Search is not available for this dataset
pipeline_tag
stringclasses
48 values
library_name
stringclasses
205 values
text
stringlengths
0
18.3M
metadata
stringlengths
2
1.07B
id
stringlengths
5
122
last_modified
null
tags
listlengths
1
1.84k
sha
null
created_at
stringlengths
25
25
text2text-generation
transformers
More information about models is available [here](https://github.com/alirezasalemi7/ARMAN).
{}
alireza7/ARMAN-MSR-persian-base-perkey-summary
null
[ "transformers", "pytorch", "pegasus", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text2text-generation
transformers
More information about models is available [here](https://github.com/alirezasalemi7/ARMAN).
{}
alireza7/ARMAN-MSR-persian-base-perkey-title
null
[ "transformers", "pytorch", "pegasus", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text2text-generation
transformers
More information about models is available [here](https://github.com/alirezasalemi7/ARMAN).
{}
alireza7/ARMAN-MSR-persian-base-tebyan
null
[ "transformers", "pytorch", "pegasus", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text2text-generation
transformers
More information about models is available [here](https://github.com/alirezasalemi7/ARMAN).
{}
alireza7/ARMAN-MSR-persian-base-voa-title
null
[ "transformers", "pytorch", "pegasus", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text2text-generation
transformers
More information about models is available [here](https://github.com/alirezasalemi7/ARMAN).
{}
alireza7/ARMAN-MSR-persian-base-wiki-summary
null
[ "transformers", "pytorch", "pegasus", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text2text-generation
transformers
More information about models is available [here](https://github.com/alirezasalemi7/ARMAN).
{}
alireza7/ARMAN-MSR-persian-base
null
[ "transformers", "pytorch", "pegasus", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text2text-generation
transformers
More information about models is available [here](https://github.com/alirezasalemi7/ARMAN).
{}
alireza7/ARMAN-SH-persian-base-PN-summary
null
[ "transformers", "pytorch", "pegasus", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text2text-generation
transformers
More information about models is available [here](https://github.com/alirezasalemi7/ARMAN).
{}
alireza7/ARMAN-SH-persian-base-parsinlu-multiple-choice
null
[ "transformers", "pytorch", "pegasus", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text2text-generation
transformers
More information about models is available [here](https://github.com/alirezasalemi7/ARMAN).
{}
alireza7/ARMAN-SH-persian-base-parsinlu-qqp
null
[ "transformers", "pytorch", "pegasus", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text2text-generation
transformers
More information about models is available [here](https://github.com/alirezasalemi7/ARMAN).
{}
alireza7/ARMAN-SH-persian-base-parsinlu-sentiment-food
null
[ "transformers", "pytorch", "pegasus", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text2text-generation
transformers
More information about models is available [here](https://github.com/alirezasalemi7/ARMAN).
{}
alireza7/ARMAN-SH-persian-base-parsinlu-sentiment-movie
null
[ "transformers", "pytorch", "pegasus", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text2text-generation
transformers
More information about models is available [here](https://github.com/alirezasalemi7/ARMAN).
{}
alireza7/ARMAN-SH-persian-base-parsinlu-textual-entailment
null
[ "transformers", "pytorch", "pegasus", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text2text-generation
transformers
More information about models is available [here](https://github.com/alirezasalemi7/ARMAN).
{}
alireza7/ARMAN-SH-persian-base-perkey-summary
null
[ "transformers", "pytorch", "pegasus", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text2text-generation
transformers
More information about models is available [here](https://github.com/alirezasalemi7/ARMAN).
{}
alireza7/ARMAN-SH-persian-base-perkey-title
null
[ "transformers", "pytorch", "pegasus", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text2text-generation
transformers
More information about models is available [here](https://github.com/alirezasalemi7/ARMAN).
{}
alireza7/ARMAN-SH-persian-base-tebyan
null
[ "transformers", "pytorch", "pegasus", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text2text-generation
transformers
More information about models is available [here](https://github.com/alirezasalemi7/ARMAN).
{}
alireza7/ARMAN-SH-persian-base-voa-title
null
[ "transformers", "pytorch", "pegasus", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text2text-generation
transformers
More information about models is available [here](https://github.com/alirezasalemi7/ARMAN).
{}
alireza7/ARMAN-SH-persian-base-wiki-summary
null
[ "transformers", "pytorch", "pegasus", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
More information about models is available [here](https://github.com/alirezasalemi7/ARMAN).
{}
alireza7/ARMAN-SH-persian-base
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
text2text-generation
transformers
More information about models is available [here](https://github.com/alirezasalemi7/ARMAN).
{}
alireza7/ARMAN-SS-100-persian-base-PN-summary
null
[ "transformers", "pytorch", "pegasus", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text2text-generation
transformers
More information about models is available [here](https://github.com/alirezasalemi7/ARMAN).
{}
alireza7/ARMAN-SS-100-persian-base-parsinlu-multiple-choice
null
[ "transformers", "pytorch", "pegasus", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text2text-generation
transformers
More information about models is available [here](https://github.com/alirezasalemi7/ARMAN).
{}
alireza7/ARMAN-SS-100-persian-base-parsinlu-qqp
null
[ "transformers", "pytorch", "pegasus", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text2text-generation
transformers
More information about models is available [here](https://github.com/alirezasalemi7/ARMAN).
{}
alireza7/ARMAN-SS-100-persian-base-parsinlu-sentiment-food
null
[ "transformers", "pytorch", "pegasus", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text2text-generation
transformers
More information about models is available [here](https://github.com/alirezasalemi7/ARMAN).
{}
alireza7/ARMAN-SS-100-persian-base-parsinlu-sentiment-movie
null
[ "transformers", "pytorch", "pegasus", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text2text-generation
transformers
More information about models is available [here](https://github.com/alirezasalemi7/ARMAN).
