code
stringlengths 1
46.1k
⌀ | label
class label 1.18k
classes | domain_label
class label 21
classes | index
stringlengths 4
5
|
---|---|---|---|
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<style>
canvas {
position: absolute;
top: 45%;
left: 50%;
width: 640px;
height: 640px;
margin: -320px 0 0 -320px;
}
</style>
</head>
<body>
<canvas></canvas>
<script>
'use strict';
var canvas = document.querySelector('canvas');
canvas.width = 640;
canvas.height = 640;
var g = canvas.getContext('2d');
var depthLimit = 7;
var hue = 0.15;
function drawTree(x1, y1, x2, y2, depth) {
if (depth == depthLimit)
return;
var dx = x2 - x1;
var dy = y1 - y2;
var x3 = x2 - dy;
var y3 = y2 - dx;
var x4 = x1 - dy;
var y4 = y1 - dx;
var x5 = x4 + 0.5 * (dx - dy);
var y5 = y4 - 0.5 * (dx + dy);
g.beginPath();
g.moveTo(x1, y1);
g.lineTo(x2, y2);
g.lineTo(x3, y3);
g.lineTo(x4, y4);
g.closePath();
g.fillStyle = HSVtoRGB(hue + depth * 0.02, 1, 1);
g.fill();
g.strokeStyle = "lightGray";
g.stroke();
g.beginPath();
g.moveTo(x3, y3);
g.lineTo(x4, y4);
g.lineTo(x5, y5);
g.closePath();
g.fillStyle = HSVtoRGB(hue + depth * 0.035, 1, 1);
g.fill();
g.strokeStyle = "lightGray";
g.stroke();
drawTree(x4, y4, x5, y5, depth + 1);
drawTree(x5, y5, x3, y3, depth + 1);
}
function HSVtoRGB(h, s, v) {
var r, g, b, i, f, p, q, t;
i = Math.floor(h * 6);
f = h * 6 - i;
p = v * (1 - s);
q = v * (1 - f * s);
t = v * (1 - (1 - f) * s);
switch (i % 6) {
case 0: r = v, g = t, b = p; break;
case 1: r = q, g = v, b = p; break;
case 2: r = p, g = v, b = t; break;
case 3: r = p, g = q, b = v; break;
case 4: r = t, g = p, b = v; break;
case 5: r = v, g = p, b = q; break;
}
return "rgb("
+ Math.round(r * 255) + ","
+ Math.round(g * 255) + ","
+ Math.round(b * 255) + ")";
}
function draw() {
g.clearRect(0, 0, canvas.width, canvas.height);
drawTree(275, 500, 375, 500, 0);
}
draw();
</script>
</body>
</html> | 396Pythagoras tree
| 10javascript
| 763rd |
class Splitmix64
MASK64 = (1 << 64) - 1
C1, C2, C3 = 0x9e3779b97f4a7c15, 0xbf58476d1ce4e5b9, 0x94d049bb133111eb
def initialize(seed = 0) = @state = seed & MASK64
def rand_i
z = @state = (@state + C1) & MASK64
z = ((z ^ (z >> 30)) * C2) & MASK64
z = ((z ^ (z >> 27)) * C3) & MASK64
(z ^ (z >> 31)) & MASK64
end
def rand_f = rand_i.fdiv(1<<64)
end
rand_gen = Splitmix64.new(1234567)
5.times{ puts rand_gen.rand_i }
rand_gen = Splitmix64.new(987654321)
p 100_000.times.lazy.map{(rand_gen.rand_f * 5).floor}.tally.sort.to_h | 397Pseudo-random numbers/Splitmix64
| 14ruby
| ikjoh |
package main
import (
"fmt"
"log"
"math"
)
var a1 = []int64{0, 1403580, -810728}
var a2 = []int64{527612, 0, -1370589}
const m1 = int64((1 << 32) - 209)
const m2 = int64((1 << 32) - 22853)
const d = m1 + 1 | 398Pseudo-random numbers/Combined recursive generator MRG32k3a
| 0go
| w52eg |
null | 395Pythagorean quadruples
| 1lua
| ohh8h |
import Data.List
randoms :: Int -> [Int]
randoms seed = unfoldr go ([seed,0,0],[seed,0,0])
where
go (x1,x2) =
let x1i = sum (zipWith (*) x1 a1) `mod` m1
x2i = sum (zipWith (*) x2 a2) `mod` m2
in Just $ ((x1i - x2i) `mod` m1, (x1i:init x1, x2i:init x2))
a1 = [0, 1403580, -810728]
m1 = 2^32 - 209
a2 = [527612, 0, -1370589]
m2 = 2^32 - 22853
randomsFloat = map ((/ (2^32 - 208)) . fromIntegral) . randoms | 398Pseudo-random numbers/Combined recursive generator MRG32k3a
| 8haskell
| 6xa3k |
class PCG32
MASK64 = (1 << 64) - 1
MASK32 = (1 << 32) - 1
CONST = 6364136223846793005
def seed(seed_state, seed_sequence)
@state = 0
@inc = ((seed_sequence << 1) | 1) & MASK64
next_int
@state = @state + seed_state
next_int
end
def next_int
old = @state
@state = ((old * CONST) + @inc) & MASK64
xorshifted = (((old >> 18) ^ old) >> 27) & MASK32
rot = (old >> 59) & MASK32
answer = (xorshifted >> rot) | (xorshifted << ((-rot) & 31))
answer & MASK32
end
def next_float
next_int.fdiv(1 << 32)
end
end
random_gen = PCG32.new
random_gen.seed(42, 54)
5.times{puts random_gen.next_int}
random_gen.seed(987654321, 1)
p 100_000.times.each{(random_gen.next_float * 5).floor}.tally.sort.to_h | 393Pseudo-random numbers/PCG32
| 14ruby
| 07hsu |
null | 396Pythagoras tree
| 11kotlin
| 90smh |
w =
print('w = ' + chr(34) + w + chr(34) + chr(10) + w) | 389Quine
| 3python
| bc4kr |
public class App {
private static long mod(long x, long y) {
long m = x % y;
if (m < 0) {
if (y < 0) {
return m - y;
} else {
return m + y;
}
}
return m;
}
public static class RNG { | 398Pseudo-random numbers/Combined recursive generator MRG32k3a
| 9java
| nbjih |
(function(){x<-intToUtf8(34);s<-"(function(){x<-intToUtf8(34);s<-%s%s%s;cat(sprintf(s,x,s,x))})()";cat(sprintf(s,x,s,x))})() | 389Quine
| 13r
| 762ry |
import kotlin.math.floor
fun mod(x: Long, y: Long): Long {
val m = x % y
return if (m < 0) {
if (y < 0) {
m - y
} else {
m + y
}
} else m
}
class RNG { | 398Pseudo-random numbers/Combined recursive generator MRG32k3a
| 11kotlin
| sr5q7 |
my $N = 2200;
push @sq, $_**2 for 0 .. $N;
my @not = (0) x $N;
@not[0] = 1;
for my $d (1 .. $N) {
my $last = 0;
for my $a (reverse ceiling($d/3) .. $d) {
for my $b (1 .. ceiling($a/2)) {
my $ab = $sq[$a] + $sq[$b];
last if $ab > $sq[$d];
my $x = sqrt($sq[$d] - $ab);
if ($x == int $x) {
$not[$d] = 1;
$last = 1;
last
}
}
last if $last;
}
}
sub ceiling { int $_[0] + 1 - 1e-15 }
for (0 .. $
$result .= "$_ " unless $not[$_]
}
print "$result\n" | 395Pythagorean quadruples
| 2perl
| 4tt5d |
typedef unsigned long long xint;
typedef unsigned long ulong;
inline ulong gcd(ulong m, ulong n)
{
ulong t;
while (n) { t = n; n = m % n; m = t; }
return m;
}
int main()
{
ulong a, b, c, pytha = 0, prim = 0, max_p = 100;
xint aa, bb, cc;
for (a = 1; a <= max_p / 3; a++) {
aa = (xint)a * a;
printf(, a);
fflush(stdout);
for (b = a + 1; b < max_p/2; b++) {
bb = (xint)b * b;
for (c = b + 1; c < max_p/2; c++) {
cc = (xint)c * c;
if (aa + bb < cc) break;
if (a + b + c > max_p) break;
if (aa + bb == cc) {
pytha++;
if (gcd(a, b) == 1) prim++;
}
}
}
}
printf(,
max_p, pytha, prim);
return 0;
} | 399Pythagorean triples
| 5c
| loqcy |
use strict;
use warnings;
use feature 'say';
package MRG32k3a {
use constant {
m1 => 2**32 - 209,
m2 => 2**32 - 22853
};
use Const::Fast;
const my @a1 => < 0 1403580 -810728>;
const my @a2 => <527612 0 -1370589>;
sub new {
my ($class,undef,$seed) = @_;
my @x1 = my @x2 = ($seed, 0, 0);
bless {x1 => \@x1, x2 => \@x2}, $class;
}
sub next_int {
my ($self) = @_;
unshift @{$$self{x1}}, ($a1[0] * $$self{x1}[0] + $a1[1] * $$self{x1}[1] + $a1[2] * $$self{x1}[2]) % m1; pop @{$$self{x1}};
unshift @{$$self{x2}}, ($a2[0] * $$self{x2}[0] + $a2[1] * $$self{x2}[1] + $a2[2] * $$self{x2}[2]) % m2; pop @{$$self{x2}};
($$self{x1}[0] - $$self{x2}[0]) % (m1 + 1)
}
sub next_float { $_[0]->next_int / (m1 + 1) }
}
say 'Seed: 1234567, first 5 values:';
my $rng = MRG32k3a->new( seed => 1234567 );
say $rng->next_int for 1..5;
my %h;
say "\nSeed: 987654321, values histogram:";
$rng = MRG32k3a->new( seed => 987654321 );
$h{int 5 * $rng->next_float}++ for 1..100_000;
say "$_ $h{$_}" for sort keys %h; | 398Pseudo-random numbers/Combined recursive generator MRG32k3a
| 2perl
| udovr |
def quad(top=2200):
r = [False] * top
ab = [False] * (top * 2)**2
for a in range(1, top):
for b in range(a, top):
ab[a * a + b * b] = True
s = 3
for c in range(1, top):
s1, s, s2 = s, s + 2, s + 2
for d in range(c + 1, top):
