055 | 0.0097 | 0.9861 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
| {"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "distilBERT_token_itr0_0.0001_editorials_01_03_2022-15_20_12", "results": []}]} | ali2066/distilBERT_token_itr0_0.0001_editorials_01_03_2022-15_20_12 | null | [
"transformers",
"pytorch",
"tensorboard",
"bert",
"token-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| null | 2022-03-02T23:29:05+00:00 |
token-classification | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilBERT_token_itr0_0.0001_essays_01_03_2022-15_18_35
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1832
- Precision: 0.6138
- Recall: 0.7169
- F1: 0.6613
- Accuracy: 0.9332
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 11 | 0.2740 | 0.4554 | 0.5460 | 0.4966 | 0.8943 |
| No log | 2.0 | 22 | 0.2189 | 0.5470 | 0.6558 | 0.5965 | 0.9193 |
| No log | 3.0 | 33 | 0.2039 | 0.5256 | 0.6706 | 0.5893 | 0.9198 |
| No log | 4.0 | 44 | 0.2097 | 0.5401 | 0.6795 | 0.6018 | 0.9237 |
| No log | 5.0 | 55 | 0.2255 | 0.6117 | 0.6825 | 0.6452 | 0.9223 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
| {"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "distilBERT_token_itr0_0.0001_essays_01_03_2022-15_18_35", "results": []}]} | ali2066/distilBERT_token_itr0_0.0001_essays_01_03_2022-15_18_35 | null | [
"transformers",
"pytorch",
"tensorboard",
"bert",
"token-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| null | 2022-03-02T23:29:05+00:00 |
token-classification | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilBERT_token_itr0_0.0001_webDiscourse_01_03_2022-15_16_57
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5923
- Precision: 0.0039
- Recall: 0.0212
- F1: 0.0066
- Accuracy: 0.7084
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 10 | 0.6673 | 0.0476 | 0.0128 | 0.0202 | 0.6652 |
| No log | 2.0 | 20 | 0.6211 | 0.0 | 0.0 | 0.0 | 0.6707 |
| No log | 3.0 | 30 | 0.6880 | 0.0038 | 0.0128 | 0.0058 | 0.6703 |
| No log | 4.0 | 40 | 0.6566 | 0.0030 | 0.0128 | 0.0049 | 0.6690 |
| No log | 5.0 | 50 | 0.6036 | 0.0 | 0.0 | 0.0 | 0.6868 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
| {"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "distilBERT_token_itr0_0.0001_webDiscourse_01_03_2022-15_16_57", "results": []}]} | ali2066/distilBERT_token_itr0_0.0001_webDiscourse_01_03_2022-15_16_57 | null | [
"transformers",
"pytorch",
"tensorboard",
"bert",
"token-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| null | 2022-03-02T23:29:05+00:00 |
token-classification | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilBERT_token_itr0_1e-05_all_01_03_2022-15_14_04
This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3121
- Precision: 0.1204
- Recall: 0.2430
- F1: 0.1611
- Accuracy: 0.8538
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 30 | 0.4480 | 0.0209 | 0.0223 | 0.0216 | 0.7794 |
| No log | 2.0 | 60 | 0.3521 | 0.0559 | 0.1218 | 0.0767 | 0.8267 |
| No log | 3.0 | 90 | 0.3177 | 0.1208 | 0.2504 | 0.1629 | 0.8487 |
| No log | 4.0 | 120 | 0.3009 | 0.1296 | 0.2607 | 0.1731 | 0.8602 |
| No log | 5.0 | 150 | 0.2988 | 0.1393 | 0.2693 | 0.1836 | 0.8599 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
| {"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "distilBERT_token_itr0_1e-05_all_01_03_2022-15_14_04", "results": []}]} | ali2066/distilBERT_token_itr0_1e-05_all_01_03_2022-15_14_04 | null | [
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"token-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| null | 2022-03-02T23:29:05+00:00 |
token-classification | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilBERT_token_itr0_1e-05_editorials_01_03_2022-15_12_47
This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1194
- Precision: 0.0637
- Recall: 0.0080
- F1: 0.0141
- Accuracy: 0.9707
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 15 | 0.0877 | 0.12 | 0.0194 | 0.0333 | 0.9830 |
| No log | 2.0 | 30 | 0.0806 | 0.12 | 0.0194 | 0.0333 | 0.9830 |
| No log | 3.0 | 45 | 0.0758 | 0.12 | 0.0194 | 0.0333 | 0.9830 |
| No log | 4.0 | 60 | 0.0741 | 0.12 | 0.0194 | 0.0333 | 0.9830 |
| No log | 5.0 | 75 | 0.0741 | 0.12 | 0.0194 | 0.0333 | 0.9830 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
| {"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "distilBERT_token_itr0_1e-05_editorials_01_03_2022-15_12_47", "results": []}]} | ali2066/distilBERT_token_itr0_1e-05_editorials_01_03_2022-15_12_47 | null | [
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"token-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| null | 2022-03-02T23:29:05+00:00 |
token-classification | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilBERT_token_itr0_1e-05_essays_01_03_2022-15_11_44
This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3082
- Precision: 0.2796
- Recall: 0.4373
- F1: 0.3411
- Accuracy: 0.8887
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 11 | 0.5018 | 0.0192 | 0.0060 | 0.0091 | 0.7370 |
| No log | 2.0 | 22 | 0.4066 | 0.1541 | 0.2814 | 0.1992 | 0.8340 |
| No log | 3.0 | 33 | 0.3525 | 0.1768 | 0.3234 | 0.2286 | 0.8612 |
| No log | 4.0 | 44 | 0.3250 | 0.2171 | 0.3503 | 0.2680 | 0.8766 |
| No log | 5.0 | 55 | 0.3160 | 0.2353 | 0.3713 | 0.2880 | 0.8801 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
| {"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "distilBERT_token_itr0_1e-05_essays_01_03_2022-15_11_44", "results": []}]} | ali2066/distilBERT_token_itr0_1e-05_essays_01_03_2022-15_11_44 | null | [
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"token-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| null | 2022-03-02T23:29:05+00:00 |
token-classification | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilBERT_token_itr0_1e-05_webDiscourse_01_03_2022-15_10_39
This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5867
- Precision: 0.0119
- Recall: 0.0116
- F1: 0.0118
- Accuracy: 0.6976
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 10 | 0.5730 | 0.0952 | 0.0270 | 0.0421 | 0.7381 |
| No log | 2.0 | 20 | 0.5755 | 0.0213 | 0.0135 | 0.0165 | 0.7388 |
| No log | 3.0 | 30 | 0.5635 | 0.0196 | 0.0135 | 0.016 | 0.7416 |
| No log | 4.0 | 40 | 0.5549 | 0.0392 | 0.0270 | 0.032 | 0.7429 |
| No log | 5.0 | 50 | 0.5530 | 0.0357 | 0.0270 | 0.0308 | 0.7438 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
| {"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "distilBERT_token_itr0_1e-05_webDiscourse_01_03_2022-15_10_39", "results": []}]} | ali2066/distilBERT_token_itr0_1e-05_webDiscourse_01_03_2022-15_10_39 | null | [
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"token-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| null | 2022-03-02T23:29:05+00:00 |
null | null | {} | ali2066/distilbert-base-uncased-finetuned-argumentative | null | [
"region:us"
]
| null | 2022-03-02T23:29:05+00:00 |
|
null | null | {} | ali2066/distilbert-base-uncased-finetuned-ner | null | [
"region:us"
]
| null | 2022-03-02T23:29:05+00:00 |
|
