id
stringlengths
14
16
text
stringlengths
31
2.41k
source
stringlengths
53
121
7744ce54b709-0
Source code for langchain.llms.beam """Wrapper around Beam API.""" import base64 import json import logging import subprocess import textwrap import time from typing import Any, Dict, List, Mapping, Optional import requests from pydantic import Extra, Field, root_validator from langchain.callbacks.manager import CallbackManagerForLLMRun from langchain.llms.base import LLM from langchain.utils import get_from_dict_or_env logger = logging.getLogger(__name__) DEFAULT_NUM_TRIES = 10 DEFAULT_SLEEP_TIME = 4 [docs]class Beam(LLM): """Wrapper around Beam API for gpt2 large language model. To use, you should have the ``beam-sdk`` python package installed, and the environment variable ``BEAM_CLIENT_ID`` set with your client id and ``BEAM_CLIENT_SECRET`` set with your client secret. Information on how to get these is available here: https://docs.beam.cloud/account/api-keys. The wrapper can then be called as follows, where the name, cpu, memory, gpu, python version, and python packages can be updated accordingly. Once deployed, the instance can be called. Example: .. code-block:: python llm = Beam(model_name="gpt2", name="langchain-gpt2", cpu=8, memory="32Gi", gpu="A10G", python_version="python3.8", python_packages=[ "diffusers[torch]>=0.10", "transformers", "torch", "pillow", "accelerate", "safetensors", "xformers",], max_length=50) llm._deploy()
https://api.python.langchain.com/en/latest/_modules/langchain/llms/beam.html
7744ce54b709-1
max_length=50) llm._deploy() call_result = llm._call(input) """ model_name: str = "" name: str = "" cpu: str = "" memory: str = "" gpu: str = "" python_version: str = "" python_packages: List[str] = [] max_length: str = "" url: str = "" """model endpoint to use""" model_kwargs: Dict[str, Any] = Field(default_factory=dict) """Holds any model parameters valid for `create` call not explicitly specified.""" beam_client_id: str = "" beam_client_secret: str = "" app_id: Optional[str] = None class Config: """Configuration for this pydantic config.""" extra = Extra.forbid @root_validator(pre=True) def build_extra(cls, values: Dict[str, Any]) -> Dict[str, Any]: """Build extra kwargs from additional params that were passed in.""" all_required_field_names = {field.alias for field in cls.__fields__.values()} extra = values.get("model_kwargs", {}) for field_name in list(values): if field_name not in all_required_field_names: if field_name in extra: raise ValueError(f"Found {field_name} supplied twice.") logger.warning( f"""{field_name} was transfered to model_kwargs. Please confirm that {field_name} is what you intended.""" ) extra[field_name] = values.pop(field_name) values["model_kwargs"] = extra return values @root_validator() def validate_environment(cls, values: Dict) -> Dict:
https://api.python.langchain.com/en/latest/_modules/langchain/llms/beam.html
7744ce54b709-2
@root_validator() def validate_environment(cls, values: Dict) -> Dict: """Validate that api key and python package exists in environment.""" beam_client_id = get_from_dict_or_env( values, "beam_client_id", "BEAM_CLIENT_ID" ) beam_client_secret = get_from_dict_or_env( values, "beam_client_secret", "BEAM_CLIENT_SECRET" ) values["beam_client_id"] = beam_client_id values["beam_client_secret"] = beam_client_secret return values @property def _identifying_params(self) -> Mapping[str, Any]: """Get the identifying parameters.""" return { "model_name": self.model_name, "name": self.name, "cpu": self.cpu, "memory": self.memory, "gpu": self.gpu, "python_version": self.python_version, "python_packages": self.python_packages, "max_length": self.max_length, "model_kwargs": self.model_kwargs, } @property def _llm_type(self) -> str: """Return type of llm.""" return "beam" [docs] def app_creation(self) -> None: """Creates a Python file which will contain your Beam app definition.""" script = textwrap.dedent( """\ import beam # The environment your code will run on app = beam.App( name="{name}", cpu={cpu}, memory="{memory}", gpu="{gpu}", python_version="{python_version}", python_packages={python_packages}, ) app.Trigger.RestAPI(
https://api.python.langchain.com/en/latest/_modules/langchain/llms/beam.html
7744ce54b709-3
python_packages={python_packages}, ) app.Trigger.RestAPI( inputs={{"prompt": beam.Types.String(), "max_length": beam.Types.String()}}, outputs={{"text": beam.Types.String()}}, handler="run.py:beam_langchain", ) """ ) script_name = "app.py" with open(script_name, "w") as file: file.write( script.format( name=self.name, cpu=self.cpu, memory=self.memory, gpu=self.gpu, python_version=self.python_version, python_packages=self.python_packages, ) ) [docs] def run_creation(self) -> None: """Creates a Python file which will be deployed on beam.""" script = textwrap.dedent( """ import os import transformers from transformers import GPT2LMHeadModel, GPT2Tokenizer model_name = "{model_name}" def beam_langchain(**inputs): prompt = inputs["prompt"] length = inputs["max_length"] tokenizer = GPT2Tokenizer.from_pretrained(model_name) model = GPT2LMHeadModel.from_pretrained(model_name) encodedPrompt = tokenizer.encode(prompt, return_tensors='pt') outputs = model.generate(encodedPrompt, max_length=int(length), do_sample=True, pad_token_id=tokenizer.eos_token_id) output = tokenizer.decode(outputs[0], skip_special_tokens=True) print(output) return {{"text": output}} """ ) script_name = "run.py" with open(script_name, "w") as file: file.write(script.format(model_name=self.model_name))
https://api.python.langchain.com/en/latest/_modules/langchain/llms/beam.html
7744ce54b709-4
file.write(script.format(model_name=self.model_name)) def _deploy(self) -> str: """Call to Beam.""" try: import beam # type: ignore if beam.__path__ == "": raise ImportError except ImportError: raise ImportError( "Could not import beam python package. " "Please install it with `curl " "https://raw.githubusercontent.com/slai-labs" "/get-beam/main/get-beam.sh -sSfL | sh`." ) self.app_creation() self.run_creation() process = subprocess.run( "beam deploy app.py", shell=True, capture_output=True, text=True ) if process.returncode == 0: output = process.stdout logger.info(output) lines = output.split("\n") for line in lines: if line.startswith(" i Send requests to: https://apps.beam.cloud/"): self.app_id = line.split("/")[-1] self.url = line.split(":")[1].strip() return self.app_id raise ValueError( f"""Failed to retrieve the appID from the deployment output. Deployment output: {output}""" ) else: raise ValueError(f"Deployment failed. Error: {process.stderr}") @property def authorization(self) -> str: if self.beam_client_id: credential_str = self.beam_client_id + ":" + self.beam_client_secret else: credential_str = self.beam_client_secret return base64.b64encode(credential_str.encode()).decode() def _call( self, prompt: str, stop: Optional[list] = None,
https://api.python.langchain.com/en/latest/_modules/langchain/llms/beam.html
7744ce54b709-5
self, prompt: str, stop: Optional[list] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> str: """Call to Beam.""" url = "https://apps.beam.cloud/" + self.app_id if self.app_id else self.url payload = {"prompt": prompt, "max_length": self.max_length} payload.update(kwargs) headers = { "Accept": "*/*", "Accept-Encoding": "gzip, deflate", "Authorization": "Basic " + self.authorization, "Connection": "keep-alive", "Content-Type": "application/json", } for _ in range(DEFAULT_NUM_TRIES): request = requests.post(url, headers=headers, data=json.dumps(payload)) if request.status_code == 200: return request.json()["text"] time.sleep(DEFAULT_SLEEP_TIME) logger.warning("Unable to successfully call model.") return ""
https://api.python.langchain.com/en/latest/_modules/langchain/llms/beam.html
6424d3c807bc-0
Source code for langchain.llms.gpt4all """Wrapper for the GPT4All model.""" from functools import partial from typing import Any, Dict, List, Mapping, Optional, Set from pydantic import Extra, Field, root_validator from langchain.callbacks.manager import CallbackManagerForLLMRun from langchain.llms.base import LLM from langchain.llms.utils import enforce_stop_tokens [docs]class GPT4All(LLM): r"""Wrapper around GPT4All language models. To use, you should have the ``gpt4all`` python package installed, the pre-trained model file, and the model's config information. Example: .. code-block:: python from langchain.llms import GPT4All model = GPT4All(model="./models/gpt4all-model.bin", n_ctx=512, n_threads=8) # Simplest invocation response = model("Once upon a time, ") """ model: str """Path to the pre-trained GPT4All model file.""" backend: Optional[str] = Field(None, alias="backend") n_ctx: int = Field(512, alias="n_ctx") """Token context window.""" n_parts: int = Field(-1, alias="n_parts") """Number of parts to split the model into. If -1, the number of parts is automatically determined.""" seed: int = Field(0, alias="seed") """Seed. If -1, a random seed is used.""" f16_kv: bool = Field(False, alias="f16_kv") """Use half-precision for key/value cache.""" logits_all: bool = Field(False, alias="logits_all")
https://api.python.langchain.com/en/latest/_modules/langchain/llms/gpt4all.html
6424d3c807bc-1
logits_all: bool = Field(False, alias="logits_all") """Return logits for all tokens, not just the last token.""" vocab_only: bool = Field(False, alias="vocab_only") """Only load the vocabulary, no weights.""" use_mlock: bool = Field(False, alias="use_mlock") """Force system to keep model in RAM.""" embedding: bool = Field(False, alias="embedding") """Use embedding mode only.""" n_threads: Optional[int] = Field(4, alias="n_threads") """Number of threads to use.""" n_predict: Optional[int] = 256 """The maximum number of tokens to generate.""" temp: Optional[float] = 0.8 """The temperature to use for sampling.""" top_p: Optional[float] = 0.95 """The top-p value to use for sampling.""" top_k: Optional[int] = 40 """The top-k value to use for sampling.""" echo: Optional[bool] = False """Whether to echo the prompt.""" stop: Optional[List[str]] = [] """A list of strings to stop generation when encountered.""" repeat_last_n: Optional[int] = 64 "Last n tokens to penalize" repeat_penalty: Optional[float] = 1.3 """The penalty to apply to repeated tokens.""" n_batch: int = Field(1, alias="n_batch") """Batch size for prompt processing.""" streaming: bool = False """Whether to stream the results or not.""" context_erase: float = 0.5 """Leave (n_ctx * context_erase) tokens starting from beginning if the context has run out.""" allow_download: bool = False
https://api.python.langchain.com/en/latest/_modules/langchain/llms/gpt4all.html
6424d3c807bc-2
starting from beginning if the context has run out.""" allow_download: bool = False """If model does not exist in ~/.cache/gpt4all/, download it.""" client: Any = None #: :meta private: class Config: """Configuration for this pydantic object.""" extra = Extra.forbid @staticmethod def _model_param_names() -> Set[str]: return { "n_ctx", "n_predict", "top_k", "top_p", "temp", "n_batch", "repeat_penalty", "repeat_last_n", "context_erase", } def _default_params(self) -> Dict[str, Any]: return { "n_ctx": self.n_ctx, "n_predict": self.n_predict, "top_k": self.top_k, "top_p": self.top_p, "temp": self.temp, "n_batch": self.n_batch, "repeat_penalty": self.repeat_penalty, "repeat_last_n": self.repeat_last_n, "context_erase": self.context_erase, } @root_validator() def validate_environment(cls, values: Dict) -> Dict: """Validate that the python package exists in the environment.""" try: from gpt4all import GPT4All as GPT4AllModel except ImportError: raise ImportError( "Could not import gpt4all python package. " "Please install it with `pip install gpt4all`." ) full_path = values["model"] model_path, delimiter, model_name = full_path.rpartition("/") model_path += delimiter
https://api.python.langchain.com/en/latest/_modules/langchain/llms/gpt4all.html
6424d3c807bc-3
model_path += delimiter values["client"] = GPT4AllModel( model_name, model_path=model_path or None, model_type=values["backend"], allow_download=values["allow_download"], ) if values["n_threads"] is not None: # set n_threads values["client"].model.set_thread_count(values["n_threads"]) try: values["backend"] = values["client"].model_type except AttributeError: # The below is for compatibility with GPT4All Python bindings <= 0.2.3. values["backend"] = values["client"].model.model_type return values @property def _identifying_params(self) -> Mapping[str, Any]: """Get the identifying parameters.""" return { "model": self.model, **self._default_params(), **{ k: v for k, v in self.__dict__.items() if k in self._model_param_names() }, } @property def _llm_type(self) -> str: """Return the type of llm.""" return "gpt4all" def _call( self, prompt: str, stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> str: r"""Call out to GPT4All's generate method. Args: prompt: The prompt to pass into the model. stop: A list of strings to stop generation when encountered. Returns: The string generated by the model. Example: .. code-block:: python
https://api.python.langchain.com/en/latest/_modules/langchain/llms/gpt4all.html
6424d3c807bc-4
The string generated by the model. Example: .. code-block:: python prompt = "Once upon a time, " response = model(prompt, n_predict=55) """ text_callback = None if run_manager: text_callback = partial(run_manager.on_llm_new_token, verbose=self.verbose) text = "" params = {**self._default_params(), **kwargs} for token in self.client.generate(prompt, **params): if text_callback: text_callback(token) text += token if stop is not None: text = enforce_stop_tokens(text, stop) return text
https://api.python.langchain.com/en/latest/_modules/langchain/llms/gpt4all.html
091abb7a9dc7-0
Source code for langchain.llms.mosaicml """Wrapper around MosaicML APIs.""" from typing import Any, Dict, List, Mapping, Optional import requests from pydantic import Extra, root_validator from langchain.callbacks.manager import CallbackManagerForLLMRun from langchain.llms.base import LLM from langchain.llms.utils import enforce_stop_tokens from langchain.utils import get_from_dict_or_env INSTRUCTION_KEY = "### Instruction:" RESPONSE_KEY = "### Response:" INTRO_BLURB = ( "Below is an instruction that describes a task. " "Write a response that appropriately completes the request." ) PROMPT_FOR_GENERATION_FORMAT = """{intro} {instruction_key} {instruction} {response_key} """.format( intro=INTRO_BLURB, instruction_key=INSTRUCTION_KEY, instruction="{instruction}", response_key=RESPONSE_KEY, ) [docs]class MosaicML(LLM): """Wrapper around MosaicML's LLM inference service. To use, you should have the environment variable ``MOSAICML_API_TOKEN`` set with your API token, or pass it as a named parameter to the constructor. Example: .. code-block:: python from langchain.llms import MosaicML endpoint_url = ( "https://models.hosted-on.mosaicml.hosting/mpt-7b-instruct/v1/predict" ) mosaic_llm = MosaicML( endpoint_url=endpoint_url, mosaicml_api_token="my-api-key" ) """ endpoint_url: str = (
https://api.python.langchain.com/en/latest/_modules/langchain/llms/mosaicml.html
091abb7a9dc7-1
) """ endpoint_url: str = ( "https://models.hosted-on.mosaicml.hosting/mpt-7b-instruct/v1/predict" ) """Endpoint URL to use.""" inject_instruction_format: bool = False """Whether to inject the instruction format into the prompt.""" model_kwargs: Optional[dict] = None """Key word arguments to pass to the model.""" retry_sleep: float = 1.0 """How long to try sleeping for if a rate limit is encountered""" mosaicml_api_token: Optional[str] = None class Config: """Configuration for this pydantic object.""" extra = Extra.forbid @root_validator() def validate_environment(cls, values: Dict) -> Dict: """Validate that api key and python package exists in environment.""" mosaicml_api_token = get_from_dict_or_env( values, "mosaicml_api_token", "MOSAICML_API_TOKEN" ) values["mosaicml_api_token"] = mosaicml_api_token return values @property def _identifying_params(self) -> Mapping[str, Any]: """Get the identifying parameters.""" _model_kwargs = self.model_kwargs or {} return { **{"endpoint_url": self.endpoint_url}, **{"model_kwargs": _model_kwargs}, } @property def _llm_type(self) -> str: """Return type of llm.""" return "mosaic" def _transform_prompt(self, prompt: str) -> str: """Transform prompt.""" if self.inject_instruction_format: prompt = PROMPT_FOR_GENERATION_FORMAT.format( instruction=prompt, ) return prompt