{}
alireza7/ARMAN-SS-100-persian-base-parsinlu-textual-entailment
null
[ "transformers", "pytorch", "pegasus", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text2text-generation
transformers
More information about models is available [here](https://github.com/alirezasalemi7/ARMAN).
{}
alireza7/ARMAN-SS-100-persian-base-perkey-summary
null
[ "transformers", "pytorch", "pegasus", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text2text-generation
transformers
More information about models is available [here](https://github.com/alirezasalemi7/ARMAN).
{}
alireza7/ARMAN-SS-100-persian-base-perkey-title
null
[ "transformers", "pytorch", "pegasus", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text2text-generation
transformers
More information about models is available [here](https://github.com/alirezasalemi7/ARMAN).
{}
alireza7/ARMAN-SS-100-persian-base-tebyan
null
[ "transformers", "pytorch", "pegasus", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text2text-generation
transformers
More information about models is available [here](https://github.com/alirezasalemi7/ARMAN).
{}
alireza7/ARMAN-SS-100-persian-base-voa-title
null
[ "transformers", "pytorch", "pegasus", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text2text-generation
transformers
More information about models is available [here](https://github.com/alirezasalemi7/ARMAN).
{}
alireza7/ARMAN-SS-100-persian-base-wiki-summary
null
[ "transformers", "pytorch", "pegasus", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text2text-generation
transformers
More information about models is available [here](https://github.com/alirezasalemi7/ARMAN).
{}
alireza7/ARMAN-SS-100-persian-base
null
[ "transformers", "pytorch", "pegasus", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text2text-generation
transformers
More information about models is available [here](https://github.com/alirezasalemi7/ARMAN).
{}
alireza7/ARMAN-SS-80-persian-base-PN-summary
null
[ "transformers", "pytorch", "pegasus", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text2text-generation
transformers
More information about models is available [here](https://github.com/alirezasalemi7/ARMAN).
{}
alireza7/ARMAN-SS-80-persian-base-parsinlu-multiple-choice
null
[ "transformers", "pytorch", "pegasus", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text2text-generation
transformers
More information about models is available [here](https://github.com/alirezasalemi7/ARMAN).
{}
alireza7/ARMAN-SS-80-persian-base-parsinlu-qqp
null
[ "transformers", "pytorch", "pegasus", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text2text-generation
transformers
More information about models is available [here](https://github.com/alirezasalemi7/ARMAN).
{}
alireza7/ARMAN-SS-80-persian-base-parsinlu-sentiment-food
null
[ "transformers", "pytorch", "pegasus", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text2text-generation
transformers
More information about models is available [here](https://github.com/alirezasalemi7/ARMAN).
{}
alireza7/ARMAN-SS-80-persian-base-parsinlu-sentiment-movie
null
[ "transformers", "pytorch", "pegasus", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text2text-generation
transformers
More information about models is available [here](https://github.com/alirezasalemi7/ARMAN).
{}
alireza7/ARMAN-SS-80-persian-base-parsinlu-textual-entailment
null
[ "transformers", "pytorch", "pegasus", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text2text-generation
transformers
More information about models is available [here](https://github.com/alirezasalemi7/ARMAN).
{}
alireza7/ARMAN-SS-80-persian-base-perkey-summary
null
[ "transformers", "pytorch", "pegasus", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text2text-generation
transformers
More information about models is available [here](https://github.com/alirezasalemi7/ARMAN).
{}
alireza7/ARMAN-SS-80-persian-base-perkey-title
null
[ "transformers", "pytorch", "pegasus", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text2text-generation
transformers
More information about models is available [here](https://github.com/alirezasalemi7/ARMAN).
{}
alireza7/ARMAN-SS-80-persian-base-tebyan
null
[ "transformers", "pytorch", "pegasus", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text2text-generation
transformers
More information about models is available [here](https://github.com/alirezasalemi7/ARMAN).
{}
alireza7/ARMAN-SS-80-persian-base-voa-title
null
[ "transformers", "pytorch", "pegasus", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text2text-generation
transformers
More information about models is available [here](https://github.com/alirezasalemi7/ARMAN).
{}
alireza7/ARMAN-SS-80-persian-base-wiki-summary
null
[ "transformers", "pytorch", "pegasus", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text2text-generation
transformers
More information about models is available [here](https://github.com/alirezasalemi7/ARMAN).
{}
alireza7/ARMAN-SS-80-persian-base
null
[ "transformers", "pytorch", "pegasus", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text2text-generation
transformers
More information about models is available [here](https://github.com/alirezasalemi7/ARMAN).
{}
alireza7/PEGASUS-persian-base-PN-summary
null
[ "transformers", "pytorch", "pegasus", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:05+00:00
text2text-generation
transformers
More information about models is available [here](https://github.com/alirezasalemi7/ARMAN).
{}
alireza7/PEGASUS-persian-base-parsinlu-multiple-choice
null
[ "transformers", "pytorch", "pegasus", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text2text-generation
transformers
More information about models is available [here](https://github.com/alirezasalemi7/ARMAN).
{}
alireza7/PEGASUS-persian-base-parsinlu-qqp
null
[ "transformers", "pytorch", "pegasus", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text2text-generation
transformers
More information about models is available [here](https://github.com/alirezasalemi7/ARMAN).
{}
alireza7/PEGASUS-persian-base-parsinlu-sentiment-food
null
[ "transformers", "pytorch", "pegasus", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:05+00:00
text2text-generation
transformers
More information about models is available [here](https://github.com/alirezasalemi7/ARMAN).
{}
alireza7/PEGASUS-persian-base-parsinlu-sentiment-movie
null
[ "transformers", "pytorch", "pegasus", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text2text-generation
transformers
More information about models is available [here](https://github.com/alirezasalemi7/ARMAN).