if ab[s1]:
r[d] = True
s1 += s2
s2 += 2
return [i for i, val in enumerate(r) if not val and i]
if __name__ == '__main__':
n = 2200
print(f) | 395Pythagorean quadruples
| 3python
| gzz4h |
use Imager;
sub tree {
my ($img, $x1, $y1, $x2, $y2, $depth) = @_;
return () if $depth <= 0;
my $dx = ($x2 - $x1);
my $dy = ($y1 - $y2);
my $x3 = ($x2 - $dy);
my $y3 = ($y2 - $dx);
my $x4 = ($x1 - $dy);
my $y4 = ($y1 - $dx);
my $x5 = ($x4 + 0.5 * ($dx - $dy));
my $y5 = ($y4 - 0.5 * ($dx + $dy));
$img->polygon(
points => [
[$x1, $y1],
[$x2, $y2],
[$x3, $y3],
[$x4, $y4],
],
color => [0, 255 / $depth, 0],
);
$img->polygon(
points => [
[$x3, $y3],
[$x4, $y4],
[$x5, $y5],
],
color => [0, 255 / $depth, 0],
);
tree($img, $x4, $y4, $x5, $y5, $depth - 1);
tree($img, $x5, $y5, $x3, $y3, $depth - 1);
}
my ($width, $height) = (1920, 1080);
my $img = Imager->new(xsize => $width, ysize => $height);
$img->box(filled => 1, color => 'white');
tree($img, $width/2.3, $height, $width/1.8, $height, 10);
$img->write(file => 'pythagoras_tree.png'); | 396Pythagoras tree
| 2perl
| w5ue6 |
a1 = [0, 1403580, -810728]
m1 = 2**32 - 209
a2 = [527612, 0, -1370589]
m2 = 2**32 - 22853
d = m1 + 1
class MRG32k3a():
def __init__(self, seed_state=123):
self.seed(seed_state)
def seed(self, seed_state):
assert 0 <seed_state < d, f
self.x1 = [seed_state, 0, 0]
self.x2 = [seed_state, 0, 0]
def next_int(self):
x1i = sum(aa * xx for aa, xx in zip(a1, self.x1))% m1
x2i = sum(aa * xx for aa, xx in zip(a2, self.x2))% m2
self.x1 = [x1i] + self.x1[:2]
self.x2 = [x2i] + self.x2[:2]
z = (x1i - x2i)% m1
answer = (z + 1)
return answer
def next_float(self):
return self.next_int() / d
if __name__ == '__main__':
random_gen = MRG32k3a()
random_gen.seed(1234567)
for i in range(5):
print(random_gen.next_int())
random_gen.seed(987654321)
hist = {i:0 for i in range(5)}
for i in range(100_000):
hist[int(random_gen.next_float() *5)] += 1
print(hist) | 398Pseudo-random numbers/Combined recursive generator MRG32k3a
| 3python
| 5fiux |
squares <- d <- seq_len(2200)^2
aAndb <- outer(squares, squares, '+')
aAndb <- aAndb[upper.tri(aAndb, diag = TRUE)]
sapply(squares, function(c) d <<- setdiff(d, aAndb + c))
print(sqrt(d)) | 395Pythagorean quadruples
| 13r
| vnn27 |
(defn gcd [a b] (if (zero? b) a (recur b (mod a b))))
(defn pyth [peri]
(for [m (range 2 (Math/sqrt (/ peri 2)))
n (range (inc (mod m 2)) m 2)
:let [p (* 2 m (+ m n))]
:while (<= p peri)
:when (= 1 (gcd m n))
:let [m2 (* m m), n2 (* n n),
[a b] (sort [(- m2 n2) (* 2 m n)]), c (+ m2 n2)]
k (range 1 (inc (quot peri p)))]
[(= k 1) (* k a) (* k b) (* k c)]))
(defn rcount [ts]
(reduce (fn [[total prims] t] [(inc total), (if (first t) (inc prims) prims)])
[0 0]
ts)) | 399Pythagorean triples
| 6clojure
| 4ti5o |
_=;puts _%_ | 389Quine
| 14ruby
| 12rpw |
fn main() {
let x = "fn main() {\n let x = ";
let y = "print!(\"{}{:?};\n let y = {:?};\n {}\", x, x, y, y)\n}\n";
print!("{}{:?};
let y = {:?};
{}", x, x, y, y)
} | 389Quine
| 15rust
| av714 |
typedef struct {
int m, n;
double ** v;
} mat_t, *mat;
mat matrix_new(int m, int n)
{
mat x = malloc(sizeof(mat_t));
x->v = malloc(sizeof(double*) * m);
x->v[0] = calloc(sizeof(double), m * n);
for (int i = 0; i < m; i++)
x->v[i] = x->v[0] + n * i;
x->m = m;
x->n = n;
return x;
}
void matrix_delete(mat m)
{
free(m->v[0]);
free(m->v);
free(m);
}
void matrix_transpose(mat m)
{
for (int i = 0; i < m->m; i++) {
for (int j = 0; j < i; j++) {
double t = m->v[i][j];
m->v[i][j] = m->v[j][i];
m->v[j][i] = t;
}
}
}
mat matrix_copy(int n, double a[][n], int m)
{
mat x = matrix_new(m, n);
for (int i = 0; i < m; i++)
for (int j = 0; j < n; j++)
x->v[i][j] = a[i][j];
return x;
}
mat matrix_mul(mat x, mat y)
{
if (x->n != y->m) return 0;
mat r = matrix_new(x->m, y->n);
for (int i = 0; i < x->m; i++)
for (int j = 0; j < y->n; j++)
for (int k = 0; k < x->n; k++)
r->v[i][j] += x->v[i][k] * y->v[k][j];
return r;
}
mat matrix_minor(mat x, int d)
{
mat m = matrix_new(x->m, x->n);
for (int i = 0; i < d; i++)
m->v[i][i] = 1;
for (int i = d; i < x->m; i++)
for (int j = d; j < x->n; j++)
m->v[i][j] = x->v[i][j];
return m;
}
double *vmadd(double a[], double b[], double s, double c[], int n)
{
for (int i = 0; i < n; i++)
c[i] = a[i] + s * b[i];
return c;
}
mat vmul(double v[], int n)
{
mat x = matrix_new(n, n);
for (int i = 0; i < n; i++)
for (int j = 0; j < n; j++)
x->v[i][j] = -2 * v[i] * v[j];
for (int i = 0; i < n; i++)
x->v[i][i] += 1;
return x;
}
double vnorm(double x[], int n)
{
double sum = 0;
for (int i = 0; i < n; i++) sum += x[i] * x[i];
return sqrt(sum);
}
double* vdiv(double x[], double d, double y[], int n)
{
for (int i = 0; i < n; i++) y[i] = x[i] / d;
return y;
}
double* mcol(mat m, double *v, int c)
{
for (int i = 0; i < m->m; i++)
v[i] = m->v[i][c];
return v;
}
void matrix_show(mat m)
{
for(int i = 0; i < m->m; i++) {
for (int j = 0; j < m->n; j++) {
printf(, m->v[i][j]);
}
printf();
}
printf();
}
void householder(mat m, mat *R, mat *Q)
{
mat q[m->m];
mat z = m, z1;
for (int k = 0; k < m->n && k < m->m - 1; k++) {
double e[m->m], x[m->m], a;
z1 = matrix_minor(z, k);
if (z != m) matrix_delete(z);
z = z1;
mcol(z, x, k);
a = vnorm(x, m->m);
if (m->v[k][k] > 0) a = -a;
for (int i = 0; i < m->m; i++)
e[i] = (i == k) ? 1 : 0;
vmadd(x, e, a, e, m->m);
vdiv(e, vnorm(e, m->m), e, m->m);
q[k] = vmul(e, m->m);
z1 = matrix_mul(q[k], z);
if (z != m) matrix_delete(z);
z = z1;
}
matrix_delete(z);
*Q = q[0];
*R = matrix_mul(q[0], m);
for (int i = 1; i < m->n && i < m->m - 1; i++) {
z1 = matrix_mul(q[i], *Q);
if (i > 1) matrix_delete(*Q);
*Q = z1;
matrix_delete(q[i]);
}
matrix_delete(q[0]);
z = matrix_mul(*Q, m);
matrix_delete(*R);
*R = z;
matrix_transpose(*Q);
}
double in[][3] = {
{ 12, -51, 4},
{ 6, 167, -68},
{ -4, 24, -41},
{ -1, 1, 0},
{ 2, 0, 3},
};
int main()
{
mat R, Q;
mat x = matrix_copy(3, in, 5);
householder(x, &R, &Q);
puts(); matrix_show(Q);
puts(); matrix_show(R);
mat m = matrix_mul(Q, R);
puts(); matrix_show(m);
matrix_delete(x);
matrix_delete(R);
matrix_delete(Q);
matrix_delete(m);
return 0;
} | 400QR decomposition
| 5c
| zektx |
val q = "\"" * 3
val c = """val q = "\"" * 3
val c = %s%s%s
println(c format (q, c, q))
"""
println(c format (q, c, q)) | 389Quine
| 16scala
| x4kwg |
def mod(x, y)
m = x % y
if m < 0 then
if y < 0 then
return m - y
else
return m + y
end
end
return m
end
A1 = [0, 1403580, -810728]
A1.freeze
M1 = (1 << 32) - 209
A2 = [527612, 0, -1370589]
A2.freeze
M2 = (1 << 32) - 22853
D = M1 + 1
$x1 = [0, 0, 0]
$x2 = [0, 0, 0]
def seed(seed_state)
$x1 = [seed_state, 0, 0]
$x2 = [seed_state, 0, 0]
end
def next_int()
x1i = mod((A1[0] * $x1[0] + A1[1] * $x1[1] + A1[2] * $x1[2]), M1)
x2i = mod((A2[0] * $x2[0] + A2[1] * $x2[1] + A2[2] * $x2[2]), M2)
z = mod(x1i - x2i, M1)
$x1 = [x1i, $x1[0], $x1[1]]
$x2 = [x2i, $x2[0], $x2[1]]
return z + 1
end
def next_float()
return 1.0 * next_int() / D
end
seed(1234567)
print next_int(),
print next_int(),
print next_int(),
print next_int(),
print next_int(),
print
counts = [0, 0, 0, 0, 0]
seed(987654321)
for i in 1 .. 100000
value = (next_float() * 5.0).floor
counts[value] = counts[value] + 1
end
counts.each_with_index { |v,i|
print i, , v,
} | 398Pseudo-random numbers/Combined recursive generator MRG32k3a
| 14ruby
| gzd4q |
n = 2200
l_add, l = {}, {}
1.step(n) do |x|