https://api.python.langchain.com/en/latest/_modules/langchain/llms/mosaicml.html
091abb7a9dc7-2
instruction=prompt, ) return prompt def _call( self, prompt: str, stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, is_retry: bool = False, **kwargs: Any, ) -> str: """Call out to a MosaicML LLM inference endpoint. Args: prompt: The prompt to pass into the model. stop: Optional list of stop words to use when generating. Returns: The string generated by the model. Example: .. code-block:: python response = mosaic_llm("Tell me a joke.") """ _model_kwargs = self.model_kwargs or {} prompt = self._transform_prompt(prompt) payload = {"input_strings": [prompt]} payload.update(_model_kwargs) payload.update(kwargs) # HTTP headers for authorization headers = { "Authorization": f"{self.mosaicml_api_token}", "Content-Type": "application/json", } # send request try: response = requests.post(self.endpoint_url, headers=headers, json=payload) except requests.exceptions.RequestException as e: raise ValueError(f"Error raised by inference endpoint: {e}") try: parsed_response = response.json() if "error" in parsed_response: # if we get rate limited, try sleeping for 1 second if ( not is_retry and "rate limit exceeded" in parsed_response["error"].lower() ): import time time.sleep(self.retry_sleep) return self._call(prompt, stop, run_manager, is_retry=True) raise ValueError(
https://api.python.langchain.com/en/latest/_modules/langchain/llms/mosaicml.html
091abb7a9dc7-3
raise ValueError( f"Error raised by inference API: {parsed_response['error']}" ) # The inference API has changed a couple of times, so we add some handling # to be robust to multiple response formats. if isinstance(parsed_response, dict): if "data" in parsed_response: output_item = parsed_response["data"] elif "output" in parsed_response: output_item = parsed_response["output"] else: raise ValueError( f"No key data or output in response: {parsed_response}" ) if isinstance(output_item, list): text = output_item[0] else: text = output_item elif isinstance(parsed_response, list): first_item = parsed_response[0] if isinstance(first_item, str): text = first_item elif isinstance(first_item, dict): if "output" in parsed_response: text = first_item["output"] else: raise ValueError( f"No key data or output in response: {parsed_response}" ) else: raise ValueError(f"Unexpected response format: {parsed_response}") else: raise ValueError(f"Unexpected response type: {parsed_response}") text = text[len(prompt) :] except requests.exceptions.JSONDecodeError as e: raise ValueError( f"Error raised by inference API: {e}.\nResponse: {response.text}" ) # TODO: replace when MosaicML supports custom stop tokens natively if stop is not None: text = enforce_stop_tokens(text, stop) return text
https://api.python.langchain.com/en/latest/_modules/langchain/llms/mosaicml.html
fffc8ddb2863-0
Source code for langchain.llms.self_hosted_hugging_face """Wrapper around HuggingFace Pipeline API to run on self-hosted remote hardware.""" import importlib.util import logging from typing import Any, Callable, List, Mapping, Optional from pydantic import Extra from langchain.callbacks.manager import CallbackManagerForLLMRun from langchain.llms.self_hosted import SelfHostedPipeline from langchain.llms.utils import enforce_stop_tokens DEFAULT_MODEL_ID = "gpt2" DEFAULT_TASK = "text-generation" VALID_TASKS = ("text2text-generation", "text-generation", "summarization") logger = logging.getLogger(__name__) def _generate_text( pipeline: Any, prompt: str, *args: Any, stop: Optional[List[str]] = None, **kwargs: Any, ) -> str: """Inference function to send to the remote hardware. Accepts a Hugging Face pipeline (or more likely, a key pointing to such a pipeline on the cluster's object store) and returns generated text. """ response = pipeline(prompt, *args, **kwargs) if pipeline.task == "text-generation": # Text generation return includes the starter text. text = response[0]["generated_text"][len(prompt) :] elif pipeline.task == "text2text-generation": text = response[0]["generated_text"] elif pipeline.task == "summarization": text = response[0]["summary_text"] else: raise ValueError( f"Got invalid task {pipeline.task}, " f"currently only {VALID_TASKS} are supported" ) if stop is not None: text = enforce_stop_tokens(text, stop) return text
https://api.python.langchain.com/en/latest/_modules/langchain/llms/self_hosted_hugging_face.html
fffc8ddb2863-1
text = enforce_stop_tokens(text, stop) return text def _load_transformer( model_id: str = DEFAULT_MODEL_ID, task: str = DEFAULT_TASK, device: int = 0, model_kwargs: Optional[dict] = None, ) -> Any: """Inference function to send to the remote hardware. Accepts a huggingface model_id and returns a pipeline for the task. """ from transformers import AutoModelForCausalLM, AutoModelForSeq2SeqLM, AutoTokenizer from transformers import pipeline as hf_pipeline _model_kwargs = model_kwargs or {} tokenizer = AutoTokenizer.from_pretrained(model_id, **_model_kwargs) try: if task == "text-generation": model = AutoModelForCausalLM.from_pretrained(model_id, **_model_kwargs) elif task in ("text2text-generation", "summarization"): model = AutoModelForSeq2SeqLM.from_pretrained(model_id, **_model_kwargs) else: raise ValueError( f"Got invalid task {task}, " f"currently only {VALID_TASKS} are supported" ) except ImportError as e: raise ValueError( f"Could not load the {task} model due to missing dependencies." ) from e if importlib.util.find_spec("torch") is not None: import torch cuda_device_count = torch.cuda.device_count() if device < -1 or (device >= cuda_device_count): raise ValueError( f"Got device=={device}, " f"device is required to be within [-1, {cuda_device_count})" )
https://api.python.langchain.com/en/latest/_modules/langchain/llms/self_hosted_hugging_face.html
fffc8ddb2863-2
) if device < 0 and cuda_device_count > 0: logger.warning( "Device has %d GPUs available. " "Provide device={deviceId} to `from_model_id` to use available" "GPUs for execution. deviceId is -1 for CPU and " "can be a positive integer associated with CUDA device id.", cuda_device_count, ) pipeline = hf_pipeline( task=task, model=model, tokenizer=tokenizer, device=device, model_kwargs=_model_kwargs, ) if pipeline.task not in VALID_TASKS: raise ValueError( f"Got invalid task {pipeline.task}, " f"currently only {VALID_TASKS} are supported" ) return pipeline [docs]class SelfHostedHuggingFaceLLM(SelfHostedPipeline): """Wrapper around HuggingFace Pipeline API to run on self-hosted remote hardware. Supported hardware includes auto-launched instances on AWS, GCP, Azure, and Lambda, as well as servers specified by IP address and SSH credentials (such as on-prem, or another cloud like Paperspace, Coreweave, etc.). To use, you should have the ``runhouse`` python package installed. Only supports `text-generation`, `text2text-generation` and `summarization` for now. Example using from_model_id: .. code-block:: python from langchain.llms import SelfHostedHuggingFaceLLM import runhouse as rh gpu = rh.cluster(name="rh-a10x", instance_type="A100:1") hf = SelfHostedHuggingFaceLLM(
https://api.python.langchain.com/en/latest/_modules/langchain/llms/self_hosted_hugging_face.html
fffc8ddb2863-3
hf = SelfHostedHuggingFaceLLM( model_id="google/flan-t5-large", task="text2text-generation", hardware=gpu ) Example passing fn that generates a pipeline (bc the pipeline is not serializable): .. code-block:: python from langchain.llms import SelfHostedHuggingFaceLLM from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline import runhouse as rh def get_pipeline(): model_id = "gpt2" tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained(model_id) pipe = pipeline( "text-generation", model=model, tokenizer=tokenizer ) return pipe hf = SelfHostedHuggingFaceLLM( model_load_fn=get_pipeline, model_id="gpt2", hardware=gpu) """ model_id: str = DEFAULT_MODEL_ID """Hugging Face model_id to load the model.""" task: str = DEFAULT_TASK """Hugging Face task ("text-generation", "text2text-generation" or "summarization").""" device: int = 0 """Device to use for inference. -1 for CPU, 0 for GPU, 1 for second GPU, etc.""" model_kwargs: Optional[dict] = None """Key word arguments to pass to the model.""" hardware: Any """Remote hardware to send the inference function to.""" model_reqs: List[str] = ["./", "transformers", "torch"] """Requirements to install on hardware to inference the model.""" model_load_fn: Callable = _load_transformer """Function to load the model remotely on the server."""
https://api.python.langchain.com/en/latest/_modules/langchain/llms/self_hosted_hugging_face.html
fffc8ddb2863-4
"""Function to load the model remotely on the server.""" inference_fn: Callable = _generate_text #: :meta private: """Inference function to send to the remote hardware.""" class Config: """Configuration for this pydantic object.""" extra = Extra.forbid def __init__(self, **kwargs: Any): """Construct the pipeline remotely using an auxiliary function. The load function needs to be importable to be imported and run on the server, i.e. in a module and not a REPL or closure. Then, initialize the remote inference function. """ load_fn_kwargs = { "model_id": kwargs.get("model_id", DEFAULT_MODEL_ID), "task": kwargs.get("task", DEFAULT_TASK), "device": kwargs.get("device", 0), "model_kwargs": kwargs.get("model_kwargs", None), } super().__init__(load_fn_kwargs=load_fn_kwargs, **kwargs) @property def _identifying_params(self) -> Mapping[str, Any]: """Get the identifying parameters.""" return { **{"model_id": self.model_id}, **{"model_kwargs": self.model_kwargs}, } @property def _llm_type(self) -> str: return "selfhosted_huggingface_pipeline" def _call( self, prompt: str, stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> str: return self.client( pipeline=self.pipeline_ref, prompt=prompt, stop=stop, **kwargs )
https://api.python.langchain.com/en/latest/_modules/langchain/llms/self_hosted_hugging_face.html
c1572e618812-0
Source code for langchain.llms.writer """Wrapper around Writer APIs.""" from typing import Any, Dict, List, Mapping, Optional import requests from pydantic import Extra, root_validator from langchain.callbacks.manager import CallbackManagerForLLMRun from langchain.llms.base import LLM from langchain.llms.utils import enforce_stop_tokens from langchain.utils import get_from_dict_or_env [docs]class Writer(LLM): """Wrapper around Writer large language models. To use, you should have the environment variable ``WRITER_API_KEY`` and ``WRITER_ORG_ID`` set with your API key and organization ID respectively. Example: .. code-block:: python from langchain import Writer writer = Writer(model_id="palmyra-base") """ writer_org_id: Optional[str] = None """Writer organization ID.""" model_id: str = "palmyra-instruct" """Model name to use.""" min_tokens: Optional[int] = None """Minimum number of tokens to generate.""" max_tokens: Optional[int] = None """Maximum number of tokens to generate.""" temperature: Optional[float] = None """What sampling temperature to use.""" top_p: Optional[float] = None """Total probability mass of tokens to consider at each step.""" stop: Optional[List[str]] = None """Sequences when completion generation will stop.""" presence_penalty: Optional[float] = None """Penalizes repeated tokens regardless of frequency.""" repetition_penalty: Optional[float] = None """Penalizes repeated tokens according to frequency.""" best_of: Optional[int] = None """Generates this many completions server-side and returns the "best".""" logprobs: bool = False
https://api.python.langchain.com/en/latest/_modules/langchain/llms/writer.html
c1572e618812-1
logprobs: bool = False """Whether to return log probabilities.""" n: Optional[int] = None """How many completions to generate.""" writer_api_key: Optional[str] = None """Writer API key.""" base_url: Optional[str] = None """Base url to use, if None decides based on model name.""" class Config: """Configuration for this pydantic object.""" extra = Extra.forbid @root_validator() def validate_environment(cls, values: Dict) -> Dict: """Validate that api key and organization id exist in environment.""" writer_api_key = get_from_dict_or_env( values, "writer_api_key", "WRITER_API_KEY" ) values["writer_api_key"] = writer_api_key writer_org_id = get_from_dict_or_env(values, "writer_org_id", "WRITER_ORG_ID") values["writer_org_id"] = writer_org_id return values @property def _default_params(self) -> Mapping[str, Any]: """Get the default parameters for calling Writer API.""" return { "minTokens": self.min_tokens, "maxTokens": self.max_tokens, "temperature": self.temperature, "topP": self.top_p, "stop": self.stop, "presencePenalty": self.presence_penalty, "repetitionPenalty": self.repetition_penalty, "bestOf": self.best_of, "logprobs": self.logprobs, "n": self.n, } @property def _identifying_params(self) -> Mapping[str, Any]: """Get the identifying parameters.""" return {
https://api.python.langchain.com/en/latest/_modules/langchain/llms/writer.html
c1572e618812-2
"""Get the identifying parameters.""" return { **{"model_id": self.model_id, "writer_org_id": self.writer_org_id}, **self._default_params, } @property def _llm_type(self) -> str: """Return type of llm.""" return "writer" def _call( self, prompt: str, stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> str: """Call out to Writer's completions endpoint. Args: prompt: The prompt to pass into the model. stop: Optional list of stop words to use when generating. Returns: The string generated by the model. Example: .. code-block:: python response = Writer("Tell me a joke.") """ if self.base_url is not None: base_url = self.base_url else: base_url = ( "https://enterprise-api.writer.com/llm" f"/organization/{self.writer_org_id}" f"/model/{self.model_id}/completions" ) params = {**self._default_params, **kwargs} response = requests.post( url=base_url, headers={ "Authorization": f"{self.writer_api_key}", "Content-Type": "application/json", "Accept": "application/json", }, json={"prompt": prompt, **params}, ) text = response.text if stop is not None: # I believe this is required since the stop tokens # are not enforced by the model parameters
https://api.python.langchain.com/en/latest/_modules/langchain/llms/writer.html
c1572e618812-3
# are not enforced by the model parameters text = enforce_stop_tokens(text, stop) return text
https://api.python.langchain.com/en/latest/_modules/langchain/llms/writer.html
5294a5213db8-0
Source code for langchain.llms.modal """Wrapper around Modal API.""" import logging from typing import Any, Dict, List, Mapping, Optional import requests from pydantic import Extra, Field, root_validator from langchain.callbacks.manager import CallbackManagerForLLMRun from langchain.llms.base import LLM from langchain.llms.utils import enforce_stop_tokens logger = logging.getLogger(__name__) [docs]class Modal(LLM): """Wrapper around Modal large language models. To use, you should have the ``modal-client`` python package installed. Any parameters that are valid to be passed to the call can be passed in, even if not explicitly saved on this class. Example: .. code-block:: python from langchain.llms import Modal modal = Modal(endpoint_url="") """ endpoint_url: str = "" """model endpoint to use""" model_kwargs: Dict[str, Any] = Field(default_factory=dict) """Holds any model parameters valid for `create` call not explicitly specified.""" class Config: """Configuration for this pydantic config.""" extra = Extra.forbid @root_validator(pre=True) def build_extra(cls, values: Dict[str, Any]) -> Dict[str, Any]: """Build extra kwargs from additional params that were passed in.""" all_required_field_names = {field.alias for field in cls.__fields__.values()} extra = values.get("model_kwargs", {}) for field_name in list(values): if field_name not in all_required_field_names: if field_name in extra: raise ValueError(f"Found {field_name} supplied twice.") logger.warning( f"""{field_name} was transfered to model_kwargs.