{}
alireza7/PEGASUS-persian-base-parsinlu-textual-entailment
null
[ "transformers", "pytorch", "pegasus", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text2text-generation
transformers
More information about models is available [here](https://github.com/alirezasalemi7/ARMAN).
{}
alireza7/PEGASUS-persian-base-perkey-summary
null
[ "transformers", "pytorch", "pegasus", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text2text-generation
transformers
More information about models is available [here](https://github.com/alirezasalemi7/ARMAN).
{}
alireza7/PEGASUS-persian-base-perkey-title
null
[ "transformers", "pytorch", "pegasus", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text2text-generation
transformers
More information about models is available [here](https://github.com/alirezasalemi7/ARMAN).
{}
alireza7/PEGASUS-persian-base-tebyan
null
[ "transformers", "pytorch", "pegasus", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text2text-generation
transformers
More information about models is available [here](https://github.com/alirezasalemi7/ARMAN).
{}
alireza7/PEGASUS-persian-base-voa-title
null
[ "transformers", "pytorch", "pegasus", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text2text-generation
transformers
More information about models is available [here](https://github.com/alirezasalemi7/ARMAN).
{}
alireza7/PEGASUS-persian-base-wiki-summary
null
[ "transformers", "pytorch", "pegasus", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text2text-generation
transformers
More information about models is available [here](https://github.com/alirezasalemi7/ARMAN).
{}
alireza7/PEGASUS-persian-base
null
[ "transformers", "pytorch", "pegasus", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text2text-generation
transformers
More information about models is available [here](https://github.com/alirezasalemi7/ARMAN).
{}
alireza7/TRANSFORMER-persian-base-PN-summary
null
[ "transformers", "pytorch", "pegasus", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text2text-generation
transformers
More information about models is available [here](https://github.com/alirezasalemi7/ARMAN).
{}
alireza7/TRANSFORMER-persian-base-perkey-summary
null
[ "transformers", "pytorch", "pegasus", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text2text-generation
transformers
More information about models is available [here](https://github.com/alirezasalemi7/ARMAN).
{}
alireza7/TRANSFORMER-persian-base-perkey-title
null
[ "transformers", "pytorch", "pegasus", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text2text-generation
transformers
More information about models is available [here](https://github.com/alirezasalemi7/ARMAN).
{}
alireza7/TRANSFORMER-persian-base-tebyan
null
[ "transformers", "pytorch", "pegasus", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text2text-generation
transformers
More information about models is available [here](https://github.com/alirezasalemi7/ARMAN).
{}
alireza7/TRANSFORMER-persian-base-voa-title
null
[ "transformers", "pytorch", "pegasus", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text2text-generation
transformers
More information about models is available [here](https://github.com/alirezasalemi7/ARMAN).
{}
alireza7/TRANSFORMER-persian-base-wiki-summary
null
[ "transformers", "pytorch", "pegasus", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-generation
transformers
# A conversational model based on the character of Sheldon Cooper from Big Bang Theory.
{"tags": ["conversational"]}
alistair7/bbt-diagpt2-model
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
question-answering
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-pretrain-finetuned-coqa-falt This model is a fine-tuned version of [alistvt/bert-base-uncased-pretrained-mlm-coqa-stories](https://huggingface.co/alistvt/bert-base-uncased-pretrained-mlm-coqa-stories) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.8125 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 3.4039 | 0.29 | 2000 | 3.0921 | | 3.1438 | 0.59 | 4000 | 2.8826 | | 3.0252 | 0.88 | 6000 | 2.7885 | | 2.7112 | 1.18 | 8000 | 2.7720 | | 2.6703 | 1.47 | 10000 | 2.7581 | | 2.6432 | 1.77 | 12000 | 2.7316 | | 2.385 | 2.06 | 14000 | 2.7798 | | 2.3314 | 2.36 | 16000 | 2.7836 | | 2.3433 | 2.65 | 18000 | 2.7650 | | 2.3604 | 2.95 | 20000 | 2.7585 | | 2.2232 | 3.24 | 22000 | 2.8120 | | 2.2094 | 3.53 | 24000 | 2.7945 | | 2.2306 | 3.83 | 26000 | 2.8125 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.18.0 - Tokenizers 0.10.3
{"tags": ["generated_from_trainer"], "model-index": [{"name": "bert-base-uncased-pretrain-finetuned-coqa-falt", "results": []}]}
alistvt/bert-base-uncased-pretrain-finetuned-coqa-falt
null
[ "transformers", "pytorch", "tensorboard", "bert", "question-answering", "generated_from_trainer", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
question-answering
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-pretrain-finetuned-coqa-falttened This model is a fine-tuned version of [alistvt/bert-base-uncased-pretrained-mlm-coqa-stories](https://huggingface.co/alistvt/bert-base-uncased-pretrained-mlm-coqa-stories) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.8655 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 3.2886 | 0.29 | 2000 | 3.0142 | | 3.0801 | 0.59 | 4000 | 2.8347 | | 2.9744 | 0.88 | 6000 | 2.7643 | | 2.494 | 1.18 | 8000 | 2.7605 | | 2.4417 | 1.47 | 10000 | 2.7790 | | 2.4042 | 1.77 | 12000 | 2.7382 | | 2.1285 | 2.06 | 14000 | 2.8588 | | 2.0569 | 2.36 | 16000 | 2.8937 | | 2.0794 | 2.65 | 18000 | 2.8511 | | 2.0679 | 2.95 | 20000 | 2.8655 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
