id
stringlengths 14
16
| text
stringlengths 31
2.41k
| source
stringlengths 53
121
|
---|---|---|
8f8a718d1904-0
|
Source code for langchain.tools.openweathermap.tool
"""Tool for the OpenWeatherMap API."""
from typing import Optional
from pydantic import Field
from langchain.callbacks.manager import (
AsyncCallbackManagerForToolRun,
CallbackManagerForToolRun,
)
from langchain.tools.base import BaseTool
from langchain.utilities import OpenWeatherMapAPIWrapper
[docs]class OpenWeatherMapQueryRun(BaseTool):
"""Tool that adds the capability to query using the OpenWeatherMap API."""
api_wrapper: OpenWeatherMapAPIWrapper = Field(
default_factory=OpenWeatherMapAPIWrapper
)
name = "OpenWeatherMap"
description = (
"A wrapper around OpenWeatherMap API. "
"Useful for fetching current weather information for a specified location. "
"Input should be a location string (e.g. London,GB)."
)
def _run(
self, location: str, run_manager: Optional[CallbackManagerForToolRun] = None
) -> str:
"""Use the OpenWeatherMap tool."""
return self.api_wrapper.run(location)
async def _arun(
self,
location: str,
run_manager: Optional[AsyncCallbackManagerForToolRun] = None,
) -> str:
"""Use the OpenWeatherMap tool asynchronously."""
raise NotImplementedError("OpenWeatherMapQueryRun does not support async")
|
https://api.python.langchain.com/en/latest/_modules/langchain/tools/openweathermap/tool.html
|
f27c34fd1341-0
|
Source code for langchain.tools.graphql.tool
import json
from typing import Optional
from langchain.callbacks.manager import (
AsyncCallbackManagerForToolRun,
CallbackManagerForToolRun,
)
from langchain.tools.base import BaseTool
from langchain.utilities.graphql import GraphQLAPIWrapper
[docs]class BaseGraphQLTool(BaseTool):
"""Base tool for querying a GraphQL API."""
graphql_wrapper: GraphQLAPIWrapper
name = "query_graphql"
description = """\
Input to this tool is a detailed and correct GraphQL query, output is a result from the API.
If the query is not correct, an error message will be returned.
If an error is returned with 'Bad request' in it, rewrite the query and try again.
If an error is returned with 'Unauthorized' in it, do not try again, but tell the user to change their authentication.
Example Input: query {{ allUsers {{ id, name, email }} }}\
""" # noqa: E501
class Config:
"""Configuration for this pydantic object."""
arbitrary_types_allowed = True
def _run(
self,
tool_input: str,
run_manager: Optional[CallbackManagerForToolRun] = None,
) -> str:
result = self.graphql_wrapper.run(tool_input)
return json.dumps(result, indent=2)
async def _arun(
self,
tool_input: str,
run_manager: Optional[AsyncCallbackManagerForToolRun] = None,
) -> str:
"""Use the Graphql tool asynchronously."""
raise NotImplementedError("GraphQLAPIWrapper does not support async")
|
https://api.python.langchain.com/en/latest/_modules/langchain/tools/graphql/tool.html
|
4099e67fc724-0
|
Source code for langchain.tools.arxiv.tool
"""Tool for the Arxiv API."""
from typing import Optional
from pydantic import Field
from langchain.callbacks.manager import (
AsyncCallbackManagerForToolRun,
CallbackManagerForToolRun,
)
from langchain.tools.base import BaseTool
from langchain.utilities.arxiv import ArxivAPIWrapper
[docs]class ArxivQueryRun(BaseTool):
"""Tool that adds the capability to search using the Arxiv API."""
name = "arxiv"
description = (
"A wrapper around Arxiv.org "
"Useful for when you need to answer questions about Physics, Mathematics, "
"Computer Science, Quantitative Biology, Quantitative Finance, Statistics, "
"Electrical Engineering, and Economics "
"from scientific articles on arxiv.org. "
"Input should be a search query."
)
api_wrapper: ArxivAPIWrapper = Field(default_factory=ArxivAPIWrapper)
def _run(
self,
query: str,
run_manager: Optional[CallbackManagerForToolRun] = None,
) -> str:
"""Use the Arxiv tool."""
return self.api_wrapper.run(query)
async def _arun(
self,
query: str,
run_manager: Optional[AsyncCallbackManagerForToolRun] = None,
) -> str:
"""Use the Arxiv tool asynchronously."""
raise NotImplementedError("ArxivAPIWrapper does not support async")
|
https://api.python.langchain.com/en/latest/_modules/langchain/tools/arxiv/tool.html
|
6a771d29225f-0
|
Source code for langchain.tools.wikipedia.tool
"""Tool for the Wikipedia API."""
from typing import Optional
from langchain.callbacks.manager import (
AsyncCallbackManagerForToolRun,
CallbackManagerForToolRun,
)
from langchain.tools.base import BaseTool
from langchain.utilities.wikipedia import WikipediaAPIWrapper
[docs]class WikipediaQueryRun(BaseTool):
"""Tool that adds the capability to search using the Wikipedia API."""
name = "Wikipedia"
description = (
"A wrapper around Wikipedia. "
"Useful for when you need to answer general questions about "
"people, places, companies, facts, historical events, or other subjects. "
"Input should be a search query."
)
api_wrapper: WikipediaAPIWrapper
def _run(
self,
query: str,
run_manager: Optional[CallbackManagerForToolRun] = None,
) -> str:
"""Use the Wikipedia tool."""
return self.api_wrapper.run(query)
async def _arun(
self,
query: str,
run_manager: Optional[AsyncCallbackManagerForToolRun] = None,
) -> str:
"""Use the Wikipedia tool asynchronously."""
raise NotImplementedError("WikipediaQueryRun does not support async")
|
https://api.python.langchain.com/en/latest/_modules/langchain/tools/wikipedia/tool.html
|
9dba8c36caeb-0
|
Source code for langchain.tools.openapi.utils.api_models
"""Pydantic models for parsing an OpenAPI spec."""
import logging
from enum import Enum
from typing import Any, Dict, List, Optional, Sequence, Tuple, Type, Union
from openapi_schema_pydantic import MediaType, Parameter, Reference, RequestBody, Schema
from pydantic import BaseModel, Field
from langchain.tools.openapi.utils.openapi_utils import HTTPVerb, OpenAPISpec
logger = logging.getLogger(__name__)
PRIMITIVE_TYPES = {
"integer": int,
"number": float,
"string": str,
"boolean": bool,
"array": List,
"object": Dict,
"null": None,
}
# See https://github.com/OAI/OpenAPI-Specification/blob/main/versions/3.1.0.md#parameterIn
# for more info.
class APIPropertyLocation(Enum):
"""The location of the property."""
QUERY = "query"
PATH = "path"
HEADER = "header"
COOKIE = "cookie" # Not yet supported
@classmethod
def from_str(cls, location: str) -> "APIPropertyLocation":
"""Parse an APIPropertyLocation."""
try:
return cls(location)
except ValueError:
raise ValueError(
f"Invalid APIPropertyLocation. Valid values are {cls.__members__}"
)
_SUPPORTED_MEDIA_TYPES = ("application/json",)
SUPPORTED_LOCATIONS = {
APIPropertyLocation.QUERY,
APIPropertyLocation.PATH,
}
INVALID_LOCATION_TEMPL = (
'Unsupported APIPropertyLocation "{location}"'
" for parameter {name}. "
+ f"Valid values are {[loc.value for loc in SUPPORTED_LOCATIONS]}"
)
|
https://api.python.langchain.com/en/latest/_modules/langchain/tools/openapi/utils/api_models.html
|
9dba8c36caeb-1
|
)
SCHEMA_TYPE = Union[str, Type, tuple, None, Enum]
class APIPropertyBase(BaseModel):
"""Base model for an API property."""
# The name of the parameter is required and is case-sensitive.
# If "in" is "path", the "name" field must correspond to a template expression
# within the path field in the Paths Object.
# If "in" is "header" and the "name" field is "Accept", "Content-Type",
# or "Authorization", the parameter definition is ignored.
# For all other cases, the "name" corresponds to the parameter
# name used by the "in" property.
name: str = Field(alias="name")
"""The name of the property."""
required: bool = Field(alias="required")
"""Whether the property is required."""
type: SCHEMA_TYPE = Field(alias="type")
"""The type of the property.
Either a primitive type, a component/parameter type,
or an array or 'object' (dict) of the above."""
default: Optional[Any] = Field(alias="default", default=None)
"""The default value of the property."""
description: Optional[str] = Field(alias="description", default=None)
"""The description of the property."""
class APIProperty(APIPropertyBase):
"""A model for a property in the query, path, header, or cookie params."""
location: APIPropertyLocation = Field(alias="location")
"""The path/how it's being passed to the endpoint."""
@staticmethod
def _cast_schema_list_type(schema: Schema) -> Optional[Union[str, Tuple[str, ...]]]:
type_ = schema.type
if not isinstance(type_, list):
return type_
|
https://api.python.langchain.com/en/latest/_modules/langchain/tools/openapi/utils/api_models.html
|
9dba8c36caeb-2
|
if not isinstance(type_, list):
return type_
else:
return tuple(type_)
@staticmethod
def _get_schema_type_for_enum(parameter: Parameter, schema: Schema) -> Enum:
"""Get the schema type when the parameter is an enum."""
param_name = f"{parameter.name}Enum"
return Enum(param_name, {str(v): v for v in schema.enum})
@staticmethod
def _get_schema_type_for_array(
schema: Schema,
) -> Optional[Union[str, Tuple[str, ...]]]:
items = schema.items
if isinstance(items, Schema):
schema_type = APIProperty._cast_schema_list_type(items)
elif isinstance(items, Reference):
ref_name = items.ref.split("/")[-1]
schema_type = ref_name # TODO: Add ref definitions to make his valid
else:
raise ValueError(f"Unsupported array items: {items}")
if isinstance(schema_type, str):
# TODO: recurse
schema_type = (schema_type,)
return schema_type
@staticmethod
def _get_schema_type(parameter: Parameter, schema: Optional[Schema]) -> SCHEMA_TYPE:
if schema is None:
return None
schema_type: SCHEMA_TYPE = APIProperty._cast_schema_list_type(schema)
if schema_type == "array":
schema_type = APIProperty._get_schema_type_for_array(schema)
elif schema_type == "object":
# TODO: Resolve array and object types to components.
raise NotImplementedError("Objects not yet supported")
elif schema_type in PRIMITIVE_TYPES:
if schema.enum:
schema_type = APIProperty._get_schema_type_for_enum(parameter, schema)
else:
# Directly use the primitive type
pass
|
https://api.python.langchain.com/en/latest/_modules/langchain/tools/openapi/utils/api_models.html
|
9dba8c36caeb-3
|
else:
# Directly use the primitive type
pass
else:
raise NotImplementedError(f"Unsupported type: {schema_type}")
return schema_type
@staticmethod
def _validate_location(location: APIPropertyLocation, name: str) -> None:
if location not in SUPPORTED_LOCATIONS:
raise NotImplementedError(
INVALID_LOCATION_TEMPL.format(location=location, name=name)
)
@staticmethod
def _validate_content(content: Optional[Dict[str, MediaType]]) -> None:
if content:
raise ValueError(
"API Properties with media content not supported. "
"Media content only supported within APIRequestBodyProperty's"
)
@staticmethod
def _get_schema(parameter: Parameter, spec: OpenAPISpec) -> Optional[Schema]:
schema = parameter.param_schema
if isinstance(schema, Reference):
schema = spec.get_referenced_schema(schema)
elif schema is None:
return None
elif not isinstance(schema, Schema):
raise ValueError(f"Error dereferencing schema: {schema}")
return schema
@staticmethod
def is_supported_location(location: str) -> bool:
"""Return whether the provided location is supported."""
try:
return APIPropertyLocation.from_str(location) in SUPPORTED_LOCATIONS
except ValueError:
return False
@classmethod
def from_parameter(cls, parameter: Parameter, spec: OpenAPISpec) -> "APIProperty":
"""Instantiate from an OpenAPI Parameter."""
location = APIPropertyLocation.from_str(parameter.param_in)
cls._validate_location(
location,
parameter.name,
)
cls._validate_content(parameter.content)
schema = cls._get_schema(parameter, spec)
|
https://api.python.langchain.com/en/latest/_modules/langchain/tools/openapi/utils/api_models.html
|
9dba8c36caeb-4
|
schema = cls._get_schema(parameter, spec)
schema_type = cls._get_schema_type(parameter, schema)
default_val = schema.default if schema is not None else None
return cls(
name=parameter.name,
location=location,
default=default_val,
description=parameter.description,
required=parameter.required,
type=schema_type,
)
class APIRequestBodyProperty(APIPropertyBase):
"""A model for a request body property."""
properties: List["APIRequestBodyProperty"] = Field(alias="properties")
"""The sub-properties of the property."""
# This is useful for handling nested property cycles.
# We can define separate types in that case.
references_used: List[str] = Field(alias="references_used")
"""The references used by the property."""
@classmethod
def _process_object_schema(
cls, schema: Schema, spec: OpenAPISpec, references_used: List[str]
) -> Tuple[Union[str, List[str], None], List["APIRequestBodyProperty"]]:
properties = []
required_props = schema.required or []
if schema.properties is None:
raise ValueError(
f"No properties found when processing object schema: {schema}"
)
for prop_name, prop_schema in schema.properties.items():
if isinstance(prop_schema, Reference):
ref_name = prop_schema.ref.split("/")[-1]
if ref_name not in references_used:
references_used.append(ref_name)
prop_schema = spec.get_referenced_schema(prop_schema)
else:
continue
properties.append(
cls.from_schema(
schema=prop_schema,
name=prop_name,
required=prop_name in required_props,
spec=spec,
|
https://api.python.langchain.com/en/latest/_modules/langchain/tools/openapi/utils/api_models.html
|
9dba8c36caeb-5
|
required=prop_name in required_props,
spec=spec,
references_used=references_used,
)
)
return schema.type, properties
@classmethod
def _process_array_schema(
cls, schema: Schema, name: str, spec: OpenAPISpec, references_used: List[str]
) -> str:
items = schema.items
if items is not None:
if isinstance(items, Reference):
ref_name = items.ref.split("/")[-1]
if ref_name not in references_used:
references_used.append(ref_name)
items = spec.get_referenced_schema(items)
else:
pass
return f"Array<{ref_name}>"
else:
pass
if isinstance(items, Schema):
array_type = cls.from_schema(
schema=items,
name=f"{name}Item",
required=True, # TODO: Add required
spec=spec,
references_used=references_used,
)
return f"Array<{array_type.type}>"
return "array"
@classmethod
def from_schema(
cls,
schema: Schema,
name: str,
required: bool,
spec: OpenAPISpec,
references_used: Optional[List[str]] = None,
) -> "APIRequestBodyProperty":
"""Recursively populate from an OpenAPI Schema."""
if references_used is None:
references_used = []
schema_type = schema.type
properties: List[APIRequestBodyProperty] = []
if schema_type == "object" and schema.properties:
schema_type, properties = cls._process_object_schema(
schema, spec, references_used
)
elif schema_type == "array":
|
https://api.python.langchain.com/en/latest/_modules/langchain/tools/openapi/utils/api_models.html
|
9dba8c36caeb-6
|
schema, spec, references_used
)
elif schema_type == "array":
schema_type = cls._process_array_schema(schema, name, spec, references_used)
elif schema_type in PRIMITIVE_TYPES:
# Use the primitive type directly
pass
elif schema_type is None:
# No typing specified/parsed. WIll map to 'any'
pass
else:
raise ValueError(f"Unsupported type: {schema_type}")
return cls(
name=name,
required=required,
type=schema_type,
default=schema.default,
description=schema.description,
properties=properties,
references_used=references_used,
)
class APIRequestBody(BaseModel):
"""A model for a request body."""
description: Optional[str] = Field(alias="description")
"""The description of the request body."""
properties: List[APIRequestBodyProperty] = Field(alias="properties")
# E.g., application/json - we only support JSON at the moment.
media_type: str = Field(alias="media_type")
"""The media type of the request body."""