https://api.python.langchain.com/en/latest/_modules/langchain/llms/modal.html
5294a5213db8-1
logger.warning( f"""{field_name} was transfered to model_kwargs. Please confirm that {field_name} is what you intended.""" ) extra[field_name] = values.pop(field_name) values["model_kwargs"] = extra return values @property def _identifying_params(self) -> Mapping[str, Any]: """Get the identifying parameters.""" return { **{"endpoint_url": self.endpoint_url}, **{"model_kwargs": self.model_kwargs}, } @property def _llm_type(self) -> str: """Return type of llm.""" return "modal" def _call( self, prompt: str, stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> str: """Call to Modal endpoint.""" params = self.model_kwargs or {} params = {**params, **kwargs} response = requests.post( url=self.endpoint_url, headers={ "Content-Type": "application/json", }, json={"prompt": prompt, **params}, ) try: if prompt in response.json()["prompt"]: response_json = response.json() except KeyError: raise ValueError("LangChain requires 'prompt' key in response.") text = response_json["prompt"] if stop is not None: # I believe this is required since the stop tokens # are not enforced by the model parameters text = enforce_stop_tokens(text, stop) return text
https://api.python.langchain.com/en/latest/_modules/langchain/llms/modal.html
396539f8144f-0
Source code for langchain.llms.huggingface_hub """Wrapper around HuggingFace APIs.""" from typing import Any, Dict, List, Mapping, Optional from pydantic import Extra, root_validator from langchain.callbacks.manager import CallbackManagerForLLMRun from langchain.llms.base import LLM from langchain.llms.utils import enforce_stop_tokens from langchain.utils import get_from_dict_or_env DEFAULT_REPO_ID = "gpt2" VALID_TASKS = ("text2text-generation", "text-generation", "summarization") [docs]class HuggingFaceHub(LLM): """Wrapper around HuggingFaceHub models. To use, you should have the ``huggingface_hub`` python package installed, and the environment variable ``HUGGINGFACEHUB_API_TOKEN`` set with your API token, or pass it as a named parameter to the constructor. Only supports `text-generation`, `text2text-generation` and `summarization` for now. Example: .. code-block:: python from langchain.llms import HuggingFaceHub hf = HuggingFaceHub(repo_id="gpt2", huggingfacehub_api_token="my-api-key") """ client: Any #: :meta private: repo_id: str = DEFAULT_REPO_ID """Model name to use.""" task: Optional[str] = None """Task to call the model with. Should be a task that returns `generated_text` or `summary_text`.""" model_kwargs: Optional[dict] = None """Key word arguments to pass to the model.""" huggingfacehub_api_token: Optional[str] = None class Config: """Configuration for this pydantic object.""" extra = Extra.forbid
https://api.python.langchain.com/en/latest/_modules/langchain/llms/huggingface_hub.html
396539f8144f-1
"""Configuration for this pydantic object.""" extra = Extra.forbid @root_validator() def validate_environment(cls, values: Dict) -> Dict: """Validate that api key and python package exists in environment.""" huggingfacehub_api_token = get_from_dict_or_env( values, "huggingfacehub_api_token", "HUGGINGFACEHUB_API_TOKEN" ) try: from huggingface_hub.inference_api import InferenceApi repo_id = values["repo_id"] client = InferenceApi( repo_id=repo_id, token=huggingfacehub_api_token, task=values.get("task"), ) if client.task not in VALID_TASKS: raise ValueError( f"Got invalid task {client.task}, " f"currently only {VALID_TASKS} are supported" ) values["client"] = client except ImportError: raise ValueError( "Could not import huggingface_hub python package. " "Please install it with `pip install huggingface_hub`." ) return values @property def _identifying_params(self) -> Mapping[str, Any]: """Get the identifying parameters.""" _model_kwargs = self.model_kwargs or {} return { **{"repo_id": self.repo_id, "task": self.task}, **{"model_kwargs": _model_kwargs}, } @property def _llm_type(self) -> str: """Return type of llm.""" return "huggingface_hub" def _call( self, prompt: str, stop: Optional[List[str]] = None,
https://api.python.langchain.com/en/latest/_modules/langchain/llms/huggingface_hub.html
396539f8144f-2
prompt: str, stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> str: """Call out to HuggingFace Hub's inference endpoint. Args: prompt: The prompt to pass into the model. stop: Optional list of stop words to use when generating. Returns: The string generated by the model. Example: .. code-block:: python response = hf("Tell me a joke.") """ _model_kwargs = self.model_kwargs or {} params = {**_model_kwargs, **kwargs} response = self.client(inputs=prompt, params=params) if "error" in response: raise ValueError(f"Error raised by inference API: {response['error']}") if self.client.task == "text-generation": # Text generation return includes the starter text. text = response[0]["generated_text"][len(prompt) :] elif self.client.task == "text2text-generation": text = response[0]["generated_text"] elif self.client.task == "summarization": text = response[0]["summary_text"] else: raise ValueError( f"Got invalid task {self.client.task}, " f"currently only {VALID_TASKS} are supported" ) if stop is not None: # This is a bit hacky, but I can't figure out a better way to enforce # stop tokens when making calls to huggingface_hub. text = enforce_stop_tokens(text, stop) return text
https://api.python.langchain.com/en/latest/_modules/langchain/llms/huggingface_hub.html
c35c8ce2ebea-0
Source code for langchain.llms.deepinfra """Wrapper around DeepInfra APIs.""" from typing import Any, Dict, List, Mapping, Optional import requests from pydantic import Extra, root_validator from langchain.callbacks.manager import CallbackManagerForLLMRun from langchain.llms.base import LLM from langchain.llms.utils import enforce_stop_tokens from langchain.utils import get_from_dict_or_env DEFAULT_MODEL_ID = "google/flan-t5-xl" [docs]class DeepInfra(LLM): """Wrapper around DeepInfra deployed models. To use, you should have the ``requests`` python package installed, and the environment variable ``DEEPINFRA_API_TOKEN`` set with your API token, or pass it as a named parameter to the constructor. Only supports `text-generation` and `text2text-generation` for now. Example: .. code-block:: python from langchain.llms import DeepInfra di = DeepInfra(model_id="google/flan-t5-xl", deepinfra_api_token="my-api-key") """ model_id: str = DEFAULT_MODEL_ID model_kwargs: Optional[dict] = None deepinfra_api_token: Optional[str] = None class Config: """Configuration for this pydantic object.""" extra = Extra.forbid @root_validator() def validate_environment(cls, values: Dict) -> Dict: """Validate that api key and python package exists in environment.""" deepinfra_api_token = get_from_dict_or_env( values, "deepinfra_api_token", "DEEPINFRA_API_TOKEN" ) values["deepinfra_api_token"] = deepinfra_api_token return values @property
https://api.python.langchain.com/en/latest/_modules/langchain/llms/deepinfra.html
c35c8ce2ebea-1
return values @property def _identifying_params(self) -> Mapping[str, Any]: """Get the identifying parameters.""" return { **{"model_id": self.model_id}, **{"model_kwargs": self.model_kwargs}, } @property def _llm_type(self) -> str: """Return type of llm.""" return "deepinfra" def _call( self, prompt: str, stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> str: """Call out to DeepInfra's inference API endpoint. Args: prompt: The prompt to pass into the model. stop: Optional list of stop words to use when generating. Returns: The string generated by the model. Example: .. code-block:: python response = di("Tell me a joke.") """ _model_kwargs = self.model_kwargs or {} _model_kwargs = {**_model_kwargs, **kwargs} # HTTP headers for authorization headers = { "Authorization": f"bearer {self.deepinfra_api_token}", "Content-Type": "application/json", } try: res = requests.post( f"https://api.deepinfra.com/v1/inference/{self.model_id}", headers=headers, json={"input": prompt, **_model_kwargs}, ) except requests.exceptions.RequestException as e: raise ValueError(f"Error raised by inference endpoint: {e}") if res.status_code != 200: raise ValueError(
https://api.python.langchain.com/en/latest/_modules/langchain/llms/deepinfra.html
c35c8ce2ebea-2
if res.status_code != 200: raise ValueError( "Error raised by inference API HTTP code: %s, %s" % (res.status_code, res.text) ) try: t = res.json() text = t["results"][0]["generated_text"] except requests.exceptions.JSONDecodeError as e: raise ValueError( f"Error raised by inference API: {e}.\nResponse: {res.text}" ) if stop is not None: # I believe this is required since the stop tokens # are not enforced by the model parameters text = enforce_stop_tokens(text, stop) return text
https://api.python.langchain.com/en/latest/_modules/langchain/llms/deepinfra.html
7f60c7eae2ab-0
Source code for langchain.llms.clarifai """Wrapper around Clarifai's APIs.""" import logging from typing import Any, Dict, List, Optional from pydantic import Extra, root_validator from langchain.callbacks.manager import CallbackManagerForLLMRun from langchain.llms.base import LLM from langchain.llms.utils import enforce_stop_tokens from langchain.utils import get_from_dict_or_env logger = logging.getLogger(__name__) [docs]class Clarifai(LLM): """Wrapper around Clarifai's large language models. To use, you should have an account on the Clarifai platform, the ``clarifai`` python package installed, and the environment variable ``CLARIFAI_PAT_KEY`` set with your PAT key, or pass it as a named parameter to the constructor. Example: .. code-block:: python from langchain.llms import Clarifai clarifai_llm = Clarifai(clarifai_pat_key=CLARIFAI_PAT_KEY, \ user_id=USER_ID, app_id=APP_ID, model_id=MODEL_ID) """ stub: Any #: :meta private: metadata: Any userDataObject: Any model_id: Optional[str] = None """Model id to use.""" model_version_id: Optional[str] = None """Model version id to use.""" app_id: Optional[str] = None """Clarifai application id to use.""" user_id: Optional[str] = None """Clarifai user id to use.""" clarifai_pat_key: Optional[str] = None api_base: str = "https://api.clarifai.com"
https://api.python.langchain.com/en/latest/_modules/langchain/llms/clarifai.html
7f60c7eae2ab-1
api_base: str = "https://api.clarifai.com" stop: Optional[List[str]] = None class Config: """Configuration for this pydantic object.""" extra = Extra.forbid @root_validator() def validate_environment(cls, values: Dict) -> Dict: """Validate that we have all required info to access Clarifai platform and python package exists in environment.""" values["clarifai_pat_key"] = get_from_dict_or_env( values, "clarifai_pat_key", "CLARIFAI_PAT_KEY" ) user_id = values.get("user_id") app_id = values.get("app_id") model_id = values.get("model_id") if values["clarifai_pat_key"] is None: raise ValueError("Please provide a clarifai_pat_key.") if user_id is None: raise ValueError("Please provide a user_id.") if app_id is None: raise ValueError("Please provide a app_id.") if model_id is None: raise ValueError("Please provide a model_id.") return values @property def _default_params(self) -> Dict[str, Any]: """Get the default parameters for calling Cohere API.""" return {} @property def _identifying_params(self) -> Dict[str, Any]: """Get the identifying parameters.""" return {**{"model_id": self.model_id}} @property def _llm_type(self) -> str: """Return type of llm.""" return "clarifai" def _call( self, prompt: str, stop: Optional[List[str]] = None,
https://api.python.langchain.com/en/latest/_modules/langchain/llms/clarifai.html
7f60c7eae2ab-2
prompt: str, stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any ) -> str: """Call out to Clarfai's PostModelOutputs endpoint. Args: prompt: The prompt to pass into the model. stop: Optional list of stop words to use when generating. Returns: The string generated by the model. Example: .. code-block:: python response = clarifai_llm("Tell me a joke.") """ try: from clarifai.auth.helper import ClarifaiAuthHelper from clarifai.client import create_stub from clarifai_grpc.grpc.api import ( resources_pb2, service_pb2, ) from clarifai_grpc.grpc.api.status import status_code_pb2 except ImportError: raise ImportError( "Could not import clarifai python package. " "Please install it with `pip install clarifai`." ) auth = ClarifaiAuthHelper( user_id=self.user_id, app_id=self.app_id, pat=self.clarifai_pat_key, base=self.api_base, ) self.userDataObject = auth.get_user_app_id_proto() self.stub = create_stub(auth) params = self._default_params if self.stop is not None and stop is not None: raise ValueError("`stop` found in both the input and default params.") elif self.stop is not None: params["stop_sequences"] = self.stop else: params["stop_sequences"] = stop # The userDataObject is created in the overview and
https://api.python.langchain.com/en/latest/_modules/langchain/llms/clarifai.html
7f60c7eae2ab-3
# The userDataObject is created in the overview and # is required when using a PAT # If version_id None, Defaults to the latest model version post_model_outputs_request = service_pb2.PostModelOutputsRequest( user_app_id=self.userDataObject, model_id=self.model_id, version_id=self.model_version_id, inputs=[ resources_pb2.Input( data=resources_pb2.Data(text=resources_pb2.Text(raw=prompt)) ) ], ) post_model_outputs_response = self.stub.PostModelOutputs( post_model_outputs_request ) if post_model_outputs_response.status.code != status_code_pb2.SUCCESS: logger.error(post_model_outputs_response.status) raise Exception( "Post model outputs failed, status: " + post_model_outputs_response.status.description ) text = post_model_outputs_response.outputs[0].data.text.raw # In order to make this consistent with other endpoints, we strip them. if stop is not None or self.stop is not None: text = enforce_stop_tokens(text, params["stop_sequences"]) return text
https://api.python.langchain.com/en/latest/_modules/langchain/llms/clarifai.html
c5ad16128bb0-0
