code
stringlengths 1
46.1k
⌀ | label
class label 1.18k
classes | domain_label
class label 21
classes | index
stringlengths 4
5
|
---|---|---|---|
powerMod
:: (Integral a, Integral b)
=> a -> a -> b -> a
powerMod m _ 0 = 1
powerMod m x n
| n > 0 = f x_ (n - 1) x_
where
x_ = x `rem` m
f _ 0 y = y
f a d y = g a d
where
g b i
| even i = g (b * b `rem` m) (i `quot` 2)
| otherwise = f b (i - 1) (b * y `rem` m)
powerMod m _ _ = error "powerMod: negative exponent" | 544Multiplicative order
| 8haskell
| n7uie |
import Control.Monad (join)
import Data.List (unfoldr)
isMunchausen :: Integer -> Bool
isMunchausen =
(==)
<*> (sum . map (join (^)) . unfoldr digit)
digit 0 = Nothing
digit n = Just (r, q) where (q, r) = n `divMod` 10
main :: IO ()
main = print $ filter isMunchausen [1 .. 5000] | 541Munchausen numbers
| 8haskell
| py3bt |
package main
import (
"fmt"
"math"
"rcu"
)
var maxDepth = 6
var maxBase = 36
var c = rcu.PrimeSieve(int(math.Pow(float64(maxBase), float64(maxDepth))), true)
var digits = "0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ"
var maxStrings [][][]int
var mostBases = -1
func maxSlice(a []int) int {
max := 0
for _, e := range a {
if e > max {
max = e
}
}
return max
}
func maxInt(a, b int) int {
if a > b {
return a
}
return b
}
func process(indices []int) {
minBase := maxInt(2, maxSlice(indices)+1)
if maxBase - minBase + 1 < mostBases {
return | 546Multi-base primes
| 0go
| x23wf |
isConsistent(List q, int n) {
for (int i=0; i<n; i++) {
if (q[i] == q[n]) {
return false; | 543N-queens problem
| 18dart
| 3pjzz |
import java.math.BigInteger;
import java.util.ArrayList;
import java.util.List;
public class MultiplicativeOrder {
private static final BigInteger ONE = BigInteger.ONE;
private static final BigInteger TWO = BigInteger.valueOf(2);
private static final BigInteger THREE = BigInteger.valueOf(3);
private static final BigInteger TEN = BigInteger.TEN;
private static class PExp {
BigInteger prime;
long exp;
PExp(BigInteger prime, long exp) {
this.prime = prime;
this.exp = exp;
}
}
private static void moTest(BigInteger a, BigInteger n) {
if (!n.isProbablePrime(20)) {
System.out.println("Not computed. Modulus must be prime for this algorithm.");
return;
}
if (a.bitLength() < 100) System.out.printf("ord(%s)", a);
else System.out.print("ord([big])");
if (n.bitLength() < 100) System.out.printf(" mod%s ", n);
else System.out.print(" mod [big] ");
BigInteger mob = moBachShallit58(a, n, factor(n.subtract(ONE)));
System.out.println("= " + mob);
}
private static BigInteger moBachShallit58(BigInteger a, BigInteger n, List<PExp> pf) {
BigInteger n1 = n.subtract(ONE);
BigInteger mo = ONE;
for (PExp pe : pf) {
BigInteger y = n1.divide(pe.prime.pow((int) pe.exp));
long o = 0;
BigInteger x = a.modPow(y, n.abs());
while (x.compareTo(ONE) > 0) {
x = x.modPow(pe.prime, n.abs());
o++;
}
BigInteger o1 = BigInteger.valueOf(o);
o1 = pe.prime.pow(o1.intValue());
o1 = o1.divide(mo.gcd(o1));
mo = mo.multiply(o1);
}
return mo;
}
private static List<PExp> factor(BigInteger n) {
List<PExp> pf = new ArrayList<>();
BigInteger nn = n;
Long e = 0L;
while (!nn.testBit(e.intValue())) e++;
if (e > 0L) {
nn = nn.shiftRight(e.intValue());
pf.add(new PExp(TWO, e));
}
BigInteger s = sqrt(nn);
BigInteger d = THREE;
while (nn.compareTo(ONE) > 0) {
if (d.compareTo(s) > 0) d = nn;
e = 0L;
while (true) {
BigInteger[] qr = nn.divideAndRemainder(d);
if (qr[1].bitLength() > 0) break;
nn = qr[0];
e++;
}
if (e > 0L) {
pf.add(new PExp(d, e));
s = sqrt(nn);
}
d = d.add(TWO);
}
return pf;
}
private static BigInteger sqrt(BigInteger n) {
BigInteger b = n;
while (true) {
BigInteger a = b;
b = n.divide(a).add(a).shiftRight(1);
if (b.compareTo(a) >= 0) return a;
}
}
public static void main(String[] args) {
moTest(BigInteger.valueOf(37), BigInteger.valueOf(3343));
BigInteger b = TEN.pow(100).add(ONE);
moTest(b, BigInteger.valueOf(7919));
b = TEN.pow(1000).add(ONE);
moTest(b, BigInteger.valueOf(15485863));
b = TEN.pow(10000).subtract(ONE);
moTest(b, BigInteger.valueOf(22801763489L));
moTest(BigInteger.valueOf(1511678068), BigInteger.valueOf(7379191741L));
moTest(BigInteger.valueOf(3047753288L), BigInteger.valueOf(2257683301L));
}
} | 544Multiplicative order
| 9java
| qvmxa |
public class Nth {
public static String ordinalAbbrev(int n){
String ans = "th"; | 540N'th
| 9java
| u80vv |
class Integer
def narcissistic?
return false if negative?
digs = self.digits
m = digs.size
digs.map{|d| d**m}.sum == self
end
end
puts 0.step.lazy.select(&:narcissistic?).first(25) | 536Narcissistic decimal number
| 14ruby
| 3pez7 |
null | 544Multiplicative order
| 11kotlin
| 1mtpd |
console.log(function () {
var lstSuffix = 'th st nd rd th th th th th th'.split(' '),
fnOrdinalForm = function (n) {
return n.toString() + (
11 <= n % 100 && 13 >= n % 100 ?