{"tags": ["generated_from_trainer"], "model-index": [{"name": "bert-base-uncased-pretrain-finetuned-coqa-falttened", "results": []}]}
alistvt/bert-base-uncased-pretrain-finetuned-coqa-falttened
null
[ "transformers", "pytorch", "tensorboard", "bert", "question-answering", "generated_from_trainer", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-generation
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-pretrained-clm-coqa-stories This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0002 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.0201 | 1.0 | 2479 | 0.0018 | | 0.0033 | 2.0 | 4958 | 0.0003 | | 0.0014 | 3.0 | 7437 | 0.0002 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "model-index": [{"name": "bert-base-uncased-pretrained-clm-coqa-stories", "results": []}]}
alistvt/bert-base-uncased-pretrained-clm-coqa-stories
null
[ "transformers", "pytorch", "tensorboard", "bert", "text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
alistvt/bert-base-uncased-pretrained-mlm-coqa-stories-pretrain-finetuned-coqa-falttened
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
fill-mask
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-pretrained-mlm-coqa-stories This model was trained from scratch on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.8310 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.0573 | 1.0 | 2479 | 1.8805 | | 1.9517 | 2.0 | 4958 | 1.8377 | | 1.9048 | 3.0 | 7437 | 1.8310 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
{"tags": ["generated_from_trainer"], "model-index": [{"name": "bert-base-uncased-pretrained-mlm-coqa-stories", "results": []}]}
alistvt/bert-base-uncased-pretrained-mlm-coqa-stories
null
[ "transformers", "pytorch", "tensorboard", "bert", "fill-mask", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
alistvt/output
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
{}
alk/distilbert-base-uncased-finetuned-emotion
null
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
feature-extraction
transformers
# HerBERT **[HerBERT](https://en.wikipedia.org/wiki/Zbigniew_Herbert)** is a BERT-based Language Model trained on Polish corpora using Masked Language Modelling (MLM) and Sentence Structural Objective (SSO) with dynamic masking of whole words. For more details, please refer to: [HerBERT: Efficiently Pretrained Transformer-based Language Model for Polish](https://www.aclweb.org/anthology/2021.bsnlp-1.1/). Model training and experiments were conducted with [transformers](https://github.com/huggingface/transformers) in version 2.9. ## Corpus HerBERT was trained on six different corpora available for Polish language: | Corpus | Tokens | Documents | | :------ | ------: | ------: | | [CCNet Middle](https://github.com/facebookresearch/cc_net) | 3243M | 7.9M | | [CCNet Head](https://github.com/facebookresearch/cc_net) | 2641M | 7.0M | | [National Corpus of Polish](http://nkjp.pl/index.php?page=14&lang=1)| 1357M | 3.9M | | [Open Subtitles](http://opus.nlpl.eu/OpenSubtitles-v2018.php) | 1056M | 1.1M | [Wikipedia](https://dumps.wikimedia.org/) | 260M | 1.4M | | [Wolne Lektury](https://wolnelektury.pl/) | 41M | 5.5k | ## Tokenizer The training dataset was tokenized into subwords using a character level byte-pair encoding (``CharBPETokenizer``) with a vocabulary size of 50k tokens. The tokenizer itself was trained with a [tokenizers](https://github.com/huggingface/tokenizers) library. We kindly encourage you to use the ``Fast`` version of the tokenizer, namely ``HerbertTokenizerFast``. ## Usage Example code: ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("allegro/herbert-base-cased") model = AutoModel.from_pretrained("allegro/herbert-base-cased") output = model( **tokenizer.batch_encode_plus( [ ( "A potem szedł środkiem drogi w kurzawie, bo zamiatał nogami, ślepy dziad prowadzony przez tłustego kundla na sznurku.", "A potem leciał od lasu chłopak z butelką, ale ten ujrzawszy księdza przy drodze okrążył go z dala i biegł na przełaj pól do karczmy." ) ], padding='longest', add_special_tokens=True, return_tensors='pt' ) ) ``` ## License CC BY 4.0 ## Citation If you use this model, please cite the following paper: ``` @inproceedings{mroczkowski-etal-2021-herbert, title = "{H}er{BERT}: Efficiently Pretrained Transformer-based Language Model for {P}olish", author = "Mroczkowski, Robert and Rybak, Piotr and Wr{\\'o}blewska, Alina and Gawlik, Ireneusz", booktitle = "Proceedings of the 8th Workshop on Balto-Slavic Natural Language Processing", month = apr, year = "2021", address = "Kiyv, Ukraine", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/2021.bsnlp-1.1", pages = "1--10", } ``` ## Authors The model was trained by [**Machine Learning Research Team at Allegro**](https://ml.allegro.tech/) and [**Linguistic Engineering Group at Institute of Computer Science, Polish Academy of Sciences**](http://zil.ipipan.waw.pl/). You can contact us at: <a href="mailto:[email protected]">[email protected]</a>
{"language": "pl", "license": "cc-by-4.0", "tags": ["herbert"]}
allegro/herbert-base-cased
null
[ "transformers", "pytorch", "tf", "jax", "bert", "feature-extraction", "herbert", "pl", "license:cc-by-4.0", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
transformers