Source code for langchain.llms.cerebriumai """Wrapper around CerebriumAI API.""" import logging from typing import Any, Dict, List, Mapping, Optional from pydantic import Extra, Field, root_validator from langchain.callbacks.manager import CallbackManagerForLLMRun from langchain.llms.base import LLM from langchain.llms.utils import enforce_stop_tokens from langchain.utils import get_from_dict_or_env logger = logging.getLogger(__name__) [docs]class CerebriumAI(LLM): """Wrapper around CerebriumAI large language models. To use, you should have the ``cerebrium`` python package installed, and the environment variable ``CEREBRIUMAI_API_KEY`` set with your API key. Any parameters that are valid to be passed to the call can be passed in, even if not explicitly saved on this class. Example: .. code-block:: python from langchain.llms import CerebriumAI cerebrium = CerebriumAI(endpoint_url="") """ endpoint_url: str = "" """model endpoint to use""" model_kwargs: Dict[str, Any] = Field(default_factory=dict) """Holds any model parameters valid for `create` call not explicitly specified.""" cerebriumai_api_key: Optional[str] = None class Config: """Configuration for this pydantic config.""" extra = Extra.forbid @root_validator(pre=True) def build_extra(cls, values: Dict[str, Any]) -> Dict[str, Any]: """Build extra kwargs from additional params that were passed in.""" all_required_field_names = {field.alias for field in cls.__fields__.values()}
https://api.python.langchain.com/en/latest/_modules/langchain/llms/cerebriumai.html
c5ad16128bb0-1
all_required_field_names = {field.alias for field in cls.__fields__.values()} extra = values.get("model_kwargs", {}) for field_name in list(values): if field_name not in all_required_field_names: if field_name in extra: raise ValueError(f"Found {field_name} supplied twice.") logger.warning( f"""{field_name} was transfered to model_kwargs. Please confirm that {field_name} is what you intended.""" ) extra[field_name] = values.pop(field_name) values["model_kwargs"] = extra return values @root_validator() def validate_environment(cls, values: Dict) -> Dict: """Validate that api key and python package exists in environment.""" cerebriumai_api_key = get_from_dict_or_env( values, "cerebriumai_api_key", "CEREBRIUMAI_API_KEY" ) values["cerebriumai_api_key"] = cerebriumai_api_key return values @property def _identifying_params(self) -> Mapping[str, Any]: """Get the identifying parameters.""" return { **{"endpoint_url": self.endpoint_url}, **{"model_kwargs": self.model_kwargs}, } @property def _llm_type(self) -> str: """Return type of llm.""" return "cerebriumai" def _call( self, prompt: str, stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> str: """Call to CerebriumAI endpoint.""" try:
https://api.python.langchain.com/en/latest/_modules/langchain/llms/cerebriumai.html
c5ad16128bb0-2
"""Call to CerebriumAI endpoint.""" try: from cerebrium import model_api_request except ImportError: raise ValueError( "Could not import cerebrium python package. " "Please install it with `pip install cerebrium`." ) params = self.model_kwargs or {} response = model_api_request( self.endpoint_url, {"prompt": prompt, **params, **kwargs}, self.cerebriumai_api_key, ) text = response["data"]["result"] if stop is not None: # I believe this is required since the stop tokens # are not enforced by the model parameters text = enforce_stop_tokens(text, stop) return text
https://api.python.langchain.com/en/latest/_modules/langchain/llms/cerebriumai.html
49a5e105d115-0
Source code for langchain.llms.forefrontai """Wrapper around ForefrontAI APIs.""" from typing import Any, Dict, List, Mapping, Optional import requests from pydantic import Extra, root_validator from langchain.callbacks.manager import CallbackManagerForLLMRun from langchain.llms.base import LLM from langchain.llms.utils import enforce_stop_tokens from langchain.utils import get_from_dict_or_env [docs]class ForefrontAI(LLM): """Wrapper around ForefrontAI large language models. To use, you should have the environment variable ``FOREFRONTAI_API_KEY`` set with your API key. Example: .. code-block:: python from langchain.llms import ForefrontAI forefrontai = ForefrontAI(endpoint_url="") """ endpoint_url: str = "" """Model name to use.""" temperature: float = 0.7 """What sampling temperature to use.""" length: int = 256 """The maximum number of tokens to generate in the completion.""" top_p: float = 1.0 """Total probability mass of tokens to consider at each step.""" top_k: int = 40 """The number of highest probability vocabulary tokens to keep for top-k-filtering.""" repetition_penalty: int = 1 """Penalizes repeated tokens according to frequency.""" forefrontai_api_key: Optional[str] = None base_url: Optional[str] = None """Base url to use, if None decides based on model name.""" class Config: """Configuration for this pydantic object.""" extra = Extra.forbid @root_validator() def validate_environment(cls, values: Dict) -> Dict:
https://api.python.langchain.com/en/latest/_modules/langchain/llms/forefrontai.html
49a5e105d115-1
@root_validator() def validate_environment(cls, values: Dict) -> Dict: """Validate that api key exists in environment.""" forefrontai_api_key = get_from_dict_or_env( values, "forefrontai_api_key", "FOREFRONTAI_API_KEY" ) values["forefrontai_api_key"] = forefrontai_api_key return values @property def _default_params(self) -> Mapping[str, Any]: """Get the default parameters for calling ForefrontAI API.""" return { "temperature": self.temperature, "length": self.length, "top_p": self.top_p, "top_k": self.top_k, "repetition_penalty": self.repetition_penalty, } @property def _identifying_params(self) -> Mapping[str, Any]: """Get the identifying parameters.""" return {**{"endpoint_url": self.endpoint_url}, **self._default_params} @property def _llm_type(self) -> str: """Return type of llm.""" return "forefrontai" def _call( self, prompt: str, stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> str: """Call out to ForefrontAI's complete endpoint. Args: prompt: The prompt to pass into the model. stop: Optional list of stop words to use when generating. Returns: The string generated by the model. Example: .. code-block:: python response = ForefrontAI("Tell me a joke.") """ response = requests.post(
https://api.python.langchain.com/en/latest/_modules/langchain/llms/forefrontai.html
49a5e105d115-2
""" response = requests.post( url=self.endpoint_url, headers={ "Authorization": f"Bearer {self.forefrontai_api_key}", "Content-Type": "application/json", }, json={"text": prompt, **self._default_params, **kwargs}, ) response_json = response.json() text = response_json["result"][0]["completion"] if stop is not None: # I believe this is required since the stop tokens # are not enforced by the model parameters text = enforce_stop_tokens(text, stop) return text
https://api.python.langchain.com/en/latest/_modules/langchain/llms/forefrontai.html
37ffbcb10380-0
Source code for langchain.llms.fake """Fake LLM wrapper for testing purposes.""" from typing import Any, List, Mapping, Optional from langchain.callbacks.manager import ( AsyncCallbackManagerForLLMRun, CallbackManagerForLLMRun, ) from langchain.llms.base import LLM [docs]class FakeListLLM(LLM): """Fake LLM wrapper for testing purposes.""" responses: List i: int = 0 @property def _llm_type(self) -> str: """Return type of llm.""" return "fake-list" def _call( self, prompt: str, stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> str: """Return next response""" response = self.responses[self.i] self.i += 1 return response async def _acall( self, prompt: str, stop: Optional[List[str]] = None, run_manager: Optional[AsyncCallbackManagerForLLMRun] = None, **kwargs: Any, ) -> str: """Return next response""" response = self.responses[self.i] self.i += 1 return response @property def _identifying_params(self) -> Mapping[str, Any]: return {"responses": self.responses}
https://api.python.langchain.com/en/latest/_modules/langchain/llms/fake.html
20b4b9965769-0
Source code for langchain.llms.aviary """Wrapper around Aviary""" import dataclasses import os from typing import Any, Dict, List, Mapping, Optional, Union, cast import requests from pydantic import Extra, root_validator from langchain.callbacks.manager import CallbackManagerForLLMRun from langchain.llms.base import LLM from langchain.llms.utils import enforce_stop_tokens from langchain.utils import get_from_dict_or_env TIMEOUT = 60 @dataclasses.dataclass class AviaryBackend: backend_url: str bearer: str def __post_init__(self) -> None: self.header = {"Authorization": self.bearer} @classmethod def from_env(cls) -> "AviaryBackend": aviary_url = os.getenv("AVIARY_URL") assert aviary_url, "AVIARY_URL must be set" aviary_token = os.getenv("AVIARY_TOKEN", "") bearer = f"Bearer {aviary_token}" if aviary_token else "" aviary_url += "/" if not aviary_url.endswith("/") else "" return cls(aviary_url, bearer) def get_models() -> List[str]: """List available models""" backend = AviaryBackend.from_env() request_url = backend.backend_url + "-/routes" response = requests.get(request_url, headers=backend.header, timeout=TIMEOUT) try: result = response.json() except requests.JSONDecodeError as e: raise RuntimeError( f"Error decoding JSON from {request_url}. Text response: {response.text}" ) from e result = sorted(
https://api.python.langchain.com/en/latest/_modules/langchain/llms/aviary.html
20b4b9965769-1
) from e result = sorted( [k.lstrip("/").replace("--", "/") for k in result.keys() if "--" in k] ) return result def get_completions( model: str, prompt: str, use_prompt_format: bool = True, version: str = "", ) -> Dict[str, Union[str, float, int]]: """Get completions from Aviary models.""" backend = AviaryBackend.from_env() url = backend.backend_url + model.replace("/", "--") + "/" + version + "query" response = requests.post( url, headers=backend.header, json={"prompt": prompt, "use_prompt_format": use_prompt_format}, timeout=TIMEOUT, ) try: return response.json() except requests.JSONDecodeError as e: raise RuntimeError( f"Error decoding JSON from {url}. Text response: {response.text}" ) from e [docs]class Aviary(LLM): """Allow you to use an Aviary. Aviary is a backend for hosted models. You can find out more about aviary at http://github.com/ray-project/aviary To get a list of the models supported on an aviary, follow the instructions on the web site to install the aviary CLI and then use: `aviary models` AVIARY_URL and AVIARY_TOKEN environement variables must be set. Example: .. code-block:: python from langchain.llms import Aviary os.environ["AVIARY_URL"] = "<URL>" os.environ["AVIARY_TOKEN"] = "<TOKEN>"
https://api.python.langchain.com/en/latest/_modules/langchain/llms/aviary.html
20b4b9965769-2
os.environ["AVIARY_TOKEN"] = "<TOKEN>" light = Aviary(model='amazon/LightGPT') output = light('How do you make fried rice?') """ model: str = "amazon/LightGPT" aviary_url: Optional[str] = None aviary_token: Optional[str] = None # If True the prompt template for the model will be ignored. use_prompt_format: bool = True # API version to use for Aviary version: Optional[str] = None class Config: """Configuration for this pydantic object.""" extra = Extra.forbid @root_validator(pre=True) def validate_environment(cls, values: Dict) -> Dict: """Validate that api key and python package exists in environment.""" aviary_url = get_from_dict_or_env(values, "aviary_url", "AVIARY_URL") aviary_token = get_from_dict_or_env(values, "aviary_token", "AVIARY_TOKEN") # Set env viarables for aviary sdk os.environ["AVIARY_URL"] = aviary_url os.environ["AVIARY_TOKEN"] = aviary_token try: aviary_models = get_models() except requests.exceptions.RequestException as e: raise ValueError(e) model = values.get("model") if model and model not in aviary_models: raise ValueError(f"{aviary_url} does not support model {values['model']}.") return values @property def _identifying_params(self) -> Mapping[str, Any]: """Get the identifying parameters.""" return { "model_name": self.model, "aviary_url": self.aviary_url,
https://api.python.langchain.com/en/latest/_modules/langchain/llms/aviary.html
20b4b9965769-3
"aviary_url": self.aviary_url, } @property def _llm_type(self) -> str: """Return type of llm.""" return f"aviary-{self.model.replace('/', '-')}" def _call( self, prompt: str, stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> str: """Call out to Aviary Args: prompt: The prompt to pass into the model. Returns: The string generated by the model. Example: .. code-block:: python response = aviary("Tell me a joke.") """ kwargs = {"use_prompt_format": self.use_prompt_format} if self.version: kwargs["version"] = self.version output = get_completions( model=self.model, prompt=prompt, **kwargs, ) text = cast(str, output["generated_text"]) if stop: text = enforce_stop_tokens(text, stop) return text
https://api.python.langchain.com/en/latest/_modules/langchain/llms/aviary.html
fa0d32304a25-0
Source code for langchain.llms.openllm """Wrapper around OpenLLM APIs.""" from __future__ import annotations import copy import json import logging from typing import ( TYPE_CHECKING, Any, Dict, List, Literal, Optional, TypedDict, Union, overload, ) from pydantic import PrivateAttr from langchain.callbacks.manager import ( AsyncCallbackManagerForLLMRun, CallbackManagerForLLMRun, ) from langchain.llms.base import LLM if TYPE_CHECKING: import openllm ServerType = Literal["http", "grpc"] class IdentifyingParams(TypedDict): model_name: str model_id: Optional[str] server_url: Optional[str] server_type: Optional[ServerType] embedded: bool llm_kwargs: Dict[str, Any] logger = logging.getLogger(__name__) [docs]class OpenLLM(LLM): """Wrapper for accessing OpenLLM, supporting both in-process model instance and remote OpenLLM servers. To use, you should have the openllm library installed: .. code-block:: bash pip install openllm Learn more at: https://github.com/bentoml/openllm Example running an LLM model locally managed by OpenLLM: .. code-block:: python from langchain.llms import OpenLLM llm = OpenLLM( model_name='flan-t5', model_id='google/flan-t5-large', ) llm("What is the difference between a duck and a goose?") For all available supported models, you can run 'openllm models'.