@classmethod
def _process_supported_media_type(
cls,
media_type_obj: MediaType,
spec: OpenAPISpec,
) -> List[APIRequestBodyProperty]:
"""Process the media type of the request body."""
references_used = []
schema = media_type_obj.media_type_schema
if isinstance(schema, Reference):
references_used.append(schema.ref.split("/")[-1])
schema = spec.get_referenced_schema(schema)
if schema is None:
raise ValueError(
f"Could not resolve schema for media type: {media_type_obj}"
)
api_request_body_properties = []
|
https://api.python.langchain.com/en/latest/_modules/langchain/tools/openapi/utils/api_models.html
|
9dba8c36caeb-7
|
)
api_request_body_properties = []
required_properties = schema.required or []
if schema.type == "object" and schema.properties:
for prop_name, prop_schema in schema.properties.items():
if isinstance(prop_schema, Reference):
prop_schema = spec.get_referenced_schema(prop_schema)
api_request_body_properties.append(
APIRequestBodyProperty.from_schema(
schema=prop_schema,
name=prop_name,
required=prop_name in required_properties,
spec=spec,
)
)
else:
api_request_body_properties.append(
APIRequestBodyProperty(
name="body",
required=True,
type=schema.type,
default=schema.default,
description=schema.description,
properties=[],
references_used=references_used,
)
)
return api_request_body_properties
@classmethod
def from_request_body(
cls, request_body: RequestBody, spec: OpenAPISpec
) -> "APIRequestBody":
"""Instantiate from an OpenAPI RequestBody."""
properties = []
for media_type, media_type_obj in request_body.content.items():
if media_type not in _SUPPORTED_MEDIA_TYPES:
continue
api_request_body_properties = cls._process_supported_media_type(
media_type_obj,
spec,
)
properties.extend(api_request_body_properties)
return cls(
description=request_body.description,
properties=properties,
media_type=media_type,
)
[docs]class APIOperation(BaseModel):
"""A model for a single API operation."""
operation_id: str = Field(alias="operation_id")
"""The unique identifier of the operation."""
description: Optional[str] = Field(alias="description")
|
https://api.python.langchain.com/en/latest/_modules/langchain/tools/openapi/utils/api_models.html
|
9dba8c36caeb-8
|
description: Optional[str] = Field(alias="description")
"""The description of the operation."""
base_url: str = Field(alias="base_url")
"""The base URL of the operation."""
path: str = Field(alias="path")
"""The path of the operation."""
method: HTTPVerb = Field(alias="method")
"""The HTTP method of the operation."""
properties: Sequence[APIProperty] = Field(alias="properties")
# TODO: Add parse in used components to be able to specify what type of
# referenced object it is.
# """The properties of the operation."""
# components: Dict[str, BaseModel] = Field(alias="components")
request_body: Optional[APIRequestBody] = Field(alias="request_body")
"""The request body of the operation."""
@staticmethod
def _get_properties_from_parameters(
parameters: List[Parameter], spec: OpenAPISpec
) -> List[APIProperty]:
"""Get the properties of the operation."""
properties = []
for param in parameters:
if APIProperty.is_supported_location(param.param_in):
properties.append(APIProperty.from_parameter(param, spec))
elif param.required:
raise ValueError(
INVALID_LOCATION_TEMPL.format(
location=param.param_in, name=param.name
)
)
else:
logger.warning(
INVALID_LOCATION_TEMPL.format(
location=param.param_in, name=param.name
)
+ " Ignoring optional parameter"
)
pass
return properties
[docs] @classmethod
def from_openapi_url(
cls,
spec_url: str,
path: str,
method: str,
) -> "APIOperation":
|
https://api.python.langchain.com/en/latest/_modules/langchain/tools/openapi/utils/api_models.html
|
9dba8c36caeb-9
|
path: str,
method: str,
) -> "APIOperation":
"""Create an APIOperation from an OpenAPI URL."""
spec = OpenAPISpec.from_url(spec_url)
return cls.from_openapi_spec(spec, path, method)
[docs] @classmethod
def from_openapi_spec(
cls,
spec: OpenAPISpec,
path: str,
method: str,
) -> "APIOperation":
"""Create an APIOperation from an OpenAPI spec."""
operation = spec.get_operation(path, method)
parameters = spec.get_parameters_for_operation(operation)
properties = cls._get_properties_from_parameters(parameters, spec)
operation_id = OpenAPISpec.get_cleaned_operation_id(operation, path, method)
request_body = spec.get_request_body_for_operation(operation)
api_request_body = (
APIRequestBody.from_request_body(request_body, spec)
if request_body is not None
else None
)
description = operation.description or operation.summary
if not description and spec.paths is not None:
description = spec.paths[path].description or spec.paths[path].summary
return cls(
operation_id=operation_id,
description=description,
base_url=spec.base_url,
path=path,
method=method,
properties=properties,
request_body=api_request_body,
)
[docs] @staticmethod
def ts_type_from_python(type_: SCHEMA_TYPE) -> str:
if type_ is None:
# TODO: Handle Nones better. These often result when
# parsing specs that are < v3
return "any"
elif isinstance(type_, str):
return {
"str": "string",
|
https://api.python.langchain.com/en/latest/_modules/langchain/tools/openapi/utils/api_models.html
|
9dba8c36caeb-10
|
elif isinstance(type_, str):
return {
"str": "string",
"integer": "number",
"float": "number",
"date-time": "string",
}.get(type_, type_)
elif isinstance(type_, tuple):
return f"Array<{APIOperation.ts_type_from_python(type_[0])}>"
elif isinstance(type_, type) and issubclass(type_, Enum):
return " | ".join([f"'{e.value}'" for e in type_])
else:
return str(type_)
def _format_nested_properties(
self, properties: List[APIRequestBodyProperty], indent: int = 2
) -> str:
"""Format nested properties."""
formatted_props = []
for prop in properties:
prop_name = prop.name
prop_type = self.ts_type_from_python(prop.type)
prop_required = "" if prop.required else "?"
prop_desc = f"/* {prop.description} */" if prop.description else ""
if prop.properties:
nested_props = self._format_nested_properties(
prop.properties, indent + 2
)
prop_type = f"{{\n{nested_props}\n{' ' * indent}}}"
formatted_props.append(
f"{prop_desc}\n{' ' * indent}{prop_name}{prop_required}: {prop_type},"
)
return "\n".join(formatted_props)
[docs] def to_typescript(self) -> str:
"""Get typescript string representation of the operation."""
operation_name = self.operation_id
params = []
if self.request_body:
formatted_request_body_props = self._format_nested_properties(
self.request_body.properties
)
params.append(formatted_request_body_props)
|
https://api.python.langchain.com/en/latest/_modules/langchain/tools/openapi/utils/api_models.html
|
9dba8c36caeb-11
|
self.request_body.properties
)
params.append(formatted_request_body_props)
for prop in self.properties:
prop_name = prop.name
prop_type = self.ts_type_from_python(prop.type)
prop_required = "" if prop.required else "?"
prop_desc = f"/* {prop.description} */" if prop.description else ""
params.append(f"{prop_desc}\n\t\t{prop_name}{prop_required}: {prop_type},")
formatted_params = "\n".join(params).strip()
description_str = f"/* {self.description} */" if self.description else ""
typescript_definition = f"""
{description_str}
type {operation_name} = (_: {{
{formatted_params}
}}) => any;
"""
return typescript_definition.strip()
@property
def query_params(self) -> List[str]:
return [
property.name
for property in self.properties
if property.location == APIPropertyLocation.QUERY
]
@property
def path_params(self) -> List[str]:
return [
property.name
for property in self.properties
if property.location == APIPropertyLocation.PATH
]
@property
def body_params(self) -> List[str]:
if self.request_body is None:
return []
return [prop.name for prop in self.request_body.properties]
|
https://api.python.langchain.com/en/latest/_modules/langchain/tools/openapi/utils/api_models.html
|
ec8797a8ecce-0
|
Source code for langchain.tools.pubmed.tool
"""Tool for the Pubmed API."""
from typing import Optional
from pydantic import Field
from langchain.callbacks.manager import (
AsyncCallbackManagerForToolRun,
CallbackManagerForToolRun,
)
from langchain.tools.base import BaseTool
from langchain.utilities.pupmed import PubMedAPIWrapper
[docs]class PubmedQueryRun(BaseTool):
"""Tool that adds the capability to search using the PubMed API."""
name = "PubMed"
description = (
"A wrapper around PubMed.org "
"Useful for when you need to answer questions about Physics, Mathematics, "
"Computer Science, Quantitative Biology, Quantitative Finance, Statistics, "
"Electrical Engineering, and Economics "
"from scientific articles on PubMed.org. "
"Input should be a search query."
)
api_wrapper: PubMedAPIWrapper = Field(default_factory=PubMedAPIWrapper)
def _run(
self,
query: str,
run_manager: Optional[CallbackManagerForToolRun] = None,
) -> str:
"""Use the Arxiv tool."""
return self.api_wrapper.run(query)
async def _arun(
self,
query: str,
run_manager: Optional[AsyncCallbackManagerForToolRun] = None,
) -> str:
"""Use the PubMed tool asynchronously."""
raise NotImplementedError("PubMedAPIWrapper does not support async")
|
https://api.python.langchain.com/en/latest/_modules/langchain/tools/pubmed/tool.html
|
341dd27b40ea-0
|
Source code for langchain.tools.metaphor_search.tool
"""Tool for the Metaphor search API."""
from typing import Dict, List, Optional, Union
from langchain.callbacks.manager import (
AsyncCallbackManagerForToolRun,
CallbackManagerForToolRun,
)
from langchain.tools.base import BaseTool
from langchain.utilities.metaphor_search import MetaphorSearchAPIWrapper
[docs]class MetaphorSearchResults(BaseTool):
"""Tool that has capability to query the Metaphor Search API and get back json."""
name = "metaphor_search_results_json"
description = (
"A wrapper around Metaphor Search. "
"Input should be a Metaphor-optimized query. "
"Output is a JSON array of the query results"
)
api_wrapper: MetaphorSearchAPIWrapper
def _run(
self,
query: str,
num_results: int,
include_domains: Optional[List[str]] = None,
exclude_domains: Optional[List[str]] = None,
start_crawl_date: Optional[str] = None,
end_crawl_date: Optional[str] = None,
start_published_date: Optional[str] = None,
end_published_date: Optional[str] = None,
run_manager: Optional[CallbackManagerForToolRun] = None,
) -> Union[List[Dict], str]:
"""Use the tool."""
try:
return self.api_wrapper.results(
query,
num_results,
include_domains,
exclude_domains,
start_crawl_date,
end_crawl_date,
start_published_date,
end_published_date,
)
except Exception as e:
return repr(e)
async def _arun(
|
https://api.python.langchain.com/en/latest/_modules/langchain/tools/metaphor_search/tool.html
|
341dd27b40ea-1
|
return repr(e)
async def _arun(
self,
query: str,
num_results: int,
include_domains: Optional[List[str]] = None,
exclude_domains: Optional[List[str]] = None,
start_crawl_date: Optional[str] = None,
end_crawl_date: Optional[str] = None,
start_published_date: Optional[str] = None,
end_published_date: Optional[str] = None,
run_manager: Optional[AsyncCallbackManagerForToolRun] = None,
) -> Union[List[Dict], str]:
"""Use the tool asynchronously."""
try:
return await self.api_wrapper.results_async(
query,
num_results,
include_domains,
exclude_domains,
start_crawl_date,
end_crawl_date,
start_published_date,
end_published_date,
)
except Exception as e:
return repr(e)
|
https://api.python.langchain.com/en/latest/_modules/langchain/tools/metaphor_search/tool.html
|
a4c83eecbeb6-0
|
Source code for langchain.tools.interaction.tool
"""Tools for interacting with the user."""
import warnings
from typing import Any
from langchain.tools.human.tool import HumanInputRun
[docs]def StdInInquireTool(*args: Any, **kwargs: Any) -> HumanInputRun:
"""Tool for asking the user for input."""
warnings.warn(
"StdInInquireTool will be deprecated in the future. "
"Please use HumanInputRun instead.",
DeprecationWarning,
)
return HumanInputRun(*args, **kwargs)
|
https://api.python.langchain.com/en/latest/_modules/langchain/tools/interaction/tool.html
|
d4f291e60be5-0
|
Source code for langchain.tools.python.tool
"""A tool for running python code in a REPL."""
import ast
import re
import sys
from contextlib import redirect_stdout
from io import StringIO
from typing import Any, Dict, Optional
from pydantic import Field, root_validator
from langchain.callbacks.manager import (
AsyncCallbackManagerForToolRun,
CallbackManagerForToolRun,
)
from langchain.tools.base import BaseTool
from langchain.utilities import PythonREPL
def _get_default_python_repl() -> PythonREPL:
return PythonREPL(_globals=globals(), _locals=None)
def sanitize_input(query: str) -> str:
"""Sanitize input to the python REPL.
Remove whitespace, backtick & python (if llm mistakes python console as terminal)
Args:
query: The query to sanitize
Returns:
str: The sanitized query
"""
# Removes `, whitespace & python from start
query = re.sub(r"^(\s|`)*(?i:python)?\s*", "", query)
# Removes whitespace & ` from end
query = re.sub(r"(\s|`)*$", "", query)
return query
[docs]class PythonREPLTool(BaseTool):
"""A tool for running python code in a REPL."""
name = "Python_REPL"
description = (
"A Python shell. Use this to execute python commands. "
"Input should be a valid python command. "
"If you want to see the output of a value, you should print it out "
"with `print(...)`."
)
python_repl: PythonREPL = Field(default_factory=_get_default_python_repl)
sanitize_input: bool = True
def _run(
self,
|
https://api.python.langchain.com/en/latest/_modules/langchain/tools/python/tool.html
|
d4f291e60be5-1
|
sanitize_input: bool = True
def _run(
self,
query: str,
run_manager: Optional[CallbackManagerForToolRun] = None,
) -> Any:
"""Use the tool."""
if self.sanitize_input:
query = sanitize_input(query)
return self.python_repl.run(query)
async def _arun(
self,
query: str,
run_manager: Optional[AsyncCallbackManagerForToolRun] = None,
) -> Any:
"""Use the tool asynchronously."""
raise NotImplementedError("PythonReplTool does not support async")
[docs]class PythonAstREPLTool(BaseTool):
"""A tool for running python code in a REPL."""
name = "python_repl_ast"
description = (
"A Python shell. Use this to execute python commands. "
"Input should be a valid python command. "
"When using this tool, sometimes output is abbreviated - "
"make sure it does not look abbreviated before using it in your answer."
)
globals: Optional[Dict] = Field(default_factory=dict)
locals: Optional[Dict] = Field(default_factory=dict)
sanitize_input: bool = True
@root_validator(pre=True)
def validate_python_version(cls, values: Dict) -> Dict:
"""Validate valid python version."""
if sys.version_info < (3, 9):
raise ValueError(
"This tool relies on Python 3.9 or higher "
"(as it uses new functionality in the `ast` module, "
f"you have Python version: {sys.version}"
)
return values
def _run(
self,
query: str,
|
https://api.python.langchain.com/en/latest/_modules/langchain/tools/python/tool.html
|
d4f291e60be5-2
|
return values
def _run(
self,
query: str,
run_manager: Optional[CallbackManagerForToolRun] = None,
) -> str:
"""Use the tool."""
try:
if self.sanitize_input:
query = sanitize_input(query)
tree = ast.parse(query)
module = ast.Module(tree.body[:-1], type_ignores=[])
exec(ast.unparse(module), self.globals, self.locals) # type: ignore
module_end = ast.Module(tree.body[-1:], type_ignores=[])
module_end_str = ast.unparse(module_end) # type: ignore
io_buffer = StringIO()
try:
with redirect_stdout(io_buffer):
ret = eval(module_end_str, self.globals, self.locals)
if ret is None:
return io_buffer.getvalue()
else:
return ret
except Exception:
with redirect_stdout(io_buffer):
exec(module_end_str, self.globals, self.locals)
return io_buffer.getvalue()
except Exception as e:
return "{}: {}".format(type(e).__name__, str(e))
async def _arun(
self,
query: str,
run_manager: Optional[AsyncCallbackManagerForToolRun] = None,
) -> str:
"""Use the tool asynchronously."""
raise NotImplementedError("PythonReplTool does not support async")
|
https://api.python.langchain.com/en/latest/_modules/langchain/tools/python/tool.html
|
016b187289fd-0
|
Source code for langchain.tools.searx_search.tool
"""Tool for the SearxNG search API."""
from typing import Optional
from pydantic import Extra
from langchain.callbacks.manager import (
AsyncCallbackManagerForToolRun,
CallbackManagerForToolRun,
)
from langchain.tools.base import BaseTool, Field
from langchain.utilities.searx_search import SearxSearchWrapper
[docs]class SearxSearchRun(BaseTool):
"""Tool that adds the capability to query a Searx instance."""
name = "searx_search"
description = (
"A meta search engine."