# HerBERT tokenizer **[HerBERT](https://en.wikipedia.org/wiki/Zbigniew_Herbert)** tokenizer is a character level byte-pair encoding with vocabulary size of 50k tokens. The tokenizer was trained on [Wolne Lektury](https://wolnelektury.pl/) and a publicly available subset of [National Corpus of Polish](http://nkjp.pl/index.php?page=14&lang=0) with [fastBPE](https://github.com/glample/fastBPE) library. Tokenizer utilize `XLMTokenizer` implementation from [transformers](https://github.com/huggingface/transformers). ## Tokenizer usage Herbert tokenizer should be used together with [HerBERT model](https://huggingface.co/allegro/herbert-klej-cased-v1): ```python from transformers import XLMTokenizer, RobertaModel tokenizer = XLMTokenizer.from_pretrained("allegro/herbert-klej-cased-tokenizer-v1") model = RobertaModel.from_pretrained("allegro/herbert-klej-cased-v1") encoded_input = tokenizer.encode("Kto ma lepszą sztukę, ma lepszy rząd – to jasne.", return_tensors='pt') outputs = model(encoded_input) ``` ## License CC BY-SA 4.0 ## Citation If you use this tokenizer, please cite the following paper: ``` @inproceedings{rybak-etal-2020-klej, title = "{KLEJ}: Comprehensive Benchmark for {P}olish Language Understanding", author = "Rybak, Piotr and Mroczkowski, Robert and Tracz, Janusz and Gawlik, Ireneusz", booktitle = "Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics", month = jul, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/2020.acl-main.111", doi = "10.18653/v1/2020.acl-main.111", pages = "1191--1201", } ``` ## Authors Tokenizer was created by **Allegro Machine Learning Research** team. You can contact us at: <a href="mailto:[email protected]">[email protected]</a>
{"language": "pl"}
allegro/herbert-klej-cased-tokenizer-v1
null
[ "transformers", "xlm", "pl", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
transformers
# HerBERT **[HerBERT](https://en.wikipedia.org/wiki/Zbigniew_Herbert)** is a BERT-based Language Model trained on Polish Corpora using only MLM objective with dynamic masking of whole words. For more details, please refer to: [KLEJ: Comprehensive Benchmark for Polish Language Understanding](https://arxiv.org/abs/2005.00630). ## Dataset **HerBERT** training dataset is a combination of several publicly available corpora for Polish language: | Corpus | Tokens | Texts | | :------ | ------: | ------: | | [OSCAR](https://traces1.inria.fr/oscar/)| 6710M | 145M | | [Open Subtitles](http://opus.nlpl.eu/OpenSubtitles-v2018.php) | 1084M | 1.1M | | [Wikipedia](https://dumps.wikimedia.org/) | 260M | 1.5M | | [Wolne Lektury](https://wolnelektury.pl/) | 41M | 5.5k | | [Allegro Articles](https://allegro.pl/artykuly) | 18M | 33k | ## Tokenizer The training dataset was tokenized into subwords using [HerBERT Tokenizer](https://huggingface.co/allegro/herbert-klej-cased-tokenizer-v1); a character level byte-pair encoding with a vocabulary size of 50k tokens. The tokenizer itself was trained on [Wolne Lektury](https://wolnelektury.pl/) and a publicly available subset of [National Corpus of Polish](http://nkjp.pl/index.php?page=14&lang=0) with a [fastBPE](https://github.com/glample/fastBPE) library. Tokenizer utilizes `XLMTokenizer` implementation for that reason, one should load it as `allegro/herbert-klej-cased-tokenizer-v1`. ## HerBERT models summary | Model | WWM | Cased | Tokenizer | Vocab Size | Batch Size | Train Steps | | :------ | ------: | ------: | ------: | ------: | ------: | ------: | | herbert-klej-cased-v1 | YES | YES | BPE | 50K | 570 | 180k | ## Model evaluation HerBERT was evaluated on the [KLEJ](https://klejbenchmark.com/) benchmark, publicly available set of nine evaluation tasks for the Polish language understanding. It had the best average performance and obtained the best results for three of them. | Model | Average | NKJP-NER | CDSC-E | CDSC-R | CBD | PolEmo2.0-IN\t|PolEmo2.0-OUT | DYK | PSC | AR\t| | :------ | ------: | ------: | ------: | ------: | ------: | ------: | ------: | ------: | ------: | ------: | | herbert-klej-cased-v1 | **80.5** | 92.7 | 92.5 | 91.9 | **50.3** | **89.2** |**76.3** |52.1 |95.3 | 84.5 | Full leaderboard is available [online](https://klejbenchmark.com/leaderboard). ## HerBERT usage Model training and experiments were conducted with [transformers](https://github.com/huggingface/transformers) in version 2.0. Example code: ```python from transformers import XLMTokenizer, RobertaModel tokenizer = XLMTokenizer.from_pretrained("allegro/herbert-klej-cased-tokenizer-v1") model = RobertaModel.from_pretrained("allegro/herbert-klej-cased-v1") encoded_input = tokenizer.encode("Kto ma lepszą sztukę, ma lepszy rząd – to jasne.", return_tensors='pt') outputs = model(encoded_input) ``` HerBERT can also be loaded using `AutoTokenizer` and `AutoModel`: ```python tokenizer = AutoTokenizer.from_pretrained("allegro/herbert-klej-cased-tokenizer-v1") model = AutoModel.from_pretrained("allegro/herbert-klej-cased-v1") ``` ## License CC BY-SA 4.0 ## Citation If you use this model, please cite the following paper: ``` @inproceedings{rybak-etal-2020-klej, title = "{KLEJ}: Comprehensive Benchmark for {P}olish Language Understanding", author = "Rybak, Piotr and Mroczkowski, Robert and Tracz, Janusz and Gawlik, Ireneusz", booktitle = "Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics", month = jul, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/2020.acl-main.111", doi = "10.18653/v1/2020.acl-main.111", pages = "1191--1201", } ``` ## Authors The model was trained by **Allegro Machine Learning Research** team. You can contact us at: <a href="mailto:[email protected]">[email protected]</a>
{"language": "pl"}
allegro/herbert-klej-cased-v1
null
[ "transformers", "pytorch", "jax", "roberta", "pl", "arxiv:2005.00630", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
feature-extraction
transformers