https://api.python.langchain.com/en/latest/_modules/langchain/llms/openllm.html
fa0d32304a25-1
For all available supported models, you can run 'openllm models'. If you have a OpenLLM server running, you can also use it remotely: .. code-block:: python from langchain.llms import OpenLLM llm = OpenLLM(server_url='http://localhost:3000') llm("What is the difference between a duck and a goose?") """ model_name: Optional[str] = None """Model name to use. See 'openllm models' for all available models.""" model_id: Optional[str] = None """Model Id to use. If not provided, will use the default model for the model name. See 'openllm models' for all available model variants.""" server_url: Optional[str] = None """Optional server URL that currently runs a LLMServer with 'openllm start'.""" server_type: ServerType = "http" """Optional server type. Either 'http' or 'grpc'.""" embedded: bool = True """Initialize this LLM instance in current process by default. Should only set to False when using in conjunction with BentoML Service.""" llm_kwargs: Dict[str, Any] """Key word arguments to be passed to openllm.LLM""" _runner: Optional[openllm.LLMRunner] = PrivateAttr(default=None) _client: Union[ openllm.client.HTTPClient, openllm.client.GrpcClient, None ] = PrivateAttr(default=None) class Config: extra = "forbid" @overload def __init__( self, model_name: Optional[str] = ..., *, model_id: Optional[str] = ...,
https://api.python.langchain.com/en/latest/_modules/langchain/llms/openllm.html
fa0d32304a25-2
*, model_id: Optional[str] = ..., embedded: Literal[True, False] = ..., **llm_kwargs: Any, ) -> None: ... @overload def __init__( self, *, server_url: str = ..., server_type: Literal["grpc", "http"] = ..., **llm_kwargs: Any, ) -> None: ... def __init__( self, model_name: Optional[str] = None, *, model_id: Optional[str] = None, server_url: Optional[str] = None, server_type: Literal["grpc", "http"] = "http", embedded: bool = True, **llm_kwargs: Any, ): try: import openllm except ImportError as e: raise ImportError( "Could not import openllm. Make sure to install it with " "'pip install openllm.'" ) from e llm_kwargs = llm_kwargs or {} if server_url is not None: logger.debug("'server_url' is provided, returning a openllm.Client") assert ( model_id is None and model_name is None ), "'server_url' and {'model_id', 'model_name'} are mutually exclusive" client_cls = ( openllm.client.HTTPClient if server_type == "http" else openllm.client.GrpcClient ) client = client_cls(server_url) super().__init__( **{ "server_url": server_url, "server_type": server_type, "llm_kwargs": llm_kwargs, } )
https://api.python.langchain.com/en/latest/_modules/langchain/llms/openllm.html
fa0d32304a25-3
"llm_kwargs": llm_kwargs, } ) self._runner = None # type: ignore self._client = client else: assert model_name is not None, "Must provide 'model_name' or 'server_url'" # since the LLM are relatively huge, we don't actually want to convert the # Runner with embedded when running the server. Instead, we will only set # the init_local here so that LangChain users can still use the LLM # in-process. Wrt to BentoML users, setting embedded=False is the expected # behaviour to invoke the runners remotely runner = openllm.Runner( model_name=model_name, model_id=model_id, init_local=embedded, **llm_kwargs, ) super().__init__( **{ "model_name": model_name, "model_id": model_id, "embedded": embedded, "llm_kwargs": llm_kwargs, } ) self._client = None # type: ignore self._runner = runner @property def runner(self) -> openllm.LLMRunner: """ Get the underlying openllm.LLMRunner instance for integration with BentoML. Example: .. code-block:: python llm = OpenLLM( model_name='flan-t5', model_id='google/flan-t5-large', embedded=False, ) tools = load_tools(["serpapi", "llm-math"], llm=llm) agent = initialize_agent( tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION )
https://api.python.langchain.com/en/latest/_modules/langchain/llms/openllm.html
fa0d32304a25-4
tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION ) svc = bentoml.Service("langchain-openllm", runners=[llm.runner]) @svc.api(input=Text(), output=Text()) def chat(input_text: str): return agent.run(input_text) """ if self._runner is None: raise ValueError("OpenLLM must be initialized locally with 'model_name'") return self._runner @property def _identifying_params(self) -> IdentifyingParams: """Get the identifying parameters.""" if self._client is not None: self.llm_kwargs.update(self._client.configuration) model_name = self._client.model_name model_id = self._client.model_id else: if self._runner is None: raise ValueError("Runner must be initialized.") model_name = self.model_name model_id = self.model_id try: self.llm_kwargs.update( json.loads(self._runner.identifying_params["configuration"]) ) except (TypeError, json.JSONDecodeError): pass return IdentifyingParams( server_url=self.server_url, server_type=self.server_type, embedded=self.embedded, llm_kwargs=self.llm_kwargs, model_name=model_name, model_id=model_id, ) @property def _llm_type(self) -> str: return "openllm_client" if self._client else "openllm" def _call( self, prompt: str, stop: Optional[List[str]] = None, run_manager: CallbackManagerForLLMRun | None = None, **kwargs: Any,
https://api.python.langchain.com/en/latest/_modules/langchain/llms/openllm.html
fa0d32304a25-5
**kwargs: Any, ) -> str: try: import openllm except ImportError as e: raise ImportError( "Could not import openllm. Make sure to install it with " "'pip install openllm'." ) from e copied = copy.deepcopy(self.llm_kwargs) copied.update(kwargs) config = openllm.AutoConfig.for_model( self._identifying_params["model_name"], **copied ) if self._client: return self._client.query(prompt, **config.model_dump(flatten=True)) else: assert self._runner is not None return self._runner(prompt, **config.model_dump(flatten=True)) async def _acall( self, prompt: str, stop: Optional[List[str]] = None, run_manager: Optional[AsyncCallbackManagerForLLMRun] = None, **kwargs: Any, ) -> str: try: import openllm except ImportError as e: raise ImportError( "Could not import openllm. Make sure to install it with " "'pip install openllm'." ) from e copied = copy.deepcopy(self.llm_kwargs) copied.update(kwargs) config = openllm.AutoConfig.for_model( self._identifying_params["model_name"], **copied ) if self._client: return await self._client.acall( "generate", prompt, **config.model_dump(flatten=True) ) else: assert self._runner is not None ( prompt, generate_kwargs, postprocess_kwargs,
https://api.python.langchain.com/en/latest/_modules/langchain/llms/openllm.html
fa0d32304a25-6
( prompt, generate_kwargs, postprocess_kwargs, ) = self._runner.llm.sanitize_parameters(prompt, **kwargs) generated_result = await self._runner.generate.async_run( prompt, **generate_kwargs ) return self._runner.llm.postprocess_generate( prompt, generated_result, **postprocess_kwargs )
https://api.python.langchain.com/en/latest/_modules/langchain/llms/openllm.html
d3bf2adbe359-0
Source code for langchain.llms.huggingface_endpoint """Wrapper around HuggingFace APIs.""" from typing import Any, Dict, List, Mapping, Optional import requests from pydantic import Extra, root_validator from langchain.callbacks.manager import CallbackManagerForLLMRun from langchain.llms.base import LLM from langchain.llms.utils import enforce_stop_tokens from langchain.utils import get_from_dict_or_env VALID_TASKS = ("text2text-generation", "text-generation", "summarization") [docs]class HuggingFaceEndpoint(LLM): """Wrapper around HuggingFaceHub Inference Endpoints. To use, you should have the ``huggingface_hub`` python package installed, and the environment variable ``HUGGINGFACEHUB_API_TOKEN`` set with your API token, or pass it as a named parameter to the constructor. Only supports `text-generation` and `text2text-generation` for now. Example: .. code-block:: python from langchain.llms import HuggingFaceEndpoint endpoint_url = ( "https://abcdefghijklmnop.us-east-1.aws.endpoints.huggingface.cloud" ) hf = HuggingFaceEndpoint( endpoint_url=endpoint_url, huggingfacehub_api_token="my-api-key" ) """ endpoint_url: str = "" """Endpoint URL to use.""" task: Optional[str] = None """Task to call the model with. Should be a task that returns `generated_text` or `summary_text`.""" model_kwargs: Optional[dict] = None """Key word arguments to pass to the model.""" huggingfacehub_api_token: Optional[str] = None class Config:
https://api.python.langchain.com/en/latest/_modules/langchain/llms/huggingface_endpoint.html
d3bf2adbe359-1
huggingfacehub_api_token: Optional[str] = None class Config: """Configuration for this pydantic object.""" extra = Extra.forbid @root_validator() def validate_environment(cls, values: Dict) -> Dict: """Validate that api key and python package exists in environment.""" huggingfacehub_api_token = get_from_dict_or_env( values, "huggingfacehub_api_token", "HUGGINGFACEHUB_API_TOKEN" ) try: from huggingface_hub.hf_api import HfApi try: HfApi( endpoint="https://huggingface.co", # Can be a Private Hub endpoint. token=huggingfacehub_api_token, ).whoami() except Exception as e: raise ValueError( "Could not authenticate with huggingface_hub. " "Please check your API token." ) from e except ImportError: raise ValueError( "Could not import huggingface_hub python package. " "Please install it with `pip install huggingface_hub`." ) values["huggingfacehub_api_token"] = huggingfacehub_api_token return values @property def _identifying_params(self) -> Mapping[str, Any]: """Get the identifying parameters.""" _model_kwargs = self.model_kwargs or {} return { **{"endpoint_url": self.endpoint_url, "task": self.task}, **{"model_kwargs": _model_kwargs}, } @property def _llm_type(self) -> str: """Return type of llm.""" return "huggingface_endpoint" def _call( self,
https://api.python.langchain.com/en/latest/_modules/langchain/llms/huggingface_endpoint.html
d3bf2adbe359-2
return "huggingface_endpoint" def _call( self, prompt: str, stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> str: """Call out to HuggingFace Hub's inference endpoint. Args: prompt: The prompt to pass into the model. stop: Optional list of stop words to use when generating. Returns: The string generated by the model. Example: .. code-block:: python response = hf("Tell me a joke.") """ _model_kwargs = self.model_kwargs or {} # payload samples params = {**_model_kwargs, **kwargs} parameter_payload = {"inputs": prompt, "parameters": params} # HTTP headers for authorization headers = { "Authorization": f"Bearer {self.huggingfacehub_api_token}", "Content-Type": "application/json", } # send request try: response = requests.post( self.endpoint_url, headers=headers, json=parameter_payload ) except requests.exceptions.RequestException as e: # This is the correct syntax raise ValueError(f"Error raised by inference endpoint: {e}") generated_text = response.json() if "error" in generated_text: raise ValueError( f"Error raised by inference API: {generated_text['error']}" ) if self.task == "text-generation": # Text generation return includes the starter text. text = generated_text[0]["generated_text"][len(prompt) :] elif self.task == "text2text-generation":
https://api.python.langchain.com/en/latest/_modules/langchain/llms/huggingface_endpoint.html
d3bf2adbe359-3
elif self.task == "text2text-generation": text = generated_text[0]["generated_text"] elif self.task == "summarization": text = generated_text[0]["summary_text"] else: raise ValueError( f"Got invalid task {self.task}, " f"currently only {VALID_TASKS} are supported" ) if stop is not None: # This is a bit hacky, but I can't figure out a better way to enforce # stop tokens when making calls to huggingface_hub. text = enforce_stop_tokens(text, stop) return text
https://api.python.langchain.com/en/latest/_modules/langchain/llms/huggingface_endpoint.html
742d57dc5585-0
Source code for langchain.llms.azureml_endpoint """Wrapper around AzureML Managed Online Endpoint API.""" import json import urllib.request from abc import abstractmethod from typing import Any, Dict, List, Mapping, Optional from pydantic import BaseModel, validator from langchain.callbacks.manager import CallbackManagerForLLMRun from langchain.llms.base import LLM from langchain.utils import get_from_dict_or_env class AzureMLEndpointClient(object): """Wrapper around AzureML Managed Online Endpoint Client.""" def __init__( self, endpoint_url: str, endpoint_api_key: str, deployment_name: str ) -> None: """Initialize the class.""" if not endpoint_api_key: raise ValueError("A key should be provided to invoke the endpoint") self.endpoint_url = endpoint_url self.endpoint_api_key = endpoint_api_key self.deployment_name = deployment_name def call(self, body: bytes) -> bytes: """call.""" # The azureml-model-deployment header will force the request to go to a # specific deployment. Remove this header to have the request observe the # endpoint traffic rules. headers = { "Content-Type": "application/json", "Authorization": ("Bearer " + self.endpoint_api_key), "azureml-model-deployment": self.deployment_name, } req = urllib.request.Request(self.endpoint_url, body, headers) response = urllib.request.urlopen(req, timeout=50) result = response.read() return result class ContentFormatterBase: """A handler class to transform request and response of AzureML endpoint to match with required schema. """ """ Example: .. code-block:: python class ContentFormatter(ContentFormatterBase):
https://api.python.langchain.com/en/latest/_modules/langchain/llms/azureml_endpoint.html
742d57dc5585-1
.. code-block:: python class ContentFormatter(ContentFormatterBase): content_type = "application/json" accepts = "application/json" def format_request_payload( self, prompt: str, model_kwargs: Dict ) -> bytes: input_str = json.dumps( { "inputs": {"input_string": [prompt]}, "parameters": model_kwargs, } ) return str.encode(input_str) def format_response_payload(self, output: str) -> str: response_json = json.loads(output) return response_json[0]["0"] """ content_type: Optional[str] = "application/json" """The MIME type of the input data passed to the endpoint""" accepts: Optional[str] = "application/json" """The MIME type of the response data returned form the endpoint""" @abstractmethod def format_request_payload(self, prompt: str, model_kwargs: Dict) -> bytes: """Formats the request body according to the input schema of the model. Returns bytes or seekable file like object in the format specified in the content_type request header. """ @abstractmethod def format_response_payload(self, output: bytes) -> str: """Formats the response body according to the output schema of the model. Returns the data type that is received from the response. """ class OSSContentFormatter(ContentFormatterBase): """Content handler for LLMs from the OSS catalog.""" def format_request_payload(self, prompt: str, model_kwargs: Dict) -> bytes: input_str = json.dumps( {"inputs": {"input_string": [prompt]}, "parameters": model_kwargs} )
https://api.python.langchain.com/en/latest/_modules/langchain/llms/azureml_endpoint.html
742d57dc5585-2
) return str.encode(input_str) def format_response_payload(self, output: bytes) -> str: response_json = json.loads(output) return response_json[0]["0"] class HFContentFormatter(ContentFormatterBase): """Content handler for LLMs from the HuggingFace catalog.""" def format_request_payload(self, prompt: str, model_kwargs: Dict) -> bytes: input_str = json.dumps({"inputs": [prompt], "parameters": model_kwargs}) return str.encode(input_str) def format_response_payload(self, output: bytes) -> str: response_json = json.loads(output) return response_json[0][0]["generated_text"] class DollyContentFormatter(ContentFormatterBase): """Content handler for the Dolly-v2-12b model""" def format_request_payload(self, prompt: str, model_kwargs: Dict) -> bytes: input_str = json.dumps( {"input_data": {"input_string": [prompt]}, "parameters": model_kwargs} ) return str.encode(input_str) def format_response_payload(self, output: bytes) -> str: response_json = json.loads(output) return response_json[0] [docs]class AzureMLOnlineEndpoint(LLM, BaseModel): """Wrapper around Azure ML Hosted models using Managed Online Endpoints. Example: .. code-block:: python azure_llm = AzureMLModel( endpoint_url="https://<your-endpoint>.<your_region>.inference.ml.azure.com/score", endpoint_api_key="my-api-key", deployment_name="my-deployment-name", content_formatter=content_formatter, ) """ # noqa: E501 endpoint_url: str = ""
https://api.python.langchain.com/en/latest/_modules/langchain/llms/azureml_endpoint.html
742d57dc5585-3
) """ # noqa: E501 endpoint_url: str = "" """URL of pre-existing Endpoint. Should be passed to constructor or specified as env var `AZUREML_ENDPOINT_URL`.""" endpoint_api_key: str = "" """Authentication Key for Endpoint. Should be passed to constructor or specified as env var `AZUREML_ENDPOINT_API_KEY`.""" deployment_name: str = "" """Deployment Name for Endpoint. Should be passed to constructor or specified as env var `AZUREML_DEPLOYMENT_NAME`.""" http_client: Any = None #: :meta private: content_formatter: Any = None """The content formatter that provides an input and output transform function to handle formats between the LLM and the endpoint""" model_kwargs: Optional[dict] = None """Key word arguments to pass to the model.""" @validator("http_client", always=True, allow_reuse=True) @classmethod def validate_client(cls, field_value: Any, values: Dict) -> AzureMLEndpointClient: """Validate that api key and python package exists in environment.""" endpoint_key = get_from_dict_or_env( values, "endpoint_api_key", "AZUREML_ENDPOINT_API_KEY" ) endpoint_url = get_from_dict_or_env( values, "endpoint_url", "AZUREML_ENDPOINT_URL" ) deployment_name = get_from_dict_or_env( values, "deployment_name", "AZUREML_DEPLOYMENT_NAME" ) http_client = AzureMLEndpointClient(endpoint_url, endpoint_key, deployment_name) return http_client @property def _identifying_params(self) -> Mapping[str, Any]: """Get the identifying parameters."""