"Useful for when you need to answer questions about current events."
"Input should be a search query."
)
wrapper: SearxSearchWrapper
kwargs: dict = Field(default_factory=dict)
def _run(
self,
query: str,
run_manager: Optional[CallbackManagerForToolRun] = None,
) -> str:
"""Use the tool."""
return self.wrapper.run(query, **self.kwargs)
async def _arun(
self,
query: str,
run_manager: Optional[AsyncCallbackManagerForToolRun] = None,
) -> str:
"""Use the tool asynchronously."""
return await self.wrapper.arun(query, **self.kwargs)
[docs]class SearxSearchResults(BaseTool):
"""Tool that has the capability to query a Searx instance and get back json."""
name = "Searx Search Results"
description = (
"A meta search engine."
"Useful for when you need to answer questions about current events."
|
https://api.python.langchain.com/en/latest/_modules/langchain/tools/searx_search/tool.html
|
016b187289fd-1
|
"Useful for when you need to answer questions about current events."
"Input should be a search query. Output is a JSON array of the query results"
)
wrapper: SearxSearchWrapper
num_results: int = 4
kwargs: dict = Field(default_factory=dict)
class Config:
"""Pydantic config."""
extra = Extra.allow
def _run(
self,
query: str,
run_manager: Optional[CallbackManagerForToolRun] = None,
) -> str:
"""Use the tool."""
return str(self.wrapper.results(query, self.num_results, **self.kwargs))
async def _arun(
self,
query: str,
run_manager: Optional[AsyncCallbackManagerForToolRun] = None,
) -> str:
"""Use the tool asynchronously."""
return (
await self.wrapper.aresults(query, self.num_results, **self.kwargs)
).__str__()
|
https://api.python.langchain.com/en/latest/_modules/langchain/tools/searx_search/tool.html
|
ae69f669e2ad-0
|
Source code for langchain.tools.scenexplain.tool
"""Tool for the SceneXplain API."""
from typing import Optional
from pydantic import BaseModel, Field
from langchain.callbacks.manager import (
AsyncCallbackManagerForToolRun,
CallbackManagerForToolRun,
)
from langchain.tools.base import BaseTool
from langchain.utilities.scenexplain import SceneXplainAPIWrapper
class SceneXplainInput(BaseModel):
"""Input for SceneXplain."""
query: str = Field(..., description="The link to the image to explain")
[docs]class SceneXplainTool(BaseTool):
"""Tool that adds the capability to explain images."""
name = "image_explainer"
description = (
"An Image Captioning Tool: Use this tool to generate a detailed caption "
"for an image. The input can be an image file of any format, and "
"the output will be a text description that covers every detail of the image."
)
api_wrapper: SceneXplainAPIWrapper = Field(default_factory=SceneXplainAPIWrapper)
def _run(
self, query: str, run_manager: Optional[CallbackManagerForToolRun] = None
) -> str:
"""Use the tool."""
return self.api_wrapper.run(query)
async def _arun(
self, query: str, run_manager: Optional[AsyncCallbackManagerForToolRun] = None
) -> str:
"""Use the tool asynchronously."""
raise NotImplementedError("SceneXplainTool does not support async")
|
https://api.python.langchain.com/en/latest/_modules/langchain/tools/scenexplain/tool.html
|
5726b3ad188f-0
|
Source code for langchain.tools.bing_search.tool
"""Tool for the Bing search API."""
from typing import Optional
from langchain.callbacks.manager import (
AsyncCallbackManagerForToolRun,
CallbackManagerForToolRun,
)
from langchain.tools.base import BaseTool
from langchain.utilities.bing_search import BingSearchAPIWrapper
[docs]class BingSearchRun(BaseTool):
"""Tool that adds the capability to query the Bing search API."""
name = "bing_search"
description = (
"A wrapper around Bing Search. "
"Useful for when you need to answer questions about current events. "
"Input should be a search query."
)
api_wrapper: BingSearchAPIWrapper
def _run(
self,
query: str,
run_manager: Optional[CallbackManagerForToolRun] = None,
) -> str:
"""Use the tool."""
return self.api_wrapper.run(query)
async def _arun(
self,
query: str,
run_manager: Optional[AsyncCallbackManagerForToolRun] = None,
) -> str:
"""Use the tool asynchronously."""
raise NotImplementedError("BingSearchRun does not support async")
[docs]class BingSearchResults(BaseTool):
"""Tool that has capability to query the Bing Search API and get back json."""
name = "Bing Search Results JSON"
description = (
"A wrapper around Bing Search. "
"Useful for when you need to answer questions about current events. "
"Input should be a search query. Output is a JSON array of the query results"
)
num_results: int = 4
api_wrapper: BingSearchAPIWrapper
def _run(
self,
|
https://api.python.langchain.com/en/latest/_modules/langchain/tools/bing_search/tool.html
|
5726b3ad188f-1
|
api_wrapper: BingSearchAPIWrapper
def _run(
self,
query: str,
run_manager: Optional[CallbackManagerForToolRun] = None,
) -> str:
"""Use the tool."""
return str(self.api_wrapper.results(query, self.num_results))
async def _arun(
self,
query: str,
run_manager: Optional[AsyncCallbackManagerForToolRun] = None,
) -> str:
"""Use the tool asynchronously."""
raise NotImplementedError("BingSearchResults does not support async")
|
https://api.python.langchain.com/en/latest/_modules/langchain/tools/bing_search/tool.html
|
a179fb5ee5e8-0
|
Source code for langchain.tools.sql_database.tool
# flake8: noqa
"""Tools for interacting with a SQL database."""
from typing import Any, Dict, Optional
from pydantic import BaseModel, Extra, Field, root_validator
from langchain.base_language import BaseLanguageModel
from langchain.callbacks.manager import (
AsyncCallbackManagerForToolRun,
CallbackManagerForToolRun,
)
from langchain.chains.llm import LLMChain
from langchain.prompts import PromptTemplate
from langchain.sql_database import SQLDatabase
from langchain.tools.base import BaseTool
from langchain.tools.sql_database.prompt import QUERY_CHECKER
[docs]class BaseSQLDatabaseTool(BaseModel):
"""Base tool for interacting with a SQL database."""
db: SQLDatabase = Field(exclude=True)
# Override BaseTool.Config to appease mypy
# See https://github.com/pydantic/pydantic/issues/4173
class Config(BaseTool.Config):
"""Configuration for this pydantic object."""
arbitrary_types_allowed = True
extra = Extra.forbid
[docs]class QuerySQLDataBaseTool(BaseSQLDatabaseTool, BaseTool):
"""Tool for querying a SQL database."""
name = "sql_db_query"
description = """
Input to this tool is a detailed and correct SQL query, output is a result from the database.
If the query is not correct, an error message will be returned.
If an error is returned, rewrite the query, check the query, and try again.
"""
def _run(
self,
query: str,
run_manager: Optional[CallbackManagerForToolRun] = None,
) -> str:
"""Execute the query, return the results or an error message."""
return self.db.run_no_throw(query)
|
https://api.python.langchain.com/en/latest/_modules/langchain/tools/sql_database/tool.html
|
a179fb5ee5e8-1
|
return self.db.run_no_throw(query)
async def _arun(
self,
query: str,
run_manager: Optional[AsyncCallbackManagerForToolRun] = None,
) -> str:
raise NotImplementedError("QuerySqlDbTool does not support async")
[docs]class InfoSQLDatabaseTool(BaseSQLDatabaseTool, BaseTool):
"""Tool for getting metadata about a SQL database."""
name = "sql_db_schema"
description = """
Input to this tool is a comma-separated list of tables, output is the schema and sample rows for those tables.
Example Input: "table1, table2, table3"
"""
def _run(
self,
table_names: str,
run_manager: Optional[CallbackManagerForToolRun] = None,
) -> str:
"""Get the schema for tables in a comma-separated list."""
return self.db.get_table_info_no_throw(table_names.split(", "))
async def _arun(
self,
table_name: str,
run_manager: Optional[AsyncCallbackManagerForToolRun] = None,
) -> str:
raise NotImplementedError("SchemaSqlDbTool does not support async")
[docs]class ListSQLDatabaseTool(BaseSQLDatabaseTool, BaseTool):
"""Tool for getting tables names."""
name = "sql_db_list_tables"
description = "Input is an empty string, output is a comma separated list of tables in the database."
def _run(
self,
tool_input: str = "",
run_manager: Optional[CallbackManagerForToolRun] = None,
) -> str:
"""Get the schema for a specific table."""
return ", ".join(self.db.get_usable_table_names())
|
https://api.python.langchain.com/en/latest/_modules/langchain/tools/sql_database/tool.html
|
a179fb5ee5e8-2
|
return ", ".join(self.db.get_usable_table_names())
async def _arun(
self,
tool_input: str = "",
run_manager: Optional[AsyncCallbackManagerForToolRun] = None,
) -> str:
raise NotImplementedError("ListTablesSqlDbTool does not support async")
[docs]class QuerySQLCheckerTool(BaseSQLDatabaseTool, BaseTool):
"""Use an LLM to check if a query is correct.
Adapted from https://www.patterns.app/blog/2023/01/18/crunchbot-sql-analyst-gpt/"""
template: str = QUERY_CHECKER
llm: BaseLanguageModel
llm_chain: LLMChain = Field(init=False)
name = "sql_db_query_checker"
description = """
Use this tool to double check if your query is correct before executing it.
Always use this tool before executing a query with query_sql_db!
"""
@root_validator(pre=True)
def initialize_llm_chain(cls, values: Dict[str, Any]) -> Dict[str, Any]:
if "llm_chain" not in values:
values["llm_chain"] = LLMChain(
llm=values.get("llm"),
prompt=PromptTemplate(
template=QUERY_CHECKER, input_variables=["query", "dialect"]
),
)
if values["llm_chain"].prompt.input_variables != ["query", "dialect"]:
raise ValueError(
"LLM chain for QueryCheckerTool must have input variables ['query', 'dialect']"
)
return values
def _run(
self,
query: str,
run_manager: Optional[CallbackManagerForToolRun] = None,
|
https://api.python.langchain.com/en/latest/_modules/langchain/tools/sql_database/tool.html
|
a179fb5ee5e8-3
|
run_manager: Optional[CallbackManagerForToolRun] = None,
) -> str:
"""Use the LLM to check the query."""
return self.llm_chain.predict(query=query, dialect=self.db.dialect)
async def _arun(
self,
query: str,
run_manager: Optional[AsyncCallbackManagerForToolRun] = None,
) -> str:
return await self.llm_chain.apredict(query=query, dialect=self.db.dialect)
|
https://api.python.langchain.com/en/latest/_modules/langchain/tools/sql_database/tool.html
|
d281e987621f-0
|
Source code for langchain.tools.brave_search.tool
from __future__ import annotations
from typing import Any, Optional
from langchain.callbacks.manager import (
AsyncCallbackManagerForToolRun,
CallbackManagerForToolRun,
)
from langchain.tools.base import BaseTool
from langchain.utilities.brave_search import BraveSearchWrapper
[docs]class BraveSearch(BaseTool):
name = "brave_search"
description = (
"a search engine. "
"useful for when you need to answer questions about current events."
" input should be a search query."
)
search_wrapper: BraveSearchWrapper
[docs] @classmethod
def from_api_key(
cls, api_key: str, search_kwargs: Optional[dict] = None, **kwargs: Any
) -> BraveSearch:
wrapper = BraveSearchWrapper(api_key=api_key, search_kwargs=search_kwargs or {})
return cls(search_wrapper=wrapper, **kwargs)
def _run(
self,
query: str,
run_manager: Optional[CallbackManagerForToolRun] = None,
) -> str:
"""Use the tool."""
return self.search_wrapper.run(query)
async def _arun(
self,
query: str,
run_manager: Optional[AsyncCallbackManagerForToolRun] = None,
) -> str:
"""Use the tool asynchronously."""
raise NotImplementedError("BraveSearch does not support async")
|
https://api.python.langchain.com/en/latest/_modules/langchain/tools/brave_search/tool.html
|
d0c51df4c3e9-0
|
Source code for langchain.tools.powerbi.tool
"""Tools for interacting with a Power BI dataset."""
import logging
from time import perf_counter
from typing import Any, Dict, Optional, Tuple
from pydantic import Field, validator
from langchain.callbacks.manager import (
AsyncCallbackManagerForToolRun,
CallbackManagerForToolRun,
)
from langchain.chains.llm import LLMChain
from langchain.tools.base import BaseTool
from langchain.tools.powerbi.prompt import (
BAD_REQUEST_RESPONSE,
DEFAULT_FEWSHOT_EXAMPLES,
QUESTION_TO_QUERY,
RETRY_RESPONSE,
)
from langchain.utilities.powerbi import PowerBIDataset, json_to_md
logger = logging.getLogger(__name__)
[docs]class QueryPowerBITool(BaseTool):
"""Tool for querying a Power BI Dataset."""
name = "query_powerbi"
description = """
Input to this tool is a detailed question about the dataset, output is a result from the dataset. It will try to answer the question using the dataset, and if it cannot, it will ask for clarification.
Example Input: "How many rows are in table1?"
""" # noqa: E501
llm_chain: LLMChain
powerbi: PowerBIDataset = Field(exclude=True)
template: Optional[str] = QUESTION_TO_QUERY
examples: Optional[str] = DEFAULT_FEWSHOT_EXAMPLES
session_cache: Dict[str, Any] = Field(default_factory=dict, exclude=True)
max_iterations: int = 5
class Config:
"""Configuration for this pydantic object."""
arbitrary_types_allowed = True
@validator("llm_chain")
def validate_llm_chain_input_variables( # pylint: disable=E0213
|
https://api.python.langchain.com/en/latest/_modules/langchain/tools/powerbi/tool.html
|
d0c51df4c3e9-1
|
def validate_llm_chain_input_variables( # pylint: disable=E0213
cls, llm_chain: LLMChain
) -> LLMChain:
"""Make sure the LLM chain has the correct input variables."""
if llm_chain.prompt.input_variables != [
"tool_input",
"tables",
"schemas",
"examples",
]:
raise ValueError(
"LLM chain for QueryPowerBITool must have input variables ['tool_input', 'tables', 'schemas', 'examples'], found %s", # noqa: C0301 E501 # pylint: disable=C0301
llm_chain.prompt.input_variables,
)
return llm_chain
def _check_cache(self, tool_input: str) -> Optional[str]:
"""Check if the input is present in the cache.
