code
stringlengths 1
46.1k
⌀ | label
class label 1.18k
classes | domain_label
class label 21
classes | index
stringlengths 4
5
|
---|---|---|---|
Python 3.2 (r32:88445, Feb 20 2011, 21:30:00) [MSC v.1500 64 bit (AMD64)] on win32
Type , or for more information.
>>> import __future__
>>> __future__.all_feature_names
['nested_scopes', 'generators', 'division', 'absolute_import', 'with_statement', 'print_function', 'unicode_literals', 'barry_as_FLUFL']
>>> | 409Pragmatic directives
| 3python
| 2ihlz |
(defn to-cdf [pdf]
(reduce
(fn [acc n] (conj acc (+ (or (last acc) 0) n)))
[]
pdf))
(defn choose [cdf]
(let [r (rand)]
(count
(filter (partial > r) cdf))))
(def *names* '[aleph beth gimel daleth he waw zayin heth])
(def *pdf* (map double [1/5 1/6 1/7 1/8 1/9 1/10 1/11 1759/27720]))
(let [num-trials 1000000
cdf (to-cdf *pdf*)
indexes (range (count *names*))
expected (into (sorted-map) (zipmap indexes *pdf*))
actual (frequencies (repeatedly num-trials #(choose cdf)))]
(doseq [[idx exp] expected]
(println "Expected number of" (*names* idx) "was"
(* num-trials exp) "and actually got" (actual idx)))) | 410Probabilistic choice
| 6clojure
| r3ag2 |
data Circle = Circle { x, y, r :: Double } deriving (Show, Eq)
data Tangent = Externally | Internally deriving Eq
solveApollonius :: Circle -> Circle -> Circle ->
Tangent -> Tangent -> Tangent ->
Circle
solveApollonius c1 c2 c3 t1 t2 t3 =
Circle (m + n * rs) (p + q * rs) rs
where
s1 = if t1 == Externally then 1.0 else -1.0
s2 = if t2 == Externally then 1.0 else -1.0
s3 = if t3 == Externally then 1.0 else -1.0
v11 = 2 * x c2 - 2 * x c1
v12 = 2 * y c2 - 2 * y c1
v13 = x c1 ^ 2 - x c2 ^ 2 +
y c1 ^ 2 - y c2 ^ 2 -
r c1 ^ 2 + r c2 ^ 2
v14 = 2 * s2 * r c2 - 2 * s1 * r c1
v21 = 2 * x c3 - 2 * x c2
v22 = 2 * y c3 - 2 * y c2
v23 = x c2 ^ 2 - x c3 ^ 2 +
y c2 ^ 2 - y c3 ^ 2 -
r c2 ^ 2 + r c3 ^ 2;
v24 = 2 * s3 * r c3 - 2 * s2 * r c2
w12 = v12 / v11
w13 = v13 / v11
w14 = v14 / v11
w22 = v22 / v21 - w12
w23 = v23 / v21 - w13
w24 = v24 / v21 - w14
p = -w23 / w22
q = w24 / w22
m = -w12 * p - w13
n = w14 - w12 * q
a = n * n + q ^ 2 - 1
b = 2 * m * n - 2 * n * x c1 +
2 * p * q - 2 * q * y c1 +
2 * s1 * r c1
c = x c1 ^ 2 + m ^ 2 - 2 * m * x c1 +
p ^ 2 + y c1 ^ 2 - 2 * p * y c1 - r c1 ^ 2
d = b ^ 2 - 4 * a * c
rs = (-b - sqrt d) / (2 * a)
main = do
let c1 = Circle 0.0 0.0 1.0
let c2 = Circle 4.0 0.0 1.0
let c3 = Circle 2.0 4.0 2.0
let te = Externally
print $ solveApollonius c1 c2 c3 te te te
let ti = Internally
print $ solveApollonius c1 c2 c3 ti ti ti | 405Problem of Apollonius
| 8haskell
| w53ed |
uint64_t factorial(uint64_t n) {
uint64_t product = 1;
if (n < 2) {
return 1;
}
for (; n > 0; n--) {
uint64_t prev = product;
product *= n;
if (product < prev) {
fprintf(stderr, );
return product;
}
}
return product;
}
bool isPrime(uint64_t n) {
uint64_t large = factorial(n - 1) + 1;
return (large % n) == 0;
}
int main() {
uint64_t n;
for (n = 2; n < 22; n++) {
printf(, n, isPrime(n));
}
return 0;
} | 412Primality by Wilson's theorem
| 5c
| gzb45 |
@inline
@tailrec | 409Pragmatic directives
| 16scala
| r3egn |
use List::Util qw(sum uniq);
use ntheory qw(nth_prime);
my $max = 99;
my %tree;
sub allocate {
my($n, $i, $sum,, $prod) = @_;
$i //= 0; $sum //= 0; $prod //= 1;
for my $k (0..$max) {
next if $k < $i;
my $p = nth_prime($k+1);
if (($sum + $p) <= $max) {
allocate($n, $k, $sum + $p, $prod * $p);
} else {
last if $sum == $prod;
$tree{$sum}{descendants}{$prod} = 1;
$tree{$prod}{ancestor} = [uniq $sum, @{$tree{$sum}{ancestor}}] unless $prod > $max || $sum == 0;
last;
}
}
}
sub abbrev {
my(@d) = @_;
return @d if @d < 11;
@d[0 .. 4], '...', @d[-5 .. -1];
}
allocate($_) for 1 .. $max;
for (1 .. 15, 46, $max) {
printf "%2d,%2d Ancestors:%-15s", $_, (scalar uniq @{$tree{$_}{ancestor}}),
'[' . join(' ',uniq @{$tree{$_}{ancestor}}) . ']';
my $dn = 0; my $dl = '';
if ($tree{$_}{descendants}) {
$dn = keys %{$tree{$_}{descendants}};
$dl = join ' ', abbrev(sort { $a <=> $b } keys %{$tree{$_}{descendants}});
}
printf "%5d Descendants:%s", $dn, "[$dl]\n";
}
map { for my $k (keys %{$tree{$_}{descendants}}) { $total += $tree{$_}{descendants}{$k} } } 1..$max;
print "\nTotal descendants: $total\n"; | 406Primes - allocate descendants to their ancestors
| 2perl
| 3wgzs |
(ns properdivisors
(:gen-class))
(defn proper-divisors [n]
" Proper divisors of n"
(if (= n 1)
[]
(filter #(= 0 (rem n %)) (range 1 n))))
(def data (for [n (range 1 (inc 20000))]
[n (proper-divisors n)]))
(defn maximal-key [k x & xs]
" Normal max-key only finds one key that produces maximum, while this function finds them all "
(reduce (fn [ys x]
(let [c (compare (k x) (k (peek ys)))]
(cond
(pos? c) [x]
(neg? c) ys
:else (conj ys x))))
[x]
xs))
(println "n\tcnt\tPROPER DIVISORS")
(doseq [n (range 1 11)]
(let [factors (proper-divisors n)]
(println n "\t" (count factors) "\t" factors)))
(def max-data (apply maximal-key (fn [[i pd]] (count pd)) data))
(doseq [[n factors] max-data]
(println n " has " (count factors) " divisors")) | 411Proper divisors
| 6clojure
| 76ar0 |
from __future__ import print_function
from itertools import takewhile
maxsum = 99
def get_primes(max):
if max < 2:
return []
lprimes = [2]
for x in range(3, max + 1, 2):
for p in lprimes:
if x% p == 0:
break
else:
lprimes.append(x)
return lprimes
descendants = [[] for _ in range(maxsum + 1)]
ancestors = [[] for _ in range(maxsum + 1)]
primes = get_primes(maxsum)
for p in primes:
descendants[p].append(p)
for s in range(1, len(descendants) - p):
descendants[s + p] += [p * pr for pr in descendants[s]]
for p in primes + [4]:
descendants[p].pop()
total = 0
for s in range(1, maxsum + 1):
descendants[s].sort()
for d in takewhile(lambda x: x <= maxsum, descendants[s]):
ancestors[d] = ancestors[s] + [s]
print([s], , len(ancestors[s]))
print(, ancestors[s] if len(ancestors[s]) else )
print(, len(descendants[s]) if len(descendants[s]) else )
if len(descendants[s]):
print(descendants[s])
print()
total += len(descendants[s])
print(, total) | 406Primes - allocate descendants to their ancestors
| 3python
| 6xr3w |
public class Circle
{
public double[] center;
public double radius;
public Circle(double[] center, double radius)
{
this.center = center;
this.radius = radius;
}
public String toString()
{
return String.format("Circle[x=%.2f,y=%.2f,r=%.2f]",center[0],center[1],
radius);
}
}
public class ApolloniusSolver
{
public static Circle solveApollonius(Circle c1, Circle c2, Circle c3, int s1,
int s2, int s3)
{
float x1 = c1.center[0];
float y1 = c1.center[1];
float r1 = c1.radius;
float x2 = c2.center[0];
float y2 = c2.center[1];
float r2 = c2.radius;
float x3 = c3.center[0];
float y3 = c3.center[1];
float r3 = c3.radius; | 405Problem of Apollonius
| 9java
| k9ihm |
package main
import (
"fmt"
"sort"
)
func sieve(limit uint64) []bool {
limit++ | 407Prime conspiracy
| 0go
| 90jmt |
use strict;
use warnings;
sub main {
my $program = $0;
print "Program: $program\n";
}
unless(caller) { main; } | 401Program name
| 2perl
| c8e9a |
sub gcd {
my ($n, $m) = @_;
while($n){
my $t = $n;
$n = $m % $n;
$m = $t;
}
return $m;
}
sub tripel {
my $pmax = shift;
my $prim = 0;
my $count = 0;
my $nmax = sqrt($pmax)/2;
for( my $n=1; $n<=$nmax; $n++ ) {
for( my $m=$n+1; (my $p = 2*$m*($m+$n)) <= $pmax; $m+=2 ) {
next unless 1==gcd($m,$n);
$prim++;
$count += int $pmax/$p;
}
}
printf "Max. perimeter:%d, Total:%d, Primitive:%d\n", $pmax, $count, $prim;
}
tripel 10**$_ for 1..8; | 399Pythagorean triples
| 2perl
| 5fou2 |
import Data.List (group, sort)
import Text.Printf (printf)
import Data.Numbers.Primes (primes)
freq :: [(Int, Int)] -> Float
freq xs = realToFrac (length xs) / 100
line :: [(Int, Int)] -> IO ()
line t@((n1, n2):xs) = printf "%d ->%d count:%5d frequency:%2.2f%%\n" n1 n2 (length t) (freq t)
main :: IO ()
main = mapM_ line $ groups primes
where groups = tail . group . sort . (\n -> zip (0: n) n) . fmap (`mod` 10) . take 10000 | 407Prime conspiracy
| 8haskell
| bcok2 |
null | 405Problem of Apollonius
| 11kotlin
| gzq4d |
<?php
$program = $_SERVER[];
echo ;
?> | 401Program name
| 12php
| x4cw5 |
public class PrimeConspiracy {
public static void main(String[] args) {
final int limit = 1000_000;
final int sieveLimit = 15_500_000;
int[][] buckets = new int[10][10];
int prevDigit = 2;
boolean[] notPrime = sieve(sieveLimit);
for (int n = 3, primeCount = 1; primeCount < limit; n++) {
if (notPrime[n])
continue;
int digit = n % 10;
buckets[prevDigit][digit]++;
prevDigit = digit;
primeCount++;
}
for (int i = 0; i < 10; i++) {
for (int j = 0; j < 10; j++) {
if (buckets[i][j] != 0) {
System.out.printf("%d ->%d:%2f%n", i,