"th" : lstSuffix[n % 10]
);
},
range = function (m, n) {
return Array.apply(
null, Array(n - m + 1)
).map(function (x, i) {
return m + i;
});
};
return [[0, 25], [250, 265], [1000, 1025]].map(function (tpl) {
return range.apply(null, tpl).map(fnOrdinalForm).join(' ');
}).join('\n\n');
}()); | 540N'th
| 10javascript
| 7fdrd |
fn is_narcissistic(x: u32) -> bool {
let digits: Vec<u32> = x
.to_string()
.chars()
.map(|c| c.to_digit(10).unwrap())
.collect();
digits
.iter()
.map(|d| d.pow(digits.len() as u32))
.sum::<u32>()
== x
}
fn main() {
let mut counter = 0;
let mut i = 0;
while counter < 25 {
if is_narcissistic(i) {
println!("{}", i);
counter += 1;
}
i += 1;
}
} | 536Narcissistic decimal number
| 15rust
| 61w3l |
object NDN extends App {
val narc: Int => Int = n => (n.toString map (_.asDigit) map (math.pow(_, n.toString.size)) sum) toInt
val isNarc: Int => Boolean = i => i == narc(i)
println((Iterator from 0 filter isNarc take 25 toList) mkString(" "))
} | 536Narcissistic decimal number
| 16scala
| 9wsm5 |
public class Main {
public static void main(String[] args) {
for(int i = 0 ; i <= 5000 ; i++ ){
int val = String.valueOf(i).chars().map(x -> (int) Math.pow( x-48 ,x-48)).sum();
if( i == val){
System.out.println( i + " (munchausen)");
}
}
}
} | 541Munchausen numbers
| 9java
| rdig0 |
extension String {
func multiSplit(on seps: [String]) -> ([Substring], [(String, (start: String.Index, end: String.Index))]) {
var matches = [Substring]()
var matched = [(String, (String.Index, String.Index))]()
var i = startIndex
var lastMatch = startIndex
main: while i!= endIndex {
for sep in seps where self[i...].hasPrefix(sep) {
if i > lastMatch {
matches.append(self[lastMatch..<i])
} else {
matches.append("")
}
lastMatch = index(i, offsetBy: sep.count)
matched.append((sep, (i, lastMatch)))
i = lastMatch
continue main
}
i = index(i, offsetBy: 1)
}
if i > lastMatch {
matches.append(self[lastMatch..<i])
}
return (matches, matched)
}
}
let (matches, matchedSeps) = "a!===b=!=c".multiSplit(on: ["==", "!=", "="])
print(matches, matchedSeps.map({ $0.0 })) | 539Multisplit
| 17swift
| rddgg |
int a[10];
float b[3][2];
char c[4][5][6];
double d[6][7][8][9];
int e[][3];
float f[5][4][];
int *g;
float **h;
double **i[];
char **j[][5]; | 547Multi-dimensional array
| 5c
| 7fqrg |
double w[] = { 52.21, 53.12, 54.48, 55.84, 57.20,
58.57, 59.93, 61.29, 63.11, 64.47,
66.28, 68.10, 69.92, 72.19, 74.46 };
double h[] = { 1.47, 1.50, 1.52, 1.55, 1.57,
1.60, 1.63, 1.65, 1.68, 1.70,
1.73, 1.75, 1.78, 1.80, 1.83 };
int main()
{
int n = sizeof(h)/sizeof(double);
gsl_matrix *X = gsl_matrix_calloc(n, 3);
gsl_vector *Y = gsl_vector_alloc(n);
gsl_vector *beta = gsl_vector_alloc(3);
for (int i = 0; i < n; i++) {
gsl_vector_set(Y, i, w[i]);
gsl_matrix_set(X, i, 0, 1);
gsl_matrix_set(X, i, 1, h[i]);
gsl_matrix_set(X, i, 2, h[i] * h[i]);
}
double chisq;
gsl_matrix *cov = gsl_matrix_alloc(3, 3);
gsl_multifit_linear_workspace * wspc = gsl_multifit_linear_alloc(n, 3);
gsl_multifit_linear(X, Y, beta, cov, &chisq, wspc);
printf();
for (int i = 0; i < 3; i++)
printf(, gsl_vector_get(beta, i));
printf();
gsl_matrix_free(X);
gsl_matrix_free(cov);
gsl_vector_free(Y);
gsl_vector_free(beta);
gsl_multifit_linear_free(wspc);
} | 548Multiple regression
| 5c
| fh2d3 |
extension BinaryInteger {
@inlinable
public var isNarcissistic: Bool {
let digits = String(self).map({ Int(String($0))! })
let m = digits.count
guard m!= 1 else {
return true
}
return digits.map({ $0.power(m) }).reduce(0, +) == self
}
@inlinable
public func power(_ n: Self) -> Self {
return stride(from: 0, to: n, by: 1).lazy.map({_ in self }).reduce(1, *)
}
}
let narcs = Array((0...).lazy.filter({ $0.isNarcissistic }).prefix(25))
print("First 25 narcissistic numbers are \(narcs)") | 536Narcissistic decimal number
| 17swift
| zbatu |
for (let i of [...Array(5000).keys()]
.filter(n => n == n.toString().split('')
.reduce((a, b) => a+Math.pow(parseInt(b),parseInt(b)), 0)))
console.log(i); | 541Munchausen numbers
| 10javascript
| b6zki |
func nxm(n, m int) [][]int {
d2 := make([][]int, n)
for i := range d2 {
d2[i] = make([]int, m)
}
return d2
} | 545Multiple distinct objects
| 0go
| pydbg |
use strict;
use warnings;
use feature 'say';
use List::AllUtils <firstidx max>;
use ntheory qw/fromdigits todigitstring primes/;
my(%prime_base, %max_bases, $l);
my $chars = 5;
my $upto = fromdigits( '1' . 'Z' x $chars, 36);
my @primes = @{primes( $upto )};
for my $base (2..36) {
my $n = todigitstring($base-1, $base) x $chars;
my $threshold = fromdigits($n, $base);
my $i = firstidx { $_ > $threshold } @primes;
map { push @{$prime_base{ todigitstring($primes[$_],$base) }}, $base } 0..$i-1;
}
$l = length and $max_bases{$l} = max( $
for my $m (1 .. $chars) {
say "$m character strings that are prime in maximum bases: ", 1+$max_bases{$m};
for (sort grep { length($_) == $m } keys %prime_base) {
my @bases = @{($prime_base{$_})[0]};
say "$_: " . join ' ', @bases if $max_bases{$m} eq $
}
say ''
} | 546Multi-base primes
| 2perl
| 5oeu2 |
def createFoos1 = { n -> (0..<n).collect { new Foo() } } | 545Multiple distinct objects
| 7groovy
| 7f0rz |
replicateM n makeTheDistinctThing | 545Multiple distinct objects
| 8haskell
| fh5d1 |
use ntheory qw/znorder/;
say znorder(54, 100001);
use bigint; say znorder(11, 1 + 10**100); | 544Multiplicative order
| 2perl
| mekyz |
from decimal import Decimal, getcontext
def nthroot (n, A, precision):
getcontext().prec = precision
n = Decimal(n)
x_0 = A / n
x_1 = 1
while True:
x_0, x_1 = x_1, (1 / n)*((n - 1)*x_0 + (A / (x_0 ** (n - 1))))
if x_0 == x_1:
return x_1 | 531Nth root
| 3python
| iraof |
fun Int.ordinalAbbrev() =
if (this % 100 / 10 == 1) "th"
else when (this % 10) { 1 -> "st" 2 -> "nd" 3 -> "rd" else -> "th" }