If the value is a bad request, overwrite with the escalated version,
if not present return None."""
if tool_input not in self.session_cache:
return None
return self.session_cache[tool_input]
def _run(
self,
tool_input: str,
run_manager: Optional[CallbackManagerForToolRun] = None,
**kwargs: Any,
) -> str:
"""Execute the query, return the results or an error message."""
if cache := self._check_cache(tool_input):
logger.debug("Found cached result for %s: %s", tool_input, cache)
return cache
try:
logger.info("Running PBI Query Tool with input: %s", tool_input)
query = self.llm_chain.predict(
tool_input=tool_input,
tables=self.powerbi.get_table_names(),
schemas=self.powerbi.get_schemas(),
|
https://api.python.langchain.com/en/latest/_modules/langchain/tools/powerbi/tool.html
|
d0c51df4c3e9-2
|
tables=self.powerbi.get_table_names(),
schemas=self.powerbi.get_schemas(),
examples=self.examples,
)
except Exception as exc: # pylint: disable=broad-except
self.session_cache[tool_input] = f"Error on call to LLM: {exc}"
return self.session_cache[tool_input]
if query == "I cannot answer this":
self.session_cache[tool_input] = query
return self.session_cache[tool_input]
logger.info("PBI Query: %s", query)
start_time = perf_counter()
pbi_result = self.powerbi.run(command=query)
end_time = perf_counter()
logger.debug("PBI Result: %s", pbi_result)
logger.debug(f"PBI Query duration: {end_time - start_time:0.6f}")
result, error = self._parse_output(pbi_result)
if error is not None and "TokenExpired" in error:
self.session_cache[
tool_input
] = "Authentication token expired or invalid, please try reauthenticate."
return self.session_cache[tool_input]
iterations = kwargs.get("iterations", 0)
if error and iterations < self.max_iterations:
return self._run(
tool_input=RETRY_RESPONSE.format(
tool_input=tool_input, query=query, error=error
),
run_manager=run_manager,
iterations=iterations + 1,
)
self.session_cache[tool_input] = (
result if result else BAD_REQUEST_RESPONSE.format(error=error)
)
return self.session_cache[tool_input]
async def _arun(
self,
tool_input: str,
|
https://api.python.langchain.com/en/latest/_modules/langchain/tools/powerbi/tool.html
|
d0c51df4c3e9-3
|
async def _arun(
self,
tool_input: str,
run_manager: Optional[AsyncCallbackManagerForToolRun] = None,
**kwargs: Any,
) -> str:
"""Execute the query, return the results or an error message."""
if cache := self._check_cache(tool_input):
logger.debug("Found cached result for %s: %s", tool_input, cache)
return cache
try:
logger.info("Running PBI Query Tool with input: %s", tool_input)
query = await self.llm_chain.apredict(
tool_input=tool_input,
tables=self.powerbi.get_table_names(),
schemas=self.powerbi.get_schemas(),
examples=self.examples,
)
except Exception as exc: # pylint: disable=broad-except
self.session_cache[tool_input] = f"Error on call to LLM: {exc}"
return self.session_cache[tool_input]
if query == "I cannot answer this":
self.session_cache[tool_input] = query
return self.session_cache[tool_input]
logger.info("PBI Query: %s", query)
start_time = perf_counter()
pbi_result = await self.powerbi.arun(command=query)
end_time = perf_counter()
logger.debug("PBI Result: %s", pbi_result)
logger.debug(f"PBI Query duration: {end_time - start_time:0.6f}")
result, error = self._parse_output(pbi_result)
if error is not None and "TokenExpired" in error:
self.session_cache[
tool_input
] = "Authentication token expired or invalid, please try reauthenticate."
return self.session_cache[tool_input]
|
https://api.python.langchain.com/en/latest/_modules/langchain/tools/powerbi/tool.html
|
d0c51df4c3e9-4
|
return self.session_cache[tool_input]
iterations = kwargs.get("iterations", 0)
if error and iterations < self.max_iterations:
return await self._arun(
tool_input=RETRY_RESPONSE.format(
tool_input=tool_input, query=query, error=error
),
run_manager=run_manager,
iterations=iterations + 1,
)
self.session_cache[tool_input] = (
result if result else BAD_REQUEST_RESPONSE.format(error=error)
)
return self.session_cache[tool_input]
def _parse_output(
self, pbi_result: Dict[str, Any]
) -> Tuple[Optional[str], Optional[str]]:
"""Parse the output of the query to a markdown table."""
if "results" in pbi_result:
return json_to_md(pbi_result["results"][0]["tables"][0]["rows"]), None
if "error" in pbi_result:
if (
"pbi.error" in pbi_result["error"]
and "details" in pbi_result["error"]["pbi.error"]
):
return None, pbi_result["error"]["pbi.error"]["details"][0]["detail"]
return None, pbi_result["error"]
return None, "Unknown error"
[docs]class InfoPowerBITool(BaseTool):
"""Tool for getting metadata about a PowerBI Dataset."""
name = "schema_powerbi"
description = """
Input to this tool is a comma-separated list of tables, output is the schema and sample rows for those tables.
Be sure that the tables actually exist by calling list_tables_powerbi first!
Example Input: "table1, table2, table3"
|
https://api.python.langchain.com/en/latest/_modules/langchain/tools/powerbi/tool.html
|
d0c51df4c3e9-5
|
Example Input: "table1, table2, table3"
""" # noqa: E501
powerbi: PowerBIDataset = Field(exclude=True)
class Config:
"""Configuration for this pydantic object."""
arbitrary_types_allowed = True
def _run(
self,
tool_input: str,
run_manager: Optional[CallbackManagerForToolRun] = None,
) -> str:
"""Get the schema for tables in a comma-separated list."""
return self.powerbi.get_table_info(tool_input.split(", "))
async def _arun(
self,
tool_input: str,
run_manager: Optional[AsyncCallbackManagerForToolRun] = None,
) -> str:
return await self.powerbi.aget_table_info(tool_input.split(", "))
[docs]class ListPowerBITool(BaseTool):
"""Tool for getting tables names."""
name = "list_tables_powerbi"
description = "Input is an empty string, output is a comma separated list of tables in the database." # noqa: E501 # pylint: disable=C0301
powerbi: PowerBIDataset = Field(exclude=True)
class Config:
"""Configuration for this pydantic object."""
arbitrary_types_allowed = True
def _run(
self,
tool_input: Optional[str] = None,
run_manager: Optional[CallbackManagerForToolRun] = None,
) -> str:
"""Get the names of the tables."""
return ", ".join(self.powerbi.get_table_names())
async def _arun(
self,
tool_input: Optional[str] = None,
run_manager: Optional[AsyncCallbackManagerForToolRun] = None,
|
https://api.python.langchain.com/en/latest/_modules/langchain/tools/powerbi/tool.html
|
d0c51df4c3e9-6
|
run_manager: Optional[AsyncCallbackManagerForToolRun] = None,
) -> str:
"""Get the names of the tables."""
return ", ".join(self.powerbi.get_table_names())
|
https://api.python.langchain.com/en/latest/_modules/langchain/tools/powerbi/tool.html
|
91c862aa2326-0
|
Source code for langchain.tools.spark_sql.tool
# flake8: noqa
"""Tools for interacting with Spark SQL."""
from typing import Any, Dict, Optional
from pydantic import BaseModel, Extra, Field, root_validator
from langchain.base_language import BaseLanguageModel
from langchain.callbacks.manager import (
AsyncCallbackManagerForToolRun,
CallbackManagerForToolRun,
)
from langchain.chains.llm import LLMChain
from langchain.prompts import PromptTemplate
from langchain.utilities.spark_sql import SparkSQL
from langchain.tools.base import BaseTool
from langchain.tools.spark_sql.prompt import QUERY_CHECKER
[docs]class BaseSparkSQLTool(BaseModel):
"""Base tool for interacting with Spark SQL."""
db: SparkSQL = Field(exclude=True)
# Override BaseTool.Config to appease mypy
# See https://github.com/pydantic/pydantic/issues/4173
class Config(BaseTool.Config):
"""Configuration for this pydantic object."""
arbitrary_types_allowed = True
extra = Extra.forbid
[docs]class QuerySparkSQLTool(BaseSparkSQLTool, BaseTool):
"""Tool for querying a Spark SQL."""
name = "query_sql_db"
description = """
Input to this tool is a detailed and correct SQL query, output is a result from the Spark SQL.
If the query is not correct, an error message will be returned.
If an error is returned, rewrite the query, check the query, and try again.
"""
def _run(
self,
query: str,
run_manager: Optional[CallbackManagerForToolRun] = None,
) -> str:
"""Execute the query, return the results or an error message."""
return self.db.run_no_throw(query)
|
https://api.python.langchain.com/en/latest/_modules/langchain/tools/spark_sql/tool.html
|
91c862aa2326-1
|
return self.db.run_no_throw(query)
async def _arun(
self,
query: str,
run_manager: Optional[AsyncCallbackManagerForToolRun] = None,
) -> str:
raise NotImplementedError("QuerySqlDbTool does not support async")
[docs]class InfoSparkSQLTool(BaseSparkSQLTool, BaseTool):
"""Tool for getting metadata about a Spark SQL."""
name = "schema_sql_db"
description = """
Input to this tool is a comma-separated list of tables, output is the schema and sample rows for those tables.
Be sure that the tables actually exist by calling list_tables_sql_db first!
Example Input: "table1, table2, table3"
"""
def _run(
self,
table_names: str,
run_manager: Optional[CallbackManagerForToolRun] = None,
) -> str:
"""Get the schema for tables in a comma-separated list."""
return self.db.get_table_info_no_throw(table_names.split(", "))
async def _arun(
self,
table_name: str,
run_manager: Optional[AsyncCallbackManagerForToolRun] = None,
) -> str:
raise NotImplementedError("SchemaSqlDbTool does not support async")
[docs]class ListSparkSQLTool(BaseSparkSQLTool, BaseTool):
"""Tool for getting tables names."""
name = "list_tables_sql_db"
description = "Input is an empty string, output is a comma separated list of tables in the Spark SQL."
def _run(
self,
tool_input: str = "",
run_manager: Optional[CallbackManagerForToolRun] = None,
) -> str:
|
https://api.python.langchain.com/en/latest/_modules/langchain/tools/spark_sql/tool.html
|
91c862aa2326-2
|
) -> str:
"""Get the schema for a specific table."""
return ", ".join(self.db.get_usable_table_names())
async def _arun(
self,
tool_input: str = "",
run_manager: Optional[AsyncCallbackManagerForToolRun] = None,
) -> str:
raise NotImplementedError("ListTablesSqlDbTool does not support async")
[docs]class QueryCheckerTool(BaseSparkSQLTool, BaseTool):
"""Use an LLM to check if a query is correct.
Adapted from https://www.patterns.app/blog/2023/01/18/crunchbot-sql-analyst-gpt/"""
template: str = QUERY_CHECKER
llm: BaseLanguageModel
llm_chain: LLMChain = Field(init=False)
name = "query_checker_sql_db"
description = """
Use this tool to double check if your query is correct before executing it.
Always use this tool before executing a query with query_sql_db!
"""
@root_validator(pre=True)
def initialize_llm_chain(cls, values: Dict[str, Any]) -> Dict[str, Any]:
if "llm_chain" not in values:
values["llm_chain"] = LLMChain(
llm=values.get("llm"),
prompt=PromptTemplate(
template=QUERY_CHECKER, input_variables=["query"]
),
)
if values["llm_chain"].prompt.input_variables != ["query"]:
raise ValueError(
"LLM chain for QueryCheckerTool need to use ['query'] as input_variables "
"for the embedded prompt"
)
return values
def _run(
self,
query: str,
|
https://api.python.langchain.com/en/latest/_modules/langchain/tools/spark_sql/tool.html
|
91c862aa2326-3
|
return values
def _run(
self,
query: str,
run_manager: Optional[CallbackManagerForToolRun] = None,
) -> str:
"""Use the LLM to check the query."""
return self.llm_chain.predict(query=query)
async def _arun(
self,
query: str,
run_manager: Optional[AsyncCallbackManagerForToolRun] = None,
) -> str:
return await self.llm_chain.apredict(query=query)
|
https://api.python.langchain.com/en/latest/_modules/langchain/tools/spark_sql/tool.html
|
6a0f849e66b4-0
|
Source code for langchain.tools.google_places.tool
"""Tool for the Google search API."""
from typing import Optional, Type
from pydantic import BaseModel, Field
from langchain.callbacks.manager import (
AsyncCallbackManagerForToolRun,
CallbackManagerForToolRun,
)
from langchain.tools.base import BaseTool
from langchain.utilities.google_places_api import GooglePlacesAPIWrapper
class GooglePlacesSchema(BaseModel):
query: str = Field(..., description="Query for google maps")
[docs]class GooglePlacesTool(BaseTool):
"""Tool that adds the capability to query the Google places API."""
name = "google_places"
description = (
"A wrapper around Google Places. "
"Useful for when you need to validate or "
"discover addressed from ambiguous text. "
"Input should be a search query."
)
api_wrapper: GooglePlacesAPIWrapper = Field(default_factory=GooglePlacesAPIWrapper)
args_schema: Type[BaseModel] = GooglePlacesSchema
def _run(
self,
query: str,
run_manager: Optional[CallbackManagerForToolRun] = None,
) -> str:
"""Use the tool."""
return self.api_wrapper.run(query)
async def _arun(
self,
query: str,
run_manager: Optional[AsyncCallbackManagerForToolRun] = None,
) -> str:
"""Use the tool asynchronously."""
raise NotImplementedError("GooglePlacesRun does not support async")
|
https://api.python.langchain.com/en/latest/_modules/langchain/tools/google_places/tool.html
|
49fa793e7a3a-0
|
Source code for langchain.tools.azure_cognitive_services.image_analysis
from __future__ import annotations
import logging
from typing import Any, Dict, Optional
from pydantic import root_validator
from langchain.callbacks.manager import (
AsyncCallbackManagerForToolRun,
CallbackManagerForToolRun,
)
from langchain.tools.azure_cognitive_services.utils import detect_file_src_type
from langchain.tools.base import BaseTool
from langchain.utils import get_from_dict_or_env
logger = logging.getLogger(__name__)
[docs]class AzureCogsImageAnalysisTool(BaseTool):
"""Tool that queries the Azure Cognitive Services Image Analysis API.
In order to set this up, follow instructions at:
https://learn.microsoft.com/en-us/azure/cognitive-services/computer-vision/quickstarts-sdk/image-analysis-client-library-40
"""
azure_cogs_key: str = "" #: :meta private:
azure_cogs_endpoint: str = "" #: :meta private:
vision_service: Any #: :meta private:
analysis_options: Any #: :meta private:
name = "azure_cognitive_services_image_analysis"
description = (
"A wrapper around Azure Cognitive Services Image Analysis. "
"Useful for when you need to analyze images. "
"Input should be a url to an image."
)
@root_validator(pre=True)
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that api key and endpoint exists in environment."""
azure_cogs_key = get_from_dict_or_env(
values, "azure_cogs_key", "AZURE_COGS_KEY"
)
azure_cogs_endpoint = get_from_dict_or_env(
values, "azure_cogs_endpoint", "AZURE_COGS_ENDPOINT"
)
|
https://api.python.langchain.com/en/latest/_modules/langchain/tools/azure_cognitive_services/image_analysis.html
|
49fa793e7a3a-1
|
)
try:
import azure.ai.vision as sdk
values["vision_service"] = sdk.VisionServiceOptions(
endpoint=azure_cogs_endpoint, key=azure_cogs_key
)
values["analysis_options"] = sdk.ImageAnalysisOptions()
values["analysis_options"].features = (
sdk.ImageAnalysisFeature.CAPTION
| sdk.ImageAnalysisFeature.OBJECTS
| sdk.ImageAnalysisFeature.TAGS
| sdk.ImageAnalysisFeature.TEXT
)
except ImportError:
raise ImportError(
"azure-ai-vision is not installed. "
"Run `pip install azure-ai-vision` to install."