x2 = x*x
x.step(n) {|y| l_add[x2 + y*y] = true}
end
s = 3
1.step(n) do |x|
s1 = s
s += 2
s2 = s
(x+1).step(n) do |y|
l[y] = true if l_add[s1]
s1 += s2
s2 += 2
end
end
puts (1..n).reject{|x| l[x]}.join() | 395Pythagorean quadruples
| 14ruby
| 766ri |
from turtle import goto, pu, pd, color, done
def level(ax, ay, bx, by, depth=0):
if depth > 0:
dx,dy = bx-ax, ay-by
x3,y3 = bx-dy, by-dx
x4,y4 = ax-dy, ay-dx
x5,y5 = x4 + (dx - dy)/2, y4 - (dx + dy)/2
goto(ax, ay), pd()
for x, y in ((bx, by), (x3, y3), (x4, y4), (ax, ay)):
goto(x, y)
pu()
level(x4,y4, x5,y5, depth - 1)
level(x5,y5, x3,y3, depth - 1)
if __name__ == '__main__':
color('red', 'yellow')
pu()
level(-100, 500, 100, 500, depth=8)
done() | 396Pythagoras tree
| 3python
| x45wr |
use std::collections::BinaryHeap;
fn a094958_iter() -> Vec<u16> {
(0..12)
.map(|n| vec![1 << n, 5 * (1 << n)])
.flatten()
.filter(|x| x < &2200)
.collect::<BinaryHeap<u16>>()
.into_sorted_vec()
}
fn a094958_filter() -> Vec<u16> {
(1..2200) | 395Pythagorean quadruples
| 15rust
| jyy72 |
object PythagoreanQuadruple extends App {
val MAX = 2200
val MAX2: Int = MAX * MAX * 2
val found = Array.ofDim[Boolean](MAX + 1)
val a2b2 = Array.ofDim[Boolean](MAX2 + 1)
var s = 3
for (a <- 1 to MAX) {
val a2 = a * a
for (b <- a to MAX) a2b2(a2 + b * b) = true
}
for (c <- 1 to MAX) {
var s1 = s
s += 2
var s2 = s
for (d <- (c + 1) to MAX) {
if (a2b2(s1)) found(d) = true
s1 += s2
s2 += 2
}
}
println(f"The values of d <= ${MAX}%d which can't be represented:")
val notRepresented = (1 to MAX).filterNot(d => found(d) )
println(notRepresented.mkString(" "))
} | 395Pythagorean quadruples
| 16scala
| bcck6 |
pythtree <- function(ax,ay,bx,by,d) {
if(d<0) {return()}; clr="darkgreen";
dx=bx-ax; dy=ay-by;
x3=bx-dy; y3=by-dx;
x4=ax-dy; y4=ay-dx;
x5=x4+(dx-dy)/2; y5=y4-(dx+dy)/2;
segments(ax,-ay,bx,-by, col=clr);
segments(bx,-by,x3,-y3, col=clr);
segments(x3,-y3,x4,-y4, col=clr);
segments(x4,-y4,ax,-ay, col=clr);
pythtree(x4,y4,x5,y5,d-1);
pythtree(x5,y5,x3,y3,d-1);
}
pPythagorasT <- function(x1, y1,x2, y2, ord, fn="", ttl="") {
cat(" *** START PYTHT:", date(), "\n");
m=640; i=j=k=m1=m-2; x=y=d=dm=0;
if(fn=="") {pf=paste0("PYTHTR", ord, ".png")} else {pf=paste0(fn, ".png")};
if(ttl=="") {ttl=paste0("Pythagoras tree, order - ", ord)};
cat(" *** Plot file -", pf, "title:", ttl, "\n");
plot(NA, xlim=c(0,m), ylim=c(-m,0), xlab="", ylab="", main=ttl);
pythtree(x1,y1, x2,y2, ord);
dev.copy(png, filename=pf, width=m, height=m);
dev.off(); graphics.off();
cat(" *** END PYTHT:",date(),"\n");
}
pPythagorasT(275,500,375,500,9)
pPythagorasT(275,500,375,500,7) | 396Pythagoras tree
| 13r
| 12lpn |
func missingD(upTo n: Int) -> [Int] {
var a2 = 0, s = 3, s1 = 0, s2 = 0
var res = [Int](repeating: 0, count: n + 1)
var ab = [Int](repeating: 0, count: n * n * 2 + 1)
for a in 1...n {
a2 = a * a
for b in a...n {
ab[a2 + b * b] = 1
}
}
for c in 1..<n {
s1 = s
s += 2
s2 = s
for d in c+1...n {
if ab[s1]!= 0 {
res[d] = 1
}
s1 += s2
s2 += 2
}
}
return (1...n).filter({ res[$0] == 0 })
}
print(missingD(upTo: 2200)) | 395Pythagorean quadruples
| 17swift
| r33gg |
def setup
sketch_title 'Pythagoras Tree'
background(255)
stroke(0, 255, 0)
tree(width / 2.3, height, width / 1.8, height, 10)
end
def tree(x1, y1, x2, y2, depth)
return if depth <= 0
dx = (x2 - x1)
dy = (y1 - y2)
x3 = (x2 - dy)
y3 = (y2 - dx)
x4 = (x1 - dy)
y4 = (y1 - dx)
x5 = (x4 + 0.5 * (dx - dy))
y5 = (y4 - 0.5 * (dx + dy))
begin_shape
fill(0.0, 255.0 / depth, 0.0)
vertex(x1, y1)
vertex(x2, y2)
vertex(x3, y3)
vertex(x4, y4)
vertex(x1, y1)
end_shape
begin_shape
fill(0.0, 255.0 / depth, 0.0)
vertex(x3, y3)
vertex(x4, y4)
vertex(x5, y5)
vertex(x3, y3)
end_shape
tree(x4, y4, x5, y5, depth - 1)
tree(x5, y5, x3, y3, depth - 1)
end
def settings
size(800, 400)
end | 396Pythagoras tree
| 14ruby
| srgqw |
int main(int argc, char **argv) {
printf(, argv[0]);
return 0;
} | 401Program name
| 5c
| 6xb32 |
({print($0+$0.debugDescription+")")})("({print($0+$0.debugDescription+\")\")})(") | 389Quine
| 17swift
| plgbl |
use svg::node::element::{Group, Polygon};
fn main() {
let mut doc = svg::Document::new().set("stroke", "white");
let mut base: Vec<[(f64, f64); 2]> = vec![[(-200.0, 0.0), (200.0, 0.0)]];
for lvl in 0..12u8 {
let rg = |step| lvl.wrapping_mul(step).wrapping_add(80 - step * 2);
let mut group = Group::new().set("fill", format!("#{:02X}{:02X}18", rg(20), rg(30))); | 396Pythagoras tree
| 15rust
| 07rsl |
package main
import (
"fmt"
"math"
"github.com/skelterjohn/go.matrix"
)
func sign(s float64) float64 {
if s > 0 {
return 1
} else if s < 0 {
return -1
}
return 0
}
func unitVector(n int) *matrix.DenseMatrix {
vec := matrix.Zeros(n, 1)
vec.Set(0, 0, 1)
return vec
}
func householder(a *matrix.DenseMatrix) *matrix.DenseMatrix {
m := a.Rows()
s := sign(a.Get(0, 0))
e := unitVector(m)
u := matrix.Sum(a, matrix.Scaled(e, a.TwoNorm()*s))
v := matrix.Scaled(u, 1/u.Get(0, 0)) | 400QR decomposition
| 0go
| k9zhz |
import java.awt._
import java.awt.geom.Path2D
import javax.swing.{JFrame, JPanel, SwingUtilities, WindowConstants}
object PythagorasTree extends App {
SwingUtilities.invokeLater(() => {
new JFrame {
class PythagorasTree extends JPanel {
setPreferredSize(new Dimension(640, 640))
setBackground(Color.white)
override def paintComponent(g: Graphics): Unit = {
val (depthLimit, hue) = (7, 0.15f)
def drawTree(g: Graphics2D, x1: Float, y1: Float, x2: Float, y2: Float, depth: Int): Unit = {
if (depth == depthLimit) return
val (dx, dy) = (x2 - x1, y1 - y2)
val (x3, y3) = (x2 - dy, y2 - dx)
val (x4, y4) = (x1 - dy, y1 - dx)
val (x5, y5) = (x4 + 0.5F * (dx - dy), y4 - 0.5F * (dx + dy))
val square = new Path2D.Float {
moveTo(x1, y1); lineTo(x2, y2); lineTo(x3, y3); lineTo(x4, y4); closePath()
}
val triangle = new Path2D.Float {
moveTo(x3, y3); lineTo(x4, y4); lineTo(x5, y5); closePath()
}
g.setColor(Color.getHSBColor(hue + depth * 0.02f, 1, 1))
g.fill(square)
g.setColor(Color.lightGray)
g.draw(square)
g.setColor(Color.getHSBColor(hue + depth * 0.035f, 1, 1))
g.fill(triangle)
g.setColor(Color.lightGray)
g.draw(triangle)
drawTree(g, x4, y4, x5, y5, depth + 1)
drawTree(g, x5, y5, x3, y3, depth + 1)
}
super.paintComponent(g)
drawTree(g.asInstanceOf[Graphics2D], 275, 500, 375, 500, 0)
}
}
setDefaultCloseOperation(WindowConstants.EXIT_ON_CLOSE)
setTitle("Pythagoras Tree")
setResizable(false)
add(new PythagorasTree, BorderLayout.CENTER)
pack()
setLocationRelativeTo(null)
setVisible(true)
}
})
} | 396Pythagoras tree
| 16scala
| ikhox |
import Data.List
import Text.Printf (printf)
eps = 1e-6 :: Double
mmult :: Num a => [[a]] -> [[a]] -> [[a]]
nth :: Num a => [[a]] -> Int -> Int -> a
mmult_num :: Num a => [[a]] -> a -> [[a]]
madd :: Num a => [[a]] -> [[a]] -> [[a]]
idMatrix :: Num a => Int -> Int -> [[a]]
adjustWithE :: [[Double]] -> Int -> [[Double]]
mmult a b = [ [ sum $ zipWith (*) ak bj | ak <- (transpose a) ] | bj <- b ]
nth mA i j = (mA !! j) !! i
mmult_num mA n = map (\c -> map (*n) c) mA
madd mA mB = zipWith (\c1 c2 -> zipWith (+) c1 c2) mA mB
idMatrix n m = [ [if (i==j) then 1 else 0 | i <- [1..n]] | j <- [1..m]]
adjustWithE mA n = let lA = length mA in
(idMatrix n (n - lA)) ++ (map (\c -> (take (n - lA) (repeat 0.0)) ++ c ) mA)
sqsum :: Floating a => [a] -> a
norm :: Floating a => [a] -> a
epsilonize :: [[Double]] -> [[Double]]