j, buckets[i][j] / (limit / 100.0));
}
}
}
}
public static boolean[] sieve(int limit) {
boolean[] composite = new boolean[limit];
composite[0] = composite[1] = true;
int max = (int) Math.sqrt(limit);
for (int n = 2; n <= max; n++) {
if (!composite[n]) {
for (int k = n * n; k < limit; k += n) {
composite[k] = true;
}
}
}
return composite;
}
} | 407Prime conspiracy
| 9java
| gzw4m |
void polySpiral(int windowWidth,int windowHeight){
int incr = 0, angle, i, length;
double x,y,x1,y1;
while(1){
incr = (incr + 5)%360;
x = windowWidth/2;
y = windowHeight/2;
length = 5;
angle = incr;
for(i=1;i<=150;i++){
x1 = x + length*cos(factor*angle);
y1 = y + length*sin(factor*angle);
line(x,y,x1,y1);
length += 3;
angle = (angle + incr)%360;
x = x1;
y = y1;
}
delay(LAG);
cleardevice();
}
}
int main()
{
initwindow(500,500,);
polySpiral(500,500);
closegraph();
return 0;
} | 413Polyspiral
| 5c
| 2iglo |
<?php
function gcd($a, $b)
{
if ($a == 0)
return $b;
if ($b == 0)
return $a;
if($a == $b)
return $a;
if($a > $b)
return gcd($a-$b, $b);
return gcd($a, $b-$a);
}
$pytha = 0;
$prim = 0;
$max_p = 100;
for ($a = 1; $a <= $max_p / 3; $a++) {
$aa = $a**2;
for ($b = $a + 1; $b < $max_p/2; $b++) {
$bb = $b**2;
for ($c = $b + 1; $c < $max_p/2; $c++) {
$cc = $c**2;
if ($aa + $bb < $cc) break;
if ($a + $b + $c > $max_p) break;
if ($aa + $bb == $cc) {
$pytha++;
if (gcd($a, $b) == 1) $prim++;
}
}
}
}
echo 'Up to ' . $max_p . ', there are ' . $pytha . ' triples, of which ' . $prim . ' are primitive.'; | 399Pythagorean triples
| 12php
| ohg85 |
null | 407Prime conspiracy
| 11kotlin
| 2ibli |
null | 407Prime conspiracy
| 1lua
| vnp2x |
import sys
def main():
program = sys.argv[0]
print(% program)
if __name__ == :
main() | 401Program name
| 3python
| lowcv |
getProgram <- function(args) {
sub("--file=", "", args[grep("--file=", args)])
}
args <- commandArgs(trailingOnly = FALSE)
program <- getProgram(args)
cat("Program: ", program, "\n")
q("no") | 401Program name
| 13r
| yqp6h |
if ($problem) {
exit integerErrorCode;
} | 403Program termination
| 2perl
| bcfk4 |
package main
import (
"fmt"
"math/big"
)
var (
zero = big.NewInt(0)
one = big.NewInt(1)
prev = big.NewInt(factorial(20))
) | 412Primality by Wilson's theorem
| 0go
| ik3og |
package main
import (
"fmt"
"math/rand"
"time"
)
type mapping struct {
item string
pr float64
}
func main() { | 410Probabilistic choice
| 0go
| srtqa |
use utf8;
use Math::Cartesian::Product;
package Circle;
sub new {
my ($class, $args) = @_;
my $self = {
x => $args->{x},
y => $args->{y},
r => $args->{r},
};
bless $self, $class;
}
sub show {
my ($self, $args) = @_;
sprintf "x =%7.3f y =%7.3f r =%7.3f\n", $args->{x}, $args->{y}, $args->{r};
}
package main;
sub circle {
my($x,$y,$r) = @_;
Circle->new({ x => $x, y=> $y, r => $r });
}
sub solve_Apollonius {
my($c1, $c2, $c3, $s1, $s2, $s3) = @_;
my $11 = 2 * $c2->{x} - 2 * $c1->{x};
my $12 = 2 * $c2->{y} - 2 * $c1->{y};
my $13 = $c1->{x}**2 - $c2->{x}**2 + $c1->{y}**2 - $c2->{y}**2 - $c1->{r}**2 + $c2->{r}**2;
my $14 = 2 * $s2 * $c2->{r} - 2 * $s1 * $c1->{r};
my $21 = 2 * $c3->{x} - 2 * $c2->{x};
my $22 = 2 * $c3->{y} - 2 * $c2->{y};
my $23 = $c2->{x}**2 - $c3->{x}**2 + $c2->{y}**2 - $c3->{y}**2 - $c2->{r}**2 + $c3->{r}**2;
my $24 = 2 * $s3 * $c3->{r} - 2 * $s2 * $c2->{r};
my $12 = $12 / $11;
my $13 = $13 / $11;
my $14 = $14 / $11;
my $22 = $22 / $21 - $12;
my $23 = $23 / $21 - $13;
my $24 = $24 / $21 - $14;
my $ = -$23 / $22;
my $ = $24 / $22;
my $ = -$12 * $ - $13;
my $ = $14 - $12 * $;
my $ = $**2 + $**2 - 1;
my $ = 2 * $ * $ - 2 * $ * $c1->{x} + 2 * $ * $ - 2 * $ * $c1->{y} + 2 * $s1 * $c1->{r};
my $ = $c1->{x}**2 + $**2 - 2 * $ * $c1->{x} + $**2 + $c1->{y}**2 - 2 * $ * $c1->{y} - $c1->{r}**2;
my $ = $**2 - 4 * $ * $;
my $rs = (-$ - sqrt $) / (2 * $);
my $xs = $ + $ * $rs;
my $ys = $ + $ * $rs;
circle($xs, $ys, $rs);
}
$c1 = circle(0, 0, 1);
$c2 = circle(4, 0, 1);
$c3 = circle(2, 4, 2);
for (cartesian {@_} ([-1,1])x3) {
print Circle->show( solve_Apollonius $c1, $c2, $c3, @$_);
} | 405Problem of Apollonius
| 2perl
| nbviw |
import qualified Data.Text as T
import Data.List
main = do
putStrLn $ showTable True ' ' '-' ' ' $ ["p","isPrime"]:map (\p -> [show p, show $ isPrime p]) numbers
putStrLn $ "The first 120 prime numbers are:"
putStrLn $ see 20 $ take 120 primes
putStrLn "The 1,000th to 1,015th prime numbers are:"
putStrLn $ see 16.take 16 $ drop 999 primes
numbers = [2,3,9,15,29,37,47,57,67,77,87,97,237,409,659]
primes = [p | p <- 2:[3,5..], isPrime p]
isPrime :: Integer -> Bool
isPrime p = if p < 2 then False else 0 == mod (succ $ product [1..pred p]) p
bagOf :: Int -> [a] -> [[a]]
bagOf _ [] = []
bagOf n xs = let (us,vs) = splitAt n xs in us: bagOf n vs
see :: Show a => Int -> [a] -> String
see n = unlines.map unwords.bagOf n.map (T.unpack.T.justifyRight 3 ' '.T.pack.show)
showTable::Bool -> Char -> Char -> Char -> [[String]] -> String
showTable _ _ _ _ [] = []
showTable header ver hor sep contents = unlines $ hr:(if header then z:hr:zs else intersperse hr zss) ++ [hr]
where
vss = map (map length) $ contents
ms = map maximum $ transpose vss ::[Int]
hr = concatMap (\ n -> sep: replicate n hor) ms ++ [sep]
top = replicate (length hr) hor
bss = map (\ps -> map (flip replicate ' ') $ zipWith (-) ms ps) $ vss
zss@(z:zs) = zipWith (\us bs -> (concat $ zipWith (\x y -> (ver:x) ++ y) us bs) ++ [ver]) contents bss | 412Primality by Wilson's theorem
| 8haskell
| vn72k |
$ convert polyspiral.gif -coalesce polyspiral2.gif
$ eog polyspiral2.gif | 413Polyspiral
| 0go
| qgixz |
import System.Random (newStdGen, randomRs)
dataBinCounts :: [Float] -> [Float] -> [Int]
dataBinCounts thresholds range =
let sampleSize = length range
xs = ((-) sampleSize . length . flip filter range . (<)) <$> thresholds
in zipWith (-) (xs ++ [sampleSize]) (0: xs)
main :: IO ()
main = do
g <- newStdGen
let fractions = recip <$> [5 .. 11] :: [Float]
expected = fractions ++ [1 - sum fractions]
actual =
((/ 1000000.0) . fromIntegral) <$>
dataBinCounts (scanl1 (+) expected) (take 1000000 (randomRs (0, 1) g))
piv n = take n . (++ repeat ' ')
putStrLn " expected actual"
mapM_ putStrLn $
zipWith3
(\l s c -> piv 7 l ++ piv 13 (show s) ++ piv 12 (show c))
["aleph", "beth", "gimel", "daleth", "he", "waw", "zayin", "heth"]
expected
actual | 410Probabilistic choice
| 8haskell
| 90gmo |
if (problem)
exit(1); | 403Program termination
| 12php
| 6xh3g |
import java.math.BigInteger;
public class PrimaltyByWilsonsTheorem {
public static void main(String[] args) {
System.out.printf("Primes less than 100 testing by Wilson's Theorem%n");
for ( int i = 0 ; i <= 100 ; i++ ) {
if ( isPrime(i) ) {
System.out.printf("%d ", i);
}
}
}
private static boolean isPrime(long p) {
if ( p <= 1) {
return false;
}
return fact(p-1).add(BigInteger.ONE).mod(BigInteger.valueOf(p)).compareTo(BigInteger.ZERO) == 0;
}
private static BigInteger fact(long n) {
BigInteger fact = BigInteger.ONE;
for ( int i = 2 ; i <= n ; i++ ) {
fact = fact.multiply(BigInteger.valueOf(i));
}
return fact;
}
} | 412Primality by Wilson's theorem
| 9java
| yqv6g |
use ntheory qw/forprimes nth_prime/;
my $upto = 1_000_000;
my %freq;
my($this_digit,$last_digit)=(2,0);
forprimes {
($last_digit,$this_digit) = ($this_digit, $_ % 10);
$freq{$last_digit . $this_digit}++;
} 3,nth_prime($upto);
print "$upto first primes. Transitions prime% 10 next-prime% 10.\n";
printf "%s %s count:\t%7d\tfrequency:%4.2f%%\n",
substr($_,0,1), substr($_,1,1), $freq{$_}, 100*$freq{$_}/$upto
for sort keys %freq; | 407Prime conspiracy
| 2perl
| sr6q3 |
typedef struct object *BaseObj;
typedef struct sclass *Class;
typedef void (*CloneFctn)(BaseObj s, BaseObj clo);
typedef const char * (*SpeakFctn)(BaseObj s);
typedef void (*DestroyFctn)(BaseObj s);
typedef struct sclass {
size_t csize;
const char *cname;
Class parent;
CloneFctn clone;
SpeakFctn speak;
DestroyFctn del;
} sClass;
typedef struct object {
Class class;
} SObject;
static
BaseObj obj_copy( BaseObj s, Class c )
{
BaseObj clo;
if (c->parent)
clo = obj_copy( s, c->parent);
else
clo = malloc( s->class->csize );
if (clo)
c->clone( s, clo );
return clo;
}
static
void obj_del( BaseObj s, Class c )
{
if (c->del)
c->del(s);
if (c->parent)
obj_del( s, c->parent);
else
free(s);
}
BaseObj ObjClone( BaseObj s )
{ return obj_copy( s, s->class ); }
const char * ObjSpeak( BaseObj s )
{
return s->class->speak(s);
}
void ObjDestroy( BaseObj s )
{ if (s) obj_del( s, s->class ); }
static
void baseClone( BaseObj s, BaseObj clone)
{
clone->class = s->class;
}
static
const char *baseSpeak(BaseObj s)
{
return ;
}
sClass boc = { sizeof(SObject), , NULL,