# HerBERT **[HerBERT](https://en.wikipedia.org/wiki/Zbigniew_Herbert)** is a BERT-based Language Model trained on Polish corpora using Masked Language Modelling (MLM) and Sentence Structural Objective (SSO) with dynamic masking of whole words. For more details, please refer to: [HerBERT: Efficiently Pretrained Transformer-based Language Model for Polish](https://www.aclweb.org/anthology/2021.bsnlp-1.1/). Model training and experiments were conducted with [transformers](https://github.com/huggingface/transformers) in version 2.9. ## Corpus HerBERT was trained on six different corpora available for Polish language: | Corpus | Tokens | Documents | | :------ | ------: | ------: | | [CCNet Middle](https://github.com/facebookresearch/cc_net) | 3243M | 7.9M | | [CCNet Head](https://github.com/facebookresearch/cc_net) | 2641M | 7.0M | | [National Corpus of Polish](http://nkjp.pl/index.php?page=14&lang=1)| 1357M | 3.9M | | [Open Subtitles](http://opus.nlpl.eu/OpenSubtitles-v2018.php) | 1056M | 1.1M | [Wikipedia](https://dumps.wikimedia.org/) | 260M | 1.4M | | [Wolne Lektury](https://wolnelektury.pl/) | 41M | 5.5k | ## Tokenizer The training dataset was tokenized into subwords using a character level byte-pair encoding (``CharBPETokenizer``) with a vocabulary size of 50k tokens. The tokenizer itself was trained with a [tokenizers](https://github.com/huggingface/tokenizers) library. We kindly encourage you to use the ``Fast`` version of the tokenizer, namely ``HerbertTokenizerFast``. ## Usage Example code: ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("allegro/herbert-large-cased") model = AutoModel.from_pretrained("allegro/herbert-large-cased") output = model( **tokenizer.batch_encode_plus( [ ( "A potem szedł środkiem drogi w kurzawie, bo zamiatał nogami, ślepy dziad prowadzony przez tłustego kundla na sznurku.", "A potem leciał od lasu chłopak z butelką, ale ten ujrzawszy księdza przy drodze okrążył go z dala i biegł na przełaj pól do karczmy." ) ], padding='longest', add_special_tokens=True, return_tensors='pt' ) ) ``` ## License CC BY 4.0 ## Citation If you use this model, please cite the following paper: ``` @inproceedings{mroczkowski-etal-2021-herbert, title = "{H}er{BERT}: Efficiently Pretrained Transformer-based Language Model for {P}olish", author = "Mroczkowski, Robert and Rybak, Piotr and Wr{\'o}blewska, Alina and Gawlik, Ireneusz", booktitle = "Proceedings of the 8th Workshop on Balto-Slavic Natural Language Processing", month = apr, year = "2021", address = "Kiyv, Ukraine", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/2021.bsnlp-1.1", pages = "1--10", } ``` ## Authors The model was trained by [**Machine Learning Research Team at Allegro**](https://ml.allegro.tech/) and [**Linguistic Engineering Group at Institute of Computer Science, Polish Academy of Sciences**](http://zil.ipipan.waw.pl/). You can contact us at: <a href="mailto:[email protected]">[email protected]</a>
{"language": "pl", "license": "cc-by-4.0", "tags": ["herbert"]}
allegro/herbert-large-cased
null
[ "transformers", "pytorch", "tf", "jax", "bert", "feature-extraction", "herbert", "pl", "license:cc-by-4.0", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:05+00:00
translation
transformers
# plT5 Base **plT5** models are T5-based language models trained on Polish corpora. The models were optimized for the original T5 denoising target. ## Corpus plT5 was trained on six different corpora available for Polish language: | Corpus | Tokens | Documents | | :------ | ------: | ------: | | [CCNet Middle](https://github.com/facebookresearch/cc_net) | 3243M | 7.9M | | [CCNet Head](https://github.com/facebookresearch/cc_net) | 2641M | 7.0M | | [National Corpus of Polish](http://nkjp.pl/index.php?page=14&lang=1)| 1357M | 3.9M | | [Open Subtitles](http://opus.nlpl.eu/OpenSubtitles-v2018.php) | 1056M | 1.1M | [Wikipedia](https://dumps.wikimedia.org/) | 260M | 1.4M | | [Wolne Lektury](https://wolnelektury.pl/) | 41M | 5.5k | ## Tokenizer The training dataset was tokenized into subwords using a sentencepiece unigram model with vocabulary size of 50k tokens. ## Usage Example code: ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("allegro/plt5-base") model = AutoModel.from_pretrained("allegro/plt5-base") ``` ## License CC BY 4.0 ## Citation If you use this model, please cite the following paper: ``` @article{chrabrowa2022evaluation, title={Evaluation of Transfer Learning for Polish with a Text-to-Text Model}, author={Chrabrowa, Aleksandra and Dragan, {\L}ukasz and Grzegorczyk, Karol and Kajtoch, Dariusz and Koszowski, Miko{\l}aj and Mroczkowski, Robert and Rybak, Piotr}, journal={arXiv preprint arXiv:2205.08808}, year={2022} } ``` ## Authors The model was trained by [**Machine Learning Research Team at Allegro**](https://ml.allegro.tech/) and [**Linguistic Engineering Group at Institute of Computer Science, Polish Academy of Sciences**](http://zil.ipipan.waw.pl/). You can contact us at: <a href="mailto:[email protected]">[email protected]</a>
{"language": "pl", "license": "cc-by-4.0", "tags": ["T5", "translation", "summarization", "question answering", "reading comprehension"], "datasets": ["ccnet", "nkjp", "wikipedia", "open subtitles", "free readings"]}
allegro/plt5-base
null
[ "transformers", "pytorch", "t5", "text2text-generation", "T5", "translation", "summarization", "question answering", "reading comprehension", "pl", "license:cc-by-4.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
translation
transformers