fun IntRange.ordinalAbbrev() = map { "$it" + it.ordinalAbbrev() }.joinToString(" ")
fun main(args: Array<String>) {
listOf((0..25), (250..265), (1000..1025)).forEach { println(it.ordinalAbbrev()) }
} | 540N'th
| 11kotlin
| 9wemh |
Foo[] foos = new Foo[n]; | 545Multiple distinct objects
| 9java
| 059se |
var a = new Array(n);
for (var i = 0; i < n; i++)
a[i] = new Foo(); | 545Multiple distinct objects
| 10javascript
| djunu |
bool is_prime(uint64_t n) {
if (n < 2)
return false;
if (n % 2 == 0)
return n == 2;
if (n % 3 == 0)
return n == 3;
for (uint64_t p = 5; p * p <= n; p += 4) {
if (n % p == 0)
return false;
p += 2;
if (n % p == 0)
return false;
}
return true;
}
int main() {
setlocale(LC_ALL, );
printf();
printf();
uint64_t m0 = 1, m1 = 1;
for (uint64_t i = 0; i < 42; ++i) {
uint64_t m =
i > 1 ? (m1 * (2 * i + 1) + m0 * (3 * i - 3)) / (i + 2) : 1;
printf(, i, m, is_prime(m) ? : );
m0 = m1;
m1 = m;
}
} | 549Motzkin numbers
| 5c
| 053st |
int move_to_front(char *str,char c)
{
char *q,*p;
int shift=0;
p=(char *)malloc(strlen(str)+1);
strcpy(p,str);
q=strchr(p,c);
shift=q-p;
strncpy(str+1,p,shift);
str[0]=c;
free(p);
return shift;
}
void decode(int* pass,int size,char *sym)
{
int i,index;
char c;
char table[]=;
for(i=0;i<size;i++)
{
c=table[pass[i]];
index=move_to_front(table,c);
if(pass[i]!=index) printf();
sym[i]=c;
}
sym[size]='\0';
}
void encode(char *sym,int size,int *pass)
{
int i=0;
char c;
char table[]=;
for(i=0;i<size;i++)
{
c=sym[i];
pass[i]=move_to_front(table,c);
}
}
int check(char *sym,int size,int *pass)
{
int *pass2=malloc(sizeof(int)*size);
char *sym2=malloc(sizeof(char)*size);
int i,val=1;
encode(sym,size,pass2);
i=0;
while(i<size && pass[i]==pass2[i])i++;
if(i!=size)val=0;
decode(pass,size,sym2);
if(strcmp(sym,sym2)!=0)val=0;
free(sym2);
free(pass2);
return val;
}
int main()
{
char sym[3][MAX_SIZE]={,,};
int pass[MAX_SIZE]={0};
int i,len,j;
for(i=0;i<3;i++)
{
len=strlen(sym[i]);
encode(sym[i],len,pass);
printf(,sym[i]);
for(j=0;j<len;j++)
printf(,pass[j]);
printf();
if(check(sym[i],len,pass))
printf();
else
printf();
}
return 0;
} | 550Move-to-front algorithm
| 5c
| dj9nv |
nthroot <- function(A, n, tol=sqrt(.Machine$double.eps))
{
ifelse(A < 1, x0 <- A * n, x0 <- A / n)
repeat
{
x1 <- ((n-1)*x0 + A / x0^(n-1))/n
if(abs(x1 - x0) > tol) x0 <- x1 else break
}
x1
}
nthroot(7131.5^10, 10)
nthroot(7, 0.5) | 531Nth root
| 13r
| sukqy |
null | 541Munchausen numbers
| 11kotlin
| v0q21 |
null | 545Multiple distinct objects
| 11kotlin
| ecza4 |
int main()
{
Display *d;
Window inwin;
Window inchildwin;
int rootx, rooty;
int childx, childy;
Atom atom_type_prop;
int actual_format;
unsigned int mask;
unsigned long n_items, bytes_after_ret;
Window *props;
d = XOpenDisplay(NULL);
(void)XGetWindowProperty(d, DefaultRootWindow(d),
XInternAtom(d, , True),
0, 1, False, AnyPropertyType,
&atom_type_prop, &actual_format,
&n_items, &bytes_after_ret, (unsigned char**)&props);
XQueryPointer(d, props[0], &inwin, &inchildwin,
&rootx, &rooty, &childx, &childy, &mask);
printf(, childx, childy);
XFree(props);
(void)XCloseDisplay(d);
return 0;
} | 551Mouse position
| 5c
| ecoav |
def gcd(a, b):
while b != 0:
a, b = b, a% b
return a
def lcm(a, b):
return (a*b) / gcd(a, b)
def isPrime(p):
return (p > 1) and all(f == p for f,e in factored(p))
primeList = [2,3,5,7]
def primes():
for p in primeList:
yield p
while 1:
p += 2
while not isPrime(p):
p += 2
primeList.append(p)
yield p
def factored( a):
for p in primes():
j = 0
while a%p == 0:
a /= p
j += 1
if j > 0:
yield (p,j)
if a < p*p: break
if a > 1:
yield (a,1)
def multOrdr1(a,(p,e) ):
m = p**e
t = (p-1)*(p**(e-1))
qs = [1,]
for f in factored(t):
qs = [ q * f[0]**j for j in range(1+f[1]) for q in qs ]
qs.sort()
for q in qs:
if pow( a, q, m )==1: break
return q
def multOrder(a,m):
assert gcd(a,m) == 1
mofs = (multOrdr1(a,r) for r in factored(m))
return reduce(lcm, mofs, 1)
if __name__ == :
print multOrder(37, 1000)
b = 10**20-1
print multOrder(2, b)
print multOrder(17,b)
b = 100001
print multOrder(54,b)
print pow( 54, multOrder(54,b),b)
if any( (1==pow(54,r, b)) for r in range(1,multOrder(54,b))):
print 'Exists a power r < 9090 where pow(54,r,b)==1'
else:
print 'Everything checks.' | 544Multiplicative order
| 3python
| 9wbmf |
null | 545Multiple distinct objects
| 1lua
| wl3ea |
int multifact(int n, int deg){
return n <= deg ? n : n * multifact(n - deg, deg);
}
int multifact_i(int n, int deg){
int result = n;
while (n >= deg + 1){
result *= (n - deg);
n -= deg;
}
return result;
}
int main(void){
int i, j;
for (i = 1; i <= HIGHEST_DEGREE; i++){
printf(, i);
for (j = 1; j <= LARGEST_NUMBER; j++){
printf(, multifact(j, i));
}
}
} | 552Multifactorial
| 5c
| x2iwu |
null | 546Multi-base primes
| 15rust
| 7fsrc |
function getSuffix (n)
local lastTwo, lastOne = n % 100, n % 10
if lastTwo > 3 and lastTwo < 21 then return "th" end
if lastOne == 1 then return "st" end
if lastOne == 2 then return "nd" end
if lastOne == 3 then return "rd" end
return "th"
end
function Nth (n) return n .. "'" .. getSuffix(n) end
for i = 0, 25 do print(Nth(i), Nth(i + 250), Nth(i + 1000)) end | 540N'th
| 1lua
| cxw92 |
(def lowercase (map char (range (int \a) (inc (int \z)))))
(defn move-to-front [x xs]
(cons x (remove #{x} xs)))
(defn encode [text table & {:keys [acc]:or {acc []}}]
(let [c (first text)
idx (.indexOf table c)]
(if (empty? text) acc (recur (drop 1 text) (move-to-front c table) {:acc (conj acc idx)}))))
(defn decode [indices table & {:keys [acc]:or {acc []}}]
(if (empty? indices) (apply str acc)
(let [n (first indices)
c (nth table n)]
(recur (drop 1 indices) (move-to-front c table) {:acc (conj acc c)}))))
(doseq [word ["broood" "bananaaa" "hiphophiphop"]]
(let [encoded (encode word lowercase)
decoded (decode encoded lowercase)]
(println (format "%s encodes to%s which decodes back to%s."