https://api.python.langchain.com/en/latest/_modules/langchain/llms/azureml_endpoint.html
742d57dc5585-4
"""Get the identifying parameters.""" _model_kwargs = self.model_kwargs or {} return { **{"deployment_name": self.deployment_name}, **{"model_kwargs": _model_kwargs}, } @property def _llm_type(self) -> str: """Return type of llm.""" return "azureml_endpoint" def _call( self, prompt: str, stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any ) -> str: """Call out to an AzureML Managed Online endpoint. Args: prompt: The prompt to pass into the model. stop: Optional list of stop words to use when generating. Returns: The string generated by the model. Example: .. code-block:: python response = azureml_model("Tell me a joke.") """ _model_kwargs = self.model_kwargs or {} body = self.content_formatter.format_request_payload(prompt, _model_kwargs) endpoint_response = self.http_client.call(body) response = self.content_formatter.format_response_payload(endpoint_response) return response
https://api.python.langchain.com/en/latest/_modules/langchain/llms/azureml_endpoint.html
dd0613d97371-0
Source code for langchain.llms.promptlayer_openai """PromptLayer wrapper.""" import datetime from typing import Any, List, Optional from langchain.callbacks.manager import ( AsyncCallbackManagerForLLMRun, CallbackManagerForLLMRun, ) from langchain.llms import OpenAI, OpenAIChat from langchain.schema import LLMResult [docs]class PromptLayerOpenAI(OpenAI): """Wrapper around OpenAI large language models. To use, you should have the ``openai`` and ``promptlayer`` python package installed, and the environment variable ``OPENAI_API_KEY`` and ``PROMPTLAYER_API_KEY`` set with your openAI API key and promptlayer key respectively. All parameters that can be passed to the OpenAI LLM can also be passed here. The PromptLayerOpenAI LLM adds two optional parameters: ``pl_tags``: List of strings to tag the request with. ``return_pl_id``: If True, the PromptLayer request ID will be returned in the ``generation_info`` field of the ``Generation`` object. Example: .. code-block:: python from langchain.llms import PromptLayerOpenAI openai = PromptLayerOpenAI(model_name="text-davinci-003") """ pl_tags: Optional[List[str]] return_pl_id: Optional[bool] = False def _generate( self, prompts: List[str], stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> LLMResult: """Call OpenAI generate and then call PromptLayer API to log the request."""
https://api.python.langchain.com/en/latest/_modules/langchain/llms/promptlayer_openai.html
dd0613d97371-1
"""Call OpenAI generate and then call PromptLayer API to log the request.""" from promptlayer.utils import get_api_key, promptlayer_api_request request_start_time = datetime.datetime.now().timestamp() generated_responses = super()._generate(prompts, stop, run_manager) request_end_time = datetime.datetime.now().timestamp() for i in range(len(prompts)): prompt = prompts[i] generation = generated_responses.generations[i][0] resp = { "text": generation.text, "llm_output": generated_responses.llm_output, } params = {**self._identifying_params, **kwargs} pl_request_id = promptlayer_api_request( "langchain.PromptLayerOpenAI", "langchain", [prompt], params, self.pl_tags, resp, request_start_time, request_end_time, get_api_key(), return_pl_id=self.return_pl_id, ) if self.return_pl_id: if generation.generation_info is None or not isinstance( generation.generation_info, dict ): generation.generation_info = {} generation.generation_info["pl_request_id"] = pl_request_id return generated_responses async def _agenerate( self, prompts: List[str], stop: Optional[List[str]] = None, run_manager: Optional[AsyncCallbackManagerForLLMRun] = None, **kwargs: Any, ) -> LLMResult: from promptlayer.utils import get_api_key, promptlayer_api_request_async request_start_time = datetime.datetime.now().timestamp() generated_responses = await super()._agenerate(prompts, stop, run_manager)
https://api.python.langchain.com/en/latest/_modules/langchain/llms/promptlayer_openai.html
dd0613d97371-2
generated_responses = await super()._agenerate(prompts, stop, run_manager) request_end_time = datetime.datetime.now().timestamp() for i in range(len(prompts)): prompt = prompts[i] generation = generated_responses.generations[i][0] resp = { "text": generation.text, "llm_output": generated_responses.llm_output, } params = {**self._identifying_params, **kwargs} pl_request_id = await promptlayer_api_request_async( "langchain.PromptLayerOpenAI.async", "langchain", [prompt], params, self.pl_tags, resp, request_start_time, request_end_time, get_api_key(), return_pl_id=self.return_pl_id, ) if self.return_pl_id: if generation.generation_info is None or not isinstance( generation.generation_info, dict ): generation.generation_info = {} generation.generation_info["pl_request_id"] = pl_request_id return generated_responses [docs]class PromptLayerOpenAIChat(OpenAIChat): """Wrapper around OpenAI large language models. To use, you should have the ``openai`` and ``promptlayer`` python package installed, and the environment variable ``OPENAI_API_KEY`` and ``PROMPTLAYER_API_KEY`` set with your openAI API key and promptlayer key respectively. All parameters that can be passed to the OpenAIChat LLM can also be passed here. The PromptLayerOpenAIChat adds two optional parameters: ``pl_tags``: List of strings to tag the request with.
https://api.python.langchain.com/en/latest/_modules/langchain/llms/promptlayer_openai.html
dd0613d97371-3
parameters: ``pl_tags``: List of strings to tag the request with. ``return_pl_id``: If True, the PromptLayer request ID will be returned in the ``generation_info`` field of the ``Generation`` object. Example: .. code-block:: python from langchain.llms import PromptLayerOpenAIChat openaichat = PromptLayerOpenAIChat(model_name="gpt-3.5-turbo") """ pl_tags: Optional[List[str]] return_pl_id: Optional[bool] = False def _generate( self, prompts: List[str], stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> LLMResult: """Call OpenAI generate and then call PromptLayer API to log the request.""" from promptlayer.utils import get_api_key, promptlayer_api_request request_start_time = datetime.datetime.now().timestamp() generated_responses = super()._generate(prompts, stop, run_manager) request_end_time = datetime.datetime.now().timestamp() for i in range(len(prompts)): prompt = prompts[i] generation = generated_responses.generations[i][0] resp = { "text": generation.text, "llm_output": generated_responses.llm_output, } params = {**self._identifying_params, **kwargs} pl_request_id = promptlayer_api_request( "langchain.PromptLayerOpenAIChat", "langchain", [prompt], params, self.pl_tags, resp, request_start_time, request_end_time,
https://api.python.langchain.com/en/latest/_modules/langchain/llms/promptlayer_openai.html
dd0613d97371-4
resp, request_start_time, request_end_time, get_api_key(), return_pl_id=self.return_pl_id, ) if self.return_pl_id: if generation.generation_info is None or not isinstance( generation.generation_info, dict ): generation.generation_info = {} generation.generation_info["pl_request_id"] = pl_request_id return generated_responses async def _agenerate( self, prompts: List[str], stop: Optional[List[str]] = None, run_manager: Optional[AsyncCallbackManagerForLLMRun] = None, **kwargs: Any, ) -> LLMResult: from promptlayer.utils import get_api_key, promptlayer_api_request_async request_start_time = datetime.datetime.now().timestamp() generated_responses = await super()._agenerate(prompts, stop, run_manager) request_end_time = datetime.datetime.now().timestamp() for i in range(len(prompts)): prompt = prompts[i] generation = generated_responses.generations[i][0] resp = { "text": generation.text, "llm_output": generated_responses.llm_output, } params = {**self._identifying_params, **kwargs} pl_request_id = await promptlayer_api_request_async( "langchain.PromptLayerOpenAIChat.async", "langchain", [prompt], params, self.pl_tags, resp, request_start_time, request_end_time, get_api_key(), return_pl_id=self.return_pl_id, ) if self.return_pl_id: if generation.generation_info is None or not isinstance( generation.generation_info, dict
https://api.python.langchain.com/en/latest/_modules/langchain/llms/promptlayer_openai.html
dd0613d97371-5
generation.generation_info, dict ): generation.generation_info = {} generation.generation_info["pl_request_id"] = pl_request_id return generated_responses
https://api.python.langchain.com/en/latest/_modules/langchain/llms/promptlayer_openai.html
c632f6301701-0
Source code for langchain.llms.anyscale """Wrapper around Anyscale""" from typing import Any, Dict, List, Mapping, Optional import requests from pydantic import Extra, root_validator from langchain.callbacks.manager import CallbackManagerForLLMRun from langchain.llms.base import LLM from langchain.llms.utils import enforce_stop_tokens from langchain.utils import get_from_dict_or_env [docs]class Anyscale(LLM): """Wrapper around Anyscale Services. To use, you should have the environment variable ``ANYSCALE_SERVICE_URL``, ``ANYSCALE_SERVICE_ROUTE`` and ``ANYSCALE_SERVICE_TOKEN`` set with your Anyscale Service, or pass it as a named parameter to the constructor. Example: .. code-block:: python from langchain.llms import Anyscale anyscale = Anyscale(anyscale_service_url="SERVICE_URL", anyscale_service_route="SERVICE_ROUTE", anyscale_service_token="SERVICE_TOKEN") # Use Ray for distributed processing import ray prompt_list=[] @ray.remote def send_query(llm, prompt): resp = llm(prompt) return resp futures = [send_query.remote(anyscale, prompt) for prompt in prompt_list] results = ray.get(futures) """ model_kwargs: Optional[dict] = None """Key word arguments to pass to the model. Reserved for future use""" anyscale_service_url: Optional[str] = None anyscale_service_route: Optional[str] = None anyscale_service_token: Optional[str] = None class Config: """Configuration for this pydantic object.""" extra = Extra.forbid @root_validator() def validate_environment(cls, values: Dict) -> Dict:
https://api.python.langchain.com/en/latest/_modules/langchain/llms/anyscale.html
c632f6301701-1
@root_validator() def validate_environment(cls, values: Dict) -> Dict: """Validate that api key and python package exists in environment.""" anyscale_service_url = get_from_dict_or_env( values, "anyscale_service_url", "ANYSCALE_SERVICE_URL" ) anyscale_service_route = get_from_dict_or_env( values, "anyscale_service_route", "ANYSCALE_SERVICE_ROUTE" ) anyscale_service_token = get_from_dict_or_env( values, "anyscale_service_token", "ANYSCALE_SERVICE_TOKEN" ) if anyscale_service_url.endswith("/"): anyscale_service_url = anyscale_service_url[:-1] if not anyscale_service_route.startswith("/"): anyscale_service_route = "/" + anyscale_service_route try: anyscale_service_endpoint = f"{anyscale_service_url}/-/routes" headers = {"Authorization": f"Bearer {anyscale_service_token}"} requests.get(anyscale_service_endpoint, headers=headers) except requests.exceptions.RequestException as e: raise ValueError(e) values["anyscale_service_url"] = anyscale_service_url values["anyscale_service_route"] = anyscale_service_route values["anyscale_service_token"] = anyscale_service_token return values @property def _identifying_params(self) -> Mapping[str, Any]: """Get the identifying parameters.""" return { "anyscale_service_url": self.anyscale_service_url, "anyscale_service_route": self.anyscale_service_route, } @property def _llm_type(self) -> str: """Return type of llm.""" return "anyscale" def _call( self, prompt: str,
https://api.python.langchain.com/en/latest/_modules/langchain/llms/anyscale.html
c632f6301701-2
def _call( self, prompt: str, stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> str: """Call out to Anyscale Service endpoint. Args: prompt: The prompt to pass into the model. stop: Optional list of stop words to use when generating. Returns: The string generated by the model. Example: .. code-block:: python response = anyscale("Tell me a joke.") """ anyscale_service_endpoint = ( f"{self.anyscale_service_url}{self.anyscale_service_route}" ) headers = {"Authorization": f"Bearer {self.anyscale_service_token}"} body = {"prompt": prompt} resp = requests.post(anyscale_service_endpoint, headers=headers, json=body) if resp.status_code != 200: raise ValueError( f"Error returned by service, status code {resp.status_code}" ) text = resp.text if stop is not None: # This is a bit hacky, but I can't figure out a better way to enforce # stop tokens when making calls to huggingface_hub. text = enforce_stop_tokens(text, stop) return text
https://api.python.langchain.com/en/latest/_modules/langchain/llms/anyscale.html
83688381afcc-0
Source code for langchain.llms.octoai_endpoint """Wrapper around OctoAI APIs.""" from typing import Any, Dict, List, Mapping, Optional from pydantic import Extra, root_validator from langchain.callbacks.manager import CallbackManagerForLLMRun from langchain.llms.base import LLM from langchain.llms.utils import enforce_stop_tokens from langchain.utils import get_from_dict_or_env [docs]class OctoAIEndpoint(LLM): """Wrapper around OctoAI Inference Endpoints. OctoAIEndpoint is a class to interact with OctoAI Compute Service large language model endpoints. To use, you should have the ``octoai`` python package installed, and the environment variable ``OCTOAI_API_TOKEN`` set with your API token, or pass it as a named parameter to the constructor. Example: .. code-block:: python from langchain.llms.octoai_endpoint import OctoAIEndpoint OctoAIEndpoint( octoai_api_token="octoai-api-key", endpoint_url="https://mpt-7b-demo-kk0powt97tmb.octoai.cloud/generate", model_kwargs={ "max_new_tokens": 200, "temperature": 0.75, "top_p": 0.95, "repetition_penalty": 1, "seed": None, "stop": [], }, ) """ endpoint_url: Optional[str] = None """Endpoint URL to use.""" model_kwargs: Optional[dict] = None """Key word arguments to pass to the model.""" octoai_api_token: Optional[str] = None """OCTOAI API Token"""
https://api.python.langchain.com/en/latest/_modules/langchain/llms/octoai_endpoint.html
83688381afcc-1
"""OCTOAI API Token""" class Config: """Configuration for this pydantic object.""" extra = Extra.forbid @root_validator(allow_reuse=True) def validate_environment(cls, values: Dict) -> Dict: """Validate that api key and python package exists in environment.""" octoai_api_token = get_from_dict_or_env( values, "octoai_api_token", "OCTOAI_API_TOKEN" ) values["endpoint_url"] = get_from_dict_or_env( values, "endpoint_url", "ENDPOINT_URL" ) values["octoai_api_token"] = octoai_api_token return values @property def _identifying_params(self) -> Mapping[str, Any]: """Get the identifying parameters.""" _model_kwargs = self.model_kwargs or {} return { **{"endpoint_url": self.endpoint_url}, **{"model_kwargs": _model_kwargs}, } @property def _llm_type(self) -> str: """Return type of llm.""" return "octoai_endpoint" def _call( self, prompt: str, stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> str: """Call out to OctoAI's inference endpoint. Args: prompt: The prompt to pass into the model. stop: Optional list of stop words to use when generating. Returns: The string generated by the model. """ _model_kwargs = self.model_kwargs or {} # Prepare the payload JSON
https://api.python.langchain.com/en/latest/_modules/langchain/llms/octoai_endpoint.html
83688381afcc-2
_model_kwargs = self.model_kwargs or {} # Prepare the payload JSON parameter_payload = {"inputs": prompt, "parameters": _model_kwargs} try: # Initialize the OctoAI client from octoai import client octoai_client = client.Client(token=self.octoai_api_token) # Send the request using the OctoAI client resp_json = octoai_client.infer(self.endpoint_url, parameter_payload) text = resp_json["generated_text"] except Exception as e: # Handle any errors raised by the inference endpoint raise ValueError(f"Error raised by the inference endpoint: {e}") from e if stop is not None: # Apply stop tokens when making calls to OctoAI text = enforce_stop_tokens(text, stop) return text
https://api.python.langchain.com/en/latest/_modules/langchain/llms/octoai_endpoint.html
b3f9cd2de67e-0