sqsum a = foldl (\x y -> x + y*y) 0 a
norm a = sqrt $! sqsum a
epsilonize mA = map (\c -> map (\x -> if abs x <= eps then 0 else x) c) mA
uTransform :: [Double] -> [Double]
hMatrix :: [Double] -> Int -> Int -> [[Double]]
householder :: [[Double]] -> ([[Double]], [[Double]])
householder_rec :: [[Double]] -> [[Double]] -> Int -> ([[Double]], [[Double]])
uTransform a = let t = (head a) + (signum (head a))*(norm a) in
1: map (\x -> x/t) (tail a)
hMatrix a n i = let u = uTransform (drop i a) in
madd
(idMatrix (n-i) (n-i))
(mmult_num
(mmult [u] (transpose [u]))
((/) (-2) (sqsum u)))
householder_rec mQ mR 0 = (mQ, mR)
householder_rec mQ mR n = let mSize = length mR in
let mH = adjustWithE (hMatrix (mR!!(mSize - n)) mSize (mSize - n)) mSize in
householder_rec (mmult mQ mH) (mmult mH mR) (n - 1)
householder mA = let mSize = length mA in
let (mQ, mR) = householder_rec (idMatrix mSize mSize) mA mSize in
(epsilonize mQ, epsilonize mR)
backSubstitution :: [[Double]] -> [Double] -> [Double] -> [Double]
backSubstitution mR [] res = res
backSubstitution mR@(hR:tR) q@(h:t) res =
let x = (h / (head hR)) in
backSubstitution
(map tail tR)
(tail (zipWith (-) q (map (*x) hR)))
(x: res)
showMatrix :: [[Double]] -> String
showMatrix mA =
concat $ intersperse "\n"
(map (\x -> unwords $ printf "%10.4f" <$> (x::[Double])) (transpose mA))
mY = [[12, 6, -4], [-51, 167, 24], [4, -68, -41]] :: [[Double]]
q = [21, 245, 35] :: [Double]
main = let (mQ, mR) = householder mY in
putStrLn ("Q: \n" ++ showMatrix mQ) >>
putStrLn ("R: \n" ++ showMatrix mR) >>
putStrLn ("q: \n" ++ show q) >>
putStrLn ("x: \n" ++ show (backSubstitution (reverse (map reverse mR)) (reverse q) [])) | 400QR decomposition
| 8haskell
| nbrie |
":"
":"
(ns scriptname
(:gen-class))
(defn -main [& args]
(let [program (first *command-line-args*)]
(println "Program:" program)))
(when (.contains (first *command-line-args*) *source-path*)
(apply -main (rest *command-line-args*))) | 401Program name
| 6clojure
| lowcb |
int es_check(uint32_t *sieve, uint64_t n)
{
if ((n != 2 && !(n & 1)) || (n < 2))
return 0;
else
return !(sieve[n >> 6] & (1 << (n >> 1 & 31)));
}
uint32_t *es_sieve(const uint64_t nth, uint64_t *es_size)
{
*es_size = nth * log(nth) + nth * (log(log(nth)) - 0.9385f) + 1;
uint32_t *sieve = calloc((*es_size >> 6) + 1, sizeof(uint32_t));
for (uint64_t i = 3; i < sqrt(*es_size) + 1; i += 2)
if (!(sieve[i >> 6] & (1 << (i >> 1 & 31))))
for (uint64_t j = i * i; j < *es_size; j += (i << 1))
sieve[j >> 6] |= (1 << (j >> 1 & 31));
return sieve;
}
size_t mpz_number_of_digits(const mpz_t op)
{
char *opstr = mpz_get_str(NULL, 10, op);
const size_t oplen = strlen(opstr);
free(opstr);
return oplen;
}
int main(void)
{
uint64_t sieve_size;
uint32_t *sieve = es_sieve(PRIMORIAL_LIMIT, &sieve_size);
mpz_t primorial;
mpz_init_set_ui(primorial, 1);
uint64_t prime_count = 0;
int print = 1;
double unused;
for (uint64_t i = 2; i < sieve_size && prime_count <= PRIMORIAL_LIMIT; ++i) {
if (print) {
if (prime_count < 10)
gmp_printf( PRIu64 , prime_count, primorial);
else if (!modf(log10(prime_count), &unused))
printf( PRIu64 , prime_count, mpz_number_of_digits(primorial));
print = 0;
}
if (es_check(sieve, i)) {
mpz_mul_ui(primorial, primorial, i);
prime_count++;
print = 1;
}
}
free(sieve);
mpz_clear(primorial);
return 0;
} | 402Primorial numbers
| 5c
| loecy |
import Jama.Matrix;
import Jama.QRDecomposition;
public class Decompose {
public static void main(String[] args) {
var matrix = new Matrix(new double[][] {
{12, -51, 4},
{ 6, 167, -68},
{-4, 24, -41},
});
var qr = new QRDecomposition(matrix);
qr.getQ().print(10, 4);
qr.getR().print(10, 4);
}
} | 400QR decomposition
| 9java
| qg2xa |
#!/usr/bin/env dart
main() {
var program = new Options().script;
print("Program: ${program}");
} | 401Program name
| 18dart
| nbgiq |
(ns example
(:gen-class))
(defn primes-hashmap
"Infinite sequence of primes using an incremental Sieve or Eratosthenes with a Hashmap"
[]
(letfn [(nxtoddprm [c q bsprms cmpsts]
(if (>= c q)
(let [p2 (* (first bsprms) 2),
nbps (next bsprms),
nbp (first nbps)]
(recur (+ c 2) (* nbp nbp) nbps (assoc cmpsts (+ q p2) p2)))
(if (contains? cmpsts c)
(recur (+ c 2) q bsprms
(let [adv (cmpsts c), ncmps (dissoc cmpsts c)]
(assoc ncmps
(loop [try (+ c adv)]
(if (contains? ncmps try)
(recur (+ try adv))
try))
adv)))
(cons c (lazy-seq (nxtoddprm (+ c 2) q bsprms cmpsts))))))]
(do (def baseoddprms (cons 3 (lazy-seq (nxtoddprm 5 9 baseoddprms {}))))
(cons 2 (lazy-seq (nxtoddprm 3 9 baseoddprms {}))))))
(defn primorial [n]
" Function produces the nth primorial number"
(if (= n 0)
1
(reduce *' (take n (primes-hashmap)))))
(let [start (System/nanoTime)
elapsed-secs (fn [] (/ (- (System/nanoTime) start) 1e9))]
(doseq [i (concat (range 10) [1e2 1e3 1e4 1e5 1e6])
:let [p (primorial i)]]
(if (< i 10)
(println (format "primorial (%7d ) =%10d" i (biginteger p)))
(println (format "primorial (%7d ) has%8d digits\tafter%.3f secs"
(long i) (count (str p)) (elapsed-secs)))))) | 402Primorial numbers
| 6clojure
| 4t05o |
int main(int argc, char **argv)
{
...
return 0;
}
if(problem){
exit(exit_code);
} | 403Program termination
| 5c
| 76org |
(if problem
(. System exit integerErrorCode))
} | 403Program termination
| 6clojure
| pltbd |
package main
import "fmt"
var total, prim, maxPeri int64
func newTri(s0, s1, s2 int64) {
if p := s0 + s1 + s2; p <= maxPeri {
prim++
total += maxPeri / p
newTri(+1*s0-2*s1+2*s2, +2*s0-1*s1+2*s2, +2*s0-2*s1+3*s2)
newTri(+1*s0+2*s1+2*s2, +2*s0+1*s1+2*s2, +2*s0+2*s1+3*s2)
newTri(-1*s0+2*s1+2*s2, -2*s0+1*s1+2*s2, -2*s0+2*s1+3*s2)
}
}
func main() {
for maxPeri = 100; maxPeri <= 1e11; maxPeri *= 10 {
prim = 0
total = 0
newTri(3, 4, 5)
fmt.Printf("Up to%d: %d triples,%d primitives\n",
maxPeri, total, prim)
}
} | 399Pythagorean triples
| 0go
| x42wf |
class Triple {
BigInteger a, b, c
def getPerimeter() { this.with { a + b + c } }
boolean isValid() { this.with { a*a + b*b == c*c } }
}
def initCounts (def n = 10) {
(n..1).collect { 10g**it }.inject ([:]) { Map map, BigInteger perimeterLimit ->
map << [(perimeterLimit): [primative: 0g, total: 0g]]
}
}
def findPythagTriples, findChildTriples
findPythagTriples = {Triple t = new Triple(a:3, b:4, c:5), Map counts = initCounts() ->
def p = t.perimeter
def currentCounts = counts.findAll { pLimit, tripleCounts -> p <= pLimit }
if (! currentCounts || ! t.valid) { return }
currentCounts.each { pLimit, tripleCounts ->
tripleCounts.with { primative ++; total += pLimit.intdiv(p) }
}
findChildTriples(t, currentCounts)
counts
}
findChildTriples = { Triple t, Map counts ->
t.with {
[
[ a - 2*b + 2*c, 2*a - b + 2*c, 2*a - 2*b + 3*c],
[ a + 2*b + 2*c, 2*a + b + 2*c, 2*a + 2*b + 3*c],
[-a + 2*b + 2*c, -2*a + b + 2*c, -2*a + 2*b + 3*c]
]*.sort().each { aa, bb, cc ->
findPythagTriples(new Triple(a:aa, b:bb, c:cc), counts)
}
}
} | 399Pythagorean triples
| 7groovy
| plybo |
pytr :: Int -> [(Bool, Int, Int, Int)]
pytr n =
filter
(\(_, a, b, c) -> a + b + c <= n)
[ (prim a b c, a, b, c)
| a <- xs,
b <- drop a xs,
c <- drop b xs,
a ^ 2 + b ^ 2 == c ^ 2
]
where
xs = [1 .. n]
prim a b _ = gcd a b == 1
main :: IO ()
main =
putStrLn $
"Up to 100 there are "
<> show (length xs)
<> " triples, of which "
<> show (length $ filter (\(x, _, _, _) -> x) xs)
<> " are primitive."