word encoded decoded)))) | 550Move-to-front algorithm
| 6clojure
| 61u3q |
package main
import "fmt"
type md struct {
dim []int
ele []float64
}
func newMD(dim ...int) *md {
n := 1
for _, d := range dim {
n *= d
}
return &md{append([]int{}, dim...), make([]float64, n)}
}
func (m *md) index(i ...int) (x int) {
for d, dx := range m.dim {
x = x*dx + i[d]
}
return
}
func (m *md) at(i ...int) float64 {
return m.ele[m.index(i...)]
}
func (m *md) set(x float64, i ...int) {
m.ele[m.index(i...)] = x
}
func (m *md) show(i ...int) {
fmt.Printf("m%d =%g\n", i, m.at(i...))
}
func main() {
m := newMD(5, 4, 3, 2)
m.show(4, 3, 2, 1)
m.set(87, 4, 3, 2, 1)
m.show(4, 3, 2, 1)
for i := 0; i < m.dim[0]; i++ {
for j := 0; j < m.dim[1]; j++ {
for k := 0; k < m.dim[2]; k++ {
for l := 0; l < m.dim[3]; l++ {
x := m.index(i, j, k, l)
m.set(float64(x)+.1, i, j, k, l)
}
}
}
}
fmt.Println(m.ele[:10])
fmt.Println(m.ele[len(m.ele)-10:])
m.show(4, 3, 2, 1)
} | 547Multi-dimensional array
| 0go
| dj2ne |
(let [point (.. java.awt.MouseInfo getPointerInfo getLocation)] [(.getX point) (.getY point)]) | 551Mouse position
| 6clojure
| 05tsj |
def nthroot(n, a, precision = 1e-5)
x = Float(a)
begin
prev = x
x = ((n - 1) * prev + a / (prev ** (n - 1))) / n
end while (prev - x).abs > precision
x
end
p nthroot(5,34) | 531Nth root
| 14ruby
| djwns |
function isMunchausen (n)
local sum, nStr, digit = 0, tostring(n)
for pos = 1, #nStr do
digit = tonumber(nStr:sub(pos, pos))
sum = sum + digit ^ digit
end
return sum == n
end | 541Munchausen numbers
| 1lua
| u8svl |
package main
import (
"fmt"
"rcu"
)
func motzkin(n int) []int {
m := make([]int, n+1)
m[0] = 1
m[1] = 1
for i := 2; i <= n; i++ {
m[i] = (m[i-1]*(2*i+1) + m[i-2]*(3*i-3)) / (i + 2)
}
return m
}
func main() {
fmt.Println(" n M[n] Prime?")
fmt.Println("-----------------------------------")
m := motzkin(41)
for i, e := range m {
fmt.Printf("%2d %23s %t\n", i, rcu.Commatize(e), rcu.IsPrime(e))
}
} | 549Motzkin numbers
| 0go
| u8bvt |
public class MultiDimensionalArray {
public static void main(String[] args) { | 547Multi-dimensional array
| 9java
| 9wjmu |
package main
import (
"fmt"
"github.com/gonum/matrix/mat64"
)
func givens() (x, y *mat64.Dense) {
height := []float64{1.47, 1.50, 1.52, 1.55, 1.57, 1.60, 1.63,
1.65, 1.68, 1.70, 1.73, 1.75, 1.78, 1.80, 1.83}
weight := []float64{52.21, 53.12, 54.48, 55.84, 57.20, 58.57, 59.93,
61.29, 63.11, 64.47, 66.28, 68.10, 69.92, 72.19, 74.46}
degree := 2
x = Vandermonde(height, degree)
y = mat64.NewDense(len(weight), 1, weight)
return
}
func Vandermonde(a []float64, degree int) *mat64.Dense {
x := mat64.NewDense(len(a), degree+1, nil)
for i := range a {
for j, p := 0, 1.; j <= degree; j, p = j+1, p*a[i] {
x.Set(i, j, p)
}
}
return x
}
func main() {
x, y := givens()
fmt.Printf("%.4f\n", mat64.Formatted(mat64.QR(x).Solve(y)))
} | 548Multiple regression
| 0go
| jtq7d |
require 'prime'
def powerMod(b, p, m)
p.to_s(2).each_char.inject(1) do |result, bit|
result = (result * result) % m
bit=='1'? (result * b) % m: result
end
end
def multOrder_(a, p, k)
pk = p ** k
t = (p - 1) * p ** (k - 1)
r = 1
for q, e in t.prime_division
x = powerMod(a, t / q**e, pk)
while x!= 1
r *= q
x = powerMod(x, q, pk)
end
end
r
end
def multOrder(a, m)
m.prime_division.inject(1) do |result, f|
result.lcm(multOrder_(a, *f))
end
end
puts multOrder(37, 1000)
b = 10**20-1
puts multOrder(2, b)
puts multOrder(17,b)
b = 100001
puts multOrder(54,b)
puts powerMod(54, multOrder(54,b), b)
if (1...multOrder(54,b)).any? {|r| powerMod(54, r, b) == 1}
puts 'Exists a power r < 9090 where powerMod(54,r,b)==1'
else
puts 'Everything checks.'