)
return values
def _image_analysis(self, image_path: str) -> Dict:
try:
import azure.ai.vision as sdk
except ImportError:
pass
image_src_type = detect_file_src_type(image_path)
if image_src_type == "local":
vision_source = sdk.VisionSource(filename=image_path)
elif image_src_type == "remote":
vision_source = sdk.VisionSource(url=image_path)
else:
raise ValueError(f"Invalid image path: {image_path}")
image_analyzer = sdk.ImageAnalyzer(
self.vision_service, vision_source, self.analysis_options
)
result = image_analyzer.analyze()
res_dict = {}
if result.reason == sdk.ImageAnalysisResultReason.ANALYZED:
if result.caption is not None:
res_dict["caption"] = result.caption.content
if result.objects is not None:
res_dict["objects"] = [obj.name for obj in result.objects]
if result.tags is not None:
res_dict["tags"] = [tag.name for tag in result.tags]
|
https://api.python.langchain.com/en/latest/_modules/langchain/tools/azure_cognitive_services/image_analysis.html
|
49fa793e7a3a-2
|
res_dict["tags"] = [tag.name for tag in result.tags]
if result.text is not None:
res_dict["text"] = [line.content for line in result.text.lines]
else:
error_details = sdk.ImageAnalysisErrorDetails.from_result(result)
raise RuntimeError(
f"Image analysis failed.\n"
f"Reason: {error_details.reason}\n"
f"Details: {error_details.message}"
)
return res_dict
def _format_image_analysis_result(self, image_analysis_result: Dict) -> str:
formatted_result = []
if "caption" in image_analysis_result:
formatted_result.append("Caption: " + image_analysis_result["caption"])
if (
"objects" in image_analysis_result
and len(image_analysis_result["objects"]) > 0
):
formatted_result.append(
"Objects: " + ", ".join(image_analysis_result["objects"])
)
if "tags" in image_analysis_result and len(image_analysis_result["tags"]) > 0:
formatted_result.append("Tags: " + ", ".join(image_analysis_result["tags"]))
if "text" in image_analysis_result and len(image_analysis_result["text"]) > 0:
formatted_result.append("Text: " + ", ".join(image_analysis_result["text"]))
return "\n".join(formatted_result)
def _run(
self,
query: str,
run_manager: Optional[CallbackManagerForToolRun] = None,
) -> str:
"""Use the tool."""
try:
image_analysis_result = self._image_analysis(query)
if not image_analysis_result:
return "No good image analysis result was found"
|
https://api.python.langchain.com/en/latest/_modules/langchain/tools/azure_cognitive_services/image_analysis.html
|
49fa793e7a3a-3
|
if not image_analysis_result:
return "No good image analysis result was found"
return self._format_image_analysis_result(image_analysis_result)
except Exception as e:
raise RuntimeError(f"Error while running AzureCogsImageAnalysisTool: {e}")
async def _arun(
self,
query: str,
run_manager: Optional[AsyncCallbackManagerForToolRun] = None,
) -> str:
"""Use the tool asynchronously."""
raise NotImplementedError("AzureCogsImageAnalysisTool does not support async")
|
https://api.python.langchain.com/en/latest/_modules/langchain/tools/azure_cognitive_services/image_analysis.html
|
f38499f95516-0
|
Source code for langchain.tools.azure_cognitive_services.text2speech
from __future__ import annotations
import logging
import tempfile
from typing import Any, Dict, Optional
from pydantic import root_validator
from langchain.callbacks.manager import (
AsyncCallbackManagerForToolRun,
CallbackManagerForToolRun,
)
from langchain.tools.base import BaseTool
from langchain.utils import get_from_dict_or_env
logger = logging.getLogger(__name__)
[docs]class AzureCogsText2SpeechTool(BaseTool):
"""Tool that queries the Azure Cognitive Services Text2Speech API.
In order to set this up, follow instructions at:
https://learn.microsoft.com/en-us/azure/cognitive-services/speech-service/get-started-text-to-speech?pivots=programming-language-python
"""
azure_cogs_key: str = "" #: :meta private:
azure_cogs_region: str = "" #: :meta private:
speech_language: str = "en-US" #: :meta private:
speech_config: Any #: :meta private:
name = "azure_cognitive_services_text2speech"
description = (
"A wrapper around Azure Cognitive Services Text2Speech. "
"Useful for when you need to convert text to speech. "
)
@root_validator(pre=True)
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that api key and endpoint exists in environment."""
azure_cogs_key = get_from_dict_or_env(
values, "azure_cogs_key", "AZURE_COGS_KEY"
)
azure_cogs_region = get_from_dict_or_env(
values, "azure_cogs_region", "AZURE_COGS_REGION"
)
try:
|
https://api.python.langchain.com/en/latest/_modules/langchain/tools/azure_cognitive_services/text2speech.html
|
f38499f95516-1
|
)
try:
import azure.cognitiveservices.speech as speechsdk
values["speech_config"] = speechsdk.SpeechConfig(
subscription=azure_cogs_key, region=azure_cogs_region
)
except ImportError:
raise ImportError(
"azure-cognitiveservices-speech is not installed. "
"Run `pip install azure-cognitiveservices-speech` to install."
)
return values
def _text2speech(self, text: str, speech_language: str) -> str:
try:
import azure.cognitiveservices.speech as speechsdk
except ImportError:
pass
self.speech_config.speech_synthesis_language = speech_language
speech_synthesizer = speechsdk.SpeechSynthesizer(
speech_config=self.speech_config, audio_config=None
)
result = speech_synthesizer.speak_text(text)
if result.reason == speechsdk.ResultReason.SynthesizingAudioCompleted:
stream = speechsdk.AudioDataStream(result)
with tempfile.NamedTemporaryFile(
mode="wb", suffix=".wav", delete=False
) as f:
stream.save_to_wav_file(f.name)
return f.name
elif result.reason == speechsdk.ResultReason.Canceled:
cancellation_details = result.cancellation_details
logger.debug(f"Speech synthesis canceled: {cancellation_details.reason}")
if cancellation_details.reason == speechsdk.CancellationReason.Error:
raise RuntimeError(
f"Speech synthesis error: {cancellation_details.error_details}"
)
return "Speech synthesis canceled."
else:
return f"Speech synthesis failed: {result.reason}"
def _run(
self,
query: str,
|
https://api.python.langchain.com/en/latest/_modules/langchain/tools/azure_cognitive_services/text2speech.html
|
f38499f95516-2
|
def _run(
self,
query: str,
run_manager: Optional[CallbackManagerForToolRun] = None,
) -> str:
"""Use the tool."""
try:
speech_file = self._text2speech(query, self.speech_language)
return speech_file
except Exception as e:
raise RuntimeError(f"Error while running AzureCogsText2SpeechTool: {e}")
async def _arun(
self,
query: str,
run_manager: Optional[AsyncCallbackManagerForToolRun] = None,
) -> str:
"""Use the tool asynchronously."""
raise NotImplementedError("AzureCogsText2SpeechTool does not support async")
|
https://api.python.langchain.com/en/latest/_modules/langchain/tools/azure_cognitive_services/text2speech.html
|
72e035188d42-0
|
Source code for langchain.tools.azure_cognitive_services.form_recognizer
from __future__ import annotations
import logging
from typing import Any, Dict, List, Optional
from pydantic import root_validator
from langchain.callbacks.manager import (
AsyncCallbackManagerForToolRun,
CallbackManagerForToolRun,
)
from langchain.tools.azure_cognitive_services.utils import detect_file_src_type
from langchain.tools.base import BaseTool
from langchain.utils import get_from_dict_or_env
logger = logging.getLogger(__name__)
[docs]class AzureCogsFormRecognizerTool(BaseTool):
"""Tool that queries the Azure Cognitive Services Form Recognizer API.
In order to set this up, follow instructions at:
https://learn.microsoft.com/en-us/azure/applied-ai-services/form-recognizer/quickstarts/get-started-sdks-rest-api?view=form-recog-3.0.0&pivots=programming-language-python
"""
azure_cogs_key: str = "" #: :meta private:
azure_cogs_endpoint: str = "" #: :meta private:
doc_analysis_client: Any #: :meta private:
name = "azure_cognitive_services_form_recognizer"
description = (
"A wrapper around Azure Cognitive Services Form Recognizer. "
"Useful for when you need to "
"extract text, tables, and key-value pairs from documents. "
"Input should be a url to a document."
)
@root_validator(pre=True)
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that api key and endpoint exists in environment."""
azure_cogs_key = get_from_dict_or_env(
values, "azure_cogs_key", "AZURE_COGS_KEY"
)
|
https://api.python.langchain.com/en/latest/_modules/langchain/tools/azure_cognitive_services/form_recognizer.html
|
72e035188d42-1
|
)
azure_cogs_endpoint = get_from_dict_or_env(
values, "azure_cogs_endpoint", "AZURE_COGS_ENDPOINT"
)
try:
from azure.ai.formrecognizer import DocumentAnalysisClient
from azure.core.credentials import AzureKeyCredential
values["doc_analysis_client"] = DocumentAnalysisClient(
endpoint=azure_cogs_endpoint,
credential=AzureKeyCredential(azure_cogs_key),
)
except ImportError:
raise ImportError(
"azure-ai-formrecognizer is not installed. "
"Run `pip install azure-ai-formrecognizer` to install."
)
return values
def _parse_tables(self, tables: List[Any]) -> List[Any]:
result = []
for table in tables:
rc, cc = table.row_count, table.column_count
_table = [["" for _ in range(cc)] for _ in range(rc)]
for cell in table.cells:
_table[cell.row_index][cell.column_index] = cell.content
result.append(_table)
return result
def _parse_kv_pairs(self, kv_pairs: List[Any]) -> List[Any]:
result = []
for kv_pair in kv_pairs:
key = kv_pair.key.content if kv_pair.key else ""
value = kv_pair.value.content if kv_pair.value else ""
result.append((key, value))
return result
def _document_analysis(self, document_path: str) -> Dict:
document_src_type = detect_file_src_type(document_path)
if document_src_type == "local":
with open(document_path, "rb") as document:
poller = self.doc_analysis_client.begin_analyze_document(
"prebuilt-document", document
)
|
https://api.python.langchain.com/en/latest/_modules/langchain/tools/azure_cognitive_services/form_recognizer.html
|
72e035188d42-2
|
"prebuilt-document", document
)
elif document_src_type == "remote":
poller = self.doc_analysis_client.begin_analyze_document_from_url(
"prebuilt-document", document_path
)
else:
raise ValueError(f"Invalid document path: {document_path}")
result = poller.result()
res_dict = {}
if result.content is not None:
res_dict["content"] = result.content
if result.tables is not None:
res_dict["tables"] = self._parse_tables(result.tables)
if result.key_value_pairs is not None:
res_dict["key_value_pairs"] = self._parse_kv_pairs(result.key_value_pairs)
return res_dict
def _format_document_analysis_result(self, document_analysis_result: Dict) -> str:
formatted_result = []
if "content" in document_analysis_result:
formatted_result.append(
f"Content: {document_analysis_result['content']}".replace("\n", " ")
)
if "tables" in document_analysis_result:
for i, table in enumerate(document_analysis_result["tables"]):
formatted_result.append(f"Table {i}: {table}".replace("\n", " "))
if "key_value_pairs" in document_analysis_result:
for kv_pair in document_analysis_result["key_value_pairs"]:
formatted_result.append(
f"{kv_pair[0]}: {kv_pair[1]}".replace("\n", " ")
)
return "\n".join(formatted_result)
def _run(
self,
query: str,
run_manager: Optional[CallbackManagerForToolRun] = None,
) -> str:
"""Use the tool."""
try:
|
https://api.python.langchain.com/en/latest/_modules/langchain/tools/azure_cognitive_services/form_recognizer.html
|
72e035188d42-3
|
) -> str:
"""Use the tool."""
try:
document_analysis_result = self._document_analysis(query)
if not document_analysis_result:
return "No good document analysis result was found"
return self._format_document_analysis_result(document_analysis_result)
except Exception as e:
raise RuntimeError(f"Error while running AzureCogsFormRecognizerTool: {e}")
async def _arun(
self,
query: str,
run_manager: Optional[AsyncCallbackManagerForToolRun] = None,
) -> str:
"""Use the tool asynchronously."""
raise NotImplementedError("AzureCogsFormRecognizerTool does not support async")
|
https://api.python.langchain.com/en/latest/_modules/langchain/tools/azure_cognitive_services/form_recognizer.html
|
8c0df9d28d71-0
|
Source code for langchain.tools.azure_cognitive_services.speech2text
from __future__ import annotations
import logging
import time
from typing import Any, Dict, Optional
from pydantic import root_validator
from langchain.callbacks.manager import (
AsyncCallbackManagerForToolRun,
CallbackManagerForToolRun,
)
from langchain.tools.azure_cognitive_services.utils import (
detect_file_src_type,
download_audio_from_url,
)
from langchain.tools.base import BaseTool
from langchain.utils import get_from_dict_or_env
logger = logging.getLogger(__name__)
[docs]class AzureCogsSpeech2TextTool(BaseTool):
"""Tool that queries the Azure Cognitive Services Speech2Text API.
In order to set this up, follow instructions at:
https://learn.microsoft.com/en-us/azure/cognitive-services/speech-service/get-started-speech-to-text?pivots=programming-language-python
"""
azure_cogs_key: str = "" #: :meta private:
azure_cogs_region: str = "" #: :meta private:
speech_language: str = "en-US" #: :meta private:
speech_config: Any #: :meta private:
name = "azure_cognitive_services_speech2text"
description = (
"A wrapper around Azure Cognitive Services Speech2Text. "
"Useful for when you need to transcribe audio to text. "
"Input should be a url to an audio file."
)
@root_validator(pre=True)
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that api key and endpoint exists in environment."""
azure_cogs_key = get_from_dict_or_env(
values, "azure_cogs_key", "AZURE_COGS_KEY"
)
|
https://api.python.langchain.com/en/latest/_modules/langchain/tools/azure_cognitive_services/speech2text.html
|
8c0df9d28d71-1
|
)
azure_cogs_region = get_from_dict_or_env(
values, "azure_cogs_region", "AZURE_COGS_REGION"
)
try:
import azure.cognitiveservices.speech as speechsdk
values["speech_config"] = speechsdk.SpeechConfig(
subscription=azure_cogs_key, region=azure_cogs_region
)
except ImportError:
raise ImportError(
"azure-cognitiveservices-speech is not installed. "
"Run `pip install azure-cognitiveservices-speech` to install."
)
return values
def _continuous_recognize(self, speech_recognizer: Any) -> str:
done = False
text = ""
def stop_cb(evt: Any) -> None:
"""callback that stop continuous recognition"""
speech_recognizer.stop_continuous_recognition_async()
nonlocal done
done = True
def retrieve_cb(evt: Any) -> None:
"""callback that retrieves the intermediate recognition results"""
nonlocal text
text += evt.result.text
# retrieve text on recognized events
speech_recognizer.recognized.connect(retrieve_cb)
# stop continuous recognition on either session stopped or canceled events
speech_recognizer.session_stopped.connect(stop_cb)
speech_recognizer.canceled.connect(stop_cb)
# Start continuous speech recognition
speech_recognizer.start_continuous_recognition_async()
while not done:
time.sleep(0.5)
return text
def _speech2text(self, audio_path: str, speech_language: str) -> str:
try:
import azure.cognitiveservices.speech as speechsdk
except ImportError:
pass
|
https://api.python.langchain.com/en/latest/_modules/langchain/tools/azure_cognitive_services/speech2text.html
|
8c0df9d28d71-2
|
except ImportError:
pass
audio_src_type = detect_file_src_type(audio_path)
if audio_src_type == "local":
audio_config = speechsdk.AudioConfig(filename=audio_path)
elif audio_src_type == "remote":
tmp_audio_path = download_audio_from_url(audio_path)
audio_config = speechsdk.AudioConfig(filename=tmp_audio_path)
else:
raise ValueError(f"Invalid audio path: {audio_path}")
self.speech_config.speech_recognition_language = speech_language
speech_recognizer = speechsdk.SpeechRecognizer(self.speech_config, audio_config)
return self._continuous_recognize(speech_recognizer)
def _run(
self,
query: str,
run_manager: Optional[CallbackManagerForToolRun] = None,
) -> str:
"""Use the tool."""
try:
text = self._speech2text(query, self.speech_language)
return text
except Exception as e:
raise RuntimeError(f"Error while running AzureCogsSpeech2TextTool: {e}")
async def _arun(
self,
query: str,
run_manager: Optional[AsyncCallbackManagerForToolRun] = None,
) -> str:
"""Use the tool asynchronously."""
raise NotImplementedError("AzureCogsSpeech2TextTool does not support async")
|
https://api.python.langchain.com/en/latest/_modules/langchain/tools/azure_cognitive_services/speech2text.html
|
8a7af92fed54-0
|
Source code for langchain.tools.sleep.tool
"""Tool for agent to sleep."""
from asyncio import sleep as asleep
from time import sleep
from typing import Optional, Type
from pydantic import BaseModel, Field
from langchain.callbacks.manager import (
AsyncCallbackManagerForToolRun,
CallbackManagerForToolRun,
)
from langchain.tools.base import BaseTool
class SleepInput(BaseModel):
"""Input for CopyFileTool."""