where
xs = pytr 100 | 399Pythagorean triples
| 8haskell
| yqa66 |
use strict;
use warnings;
use PDL;
use PDL::LinearAlgebra qw(mqr);
my $a = pdl(
[12, -51, 4],
[ 6, 167, -68],
[-4, 24, -41],
[-1, 1, 0],
[ 2, 0, 3]
);
my ($q, $r) = mqr($a);
print $q, $r, $q x $r; | 400QR decomposition
| 2perl
| msayz |
package main
import (
"fmt"
"os"
)
func main() {
fmt.Println("Program:", os.Args[0])
} | 401Program name
| 0go
| pl3bg |
package main
import (
"fmt"
"math/big"
"time"
"github.com/jbarham/primegen.go"
)
func main() {
start := time.Now()
pg := primegen.New()
var i uint64
p := big.NewInt(1)
tmp := new(big.Int)
for i <= 9 {
fmt.Printf("primorial(%v) =%v\n", i, p)
i++
p = p.Mul(p, tmp.SetUint64(pg.Next()))
}
for _, j := range []uint64{1e1, 1e2, 1e3, 1e4, 1e5, 1e6} {
for i < j {
i++
p = p.Mul(p, tmp.SetUint64(pg.Next()))
}
fmt.Printf("primorial(%v) has%v digits", i, len(p.String()))
fmt.Printf("\t(after%v)\n", time.Since(start))
}
} | 402Primorial numbers
| 0go
| x49wf |
#!/usr/bin/env groovy
def program = getClass().protectionDomain.codeSource.location.path
println "Program: " + program | 401Program name
| 7groovy
| 76nrz |
import System (getProgName)
main :: IO ()
main = getProgName >>= putStrLn . ("Program: " ++) | 401Program name
| 8haskell
| f17d1 |
import Control.Arrow ((&&&))
import Data.List (scanl1, foldl1')
getNthPrimorial:: Int -> Integer
getNthPrimorial n = foldl1' (*) (take n primes)
primes :: [Integer]
primes = 2: filter isPrime [3,5..]
isPrime :: Integer -> Bool
isPrime = isPrime_ primes
where isPrime_ :: [Integer] -> Integer -> Bool
isPrime_ (p:ps) n
| p * p > n = True
| n `mod` p == 0 = False
| otherwise = isPrime_ ps n
primorials :: [Integer]
primorials = 1: scanl1 (*) primes
main :: IO ()
main = do
let firstTen = take 10 primorials
putStrLn $ "The first 10 primorial numbers are: " ++ show firstTen
let powersOfTen = [1..6]
primorialTens = map (id &&& (length . show . getNthPrimorial . (10^))) powersOfTen
calculate = mapM_ (\(a,b) -> putStrLn $ "Primorial(10^"++show a++") has "++show b++" digits")
calculate primorialTens | 402Primorial numbers
| 8haskell
| yqb66 |
import java.math.BigInteger;
public class PrimorialNumbers {
final static int sieveLimit = 1300_000;
static boolean[] notPrime = sieve(sieveLimit);
public static void main(String[] args) {
for (int i = 0; i < 10; i++)
System.out.printf("primorial(%d):%d%n", i, primorial(i));
for (int i = 1; i < 6; i++) {
int len = primorial((int) Math.pow(10, i)).toString().length();
System.out.printf("primorial(10^%d) has length%d%n", i, len);
}
}
static BigInteger primorial(int n) {
if (n == 0)
return BigInteger.ONE;
BigInteger result = BigInteger.ONE;
for (int i = 0; i < sieveLimit && n > 0; i++) {
if (notPrime[i])
continue;
result = result.multiply(BigInteger.valueOf(i));
n--;
}
return result;
}
public static boolean[] sieve(int limit) {
boolean[] composite = new boolean[limit];
composite[0] = composite[1] = true;
int max = (int) Math.sqrt(limit);
for (int n = 2; n <= max; n++) {
if (!composite[n]) {
for (int k = n * n; k < limit; k += n) {
composite[k] = true;
}
}
}
return composite;
}
} | 402Primorial numbers
| 9java
| dpgn9 |
import java.math.BigInteger;
import static java.math.BigInteger.ONE;
public class PythTrip{
public static void main(String[] args){
long tripCount = 0, primCount = 0; | 399Pythagorean triples
| 9java
| dpjn9 |
import numpy as np
def qr(A):
m, n = A.shape
Q = np.eye(m)
for i in range(n - (m == n)):
H = np.eye(m)
H[i:, i:] = make_householder(A[i:, i])
Q = np.dot(Q, H)
A = np.dot(H, A)
return Q, A
def make_householder(a):
v = a / (a[0] + np.copysign(np.linalg.norm(a), a[0]))
v[0] = 1
H = np.eye(a.shape[0])
H -= (2 / np.dot(v, v)) * np.dot(v[:, None], v[None,:])
return H
a = np.array(((
(12, -51, 4),
( 6, 167, -68),
(-4, 24, -41),
)))
q, r = qr(a)
print('q:\n', q.round(6))
print('r:\n', r.round(6))
def polyfit(x, y, n):
return lsqr(x[:, None]**np.arange(n + 1), y.T)
def lsqr(a, b):
q, r = qr(a)
_, n = r.shape
return np.linalg.solve(r[:n,:], np.dot(q.T, b)[:n])
x = np.array((0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10))
y = np.array((1, 6, 17, 34, 57, 86, 121, 162, 209, 262, 321))
print('\npolyfit:\n', polyfit(x, y, 2)) | 400QR decomposition
| 3python
| 90emf |
bool is_prime(unsigned int n) {
assert(n < 64);
static bool isprime[] = {0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0,
0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1,
0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1,
0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0};
return isprime[n];
}
void swap(unsigned int* a, size_t i, size_t j) {
unsigned int tmp = a[i];
a[i] = a[j];
a[j] = tmp;
}
bool prime_triangle_row(unsigned int* a, size_t length) {
if (length == 2)
return is_prime(a[0] + a[1]);
for (size_t i = 1; i + 1 < length; i += 2) {
if (is_prime(a[0] + a[i])) {
swap(a, i, 1);
if (prime_triangle_row(a + 1, length - 1))
return true;
swap(a, i, 1);
}
}
return false;
}
int prime_triangle_count(unsigned int* a, size_t length) {
int count = 0;
if (length == 2) {
if (is_prime(a[0] + a[1]))
++count;
} else {
for (size_t i = 1; i + 1 < length; i += 2) {
if (is_prime(a[0] + a[i])) {
swap(a, i, 1);
count += prime_triangle_count(a + 1, length - 1);
swap(a, i, 1);
}
}
}
return count;
}
void print(unsigned int* a, size_t length) {
if (length == 0)
return;
printf(, a[0]);
for (size_t i = 1; i < length; ++i)
printf(, a[i]);
printf();
}
int main() {
clock_t start = clock();
for (unsigned int n = 2; n < 21; ++n) {
unsigned int a[n];
for (unsigned int i = 0; i < n; ++i)
a[i] = i + 1;
if (prime_triangle_row(a, n))
print(a, n);
}
printf();
for (unsigned int n = 2; n < 21; ++n) {
unsigned int a[n];
for (unsigned int i = 0; i < n; ++i)
a[i] = i + 1;
if (n > 2)
printf();
printf(, prime_triangle_count(a, n));
}
printf();
clock_t end = clock();
double duration = (end - start + 0.0) / CLOCKS_PER_SEC;
printf(, duration);
return 0;
} | 404Prime triangle
| 5c
| f14d3 |
public class ScriptName {
public static void main(String[] args) {
String program = System.getProperty("sun.java.command").split(" ")[0];
System.out.println("Program: " + program);
}
} | 401Program name
| 9java
| 07vse |
(() => {
"use strict"; | 399Pythagorean triples
| 10javascript
| 6x138 |
a <- matrix(c(12, -51, 4, 6, 167, -68, -4, 24, -41), nrow=3, ncol=3, byrow=T)
d <- qr(a)
qr.Q(d)
qr.R(d)
x <- 0:10
y <- 3*x^2 + 2*x + 1
a <- cbind(1, x, x^2)
qr.coef(qr(a), y)
a <- cbind(x, x^2)
lsfit(a, y)$coefficients
xx <- x*x
m <- lm(y ~ x + xx)
coef(m) | 400QR decomposition
| 13r
| 3wbzt |
function foo() {
return arguments.callee.name;
} | 401Program name
| 10javascript
| dprnu |
null | 402Primorial numbers
| 11kotlin
| 072sf |
typedef complex double vec;
typedef struct { vec c; double r; } circ;
double cross(vec a, vec b) { return re(a) * im(b) - im(a) * re(b); }
double abs2(vec a) { return a * conj(a); }
int apollonius_in(circ aa[], int ss[], int flip, int divert)
{
vec n[3], x[3], t[3], a, b, center;
int s[3], iter = 0, res = 0;
double diff = 1, diff_old = -1, axb, d, r;
for3 {
s[i] = ss[i] ? 1 : -1;
x[i] = aa[i].c;
}
while (diff > 1e-20) {
a = x[0] - x[2], b = x[1] - x[2];
diff = 0;
axb = -cross(a, b);
d = sqrt(abs2(a) * abs2(b) * abs2(a - b));
if (VERBOSE) {
const char *z = 1 + ;
printf(,
z[s[0]], z[s[1]], z[s[2]], z[flip], z[divert]);
printf(CPLX3, cp(x[0]), cp(x[1]), cp(x[2]));
}
r = fabs(d / (2 * axb));
center = (abs2(a)*b - abs2(b)*a) / (2 * axb) * I + x[2];
if (!axb && flip != -1 && !divert) {
if (!d) {
printf();
return 0;
}
if (VERBOSE) puts();
divert = 1;
res = apollonius_in(aa, ss, -1, 1);
}
for3 n[i] = axb ? aa[i].c - center : a * I * flip;
for3 t[i] = aa[i].c + n[i] / cabs(n[i]) * aa[i].r * s[i];
for3 diff += abs2(t[i] - x[i]), x[i] = t[i];
if (VERBOSE) printf(, diff);
if (diff >= diff_old && diff_old >= 0)
if (iter++ > 20) return res;
diff_old = diff;
}
printf();
if (axb) printf(CPLX, cp(center), r);
else printf(CPLX3, cp(x[0]), cp(x[1]), cp(x[2]));
return res + 1;
}
int apollonius(circ aa[])
{
int s[3], i, sum = 0;
for (i = 0; i < 8; i++) {
s[0] = i & 1, s[1] = i & 2, s[2] = i & 4;
if (s[0] && !aa[0].r) continue;
if (s[1] && !aa[1].r) continue;
if (s[2] && !aa[2].r) continue;
sum += apollonius_in(aa, s, 1, 0);
}
return sum;
}
int main()
{
circ a[3] = {{0, 1}, {4, 1}, {2 + 4 * I, 1}};
circ b[3] = {{-3, 2}, {0, 1}, {3, 2}};
circ c[3] = {{-2, 1}, {0, 1}, {2 * I, 1}};
puts(); apollonius(a);
puts(); apollonius(b);
puts(); apollonius(c);
} | 405Problem of Apollonius
| 5c
| 079st |
null | 401Program name
| 11kotlin
| euma4 |
package main
import "fmt"
var canFollow [][]bool
var arrang []int
var bFirst = true
var pmap = make(map[int]bool)
func init() {
for _, i := range []int{2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37} {
pmap[i] = true
}
}
func ptrs(res, n, done int) int {
ad := arrang[done-1]
if n-done <= 1 {
if canFollow[ad-1][n-1] {
if bFirst {