&baseClone, &baseSpeak, NULL };
Class BaseObjClass = &boc;
typedef struct sDogPart {
double weight;
char color[32];
char name[24];
} DogPart;
typedef struct sDog *Dog;
struct sDog {
Class class;
DogPart dog;
};
static
void dogClone( BaseObj s, BaseObj c)
{
Dog src = (Dog)s;
Dog clone = (Dog)c;
clone->dog = src->dog;
}
static
const char *dogSpeak( BaseObj s)
{
Dog d = (Dog)s;
static char response[90];
sprintf(response, ,
d->dog.name, d->dog.color, d->class->cname);
return response;
}
sClass dogc = { sizeof(struct sDog), , &boc,
&dogClone, &dogSpeak, NULL };
Class DogClass = &dogc;
BaseObj NewDog( const char *name, const char *color, double weight )
{
Dog dog = malloc(DogClass->csize);
if (dog) {
DogPart *dogp = &dog->dog;
dog->class = DogClass;
dogp->weight = weight;
strncpy(dogp->name, name, 23);
strncpy(dogp->color, color, 31);
}
return (BaseObj)dog;
}
typedef struct sFerretPart {
char color[32];
char name[24];
int age;
} FerretPart;
typedef struct sFerret *Ferret;
struct sFerret {
Class class;
FerretPart ferret;
};
static
void ferretClone( BaseObj s, BaseObj c)
{
Ferret src = (Ferret)s;
Ferret clone = (Ferret)c;
clone->ferret = src->ferret;
}
static
const char *ferretSpeak(BaseObj s)
{
Ferret f = (Ferret)s;
static char response[90];
sprintf(response, ,
f->ferret.name, f->ferret.age, f->ferret.color,
f->class->cname);
return response;
}
sClass ferretc = { sizeof(struct sFerret), , &boc,
&ferretClone, &ferretSpeak, NULL };
Class FerretClass = &ferretc;
BaseObj NewFerret( const char *name, const char *color, int age )
{
Ferret ferret = malloc(FerretClass->csize);
if (ferret) {
FerretPart *ferretp = &(ferret->ferret);
ferret->class = FerretClass;
strncpy(ferretp->name, name, 23);
strncpy(ferretp->color, color, 31);
ferretp->age = age;
}
return (BaseObj)ferret;
}
int main()
{
BaseObj o1;
BaseObj kara = NewFerret( , , 15 );
BaseObj bruce = NewDog(, , 85.0 );
printf();
o1 = ObjClone(kara );
printf(, ObjSpeak(o1));
printf(, ObjSpeak(kara));
ObjDestroy(o1);
o1 = ObjClone(bruce );
strncpy(((Dog)o1)->dog.name, , 23);
printf(, ObjSpeak(o1));
printf(, ObjSpeak(bruce));
ObjDestroy(o1);
return 0;
} | 414Polymorphic copy
| 5c
| nbzi6 |
import Reflex
import Reflex.Dom
import Reflex.Dom.Time
import Data.Text (Text, pack)
import Data.Map (Map, fromList)
import Data.Time.Clock (getCurrentTime)
import Control.Monad.Trans (liftIO)
type Point = (Float,Float)
type Segment = (Point,Point)
main = mainWidget $ do
dTick <- tickLossy 0.05 =<< liftIO getCurrentTime
dCounter <- foldDyn (\_ c -> c+1) (0::Int) dTick
let
dAngle = fmap (\c -> fromIntegral c / 800.0) dCounter
dSpiralMap = fmap toSpiralMap dAngle
width = 600
height = 600
boardAttrs =
fromList [ ("width" , pack $ show width)
, ("height", pack $ show height)
, ("viewBox", pack $ show (-width/2) ++ " " ++ show (-height/2) ++ " " ++ show width ++ " " ++ show height)
]
elAttr "h1" ("style" =: "color:black") $ text "Polyspiral"
elAttr "a" ("href" =: "http://rosettacode.org/wiki/Polyspiral#Haskell") $ text "Rosetta Code / Polyspiral / Haskell"
el "br" $ return ()
elSvgns "svg" (constDyn boardAttrs) (listWithKey dSpiralMap showLine)
return ()
lineAttrs :: Segment -> Map Text Text
lineAttrs ((x1,y1), (x2,y2)) =
fromList [ ( "x1", pack $ show x1)
, ( "y1", pack $ show y1)
, ( "x2", pack $ show x2)
, ( "y2", pack $ show y2)
, ( "style", "stroke:blue")
]
showLine :: MonadWidget t m => Int -> Dynamic t Segment -> m ()
showLine _ dSegment = elSvgns "line" (lineAttrs <$> dSegment) $ return ()
advance :: Float -> (Point, Float, Float) -> (Point, Float, Float)
advance angle ((x,y), len, rot) =
let new_x = x + len * cos rot
new_y = y + len * sin rot
new_len = len + 3.0
new_rot = rot + angle
in ((new_x, new_y), new_len, new_rot)
toSpiralMap :: Float -> Map Int ((Float,Float),(Float,Float))
toSpiralMap angle =
fromList
$ zip [0..]
$ (\pts -> zip pts $ tail pts)
$ take 80
$ (\(pt,_,_) -> pt)
<$> iterate (advance angle) ((0, 0), 0, 0)
elSvgns :: MonadWidget t m => Text -> Dynamic t (Map Text Text) -> m a -> m a
elSvgns t m ma = do
(el, val) <- elDynAttrNS' (Just "http://www.w3.org/2000/svg") t m ma
return val | 413Polyspiral
| 8haskell
| msvyf |
puts
puts | 401Program name
| 14ruby
| vnq2n |
double table[][2] = {
{0.06, 0.10}, {0.11, 0.18}, {0.16, 0.26}, {0.21, 0.32},
{0.26, 0.38}, {0.31, 0.44}, {0.36, 0.50}, {0.41, 0.54},
{0.46, 0.58}, {0.51, 0.62}, {0.56, 0.66}, {0.61, 0.70},
{0.66, 0.74}, {0.71, 0.78}, {0.76, 0.82}, {0.81, 0.86},
{0.86, 0.90}, {0.91, 0.94}, {0.96, 0.98}, {1.01, 1.00},
{-1, 0},
};
double price_fix(double x)
{
int i;
for (i = 0; table[i][0] > 0; i++)
if (x < table[i][0]) return table[i][1];
abort();
}
int main()
{
int i;
for (i = 0; i <= 100; i++)
printf(, i / 100., price_fix(i / 100.));
return 0;
} | 415Price fraction
| 5c
| jyb70 |
fn main() {
println!("Program: {}", std::env::args().next().unwrap());
} | 401Program name
| 15rust
| udsvj |
from fractions import gcd
def pt1(maxperimeter=100):
'''
'''
trips = []
for a in range(1, maxperimeter):
aa = a*a
for b in range(a, maxperimeter-a+1):
bb = b*b
for c in range(b, maxperimeter-b-a+1):
cc = c*c
if a+b+c > maxperimeter or cc > aa + bb: break
if aa + bb == cc:
trips.append((a,b,c, gcd(a, b) == 1))
return trips
def pytrip(trip=(3,4,5),perim=100, prim=1):
a0, b0, c0 = a, b, c = sorted(trip)
t, firstprim = set(), prim>0
while a + b + c <= perim:
t.add((a, b, c, firstprim>0))
a, b, c, firstprim = a+a0, b+b0, c+c0, False
t2 = set()
for a, b, c, firstprim in t:
a2, a5, b2, b5, c2, c3, c7 = a*2, a*5, b*2, b*5, c*2, c*3, c*7
if a5 - b5 + c7 <= perim:
t2 |= pytrip(( a - b2 + c2, a2 - b + c2, a2 - b2 + c3), perim, firstprim)
if a5 + b5 + c7 <= perim:
t2 |= pytrip(( a + b2 + c2, a2 + b + c2, a2 + b2 + c3), perim, firstprim)
if -a5 + b5 + c7 <= perim:
t2 |= pytrip((-a + b2 + c2, -a2 + b + c2, -a2 + b2 + c3), perim, firstprim)
return t | t2
def pt2(maxperimeter=100):
'''
'''
trips = pytrip((3,4,5), maxperimeter, 1)
return trips
def printit(maxperimeter=100, pt=pt1):
trips = pt(maxperimeter)
print(
% (maxperimeter,
len(trips),
len([prim for a,b,c,prim in trips if prim])))
for algo, mn, mx in ((pt1, 250, 2500), (pt2, 500, 20000)):
print(algo.__doc__)
for maxperimeter in range(mn, mx+1, mn):
printit(maxperimeter, algo) | 399Pythagorean triples
| 3python
| 4ti5k |
null | 412Primality by Wilson's theorem
| 1lua
| ta9fn |
void reoshift(gsl_vector *v, int h)
{
if ( h > 0 ) {
gsl_vector *temp = gsl_vector_alloc(v->size);
gsl_vector_view p = gsl_vector_subvector(v, 0, v->size - h);
gsl_vector_view p1 = gsl_vector_subvector(temp, h, v->size - h);
gsl_vector_memcpy(&p1.vector, &p.vector);
p = gsl_vector_subvector(temp, 0, h);
gsl_vector_set_zero(&p.vector);
gsl_vector_memcpy(v, temp);
gsl_vector_free(temp);
}
}
gsl_vector *poly_long_div(gsl_vector *n, gsl_vector *d, gsl_vector **r)
{
gsl_vector *nt = NULL, *dt = NULL, *rt = NULL, *d2 = NULL, *q = NULL;
int gn, gt, gd;
if ( (n->size >= d->size) && (d->size > 0) && (n->size > 0) ) {
nt = gsl_vector_alloc(n->size); assert(nt != NULL);
dt = gsl_vector_alloc(n->size); assert(dt != NULL);
rt = gsl_vector_alloc(n->size); assert(rt != NULL);
d2 = gsl_vector_alloc(n->size); assert(d2 != NULL);
gsl_vector_memcpy(nt, n);
gsl_vector_set_zero(dt); gsl_vector_set_zero(rt);
gsl_vector_view p = gsl_vector_subvector(dt, 0, d->size);
gsl_vector_memcpy(&p.vector, d);
gsl_vector_memcpy(d2, dt);
gn = n->size - 1;
gd = d->size - 1;
gt = 0;
while( gsl_vector_get(d, gd) == 0 ) gd--;
while ( gn >= gd ) {
reoshift(dt, gn-gd);
double v = gsl_vector_get(nt, gn)/gsl_vector_get(dt, gn);
gsl_vector_set(rt, gn-gd, v);
gsl_vector_scale(dt, v);
gsl_vector_sub(nt, dt);
gt = MAX(gt, gn-gd);
while( (gn>=0) && (gsl_vector_get(nt, gn) == 0.0) ) gn--;
gsl_vector_memcpy(dt, d2);
}
q = gsl_vector_alloc(gt+1); assert(q != NULL);
p = gsl_vector_subvector(rt, 0, gt+1);
gsl_vector_memcpy(q, &p.vector);
if ( r != NULL ) {
if ( (gn+1) > 0 ) {
*r = gsl_vector_alloc(gn+1); assert( *r != NULL );
p = gsl_vector_subvector(nt, 0, gn+1);
gsl_vector_memcpy(*r, &p.vector);
} else {
*r = gsl_vector_alloc(1); assert( *r != NULL );
gsl_vector_set_zero(*r);
}
}
gsl_vector_free(nt); gsl_vector_free(dt);
gsl_vector_free(rt); gsl_vector_free(d2);
return q;
} else {
q = gsl_vector_alloc(1); assert( q != NULL );
gsl_vector_set_zero(q);
if ( r != NULL ) {
*r = gsl_vector_alloc(n->size); assert( *r != NULL );
gsl_vector_memcpy(*r, n);
}
return q;
}
}
void poly_print(gsl_vector *p)
{
int i;
for(i=p->size-1; i >= 0; i--) {
if ( i > 0 )
printf(,
gsl_vector_get(p, i), i);
else
printf(, gsl_vector_get(p, i));
}
}
gsl_vector *create_poly(int d, ...)