end | 544Multiplicative order
| 14ruby
| lq1cl |
null | 531Nth root
| 15rust
| fhxd6 |
import Control.Monad.Memo (Memo, memo, startEvalMemo)
import Math.NumberTheory.Primes.Testing (isPrime)
import System.Environment (getArgs)
import Text.Printf (printf)
type I = Integer
motzkin :: I -> Memo I I I
motzkin 0 = return 1
motzkin 1 = return 1
motzkin n = do
m1 <- memo motzkin (n-1)
m2 <- memo motzkin (n-2)
return $ ((2*n+1)*m1 + (3*n-3)*m2) `div` (n+2)
motzkins :: I -> [I]
motzkins = startEvalMemo . mapM motzkin . enumFromTo 0
printMotzkins :: I -> IO ()
printMotzkins n = mapM_ prnt $ zip [0 :: I ..] (motzkins n)
where prnt (i, m) = printf "%2d%20d%s\n" i m $ prime m
prime m = if isPrime m then "prime" else ""
main :: IO ()
main = do
[n] <- map read <$> getArgs
printMotzkins n | 549Motzkin numbers
| 8haskell
| wlded |
function array() {
var dimensions= Array.prototype.slice.call(arguments);
var N=1, rank= dimensions.length;
for (var j= 0; j<rank; j++) N*= dimensions[j];
this.dimensions= dimensions;
this.values= new Array(N);
} | 547Multi-dimensional array
| 10javascript
| u81vb |
import Numeric.LinearAlgebra
import Numeric.LinearAlgebra.LAPACK
m :: Matrix Double
m = (3><3)
[7.589183,1.703609,-4.477162,
-4.597851,9.434889,-6.543450,
0.4588202,-6.115153,1.331191]
v :: Matrix Double
v = (3><1)
[1.745005,-4.448092,-4.160842] | 548Multiple regression
| 8haskell
| ogm8p |
(defn !! [m n]
(->> (iterate #(- % m) n) (take-while pos?) (apply *)))
(doseq [m (range 1 6)]
(prn m (map #(!! m %) (range 1 11)))) | 552Multifactorial
| 6clojure
| ogz8j |
def nroot(n: Int, a: Double): Double = {
@tailrec
def rec(x0: Double) : Double = {
val x1 = ((n - 1) * x0 + a/math.pow(x0, n-1))/n
if (x0 <= x1) x0 else rec(x1)
}
rec(a)
} | 531Nth root
| 16scala
| 3p0zy |
(Foo->new) x $n | 545Multiple distinct objects
| 2perl
| cxb9a |
package main
import "fmt"
func F(n int) int {
if n == 0 { return 1 }
return n - M(F(n-1))
}
func M(n int) int {
if n == 0 { return 0 }
return n - F(M(n-1))
}
func main() {
for i := 0; i < 20; i++ {
fmt.Printf("%2d ", F(i))
}
fmt.Println()
for i := 0; i < 20; i++ {
fmt.Printf("%2d ", M(i))
}
fmt.Println()
} | 542Mutual recursion
| 0go
| wlmeg |
(defn bind [coll f] (apply vector (mapcat f coll)))
(defn unit [val] (vector val))
(defn doubler [n] [(* 2 n)])
(def vecstr (comp vector str))
(bind (bind (vector 3 4 5) doubler) vecstr)
(-> [3 4 5]
(bind doubler)
(bind vecstr)) | 553Monads/List monad
| 6clojure
| 2sgl1 |
null | 547Multi-dimensional array
| 11kotlin
| zb5ts |
import java.util.Arrays;
import java.util.Objects;
public class MultipleRegression {
public static void require(boolean condition, String message) {
if (condition) {
return;
}
throw new IllegalArgumentException(message);
}
public static class Matrix {
private final double[][] data;
private final int rowCount;
private final int colCount;
public Matrix(int rows, int cols) {
require(rows > 0, "Need at least one row");
this.rowCount = rows;
require(cols > 0, "Need at least one column");
this.colCount = cols;
this.data = new double[rows][cols];
for (double[] row : this.data) {
Arrays.fill(row, 0.0);
}
}
public Matrix(double[][] source) {
require(source.length > 0, "Need at least one row");
this.rowCount = source.length;
require(source[0].length > 0, "Need at least one column");
this.colCount = source[0].length;
this.data = new double[this.rowCount][this.colCount];
for (int i = 0; i < this.rowCount; i++) {
set(i, source[i]);
}
}
public double[] get(int row) {
Objects.checkIndex(row, this.rowCount);
return this.data[row];
}
public void set(int row, double[] data) {
Objects.checkIndex(row, this.rowCount);
require(data.length == this.colCount, "The column in the row must match the number of columns in the matrix");
System.arraycopy(data, 0, this.data[row], 0, this.colCount);
}
public double get(int row, int col) {
Objects.checkIndex(row, this.rowCount);
Objects.checkIndex(col, this.colCount);
return this.data[row][col];
}
public void set(int row, int col, double value) {
Objects.checkIndex(row, this.rowCount);
Objects.checkIndex(col, this.colCount);
this.data[row][col] = value;
}
@SuppressWarnings("UnnecessaryLocalVariable")
public Matrix times(Matrix that) {
var rc1 = this.rowCount;
var cc1 = this.colCount;
var rc2 = that.rowCount;
var cc2 = that.colCount;
require(cc1 == rc2, "Cannot multiply if the first columns does not equal the second rows");
var result = new Matrix(rc1, cc2);
for (int i = 0; i < rc1; i++) {
for (int j = 0; j < cc2; j++) {
for (int k = 0; k < rc2; k++) {
var prod = get(i, k) * that.get(k, j);
result.set(i, j, result.get(i, j) + prod);
}
}
}
return result;
}
public Matrix transpose() {
var rc = this.rowCount;
var cc = this.colCount;
var trans = new Matrix(cc, rc);
for (int i = 0; i < cc; i++) {
for (int j = 0; j < rc; j++) {
trans.set(i, j, get(j, i));
}
}
return trans;
}
public void toReducedRowEchelonForm() {
int lead = 0;
var rc = this.rowCount;
var cc = this.colCount;
for (int r = 0; r < rc; r++) {