text-classification | transformers | {} | ali2066/distilbert-base-uncased-finetuned-sst-2-english-finetuned-argmining | null | [
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| null | 2022-03-02T23:29:05+00:00 |
|
token-classification | transformers | {} | ali2066/distilbert-base-uncased-finetuned-sst-2-english-finetuned-argumentative | null | [
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"token-classification",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| null | 2022-03-02T23:29:05+00:00 |
|
null | null | {} | ali2066/distilbert-base-uncased-finetuned-sst-2-english_token_itr0_2e-05_all_01_03_2022-04_11_31 | null | [
"region:us"
]
| null | 2022-03-02T23:29:05+00:00 |
|
token-classification | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert_token_itr0_0.0001_all_01_03_2022-14_30_58
This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2572
- Precision: 0.3363
- Recall: 0.5110
- F1: 0.4057
- Accuracy: 0.8931
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 30 | 0.3976 | 0.1405 | 0.3058 | 0.1925 | 0.7921 |
| No log | 2.0 | 60 | 0.3511 | 0.2360 | 0.4038 | 0.2979 | 0.8260 |
| No log | 3.0 | 90 | 0.3595 | 0.1863 | 0.3827 | 0.2506 | 0.8211 |
| No log | 4.0 | 120 | 0.3591 | 0.2144 | 0.4288 | 0.2859 | 0.8299 |
| No log | 5.0 | 150 | 0.3605 | 0.1989 | 0.4212 | 0.2702 | 0.8343 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
| {"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "distilbert_token_itr0_0.0001_all_01_03_2022-14_30_58", "results": []}]} | ali2066/distilbert_token_itr0_0.0001_all_01_03_2022-14_30_58 | null | [
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"token-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| null | 2022-03-02T23:29:05+00:00 |
token-classification | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert_token_itr0_1e-05_all_01_03_2022-14_33_33
This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3255
- Precision: 0.1412
- Recall: 0.25
- F1: 0.1805
- Accuracy: 0.8491
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 30 | 0.4549 | 0.0228 | 0.0351 | 0.0276 | 0.7734 |
| No log | 2.0 | 60 | 0.3577 | 0.0814 | 0.1260 | 0.0989 | 0.8355 |
| No log | 3.0 | 90 | 0.3116 | 0.1534 | 0.2648 | 0.1943 | 0.8611 |
| No log | 4.0 | 120 | 0.2975 | 0.1792 | 0.2967 | 0.2234 | 0.8690 |
| No log | 5.0 | 150 | 0.2935 | 0.1873 | 0.2998 | 0.2305 | 0.8715 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
| {"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "distilbert_token_itr0_1e-05_all_01_03_2022-14_33_33", "results": []}]} | ali2066/distilbert_token_itr0_1e-05_all_01_03_2022-14_33_33 | null | [
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"token-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| null | 2022-03-02T23:29:05+00:00 |
token-classification | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned-token-argumentative
This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1573
- Precision: 0.3777
- Recall: 0.3919
- F1: 0.3847
- Accuracy: 0.9497
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 75 | 0.3241 | 0.1109 | 0.2178 | 0.1470 | 0.8488 |
| No log | 2.0 | 150 | 0.3145 | 0.1615 | 0.2462 | 0.1950 | 0.8606 |
| No log | 3.0 | 225 | 0.3035 | 0.1913 | 0.3258 | 0.2411 | 0.8590 |
| No log | 4.0 | 300 | 0.3080 | 0.2199 | 0.3220 | 0.2613 | 0.8612 |
| No log | 5.0 | 375 | 0.3038 | 0.2209 | 0.3277 | 0.2639 | 0.8630 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
| {"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "finetuned-token-argumentative", "results": []}]} | ali2066/finetuned-token-argumentative | null | [
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"token-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| null | 2022-03-02T23:29:05+00:00 |
text-classification | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned_sentence_itr0_0.0002_all_27_02_2022-17_55_43
This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7600
- Accuracy: 0.8144
- F1: 0.8788
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| No log | 1.0 | 195 | 0.3514 | 0.8427 | 0.8979 |
| No log | 2.0 | 390 | 0.3853 | 0.8293 | 0.8936 |
| 0.3147 | 3.0 | 585 | 0.5494 | 0.8268 | 0.8868 |
| 0.3147 | 4.0 | 780 | 0.6235 | 0.8427 | 0.8995 |
| 0.3147 | 5.0 | 975 | 0.8302 | 0.8378 | 0.8965 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
| {"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy", "f1"], "model-index": [{"name": "finetuned_sentence_itr0_0.0002_all_27_02_2022-17_55_43", "results": []}]} | ali2066/finetuned_sentence_itr0_0.0002_all_27_02_2022-17_55_43 | null | [
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| null | 2022-03-02T23:29:05+00:00 |
text-classification | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned_sentence_itr0_0.0002_all_27_02_2022-19_11_17
This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4064
- Accuracy: 0.8289
- F1: 0.8901
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| No log | 1.0 | 195 | 0.4163 | 0.8085 | 0.8780 |
| No log | 2.0 | 390 | 0.4098 | 0.8268 | 0.8878 |
| 0.312 | 3.0 | 585 | 0.5892 | 0.8244 | 0.8861 |
| 0.312 | 4.0 | 780 | 0.7580 | 0.8232 | 0.8845 |
| 0.312 | 5.0 | 975 | 0.9028 | 0.8183 | 0.8824 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
| {"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy", "f1"], "model-index": [{"name": "finetuned_sentence_itr0_0.0002_all_27_02_2022-19_11_17", "results": []}]} | ali2066/finetuned_sentence_itr0_0.0002_all_27_02_2022-19_11_17 | null | [
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| null | 2022-03-02T23:29:05+00:00 |
text-classification | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned_sentence_itr0_0.0002_all_27_02_2022-22_30_53
This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3825
- Accuracy: 0.8144
- F1: 0.8833
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| No log | 1.0 | 195 | 0.3975 | 0.8122 | 0.8795 |
| No log | 2.0 | 390 | 0.4376 | 0.8085 | 0.8673 |
| 0.3169 | 3.0 | 585 | 0.5736 | 0.8171 | 0.8790 |
| 0.3169 | 4.0 | 780 | 0.8178 | 0.8098 | 0.8754 |
| 0.3169 | 5.0 | 975 | 0.9244 | 0.8073 | 0.8738 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
| {"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy", "f1"], "model-index": [{"name": "finetuned_sentence_itr0_0.0002_all_27_02_2022-22_30_53", "results": []}]} | ali2066/finetuned_sentence_itr0_0.0002_all_27_02_2022-22_30_53 | null | [
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| null | 2022-03-02T23:29:05+00:00 |
text-classification | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned_sentence_itr0_0.0002_editorials_27_02_2022-19_42_36
This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0926
- Accuracy: 0.9772
- F1: 0.9883
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| No log | 1.0 | 104 | 0.0539 | 0.9885 | 0.9942 |
| No log | 2.0 | 208 | 0.0282 | 0.9885 | 0.9942 |
| No log | 3.0 | 312 | 0.0317 | 0.9914 | 0.9956 |
| No log | 4.0 | 416 | 0.0462 | 0.9885 | 0.9942 |
| 0.0409 | 5.0 | 520 | 0.0517 | 0.9885 | 0.9942 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