{
va_list al;
int i;
gsl_vector *r = NULL;
va_start(al, d);
r = gsl_vector_alloc(d); assert( r != NULL );
for(i=0; i < d; i++)
gsl_vector_set(r, i, va_arg(al, double));
return r;
} | 416Polynomial long division
| 5c
| avw11 |
import java.awt.*;
import java.awt.event.ActionEvent;
import javax.swing.*;
public class PolySpiral extends JPanel {
double inc = 0;
public PolySpiral() {
setPreferredSize(new Dimension(640, 640));
setBackground(Color.white);
new Timer(40, (ActionEvent e) -> {
inc = (inc + 0.05) % 360;
repaint();
}).start();
}
void drawSpiral(Graphics2D g, int len, double angleIncrement) {
double x1 = getWidth() / 2;
double y1 = getHeight() / 2;
double angle = angleIncrement;
for (int i = 0; i < 150; i++) {
g.setColor(Color.getHSBColor(i / 150f, 1.0f, 1.0f));
double x2 = x1 + Math.cos(angle) * len;
double y2 = y1 - Math.sin(angle) * len;
g.drawLine((int) x1, (int) y1, (int) x2, (int) y2);
x1 = x2;
y1 = y2;
len += 3;
angle = (angle + angleIncrement) % (Math.PI * 2);
}
}
@Override
public void paintComponent(Graphics gg) {
super.paintComponent(gg);
Graphics2D g = (Graphics2D) gg;
g.setRenderingHint(RenderingHints.KEY_ANTIALIASING,
RenderingHints.VALUE_ANTIALIAS_ON);
drawSpiral(g, 5, Math.toRadians(inc));
}
public static void main(String[] args) {
SwingUtilities.invokeLater(() -> {
JFrame f = new JFrame();
f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
f.setTitle("PolySpiral");
f.setResizable(true);
f.add(new PolySpiral(), BorderLayout.CENTER);
f.pack();
f.setLocationRelativeTo(null);
f.setVisible(true);
});
}
} | 413Polyspiral
| 9java
| f1ydv |
bool polynomialfit(int obs, int degree,
double *dx, double *dy, double *store); | 417Polynomial regression
| 5c
| ikno2 |
package main
import (
"fmt"
"container/heap"
)
type Task struct {
priority int
name string
}
type TaskPQ []Task
func (self TaskPQ) Len() int { return len(self) }
func (self TaskPQ) Less(i, j int) bool {
return self[i].priority < self[j].priority
}
func (self TaskPQ) Swap(i, j int) { self[i], self[j] = self[j], self[i] }
func (self *TaskPQ) Push(x interface{}) { *self = append(*self, x.(Task)) }
func (self *TaskPQ) Pop() (popped interface{}) {
popped = (*self)[len(*self)-1]
*self = (*self)[:len(*self)-1]
return
}
func main() {
pq := &TaskPQ{{3, "Clear drains"},
{4, "Feed cat"},
{5, "Make tea"},
{1, "Solve RC tasks"}} | 408Priority queue
| 0go
| lohcw |
from collections import namedtuple
import math
Circle = namedtuple('Circle', 'x, y, r')
def solveApollonius(c1, c2, c3, s1, s2, s3):
'''
>>> solveApollonius((0, 0, 1), (4, 0, 1), (2, 4, 2), 1,1,1)
Circle(x=2.0, y=2.1, r=3.9)
>>> solveApollonius((0, 0, 1), (4, 0, 1), (2, 4, 2), -1,-1,-1)
Circle(x=2.0, y=0.8333333333333333, r=1.1666666666666667)
'''
x1, y1, r1 = c1
x2, y2, r2 = c2
x3, y3, r3 = c3
v11 = 2*x2 - 2*x1
v12 = 2*y2 - 2*y1
v13 = x1*x1 - x2*x2 + y1*y1 - y2*y2 - r1*r1 + r2*r2
v14 = 2*s2*r2 - 2*s1*r1
v21 = 2*x3 - 2*x2
v22 = 2*y3 - 2*y2
v23 = x2*x2 - x3*x3 + y2*y2 - y3*y3 - r2*r2 + r3*r3
v24 = 2*s3*r3 - 2*s2*r2
w12 = v12/v11
w13 = v13/v11
w14 = v14/v11
w22 = v22/v21-w12
w23 = v23/v21-w13
w24 = v24/v21-w14
P = -w23/w22
Q = w24/w22
M = -w12*P-w13
N = w14 - w12*Q
a = N*N + Q*Q - 1
b = 2*M*N - 2*N*x1 + 2*P*Q - 2*Q*y1 + 2*s1*r1
c = x1*x1 + M*M - 2*M*x1 + P*P + y1*y1 - 2*P*y1 - r1*r1
D = b*b-4*a*c
rs = (-b-math.sqrt(D))/(2*a)
xs = M+N*rs
ys = P+Q*rs
return Circle(xs, ys, rs)
if __name__ == '__main__':
c1, c2, c3 = Circle(0, 0, 1), Circle(4, 0, 1), Circle(2, 4, 2)
print(solveApollonius(c1, c2, c3, 1, 1, 1))
print(solveApollonius(c1, c2, c3, -1, -1, -1)) | 405Problem of Apollonius
| 3python
| dpun1 |
object ScriptName extends App {
println(s"Program of instantiated object: ${this.getClass.getName}") | 401Program name
| 16scala
| gzo4i |
typedef uint32_t pint;
typedef uint64_t xint;
typedef unsigned int uint;
uint8_t *pbits;
pint next_prime(pint);
int is_prime(xint);
void sieve(pint);
uint8_t bit_pos[30] = {
0, 1<<0, 0, 0, 0, 0,
0, 1<<1, 0, 0, 0, 1<<2,
0, 1<<3, 0, 0, 0, 1<<4,
0, 1<<5, 0, 0, 0, 1<<6,
0, 0, 0, 0, 0, 1<<7,
};
uint8_t rem_num[] = { 1, 7, 11, 13, 17, 19, 23, 29 };
void init_primes()
{
FILE *fp;
pint s, tgt = 4;
if (!(pbits = malloc(PBITS))) {
perror();
exit(1);
}
if ((fp = fopen(, ))) {
fread(pbits, 1, PBITS, fp);
fclose(fp);
return;
}
memset(pbits, 255, PBITS);
for (s = 7; s <= MAX_PRIME_SQ; s = next_prime(s)) {
if (s > tgt) {
tgt *= 2;
fprintf(stderr, PRIuPINT, s);
}
sieve(s);
}
fp = fopen(, );
fwrite(pbits, 1, PBITS, fp);
fclose(fp);
}
int is_prime(xint x)
{
pint p;
if (x > 5) {
if (x < MAX_PRIME)
return pbits[x/30] & bit_pos[x % 30];
for (p = 2; p && (xint)p * p <= x; p = next_prime(p))
if (x % p == 0) return 0;
return 1;
}
return x == 2 || x == 3 || x == 5;
}
void sieve(pint p)
{
unsigned char b[8];
off_t ofs[8];
int i, q;
for (i = 0; i < 8; i++) {
q = rem_num[i] * p;
b[i] = ~bit_pos[q % 30];
ofs[i] = q / 30;
}
for (q = ofs[1], i = 7; i; i--)
ofs[i] -= ofs[i-1];
for (ofs[0] = p, i = 1; i < 8; i++)
ofs[0] -= ofs[i];
for (i = 1; q < PBITS; q += ofs[i = (i + 1) & 7])
pbits[q] &= b[i];
}
pint next_prime(pint p)
{
off_t addr;
uint8_t bits, rem;
if (p > 5) {
addr = p / 30;
bits = bit_pos[ p % 30 ] << 1;
for (rem = 0; (1 << rem) < bits; rem++);
while (pbits[addr] < bits || !bits) {
if (++addr >= PBITS) return 0;
bits = 1;
rem = 0;
}
if (addr >= PBITS) return 0;
while (!(pbits[addr] & bits)) {
rem++;
bits <<= 1;
}
return p = addr * 30 + rem_num[rem];
}
switch(p) {
case 2: return 3;
case 3: return 5;
case 5: return 7;
}
return 2;
}
int decompose(xint n, xint *f)
{
pint p = 0;
int i = 0;
if (n <= MAX_PRIME && is_prime(n)) {
f[0] = n;
return 1;
}
while (n >= (xint)p * p) {
if (!(p = next_prime(p))) break;
while (n % p == 0) {
n /= p;
f[i++] = p;
}
}
if (n > 1) f[i++] = n;
return i;
}
int main()
{
int i, len;
pint p = 0;
xint f[MAX_FACTORS], po;
init_primes();
for (p = 1; p < 64; p++) {
po = (1LLU << p) - 1;
printf(PRIuPINTPRIuXINT, p, po);
fflush(stdout);
if ((len = decompose(po, f)) > 1)
for (i = 0; i < len; i++)
printf(PRIuXINT, i?'x':'=', f[i]);
putchar('\n');
}
return 0;
} | 418Prime decomposition
| 5c
| vnv2o |
<!-- Polyspiral.html -->
<html>
<head><title>Polyspiral Generator</title></head>
<script> | 413Polyspiral
| 10javascript
| yq26r |
public class Prob{
static long TRIALS= 1000000;
private static class Expv{
public String name;
public int probcount;
public double expect;
public double mapping;
public Expv(String name, int probcount, double expect, double mapping){
this.name= name;
this.probcount= probcount;
this.expect= expect;
this.mapping= mapping;
}
}
static Expv[] items=
{new Expv("aleph", 0, 0.0, 0.0), new Expv("beth", 0, 0.0, 0.0),
new Expv("gimel", 0, 0.0, 0.0),
new Expv("daleth", 0, 0.0, 0.0),
new Expv("he", 0, 0.0, 0.0), new Expv("waw", 0, 0.0, 0.0),
new Expv("zayin", 0, 0.0, 0.0),
new Expv("heth", 0, 0.0, 0.0)};
public static void main(String[] args){
int i, j;
double rnum, tsum= 0.0;
for(i= 0, rnum= 5.0;i < 7;i++, rnum+= 1.0){
items[i].expect= 1.0 / rnum;
tsum+= items[i].expect;
}
items[7].expect= 1.0 - tsum;
items[0].mapping= 1.0 / 5.0;
for(i= 1;i < 7;i++){