for _, e := range arrang {
fmt.Printf("%2d ", e)
}
fmt.Println()
bFirst = false
}
res++
}
} else {
done++
for i := done - 1; i <= n-2; i += 2 {
ai := arrang[i]
if canFollow[ad-1][ai-1] {
arrang[i], arrang[done-1] = arrang[done-1], arrang[i]
res = ptrs(res, n, done)
arrang[i], arrang[done-1] = arrang[done-1], arrang[i]
}
}
}
return res
}
func primeTriangle(n int) int {
canFollow = make([][]bool, n)
for i := 0; i < n; i++ {
canFollow[i] = make([]bool, n)
for j := 0; j < n; j++ {
_, ok := pmap[i+j+2]
canFollow[i][j] = ok
}
}
bFirst = true
arrang = make([]int, n)
for i := 0; i < n; i++ {
arrang[i] = i + 1
}
return ptrs(0, n, 1)
}
func main() {
counts := make([]int, 19)
for i := 2; i <= 20; i++ {
counts[i-2] = primeTriangle(i)
}
fmt.Println()
for i := 0; i < 19; i++ {
fmt.Printf("%d ", counts[i])
}
fmt.Println()
} | 404Prime triangle
| 0go
| jyo7d |
null | 399Pythagorean triples
| 11kotlin
| 075sf |
func main() {
if problem {
return
}
} | 403Program termination
| 0go
| dp4ne |
if (problem) System.exit(intExitCode) | 403Program termination
| 7groovy
| 07lsh |
import Control.Monad
import System.Exit
when problem do
exitWith ExitSuccess
exitWith (ExitFailure integerErrorCode)
exitSuccess
exitFailure | 403Program termination
| 8haskell
| 5fqug |
public class PrimeTriangle {
public static void main(String[] args) {
long start = System.currentTimeMillis();
for (int i = 2; i <= 20; ++i) {
int[] a = new int[i];
for (int j = 0; j < i; ++j)
a[j] = j + 1;
if (findRow(a, 0, i))
printRow(a);
}
System.out.println();
StringBuilder s = new StringBuilder();
for (int i = 2; i <= 20; ++i) {
int[] a = new int[i];
for (int j = 0; j < i; ++j)
a[j] = j + 1;
if (i > 2)
s.append(" ");
s.append(countRows(a, 0, i));
}
System.out.println(s);
long finish = System.currentTimeMillis();
System.out.printf("\nElapsed time:%d milliseconds\n", finish - start);
}
private static void printRow(int[] a) {
for (int i = 0; i < a.length; ++i) {
if (i != 0)
System.out.print(" ");
System.out.printf("%2d", a[i]);
}
System.out.println();
}
private static boolean findRow(int[] a, int start, int length) {
if (length == 2)
return isPrime(a[start] + a[start + 1]);
for (int i = 1; i + 1 < length; i += 2) {
if (isPrime(a[start] + a[start + i])) {
swap(a, start + i, start + 1);
if (findRow(a, start + 1, length - 1))
return true;
swap(a, start + i, start + 1);
}
}
return false;
}
private static int countRows(int[] a, int start, int length) {
int count = 0;
if (length == 2) {
if (isPrime(a[start] + a[start + 1]))
++count;
} else {
for (int i = 1; i + 1 < length; i += 2) {
if (isPrime(a[start] + a[start + i])) {
swap(a, start + i, start + 1);
count += countRows(a, start + 1, length - 1);
swap(a, start + i, start + 1);
}
}
}
return count;
}
private static void swap(int[] a, int i, int j) {
int tmp = a[i];
a[i] = a[j];
a[j] = tmp;
}
private static boolean isPrime(int n) {
return ((1L << n) & 0x28208a20a08a28acL) != 0;
}
} | 404Prime triangle
| 9java
| w56ej |
FILE *FileOut;
char format[] = ;
int Primes[NBRPRIMES];
int iPrimes;
short Ancestors[NBRANCESTORS];
struct Children {
long long Child;
struct Children *pNext;
};
struct Children *Parents[MAXPARENT+1][2];
int CptDescendants[MAXPARENT+1];
long long MaxDescendant = (long long) pow(3.0, 33.0);
short GetParent(long long child);
struct Children *AppendChild(struct Children *node, long long child);
short GetAncestors(short child);
void PrintDescendants(struct Children *node);
int GetPrimes(int primes[], int maxPrime);
int main()
{
long long Child;
short i, Parent, Level;
int TotDesc = 0;
if ((iPrimes = GetPrimes(Primes, MAXPRIME)) < 0)
return 1;
for (Child = 1; Child <= MaxDescendant; Child++)
{
if (Parent = GetParent(Child))
{
Parents[Parent][1] = AppendChild(Parents[Parent][1], Child);
if (Parents[Parent][0] == NULL)
Parents[Parent][0] = Parents[Parent][1];
CptDescendants[Parent]++;
}
}
if (MAXPARENT > MAXPRIME)
if (GetPrimes(Primes, MAXPARENT) < 0)
return 1;
if (fopen_s(&FileOut, , ))
return 1;
for (Parent = 1; Parent <= MAXPARENT; Parent++)
{
Level = GetAncestors(Parent);
fprintf(FileOut, , Parent, Level);
if (Level)
{
fprintf(FileOut, , Ancestors[0]);
for (i = 1; i < Level; i++)
fprintf(FileOut, , Ancestors[i]);
}
else
fprintf(FileOut, );
if (CptDescendants[Parent])
{
fprintf(FileOut, , CptDescendants[Parent]);
strcpy_s(format, );
PrintDescendants(Parents[Parent][0]);
fprintf(FileOut, );
}
else
fprintf(FileOut, );
fprintf(FileOut, );
TotDesc += CptDescendants[Parent];
}
fprintf(FileOut, , TotDesc);
if (fclose(FileOut))
return 1;
return 0;
}
short GetParent(long long child)
{
long long Child = child;
short Parent = 0;
short Index = 0;
while (Child > 1 && Parent <= MAXPARENT)
{
if (Index > iPrimes)
return 0;
while (Child % Primes[Index] == 0)
{
Child /= Primes[Index];
Parent += Primes[Index];
}
Index++;
}
if (Parent == child || Parent > MAXPARENT || child == 1)
return 0;
return Parent;
}
struct Children *AppendChild(struct Children *node, long long child)
{
static struct Children *NodeNew;
if (NodeNew = (struct Children *) malloc(sizeof(struct Children)))
{
NodeNew->Child = child;
NodeNew->pNext = NULL;
if (node != NULL)
node->pNext = NodeNew;
}
return NodeNew;
}
short GetAncestors(short child)
{
short Child = child;
short Parent = 0;
short Index = 0;
while (Child > 1)
{
while (Child % Primes[Index] == 0)
{
Child /= Primes[Index];
Parent += Primes[Index];
}
Index++;
}
if (Parent == child || child == 1)
return 0;
Index = GetAncestors(Parent);
Ancestors[Index] = Parent;
return ++Index;
}
void PrintDescendants(struct Children *node)
{
static struct Children *NodeCurr;
static struct Children *NodePrev;
NodeCurr = node;
NodePrev = NULL;
while (NodeCurr)
{
fprintf(FileOut, format, NodeCurr->Child);
strcpy_s(format, );
NodePrev = NodeCurr;
NodeCurr = NodeCurr->pNext;
free(NodePrev);
}
return;
}
int GetPrimes(int primes[], int maxPrime)
{
if (maxPrime < 2)
return -1;
int Index = 0, Value = 1;
int Max, i;
primes[0] = 2;
while ((Value += 2) <= maxPrime)
{
Max = (int) floor(sqrt((double) Value));
for (i = 0; i <= Index; i++)
{
if (primes[i] > Max)
{
if (++Index >= NBRPRIMES)
return -1;
primes[Index] = Value;
break;
}
if (Value % primes[i] == 0)
break;
}
}
return Index;
} | 406Primes - allocate descendants to their ancestors
| 5c
| dpvnv |
import java.io.{PrintWriter, StringWriter}
import Jama.{Matrix, QRDecomposition}
object QRDecomposition extends App {
val matrix =
new Matrix(
Array[Array[Double]](Array(12, -51, 4),
Array(6, 167, -68),
Array(-4, 24, -41)))
val d = new QRDecomposition(matrix)
def toString(m: Matrix): String = {
val sw = new StringWriter
m.print(new PrintWriter(sw, true), 8, 6)
sw.toString
}
print(toString(d.getQ))
print(toString(d.getR))
} | 400QR decomposition
| 16scala
| 5f8ut |
use strict;
use warnings;
use feature 'say';
use ntheory 'is_prime';
use List::MoreUtils qw(zip slideatatime);
use Algorithm::Combinatorics qw(permutations);
say '1 2';
my @count = (0, 0, 1);
for my $n (3..17) {
my @even_nums = grep { 0 == $_ % 2 } 2..$n-1;
my @odd_nums = grep { 1 == $_ % 2 } 3..$n-1;
for my $e (permutations [@even_nums]) {
next if $$e[0] == 8 or $$e[0] == 14;
my $nope = 0;
for my $o (permutations [@odd_nums]) {
my @list = (zip(@$e, @$o), $n);
splice @list, -2, -1 if not defined $list[-2];
my $it = slideatatime(1, 2, @list);
while ( my @rr = $it->() ) {
last unless defined $rr[1];
$nope++ and last unless is_prime $rr[0]+$rr[1];
}
unless ($nope) {
say '1 ' . join ' ', @list unless $count[$n];
$count[$n]++;
}
$nope = 0;
}
}
}
say "\n" . join ' ', @count[2..$ | 404Prime triangle
| 2perl
| 6xj36 |
#!/usr/bin/env lua
function main(arg)
local program = arg[0]
print("Program: " .. program)
end
if type(package.loaded[(...)]) ~= "userdata" then
main(arg)
else
module(..., package.seeall)
end | 401Program name
| 1lua
| w59ea |
use ntheory qw(pn_primorial);
say "First ten primorials: ", join ", ", map { pn_primorial($_) } 0..9;
say "primorial(10^$_) has ".(length pn_primorial(10**$_))." digits" for 1..6; | 402Primorial numbers
| 2perl
| 5fsu2 |
if(problem){
System.exit(integerErrorCode); | 403Program termination
| 9java
| 90pmu |
package main
import (
"fmt"
"sort"
)
func getPrimes(max int) []int {
if max < 2 {
return []int{}
}
lprimes := []int{2}
outer:
for x := 3; x <= max; x += 2 {
for _, p := range lprimes {
if x%p == 0 {
continue outer
}
}
lprimes = append(lprimes, x)
}
return lprimes
}
func main() {
const maxSum = 99
descendants := make([][]int64, maxSum+1)
ancestors := make([][]int, maxSum+1)
for i := 0; i <= maxSum; i++ {
descendants[i] = []int64{}
ancestors[i] = []int{}
}
primes := getPrimes(maxSum)
for _, p := range primes {
descendants[p] = append(descendants[p], int64(p))
for s := 1; s < len(descendants)-p; s++ {
temp := make([]int64, len(descendants[s]))
for i := 0; i < len(descendants[s]); i++ {
temp[i] = int64(p) * descendants[s][i]
}
descendants[s+p] = append(descendants[s+p], temp...)