| {"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy", "f1"], "model-index": [{"name": "finetuned_sentence_itr0_0.0002_editorials_27_02_2022-19_42_36", "results": []}]} | ali2066/finetuned_sentence_itr0_0.0002_editorials_27_02_2022-19_42_36 | null | [
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| null | 2022-03-02T23:29:05+00:00 |
text-classification | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned_sentence_itr0_0.0002_essays_27_02_2022-19_33_10
This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3358
- Accuracy: 0.8688
- F1: 0.9225
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| No log | 1.0 | 81 | 0.4116 | 0.8382 | 0.9027 |
| No log | 2.0 | 162 | 0.4360 | 0.8382 | 0.8952 |
| No log | 3.0 | 243 | 0.5719 | 0.8382 | 0.8995 |
| No log | 4.0 | 324 | 0.7251 | 0.8493 | 0.9021 |
| No log | 5.0 | 405 | 0.8384 | 0.8456 | 0.9019 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
| {"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy", "f1"], "model-index": [{"name": "finetuned_sentence_itr0_0.0002_essays_27_02_2022-19_33_10", "results": []}]} | ali2066/finetuned_sentence_itr0_0.0002_essays_27_02_2022-19_33_10 | null | [
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| null | 2022-03-02T23:29:05+00:00 |
text-classification | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned_sentence_itr0_0.0002_webDiscourse_27_02_2022-19_25_06
This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5777
- Accuracy: 0.6794
- F1: 0.5010
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| No log | 1.0 | 48 | 0.6059 | 0.63 | 0.4932 |
| No log | 2.0 | 96 | 0.6327 | 0.705 | 0.5630 |
| No log | 3.0 | 144 | 0.7003 | 0.695 | 0.5197 |
| No log | 4.0 | 192 | 0.9368 | 0.69 | 0.4655 |
| No log | 5.0 | 240 | 1.1935 | 0.685 | 0.4425 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
| {"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy", "f1"], "model-index": [{"name": "finetuned_sentence_itr0_0.0002_webDiscourse_27_02_2022-19_25_06", "results": []}]} | ali2066/finetuned_sentence_itr0_0.0002_webDiscourse_27_02_2022-19_25_06 | null | [
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| null | 2022-03-02T23:29:05+00:00 |
text-classification | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned_sentence_itr0_1e-05_all_01_03_2022-13_25_32
This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4787
- Accuracy: 0.8138
- F1: 0.8785
- Precision: 0.8489
- Recall: 0.9101
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
| No log | 1.0 | 390 | 0.4335 | 0.7732 | 0.8533 | 0.8209 | 0.8883 |
| 0.5141 | 2.0 | 780 | 0.4196 | 0.8037 | 0.8721 | 0.8446 | 0.9015 |
| 0.3368 | 3.0 | 1170 | 0.4519 | 0.8098 | 0.8779 | 0.8386 | 0.9212 |
| 0.2677 | 4.0 | 1560 | 0.4787 | 0.8122 | 0.8785 | 0.8452 | 0.9146 |
| 0.2677 | 5.0 | 1950 | 0.4912 | 0.8146 | 0.8794 | 0.8510 | 0.9097 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
| {"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy", "f1", "precision", "recall"], "model-index": [{"name": "finetuned_sentence_itr0_1e-05_all_01_03_2022-13_25_32", "results": []}]} | ali2066/finetuned_sentence_itr0_1e-05_all_01_03_2022-13_25_32 | null | [
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| null | 2022-03-02T23:29:05+00:00 |
text-classification | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned_sentence_itr0_2e-05_all_01_03_2022-02_53_51
This model is a fine-tuned version of [siebert/sentiment-roberta-large-english](https://huggingface.co/siebert/sentiment-roberta-large-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4563
- Accuracy: 0.8440
- F1: 0.8954
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| No log | 1.0 | 195 | 0.4302 | 0.8073 | 0.8754 |
| No log | 2.0 | 390 | 0.3970 | 0.8220 | 0.8875 |
| 0.3703 | 3.0 | 585 | 0.3972 | 0.8402 | 0.8934 |
| 0.3703 | 4.0 | 780 | 0.4945 | 0.8390 | 0.8935 |
| 0.3703 | 5.0 | 975 | 0.5354 | 0.8305 | 0.8898 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
| {"tags": ["generated_from_trainer"], "metrics": ["accuracy", "f1"], "model-index": [{"name": "finetuned_sentence_itr0_2e-05_all_01_03_2022-02_53_51", "results": []}]} | ali2066/finetuned_sentence_itr0_2e-05_all_01_03_2022-02_53_51 | null | [
"transformers",
"pytorch",
"tensorboard",
"roberta",
"text-classification",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| null | 2022-03-02T23:29:05+00:00 |
null | null | {} | ali2066/finetuned_sentence_itr0_2e-05_all_01_03_2022-05_27_05 | null | [
"region:us"
]
| null | 2022-03-02T23:29:05+00:00 |
|
text-classification | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned_sentence_itr0_2e-05_all_01_03_2022-05_32_03
This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4208
- Accuracy: 0.8283
- F1: 0.8915
- Precision: 0.8487
- Recall: 0.9389
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
| No log | 1.0 | 390 | 0.4443 | 0.7768 | 0.8589 | 0.8072 | 0.9176 |
| 0.4532 | 2.0 | 780 | 0.4603 | 0.8098 | 0.8791 | 0.8302 | 0.9341 |
| 0.2608 | 3.0 | 1170 | 0.5284 | 0.8061 | 0.8713 | 0.8567 | 0.8863 |
| 0.1577 | 4.0 | 1560 | 0.6398 | 0.8085 | 0.8749 | 0.8472 | 0.9044 |
| 0.1577 | 5.0 | 1950 | 0.7089 | 0.8085 | 0.8741 | 0.8516 | 0.8979 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
| {"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy", "f1", "precision", "recall"], "model-index": [{"name": "finetuned_sentence_itr0_2e-05_all_01_03_2022-05_32_03", "results": []}]} | ali2066/finetuned_sentence_itr0_2e-05_all_01_03_2022-05_32_03 | null | [
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| null | 2022-03-02T23:29:05+00:00 |
text-classification | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned_sentence_itr0_2e-05_all_01_03_2022-13_11_55
This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6168
- Accuracy: 0.8286
- F1: 0.8887
- Precision: 0.8628
- Recall: 0.9162
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
| No log | 1.0 | 390 | 0.3890 | 0.8110 | 0.8749 | 0.8631 | 0.8871 |
| 0.4535 | 2.0 | 780 | 0.3921 | 0.8439 | 0.8984 | 0.8721 | 0.9264 |
| 0.266 | 3.0 | 1170 | 0.4454 | 0.8415 | 0.8947 | 0.8860 | 0.9034 |
| 0.16 | 4.0 | 1560 | 0.5610 | 0.8427 | 0.8957 | 0.8850 | 0.9067 |
| 0.16 | 5.0 | 1950 | 0.6180 | 0.8488 | 0.9010 | 0.8799 | 0.9231 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
| {"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy", "f1", "precision", "recall"], "model-index": [{"name": "finetuned_sentence_itr0_2e-05_all_01_03_2022-13_11_55", "results": []}]} | ali2066/finetuned_sentence_itr0_2e-05_all_01_03_2022-13_11_55 | null | [
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| null | 2022-03-02T23:29:05+00:00 |
null | null | {} | ali2066/finetuned_sentence_itr0_2e-05_all_26_02_2022-03_54_19 | null | [
"region:us"
]
| null | 2022-03-02T23:29:05+00:00 |
|
text-classification | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned_sentence_itr0_2e-05_all_26_02_2022-03_57_45
This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4345