items[i].mapping= items[i - 1].mapping + 1.0 / ((double)i + 5.0);
}
items[7].mapping= 1.0;
for(i= 0;i < TRIALS;i++){
rnum= Math.random();
for(j= 0;j < 8;j++){
if(rnum < items[j].mapping){
items[j].probcount++;
break;
}
}
}
System.out.printf("Trials:%d\n", TRIALS);
System.out.printf("Items: ");
for(i= 0;i < 8;i++)
System.out.printf("%-8s ", items[i].name);
System.out.printf("\nTarget prob.: ");
for(i= 0;i < 8;i++)
System.out.printf("%8.6f ", items[i].expect);
System.out.printf("\nAttained prob.: ");
for(i= 0;i < 8;i++)
System.out.printf("%8.6f ", (double)(items[i].probcount)
/ (double)TRIALS);
System.out.printf("\n");
}
} | 410Probabilistic choice
| 9java
| talf9 |
import groovy.transform.Canonical
@Canonical
class Task implements Comparable<Task> {
int priority
String name
int compareTo(Task o) { priority <=> o?.priority }
}
new PriorityQueue<Task>().with {
add new Task(priority: 3, name: 'Clear drains')
add new Task(priority: 4, name: 'Feed cat')
add new Task(priority: 5, name: 'Make tea')
add new Task(priority: 1, name: 'Solve RC tasks')
add new Task(priority: 2, name: 'Tax return')
while (!empty) { println remove() }
} | 408Priority queue
| 7groovy
| 6x43o |
import sys
if problem:
sys.exit(1) | 403Program termination
| 3python
| pltbm |
def isPrime(n):
if n < 2:
return False
if n% 2 == 0:
return n == 2
if n% 3 == 0:
return n == 3
d = 5
while d * d <= n:
if n% d == 0:
return False
d += 2
if n% d == 0:
return False
d += 4
return True
def generatePrimes():
yield 2
yield 3
p = 5
while p > 0:
if isPrime(p):
yield p
p += 2
if isPrime(p):
yield p
p += 4
g = generatePrimes()
transMap = {}
prev = None
limit = 1000000
for _ in xrange(limit):
prime = next(g)
if prev:
transition = (prev, prime%10)
if transition in transMap:
transMap[transition] += 1
else:
transMap[transition] = 1
prev = prime% 10
print .format(limit)
for trans in sorted(transMap):
print .format(trans[0], trans[1], transMap[trans], 100.0 * transMap[trans] / limit) | 407Prime conspiracy
| 3python
| 07ysq |
null | 413Polyspiral
| 11kotlin
| 8jf0q |
(def values [10 18 26 32 38 44 50 54 58 62 66 70 74 78 82 86 90 94 98 100])
(defn price [v]
(format "%.2f" (double (/ (values (int (/ (- (* v 100) 1) 5))) 100)))) | 415Price fraction
| 6clojure
| 12wpy |
var probabilities = {
aleph: 1/5.0,
beth: 1/6.0,
gimel: 1/7.0,
daleth: 1/8.0,
he: 1/9.0,
waw: 1/10.0,
zayin: 1/11.0,
heth: 1759/27720
};
var sum = 0;
var iterations = 1000000;
var cumulative = {};
var randomly = {};
for (var name in probabilities) {
sum += probabilities[name];
cumulative[name] = sum;
randomly[name] = 0;
}
for (var i = 0; i < iterations; i++) {
var r = Math.random();
for (var name in cumulative) {
if (r <= cumulative[name]) {
randomly[name]++;
break;
}
}
}
for (var name in probabilities) | 410Probabilistic choice
| 10javascript
| ms4yv |
import Data.PQueue.Prio.Min
main = print (toList (fromList [(3, "Clear drains"),(4, "Feed cat"),(5, "Make tea"),(1, "Solve RC tasks"), (2, "Tax return")])) | 408Priority queue
| 8haskell
| 12ips |
if(problem) q(status=10) | 403Program termination
| 13r
| jyi78 |
use strict;
use warnings;
use feature 'say';
use ntheory qw(factorial);
my($ends_in_7, $ends_in_3);
sub is_wilson_prime {
my($n) = @_;
$n > 1 or return 0;
(factorial($n-1) % $n) == ($n-1) ? 1 : 0;
}
for (0..50) {
my $m = 3 + 10 * $_;
$ends_in_3 .= "$m " if is_wilson_prime($m);
my $n = 7 + 10 * $_;
$ends_in_7 .= "$n " if is_wilson_prime($n);
}
say $ends_in_3;
say $ends_in_7; | 412Primality by Wilson's theorem
| 2perl
| hmejl |
suppressMessages(library(gmp))
limit <- 1e6
result <- vector('numeric', 99)
prev_prime <- 2
count <- 0
getOutput <- function(transition) {
if (result[transition] == 0) return()
second <- transition %% 10
first <- (transition - second) / 10
cat(first,"->",second,"count:", sprintf("%6d",result[transition]), "frequency:",
sprintf("%5.2f%%\n",result[transition]*100/limit))
}
while (count <= limit) {
count <- count + 1
next_prime <- nextprime(prev_prime)
transition <- 10*(asNumeric(prev_prime) %% 10) + (asNumeric(next_prime) %% 10)
prev_prime <- next_prime
result[transition] <- result[transition] + 1
}
cat(sprintf("%d",limit),"first primes. Transitions prime% 10 -> next-prime% 10\n")
invisible(sapply(1:99,getOutput)) | 407Prime conspiracy
| 13r
| w5te5 |
typedef int bool;
typedef struct {
int face;
char suit;
} card;
card cards[5];
int compare_card(const void *a, const void *b) {
card c1 = *(card *)a;
card c2 = *(card *)b;
return c1.face - c2.face;
}
bool equals_card(card c1, card c2) {
if (c1.face == c2.face && c1.suit == c2.suit) return TRUE;
return FALSE;
}
bool are_distinct() {
int i, j;
for (i = 0; i < 4; ++i)
for (j = i + 1; j < 5; ++j)
if (equals_card(cards[i], cards[j])) return FALSE;
return TRUE;
}
bool is_straight() {
int i;
qsort(cards, 5, sizeof(card), compare_card);
if (cards[0].face + 4 == cards[4].face) return TRUE;
if (cards[4].face == 12 && cards[0].face == 0 &&
cards[3].face == 3) return TRUE;
return FALSE;
}
bool is_flush() {
int i;
char suit = cards[0].suit;
for (i = 1; i < 5; ++i) if (cards[i].suit != suit) return FALSE;
return TRUE;
}
const char *analyze_hand(const char *hand) {
int i, j, gs = 0;
char suit, *cp;
bool found, flush, straight;
int groups[13];
if (strlen(hand) != 14) return ;
for (i = 0; i < 14; i += 3) {
cp = strchr(FACES, tolower(hand[i]));
if (cp == NULL) return ;
j = i / 3;
cards[j].face = cp - FACES;
suit = tolower(hand[i + 1]);
cp = strchr(SUITS, suit);
if (cp == NULL) return ;
cards[j].suit = suit;
}
if (!are_distinct()) return ;
for (i = 0; i < 13; ++i) groups[i] = 0;
for (i = 0; i < 5; ++i) groups[cards[i].face]++;
for (i = 0; i < 13; ++i) if (groups[i] > 0) gs++;
switch(gs) {
case 2:
found = FALSE;
for (i = 0; i < 13; ++i) if (groups[i] == 4) {
found = TRUE;
break;
}
if (found) return ;
return ;
case 3:
found = FALSE;
for (i = 0; i < 13; ++i) if (groups[i] == 3) {
found = TRUE;
break;
}
if (found) return ;
return ;
case 4:
return ;
default:
flush = is_flush();
straight = is_straight();
if (flush && straight)
return ;
else if (flush)
return ;
else if (straight)
return ;
else
return ;
}
}
int main(){
int i;
const char *type;
const char *hands[10] = {
,
,
,
,
,
,
,
,
,
};
for (i = 0; i < 10; ++i) {
type = analyze_hand(hands[i]);
printf(, hands[i], type);
}
return 0;
} | 419Poker hand analyser
| 5c
| 9sym1 |
(defn grevlex [term1 term2]
(let [grade1 (reduce +' term1)
grade2 (reduce +' term2)
comp (- grade2 grade1)]
(if (not= 0 comp)
comp
(loop [term1 term1
term2 term2]
(if (empty? term1)
0
(let [grade1 (last term1)
grade2 (last term2)
comp (- grade1 grade2)]
(if (not= 0 comp)
comp
(recur (pop term1)
(pop term2)))))))))
(defn mul
([poly1]
(fn
([] poly1)
([poly2] (mul poly1 poly2))
([poly2 & more] (mul poly1 poly2 more))))
([poly1 poly2]
(let [product (atom (transient (sorted-map-by grevlex)))]
(doall
(for [term1 poly1
term2 poly2
:let [vars (mapv +' (key term1) (key term2))
coeff (* (val term1) (val term2))]]
(if (contains? @product vars)
(swap! product assoc! vars (+ (get @product vars) coeff))
(swap! product assoc! vars coeff))))
(->> product
(deref)
(persistent!)