}
}
for _, p := range append(primes, 4) {
le := len(descendants[p])
if le == 0 {
continue
}
descendants[p][le-1] = 0
descendants[p] = descendants[p][:le-1]
}
total := 0
for s := 1; s <= maxSum; s++ {
x := descendants[s]
sort.Slice(x, func(i, j int) bool {
return x[i] < x[j]
})
total += len(descendants[s])
index := 0
for ; index < len(descendants[s]); index++ {
if descendants[s][index] > int64(maxSum) {
break
}
}
for _, d := range descendants[s][:index] {
ancestors[d] = append(ancestors[s], s)
}
if (s >= 21 && s <= 45) || (s >= 47 && s <= 73) || (s >= 75 && s < maxSum) {
continue
}
temp := fmt.Sprintf("%v", ancestors[s])
fmt.Printf("%2d:%d Ancestor(s):%-14s", s, len(ancestors[s]), temp)
le := len(descendants[s])
if le <= 10 {
fmt.Printf("%5d Descendant(s):%v\n", le, descendants[s])
} else {
fmt.Printf("%5d Descendant(s):%v\b ...]\n", le, descendants[s][:10])
}
}
fmt.Println("\nTotal descendants", total)
} | 406Primes - allocate descendants to their ancestors
| 0go
| 76sr2 |
if (some_condition)
quit(); | 403Program termination
| 10javascript
| udxvb |
typedef unsigned char byte;
struct Transition {
byte a, b;
unsigned int c;
} transitions[100];
void init() {
int i, j;
for (i = 0; i < 10; i++) {
for (j = 0; j < 10; j++) {
int idx = i * 10 + j;
transitions[idx].a = i;
transitions[idx].b = j;
transitions[idx].c = 0;
}
}
}
void record(int prev, int curr) {
byte pd = prev % 10;
byte cd = curr % 10;
int i;
for (i = 0; i < 100; i++) {
int z = 0;
if (transitions[i].a == pd) {
int t = 0;
if (transitions[i].b == cd) {
transitions[i].c++;
break;
}
}
}
}
void printTransitions(int limit, int last_prime) {
int i;
printf(, limit, last_prime);
for (i = 0; i < 100; i++) {
if (transitions[i].c > 0) {
printf(, transitions[i].a, transitions[i].b, transitions[i].c, 100.0 * transitions[i].c / limit);
}
}
}
bool isPrime(int n) {
int s, t, a1, a2;
if (n % 2 == 0) return n == 2;
if (n % 3 == 0) return n == 3;
if (n % 5 == 0) return n == 5;
if (n % 7 == 0) return n == 7;
if (n % 11 == 0) return n == 11;
if (n % 13 == 0) return n == 13;
if (n % 17 == 0) return n == 17;
if (n % 19 == 0) return n == 19;
t = 23;
a1 = 96;
a2 = 216;
s = t * t;
while (s <= n) {
if (n % t == 0) return false;
s += a1;
t += 2;
a1 += 24;
assert(t * t == s);
if (s <= n) {
if (n % t == 0) return false;
s += a2;
t += 4;
a2 += 48;
assert(t * t == s);
}
}
return true;
}
int main() {
int last_prime = 3, n = 5, count = 2;
init();
record(2, 3);
while (count < LIMIT) {
if (isPrime(n)) {
record(last_prime, n);
last_prime = n;
count++;
}
n += 2;
if (count < LIMIT) {
if (isPrime(n)) {
record(last_prime, n);
last_prime = n;
count++;
}
n += 4;
}
}
printTransitions(LIMIT, last_prime);
return 0;
} | 407Prime conspiracy
| 5c
| eufav |
import Data.Numbers.Primes (isPrime)
import Data.List
type Memo2 a = Memo (Memo a)
data Memo a = Node a (Memo a) (Memo a)
deriving Functor
memo :: Integral a => Memo p -> a -> p
memo (Node a l r) n
| n == 0 = a
| odd n = memo l (n `div` 2)
| otherwise = memo r (n `div` 2 - 1)
nats :: Integral a => Memo a
nats = Node 0 ((+1).(*2) <$> nats) ((*2).(+1) <$> nats)
memoize :: Integral a => (a -> b) -> (a -> b)
memoize f = memo (f <$> nats)
memoize2 :: (Integral a, Integral b) => (a -> b -> c) -> (a -> b -> c)
memoize2 f = memoize (memoize . f)
partProd = memoize2 partProdM
where
partProdM x p
| p == 0 = []
| x == 0 = [1]
| x < 0 = []
| isPrime p = ((p *) <$> partProdM (x - p) p) ++
partProd x (p - 1)
| otherwise = partProd x (p - 1)
descendants = memoize descendantsM
where
descendantsM x =
if x == 4 then [] else sort (partProd x (x - 1))
ancestors = memoize ancestorsM
where
ancestorsM z = concat [ ancestors x ++ [x]
| x <- [z-1,z-2..1]
, z `elem` descendants x ]
main = do
mapM_ (putStrLn . task1) [1..15]
putStrLn (task2 46)
putStrLn (task2 99)
putStrLn task3
where
task1 n = show n ++
" ancestors:" ++ show (ancestors n) ++
" descendants:" ++ show (descendants n)
task2 n = show n ++ " has " ++
show (length (ancestors n)) ++ " ancestors, " ++
show (length (descendants n)) ++ " descendants."
task3 = "Total ancestors up to 99: " ++
show (sum $ length . ancestors <$> [1..99]) ++
"\nTotal descendants up to 99: " ++
show (sum $ length . descendants <$> [1..99]) | 406Primes - allocate descendants to their ancestors
| 8haskell
| 8j90z |
typedef struct {
int priority;
char *data;
} node_t;
typedef struct {
node_t *nodes;
int len;
int size;
} heap_t;
void push (heap_t *h, int priority, char *data) {
if (h->len + 1 >= h->size) {
h->size = h->size ? h->size * 2 : 4;
h->nodes = (node_t *)realloc(h->nodes, h->size * sizeof (node_t));
}
int i = h->len + 1;
int j = i / 2;
while (i > 1 && h->nodes[j].priority > priority) {
h->nodes[i] = h->nodes[j];
i = j;
j = j / 2;
}
h->nodes[i].priority = priority;
h->nodes[i].data = data;
h->len++;
}
char *pop (heap_t *h) {
int i, j, k;
if (!h->len) {
return NULL;
}
char *data = h->nodes[1].data;
h->nodes[1] = h->nodes[h->len];
h->len--;
i = 1;
while (i!=h->len+1) {
k = h->len+1;
j = 2 * i;
if (j <= h->len && h->nodes[j].priority < h->nodes[k].priority) {
k = j;
}
if (j + 1 <= h->len && h->nodes[j + 1].priority < h->nodes[k].priority) {
k = j + 1;
}
h->nodes[i] = h->nodes[k];
i = k;
}
return data;
}
int main () {
heap_t *h = (heap_t *)calloc(1, sizeof (heap_t));
push(h, 3, );
push(h, 4, );
push(h, 5, );
push(h, 1, );
push(h, 2, );
int i;
for (i = 0; i < 5; i++) {
printf(, pop(h));
}
return 0;
} | 408Priority queue
| 5c
| x4twu |
from pyprimes import nprimes
from functools import reduce
primelist = list(nprimes(1000001))
def primorial(n):
return reduce(int.__mul__, primelist[:n], 1)
if __name__ == '__main__':
print('First ten primorals:', [primorial(n) for n in range(10)])
for e in range(7):
n = 10**e
print('primorial(%i) has%i digits'% (n, len(str(primorial(n))))) | 402Primorial numbers
| 3python
| 4t05k |
fn is_prime(n: u32) -> bool {
assert!(n < 64);
((1u64 << n) & 0x28208a20a08a28ac)!= 0
}
fn prime_triangle_row(a: &mut [u32]) -> bool {
if a.len() == 2 {
return is_prime(a[0] + a[1]);
}
for i in (1..a.len() - 1).step_by(2) {
if is_prime(a[0] + a[i]) {
a.swap(i, 1);
if prime_triangle_row(&mut a[1..]) {
return true;
}
a.swap(i, 1);
}
}
false
}
fn prime_triangle_count(a: &mut [u32]) -> u32 {
let mut count = 0;
if a.len() == 2 {
if is_prime(a[0] + a[1]) {
count += 1;
}
} else {
for i in (1..a.len() - 1).step_by(2) {
if is_prime(a[0] + a[i]) {
a.swap(i, 1);
count += prime_triangle_count(&mut a[1..]);
a.swap(i, 1);
}
}
}
count
}
fn print(a: &[u32]) {
if a.is_empty() {
return;
}
print!("{:2}", a[0]);
for x in &a[1..] {
print!(" {:2}", x);
}
println!();
}
fn main() {
use std::time::Instant;
let start = Instant::now();
for n in 2..21 {
let mut a: Vec<u32> = (1..=n).collect();
if prime_triangle_row(&mut a) {
print(&a);
}
}
println!();
for n in 2..21 {
let mut a: Vec<u32> = (1..=n).collect();
if n > 2 {
print!(" ");
}
print!("{}", prime_triangle_count(&mut a));
}
println!();
let time = start.elapsed();
println!("\nElapsed time: {} milliseconds", time.as_millis());
} | 404Prime triangle
| 15rust
| c8p9z |
import Foundation
func isPrime(_ n: Int) -> Bool {
guard n > 0 && n < 64 else {
return false
}
return ((UInt64(1) << n) & 0x28208a20a08a28ac)!= 0
}
func primeTriangleRow(_ a: inout [Int], start: Int, length: Int) -> Bool {
if length == 2 {
return isPrime(a[start] + a[start + 1])
}
for i in stride(from: 1, to: length - 1, by: 2) {
let index = start + i
if isPrime(a[start] + a[index]) {
a.swapAt(index, start + 1)
if primeTriangleRow(&a, start: start + 1, length: length - 1) {
return true
}
a.swapAt(index, start + 1)
}
}
return false
}
func primeTriangleCount(_ a: inout [Int], start: Int, length: Int) -> Int {
var count = 0
if length == 2 {
if isPrime(a[start] + a[start + 1]) {
count += 1
}
} else {
for i in stride(from: 1, to: length - 1, by: 2) {
let index = start + i
if isPrime(a[start] + a[index]) {
a.swapAt(index, start + 1)