if (cc <= lead) {
return;
}
var i = r;
while (get(i, lead) == 0.0) {
i++;
if (rc == i) {
i = r;
lead++;
if (cc == lead) {
return;
}
}
}
var temp = get(i);
set(i, get(r));
set(r, temp);
if (get(r, lead) != 0.0) {
var div = get(r, lead);
for (int j = 0; j < cc; j++) {
set(r, j, get(r, j) / div);
}
}
for (int k = 0; k < rc; k++) {
if (k != r) {
var mult = get(k, lead);
for (int j = 0; j < cc; j++) {
var prod = get(r, j) * mult;
set(k, j, get(k, j) - prod);
}
}
}
lead++;
}
}
public Matrix inverse() {
require(this.rowCount == this.colCount, "Not a square matrix");
var len = this.rowCount;
var aug = new Matrix(len, 2 * len);
for (int i = 0; i < len; i++) {
for (int j = 0; j < len; j++) {
aug.set(i, j, get(i, j));
} | 548Multiple regression
| 9java
| wlfej |
def f, m | 542Mutual recursion
| 7groovy
| b6tky |
[Foo()] * n | 545Multiple distinct objects
| 3python
| lqpcv |
use strict;
use warnings;
use ntheory qw( is_prime );
sub motzkin
{
my $N = shift;
my @m = ( 0, 1, 1 );
for my $i ( 3 .. $N )
{
$m[$i] = ($m[$i - 1] * (2 * $i - 1) + $m[$i - 2] * (3 * $i - 6)) / ($i + 1);
}
return splice @m, 1;
}
print " n M[n]\n";
my $count = 0;
for ( motzkin(42) )
{
printf "%3d%25s %s\n", $count++, s/\B(?=(\d\d\d)+$)/,/gr,
is_prime($_) ? 'prime' : '';
} | 549Motzkin numbers
| 2perl
| n79iw |
package main
import (
"fmt"
"math"
)
type mwriter struct {
value float64
log string
}
func (m mwriter) bind(f func(v float64) mwriter) mwriter {
n := f(m.value)
n.log = m.log + n.log
return n
}
func unit(v float64, s string) mwriter {
return mwriter{v, fmt.Sprintf(" %-17s:%g\n", s, v)}
}
func root(v float64) mwriter {
return unit(math.Sqrt(v), "Took square root")
}
func addOne(v float64) mwriter {
return unit(v+1, "Added one")
}
func half(v float64) mwriter {
return unit(v/2, "Divided by two")
}
func main() {
mw1 := unit(5, "Initial value")
mw2 := mw1.bind(root).bind(addOne).bind(half)
fmt.Println("The Golden Ratio is", mw2.value)
fmt.Println("\nThis was derived as follows:-")
fmt.Println(mw2.log)
} | 554Monads/Writer monad
| 0go
| suiqa |
null | 547Multi-dimensional array
| 1lua
| 3p4zo |
null | 548Multiple regression
| 10javascript
| 84y0l |
package main
import (
"fmt"
"github.com/go-vgo/robotgo"
)
func isInside(x, y, w, h, mx, my int) bool {
rx := x + w - 1
ry := y + h - 1
return mx >= x && mx <= rx && my >= y && my <= ry
}
func main() {
name := "gedit" | 551Mouse position
| 0go
| 9w4mt |
f 0 = 1
f n | n > 0 = n - m (f $ n-1)
m 0 = 0
m n | n > 0 = n - f (m $ n-1)
main = do
print $ map f [0..19]
print $ map m [0..19] | 542Mutual recursion
| 8haskell
| 61k3k |
rep(foo(), n) | 545Multiple distinct objects
| 13r
| yaj6h |
typedef enum type
{
INT,
STRING
} Type;
typedef struct maybe
{
int i;
char *s;
Type t;
_Bool is_something;
} Maybe;
void print_Maybe(Maybe *m)
{
if (m->t == INT)
printf(, m->i);
else if (m->t == STRING)
printf(%s\, m->s);
else
printf();
}
Maybe *return_maybe(void *data, Type t)
{
Maybe *m = malloc(sizeof(Maybe));
if (t == INT)
{
m->i = *(int *) data;
m->s = NULL;
m->t = INT;
m->is_something = true;
}
else if (t == STRING)
{
m->i = 0;
m->s = data;
m->t = STRING;
m->is_something = true;
}
else
{
m->i = 0;
m->s = NULL;
m->t = 0;
m->is_something = false;
}
return m;
}
Maybe *bind_maybe(Maybe *m, Maybe *(*f)(void *))
{
Maybe *n = malloc(sizeof(Maybe));
if (f(&(m->i))->is_something)
{
n->i = f(&(m->i))->i;
n->s = f(&(m->i))->s;
n->t = f(&(m->i))->t;
n->is_something = true;
}
else
{
n->i = 0;
n->s = NULL;
n->t = 0;
n->is_something = false;
}
return n;
}
Maybe *f_1(void *v)
{
Maybe *m = malloc(sizeof(Maybe));
m->i = (*(int *) v) * (*(int *) v);
m->s = NULL;
m->t = INT;
m->is_something = true;
return m;
}
Maybe *f_2(void *v)
{
Maybe *m = malloc(sizeof(Maybe));
m->i = 0;
m->s = malloc(*(int *) v * sizeof(char) + 1);
for (int i = 0; i < *(int *) v; i++)
{
m->s[i] = 'x';
}
m->s[*(int *) v + 1] = '\0';
m->t = STRING;
m->is_something = true;
return m;
}
int main()
{
int i = 7;
char *s = ;
Maybe *m_1 = return_maybe(&i, INT);
Maybe *m_2 = return_maybe(s, STRING);
print_Maybe(m_1);
print_Maybe(m_2);
print_Maybe(bind_maybe(m_1, f_1));
print_Maybe(bind_maybe(m_1, f_2));
print_Maybe(bind_maybe(bind_maybe(m_1, f_1), f_2));
} | 555Monads/Maybe monad
| 5c
| u8gv4 |
package main
import (
"bytes"
"fmt"
)
type symbolTable string
func (symbols symbolTable) encode(s string) []byte {
seq := make([]byte, len(s))
pad := []byte(symbols)
for i, c := range []byte(s) {
x := bytes.IndexByte(pad, c)
seq[i] = byte(x)
copy(pad[1:], pad[:x])
pad[0] = c
}
return seq
}
func (symbols symbolTable) decode(seq []byte) string {
chars := make([]byte, len(seq))
pad := []byte(symbols)
for i, x := range seq {
c := pad[x]
chars[i] = c
copy(pad[1:], pad[:x])
pad[0] = c
}
return string(chars)
}
func main() {
m := symbolTable("abcdefghijklmnopqrstuvwxyz")
for _, s := range []string{"broood", "bananaaa", "hiphophiphop"} {
enc := m.encode(s)
dec := m.decode(enc)
fmt.Println(s, enc, dec)
if dec != s {
panic("Whoops!")