- Accuracy: 0.8321
- F1: 0.8904
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| No log | 1.0 | 195 | 0.3922 | 0.8061 | 0.8747 |
| No log | 2.0 | 390 | 0.3764 | 0.8171 | 0.8837 |
| 0.4074 | 3.0 | 585 | 0.3873 | 0.8220 | 0.8843 |
| 0.4074 | 4.0 | 780 | 0.4361 | 0.8232 | 0.8854 |
| 0.4074 | 5.0 | 975 | 0.4555 | 0.8159 | 0.8793 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
| {"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy", "f1"], "model-index": [{"name": "finetuned_sentence_itr0_2e-05_all_26_02_2022-03_57_45", "results": []}]} | ali2066/finetuned_sentence_itr0_2e-05_all_26_02_2022-03_57_45 | null | [
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| null | 2022-03-02T23:29:05+00:00 |
text-classification | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned_sentence_itr0_2e-05_all_27_02_2022-17_27_47
This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5002
- Accuracy: 0.8103
- F1: 0.8764
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| No log | 1.0 | 195 | 0.4178 | 0.7963 | 0.8630 |
| No log | 2.0 | 390 | 0.3935 | 0.8061 | 0.8770 |
| 0.4116 | 3.0 | 585 | 0.4037 | 0.8085 | 0.8735 |
| 0.4116 | 4.0 | 780 | 0.4696 | 0.8146 | 0.8796 |
| 0.4116 | 5.0 | 975 | 0.4849 | 0.8207 | 0.8823 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
| {"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy", "f1"], "model-index": [{"name": "finetuned_sentence_itr0_2e-05_all_27_02_2022-17_27_47", "results": []}]} | ali2066/finetuned_sentence_itr0_2e-05_all_27_02_2022-17_27_47 | null | [
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| null | 2022-03-02T23:29:05+00:00 |
text-classification | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned_sentence_itr0_2e-05_all_27_02_2022-19_05_42
This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4917
- Accuracy: 0.8231
- F1: 0.8833
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| No log | 1.0 | 195 | 0.3883 | 0.8146 | 0.8833 |
| No log | 2.0 | 390 | 0.3607 | 0.8390 | 0.8964 |
| 0.4085 | 3.0 | 585 | 0.3812 | 0.8488 | 0.9042 |
| 0.4085 | 4.0 | 780 | 0.3977 | 0.8549 | 0.9077 |
| 0.4085 | 5.0 | 975 | 0.4233 | 0.8573 | 0.9092 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
| {"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy", "f1"], "model-index": [{"name": "finetuned_sentence_itr0_2e-05_all_27_02_2022-19_05_42", "results": []}]} | ali2066/finetuned_sentence_itr0_2e-05_all_27_02_2022-19_05_42 | null | [
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| null | 2022-03-02T23:29:05+00:00 |
text-classification | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned_sentence_itr0_2e-05_all_27_02_2022-22_25_09
This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4638
- Accuracy: 0.8247
- F1: 0.8867
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| No log | 1.0 | 195 | 0.4069 | 0.7976 | 0.875 |
| No log | 2.0 | 390 | 0.4061 | 0.8134 | 0.8838 |
| 0.4074 | 3.0 | 585 | 0.4075 | 0.8134 | 0.8798 |
| 0.4074 | 4.0 | 780 | 0.4746 | 0.8256 | 0.8885 |
| 0.4074 | 5.0 | 975 | 0.4881 | 0.8220 | 0.8845 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
| {"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy", "f1"], "model-index": [{"name": "finetuned_sentence_itr0_2e-05_all_27_02_2022-22_25_09", "results": []}]} | ali2066/finetuned_sentence_itr0_2e-05_all_27_02_2022-22_25_09 | null | [
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| null | 2022-03-02T23:29:05+00:00 |
text-classification | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned_sentence_itr0_2e-05_editorials_27_02_2022-19_38_42
This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0914
- Accuracy: 0.9746
- F1: 0.9870
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| No log | 1.0 | 104 | 0.0501 | 0.9828 | 0.9913 |
| No log | 2.0 | 208 | 0.0435 | 0.9828 | 0.9913 |
| No log | 3.0 | 312 | 0.0414 | 0.9828 | 0.9913 |
| No log | 4.0 | 416 | 0.0424 | 0.9799 | 0.9898 |
| 0.0547 | 5.0 | 520 | 0.0482 | 0.9828 | 0.9913 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
| {"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy", "f1"], "model-index": [{"name": "finetuned_sentence_itr0_2e-05_editorials_27_02_2022-19_38_42", "results": []}]} | ali2066/finetuned_sentence_itr0_2e-05_editorials_27_02_2022-19_38_42 | null | [
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| null | 2022-03-02T23:29:05+00:00 |
text-classification | transformers | {} | ali2066/finetuned_sentence_itr0_2e-05_essays_01_03_2022-13_20_40 | null | [
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| null | 2022-03-02T23:29:05+00:00 |
|
text-classification | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned_sentence_itr0_2e-05_essays_27_02_2022-19_30_22
This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3455
- Accuracy: 0.8609
- F1: 0.9156
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| No log | 1.0 | 81 | 0.4468 | 0.8235 | 0.8929 |
| No log | 2.0 | 162 | 0.4497 | 0.8382 | 0.9 |
| No log | 3.0 | 243 | 0.4861 | 0.8309 | 0.8940 |
| No log | 4.0 | 324 | 0.5087 | 0.8235 | 0.8879 |
| No log | 5.0 | 405 | 0.5228 | 0.8199 | 0.8858 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
| {"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy", "f1"], "model-index": [{"name": "finetuned_sentence_itr0_2e-05_essays_27_02_2022-19_30_22", "results": []}]} | ali2066/finetuned_sentence_itr0_2e-05_essays_27_02_2022-19_30_22 | null | [
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| null | 2022-03-02T23:29:05+00:00 |
text-classification | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned_sentence_itr0_2e-05_webDiscourse_01_03_2022-13_17_55
This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7224
- Accuracy: 0.6979
- F1: 0.4736
- Precision: 0.5074
- Recall: 0.4440
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
| No log | 1.0 | 95 | 0.6009 | 0.65 | 0.2222 | 0.625 | 0.1351 |
| No log | 2.0 | 190 | 0.6140 | 0.675 | 0.3689 | 0.6552 | 0.2568 |
| No log | 3.0 | 285 | 0.6580 | 0.67 | 0.4590 | 0.5833 | 0.3784 |
| No log | 4.0 | 380 | 0.7560 | 0.665 | 0.4806 | 0.5636 | 0.4189 |
| No log | 5.0 | 475 | 0.8226 | 0.665 | 0.464 | 0.5686 | 0.3919 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
| {"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy", "f1", "precision", "recall"], "model-index": [{"name": "finetuned_sentence_itr0_2e-05_webDiscourse_01_03_2022-13_17_55", "results": []}]} | ali2066/finetuned_sentence_itr0_2e-05_webDiscourse_01_03_2022-13_17_55 | null | [
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| null | 2022-03-02T23:29:05+00:00 |
text-classification | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned_sentence_itr0_2e-05_webDiscourse_27_02_2022-18_51_55
This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6049
- Accuracy: 0.6926
- F1: 0.4160
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| No log | 1.0 | 48 | 0.5835 | 0.71 | 0.0333 |
| No log | 2.0 | 96 | 0.5718 | 0.715 | 0.3871 |
| No log | 3.0 | 144 | 0.5731 | 0.715 | 0.4 |