Source code for langchain.llms.ctransformers """Wrapper around the C Transformers library.""" from typing import Any, Dict, Optional, Sequence from pydantic import root_validator from langchain.callbacks.manager import CallbackManagerForLLMRun from langchain.llms.base import LLM [docs]class CTransformers(LLM): """Wrapper around the C Transformers LLM interface. To use, you should have the ``ctransformers`` python package installed. See https://github.com/marella/ctransformers Example: .. code-block:: python from langchain.llms import CTransformers llm = CTransformers(model="/path/to/ggml-gpt-2.bin", model_type="gpt2") """ client: Any #: :meta private: model: str """The path to a model file or directory or the name of a Hugging Face Hub model repo.""" model_type: Optional[str] = None """The model type.""" model_file: Optional[str] = None """The name of the model file in repo or directory.""" config: Optional[Dict[str, Any]] = None """The config parameters. See https://github.com/marella/ctransformers#config""" lib: Optional[str] = None """The path to a shared library or one of `avx2`, `avx`, `basic`.""" @property def _identifying_params(self) -> Dict[str, Any]: """Get the identifying parameters.""" return { "model": self.model, "model_type": self.model_type, "model_file": self.model_file, "config": self.config, } @property
https://api.python.langchain.com/en/latest/_modules/langchain/llms/ctransformers.html
b3f9cd2de67e-1
"config": self.config, } @property def _llm_type(self) -> str: """Return type of llm.""" return "ctransformers" @root_validator() def validate_environment(cls, values: Dict) -> Dict: """Validate that ``ctransformers`` package is installed.""" try: from ctransformers import AutoModelForCausalLM except ImportError: raise ImportError( "Could not import `ctransformers` package. " "Please install it with `pip install ctransformers`" ) config = values["config"] or {} values["client"] = AutoModelForCausalLM.from_pretrained( values["model"], model_type=values["model_type"], model_file=values["model_file"], lib=values["lib"], **config, ) return values def _call( self, prompt: str, stop: Optional[Sequence[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> str: """Generate text from a prompt. Args: prompt: The prompt to generate text from. stop: A list of sequences to stop generation when encountered. Returns: The generated text. Example: .. code-block:: python response = llm("Tell me a joke.") """ text = [] _run_manager = run_manager or CallbackManagerForLLMRun.get_noop_manager() for chunk in self.client(prompt, stop=stop, stream=True): text.append(chunk)
https://api.python.langchain.com/en/latest/_modules/langchain/llms/ctransformers.html
b3f9cd2de67e-2
text.append(chunk) _run_manager.on_llm_new_token(chunk, verbose=self.verbose) return "".join(text)
https://api.python.langchain.com/en/latest/_modules/langchain/llms/ctransformers.html
f13f728fdb0c-0
Source code for langchain.llms.vertexai """Wrapper around Google VertexAI models.""" import asyncio from concurrent.futures import Executor, ThreadPoolExecutor from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional from pydantic import BaseModel, root_validator from langchain.callbacks.manager import ( AsyncCallbackManagerForLLMRun, CallbackManagerForLLMRun, ) from langchain.llms.base import LLM from langchain.llms.utils import enforce_stop_tokens from langchain.utilities.vertexai import ( init_vertexai, raise_vertex_import_error, ) if TYPE_CHECKING: from vertexai.language_models._language_models import _LanguageModel def is_codey_model(model_name: str) -> bool: return "code" in model_name class _VertexAICommon(BaseModel): client: "_LanguageModel" = None #: :meta private: model_name: str "Model name to use." temperature: float = 0.0 "Sampling temperature, it controls the degree of randomness in token selection." max_output_tokens: int = 128 "Token limit determines the maximum amount of text output from one prompt." top_p: float = 0.95 "Tokens are selected from most probable to least until the sum of their " "probabilities equals the top-p value. Top-p is ignored for Codey models." top_k: int = 40 "How the model selects tokens for output, the next token is selected from " "among the top-k most probable tokens. Top-k is ignored for Codey models." stop: Optional[List[str]] = None "Optional list of stop words to use when generating." project: Optional[str] = None
https://api.python.langchain.com/en/latest/_modules/langchain/llms/vertexai.html
f13f728fdb0c-1
project: Optional[str] = None "The default GCP project to use when making Vertex API calls." location: str = "us-central1" "The default location to use when making API calls." credentials: Any = None "The default custom credentials (google.auth.credentials.Credentials) to use " "when making API calls. If not provided, credentials will be ascertained from " "the environment." request_parallelism: int = 5 "The amount of parallelism allowed for requests issued to VertexAI models. " "Default is 5." task_executor: ClassVar[Optional[Executor]] = None @property def is_codey_model(self) -> bool: return is_codey_model(self.model_name) @property def _default_params(self) -> Dict[str, Any]: if self.is_codey_model: return { "temperature": self.temperature, "max_output_tokens": self.max_output_tokens, } else: return { "temperature": self.temperature, "max_output_tokens": self.max_output_tokens, "top_k": self.top_k, "top_p": self.top_p, } def _predict( self, prompt: str, stop: Optional[List[str]] = None, **kwargs: Any ) -> str: params = {**self._default_params, **kwargs} res = self.client.predict(prompt, **params) return self._enforce_stop_words(res.text, stop) def _enforce_stop_words(self, text: str, stop: Optional[List[str]] = None) -> str: if stop is None and self.stop is not None: stop = self.stop
https://api.python.langchain.com/en/latest/_modules/langchain/llms/vertexai.html
f13f728fdb0c-2
if stop is None and self.stop is not None: stop = self.stop if stop: return enforce_stop_tokens(text, stop) return text @property def _llm_type(self) -> str: return "vertexai" @classmethod def _get_task_executor(cls, request_parallelism: int = 5) -> Executor: if cls.task_executor is None: cls.task_executor = ThreadPoolExecutor(max_workers=request_parallelism) return cls.task_executor @classmethod def _try_init_vertexai(cls, values: Dict) -> None: allowed_params = ["project", "location", "credentials"] params = {k: v for k, v in values.items() if k in allowed_params} init_vertexai(**params) return None [docs]class VertexAI(_VertexAICommon, LLM): """Wrapper around Google Vertex AI large language models.""" model_name: str = "text-bison" "The name of the Vertex AI large language model." tuned_model_name: Optional[str] = None "The name of a tuned model. If provided, model_name is ignored." @root_validator() def validate_environment(cls, values: Dict) -> Dict: """Validate that the python package exists in environment.""" cls._try_init_vertexai(values) tuned_model_name = values.get("tuned_model_name") model_name = values["model_name"] try: if tuned_model_name or not is_codey_model(model_name): from vertexai.preview.language_models import TextGenerationModel if tuned_model_name: values["client"] = TextGenerationModel.get_tuned_model( tuned_model_name ) else:
https://api.python.langchain.com/en/latest/_modules/langchain/llms/vertexai.html
f13f728fdb0c-3
tuned_model_name ) else: values["client"] = TextGenerationModel.from_pretrained(model_name) else: from vertexai.preview.language_models import CodeGenerationModel values["client"] = CodeGenerationModel.from_pretrained(model_name) except ImportError: raise_vertex_import_error() return values async def _acall( self, prompt: str, stop: Optional[List[str]] = None, run_manager: Optional[AsyncCallbackManagerForLLMRun] = None, **kwargs: Any, ) -> str: """Call Vertex model to get predictions based on the prompt. Args: prompt: The prompt to pass into the model. stop: A list of stop words (optional). run_manager: A callback manager for async interaction with LLMs. Returns: The string generated by the model. """ return await asyncio.wrap_future( self._get_task_executor().submit(self._predict, prompt, stop) ) def _call( self, prompt: str, stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> str: """Call Vertex model to get predictions based on the prompt. Args: prompt: The prompt to pass into the model. stop: A list of stop words (optional). run_manager: A Callbackmanager for LLM run, optional. Returns: The string generated by the model. """ return self._predict(prompt, stop, **kwargs)
https://api.python.langchain.com/en/latest/_modules/langchain/llms/vertexai.html
8d772eded1bc-0
Source code for langchain.llms.ai21 """Wrapper around AI21 APIs.""" from typing import Any, Dict, List, Optional import requests from pydantic import BaseModel, Extra, root_validator from langchain.callbacks.manager import CallbackManagerForLLMRun from langchain.llms.base import LLM from langchain.utils import get_from_dict_or_env class AI21PenaltyData(BaseModel): """Parameters for AI21 penalty data.""" scale: int = 0 applyToWhitespaces: bool = True applyToPunctuations: bool = True applyToNumbers: bool = True applyToStopwords: bool = True applyToEmojis: bool = True [docs]class AI21(LLM): """Wrapper around AI21 large language models. To use, you should have the environment variable ``AI21_API_KEY`` set with your API key. Example: .. code-block:: python from langchain.llms import AI21 ai21 = AI21(model="j2-jumbo-instruct") """ model: str = "j2-jumbo-instruct" """Model name to use.""" temperature: float = 0.7 """What sampling temperature to use.""" maxTokens: int = 256 """The maximum number of tokens to generate in the completion.""" minTokens: int = 0 """The minimum number of tokens to generate in the completion.""" topP: float = 1.0 """Total probability mass of tokens to consider at each step.""" presencePenalty: AI21PenaltyData = AI21PenaltyData() """Penalizes repeated tokens.""" countPenalty: AI21PenaltyData = AI21PenaltyData()
https://api.python.langchain.com/en/latest/_modules/langchain/llms/ai21.html
8d772eded1bc-1
countPenalty: AI21PenaltyData = AI21PenaltyData() """Penalizes repeated tokens according to count.""" frequencyPenalty: AI21PenaltyData = AI21PenaltyData() """Penalizes repeated tokens according to frequency.""" numResults: int = 1 """How many completions to generate for each prompt.""" logitBias: Optional[Dict[str, float]] = None """Adjust the probability of specific tokens being generated.""" ai21_api_key: Optional[str] = None stop: Optional[List[str]] = None base_url: Optional[str] = None """Base url to use, if None decides based on model name.""" class Config: """Configuration for this pydantic object.""" extra = Extra.forbid @root_validator() def validate_environment(cls, values: Dict) -> Dict: """Validate that api key exists in environment.""" ai21_api_key = get_from_dict_or_env(values, "ai21_api_key", "AI21_API_KEY") values["ai21_api_key"] = ai21_api_key return values @property def _default_params(self) -> Dict[str, Any]: """Get the default parameters for calling AI21 API.""" return { "temperature": self.temperature, "maxTokens": self.maxTokens, "minTokens": self.minTokens, "topP": self.topP, "presencePenalty": self.presencePenalty.dict(), "countPenalty": self.countPenalty.dict(), "frequencyPenalty": self.frequencyPenalty.dict(), "numResults": self.numResults, "logitBias": self.logitBias, } @property
https://api.python.langchain.com/en/latest/_modules/langchain/llms/ai21.html
8d772eded1bc-2
"logitBias": self.logitBias, } @property def _identifying_params(self) -> Dict[str, Any]: """Get the identifying parameters.""" return {**{"model": self.model}, **self._default_params} @property def _llm_type(self) -> str: """Return type of llm.""" return "ai21" def _call( self, prompt: str, stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> str: """Call out to AI21's complete endpoint. Args: prompt: The prompt to pass into the model. stop: Optional list of stop words to use when generating. Returns: The string generated by the model. Example: .. code-block:: python response = ai21("Tell me a joke.") """ if self.stop is not None and stop is not None: raise ValueError("`stop` found in both the input and default params.") elif self.stop is not None: stop = self.stop elif stop is None: stop = [] if self.base_url is not None: base_url = self.base_url else: if self.model in ("j1-grande-instruct",): base_url = "https://api.ai21.com/studio/v1/experimental" else: base_url = "https://api.ai21.com/studio/v1" params = {**self._default_params, **kwargs} response = requests.post( url=f"{base_url}/{self.model}/complete",
https://api.python.langchain.com/en/latest/_modules/langchain/llms/ai21.html
8d772eded1bc-3
response = requests.post( url=f"{base_url}/{self.model}/complete", headers={"Authorization": f"Bearer {self.ai21_api_key}"}, json={"prompt": prompt, "stopSequences": stop, **params}, ) if response.status_code != 200: optional_detail = response.json().get("error") raise ValueError( f"AI21 /complete call failed with status code {response.status_code}." f" Details: {optional_detail}" ) response_json = response.json() return response_json["completions"][0]["data"]["text"]
https://api.python.langchain.com/en/latest/_modules/langchain/llms/ai21.html
e33d533c875a-0
Source code for langchain.llms.pipelineai """Wrapper around Pipeline Cloud API.""" import logging from typing import Any, Dict, List, Mapping, Optional from pydantic import BaseModel, Extra, Field, root_validator from langchain.callbacks.manager import CallbackManagerForLLMRun from langchain.llms.base import LLM from langchain.llms.utils import enforce_stop_tokens from langchain.utils import get_from_dict_or_env logger = logging.getLogger(__name__) [docs]class PipelineAI(LLM, BaseModel): """Wrapper around PipelineAI large language models. To use, you should have the ``pipeline-ai`` python package installed, and the environment variable ``PIPELINE_API_KEY`` set with your API key. Any parameters that are valid to be passed to the call can be passed in, even if not explicitly saved on this class. Example: .. code-block:: python from langchain import PipelineAI pipeline = PipelineAI(pipeline_key="") """ pipeline_key: str = "" """The id or tag of the target pipeline""" pipeline_kwargs: Dict[str, Any] = Field(default_factory=dict) """Holds any pipeline parameters valid for `create` call not explicitly specified.""" pipeline_api_key: Optional[str] = None class Config: """Configuration for this pydantic config.""" extra = Extra.forbid @root_validator(pre=True) def build_extra(cls, values: Dict[str, Any]) -> Dict[str, Any]: """Build extra kwargs from additional params that were passed in.""" all_required_field_names = {field.alias for field in cls.__fields__.values()} extra = values.get("pipeline_kwargs", {}) for field_name in list(values):
https://api.python.langchain.com/en/latest/_modules/langchain/llms/pipelineai.html
e33d533c875a-1
extra = values.get("pipeline_kwargs", {}) for field_name in list(values): if field_name not in all_required_field_names: if field_name in extra: raise ValueError(f"Found {field_name} supplied twice.") logger.warning( f"""{field_name} was transfered to pipeline_kwargs. Please confirm that {field_name} is what you intended.""" ) extra[field_name] = values.pop(field_name) values["pipeline_kwargs"] = extra return values @root_validator() def validate_environment(cls, values: Dict) -> Dict: """Validate that api key and python package exists in environment.""" pipeline_api_key = get_from_dict_or_env( values, "pipeline_api_key", "PIPELINE_API_KEY" ) values["pipeline_api_key"] = pipeline_api_key return values @property def _identifying_params(self) -> Mapping[str, Any]: """Get the identifying parameters.""" return { **{"pipeline_key": self.pipeline_key}, **{"pipeline_kwargs": self.pipeline_kwargs}, } @property def _llm_type(self) -> str: """Return type of llm.""" return "pipeline_ai" def _call( self, prompt: str, stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> str: """Call to Pipeline Cloud endpoint.""" try: from pipeline import PipelineCloud except ImportError: raise ValueError( "Could not import pipeline-ai python package. " "Please install it with `pip install pipeline-ai`."