(denull))))
([poly1 poly2 & more]
(reduce mul (mul poly1 poly2) more)))
(defn compl [term1 term2]
(map (fn [x y]
(cond
(and (zero? x) (not= 0 y)) nil
(< x y) nil
(>= x y) (- x y)))
term1
term2))
(defn s-poly [f g]
(let [f-vars (first f)
g-vars (first g)
lcm (compl f-vars g-vars)]
(if (not-any? nil? lcm)
{(vec lcm)
(/ (second f) (second g))})))
(defn divide [f g]
(loop [f f
g g
result (transient {})
remainder {}]
(if (empty? f)
(list (persistent! result)
(->> remainder
(filter #(not (nil? %)))
(into (sorted-map-by grevlex))))
(let [term1 (first f)
term2 (first g)
s-term (s-poly term1 term2)]
(if (nil? s-term)
(recur (dissoc f (first term1))
(dissoc g (first term2))
result
(conj remainder term1))
(recur (sub f (mul g s-term))
g
(conj! result s-term)
remainder))))))
(deftest divide-tests
(is (= (divide {[1 1] 2, [1 0] 3, [0 1] 5, [0 0] 7}
{[1 1] 2, [1 0] 3, [0 1] 5, [0 0] 7})
'({[0 0] 1} {})))
(is (= (divide {[1 1] 2, [1 0] 3, [0 1] 5, [0 0] 7}
{[0 0] 1})
'({[1 1] 2, [1 0] 3, [0 1] 5, [0 0] 7} {})))
(is (= (divide {[1 1] 2, [1 0] 10, [0 1] 3, [0 0] 15}
{[0 1] 1, [0 0] 5})
'({[1 0] 2, [0 0] 3} {})))
(is (= (divide {[1 1] 2, [1 0] 10, [0 1] 3, [0 0] 15}
{[1 0] 2, [0 0] 3})
'({[0 1] 1, [0 0] 5} {})))) | 416Polynomial long division
| 6clojure
| sr8qr |
function love.load ()
love.window.setTitle("Polyspiral")
incr = 0
end
function love.update (dt)
incr = (incr + 0.05) % 360
x1 = love.graphics.getWidth() / 2
y1 = love.graphics.getHeight() / 2
length = 5
angle = incr
end
function love.draw ()
for i = 1, 150 do
x2 = x1 + math.cos(angle) * length
y2 = y1 + math.sin(angle) * length
love.graphics.line(x1, y1, x2, y2)
x1, y1 = x2, y2
length = length + 3
angle = (angle + incr) % 360
end
end | 413Polyspiral
| 1lua
| oht8h |
null | 410Probabilistic choice
| 11kotlin
| oh68z |
class Circle
def initialize(x, y, r)
@x, @y, @r = [x, y, r].map(&:to_f)
end
attr_reader :x, :y, :r
def self.apollonius(c1, c2, c3, s1=1, s2=1, s3=1)
x1, y1, r1 = c1.x, c1.y, c1.r
x2, y2, r2 = c2.x, c2.y, c2.r
x3, y3, r3 = c3.x, c3.y, c3.r
v11 = 2*x2 - 2*x1
v12 = 2*y2 - 2*y1
v13 = x1**2 - x2**2 + y1**2 - y2**2 - r1**2 + r2**2
v14 = 2*s2*r2 - 2*s1*r1
v21 = 2*x3 - 2*x2
v22 = 2*y3 - 2*y2
v23 = x2**2 - x3**2 + y2**2 - y3**2 - r2**2 + r3**2
v24 = 2*s3*r3 - 2*s2*r2
w12 = v12/v11
w13 = v13/v11
w14 = v14/v11
w22 = v22/v21 - w12
w23 = v23/v21 - w13
w24 = v24/v21 - w14
p = -w23/w22
q = w24/w22
m = -w12*p - w13
n = w14 - w12*q
a = n**2 + q**2 - 1
b = 2*m*n - 2*n*x1 + 2*p*q - 2*q*y1 + 2*s1*r1
c = x1**2 + m**2 - 2*m*x1 + p**2 + y1**2 - 2*p*y1 - r1**2
d = b**2 - 4*a*c
rs = (-b - Math.sqrt(d)) / (2*a)
xs = m + n*rs
ys = p + q*rs
self.new(xs, ys, rs)
end
def to_s
end
end
puts c1 = Circle.new(0, 0, 1)
puts c2 = Circle.new(2, 4, 2)
puts c3 = Circle.new(4, 0, 1)
puts Circle.apollonius(c1, c2, c3)
puts Circle.apollonius(c1, c2, c3, -1, -1, -1) | 405Problem of Apollonius
| 14ruby
| ta4f2 |
(defn factors
"Return a list of factors of N."
([n]
(factors n 2 ()))
([n k acc]
(if (= 1 n)
acc
(if (= 0 (rem n k))
(recur (quot n k) k (cons k acc))
(recur n (inc k) acc))))) | 418Prime decomposition
| 6clojure
| r3rg2 |
object ApolloniusSolver extends App {
case class Circle(x: Double, y: Double, r: Double)
object Tangent extends Enumeration {
type Tangent = Value
val intern = Value(-1)
val extern = Value(1)
}
import Tangent._
import scala.Math._
val solveApollonius: (Circle, Circle, Circle, Triple[Tangent, Tangent, Tangent]) => Circle = (c1, c2, c3, tangents) => {
val fv: (Circle, Circle, Int, Int) => Tuple4[Double, Double, Double, Double] = (c1, c2, s1, s2) => {
val v11 = 2 * c2.x - 2 * c1.x
val v12 = 2 * c2.y - 2 * c1.y
val v13 = pow(c1.x, 2) - pow(c2.x, 2) + pow(c1.y, 2) - pow(c2.y, 2) - pow(c1.r, 2) + pow(c2.r, 2)
val v14 = 2 * s2 * c2.r - 2 * s1 * c1.r
Tuple4(v11, v12, v13, v14)
}
val (s1, s2, s3) = (tangents._1.id, tangents._2.id, tangents._3.id)
val (v11, v12, v13, v14) = fv(c1, c2, s1, s2)
val (v21, v22, v23, v24) = fv(c2, c3, s2, s3)
val w12 = v12 / v11
val w13 = v13 / v11
val w14 = v14 / v11
val w22 = v22 / v21 - w12
val w23 = v23 / v21 - w13
val w24 = v24 / v21 - w14
val P = -w23 / w22
val Q = w24 / w22
val M = -w12 * P - w13
val N = w14 - w12 * Q
val a = N*N + Q*Q - 1
val b = 2*M*N - 2*N*c1.x +
2*P*Q - 2*Q*c1.y +
2*s1*c1.r
val c = pow(c1.x, 2) + M*M - 2*M*c1.x +
P*P + pow(c1.y, 2) - 2*P*c1.y - pow(c1.r, 2) | 405Problem of Apollonius
| 16scala
| yqj63 |
class PythagoranTriplesCounter
def initialize(limit)
@limit = limit
@total = 0
@primitives = 0
generate_triples(3, 4, 5)
end
attr_reader :total, :primitives
private
def generate_triples(a, b, c)
perim = a + b + c
return if perim > @limit
@primitives += 1
@total += @limit / perim
generate_triples( a-2*b+2*c, 2*a-b+2*c, 2*a-2*b+3*c)
generate_triples( a+2*b+2*c, 2*a+b+2*c, 2*a+2*b+3*c)
generate_triples(-a+2*b+2*c,-2*a+b+2*c,-2*a+2*b+3*c)
end
end
perim = 10
while perim <= 100_000_000
c = PythagoranTriplesCounter.new perim
p [perim, c.total, c.primitives]
perim *= 10
end | 399Pythagorean triples
| 14ruby
| r3dgs |
using System;
class Point
{
protected int x, y;
public Point() : this(0) {}
public Point(int x) : this(x,0) {}
public Point(int x, int y) { this.x = x; this.y = y; }
public int X { get { return x; } set { x = value; } }
public int Y { get { return y; } set { y = value; } }
public virtual void print() { System.Console.WriteLine(); }
}
public class Circle : Point
{
private int r;
public Circle(Point p) : this(p,0) { }
public Circle(Point p, int r) : base(p) { this.r = r; }
public Circle() : this(0) { }
public Circle(int x) : this(x,0) { }
public Circle(int x, int y) : this(x,y,0) { }
public Circle(int x, int y, int r) : base(x,y) { this.r = r; }
public int R { get { return r; } set { r = value; } }
public override void print() { System.Console.WriteLine(); }
public static void main(String args[])
{
Point p = new Point();
Point c = new Circle();
p.print();
c.print();
}
} | 420Polymorphism
| 5c
| mq3ys |
use strict;
use warnings;
use Tk;
use List::Util qw( min );
my $size = 500;
my ($width, $height, $x, $y, $dist);
my $angleinc = 0;
my $active = 0;
my $wait = 1000 / 30;
my $radian = 90 / atan2 1, 0;
my $mw = MainWindow->new;
$mw->title( 'Polyspiral' );
my $c = $mw->Canvas( -width => $size, -height => $size,
-relief => 'raised', -borderwidth => 2,
)->pack(-fill => 'both', -expand => 1);
$mw->bind('<Configure>' => sub { $width = $c->width; $height = $c->height;
$dist = min($width, $height) ** 2 / 4 } );
$mw->Button(-text => $_->[0], -command => $_->[1],
)->pack(-side => 'right') for
[ Exit => sub {$mw->destroy} ],
[ 'Start / Pause' => sub { $active ^= 1; step() } ];
MainLoop;
-M $0 < 0 and exec $0;
sub step
{
$active or return;
my @pts = ($x = $width >> 1, $y = $height >> 1);
my $length = 5;
my $angle = $angleinc;
$angleinc += 0.05 / $radian;
while( ($x - $width / 2)**2 + ($y - $height / 2)**2 < $dist && @pts < 300 )
{
push @pts, $x, $y;
$x += $length * cos($angle);
$y += $length * sin($angle);
$length += 3;
$angle += $angleinc;
}
$c->delete('all');
$c->createLine( @pts );
$mw->after($wait => \&step);
} | 413Polyspiral
| 2perl
| 4th5d |
struct node {
char *s;
struct node* prev;
};
void powerset(char **v, int n, struct node *up)
{
struct node me;
if (!n) {
putchar('[');
while (up) {
printf(, up->s);
up = up->prev;
}
puts();
} else {
me.s = *v;
me.prev = up;
powerset(v + 1, n - 1, up);
powerset(v + 1, n - 1, &me);
}
}
int main(int argc, char **argv)
{
powerset(argv + 1, argc - 1, 0);
return 0;
} | 421Power set
| 5c
| 4f25t |
items = {}
items["aleph"] = 1/5.0
items["beth"] = 1/6.0
items["gimel"] = 1/7.0
items["daleth"] = 1/8.0
items["he"] = 1/9.0
items["waw"] = 1/10.0
items["zayin"] = 1/11.0
items["heth"] = 1759/27720
num_trials = 1000000
samples = {}
for item, _ in pairs( items ) do
samples[item] = 0
end
math.randomseed( os.time() )
for i = 1, num_trials do
z = math.random()
for item, _ in pairs( items ) do
if z < items[item] then
samples[item] = samples[item] + 1
break;
else
z = z - items[item]
end
end
end
for item, _ in pairs( items ) do
print( item, samples[item]/num_trials, items[item] )
end | 410Probabilistic choice
| 1lua
| ikyot |
import java.util.PriorityQueue;
class Task implements Comparable<Task> {
final int priority;
final String name;
public Task(int p, String n) {
priority = p;
name = n;
}
public String toString() {
return priority + ", " + name;
}
public int compareTo(Task other) {
return priority < other.priority ? -1 : priority > other.priority ? 1 : 0;
}
public static void main(String[] args) {
PriorityQueue<Task> pq = new PriorityQueue<Task>();
pq.add(new Task(3, "Clear drains"));
pq.add(new Task(4, "Feed cat"));
pq.add(new Task(5, "Make tea"));
pq.add(new Task(1, "Solve RC tasks"));
pq.add(new Task(2, "Tax return"));
while (!pq.isEmpty())
System.out.println(pq.remove());
}
} | 408Priority queue