| No log | 4.0 | 192 | 0.6009 | 0.705 | 0.3516 |
| No log | 5.0 | 240 | 0.6122 | 0.7 | 0.4000 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
| {"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy", "f1"], "model-index": [{"name": "finetuned_sentence_itr0_2e-05_webDiscourse_27_02_2022-18_51_55", "results": []}]} | ali2066/finetuned_sentence_itr0_2e-05_webDiscourse_27_02_2022-18_51_55 | null | [
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| null | 2022-03-02T23:29:05+00:00 |
text-classification | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned_sentence_itr0_2e-05_webDiscourse_27_02_2022-19_22_29
This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5819
- Accuracy: 0.7058
- F1: 0.4267
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| No log | 1.0 | 48 | 0.6110 | 0.665 | 0.0 |
| No log | 2.0 | 96 | 0.5706 | 0.685 | 0.2588 |
| No log | 3.0 | 144 | 0.5484 | 0.725 | 0.5299 |
| No log | 4.0 | 192 | 0.5585 | 0.71 | 0.4727 |
| No log | 5.0 | 240 | 0.5616 | 0.725 | 0.5133 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
| {"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy", "f1"], "model-index": [{"name": "finetuned_sentence_itr0_2e-05_webDiscourse_27_02_2022-19_22_29", "results": []}]} | ali2066/finetuned_sentence_itr0_2e-05_webDiscourse_27_02_2022-19_22_29 | null | [
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| null | 2022-03-02T23:29:05+00:00 |
text-classification | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned_sentence_itr0_3e-05_all_27_02_2022-18_23_48
This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3962
- Accuracy: 0.8231
- F1: 0.8873
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| No log | 1.0 | 195 | 0.3591 | 0.8366 | 0.8950 |
| No log | 2.0 | 390 | 0.3558 | 0.8415 | 0.9012 |
| 0.3647 | 3.0 | 585 | 0.4049 | 0.8427 | 0.8983 |
| 0.3647 | 4.0 | 780 | 0.5030 | 0.8378 | 0.8949 |
| 0.3647 | 5.0 | 975 | 0.5719 | 0.8354 | 0.8943 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
| {"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy", "f1"], "model-index": [{"name": "finetuned_sentence_itr0_3e-05_all_27_02_2022-18_23_48", "results": []}]} | ali2066/finetuned_sentence_itr0_3e-05_all_27_02_2022-18_23_48 | null | [
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| null | 2022-03-02T23:29:05+00:00 |
text-classification | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned_sentence_itr0_3e-05_all_27_02_2022-19_16_53
This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3944
- Accuracy: 0.8279
- F1: 0.8901
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| No log | 1.0 | 195 | 0.3946 | 0.8012 | 0.8743 |
| No log | 2.0 | 390 | 0.3746 | 0.8329 | 0.8929 |
| 0.3644 | 3.0 | 585 | 0.4288 | 0.8268 | 0.8849 |
| 0.3644 | 4.0 | 780 | 0.5352 | 0.8232 | 0.8841 |
| 0.3644 | 5.0 | 975 | 0.5768 | 0.8268 | 0.8864 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
| {"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy", "f1"], "model-index": [{"name": "finetuned_sentence_itr0_3e-05_all_27_02_2022-19_16_53", "results": []}]} | ali2066/finetuned_sentence_itr0_3e-05_all_27_02_2022-19_16_53 | null | [
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| null | 2022-03-02T23:29:05+00:00 |
text-classification | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned_sentence_itr0_3e-05_all_27_02_2022-22_36_26
This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6071
- Accuracy: 0.8337
- F1: 0.8922
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| No log | 1.0 | 195 | 0.3920 | 0.7988 | 0.8624 |
| No log | 2.0 | 390 | 0.3873 | 0.8171 | 0.8739 |
| 0.3673 | 3.0 | 585 | 0.4354 | 0.8256 | 0.8835 |
| 0.3673 | 4.0 | 780 | 0.5358 | 0.8293 | 0.8887 |
| 0.3673 | 5.0 | 975 | 0.5616 | 0.8366 | 0.8923 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
| {"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy", "f1"], "model-index": [{"name": "finetuned_sentence_itr0_3e-05_all_27_02_2022-22_36_26", "results": []}]} | ali2066/finetuned_sentence_itr0_3e-05_all_27_02_2022-22_36_26 | null | [
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| null | 2022-03-02T23:29:05+00:00 |
text-classification | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned_sentence_itr0_3e-05_editorials_27_02_2022-19_46_22
This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0890
- Accuracy: 0.9750
- F1: 0.9873
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| No log | 1.0 | 104 | 0.0485 | 0.9885 | 0.9942 |
| No log | 2.0 | 208 | 0.0558 | 0.9857 | 0.9927 |
| No log | 3.0 | 312 | 0.0501 | 0.9828 | 0.9913 |
| No log | 4.0 | 416 | 0.0593 | 0.9828 | 0.9913 |
| 0.04 | 5.0 | 520 | 0.0653 | 0.9828 | 0.9913 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
| {"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy", "f1"], "model-index": [{"name": "finetuned_sentence_itr0_3e-05_editorials_27_02_2022-19_46_22", "results": []}]} | ali2066/finetuned_sentence_itr0_3e-05_editorials_27_02_2022-19_46_22 | null | [
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| null | 2022-03-02T23:29:05+00:00 |
text-classification | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned_sentence_itr0_3e-05_essays_27_02_2022-19_35_56
This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3767
- Accuracy: 0.8638
- F1: 0.9165
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| No log | 1.0 | 81 | 0.4489 | 0.8309 | 0.8969 |
| No log | 2.0 | 162 | 0.4429 | 0.8272 | 0.8915 |
| No log | 3.0 | 243 | 0.5154 | 0.8529 | 0.9083 |
| No log | 4.0 | 324 | 0.5552 | 0.8309 | 0.8925 |
| No log | 5.0 | 405 | 0.5896 | 0.8309 | 0.8940 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
| {"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy", "f1"], "model-index": [{"name": "finetuned_sentence_itr0_3e-05_essays_27_02_2022-19_35_56", "results": []}]} | ali2066/finetuned_sentence_itr0_3e-05_essays_27_02_2022-19_35_56 | null | [
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| null | 2022-03-02T23:29:05+00:00 |
text-classification | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned_sentence_itr0_3e-05_webDiscourse_27_02_2022-19_27_41
This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6020
- Accuracy: 0.7032
- F1: 0.4851
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| No log | 1.0 | 48 | 0.5914 | 0.67 | 0.0294 |
| No log | 2.0 | 96 | 0.5616 | 0.695 | 0.2824 |
| No log | 3.0 | 144 | 0.5596 | 0.73 | 0.5909 |
| No log | 4.0 | 192 | 0.6273 | 0.73 | 0.5 |
| No log | 5.0 | 240 | 0.6370 | 0.71 | 0.5 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
| {"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy", "f1"], "model-index": [{"name": "finetuned_sentence_itr0_3e-05_webDiscourse_27_02_2022-19_27_41", "results": []}]} | ali2066/finetuned_sentence_itr0_3e-05_webDiscourse_27_02_2022-19_27_41 | null | [
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| null | 2022-03-02T23:29:05+00:00 |
text-classification | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned_sentence_itr1_0.0002_all_27_02_2022-18_01_22