sleep_time: int = Field(..., description="Time to sleep in seconds")
[docs]class SleepTool(BaseTool):
"""Tool that adds the capability to sleep."""
name = "sleep"
args_schema: Type[BaseModel] = SleepInput
description = "Make agent sleep for a specified number of seconds."
def _run(
self,
sleep_time: int,
run_manager: Optional[CallbackManagerForToolRun] = None,
) -> str:
"""Use the Sleep tool."""
sleep(sleep_time)
return f"Agent slept for {sleep_time} seconds."
async def _arun(
self,
sleep_time: int,
run_manager: Optional[AsyncCallbackManagerForToolRun] = None,
) -> str:
"""Use the sleep tool asynchronously."""
await asleep(sleep_time)
return f"Agent slept for {sleep_time} seconds."
|
https://api.python.langchain.com/en/latest/_modules/langchain/tools/sleep/tool.html
|
d95d86f23979-0
|
Source code for langchain.tools.jira.tool
"""
This tool allows agents to interact with the atlassian-python-api library
and operate on a Jira instance. For more information on the
atlassian-python-api library, see https://atlassian-python-api.readthedocs.io/jira.html
To use this tool, you must first set as environment variables:
JIRA_API_TOKEN
JIRA_USERNAME
JIRA_INSTANCE_URL
Below is a sample script that uses the Jira tool:
```python
from langchain.agents import AgentType
from langchain.agents import initialize_agent
from langchain.agents.agent_toolkits.jira.toolkit import JiraToolkit
from langchain.llms import OpenAI
from langchain.utilities.jira import JiraAPIWrapper
llm = OpenAI(temperature=0)
jira = JiraAPIWrapper()
toolkit = JiraToolkit.from_jira_api_wrapper(jira)
agent = initialize_agent(
toolkit.get_tools(),
llm,
agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION,
verbose=True
)
```
"""
from typing import Optional
from pydantic import Field
from langchain.callbacks.manager import (
AsyncCallbackManagerForToolRun,
CallbackManagerForToolRun,
)
from langchain.tools.base import BaseTool
from langchain.utilities.jira import JiraAPIWrapper
[docs]class JiraAction(BaseTool):
api_wrapper: JiraAPIWrapper = Field(default_factory=JiraAPIWrapper)
mode: str
name = ""
description = ""
def _run(
self,
instructions: str,
run_manager: Optional[CallbackManagerForToolRun] = None,
) -> str:
"""Use the Atlassian Jira API to run an operation."""
|
https://api.python.langchain.com/en/latest/_modules/langchain/tools/jira/tool.html
|
d95d86f23979-1
|
"""Use the Atlassian Jira API to run an operation."""
return self.api_wrapper.run(self.mode, instructions)
async def _arun(
self,
_: str,
run_manager: Optional[AsyncCallbackManagerForToolRun] = None,
) -> str:
"""Use the Atlassian Jira API to run an operation."""
raise NotImplementedError("JiraAction does not support async")
|
https://api.python.langchain.com/en/latest/_modules/langchain/tools/jira/tool.html
|
8c06c26094d1-0
|
Source code for langchain.tools.youtube.search
"""
Adapted from https://github.com/venuv/langchain_yt_tools
CustomYTSearchTool searches YouTube videos related to a person
and returns a specified number of video URLs.
Input to this tool should be a comma separated list,
- the first part contains a person name
- and the second(optional) a number that is the
maximum number of video results to return
"""
import json
from typing import Optional
from langchain.callbacks.manager import (
AsyncCallbackManagerForToolRun,
CallbackManagerForToolRun,
)
from langchain.tools import BaseTool
[docs]class YouTubeSearchTool(BaseTool):
name = "youtube_search"
description = (
"search for youtube videos associated with a person. "
"the input to this tool should be a comma separated list, "
"the first part contains a person name and the second a "
"number that is the maximum number of video results "
"to return aka num_results. the second part is optional"
)
def _search(self, person: str, num_results: int) -> str:
from youtube_search import YoutubeSearch
results = YoutubeSearch(person, num_results).to_json()
data = json.loads(results)
url_suffix_list = [video["url_suffix"] for video in data["videos"]]
return str(url_suffix_list)
def _run(
self,
query: str,
run_manager: Optional[CallbackManagerForToolRun] = None,
) -> str:
"""Use the tool."""
values = query.split(",")
person = values[0]
if len(values) > 1:
num_results = int(values[1])
else:
|
https://api.python.langchain.com/en/latest/_modules/langchain/tools/youtube/search.html
|
8c06c26094d1-1
|
num_results = int(values[1])
else:
num_results = 2
return self._search(person, num_results)
async def _arun(
self,
query: str,
run_manager: Optional[AsyncCallbackManagerForToolRun] = None,
) -> str:
"""Use the tool asynchronously."""
raise NotImplementedError("YouTubeSearchTool does not yet support async")
|
https://api.python.langchain.com/en/latest/_modules/langchain/tools/youtube/search.html
|
dcf7115e32b4-0
|
Source code for langchain.tools.vectorstore.tool
"""Tools for interacting with vectorstores."""
import json
from typing import Any, Dict, Optional
from pydantic import BaseModel, Field
from langchain.base_language import BaseLanguageModel
from langchain.callbacks.manager import (
AsyncCallbackManagerForToolRun,
CallbackManagerForToolRun,
)
from langchain.chains import RetrievalQA, RetrievalQAWithSourcesChain
from langchain.llms.openai import OpenAI
from langchain.tools.base import BaseTool
from langchain.vectorstores.base import VectorStore
class BaseVectorStoreTool(BaseModel):
"""Base class for tools that use a VectorStore."""
vectorstore: VectorStore = Field(exclude=True)
llm: BaseLanguageModel = Field(default_factory=lambda: OpenAI(temperature=0))
class Config(BaseTool.Config):
"""Configuration for this pydantic object."""
arbitrary_types_allowed = True
def _create_description_from_template(values: Dict[str, Any]) -> Dict[str, Any]:
values["description"] = values["template"].format(name=values["name"])
return values
[docs]class VectorStoreQATool(BaseVectorStoreTool, BaseTool):
"""Tool for the VectorDBQA chain. To be initialized with name and chain."""
[docs] @staticmethod
def get_description(name: str, description: str) -> str:
template: str = (
"Useful for when you need to answer questions about {name}. "
"Whenever you need information about {description} "
"you should ALWAYS use this. "
"Input should be a fully formed question."
)
return template.format(name=name, description=description)
def _run(
self,
query: str,
|
https://api.python.langchain.com/en/latest/_modules/langchain/tools/vectorstore/tool.html
|
dcf7115e32b4-1
|
def _run(
self,
query: str,
run_manager: Optional[CallbackManagerForToolRun] = None,
) -> str:
"""Use the tool."""
chain = RetrievalQA.from_chain_type(
self.llm, retriever=self.vectorstore.as_retriever()
)
return chain.run(query)
async def _arun(
self,
query: str,
run_manager: Optional[AsyncCallbackManagerForToolRun] = None,
) -> str:
"""Use the tool asynchronously."""
raise NotImplementedError("VectorStoreQATool does not support async")
[docs]class VectorStoreQAWithSourcesTool(BaseVectorStoreTool, BaseTool):
"""Tool for the VectorDBQAWithSources chain."""
[docs] @staticmethod
def get_description(name: str, description: str) -> str:
template: str = (
"Useful for when you need to answer questions about {name} and the sources "
"used to construct the answer. "
"Whenever you need information about {description} "
"you should ALWAYS use this. "
" Input should be a fully formed question. "
"Output is a json serialized dictionary with keys `answer` and `sources`. "
"Only use this tool if the user explicitly asks for sources."
)
return template.format(name=name, description=description)
def _run(
self,
query: str,
run_manager: Optional[CallbackManagerForToolRun] = None,
) -> str:
"""Use the tool."""
chain = RetrievalQAWithSourcesChain.from_chain_type(
self.llm, retriever=self.vectorstore.as_retriever()
)
|
https://api.python.langchain.com/en/latest/_modules/langchain/tools/vectorstore/tool.html
|
dcf7115e32b4-2
|
self.llm, retriever=self.vectorstore.as_retriever()
)
return json.dumps(chain({chain.question_key: query}, return_only_outputs=True))
async def _arun(
self,
query: str,
run_manager: Optional[AsyncCallbackManagerForToolRun] = None,
) -> str:
"""Use the tool asynchronously."""
raise NotImplementedError("VectorStoreQAWithSourcesTool does not support async")
|
https://api.python.langchain.com/en/latest/_modules/langchain/tools/vectorstore/tool.html
|
b13ed37f02d1-0
|
Source code for langchain.tools.google_search.tool
"""Tool for the Google search API."""
from typing import Optional
from langchain.callbacks.manager import (
AsyncCallbackManagerForToolRun,
CallbackManagerForToolRun,
)
from langchain.tools.base import BaseTool
from langchain.utilities.google_search import GoogleSearchAPIWrapper
[docs]class GoogleSearchRun(BaseTool):
"""Tool that adds the capability to query the Google search API."""
name = "google_search"
description = (
"A wrapper around Google Search. "
"Useful for when you need to answer questions about current events. "
"Input should be a search query."
)
api_wrapper: GoogleSearchAPIWrapper
def _run(
self,
query: str,
run_manager: Optional[CallbackManagerForToolRun] = None,
) -> str:
"""Use the tool."""
return self.api_wrapper.run(query)
async def _arun(
self,
query: str,
run_manager: Optional[AsyncCallbackManagerForToolRun] = None,
) -> str:
"""Use the tool asynchronously."""
raise NotImplementedError("GoogleSearchRun does not support async")
[docs]class GoogleSearchResults(BaseTool):
"""Tool that has capability to query the Google Search API and get back json."""
name = "Google Search Results JSON"
description = (
"A wrapper around Google Search. "
"Useful for when you need to answer questions about current events. "
"Input should be a search query. Output is a JSON array of the query results"
)
num_results: int = 4
api_wrapper: GoogleSearchAPIWrapper
def _run(
self,
|
https://api.python.langchain.com/en/latest/_modules/langchain/tools/google_search/tool.html
|
b13ed37f02d1-1
|
api_wrapper: GoogleSearchAPIWrapper
def _run(
self,
query: str,
run_manager: Optional[CallbackManagerForToolRun] = None,
) -> str:
"""Use the tool."""
return str(self.api_wrapper.results(query, self.num_results))
async def _arun(
self,
query: str,
run_manager: Optional[AsyncCallbackManagerForToolRun] = None,
) -> str:
"""Use the tool asynchronously."""
raise NotImplementedError("GoogleSearchRun does not support async")
|
https://api.python.langchain.com/en/latest/_modules/langchain/tools/google_search/tool.html
|
894f00a00d27-0
|
Source code for langchain.tools.wolfram_alpha.tool
"""Tool for the Wolfram Alpha API."""
from typing import Optional
from langchain.callbacks.manager import (
AsyncCallbackManagerForToolRun,
CallbackManagerForToolRun,
)
from langchain.tools.base import BaseTool
from langchain.utilities.wolfram_alpha import WolframAlphaAPIWrapper
[docs]class WolframAlphaQueryRun(BaseTool):
"""Tool that adds the capability to query using the Wolfram Alpha SDK."""
name = "wolfram_alpha"
description = (
"A wrapper around Wolfram Alpha. "
"Useful for when you need to answer questions about Math, "
"Science, Technology, Culture, Society and Everyday Life. "
"Input should be a search query."
)
api_wrapper: WolframAlphaAPIWrapper
def _run(
self,
query: str,
run_manager: Optional[CallbackManagerForToolRun] = None,
) -> str:
"""Use the WolframAlpha tool."""
return self.api_wrapper.run(query)
async def _arun(
self,
query: str,
run_manager: Optional[AsyncCallbackManagerForToolRun] = None,
) -> str:
"""Use the WolframAlpha tool asynchronously."""
raise NotImplementedError("WolframAlphaQueryRun does not support async")
|
https://api.python.langchain.com/en/latest/_modules/langchain/tools/wolfram_alpha/tool.html
|
af6259420b97-0
|
Source code for langchain.tools.human.tool
"""Tool for asking human input."""
from typing import Callable, Optional
from pydantic import Field
from langchain.callbacks.manager import (
AsyncCallbackManagerForToolRun,
CallbackManagerForToolRun,
)
from langchain.tools.base import BaseTool
def _print_func(text: str) -> None:
print("\n")
print(text)
[docs]class HumanInputRun(BaseTool):
"""Tool that adds the capability to ask user for input."""
name = "human"
description = (
"You can ask a human for guidance when you think you "
"got stuck or you are not sure what to do next. "
"The input should be a question for the human."
)
prompt_func: Callable[[str], None] = Field(default_factory=lambda: _print_func)
input_func: Callable = Field(default_factory=lambda: input)
def _run(
self,
query: str,
run_manager: Optional[CallbackManagerForToolRun] = None,
) -> str:
"""Use the Human input tool."""
self.prompt_func(query)
return self.input_func()
async def _arun(
self,
query: str,
run_manager: Optional[AsyncCallbackManagerForToolRun] = None,
) -> str:
"""Use the Human tool asynchronously."""
raise NotImplementedError("Human tool does not support async")
|
https://api.python.langchain.com/en/latest/_modules/langchain/tools/human/tool.html
|
cecccda8b85e-0
|
Source code for langchain.tools.shell.tool
import asyncio
import platform
import warnings
from typing import List, Optional, Type, Union
from pydantic import BaseModel, Field, root_validator
from langchain.callbacks.manager import (
AsyncCallbackManagerForToolRun,
CallbackManagerForToolRun,
)
from langchain.tools.base import BaseTool
from langchain.utilities.bash import BashProcess
class ShellInput(BaseModel):
"""Commands for the Bash Shell tool."""
commands: Union[str, List[str]] = Field(
...,
description="List of shell commands to run. Deserialized using json.loads",
)
"""List of shell commands to run."""
@root_validator
def _validate_commands(cls, values: dict) -> dict:
"""Validate commands."""
# TODO: Add real validators
commands = values.get("commands")
if not isinstance(commands, list):
values["commands"] = [commands]
# Warn that the bash tool is not safe
warnings.warn(
"The shell tool has no safeguards by default. Use at your own risk."
)
return values
def _get_default_bash_processs() -> BashProcess:
"""Get file path from string."""
return BashProcess(return_err_output=True)
def _get_platform() -> str:
"""Get platform."""
system = platform.system()
if system == "Darwin":
return "MacOS"
return system
[docs]class ShellTool(BaseTool):
"""Tool to run shell commands."""
process: BashProcess = Field(default_factory=_get_default_bash_processs)
"""Bash process to run commands."""
name: str = "terminal"
"""Name of tool."""
|
https://api.python.langchain.com/en/latest/_modules/langchain/tools/shell/tool.html
|
cecccda8b85e-1
|
name: str = "terminal"
"""Name of tool."""
description: str = f"Run shell commands on this {_get_platform()} machine."