count += primeTriangleCount(&a, start: start + 1, length: length - 1)
a.swapAt(index, start + 1)
}
}
}
return count
}
func printRow(_ a: [Int]) {
if a.count == 0 {
return
}
print(String(format: "%2d", a[0]), terminator: "")
for x in a[1...] {
print(String(format: "%2d", x), terminator: "")
}
print()
}
let startTime = CFAbsoluteTimeGetCurrent()
for n in 2...20 {
var a = Array(1...n)
if primeTriangleRow(&a, start: 0, length: n) {
printRow(a)
}
}
print()
for n in 2...20 {
var a = Array(1...n)
if n > 2 {
print(" ", terminator: "")
}
print("\(primeTriangleCount(&a, start: 0, length: n))", terminator: "")
}
print()
let endTime = CFAbsoluteTimeGetCurrent()
print("\nElapsed time: \(endTime - startTime) seconds") | 404Prime triangle
| 17swift
| mskyk |
start
Hi
printf();
printf();
printf();
end | 409Pragmatic directives
| 5c
| yq46f |
int rand_idx(double *p, int n)
{
double s = rand() / (RAND_MAX + 1.0);
int i;
for (i = 0; i < n - 1 && (s -= p[i]) >= 0; i++);
return i;
}
int main()
{
const char *names[LEN] = { , , , ,
, , , };
double s, p[LEN] = { 1./5, 1./6, 1./7, 1./8, 1./9, 1./10, 1./11, 1e300 };
int i, count[LEN] = {0};
for (i = 0; i < N; i++) count[rand_idx(p, LEN)] ++;
printf();
for (i = 0, s = 1; i < LEN; s -= p[i++])
printf(,
names[i], count[i],
(double)count[i] / N * 100,
((i < LEN - 1) ? p[i] : s) * 100);
return 0;
} | 410Probabilistic choice
| 5c
| vnh2o |
null | 403Program termination
| 11kotlin
| ze7ts |
null | 409Pragmatic directives
| 0go
| 12op5 |
null | 409Pragmatic directives
| 11kotlin
| w5dek |
ffi = require("ffi")
ffi.cdef[[
#pragma pack(1)
typedef struct { char c; int i; } foo;
#pragma pack(4)
typedef struct { char c; int i; } bar;
]]
print(ffi.sizeof(ffi.new("foo")))
print(ffi.sizeof(ffi.new("bar"))) | 409Pragmatic directives
| 1lua
| x4fwz |
import java.io.*;
import java.util.*;
public class PrimeDescendants {
public static void main(String[] args) {
try (Writer writer = new BufferedWriter(new OutputStreamWriter(System.out))) {
printPrimeDesc(writer, 100);
} catch (IOException ex) {
ex.printStackTrace();
}
}
private static void printPrimeDesc(Writer writer, int limit) throws IOException {
List<Long> primes = findPrimes(limit);
List<Long> ancestor = new ArrayList<>(limit);
List<List<Long>> descendants = new ArrayList<>(limit);
for (int i = 0; i < limit; ++i) {
ancestor.add(Long.valueOf(0));
descendants.add(new ArrayList<Long>());
}
for (Long prime : primes) {
int p = prime.intValue();
descendants.get(p).add(prime);
for (int i = 0; i + p < limit; ++i) {
int s = i + p;
for (Long n : descendants.get(i)) {
Long prod = n * p;
descendants.get(s).add(prod);
if (prod < limit)
ancestor.set(prod.intValue(), Long.valueOf(s));
}
}
} | 406Primes - allocate descendants to their ancestors
| 9java
| euta5 |
require 'prime'
def primorial_number(n)
pgen = Prime.each
(1..n).inject(1){|p,_| p*pgen.next}
end
puts
(1..5).each do |n|
puts
end | 402Primorial numbers
| 14ruby
| r3ogs |
use warnings;
use strict; | 409Pragmatic directives
| 2perl
| lojc5 |
int proper_divisors(const int n, bool print_flag)
{
int count = 0;
for (int i = 1; i < n; ++i) {
if (n % i == 0) {
count++;
if (print_flag)
printf(, i);
}
}
if (print_flag)
printf();
return count;
}
int main(void)
{
for (int i = 1; i <= 10; ++i) {
printf(, i);
proper_divisors(i, true);
}
int max = 0;
int max_i = 1;
for (int i = 1; i <= 20000; ++i) {
int v = proper_divisors(i, false);
if (v >= max) {
max = v;
max_i = i;
}
}
printf(, max_i, max);
return 0;
} | 411Proper divisors
| 5c
| udhv4 |
null | 406Primes - allocate descendants to their ancestors
| 11kotlin
| k9oh3 |
user=> (use 'clojure.data.priority-map)
user=> (def p (priority-map "Clear drains" 3, "Feed cat" 4, "Make tea" 5, "Solve RC tasks" 1))
#'user/p
user=> p
{"Solve RC tasks" 1, "Clear drains" 3, "Feed cat" 4, "Make tea" 5}
user=> (assoc p "Tax return" 2)
{"Solve RC tasks" 1, "Tax return" 2, "Clear drains" 3, "Feed cat" 4, "Make tea" 5}
user=> (peek p)
["Solve RC tasks" 1]
user=> (into p [["Wax Car" 4]["Paint Fence" 1]["Sand Floor" 3]])
{"Solve RC tasks" 1, "Paint Fence" 1, "Clear drains" 3, "Sand Floor" 3, "Wax Car" 4, "Feed cat" 4, "Make tea" 5} | 408Priority queue
| 6clojure
| ohm8j |
package main
import (
"fmt"
"math"
)
type circle struct {
x, y, r float64
}
func main() {
c1 := circle{0, 0, 1}
c2 := circle{4, 0, 1}
c3 := circle{2, 4, 2}
fmt.Println(ap(c1, c2, c3, true))
fmt.Println(ap(c1, c2, c3, false))
}
func ap(c1, c2, c3 circle, s bool) circle {
x1sq := c1.x * c1.x
y1sq := c1.y * c1.y
r1sq := c1.r * c1.r
x2sq := c2.x * c2.x
y2sq := c2.y * c2.y
r2sq := c2.r * c2.r
x3sq := c3.x * c3.x
y3sq := c3.y * c3.y
r3sq := c3.r * c3.r
v11 := 2 * (c2.x - c1.x)
v12 := 2 * (c2.y - c1.y)
v13 := x1sq - x2sq + y1sq - y2sq - r1sq + r2sq
v14 := 2 * (c2.r - c1.r)
v21 := 2 * (c3.x - c2.x)
v22 := 2 * (c3.y - c2.y)
v23 := x2sq - x3sq + y2sq - y3sq - r2sq + r3sq
v24 := 2 * (c3.r - c2.r)
if s {
v14 = -v14
v24 = -v24
}
w12 := v12 / v11
w13 := v13 / v11
w14 := v14 / v11
w22 := v22/v21 - w12
w23 := v23/v21 - w13
w24 := v24/v21 - w14
p := -w23 / w22
q := w24 / w22
m := -w12*p - w13
n := w14 - w12*q
a := n*n + q*q - 1
b := m*n - n*c1.x + p*q - q*c1.y
if s {
b -= c1.r
} else {
b += c1.r
}
b *= 2
c := x1sq + m*m - 2*m*c1.x + p*p + y1sq - 2*p*c1.y - r1sq
d := b*b - 4*a*c
rs := (-b - math.Sqrt(d)) / (2 * a)
return circle{m + n*rs, p + q*rs, rs}
} | 405Problem of Apollonius
| 0go
| udevt |
extern crate primal;
extern crate rayon;
extern crate rug;
use rayon::prelude::*;
use rug::Integer;
fn partial(p1: usize, p2: usize) -> String {
let mut aux = Integer::from(1);
let (_, hi) = primal::estimate_nth_prime(p2 as u64);
let sieve = primal::Sieve::new(hi as usize);
let prime1 = sieve.nth_prime(p1);
let prime2 = sieve.nth_prime(p2);
for i in sieve.primes_from(prime1).take_while(|i| *i <= prime2) {
aux = Integer::from(aux * i as u32);
}
aux.to_string_radix(10)
}
fn main() {
let mut j1 = Integer::new();
for k in [2,3,5,7,11,13,17,19,23,29].iter() {
j1.assign_primorial(*k);
println!("Primorial: {}", j1);
}
println!("Digits of primorial 10: {}", partial(1, 10).chars().fold(0, |n, _| n + 1));
println!("Digits of primorial 100: {}", partial(1, 100).chars().fold(0, |n, _| n + 1));
println!("Digits of primorial 1_000: {}", partial(1, 1_000).chars().fold(0, |n, _| n + 1));
println!("Digits of primorial 10_000: {}", partial(1, 10_000).chars().fold(0, |n, _| n + 1));
println!("Digits of primorial 100_000: {}", partial(1, 100_000).chars().fold(0, |n, _| n + 1));
let mut auxi = Integer::from(1);
let ranges = vec![[1, 300_000], [300_001, 550_000], [550_001, 800_000], [800_001, 1_000_000]];
let v = ranges.par_iter().map(|value| partial(value[0], value[1])).collect::<Vec<_>>();
for i in v.iter() {
auxi =Integer::from(&auxi * i.parse::<Integer>().unwrap());
}
let result = auxi.to_string_radix(10).chars().fold(0, |n, _| n+1);
println!("Digits of primorial 1_000_000: {}",result);
} | 402Primorial numbers
| 15rust
| 76irc |
import spire.math.SafeLong
import spire.implicits._
import scala.collection.parallel.immutable.ParVector
object Primorial {
def main(args: Array[String]): Unit = {
println(
s"""|First 10 Primorials:
|${LazyList.range(0, 10).map(n => f"$n: ${primorial(n).toBigInt}%,d").mkString("\n")}
|
|Lengths of Primorials:
|${LazyList.range(1, 7).map(math.pow(10, _).toInt).map(i => f"$i%,d: ${primorial(i).toString.length}%,d").mkString("\n")}
|""".stripMargin)
}
def primorial(num: Int): SafeLong = if(num == 0) 1 else primesSL.take(num).to(ParVector).reduce(_*_)
lazy val primesSL: Vector[SafeLong] = 2 +: ParVector.range(3, 20000000, 2).filter(n => !Iterator.range(3, math.sqrt(n).toInt + 1, 2).exists(n%_ == 0)).toVector.sorted.map(SafeLong(_))
} | 402Primorial numbers
| 16scala
| k9fhk |
if some_condition then
os.exit( number )
end | 403Program termination
| 1lua
| 3wjzo |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.