This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7600
- Accuracy: 0.8144
- F1: 0.8788
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| No log | 1.0 | 195 | 0.3514 | 0.8427 | 0.8979 |
| No log | 2.0 | 390 | 0.3853 | 0.8293 | 0.8936 |
| 0.3147 | 3.0 | 585 | 0.5494 | 0.8268 | 0.8868 |
| 0.3147 | 4.0 | 780 | 0.6235 | 0.8427 | 0.8995 |
| 0.3147 | 5.0 | 975 | 0.8302 | 0.8378 | 0.8965 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
| {"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy", "f1"], "model-index": [{"name": "finetuned_sentence_itr1_0.0002_all_27_02_2022-18_01_22", "results": []}]} | ali2066/finetuned_sentence_itr1_0.0002_all_27_02_2022-18_01_22 | null | [
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| null | 2022-03-02T23:29:05+00:00 |
text-classification | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned_sentence_itr1_2e-05_all_26_02_2022-04_03_26
This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4676
- Accuracy: 0.8299
- F1: 0.8892
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| No log | 1.0 | 195 | 0.4087 | 0.8073 | 0.8754 |
| No log | 2.0 | 390 | 0.3952 | 0.8159 | 0.8803 |
| 0.4084 | 3.0 | 585 | 0.4183 | 0.8195 | 0.8831 |
| 0.4084 | 4.0 | 780 | 0.4596 | 0.8280 | 0.8867 |
| 0.4084 | 5.0 | 975 | 0.4919 | 0.8280 | 0.8873 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
| {"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy", "f1"], "model-index": [{"name": "finetuned_sentence_itr1_2e-05_all_26_02_2022-04_03_26", "results": []}]} | ali2066/finetuned_sentence_itr1_2e-05_all_26_02_2022-04_03_26 | null | [
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| null | 2022-03-02T23:29:05+00:00 |
text-classification | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned_sentence_itr1_2e-05_all_27_02_2022-17_33_22
This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4095
- Accuracy: 0.8263
- F1: 0.8865
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| No log | 1.0 | 195 | 0.3685 | 0.8293 | 0.8911 |
| No log | 2.0 | 390 | 0.3495 | 0.8415 | 0.8992 |
| 0.4065 | 3.0 | 585 | 0.3744 | 0.8463 | 0.9014 |
| 0.4065 | 4.0 | 780 | 0.4260 | 0.8427 | 0.8980 |
| 0.4065 | 5.0 | 975 | 0.4548 | 0.8366 | 0.8940 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
| {"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy", "f1"], "model-index": [{"name": "finetuned_sentence_itr1_2e-05_all_27_02_2022-17_33_22", "results": []}]} | ali2066/finetuned_sentence_itr1_2e-05_all_27_02_2022-17_33_22 | null | [
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| null | 2022-03-02T23:29:05+00:00 |
text-classification | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned_sentence_itr1_2e-05_webDiscourse_27_02_2022-18_54_09
This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6049
- Accuracy: 0.6926
- F1: 0.4160
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| No log | 1.0 | 48 | 0.5835 | 0.71 | 0.0333 |
| No log | 2.0 | 96 | 0.5718 | 0.715 | 0.3871 |
| No log | 3.0 | 144 | 0.5731 | 0.715 | 0.4 |
| No log | 4.0 | 192 | 0.6009 | 0.705 | 0.3516 |
| No log | 5.0 | 240 | 0.6122 | 0.7 | 0.4000 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
| {"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy", "f1"], "model-index": [{"name": "finetuned_sentence_itr1_2e-05_webDiscourse_27_02_2022-18_54_09", "results": []}]} | ali2066/finetuned_sentence_itr1_2e-05_webDiscourse_27_02_2022-18_54_09 | null | [
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| null | 2022-03-02T23:29:05+00:00 |
text-classification | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned_sentence_itr1_3e-05_all_27_02_2022-18_29_24
This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3962
- Accuracy: 0.8231
- F1: 0.8873
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| No log | 1.0 | 195 | 0.3591 | 0.8366 | 0.8950 |
| No log | 2.0 | 390 | 0.3558 | 0.8415 | 0.9012 |
| 0.3647 | 3.0 | 585 | 0.4049 | 0.8427 | 0.8983 |
| 0.3647 | 4.0 | 780 | 0.5030 | 0.8378 | 0.8949 |
| 0.3647 | 5.0 | 975 | 0.5719 | 0.8354 | 0.8943 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
| {"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy", "f1"], "model-index": [{"name": "finetuned_sentence_itr1_3e-05_all_27_02_2022-18_29_24", "results": []}]} | ali2066/finetuned_sentence_itr1_3e-05_all_27_02_2022-18_29_24 | null | [
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| null | 2022-03-02T23:29:05+00:00 |
text-classification | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned_sentence_itr2_0.0002_all_27_02_2022-18_06_59
This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7600
- Accuracy: 0.8144
- F1: 0.8788
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| No log | 1.0 | 195 | 0.3514 | 0.8427 | 0.8979 |
| No log | 2.0 | 390 | 0.3853 | 0.8293 | 0.8936 |
| 0.3147 | 3.0 | 585 | 0.5494 | 0.8268 | 0.8868 |
| 0.3147 | 4.0 | 780 | 0.6235 | 0.8427 | 0.8995 |
| 0.3147 | 5.0 | 975 | 0.8302 | 0.8378 | 0.8965 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
| {"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy", "f1"], "model-index": [{"name": "finetuned_sentence_itr2_0.0002_all_27_02_2022-18_06_59", "results": []}]} | ali2066/finetuned_sentence_itr2_0.0002_all_27_02_2022-18_06_59 | null | [
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| null | 2022-03-02T23:29:05+00:00 |
text-classification | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned_sentence_itr2_2e-05_all_26_02_2022-04_09_01
This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4676
- Accuracy: 0.8299
- F1: 0.8892
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| No log | 1.0 | 195 | 0.4087 | 0.8073 | 0.8754 |
| No log | 2.0 | 390 | 0.3952 | 0.8159 | 0.8803 |
| 0.4084 | 3.0 | 585 | 0.4183 | 0.8195 | 0.8831 |
| 0.4084 | 4.0 | 780 | 0.4596 | 0.8280 | 0.8867 |
| 0.4084 | 5.0 | 975 | 0.4919 | 0.8280 | 0.8873 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
| {"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy", "f1"], "model-index": [{"name": "finetuned_sentence_itr2_2e-05_all_26_02_2022-04_09_01", "results": []}]} | ali2066/finetuned_sentence_itr2_2e-05_all_26_02_2022-04_09_01 | null | [
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| null | 2022-03-02T23:29:05+00:00 |
text-classification | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned_sentence_itr2_2e-05_all_27_02_2022-17_38_58
This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4095
- Accuracy: 0.8263
- F1: 0.8865
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| No log | 1.0 | 195 | 0.3685 | 0.8293 | 0.8911 |
| No log | 2.0 | 390 | 0.3495 | 0.8415 | 0.8992 |
| 0.4065 | 3.0 | 585 | 0.3744 | 0.8463 | 0.9014 |
| 0.4065 | 4.0 | 780 | 0.4260 | 0.8427 | 0.8980 |
| 0.4065 | 5.0 | 975 | 0.4548 | 0.8366 | 0.8940 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
| {"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy", "f1"], "model-index": [{"name": "finetuned_sentence_itr2_2e-05_all_27_02_2022-17_38_58", "results": []}]} | ali2066/finetuned_sentence_itr2_2e-05_all_27_02_2022-17_38_58 | null | [