# plT5 Large **plT5** models are T5-based language models trained on Polish corpora. The models were optimized for the original T5 denoising target. ## Corpus plT5 was trained on six different corpora available for Polish language: | Corpus | Tokens | Documents | | :------ | ------: | ------: | | [CCNet Middle](https://github.com/facebookresearch/cc_net) | 3243M | 7.9M | | [CCNet Head](https://github.com/facebookresearch/cc_net) | 2641M | 7.0M | | [National Corpus of Polish](http://nkjp.pl/index.php?page=14&lang=1)| 1357M | 3.9M | | [Open Subtitles](http://opus.nlpl.eu/OpenSubtitles-v2018.php) | 1056M | 1.1M | [Wikipedia](https://dumps.wikimedia.org/) | 260M | 1.4M | | [Wolne Lektury](https://wolnelektury.pl/) | 41M | 5.5k | ## Tokenizer The training dataset was tokenized into subwords using a sentencepiece unigram model with vocabulary size of 50k tokens. ## Usage Example code: ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("allegro/plt5-large") model = AutoModel.from_pretrained("allegro/plt5-large") ``` ## License CC BY 4.0 ## Citation If you use this model, please cite the following paper: ``` @article{chrabrowa2022evaluation, title={Evaluation of Transfer Learning for Polish with a Text-to-Text Model}, author={Chrabrowa, Aleksandra and Dragan, {\L}ukasz and Grzegorczyk, Karol and Kajtoch, Dariusz and Koszowski, Miko{\l}aj and Mroczkowski, Robert and Rybak, Piotr}, journal={arXiv preprint arXiv:2205.08808}, year={2022} } ``` ## Authors The model was trained by [**Machine Learning Research Team at Allegro**](https://ml.allegro.tech/) and [**Linguistic Engineering Group at Institute of Computer Science, Polish Academy of Sciences**](http://zil.ipipan.waw.pl/). You can contact us at: <a href="mailto:[email protected]">[email protected]</a>
{"language": "pl", "license": "cc-by-4.0", "tags": ["T5", "translation", "summarization", "question answering", "reading comprehension"], "datasets": ["ccnet", "nkjp", "wikipedia", "open subtitles", "free readings"]}
allegro/plt5-large
null
[ "transformers", "pytorch", "t5", "text2text-generation", "T5", "translation", "summarization", "question answering", "reading comprehension", "pl", "license:cc-by-4.0", "autotrain_compatible", "endpoints_compatible", "has_space", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
translation
transformers
# plT5 Small **plT5** models are T5-based language models trained on Polish corpora. The models were optimized for the original T5 denoising target. ## Corpus plT5 was trained on six different corpora available for Polish language: | Corpus | Tokens | Documents | | :------ | ------: | ------: | | [CCNet Middle](https://github.com/facebookresearch/cc_net) | 3243M | 7.9M | | [CCNet Head](https://github.com/facebookresearch/cc_net) | 2641M | 7.0M | | [National Corpus of Polish](http://nkjp.pl/index.php?page=14&lang=1)| 1357M | 3.9M | | [Open Subtitles](http://opus.nlpl.eu/OpenSubtitles-v2018.php) | 1056M | 1.1M | [Wikipedia](https://dumps.wikimedia.org/) | 260M | 1.4M | | [Wolne Lektury](https://wolnelektury.pl/) | 41M | 5.5k | ## Tokenizer The training dataset was tokenized into subwords using a sentencepiece unigram model with vocabulary size of 50k tokens. ## Usage Example code: ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("allegro/plt5-small") model = AutoModel.from_pretrained("allegro/plt5-small") ``` ## License CC BY 4.0 ## Citation If you use this model, please cite the following paper: ``` @article{chrabrowa2022evaluation, title={Evaluation of Transfer Learning for Polish with a Text-to-Text Model}, author={Chrabrowa, Aleksandra and Dragan, {\L}ukasz and Grzegorczyk, Karol and Kajtoch, Dariusz and Koszowski, Miko{\l}aj and Mroczkowski, Robert and Rybak, Piotr}, journal={arXiv preprint arXiv:2205.08808}, year={2022} } ``` ## Authors The model was trained by [**Machine Learning Research Team at Allegro**](https://ml.allegro.tech/) and [**Linguistic Engineering Group at Institute of Computer Science, Polish Academy of Sciences**](http://zil.ipipan.waw.pl/). You can contact us at: <a href="mailto:[email protected]">[email protected]</a>
{"language": "pl", "license": "cc-by-4.0", "tags": ["T5", "translation", "summarization", "question answering", "reading comprehension"], "datasets": ["ccnet", "nkjp", "wikipedia", "open subtitles", "free readings"]}
allegro/plt5-small
null
[ "transformers", "pytorch", "t5", "text2text-generation", "T5", "translation", "summarization", "question answering", "reading comprehension", "pl", "license:cc-by-4.0", "autotrain_compatible", "endpoints_compatible", "has_space", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
question-answering
allennlp
This is an implementation of the BiDAF model with ELMo embeddings. The basic layout is pretty simple: encode words as a combination of word embeddings and a character-level encoder, pass the word representations through a bi-LSTM/GRU, use a matrix of attentions to put question information into the passage word representations (this is the only part that is at all non-standard), pass this through another few layers of bi-LSTMs/GRUs, and do a softmax over span start and span end. CAVEATS: ------ This model is based on ELMo. ELMo is not deterministic, meaning that you will see slight differences every time you run it. Also, ELMo likes to be warmed up, so we recommend processing dummy input before processing real workloads with it.
{"language": "en", "tags": ["allennlp", "question-answering"]}
allenai/bidaf-elmo
null
[ "allennlp", "tensorboard", "question-answering", "en", "has_space", "region:us" ]
null
2022-03-02T23:29:05+00:00
question-answering
allennlp
This is an implementation of the BiDAF model with GloVe embeddings. The basic layout is pretty simple: encode words as a combination of word embeddings and a character-level encoder, pass the word representations through a bi-LSTM/GRU, use a matrix of attentions to put question information into the passage word representations (this is the only part that is at all non-standard), pass this through another few layers of bi-LSTMs/GRUs, and do a softmax over span start and span end.