| 9java
| 76xrj |
use std::thread;
fn f1 (a: u64, b: u64, c: u64, d: u64) -> u64 {
let mut primitive_count = 0;
for triangle in [[a - 2*b + 2*c, 2*a - b + 2*c, 2*a - 2*b + 3*c],
[a + 2*b + 2*c, 2*a + b + 2*c, 2*a + 2*b + 3*c],
[2*b + 2*c - a, b + 2*c - 2*a, 2*b + 3*c - 2*a]] .iter() {
let l = triangle[0] + triangle[1] + triangle[2];
if l > d { continue; }
primitive_count += 1 + f1(triangle[0], triangle[1], triangle[2], d);
}
primitive_count
}
fn f2 (a: u64, b: u64, c: u64, d: u64) -> u64 {
let mut triplet_count = 0;
for triangle in [[a - 2*b + 2*c, 2*a - b + 2*c, 2*a - 2*b + 3*c],
[a + 2*b + 2*c, 2*a + b + 2*c, 2*a + 2*b + 3*c],
[2*b + 2*c - a, b + 2*c - 2*a, 2*b + 3*c - 2*a]] .iter() {
let l = triangle[0] + triangle[1] + triangle[2];
if l > d { continue; }
triplet_count += (d/l) + f2(triangle[0], triangle[1], triangle[2], d);
}
triplet_count
}
fn main () {
let new_th_1 = thread::Builder::new().stack_size(32 * 1024 * 1024).spawn (move || {
let mut i = 100;
while i <= 100_000_000_000 {
println!(" Primitive triples below {}: {}", i, f1(3, 4, 5, i) + 1);
i *= 10;
}
}).unwrap();
let new_th_2 =thread::Builder::new().stack_size(32 * 1024 * 1024).spawn (move || {
let mut i = 100;
while i <= 100_000_000_000 {
println!(" Triples below {}: {}", i, f2(3, 4, 5, i) + i/12);
i *= 10;
}
}).unwrap();
new_th_1.join().unwrap();
new_th_2.join().unwrap();
} | 399Pythagorean triples
| 15rust
| 76frc |
if problem
exit(1)
end
if problem
abort
end | 403Program termination
| 14ruby
| av31s |
from math import factorial
def is_wprime(n):
return n == 2 or (
n > 1
and n% 2 != 0
and (factorial(n - 1) + 1)% n == 0
)
if __name__ == '__main__':
c = int(input('Enter upper limit: '))
print(f'Primes under {c}:')
print([n for n in range(c) if is_wprime(n)]) | 412Primality by Wilson's theorem
| 3python
| k9whf |
require
def prime_conspiracy(m)
conspiracy = Hash.new(0)
Prime.take(m).map{|n| n%10}.each_cons(2){|a,b| conspiracy[[a,b]] += 1}
puts
conspiracy.sort.each do |(a,b),v|
puts % [a, b, v, 100.0*v/m]
end
end
prime_conspiracy(1_000_000) | 407Prime conspiracy
| 14ruby
| oh98v |
null | 407Prime conspiracy
| 15rust
| ikcod |
double x[NP] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9};
double y[NP] = {2.7, 2.8, 31.4, 38.1, 58.0, 76.2, 100.5, 130.0, 149.3, 180.0};
void minmax(double *x, double *y,
double *minx, double *maxx,
double *miny, double *maxy, int n)
{
int i;
*minx = *maxx = x[0];
*miny = *maxy = y[0];
for(i=1; i < n; i++) {
if ( x[i] < *minx ) *minx = x[i];
if ( x[i] > *maxx ) *maxx = x[i];
if ( y[i] < *miny ) *miny = y[i];
if ( y[i] > *maxy ) *maxy = y[i];
}
}
int main()
{
int plotter, i;
double minx, miny, maxx, maxy;
double lx, ly;
double xticstep, yticstep, nx, ny;
double sx, sy;
char labs[MAXLABLEN+1];
plotter = pl_newpl(, NULL, stdout, NULL);
if ( plotter < 0 ) exit(1);
pl_selectpl(plotter);
if ( pl_openpl() < 0 ) exit(1);
minmax(x, y, &minx, &maxx, &miny, &maxy, NP);
lx = maxx - minx;
ly = maxy - miny;
pl_fspace(floor(minx) - XLAB_WIDTH_F * lx, floor(miny) - YLAB_HEIGHT_F * ly,
ceil(maxx) + EXTRA_W * lx, ceil(maxy) + EXTRA_H * ly);
xticstep = (ceil(maxx) - floor(minx)) / XDIV;
yticstep = (ceil(maxy) - floor(miny)) / YDIV;
pl_flinewidth(0.25);
if ( lx < ly ) {
sx = lx/ly;
sy = 1.0;
} else {
sx = 1.0;
sy = ly/lx;
}
pl_erase();
pl_fbox(floor(minx), floor(miny),
ceil(maxx), ceil(maxy));
pl_fontname();
for(ny=floor(miny); ny < ceil(maxy); ny += yticstep) {
pl_fline(floor(minx), ny, ceil(maxx), ny);
snprintf(labs, MAXLABLEN, , ny);
FMOVESCALE(floor(minx) - XLAB_WIDTH_F * lx, ny);
PUSHSCALE(sx,sy);
pl_label(labs);
POPSCALE(sx,sy);
}
for(nx=floor(minx); nx < ceil(maxx); nx += xticstep) {
pl_fline(nx, floor(miny), nx, ceil(maxy));
snprintf(labs, MAXLABLEN, , nx);
FMOVESCALE(nx, floor(miny));
PUSHSCALE(sx,sy);
pl_ftextangle(-90);
pl_alabel('l', 'b', labs);
POPSCALE(sx,sy);
}
pl_fillcolorname();
pl_filltype(1);
for(i=0; i < NP; i++)
{
pl_fbox(x[i] - lx * DOTSCALE, y[i] - ly * DOTSCALE,
x[i] + lx * DOTSCALE, y[i] + ly * DOTSCALE);
}
pl_flushpl();
pl_closepl();
} | 422Plot coordinate pairs
| 5c
| 5dcuk |
(defn rank [card]
(let [[fst _] card]
(if (Character/isDigit fst)
(Integer/valueOf (str fst))
({\T 10, \J 11, \Q 12, \K 13, \A 14} fst))))
(defn suit [card]
(let [[_ snd] card]
(str snd)))
(defn n-of-a-kind [hand n]
(not (empty? (filter #(= true %) (map #(>= % n) (vals (frequencies (map rank hand))))))))
(defn ranks-with-ace [hand]
(let [ranks (sort (map rank hand))]
(if (some #(= 14 %) ranks) (cons 1 ranks) ranks)))
(defn pair? [hand]
(n-of-a-kind hand 2))
(defn three-of-a-kind? [hand]
(n-of-a-kind hand 3))
(defn four-of-a-kind? [hand]
(n-of-a-kind hand 4))
(defn flush? [hand]
(not (empty? (filter #(= true %) (map #(>= % 5) (vals (frequencies (map suit hand))))))))
(defn full-house? [hand]
(true? (and
(some #(= 2 %) (vals (frequencies (map rank hand))))
(some #(= 3 %) (vals (frequencies (map rank hand)))))))
(defn two-pairs? [hand]
(or
(full-house? hand)
(four-of-a-kind? hand)
(= 2 (count (filter #(= true %) (map #(>= % 2) (vals (frequencies (map rank hand)))))))))
(defn straight? [hand]
(let [hand-a (ranks-with-ace hand)
fst (first hand-a)
snd (second hand-a)]
(or
(= (take 5 hand-a) (range fst (+ fst 5)))
(= (drop 1 hand-a) (range snd (+ snd 5))))))
(defn straight-flush? [hand]
(and
(straight? hand)
(flush? hand)))
(defn invalid? [hand]
(not= 5 (count (set hand))))
(defn check-hand [hand]
(cond
(invalid? hand) "invalid"
(straight-flush? hand) "straight-flush"
(four-of-a-kind? hand) "four-of-a-kind"
(full-house? hand) "full-house"
(flush? hand) "flush"
(straight? hand) "straight"
(three-of-a-kind? hand) "three-of-a-kind"
(two-pairs? hand) "two-pair"
(pair? hand) "one-pair"
:else "high-card"))
(def hands [["2H" "2D" "2S" "KS" "QD"]
["2H" "5H" "7D" "8S" "9D"]
["AH" "2D" "3S" "4S" "5S"]
["2H" "3H" "2D" "3S" "3D"]
["2H" "7H" "2D" "3S" "3D"]
["2H" "7H" "7D" "7S" "7C"]
["TH" "JH" "QH" "KH" "AH"]
["4H" "4C" "KC" "5D" "TC"]
["QC" "TC" "7C" "6C" "4C"]])
(run! println (map #(str % ": " (check-hand %)) hands)) | 419Poker hand analyser
| 6clojure
| un2vi |
package main
import (
"fmt"
"reflect"
) | 414Polymorphic copy
| 0go
| r3kgm |
import Foundation
struct Circle {
let center:[Double]!
let radius:Double!
init(center:[Double], radius:Double) {
self.center = center
self.radius = radius
}
func toString() -> String {
return "Circle[x=\(center[0]),y=\(center[1]),r=\(radius)]"
}
}
func solveApollonius(c1:Circle, c2:Circle, c3:Circle,
s1:Double, s2:Double, s3:Double) -> Circle {
let x1 = c1.center[0]
let y1 = c1.center[1]
let r1 = c1.radius
let x2 = c2.center[0]
let y2 = c2.center[1]
let r2 = c2.radius
let x3 = c3.center[0]
let y3 = c3.center[1]
let r3 = c3.radius
let v11 = 2*x2 - 2*x1
let v12 = 2*y2 - 2*y1
let v13 = x1*x1 - x2*x2 + y1*y1 - y2*y2 - r1*r1 + r2*r2
let v14 = 2*s2*r2 - 2*s1*r1
let v21 = 2*x3 - 2*x2
let v22 = 2*y3 - 2*y2
let v23 = x2*x2 - x3*x3 + y2*y2 - y3*y3 - r2*r2 + r3*r3
let v24 = 2*s3*r3 - 2*s2*r2
let w12 = v12/v11
let w13 = v13/v11
let w14 = v14/v11
let w22 = v22/v21-w12
let w23 = v23/v21-w13
let w24 = v24/v21-w14
let P = -w23/w22
let Q = w24/w22
let M = -w12*P-w13
let N = w14 - w12*Q
let a = N*N + Q*Q - 1
let b = 2*M*N - 2*N*x1 + 2*P*Q - 2*Q*y1 + 2*s1*r1
let c = x1*x1 + M*M - 2*M*x1 + P*P + y1*y1 - 2*P*y1 - r1*r1
let D = b*b-4*a*c
let rs = (-b - sqrt(D)) / (2*a)
let xs = M + N * rs
let ys = P + Q * rs
return Circle(center: [xs,ys], radius: rs)
}
let c1 = Circle(center: [0,0], radius: 1)
let c2 = Circle(center: [4,0], radius: 1)
let c3 = Circle(center: [2,4], radius: 2)
println(solveApollonius(c1,c2,c3,1,1,1).toString())
println(solveApollonius(c1,c2,c3,-1,-1,-1).toString()) | 405Problem of Apollonius
| 17swift
| f15dk |
object PythagoreanTriples extends App {
println(" Limit Primatives All")
for {e <- 2 to 7
limit = math.pow(10, e).longValue()
} {
var primCount, tripCount = 0
def parChild(a: BigInt, b: BigInt, c: BigInt): Unit = {
val perim = a + b + c
val (a2, b2, c2, c3) = (2 * a, 2 * b, 2 * c, 3 * c)
if (limit >= perim) {
primCount += 1
tripCount += (limit / perim).toInt
parChild(a - b2 + c2, a2 - b + c2, a2 - b2 + c3)
parChild(a + b2 + c2, a2 + b + c2, a2 + b2 + c3)
parChild(-a + b2 + c2, -a2 + b + c2, -a2 + b2 + c3)
}
}
parChild(BigInt(3), BigInt(4), BigInt(5))
println(f"a + b + c <= ${limit.toFloat}%3.1e $primCount%9d $tripCount%12d")
}
} | 399Pythagorean triples
| 16scala
| k93hk |
fn main() {
println!("The program is running");
return;
println!("This line won't be printed");
} | 403Program termination
| 15rust
| eu6aj |
import scala.annotation.tailrec
import scala.collection.mutable
object PrimeConspiracy extends App {
val limit = 1000000
val sieveTop = 15485863 + 1
val buckets = Array.ofDim[Int](10, 10)
var prevPrime = 2
def sieve(limit: Int) = {
val composite = new mutable.BitSet(sieveTop)
composite(0) = true