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| null | 2022-03-02T23:29:05+00:00 |
text-classification | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned_sentence_itr2_2e-05_webDiscourse_27_02_2022-18_56_32
This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6049
- Accuracy: 0.6926
- F1: 0.4160
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| No log | 1.0 | 48 | 0.5835 | 0.71 | 0.0333 |
| No log | 2.0 | 96 | 0.5718 | 0.715 | 0.3871 |
| No log | 3.0 | 144 | 0.5731 | 0.715 | 0.4 |
| No log | 4.0 | 192 | 0.6009 | 0.705 | 0.3516 |
| No log | 5.0 | 240 | 0.6122 | 0.7 | 0.4000 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
| {"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy", "f1"], "model-index": [{"name": "finetuned_sentence_itr2_2e-05_webDiscourse_27_02_2022-18_56_32", "results": []}]} | ali2066/finetuned_sentence_itr2_2e-05_webDiscourse_27_02_2022-18_56_32 | null | [
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| null | 2022-03-02T23:29:05+00:00 |
text-classification | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned_sentence_itr2_3e-05_all_27_02_2022-18_35_02
This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3962
- Accuracy: 0.8231
- F1: 0.8873
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| No log | 1.0 | 195 | 0.3591 | 0.8366 | 0.8950 |
| No log | 2.0 | 390 | 0.3558 | 0.8415 | 0.9012 |
| 0.3647 | 3.0 | 585 | 0.4049 | 0.8427 | 0.8983 |
| 0.3647 | 4.0 | 780 | 0.5030 | 0.8378 | 0.8949 |
| 0.3647 | 5.0 | 975 | 0.5719 | 0.8354 | 0.8943 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
| {"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy", "f1"], "model-index": [{"name": "finetuned_sentence_itr2_3e-05_all_27_02_2022-18_35_02", "results": []}]} | ali2066/finetuned_sentence_itr2_3e-05_all_27_02_2022-18_35_02 | null | [
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| null | 2022-03-02T23:29:05+00:00 |
text-classification | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned_sentence_itr3_0.0002_all_27_02_2022-18_12_34
This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7600
- Accuracy: 0.8144
- F1: 0.8788
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| No log | 1.0 | 195 | 0.3514 | 0.8427 | 0.8979 |
| No log | 2.0 | 390 | 0.3853 | 0.8293 | 0.8936 |
| 0.3147 | 3.0 | 585 | 0.5494 | 0.8268 | 0.8868 |
| 0.3147 | 4.0 | 780 | 0.6235 | 0.8427 | 0.8995 |
| 0.3147 | 5.0 | 975 | 0.8302 | 0.8378 | 0.8965 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
| {"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy", "f1"], "model-index": [{"name": "finetuned_sentence_itr3_0.0002_all_27_02_2022-18_12_34", "results": []}]} | ali2066/finetuned_sentence_itr3_0.0002_all_27_02_2022-18_12_34 | null | [
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| null | 2022-03-02T23:29:05+00:00 |
text-classification | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned_sentence_itr3_2e-05_all_26_02_2022-04_14_37
This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4676
- Accuracy: 0.8299
- F1: 0.8892
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| No log | 1.0 | 195 | 0.4087 | 0.8073 | 0.8754 |
| No log | 2.0 | 390 | 0.3952 | 0.8159 | 0.8803 |
| 0.4084 | 3.0 | 585 | 0.4183 | 0.8195 | 0.8831 |
| 0.4084 | 4.0 | 780 | 0.4596 | 0.8280 | 0.8867 |
| 0.4084 | 5.0 | 975 | 0.4919 | 0.8280 | 0.8873 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
| {"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy", "f1"], "model-index": [{"name": "finetuned_sentence_itr3_2e-05_all_26_02_2022-04_14_37", "results": []}]} | ali2066/finetuned_sentence_itr3_2e-05_all_26_02_2022-04_14_37 | null | [
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| null | 2022-03-02T23:29:05+00:00 |
text-classification | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned_sentence_itr3_2e-05_all_27_02_2022-17_44_32
This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4095
- Accuracy: 0.8263
- F1: 0.8865
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| No log | 1.0 | 195 | 0.3685 | 0.8293 | 0.8911 |
| No log | 2.0 | 390 | 0.3495 | 0.8415 | 0.8992 |
| 0.4065 | 3.0 | 585 | 0.3744 | 0.8463 | 0.9014 |
| 0.4065 | 4.0 | 780 | 0.4260 | 0.8427 | 0.8980 |
| 0.4065 | 5.0 | 975 | 0.4548 | 0.8366 | 0.8940 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
| {"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy", "f1"], "model-index": [{"name": "finetuned_sentence_itr3_2e-05_all_27_02_2022-17_44_32", "results": []}]} | ali2066/finetuned_sentence_itr3_2e-05_all_27_02_2022-17_44_32 | null | [
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| null | 2022-03-02T23:29:05+00:00 |
text-classification | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned_sentence_itr3_2e-05_webDiscourse_27_02_2022-18_59_05
This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6049
- Accuracy: 0.6926
- F1: 0.4160
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| No log | 1.0 | 48 | 0.5835 | 0.71 | 0.0333 |
| No log | 2.0 | 96 | 0.5718 | 0.715 | 0.3871 |
| No log | 3.0 | 144 | 0.5731 | 0.715 | 0.4 |
| No log | 4.0 | 192 | 0.6009 | 0.705 | 0.3516 |
| No log | 5.0 | 240 | 0.6122 | 0.7 | 0.4000 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
| {"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy", "f1"], "model-index": [{"name": "finetuned_sentence_itr3_2e-05_webDiscourse_27_02_2022-18_59_05", "results": []}]} | ali2066/finetuned_sentence_itr3_2e-05_webDiscourse_27_02_2022-18_59_05 | null | [
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| null | 2022-03-02T23:29:05+00:00 |
text-classification | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned_sentence_itr3_3e-05_all_27_02_2022-18_40_40
This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3962
- Accuracy: 0.8231
- F1: 0.8873
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| No log | 1.0 | 195 | 0.3591 | 0.8366 | 0.8950 |
| No log | 2.0 | 390 | 0.3558 | 0.8415 | 0.9012 |
| 0.3647 | 3.0 | 585 | 0.4049 | 0.8427 | 0.8983 |
| 0.3647 | 4.0 | 780 | 0.5030 | 0.8378 | 0.8949 |
| 0.3647 | 5.0 | 975 | 0.5719 | 0.8354 | 0.8943 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
| {"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy", "f1"], "model-index": [{"name": "finetuned_sentence_itr3_3e-05_all_27_02_2022-18_40_40", "results": []}]} | ali2066/finetuned_sentence_itr3_3e-05_all_27_02_2022-18_40_40 | null | [
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| null | 2022-03-02T23:29:05+00:00 |
text-classification | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned_sentence_itr4_0.0002_all_27_02_2022-18_18_11
This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7600
- Accuracy: 0.8144
- F1: 0.8788
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| No log | 1.0 | 195 | 0.3514 | 0.8427 | 0.8979 |
| No log | 2.0 | 390 | 0.3853 | 0.8293 | 0.8936 |
| 0.3147 | 3.0 | 585 | 0.5494 | 0.8268 | 0.8868 |
| 0.3147 | 4.0 | 780 | 0.6235 | 0.8427 | 0.8995 |