{"language": "en", "tags": ["allennlp", "question-answering"]}
allenai/bidaf
null
[ "allennlp", "tensorboard", "question-answering", "en", "has_space", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
transformers
# BioMed-RoBERTa-base BioMed-RoBERTa-base is a language model based on the RoBERTa-base (Liu et. al, 2019) architecture. We adapt RoBERTa-base to 2.68 million scientific papers from the [Semantic Scholar](https://www.semanticscholar.org) corpus via continued pretraining. This amounts to 7.55B tokens and 47GB of data. We use the full text of the papers in training, not just abstracts. Specific details of the adaptive pretraining procedure can be found in Gururangan et. al, 2020. ## Evaluation BioMed-RoBERTa achieves competitive performance to state of the art models on a number of NLP tasks in the biomedical domain (numbers are mean (standard deviation) over 3+ random seeds) | Task | Task Type | RoBERTa-base | BioMed-RoBERTa-base | |--------------|---------------------|--------------|---------------------| | RCT-180K | Text Classification | 86.4 (0.3) | 86.9 (0.2) | | ChemProt | Relation Extraction | 81.1 (1.1) | 83.0 (0.7) | | JNLPBA | NER | 74.3 (0.2) | 75.2 (0.1) | | BC5CDR | NER | 85.6 (0.1) | 87.8 (0.1) | | NCBI-Disease | NER | 86.6 (0.3) | 87.1 (0.8) | More evaluations TBD. ## Citation If using this model, please cite the following paper: ```bibtex @inproceedings{domains, author = {Suchin Gururangan and Ana Marasović and Swabha Swayamdipta and Kyle Lo and Iz Beltagy and Doug Downey and Noah A. Smith}, title = {Don't Stop Pretraining: Adapt Language Models to Domains and Tasks}, year = {2020}, booktitle = {Proceedings of ACL}, } ```
{"language": "en", "thumbnail": "https://huggingface.co/front/thumbnails/allenai.png"}
allenai/biomed_roberta_base
null
[ "transformers", "pytorch", "jax", "roberta", "en", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
transformers
{"language": "en"}
allenai/cs_roberta_base
null
[ "transformers", "pytorch", "jax", "roberta", "en", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
transformers
{"language": "en"}
allenai/dsp_roberta_base_dapt_biomed_tapt_chemprot_4169
null
[ "transformers", "pytorch", "jax", "roberta", "en", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
transformers
{"language": "en"}
allenai/dsp_roberta_base_dapt_biomed_tapt_rct_180K
null
[ "transformers", "pytorch", "jax", "roberta", "en", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
transformers
{"language": "en"}
allenai/dsp_roberta_base_dapt_biomed_tapt_rct_500
null
[ "transformers", "pytorch", "jax", "roberta", "en", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
transformers
{"language": "en"}
allenai/dsp_roberta_base_dapt_cs_tapt_citation_intent_1688
null
[ "transformers", "pytorch", "jax", "roberta", "en", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
transformers
{"language": "en"}
allenai/dsp_roberta_base_dapt_cs_tapt_sciie_3219
null
[ "transformers", "pytorch", "jax", "roberta", "en", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
transformers
{"language": "en"}
allenai/dsp_roberta_base_dapt_news_tapt_ag_115K
null
[ "transformers", "pytorch", "jax", "roberta", "en", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
transformers
{"language": "en"}
allenai/dsp_roberta_base_dapt_news_tapt_hyperpartisan_news_5015
null
[ "transformers", "pytorch", "jax", "roberta", "en", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
transformers
{"language": "en"}
allenai/dsp_roberta_base_dapt_news_tapt_hyperpartisan_news_515
null
[ "transformers", "pytorch", "jax", "roberta", "en", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
transformers
{"language": "en"}
allenai/dsp_roberta_base_dapt_reviews_tapt_amazon_helpfulness_115K
null
[ "transformers", "pytorch", "jax", "roberta", "en", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
transformers
{"language": "en"}
allenai/dsp_roberta_base_dapt_reviews_tapt_imdb_20000
null
[ "transformers", "pytorch", "jax", "roberta", "en", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
transformers
{"language": "en"}
allenai/dsp_roberta_base_dapt_reviews_tapt_imdb_70000
null
[ "transformers", "pytorch", "jax", "roberta", "en", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
transformers
{"language": "en"}
allenai/dsp_roberta_base_tapt_ag_115K
null
[ "transformers", "pytorch", "jax", "roberta", "en", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
transformers
{"language": "en"}
allenai/dsp_roberta_base_tapt_amazon_helpfulness_115K
null
[ "transformers", "pytorch", "jax", "roberta", "en", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
transformers
{"language": "en"}
allenai/dsp_roberta_base_tapt_chemprot_4169
null
[ "transformers", "pytorch", "jax", "roberta", "en", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
transformers
{"language": "en"}
allenai/dsp_roberta_base_tapt_citation_intent_1688
null
[ "transformers", "pytorch", "jax", "roberta", "en", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
transformers
{"language": "en"}
allenai/dsp_roberta_base_tapt_hyperpartisan_news_5015
null
[ "transformers", "pytorch", "jax", "roberta", "en", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
transformers
{"language": "en"}
allenai/dsp_roberta_base_tapt_hyperpartisan_news_515
null
[ "transformers", "pytorch", "jax", "roberta", "en", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
transformers
{"language": "en"}
allenai/dsp_roberta_base_tapt_imdb_20000
null
[ "transformers", "pytorch", "jax", "roberta", "en", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
transformers
{"language": "en"}
allenai/dsp_roberta_base_tapt_imdb_70000
null
[ "transformers", "pytorch", "jax", "roberta", "en", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
transformers
{"language": "en"}
allenai/dsp_roberta_base_tapt_rct_180K
null
[ "transformers", "pytorch", "jax", "roberta", "en", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
transformers
{"language": "en"}
allenai/dsp_roberta_base_tapt_rct_500
null
[ "transformers", "pytorch", "jax", "roberta", "en", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00