https://api.python.langchain.com/en/latest/_modules/langchain/llms/pipelineai.html
e33d533c875a-2
"Please install it with `pip install pipeline-ai`." ) client = PipelineCloud(token=self.pipeline_api_key) params = self.pipeline_kwargs or {} params = {**params, **kwargs} run = client.run_pipeline(self.pipeline_key, [prompt, params]) try: text = run.result_preview[0][0] except AttributeError: raise AttributeError( f"A pipeline run should have a `result_preview` attribute." f"Run was: {run}" ) if stop is not None: # I believe this is required since the stop tokens # are not enforced by the pipeline parameters text = enforce_stop_tokens(text, stop) return text
https://api.python.langchain.com/en/latest/_modules/langchain/llms/pipelineai.html
9d44ce391a09-0
Source code for langchain.llms.human from typing import Any, Callable, List, Mapping, Optional from pydantic import Field from langchain.callbacks.manager import CallbackManagerForLLMRun from langchain.llms.base import LLM from langchain.llms.utils import enforce_stop_tokens def _display_prompt(prompt: str) -> None: """Displays the given prompt to the user.""" print(f"\n{prompt}") def _collect_user_input( separator: Optional[str] = None, stop: Optional[List[str]] = None ) -> str: """Collects and returns user input as a single string.""" separator = separator or "\n" lines = [] while True: line = input() if not line: break lines.append(line) if stop and any(seq in line for seq in stop): break # Combine all lines into a single string multi_line_input = separator.join(lines) return multi_line_input [docs]class HumanInputLLM(LLM): """ A LLM wrapper which returns user input as the response. """ input_func: Callable = Field(default_factory=lambda: _collect_user_input) prompt_func: Callable[[str], None] = Field(default_factory=lambda: _display_prompt) separator: str = "\n" input_kwargs: Mapping[str, Any] = {} prompt_kwargs: Mapping[str, Any] = {} @property def _identifying_params(self) -> Mapping[str, Any]: """ Returns an empty dictionary as there are no identifying parameters. """ return {} @property def _llm_type(self) -> str: """Returns the type of LLM.""" return "human-input"
https://api.python.langchain.com/en/latest/_modules/langchain/llms/human.html
9d44ce391a09-1
"""Returns the type of LLM.""" return "human-input" def _call( self, prompt: str, stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> str: """ Displays the prompt to the user and returns their input as a response. Args: prompt (str): The prompt to be displayed to the user. stop (Optional[List[str]]): A list of stop strings. run_manager (Optional[CallbackManagerForLLMRun]): Currently not used. Returns: str: The user's input as a response. """ self.prompt_func(prompt, **self.prompt_kwargs) user_input = self.input_func( separator=self.separator, stop=stop, **self.input_kwargs ) if stop is not None: # I believe this is required since the stop tokens # are not enforced by the human themselves user_input = enforce_stop_tokens(user_input, stop) return user_input
https://api.python.langchain.com/en/latest/_modules/langchain/llms/human.html
6bdbf29394fd-0
Source code for langchain.llms.bedrock import json from typing import Any, Dict, List, Mapping, Optional from pydantic import Extra, root_validator from langchain.callbacks.manager import CallbackManagerForLLMRun from langchain.llms.base import LLM from langchain.llms.utils import enforce_stop_tokens class LLMInputOutputAdapter: """Adapter class to prepare the inputs from Langchain to a format that LLM model expects. Also, provides helper function to extract the generated text from the model response.""" @classmethod def prepare_input( cls, provider: str, prompt: str, model_kwargs: Dict[str, Any] ) -> Dict[str, Any]: input_body = {**model_kwargs} if provider == "anthropic" or provider == "ai21": input_body["prompt"] = prompt elif provider == "amazon": input_body = dict() input_body["inputText"] = prompt input_body["textGenerationConfig"] = {**model_kwargs} else: input_body["inputText"] = prompt if provider == "anthropic" and "max_tokens_to_sample" not in input_body: input_body["max_tokens_to_sample"] = 50 return input_body @classmethod def prepare_output(cls, provider: str, response: Any) -> str: if provider == "anthropic": response_body = json.loads(response.get("body").read().decode()) return response_body.get("completion") else: response_body = json.loads(response.get("body").read()) if provider == "ai21": return response_body.get("completions")[0].get("data").get("text") else:
https://api.python.langchain.com/en/latest/_modules/langchain/llms/bedrock.html
6bdbf29394fd-1
else: return response_body.get("results")[0].get("outputText") [docs]class Bedrock(LLM): """LLM provider to invoke Bedrock models. To authenticate, the AWS client uses the following methods to automatically load credentials: https://boto3.amazonaws.com/v1/documentation/api/latest/guide/credentials.html If a specific credential profile should be used, you must pass the name of the profile from the ~/.aws/credentials file that is to be used. Make sure the credentials / roles used have the required policies to access the Bedrock service. """ """ Example: .. code-block:: python from bedrock_langchain.bedrock_llm import BedrockLLM llm = BedrockLLM( credentials_profile_name="default", model_id="amazon.titan-tg1-large" ) """ client: Any #: :meta private: region_name: Optional[str] = None """The aws region e.g., `us-west-2`. Fallsback to AWS_DEFAULT_REGION env variable or region specified in ~/.aws/config in case it is not provided here. """ credentials_profile_name: Optional[str] = None """The name of the profile in the ~/.aws/credentials or ~/.aws/config files, which has either access keys or role information specified. If not specified, the default credential profile or, if on an EC2 instance, credentials from IMDS will be used. See: https://boto3.amazonaws.com/v1/documentation/api/latest/guide/credentials.html """ model_id: str """Id of the model to call, e.g., amazon.titan-tg1-large, this is
https://api.python.langchain.com/en/latest/_modules/langchain/llms/bedrock.html
6bdbf29394fd-2
equivalent to the modelId property in the list-foundation-models api""" model_kwargs: Optional[Dict] = None """Key word arguments to pass to the model.""" class Config: """Configuration for this pydantic object.""" extra = Extra.forbid @root_validator() def validate_environment(cls, values: Dict) -> Dict: """Validate that AWS credentials to and python package exists in environment.""" # Skip creating new client if passed in constructor if values["client"] is not None: return values try: import boto3 if values["credentials_profile_name"] is not None: session = boto3.Session(profile_name=values["credentials_profile_name"]) else: # use default credentials session = boto3.Session() client_params = {} if values["region_name"]: client_params["region_name"] = values["region_name"] values["client"] = session.client("bedrock", **client_params) except ImportError: raise ModuleNotFoundError( "Could not import boto3 python package. " "Please install it with `pip install boto3`." ) except Exception as e: raise ValueError( "Could not load credentials to authenticate with AWS client. " "Please check that credentials in the specified " "profile name are valid." ) from e return values @property def _identifying_params(self) -> Mapping[str, Any]: """Get the identifying parameters.""" _model_kwargs = self.model_kwargs or {} return { **{"model_kwargs": _model_kwargs}, } @property def _llm_type(self) -> str: """Return type of llm."""
https://api.python.langchain.com/en/latest/_modules/langchain/llms/bedrock.html
6bdbf29394fd-3
"""Return type of llm.""" return "amazon_bedrock" def _call( self, prompt: str, stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> str: """Call out to Bedrock service model. Args: prompt: The prompt to pass into the model. stop: Optional list of stop words to use when generating. Returns: The string generated by the model. Example: .. code-block:: python response = se("Tell me a joke.") """ _model_kwargs = self.model_kwargs or {} provider = self.model_id.split(".")[0] params = {**_model_kwargs, **kwargs} input_body = LLMInputOutputAdapter.prepare_input(provider, prompt, params) body = json.dumps(input_body) accept = "application/json" contentType = "application/json" try: response = self.client.invoke_model( body=body, modelId=self.model_id, accept=accept, contentType=contentType ) text = LLMInputOutputAdapter.prepare_output(provider, response) except Exception as e: raise ValueError(f"Error raised by bedrock service: {e}") if stop is not None: text = enforce_stop_tokens(text, stop) return text
https://api.python.langchain.com/en/latest/_modules/langchain/llms/bedrock.html
778646bd4fc3-0
Source code for langchain.llms.databricks import os from abc import ABC, abstractmethod from typing import Any, Callable, Dict, List, Optional import requests from pydantic import BaseModel, Extra, Field, PrivateAttr, root_validator, validator from langchain.callbacks.manager import CallbackManagerForLLMRun from langchain.llms.base import LLM __all__ = ["Databricks"] class _DatabricksClientBase(BaseModel, ABC): """A base JSON API client that talks to Databricks.""" api_url: str api_token: str def post_raw(self, request: Any) -> Any: headers = {"Authorization": f"Bearer {self.api_token}"} response = requests.post(self.api_url, headers=headers, json=request) # TODO: error handling and automatic retries if not response.ok: raise ValueError(f"HTTP {response.status_code} error: {response.text}") return response.json() @abstractmethod def post(self, request: Any) -> Any: ... class _DatabricksServingEndpointClient(_DatabricksClientBase): """An API client that talks to a Databricks serving endpoint.""" host: str endpoint_name: str @root_validator(pre=True) def set_api_url(cls, values: Dict[str, Any]) -> Dict[str, Any]: if "api_url" not in values: host = values["host"] endpoint_name = values["endpoint_name"] api_url = f"https://{host}/serving-endpoints/{endpoint_name}/invocations" values["api_url"] = api_url return values def post(self, request: Any) -> Any:
https://api.python.langchain.com/en/latest/_modules/langchain/llms/databricks.html
778646bd4fc3-1
return values def post(self, request: Any) -> Any: # See https://docs.databricks.com/machine-learning/model-serving/score-model-serving-endpoints.html wrapped_request = {"dataframe_records": [request]} response = self.post_raw(wrapped_request)["predictions"] # For a single-record query, the result is not a list. if isinstance(response, list): response = response[0] return response class _DatabricksClusterDriverProxyClient(_DatabricksClientBase): """An API client that talks to a Databricks cluster driver proxy app.""" host: str cluster_id: str cluster_driver_port: str @root_validator(pre=True) def set_api_url(cls, values: Dict[str, Any]) -> Dict[str, Any]: if "api_url" not in values: host = values["host"] cluster_id = values["cluster_id"] port = values["cluster_driver_port"] api_url = f"https://{host}/driver-proxy-api/o/0/{cluster_id}/{port}" values["api_url"] = api_url return values def post(self, request: Any) -> Any: return self.post_raw(request) def get_repl_context() -> Any: """Gets the notebook REPL context if running inside a Databricks notebook. Returns None otherwise. """ try: from dbruntime.databricks_repl_context import get_context return get_context() except ImportError: raise ValueError( "Cannot access dbruntime, not running inside a Databricks notebook." ) def get_default_host() -> str: """Gets the default Databricks workspace hostname.
https://api.python.langchain.com/en/latest/_modules/langchain/llms/databricks.html
778646bd4fc3-2
"""Gets the default Databricks workspace hostname. Raises an error if the hostname cannot be automatically determined. """ host = os.getenv("DATABRICKS_HOST") if not host: try: host = get_repl_context().browserHostName if not host: raise ValueError("context doesn't contain browserHostName.") except Exception as e: raise ValueError( "host was not set and cannot be automatically inferred. Set " f"environment variable 'DATABRICKS_HOST'. Received error: {e}" ) # TODO: support Databricks CLI profile host = host.lstrip("https://").lstrip("http://").rstrip("/") return host def get_default_api_token() -> str: """Gets the default Databricks personal access token. Raises an error if the token cannot be automatically determined. """ if api_token := os.getenv("DATABRICKS_TOKEN"): return api_token try: api_token = get_repl_context().apiToken if not api_token: raise ValueError("context doesn't contain apiToken.") except Exception as e: raise ValueError( "api_token was not set and cannot be automatically inferred. Set " f"environment variable 'DATABRICKS_TOKEN'. Received error: {e}" ) # TODO: support Databricks CLI profile return api_token [docs]class Databricks(LLM): """LLM wrapper around a Databricks serving endpoint or a cluster driver proxy app. It supports two endpoint types: * **Serving endpoint** (recommended for both production and development). We assume that an LLM was registered and deployed to a serving endpoint.
https://api.python.langchain.com/en/latest/_modules/langchain/llms/databricks.html
778646bd4fc3-3
We assume that an LLM was registered and deployed to a serving endpoint. To wrap it as an LLM you must have "Can Query" permission to the endpoint. Set ``endpoint_name`` accordingly and do not set ``cluster_id`` and ``cluster_driver_port``. The expected model signature is: * inputs:: [{"name": "prompt", "type": "string"}, {"name": "stop", "type": "list[string]"}] * outputs: ``[{"type": "string"}]`` * **Cluster driver proxy app** (recommended for interactive development). One can load an LLM on a Databricks interactive cluster and start a local HTTP server on the driver node to serve the model at ``/`` using HTTP POST method with JSON input/output. Please use a port number between ``[3000, 8000]`` and let the server listen to the driver IP address or simply ``0.0.0.0`` instead of localhost only. To wrap it as an LLM you must have "Can Attach To" permission to the cluster. Set ``cluster_id`` and ``cluster_driver_port`` and do not set ``endpoint_name``. The expected server schema (using JSON schema) is: * inputs:: {"type": "object", "properties": { "prompt": {"type": "string"}, "stop": {"type": "array", "items": {"type": "string"}}}, "required": ["prompt"]}` * outputs: ``{"type": "string"}`` If the endpoint model signature is different or you want to set extra params, you can use `transform_input_fn` and `transform_output_fn` to apply necessary
https://api.python.langchain.com/en/latest/_modules/langchain/llms/databricks.html
778646bd4fc3-4
you can use `transform_input_fn` and `transform_output_fn` to apply necessary transformations before and after the query. """ host: str = Field(default_factory=get_default_host) """Databricks workspace hostname. If not provided, the default value is determined by * the ``DATABRICKS_HOST`` environment variable if present, or * the hostname of the current Databricks workspace if running inside a Databricks notebook attached to an interactive cluster in "single user" or "no isolation shared" mode. """ api_token: str = Field(default_factory=get_default_api_token) """Databricks personal access token. If not provided, the default value is determined by * the ``DATABRICKS_TOKEN`` environment variable if present, or * an automatically generated temporary token if running inside a Databricks notebook attached to an interactive cluster in "single user" or "no isolation shared" mode. """ endpoint_name: Optional[str] = None """Name of the model serving endpont. You must specify the endpoint name to connect to a model serving endpoint. You must not set both ``endpoint_name`` and ``cluster_id``. """ cluster_id: Optional[str] = None """ID of the cluster if connecting to a cluster driver proxy app. If neither ``endpoint_name`` nor ``cluster_id`` is not provided and the code runs inside a Databricks notebook attached to an interactive cluster in "single user" or "no isolation shared" mode, the current cluster ID is used as default. You must not set both ``endpoint_name`` and ``cluster_id``. """ cluster_driver_port: Optional[str] = None
https://api.python.langchain.com/en/latest/_modules/langchain/llms/databricks.html