| 0.3147 | 5.0 | 975 | 0.8302 | 0.8378 | 0.8965 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
| {"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy", "f1"], "model-index": [{"name": "finetuned_sentence_itr4_0.0002_all_27_02_2022-18_18_11", "results": []}]} | ali2066/finetuned_sentence_itr4_0.0002_all_27_02_2022-18_18_11 | null | [
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| null | 2022-03-02T23:29:05+00:00 |
text-classification | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned_sentence_itr4_2e-05_all_26_02_2022-04_20_09
This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4676
- Accuracy: 0.8299
- F1: 0.8892
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| No log | 1.0 | 195 | 0.4087 | 0.8073 | 0.8754 |
| No log | 2.0 | 390 | 0.3952 | 0.8159 | 0.8803 |
| 0.4084 | 3.0 | 585 | 0.4183 | 0.8195 | 0.8831 |
| 0.4084 | 4.0 | 780 | 0.4596 | 0.8280 | 0.8867 |
| 0.4084 | 5.0 | 975 | 0.4919 | 0.8280 | 0.8873 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
| {"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy", "f1"], "model-index": [{"name": "finetuned_sentence_itr4_2e-05_all_26_02_2022-04_20_09", "results": []}]} | ali2066/finetuned_sentence_itr4_2e-05_all_26_02_2022-04_20_09 | null | [
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| null | 2022-03-02T23:29:05+00:00 |
text-classification | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned_sentence_itr4_2e-05_all_27_02_2022-17_50_05
This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4095
- Accuracy: 0.8263
- F1: 0.8865
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| No log | 1.0 | 195 | 0.3685 | 0.8293 | 0.8911 |
| No log | 2.0 | 390 | 0.3495 | 0.8415 | 0.8992 |
| 0.4065 | 3.0 | 585 | 0.3744 | 0.8463 | 0.9014 |
| 0.4065 | 4.0 | 780 | 0.4260 | 0.8427 | 0.8980 |
| 0.4065 | 5.0 | 975 | 0.4548 | 0.8366 | 0.8940 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
| {"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy", "f1"], "model-index": [{"name": "finetuned_sentence_itr4_2e-05_all_27_02_2022-17_50_05", "results": []}]} | ali2066/finetuned_sentence_itr4_2e-05_all_27_02_2022-17_50_05 | null | [
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| null | 2022-03-02T23:29:05+00:00 |
text-classification | transformers | {} | ali2066/finetuned_sentence_itr4_2e-05_webDiscourse_27_02_2022-19_01_41 | null | [
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| null | 2022-03-02T23:29:05+00:00 |
|
text-classification | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned_sentence_itr4_3e-05_all_27_02_2022-18_46_19
This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3962
- Accuracy: 0.8231
- F1: 0.8873
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| No log | 1.0 | 195 | 0.3591 | 0.8366 | 0.8950 |
| No log | 2.0 | 390 | 0.3558 | 0.8415 | 0.9012 |
| 0.3647 | 3.0 | 585 | 0.4049 | 0.8427 | 0.8983 |
| 0.3647 | 4.0 | 780 | 0.5030 | 0.8378 | 0.8949 |
| 0.3647 | 5.0 | 975 | 0.5719 | 0.8354 | 0.8943 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
| {"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy", "f1"], "model-index": [{"name": "finetuned_sentence_itr4_3e-05_all_27_02_2022-18_46_19", "results": []}]} | ali2066/finetuned_sentence_itr4_3e-05_all_27_02_2022-18_46_19 | null | [
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| null | 2022-03-02T23:29:05+00:00 |
text-classification | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned_sentence_itr5_2e-05_all_26_02_2022-04_25_39
This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4676
- Accuracy: 0.8299
- F1: 0.8892
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| No log | 1.0 | 195 | 0.4087 | 0.8073 | 0.8754 |
| No log | 2.0 | 390 | 0.3952 | 0.8159 | 0.8803 |
| 0.4084 | 3.0 | 585 | 0.4183 | 0.8195 | 0.8831 |
| 0.4084 | 4.0 | 780 | 0.4596 | 0.8280 | 0.8867 |
| 0.4084 | 5.0 | 975 | 0.4919 | 0.8280 | 0.8873 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
| {"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy", "f1"], "model-index": [{"name": "finetuned_sentence_itr5_2e-05_all_26_02_2022-04_25_39", "results": []}]} | ali2066/finetuned_sentence_itr5_2e-05_all_26_02_2022-04_25_39 | null | [
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| null | 2022-03-02T23:29:05+00:00 |
text-classification | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned_sentence_itr6_2e-05_all_26_02_2022-04_31_13
This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4676
- Accuracy: 0.8299
- F1: 0.8892
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| No log | 1.0 | 195 | 0.4087 | 0.8073 | 0.8754 |
| No log | 2.0 | 390 | 0.3952 | 0.8159 | 0.8803 |
| 0.4084 | 3.0 | 585 | 0.4183 | 0.8195 | 0.8831 |
| 0.4084 | 4.0 | 780 | 0.4596 | 0.8280 | 0.8867 |
| 0.4084 | 5.0 | 975 | 0.4919 | 0.8280 | 0.8873 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
| {"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy", "f1"], "model-index": [{"name": "finetuned_sentence_itr6_2e-05_all_26_02_2022-04_31_13", "results": []}]} | ali2066/finetuned_sentence_itr6_2e-05_all_26_02_2022-04_31_13 | null | [
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| null | 2022-03-02T23:29:05+00:00 |
text-classification | transformers | {} | ali2066/finetuned_sentence_itr7_2e-05_all_26_02_2022-04_36_45 | null | [
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| null | 2022-03-02T23:29:05+00:00 |
|
null | null | {} | ali2066/finetuned_token_2e-05_15_02_2022-23_42_20 | null | [
"region:us"
]
| null | 2022-03-02T23:29:05+00:00 |
|
null | null | {} | ali2066/finetuned_token_2e-05_16_02_2022-00_58_25 | null | [
"region:us"
]
| null | 2022-03-02T23:29:05+00:00 |
|
null | null | {} | ali2066/finetuned_token_2e-05_16_02_2022-01_05_29 | null | [
"region:us"
]
| null | 2022-03-02T23:29:05+00:00 |
|
token-classification | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned_token_2e-05_16_02_2022-01_30_30
This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1748
- Precision: 0.3384
- Recall: 0.3492
- F1: 0.3437
- Accuracy: 0.9442
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 38 | 0.3180 | 0.0985 | 0.1648 | 0.1233 | 0.8643 |
| No log | 2.0 | 76 | 0.2667 | 0.1962 | 0.2698 | 0.2272 | 0.8926 |
| No log | 3.0 | 114 | 0.2374 | 0.2268 | 0.3005 | 0.2585 | 0.9062 |
| No log | 4.0 | 152 | 0.2305 | 0.2248 | 0.3247 | 0.2657 | 0.9099 |
| No log | 5.0 | 190 | 0.2289 | 0.2322 | 0.3166 | 0.2679 | 0.9102 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
| {"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "finetuned_token_2e-05_16_02_2022-01_30_30", "results": []}]} | ali2066/finetuned_token_2e-05_16_02_2022-01_30_30 | null | [
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"token-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| null | 2022-03-02T23:29:05+00:00 |
null | null | {} | ali2066/finetuned_token_2e-05_16_02_2022-01_53_40 | null | [
"region:us"
]
| null | 2022-03-02T23:29:05+00:00 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.