"""Description of tool."""
args_schema: Type[BaseModel] = ShellInput
"""Schema for input arguments."""
def _run(
self,
commands: Union[str, List[str]],
run_manager: Optional[CallbackManagerForToolRun] = None,
) -> str:
"""Run commands and return final output."""
return self.process.run(commands)
async def _arun(
self,
commands: Union[str, List[str]],
run_manager: Optional[AsyncCallbackManagerForToolRun] = None,
) -> str:
"""Run commands asynchronously and return final output."""
return await asyncio.get_event_loop().run_in_executor(
None, self.process.run, commands
)
|
https://api.python.langchain.com/en/latest/_modules/langchain/tools/shell/tool.html
|
1323eee0c00d-0
|
Source code for langchain.tools.gmail.send_message
"""Send Gmail messages."""
import base64
from email.mime.multipart import MIMEMultipart
from email.mime.text import MIMEText
from typing import Any, Dict, List, Optional, Union
from pydantic import BaseModel, Field
from langchain.callbacks.manager import (
AsyncCallbackManagerForToolRun,
CallbackManagerForToolRun,
)
from langchain.tools.gmail.base import GmailBaseTool
class SendMessageSchema(BaseModel):
message: str = Field(
...,
description="The message to send.",
)
to: Union[str, List[str]] = Field(
...,
description="The list of recipients.",
)
subject: str = Field(
...,
description="The subject of the message.",
)
cc: Optional[Union[str, List[str]]] = Field(
None,
description="The list of CC recipients.",
)
bcc: Optional[Union[str, List[str]]] = Field(
None,
description="The list of BCC recipients.",
)
[docs]class GmailSendMessage(GmailBaseTool):
name: str = "send_gmail_message"
description: str = (
"Use this tool to send email messages." " The input is the message, recipents"
)
def _prepare_message(
self,
message: str,
to: Union[str, List[str]],
subject: str,
cc: Optional[Union[str, List[str]]] = None,
bcc: Optional[Union[str, List[str]]] = None,
) -> Dict[str, Any]:
"""Create a message for an email."""
mime_message = MIMEMultipart()
|
https://api.python.langchain.com/en/latest/_modules/langchain/tools/gmail/send_message.html
|
1323eee0c00d-1
|
"""Create a message for an email."""
mime_message = MIMEMultipart()
mime_message.attach(MIMEText(message, "html"))
mime_message["To"] = ", ".join(to if isinstance(to, list) else [to])
mime_message["Subject"] = subject
if cc is not None:
mime_message["Cc"] = ", ".join(cc if isinstance(cc, list) else [cc])
if bcc is not None:
mime_message["Bcc"] = ", ".join(bcc if isinstance(bcc, list) else [bcc])
encoded_message = base64.urlsafe_b64encode(mime_message.as_bytes()).decode()
return {"raw": encoded_message}
def _run(
self,
message: str,
to: Union[str, List[str]],
subject: str,
cc: Optional[Union[str, List[str]]] = None,
bcc: Optional[Union[str, List[str]]] = None,
run_manager: Optional[CallbackManagerForToolRun] = None,
) -> str:
"""Run the tool."""
try:
create_message = self._prepare_message(message, to, subject, cc=cc, bcc=bcc)
send_message = (
self.api_resource.users()
.messages()
.send(userId="me", body=create_message)
)
sent_message = send_message.execute()
return f'Message sent. Message Id: {sent_message["id"]}'
except Exception as error:
raise Exception(f"An error occurred: {error}")
async def _arun(
self,
message: str,
to: Union[str, List[str]],
subject: str,
|
https://api.python.langchain.com/en/latest/_modules/langchain/tools/gmail/send_message.html
|
1323eee0c00d-2
|
to: Union[str, List[str]],
subject: str,
cc: Optional[Union[str, List[str]]] = None,
bcc: Optional[Union[str, List[str]]] = None,
run_manager: Optional[AsyncCallbackManagerForToolRun] = None,
) -> str:
"""Run the tool asynchronously."""
raise NotImplementedError(f"The tool {self.name} does not support async yet.")
|
https://api.python.langchain.com/en/latest/_modules/langchain/tools/gmail/send_message.html
|
354f91dd827b-0
|
Source code for langchain.tools.gmail.get_message
import base64
import email
from typing import Dict, Optional, Type
from pydantic import BaseModel, Field
from langchain.callbacks.manager import (
AsyncCallbackManagerForToolRun,
CallbackManagerForToolRun,
)
from langchain.tools.gmail.base import GmailBaseTool
from langchain.tools.gmail.utils import clean_email_body
class SearchArgsSchema(BaseModel):
message_id: str = Field(
...,
description="The unique ID of the email message, retrieved from a search.",
)
[docs]class GmailGetMessage(GmailBaseTool):
name: str = "get_gmail_message"
description: str = (
"Use this tool to fetch an email by message ID."
" Returns the thread ID, snipet, body, subject, and sender."
)
args_schema: Type[SearchArgsSchema] = SearchArgsSchema
def _run(
self,
message_id: str,
run_manager: Optional[CallbackManagerForToolRun] = None,
) -> Dict:
"""Run the tool."""
query = (
self.api_resource.users()
.messages()
.get(userId="me", format="raw", id=message_id)
)
message_data = query.execute()
raw_message = base64.urlsafe_b64decode(message_data["raw"])
email_msg = email.message_from_bytes(raw_message)
subject = email_msg["Subject"]
sender = email_msg["From"]
message_body = email_msg.get_payload()
body = clean_email_body(message_body)
return {
"id": message_id,
"threadId": message_data["threadId"],
"snippet": message_data["snippet"],
|
https://api.python.langchain.com/en/latest/_modules/langchain/tools/gmail/get_message.html
|
354f91dd827b-1
|
"snippet": message_data["snippet"],
"body": body,
"subject": subject,
"sender": sender,
}
async def _arun(
self,
message_id: str,
run_manager: Optional[AsyncCallbackManagerForToolRun] = None,
) -> Dict:
"""Run the tool."""
raise NotImplementedError
|
https://api.python.langchain.com/en/latest/_modules/langchain/tools/gmail/get_message.html
|
111d036983d7-0
|
Source code for langchain.tools.gmail.search
import base64
import email
from enum import Enum
from typing import Any, Dict, List, Optional, Type
from pydantic import BaseModel, Field
from langchain.callbacks.manager import (
AsyncCallbackManagerForToolRun,
CallbackManagerForToolRun,
)
from langchain.tools.gmail.base import GmailBaseTool
from langchain.tools.gmail.utils import clean_email_body
class Resource(str, Enum):
"""Enumerator of Resources to search."""
THREADS = "threads"
MESSAGES = "messages"
class SearchArgsSchema(BaseModel):
# From https://support.google.com/mail/answer/7190?hl=en
query: str = Field(
...,
description="The Gmail query. Example filters include from:sender,"
" to:recipient, subject:subject, -filtered_term,"
" in:folder, is:important|read|starred, after:year/mo/date, "
"before:year/mo/date, label:label_name"
' "exact phrase".'
" Search newer/older than using d (day), m (month), and y (year): "
"newer_than:2d, older_than:1y."
" Attachments with extension example: filename:pdf. Multiple term"
" matching example: from:amy OR from:david.",
)
resource: Resource = Field(
default=Resource.MESSAGES,
description="Whether to search for threads or messages.",
)
max_results: int = Field(
default=10,
description="The maximum number of results to return.",
)
[docs]class GmailSearch(GmailBaseTool):
name: str = "search_gmail"
description: str = (
|
https://api.python.langchain.com/en/latest/_modules/langchain/tools/gmail/search.html
|
111d036983d7-1
|
name: str = "search_gmail"
description: str = (
"Use this tool to search for email messages or threads."
" The input must be a valid Gmail query."
" The output is a JSON list of the requested resource."
)
args_schema: Type[SearchArgsSchema] = SearchArgsSchema
def _parse_threads(self, threads: List[Dict[str, Any]]) -> List[Dict[str, Any]]:
# Add the thread message snippets to the thread results
results = []
for thread in threads:
thread_id = thread["id"]
thread_data = (
self.api_resource.users()
.threads()
.get(userId="me", id=thread_id)
.execute()
)
messages = thread_data["messages"]
thread["messages"] = []
for message in messages:
snippet = message["snippet"]
thread["messages"].append({"snippet": snippet, "id": message["id"]})
results.append(thread)
return results
def _parse_messages(self, messages: List[Dict[str, Any]]) -> List[Dict[str, Any]]:
results = []
for message in messages:
message_id = message["id"]
message_data = (
self.api_resource.users()
.messages()
.get(userId="me", format="raw", id=message_id)
.execute()
)
raw_message = base64.urlsafe_b64decode(message_data["raw"])
email_msg = email.message_from_bytes(raw_message)
subject = email_msg["Subject"]
sender = email_msg["From"]
message_body = email_msg.get_payload()
body = clean_email_body(message_body)
results.append(
{
|
https://api.python.langchain.com/en/latest/_modules/langchain/tools/gmail/search.html
|
111d036983d7-2
|
body = clean_email_body(message_body)
results.append(
{
"id": message["id"],
"threadId": message_data["threadId"],
"snippet": message_data["snippet"],
"body": body,
"subject": subject,
"sender": sender,
}
)
return results
def _run(
self,
query: str,
resource: Resource = Resource.MESSAGES,
max_results: int = 10,
run_manager: Optional[CallbackManagerForToolRun] = None,
) -> List[Dict[str, Any]]:
"""Run the tool."""
results = (
self.api_resource.users()
.messages()
.list(userId="me", q=query, maxResults=max_results)
.execute()
.get(resource.value, [])
)
if resource == Resource.THREADS:
return self._parse_threads(results)
elif resource == Resource.MESSAGES:
return self._parse_messages(results)
else:
raise NotImplementedError(f"Resource of type {resource} not implemented.")
async def _arun(
self,
query: str,
resource: Resource = Resource.MESSAGES,
max_results: int = 10,
run_manager: Optional[AsyncCallbackManagerForToolRun] = None,
) -> List[Dict[str, Any]]:
"""Run the tool."""
raise NotImplementedError
|
https://api.python.langchain.com/en/latest/_modules/langchain/tools/gmail/search.html
|
d78cef7a5250-0
|
Source code for langchain.tools.gmail.create_draft
import base64
from email.message import EmailMessage
from typing import List, Optional, Type
from pydantic import BaseModel, Field
from langchain.callbacks.manager import (
AsyncCallbackManagerForToolRun,
CallbackManagerForToolRun,
)
from langchain.tools.gmail.base import GmailBaseTool
class CreateDraftSchema(BaseModel):
message: str = Field(
...,
description="The message to include in the draft.",
)
to: List[str] = Field(
...,
description="The list of recipients.",
)
subject: str = Field(
...,
description="The subject of the message.",
)
cc: Optional[List[str]] = Field(
None,
description="The list of CC recipients.",
)
bcc: Optional[List[str]] = Field(
None,
description="The list of BCC recipients.",
)
[docs]class GmailCreateDraft(GmailBaseTool):
name: str = "create_gmail_draft"
description: str = (
"Use this tool to create a draft email with the provided message fields."
)
args_schema: Type[CreateDraftSchema] = CreateDraftSchema
def _prepare_draft_message(
self,
message: str,
to: List[str],
subject: str,
cc: Optional[List[str]] = None,
bcc: Optional[List[str]] = None,
) -> dict:
draft_message = EmailMessage()
draft_message.set_content(message)
draft_message["To"] = ", ".join(to)
draft_message["Subject"] = subject
if cc is not None:
|
https://api.python.langchain.com/en/latest/_modules/langchain/tools/gmail/create_draft.html
|
d78cef7a5250-1
|
draft_message["Subject"] = subject
if cc is not None:
draft_message["Cc"] = ", ".join(cc)
if bcc is not None:
draft_message["Bcc"] = ", ".join(bcc)
encoded_message = base64.urlsafe_b64encode(draft_message.as_bytes()).decode()
return {"message": {"raw": encoded_message}}
def _run(
self,
message: str,
to: List[str],
subject: str,
cc: Optional[List[str]] = None,
bcc: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForToolRun] = None,
) -> str:
try:
create_message = self._prepare_draft_message(message, to, subject, cc, bcc)
draft = (
self.api_resource.users()
.drafts()
.create(userId="me", body=create_message)
.execute()
)
output = f'Draft created. Draft Id: {draft["id"]}'
return output
except Exception as e:
raise Exception(f"An error occurred: {e}")
async def _arun(
self,
message: str,
to: List[str],
subject: str,
cc: Optional[List[str]] = None,
bcc: Optional[List[str]] = None,
run_manager: Optional[AsyncCallbackManagerForToolRun] = None,
) -> str:
raise NotImplementedError(f"The tool {self.name} does not support async yet.")
|
https://api.python.langchain.com/en/latest/_modules/langchain/tools/gmail/create_draft.html
|
e91966a54cec-0
|
Source code for langchain.tools.gmail.get_thread
from typing import Dict, Optional, Type
from pydantic import BaseModel, Field
from langchain.callbacks.manager import (
AsyncCallbackManagerForToolRun,
CallbackManagerForToolRun,
)
from langchain.tools.gmail.base import GmailBaseTool
class GetThreadSchema(BaseModel):
# From https://support.google.com/mail/answer/7190?hl=en
thread_id: str = Field(
...,
description="The thread ID.",
)
[docs]class GmailGetThread(GmailBaseTool):
name: str = "get_gmail_thread"
description: str = (
"Use this tool to search for email messages."
" The input must be a valid Gmail query."
" The output is a JSON list of messages."
)
args_schema: Type[GetThreadSchema] = GetThreadSchema
def _run(
self,
thread_id: str,
run_manager: Optional[CallbackManagerForToolRun] = None,
) -> Dict:
"""Run the tool."""
query = self.api_resource.users().threads().get(userId="me", id=thread_id)
thread_data = query.execute()
if not isinstance(thread_data, dict):
raise ValueError("The output of the query must be a list.")
messages = thread_data["messages"]
thread_data["messages"] = []
keys_to_keep = ["id", "snippet", "snippet"]
# TODO: Parse body.
for message in messages:
thread_data["messages"].append(
{k: message[k] for k in keys_to_keep if k in message}
)
return thread_data
async def _arun(
self,
|
https://api.python.langchain.com/en/latest/_modules/langchain/tools/gmail/get_thread.html
|
e91966a54cec-1
|
)
return thread_data
async def _arun(
self,
thread_id: str,
run_manager: Optional[AsyncCallbackManagerForToolRun] = None,
) -> Dict:
"""Run the tool."""
raise NotImplementedError
|
https://api.python.langchain.com/en/latest/_modules/langchain/tools/gmail/get_thread.html
|
9d4b84cb9066-0
|
Source code for langchain.tools.file_management.move
import shutil
from typing import Optional, Type
from pydantic import BaseModel, Field
from langchain.callbacks.manager import (
AsyncCallbackManagerForToolRun,
CallbackManagerForToolRun,
)
from langchain.tools.base import BaseTool
from langchain.tools.file_management.utils import (
INVALID_PATH_TEMPLATE,
BaseFileToolMixin,
FileValidationError,
)
class FileMoveInput(BaseModel):
"""Input for MoveFileTool."""
source_path: str = Field(..., description="Path of the file to move")
destination_path: str = Field(..., description="New path for the moved file")
[docs]class MoveFileTool(BaseFileToolMixin, BaseTool):
name: str = "move_file"
args_schema: Type[BaseModel] = FileMoveInput
description: str = "Move or rename a file from one location to another"
def _run(
self,
source_path: str,
destination_path: str,
run_manager: Optional[CallbackManagerForToolRun] = None,
) -> str:
try:
source_path_ = self.get_relative_path(source_path)
except FileValidationError:
return INVALID_PATH_TEMPLATE.format(
arg_name="source_path", value=source_path
)
try:
destination_path_ = self.get_relative_path(destination_path)
except FileValidationError:
return INVALID_PATH_TEMPLATE.format(
arg_name="destination_path_", value=destination_path_
)
if not source_path_.exists():
return f"Error: no such file or directory {source_path}"
try:
# shutil.move expects str args in 3.8
shutil.move(str(source_path_), destination_path_)
|
https://api.python.langchain.com/en/latest/_modules/langchain/tools/file_management/move.html
|
9d4b84cb9066-1
|
shutil.move(str(source_path_), destination_path_)
return f"File moved successfully from {source_path} to {destination_path}."
except Exception as e:
return "Error: " + str(e)
async def _arun(
self,
source_path: str,
destination_path: str,
run_manager: Optional[AsyncCallbackManagerForToolRun] = None,
) -> str:
# TODO: Add aiofiles method
raise NotImplementedError
|
https://api.python.langchain.com/en/latest/_modules/langchain/tools/file_management/move.html
|
04f105e08826-0
|
Source code for langchain.tools.file_management.file_search
import fnmatch
import os
from typing import Optional, Type
from pydantic import BaseModel, Field
from langchain.callbacks.manager import (
AsyncCallbackManagerForToolRun,
CallbackManagerForToolRun,
)
from langchain.tools.base import BaseTool
from langchain.tools.file_management.utils import (
INVALID_PATH_TEMPLATE,
BaseFileToolMixin,
FileValidationError,
)
class FileSearchInput(BaseModel):
"""Input for FileSearchTool."""