}
}
} | 550Move-to-front algorithm
| 0go
| 7fer2 |
import Control.Monad.Trans.Writer
import Control.Monad ((>=>))
loggingVersion :: (a -> b) -> c -> a -> Writer c b
loggingVersion f log x = writer (f x, log)
logRoot = loggingVersion sqrt "obtained square root, "
logAddOne = loggingVersion (+1) "added 1, "
logHalf = loggingVersion (/2) "divided by 2, "
halfOfAddOneOfRoot = logRoot >=> logAddOne >=> logHalf
main = print $ runWriter (halfOfAddOneOfRoot 5) | 554Monads/Writer monad
| 8haskell
| 9wvmo |
1.upto(5) {
Thread.sleep(1000)
def p = java.awt.MouseInfo.pointerInfo.location
println "${it}: x=${p.@x} y=${p.@y}"
} | 551Mouse position
| 7groovy
| zblt5 |
extension FloatingPoint where Self: ExpressibleByFloatLiteral {
@inlinable
public func power(_ e: Int) -> Self {
var res = Self(1)
for _ in 0..<e {
res *= self
}
return res
}
@inlinable
public func root(n: Int, epsilon: Self = 2.220446049250313e-16) -> Self {
var d = Self(0)
var res = Self(1)
guard self!= 0 else {
return 0
}
guard n >= 1 else {
return .nan
}
repeat {
d = (self / res.power(n - 1) - res) / Self(n)
res += d
} while d >= epsilon * 10 || d <= -epsilon * 10
return res
}
}
print(81.root(n: 4))
print(13.root(n: 5)) | 531Nth root
| 17swift
| n7eil |
[Foo.new] * n
Array.new(n, Foo.new) | 545Multiple distinct objects
| 14ruby
| v0a2n |
use std::rc::Rc;
use std::cell::RefCell;
fn main() {
let size = 3; | 545Multiple distinct objects
| 15rust
| u8evj |
for (i <- (0 until n)) yield new Foo() | 545Multiple distinct objects
| 16scala
| gnq4i |
import Data.List (delete, elemIndex, mapAccumL)
import Data.Maybe (fromJust)
table :: String
table = ['a' .. 'z']
encode :: String -> [Int]
encode =
let f t s = (s: delete s t, fromJust (elemIndex s t))
in snd . mapAccumL f table
decode :: [Int] -> String
decode = snd . mapAccumL f table
where
f t i =
let s = (t !! i)
in (s: delete s t, s)
main :: IO ()
main =
mapM_ print $
(,) <*> uncurry ((==) . fst) <$>
((,) <*> (decode . snd) <$>
((,) <*> encode <$> ["broood", "bananaaa", "hiphophiphop"])) | 550Move-to-front algorithm
| 8haskell
| 8430z |
(function () {
'use strict'; | 554Monads/Writer monad
| 10javascript
| me2yv |
package main
import "fmt"
type mlist struct{ value []int }
func (m mlist) bind(f func(lst []int) mlist) mlist {
return f(m.value)
}
func unit(lst []int) mlist {
return mlist{lst}
}
func increment(lst []int) mlist {
lst2 := make([]int, len(lst))
for i, v := range lst {
lst2[i] = v + 1
}
return unit(lst2)
}
func double(lst []int) mlist {
lst2 := make([]int, len(lst))
for i, v := range lst {
lst2[i] = 2 * v
}
return unit(lst2)
}
func main() {
ml1 := unit([]int{3, 4, 5})
ml2 := ml1.bind(increment).bind(double)
fmt.Printf("%v ->%v\n", ml1.value, ml2.value)
} | 553Monads/List monad
| 0go
| 1mqp5 |
null | 548Multiple regression
| 11kotlin
| b68kb |
main()
{
int n=5,d=3;
int z= fact(n,d);
print('$n factorial of degree $d is $z');
for(var j=1;j<=5;j++)
{
print('first 10 numbers of degree $j:');
for(var i=1;i<=10;i++)
{
int z=fact(i,j);
print('$z');
}
print('\n');
}
}
int fact(int a,int b)
{
if(a<=b||a==0)
return a;
if(a>1)
return a*fact((a-b),b);
} | 552Multifactorial
| 18dart
| b6xk1 |
Point mouseLocation = MouseInfo.getPointerInfo().getLocation(); | 551Mouse position
| 9java
| gnp4m |
require
motzkin = Enumerator.new do |y|
m = [1,1]
m.each{|m| y << m }
2.step do |i|
m << (m.last*(2*i+1) + m[-2]*(3*i-3)) / (i+2)
m.unshift
y << m.last
end
end
motzkin.take(42).each_with_index do |m, i|
puts
end | 549Motzkin numbers
| 14ruby
| tk2f2 |
null | 549Motzkin numbers
| 15rust
| zbvto |
main = print $ [3,4,5] >>= (return . (+1)) >>= (return . (*2)) | 553Monads/List monad
| 8haskell
| tkmf7 |
use feature 'say';
for $i (0..1) {
for $j (0..2) {
for $k (0..3) {
$a[$i][$j][$k][$l] = [(0)x5];
}
}
}
@b = (
[1, 2, 4, 8, 16, 32],
[<Mon Tue Wed Thu Fri Sat Sun>],
[sub{$_[0]+$_[1]}, sub{$_[0]-$_[1]}, sub{$_[0]*$_[1]}, sub{$_[0]/$_[1]}]
);
say $b[0][5];
say $b[1][2];
say $b[2][0]->(40,2);
$
$c[2][2] = 42;
say $c[-1][-1];
my @d = <Mon Tue Ned Sat Fri Thu>;
push @d, 'Sun';
$d[2] = 'Wed';
@d[3..5] = @d[reverse 3..5];
say "@d"; | 547Multi-dimensional array
| 2perl
| b6ok4 |
document.addEventListener('mousemove', function(e){
var position = { x: e.clientX, y: e.clientY }
} | 551Mouse position
| 10javascript
| k3xhq |
use List::Util "sum";
for my $n (1..5000) {
print "$n\n" if $n == sum( map { $_**$_ } split(//,$n) );
} | 541Munchausen numbers
| 2perl
| 05vs4 |
class Foo { }
var foos = [Foo]()
for i in 0..<n {
foos.append(Foo())
} | 545Multiple distinct objects
| 17swift
| 2s1lj |
import Foundation
extension BinaryInteger {
@inlinable
public var isPrime: Bool {
if self == 0 || self == 1 {
return false
} else if self == 2 {
return true
}
let max = Self(ceil((Double(self).squareRoot())))
for i in stride(from: 2, through: max, by: 1) where self% i == 0 {
return false
}
return true
}
}
func motzkin(_ n: Int) -> [Int] {
var m = Array(repeating: 0, count: n)
m[0] = 1
m[1] = 1
for i in 2..<n {
m[i] = (m[i - 1] * (2 * i + 1) + m[i - 2] * (3 * i - 3)) / (i + 2)
}
return m