composite(1) = true
for (n <- 2 to math.sqrt(limit).toInt)
if (!composite(n)) for (k <- n * n until limit by n) composite(k) = true
composite
}
val notPrime = sieve(sieveTop)
def isPrime(n: Long) = {
@tailrec
def inner(d: Int, end: Int): Boolean = {
if (d > end) true
else if (n % d != 0 && n % (d + 2) != 0) inner(d + 6, end) else false
}
n > 1 && ((n & 1) != 0 || n == 2) &&
(n % 3 != 0 || n == 3) && inner(5, math.sqrt(n).toInt)
}
var primeCount = 1
var n = 3
while (primeCount < limit) {
if (!notPrime(n)) {
val prime = n
buckets(prevPrime % 10)(prime % 10) += 1
prevPrime = prime
primeCount += 1
}
n += 1
}
for {i <- buckets.indices
j <- buckets.head.indices} {
val nPrime = buckets(i)(j)
if (nPrime != 0) println(f"$i%d -> $j%d: $nPrime%5d ${nPrime / (limit / 100.0)}%2f")
}
println(s"Successfully completed without errors. [total ${scala.compat.Platform.currentTime - executionStart} ms]")
} | 407Prime conspiracy
| 16scala
| f1vd4 |
class T implements Cloneable {
String property
String name() { 'T' }
T copy() {
try { super.clone() }
catch(CloneNotSupportedException e) { null }
}
@Override
boolean equals(that) { this.name() == that?.name() && this.property == that?.property }
}
class S extends T {
@Override String name() { 'S' }
} | 414Polymorphic copy
| 7groovy
| vng28 |
import math
import pygame
from pygame.locals import *
pygame.init()
screen = pygame.display.set_mode((1024, 600))
pygame.display.set_caption()
incr = 0
running = True
while running:
pygame.time.Clock().tick(60)
for event in pygame.event.get():
if event.type==QUIT:
running = False
break
incr = (incr + 0.05)% 360
x1 = pygame.display.Info().current_w / 2
y1 = pygame.display.Info().current_h / 2
length = 5
angle = incr
screen.fill((255,255,255))
for i in range(1,151):
x2 = x1 + math.cos(angle) * length
y2 = y1 + math.sin(angle) * length
pygame.draw.line(screen, (255,0,0), (x1, y1), (x2, y2), 1)
x1, y1 = x2, y2
length += 3
angle = (angle + incr)% 360
pygame.display.flip() | 413Polyspiral
| 3python
| gzk4h |
if (problem) { | 403Program termination
| 16scala
| qg9xw |
var p *int | 423Pointers and references
| 0go
| 2o6l7 |
import Data.STRef
example :: ST s ()
example = do
p <- newSTRef 1
k <- readSTRef p
writeSTRef p (k+1) | 423Pointers and references
| 8haskell
| a2j1g |
(use '(incanter core stats charts))
(def x (range 0 10))
(def y '(2.7 2.8 31.4 38.1 58.0 76.2 100.5 130.0 149.3 180.0))
(view (xy-plot x y)) | 422Plot coordinate pairs
| 6clojure
| j657m |
(use '[clojure.math.combinatorics:only [subsets] ])
(def S #{1 2 3 4})
user> (subsets S)
(() (1) (2) (3) (4) (1 2) (1 3) (1 4) (2 3) (2 4) (3 4) (1 2 3) (1 2 4) (1 3 4) (2 3 4) (1 2 3 4)) | 421Power set
| 6clojure
| hygjr |
package main
import (
"fmt"
"strconv"
)
func listProperDivisors(limit int) {
if limit < 1 {
return
}
width := len(strconv.Itoa(limit))
for i := 1; i <= limit; i++ {
fmt.Printf("%*d -> ", width, i)
if i == 1 {
fmt.Println("(None)")
continue
}
for j := 1; j <= i/2; j++ {
if i%j == 0 {
fmt.Printf("%d", j)
}
}
fmt.Println()
}
}
func countProperDivisors(n int) int {
if n < 2 {
return 0
}
count := 0
for i := 1; i <= n/2; i++ {
if n%i == 0 {
count++
}
}
return count
}
func main() {
fmt.Println("The proper divisors of the following numbers are:\n")
listProperDivisors(10)
fmt.Println()
maxCount := 0
most := []int{1}
for n := 2; n <= 20000; n++ {
count := countProperDivisors(n)
if count == maxCount {
most = append(most, n)
} else if count > maxCount {
maxCount = count
most = most[0:1]
most[0] = n
}
}
fmt.Print("The following number(s) <= 20000 have the most proper divisors, ")
fmt.Println("namely", maxCount, "\b\n")
for _, n := range most {
fmt.Println(n)
}
} | 411Proper divisors
| 0go
| 07tsk |
import java.util.PriorityQueue
internal data class Task(val priority: Int, val name: String) : Comparable<Task> {
override fun compareTo(other: Task) = when {
priority < other.priority -> -1
priority > other.priority -> 1
else -> 0
}
}
private infix fun String.priority(priority: Int) = Task(priority, this)
fun main(args: Array<String>) {
val q = PriorityQueue(listOf("Clear drains" priority 3,
"Feed cat" priority 4,
"Make tea" priority 5,
"Solve RC tasks" priority 1,
"Tax return" priority 2))
while (q.any()) println(q.remove())
} | 408Priority queue
| 11kotlin
| udpvc |
def w_prime?(i)
return false if i < 2
((1..i-1).inject(&:*) + 1) % i == 0
end
p (1..100).select{|n| w_prime?(n) } | 412Primality by Wilson's theorem
| 14ruby
| plqbh |
(defprotocol Printable
(print-it [this] "Prints out the Printable."))
(deftype Point [x y]
Printable
(print-it [this] (println (str "Point: " x " " y))))
(defn create-point
"Redundant constructor function."
[x y] (Point. x y))
(deftype Circle [x y r]
Printable
(print-it [this] (println (str "Circle: " x " " y " " r))))
(defn create-circle
"Redundant consturctor function."
[x y r] (Circle. x y r)) | 420Polymorphism
| 6clojure
| vic2f |
class T implements Cloneable {
public String name() { return "T"; }
public T copy() {
try {
return (T)super.clone();
} catch (CloneNotSupportedException e) {
return null;
}
}
}
class S extends T {
public String name() { return "S"; }
}
public class PolymorphicCopy {
public static T copier(T x) { return x.copy(); }
public static void main(String[] args) {
T obj1 = new T();
S obj2 = new S();
System.out.println(copier(obj1).name()); | 414Polymorphic copy
| 9java
| avq1y |
import java.awt._
import java.awt.event.ActionEvent
import javax.swing._
object PolySpiral extends App {
SwingUtilities.invokeLater(() =>
new JFrame("PolySpiral") {
class PolySpiral extends JPanel {
private var inc = 0.0
override def paintComponent(gg: Graphics): Unit = {
val g = gg.asInstanceOf[Graphics2D]
def drawSpiral(g: Graphics2D, l: Int, angleIncrement: Double): Unit = {
var len = l
var (x1, y1) = (getWidth / 2d, getHeight / 2d)
var angle = angleIncrement
for (i <- 0 until 150) {
g.setColor(Color.getHSBColor(i / 150f, 1.0f, 1.0f))
val x2 = x1 + math.cos(angle) * len
val y2 = y1 - math.sin(angle) * len
g.drawLine(x1.toInt, y1.toInt, x2.toInt, y2.toInt)
x1 = x2
y1 = y2
len += 3
angle = (angle + angleIncrement) % (math.Pi * 2)
}
}
super.paintComponent(gg)
g.setRenderingHint(RenderingHints.KEY_ANTIALIASING, RenderingHints.VALUE_ANTIALIAS_ON)
drawSpiral(g, 5, math.toRadians(inc))
}
setBackground(Color.white)
setPreferredSize(new Dimension(640, 640))
new Timer(40, (_: ActionEvent) => {
inc = (inc + 0.05) % 360
repaint()
}).start()
}
add(new PolySpiral, BorderLayout.CENTER)
pack()
setDefaultCloseOperation(WindowConstants.EXIT_ON_CLOSE)
setLocationRelativeTo(null)
setResizable(true)
setVisible(true)
}
)
} | 413Polyspiral
| 16scala
| bcwk6 |
import Data.Ord
import Data.List
divisors :: (Integral a) => a -> [a]
divisors n = filter ((0 ==) . (n `mod`)) [1 .. (n `div` 2)]
main :: IO ()
main = do
putStrLn "divisors of 1 to 10:"
mapM_ (print . divisors) [1 .. 10]
putStrLn "a number with the most divisors within 1 to 20000 (number, count):"
print $ maximumBy (comparing snd)
[(n, length $ divisors n) | n <- [1 .. 20000]] | 411Proper divisors
| 8haskell
| c8g94 |
use List::Util qw(first sum);
use constant TRIALS => 1e6;
sub prob_choice_picker {
my %options = @_;
my ($n, @a) = 0;
while (my ($k,$v) = each %options) {
$n += $v;
push @a, [$n, $k];
}
return sub {
my $r = rand;
( first {$r <= $_->[0]} @a )->[1];
};
}
my %ps =
(aleph => 1/5,
beth => 1/6,
gimel => 1/7,
daleth => 1/8,
he => 1/9,
waw => 1/10,
zayin => 1/11);
$ps{heth} = 1 - sum values %ps;
my $picker = prob_choice_picker %ps;
my %results;
for (my $n = 0 ; $n < TRIALS ; ++$n) {
++$results{$picker->()};
}
print "Event Occurred Expected Difference\n";
foreach (sort {$results{$b} <=> $results{$a}} keys %results) {
printf "%-6s %f %f %f\n",
$_, $results{$_}/TRIALS, $ps{$_},
abs($results{$_}/TRIALS - $ps{$_});
} | 410Probabilistic choice
| 2perl
| gz14e |
fn factorial_mod(mut n: u32, p: u32) -> u32 {
let mut f = 1;
while n!= 0 && f!= 0 {
f = (f * n)% p;
n -= 1;
}
f
}
fn is_prime(p: u32) -> bool {
p > 1 && factorial_mod(p - 1, p) == p - 1
}
fn main() {
println!(" n | prime?\n------------");
for p in vec![2, 3, 9, 15, 29, 37, 47, 57, 67, 77, 87, 97, 237, 409, 659] {
println!("{:>3} | {}", p, is_prime(p));
}
println!("\nFirst 120 primes by Wilson's theorem:");
let mut n = 0;
let mut p = 1;
while n < 120 {
if is_prime(p) {
n += 1;
print!("{:>3}{}", p, if n% 20 == 0 { '\n' } else { ' ' });
}
p += 1;
}
println!("\n1000th through 1015th primes:");
let mut i = 0;
while n < 1015 {
if is_prime(p) {
n += 1;
if n >= 1000 {
i += 1;
print!("{:>3}{}", p, if i% 16 == 0 { '\n' } else { ' ' });
}
}
p += 1;
}
} | 412Primality by Wilson's theorem
| 15rust
| 12spu |
public class Foo { public int x = 0; }
void somefunction() {
Foo a; | 423Pointers and references
| 9java
| j6u7c |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.