dir_path: str = Field(
default=".",
description="Subdirectory to search in.",
)
pattern: str = Field(
...,
description="Unix shell regex, where * matches everything.",
)
[docs]class FileSearchTool(BaseFileToolMixin, BaseTool):
name: str = "file_search"
args_schema: Type[BaseModel] = FileSearchInput
description: str = (
"Recursively search for files in a subdirectory that match the regex pattern"
)
def _run(
self,
pattern: str,
dir_path: str = ".",
run_manager: Optional[CallbackManagerForToolRun] = None,
) -> str:
try:
dir_path_ = self.get_relative_path(dir_path)
except FileValidationError:
return INVALID_PATH_TEMPLATE.format(arg_name="dir_path", value=dir_path)
matches = []
try:
for root, _, filenames in os.walk(dir_path_):
for filename in fnmatch.filter(filenames, pattern):
absolute_path = os.path.join(root, filename)
relative_path = os.path.relpath(absolute_path, dir_path_)
matches.append(relative_path)
if matches:
|
https://api.python.langchain.com/en/latest/_modules/langchain/tools/file_management/file_search.html
|
04f105e08826-1
|
matches.append(relative_path)
if matches:
return "\n".join(matches)
else:
return f"No files found for pattern {pattern} in directory {dir_path}"
except Exception as e:
return "Error: " + str(e)
async def _arun(
self,
dir_path: str,
pattern: str,
run_manager: Optional[AsyncCallbackManagerForToolRun] = None,
) -> str:
# TODO: Add aiofiles method
raise NotImplementedError
|
https://api.python.langchain.com/en/latest/_modules/langchain/tools/file_management/file_search.html
|
7af941b369a2-0
|
Source code for langchain.tools.file_management.copy
import shutil
from typing import Optional, Type
from pydantic import BaseModel, Field
from langchain.callbacks.manager import (
AsyncCallbackManagerForToolRun,
CallbackManagerForToolRun,
)
from langchain.tools.base import BaseTool
from langchain.tools.file_management.utils import (
INVALID_PATH_TEMPLATE,
BaseFileToolMixin,
FileValidationError,
)
class FileCopyInput(BaseModel):
"""Input for CopyFileTool."""
source_path: str = Field(..., description="Path of the file to copy")
destination_path: str = Field(..., description="Path to save the copied file")
[docs]class CopyFileTool(BaseFileToolMixin, BaseTool):
name: str = "copy_file"
args_schema: Type[BaseModel] = FileCopyInput
description: str = "Create a copy of a file in a specified location"
def _run(
self,
source_path: str,
destination_path: str,
run_manager: Optional[CallbackManagerForToolRun] = None,
) -> str:
try:
source_path_ = self.get_relative_path(source_path)
except FileValidationError:
return INVALID_PATH_TEMPLATE.format(
arg_name="source_path", value=source_path
)
try:
destination_path_ = self.get_relative_path(destination_path)
except FileValidationError:
return INVALID_PATH_TEMPLATE.format(
arg_name="destination_path", value=destination_path
)
try:
shutil.copy2(source_path_, destination_path_, follow_symlinks=False)
return f"File copied successfully from {source_path} to {destination_path}."
except Exception as e:
|
https://api.python.langchain.com/en/latest/_modules/langchain/tools/file_management/copy.html
|
7af941b369a2-1
|
except Exception as e:
return "Error: " + str(e)
async def _arun(
self,
source_path: str,
destination_path: str,
run_manager: Optional[AsyncCallbackManagerForToolRun] = None,
) -> str:
# TODO: Add aiofiles method
raise NotImplementedError
|
https://api.python.langchain.com/en/latest/_modules/langchain/tools/file_management/copy.html
|
b3b6cf308241-0
|
Source code for langchain.tools.file_management.list_dir
import os
from typing import Optional, Type
from pydantic import BaseModel, Field
from langchain.callbacks.manager import (
AsyncCallbackManagerForToolRun,
CallbackManagerForToolRun,
)
from langchain.tools.base import BaseTool
from langchain.tools.file_management.utils import (
INVALID_PATH_TEMPLATE,
BaseFileToolMixin,
FileValidationError,
)
class DirectoryListingInput(BaseModel):
"""Input for ListDirectoryTool."""
dir_path: str = Field(default=".", description="Subdirectory to list.")
[docs]class ListDirectoryTool(BaseFileToolMixin, BaseTool):
name: str = "list_directory"
args_schema: Type[BaseModel] = DirectoryListingInput
description: str = "List files and directories in a specified folder"
def _run(
self,
dir_path: str = ".",
run_manager: Optional[CallbackManagerForToolRun] = None,
) -> str:
try:
dir_path_ = self.get_relative_path(dir_path)
except FileValidationError:
return INVALID_PATH_TEMPLATE.format(arg_name="dir_path", value=dir_path)
try:
entries = os.listdir(dir_path_)
if entries:
return "\n".join(entries)
else:
return f"No files found in directory {dir_path}"
except Exception as e:
return "Error: " + str(e)
async def _arun(
self,
dir_path: str,
run_manager: Optional[AsyncCallbackManagerForToolRun] = None,
) -> str:
# TODO: Add aiofiles method
raise NotImplementedError
|
https://api.python.langchain.com/en/latest/_modules/langchain/tools/file_management/list_dir.html
|
1970622a2cd9-0
|
Source code for langchain.tools.file_management.delete
import os
from typing import Optional, Type
from pydantic import BaseModel, Field
from langchain.callbacks.manager import (
AsyncCallbackManagerForToolRun,
CallbackManagerForToolRun,
)
from langchain.tools.base import BaseTool
from langchain.tools.file_management.utils import (
INVALID_PATH_TEMPLATE,
BaseFileToolMixin,
FileValidationError,
)
class FileDeleteInput(BaseModel):
"""Input for DeleteFileTool."""
file_path: str = Field(..., description="Path of the file to delete")
[docs]class DeleteFileTool(BaseFileToolMixin, BaseTool):
name: str = "file_delete"
args_schema: Type[BaseModel] = FileDeleteInput
description: str = "Delete a file"
def _run(
self,
file_path: str,
run_manager: Optional[CallbackManagerForToolRun] = None,
) -> str:
try:
file_path_ = self.get_relative_path(file_path)
except FileValidationError:
return INVALID_PATH_TEMPLATE.format(arg_name="file_path", value=file_path)
if not file_path_.exists():
return f"Error: no such file or directory: {file_path}"
try:
os.remove(file_path_)
return f"File deleted successfully: {file_path}."
except Exception as e:
return "Error: " + str(e)
async def _arun(
self,
file_path: str,
run_manager: Optional[AsyncCallbackManagerForToolRun] = None,
) -> str:
# TODO: Add aiofiles method
raise NotImplementedError
|
https://api.python.langchain.com/en/latest/_modules/langchain/tools/file_management/delete.html
|
9501baaddc00-0
|
Source code for langchain.tools.file_management.read
from typing import Optional, Type
from pydantic import BaseModel, Field
from langchain.callbacks.manager import (
AsyncCallbackManagerForToolRun,
CallbackManagerForToolRun,
)
from langchain.tools.base import BaseTool
from langchain.tools.file_management.utils import (
INVALID_PATH_TEMPLATE,
BaseFileToolMixin,
FileValidationError,
)
class ReadFileInput(BaseModel):
"""Input for ReadFileTool."""
file_path: str = Field(..., description="name of file")
[docs]class ReadFileTool(BaseFileToolMixin, BaseTool):
name: str = "read_file"
args_schema: Type[BaseModel] = ReadFileInput
description: str = "Read file from disk"
def _run(
self,
file_path: str,
run_manager: Optional[CallbackManagerForToolRun] = None,
) -> str:
try:
read_path = self.get_relative_path(file_path)
except FileValidationError:
return INVALID_PATH_TEMPLATE.format(arg_name="file_path", value=file_path)
if not read_path.exists():
return f"Error: no such file or directory: {file_path}"
try:
with read_path.open("r", encoding="utf-8") as f:
content = f.read()
return content
except Exception as e:
return "Error: " + str(e)
async def _arun(
self,
file_path: str,
run_manager: Optional[AsyncCallbackManagerForToolRun] = None,
) -> str:
# TODO: Add aiofiles method
raise NotImplementedError
|
https://api.python.langchain.com/en/latest/_modules/langchain/tools/file_management/read.html
|
e1f1b043e809-0
|
Source code for langchain.tools.file_management.write
from typing import Optional, Type
from pydantic import BaseModel, Field
from langchain.callbacks.manager import (
AsyncCallbackManagerForToolRun,
CallbackManagerForToolRun,
)
from langchain.tools.base import BaseTool
from langchain.tools.file_management.utils import (
INVALID_PATH_TEMPLATE,
BaseFileToolMixin,
FileValidationError,
)
class WriteFileInput(BaseModel):
"""Input for WriteFileTool."""
file_path: str = Field(..., description="name of file")
text: str = Field(..., description="text to write to file")
append: bool = Field(
default=False, description="Whether to append to an existing file."
)
[docs]class WriteFileTool(BaseFileToolMixin, BaseTool):
name: str = "write_file"
args_schema: Type[BaseModel] = WriteFileInput
description: str = "Write file to disk"
def _run(
self,
file_path: str,
text: str,
append: bool = False,
run_manager: Optional[CallbackManagerForToolRun] = None,
) -> str:
try:
write_path = self.get_relative_path(file_path)
except FileValidationError:
return INVALID_PATH_TEMPLATE.format(arg_name="file_path", value=file_path)
try:
write_path.parent.mkdir(exist_ok=True, parents=False)
mode = "a" if append else "w"
with write_path.open(mode, encoding="utf-8") as f:
f.write(text)
return f"File written successfully to {file_path}."
except Exception as e:
return "Error: " + str(e)
|
https://api.python.langchain.com/en/latest/_modules/langchain/tools/file_management/write.html
|
e1f1b043e809-1
|
except Exception as e:
return "Error: " + str(e)
async def _arun(
self,
file_path: str,
text: str,
append: bool = False,
run_manager: Optional[AsyncCallbackManagerForToolRun] = None,
) -> str:
# TODO: Add aiofiles method
raise NotImplementedError
|
https://api.python.langchain.com/en/latest/_modules/langchain/tools/file_management/write.html
|
105f7996bd4b-0
|
Source code for langchain.tools.zapier.tool
"""## Zapier Natural Language Actions API
\
Full docs here: https://nla.zapier.com/start/
**Zapier Natural Language Actions** gives you access to the 5k+ apps, 20k+ actions
on Zapier's platform through a natural language API interface.
NLA supports apps like Gmail, Salesforce, Trello, Slack, Asana, HubSpot, Google Sheets,
Microsoft Teams, and thousands more apps: https://zapier.com/apps
Zapier NLA handles ALL the underlying API auth and translation from
natural language --> underlying API call --> return simplified output for LLMs
The key idea is you, or your users, expose a set of actions via an oauth-like setup
window, which you can then query and execute via a REST API.
NLA offers both API Key and OAuth for signing NLA API requests.
1. Server-side (API Key): for quickly getting started, testing, and production scenarios
where LangChain will only use actions exposed in the developer's Zapier account
(and will use the developer's connected accounts on Zapier.com)
2. User-facing (Oauth): for production scenarios where you are deploying an end-user
facing application and LangChain needs access to end-user's exposed actions and
connected accounts on Zapier.com
This quick start will focus on the server-side use case for brevity.
Review [full docs](https://nla.zapier.com/start/) for user-facing oauth developer
support.
Typically, you'd use SequentialChain, here's a basic example:
1. Use NLA to find an email in Gmail
2. Use LLMChain to generate a draft reply to (1)
|
https://api.python.langchain.com/en/latest/_modules/langchain/tools/zapier/tool.html
|
105f7996bd4b-1
|
2. Use LLMChain to generate a draft reply to (1)
3. Use NLA to send the draft reply (2) to someone in Slack via direct message
In code, below:
```python
import os
# get from https://platform.openai.com/
os.environ["OPENAI_API_KEY"] = os.environ.get("OPENAI_API_KEY", "")
# get from https://nla.zapier.com/docs/authentication/
os.environ["ZAPIER_NLA_API_KEY"] = os.environ.get("ZAPIER_NLA_API_KEY", "")
from langchain.llms import OpenAI
from langchain.agents import initialize_agent
from langchain.agents.agent_toolkits import ZapierToolkit
from langchain.utilities.zapier import ZapierNLAWrapper
## step 0. expose gmail 'find email' and slack 'send channel message' actions
# first go here, log in, expose (enable) the two actions:
# https://nla.zapier.com/demo/start
# -- for this example, can leave all fields "Have AI guess"
# in an oauth scenario, you'd get your own <provider> id (instead of 'demo')
# which you route your users through first
llm = OpenAI(temperature=0)
zapier = ZapierNLAWrapper()
## To leverage OAuth you may pass the value `nla_oauth_access_token` to
## the ZapierNLAWrapper. If you do this there is no need to initialize
## the ZAPIER_NLA_API_KEY env variable
# zapier = ZapierNLAWrapper(zapier_nla_oauth_access_token="TOKEN_HERE")
toolkit = ZapierToolkit.from_zapier_nla_wrapper(zapier)
agent = initialize_agent(
toolkit.get_tools(),
llm,
|
https://api.python.langchain.com/en/latest/_modules/langchain/tools/zapier/tool.html
|
105f7996bd4b-2
|
agent = initialize_agent(
toolkit.get_tools(),
llm,
agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION,
verbose=True
)
agent.run(("Summarize the last email I received regarding Silicon Valley Bank. "
"Send the summary to the #test-zapier channel in slack."))
```
"""
from typing import Any, Dict, Optional
from pydantic import Field, root_validator
from langchain.callbacks.manager import (
AsyncCallbackManagerForToolRun,
CallbackManagerForToolRun,
)
from langchain.tools.base import BaseTool
from langchain.tools.zapier.prompt import BASE_ZAPIER_TOOL_PROMPT
from langchain.utilities.zapier import ZapierNLAWrapper
[docs]class ZapierNLARunAction(BaseTool):
"""
Args:
action_id: a specific action ID (from list actions) of the action to execute
(the set api_key must be associated with the action owner)
instructions: a natural language instruction string for using the action
(eg. "get the latest email from Mike Knoop" for "Gmail: find email" action)
params: a dict, optional. Any params provided will *override* AI guesses
from `instructions` (see "understanding the AI guessing flow" here:
https://nla.zapier.com/docs/using-the-api#ai-guessing)
"""
api_wrapper: ZapierNLAWrapper = Field(default_factory=ZapierNLAWrapper)
action_id: str
params: Optional[dict] = None
base_prompt: str = BASE_ZAPIER_TOOL_PROMPT
zapier_description: str
params_schema: Dict[str, str] = Field(default_factory=dict)
name = ""
description = ""
|
https://api.python.langchain.com/en/latest/_modules/langchain/tools/zapier/tool.html
|
105f7996bd4b-3
|
name = ""
description = ""
@root_validator
def set_name_description(cls, values: Dict[str, Any]) -> Dict[str, Any]:
zapier_description = values["zapier_description"]
params_schema = values["params_schema"]
if "instructions" in params_schema:
del params_schema["instructions"]
# Ensure base prompt (if overrided) contains necessary input fields
necessary_fields = {"{zapier_description}", "{params}"}
if not all(field in values["base_prompt"] for field in necessary_fields):
raise ValueError(
"Your custom base Zapier prompt must contain input fields for "
"{zapier_description} and {params}."
)
values["name"] = zapier_description
values["description"] = values["base_prompt"].format(
zapier_description=zapier_description,
params=str(list(params_schema.keys())),
)
return values
def _run(
self, instructions: str, run_manager: Optional[CallbackManagerForToolRun] = None
) -> str:
"""Use the Zapier NLA tool to return a list of all exposed user actions."""
return self.api_wrapper.run_as_str(self.action_id, instructions, self.params)
async def _arun(
self,
instructions: str,
run_manager: Optional[AsyncCallbackManagerForToolRun] = None,
) -> str:
"""Use the Zapier NLA tool to return a list of all exposed user actions."""
return await self.api_wrapper.arun_as_str(
self.action_id,
instructions,
self.params,
)
ZapierNLARunAction.__doc__ = (
|
https://api.python.langchain.com/en/latest/_modules/langchain/tools/zapier/tool.html
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.