}
let m = motzkin(42)
for (i, n) in m.enumerated() {
print("\(i): \(n) \(n.isPrime? "prime": "")")
} | 549Motzkin numbers
| 17swift
| fhldk |
(defn bind [val f]
(if-let [v (:value val)] (f v) val))
(defn unit [val] {:value val})
(defn opt_add_3 [n] (unit (+ 3 n)))
(defn opt_str [n] (unit (str n)))
(bind (unit 4) opt_add_3)
(bind (unit nil) opt_add_3)
(bind (bind (unit 8) opt_add_3) opt_str)
(bind (bind (unit nil) opt_add_3) opt_str) | 555Monads/Maybe monad
| 6clojure
| 7fkr0 |
import java.util.LinkedList;
import java.util.List;
public class MTF{
public static List<Integer> encode(String msg, String symTable){
List<Integer> output = new LinkedList<Integer>();
StringBuilder s = new StringBuilder(symTable);
for(char c: msg.toCharArray()){
int idx = s.indexOf("" + c);
output.add(idx);
s = s.deleteCharAt(idx).insert(0, c);
}
return output;
}
public static String decode(List<Integer> idxs, String symTable){
StringBuilder output = new StringBuilder();
StringBuilder s = new StringBuilder(symTable);
for(int idx: idxs){
char c = s.charAt(idx);
output = output.append(c);
s = s.deleteCharAt(idx).insert(0, c);
}
return output.toString();
}
private static void test(String toEncode, String symTable){
List<Integer> encoded = encode(toEncode, symTable);
System.out.println(toEncode + ": " + encoded);
String decoded = decode(encoded, symTable);
System.out.println((toEncode.equals(decoded) ? "": "in") + "correctly decoded to " + decoded);
}
public static void main(String[] args){
String symTable = "abcdefghijklmnopqrstuvwxyz";
test("broood", symTable);
test("bananaaa", symTable);
test("hiphophiphop", symTable);
}
} | 550Move-to-front algorithm
| 9java
| ecia5 |
null | 554Monads/Writer monad
| 11kotlin
| ogf8z |
Array.prototype.bind = function (func) {
return this.map(func).reduce(function (acc, a) { return acc.concat(a); });
}
Array.unit = function (elem) {
return [elem];
}
Array.lift = function (func) {
return function (elem) { return Array.unit(func(elem)); };
}
inc = function (n) { return n + 1; }
doub = function (n) { return 2 * n; }
listy_inc = Array.lift(inc);
listy_doub = Array.lift(doub);
[3,4,5].bind(listy_inc).bind(listy_doub); | 553Monads/List monad
| 10javascript
| fhydg |
null | 551Mouse position
| 11kotlin
| 2s7li |
null | 543N-queens problem
| 0go
| x2mwf |
var encodeMTF = function (word) {
var init = {wordAsNumbers: [], charList: 'abcdefghijklmnopqrstuvwxyz'.split('')};
return word.split('').reduce(function (acc, char) {
var charNum = acc.charList.indexOf(char); | 550Move-to-front algorithm
| 10javascript
| 05zsz |
package Writer;
use strict;
use warnings;
sub new {
my ($class, $value, $log) = @_;
return bless [ $value => $log ], $class;
}
sub Bind {
my ($self, $code) = @_;
my ($value, $log) = @$self;
my $n = $code->($value);
return Writer->new( @$n[0], $log.@$n[1] );
}
sub Unit { Writer->new($_[0], sprintf("%-17s:%.12f\n",$_[1],$_[0])) }
sub root { Unit sqrt($_[0]), "Took square root" }
sub addOne { Unit $_[0]+1, "Added one" }
sub half { Unit $_[0]/2, "Divided by two" }
print Unit(5, "Initial value")->Bind(\&root)->Bind(\&addOne)->Bind(\&half)->[1]; | 554Monads/Writer monad
| 2perl
| gnh4e |
null | 553Monads/List monad
| 11kotlin
| wl8ek |
>>> from pprint import pprint as pp
>>> from itertools import product
>>>
>>> def dict_as_mdarray(dimensions=(2, 3), init=0.0):
... return {indices: init for indices in product(*(range(i) for i in dimensions))}
...
>>>
>>> mdarray = dict_as_mdarray((2, 3, 4, 5))
>>> pp(mdarray)
{(0, 0, 0, 0): 0.0,
(0, 0, 0, 1): 0.0,
(0, 0, 0, 2): 0.0,
(0, 0, 0, 3): 0.0,
(0, 0, 0, 4): 0.0,
(0, 0, 1, 0): 0.0,
...
(1, 2, 3, 0): 0.0,
(1, 2, 3, 1): 0.0,
(1, 2, 3, 2): 0.0,
(1, 2, 3, 3): 0.0,
(1, 2, 3, 4): 0.0}
>>> mdarray[(0, 1, 2, 3)]
0.0
>>> mdarray[(0, 1, 2, 3)] = 6.78
>>> mdarray[(0, 1, 2, 3)]
6.78
>>> mdarray[(0, 1, 2, 3)] = 5.4321
>>> mdarray[(0, 1, 2, 3)]
5.4321
>>> pp(mdarray)
{(0, 0, 0, 0): 0.0,
(0, 0, 0, 1): 0.0,
(0, 0, 0, 2): 0.0,
...
(0, 1, 2, 2): 0.0,
(0, 1, 2, 3): 5.4321,
(0, 1, 2, 4): 0.0,
...
(1, 2, 3, 3): 0.0,
(1, 2, 3, 4): 0.0}
>>> | 547Multi-dimensional array
| 3python
| pyibm |
def listOrder = { a, b ->
def k = [a.size(), b.size()].min()
def i = (0..<k).find { a[it] != b[it] }
(i != null) ? a[i] <=> b[i]: a.size() <=> b.size()
}
def orderedPermutations = { list ->
def n = list.size()
(0..<n).permutations().sort(listOrder)
}
def diagonalSafe = { list ->
def n = list.size()
n == 1 || (0..<(n-1)).every{ i ->
((i+1)..<n).every{ j ->
!([list[i]+j-i, list[i]+i-j].contains(list[j]))
}
}
}
def queensDistinctSolutions = { n -> | 543N-queens problem
| 7groovy
| pytbo |
<?php
$pwr = array_fill(0, 10, 0);
function isMunchhausen($n)
{
global $pwr;
$sm = 0;
$temp = $n;
while ($temp) {
$sm= $sm + $pwr[($temp % 10)];
$temp = (int)($temp / 10);
}
return $sm == $n;
}
for ($i = 0; $i < 10; $i++) {
$pwr[$i] = pow((float)($i), (float)($i));
}
for ($i = 1; $i < 5000 + 1; $i++) {
if (isMunchhausen($i)) {
echo $i . PHP_EOL;
}
} | 541Munchausen numbers
| 12php
| 5o0us |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.